
Oracle® Solaris 64-bit Developer's Guide

Part No: E61689
March 2019

Oracle Solaris 64-bit Developer's Guide

Part No: E61689

Copyright © 2015, 2019, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Référence: E61689

Copyright © 2015, 2019, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d'utilisation et
de divulgation. Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence, transmettre,
distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous
invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est livré sous licence au Gouvernement des Etats-Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le
compte du Gouvernement des Etats-Unis, la notice suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être
utilisé dans des applications à risque, notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou ce matériel dans le cadre
d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour des
applications dangereuses.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d'autres propriétaires
qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une
marque déposée de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de
tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée
dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des
dommages causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Accès aux services de support Oracle

Les clients Oracle qui ont souscrit un contrat de support ont accès au support électronique via My Oracle Support. Pour plus d'informations, visitez le site http://www.oracle.com/
pls/topic/lookup?ctx=acc&id=info ou le site http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs si vous êtes malentendant.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Using This Documentation ...  9

1 64-Bit Computing ..  11
1.1 Getting Past the 4 Gigabyte Barrier ..  11
1.2 Beyond Large Address Spaces ...  13

2 When to Use 64-Bit for Applications ...  15
2.1 Major Features of 64-Bit Development Environment ...................................... 15

2.1.1 Large Virtual Address Space ...  16
2.1.2 Large Files ..  17
2.1.3 64-Bit Arithmetic ..  17
2.1.4 System Limitations Removed ..  17

2.2 Interoperability Issues ..  17
2.2.1 Kernel Memory Readers ..  18
2.2.2 /proc Restrictions ...  18
2.2.3 64-Bit Libraries ..  18

2.3 Estimating the Effort of 64-Bit Conversion ..  18

3 Comparing 32-Bit Interfaces and 64-Bit Interfaces ..  19
3.1 Application Programming Interfaces ...  19
3.2 Application Binary Interfaces ..  19
3.3 Compatibility Between 32-Bit Applications and 64-Bit Applications .................  20

3.3.1 Application Binaries ..  20
3.3.2 Application Source Code .. 20
3.3.3 Device Drivers ...  20

3.4 Show That 64-Bit and 32-Bit Applications Run on Your Oracle Solaris 11
System ... 21

5

Contents

4 Converting Applications .. 23
4.1 Overview of the Data Model Differences ...  23
4.2 Implementing Single Source Code ..  25

4.2.1 Feature Test Macros ..  25
4.2.2 Derived Types ..  26
4.2.3 sys/types.h Header File ...  26
4.2.4 inttypes.h Header File ...  26

4.3 Finding Errors With lint ...  29
4.4 Guidelines for Converting to LP64 Data Type Model .....................................  31

4.4.1 Do Not Assume int and Pointers Are the Same Size ...........................  32
4.4.2 Do Not Assume int and long Are the Same Size ...............................  32
4.4.3 Sign Extension ...  33
4.4.4 Use Pointer Arithmetic Instead of Integers ... 35
4.4.5 Internal Data Structures ...  35
4.4.6 Check Unions ..  36
4.4.7 Specify Constant Types ..  36
4.4.8 Beware of Implicit Declaration ..  37
4.4.9 sizeof unsigned long in LP64 ..  37
4.4.10 Use Casts to Show Your Intentions ...  38
4.4.11 Check Format String Conversion Operation .....................................  38
4.4.12 Compiling LP64 Programs ..  39

4.5 Other Considerations When Converting to 64-bit ..  40
4.5.1 Check for Derived Types That Have Grown in Size .............................  40
4.5.2 Check for Side Effects of Changes ...  40
4.5.3 Check Whether Literal Uses of long Still Make Sense .........................  41
4.5.4 Check Use #ifdef for Explicit 32-Bit Versus 64-Bit Prototypes .............  41
4.5.5 Calling Convention Changes ...  41
4.5.6 Algorithmic Changes ...  41

4.6 Checklist for Converting to 64-bit ..  42
4.7 Sample 64-Bit From 32-Bit Program ..  42

5 64-Bit Development Environment .. 45
5.1 64-Bit Build Environment ...  45

5.1.1 64-Bit Header Files ...  45
5.1.2 32-Bit and 64-Bit Libraries ...  46

5.2 Linking Object Files ..  47

6 Oracle Solaris 64-bit Developer's Guide • March 2019

Contents

5.2.1 LD_LIBRARY_PATH Environment Variable ...  47
5.2.2 $ORIGIN Keyword ...  48

5.3 Packaging 32-Bit and 64-Bit Applications .. 48
5.3.1 Placement of Libraries and Programs .. 48
5.3.2 Packaging Guidelines ..  49
5.3.3 Application Naming Conventions ..  49

5.4 Debugging 64-Bit Applications ..  49

6 Advanced Topics ...  51
6.1 SPARC V9 ABI Features .. 51

6.1.1 Stack Bias ...  52
6.1.2 Address Space Layout of the SPARC V9 ABI ....................................  53
6.1.3 Placement of Text and Data of the SPARC V9 ABI .............................  53
6.1.4 Code Models of the SPARC V9 ABI ..  54

6.2 AMD64 ABI Features ..  55
6.2.1 Address Space Layout for amd64 Applications ...................................  56

6.3 Alignment Issues ...  57
6.4 Interprocess Communication ...  58
6.5 ELF and System Generation Tools ...  59
6.6 /proc Interface ...  59
6.7 Extensions to sysinfo() System Call ...  60
6.8 libkvm and /dev/ksyms .. 60
6.9 libkstat Kernel Statistics ..  61
6.10 Changes to stdio ..  61
6.11 Building FOSS on Oracle Solaris Systems .. 62
6.12 Performance Issues ..  62

6.12.1 64-Bit Application Advantages ..  63
6.12.2 64-Bit Application Disadvantages ..  63

6.13 System Call Issues ...  63
6.13.1 EOVERFLOW Indicates System Call Issue .. 63
6.13.2 ioctl() Does Not Type Check at Compile Time ...............................  64

A Changes in Derived Types .. 65

B Frequently Asked Questions (FAQ) ..  69

7

Contents

Index ..  71

8 Oracle Solaris 64-bit Developer's Guide • March 2019

Using This Documentation

■ Overview – For application developers who are converting 32-bit applications to 64-bit
and developing 64-bit applications on Oracle Solaris. It describes the 32-bit and 64-bit
application environments and describes some of the utilities and commands available for
developing 64-bit applications.
Oracle Solaris 11.3 is a 64-bit only operating system and provides an environment to build
and run 64-bit applications that can use large files and large virtual address spaces. At the
same time, to maintain backward compatibility, this release supports 32-bit applications.
The Oracle Solaris OS supports systems that use the SPARC and x86 families of processor
architectures: UltraSPARC, SPARC64, AMD64, Pentium, and Xeon EM64T. For a list of all
the supported systems, see Oracle Solaris Hardware Compatibility List.
The major differences between the 32-bit and the 64-bit application development
environments are as follows.
■ 32-bit applications are based on the ILP32 data model, where int, long, and pointers

are 32-bit.
■ 64-bit applications are based on the LP64 data model, where long and pointers are 64

bits and the other fundamental types are the same as in ILP32 data model.
■ In a 64-bit development environment, the large file interface is no longer required. The

large file interface enables 32-bit programs to handle files that are larger than 2GB.
■ 32-bit time_t can only handle dates up to January 2038. However 64-bit time_t can

handle dates for billion years into the future.

You might want to convert your application from 32-bit to 64-bit if your application has one
or more of the following requirements:
■ Needs more than 4 gigabytes of virtual address space
■ Reads and interprets kernel memory through use of the libkvm library, and /dev/mem, or

/dev/kmem files
■ Uses the /proc interface to debug 64-bit processes
■ Uses a library that has only a 64-bit version
■ Needs full 64-bit registers to do efficient 64-bit arithmetic
■ Use dates beyond January 2038

Using This Documentation 9

https://www.oracle.com/webfolder/technetwork/hcl/index.html

Product Documentation Library

Specific interoperability issues can also require code changes. For example, if your
application uses files that are larger than 2 gigabytes, you might want to convert the
application to 64-bit.
In some cases, you might want to convert applications to 64-bit for performance reasons.
For example, you might need the 64-bit registers to do efficient 64-bit arithmetic or you
might want to take advantage of other performance improvements that a 64-bit instruction
set provides.

Note - In this document the term "x86" refers to 64-bit and 32-bit systems manufactured
using processors compatible with the AMD64 or Intel Xeon/Pentium product families.

■ Audience – Application developers who intend to convert 32-bit applications to 64-bit
applications and develop 64-bit applications on Oracle Solaris 11 and later versions.

■ Required knowledge – Experience in developing applications in C and an understanding of
the 32-bit and the 64-bit architectures.

Product Documentation Library

Documentation and resources for this product and related products are available at http://www.
oracle.com/pls/topic/lookup?ctx=E53394-01.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

10 Oracle Solaris 64-bit Developer's Guide • March 2019

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01
http://www.oracle.com/goto/docfeedback

 1 ♦ ♦ ♦ C H A P T E R 1

64-Bit Computing

As applications continue to become more functional and more complex, and as data sets
grow in size, the address space requirements also continue to grow. Now a days most of the
applications are 64-bit and the 4 Gigabyte address space provided by 32-bit systems is no
longer sufficient.

1.1 Getting Past the 4 Gigabyte Barrier

The diagram in Figure 1, “Typical Performance and Problem Size Curve,” on page 12
shows how an application undergoes a significant drop in performance with increase in problem
size on a system with a large amount of physical memory. For very small problem sizes, the
entire program can fit in the data cache (D$) or the external cache (E$). But eventually, the
program's data area becomes large enough that the program fills the entire 4 Gigabyte virtual
address space of a 32-bit application.

Chapter 1 • 64-Bit Computing 11

1.1 Getting Past the 4 Gigabyte Barrier

FIGURE 1 Typical Performance and Problem Size Curve

Beyond the 32-bit virtual address limit, applications programmers can still handle large problem
sizes. Usually, applications that exceed the 32-bit virtual address limit split the application data
set between primary memory and secondary memory, for example, onto a disk. Unfortunately,
transferring data to and from a disk drive takes a longer time, in orders of magnitude, than
memory-to-memory transfers.

Today, many servers can handle Terabytes of physical memory. A single 32-bit application
cannot directly address more than 4 Gigabytes at a time. However, a 64-bit application can
use the 64-bit virtual address space capability to allow up to 18 Exabytes (1 Exabyte is
approximately 1018 bytes) to be directly addressed. Thus, larger problems can be handled
directly in primary memory. If the application is multithreaded and scalable, more processors
can be added to the system to speed up the application even further. Such applications become
limited only by the amount of physical memory in the system.
For a wide range of applications, the ability to handle larger problems directly in primary
memory is the major performance benefit of 64-bit machines. Some of the advantages are as
follows:

■ A greater proportion of a database can live in primary memory.
■ Larger CAD/CAE models and simulations can fit in primary memory.
■ Larger scientific computing problems can fit in primary memory.
■ Web caches can hold more in memory, reducing latency.

12 Oracle Solaris 64-bit Developer's Guide • March 2019

1.2 Beyond Large Address Spaces

1.2 Beyond Large Address Spaces

Other compelling reasons why you might want to create 64-bit applications are as follows:

■ You can perform a lot of computation on 64-bit integer values that use the wide data paths
of a 64-bit processor to gain performance.

■ Several system interfaces have been enhanced, or limitations removed, because the
underlying data types that underpin those interfaces have become larger. For example, 32-
bit time_t can only handle dates up to January 2038, while 64-bit time_t can handle dates
for billion years into the future.

■ You can obtain the performance benefits of the 64-bit instruction set, such as improved
calling conventions and full use of the register set.

■ You can increase the security by using ASLR, which helps you to create more random,
harder to guess address spaces. For more information, see “Randomizing the Layout of
the Address Space” in Securing Systems and Attached Devices in Oracle Solaris 11.3 and
“Security Extensions Framework” in Developer’s Guide to Oracle Solaris 11.3 Security.

Chapter 1 • 64-Bit Computing 13

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSADsysauth-aslr
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSADsysauth-aslr
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SCDEVsecext-wn

14 Oracle Solaris 64-bit Developer's Guide • March 2019

 2 ♦ ♦ ♦ C H A P T E R 2

When to Use 64-Bit for Applications

For application developers using Oracle Solaris, the major difference between the 64-bit and
32-bit operating environments is the C data type model used. The 64-bit version uses the LP64
data model where long and pointers are 64-bit. All other fundamental data types remain the
same as in the 32-bit implementation. The 32-bit implementation is based on the ILP32 data
model in which int, long, and pointers are 32-bit values. For more information about these
models, see Chapter 3, “Comparing 32-Bit Interfaces and 64-Bit Interfaces”.
All new applications must be developed as 64-bit applications and many of the existing 32-bit
applications might require conversion to 64-bit. You might want to convert applications with
the following characteristics:

■ Can benefit from more than 4 gigabytes of virtual address space
■ Are restricted by 32-bit interface limitations
■ Can benefit from full 64-bit registers to do efficient 64-bit arithmetic
■ Can benefit from the performance improvement that the 64-bit instruction set provides
■ Can benefit from the use of large file awareness
■ Must run after January 2038
■ Can benefit from the use of 64-bit time_t that can handle dates for billion years into the

future
■ Read and interpret kernel memory through the use of libkvm, /dev/mem, or /dev/kmem
■ Use /proc to debug 64-bit processes
■ Use a library that has only a 64-bit version
■ Access files from a Network Attached Storage (NAS) filer that uses file inode values greater

than 32-bit

2.1 Major Features of 64-Bit Development Environment

The following figure shows support for 32-bit and 64-bit applications in the Oracle Solaris 11
operating environment. The Oracle Solaris 11 OS supports 32-bit applications and libraries and

Chapter 2 • When to Use 64-Bit for Applications 15

2.1 Major Features of 64-Bit Development Environment

64-bit libraries and applications simultaneously on top of a 64-bit kernel that uses 64-bit device
drivers.

FIGURE 2 The Oracle Solaris 11 Operating Environment Architecture

The major features of the 64-bit environment include support for:

■ Large virtual address space
■ Large files
■ 64-bit arithmetic
■ Removal of certain system limitations
■ Dates beyond January 2038 with a 64-bit time_t

2.1.1 Large Virtual Address Space

In the 64-bit environment, a process can have up to 64-bit of virtual address space, that is, 18
exabytes. This virtual address space is approximately 4 billion times the current maximum of a
32-bit process.

16 Oracle Solaris 64-bit Developer's Guide • March 2019

2.2 Interoperability Issues

Note - On some systems, the full 64 bits of address space might not be available if used for
other purposes via VA masking or Application Data Integrity.

2.1.2 Large Files

If an application requires only support for large files, the application can remain 32-bit and use
the Large Files interface. However, if portability is not a primary concern, consider converting
the application to 64-bit. A 64-bit program takes full advantage of the 64-bit capabilities with a
coherent set of interfaces.

2.1.3 64-Bit Arithmetic

64-bit arithmetic has long been available in earlier 32-bit Solaris releases. However, the 64-
bit implementation uses the full 64-bit system registers for integer operations and parameter
passing. The 64-bit implementation allows an application to take full advantage of the
capabilities of the 64-bit CPU hardware.

2.1.4 System Limitations Removed

The 64-bit system interfaces are inherently more capable than some of their 32-bit equivalents.
Application programmers concerned about year 2038 problems, when 32-bit time_t runs out
of time, can use the 64-bit time_t. While 2038 seems a long way off, applications that do
computations for future events, such as mortgages, might require the expanded time capability.

2.2 Interoperability Issues

The interoperability issues that require an application to be made 64-bit safe or changed to
interoperate with both 32-bit and 64-bit programs can include:

■ Client and server transfers
■ Programs that manipulate persistent data
■ Shared memory

Chapter 2 • When to Use 64-Bit for Applications 17

https://swisdev.oracle.com/_files/What-Is-ADI.html

2.3 Estimating the Effort of 64-Bit Conversion

2.2.1 Kernel Memory Readers

Because the kernel is an LP64 object that uses 64-bit data structures internally, existing 32-
bit applications that use libkvm, /dev/mem, or /dev/kmem do not work properly and must be
converted to 64-bit applications.

2.2.2 /proc Restrictions

A 32-bit program that uses /proc is able to look at 32-bit processes, but cannot understand
all attributes of a 64-bit process. The existing interfaces and data structures that describe the
process are not large enough to contain the 64-bit values. Such programs must be recompiled as
64-bit programs in order to work with both 32-bit processes and 64-bit processes. The ability to
work with both 32-bit processes and 64-bit processes is most typically a problem for debuggers.

2.2.3 64-Bit Libraries

32-bit applications are linked to 32-bit libraries, and 64-bit applications are linked to 64-bit
libraries. With the exception of those libraries that have become obsolete, all of the system
libraries are provided in both 32-bit versions and 64-bit versions.

2.3 Estimating the Effort of 64-Bit Conversion

After you have decided to convert your application to a full 64-bit program, it is worth noting
that many applications require only a little work to accomplish that goal. The remaining
chapters discuss how to evaluate your application and the effort involved in conversion.

18 Oracle Solaris 64-bit Developer's Guide • March 2019

 3 ♦ ♦ ♦ C H A P T E R 3

Comparing 32-Bit Interfaces and 64-Bit
Interfaces

As discussed in “1.1 Getting Past the 4 Gigabyte Barrier” on page 11, to get the benefits of a
64-bit operating system you must convert the 32-bit applications to 64-bit applications. Some
applications might only need to be recompiled as 64-bit applications; others must be converted.

Note - Oracle Solaris 11 is a 64-bit only operating system.

3.1 Application Programming Interfaces

The 32-bit application programming interfaces (APIs) supported in the 64-bit operating
environment are same as the APIs supported in the 32-bit operating environment. Thus,
no changes are required for 32-bit applications between the 32-bit environment and 64-bit
environment. However, recompiling as a 64-bit application can require cleanup. See the rules
that are defined in Chapter 4, “Converting Applications” for guidelines on how to clean up code
for 64-bit applications.

In Oracle Solaris 11 the default 64-bit APIs are basically the UNIX 03 family of APIs. The
specification of the APIs is written in terms of derived types. The 64-bit versions are obtained
by expanding some of the derived types to 64-bit values. Correctly written applications that use
these APIs are portable between the 32-bit environment and the 64-bit environment. For more
information about supported standards in Oracle Solaris, see the standards(5) man page.

3.2 Application Binary Interfaces

Oracle Solaris supports the following ABI versions:

■ SPARC V8 ABI – Used for 32-bit SPARC systems

Chapter 3 • Comparing 32-Bit Interfaces and 64-Bit Interfaces 19

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5standards-5

3.3 Compatibility Between 32-Bit Applications and 64-Bit Applications

■ SPARC V9 ABI – Used for 64-bit SPARC systems
■ i386 ABI – Used for 32-bit x86 systems
■ amd64 ABI – Used for 64-bit x86 systems

For more information, see “6.1 SPARC V9 ABI Features” on page 51 and “6.2 AMD64
ABI Features” on page 55.

3.3 Compatibility Between 32-Bit Applications and 64-Bit
Applications

The following sections discuss the different levels of compatibility between 32-bit applications
and 64-bit applications.

3.3.1 Application Binaries

Existing 32-bit applications can run on either 32-bit or 64-bit operating environments. The only
exceptions are those applications that use libkvm, /dev/mem, /dev/kmem, or /proc. For more
information, see “1.1 Getting Past the 4 Gigabyte Barrier” on page 11.

3.3.2 Application Source Code

Source-level compatibility is maintained for 32-bit applications. For 64-bit applications, the
principal changes are with respect to the derived types used in the APIs. Applications that
use the derived types and interfaces correctly are source compatible for 32-bit, and make the
transition to 64-bit easy.

3.3.3 Device Drivers

Because 32-bit device drivers cannot be used with the 64-bit operating system, these drivers
must be recompiled as 64-bit objects. Moreover, the 64-bit drivers must support both 32-bit
applications and 64-bit applications. All drivers supplied with the 64-bit operating environment
support both 32-bit applications and 64-bit applications. However, there are no changes in the

20 Oracle Solaris 64-bit Developer's Guide • March 2019

3.4 Show That 64-Bit and 32-Bit Applications Run on Your Oracle Solaris 11 System

fundamental driver model and the interfaces supported by the DDI. The principal work is to
clean up the code to be correct in an LP64 environment. For more information, see Writing
Device Drivers for Oracle Solaris 11.3.

3.4 Show That 64-Bit and 32-Bit Applications Run on
Your Oracle Solaris 11 System

The Oracle Solaris 11 and later versions are 64-bit only OS. However, you can still run your 32-
bit applications on the 64-bit OS. You can use the isainfo command to know if your system
supports 32-bit and 64-bit applications.

The following is an example of the isainfo command executed on an UltraSPARC system
running the 64-bit OS:

$ isainfo -v

64-bit sparcv9 applications

32-bit sparc applications

64-bit sparcv9 applications

 crc32c cbcond pause mont mpmul sha512 sha256 sha1 md5 camellia kasumi

 des aes ima hpc vis3 fmaf asi_blk_init vis2 vis popc

32-bit sparc applications

 crc32c cbcond pause mont mpmul sha512 sha256 sha1 md5 camellia kasumi

 des aes ima hpc vis3 fmaf asi_blk_init vis2 vis popc v8plus div32 mul32

When the same command is run on an x86 system running the 64-bit OS:

$ isainfo -v

64-bit amd64 applications

32-bit i386 applications

64-bit amd64 applications

 ssse3 ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu

32-bit i386 applications

 ssse3 ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu

Note - Not all x86 systems are capable of running the 64-bit kernel. x86 systems which are not
capable of running the 64-bit kernel cannot run Oracle Solaris 11 and later versions.

One useful option of the isainfo command is the -n option, which prints the native instruction
set of the running platform:

$ isainfo -n

sparcv9

Chapter 3 • Comparing 32-Bit Interfaces and 64-Bit Interfaces 21

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=DVWDD
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=DVWDD

3.4 Show That 64-Bit and 32-Bit Applications Run on Your Oracle Solaris 11 System

The -b option prints the number of bits in the address space of the corresponding native
applications environment:

$ echo "Welcome to "`isainfo -b`"-bit Oracle Solaris"

Welcome to 64-bit Oracle Solaris

For more information, see the isainfo(1) man page.

Applications that must run on earlier versions of the Oracle Solaris can ascertain whether 64-bit
capabilities are available. Check the output of uname(1) or check for the existence of /usr/bin/
isainfo.

Libraries that depend on instruction set extensions should use the hardware capability facility of
the dynamic linker. Use the isainfo command to ascertain the instruction set extensions on the
current platform. For more information, see “Generating the Output File” in Oracle Solaris 11.3
Linkers and Libraries Guide.

$ isainfo -x

amd64: sse2 sse fxsr amd_3dnowx amd_3dnow amd_mmx mmx cmov amd_sysc cx8 tsc fpu

i386: sse2 sse fxsr amd_3dnowx amd_3dnow amd_mmx mmx cmov amd_sysc cx8 tsc fpu

22 Oracle Solaris 64-bit Developer's Guide • March 2019

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1isainfo-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1uname-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSLLGchapter2-13
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSLLGchapter2-13

 4 ♦ ♦ ♦ C H A P T E R 4

Converting Applications

This chapter provides the information that you need to convert your 32-bit applications to 64-bit
applications.
When you write or modify code for both the 32-bit and 64-bit compilation environments, you
face two basic issues:

■ Data type consistency between the different data-type models
■ Interaction between the applications using different data-type models

Maintaining a single code-source with as few #ifdefs as possible is usually better than
maintaining multiple source trees. Therefore, this chapter provides guidelines for writing code
that works correctly in both 32-bit and 64-bit compilation environments. In some cases, the
conversion of current code requires only a recompilation and relinking with the 64-bit libraries.
However, for those cases where code changes are required, this chapter discusses the tools and
strategies that make conversion easier.

4.1 Overview of the Data Model Differences

The biggest difference between the 32-bit and the 64-bit compilation environments is the
change in data-type models.

The C data-type model for 64-bit applications is the ILP32 data model, so named because int,
long, and pointers are 32-bit data types. The LP64 data model, so named because long and
pointers grow to 64-bit, is the creation of a consortium of companies across the industry. The
remaining C types, int, long long, short, and char, are the same in both data-type models.

The following sample program, foo.c, directly illustrates the effect of the LP64 data model
in contrast to the ILP32 data models. The same program can be compiled as either a 32-bit
program or a 64-bit program.

#include <stdio.h>

int

Chapter 4 • Converting Applications 23

4.1 Overview of the Data Model Differences

main(int argc, char *argv[])

{

 (void) printf("char is \t\t%lu bytes\n", sizeof (char));

 (void) printf("short is \t%lu bytes\n", sizeof (short));

 (void) printf("int is \t\t%lu bytes\n", sizeof (int));

 (void) printf("long is \t\t%lu bytes\n", sizeof (long));

 (void) printf("long long is \t\t%lu bytes\n", sizeof (long long));

 (void) printf("pointer is \t%lu bytes\n", sizeof (void *));

 return (0);

}

The result of 32-bit compilation is:

$ cc -m32 -O -o foo32 foo.c

$ foo32

char is 1 bytes

short is 2 bytes

int is 4 bytes

long is 4 bytes

long long is 8 bytes

pointer is 4 bytes

The result of 64-bit compilation is:

$ cc -m64 -O -o foo64 foo.c

$ foo64

char is 1 bytes

short is 2 bytes

int is 4 bytes

long is 8 bytes

long long is 8 bytes

pointer is 8 bytes

Note - The default compilation mode depends on the compiler being used. To determine
whether your compiler produces 64-bit or 32-bit code by default, refer to the compiler
documentation.

The standard relationship between C integral types still holds true.

sizeof (char) <= sizeof (short) <= sizeof (int) <= sizeof (long) <= sizeof (long long)

Table 1, “Data Type Sizes in Bits,” on page 24 lists the basic C types and their
corresponding sizes in bits in the data type models for both LP32 and LP64.

TABLE 1 Data Type Sizes in Bits

C data type ILP32 LP64

char 8 8

24 Oracle Solaris 64-bit Developer's Guide • March 2019

4.2 Implementing Single Source Code

C data type ILP32 LP64

short 16 16

int 32 32

long 32 64

long long 64 64

pointer 32 64

enum 32 32

float 32 32

double 64 64

long double 128 128

Current 32-bit applications typically assume that int, long, and pointers are the same size.
However, the size of long and pointers changes in the LP64 data model, which can cause many
ILP32 to LP64 conversion problems.

In addition, declarations and casts are very important. How expressions are evaluated can be
affected when the types change. The effects of standard C conversion rules are influenced
by the change in data-type sizes. To adequately show what you intend, explicitly declare the
types of constants. You can also use casts in expressions to make certain that the expression is
evaluated the way you intend. This practice is particularly important with sign extension, where
explicit casting is essential for demonstrating intent.

4.2 Implementing Single Source Code

The sections that follow describe some of the resources available to application developers that
help you write single-source code that supports both 32-bit and 64-bit compilation.

The system include files sys/types.h and inttypes.h contain constants, macros, and derived
types that are helpful in making applications 32-bit and 64-bit safe. While a detailed discussion
of these is beyond the scope of this document, some are discussed in the sections that follow,
and in Appendix A, “Changes in Derived Types”.

4.2.1 Feature Test Macros

An application source file that includes sys/types.h makes the definitions of the programming
model symbols, _LP64 and _ILP32, available when you include sys/isa_defs.h.

Chapter 4 • Converting Applications 25

4.2 Implementing Single Source Code

For information about preprocessor symbols (_LP64 and _ILP32) and macros (_LITTLE_ENDIAN
and _BIG_ENDIAN), see the types(3HEAD) man page.

4.2.2 Derived Types

Using the system derived types to make code safe for both the 32-bit and the 64-bit compilation
environment is good programming practice. When you use derived data-types, only the system
derived types must change for data model changes, or porting.

The system include files sys/types.h and inttypes.h contain constants, macros, and derived
types that are helpful in making applications 32-bit and 64-bit safe.

4.2.3 sys/types.h Header File

Include sys/types.h in an application source file to gain access to the definition of _LP64
and _ILP32. This header also contains a number of basic derived types that should be used
whenever appropriate. In particular, the following are of special interest:

■ clock_t represents the system times in clock ticks.
■ dev_t is used for device numbers.
■ off_t is used for file sizes and offsets.
■ ptrdiff_t is the signed integral type for the result of subtracting two pointers.
■ size_t reflects the size, in bytes, of objects in memory.
■ ssize_t is used by functions that return a count of bytes or an error indication.
■ time_t counts time in seconds.

All of these types remain 32-bit quantities in the ILP32 compilation environment and grow to
64-bit quantities in the LP64 compilation environment.

4.2.4 inttypes.h Header File

The inttypes.h include file was added to the Solaris 2.6 release to provide constants, macros,
and derived types that help programmers make their code compatible with explicitly sized data
items, independent of the compilation environment. It contains mechanisms for manipulating 8-

26 Oracle Solaris 64-bit Developer's Guide • March 2019

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Ftypes-3head

4.2 Implementing Single Source Code

bit, 16-bit, 32-bit, and 64-bit objects. The file contains the type definitions specified in the ISO
C99 standard (ISO/IEC 9899:1999) for the C programming language.

The basic features provided by inttypes.h are:

■ Fixed-width integer types.
■ Helpful types such as uintptr_t
■ Constant macros
■ Limits
■ Format string macros

The following sections provide more information about the basic features of <inttypes.h>.

4.2.4.1 Fixed-Width Integer Types

The fixed-width integer types that inttypes.h provides include signed integer types such
as int8_t, int16_t, int32_t, and int64_t, and unsigned integer types such as uint8_t,
uint16_t, uint32_t, and uint64_t.

Derived types, defined as the smallest integer types that can hold the specified number of bits,
include int_least8_t,…, int_least64_t, uint_least8_t,…, uint_least64_t.

Using an int or unsigned int for such operations as loop counters and file descriptors is
safe. Using a long for an array index is also safe. However, do not use these fixed-width types
indiscriminately. Use fixed-width types for explicit binary representations of the following
items:

■ On-disk data
■ Over the data wire
■ Hardware registers
■ Binary interface specifications
■ Binary data structures

4.2.4.2 Helpful Types Such as unintptr_t

The inttypes.h file includes signed and unsigned integer types large enough to hold a pointer.
These are given as intptr_t and uintptr_t. In addition, inttypes.h provides intmax_t and
uintmax_t, which are the longest (in bits) signed and unsigned integer types available.

Chapter 4 • Converting Applications 27

4.2 Implementing Single Source Code

Use the uintptr_t type as the integral type for pointers instead of a fundamental type such as
unsigned long. Even though an unsigned long is the same size as a pointer in both the ILP32
and LP64 data models, using uintptr_t means that only the definition of uintptr_t is affected
if the data model changes. This method makes your code portable to many other systems and is
also a clearer way to express your intentions in C.

The intptr_t and uintptr_t types are extremely useful for casting pointers when you want
to perform address arithmetic. Use intptr_t and uintptr_t types instead of long or unsigned
long for this purpose.

Note - Use of uintptr_t for casting is usually safer than intptr_t, especially for comparisons.

4.2.4.3 Constant Macros

Macros are provided to specify the size and sign of a given constant. The macros are INT8_C
(c), ..., INT64_C(c), UINT8_C(c),..., UINT64_C(c). Basically, these macros place an l, ul, ll,
or ull at the end of the constant, if necessary. For example, INT64_C(2) appends ll to the
constant 2 for ILP32 and an l for LP64.

Macros for making a constant the biggest type are INTMAX_C(c) and UINTMAX_C(c). These
macros can be very useful for specifying the type of constants described in “4.4 Guidelines for
Converting to LP64 Data Type Model” on page 31.

4.2.4.4 Limits in inttypes.h

The limits defined by inttypes.h are constants specifying the minimum and maximum values
of various integer types. This includes minimum and maximum values of each of the fixed-
width types, such as INT8_MIN,..., INT64_MIN, INT8_MAX,..., INT64_MAX, and their unsigned
counterparts.

The minimum and maximum for each of the least-sized types are given, too. These include
INT_LEAST8_MIN,..., INT_LEAST64_MIN, INT_LEAST8_MAX,..., INT_LEAST64_MAX, and their
unsigned counterparts.

Finally, the minimum and maximum value of the largest supported integer types is defined.
These include INTMAX_MIN and INTMAX_MAX and their corresponding unsigned versions.

For more information, see the inttypes.h(3HEAD) man page.

28 Oracle Solaris 64-bit Developer's Guide • March 2019

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Finttypes.h-3head

4.3 Finding Errors With lint

4.2.4.5 Format String Macros

The inttypes.h file includes the macros that specify the printf() and scanf() format
specifiers. Essentially, these macros prepend the format specifier with an l or ll to identify the
argument as a long or long long, given that the number of bits in the argument is built into the
name of the macro.

Some macros for printf(3C) print both the smallest and largest integer types in decimal, octal,
unsigned, and hexadecimal formats, as shown in the following example.

int64_t i;

printf("i =%" PRIx64 "\n", i);

Similarly, macros for scanf(3C) read both the smallest and largest integer types in decimal,
octal, unsigned, and hexadecimal formats.

uint64_t u;

scanf("%" SCNu64 "\n", &u);

Do not use these macros indiscriminately. They are best used in conjunction with the fixed-
width types. For more information, see “4.2.4.1 Fixed-Width Integer Types” on page 27.

4.3 Finding Errors With lint

The lint program from Oracle Developer Studio allows you to detect issues in the code such as
non-portable codes, unreachable statements. The -errchk option detects potential 64-bit porting
problems. You can also specify cc -v, which directs the compiler to perform additional and
stricter semantic checks. The -v option also enables certain lint-like checks on the named files.

When you enhance code to be 64-bit safe, use the header files present in the Oracle Solaris
operating system because these files have the correct definition of the derived types and data
structures for the 64-bit compilation environment.

Use lint to check code that is written for both the 32-bit and the 64-bit compilation
environment. Specify the -errchk=longptr64 option to generate LP64 warnings. Also use the
-errchk=longptr64 flag, which checks portability to an environment for which the size of long
integers and pointers is 64-bit and the size of plain integers is 32-bit. The -errchk=longptr64
flag checks assignments of pointer expressions and long integer expressions to plain integers,
even when explicit casts are used.

Chapter 4 • Converting Applications 29

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aprintf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Ascanf-3c

4.3 Finding Errors With lint

Use the -errchk=longptr64,signext,sizematch option to find code where the normal
ISO C value-preserving rules allow the extension of the sign of a signed-integral value in an
expression of unsigned-integral type.

Use the -m64 option of lint when you want to check code that you intend to run in the Oracle
Solaris 64-bit compilation environment only.

For a description of lint options, see the Oracle Developer Studio 12.6: C User's Guide.

lint warnings show the line number of the offending code, a message that describes the
problem, and an indication of whether a pointer is involved. The warning message also
indicates the sizes of the involved data types. When you know a pointer is involved and you
know the size of the data types, you can find specific 64-bit problems and avoid the preexisting
problems between 32-bit and smaller types.

Be aware, however, that even though lint gives warnings about potential 64-bit problems,
it cannot detect all problems. Also, in many cases, code that is intentional and correct for the
application generates a warning.

You can suppress the warning for a given line of code by placing a comment of the form "NOTE
(LINTED("<optional message">))" on the previous line. This comment directive is useful
when you want lint to ignore certain lines of code such as casts and assignments. When you
use NOTE, include <note.h>. For more information, see the lint-1 man page.

Caution - Exercise extreme care when you use the "NOTE(LINTED("<optional message">))"
comment because it can mask real problems.

The sample program and lint output following illustrate most of the lint warnings that can
arise in code that is not 64-bit clean.

 1 #include <inttypes.h>

 2 #include <stdio.h>

 3 #include <stdlib.h>

 4

 5 static char chararray[] = "abcdefghijklmnopqrstuvwxyz";

 6

 7 static char *myfunc(int i)

 8 {

 9 return(& chararray[i]);

 10 }

 11

 12 void main(void)

 13 {

 14 int intx;

 15 long longx;

30 Oracle Solaris 64-bit Developer's Guide • March 2019

https://docs.oracle.com/cd/E77782_01/html/E77788/index.html
https://docs.oracle.com/cd/E77782_01/html/E77803/lint-1.html

4.4 Guidelines for Converting to LP64 Data Type Model

 16 char *ptrx;

 17

 18 (void) scanf("%d", &longx);

 19 intx = longx;

 20 ptrx = myfunc(longx);

 21 (void) printf("%d\n", longx);

 22 intx = ptrx;

 23 ptrx = intx;

 24 intx = (int)longx;

 25 ptrx = (char *)intx;

 26 intx = 2147483648L;

 27 intx = (int) 2147483648L;

 28 ptrx = myfunc(2147483648L);

 29 }

(19) warning: assignment of 64-bit integer to 32-bit integer

(20) warning: passing 64-bit integer arg, expecting 32-bit integer: myfunc(arg 1)

(22) warning: improper pointer/integer combination: op "="

(22) warning: conversion of pointer loses bits

(23) warning: improper pointer/integer combination: op "="

(23) warning: cast to pointer from 32-bit integer

(24) warning: cast from 64-bit integer to 32-bit integer

(25) warning: cast to pointer from 32-bit integer

(26) warning: 64-bit constant truncated to 32 bits by assignment

(27) warning: cast from 64-bit integer constant expression to 32-bit integer

(28) warning: passing 64-bit integer constant arg, expecting 32-bit integer: myfunc(arg

 1)

function argument (number) type inconsistent with format

 scanf (arg 2) long * :: (format) int * t.c(18)

 printf (arg 2) long :: (format) int t.c(21)

(The lint warning that arises from line 27 of this code sample is issued when the constant
expression dpes not fit into the type into which it is being cast.)

Warnings for a given source line can be suppressed by placing a /*LINTED*/ comment on
the previous line. This is useful where you have really intended the code to be a specific way.
However, the Oracle Developer Studio NOTE mechanism allows more fine-grained control.
An example might be in the case of casts and assignments. For more information, see lint
Directives.

4.4 Guidelines for Converting to LP64 Data Type Model

When using lint, remember that not all problems result in lint warnings, nor do all lint
warnings indicate that a change is required. Examine each possibility for intent. The examples

Chapter 4 • Converting Applications 31

https://docs.oracle.com/cd/E37069_01/html/E37074/bjaih.html
https://docs.oracle.com/cd/E37069_01/html/E37074/bjaih.html

4.4 Guidelines for Converting to LP64 Data Type Model

that follow illustrate some of the more common problems you are likely to encounter when
converting code. Where appropriate, the corresponding lint warnings are shown.

4.4.1 Do Not Assume int and Pointers Are the Same
Size

Because integers and pointers are the same size in the ILP32 compilation environment, some
code relies on this assumption. Pointers are often cast to int or unsigned int for address
arithmetic. Instead, cast your pointers to long because long and pointers are the same size
in both ILP32 and LP64 data-type models. Rather than explicitly using unsigned long, use
uintptr_t instead. It expresses your intent more closely and makes the code more portable,
insulating it against future changes. Consider the following example:

char *p;

p = (char *) ((int)p & PAGEOFFSET);

%

warning: conversion of pointer loses bits

The modified version is:

char *p;

p = (char *) ((uintptr_t)p & PAGEOFFSET);

4.4.2 Do Not Assume int and long Are the Same Size

Because int and long were never really distinguished in ILP32, a lot of existing code uses
them indiscriminately while implicitly or explicitly assuming that they are interchangeable. Any
code that makes this assumption must be changed to work for both ILP32 and LP64. While an
int and a long are both 32-bit in the ILP32 data model, in the LP64 data model, a long is 64-
bit. For example:

int waiting;

long w_io;

long w_swap;

...

waiting = w_io + w_swap;

%

warning: assignment of 64-bit integer to 32-bit integer

32 Oracle Solaris 64-bit Developer's Guide • March 2019

4.4 Guidelines for Converting to LP64 Data Type Model

Furthermore, large arrays of long or unsigned long can cause serious performance degradation
in the LP64 data-type model as compared to arrays of int or unsigned int. Large arrays of
long or unsigned long can also cause significantly more cache misses and consume more
memory.

Therefore, if int works just as well as long for the application purposes, use int rather than
long.

This argument also applies to using arrays of int instead of arrays of pointers. Some C
applications suffer from serious performance degradation after conversion to the LP64 data-type
model because they rely on many large arrays of pointers.

For more information about the capabilities of the C compilers and lint, see Oracle Developer
Studio 12.6: C User's Guide.

4.4.3 Sign Extension

Unintended sign extension is a common problem when converting to 64-bit. It is hard to
detect this problem before it occurs. However, lint command warns about sign-extension
with -errchk=signext. Furthermore, the type conversion and promotion rules are somewhat
obscure. To fix unintended sign extension problems, you must use explicit casting to achieve
the intended results.

To understand why sign extension occurs, it helps to understand the conversion rules for ISO C.
The conversion rules that seem to cause the most sign extension problems between the 32-bit
and the 64-bit compilation environment come into effect during the following operations:

1. Integral promotion

You can use a char, short, enumerated type, or bit-field, whether signed or unsigned, in
any expression that calls for an integer.
If an integer can hold all possible values of the original type, the value is converted to an
integer; otherwise, the value is converted to an unsigned integer.

2. Conversion between signed and unsigned integers
When an integer with a negative sign is promoted to an unsigned integer of the same or
larger type, it is first promoted to the signed equivalent of the larger type and then converted
to the unsigned value.

For more information about the conversion rules, refer to the ISO C standard. Also included in
this standard are useful rules for ordinary arithmetic conversions and integer constants.

Chapter 4 • Converting Applications 33

https://docs.oracle.com/cd/E77782_01/html/E77788/index.html
https://docs.oracle.com/cd/E77782_01/html/E77788/index.html

4.4 Guidelines for Converting to LP64 Data Type Model

When the following example is compiled as a 64-bit program, the addr variable becomes sign-
extended, even though both addr and a.base are unsigned types.

EXAMPLE 1 test.c Example

$ cat test.c

struct foo {

unsigned int base:19, rehash:13;

};

main(int argc, char *argv[])

{

 struct foo a;

 unsigned long addr;

 a.base = 0x40000;

 addr = a.base << 13; /* Sign extension here! */

 printf("addr 0x%lx\n", addr);

 addr = (unsigned int)(a.base << 13); /* No sign extension here! */

 printf("addr 0x%lx\n", addr);

}

This sign extension occurs because the conversion rules are applied as follows:

■ a.base is converted from an unsigned int to an int because of the integral promotion rule.
Thus, the expression a.base << 13 is of type int, but no sign extension has yet occurred.

■ The expression a.base << 13 is of type int, but it is converted to a long and then to an
unsigned long before being assigned to addr, because of signed and unsigned integer
promotion rules. The sign extension occurs when it is converted from an int to a long.

$ cc -o test64 -m64 test.c

$./test64

addr 0xffffffff80000000

addr 0x80000000

When this same example is compiled as a 32-bit program it does not display any sign extension:

$ cc -o test -m32 test.c

$ test

addr 0x80000000

addr 0x80000000

For more information about the conversion rules, refer to the ISO C standard. Also included in
this standard are useful rules for ordinary arithmetic conversions and integer constants.

34 Oracle Solaris 64-bit Developer's Guide • March 2019

4.4 Guidelines for Converting to LP64 Data Type Model

4.4.4 Use Pointer Arithmetic Instead of Integers

Using pointer arithmetic usually works better than integers because pointer arithmetic is
independent of the data model, whereas integers might not be. Also, you can usually simplify
your code by using pointer arithmetic. Consider the following example:

int *end;

int *p;

p = malloc(4 * NUM_ELEMENTS);

end = (int *)((unsigned int)p + 4 * NUM_ELEMENTS);

%

warning: conversion of pointer loses bits

The modified version is:

int *end;

int *p;

p = malloc(sizeof (*p) * NUM_ELEMENTS);

end = p + NUM_ELEMENTS;

4.4.5 Internal Data Structures

Check the internal data structures in an application for holes. Use extra padding between
fields in the structure to meet alignment requirements. This extra padding is allocated when
long or pointer fields grow to 64-bit for the LP64 data-type model. In the 64-bit compilation
environment on SPARC platforms, all types of structures are aligned to the size of the largest
member within them. When you repack a structure, follow the simple rule of moving the long
and pointer fields to the beginning of the structure. However, this rule for repacking might
affect performance depending on which members end up on the same cache line. Consider the
following structure definition:

struct bar {

 int i;

 long j;

 int k;

 char *p;

}; /* sizeof (struct bar) = 32 */

The following example shows the same structure with the long and pointer data types defined at
the beginning of the structure:

struct bar {

Chapter 4 • Converting Applications 35

4.4 Guidelines for Converting to LP64 Data Type Model

 char *p;

 long j;

 int i;

 int k;

}; /* sizeof (struct bar) = 24 */

Note - The alignment of fundamental types are different in the i386 and amd64 ABIs. See “6.3
Alignment Issues” on page 57.

4.4.6 Check Unions

Be sure to check unions because their fields might have changed sizes between ILP32 and
LP64. For example:

typedef union {

 double _d;

 long _l[2];

} llx_t;

The modified version is:

typedef union {

 double _d;

 int _l[2];

} llx_t;

4.4.7 Specify Constant Types

A lack of precision can cause the loss of data in some constant expressions. Be explicit when
you specify the data types in your constant expression. Specify the type of each integer constant
by adding some combination of {u,U,l,L}. You can also use casts to specify the type of a
constant expression. Consider the following example:

int i = 32;

long j = 1 << i; /* j will get 0 because RHS is integer expression */

The modified version is:

int i = 32;

long j = 1L << i;

36 Oracle Solaris 64-bit Developer's Guide • March 2019

4.4 Guidelines for Converting to LP64 Data Type Model

4.4.8 Beware of Implicit Declaration

If you use --std=c90 or --xc99=none, the C compiler assumes that any function or variable
that is used in a module and is not defined or declared externally is an integer. Any long and
pointer data used in this way is truncated by the compiler's implicit integer declaration. Place
the appropriate extern declaration for the function or variable in a header and not in the C
module. Include this header in any C module that uses the function or variable. Even if the
function or variable is defined by the system headers, you must include the proper header in the
code. Consider the following example:

int

main(int argc, char *argv[])

{

 char *name = getlogin()

 printf("login = %s\n", name);

 return (0);

}

%

warning: improper pointer/integer combination: op "="

warning: cast to pointer from 32-bit integer

implicitly declared to return int

getlogin printf

The proper headers are now in the following modified version:

#include <unistd.h>

#include <stdio.h>

int

main(int argc, char *argv[])

{

 char *name = getlogin();

 (void) printf("login = %s\n", name);

 return (0);

}

4.4.9 sizeof unsigned long in LP64

In the LP64 data-type model, sizeof() has the effective type of an unsigned long.
Occasionally, sizeof() is passed to a function expecting an argument of type int, or assigned
or cast to an integer. In some cases, this truncation causes loss of data.

Chapter 4 • Converting Applications 37

4.4 Guidelines for Converting to LP64 Data Type Model

long a[50];

unsigned char size = sizeof (a);

%

warning: 64-bit constant truncated to 8 bits by assignment

warning: initializer does not fit or is out of range: 0x190

4.4.10 Use Casts to Show Your Intentions

Relational expressions can be tricky because of conversion rules. You should be very explicit
about how you want the expression to be evaluated by adding casts wherever necessary.

4.4.11 Check Format String Conversion Operation

The format strings for printf(3C), sprintf(3C), scanf(3C), and sscanf(3C) might need to
be changed for long or pointer arguments. For pointer arguments, the conversion operation
given in the format string should be %p to work in both the 32-bit and 64-bit environments. For
example:

char *buf;

struct dev_info *devi;

...

(void) sprintf(buf, "di%x", (void *)devi);

%

warning: function argument (number) type inconsistent with format

sprintf (arg 3) void *: (format) int

The modified version is:

char *buf;

struct dev_info *devi;

...

(void) sprintf(buf, "di%p", (void *)devi);

Also check to be sure that the storage pointed to by buf is large enough to contain 16 digits. For
long arguments, the long size specification, l, should be prepended to the conversion operation
character in the format string. For example:

 size_t nbytes;

38 Oracle Solaris 64-bit Developer's Guide • March 2019

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aprintf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Asprintf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Ascanf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Asscanf-3c

4.4 Guidelines for Converting to LP64 Data Type Model

 ulong_t align, addr, raddr, alloc;

 printf("kalloca:%d%%%d from heap got %x.%x returns %x\n",

 nbytes, align, (int)raddr, (int)(raddr + alloc), (int)addr);

produces the warnings:

warning: cast of 64-bit integer to 32-bit integer

warning: cast of 64-bit integer to 32-bit integer

warning: cast of 64-bit integer to 32-bit integer

The following code will produce clean results:

 size_t nbytes;

 ulong_t align, addr, raddr, alloc;

 printf("kalloca:%lu%%%lu from heap got %lx.%lx returns %lx\n",

 nbytes, align, raddr, raddr + alloc, addr);

Note - The PRI* macros available in inttypes.h can help make format strings portable
between 32-bit and 64-bit environment.

4.4.12 Compiling LP64 Programs

The following guidelines can help you increase the performance when converting to 64-bit
applications:

■ When compiling applications in 64-bit, it supports largefile by default. Therefore, the
following CPPFLAGS are no longer required when compiling:
■ CPPFLAGS += -D_FILE_OFFSET_BITS=64

■ CPPFLAGS += -D_LARGEFILE64_SOURCE

■ CPPFLAGS += -D_LARGEFILE_SOURCE

■ For single-threaded code, use putc_unlocked() function instead of putc() function and use
getc_unlocked() function instead of getc() function. You can also use buffers.

■ When converting the code to 64-bit, replace the explicit 64-bit interfaces and data types
with just the generic interfaces and data types. For example, no need to use fopen64() or
off64_t().

■ When converting code to 64-bit, ensure that all the dlopen() calls in the code are calling a
64-bit library.

■ When compiling an LP64 program pay attention to variables that are declared long. There
might be problems in the code in assuming an int and long are the same. For example,
when assigning a value of a long variable to an int variable.

Chapter 4 • Converting Applications 39

4.5 Other Considerations When Converting to 64-bit

■ In code that uses the select() interfaces, especially the fd masks, check to see how big a
set of fds you actually want to handle. The default value for FD_SETSIZE is 1024 in 32-bit
and 65536 in 64-bit. If they are careful, programs can #define FD_SETSIZE to another value
before including any system headers to choose a different size. If you do not override it, all
fd_mask variables will grow to be 8k (often on the stack), and operations such as FD_ZERO,
copying fd_masks, or searching for the set bits in a mask returned by select() function
will have to operate on 8k at a time.

■ Without the 256 fd limit of the 32-bit stdio, 64-bit programs will run with higher fd limits,
so it becomes even more important to use closefrom() or fdwalk() instead of for (i =
0; i < max_fd ; i++) loops. For more information, see closefrom(3C) and fdwalk(3C)
man pages.

4.5 Other Considerations When Converting to 64-bit

The remaining guidelines highlight common problems encountered when converting an
application to a full 64-bit program.

4.5.1 Check for Derived Types That Have Grown in Size

A number of derived types now represent 64-bit quantities in the 64-bit application compilation
environment. This change does not affect 32-bit applications; however, any 64-bit applications
that consume or export data described by these types must be re-evaluated. For example,
in applications that directly manipulate the utmp or utmpx files, do not attempt to directly
access these files. Instead, for correct operation in the 64-bit application environment, use
the getutxent() and related family of functions. For more information, see getutxent(3C),
utmpx(4), and utmp(4) man pages.

A list of changed derived types is included in Appendix A, “Changes in Derived Types”.

4.5.2 Check for Side Effects of Changes

Be aware that a type change in one area can result in an unexpected 64-bit conversion in
another area. For example, check all the callers of a function that previously returned an int
and now returns an ssize_t.

40 Oracle Solaris 64-bit Developer's Guide • March 2019

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aclosefrom-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Afdwalk-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Agetutxent-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN4utmpx-4
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN4utmp-4

4.5 Other Considerations When Converting to 64-bit

4.5.3 Check Whether Literal Uses of long Still Make
Sense

A variable that is defined as a long is 32-bit in the ILP32 data-type model and 64-bit in the
LP64 data-type model. Where possible, avoid problems by redefining the variable and use a
more portable derived type.

Related to this issue, a number of derived types have changed under the LP64 data-type
model. For example, pid_t remains a long in the 32-bit environment, but under the 64-bit
environment, a pid_t is an int. For a list of derived types modified for the LP64 compilation
environment, see Appendix A, “Changes in Derived Types”.

4.5.4 Check Use #ifdef for Explicit 32-Bit Versus 64-Bit
Prototypes

In some cases, specific 32-bit and 64-bit versions of an interface are unavoidable. You can
distinguish these versions by specifying the _LP64 or _ILP32 feature test macros in the headers.
Similarly, code that runs in 32-bit and 64-bit environments needs to use the appropriate
#ifdefs, depending on the compilation mode.

4.5.5 Calling Convention Changes

When you pass structures by value and compile the code for a 64-bit environment, the structure
is passed in registers rather than as a pointer to a copy if it is small enough. This process can
cause problems if you try to pass structures between C code and handwritten assembly code.

Floating-point parameters work in a similar fashion: some floating-point values passed by value
are passed in floating-point registers.

4.5.6 Algorithmic Changes

After code has been made 64-bit safe, review it again to verify that the algorithms and data
structures still make sense. The data types are larger, so data structures might use more space.

Chapter 4 • Converting Applications 41

4.6 Checklist for Converting to 64-bit

The performance of your code might change as well. Given these concerns, you might need to
adapt your code appropriately.

4.6 Checklist for Converting to 64-bit

The following checklist might be helpful to convert your code to 64-bit:

■ Read this entire document with an emphasis on the “4.4 Guidelines for Converting to LP64
Data Type Model” on page 31.

■ Review all data structures and interfaces to verify that these are still valid in the 64-bit
environment.

■ Include <sys/types.h> in your code to pull in the _ILP32 or _LP64 definitions as well as
many basic derived types.

■ Move function prototypes and external declarations with non-local scope to headers and
include these headers in your code.

■ Run lint using -errchk=longptr64 and review each warning individually, being aware
that not all warnings require a change to the code. Depending on the resulting changes, you
might also want to run lint again, both in 32-bit and 64-bit modes.

■ Compile code as both 32-bit and 64-bit, unless the application is being provided only as 64-
bit.

■ Test the application by executing the 32-bit and the 64-bit versions on the 64-bit operating
system. The output of a 32-bit binary should be the same as the output of the 64-bit binary.

4.7 Sample 64-Bit From 32-Bit Program

The following sample program, foo.c, directly illustrates the effect of the LP64 data model
in contrast to the ILP32 data models. The same program can be compiled as either a 32-bit
program or a 64-bit program.

#include <stdio.h>

int

main(int argc, char *argv[])

{

 (void) printf("char is \t\t%lu bytes\n", sizeof (char));

 (void) printf("short is \t%lu bytes\n", sizeof (short));

 (void) printf("int is \t\t%lu bytes\n", sizeof (int));

 (void) printf("long is \t\t%lu bytes\n", sizeof (long));

 (void) printf("long long is \t\t%lu bytes\n", sizeof (long long));

42 Oracle Solaris 64-bit Developer's Guide • March 2019

4.7 Sample 64-Bit From 32-Bit Program

 (void) printf("pointer is \t%lu bytes\n", sizeof (void *));

 return (0);

}

The result of 32-bit compilation is:

$ cc -m32 -O -o foo32 foo.c

$ foo32

char is 1 bytes

short is 2 bytes

int is 4 bytes

long is 4 bytes

long long is 8 bytes

pointer is 4 bytes

The result of 64-bit compilation is:

$ cc -m64 -O -o foo64 foo.c

$ foo64

char is 1 bytes

short is 2 bytes

int is 4 bytes

long is 8 bytes

long long is 8 bytes

pointer is 8 bytes

Note - The default compilation mode depends on the compiler being used. To determine
whether your compiler produces 64-bit or 32-bit code by default, refer to the compiler
documentation.

Chapter 4 • Converting Applications 43

44 Oracle Solaris 64-bit Developer's Guide • March 2019

 5 ♦ ♦ ♦ C H A P T E R 5

64-Bit Development Environment

This chapter explains the 64-bit application development environment. It also describes the
build environment, including header and library issues, compiler options, linking, debugging
tools and provides guidance on packaging issues.

If you have come this far, the assumption is that you are using a 64-bit version. To confirm this,
you can use the isainfo(1) command that was explained in Chapter 3, “Comparing 32-Bit
Interfaces and 64-Bit Interfaces”.

5.1 64-Bit Build Environment

The build environment includes the system headers, compilation system, and libraries. These
are explained in the following sections.

5.1.1 64-Bit Header Files

A single set of system headers supports both 32-bit and 64-bit compilation environments. You
need not specify a different include path for the 64-bit compilation environment. Starting with
Oracle Solaris 11, the <system/header> is available as an IPS package that contains core C and
C++ header files.

To understand the changes made to the headers to support the 64-bit environment, you should
understand the various definitions in the <sys/isa_defs.h> header file. This header contains a
group of well known #defines and sets these for each instruction set architecture. Inclusion of
<sys/types.h> automatically includes <sys/isa_defs.h>.

The symbols in the following table are defined by the compilation environment:

Chapter 5 • 64-Bit Development Environment 45

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1isainfo-1

5.1 64-Bit Build Environment

Symbol Description

__sparc Indicates any of the SPARC family of processor architectures. This includes SPARC V7, SPARC
V8, and SPARC V9 architectures. The symbol sparc is a deprecated historical synonym for
__sparc.

__sparcv8 Indicates the 32-bit SPARC V8 architecture as defined by Version 8 of the SPARC Architecture
Manual.

__sparcv9 Indicates the 64-bit SPARC V9 architecture as defined by Version 9 of the SPARC Architecture
Manual.

__x86 Indicates any of the x86 family of processor architectures.

__i386 Indicates the 32-bit i386 architecture.

__amd64 Indicates the 64-bit amd64 architecture.

Note - __i386 and __amd64 are mutually exclusive. The __sparcv8 and __sparcv9 symbols are
mutually exclusive and are only relevant when the __sparc symbol is defined.

The following symbols are derived from a combination of the symbols defined above:

_ILP32 The data model where sizes of int, long, and pointer are all 32-bit.

_LP64 The data model where sizes of long and pointer are all 64-bit.

Note - The _ILP32 and _LP64 symbols are mutually exclusive.

If writing completely portable code is not possible, and specific 32-bit versus 64-bit code is
required, make the code conditional by using _ILP32 or _LP64. This makes the compilation
environment system independent and maximizes the portability of the application to all 64-bit
platforms.

5.1.2 32-Bit and 64-Bit Libraries

The Oracle Solaris operating environment provides shared libraries for both 32-bit and 64-bit
compilation environments.

32-bit applications must link with 32-bit libraries, and 64-bit applications must link with 64-bit
libraries. It is not possible to create or execute a 32-bit application by using 64-bit libraries. The
32-bit libraries continue to be located in /usr/lib and /lib. The 64-bit libraries are located in
a subdirectory of the appropriate lib directory. Because the placement of the 32-bit libraries
has not changed, 32-bit applications built on prior releases are binary compatible. Portable
Makefiles should refer to any library directories by using the 64 symbolic links. The /usr/

46 Oracle Solaris 64-bit Developer's Guide • March 2019

5.2 Linking Object Files

lib/64 is symbolic link to /usr/lib/sparcv9 on SPARC systems and /usr/lib/amd64 on x86
systems.

In order to build 64-bit applications, you need 64-bit libraries. The compiler and other tools
such as ld, ar, and as are capable of building 64-bit programs and 32-bit programs. Of course,
a 64-bit program built on a system running the 32-bit operating system cannot execute in that
32-bit environment. However, in the future releases of Oracle Solaris, 32-bit might not be the
default compilation mode.

5.2 Linking Object Files

Use the ld link-editor to link to object files. ld is a cross link-editor that can link 32-bit objects
or 64-bit objects for SPARC or x86 systems. ld uses the ELF class on system type of the first
relocatable object on the command line to govern the mode in which to operate. If the linker
is presented with a collection of ELF32 object files as input, it creates an ELF32 output file;
similarly, if it is presented with a collection of ELF64 object files as input, it creates an ELF64
output file. Attempts to mix ELF32 and ELF64 input files are rejected by the linker.

5.2.1 LD_LIBRARY_PATH Environment Variable

The following table lists the dynamic linkers for SPARC and x86 platforms:

TABLE 2 Dynamic Linkers

System Architecture Linker For 32-bit Applications Linker For 64-bit Applications

SPARC /usr/lib/ld.so.1 /usr/lib/sparcv9/ld.so.1

x86 /usr/lib/ld.so.1 /usr/lib/amd64/ld.so.1

For more information, see the ld(1) man page.

At runtime, both dynamic linkers search the same list of colon-separated directories specified
by the LD_LIBRARY_PATH environment variable. However, the 32-bit dynamic linker binds only
to 32-bit libraries, while the 64-bit dynamic linker binds only to 64-bit libraries. So directories
containing both 32-bit and 64-bit libraries can be specified via LD_LIBRARY_PATH, if needed.

The 64-bit dynamic linker's search path can be overridden by using the LD_LIBRARY_PATH_64
environment variable and 32-bit dynamic linker search path can be overridden by using the
LD_LIBRARY_PATH_32 environment variable.

Chapter 5 • 64-Bit Development Environment 47

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld-1

5.3 Packaging 32-Bit and 64-Bit Applications

5.2.2 $ORIGIN Keyword

A common technique for distributing and managing applications is to place related applications
and libraries in a directory hierarchy. Typically, the libraries used by the applications reside
in a lib subdirectory, while the applications themselves reside in a bin subdirectory of a
base directory. This base directory can then be exported by using NFS and mounted on client
systems. In some environments, the automounter and the name service can be used to distribute
the applications, and to ensure the file system namespace of the application hierarchy is the
same on all clients. In such environments, the applications can be built by using the -R flag
to the linker to specify the absolute path names of the directories that should be searched for
shared libraries at runtime.

However, in other environments, the file system namespace is not so well controlled, and
developers have resorted to using a debugging tool – the LD_LIBRARY_PATH environment
variable – to specify the library search path in a wrapper script. This is unnecessary, because
the $ORIGIN keyword can be used in path names specified to the linker -R option. The $ORIGIN
keyword is expanded at runtime to be the name of the directory where the executable itself
is located. This effectively means that the path name to the library directory can be specified
by using the pathname relative to $ORIGIN. This allows the application base directory to be
relocated without having to set LD_LIBRARY_PATH at all.

This functionality is available for both 32-bit and 64-bit applications, and it is well worth
considering when creating new applications to reduce the dependencies on users or scripts
correctly configuring LD_LIBRARY_PATH.

For more information, see Oracle Solaris 11.3 Linkers and Libraries Guide.

5.3 Packaging 32-Bit and 64-Bit Applications

The following sections discuss packaging considerations for 32-bit and 64-bit applications.

5.3.1 Placement of Libraries and Programs

The placement of new libraries and programs follows the standard conventions described in
“5.1.2 32-Bit and 64-Bit Libraries” on page 46. The 32-bit libraries continue to be located
in the same place, while the 64-bit libraries should be placed in the specific architecture-

48 Oracle Solaris 64-bit Developer's Guide • March 2019

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSLLG

5.4 Debugging 64-Bit Applications

dependent directory under the normal default directories. Placement of 32-bit and 64-bit
specific applications should be transparent to the user.

For SPARC systems, the 32-bit libraries should be placed in the same library directories. And
the 64-bit libraries should be placed in the sparcv9 subdirectory under the appropriate lib
directory. Programs that require versions specific to 32-bit or 64-bit environments are a slightly
different case. These should be placed in the appropriate sparcv7 or sparcv9 subdirectory of
the directory where they are normally located.

For x86 and AMD systems, the 64-bit libraries should be placed in the amd64 subdirectory
under the appropriate lib directory. Programs that require versions specific to 32-bit or 64-bit
environments should be placed in the appropriate i86 or amd64 subdirectory of the directory
where they are normally located.

For more information, see “5.3.3 Application Naming Conventions” on page 49.

5.3.2 Packaging Guidelines

Packaging options include creating specific packages for 32-bit and 64-bit applications, or
combining the 32-bit and 64-bit versions in a single package. In the case where a single package
is created, you should use the subdirectory naming convention for the contents of the package,
as described in this chapter.

5.3.3 Application Naming Conventions

Rather than having specific names for 32-bit and 64-bit versions of an application, such
as foo32 and foo64, 32-bit and 64-bit applications can be placed in the appropriate
platform-specific subdirectory, as explained in “5.3.1 Placement of Libraries and
Programs” on page 48. Wrappers, which are explained in the next section, can then be
used to run the correct version of the application. One advantage is that the user does not
need to know about the specific 32-bit and 64-bit version, since the correct version executes
automatically, depending on the platform.

5.4 Debugging 64-Bit Applications

All of the Oracle Solaris debugging tools have been updated to work with 64-bit applications.
This includes the truss(1) command, the /proc tools (proc(1)) and mdb.

Chapter 5 • 64-Bit Development Environment 49

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1truss-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1proc-1

5.4 Debugging 64-Bit Applications

The dbx debugger, capable of debugging 64-bit applications, is available as part of the Oracle
Developer Studio tool suites. The remaining tools are included with the Oracle Solaris release.

To debug programs that use the amd64 ABI, additional flags such as -preserve_argvalues
should be passed to the Oracle Developer Studio compiler. This allows you to save registers on
the stack.

A number of enhancements are available in mdb for debugging 64-bit programs. As expected,
using "*" to dereference a pointer will dereference 8 bytes for 64-bit programs and 4 bytes for
32-bit programs. In addition, the following modifiers are available:

Additional ?, /, = modifiers:

g (8) Display 8 bytes in unsigned octal

G (8) Display 8 bytes in signed octal

e (8) Display 8 bytes in signed decimal

E (8) Display 8 bytes in unsigned decimal

J (8) Display 8 bytes in hexadecimal

K (n) Print pointer or long in hexadecimal

 Display 4 bytes for 32-bit programs

 and 8 bytes for 64-bit programs.

y (8) Print 8 bytes in date format

Additional ? and / modifiers:

M <value> <mask> Apply <mask> and compare for 8-byte value;

 move '.' to matching location.

Z (8) write 8 bytes

50 Oracle Solaris 64-bit Developer's Guide • March 2019

 6 ♦ ♦ ♦ C H A P T E R 6

Advanced Topics

This chapter presents a collection of miscellaneous programming topics for systems
programmers who want to understand more about the 64-bit Oracle Solaris operating
environment.

Most of the new features of the 64-bit environment are extensions of generic 32-bit interfaces,
though several new features are unique to 32-bit environments.

6.1 SPARC V9 ABI Features

64-bit applications are described by using Executable and Linking Format (ELF64), which
allows large applications and large address spaces to be described completely.

SPARCV9. The SPARC Compliance Definition, Version 2.4.1, contains details of the SPARC
V9 ABI. It describes the 32-bit SPARC V8 ABI and the 64-bit SPARC V9 ABI.

Following is a list of the SPARC V9 ABI features.

■ The SPARC V9 ABI allows all 64-bit SPARC instructions and 64-bit wide registers to be
used to their full effect. Many of the new relevant instructions are extensions of the existing
V8 instruction set. For more information, see Oracle SPARC Servers.

■ The basic calling convention is the same. The first six arguments of the caller are placed
in the out registers %o0-%o5. The SPARC V9 ABI still uses a register window on a larger
register file to make calling a function a "cheap" operation. Integer and pointer results are
returned in %o0 and floating-point results are returned differently on both 32-bit and 64-bit
ABIs. Because all registers are now treated as 64-bit, 64-bit values can now be passed in a
single register, rather than a register pair.

■ The layout of the stack is different and the basic cell size is increased from 32-bit to 64-bit.
The stack is always aligned on a 16-byte boundary for a 64-bit code and memory allocators
like malloc() are expected to return 16-byte aligned data. The return address is still %o7 +
8.

Chapter 6 • Advanced Topics 51

http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/index.html

6.1 SPARC V9 ABI Features

■ %o6 is still referred to as the stack pointer register %sp, and %i6 is the frame pointer register
%fp. However, the %sp and %fp registers are offset by a constant, known as the stack bias,
from the actual memory location of the stack. The size of the stack bias is 2047 bytes.

■ Instruction sizes are still 32-bit. Address constant generation therefore takes more
instructions. The call instruction can no longer be used to branch anywhere in the address
space, since it can only reach within plus or minus 2 gigabytes of %pc.

■ Integer multiply and divide functions are now implemented completely in hardware.
■ Structure passing and return are accomplished differently. Small data structures and some

floating point arguments are now passed directly in registers.
■ User traps allow certain traps from non-privileged code to be handled by a user trap handler

(instead of delivering a signal).
■ Most of the data types are now aligned to their size.
■ Many basic derived types are larger. Thus many system call interface data structures are

now of different sizes.
■ Two different sets of libraries exist on the system: those for 32-bit SPARC applications and

those for 64-bit SPARC applications.

6.1.1 Stack Bias

An important feature of the SPARC V9 ABI for developers is the stack bias. For 64-bit SPARC
programs, a stack bias of 2047 bytes must be added to both the frame pointer and the stack
pointer to get to the actual data of the stack frame. See the following figure.

For more information about stack bias, please see the SPARC V9 ABI.

52 Oracle Solaris 64-bit Developer's Guide • March 2019

6.1 SPARC V9 ABI Features

6.1.2 Address Space Layout of the SPARC V9 ABI

For 64-bit applications, the layout of the address space is closely related to that of 32-bit
applications, though the starting address and addressing limits are radically different. Like
SPARC V8, the SPARC V9 stack grows down from the top of the address space, while the heap
extends the data segment from the bottom.

The diagram below shows the default address space provided to a 64-bit application. The
regions of the address space marked as reserved might not be mapped by applications. These
restrictions might be relaxed on future systems.

The actual addresses in the figure above describe a particular implementation on a particular
system, and are given for illustrative purposes only.

6.1.3 Placement of Text and Data of the SPARC V9 ABI

By default, 64-bit programs are linked with a starting address of 0x100000000. The whole
program is above 4 gigabytes, including its text, data, heap, stack, and shared libraries. This

Chapter 6 • Advanced Topics 53

6.1 SPARC V9 ABI Features

helps ensure that 64-bit programs are correct by making it so the program will fault in the lower
4 gigabytes of its address space, if it truncates any of its pointers.

While 64-bit programs are linked above 4 gigabytes, you can still link them below 4 gigabytes
by using a linker mapfile and the -M option to the compiler or linker. A linker mapfile for
linking a 64-bit SPARC program below 4 gigabytes is provided in /usr/lib/ld/sparcv9/
map.below4G.

See the ld(1) linker man page for more information.

6.1.4 Code Models of the SPARC V9 ABI

Different code models are available from the compiler for different purposes to improve
performance and reduce code size in 64-bit SPARC programs. The code model is determined by
the following factors:

■ Positioning (absolute versus position-independent code)
■ Code size (< 2 gigabytes)
■ Location (low, middle, anywhere in address space)
■ External object reference model (small or large)

The following table describes the different code models available for 64-bit SPARC programs.

TABLE 3 Code Model Descriptions: SPARCV9

Code Model Positionability Code Size Location External Object Reference
Model

abs32 Absolute < 2 gigabytes Low (low 32 bits of
address space)

None

abs44 Absolute < 2 gigabytes Middle (low 44 bits of
address space)

None

abs64 Absolute < 2 gigabytes Anywhere None

pic13 PIC < 2 gigabytes Anywhere Small (<= 1024 external objects)

pic32 PIC < 2 gigabytes Anywhere Large (<= 2**29 external
objects)

Shorter instruction sequences can be achieved in some instances with the smaller code models.
The number of instructions needed to do static data references in absolute code is the fewest
for the abs32 code model and the most for the abs64 code model, while abs44 is in the middle.
Likewise, the pic code model uses fewer instructions for static data references than the PIC
code model. Consequently, the smaller code models can reduce the code size and perhaps

54 Oracle Solaris 64-bit Developer's Guide • March 2019

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld-1

6.2 AMD64 ABI Features

improve the performance of programs that do not need the fuller functionality of the larger code
models.

To specify which code model to use, the -xcode=<model> compiler option should be used.
Currently, for 64-bit objects, the compiler uses the abs44 model by default. You can optimize
your code by using the abs44 code model; you will use fewer instructions and still cover the 44-
bit address space that the current UltraSPARC platforms support.

For more information about code models, see the SPARC V9 ABI and compiler documentation.

6.2 AMD64 ABI Features

64-bit applications are described by using Executable and Linking Format (ELF64), which
allows large applications and large address spaces to be described completely.
Following is a list of the AMD ABI features.

■ The AMD ABI allows all 64-bit instructions and 64-bit registers to be used to their full
effect. Many of the new instructions are straightforward extensions of the existing i386
instruction set. There are now sixteen general purpose registers.

Seven general purpose registers (%rdi, %rsi, %rdx, %rcx, %r8, %r9, and %rax) have a well-
defined role in the function call sequence which now passes arguments in registers.
Two registers are used for stack management (%rsp and %rbp). The %rbp register can also be
used as a general purpose register.
Two registers are temporaries (%r10 and %r11).
Seven registers are callee-saved (%r12, %r13, %r14, %r15, %rbx, %rsp, %rbp).

■ The basic function calling convention is different for the AMD ABI. Arguments are placed
in registers. For simple integer arguments, the first arguments are placed in the %rdi, %rsi,
%rdx, %rcx, %r8, and %r9 registers in order. Floating-point arguments are placed from %xmm0
to %xmm7 registers.

■ The layout of the stack is slightly different for AMD. In particular, the stack is always
aligned on a 16-byte boundary immediately preceding the call instruction. AMD64 has
special area on stack called red zone. This is 128-byte area beyond the location pointed
to by %rsp is considered to be reserved and shall not be modified by signal or interrupt
handlers.

■ Instruction sizes are still 32-bit. Address constant generation therefore takes more
instructions. The call instruction can no longer be used to branch anywhere in the address
space, since it can only reach within plus or minus 2 gigabytes of %rip.

■ Integer multiply and divide functions are now implemented completely in hardware.

Chapter 6 • Advanced Topics 55

6.2 AMD64 ABI Features

■ Structure passing and return are accomplished differently. Small data structures and some
floating point arguments are now passed directly in registers.

■ There are new PC-relative addressing modes that enable more efficient position-
independent code to be generated.

■ All data types are now aligned to their size.
■ Many basic derived types are larger. Thus many system call interface data structures are

now of different sizes.
■ Two different sets of libraries exist on the system: those for 32-bit i386 applications and

those for 64-bit amd64 applications.
■ The AMD ABI substantially enhances floating point capabilities.

The 64-bit ABI allows all the x87 and MMX instructions that operate on the x87 floating
point registers (%fpr0 through %fpr7 and %mm0 through %mm7) to be used.
Additionally, the full set of SSE and SSE2 instructions that operate on the 128-bit XMM
registers (%xmm0 through %xmm15) can be used.
Also the full set of AVX instructions that operate on the 256-bit YMM registers can be used
and support for AVX instructions is optional.

For more information about amd64 ABI see, System V Application Binary Interface, AMD64
Architecture Processor Supplement.

6.2.1 Address Space Layout for amd64 Applications

For 64-bit applications, the layout of the address space is closely related to that of 32-bit
applications, though the starting address and addressing limits are radically different. Like
SPARC V9, the amd64 stack grows down from the top of the address space, while the heap
extends the data segment from the bottom.

The following diagram shows the default address space provided to a 64-bit application. The
regions of the address space marked as reserved might not be mapped by applications. These
restrictions might be relaxed on future operating systems.

56 Oracle Solaris 64-bit Developer's Guide • March 2019

6.3 Alignment Issues

The actual addresses in the figure above describe a particular implementation on a particular
system, and are given for illustrative purposes only.

6.3 Alignment Issues

There is one additional issue around the alignment of 32-bit long long elements in data
structures; i386 applications only align long long elements on 32-bit boundaries, while the
amd64 ABI places long long elements on 64-bit boundaries potentially generating wider holes
in the data structures. This is different to SPARC where 32-bit or 64-bit, long long items were
aligned on 64-bit boundaries.

The following table shows the data type alignment for the designated architectures.

TABLE 4 Data Type Alignment

Architecture long long double long double

i386 4 4 4

amd64 8 8 16

sparcv8 8 8 8

Chapter 6 • Advanced Topics 57

6.4 Interprocess Communication

Architecture long long double long double

sparcv9 8 8 16

Although code might already appear to be LP64 clean on SPARC systems, the alignment
differences might produce problems when copying data structures between 32-bit and 64-
bit programming environments. These programming environments include device driver
ioctl routines, doors routines or other IPC mechanisms. Alignment problems can be avoided
by careful coding of these interfaces, and by judicious use of the #pragma pack or _Pack
directives.

6.4 Interprocess Communication

The following interprocess communication (IPC) primitives continue to work between 64-bit
and 32-bit processes:

■ The System V IPC primitives, such as shmop(2), semop(2), msgsnd(2)
■ The call to mmap(2) on shared files
■ The use of pipe(2) between processes
■ The use of door_call(3C) between processes
■ The use of rpc(3NSL) between processes on the same or different machines using the

external data representation described in xdr(3NSL)

Although all these primitives allow interprocess communication between 32-bit and 64-
bit processes, you might need to take explicit steps to ensure that data being exchanged
between processes is correctly interpreted by all of them. For example, two processes sharing
data described by a C data structure containing variables of type long cannot do so without
understanding that a 32-bit process views this variable as a 4-byte quantity, while a 64-bit
process views this variable as an 8-byte quantity.

One way to handle this difference is to ensure that the data has exactly the same size and
meaning in both processes. Build the data structures by using fixed-width types, such as
int32_t and int64_t. Care is still needed with alignment. Shared data structures might need to
be padded out, or repacked by using compiler directives such as #pragma pack or _Pack. See
“6.3 Alignment Issues” on page 57.

A family of derived types that mirrors the system derived types is available in <sys/types32.
h>. These types possess the same sign and sizes as the fundamental types of the 32-bit
system but are defined in such a way that the sizes are invariant between the ILP32 and LP64
compilation environments.

58 Oracle Solaris 64-bit Developer's Guide • March 2019

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2shmop-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2semop-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2msgsnd-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2pipe-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adoor-call-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Brpc-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Bxdr-3nsl

6.5 ELF and System Generation Tools

Sharing pointers between 32-bit and 64-bit processes is substantially more difficult. Obviously,
pointer sizes are different, but more importantly, while there is a 64-bit integer quantity (long
long) in existing C usage, a 64-bit pointer has no equivalent in a 32-bit environment. In order
for a 64-bit process to share data with a 32-bit process, the 32-bit process can only see up to 4
gigabytes of that shared data at a time.

The XDR routine xdr_long(3NSL) might seem to be a problem; however, it is still handled as
a 32-bit quantity over the wire to be compatible with existing protocols. If the 64-bit version of
the routine is asked to encode a long value that does not fit into a 32-bit quantity, the encode
operation fails.

6.5 ELF and System Generation Tools

64-bit binaries are stored in files in ELF64 format, which is a direct analog of the ELF32
format, except that most fields have grown to accommodate full 64-bit applications. ELF64
files can be read by using elf(3ELF) APIs. For example, elf_getarhdr(3ELF).

Both 32-bit and 64-bit versions of the ELF library, elf(3ELF), support both ELF32 and ELF64
formats and their corresponding APIs. This allows applications to build, read, or modify both
file formats from either a 32-bit or a 64-bit system (though a 64-bit system is still required to
execute a 64-bit program).

In addition, Oracle Solaris provides a set of GELF (Generic ELF) interfaces that allow the
programmer to manipulate both formats by using a single, common API. For more information,
see the gelf(3ELF) man page.

All of the system ELF utilities, including ar(1), nm(1), ld(1) and dump(1), have been updated to
accept both ELF formats.

6.6 /proc Interface

The /proc interfaces are available to both 32-bit and 64-bit applications. 32-bit applications can
examine and control the state of other 32-bit applications. Thus, an existing 32-bit debugger can
be used to debug a 32-bit application.

64-bit applications can examine and control 32-bit or 64-bit applications. However, 32-bit
applications are unable to control 64-bit applications, because the 32-bit APIs do not allow the
full state of 64-bit processes to be described. Thus, a 64-bit debugger is required to debug a 64-
bit application.

Chapter 6 • Advanced Topics 59

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Bxdr-long-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Delf-3elf
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Delf-getarhdr-3elf
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Delf-3elf
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dgelf-3elf
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ar-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1nm-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1dump-1

6.7 Extensions to sysinfo() System Call

6.7 Extensions to sysinfo() System Call

The sysinfo() system call subcodes in the Oracle Solaris 10 and later versions enable
applications to ascertain more information about the available instruction set architectures.

SI_ARCHITECTURE_32

SI_ARCHITECTURE_64

SI_ARCHITECTURE_K

SI_ARCHITECTURE_NATIVE

For example, the name of the 64-bit ABI available on the system (if any), is available by using
the SI_ARCHITECTURE_64 subcode. For more information, see the sysinfo(2) man page.

6.8 libkvm and /dev/ksyms

Oracle Solaris OS is implemented by using a 64-bit kernel and applications that examine or
modify the contents of the kernel directly must be converted to 64-bit applications and linked
with the 64-bit version of libraries.

Before doing this conversion and cleanup work, you should examine why the application needs
to look directly at kernel data structures in the first place. It is possible that in the time since
the program was first ported or created; additional interfaces have been made available on
the Oracle Solaris platform, to extract the needed data with system calls. The most common
APIs are sysinfo(2), kstat(3KSTAT), sysconf(3C), getloadavg(3C), and proc(4). If
these interfaces can be used instead of kvm_open(3KVM), you must use them for maximum
portability. As a further benefit, most of these APIs are probably faster and might not require
the same security privileges needed to access kernel memory.

The 32-bit version of libkvm returns a failure from any attempt to use kvm_open(3KVM) on a
64-bit kernel or crash dump. Similarly, the 64-bit version of libkvm returns failure from any
attempt to use kvm_open(3KVM) on a 32-bit kernel crash dump.

Because the kernel is a 64-bit program, applications that open /dev/ksyms to examine the
kernel symbol table directly need to be enhanced to understand ELF64 format.

The ambiguity over whether the address argument to kvm_read() or kvm_write() is supposed
to be a kernel address or a user address is even worse for 64-bit applications and kernel. All
applications using libkvm that are still using kvm_read() and kvm_write() should transition

60 Oracle Solaris 64-bit Developer's Guide • March 2019

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2sysinfo-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2sysinfo-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Ekstat-3kstat
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Asysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Agetloadavg-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN4proc-4
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Ekvm-open-3kvm
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Ekvm-open-3kvm
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Ekvm-open-3kvm

6.9 libkstat Kernel Statistics

to use the appropriate kvm_read(), kvm_write(), kvm_uread(), and kvm_uwrite() routines.
(These routines were first made available in Solaris 2.5.)

Applications that read /dev/kmem or /dev/mem directly can still run, though any attempt they
make to interpret data they read from those devices might be wrong; data structure offsets and
sizes are almost certainly different between 32-bit and 64-bit kernels.

6.9 libkstat Kernel Statistics

The sizes of many kernel statistics are completely independent of whether the kernel is a 64-
bit or 32-bit program. The data types exported by named kstats are self-describing, and export
signed or unsigned, 32-bit or 64-bit counter data, appropriately tagged. Thus, applications using
libkstat need not be made into 64-bit applications to work successfully with the 64-bit kernel.
For more information, see the kstat(3KSTAT) man page.

Note - If you are modifying a device driver that creates and maintains named kstats, you
should try to keep the size of the statistics you export invariant between 32-bit and 64-bit
kernels by using the fixed-width statistic types.

6.10 Changes to stdio

In the 64-bit environment, the stdio facility allows more than 256 streams to be open
simultaneously. Given the large number of open streams, iterating over every file descriptor is
inefficient. To improve efficiency, you can use the closefrom() and fdwalk() API's to iterate
over the open file descriptors. For more information, see closefrom(3C) and fdwalk(3C) man
pages.

Note - The 32-bit stdio facility continues to have the 256 streams limit.

64-bit applications should not rely on having access to the members of the FILE data structure.
Attempts to access private implementation-specific structure members directly can result in
compilation errors. Existing 32-bit applications are unaffected by this change, but any direct
usage of these structure members should be removed from all code.

The FILE structure has a long history, and a few applications have looked inside the structure
to glean additional information about the state of the stream. Because the 64-bit version of the
structure is now opaque, a new family of routines has been added to both 32-bit libc and 64-

Chapter 6 • Advanced Topics 61

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Ekstat-3kstat
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aclosefrom-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Afdwalk-3c

6.11 Building FOSS on Oracle Solaris Systems

bit libc to allow the same state to be examined without depending on implementation internals.
For example, see the __fbufsize(3C) man page.

6.11 Building FOSS on Oracle Solaris Systems

To build Free and Open Source Software (FOSS) components on Oracle Solaris, you must
consider the following.

■ Using pkg-config – You can use the pkg-config utility to find build configuration flags. To
get the appropriate flags for a 64-bit build, you must set the following environment variable
before you run the pkg-config utility.

PKG_CONFIG_PATH=/usr/lib/64/pkgconfig

If you have additional third-party libraries installed in other paths, you must include the 64-
bit variants of those paths in the PKG_CONFIG_PATH setting. For example:

PKG_CONFIG_PATH=/usr/lib/64/pkgconfig:/opt/local/lib/64/pkgconfig

The pkg-config utility will search the default path after searching the directories mentioned
in the PKG_CONFIG_PATH setting. Therefore, the pkg-config utility finds the configuration
files that are independent of bit size in the /usr/share/pkgconfig directory and the 32-bit
configuration files in the /usr/lib/pkgconfig directory.

■ Using GNU autoconf – You can use the GNU autoconf utility to find the build flags for C
or C++ code. To get the appropriate flags for a 64-bit build, you must set the following in
your environment variables before running the configure script.

CFLAGS="-m64" CXXFLAGS="-m64"

If the configure script calls pkg-config for library paths, you must need the
PKG_CONFIG_PATH variable listed above. If it finds any libraries via LDFLAGS, adding any
flags for libraries in the default paths of /lib/64 or /usr/lib/64, files is not required. For
other libraries in other paths you must set following flag.

LDFLAGS="-L/opt/local/lib/64 -R/opt/local/lib/64"

6.12 Performance Issues

The following sections discuss advantages and disadvantages of 64-bit to application
performance.

62 Oracle Solaris 64-bit Developer's Guide • March 2019

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Au--fbufsize-3c

6.13 System Call Issues

6.12.1 64-Bit Application Advantages

■ Arithmetic and logical operations on 64-bit quantities are more efficient.
■ Operations use full-register widths, the full-register set, and new instructions.
■ Parameter passing of 64-bit quantities is more efficient.
■ Parameter passing of small data structures and floating point quantities is more efficient.
■ Additional integer and floating point registers.
■ For amd64, PC-relative addressing modes for more efficient position-independent code.

6.12.2 64-Bit Application Disadvantages

■ 64-bit applications require more stack space to hold the larger registers.
■ Applications have a bigger cache footprint from larger pointers.
■ Address formation may take additional or larger instructions.

6.13 System Call Issues

The following sections discuss system call issues.

6.13.1 EOVERFLOW Indicates System Call Issue

The EOVERFLOW return value is returned from a system call whenever one or more fields of the
data structure used to pass information out of the kernel is too small to hold the value.

A number of 32-bit system calls now return EOVERFLOW when faced with large objects on the
64-bit kernel. While this was already true when dealing with large files, the fact that daddr_t,
dev_t, time_t, and its derivative types struct timeval and timespec_t now contain 64-bit
quantities might mean more EOVERFLOW return values are observed by 32-bit applications.

Chapter 6 • Advanced Topics 63

6.13 System Call Issues

6.13.2 ioctl() Does Not Type Check at Compile Time

Some ioctl(2) calls have been rather poorly specified in the past. Unfortunately, ioctl() is
completely devoid of compile-time type checking; therefore, it can be a source of bugs that are
difficult to track down.

Consider two ioctl() calls – one that manipulates a pointer to a 32-bit quantity (IOP32), the
other that manipulates a pointer to a long quantity (IOPLONG).

The following code sample works as part of a 32-bit application when it is compiled:

 int a, d;

 long b;

 ...

 if (ioctl(d, IOP32, &b) == -1)

 return (errno);

 if (ioctl(d, IOPLONG, &a) == -1)

 return (errno);

In a 64-bit application, the preceding ioctl() calls succeed but do not work correctly:

■ The first ioctl() call passes a container that is too big, and on a big-endian
implementation, the kernel will copy in or copy out from the wrong part of the 64-bit word.
Even on a little-endian implementation, the container probably contains stack garbage in the
upper 32 bits.

■ The second ioctl() call will copy in or copy out too much, either reading an incorrect
value, or corrupting adjacent variables on the user stack.

64 Oracle Solaris 64-bit Developer's Guide • March 2019

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2ioctl-2

 A ♦ ♦ ♦ A P P E N D I X A

Changes in Derived Types

The current 32-bit compilation environment is identical to historical Oracle Solaris OS releases
with respect to derived types and their sizes. In the 64-bit compilation environment, some
changes in derived types are necessary. These changed derived types are highlighted in the
tables that follow.

Note that although the 32-bit and 64-bit compilation environments differ, the same set of
headers is used for both, with the appropriate definitions determined by the compilation options.
To understand the options available to an application developer, consider the _ILP32 and _LP64
feature test macros:

_ILP32 feature test macro

Specifies the ILP32 data model where int, long and pointers are 32-bit values. By itself,
the use of this macro makes visible those derived types and sizes identical to historical
Oracle Solaris implementations. This is the default compilation environment when building
32-bit applications. It ensures complete binary and source compatibility for both C and
C++ applications.

_LP64 feature test macro

Specifies the _LP64 data model where int are 32-bit values and long and pointers are 64-
bit values. _LP64 is defined by default when compiling in 64-bit mode. Other than making
sure that either sys/types.h or sys/feature_tests.h is included in source in order to
make visible the _LP64 definition, the developer needs to do nothing else.

Note - The default compilation mode depends on the compiler being used. To determine
whether your compiler produces 64-bit or 32-bit code by default, refer to the compiler
documentation.

The following examples illustrate the use of feature test macros so that the correct definitions
are visible, depending on the compilation environment.

Appendix A • Changes in Derived Types 65

EXAMPLE 2 size_t Definition in _LP64

#if defined(_LP64)

typedef ulong_t size_t; /* size of something in bytes */

#else

typedef uint_t size_t; /* (historical version) */

#endif

When building a 64-bit application with the definition in this example, size_t is a ulong_t, or
unsigned long, which is a 64-bit value in the LP64 model. In contrast, when building an 32-
bit application, size_t is defined as a uint_t, or unsigned int, a 32-bit value in either in the
ILP32 or the LP64 models.

EXAMPLE 3 uid_t Definition in _LP64

#if defined(_LP64)

typedef int uid_t; /* UID type */

#else

typedef long uid_t; /* (historical version) */

#endif

In the preceding examples, the same result would have been obtained had the ILP32 type
representation been identical to the LP64 type representation. For example, if in the 32-
bit application environment, size_t was changed to an ulong_t, or uid_t was changed to
an int, these would still represent 32-bit quantities. However, retaining the historical type
representation ensures consistency within 32-bit C and C++ applications, as well as complete
binary and source compatibility with prior releases of the Oracle Solaris operating environment.

Table 5, “Differences Between Derived Types – General,” on page 66 lists the derived
types that have changed. When building a 32-bit application, the derived types available to the
developer match those in the _ILP32 column. When building a 64-bit application, the derived
types match those listed in the _LP64 column. All of these types are defined in <sys/types.h>,
with the exception of the wchar_t and wint_t types, which are defined in <wchar.h>.

When reviewing these tables, remember that in the 32-bit environment, int, long, and pointers
are 32-bit quantities. In the 64-bit environment, int are 32-bit quantities while long and
pointers are 64-bit quantities.

TABLE 5 Differences Between Derived Types – General

Derived Types _ILP32 _LP64

blkcnt_t longlong_t long

id_t long int

major_t ulong_t uint_t

66 Oracle Solaris 64-bit Developer's Guide • March 2019

Derived Types _ILP32 _LP64

minor_t ulong_t uint_t

mode_t ulong_t uint_t

nlink_t ulong_t uint_t

paddr_t ulong_t not defined

pid_t long int

ptrdiff_t int long

size_t uint_t ulong_t

ssize_t int long

uid_t long int

wchar_t long int

wint_t long int

Table 6, “Differences Between Derived Types Specific to Large Files,” on page 67 lists the
derived types specific to the Large Files compilation environment. These types are only defined
if the feature test macro _LARGEFILE64_SOURCE is defined.

TABLE 6 Differences Between Derived Types Specific to Large Files

Derived Types
_ILP32 _LP64

blkcnt64_t longlong_t blkcnt_t

fsblkcnt64_t u_longlong_t blkcnt_t

fsfilcnt64_t u_longlong_t fsfilcnt_t

ino64_t u_longlong_t ino_t

off64_t longlong_t off_t

Table 7, “Changed Derived Types – FILE_OFFSET_BITS Value,” on page 67 lists the
changed derived types with respect to the value of _FILE_OFFSET_BITS. You cannot compile
an application with both _LP64 defined and _FILE_OFFSET_BITS==32. By default, if _LP64 is
defined, _FILE_OFFSET_BITS==64. If _ILP32 is defined, and _FILE_OFFSET_BITS is not defined,
then by default, _FILE_OFFSET_BITS==32. These rules are defined in the sys/feature_tests.h
header file.

TABLE 7 Changed Derived Types – FILE_OFFSET_BITS Value

Derived Types _ILP32 _FILE_ OFFSET_BITS

==32

_ILP32 _FILE_ OFFSET_BITS

==64

_LP64 _FILE_ OFFSET_BITS==64

ino_t ulong_t u_longlong_t ulong_t

Appendix A • Changes in Derived Types 67

Derived Types _ILP32 _FILE_ OFFSET_BITS

==32

_ILP32 _FILE_ OFFSET_BITS

==64

_LP64 _FILE_ OFFSET_BITS==64

blkcnt_t long longlong_t long

fsblkcnt_t ulong_t u_longlong_t ulong_t

fsfilcnt_t ulong_t u_longlong_t ulong_t

off_t long longlong_t long

68 Oracle Solaris 64-bit Developer's Guide • March 2019

 B ♦ ♦ ♦ A P P E N D I X B

Frequently Asked Questions (FAQ)

Is Oracle Solaris a 64-bit operating system?

Yes. Oracle Solaris 11 and any later version is a 64-bit only operating system. However, you
can run your 32-bit applications on the 64-bit Oracle Solaris 11 OS.

Do all my applications need to be 64-bit?

Oracle Solaris 11 and later versions is a 64-bit only operating system. Therefore, any new
application that you develop should be a 64-bit application.

Can I run the 64-bit version of the operating system on 32-bit hardware?

No. It is not possible to run the 64-bit operating system on 32-bit hardware. The 64-bit
operating system requires 64-bit MMU and CPU hardware.

Do I need to change my 32-bit application if I plan to run that application on a system
with the 64-bit operating system?

Most applications can remain 32-bit and still execute on 64-bit operating system without
requiring code changes or recompilation. However, if you want 32-bit applications to run after
January 2038 and get all the benefits of a 64-bit OS, you must convert your 32-bit applications
to 64-bit applications.

If your application uses libkvm(3LIB), it must be recompiled as 64-bit, to execute on 64-bit
operating system. If your application uses /proc, it might need to be recompiled as 64-bit;
otherwise it cannot understand a 64-bit process. This is because the existing interfaces and data
structures that describe the process are not large enough to contain the 64-bit values involved.

Can I build a 32-bit application on a system running the 64-bit operating system?

Yes. The current default compilation mode is 32-bit. However, the future releases of Oracle
Solaris will have 64-bit as the default compilation mode.

Can I combine 32-bit libraries and 64-bit libraries when building and linking
applications?

Appendix B • Frequently Asked Questions (FAQ) 69

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Flibkvm-3lib

No. 32-bit applications must link with 32-bit libraries and 64-bit applications with 64-bit
libraries. Attempts to build or link with the wrong version of a library will result in an error.

What are the sizes of floating point data types in the 64-bit implementation?

The only types that have changed are long and pointer. See Table 1, “Data Type Sizes in Bits,”
on page 24.

What about time_t?

The time_t type remains a long quantity. In the 64-bit environment, time_t is a 64-bit quantity.
Thus, 64-bit applications will be year 2038 safe.

What is the value of uname(1) on a system running the 64-bit Solaris operating
environment?

The output of the uname -p command is unchanged.

70 Oracle Solaris 64-bit Developer's Guide • March 2019

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1uname-1

Index

Numbers and Symbols
32-bit

4GB barrier, 11
APIs, 19
compilation environment, 65
interoperability with 64-bit, 17
large files and, 17
limited to 256 open streams, 61
number alignment on different platforms, 57

32-bit applications
converting to 64-bit, 23
on 64-bit hardware, 69
packaging, 48
year 2038 limit, 69

64-bit
application developers and, 15
arithmetic, 17
comparing with 32-bit, 19
compilation environment, 65
computing, 11
conversion guidelines, 31
CPU hardware and, 17
database advantages, 12
debugging applications, 49
development environment, 15, 45
ELF64 format, 59
interfaces, 19
interoperability with 32-bit, 17
large files and, 17
libraries, 18
long type and, 15
more than 256 open streams, 61
number alignment on different platforms, 57
performance issues, 62

pointers and, 15
requires 64-bit hardware, 69
system call issues, 63

64-bit applications
advantages, 13, 63
compatibility with 32-bit, 20
disadvantages, 63
from 32-bit, 23
packaging, 48

A
ABIs See amd64, i386, SPARC V9 ABI
address space layout

amd64 ABI, 56
protection through randomization, 13
SPARC V9 ABI, 53

algorithm changes when converting code to 64-bit, 41
alignment

numbers on different platforms, 57
amd64 ABI

address space layout, 56
alignment of 32-bit and 64-bit numbers, 57
features, 55

applications
binary compatibility, 20
compatibility of 64-bit and 32-bit, 20
converting to 64-bit, 23
implementing single source for 32-bit and 64-
bit, 25
maintaining single source for 32-bit and 64-bit, 23
source code compatibility, 20

71

Index

C
calling convention changes in 64-bit code, 41
casts

64-bit guidelines, 32
conversion guidelines, 38

CFLAGS flag, 62
changes in derived types

_ILP32 and _LP64, 65
checking for side effects during conversion, 40
checklist for converting code to 64-bit, 42
code models

SPARC V9 ABI, 54
coding

detecting errors with lint, 29
comparing

compilation environments, 65
compatibility

application binaries, 20
application source code, 20
device drivers, 20

compilation environments
comparing, 65
ioctl() and, 64

constant macros, 28
constant types

conversion guidelines, 36
converting

32-bit to 64-bit, 23
64-bit guidelines, 31
calling convention changes, 41
checking for algorithm changes, 41
checking for data loss, 37
checking for implicit declarations, 37
checking internal data structures, 35
checking unions, 36
checklist, 42
format strings, 38
long type and, 41
performance issues, 39
pointer arithmetic and, 35
sample 32-bit and 64-bit program, 42
side effects, 40
sign extension and, 33

specifying constant types, 36
using casts, 38
utmp and utmpx access issues, 40

D
data loss

conversion guidelines, 37
data models

differences between 64-bit and 32-bit, 23
ILP32, 23
LP64, 23

data placement in SPARC V9 ABI, 53
database

advantage of 64-bit system, 12
debugging

64-bit applications, 49
lint command, 29

derived types, 26
describing

amd64 ABI, 55
detecting errors

lint command, 29
/dev/ksyms device, 60
/dev/mem device, 60
device drivers

64-bit and 32-bit, 20

E
ELF

result from ld, 47
system generation tools and, 59

EOVERFLOW return value, 63
Executable and Linking Format See ELF

F
FAQ, 69
feature test macros

distinguishing data models, 41, 65

72 Oracle Solaris 64-bit Developer's Guide • March 2019

Index

examples, 66
fixed-width integer types, 27
fixed-width statistic types, 61
format strings

conversion guidelines, 38
macros, 29

Free and Open Source Software (FOSS)
building components in Oracle Solaris, 62

functions
getutxent(), 40
sizeof(), 37

G
GELF

64-bit and 32-bit ELF interfaces, 59
getutxent() function, 40

H
header files

changes for 64-bit, 45
inttypes.h, 25
stdio.h, 23
sys/feature_tests.h, 65, 67
sys/isa_defs.h, 25, 45
sys/types.h, 25, 65

I
i386 ABI

alignment of 32-bit and 64-bit numbers, 57
ILP32, 15

See also 32-bit
data model, 23, 65

implicit declarations
conversion guidelines, 37

int type
conversion guidelines, 32

integer types, 27
limits, 28

internal data structures
conversion guidelines, 35

interoperability
64-bit and 32-bit, 17

interprocess communication
primitives, 58

inttypes.h header file, 25, 26
ioctl() system call

64-bit and 32-bit differences, 64
isainfo command, 21
isainfo(1), 21

K
kernel memory readers, 18

L
Large Files See large files
large files

applications and, 17
differences between derived types, 67
EOVERFLOW error, 63

large virtual address space
definition, 16

LD_LIBRARY_PATH environment variable, 47
LDFLAGS flag, 62
/lib/64 library path, 62
libc library, 61
libkstat library, 61
libkvm library, 18, 60
libraries

32-bit and 64-bit, 46
64-bit, 18
different for 32-bit and 64-bit, 52
FOSS components, for, 62
libc, 61
libkstat, 61
libkvm, 18, 60
not combining 32-bit and 64-bit, 69
shared, 46

limits

73

Index

4GB barrier on 32-bit, 11
integer types, 28
open streams, 61
stdio streams, 61
year 2038 for 32-bit applications, 69

linking
using ld link-editor, 47

lint command
detecting porting errors, 29

long type
conversion guidelines, 32, 41

LP64, 15
See also 64-bit
application developers and, 15
data model, 23, 65
guidelines for converting to, 31

M
macros

constants, for, 28
feature test, 41, 65, 66
format string, 29

O
Oracle Developer Studio

lint command, 29
$ORIGIN keyword, 48

P
packaging

application naming conventions, 49
FOSS components, 62
guidelines, 49
library and program placement, 48

performance
64-bit issues, 62
conversion guidelines, 39

pointer arithmetic, 35

pointer types, 27
pointers

32-bit and 64-bit difference, 15
guidelines for 64-bit, 32, 32
helpful types, 27

porting code
detecting errors with lint, 29

/proc interface
64-bit and 32-bit, 59
compilation requirement, 20, 69
debugging tools, 15, 49
restrictions, 18

S
sign extension

conversion, 33
conversion rules and, 33
integral promotion, 33

signed integer types, 27
single source code

example, 42
implementing for 32-bit and 64-bit, 25
maintaining for 32-bit and 64-bit, 23

sizeof() function, 37
SPARC V8 ABI

alignment of 32-bit and 64-bit numbers, 57
SPARC V9 ABI

address space layout, 53
alignment of 32-bit and 64-bit numbers, 57
code model, 54
data and text placement, 53
features, 51
stack bias, 52
versions, 19

stdio

changes to, 61
stdio.h header file, 23
streams

limits to, 61
sys/feature_tests.h header file, 65, 67
sys/isa_defs.h header file, 25, 45
sys/types.h header file, 25, 26, 65

74 Oracle Solaris 64-bit Developer's Guide • March 2019

Index

sysinfo()

extensions to, 60
system calls

64-bit and 32-bit differences, 63
EOVERFLOW meaning, 63
ioctl() difference between 64-bit and 32-bit, 64

T
text placement in SPARC V9 ABI, 53
types

changes in derived between _ILP32 and _LP64, 65
derived, 26

U
uintptr_t pointer type, 27
unions

conversion guidelines, 36
unsigned integer types, 27
/usr/lib/64 library path, 62
utmp file

conversion guidelines, 40
utmpx file

conversion guidelines, 40

V
virtual address space

18 exabytes, 16
32-bit applications, 11
large, 16

75

76 Oracle Solaris 64-bit Developer's Guide • March 2019

	Oracle® Solaris 64-bit Developer's Guide
	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	Chapter 1 • 64-Bit Computing
	1.1 Getting Past the 4 Gigabyte Barrier
	1.2 Beyond Large Address Spaces

	Chapter 2 • When to Use 64-Bit for Applications
	2.1 Major Features of 64-Bit Development Environment
	2.1.1 Large Virtual Address Space
	2.1.2 Large Files
	2.1.3 64-Bit Arithmetic
	2.1.4 System Limitations Removed

	2.2 Interoperability Issues
	2.2.1 Kernel Memory Readers
	2.2.2 /proc Restrictions
	2.2.3 64-Bit Libraries

	2.3 Estimating the Effort of 64-Bit Conversion

	Chapter 3 • Comparing 32-Bit Interfaces and 64-Bit Interfaces
	3.1 Application Programming Interfaces
	3.2 Application Binary Interfaces
	3.3 Compatibility Between 32-Bit Applications and 64-Bit Applications
	3.3.1 Application Binaries
	3.3.2 Application Source Code
	3.3.3 Device Drivers

	3.4 Show That 64-Bit and 32-Bit Applications Run on Your Oracle Solaris 11 System

	Chapter 4 • Converting Applications
	4.1 Overview of the Data Model Differences
	4.2 Implementing Single Source Code
	4.2.1 Feature Test Macros
	4.2.2 Derived Types
	4.2.3 sys/types.h Header File
	4.2.4 inttypes.h Header File
	4.2.4.1 Fixed-Width Integer Types
	4.2.4.2 Helpful Types Such as unintptr_t
	4.2.4.3 Constant Macros
	4.2.4.4 Limits in inttypes.h
	4.2.4.5 Format String Macros

	4.3 Finding Errors With lint
	4.4 Guidelines for Converting to LP64 Data Type Model
	4.4.1 Do Not Assume int and Pointers Are the Same Size
	4.4.2 Do Not Assume int and long Are the Same Size
	4.4.3 Sign Extension
	4.4.4 Use Pointer Arithmetic Instead of Integers
	4.4.5 Internal Data Structures
	4.4.6 Check Unions
	4.4.7 Specify Constant Types
	4.4.8 Beware of Implicit Declaration
	4.4.9 sizeof unsigned long in LP64
	4.4.10 Use Casts to Show Your Intentions
	4.4.11 Check Format String Conversion Operation
	4.4.12 Compiling LP64 Programs

	4.5 Other Considerations When Converting to 64-bit
	4.5.1 Check for Derived Types That Have Grown in Size
	4.5.2 Check for Side Effects of Changes
	4.5.3 Check Whether Literal Uses of long Still Make Sense
	4.5.4 Check Use #ifdef for Explicit 32-Bit Versus 64-Bit Prototypes
	4.5.5 Calling Convention Changes
	4.5.6 Algorithmic Changes

	4.6 Checklist for Converting to 64-bit
	4.7 Sample 64-Bit From 32-Bit Program

	Chapter 5 • 64-Bit Development Environment
	5.1 64-Bit Build Environment
	5.1.1 64-Bit Header Files
	5.1.2 32-Bit and 64-Bit Libraries

	5.2 Linking Object Files
	5.2.1 LD_LIBRARY_PATH Environment Variable
	5.2.2 $ORIGIN Keyword

	5.3 Packaging 32-Bit and 64-Bit Applications
	5.3.1 Placement of Libraries and Programs
	5.3.2 Packaging Guidelines
	5.3.3 Application Naming Conventions

	5.4 Debugging 64-Bit Applications

	Chapter 6 • Advanced Topics
	6.1 SPARC V9 ABI Features
	6.1.1 Stack Bias
	6.1.2 Address Space Layout of the SPARC V9 ABI
	6.1.3 Placement of Text and Data of the SPARC V9 ABI
	6.1.4 Code Models of the SPARC V9 ABI

	6.2 AMD64 ABI Features
	6.2.1 Address Space Layout for amd64 Applications

	6.3 Alignment Issues
	6.4 Interprocess Communication
	6.5 ELF and System Generation Tools
	6.6 /proc Interface
	6.7 Extensions to sysinfo() System Call
	6.8 libkvm and /dev/ksyms
	6.9 libkstat Kernel Statistics
	6.10 Changes to stdio
	6.11 Building FOSS on Oracle Solaris Systems
	6.12 Performance Issues
	6.12.1 64-Bit Application Advantages
	6.12.2 64-Bit Application Disadvantages

	6.13 System Call Issues
	6.13.1 EOVERFLOW Indicates System Call Issue
	6.13.2 ioctl() Does Not Type Check at Compile Time

	Appendix A • Changes in Derived Types
	Appendix B • Frequently Asked Questions (FAQ)
	Index

