
Oracle® Solaris Cluster Generic Data
Service (GDS) Guide

Part No: E61647
September 2015

Oracle Solaris Cluster Generic Data Service (GDS) Guide

Part No: E61647

Copyright © 2006, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Référence: E61647

Copyright © 2006, 2015, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d'utilisation et
de divulgation. Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence, transmettre,
distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous
invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est livré sous licence au Gouvernement des Etats-Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le
compte du Gouvernement des Etats-Unis, la notice suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être
utilisé dans des applications à risque, notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou ce matériel dans le cadre
d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour des
applications dangereuses.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d'autres propriétaires
qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une
marque déposée de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de
tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée
dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des
dommages causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Accès aux services de support Oracle

Les clients Oracle qui ont souscrit un contrat de support ont accès au support électronique via My Oracle Support. Pour plus d'informations, visitez le site http://www.oracle.com/
pls/topic/lookup?ctx=acc&id=info ou le site http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs si vous êtes malentendant.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Using This Documentation ...  7

1 Creating a Data Service with GDS ..  9
Generic Data Service Concepts .. 9

Precompiled Resource Type ..  10
Advantages and Disadvantages of Using the GDS .......................................  10
Ways to Create a Service That Uses the GDS ...  11
How the GDS Logs Events ...  12
Required GDS Properties ..  12
Optional GDS Properties ..  13

Using Oracle Solaris Cluster Administration Commands to Create a Service That
Uses the GDS ...  18

▼ How to Use Oracle Solaris Cluster Administration Commands to Create a
Highly Available Service That Uses the GDS ...  18
▼ How to Use Oracle Solaris Cluster Administration Commands to Create a
Scalable Service That Uses the GDS ... 19

2 Creating a Data Service with GDSv2 ...  21
Overview of the GDSv2 ...  21

Resource Types ...  21
RGM Callback Methods ...  22
The method_command Sequence .. 23

Installing and Configuring the GDSv2 ..  26
Installing the GDSv2 ...  26
Configuring the GDSv2 ..  27
Registering a GDSv2 Resource Type ..  27
Creating a GDSv2 Resource ..  28

Using the GDSv2 Extension Properties ...  32

5

Contents

ORCL.gds method_command Extension Properties ..  32
Additional ORCL.gds Extension Properties ...  35
ORCL.gds_proxy method_command Extension Properties ...............................  54
Additional ORCL.gds_proxy Extension Properties ..  57

Using the GDSv2 Demo Scripts ... 58
ORCL.gds Demo Scripts ..  58
ORCL.gds_proxy Demo Scripts ..  64

Using Subclassed GDSv2 Resource Types ...  67
Reasons to Subclass GDSv2 Resource Types ..  68

Upgrading the ORCL.gds and ORCL.gds_proxy Resource Types ..............................  71
Information for Registering the New Resource Type Version .........................  72
Information for Migrating Existing Instances of the Resource Type .................  72
▼ How to Migrate Instances of GDSv2 Resource Type ...............................  72

3 Using Agent Builder to Create a Service That Uses GDS or GDSv2 ..............  75
Creating and Configuring GDS-Based Scripts ... 75

▼ How to Start Agent Builder and Create the Scripts .................................  75
▼ How to Configure the Scripts for GDS ...  76
▼ How to Configure the Scripts for GDSv2 Non-proxy or Subclassed GDSv2
Non-proxy ..  77
▼ How to Configure Scripts for a GDSv2 Proxy or Subclassed GDSv2
Proxy ..  78
▼ How to Install the Generated Package ..  79

Output From Agent Builder ..  81
Command-Line Interface for Agent Builder ...  81

▼ How to Use the Command-Line Version of Agent Builder to Create a
Service That Uses GDS ..  81
▼ How to Use the Command-Line Version of Agent Builder to Create a
Service That Uses GDS or a Subclassed GDSv2 ...  84

Index ..  87

6 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Using This Documentation

■ Overview – Describes how to use the Generic Data Service to create a highly available,
custom Oracle Solaris Cluster data service

■ Audience – Technicians, system administrators, and authorized service providers
■ Required knowledge – Advanced experience troubleshooting and replacing hardware

Product Documentation Library

Documentation and resources for this product and related products are available at http://www.
oracle.com/pls/topic/lookup?ctx=E56676-01.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

Using This Documentation 7

http://www.oracle.com/pls/topic/lookup?ctx=E56676-01
http://www.oracle.com/pls/topic/lookup?ctx=E56676-01
http://www.oracle.com/goto/docfeedback

8 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

 1 ♦ ♦ ♦ C H A P T E R 1

Creating a Data Service with GDS

This book provides information about generic data services (GDS), and shows you how to
create a data service that uses the GDS. You create this service by using either Oracle Solaris
Cluster Agent Builder or Oracle Solaris Cluster administration commands.

The following two versions of GDS are supported:

■ Version 1 of the GDS – GDS
■ Version 2 of the GDS – GDSv2

This chapter covers the following topics:

■ “Generic Data Service Concepts” on page 9
■ “Using Oracle Solaris Cluster Administration Commands to Create a Service That Uses the

GDS” on page 18

Generic Data Service Concepts
The GDS is a mechanism for making simple network-aware and non-network-aware
applications highly available or scalable by plugging them into the Oracle Solaris Cluster
Resource Group Management (RGM) framework. This mechanism does not require you to code
a data service, which you typically must do to make an application highly available or scalable.

Note - You can install and configure this data service to run in either the global zone or a zone
cluster. For updated information about supported configurations of this data service, see the
Oracle Solaris Cluster 4 Compatibility Guide.

The GDS is a single, precompiled data service. You cannot modify the precompiled data service
and its components, the callback method (rt_callbacks) implementations, and the resource
type registration file (rt_reg).
This section covers the following topics:

■ “Precompiled Resource Type” on page 10

Chapter 1 • Creating a Data Service with GDS 9

http://www.oracle.com/technetwork/server-storage/solaris-cluster/overview/solariscluster4-compatibilityguide-1429037.pdf

Generic Data Service Concepts

■ “Advantages and Disadvantages of Using the GDS” on page 10
■ “Ways to Create a Service That Uses the GDS” on page 11
■ “How the GDS Logs Events” on page 12
■ “Required GDS Properties” on page 12
■ “Optional GDS Properties” on page 13

Precompiled Resource Type

The generic data service resource type SUNW.gds is included in the ha-cluster/ha-service/
gds package. The ha-cluster/ha-service/gds package includes the following files:

pkg contents ha-cluster/ha-service/gds

PATH

/opt/SUNWscgds

/opt/SUNWscgds/bin

/opt/SUNWscgds/bin/gds_monitor_check

/opt/SUNWscgds/bin/gds_monitor_start

/opt/SUNWscgds/bin/gds_monitor_stop

/opt/SUNWscgds/bin/gds_probe

/opt/SUNWscgds/bin/gds_svc_start

/opt/SUNWscgds/bin/gds_svc_stop

/opt/SUNWscgds/bin/gds_update

/opt/SUNWscgds/bin/gds_validate

/opt/SUNWscgds/etc

/opt/SUNWscgds/etc/SUNW.gds

/opt/cluster

/opt/cluster/lib

/opt/cluster/lib/rgm

/opt/cluster/lib/rgm/rtreg

/opt/cluster/lib/rgm/rtreg/SUNW.gds

Advantages and Disadvantages of Using the GDS

Using the GDS has the following advantages over using either the Agent Builder source code
(see the scdscreate(1HA) man page) or Oracle Solaris Cluster administration commands:

■ The GDS is easy to use.
■ The GDS and its methods are precompiled and therefore cannot be modified.
■ You can use Agent Builder to generate scripts for your application. These scripts are put in

an Oracle Solaris package that can be reused across multiple clusters.

10 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLCRMscdscreate-1ha

Generic Data Service Concepts

While using the GDS has many advantages, the GDS is not the mechanism to use in these
instances:

■ When more control is required than is available with the precompiled resource type, such as
when you need to add extension properties or change default values

■ When the source code needs to be modified to add special functions

Ways to Create a Service That Uses the GDS

There are two ways to create a service that uses the GDS:

■ Agent Builder
■ Oracle Solaris Cluster administration commands

GDS and Agent Builder

Use Agent Builder and select GDS as the type of generated source code. The user input is
used to generate a set of scripts that configure resources for the given application. For more
information, see Chapter 3, “Using Agent Builder to Create a Service That Uses GDS or
GDSv2”.

GDS and Oracle Solaris Cluster Administration Commands

This method uses the precompiled data service code in ha-cluster/ha-service/gds. However,
the cluster administrator must use Oracle Solaris Cluster administration commands to create and
configure the resource. See the clresource(1CL) man page.

Selecting the Method to Use to Create a GDS-Based Service

A significant amount of typing is required to issue Oracle Solaris Cluster commands. For
example, see “How to Use Oracle Solaris Cluster Administration Commands to Create a Highly
Available Service That Uses the GDS” on page 18 and “How to Use Oracle Solaris Cluster
Administration Commands to Create a Scalable Service That Uses the GDS” on page 19.

Using the GDS with Agent Builder simplifies the process because the GDS generates the scripts
that issue the scrgadm and scswitch commands for you.

Chapter 1 • Creating a Data Service with GDS 11

http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLCRMclresource-1cl

Generic Data Service Concepts

How the GDS Logs Events
The GDS enables you to log relevant information that is passed from the GDS to the scripts
that the GDS starts. This information includes the status of the start, probe, validate, and stop
methods as well as property variables. You can use this information to diagnose problems or
errors in your scripts, or apply it to other purposes.

You use the Log_level property that is described in “Log_level Property” on page 14 to
specify the level, or type, of messages that the GDS will log. You can specify NONE, INFO, or
ERR.

GDS Log Files

The following two GDS log files are placed in the /var/cluster/logs/DS/resource-group-
name/resource-name directory:

■ The start_stop_log.txt, which contains messages that are generated by resource start and
stop methods

■ The probe_log.txt, which contains messages that are generated by the resource monitor

The following example shows the types of information that start_stop_log.txt contains:

06/12/2006 12:38:05 phys-node-1 START-INFO> Start succeeded. [/home/brianx/sc/start_cmd]

06/12/2006 12:42:11 phys-node-1 STOP-INFO> Successfully stopped the application

The following example shows the types of information that probe_log.txt contains:

06/12/2006 12:38:15 phys-node-1 PROBE-INFO> The GDS monitor (gds_probe) has been started

06/12/2006 12:39:15 phys-node-1 PROBE-INFO> The probe result is 0

06/12/2006 12:40:15 phys-node-1 PROBE-INFO> The probe result is 0

06/12/2006 12:41:15 phys-node-1 PROBE-INFO> The probe result is 0

Required GDS Properties
This section describes the required GDS properties.

Port_list Property

The Port_list property identifies the list of ports on which the application listens. You
must specify the Port_list property in the start script that Agent Builder creates or with the
clresource command.

12 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Generic Data Service Concepts

Whether you must specify this property depends on whether your application is network aware
or not. If you specify that your application is network aware (you set the Network_aware
property to TRUE, which is the default), you must provide both the Start_command extension
property and the Port_list property. If you specify that your application is non-network aware
(you set the Network_aware property to FALSE), you must provide only the Start_command
extension property. The Port_list property is optional.

Start_command Property

The start command, which you specify with the Start_command extension property, starts the
application. This command must be a UNIX command with arguments that can be passed
directly to a shell to start the application.

If your application is network aware, you must provide both the Start_command extension
property and the Port_list property. If your application is non-network aware, you must
provide only the Start_command extension property.

Optional GDS Properties
Optional GDS properties include both standard properties and extension properties. Standard
properties are a standard set of properties that are provided by Oracle Solaris Cluster. Properties
that are defined in the RTR file are called extension properties.
Optional GDS properties include:

■ Child_mon_level extension property (used only with administration commands)
■ Failover_enabled extension property
■ Log_level extension property
■ Monitor_retry_count extension property
■ Monitor_retry_interval extension property
■ Network_aware extension property
■ Probe_command extension property
■ Probe_timeout extension property
■ Resource_dependencies property
■ Start_timeout property
■ Stop_command extension property
■ Stop_signal extension property
■ Stop_timeout property
■ Timeout_threshold property

Chapter 1 • Creating a Data Service with GDS 13

Generic Data Service Concepts

■ Validate_command extension property
■ Validate_timeout property

Child_mon_level Property

Note - If you use Oracle Solaris Cluster administration commands, you can use the
Child_mon_level property. If you use Agent Builder, you cannot use this property.

This property provides control over the processes that are monitored through the Process
Monitor Facility (PMF). This property denotes the level up to which the forked children
processes are monitored. This property works like the -C argument to the pmfadm command. See
the pmfadm(1M) man page.

Omitting this property, or setting it to the default value of -1, has the same effect as omitting the
-C option on the pmfadm command. That is, all children and their descendants are monitored.

Failover_enabled Property

This property controls the failover behavior of the resource. If this extension property is set to
TRUE, the application fails over when the number of restarts exceeds the Retry_count within the
Retry_interval number of seconds.

If this property is set to FALSE, the application does not restart or fail over to another node when
the number of restarts exceeds the Retry_count within the Retry_interval number of seconds.

You can use this property to prevent the application resource from initiating a failover of the
resource group. The default value for this property is TRUE.

Note - In future, use the Failover_mode property in place of the Failover_enabled extension
property as Failover_mode better controls failover behavior. For more information, see
the descriptions of the LOG_ONLY and RESTART_ONLY values for Failover_mode in the
r_properties(5) man page.

Log_level Property

This property specifies the level, or type, of diagnostic messages that are logged by the GDS.
You can specify NONE, INFO, or ERR for this property. When you specify NONE, diagnostic
messages are not logged by the GDS. When you specify INFO, only informational messages are

14 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLCRMpmfadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLCRMr-properties-5

Generic Data Service Concepts

logged. When you specify ERR, only error messages are logged. By default, the GDS does not
log diagnostic messages (NONE).

Monitor_retry_count Property

This property specifies the number of times that the process monitor facility (PMF) restarts the
fault monitor during the time window that the Monitor_retry_interval property specifies.
This property refers to restarts of the fault monitor itself rather than to the resource. The system-
defined properties Retry_interval and Retry_count control restarting of the resource.

Monitor_retry_interval Property

This property specifies the time (in minutes) over which failures of the fault monitor are
counted. If the number of times that the fault monitor fails exceeds the value that is specified in
the extension property Monitor_retry_count within this period, the PMF does not restart the
fault monitor.

Network_aware Property

This property specifies whether your application uses the network. By default, the GDS
assumes that your application is network aware, that is, uses the network (Network_aware is set
to TRUE).

If your application is network aware, you must provide both the Start_command extension
property and the Port_list property. If your application is non-network aware, you must
provide only the Start_command extension property.

Probe_command Property

This property specifies the probe command that periodically checks the health of a given
application. This command must be a UNIX command with arguments that can be passed
directly to a shell to probe the application. The probe command returns with an exit status of 0
if the application is running correctly.

The exit status of the probe command is used to determine the severity of the application's
failure. This exit status, called the probe status, must be an integer between 0 (for success) and
100 (for complete failure). The probe status can also be a special value of 201, which causes
the application to immediately fail over unless Failover_enabled is set to FALSE. The GDS

Chapter 1 • Creating a Data Service with GDS 15

Generic Data Service Concepts

probing algorithm uses the probe status to determine whether to restart the application locally or
fail it over. See the scds_fm_action(3HA) man page for more information. If the exit status is
201, the application is immediately failed over.

If the probe command is omitted, the GDS provides its own simple probe. This probe
connects to the application on the set of IP addresses that is derived from the output of the
scds_get_netaddr_list() function. This includes all network resources on which the
GDS resource declares a resource dependency. If there are no such resources, it includes
all network resources configured in the same resource group as the GDS resource. See the
scds_get_netaddr_list(3HA) man page for more information.

If the connect succeeds, the connect disconnects immediately. If both the connect and
disconnect succeed, the application is deemed to be running well.

Note - The probe that is provided with the GDS is only intended to be a simple substitute for the
fully functioning application-specific probe.

Probe_timeout Property

This property specifies the timeout value for the probe command. See “Probe_command
Property” on page 15 for additional information. The default for Probe_timeout is 30
seconds.

Resource_dependencies Property

This property specifies a list of resources in the same group or in different groups upon which
this resource has a strong dependency. This resource cannot be started if the start of any
resource in the list fails. If this resource and one of the resources in the list start at the same
time, the RGM waits until the resource in the list starts before the RGM starts this resource. If
the resource in this resource's Resource_dependencies list does not start (for example, if the
resource group for the resource in the list remains offline or if the resource in the list is in a
Start_failed state), this resource also remains offline. If this resource remains offline because
of a dependency on a resource in a different resource group that fails to start, this resource's
group enters a Pending_online_blocked state.

To specify the scope of a dependency, append the qualifier {ANY_NODE},
{FROM_RG_AFFINITIES}, {LOCAL_NODE}, or @nodename, including the braces ({ }) or at-sign
(@), to the resource name when you specify this property.

See Resource_dependencies in the r_properties(5) man page for details about resource
dependencies.

16 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLCRMscds-fm-action-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLCRMscds-get-netaddr-list-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLCRMr-properties-5

Generic Data Service Concepts

Start_timeout Property

This property specifies the start timeout for the start command. See “Start_command
Property” on page 13 for additional information. The default for Start_timeout is 300
seconds.

Stop_command Property

This property specifies the command that must stop an application and only return after the
application has been completely stopped. This command must be a complete UNIX command
that can be passed directly to a shell to stop the application.

If the Stop_command extension property is provided, the GDS stop method starts the stop
command with 80 percent of the stop timeout. Regardless of the outcome of starting the stop
command, the GDS stop method sends SIGKILL with 15 percent of the stop timeout. The
remaining 5 percent of the time is reserved for housekeeping overhead.

If the stop command is omitted, the GDS tries to stop the application by using the signal
specified in Stop_signal.

Stop_signal Property

This property specifies a value that identifies the signal to stop an application through the PMF.
See the signal(3HEAD) man page for a list of the integer values that you can specify. The
default value is 15 (SIGTERM).

Stop_timeout Property

This property specifies the timeout for the stop command. See “Stop_command
Property” on page 17 for additional information. The default for Stop_timeout is 300
seconds.

Timeout_threshold Property

This property specifies after what percentage of a timeout period a notification should be sent
that the timeout limit is almost reached.

Chapter 1 • Creating a Data Service with GDS 17

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Fsignal-3head

Using Oracle Solaris Cluster Administration Commands to Create a Service That Uses the GDS

Validate_command Property

This property specifies the absolute path to a command to invoke to validate the application. If
you do not provide an absolute path, the application is not validated.

Validate_timeout Property

This property specifies the timeout for the validate command. See “Validate_command
Property” on page 18 for additional information. The default for Validate_timeout is 300
seconds.

Using Oracle Solaris Cluster Administration Commands to
Create a Service That Uses the GDS

This section describes how to input arguments to the GDS. You use the existing Oracle
Solaris Cluster administration commands, such as clresourcetype, clresourcegroup, and
clresource to maintain and administer the GDS.

If the scripts provide adequate functionality, you do not need to use the lower-level
administration commands that are shown in this section. However, you can use the lower-level
administration commands if you need to have finer control over the GDS-based resource. These
commands are executed by the scripts.

How to Use Oracle Solaris Cluster Administration
Commands to Create a Highly Available Service
That Uses the GDS

Before You Begin Ensure that the /etc/netmasks file has IP-address subnet and netmask entries for all logical
hostnames. If necessary, edit the /etc/netmasks file to add any missing entries.

1. Become an administrator that provides solaris.cluster.modify authorization.

2. Register the resource type SUNW.gds.

clresourcetype register SUNW.gds

18 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

How to Use Oracle Solaris Cluster Administration Commands to Create a Scalable Service That Uses the GDS

3. Create the resource group that contains the LogicalHostname resource and the
failover service itself.

clresourcegroup create haapp_rg

4. Create the resource for the LogicalHostname resource.

clreslogicalhostname create -g haapp_rg hhead

5. Create the resource for the failover service itself.

clresource create -g haapp_rg -t SUNW.gds

-p Validate_command="/export/app/bin/configtest" \

-p Scalable=false \

-p Start_timeout=120 \

-p Stop_timeout=120 \

-p Probe_timeout=120 \

-p Port_list="2222/tcp" \

-p Start_command="/export/ha/appctl/start" \

-p Stop_command="/export/ha/appctl/stop" \

-p Probe_command="/export/app/bin/probe" \

-p Child_mon_level=0 \

-p Resource_dependencies=hhead \

-p Failover_enabled=TRUE \

-p Stop_signal=9 haapp_rs

Note - The scripts listed above are examples; your script names might be different.

6. Bring the resource group haapp_rg online in a managed state.

clresourcegroup online -M haapp_rg

How to Use Oracle Solaris Cluster Administration
Commands to Create a Scalable Service That
Uses the GDS

Before You Begin Ensure that the /etc/netmasks file has IP-address subnet and netmask entries for all logical
hostnames. If necessary, edit the /etc/netmasks file to add any missing entries.

1. Become an administrator that provides solaris.cluster.modify authorization.

2. Register the resource type SUNW.gds.

Chapter 1 • Creating a Data Service with GDS 19

How to Use Oracle Solaris Cluster Administration Commands to Create a Scalable Service That Uses the GDS

clresourcetype register SUNW.gds

3. Create the resource group for the SharedAddress resource.

clresourcegroup create sa_rg

4. Create the SharedAddress resource hhead in resource group sa_rg.

clressharedaddress create -g sa_rg hhead

5. Create the resource group for the scalable service.

clresourcegroup create -S -p RG_dependencies=sa_reg app_rg

6. Create the resource for the scalable service.

clresource create -g app_rg -t SUNW.gds

-p Validate_command="/export/app/bin/configtest" \

-p Scalable=TRUE -p Start_timeout=120 \

-p Stop_timeout=120 -p Probe_timeout=120 \

-p Port_list="2222/tcp" \

-p Start_command="/export/app/bin/start" \

-p Stop_command="/export/app/bin/stop" \

-p Probe_command="/export/app/bin/probe" \

-p Child_mon_level=0 -p Network_resource_used=hhead \

-p Failover_enabled=TRUE -p Stop_signal=9 app_rs

7. Bring the resource group that contains the network resources online.

clresourcegroup online sa_reg

8. Bring the resource group app_rg online in a managed state.

clresourcegroup online -M app_reg

20 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

 2 ♦ ♦ ♦ C H A P T E R 2

Creating a Data Service with GDSv2

This chapter explains how to install and configure the GDSv2 and create a demo resource.

This chapter contains the following sections.

■ “Overview of the GDSv2” on page 21
■ “Installing and Configuring the GDSv2” on page 26
■ “Using the GDSv2 Extension Properties” on page 32
■ “Using the GDSv2 Demo Scripts” on page 58
■ “Using Subclassed GDSv2 Resource Types” on page 67

Overview of the GDSv2

Oracle Solaris Cluster supports both versions of GDS (GDS and GDSv2).

This section contains information about the following:

■ The ORCL.gds and ORCL.gds_proxy resource types
■ RGM callback methods for the GDSv2 resource types
■ The method_command Sequence

Resource Types

The GDSv2 uses ORCL.gds and ORCL.gds_proxy resource types.

A proxy resource type is typically used to reflect the state of a resource from another cluster
framework. The proxy resource type was initially developed to proxy state information of the
Oracle RAC database running under the control of the Oracle Solaris Cluster Ready Service,

Chapter 2 • Creating a Data Service with GDSv2 21

Overview of the GDSv2

now known as Oracle Clusterware. However, a proxy resource type is not limited to proxying
state information from another cluster framework and instead could reflect the state of any
application. In the examples that are provided, the demo resource of type ORCL.gds_proxy
reflects the state of the SMF system log service.

RGM Callback Methods

The ORCL.gds and ORCL.gds_proxy resource types include RGM callback methods and
associated method_command extension properties.

The ORCL.gds resource type includes the following RGM callback methods and associated
method_command extension properties:

RGM Callback Method GDSv2 method_command

Boot Boot_command

Fini Fini_command

Init Init_command

Start Start_command

Stop Stop_command

Validate Validate_command

Method_start Probe_command

Method_stop

Method_check

Update

The ORCL.gds_proxy resource type includes the following RGM callback methods and
associated method_command extension properties:

RGM Callback Method GDSv2 method_command

Boot Boot_command

Init Init_command

Fini Fini_command

Prenet_start Prenet_start_command

Postnet_stop Postnet_stop_command

Validate Validate_command

22 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Overview of the GDSv2

The GDSv2 also includes the following:

■ Useful housekeeping KSH function scripts for GDSv2 resource types.
■ Demo resources of type ORCL.gds and ORCL.gds_proxy to showcase functionality.
■ Enhanced GDSv2 probing algorithm to minimize probe timeouts.
■ Enhanced Oracle Solaris Cluster Agent Builder GUI and CLI commands to create new

resources of type ORCL.gds and ORCL.gds_proxy, as well as new resources from sub-classed
ORCL.gds or ORCL.gds_proxy resource types.

The method_command Sequence
To see a complete list of all callback methods executed by the RGM, see “RGM Callback
Methods” on page 22. The RGM callback method and subsequent GDSv2 method_command
sequences are listed in the following sections.

The ORCL.gds method_command Sequence

The table below lists the ORCL.gds method_command extension properties.

Action RGM
Callback
Method

ORCL.gds method_command

Resource creation Validate Validate_command

If set, the Validate_command is executed on all nodes within the
resource group's node list.

 Init Init_command

If set, the Init_command is executed on all nodes identified by the
Init_nodes property.

Resource enable Start Start_command

Start_command is a required property.

Monitor
start

Probe_command

Monitor_start will only execute Probe_command if it is set. If
Probe_command is not set but PMF_managed=TRUE is set, then
Monitor_start will start an internal probe.

Resource disable Monitor
stop

Probe_command

Monitor_stop will only stop the probe if Probe_command was set.
If Probe_command was not set but PMF_managed=TRUE was set, then
Monitor_stop will stop the internal probe.

Chapter 2 • Creating a Data Service with GDSv2 23

Overview of the GDSv2

Action RGM
Callback
Method

ORCL.gds method_command

Stop Stop_command

Stop_command is only executed if it is set. If Stop_command is not
set but PMF_managed=TRUE is set, then Stop_signal is sent to the
application process tree if Stop_command failed to stop the application.

Resource delete Fini Fini_command

If set, Fini_command is executed on all nodes within the resource
group's node list.

Resource unmonitor Monitor
stop

Probe_command

Monitor_stop will only stop the probe if Probe_command was set.
If Probe_command was not set but PMF_managed=TRUE was set, then
Monitor_stop will stop the internal probe.

Resource monitor Monitor
start

Probe_command

Monitor_start will only execute Probe_command if it is set. If
Probe_command is not set but PMF_managed=TRUE is set, then
Monitor_start will start an internal probe.

Property update for an
enabled resource

Validate Validate_command

If set, the Validate_command is executed on all nodes within the
resource group's node list.

 Update On the node where the resource is online, the RGM Update method will
kill the fault monitor process tree and then use PMF to restart the fault
monitor.

Property update for a
disabled resource

Validate Validate_command

If set, the Validate_command is executed on all nodes within the
resource group's node list.

Upon reboot for an
enabled and monitored
resource

Boot Boot_command

If set, Boot_command is executed on all nodes identified by the
Init_nodes property.

 Start Start_command

Start_command is a required property.

 Monitor
Start

Probe_command

Monitor_start will only execute Probe_command if it is set. If
Probe_command is not set but PMF_managed=TRUE is set, then
Monitor_start will start an internal probe.

Upon reboot for a
disabled resource

Boot Boot_command

If set, Boot_command is executed on all nodes identified by the
Init_nodes property.

24 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Overview of the GDSv2

The ORCL.gds_proxy method_command Sequence

The table below lists the ORCL.gds_proxy method_command extension properties.

Action RGM
Callback
Method

ORCL.gds_proxy method_command

Resource creation Validate Validate_command

If set, the Validate_command is executed on all nodes within the
resource group's node list.

 Init Init_command

If set, the Init_command is executed on all nodes identified by the
Init_nodes property.

Resource enable Prenet
start

Prenet_start_command

Prenet_start_command is a required property.

Resource disable Postnet
stop

Postnet_stop_command

If set, Postnet_stop_command is executed on the node where the
resource is being disabled. If Postnet_stop_command is not set, then the
Stop_signal property is sent to the proxy PMF tag.

Resource delete Fini Fini_command

If set, Fini_command is executed on all nodes within the resource
group's node list.

Upon reboot for an
enabled resource

Boot Boot_command

If set, Boot_command is executed on all nodes identified by the
Init_nodes property.

 Prenet
start

Prenet_start_command

Prenet_start_command is a required property.

Upon reboot for a
disabled resource

Boot Boot_command

If set, Boot_command is executed on all nodes identified by the
Init_nodes property.

The Resource Group method_command Sequence

The table below lists the resource group method_command extension properties.

Chapter 2 • Creating a Data Service with GDSv2 25

Installing and Configuring the GDSv2

Action RGM
Callback
Method

RGM Callback Method and method_command

Resource group offline
with an enabled resource

Postnet
stop

Postnet_stop_command

If set, Postnet_stop_command is executed on the node where the
resource is being disabled. If Postnet_stop_command is not set, then the
Stop_signal property is sent to the proxy PMF tag.

Resource group online
with previously enabled
resource

Prenet
start

Prenet_start_command

Prenet_start_command is a required property.

Resource group switch
from unmanaged to
managed

Init Init_command

If set, the Init_command is executed on all nodes identified by the
Init_nodes property.

Resource group switch
from managed to
unmanaged

Fini Fini_command

If set, Fini_command is executed on all nodes within the resource
group's node list.

Installing and Configuring the GDSv2

TABLE 1 Tasks for Installing and Configuring the GDSv2

Task Instructions

Install the GDSv2 software “Installing the GDSv2” on page 26

Configure the GDSv2 software “Configuring the GDSv2” on page 27

Register the GDSv2 software “Registering a GDSv2 Resource Type” on page 27

Create a GDSv2 Resource “Creating a GDSv2 Resource” on page 28

Installing the GDSv2

This section contains information about how the GDSv2 software is installed.

The GDSv2 is automatically installed when you install any of the following Oracle Solaris
Cluster packages:

■ The ha-cluster-full package
■ The ha-cluster-framework-full package

26 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

How to Register a GDSv2 Resource Type

■ The ha-cluster-data-services-full package

If you installed the ha-cluster-minimal group package, you can manually use the pkg(1)
command to install the Oracle Solaris IPS package:

pkg://ha-cluster/ha-service/gds2

Configuring the GDSv2

This section contains information about configuring the GDSv2, which is performed by
setting extension properties. In most cases, you can use the default values for the extension
properties. For specific information on extension properties, see “Using the GDSv2 Extension
Properties” on page 32.

Registering a GDSv2 Resource Type

This section contains the procedure to register a GDSv2 resource type.

How to Register a GDSv2 Resource Type

1. On one cluster node, assume the root role.

2. Register either the ORCL.gds or the ORCL.gds_proxy resource type.

clresourcetype register ORCL.gds

clresourcetype register ORCL.gds_proxy

3. Ensure that the resource type was registered.

clresourcetype list ORCL.gds

ORCL.gds:1

clresourcetype list ORCL.gds_proxy

ORCL.gds_proxy:1

Chapter 2 • Creating a Data Service with GDSv2 27

How to Create a Demo Resource of Type ORCL.gds

Creating a GDSv2 Resource

This section contains procedures to create a demo GDSv2 resource. A demo resource is used
as a starting point for your own GDSv2 resource. The demo scripts are located in the GDSv2
package.

Note - The purpose of using demo applications is to showcase the behavior of the GDSv2
resource type. As such, these demo applications are just simple commands that are already
installed and configured on Oracle Solaris 11.

The benefit of a demo application is to quickly deploy a GDSv2 resource with minimal effort.
You can then experiment with the various GDSv2 extension properties to learn about the
functionality.

The application used by the demo resource of type ORCL.gds executes a background sleep for
1800 seconds. After you implement that application, you make other customizations to the
ORCL.gds resource type. The application used by the demo resource of type ORCL.gds_proxy
reflects the status of the Solaris Service Management Facility (SMF) system-log.

How to Create a Demo Resource of Type ORCL.gds

This procedure assumes you have already registered the ORCL.gds resource type. See “How to
Register a GDSv2 Resource Type” on page 27.

1. On one cluster node, assume the root role.

2. Create a failover resource group and a demo resource of type ORCL.gds.

Note - A resource of type ORCL.gds requires that the Start_command extension property is used.
All other extension properties are optional.

clresourcegroup create -p pathprefix=/opt/ORCLscgds/demo myrg
clresource create -g myrg -t ORCL.gds \
-p start_command="%RG_PATHPREFIX/demo_start \

-R %RS_NAME -G %RG_NAME -T %RT_NAME" -d myrs

These steps use the following optional property variables:

■ %RG_PATHPREFIX – Determines the path for the demo_start script.

■ %RS_NAME – Determines the resource name.

28 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

How to Create a Demo Resource of Type ORCL.gds

■ %RG_NAME – Determines the resource group name.

■ %RT_NAME – Determines the resource type name.
GDSv2 replaces the %Property_Variables with the actual resource name, resource group
name, and resource type name when executing the demo_start script. These global
variables can then be used by the scha_cmds(1HA) commands. For example, within the
/opt/ORCLscgds/demo/demo_start script, the following is used:

/usr/cluster/bin/scha_resource_get -O extension -R ${RESOURCE} -G ${RESOURCE_GROUP}

interpose_logical_hostname

3. Bring the resource online.

clresourcegroup online -eM myrg
clresource status myrs

=== Cluster Resources ===

Resource Name Node Name State Status Message

------------- --------- ----- --------------

myrs node1 Online Online - Service is online

 node2 Offline Offline

4. Verify that the Oracle Solaris Cluster PMF is running and display the PMF tag
information for the myrs resource.
By default, the ORCL.gds resource type uses Oracle Solaris Cluster's PMF. If the process that
is being monitored fails, PMF immediately restarts the process. In the example below, process
3006 is the process that was started by the demo_start script. This process represents the demo
application, sleep 1800 &. Two PMF tags are shown below: myrg,myrs,0.mon and myrg,
myrs,0.svc.

pmfadm -1 ""

STATUS myrg,myrs,0.mon

pmfadm -c myrg, myrs,0.mon -n 4 -t 2 /bin/ksh -c \

'/opt/ORCLscgds/bin/gds_probe -R myrs -T ORCL.gds -G myrg'

 retries: 0

 owner: root

 monitor children: all

 pids: 3020

STATUS myrg,myrs,0.svc

pmfadm -c myrg, myrs,0.svc -a /usr/cluster/lib/sc/scds_pmf_action_script /bin/ksh -c \

'/usr/cluster/bin/hatimerun -t 299 /opt/ORCLscgds/demo/demo_start -R myrs -G myrg \

-T ORCL.gds ; echo $? > /var/cluster/run/tempubaG0f'

 retries: 0

 owner: root

 monitor children: all

Chapter 2 • Creating a Data Service with GDSv2 29

How to Create a Demo Resource of Type ORCL.gds_proxy

 pids: 3006

The PMF tag myrg.myrs,0.mon represents the GDSv2 monitor, and myrg,myrs,0.
svcrepresents the GDSv2 application process. The PMF tag myrg,myrs,0.svc will disappear if
all the application processes that are being monitored have failed. Consequently, if process 3006
dies (which it will eventually as process 3006 is sleep 1800 &), then the PMF immediately
restarts the application. As a test, you can kill your equivalent process ID 3006 and reissue
the clresource status myrs and pmfadm -l "" commands to see that the application was
immediately restarted.

5. Set additional method_command extension properties.
A resource of type ORCL.gds requires that you use the start_command extension property. This
demo example uses additional method_command properties. You can also set these extension
properties after the resource has been created. The steps below show how to set the properties
during resource creation.

a. Disable and delete the resource.

clresource disable myrs
clresource delete myrs

b. Create the resource.

clresource create -g myrg -t ORCL.gds \
-p Start_command="%RG_PATHPREFIX/demo_start -R %RS_NAME -G %RG_NAME -T %RT_NAME" \

-p Stop_command="%RG_PATHPREFIX/demo_stop -R %RS_NAME -G %RG_NAME -T %RT_NAME" \

-p Probe_command="%RG_PATHPREFIX/demo_probe -R %RS_NAME -G %RG_NAME -T %RT_NAME" \

-p Validate_command="%RG_PATHPREFIX/demo_validate -R %RS_NAME -G %RG_NAME \

-T %RT_NAME" -d myrs

The demo resource of type ORCL.gds has been created.

6. Enable the resource.

clresource enable myrs

How to Create a Demo Resource of Type ORCL.gds_proxy

This procedure assumes you have already registered the ORCL.gds_proxy resource type. See
“How to Register a GDSv2 Resource Type” on page 27.

1. On one cluster node, assume the root role.

30 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

How to Create a Demo Resource of Type ORCL.gds_proxy

2. Create a scalable resource group and a demo resource of type ORCL.gds_proxy.

clresourcegroup create -p pathprefix=/opt/ORCLscgds/demo -S mysrg

clresource create -g mysrg -t ORCL.gds_proxy \
-p Prenet_start_command="%RG_PATHPREFIX/demo_proxy_prenet_start \

-R %RS_NAME -G %RG_NAME -T %RT_NAME" \

-p Postnet_stop_command="%RG_PATHPREFIX/demo_proxy_postnet_stop \

-R %RS_NAME -G %RG_NAME -T %RT_NAME" \

-p Validate_command="%RG_PATHPREFIX/demo_validate \

-R %RS_NAME -G %RG_NAME -T %RT_NAME" \

-d mysrs

For more information on the optional property variables used above, see “How to Create a
Demo Resource of Type ORCL.gds” on page 28.

3. Bring the resource online.

clresourcegroup online -eM mysrg
clresource status mysrs
=== Cluster Resources ===

Resource Name Node Name State Status Message

------------- --------- ----- --------------

mysrs node1 Online Online - System-log is online

 node2 Online Online - System-log is online

The mysrs resource now reflects the state of the demo proxy application, the SMF system-log.

Note - A resource of type ORCL.gds_proxy requires that the demo_proxy_prenet_start
extension property is used. All other extension properties are optional.

4. Display the proxy interval for the mysrs resource.
The Proxy_interval extension property determines how often the mysrs resource checks
the status of the SMF system-log. The default is 30 seconds, and can be changed using the
clresource(1CL) command.

clresource show -p proxy_interval mysrs

=== Resources ===

Resource: mysrs

--- Standard and extension properties ---

Proxy_interval 30

 Class: extension

 Description: Prenet_start proxy interval (seconds)

 Per-node: False

 Type: int

Chapter 2 • Creating a Data Service with GDSv2 31

http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLCRMclresource-1cl

Using the GDSv2 Extension Properties

5. Disable the SMF system-log service on one node and verify that the mysrs
resource reflects the new state of the system-log.
Within 30 seconds after you issue the svcadm disable command, the state and status on node1
should change.

svcadm disable system-log

clresource status mysrs

=== Cluster Resources ===

Resource Name Node Name State Status Message

------------- --------- ----- --------------

mysrs node1 Offline Offline - System-log is offline

 node2 Online Online - System-log is online

After you create the demo resource of type ORCL.gds_proxy, you can make additional
customizations to the resource. See “Additional ORCL.gds_proxy Extension
Properties” on page 57.

Using the GDSv2 Extension Properties

This section contains information about the extension properties you can use with a resource of
type ORCL.gds and ORCL.gds_proxy.

ORCL.gds method_command Extension Properties

The table below lists the ORCL.gds method_command extension properties. See “The
method_command Sequence” on page 23 for more information.

Property Name RequiredComments

Boot_command No Any UNIX command.

Fini_command No Any UNIX command.

Init_command No Any UNIX command.

Start_command Yes Any UNIX command.

Stop_command Yes/
No

Any UNIX command. Required if PMF_managed=FALSE.

Validate_command No Any UNIX command.

Probe_command No Any UNIX command. If PMF_managed=TRUE is set, an internal probe is
used.

32 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Using the GDSv2 Extension Properties

Boot_command Property

The Boot_command is not a required property. If set, this command must be a UNIX command
with arguments that can be passed directly to a shell.

Fini_command Property

The Fini_command is not a required property. If set, this command must be a UNIX command
with arguments that can be passed directly to a shell.

Init_command Property

The Init_command is not a required property. If set, this command must be a UNIX command
with arguments that can be passed directly to a shell.

Start_command Property

The Start_command is a required property and starts the application. This command must be a
UNIX command with arguments that can be passed directly to a shell to start the application.

The application in this context can be any software application in a traditional sense, but it
could also just be a UNIX command similar to either of the following lines:

Start_command=path to start my software application
Start_command="/usr/bin/touch /var/tmp/myrs"

Note - If the Start_command does not leave behind at least one process, then
PMF_managed=FALSE must be set. See “PMF_managed Property” on page 41 for more
information. Furthermore, if PMF_managed=FALSE is set, then the Stop_command property is also
required.

Note - If the default Wait_for_online=TRUE is set, then the Probe_command is executed
within the Start callback method to determine if the application is online. GDSv2 passes an
argument to the Probe_command to indicate if the Probe_command is being called within the
Start callback method or if the Probe_command is being called by the GDSv2 probe after the
resource has started successfully and is now online.

Passing an argument to the Probe_command provides the ability to code different behavior
within the Probe_command when the resource is being started or after the resource has been
started and is now online.

Chapter 2 • Creating a Data Service with GDSv2 33

Using the GDSv2 Extension Properties

That argument is passed as the last argument to Probe_command and can contain the values
gds_start when the Probe_command is executed within the Start callback method or gds_probe
when the Probe_command is executed after the resource has started successfully and is now
online.

See the /opt/ORCLscgds/demo/demo_probe file for an example. Following is a snippet of code
from demo_probe that assigns the last passed argument to the method variable:

#!/usr/bin/ksh

eval typeset -r method=\$$#

Stop_command Property

The Stop_command is not a required property. If set, this command must be a UNIX command
with arguments that can be passed directly to a shell.

Note - If PMF_managed=FALSE is set, then the Stop_command property is a required property.

Validate_command Property

The Validate_command is not a required property. If set, this command must be a UNIX
command with arguments that can be passed directly to a shell.

When a resource is created, GDSv2 passes all resource properties as arguments to the
Validate_command. When a resource property is updated, GDSv2 passes just those properties
that are being updated.

The /opt/ORCLscgds/lib/gds_functions file provides helper function gds_opts() to process
those arguments as upper case KSH global variables. Property values are as defined.

See the /opt/ORCLscgds/demo/demo_validate file for an example. Following is a snippet of
code from demo_validate:

#!/usr/bin/ksh

. /opt/ORCLscgds/lib/gds_functions

get_opts "$@"

Note - Additionally, the function get_opts() processes an argument that GDSv2 supplies
that is not a resource property but instead reflects per-node status about SUNW.HAStoragePlus
resources that are used by this resource.

The KSH global variable HASP returns the following status codes:

34 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Using the GDSv2 Extension Properties

SCDS_HASP_NO_RESOURCEIndicates that the resource does not depend on a SUNW.HAStoragePlus
resource.

SCDS_HASP_ERR_CONFIG Indicates that at least one of the SUNW.HAStoragePlus resources on which
the resource depends is located in a different resource group.

SCDS_HASP_NOT_ONLINE Indicates that a SUNW.HAStoragePlus resource on which the resource
depends is not online on any potential primary node.

SCDS_HASP_ONLINE_NOT_LOCALIndicates that at least one SUNW.HAStoragePlus resource on which the
resource depends is online, but on another node.

SCDS_HASP_ONLINE_LOCALIndicates that all SUNW.HAStoragePlus resources on which the resource
depends are online on the node.

The preceding status codes have precedence over each other in the order in which they appear.
For example, if a SUNW.HAStoragePlus resource is not online and another SUNW.HAStoragePlus
is online on a different node, the status code is set to SCDS_HASP_NOT_ONLINE rather than
SCDS_HASP_ONLINE_NOT_LOCAL.

Furthermore, if the SUNW.HAStoragePlus resource is managing a global file system, then the
per-node HASP resource will report SCDS_HASP_ONLINE_LOCAL on the node where the SUNW.
HAStoragePlus resource is online and SCDS_HASP_ONLINE_NOT_LOCAL on the other nodes.

Additional ORCL.gds Extension Properties
The ORCL.gds resource type includes extension properties that affect how a resource of this type
behaves. With the examples that follow, you must ensure that the resource group myrg has been
created. If you need to create the resource group, use the following command:

clresourcegroup create -p pathprefix=/opt/ORCLscgds/demo myrg

Child_mon_level Property

Note - If you use Oracle Solaris Cluster administration commands, you can use the
Child_mon_level property. If you use Agent Builder, you cannot use this property.

This property provides control over the processes that are monitored through the Process
Monitor Facility (PMF). This property denotes the level up to which the forked children
processes are monitored. This property works like the -C argument to the pmfadm command. See
the pmfadm(1M) man page.

Chapter 2 • Creating a Data Service with GDSv2 35

http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLCRMpmfadm-1m

Using the GDSv2 Extension Properties

Omitting this property, or setting it to the default value of -1, has the same effect as omitting
the -C option on the pmfadm command. The result is that all children and their descendants are
monitored.

Debug_gds Property

The Debug_gds extension property is set to FALSE by default. This property is required by
Oracle Solaris Cluster Development and support. It can be useful to understand the various
call sequences that occur within GDSv2. If Debug_gds=FALSE is set, no GDSv2 internal debug
messages are sent to the system-log. Consequently, if Debug_gds=TRUE is set, all internal
debug_messages are sent to the system-log.

Perform the following steps to send debug messages to the system-log:

1. Send all GDSv2 internal debug messages to the system-log.
clresource set -p debug_gds=TRUE myrs

2. (Optional) To set Debug_gds as a per-node extension property, you can set it for one node or
set different values for each node.

clresource set -p debug_gds=false myrs
clresource set -p "debug_gds{node1}"=true myrs
clresource show -p debug_gds myrs

=== Resources ===

Resource: myrs

 --- Standard and extension properties ---

 Debug_gds{node1}: TRUE

 Debug_gds{node2}: FALSE

 Class: extension

 Description: Debug GDS code only

 Per-node: True

 Type: boolean

Debug_level Property

The Debug_level extension property is set to 0 by default. This property is part of the
housekeeping KSH functions that provide trace and debug message support. To use
Debug_level, your method_command script must source /opt/ORCLscgds/lib and call the
debug_message() function at least once within the script. The ${DEBUG} variable can then be
invoked to react to the Debug_level extension property.

The /opt/ORCLscgds/demo/demo_start script contains an example:

36 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Using the GDSv2 Extension Properties

. /opt/ORCLscgds/lib/gds_functions

get_opts "$@"

debug_message "Script: demo_start - Begin"

${DEBUG}

Use these guidelines to understand how Debug_level works:

■ Setting Debug_level=0 does not produce any trace output or debug messages.
■ Setting Debug_level=1 does not produce any trace output; however, reduced debug

messages are written to the system-log.
■ Setting Debug_level=2 produces trace output and all debug messages are written to the

system-log.
■ Setting Debug_level=3 produces all debug messages that are written to the

DEBUG_LOGFILE, /var/cluster/logs/DS/${RESOURCETYPE}/message_log.${RESOURCE}.

Note - To enable debug messages to be written to the system-log, the /etc/syslog.conf
file must be amended and the SMF system-log service restarted. For example:
*.err;kern.debug;daemon.debug;mail.crit /var/adm/messages.

Perform the following steps to set up trace and debug messages:

1. Set the debug level for myrs.
clresource set -p Debug_level=2 myrs

node1 - RESOURCE=myrs

node1 - RESOURCEGROUP=myrg

node1 - RESOURCETYPE=ORCL.gds:1

node1 - OPERATION=update

node1 - Debug_level=2

node2 - RESOURCE=myrs

node2 - RESOURCEGROUP=myrg

node2 - RESOURCETYPE=ORCL.gds:1

node2 - OPERATION=update

node2 - Debug_level=2

Trace information is written to the console when the resource is enabled and disabled.
Debug messages are written to the system-log. For example:

Sep 4 07:28:43 node1 SC[ORCL.gds:1,myrg,myrs]: [ID 382926

 daemon.debug] debug_message - Script: demo_start - Begin

Sep 4 07:28:43 node1 SC[ORCL.gds:1,myrg,myrs]: [ID 382926 daemon.debug]

 debug_message - Script: demo_start - hostname is lh1

Sep 4 07:28:43 node1 SC[ORCL.gds:1,myrg,myrs]: [ID 382926 daemon.debug]

Chapter 2 • Creating a Data Service with GDSv2 37

Using the GDSv2 Extension Properties

 debug_message - Script: demo_start - End (0)

2. (Optional) To set Debug_level as a per-node extension property, you can set it for one node
or set different values for each node.
clrs set -p "debug_level{node1}"=2 -p "debug_level{node2}"=0 myrs

node1 - RESOURCE=myrs

node1 - RESOURCEGROUP=myrg

node1 - RESOURCETYPE=ORCL.gds:1

node1 - OPERATION=update

Interpose_logical_hostname Property

The Interpose_logical_hostname extension property is empty ("") by default. This property
determines if a logical hostname should be interposed whenever a system call to retrieve the
hostname is made. Interposing a logical hostname provides a mechanism to return a logical
hostname whenever a system call is made to retrieve the hostname. For example, when the
physical node name is node1 and a hostname(1) command is issued, then node1 is returned.

However, assume you have a logical hostname, lh1, which is plumbed and available on node1.
By interposing all system calls to retrieve the hostname, it is then possible to return lh1 when
a hostname(1) command is issued. Interposing a logical hostname within GDSv2 requires that
a value be set for the Interpose_logical_hostname property. You must also define symbolic
links on each Oracle Solaris Cluster node.

Perform the following steps to define symbolic links on each cluster node so that GDSv2 can
interpose the logical hostname from a secure library:

1. For each cluster node, create a symbolic link.
ln -s /usr/cluster/lib/libschost.so.1 /usr/lib/secure/libschost.so.1

2. For each AMD64 cluster node, create a symbolic link.
ln -s /usr/cluster/lib/amd64/libschost.so.1 /usr/lib/secure/64/libschost.so.1

3. For each SPARC cluster node, create a symbolic link.
ln -s /usr/cluster/lib/sparcv9/libschost.so.1 /usr/lib/secure/64/libschost.so.1

After the Interpose_logical_hostname is set and the symbolic links are defined, the
Interpose_logical_hostname value can be returned to your method_command whenever a
system call is made to retrieve the hostname:

■ If PMF_managed=TRUE is set, then the Interpose_logical_hostname is automatically
available to your Start_command and Probe_command.

■ If PMF_managed=FALSE is set, then the GDSv2 function interpose_logical_hostname() is
available to retrieve the Interpose_logical_hostname value.

38 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Using the GDSv2 Extension Properties

The GDSv2 function interpose_logical_hostname() can also be used by method_command
entries other than the Start_command and Probe_command.

Perform the following steps to retrieve the hostname.

1. Disable or delete the resource myrs.

a. Disable the resource myrs.
clresource disable myrs

b. Delete the resource myrs.
clresource delete myrs

2. Create the resource.

clresource create -g myrg -t ORCL.gds \
-p Start_command="%RG_PATHPREFIX/demo_start -R %RS_NAME -G %RG_NAME -T %RT_NAME" \

-p Stop_command="%RG_PATHPREFIX/demo_stop -R %RS_NAME -G %RG_NAME -T %RT_NAME" \

-p Probe_command="%RG_PATHPREFIX/demo_probe -R %RS_NAME -G %RG_NAME -T %RT_NAME" \

-p Validate_command="%RG_PATHPREFIX/demo_validate -R %RS_NAME -G %RG_NAME \

-T %RT_NAME" -d myrs

3. Interpose the logical hostname value of lh1.

Note - Ensure that a logical hostname is plumbed and available. See the
clreslogicalhostname(1CL) man page for more information about creating a logical host.

clresource set -p PMF_managed=true -p interpose_logical_hostname=lh1 myrs

If PMF_managed=TRUE is set, appropriate environment variables are set to interpose the
Interpose_logical_hostname value after the resource is enabled.

4. Enable the myrs resource.
clresource enable myrs

5. Determine the environment variables.
pmfadm -l ""

STATUS myrg,myrs,0.mon

pmfadm -c myrg,myrs,0.mon -n 4 -t 2 /bin/ksh -c '/opt/ORCLscgds/bin/gds_probe -R myrs

 -T ORCL.gds -G myrg'

 environment:

 LD_PRELOAD_32=/usr/lib/secure/libschost.so.1

 LD_PRELOAD_64=/usr/lib/secure/64/libschost.so.1

 SC_LHOSTNAME=lh1

 retries: 0

Chapter 2 • Creating a Data Service with GDSv2 39

http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLCRMclreslogicalhostname-1cl

Using the GDSv2 Extension Properties

 owner: root

 monitor children: all

 pids: 4363

STATUS myrg,myrs,0.svc

pmfadm -c myrg,myrs,0.svc -a /usr/cluster/lib/sc/scds_pmf_action_script /bin/ksh -c

 '/usr/cluster/bin/hatimerun -t 299 /opt/ORCLscgds/demo/demo_start -R myrs -G

 myrg -T ORCL.gds ;

 echo $? > /var/cluster/run/tempgna4xi'

 environment:

 LD_PRELOAD_32=/usr/lib/secure/libschost.so.1

 LD_PRELOAD_64=/usr/lib/secure/64/libschost.so.1

 SC_LHOSTNAME=lh1

 retries: 0

 owner: root

 monitor children: all

 pids: 4313

If PMF_managed=FALSE is set, then the GDSv2 function interpose_logical_hostname() can be
used to retrieve the Interpose_logical_hostname value.

An example of the GDSv2 function interpose_logical_hostname() is found in the /opt/
ORCLscgds/demo/demo_start script. After Interpose_logical_hostname=lh1 has been set for
a resource, the following standalone program can also be used to set appropriate environment
variables:

/opt/ORCLscgds/bin/gds_libschost -R myrs -G myrg -T ORCL.gds:1

LD_PRELOAD_32=/usr/lib/secure/libschost.so.1

LD_PRELOAD_64=/usr/lib/secure/64/libschost.so.1

SC_LHOSTNAME=lh1

The GDSv2 function interpose_logical_hostname() uses the standalone program previously
described in the /opt/ORCLscgds/demo/demo_start script.

Num_probe_timeouts Property

The Num_probe_timeouts extension property is set to 2 by default. This property determines
when a complete failure should be returned by GDSv2.

In the example for Timeout_delay, a complete failure was alluded to whenever the
Probe_command suffered a timeout. In this context, if the Probe_command suffers a timeout, the
GDSv2 probe counts that as a failure. With Num_probe_timeouts=2, that failure is treated as a
partial failure (two Probe_command timeouts are tolerated).

40 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Using the GDSv2 Extension Properties

However, if the Probe_command suffers two successive timeouts, then that failure is treated
as a complete failure. If Num_probe_timeouts=5 is set, then five successive Probe_command
timeouts must occur before a complete failure is returned by GDSv2. Likewise, if
Num_probe_timeouts=1 is set, then just one Probe_command timeout causes GDSv2 to return a
complete failure.

When a complete failure is returned by GDSv2, the RGM queries the Failover_mode property
to determine what action to take.

PMF_managed Property

The PMF_managed extension property is set to TRUE by default.

When this property is TRUE, the GDSv2 software ensures that the application is started under the
control of the PMF. Consequently, when PMF_managed=FALSE is set, GDSv2 will not start the
application under the control of the PMF.

Typically, an application that is under the control of the PMF must leave at least one process
running after the application has been started. However, with PMF_managed=FALSE, it is
possible to have an application that does not leave behind at least one process. For example,
the application could simply create a file or amend another application's configuration and
subsequently end without leaving behind at least one process.

Note - If PMF_managed=FALSE is set, then the Stop_command property is also required.

Perform the following steps to create a file for an application:

Note - The purpose of creating a file using a GDSv2 resource is simply to show that the myrs
resource can be brought online without leaving behind at least one process. This feature can
be quite powerful if the myrs resource is used as a dependent resource for other resources (for
example, where you want the myrs resource to do something before other dependent resources
are brought online).

1. Ensure that the file does not exist and disable or delete the GDSv2 resource myrs.

a. Verify that the file does not exist.

ls -l /var/tmp/myrs

/var/tmp/myrs: No such file or directory

b. Disable the resource myrs.

Chapter 2 • Creating a Data Service with GDSv2 41

Using the GDSv2 Extension Properties

clresource disable myrs

c. Delete the resource myrs.

clresource delete myrs

2. Create the resource myrs.

clresource create -g myrg -t ORCL.gds \
-p Start_command="/bin/touch /var/tmp/myrs" \
-p Stop_command="/bin/rm -f /var/tmp/myrs" \
-p PMF_managed=false -d myrs

3. Enable the resource myrs, check its status, and verify that the file exists.
clresource enable myrs

clresource status myrs

=== Cluster Resources ===

Resource Name Node Name State Status Message

------------- --------- ----- --------------

myrs node1 Online Online

 node2 Offline Offline

ls -l /var/tmp/myrs

rw-r--r-- 1 root root 0 Sept 2 04:07 /var/tmp/myrs

4. Disable the resource and verify that the file no longer exists.
clresource disable myrs

ls -l /var/tmp/myrs

/var/tmp/myrs: No such file or directory

Probe_command Property

The Probe_command is not a required property. If set, this command must be a UNIX command
with arguments that can be passed directly to a shell.

If Probe_command is set, then the GDSv2 probe will execute that command at intervals
determined by the Thorough_probe_interval property and for the duration of the
Probe_timeout property.

If Probe_command is not set and the default PMF_managed=TRUE is set, then an internal GDSv2
probe is used. This probe checks the application PMF tag to provide a faster application restart
using PMF if all the application processes fail.

42 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Using the GDSv2 Extension Properties

GDSv2 passes the following options and arguments to the Probe_command:

-R rs -G rg -T rt 'gds_start | gds_probe'

The /opt/ORCLscgds/lib/gds_functions file provides the helper function gds_opts() to
process the options and their arguments as upper case KSH global variables. Property values are
as defined.

The last argument, 'gds_start | gds_probe', is provided so that you can code different
behavior within the Probe_command when the resource is being started or after the resource has
been started and is now online.

See the /opt/ORCLscgds/demo/demo_probe file for an example that captures the last argument
into the method variable. That variable can then be used to perform any appropriate conditional
processing. Following is a snippet of code from demo_probe:

#!/usr/bin/ksh

eval typeset -r method=\$$#

The Probe_command should return one of the following exit statuses, which is then processed by
the GDSv2 probe:

0 Success. The application is working correctly.

100 Complete failure. The application is not working.

201 Immediate failover.

The RGM responds to a Complete failure or Immediate failover by checking the
Failover_mode property. By default, Failover_mode=SOFT is set. See the r_properties(5) man
page for more information.

With Failover_mode=SOFT, if a Complete failure is returned, GDSv2 will request a restart of
the resource up to a maximum of the Retry_count property value within the time specified by
the Retry_interval property.

If the number of restarts exceeds the value of Retry_count within the time specified by
Retry_interval, GDSv2 will request a failover of the resource's group to another node.

With Failover_mode=SOFT, if an Immediate failover is returned, GDSv2 will request an
immediate failover of the resource's group to another node.

It is also possible for the Probe_command to return cumulative failures to the GDSv2 probe as
follows:

Chapter 2 • Creating a Data Service with GDSv2 43

http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLCRMr-properties-5

Using the GDSv2 Extension Properties

<100 Cumulative failure. The application is not completely working or not
completely failed.

GDSv2 can process consecutive failures within the Retry_interval. For example, if the
Probe_command returns 25 on consecutive occasions within the default Retry_interval of
370 seconds, then as soon as the cumulative failure reaches 100, a complete failure is declared.
GDSv2 then responds to a complete failure as described above.

Start_exit_on_error Property

The Start_exit_on_error extension property is set to FALSE by default.

When this property is FALSE, the GDSv2 software attempts to continuously start the application
within the Start_timeout period if the application fails to start.

When the Start_exit_on_error property is set to TRUE, the GDSv2 software will not attempt
to continually start the application within the Start_timeout period.

This can be advantageous if the application is expected to start immediately on the first attempt.
Consequently, if the application fails to start on the first attempt, a Start_failed error occurs,
without waiting for the Start_timeout period to expire.

Note - The RGM reacts to a Start_failed error by checking the Failover_mode property.
Consequently, if the default Failover_mode=SOFT is set, then the RGM attempts to fail over the
resource group to another Oracle Solaris Cluster node.

Perform the following steps to attempt to start an application:

Note - The Start_command string below is expected to be successful after it is executed.
However, the Start_command will only work on node2. Nevertheless, the purpose of this feature
is to demonstrate the behavior of the Start_exit_on_error property.

1. Disable or delete the resource myrs.

a. Disable the resource myrs.

clresource disable myrs
b. Delete the resource myrs.

clresource delete myrs
2. Set the Start_exit_on_error property.

clresource create -g myrg -t ORCL.gds \

44 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Using the GDSv2 Extension Properties

-p Start_command="/bin/uname -n | /bin/grep node2" -p Start_exit_on_error=TRUE \

-p Stop_commend=/bin/true -p PMF_managed=false \

-d myrs

3. Enable the property.
clresource enable myrs

clrs: (C748634) Resource group myrg failed to start on chosen node and might

fail over to other node(s)

clresource status myrs

=== Cluster Resources ===

Resource Name Node Name State Status Message

------------- --------- ----- --------------

myrs node1 Offline Offline

 node2 Online Online

Note - The Start_command="/bin/uname -n | /bin/grep node2" will only be successful on
node2. The system-log on node1 contains the following:

Sep 2 04:59:45 node1 SC[,ORCL.gds:1,myrg,myrs,gds_start]:

 [ID 186822 daemon.error] /bin/uname -n | /bin/grep node1 has failed rc=1

Sep 2 04:59:45 node1 SC[,ORCL.gds:1,myrg,myrs,gds_start]:

 [ID 475178 daemon.notice] Start_exit_on_error=true has been set. The

 resource will enter a start failed state.

However, the RGM reacts to a Start_failed error by querying the Failover_mode setting.
Consequently, when Failover_mode=SOFT was set, the resource group failed over to node2,
where the Start_command was successful. Because the PMF_managed=FALSE was also set, a
Stop_command is required. In this scenario, it is acceptable to not invoke the STOP action by
using Stop_command=/bin/true.

Stop_exit_on_error Property

The Stop_exit_on_error extension property is set to FALSE by default.

If Stop_exit_on_error=TRUE, Stop_command, and PMF_managed=TRUE were all set, then if
the Stop_command property returns a non-zero exit status, the resource immediately enters a
Stop_failed state. The GDSv2 software stops monitoring the process IDs running under the
PMF tag; however, the PMF tag will still exist. Some application process IDs might still be
running under the PMF tag, but the PMF does not monitor those process IDs.

Chapter 2 • Creating a Data Service with GDSv2 45

Using the GDSv2 Extension Properties

Consequently, setting the Stop_exit_on_error=TRUE property is only useful when you also
have the PMF_managed=TRUE property set. In this scenario, Stop_exit_on_error=TRUE prevents
the PMF from sending the Stop_signal to the process IDs running under the PMF tag. This
might be useful to determine why the Stop_command property failed to stop the application (for
example, before the GDSv2 application cleans up the process IDs running under the PMF tag).

For example, perform the following steps to stop the application:

1. Disable or delete the resource myrs.

a. Disable the resource myrs.

clresource disable myrs

b. Delete the resource myrs.

clresource delete myrs

2. Create the resource and set the Stop_exit_on_error=TRUE property.

clresource create -g myrg -t ORCL.gds \
-p Start_command="/bin/sleep 1800 &" \

-p Stop_command="/bin/false" \

-p Stop_exit_on_error=true \

-d myrs

3. Enable the resource and check its status.
clresource enable myrs

clresource status myrs

=== Cluster Resources ===

Resource Name Node Name State Status Message

------------- --------- ----- --------------

myrs node1 Online Online - Service is online.

 node2 Offline Offline

4. Disable the resource.
clresource disable myrs

resource group in ERROR_STOP_FAILED state requires operator attention

5. Check the status of the resource.
clresource status myrs

=== Cluster Resources ===

Resource Name Node Name State Status Message

------------- --------- ----- --------------

myrs node1 Stop_failed Faulted

46 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Using the GDSv2 Extension Properties

 node2 Offline Offline

6. Display the PMF tag for the myrs resource.

pmfadm -l myrg,myrs,0.svc

pmfadm -c myrg,myrs,0.svc -a /usr/cluster/lib/sc/scds_pmf_action_script \

/bin/ksh -c \

'/usr/cluster/bin/hatimerun -t 299 /bin/sleep 1800 &; echo $? > \

/var/cluster/run/temp3PaWJC'

 retries: 0

 owner: root

 monitor children: all

 pids: 14624 14626

When the myrs resource is disabled, the Stop_command is executed. However, Stop_command=/
bin/false was set, thereby inducing a Stop_failed error. When Stop_exit_on_error=TRUE
was set, the GDSv2 application exits immediately with a Stop_failed error and does not
attempt to clean up the process IDs running under the PMF tag.

The system-log on node1 also contains the following information:

Sep 2 06:11:41 node1 SC[,ORCL.gds:1,myrg,myrs,gds_stop]:

 [ID 186822 daemon.error] /bin/false has failed rc=255

Sep 2 06:11:41 node1 SC[,ORCL.gds:1,myrg,myrs,gds_stop]: [ID 943012

 daemon.error] Stop_exit_on_error=true has been set. The resource will enter

 a stop failed state.

Sep 2 06:11:41 node1 Cluster.RGM.global.rgmd: [ID 938318 daemon.error]

 Method <gds_stop> failed on resource <myrs> in resource group <myrg>

 [exit code<1>, time used: 0% if timeout <300 seconds>]

Stop_signal Property

This property specifies a value that identifies the signal to stop an application through the PMF.
See the signal.h(3HEAD) man page for a list of the integer values that you can specify. The
default value is 15 (SIGTERM).

Timeout_delay Property

The Timeout_delay extension property is set to FALSE by default. This extension property
affects the GDSv2 probing algorithm and attempts to prevent a Probe_command timeout when
the system is under a heavy load.

Chapter 2 • Creating a Data Service with GDSv2 47

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Fsignal.h-3head

Using the GDSv2 Extension Properties

Note - The Probe_command is executed periodically by the GDSv2 program, gds_probe,
to determine if the application is healthy. When the system is under a heavy load, the
Probe_command might be stuck waiting to execute as other higher-priority workload is
executing. For example, if Probe_timeout=30 and Timeout_delay=FALSE are set and the
system is under a heavy load, the Probe_command could suffer a probe timeout.

When this probe timeout occurs, the GDSv2 software is unable to tell if the application is
healthy and might determine that a complete failure has occurred. If a complete failure is
declared, the RGM queries the Failover_mode property to determine what action to take.
However, if Probe_timeout=30 and Timeout_delay=TRUE are set and the system is under load,
the timer for Probe_timeout will be delayed until the Probe_command is actually executing
(rather than just being scheduled to execute).

The GDSv2 probe executes the Probe_command under a timeout clock and uses the fork(2)
and exec(2) calls to execute the Probe_command as a new process. On a heavily loaded system,
there can be seconds of delay from the time that the child process is forked until the time that
the child process is executing the Probe_command.

If Timeout_delay=FALSE is set, the timeout clock is started as soon as the child process is
forked.

If Timeout_delay=TRUE is set, the timeout clock is started only when the child process has
started to execute.

There are advantages to both settings and you should consider the impact of setting
Timeout_delay.

If the system is heavily loaded you might want a probe timeout to occur so that the RGM can
attempt an application recovery by querying the Failover_mode property. In this case, on a
heavily loaded system setting Timeout_delay=FALSE would be appropriate and is the default
setting.

If the system is heavily loaded and you want to guarantee that the timeout clock is started
only when the Probe_command has started to execute, then setting Timeout_delay=TRUE
would be appropriate. However, there is no guarantee that a probe timeout might not still occur.
Instead, the timeout clock is just delayed until Probe_command has started to execute. If the
Probe_command still struggles to complete, once the timeout clock has been started, then a probe
timeout can still occur.

If a probe timeout occurs, a failure is returned to GDSv2. By default, Num_probe_timeouts=2
is set meaning that two consecutive probe timeouts will result in a complete failure. When
a complete failure is returned by GDSv2, the RGM queries the Failover_mode property to
determine what action to take.

48 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Using the GDSv2 Extension Properties

There is no practical example to actively demonstrate Timeout_delay.

Wait_for_online Property

The Wait_for_online extension property is set to TRUE by default.

When this property is TRUE, the GDSv2 software executes the Probe_command within the START
method for the duration of Start_timeout when the resource is being enabled.

Note - If the Probe_command is not set and PMF_managed=TRUE is set, a dummy probe is used for
the Probe_command. This dummy probe simply checks if the associated PMF tag exists.

When the resource is being started (enabled), if the Probe_command returns a zero exit
status, the application is deemed to be available and the resource then enters an Online state.
If Wait_for_online=FALSE is set, the GDSv2 software does not attempt to execute the
Probe_command within the START method. Instead, if the Start_command exits with a zero exit
status, then the resource enters an Online state. Otherwise, the resource enters a Start_failed
state.

The RGM queries the Failover_mode property to determine what action to take from a
Start_failed state. This information can be useful when you do not want to wait for the
Probe_command to declare a zero return code before the resource enters an Online state.

Perform the following steps to simulate an application that takes more than 10 seconds to start:

1. Disable or delete the resource myrs.

a. Disable the resource myrs.

clresource disable myrs

b. Delete the resource myrs.

clresource delete myrs

2. Create the following scripts on each Oracle Solaris Cluster node.
cat /var/tmp/start

#!/usr/bin/ksh

/var/tmp/start_child &

exit 0

cat /var/tmp/start_child

Chapter 2 • Creating a Data Service with GDSv2 49

Using the GDSv2 Extension Properties

#!/usr/bin/ksh

sleep 10

/bin/touch /var/tmp/myrs

exit 0

cat /var/tmp/probe

#!/usr/bin/ksh

if [[-f /var/tmp/myrs]]; then

 exit 0

else

 exit 100

fi

Note - Create each of these scripts in this procedure on each Oracle Solaris Cluster node.
Ensure that these scripts can be executed.

The example above shows that the /var/tmp/start will execute a background job called
/var/tmp/start_child. The /var/tmp/start_child sleeps for 10 seconds and then
touches the /var/tmp/myrs. The Start_command=/var/tmp/start should then exit with a
zero exit status.

Note - The purpose of /var/tmp/start and /var/tmp/start_child is to simulate an
application that takes some time to start, such as 10 seconds. All the scripts described above
should be created on every Oracle Solaris Cluster node. The /var/tmp/probe checks if the
application is running and is used by the Probe_command below.

3. Create the myrs resource.

clresource create -g myrg -t ORCL.gds \
-p Start_command=/var/tmp/start \

-p Stop_command="/bin/rm -f /var/tmp/myrs" \

-p Probe_command=/var/tmp/probe \

-p PMF_managed=false \

-d myrs
4. Enable the resource and check its status.

time clresource enable myrs

real 0m10.45s

50 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Using the GDSv2 Extension Properties

user 0m0.07s

sys 0m0.03s

clresource status myrs

=== Cluster Resources ===

Resource Name Node Name State Status Message

------------- --------- ----- --------------

myrs node1 Online Online - Service is online.

 node2 Offline Offline

The following example shows how the myrs resource is created using the
Wait_for_online=FALSE and immediately enters an Online state. However, the resource status
is degraded because the Probe_command has not yet returned a zero exit status.

Perform the following steps to immediately put a resource into an online state and then into a
degraded state:

1. Disable the resource myrs.
clresource disable myrs

2. Delete the resource myrs.
clresource delete myrs

3. Create the myrg resource.

clresource -g myrg -t ORCL.gds \
-p Start_command=/var/tmp/start \

-p Stop_command="/bin/rm -f /var/tmp/myrs" \

-p Probe_command=/var/tmp/probe \

-p PMF_managed=false \

-p Wait_for_online=false -d myrs

4. Enable the resource and check its status.
time clresource enable myrs

real 0m0.32s

user 0m0.07s

sys 0m0.03s

clresource status myrs

=== Cluster Resources ===

Resource Name Node Name State Status Message

------------- --------- ----- --------------

myrs node1 Online Degraded - Service is degraded.

 node2 Offline Offline

Chapter 2 • Creating a Data Service with GDSv2 51

Using the GDSv2 Extension Properties

After 60 seconds, check the status of the file again.
clresource status myrs

The Probe_Command is executed periodically. After the Thorough_probe_interval (60
seconds), the Probe_command is executed again. This time the probe is successful and the
resource status enters an Online status.

=== Cluster Resources ===

Resource Name Node Name State Status Message

------------- --------- ----- --------------

myrs node1 Online Online - Service is online.

 node2 Offline Offline

Wait_probe_limit Property

The Wait_probe_limit extension property is set to 0 by default.

This extension property is used when Wait_for_online=TRUE is set. See “Wait_for_online
Property” on page 49 for more information.

When Wait_for_online=TRUE is set, GDSv2 executes the Probe_command within the START
method for the duration of Start_timeout or until the Probe_command returns a zero exit status.
The Probe_command is attempted every two seconds.

By default, Start_timeout=300 is set and consequently the Probe_command could be attempted
many times until it is successful.

Three possible scenarios could occur:

■ Wait_probe_limit=0 – The Probe_command is attempted for the duration of
Start_timeout, until the Probe_command returns a zero exit status. Otherwise, the
Probe_command attempts will continue until the RGM declares a START timeout.

■ Wait_probe_limit=1 – The Probe_command is attempted just once during processing
of the Wait_for_online property. Likewise, if Wait_probe_limit=8 is set, then the
Probe_command makes eight attempts during the Wait_for_online processing.

■ Wait_probe_limit=2 – The following procedure illustrates a simple example of
Wait_probe_limit=2. The same scripts were used here as in the Wait_for_online=TRUE
example in the “Wait_for_online Property” on page 49 section. In the first
example when the default Wait_for_online=TRUE was set, the clrs enable myrs
command took approximately 10 seconds to complete. However, in the example below,
the Wait_probe_limit=2 is set and the clresource enable myrs command takes
approximately four seconds to complete.

52 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Using the GDSv2 Extension Properties

Perform the following steps to attempt several times to start the resource:

1. Disable the resource myrs.
clresource disable myrs

2. Delete the resource myrs.
clresource delete myrs

3. Create the myrg resource group.

clresource create -g myrg -t ORCL.gds \
-p Start_command=/var/tmp/start \

-p Stop_command="/bin/rm -f /var/tmp/myrs" \

-p Probe_command=/var/tmp/probe \

-p PMF_managed=false \

-p Wait_probe_limit=2 \

-d myrs

4. Enable the resource and check its status.
time clresource enable myrs

clrs: (C748634) Resource group myrg failed to start on chosen node

and might fail over to other node(s)

real 0m4.795s

user 0m0.075s

sys 0m0.035s

Check the resource status.
clresource status myrs

=== Cluster Resources ===

Resource Name Node Name State Status Message

------------- --------- ----- --------------

myrs node1 Offline Offline

 node2 Starting Unknown - Starting

Recheck the resource status.
clresource status myrs

=== Cluster Resources ===

Resource Name Node Name State Status Message

------------- --------- ----- --------------

myrs node1 Online Online - Service is online.

 node2 Offline Offline

Chapter 2 • Creating a Data Service with GDSv2 53

Using the GDSv2 Extension Properties

In the preceding procedure, the resource myrs is being enabled but fails after approximately
four seconds (the Wait_probe_limit=2 was set and the Probe_command is attempted every
two seconds after the last attempt). Consequently, the Probe_command did not return a zero exit
status within those two attempts. The GDSv2 software then returned a START failed and the
RGM declared a Start_failed state.

However, Failover_mode=SOFT was set by default and the RGM then failed over the resource
group from node1 to node2 (the first clresource status myrs command shows the resource
myrs being started on node2). However, when starting on node2, the Probe_command again also
failed to return a zero exit status within two Wait_probe_limit attempts. Consequently, the
GDSv2 software again returned a START failed and the RGM declared a Start_failed state.
Because of the Failover_mode=SOFT setting, a failover of the resource group from node2 to
node1 is now attempted.

Note - The same scripts were used here as in the Wait_for_online=TRUE example in
“Wait_for_online Property” on page 49. As such, the /var/tmp/start script executes
the /var/tmp/start_child script in the background. That script sleeps for 10 seconds before
touching the file (/var/tmp/myrs) that Probe_command is checking.

The first attempt to enable resource myrs on node1 took approximately four seconds, and even
though you cannot see it on the terminal, the first attempt to enable resource myrs on node2
also took approximately four seconds. With the second attempt to start resource myrs on node1,
/var/tmp/start_child had already consumed approximately eight seconds of its 10-second
sleep. Consequently, with Wait_probe_limit=2 set, the second attempt to start the resource
myrs was successful and the resource entered an Online state.

The system-log on node1 and node2 contains the following messages:

Sep 3 00:44:13 node1 SC[,ORCL.gds:1,myrg,myrs,gds_start]: [ID 496934 daemon.notice]

 wait_probe_limit=2 is set, resource will enter a start failed state.

Sep 3 00:44:17 node2 SC[,ORCL.gds:1,myrg,myrs,gds_start]: [ID 496934 daemon.notice]

 wait_probe_limit=2 is set, resource will enter a start failed state.

ORCL.gds_proxy method_command Extension
Properties

The table below lists the ORCL.gds_proxy method_command extension properties. See “The
method_command Sequence” on page 23 for more information.

54 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Using the GDSv2 Extension Properties

Property Name RequiredComments

Boot_command No Any UNIX command.

Init_command No Any UNIX command.

Fini_command No Any UNIX command.

Prenet_start_command Yes Any UNIX command.

Postnet_stop_command No Any UNIX command.

Validate_command No Any UNIX command.

Boot_command Property

The Boot_command is not a required property. If set, this command must be a UNIX command
with arguments that can be passed directly to a shell.

Init_command Property

The Init_command is not a required property. If set, this command must be a UNIX command
with arguments that can be passed directly to a shell.

Fini_command Property

The Fini_command is not a required property. If set, this command must be a UNIX command
with arguments that can be passed directly to a shell.

Prenet_start_command Property

The Fini_command is a required property and starts the proxy daemon. This command must be a
UNIX command with arguments that can be passed directly to a shell to start the application.

Postnet_stop_command Property

The Postnet_stop_command is not a required property. If set, this command must be a UNIX
command with arguments that can be passed directly to a shell.

Chapter 2 • Creating a Data Service with GDSv2 55

Using the GDSv2 Extension Properties

Validate_command Property

The Validate_command is not a required property. If set, this command must be a UNIX
command with arguments that can be passed directly to a shell.

When a resource is created, GDSv2 passes all resource properties as arguments to the
Validate_command. When a resource property is updated, GDSv2 passes just those properties
that are being updated.

The /opt/ORCLscgds/lib/gds_functions file provides helper function gds_opts() to process
those arguments as upper case KSH global variables. Property values are as defined.

See the /opt/ORCLscgds/demo/demo_validate file for an example. The following is a snippet
of code from demo_validate:

#!/usr/bin/ksh

. /opt/ORCLscgds/lib/gds_functions

get_opts "$@"

Note - Additionally, the function get_opts() processes an argument that GDSv2 supplies
that is not a resource property but instead reflects per-node status about SUNW.HAStoragePlus
resources that are used by this resource.

The KSH global variable HASP returns the following status codes:

SCDS_HASP_NO_RESOURCEIndicates that the resource does not depend on a SUNW.HAStoragePlus
resource.

SCDS_HASP_ERR_CONFIG Indicates that at least one of the SUNW.HAStoragePlus resources on which
the resource depends is located in a different resource group.

SCDS_HASP_NOT_ONLINE Indicates that a SUNW.HAStoragePlus resource on which the resource
depends is not online on any potential primary node.

SCDS_HASP_ONLINE_NOT_LOCALIndicates that at least one SUNW.HAStoragePlus resource on which the
resource depends is online, but on another node.

SCDS_HASP_ONLINE_LOCALIndicates that all SUNW.HAStoragePlus resources on which the resource
depends are online on the node.

The preceding status codes have precedence over each other in the order in which they appear.
For example, if a SUNW.HAStoragePlus resource is not online and another SUNW.HAStoragePlus

56 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Using the GDSv2 Extension Properties

is online on a different node, the status code is set to SCDS_HASP_NOT_ONLINE rather than
SCDS_HASP_ONLINE_NOT_LOCAL.

Furthermore, if the SUNW.HAStoragePlus resource is managing a global file system, then the
per-node HASP resource will report SCDS_HASP_ONLINE_LOCAL on the node where the SUNW.
HAStoragePlus resource is online and SCDS_HASP_ONLINE_NOT_LOCAL on the other nodes.

Additional ORCL.gds_proxy Extension Properties

The ORCL.gds_proxy resource type includes extension properties that affect how a resource of
this type behaves. With the examples that follow, you must ensure that the resource group mysrg
has been created. If not, create the resource group:

clresourcegroup create -p pathprefix=/opt/ORCLscgds/demo -S mysrg

Debug_gds Property

See “Debug_gds Property” on page 36. If you use the examples from this section, change
myrs to mysrs and myrg to mysrg.

Debug_level Property

See “Debug_level Property” on page 36. If you use the examples from this section, change
myrs to mysrs and myrg to mysrg.

Interpose_logical host Property

See “Interpose_logical_hostname Property” on page 38. If you use the examples from
this section, change myrs to mysrs.

Stop_signal Property

See “Stop_signal Property” on page 47. If you use the examples from this section, change
myrs to mysrs and myrg to mysrg.

Chapter 2 • Creating a Data Service with GDSv2 57

Using the GDSv2 Demo Scripts

Using the GDSv2 Demo Scripts
This section contains information about the demo scripts that are provided with GDSv2. These
demo scripts can be used with a resource of type ORCL.gds or ORCL.gds_proxy to start, stop,
and monitor or proxy the demo applications.

The benefit of a demo application is to quickly deploy a GDSv2 resource with minimal effort.
You can then experiment with the various GDSv2 extension properties to learn about the
functionality.

Note - GDSv2 demo scripts are located in the /opt/ORCLscgds/demo directory and use the Korn
Shell (KSH). All functions listed below are located within the /opt/ORCLscgds/lib directory.

ORCL.gds Demo Scripts
The following demo scripts have been provided for a resource of type ORCL.gds:

■ /opt/ORCLscgds/demo/demo_probe

■ /opt/ORCLscgds/demo/demo_start

■ /opt/ORCLscgds/demo/demo_stop

■ /opt/ORCLscgds/demo/demo_validate

Note - Within these demo scripts, the host name or interposed host name is output
as a debug message to the system log. The purpose of this is to show that if the
Interpose_logical_hostname extension property has been set, then the exported
SC_LHOSTNAME variable value is returned as the interposed host name.

In the Oracle Solaris Cluster environment, an application might attempt to access the same
host name after a failover or switchover. As a result, the failover or switchover fails because
the name of the physical host changes after the failover or switchover. In such a scenario, the
application data service can use the Interpose_logical_hostname to provide a logical host
name to the application rather than a physical host name.

Demo_start Script

The demo_start script starts an application, which is a background sleep for 1800 seconds.
Additionally, it prints out debug messages to the system log to show Begin and End messages
and the hostname or interposed hostname.

01 #

58 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Using the GDSv2 Demo Scripts

02 # Copyright (c)2013, 2014, Oracle and/or its affiliates. All rights reserved.

03 #

04 #ident "@(#)demo_start.ksh 1.2 14/02/10"

05 #

06

07 . /opt/ORCLscgds/lib/gds_functions

08 get_opts "$@"

09

10 debug_message "Script: demo_start - Begin"

11 ${DEBUG}

12 trap 'debug_message "Script: demo_start - End (${rc})"' EXIT

13 trap 'errtrap "Script: demo_start" ${LINENO}; rc=1; exit 1' ERR

14

15 typeset -i rc=0

16 typeset ilh

17 typeset pmf

18

19 ilh=$(/usr/cluster/bin/scha_resource_get -O extension \

20 -R ${RESOURCE} -G ${RESOURCEGROUP} interpose_logical_hostname)

21

22 ilh=$(echo ${ilh} | /usr/xpg4/bin/awk '{print$2}')

23

24 pmf=$(/usr/cluster/bin/scha_resource_get -O extension \

25 -R ${RESOURCE} -G ${RESOURCEGROUP} pmf_managed)

26

27 pmf=$(echo ${pmf} | /usr/xpg4/bin/awk '{print$2}')

28

29 if ((${#ilh} != 0)); then

30 if [[${pmf} != TRUE]]; then

31 interpose_logical_hostname ${RESOURCE} ${RESOURCEGROUP}

32 fi

33 fi

34

35 debug_message "Script: demo_start - hostname is $(/usr/bin/hostname)"

36

37 /usr/bin/sleep 1800 &

38

39 if [[-f ${DEBUG_LOGFILE}]]; then

40 /usr/bin/printf "--- $(date) - rc=${rc} \n" >> ${DEBUG_LOGFILE}

41 /usr/bin/printf "Script: demo_start - hostname is $(/usr/bin/hostname) \n" >>

 ${DEBUG_LOGFILE}

42 fi

43

44 exit ${rc}

■ Lines 07-09 – The function get_opts processes all the arguments that GDSv2 passes to
demo_start. Those arguments are processed as upper case KSH variables. Property values
are as defined. For example, RESOURCE=myrs.

Chapter 2 • Creating a Data Service with GDSv2 59

Using the GDSv2 Demo Scripts

■ Lines 10-11 – The function debug_message is called to output a Begin debug message
to the system log. Additionally, the ${DEBUG} variable is set. See “Debug_level
Property” on page 36 for more information.

■ Lines 12-13 – The KSH trap built-in command is used to output an End debug message to
the system log whenever the script exists. Additionally, if a command returns a non-zero
exit status the KSH fake signal ERR is trapped and the function errtrap is called. Function
errtrap will output an error message to the system log that contains the script name, line
number of the command that returned a non-zero exit status, and the exit status that was
returned by that command.

■ Lines 19-22 – The Oracle Solaris Cluster program scha_resource_get retrieves the
interpose_logical_hostname extension property, which is saved into the variable ilh.

■ Lines 24-27 – The Oracle Solaris Cluster program scha_resource_get retrieves the
pmf_managed extension property which is saved into the variable pmf.

■ Lines 29-33 – If the interpose_logical_hostname extension property was set
and the pmf_managed extension property was not set to TRUE, then the function
interpose_logical_hostname is called. However, if interpose_logical_hostname was
set and pmf_managed was set to TRUE, then environment variables for SC_LHOSTNAME
are defined. See “Interpose_logical_hostname Property” on page 38 for more
information.

If the function interpose_logical_hostname is called, then environment variables for
SC_LHOSTNAME are defined.

■ Line 35 – Output a debug message to the system log that contains the script name and value
from the hostname command. If environment variables for SC_LHOSTNAME exist, then
the value for SC_LHOSTNAME is output.

■ Line 37 – Start the application. For example, sleep 1800 in the background.
■ Lines 39-42 – If variable ${DEBUG_LOGFILE} is set, then output some

debug_messages to that file. When function debug_messages was first called on line 10,
${DEBUG_LOGFILE} was set to /var/cluster/logs/DS/RT/message_log.RS.. RT
equals ORCL.gds and RS equals your resource name.

Demo_probe Script

The demo_probe script checks if the application is running (for example, the background sleep
for 1800 seconds). Additionally, it prints out debug messages to the system log to show Begin
and End messages and the hostname or interposed hostname.

01 #

02 # Copyright (c) 2013, 2014, Oracle and/or its affiliates. All rights reserved.

03 #

04 #ident "@(#)demo_probe.ksh 1.2 14/02/10"

05 #

60 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Using the GDSv2 Demo Scripts

06

07 . /opt/ORCLscgds/lib/gds_functions

08 get_opts "$@"

09

10 eval typeset -r method=\$$#

11 debug_message "Script: demo_probe - Begin"

12 ${DEBUG}

13 trap 'debug_message "Script: demo_probe - End (${rc})"' EXIT

14 trap 'errtrap "Script: demo_probe" ${LINENO}; rc=1; exit 1' ERR

15

16 typeset -i rc=0

17 typeset ilh

18 typeset pmf

19

20 ilh=$(/usr/cluster/bin/scha_resource_get -O extension \

21 -R ${RESOURCE} -G ${RESOURCEGROUP} interpose_logical_hostname)

22

23 ilh=$(echo ${ilh} | /usr/xpg4/bin/awk '{print$2}')

24

25 pmf=$(/usr/cluster/bin/scha_resource_get -O extension \

26 -R ${RESOURCE} -G ${RESOURCEGROUP} pmf_managed)

27

28 pmf=$(echo ${pmf} | /usr/xpg4/bin/awk '{print$2}')

29

30 if ((${#ilh} != 0)); then

31 if [[${pmf} != TRUE]]; then

32 interpose_logical_hostname ${RESOURCE} ${RESOURCEGROUP}

33 fi

34 fi

35

36 debug_message "Script: demo_probe - hostname is $(/usr/bin/hostname)"

37

38 if /usr/bin/ps -u root -o pid,args -z $(/usr/bin/zonename) | /usr/xpg4/bin/grep -q

 "sleep

 1800"; then

39 # Return code 0 declares a success.

40 rc=0

41 else

42 # Return code 100 declares a complete failure.

43 rc=100

44 fi

45

46 if [[-f ${DEBUG_LOGFILE}]]; then

47 /usr/bin/printf "--- $(date) - rc=${rc} \n" >> ${DEBUG_LOGFILE}

48 /usr/bin/printf "Script: demo_probe - method name is ${method} \n" >>

 ${DEBUG_LOGFILE}

49 /usr/bin/printf "Script: demo_probe - hostname is $(/usr/bin/hostname) \n" >>

 ${DEBUG_LOGFILE}

Chapter 2 • Creating a Data Service with GDSv2 61

Using the GDSv2 Demo Scripts

50 fi

51

52 exit ${rc}

■ Lines 07-36 – Apart from line 10, these lines are explained with the demo_start script.
■ Line 10 – The last argument that GDSv2 passes to the demo_probe script is saved in the

method variable.

Note - The last argument, 'gds_start | gds_probe', is provided so that you can code
different behavior within the Probe_command.

■ Lines 38-44 – A check is made to see if the application (for example, sleep 1800) is still
running. If the sleep is still running, then the demo_probe script will exit 0. Otherwise, exit
100 will be sent to GDSv2 to declare a complete failure.

The RGM responds to a complete failure by checking the Failover_mode property to
determine what recovery action to take. See “Probe_command Property” on page 42 and
the r_properties(5) man page for more information.

■ Lines 46-47 – These lines are explained with the demo_start script.

Demo_stop Script

The demo_stop script stops the application (for example, the background sleep for 1800
seconds). Additionally, it prints out debug messages to the system log to show Begin and End
messages and the hostname or interposed host name.

01 #

02 # Copyright (c) 2013, 2014, Oracle and/or its affiliates. All rights reserved.

03 #

04 #ident "@(#)demo_stop.ksh 1.2 14/02/10"

05 #

06

07 . /opt/ORCLscgds/lib/gds_functions

08 get_opts "$@"

09

10 debug_message "Script: demo_stop - Begin"

11 ${DEBUG}

12 trap 'debug_message "Script: demo_stop - End (${rc})"' EXIT

13 trap 'errtrap "Script: demo_stop" ${LINENO}; rc=1; exit 1' ERR

14

15 typeset -i rc=0

16 typeset ilh

17 typeset pmf

62 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLCRMr-properties-5

Using the GDSv2 Demo Scripts

18

19 ilh=$(/usr/cluster/bin/scha_resource_get -O extension \

20 -R ${RESOURCE} -G ${RESOURCEGROUP} interpose_logical_hostname)

21

22 ilh=$(echo ${ilh} | /usr/xpg4/bin/awk '{print$2}')

23

24 pmf=$(/usr/cluster/bin/scha_resource_get -O extension \

25 -R ${RESOURCE} -G ${RESOURCEGROUP} pmf_managed)

26

27 pmf=$(echo ${pmf} | /usr/xpg4/bin/awk '{print$2}')

28

29 if ((${#ilh} != 0)); then

30 if [[${pmf} != TRUE]]; then

31 interpose_logical_hostname ${RESOURCE} ${RESOURCEGROUP}

32 fi

33 fi

34

35 debug_message "Script: demo_stop - hostname is $(/usr/bin/hostname)"

36

37 pid=$(/usr/bin/ps -u root -o pid,args -z $(/usr/bin/zonename) | \

38 /usr/xpg4/bin/grep "sleep 1800" | /usr/xpg4/bin/grep -v grep | \

39 /usr/xpg4/bin/awk '{print $1}')

40

41 if ((${#pid} != 0)); then

42 /usr/bin/kill -9 ${pid}

43 fi

44

45 if [[-f ${DEBUG_LOGFILE}]]; then

46 /usr/bin/printf "--- $(date) - rc=${rc} \n" >> ${DEBUG_LOGFILE}

47 /usr/bin/printf "Script: demo_stop - hostname is $(/usr/bin/hostname) \n" >>

 ${DEBUG_LOGFILE}

48 fi

49

50 exit ${rc}

■ Lines 07-35 – These lines are explained with the demo_start script.
■ Lines 37-42 – Find the process ID for the application started by the demo_start script (for

example, 'sleep 1800') and then kill that process ID.
■ Lines 45-49 – These lines are explained with the demo_start script.

Demo_validate Script

The demo_validate script validates extension properties used by a resource of type ORCL.
gds. The function get_opts provides upper case KSH global variables. Property values are
as defined (for example, RESOURCE=myrs). Additionally, the function get_opts will set the

Chapter 2 • Creating a Data Service with GDSv2 63

Using the GDSv2 Demo Scripts

HASP KSH global variable (for example, HASP=SCDS_HASP_NO_RESOURCE). See
“Validate_command Property” on page 34 for more information.

01 #

02 # Copyright (c) 2013, 2014, Oracle and/or its affiliates. All rights reserved.

03 #

04 #ident "@(#)demo_validate.ksh 1.2 14/02/10"

05 #

06

07 . /opt/ORCLscgds/lib/gds_functions

08 get_opts "$@"

09

10 debug_message "Script: demo_validate - Begin"

11 trap 'debug_message "Script: demo_validate - End (${rc})"' EXIT

12 trap 'errtrap "Script: demo_validate" ${LINENO}; rc=1; exit 1' ERR

13 typeset -i rc=0

14

15 exit ${rc}

■ Lines 07-15 – These lines are explained with the demo_start script.

ORCL.gds_proxy Demo Scripts
The following demo scripts have been provided for a resource of type ORCL.gds_proxy:

■ /opt/ORCLscgds/demo/demo_proxy_prenet_start

■ /opt/ORCLscgds/demo/demo_proxy_postnet_stop

■ /opt/ORCLscgds/demo/demo_validate

Note - The RGM will execute the demo_proxy_prenet_start script before any logical host
network interfaces are configured up and execute demo_proxy_postnet_stop after any
logical host network interface are configured down. Nevertheless, it is still possible to set the
interpose_logical_hostname property, which will return the exported SC_LHOSTNAME
variable value as the interposed host name even though that host name may not be configured
up.

Demo_proxy_prenet_start Script

The demo_proxy_prenet_start script is executed as a daemon and checks the state of the
system log. Additionally, it prints out debug messages to the system log to show Begin and End
messages and the hostname or interposed host name.

01 #

64 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Using the GDSv2 Demo Scripts

02 # Copyright (c) 2013, 2014, Oracle and/or its affiliates. All rights reserved.

03 #

04 #ident "@(#)demo_proxy_prenet_start.ksh 1.2 14/02/10"

05 #

06

07 . /opt/ORCLscgds/lib/gds_functions

08 get_opts "$@"

09

10 debug_message "Script: demo_prenet_start_proxy - Begin"

11 ${DEBUG}

12 trap 'debug_message "Script: demo_prenet_start_proxy - End (${rc})"' EXIT

13 trap 'errtrap "Script: demo_prenet_start_proxy" ${LINENO}; rc=1; exit 1' ERR

14

15 typeset -i rc=0

16 typeset -r scha_control=/usr/cluster/bin/scha_control

17 typeset -r set_status=/usr/cluster/bin/scha_resource_setstatus

18 typeset -r rs_get=/usr/cluster/bin/scha_resource_get

19 typeset status

20 typeset interval

21

22 debug_message "Script: demo_prenet_start_proxy - hostname is $(/usr/bin/hostname)"

23

24 if [[-f ${DEBUG_LOGFILE}]]; then

25 /usr/bin/printf "--- $(date) - rc=${rc} \n" >> ${DEBUG_LOGFILE}

26 printf "Script: demo_prenet_start_proxy - hostname is $(/usr/bin/hostname) \n" >>

 ${DEBUG_LOGFILE}

27 fi

28

29 interval=$(/usr/cluster/bin/scha_resource_get -O extension -R ${RESOURCE} -G

 ${RESOURCEGROUP}

 proxy_interval)

30 interval=$(echo ${interval} | /usr/xpg4/bin/awk '{print $2}')

31

32 while :

33 do

34 status=$(/usr/bin/svcs -Ho state system-log)

35

36 case ${status} in

37 disabled) ${scha_control} -O CHANGE_STATE_OFFLINE -R ${RESOURCE} -G

 ${RESOURCEGROUP}

38 ${set_status} -R ${RESOURCE} -G ${RESOURCEGROUP} -s OFFLINE -m

 "System-log is

 offline"

39 ;;

40 online ${scha_control} -O CHANGE_STATE_ONLINE -R ${RESOURCE} -G

 ${RESOURCEGROUP}

41 ${set_status} -R ${RESOURCE} -G ${RESOURCEGROUP} -s OK -m "System-log

 is online"

Chapter 2 • Creating a Data Service with GDSv2 65

Using the GDSv2 Demo Scripts

42 ;;

43 *) ${scha_control} -O CHANGE_STATE_OFFLINE -R ${RESOURCE} -G

 ${RESOURCEGROUP}

44 ${set_status} -R ${RESOURCE} -G ${RESOURCEGROUP} -s DEGRADED -m

 "System-log is

 degraded"

45 ;;

46 esac

47

48 sleep ${interval}

49 done

50

51 exit ${rc}

■ Lines 07-09 – The function get_opts will process all the arguments that GDSv2 passes to
demo_proxy_prenet_start. Those arguments are processed as upper case KSH variables.
Property values are as defined (for example, RESOURCE=mysrs).

■ Lines 10-11 – The function debug_message is called to output a Begin debug message
to the system log. Additionally, the ${DEBUG} variable is set. See “Debug_level
Property” on page 36 for more information.

■ Lines 12-13 – KSH trap built-in command is used to output an End debug message to
the system log whenever the script exists. Additionally, if a command returns a non-zero
exit status the KSH fake signal ERR is trapped and the function errtrap is called. Function
errtrap will output an error message to the system log that contains the script name, line
number of the command that returned a non-zero exist status and the exit status that was
returned by that command.

■ Line 22 – Output a debug message to the system log that contains the script name and value
from the hostname command. If environment variables for SC_LHOSTNAME exist, then
the value for SC_LHOSTNAME is output.

■ Lines 24-27 – If variable ${DEBUG_LOGFILE} is set, then output some
debug_messages to that file. When function debug_messages was first called on line 10,
${DEBUG_LOGFILE} was set to /var/cluster/logs/DS/RT/message_log/.RS. RT
equals ORCL.gds_proxy and RS equals your resource name.

■ Lines 29-30 – The Oracle Solaris Cluster program scha_resource_get retrieves the
proxy_interval extension property, which is saved into the variable interval.

■ Lines 32-49 – Perform a while loop sleeping for the duration of ${interval} on every
iteration. During each iteration, check the state of the system log using the svcs(1)
command and reflect that state as an Oracle Solaris Cluster resource state and status.

66 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Using Subclassed GDSv2 Resource Types

Demo_proxy_postnet_stop Script

The demo_proxy_postnet_stop script is executed when the daemon that was started by
demo_proxy_prenet_start is being stopped. Additionally, it prints out debug messages to the
system log to show Begin and End messages and the hostname or interposed host name.

01 #

02 # Copyright (c) 2013, 2014, Oracle and/or its affiliates. All rights reserved.

03 #

04 #ident "@(#)demo_proxy_postnet_stop.ksh 1.3 14/02/10"

05 #

06

07 . /opt/ORCLscgds/lib/gds_functions

08 get_opts "$@"

09

10 debug_message "Script: demo_postnet_stop_proxy - Begin"

11 ${DEBUG}

12 trap 'debug_message "Script: demo_postnet_stop_proxy - End (${rc})"' EXIT

13 trap 'errtrap "Script: demo_proxy_postnet_stop" ${LINENO}; rc=1; exit 1' ERR

14

15 typeset -i rc=0

16 typeset -r set_status=/usr/cluster/bin/scha_resource_setstatus

17

18 debug_message "Script: demo_postnet_stop_proxy - hostname is $(/usr/bin/hostname)"

19

20 ${set_status} -R ${RESOURCE} -G ${RESOURCEGROUP} -s OFFLINE

21

22 if [[-f ${DEBUG_LOGFILE}]]; then

23 /usr/bin/printf "--- $(date) - rc=${rc} \n" >> ${DEBUG_LOGFILE}

24 /usr/bin/printf "Script: demo_postnet_stop_proxy - hostname is $(/usr/bin/

hostname) \n" >>

 ${DEBUG_LOGFILE}

25 fi

26

27 exit ${rc}

■ Lines 07-27 – All these lines are explained with the demo_proxy_prenet_start script.

Using Subclassed GDSv2 Resource Types

This section contains information about subclassing a GDSv2 resource type.

Chapter 2 • Creating a Data Service with GDSv2 67

How to Subclass the ORCL.gds Resource Type

Reasons to Subclass GDSv2 Resource Types

When using a resource of type ORCL.gds or ORCL.gds_proxy, you cannot deploy new extension
properties that might be required for your application. For example, if you require a user name
to start or stop and probe your application, you will typically have to hard code that user name
within your scripts. Instead, you could subclass the GDSv2 resource type and then create a new
extension property within the subclassed resource type.

Note - If you subclass a GDSv2 resource type and add a new extension property to the RTR
file and provide a default value for that property, be careful how you provide those default
values. The following table provides some sample default values that might fit what you want to
achieve:

DEFAULT =""; Blank string entry

DEFAULT = "foo"; String entry

DEFAULT ="foo bar"; String entry with multiple entries

DEFAULT ="'foo bar *'"; String entry with multiple entries and special
characters. Single quotes are enclosed by double
quotes.

DEFAULT =2; Integer value 2

DEFAULT =TRUE; Boolean entry

DEFAULT ="NONE"; Enum entry

How to Subclass the ORCL.gds Resource Type

1. On one cluster node, assume the root role.

2. Copy the ORCL.gds Resource Type Registration file.

cd /opt/ORCLscgds/etc

cp ORCL.gds your path/my.gds

Note - For consistency, copy the RTR file on all nodes of the cluster.

3. Edit the copied file your path/my.gds.
Change the following entries to reflect your new resource type name:

RESOURCE_TYPE = “gds”;

68 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

How to Subclass the ORCL.gds Resource Type

VENDOR_ID = my;

#% SERVICE_NAME = “my.gds”;

Create a new extension property within the new Resource Type Registration file. For example,
edit your path/my.gds and copy the Boot_command extension property and amend it the
Username extension property.

{ PROPERTY = Username; EXTENSION; STRING; DEFAULT = ""; TUNABLE = AT_CREATION;

 DESCRIPTION = "Username for my application";

}

Note - For consistency, edit the RTR file on all nodes of the cluster.

Other extension properties can be created and copied from an existing extension property to
meet your requirements. For example, the Boot_command extension property was copied to
create the Username extension property above. However, the TUNABLE attribute was amended
to use AT_CREATION. See the property_attributes(5) man page for more information about
resource property attributes.

4. Register and list the new Resource Type.

clresourcetype register -f your path/my.gds my.gds

5. Create a resource of the new Resource Type.

clresourcegroup create newrg
clresource create -g newrg -t my.gds \
-p Start_command=your start command \
-p Username=me -d newrs

6. List the new extension property from your resource.

clresource show -p username newrs

You have now successfully subclassed the ORCL.gds resource type. Your new resource type [my.
gds] will behave exactly as the ORCL.gds resource type, except that you have introduced a new
extension property.

Note - To retrieve the contents of the Username extension property, use the /usr/cluster/bin/
scha_resource_get program as shown in the demo scripts below.

root@node1:~# user=$(/usr/cluster/bin/scha_resource_get -O extension -R newrs -G newrg

 username |

 tail -1)

root@node1:~# echo $user

Chapter 2 • Creating a Data Service with GDSv2 69

http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLCRMproperty-attributes-5

How to Subclass the ORCL.gds_proxy Resource Type

me

root@node1:~#

How to Subclass the ORCL.gds_proxy Resource Type

The steps to subclass the ORCL.gds_proxy resource type are similar to the steps for subclassing
the ORCL.gds resource type.

1. On one cluster node, assume the root role.

2. Copy the ORCL.gds_proxy Resource Type Registration file.

cd /opt/ORCLscgds/etc

cp ORCL.gds_proxy your path/my.gds_proxy

Note - For consistency, copy the RTR file on all nodes of the cluster.

3. Edit the copied file your path/my.gds_proxy.
Change the following entries to reflect your new resource type name:

RESOURCE_TYPE = “gds_proxy”;

VENDOR_ID = my;

#% SERVICE_NAME = “my.gds_proxy”;

Create a new extension property within the new Resource Type Registration file. For example,
edit your path/my.gds_proxy and copy the Boot_command extension property and amend it as the
Username extension property.

{ PROPERTY = Username; EXTENSION; STRING; DEFAULT = ""; TUNABLE = AT_CREATION;

 DESCRIPTION = "Username for my application";

}

Note - For consistency, edit the RTR file on all nodes of the cluster.

Other extension properties can be created and copied from an existing extension property to
meet your requirements. For example, the Boot_command extension property was copied to
create the Username extension property. However, the TUNABLE attribute was amended to use
AT_CREATION. See the property_attributes(5) man page for more information about resource
property attributes.

4. Register and list the new Resource Type.

clresourcetype register -f your path/my.gds_proxy my.gds_proxy

70 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLCRMproperty-attributes-5

Upgrading the ORCL.gds and ORCL.gds_proxy Resource Types

5. Create a resource of the new Resource Type.

clresourcegroup create -S newsrg
clresource create -g newsrg -t my.gds_proxy \
-p Prenet_start_command=your prenet_start command \
-p Username=me -d newsrs

6. List the new extension property from your resource.

clresource show -p username newsrs

You have now successfully subclassed the ORCL.gds_proxy resource type. Your new resource
type [my.gds_proxy] will behave exactly as the ORCL.gds_proxy resource type, except that you
have introduced a new extension property.

Note - To retrieve the contents of the Username extension property, use the /usr/cluster/bin/
scha_resource_get program as shown in the demo scripts below.

root@node1:~# user=$(/usr/cluster/bin/scha_resource_get -O extension -R newsrs -G newsrg

 username |

 tail -1)

root@node1:~# echo $user

me

root@node1:~#

Upgrading the ORCL.gds and ORCL.gds_proxy Resource Types

Upgrade the ORCL.gds and ORCL.gds_proxy resource types if the following conditions apply:

■ If you upgrade from Oracle Solaris Cluster 4.2 to Oracle Solaris 4.3 with Oracle Solaris
Cluster 4.2 registered GDSv2 resources and want to use Debug_level=3, then you will also
need to migrate the GDSv2 resources to the new version.

■ You upgrade the ORCL.gds and ORCL.gds_proxy resource types to the latest version of
Oracle Solaris Cluster from an earlier version of the data service.

■ You upgrade from an earlier version of the operating system.

For general instructions that explain how to upgrade a resource type, see “Upgrading a
Resource Type” in Oracle Solaris Cluster 4.3 Data Services Planning and Administration
Guide . The information that you require to complete the upgrade of the resource type is
provided in the subsections that follow.

Chapter 2 • Creating a Data Service with GDSv2 71

http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLDAGch14_resources_admin-1046
http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLDAGch14_resources_admin-1046
http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLDAGch14_resources_admin-1046

How to Migrate Instances of GDSv2 Resource Type

Information for Registering the New Resource
Type Version

The release of Oracle Solaris Cluster data services indicates the release in which the version of
the resource type was introduced.

To determine the version of the resource type that is registered, use the clresourcetype list
command.

For example:

clrt list | grep ORCL.gds

ORCL.gds_proxy:1

ORCL.gds:1

ORCL.gds:2

ORCL.gds_proxy:2

Information for Migrating Existing Instances of the
Resource Type

The information that you require to edit each instance of the resource type is as follows:

■ You can perform the migration at anytime. It is not required that you disable or unmanage
the resource before performing the migration.

■ For Oracle Solaris Cluster 4.3, the required value of the Type_version property is 2.

How to Migrate Instances of GDSv2 Resource
Type

1. Register the new GDSv2 resource type.

For ORCL.gds:
clresource register ORCL.gds

For ORCL.gds_proxy:
clresource register ORCL.gds_proxy

2. Migrate the existing GDSv2 resources to the new version of GDSv2.

72 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

How to Migrate Instances of GDSv2 Resource Type

clresource set -p Type_version=2 resource

If Debug_level=3 is needed:
clresource set -p Debug_level=3 resource

Chapter 2 • Creating a Data Service with GDSv2 73

74 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

 3 ♦ ♦ ♦ C H A P T E R 3

Using Agent Builder to Create a Service That
Uses GDS or GDSv2

You can use Agent Builder to create the service that uses the GDS. Agent Builder is described
in more detail in Chapter 9, “Oracle Solaris Cluster Agent Builder,” in Oracle Solaris Cluster
Data Services Developer’s Guide .
This chapter covers the following topics:

■ “Creating and Configuring GDS-Based Scripts” on page 75
■ “Output From Agent Builder” on page 81
■ “Command-Line Interface for Agent Builder” on page 81

Creating and Configuring GDS-Based Scripts

How to Start Agent Builder and Create the Scripts
1. Become an administrator that provides solaris.cluster.modify authorization.

2. Start Agent Builder.

/usr/cluster/bin/scdsbuilder

3. Type the vendor name.

4. Type the application name.

Note - The combination of vendor name and application name is used as the name of the
package for the scripts.

5. Go to the working directory.

Chapter 3 • Using Agent Builder to Create a Service That Uses GDS or GDSv2 75

http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLDEVagent_builder-26
http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLDEVagent_builder-26

How to Configure the Scripts for GDS

You can use the Browse drop-down menu to select the directory rather than typing the path.

6. Select whether the data service is scalable or failover.

7. Select GDS or GDSv2.

Note - If you select GDSv2, you can optionally choose to select proxy or subclass:

■ You selected GDSv2, but not proxy or subclass. A resource of type ORCL.gds will be
created.

■ You selected GDSv2 and proxy, but not subclass. A resource of type ORCL.gds_proxy will
be created.

■ You selected GDSv2 and subclass, but not proxy. A resource of a new subclassed ORCL.gds
will be created.

■ You selected GDSv2, proxy, and subclass. A resource of a new subclassed ORCL.gds_proxy
will be created.

8. (Optional) Change the RT version from the default value that is shown.

Note - You cannot use the following characters in the RT Version field: space, tab, slash (/),
backslash (\), asterisk (*), question mark (?), comma (,), semicolon (;), left square bracket ([),
or right square bracket (]).

9. Click Create.
Agent Builder creates the scripts. The results are displayed in the Output Log area.
Note that the Create button is grayed out. You can now configure the scripts.

10. Click Next.
The Configure screen appears.

How to Configure the Scripts for GDS
After creating the scripts, you need to configure the new service.

1. Type the location of the start command, or click Browse to locate the start
command.
You can specify property variables. Property variables are described in “Using Property
Variables” in Oracle Solaris Cluster Data Services Developer’s Guide .

76 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLDEVagent_builder-30
http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLDEVagent_builder-30

How to Configure the Scripts for GDSv2 Non-proxy or Subclassed GDSv2 Non-proxy

2. (Optional) Type the location of the stop command, or click Browse to locate the
stop command.
You can specify property variables. Property variables are described in “Using Property
Variables” in Oracle Solaris Cluster Data Services Developer’s Guide .

3. (Optional) Type the location of the validate command, or click Browse to locate
the validate command.
You can specify property variables. Property variables are described in “Using Property
Variables” in Oracle Solaris Cluster Data Services Developer’s Guide .

4. (Optional) Type the location of the probe command, or click Browse to locate the
probe command.
You can specify property variables. Property variables are described in “Using Property
Variables” in Oracle Solaris Cluster Data Services Developer’s Guide .

5. (Optional) Specify new timeout values for the start, stop, validate, and probe
commands.

6. Click Configure.
Agent Builder configures the scripts.

Note - Agent Builder concatenates the vendor name and the application name to create the
package name.

A package for scripts is created and placed in the following directory:

working-dir/vendor-name-application/pkg

For example, /export/wdir/NETapp/pkg.

Go to “How to Install the Generated Package” on page 79.

How to Configure the Scripts for GDSv2 Non-
proxy or Subclassed GDSv2 Non-proxy

After creating the scripts, you need to configure the new service.

1. Type the location of the start command, or click Browse to locate the start
command.

Chapter 3 • Using Agent Builder to Create a Service That Uses GDS or GDSv2 77

http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLDEVagent_builder-30
http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLDEVagent_builder-30
http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLDEVagent_builder-30
http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLDEVagent_builder-30
http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLDEVagent_builder-30
http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLDEVagent_builder-30

How to Configure Scripts for a GDSv2 Proxy or Subclassed GDSv2 Proxy

You can specify property variables %RS_NAME, %RG_NAME, or %RT_NAME. See
Chapter 2, “Creating a Data Service with GDSv2” for more information on property variables.

2. (Optional) Type the location of the stop command, or click Browse to locate the
stop command.
You can specify property variables %RS_NAME, %RG_NAME, or %RT_NAME. See
Chapter 2, “Creating a Data Service with GDSv2” for more information on property variables.

3. (Optional) Type the location of the validate command, or click Browse to locate
the validate command.
You can specify property variables %RS_NAME, %RG_NAME, or %RT_NAME. See
Chapter 2, “Creating a Data Service with GDSv2” for more information on property variables.

4. (Optional) Type the location of the probe command, or click Browse to locate the
probe command.
You can specify property variables %RS_NAME, %RG_NAME, or %RT_NAME. See
Chapter 2, “Creating a Data Service with GDSv2” for more information on property variables.

5. (Optional) Type the interpose_logical_hostname entry.

6. (Optional) Select the Disable PMF entry.
Selecting Disable PMF ensures that PMF_managed=FALSE is set. See Chapter 2, “Creating a Data
Service with GDSv2” for more information on PMF_managed.

7. (Optional) Specify new timeout values for the start, stop, validate, and probe
commands.

8. Click Configure.
Go to “How to Install the Generated Package” on page 79.

How to Configure Scripts for a GDSv2 Proxy or
Subclassed GDSv2 Proxy

After creating the scripts, you will configure the new service.

1. Type the location of the Prenet_start command, or click Browse to locate the
Prenet_start command.

78 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

How to Install the Generated Package

You can specify property variables %RS_NAME, %RG_NAME, or %RT_NAME. See
Chapter 2, “Creating a Data Service with GDSv2” for more information on property variables.

2. (Optional) Type the location of the Postnet_stop command, or click Browse to
locate the Postnet_stop command.
You can specify property variables %RS_NAME, %RG_NAME, or %RT_NAME. See
Chapter 2, “Creating a Data Service with GDSv2” for more information on property variables.

3. (Optional) Type the location of the validate command, or click Browse to locate
the Validate command.
You can specify property variables %RS_NAME, %RG_NAME, or %RT_NAME. See
Chapter 2, “Creating a Data Service with GDSv2” for more information on property variables.

4. (Optional) Specify new timeout values for the Prenet_start, Postnet_stop, and
Validate commands.

5. Click Configure.
Proceed to “How to Install the Generated Package” on page 79.

How to Install the Generated Package
1. On each node of the cluster, become an administrator that provides solaris.

cluster.modify authorization.

2. On each node of the cluster, install the completed package.

cd /export/wdir/NETapp/pkg

pkgadd -d . NETapp

Note - This instruction applies to the SVR4 package that Agent Builder creates. If you need an
IPS version of the package, use the pkgsend command to convert your SVR4 agent package
to an IPS package, and use the pkg add command to install the IPS package. For more
information, see the pkgsend(1) and pkg(1) man pages.

The following files are installed by pkgadd:

/opt/NETapp

/opt/NETapp/README.app

/opt/NETapp/man

/opt/NETapp/man/man1m

Chapter 3 • Using Agent Builder to Create a Service That Uses GDS or GDSv2 79

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgsend-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkg-1

How to Install the Generated Package

/opt/NETapp/man/man1m/removeapp.1m

/opt/NETapp/man/man1m/startapp.1m

/opt/NETapp/man/man1m/stopapp.1m

/opt/NETapp/man/man1m/app_config.1m

/opt/NETapp/util

/opt/NETapp/util/removeapp

/opt/NETapp/util/startapp

/opt/NETapp/util/stopapp

/opt/NETapp/util/app_config

Note - The man pages and script names correspond to the application name that you typed
previously on the Create screen, preceded by the script name (for example, startapp).

3. On one node of the cluster, configure the resources and start the application.

/opt/NETapp/util/startapp -h logicalhostname -p port-and-protocol-list

The arguments to the startapp script vary according to the type of resource: failover or
scalable.

Note - To determine the command line that you need to type, check the customized man page,
or run the startapp script without any arguments to display a usage statement.

To view the man pages, you need to specify the path to the man page. For example, to view the
startapp(1M) man page, type:

man -M /opt/NETapp/man startapp

To display a usage statement, type:

/opt/NETapp/util/startapp

The resource name of LogicalHostname or SharedAddress must be

specified. For failover services:

Usage: startapp -h logicalhostname
-p port-and-protocol-list
[-n ipmpgroup-adapter-list]
For scalable services:

Usage: startapp -h shared-address-name
-p port-and-protocol-list
[-l load-balancing-policy]
[-n ipmpgroup/adapter-list]
[-w load-balancing-weights]

80 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Output From Agent Builder

Output From Agent Builder

Agent Builder generates three scripts and a configuration file based on input that you provide
when you create the package. The configuration file specifies the names of the resource group
and the resource type.
The scripts are as follows:

■ Start script – Configures the resources and starts the application that is under RGM
control.

■ Stop script – Stops the application and takes down resources and resource groups.
■ Remove script – Removes the resources and resource groups that are created by the start

script.

These scripts have the same interface and behavior as the utility scripts that are generated
by Agent Builder for non-GDS-based data services. The scripts are put in an Oracle Solaris
package that you can reuse across multiple clusters.

You can customize the configuration file to provide your own names for resource groups or
other arguments that are normally given as arguments to the clresource and clresourcegroup
commands. If you do not customize the scripts, Agent Builder provides default values for these
arguments.

Command-Line Interface for Agent Builder

Agent Builder incorporates a command-line interface that provides the same functionality that
the GUI provides. This interface consists of the commands scdscreate and scdsconfig. See
the scdscreate(1HA) and scdsconfig(1HA) man pages for more information.

How to Use the Command-Line Version of Agent
Builder to Create a Service That Uses GDS

This section describes how to use the command-line interface to perform the same set of steps
shown earlier in this chapter.

1. Become an administrator that provides solaris.cluster.modify authorization.

2. Create the service by performing one of the following steps.

Chapter 3 • Using Agent Builder to Create a Service That Uses GDS or GDSv2 81

http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLCRMscdscreate-1ha
http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLCRMscdsconfig-1ha

How to Use the Command-Line Version of Agent Builder to Create a Service That Uses GDS

■ Create a failover service.

scdscreate -g -V NET -T app -d /export/wdir
■ Create a scalable service.

scdscreate -g -s -V NET -T app -d /export/wdir

Note - The -d argument is optional. If you do not specify this argument, the current directory
becomes the working directory.

3. Configure the service.

scdsconfig -s "/export/app/bin/start" \

-e "/export/app/bin/configtest" \

-t "/export/app/bin/stop" \

-m "/export/app/bin/probe" -d /export/wdir

You can specify property variables. Property variables are described in “Using Property
Variables” in Oracle Solaris Cluster Data Services Developer’s Guide .

Note - Only the start command (scdsconfig -s) is required. All other options and arguments
are optional.

4. On each node of the cluster, install the completed package.

cd /export/wdir/NETapp/pkg

pkgadd -d . NETapp

Note - This instruction applies to the SVR4 package that Agent Builder creates. If you need an
IPS version of the package, use the pkgsend command to convert your SVR4 agent package
to an IPS package, and use the pkg add command to install the IPS package. For more
information, see the pkgsend(1) and pkg(1) man pages.

The following files are installed by pkgadd:

/opt/NETapp

/opt/NETapp/README.app

/opt/NETapp/man

/opt/NETapp/man/man1m

/opt/NETapp/man/man1m/removeapp.1m

/opt/NETapp/man/man1m/startapp.1m

/opt/NETapp/man/man1m/stopapp.1m

/opt/NETapp/man/man1m/app_config.1m

/opt/NETapp/util

82 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLDEVagent_builder-30
http://www.oracle.com/pls/topic/lookup?ctx=E56676-01&id=CLDEVagent_builder-30
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgsend-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkg-1

How to Use the Command-Line Version of Agent Builder to Create a Service That Uses GDS

/opt/NETapp/util/removeapp

/opt/NETapp/util/startapp

/opt/NETapp/util/stopapp

/opt/NETapp/util/app_config

Note - The man pages and script names correspond to the application name that you typed
previously on the Create screen, preceded by the script name (for example, startapp).

5. On one node of the cluster, configure the resources and start the application.

/opt/NETapp/util/startapp -h logicalhostname -p port-and-protocol-list

The arguments to the startapp script vary according to the type of resource: failover or
scalable.

Note - To determine the command line that you need to type, check the customized man page or
run the startapp script without any arguments to display a usage statement.

To view the man pages, you need to specify the path to the man page. For example, to view the
startapp(1M) man page, type:

man -M /opt/NETapp/man startapp

To display a usage statement, type:

/opt/NETapp/util/startapp

The resource name of LogicalHostname or SharedAddress must be specified.

For failover services:

Usage: startapp -h logicalhostname
-p port-and-protocol-list
[-n ipmpgroup/adapter-list]
For scalable services:

Usage: startapp -h shared-address-name
-p port-and-protocol-list
[-l load-balancing-policy]
[-n ipmpgroup/adapter-list]
[-w load-balancing-weights]

Chapter 3 • Using Agent Builder to Create a Service That Uses GDS or GDSv2 83

How to Use the Command-Line Version of Agent Builder to Create a Service That Uses GDS or a Subclassed GDSv2

How to Use the Command-Line Version of Agent
Builder to Create a Service That Uses GDS or a
Subclassed GDSv2

This section describes how to use the command-line interface to perform the same set of steps
shown earlier in this chapter.

1. Become an administrator that provides solaris.cluster.modify authorization.

2. Create the service by performing one of the following steps.

■ Create a failover service.

scdscreate -G -V vendor -T app appname \
[-d working directory] \
[-c] [-p]

■ Create a scalable service.

scdscreate -G -s -V vendor -T app appname \
[-d working directory] \
[-c] [-p]

Use the following guidelines:

■ The -d argument is optional. If you do not specify this argument, the current directory
becomes the working directory.

■ The -c argument is optional. If set, a subclassed GDSv2 resource type is created.
■ The -p argument is optional. If set, a proxy GDSv2 resource type is created.

Note - If the -c argument is selected and the -p argument is not selected, then a subclassed
ORCL.gds resource type is created. If the -c and -p arguments are selected, then a subclassed
ORCL.gds_proxy resource type is created.

3. Configure the service.

■ For a non-proxy service, type:

scdsconfig -s "path to your start command" \
[-d working directory] \
[-e "path to your validate command"] \

[-t "path to your stop command"] \

[-m "path to your probe command"] \

84 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

How to Use the Command-Line Version of Agent Builder to Create a Service That Uses GDS or a Subclassed GDSv2

[-l "interpose logical hostname"] \

-p

■ For a proxy service, type:

scdsconfig -s "path to your prenet_start command" \
[-d working directory] \
[-e "path to your validate command"] \

[-t "path to your postnet_stop command"] \

[-l "interpose logical hostname"]

Use the following guidelines:

■ The -s argument is required. You should specify the path to your start or prenet_start
command.

■ The -d argument is optional. If you do not specify this argument, the current directory
becomes the working directory.

■ The -e argument is optional. If you specify this argument, you should specify the path to
your validate command.

■ The -t argument is optional. If you specify this argument, you should specify the path to
your stop or postnet_stop command.

■ The -m argument is optional. If you specify this argument, you should specify the path to
your probe command.

■ The -l argument is optional. If you specify this argument, you should specify the interpose
logical host name.

■ The -p argument is optional. Selecting this argument ensures that PMF_managed=FALSE is
set. See Chapter 2, “Creating a Data Service with GDSv2” for more information on the
PMF_managed command.

4. On each node of the cluster, install the completed package.

cd working directory/pkg
pkgadd -d . vendorappname

Note - This instruction applies to the SVR4 package that Agent Builder creates. If you need an
IPS version of the package, use the pkgsend command to convert your SVR4 agent package
to an IPS package, and use the pkg add command to install the IPS package. For more
information, see the pkgsend(1) and pkg(1) man pages.

5. On one node of the cluster, configure the resources and start the application.

cd /opt/vendorappname/util/startapp [arguments] logicalhostname -p port-and-protocol-list

Chapter 3 • Using Agent Builder to Create a Service That Uses GDS or GDSv2 85

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgsend-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkg-1

How to Use the Command-Line Version of Agent Builder to Create a Service That Uses GDS or a Subclassed GDSv2

Note - The arguments to the startapp script vary according to the type of resource you created
and configured. To determine the command line that you need to type, check the customized
man page or run the startapp script without any arguments to display a usage statement.

To view the man pages, you need to specify the path to the man page. For example, to view the
startapp(1M) man page, type:

man -M /opt/vendorappname/man startapp

86 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Index

A
administration commands

using to create a service that uses GDS, 18
Agent Builder

creating a service that uses the GDS or GDSv2 with
command-line, 81
introduction, 11
output, 81
starting, 75
using to create a service that uses GDS or
GDSv2, 75

C
callback methods

ORCL.gds, 21
ORCL.gds_proxy, 21

commands
using to create a service that uses GDS, 18
using to create GDS, 11

configuring
GDSv2, 27

creating a demo resource
with ORCL.gds, 28
with ORCL.gds_proxy, 30

G
GDS

creating a service with command-line version of
Agent Builder, 81
description, 9
reasons to use, 10

using Agent Builder to create a service that uses
GDS or GDSv2, 75
using with Oracle Solaris Cluster administration
commands, 11

GDS properties
Child_mon_level, 14
Failover_enabled, 14
Log_level, 14
Monitor_retry_count, 15
Monitor_retry_interval , 15
Network_aware, 15
Port_list , 12
Probe_command, 15
Probe_timeout, 16
Resource_dependencies, 16
Start_command, 13
Start_timeout, 17
Stop_command, 17
Stop_signal, 17
Stop_timeout, 17
Timeout_threshold, 17
Validate_command, 18
Validate_timeout, 18

GDSv2
overview, 21, 21

GDSv2 properties
Boot_command, 33
Child_mon_level, 35
Debug_gds, 36
Debug_level, 36
Fini_command, 33
Init_command, 33

87

Index

Interpose_logical_hostname, 38
Num_probe_timeouts, 40
PMF_managed, 41
Probe_command, 42
Start_command, 33
Start_exit_on_error, 44
Stop_command, 34
Stop_exit_on_error, 45
Stop_signal, 47
Timeout_delay, 47
Validate_command, 34
Wait_for_online, 49
Wait_probe_limit, 52

GDSv2 resource types, 21
generic data service See GDS

I
installation and configuration tasks

GDSv2, 26
installing

GDSv2, 26

O
ORCL.gds

resource type for GDSv2, 21
ORCL.gds_proxy

resource type for GDSv2, 21
overview

GDSv2, 21

P
properties, 72

See also extension properties
Type_version, 72

properties for GDS
Port_list, 12
Start_command, 13

properties of GDS

Child_mon_level, 14
Failover_enabled, 14
Log_level, 14
Monitor_retry_count, 15
Monitor_retry_interval, 15
Network_aware, 15
Probe_command, 15
Probe_timeout, 16
Resource_dependencies, 16
Start_timeout, 17
Stop_command, 17
Stop_signal, 17
Stop_timeout, 17
Timeout_threshold, 17
Validate_command, 18
Validate_timeout, 18

properties of GDSv2
Boot_command, 33
Child_mon_level, 35
Debug_gds, 36
Debug_level, 36
Fini_command, 33
Init_command, 33
Interpose_logical_hostname, 38
Num_probe_timeouts, 40
PMF_managed, 41
Probe_command, 42
Start_command, 33
Start_exit_on_error, 44
Stop_command, 34
Stop_exit_on_error, 45
Stop_signal, 47
Timeout_delay, 47
Validate_command, 34
Wait_for_online, 49
Wait_probe_limit, 52

R
registering

GDSv2, 27

88 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

Index

resource type upgrade, 71
resource types for GDS

SUNW.gds, 10
resource types for GDSv2

ORCL.gds, 21
ORCL.gds_proxy, 21

RGM callback methods, 22

S
scripts

configuring, 76
creating, 75

SMF
ORCL.gds_proxy application, 31

subclassing
a GDSv2 resource type, 67

SUNW.gds

resource type for GDS, 10

T
Type_version property, 72

U
upgrading the resource type, 71

89

90 Oracle Solaris Cluster Generic Data Service (GDS) Guide • September 2015

	Oracle® Solaris Cluster Generic Data Service (GDS) Guide
	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	Chapter 1 • Creating a Data Service with GDS
	Generic Data Service Concepts
	Precompiled Resource Type
	Advantages and Disadvantages of Using the GDS
	Ways to Create a Service That Uses the GDS
	GDS and Agent Builder
	GDS and Oracle Solaris Cluster Administration Commands
	Selecting the Method to Use to Create a GDS-Based Service

	How the GDS Logs Events
	GDS Log Files

	Required GDS Properties
	Port_list Property
	Start_command Property

	Optional GDS Properties
	Child_mon_level Property
	Failover_enabled Property
	Log_level Property
	Monitor_retry_count Property
	Monitor_retry_interval Property
	Network_aware Property
	Probe_command Property
	Probe_timeout Property
	Resource_dependencies Property
	Start_timeout Property
	Stop_command Property
	Stop_signal Property
	Stop_timeout Property
	Timeout_threshold Property
	Validate_command Property
	Validate_timeout Property

	Using Oracle Solaris Cluster Administration Commands to Create a Service That Uses the GDS
	How to Use Oracle Solaris Cluster Administration Commands to Create a Highly Available Service That Uses the GDS
	How to Use Oracle Solaris Cluster Administration Commands to Create a Scalable Service That Uses the GDS

	Chapter 2 • Creating a Data Service with GDSv2
	Overview of the GDSv2
	Resource Types
	RGM Callback Methods
	The method_command Sequence
	The ORCL.gds method_command Sequence
	The ORCL.gds_proxy method_command Sequence
	The Resource Group method_command Sequence

	Installing and Configuring the GDSv2
	Installing the GDSv2
	Configuring the GDSv2
	Registering a GDSv2 Resource Type
	How to Register a GDSv2 Resource Type

	Creating a GDSv2 Resource
	How to Create a Demo Resource of Type ORCL.gds
	How to Create a Demo Resource of Type ORCL.gds_proxy

	Using the GDSv2 Extension Properties
	ORCL.gds method_command Extension Properties
	Boot_command Property
	Fini_command Property
	Init_command Property
	Start_command Property
	Stop_command Property
	Validate_command Property

	Additional ORCL.gds Extension Properties
	Child_mon_level Property
	Debug_gds Property
	Debug_level Property
	Interpose_logical_hostname Property
	Num_probe_timeouts Property
	PMF_managed Property
	Probe_command Property
	Start_exit_on_error Property
	Stop_exit_on_error Property
	Stop_signal Property
	Timeout_delay Property
	Wait_for_online Property
	Wait_probe_limit Property

	ORCL.gds_proxy method_command Extension Properties
	Boot_command Property
	Init_command Property
	Fini_command Property
	Prenet_start_command Property
	Postnet_stop_command Property
	Validate_command Property

	Additional ORCL.gds_proxy Extension Properties
	Debug_gds Property
	Debug_level Property
	Interpose_logical host Property
	Stop_signal Property

	Using the GDSv2 Demo Scripts
	ORCL.gds Demo Scripts
	Demo_start Script
	Demo_probe Script
	Demo_stop Script
	Demo_validate Script

	ORCL.gds_proxy Demo Scripts
	Demo_proxy_prenet_start Script
	Demo_proxy_postnet_stop Script

	Using Subclassed GDSv2 Resource Types
	Reasons to Subclass GDSv2 Resource Types
	How to Subclass the ORCL.gds Resource Type
	How to Subclass the ORCL.gds_proxy Resource Type

	Upgrading the ORCL.gds and ORCL.gds_proxy Resource Types
	Information for Registering the New Resource Type Version
	Information for Migrating Existing Instances of the Resource Type
	How to Migrate Instances of GDSv2 Resource Type

	Chapter 3 • Using Agent Builder to Create a Service That Uses GDS or GDSv2
	Creating and Configuring GDS-Based Scripts
	How to Start Agent Builder and Create the Scripts
	How to Configure the Scripts for GDS
	How to Configure the Scripts for GDSv2 Non-proxy or Subclassed GDSv2 Non-proxy
	How to Configure Scripts for a GDSv2 Proxy or Subclassed GDSv2 Proxy
	How to Install the Generated Package

	Output From Agent Builder
	Command-Line Interface for Agent Builder
	How to Use the Command-Line Version of Agent Builder to Create a Service That Uses GDS
	How to Use the Command-Line Version of Agent Builder to Create a Service That Uses GDS or a Subclassed GDSv2

	Index

