Developing System Services in Oracle”
Solaris 11.3

Part No: E60814
September 2018

ORACLE

Developing System Services in Oracle Solaris 11.3
Part No: E60814
Copyright © 2015, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Référence: E60814
Copyright © 2015, 2018, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui I'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis a des restrictions d'utilisation et

de divulgation. Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence, transmettre,
distribuer, exposer, exécuter, publier ou afficher le logiciel, méme partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder a toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté a des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous
invite, le cas échéant, a lui en faire part par écrit.

Si ce logiciel, ou la documentation qui I'accompagne, est livré sous licence au Gouvernement des Etats-Unis, ou a quiconque qui aurait souscrit la licence de ce logiciel pour le
compte du Gouvernement des Etats-Unis, la notice suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas congu ni n'est destiné a étre
utilisé dans des applications a risque, notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou ce matériel dans le cadre
d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires a son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour des
applications dangereuses.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre a des marques appartenant a d'autres propriétaires
qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une
marque déposée de The Open Group.

Ce logiciel ou matériel et la documentation qui I'accompagne peuvent fournir des informations ou des liens donnant accés a des contenus, des produits et des services émanant de
tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée
dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient étre tenus pour responsables des pertes subies, des cofits occasionnés ou des
dommages causés par l'accés a des contenus, produits ou services tiers, ou a leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Acceés aux services de support Oracle

Les clients Oracle qui ont souscrit un contrat de support ont acceés au support électronique via My Oracle Support. Pour plus d'informations, visitez le site http://www.oracle.com/
pls/topic/lookup?ctx=acc&id=info ou le site http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs si vous étes malentendant.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Using This DOCUMENtAtIONccoiiiiiiiiiiiiie e e e e eaens 11
1 Introduction to Developing Service Management Facility Services 13
SMEF DOCUMENTALION ...uevtienitnennetneteieiei et et et et et et et et et eanetnereaneaneeneaneens 13

New Features in This Releasecouuiiiiiiiiiiiiiiiiiiii e 14
Service Management Privile@esoviuiiiiiiiiiiieiiie et e e e e e e v eaanas 14

2 Using SMF to Control Your Applicationcoiiiiiiiiiniiiin e 17
Creating an SIMF SEeIVICEicuiiuiiniiiiiiiiii ettt e e e enes 17
Creating an SMF Service Using the Service Bundle Generator Tool 19

Naming Services, Instances, Property Groups, and Properties 20

Property Group Types and Property TYPEScevuvevuverneeinreieiineeneeineenneennnens 21

Creating Service Instance Methodscccuvviieiiiiiiiiiiiii e 22

Service Development Best PractiCesccoviuuviuiiiiiiiniiniiiieiieeeeeee e, 24
Service Method Best PractiCesccuuiveiiriiiiniiiniiiiieeieeeieeeie e, 24

Provide DOCUMENTALION ..c..uiitniitieiiie ettt et et et e e e e e e eees 25

Validate the Service Manifestcceeuuviiiiiiiiiiieiiieeiiie e 26

Use Standard LOCAtIONSceuuuieinnieitiiiiieiii ettt e eeane 26
Converting a Run Control Script to an SMF SeIViCec.cevvuviineiinrieneeiieiinennnennnns 26

Vv How to Convert a Run Control Script to an SMF Serviceccccccveeueann. 27

Creating a Service Using Multiple Manifestscccvvueviiniiiniiiiiiniineneeeeen, 28

3 Creating a Service to Run Periodicallyoooiiiiiiiiii i 31
PeriodiC SEIVICES ...euniiiiiiiii ettt et et et e e e e e e eans 31
Creating a PeriodiC SeIVICEvivuiiiniiiiiieeieei et e e e e e e e et e e e e e e e e eenns 32
Specifying the periodic_method Elementccooeveiineiiniiineiineinneinnennnnnn. 33

Storing Periodic Service Data in the Service Configuration Repository 35

Creating a Periodic Service Using the Service Bundle Generator Tool 37

Contents

Scheduling Executions of a Periodic Service Start Methodcccvviiviiiinrennnnns 38
Scheduling After Instance is Initially Enabledcccccoeviiiiiiiiiiiiiniinnnnns 39
Scheduling After Systemn DOWNHIMEcceuuiiiiieiiiiiiiieeiiiee e eeeieeeiaae 39
Scheduling After Service RESLArtovevuniiiiireiiineiiieeeiieeeieeiie e e eeannaas 40
Scheduling After Start Method Problemsccccovviviiiiiniiiniiiniieeieeene, 40

4 Creating a Service to Run on a Specific Schedule 43

Scheduled ServiCesco.iiiiiiiiii e 43

Creating a Scheduled SeIVICEcviuuiiuiiieiieeie et e e e e e e e e e e e e e aaanas 44
Specifying the scheduled method Elementcc.cccuuviiiiiiiiinieiineeiineeennnns 44
Storing Scheduled Service Data in the Service Configuration Repository 48
Creating a Scheduled Service Using the Service Bundle Generator Tool 49

Scheduling Executions of a Scheduled Service Start Methodccoeeiiiiiinnnie. 50
Scheduling One Invocation Per Intervalccocooviiiiiiiiiiiiiniiiniineeen, 50
Scheduling One Invocation Per Multiple Intervalsccoceveiiviiiiinrinnnnnnns 51
Scheduling Invocations at Irregular Intervalsccocoveeiiiiiiiiiiiiieinnennnes 51
Resolving Multiple Possible Invocations in One Intervalccccciveuienn.e. 54
Scheduling After System DOWNLIMEcvuviniiiniiiiieieeieineeeeieeieeaeennens 54
Scheduling After Service ReStartccouiviiuiiiiiiniiiiieiiie et 55
Scheduling After Start Method Problemsccoviviiiiiiniiiineiiineiieeiins 55

5 Creating Services to Manage Oracle Database Instances 57

Configuring the ENVIFONIMENtccuuuiiitiiiiieiiie ittt e e e 57

Creating a Service to Start or Stop an Oracle Database Instanceccc.ccceeeunee.. 58
Database Instance Control Service Manifestccooveevuiieiinieiiiieiiineennneenn. 58
Start/Stop Method Script for the Oracle Database Instance Control Service 60
Add Database Service INStanCescuuveuuierneirieiineiieeieeieeireeireeneennenns 62

Creating an Oracle Database LiStener SeIrviCecceeueveuveuneinrerneeinneeneenneenneenns 63
Listener Service Manifestccuuiiiuieiiiiiiieiie e 63
Add Listener Service INSLANCeSc.oeeuniiuriinreinieiieieiieieeie e eieenneenns 65

6 Using a Stencil to Create a Configuration Fileccoooiiiiiiinin, 67

Creating a StenCil SEIVICEcuuiiiuiiiiiiiieii e 67
Vv How to Create a Stencil Servicecooooveiiiiiiiiiiiiniiniiieieeeen 68

Puppet SteNCIl SEIVICE ...uvveiiiiiieiiee et e e e e e e e e e e e e een e eaneeaneees 69
High Level View of Puppet Servicesccceueiiuiiiiiiiiiiiiieineeiiieecieeeiies 69

6 Developing System Services in Oracle Solaris 11.3 « September 2018

Contents

Initial Puppet Configuration Fileccccoiiiiiiiiiiiiiiiiiiii e 69

Puppet StenCil File ...c.uiivniiiiiiiiie e 70

Modifying the Puppet Configuration Filecccooiiiiiiiiiiiiiiiiiiiii, 71

Kerberos Stencil SErvICecouviiuiiiiiiiiiiiie e 73
INdEX ..o 75

Developing System Services in Oracle Solaris 11.3 « September 2018

Examples

EXAMPLE 1
EXAMPLE 2
EXAMPLE 3
EXAMPLE 4
EXAMPLE 5
EXAMPLE 6

Automatically Installing a Generated Manifestccoccevvvviivennennnne. 20
Periodic Service Manifestooeeuiviiiiiiiiiniiiiicie e, 32
Scheduled Service Manifestcoceoviuiiiiiiiiiiiiieeie e, 44
Invoking Every TWelve HOUIScvvuiiiiiieiiieiieeiein e e eeereereeneeanas 51
Invoking Daily at 03:00 and 23:00c.oeeuviiniiiieiiiiieireie e, 52
Invoking at 03:00 and 23:00 on Tuesday and Thursdayc.cccevvnnennns 53

10 Developing System Services in Oracle Solaris 11.3 « September 2018

Using This Documentation

m Overview — Describes how to use the Oracle Solaris Service Management Facility (SMF)
feature. SMF is one of the components of the wider Oracle Solaris Predictive Self Healing
capability.

= Audience — System administrators and application developers who create custom services
to configure applications

= Required knowledge — Experience administering Oracle Solaris systems

Product Documentation Library

Documentation and resources for this product and related products are available at http://www.
oracle.com/pls/topic/lookup?ctx=E53394-01.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

Using This Documentation 11

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01
http://www.oracle.com/goto/docfeedback

12 Developing System Services in Oracle Solaris 11.3 « September 2018

* e CHAPTER 1

Introduction to Developing Service Management
Facility Services

The Oracle Solaris Service Management Facility (SMF) framework manages system and
application services. SMF manages critical system services essential to the working operation
of the system and manages application services such as a database or Web server.

SMF replaces the use of configuration files for managing services and is the recommended
mechanism to use to start applications. SMF replaces the init scripting start-up mechanism,
inetd.conf configurations, and most rc?.d scripts.

This chapter describes:

= Where to get more information about SMF
m New features in this release
= How to gain privileges you need to use some SMF commands

SMF Documentation

This guide describes how to develop an SMF service to provide service support for your
application, including the following topics:

m Using the service creation tool.

® Converting inetd. conf configurations to SMF services.

m Converting SMF service properties to configuration files. This mechanism provides a
bridge for services that are managed by SMF but interact with applications that still require
configuration files.

® (Creating a service that runs periodically rather than continuously, similar to a cron job.

See Managing System Services in Oracle Solaris 11.3 for the following information:

m Information for system administrators such as inspecting and changing service property
values, enabling service instances, troubleshooting installed services.

Chapter 1 « Introduction to Developing Service Management Facility Services 13

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVF

New Features in This Release

m Descriptions of concepts and components such as service states, service models, service
restarters, service properties, service bundles, and service configuration repository.

m Descriptions of different types of dependencies and their attributes and effects.
= How to create a new instance of an existing service or modify an existing service instance.

The following resources provide additional examples of creating and delivering services to
perform tasks such as application configuration:

m Chapter 7, “Automating System Change as Part of Package Installation” in Packaging and
Delivering Software With the Image Packaging System in Oracle Solaris 11.3

m Chapter 8, “Advanced Topics For Package Updating” in Packaging and Delivering
Software With the Image Packaging System in Oracle Solaris 11.3.

New Features in This Release

The following SMF features are new in this release:

Periodic services

In contrast to running persistently, a periodic service runs at scheduled intervals.

Method source

Service methods can be written in Python and other languages.

Service Management Privileges

14

Exporting and developing service manifests and profiles does not require special privilege.
Using the svccfg and svcadm commands to modify service state and configuration requires
increased privilege. Use one of the following methods to gain the privilege you need. See
Securing Users and Processes in Oracle Solaris 11.3 for more information about roles

and profiles, including how to determine which role or profile you need and how to assign
privileges.

Roles

Use the roles command to list the roles that are assigned to you. Use the su command with
the name of the role to assume that role. As this role, you can execute any commands that
are permitted by the rights profiles that are assigned to that role. For example, if the role is

Developing System Services in Oracle Solaris 11.3 « September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=PKDEVpkgsmf
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=PKDEVpkgsmf
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=PKDEVpkgadvupdate
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=PKDEVpkgadvupdate
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUP

Service Management Privileges

assigned the Service Configuration rights profile, you can execute the svccfg and svcadm
commands modify service properties and change service state.

Rights profiles

Use the profiles command to list the rights profiles that are assigned to you. Use one
of the following methods to execute commands that your rights profiles permit you to
execute:

® Use a profile shell such as pfbash or pfksh.

® Use the pfexec command in front of the command that you want to execute. In general,
you must specify the pfexec command with each privileged command that you
execute.

Authorizations

See the smf_security(5) man page for detailed information about authorizations required
for SMF operations. If the Service Configuration rights profile is not sufficient to manage a
particular service, inspect the service for the following properties:
® The action authorization, modify authorization, read authorization, and
value authorization properties specify required authorizations. Individual services
can require their own particular authorizations.

® Properties of the method property group can specify requirements to run the method
such as the user and privilege set.

sudo command

Depending on the security policy at your site, you might be able to use the sudo command
with your user password to execute a privileged command.

If you need to require specific privileges of administrators who want to use the service you
develop, see “Securing Service Tasks” on page 23.

Chapter 1 « Introduction to Developing Service Management Facility Services 15

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5smf-security-5

16 Developing System Services in Oracle Solaris 11.3 « September 2018

¢ e CHAPTER 2

Using SMF to Control Your Application

This chapter presents the following information that applies to all SMF services:

= Naming rules and data type definitions
m Best practices such as storing service files in standard locations
m Service development troubleshooting information

This chapter also describes how to use the svcbundle tool to get started creating a new service
and how to convert a run control script to an SMF service.

Subsequent chapters discuss creating specific types of services for specific purposes.

Creating an SMF Service

An SMF service consists of one or more service manifests and zero or more profile files.
Service instances define methods to perform the work of the instance.

A service manifest contains the complete set of properties associated with a specific service,
including instances, dependencies, application configuration properties, and methods to run
when the service starts and stops. Manifests also provide template information such as a
description of the service.

Profiles can define instances for a service that is already defined in a manifest. Profiles can
define new properties for these service instances and new values for properties that are defined
in the service manifest. Profiles cannot define template elements.

See the service bundle(4) man page and the /usr/share/lib/xml/dtd/

service bundle.dtd.1 service bundle DTD for a complete description of the contents
and format of SMF manifests and profiles. See also “Naming Services, Instances, Property
Groups, and Properties” on page 20 for naming rules and information about assigning
property group types, and see “Property Group Types and Property Types” on page 21 for
information about the values of different property types.

Chapter 2 « Using SMF to Control Your Application 17

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN4service-bundle-4

Creating an SMF Service

18

A method can be a daemon, other binary executable, or an executable script. See “Creating
Service Instance Methods” on page 22 for more information.

You can use multiple manifests to describe a single service. This method can be useful, for
example, to define a new instance of a service without modifying the existing manifest for
the service. See “Creating a Service Using Multiple Manifests” on page 28 for more
information.

Use the following best practices when creating a custom service:

®m Use the site prefix in the service name as described in “Service Names” in Managing
System Services in Oracle Solaris 11.3. The site prefix is reserved for site-specific
customizations. A service named svc:/site/service-name will not conflict with the
services delivered in an Oracle Solaris release.

= Add name and description metadata to your manifests so that users can get information
about this service from the svcs and svccfg describe commands. You can also add
descriptions of property values. See the value, values, and template elements in the DTD.

® Use the svccfg validate command to validate your service manifest file or service
instance FMRI.

® Use the smf_method exit() function to document the successful or unsuccessful exit of a
method script in the log file of the service instance.

= Store your manifest, profile, and method files in the standard locations shown in the

following table.
TABLE 1 Standard Locations of Service Development Files
File Standard Location
manifest /lib/svc/manifest/site
profile /etc/svc/profile/site
method /lib/svc/method

Manifests and profiles stored in these locations are imported into the service configuration
repository by the svc:/system/early-manifest-import:default service during the boot
process before any services start. Running the import process early ensures that the repository
will contain information from the latest manifests before the services are started. Manifests and
profiles stored in these standard locations are also imported when the svc:/system/manifest-
import service is restarted.

With your manifest, profile, and method files in standard locations, restart the manifest-import

service to install and configure your service instances. Use the svcs command to check the
status of your service instances.

Developing System Services in Oracle Solaris 11.3 « September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFeqbuc
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFeqbuc

How to Create an SMF Service Using svcbundle

Creating an SMF Service Using the Service Bundle
Generator Tool

You can use the svcbundle service bundle generator tool to create a simple service or to start a
more complex service. For more information, see the svcbundle(1M) man page. You can use
the service bundle DTD and other service manifests to complete a more complex service.

How to Create an SMF Service Using svcbundle

Note - Do not use this procedure if you are creating a periodic service. See “How to Create a
Periodic Service Using svcbundle” on page 37.

Determine the service model.

By default, svcbundle creates a transient service. Determine whether the start method script
for this service starts any long-running daemon and therefore this service is a contract service.
See “Service Models” in Managing System Services in Oracle Solaris 11.3, the model property
in the svcbundle(1M) man page, and the startd/duration property in the svc.startd(1M)
man page for information about service models.

Copy the script to the standard location.

The service in this example uses a custom script named ex_svc as the start method. Copy this
script to /1ib/svc/method/ex_svc.

Create an initial manifest.

In this example, the service name is site/ex_svc. This service is a transient service and does
not need a stop method.

$ svcbundle -o /tmp/ex_svc.xml -s service-name=site/ex_svc \
-s start-method=/1ib/svc/method/ex_svc

If this service were a contract service, you would specify contract or daemon as the value of
the model or duration property, as in -s model=contract.

Make any necessary changes to the manifest.

Verify that the content of the /tmp/ex_svc.xml manifest is what you need. You might need to
add a dependency or adjust the method timeout, for example. Add comments to describe what
the service does and how the properties of the service are used.

Verify that the manifest is valid.

Chapter 2 « Using SMF to Control Your Application 19

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Msvcbundle-1m
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFsvcmodels
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Msvcbundle-1m
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Msvc.startd-1m

How to Create an SMF Service Using svcbundle

Use the svcefg validate command to ensure the service manifest is valid.

$ svccfg validate /tmp/ex_svc.xml

6. Copy the manifest to the standard directory.

$ cp /tmp/ex_svc.xml /lib/svc/manifest/site/ex_svc.xml

7. Import the manifest and start the service.

$ svcadm restart manifest-import

8. List the new service.

Verify that the new service exists and is in the expected state.

$ SVCS ex-svc

Example 1 Automatically Installing a Generated Manifest

If you do not need to make any changes to the new service manifest, you can use the -i option
to install the manifest as soon as it is created. The svcbundle command will write the manifest
to /lib/svc/manifest/site and restart the manifest-import service. Any existing file with
the same name in the /1ib/svc/manifest/site directory will be overwritten.

$ svchbundle -i -s service-name=site/ex_svc \
-s start-method=/1ib/svc/method/ex_svc

Naming Services, Instances, Property Groups, and
Properties

Service names, instance names, property group names, and property names must fit the
following expression:

([A-Za-z][A-Za-z0-9.-1*,)?[A-Za-z][A-Za-z0-9-1*

A service name, instance name, property group name, or property name is case sensitive, must
begin with an alphabetic character, and can contain alphanumeric characters, the underscore (),
and the hyphen (-). Optionally, a provider name can be included at the beginning of the service,
instance, property group, or property name. The provider name is separated by a comma (),
must begin with an alphabetic character, and can contain one or more periods (.).

20 Developing System Services in Oracle Solaris 11.3 « September 2018

How to Create an SMF Service Using svcbundle

In an FMRI, property group and property names are encoded according to the Uniform
Resource Identifier (URI) Generic Syntax RFC 3986 Internet standard except that the comma
character is not encoded.

The following example shows a full FMRI for a property: the FMRI of the service instance,
followed by /:properties/, followed by the name of the property. You can use the - f option
of the svcprop command to show the full FMRI of a property.

svc:/application/pkg/server:default/:properties/pkg/port

For information about service FMRIs, see “Service Names” in Managing System Services in
Oracle Solaris 11.3.

Property Group Types and Property Types

A property group type is a category for the property group. Property group types include the
following:

application
configfile
dependency
framework
implementation
method
template

You can introduce a new property group type. The name of a property group type is a free form
string no longer than 140 characters.

When you create a property group, the type of the property group should be either application
or a new type that you created. The property group types configfile, dependency, framework,
implementation, method, and template have special use in SMF. Property groups of type
application are expected to be of interest only to the service to which this property group is
attached.

The following table describes the possible values for properties of various types. This
information is also available from the scf value create(3SCF) man page.

TABLE 2 Service Property Type Value Descriptions
Property Type Value Description
boolean Single bit: true or false
count Unsigned 64-bit quantity

Chapter 2 « Using SMF to Control Your Application 21

http://datatracker.ietf.org/doc/rfc3986/?include_text=1
http://datatracker.ietf.org/doc/rfc3986/?include_text=1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFeqbuc
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFeqbuc
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Iscf-value-create-3scf

How to Create an SMF Service Using svcbundle

22

Property Type Value Description

integer Signed 64-bit quantity

time Signed 64-bit seconds or signed 32-bit nanoseconds (ns) in the following range:
0 <= ns < 1,000,000,000

astring An 8-bit NULL-terminated string

ustring An 8-bit UTF-8 string

uri A URI string

fmri A Fault Management Resource Identifier

host A host name, an IPv4 address, or an IPv6 address

hostname A fully qualified domain name

net addr A valid net_addr v4 or net_addr v6 address

net_addr_v4 A dotted-quad IPv4 address with optional network portion

net_addr_v6 A legal IPv6 address with optional network portion

Creating Service Instance Methods

A start method performs the work of the service instance. Other methods perform tasks
necessary to disable or refresh a service instance, for example.

In a service manifest or profile, a method is defined in an exec_method element that includes
name and exec attributes. Possible values for the name attribute are provided in the restarter man
page. For example, the master restarter, /1ib/svc/bin/svc.startd, supports start, stop, and
refresh methods as described in the svc.startd(1M) man page.

There is no restart method. The svcadm restart and svccfg restart commands run the
stop method and then the start method.

The exec attribute defines what the method will execute. Possible values for the exec attribute
include a custom method script, an existing executable, or a special token defined in SMF, as
shown in the following examples:

exec='/lib/svc/method/tcsd.sh start'

By convention, a custom script as shown in this example takes an argument that specifies
the value of the name attribute of the method. In this way, the same script can be used for all
methods of that service instance.

exec='/usr/lib/zones/zonestatd’

This example specifies an existing executable.

Developing System Services in Oracle Solaris 11.3 « September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Msvc.startd-1m

How to Create an SMF Service Using svcbundle

exec=':true'
exec="':kill'
The tokens :kill and : true are explained in the smf method(5) man page. The :true

token should be used for methods that are required by the restarter but that are not
necessary for the particular service instance implementation.

The :kill token causes all processes in the primary service contract to be terminated and
therefore is most appropriate for a stop method. In general, a refresh method should
not be : kill unless the processes in the contract are programmed to handle those signals
gracefully.

Service Method Scripts

A method that is a script can be a Bourne shell compatible script or a Python script, for
example.

® The file /l1ib/svc/share/smf_include.sh defines many helper functions for Bourne shell
compatible method scripts.

® The file /usr/1lib/python-version/vendor-packages/smf include.py defines many helper
functions for Python method scripts, including the following functions that are unique for
Python:

® smf subprocess() — Starts the specified executable in a subprocess. The process can
return immediately, enabling the instance to act as a contract service.

®m smf main() — Calls the appropriate function from the method script using frame
inspection. See the comments in the /usr/1lib/python-version/vendor-packages/
smf_include.py file.

®m The file /lib/svc/share/smf_exit codes.sh defines method exit codes.

Use the smf _method exit() function to document the exit of a method script in the log file
of the service instance. The smf_method exit () function takes an exit code, a token that
summarizes the exit reason, and a string that can describe the exit in greater detail. See the
smf_method exit(3SCF) man page for the syntax of the smf_method exit() function. See
/lib/svc/share/smf _exit codes.sh for the list of exit codes.

Securing Service Tasks

Use any of the following options to restrict which users can run a service or which privileges a
user must have to run a service:

Chapter 2 « Using SMF to Control Your Application 23

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5smf-method-5
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Ismf-method-exit-3scf

Service Development Best Practices

m Use * authorization properties to specify authorizations that are required to read property
values, modify service properties and property values, and perform actions on services. See
the smf security(5) man page for more information.

® Use the method_credential element of the method_context property group to specify
requirements as values of the following properties. All of these properties are optional, but
at least one of these properties must be set if you specify a method credential element:
® yser. The user ID in numeric or text form. If absent or :default, uid O and default
home directory / are used.
= group. The group ID in numeric or text form. If absent or :default, the group
associated with the user in the passwd database is used.

= supp_groups. Supplementary group IDs to be associated with the method, separated by
commas or spaces. If absent or :default, initgroups(3C) is used.

® privileges. A comma-separated list of privileges. See the privileges(5) man page.

® limit privileges. A comma-separated list of privileges. See the privileges(5) man
page.

In Chapter 5, “Creating Services to Manage Oracle Database Instances”, the instance
control service and the listener service specify that the service must be run by user oracle
in group oinstall.

The network/ntp service shows a list of required authorizations as the value of the
privileges property.
The network/physical service shows the use of the supp groups property.

m Specify a rights profile for the method to use. See the MySQL and Apache examples in
“Locking Down Resources by Using Extended Privileges” in Securing Users and Processes
in Oracle Solaris 11.3.

Service Development Best Practices

24

Follow the guidelines described in this section as you develop your service.

Service Method Best Practices

Follow the guidelines described in this section as you develop your service start method or
other service methods.

Developing System Services in Oracle Solaris 11.3 « September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5smf-security-5
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-lockdown-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-lockdown-1

Service Development Best Practices

Use SMF Method Exit and Useful Exit Reason

Services are expected to return a successful status when they have completed initialization and
are ready to provide the service.

To exit your start method, use smf method exit(); do not use exit(). The
smf method exit() interface requires the following arguments:

® One of the method exit codes defined in /1ib/svc/share/smf_exit_codes.sh or in the
smf_method(5) man page

m A short explanation of the reason for exiting

m A longer explanation of the reason for exiting

Make sure that error messages are informative, including guidance for resolving the problem.
You might need to capture messages or other information from commands called by your
method. If your method is an existing executable, you might want to call that executable
inside a method script to improve the exit messaging. The system administrator will see these
messages in the service log file.

See the smf method exit(3SCF) man page for more information.

Use Dependencies, Avoid Using Timeouts

Do not exit your start method until initialization of the service is complete. If you exit your start
method before service initialization is complete, services that depend on this service cannot be
started.

Set appropriate values for timeout seconds properties to avoid failing solely because more
time is needed to complete the method tasks.

Do not use timeout seconds values or any other kind of timeout or wait to allow enough time
for dependencies to reach the online state. Instead, declare dependencies appropriately. In
addition to allowing enough time for dependencies to start, if a service on which this service
has a require dependency fails, then this service should fail with appropriate messages and not
continue to wait for the failed dependency to start. Again, appropriately declared dependency
elements are the correct implementation. See “Showing Service Dependencies” in Managing
System Services in Oracle Solaris 11.3 and the "Dependencies" section of the smf(5) man page.

Provide Documentation

Provide appropriate template information as described in the smf_template(5) man page.
Administrators can use the svccfg describe command to view this information.

Chapter 2 « Using SMF to Control Your Application 25

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5smf-method-5
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Ismf-method-exit-3scf
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFviewdeps
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFviewdeps
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5smf-5
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5smf-template-5

Converting a Run Control Script to an SMF Service

m Provide a short common name for the service as described in "Service and Instance
Common Names" in the smf_template(5) man page.

m Reference appropriate man pages (manpage element) or stable URLs (doc_link element) for
more information.

m Provide names, descriptions, choices, and constraints for property groups and properties that
are specific to this service.

Validate the Service Manifest

Use the svccfg validate command to validate your service manifest.

If the svccfg validate command fails with the error "Required property group missing",
you might be attempting to validate a partial manifest. Specification of a single service can be
spread across multiple manifests. To avoid this error, make sure all manifests for a multiple-
manifest service specify the include property in the service bundle element as described in
“Creating a Service Using Multiple Manifests” on page 28.

Use Standard Locations

Copy your service manifests and profiles to standard locations with standard ownership and
permissions. Do not use non-standard locations for manifest and profile files. See “Service
Bundles” in Managing System Services in Oracle Solaris 11.3 or Table 1, “Standard Locations
of Service Development Files,” on page 18 for manifest and profile standard locations.

When you create a service for your own use, use site at the beginning of the service name
(svc:/site/service-name:instance-name), and place the manifest in /1ib/svc/manifest/
site.

To test your service, place the manifest and any associated profiles in the correct standard
locations and restart the manifest-import service. See Chapter 5, “Configuring Multiple
Systems” in Managing System Services in Oracle Solaris 11.3 and “Repairing an Instance That
Is Degraded, Offline, or in Maintenance” in Managing System Services in Oracle Solaris 11.3
for related information.

Converting a Run Control Script to an SMF Service

This section describes how to replace a run control script with an SMF service manifest so that
the run control service can be managed by SMF.

26 Developing System Services in Oracle Solaris 11.3 « September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFbundles
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFbundles
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFmultisyscfg
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFmultisyscfg
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFmaintenanceadm
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFmaintenanceadm

How to Convert a Run Control Script to an SMF Service

How to Convert a Run Control Script to an SMF
Service

This procedure describes how to use the rc-script property with the svcbundle command to
convert a run control script to an SMF service.

Determine the service model.

By default, svcbundle creates a transient service. Determine whether this run control script
starts any long-running daemon and therefore this service is a contract service. See “Service
Models” in Managing System Services in Oracle Solaris 11.3, the model property in the
svcbundle(1M) man page, and the startd/duration property in the svc.startd(1M) man
page for information about service models.

Create an initial manifest.

To convert a run control script, use the rc-script property name with the -s option of the
svcbundle command. See the rc-script property in the svcbundle(1M) man page for more
information or enter svcbundle help rc-script.

In this example, the service name is ex_con and is a contract service that runs at level 2. The
run level is specified after a colon after the script name in the rc-script property value.

$ svcbundle -o /tmp/ex_con.xml -s service-name=ex_con
-s rc-script=/etc/init.d/ex_con:2 -s model=contract

Make any necessary changes to the manifest.

Verify that the content of the /tmp/ex_con.xml manifest is what you need. You might need to
add a dependency or adjust the method timeout, for example. Add comments to describe what
the service does and how the properties of the service are used.

Verify that the manifest is valid.
Use the svccfg validate command to ensure the service manifest is valid.

$ svccfg validate /tmp/ex_con.xml
Copy the manifest to the standard directory.
$ cp /tmp/ex_con.xml /lib/svc/manifest/site/ex_con.xml

Stop the existing service.

$ /etc/init.d/ex_con stop

Disable the run control script.

Chapter 2 « Using SMF to Control Your Application 27

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFsvcmodels
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFsvcmodels
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Msvcbundle-1m
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Msvc.startd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Msvcbundle-1m

Creating a Service Using Multiple Manifests

Remove any links to the run control script from the appropriate rcn.d directories.
Import the manifest and start the service.
$ svcadm restart manifest-import

List the new service.
Verify that the new service exists and is in the expected state.

$ svcs ex-con

Creating a Service Using Multiple Manifests

28

If a new package requires a custom configured instance of a service, that package can deliver
just the custom instance without modifying any other service.

Using multiple manifests to define a service enables you to deliver service instances only as
needed and without modifying the parent service. For example, if instance I of service S is only
needed by tool T, then tool T can deliver instance I without redelivering service S. Then if tool
T is not installed on the system, instance I also is not installed, even if service S is installed.
Similarly, if tool T is uninstalled, instance I is uninstalled, leaving service S still installed and
unmodified. Specify service S in one manifest and instance I in a separate manifest. Deliver the
service S manifest in one package, and deliver the instance I manifest in the tool T package.
The tool T package has a dependency on the package that delivers service S.

If you use multiple manifests to specify a single service, use the following service manifest
design:

m In one manifest, include the service definition, template data, and a default instance.
m In each manifest that defines additional instances of the service, include the following:

® Specify the same service bundle element as in the manifest that contains the service
definition, and then add the include attribute. The value of the include attribute is the
full file name of the manifest that contains the service definition.

m Specify the same service element as in the manifest that contains the service definition.
The value of the name attribute in the service element is exactly the same as in the
manifest that contains the service definition.

= Do not deliver the same service or instance in multiple manifests, When this type of conflict
is detected, SMF cannot determine which definitions to use, and the instance is placed in the
maintenance state.

An example of a service that is delivered in multiple manifests is the svc:/system/console-
login service. The console-login service includes the following instances and manifests:

Developing System Services in Oracle Solaris 11.3 « September 2018

Creating a Service Using Multiple Manifests

svc:/system/console-login:default

The manifest /1ib/svc/manifest/system/console-login.xml delivers the service
definition, the templates, and the default instance.

svc:/system/console-login:terma

The manifest /1ib/svc/manifest/system/console-login-terma.xml delivers the terma
instance of the console-1login service.

svc:/system/console-login:termb

The manifest /1ib/svc/manifest/system/console-login-termb.xml delivers the termb
instance of the console-1login service.

svc:/system/console-login:vt?

The manifest /1ib/svc/manifest/system/console-login-vts.xml delivers the vts
instances of the console-1login service.

The manifest that contains the service definition, /lib/svc/manifest/system/console-
login.xml, contains the following lines:

<service bundle type="manifest" name="SUNWcs:console">

<service
name="system/console-login"
type="service"
version="1">

<instance name='default' enabled='true'>
</instance>

The manifest that defines additional instances vt2, vt3, vt4, vt5, and vt6, /1ib/svc/
manifest/system/console-login-vts.xml, contains the following lines:

<service bundle type="manifest" name="SUNWcs:console"
include="/1ib/svc/manifest/system/console-login.xml">

<service
name="system/console-login"
type="service"
version="1">

<instance name='vt2' enabled='true'>
<dependency

name='system-console'
grouping="'require _all'

Chapter 2 « Using SMF to Control Your Application 29

Creating a Service Using Multiple Manifests

restart_on='none'

type='service'>

<service fmri value='svc:/system/console-login:default' />
</dependency>

</instance>

The definitions of instances vt3, vt4, vt5, and vt6 contain the same dependency on console-
login:default as shown for the vt2 instance.

The svcs command output displays the dependency relationships, as shown in the following
examples:

$ svcs 'svc:/system/console-login:vt*'

STATE STIME FMRI

online Dec_ 04 svc:/system/console-login:vt3
online Dec_ 04 svc:/system/console-login:vt5
online Dec_ 04 svc:/system/console-login:vt2
online Dec_ 04 svc:/system/console-login:vt4
online Dec_ 04 svc:/system/console-login:vt6

$ svcs -D console-login:default

STATE STIME FMRI

online Dec_ 04 svc:/system/vtdaemon:default
online Dec_ 04 svc:/system/console-login:vt3
online Dec_ 04 svc:/system/console-login:vt5
online Dec_ 04 svc:/system/console-login:vt2
online Dec_ 04 svc:/system/console-login:vt4
online Dec_ 04 svc:/system/console-login:vt6
online Dec 04 svc:/system/console-reset:default
$ svcs -d 'svc:/system/console-login:vt*'

STATE STIME FMRI

online Dec 04 svc:/system/console-login:default
online Dec_ 04 svc:/system/vtdaemon:default

The default, terma, and termb instances are delivered by the system/core-os package. The
vts instances are delivered by the system/virtual-console package. The system/virtual-
console package contains a require dependency on the system/core-os package to ensure
that the console-login:default instance exists.

If a service has only one instance, best practice is to use a single manifest to specify the service:
Define the one instance in the manifest that contains the service definition.

30 Developing System Services in Oracle Solaris 11.3 « September 2018

* e CHAPTER 3

Creating a Service to Run Periodically

This chapter describes how to create a service that runs a relatively short task at regular
intervals. This chapter describes:

m Periodic service definition
= How to create a periodic service

= How to specify the execution schedule of a periodic service

Periodic Services

Most system services are implemented as long-running daemons and run until an administrator
intervenes. A periodic or scheduled service runs a relatively short task at regular intervals. A
scheduled service is a type of periodic service. See Chapter 4, “Creating a Service to Run on a
Specific Schedule” for more information about scheduled services.

You might want to create a periodic service to perform a task that you previously would have
configured cron to perform. One advantage of using an SMF service and delivering the service
in an IPS package is that you can take advantage of SMF and IPS dependency features to ensure
the task only runs when other required software is installed and running. Another advantage is
that when the user uninstalls the package, the periodic task is removed and does not need to be
separately removed from a crontab file.

A periodic service instance is managed by the periodic restarter, svc.periodicd, which

is invoked by the svc:/system/svc/periodic-restarter service at system startup. The
periodic restarter runs the start method for the instances it manages at scheduled intervals
whenever the instance is in the online state. A periodic instance that is enabled transitions
to the online state as soon as all of the dependencies of the instance are met. If no errors or
administrative interventions occur, the periodic service remains in the online state between
runs of the start method, when no processes associated with the method are running. See the
svc.periodicd(1M) man page for more information.

Chapter 3 « Creating a Service to Run Periodically 31

Creating a Periodic Service

Creating a Periodic Service

A periodic service manifest is very simple, as shown in the following example. See also
“Creating a Periodic Service Using the Service Bundle Generator Tool” on page 37.

EXAMPLE 2 Periodic Service Manifest

The periodic service instance is completely defined in the periodic_method element. For this
example service, the periodic restarter executes the start method every 30-35 seconds after
an initial delay of 15 seconds. The template element is recommended to help administrators

understand the purpose of this periodic service.

<?xml version='1.0'7?>
<!DOCTYPE service bundle
SYSTEM '/usr/share/lib/xml/dtd/service bundle.dtd.l'>
<service bundle type='manifest' name='site/sample-periodic-svc'>
<service type='service' version='l' name='site/sample-periodic-svc'>

<instance name='default' enabled='false'>

<periodic_method

period="'30"
delay="'15"
jitter='5"

exec='/usr/bin/periodic_service method'
timeout seconds='0'>
<method_context>
<method credential user='root' group='root' />
</method_context>
</periodic_method>

</instance>

<template>
<common_name>
<loctext xml:lang="C">
Sample Periodic Service
</loctext>
</common_name>
<description>
<loctext xml:lang="C">
What this service does periodically.
</loctext>
</description>
</template>

32 Developing System Services in Oracle Solaris 11.3 « September 2018

Creating a Periodic Service

</service>
</service bundle>

Specifying the periodic_method Element

When a periodic_method element exists, the instance is automatically delegated to the periodic
restarter. The periodic method element can be specified within a service element or within
an instance element. The periodic_method element specifies both method and scheduling
information for periodic services and can have the attributes and elements described in this
section. The period and exec attributes are required.

Periodic Service Scheduling Constraints Attributes

The units for a time value are seconds, as shown in Table 2, “Service Property Type Value
Descriptions,” on page 21.

delay attribute

Optional. Value type: time. Default value: 0. The fixed number of seconds after the service
has transitioned to the online state before the first invocation of the start method.

period attribute

Required. Value type: time. The number of seconds between invocations of the start
method.

jitter attribute

Optional. Value type: time. Default value: 0. The maximum of a random number of
seconds after period before the start method is run. The final number of seconds that is
used ranges between 0 and the value of this property.

Other Periodic Service Scheduling Attributes

persistent attribute

Optional. Value type: boolean. Default value: false. Specifies whether scheduling should
be maintained across system downtime.

If the value is false, scheduling of the start method restarts as if the periodic service
instance has just transitioned to the online state after being enabled.

Chapter 3 « Creating a Service to Run Periodically 33

Creating a Periodic Service

34

If the value of the persistent attribute is true and the value of the recover attribute
(below) is false, scheduling of the start method for the instance emerging from downtime
continues on the same schedule that was defined before the downtime occurred.

If the value of the persistent attribute is true and the value of the recover attribute is
true, see the description of the recover attribute below.

recover attribute

Optional. Value type: boolean. Default value: false. Specifies whether the instance should
have a recovery execution if an invocation was lost during system downtime.

This value has effect only if the value of the persistent attribute for this instance is true.

If the value of the persistent attribute is true and the value of the recover attribute is
true, the periodic restarter invokes the start method for the instance as soon as possible as
the instance emerges from system downtime. Subsequent invocations occur according to
the period and jitter values.

If the value of the persistent property is true and the value of the recover property is
false, see the description of the persistent property above.

Periodic Service Start Method Attributes and Context

exec attribute

Required. Value type: astring. The action to take, which must be suitable to pass to the
exec system call. See the smf_method(5) man page.

This start method should perform a task and then terminate within the time specified by the
period attribute.

The SMF_EXIT TEMP TRANSIENT exit code does not apply to periodic service start methods
because the periodic restarter does not implement transient services. When used in a
periodic service start method, the SMF_EXIT TEMP_ TRANSIENT exit code is treated the same
as the SMF_EXIT ERR OTHER exit code.

Periodic service instances use only a start method. If any refresh or stop method is defined,
a warning message is issued at manifest import and the refresh or stop method is ignored.
When a periodic instance is refreshed, the periodic restarter rereads the values of the
properties in the periodic property group described in “Storing Periodic Service Data in
the Service Configuration Repository” on page 35. The periodic restarter does not need

a stop method because processes contracted by a periodic instance do not run persistently.
Periodic instances run short-lived processes and then wait until the next scheduled time to
run.

Developing System Services in Oracle Solaris 11.3 « September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5smf-method-5

Creating a Periodic Service

timeout seconds attribute

Optional. Value type: integer. The number of seconds to wait for the method action to
complete. Use a value of 0 or -1 to specify an infinite timeout.

The timeout seconds attribute value is required by the exec_method element. If you do
not specify a value for the timeout seconds attribute in this periodic method element,
the value for the exec_method element is assumed to be infinite. See “Scheduling After
Start Method Problems” on page 40 for a description of start method scheduling if

the start method runs longer than the specified timeout seconds value or if a contracted
process still exists when the periodic restarter attempts to invoke the start method for the
next period.

method context element

Optional. See the Method Context section of the smf _method(5) man page.

Storing Periodic Service Data in the Service
Configuration Repository

As described in “Specifying the periodic method Element” on page 33, the
periodic_method element provides both method information (an exec_method property group
for the start method) and scheduling information (a periodic property group) for periodic
services. When a manifest with a periodic method element is imported, the data described in
this section is stored in the service configuration repository.

Restarter Properties

The restarter for the service is set to svc:/system/svc/periodic-restarter:default.
Administrators can use the svcs -1 command to show the restarter or use the svccfg or
svcprop command to view the general/restarter property.

Because a periodic service instance remains online between invocations of the start method,
the instance can be in the online state with no associated contracted processes running on the
system. For an online periodic service instance, the auxiliary state property can have one of
the following values to distinguish whether the method action is running:

running The instance is online and has associated contracted processes.

scheduled The instance is online but has no associated contracted processes.

Chapter 3 « Creating a Service to Run Periodically 35

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5smf-method-5

Creating a Periodic Service

To check this state, administrators can use the svcs -o astate command to show the ASTATE
column or use the svccfg or sveprop command to view the general/auxiliary state
property.

periodic Property Group

The scheduling attributes of the periodic method element (period, delay, jitter,
persistent, and recover) are stored as properties of a property group named periodic. See
“Specifying the periodic_method Element” on page 33 for definitions of these attributes

and see “Scheduling Executions of a Periodic Service Start Method” on page 38 for

examples of how they are used. Administrators can use the svcprop and svccfg commands to
show and modify these periodic property group properties.

Last and Next Start Method Invocations

The service configuration repository also stores the following two pieces of scheduling
information for the instance:

last_run The absolute time of the last attempt to run the start method of this
instance. If the start method has never run, this property does not exist.
To check this time, administrators can use the svcs -0 lrun command to
show the LRUN column.

next_run The absolute time of the next attempt to run the start method of this
instance. If an absolute time does not exist, this property might be
absent or have no value. The value of next run is computed at the
time last_run is set and is the next scheduled start method invocation
as described in “Scheduling Executions of a Periodic Service Start
Method” on page 38, including the specific RAND (jitter) value for
that invocation. To check this time, administrators can use the svcs -
o nrun command to show the NRUN column. This time is managed
by the periodic-restarter service for each periodic service instance.
Administrators cannot modify this value.

start Property Group

The exec and timeout_seconds values and method_context information are stored as
properties of a property group named start. This start property group represents the start

36 Developing System Services in Oracle Solaris 11.3 « September 2018

How to Create a Periodic Service Using svcbundle

method for the periodic service and is defined in the same way as the start method for any other
service.

Creating a Periodic Service Using the Service
Bundle Generator Tool

When you use the svcbundle command to create a periodic service, you must specify the
period property as well as both the service-name and start-method properties. By default,
svcbundle creates a transient service. When you specify -s period, svcbundle creates a
periodic service.

How to Create a Periodic Service Using svcbundle

Copy the start method to the standard location.

In this example, the start method for this service is named per ex. Copy this executable to
/lib/svc/method/per_ex.

Create an initial manifest.

In this example, the service name is site/per_ex. Specify a period for the start method
scheduling. Do not specify any of the following properties: bundle-type, duration, model, rc-
script, refresh-method, or stop-method.

$ svcbundle -o /tmp/per_ex.xml -s service-name=site/per_ex \
-s start-method=/1ib/svc/method/per_ex -s period=30

When you specify the period property, svcbundle creates a periodic_method element, which
causes the restarter for the service to be set to the periodic restarter when the manifest is
imported. The value of the period property becomes the value of the period attribute of the
periodic_method element. The value of the start-method property becomes the value of the
exec attribute of the periodic method element.

Make any necessary changes to the manifest.

Verify that the content of the /tmp/ex_svc.xml manifest is what you need. You might want to
make changes such as the following:

® Add values for delay, jitter, and timeout_seconds in the periodic_method element.
® Add amethod context element in the periodic method element.

® Change the value of the enabled attribute of the default instance from true to false.

Add comments to describe what the service does and how the properties of the service are used.

Chapter 3 « Creating a Service to Run Periodically 37

Scheduling Executions of a Periodic Service Start Method

4. Verify that the manifest is valid.

Use the svccfg validate command to make sure the service manifest is valid.

5. Copy the manifest to the standard directory.

$ cp /tmp/per_ex.xml /lib/svc/manifest/site/per_ex.xml

6. Import the manifest and start the service.

$ svcadm restart manifest-import

7. List the new service.

Verify that the new service exists and is in the expected state.

$ svcs per_ex

Scheduling Executions of a Periodic Service Start Method

Scheduling executions of the start method of a periodic service instance (specified by the exec
attribute of the periodic_method element) always requires the value of the period attribute of
the periodic method element. Other attributes of the periodic method element might also be
used, and the next_run value might be used.

The scheduling attributes of the periodic_method element (period, delay, jitter,
persistent, and recover) are stored as properties of the periodic property group. For
example, the period attribute in the manifest becomes the periodic/period property when the
periodic service is imported. Administrators can use the svcpropand svccfg commands to view
property values in the periodic property group and can use the svccfg command to modify
these values.

The period property must have a valid value. The jitter, delay, persistent, and recover
properties have default values and are not required to be explicitly set. The units for a time

value are seconds, as shown in Table 2, “Service Property Type Value Descriptions,” on page
21.

In the following scheduling descriptions, italic type indicates the value of the property. For
example, jitter is the value of the periodic/jitter property in the service configuration
repository, which is the same as the value of the jitter attribute of the periodic_method
element in the service manifest.

38 Developing System Services in Oracle Solaris 11.3 « September 2018

Scheduling Executions of a Periodic Service Start Method

Scheduling After Instance is Initially Enabled

When a periodic service instance is initially enabled (for example at system boot), the first
execution of the start method of the instance occurs at the following number of seconds after the
instance transitions to the online state:

delay + RAND (jitter)
Subsequent executions of the start method of the instance occur at the following relative time:
period + RAND (jitter)

To prevent schedule drift, subsequent executions ignore the jitter value of previous executions.
For example, the second execution of the start method of an instance occurs at the following
number of seconds after the instance transitioned to the online state:

delay + period + RAND (jitter)

The nth execution of the start method of an instance occurs at the following number of seconds
after the instance transitioned to the online state:

delay + (n-1)period + RAND (jitter)

Scheduling After System Downtime

The persistent and recover properties can modify the time the periodic instance method runs
when a periodic instance emerges from system downtime. The value of the recover property
has effect only if the value of the persistent property is true.

If the value of the persistent property is false, the next execution of the start method for a
periodic instance emerging from system downtime occurs at the following number of seconds
after the instance transitions to the online state:

delay + RAND (jitter)

If the value of the persistent property is true and the value of the recover property is false,
the next execution of the start method for the instance emerging from system downtime is
scheduled for the following absolute time:

next_run + (n)period

If the value of the next run property is in the future, n is 0. If the value of the next_run
property is in the past, the smallest value of n is used that results in a future time. Subsequent

Chapter 3 « Creating a Service to Run Periodically 39

Scheduling Executions of a Periodic Service Start Method

40

invocations occur from that time according to the period and jitter values. The next run
property is described in “Last and Next Start Method Invocations” on page 36.

If the value of the persistent property is true and the value of the recover property is
true, the periodic restarter invokes the start method for the instance as soon as possible as
the instance emerges from system downtime. Subsequent invocations occur from that time
according to the period and jitter values.

Scheduling After Service Restart

The periodic restarter service (svc:/system/svc/periodic-restarter) automatically attempts
to restart if it terminates. When the periodic restarter service restarts after failure, the start
method of each periodic instance is scheduled for the following absolute time:

next_run + (n)period

If the value of the next run property is in the future, n is 0. If the value of the next run
property is in the past, the smallest value of n is used that results in a future time. Subsequent
invocations occur from that time according to the period and jitter values. The next run
property is described in “Last and Next Start Method Invocations” on page 36.

If a periodic service instance is restarted, the start method for the instance is invoked at the
following number of seconds after the instance transitions to the online state:

delay + RAND (jitter)

Scheduling After Start Method Problems

The start method should perform a task and then terminate within the time specified by the
period property. If a contracted process still exists when the periodic restarter attempts to
invoke the start method for the next period, then the invocation for that period is skipped
and the periodic restarter attempts to invoke the start method again at the following period.
The periodic restarter invokes the method again at the following number of seconds after the
instance transitioned to the online state, where n is the smallest value that results in a future
time:

delay + (n)period + RAND (jitter)

If the start method runs longer than the number of seconds specified by the timeout seconds
value, all processes in the contract are terminated and the invocation is a non-fatal fault. The
first time the start method terminates in any non-fatal fault, the instance is placed into the

Developing System Services in Oracle Solaris 11.3 « September 2018

Scheduling Executions of a Periodic Service Start Method

degraded state and start method invocations continue as scheduled. If one of the following
two invocations succeeds, the instance is placed back into the online state. After transitioning
from the degraded state to the online state, the periodic restarter invokes the method at the
following number of seconds after the instance initially transitioned from the offline to the
online state, where n is the smallest value that results in a future time:

delay + (n)period + RAND (jitter)

After three successive non-fatal faults of the start method, the instance is moved from the
degraded state to the maintenance state. On the first fatal fault of the start method, the service
is placed into the maintenance state. See “Repairing an Instance That Is Degraded, Offline, or
in Maintenance” in Managing System Services in Oracle Solaris 11.3.

Chapter 3 « Creating a Service to Run Periodically 41

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFmaintenanceadm
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFmaintenanceadm

42 Developing System Services in Oracle Solaris 11.3 « September 2018

* e CHAPTER 4

Creating a Service to Run on a Specific
Schedule

This chapter describes how to create a service that runs a relatively short task at a specified
regular time. This chapter describes:

m Scheduled service definition
m How to create a scheduled service

= How to specify the execution schedule of a scheduled service

Scheduled Services

A scheduled service is a type of periodic service, described in Chapter 3, “Creating a Service

to Run Periodically”. Each invocation of a periodic service instance start method occurs at a
time relative to the last invocation. Each invocation of a scheduled service instance start method
occurs at a specific absolute time. Use a scheduled service when the task must run at a certain
time, such as during off-peak hours.

A scheduled service instance is managed by the periodic restarter service, svc:/system/svc/
periodic-restarter. The start method scheduling parameters for a scheduled service instance
are defined in a scheduled method element and zero or more schedule property groups in the
service manifest. The start method scheduling parameters are stored in property groups of type
schedule in the service configuration repository. The periodic restarter combines the values

of each property of each property group of type schedule to schedule invocations of the start
method of the scheduled service instance.

Chapter 4 « Creating a Service to Run on a Specific Schedule 43

Creating a Scheduled Service

Creating a Scheduled Service

44

The following sample manifest is for a very simple scheduled service. See also “Creating a
Scheduled Service Using the Service Bundle Generator Tool” on page 49.

EXAMPLE 3 Scheduled Service Manifest

The scheduled service instance in this example is completely defined in the scheduled method
element. A scheduled service should use the fewest scheduling constraints required to schedule
the task. For example, the periodic restarter will execute the start method for the following
example service on the first day of each month, between 02:00 and 03:00. To invoke the method
between 02:00 and 02:01, add the constraint minute='0".

<?xml version='1.0'7?>
<!DOCTYPE service bundle
SYSTEM '/usr/share/lib/xml/dtd/service_bundle.dtd.1'>
<service bundle type='manifest' name='site/sample-periodic-svc'>
<service type='service' version='1l' name='site/sample-periodic-svc'>

<instance name='default' enabled='false'>

<scheduled_method
interval='month'
day="'1"
hour="'2"
exec='/usr/bin/scheduled_service_method'
timeout_seconds='0'>
<method_context>
<method credential user='root' group='root' />
</method_context>
</scheduled_method>

</instance>
</service>
</service_bundle>

Specifying the scheduled_method Element

When a scheduled_method element exists, the service is automatically delegated to the
periodic restarter. The scheduled method element can be specified within a service element
or within an instance element. The scheduled method element specifies both method and

Developing System Services in Oracle Solaris 11.3 « September 2018

Creating a Scheduled Service

scheduling information for scheduled services. The method information is the same for a
scheduled method element as for a periodic_method element. The scheduled method
element can have the attributes that are listed in this section. The interval and exec attributes
are required.

When specifying values of scheduling constraints for a scheduled service, note the following:

m Specify the fewest scheduling constraints that are required to schedule the task. Constraints
that represent shorter time periods than the interval value specify more precisely when in
the interval to invoke the start method for the instance.

m Specify a continuous set of scheduling constraints from the constraint that represents the
longest time to the constraint that represents the shortest time. For example, you can specify
just a week of year value, but you cannot specify a week of year and an hour unless you
also specify a day of month or day.

®m You can specify constraints that represent time periods that are equal to or longer than the
interval value if the value of frequency is greater than 1. See “Scheduling Executions of
a Scheduled Service Start Method” on page 50 for more information about how to use
these constraints.

Scheduled Service Scheduling Constraints Attributes

interval

Required. Value type: astring. The base length of time between invocations of the service
start method, depending on the value of frequency. The value of interval is one of the
following: year, month, week, day, day of month, hour, minute.

frequency

Optional. Value type: count. Default value: 1. The number of intervals that must occur
before the start method is executed by the periodic restarter. For example, if interval is
week and frequency is 4, the start method will be invoked every fourth week. Note that
every fourth week is different from the fourth week of every month because some months
have five weeks.

If the value of frequency is greater than 1, all constraints from year down to the same
length of time as the interval value must be specified. For example, if interval is week,

values must be specified for year and week of year. See “Scheduling One Invocation Per
Multiple Intervals” on page 51 for examples.

timezone

Optional. Value type: astring. Default value: the system time zone. The time zone to use
to create and interpret schedules. Use this attribute to define a schedule relative to a time
zone other than the time zone configured for the system.

Chapter 4 « Creating a Service to Run on a Specific Schedule 45

Creating a Scheduled Service

year

Value type: count. A Gregorian calendar year. The year in which to invoke the start
method.

week of year

Value type: integer. The ordinal number of the week in an ISO 8601 week date year. Valid
values are 1 through 53 and -1 through -53. A negative number specifies weeks backward
from the last week of the year. For a year that has 52 weeks, -1 is the same as 52, and for a
year that has 53 weeks, -1 is the same as 53. If you specify 53 or -53, the start method will
not run in years that have only 52 weeks.

The week of year and month attributes are mutually exclusive.

month

Value type: astring. A month of a Gregorian year. Valid values are 1 through 12, -1
through - 12, the C Locale full name of the month, or the C Locale three-character
abbreviation for the name of the month. A negative number specifies months backward
from the last month of the year. C Locale names are not case sensitive.

The week of year and month attributes are mutually exclusive.

day of month

Value type: integer. A day in a Gregorian calendar month. Valid values are 1 through 31
and -1 through -31. A negative number specifies days backward from the last day of the
month. If you specify a day that does not exist in a particular month, for example 31 or -1
for April, the start method will run on the last day of that month.

The day of month and day attributes are mutually exclusive.

weekday of month

Value type: integer. The ordinal number of the week in a month in which the specified
day (see day) occurs. Valid values are 1 through 5 and -1 through -5. A negative number
specifies weeks backward from the last week of the month. For example, the third
Thursday in the month (3) is different from the next-to-last Thursday in the month (-2)
if the month has five Thursdays. If you specify 5 or -1, the start method will not run in
months that have only four of the specified day.

If weekday of month is specified, day must also be specified.

day

Value type: astring. A day in an ISO 8601 standard week. Valid values are 1 through

7 and -1 through -7, the C Locale full name of the day, or the C Locale three-character
abbreviation of the name of the day. A negative number specifies days backward from the
end of the week. C Locale names are not case sensitive.

46 Developing System Services in Oracle Solaris 11.3 « September 2018

Creating a Scheduled Service

The day_of month and day attributes are mutually exclusive.

hour

Value type: integer. An hour of an ISO 8601 standard day. Valid values are @ through

23 and -1 through -24. A negative number specifies hours backward from the end of the
day. If the scheduled day includes a transition between standard time and daylight saving
time, the specified hour might occur two times that day or might not occur at all that day.
If the specified hour occurs more than one time on the scheduled day, the start method will
run only on the first occurrence of the hour. If the specified hour does not occur on the
scheduled day, the start method will run in the following hour.

minute

Value type: integer. A minute of an hour. Valid values are @ through 59 and -1 through
-60. A negative number specifies minutes backward from the end of the hour.

Other Scheduled Service Scheduling Attributes

recover

Optional. Value type: boolean. Default value: false. Specifies whether the instance should
have a recovery execution if an invocation was lost during system downtime.

If the value of the recover attribute is true, the periodic restarter invokes the start method
for the instance as soon as possible as the instance emerges from system downtime.
Subsequent invocations occur according to the specified scheduling constraints.

If the value of the recover property is false, no recovery invocation is executed.
Invocations continue according to the specified scheduling constraints.

Scheduled Service Start Method Attributes and Context

exec

Required. Value type: astring. The action to take, which must be suitable to pass to
the exec system call. See the smf method(5) man page. See additional description in
“Specifying the periodic_method Element” on page 33.

timeout seconds

Optional. Value type: integer. The number of seconds to wait for the start method action
to complete. Use a value of @ or -1 to specify an infinite timeout.

The timeout_ seconds attribute value is required by the exec_method element. If you do
not specify a value for the timeout seconds attribute in this scheduled method element,

Chapter 4 « Creating a Service to Run on a Specific Schedule a7

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5smf-method-5

Creating a Scheduled Service

48

the value for the exec_method element is assumed to be infinite. See “Scheduling After
Start Method Problems” on page 55 for a description of start method scheduling if

the start method runs longer than the specified timeout seconds value or if a contracted
process still exists when the periodic restarter attempts to invoke the start method in the
next scheduled interval.

method context element

Optional. See the Method Context section of the smf method(5) man page.

Storing Scheduled Service Data in the Service
Configuration Repository

The scheduled method element provides both method information (an exec_method property
group for the start method) and scheduling information (property groups of type schedule) for
scheduled services. When a manifest with a scheduled method element is imported, the data
described in this section is stored in the service configuration repository.

= Restarter properties. See “Restarter Properties” on page 35 for information about the
restarter and auxiliary state properties. Recall that a scheduled service is a type of
periodic service.

B schedule property groups. The scheduling attributes of the scheduled method
element are stored as properties of a property group of type schedule. Property
groups of type schedule can have the properties described in “Scheduled Service
Scheduling Constraints Attributes” on page 45 and “Other Scheduled Service
Scheduling Attributes” on page 47. See “Scheduling Invocations at Irregular
Intervals” on page 51 and “Scheduling Executions of a Scheduled Service Start
Method” on page 50 for examples of how these properties are used. Administrators
can use the svcprop and svccfg commands to show and modify these properties. Use
the svcprop -g schedule command to list all the properties of property groups of type
schedule, as described in “Showing Properties in a Property Group Type” in Managing
System Services in Oracle Solaris 11.3.

= Last and next start method invocations. See “Last and Next Start Method
Invocations” on page 36 for descriptions of the last run and next run properties. The
value of next_run is the next scheduled start method invocation as described in “Scheduling
Executions of a Scheduled Service Start Method” on page 50.

B start property group. The exec and timeout seconds values and method context
information are stored as properties of a property group named start. This start property
group represents the start method for the scheduled service and is defined in the same way
as the start method for any other service.

Developing System Services in Oracle Solaris 11.3 « September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5smf-method-5
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFgobcs
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFgobcs

How to Create a Scheduled Service Using svcbundle

Creating a Scheduled Service Using the Service
Bundle Generator Tool

When you use the svcbundle command to create a scheduled service, you must specify the
interval property as well as both the service-name and start-method properties. By default,
svcbundle creates a transient service. When you specify -s period, svcbundle creates a
periodic service.

How to Create a Scheduled Service Using svcbundle

Copy the start method to the standard location.
In this example, the start method for this service is named sched ex. Copy this executable to
/lib/svc/method/sched ex.

Create an initial manifest.

In this example, the service name is site/sched_ex. Specify an interval for the start method
scheduling. Do not specify any of the following properties: bundle-type, duration, model, rc-
script, refresh-method, or stop-method.

$ svcbundle -o /tmp/sched_ex.xml -s service-name=site/sched_ex \
-s start-method=/1ib/svc/method/sched_ex -s interval=week

When you specify the interval property, svcbundle creates a scheduled method element,
which causes the restarter for the service to be set to the periodic restarter when the manifest is
imported. The value of the interval property becomes the value of the interval attribute of
the scheduled method element. The value of the start-method property becomes the value of
the exec attribute of the scheduled method element.

Make any necessary changes to the manifest.

Verify that the content of the /tmp/ex_svc.xml manifest is what you need. You might want to
make changes such as the following:

® Specify additional constraints in the scheduled method element.

® Specify additional property groups of type schedule, as described in “Scheduling
Invocations at Irregular Intervals” on page 51.

® Add amethod context element in the scheduled method element.
® Change the value of the enabled attribute of the default instance from true to false.

Add comments to describe what the service does and how the properties of the service are used.

Verify that the manifest is valid.

Chapter 4 « Creating a Service to Run on a Specific Schedule 49

Scheduling Executions of a Scheduled Service Start Method

Use the svcefg validate command to make sure the service manifest is valid.

Copy the manifest to the standard directory.

$ cp /tmp/sched_ex.xml /lib/svc/manifest/site/sched_ex.xml
Import the manifest and start the service.
$ svcadm restart manifest-import

List the new service.

Verify that the new service exists and is in the expected state.

$ svcs sched_ex

Scheduling Executions of a Scheduled Service Start

Method

50

Scheduling executions of the start method of a scheduled service instance (specified by the exec
attribute of the scheduled method element) always requires the values of the interval and
frequency attributes of the scheduled method element. The frequency attribute has a default
value of 1. The value of the interval attribute must be explicitly set. Other specified attributes
of the scheduled method element or properties of property groups of type schedule are also
used, and the next run value might be used.

Scheduling One Invocation Per Interval

If the value of frequency is 1, the start method of a scheduled service instance is initially
invoked at a random time within the smallest specified constraint. Subsequent invocations occur
within the same unit of the next shorter constraint in the next execution interval. For example,

if the interval is week and no other scheduling constraints are specified, the start method will
initially be invoked at a random time during the week. Subsequent invocations will occur within
the same day in future weeks so that the start method will not be invoked on two consecutive
days, for example. Similarly, if the interval is week, and day and hour are also specified,

the start method will initially be invoked at a random time during the specified hour on the
specified day; subsequent invocations will occur within the same minute during the specified
hour and day in future weeks.

Developing System Services in Oracle Solaris 11.3 « September 2018

Scheduling Executions of a Scheduled Service Start Method

Scheduling One Invocation Per Multiple Intervals

If the value of frequency is greater than 1, scheduling constraints that are the same length of
time or longer than the interval value are used to set the time of the initial invocation. All
constraints from year down to the same length of time as the interval value must be specified.
For example, if interval is week, values must be specified for year and week of year.

If interval is week, frequency is 2, year is 2014, and week of year is any even number

from 2 through 52, then the start method will be invoked every even-numbered week. If
week_of_year is any odd number from 1 through 53, then the start method will be invoked
every odd-numbered week. Because the year 2014 has already passed, the value of the
week_of year attribute in this example does not indicate the particular week when the start
method will initially be invoked, but only whether it will be invoked in the next even week or
the next odd week. Subsequent invocations will occur every two weeks, so that after a year that
has 53 weeks, such as 2015, the start method that was initially invoked in an even-numbered
week will be invoked in odd-numbered weeks.

If interval is week, frequency is 4, year is 2014, and week_of_year is 1, the start method will
be invoked in weeks 1, 5, 9, and so forth in 2015. Because 2015 has 53 weeks, the start method
will be invoked in week 53, and in 2016 the start method will be invoked in weeks 4, 8, 12, and
so forth.

Scheduling Invocations at Irregular Intervals

Sometimes one set of scheduling constraints is not enough to define the schedule. A scheduled
service can have multiple property groups of type schedule. The periodic restarter combines
the values of each property of each property group of type schedule to schedule invocations of
the start method of the scheduled service instance.

Just as a scheduled service should have only as many scheduling constraints as necessary to
define the schedule, a scheduled service should have only as many schedule property groups as
necessary to define the required schedule for the task.

EXAMPLE 4 Invoking Every Twelve Hours

In this example, the start method is invoked at 06:00 and 18:00 every day. The value of the hour
attribute could be either 6 or 18.

<?xml version='1.0'?>

Chapter 4 « Creating a Service to Run on a Specific Schedule 51

Scheduling Executions of a Scheduled Service Start Method

<!DOCTYPE service bundle
SYSTEM '/usr/share/lib/xml/dtd/service bundle.dtd.l'>
<service bundle type='manifest' name='site/sample-periodic-svc'>
<service type='service' version='l' name='site/sample-periodic-svc'>

<instance name='default' enabled='false'>

<scheduled _method
interval="hour"
frequency="'12"
hour='6"
minute='0"
exec="'/usr/bin/scheduled service method'
timeout seconds='0'>
<method_context>
<method credential user='root' group='root' />
</method_context>
</scheduled method>

</instance>
</service>
</service bundle>

EXAMPLE 5 Invoking Daily at 03:00 and 23:00

In this example, an additional schedule property group is specified to invoke the start method
at 03:00 and 23:00 every day.

<?xml version='1.0'7?>
<!DOCTYPE service bundle
SYSTEM '/usr/share/lib/xml/dtd/service bundle.dtd.l'>
<service bundle type='manifest' name='site/sample-periodic-svc'>
<service type='service' version='l' name='site/sample-periodic-svc'>

<instance name='default' enabled='false'>

<scheduled method
interval='day'
hour="3"
minute='0"
exec="'/usr/bin/scheduled service method'
timeout seconds='0'>
<method_context>
<method credential user='root' group='root' />
</method_context>
</scheduled method>

52 Developing System Services in Oracle Solaris 11.3 « September 2018

Scheduling Executions of a Scheduled Service Start Method

<property group name='run2' type='schedule'>
<propval name='interval' type='astring' value='day' />
<propval name='hour' type='integer' value='23' />
<propval name='minute' type='integer' value='0' />
</property group>

</instance>
</service>
</service bundle>

EXAMPLE 6 Invoking at 03:00 and 23:00 on Tuesday and Thursday

To invoke the start method at 03:00 and 23:00 every Tuesday and Thursday requires three
additional schedule property groups, as shown in this example.

<?xml version='1.0'7?>
<!DOCTYPE service bundle
SYSTEM '/usr/share/lib/xml/dtd/service bundle.dtd.l'>
<service bundle type='manifest' name='site/sample-periodic-svc'>
<service type='service' version='l' name='site/sample-periodic-svc'>

<instance name='default' enabled='false'>

<scheduled method
interval="week"
day="'3"
hour="'3"
minute='0"
exec="'/usr/bin/scheduled service method'
timeout seconds='0'>
<method_context>
<method credential user='root' group='root' />
</method_context>
</scheduled method>

<property group name='run2' type='schedule'>
<propval name='interval' type='astring' value='week' />
<propval name='day' type='astring' value='3' />
<propval name='hour' type='integer' value='23"' />
<propval name='minute' type='integer' value='0' />
</property group>

<property group name='run3' type='schedule'>
<propval name='interval' type='astring' value='week' />
<propval name='day' type='astring' value='5' />
<propval name='hour' type='integer' value='3' />
<propval name='minute' type='integer' value='0' />

Chapter 4 « Creating a Service to Run on a Specific Schedule

53

Scheduling Executions of a Scheduled Service Start Method

</property group>

<property group name='run4' type='schedule'>
<propval name='interval' type=astring'' value='week' />
<propval name='day' type='astring' value='5' />
<propval name='hour' type='integer' value='23' />
<propval name='minute' type='integer' value='0' />
</property group>

</instance>
</service>
</service bundle>

If the service is already imported, you can specify these additional property groups by using a
site profile or by using the svccfg subcommands addpg and setprop.

Resolving Multiple Possible Invocations in One
Interval

If scheduling constraints are specified such that multiple start method invocation times are
possible in a single interval, the start method will be invoked at the earliest time that matches
all constraints. An example of multiple possible invocation times in a single interval is when
switching from daylight saving time to standard time, when times between 01:00 and 02:00
occur twice.

Scheduling After System Downtime

The recover property can modify the time the scheduled instance method runs when a
scheduled instance emerges from system downtime.

If the value of the recover property is true, the periodic restarter invokes the start method

for the scheduled service instance as soon as possible as the instance emerges from system
downtime. Subsequent invocations occur according to the interval and frequency values and
any other specified constraints.

If the value of the recover property is false, the periodic restarter invokes the start method
for the scheduled service instance at the time specified by the next_run property. If the value
of the next_run property is in the past, future start method invocations occur according to the
interval and frequency values and any other specified constraints. The next_run property is
described in “Last and Next Start Method Invocations” on page 36.

54 Developing System Services in Oracle Solaris 11.3 « September 2018

Scheduling Executions of a Scheduled Service Start Method

Scheduling After Service Restart

The periodic restarter service (svc:/system/svc/periodic-restarter) automatically attempts
to restart if it terminates. When the periodic restarter service restarts after failure, the start
method of each scheduled instance is invoked at the time specified by the next run property.

If the value of the next_run property is in the past, future start method invocations occur
according to the interval and frequency values and any other specified constraints. The
next_run property is described in “Last and Next Start Method Invocations” on page 36.

If a scheduled service instance is restarted, the start method for the instance is invoked
according to the interval and frequency values and any other specified constraints.

Scheduling After Start Method Problems

The start method should perform a task and then terminate within the period specified by

the interval and frequency properties. If a contracted process still exists when the periodic
restarter attempts to invoke the start method in the next scheduled interval, then the invocation
for that period is skipped and the periodic restarter attempts to invoke the start method again at
the following period.

If the start method runs longer than the number of seconds specified by the timeout seconds
value, all processes in the contract are terminated and the invocation is a non-fatal fault.

The first time the start method terminates in any non-fatal fault, the instance is placed into

the degraded state and start method invocations continue as scheduled according to the
interval and frequency values and any other specified constraints. If one of the following two
invocations succeeds, the instance is placed back into the online state.

After three successive non-fatal faults of the start method, the instance is moved from the
degraded state to the maintenance state. On the first fatal fault of the start method, the service
is placed into the maintenance state. See “Repairing an Instance That Is Degraded, Offline, or
in Maintenance” in Managing System Services in Oracle Solaris 11.3.

Chapter 4 « Creating a Service to Run on a Specific Schedule 55

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFmaintenanceadm
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFmaintenanceadm

56 Developing System Services in Oracle Solaris 11.3 « September 2018

* e CHAPTER 5

Creating Services to Manage Oracle Database
Instances

This chapter presents the following services that help manage the Oracle Database:

m A database service that starts or stops an Oracle Database instance

m A listener service that starts the listener, which is a process that manages the incoming
traffic of client connection requests to the database instance

Configuring the Environment

The examples in this chapter use file-backed storage. An alternative to using file-backed storage
is to use the Automatic Storage Management (ASM) feature. ASM is a volume manager and a
file system for Oracle Database files.

The following environment variables must be set for each installation of the Oracle Database:

ORACLE_HOME The location where the database is installed. In the example in this
chapter, the location of the database installation is /opt/oracle/
product/home.

ORACLE_SID The systems ID to uniquely identify a particular database on a system.

In the examples in this chapter, ORACLE HOME is set in the service manifest and then used in the
method script. ORACLE_SID is set in the method script.

Chapter 5 ¢ Creating Services to Manage Oracle Database Instances 57

Creating a Service to Start or Stop an Oracle Database Instance

Creating a Service to Start or Stop an Oracle Database
Instance

58

This section describes the Oracle Database instance control service manifest and the start/stop
method script that is used in that manifest.

Database Instance Control Service Manifest

The following are some features to note about the Oracle Database instance control service. See
the service manifest following this list.

m In this example, the service name and manifest name are the same. The service is named
site/oracle/db/database. The manifest file name is database.xml and is located at
/lib/svc/manifest/site/oracle/db/database.xml.

® No default instance is defined for this service. Add instances by using the svccfg add
command. The name of each instance must match the name of an Oracle Database instance.

m Two dependencies are defined.

= The dependency on svc:/system/filesystem/local requires all local file systems to
be mounted. If you are using a file-backed database, the database service should depend
on the local filesystem. If you are using ASM, the database service should depend on the
service that manages ASM.

®m The dependency on svc:/milestone/multi-user requires the system to reach the
multi-user milestone before this database service starts.

® The method context element specifies credentials and resources required to run the method
script. In addition to the attributes shown in this example, the method_context element
can specify attributes such as project, working directory, and resource pool. See the
smf method(5) man page and the DTD for more information.

® The method credential element in the method context element specifies that, except
for the super user, only the user oracle in the group oinstall can execute the methods
of this service. The method credential element can specify other attributes such as
supp_groups and limit privileges. You can also define a method profile element
instead of the method credential element shown in this example.

® The method_environment element in the method context element sets the
ORACLE HOME environment variable. This value is used in the method script to find
Oracle libraries and commands.

® The start/stop method script is /1ib/svc/method/svc-oracle-database.

Developing System Services in Oracle Solaris 11.3 « September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5smf-method-5

Creating a Service to Start or Stop an Oracle Database Instance

® db specifies to call the database start or stop function instead of the listener start or
stop function. This same method script is used by the listener service.

= %m is the name of the method: either start or stop. This specifies whether to call the
start function or the stop function in the method script.

® i is the service instance name. This value is assigned to ORACLE SID in the method
script, so be sure to give the service instance the same name as the database instance.

B timeout seconds="0" means this method execution has no time constraint.

See the smf method(5) man page for more information about %m, %i, and timeout seconds.

® The action authorization property requires that a user must be assigned the solaris.
smf.manage.oracle authorization to perform tasks such as enable this service or modify
properties. See the smf security(5) man page for more information.

<?xml version="1.0"7>
<!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service bundle.dtd.1">
<!--

Copyright (c) 2015, 2018, Oracle and/or its affiliates. All rights reserved.

Define a service to start or stop an Oracle Database instance.
-->

<service bundle type="manifest" name="site/oracle/db/database">
<service name="site/oracle/db/database" type="service" version="1">

<dependency type="service"

name="filesystem dependency"

grouping="require all"

restart_on="none">

<service fmri value="svc:/system/filesystem/local"/>
</dependency>

<dependency type="service"
name="multi user dependency"
grouping="require all"
restart_on="none">
<service fmri value="svc:/milestone/multi-user"/>
</dependency>

<method context>
<method credential user="oracle" group="oinstall" />
<method environment>
<envvar name="ORACLE HOME" value="/opt/oracle/product/home" />
</method_environment>
</method context>

<exec_method type="method"

Chapter 5 ¢ Creating Services to Manage Oracle Database Instances 59

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5smf-method-5
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5smf-security-5

Creating a Service to Start or Stop an Oracle Database Instance

60

name="start"
exec="/1lib/svc/method/svc-oracle-database db %m %i"
timeout seconds="0"/>

<exec_method type="method"
name="stop"
exec="/lib/svc/method/svc-oracle-database db %m %i"
timeout seconds="0"/>

<property group name="general" type="framework">
<propval type="astring"
name="action authorization"
value="solaris.smf.manage.oracle"/>
</property group>

<stability value="Evolving"/>
</service>
</service bundle>

Add name and description metadata to the manifest so that users can get information about this
service from the svcs and svccfg describe commands. See the template element in the DTD.

Ensure the service manifest is valid:
svccfg validate database.xml

To install the service, copy the manifest to /1ib/svc/manifest and restart the manifest-
import service:

mkdir -p /lib/svc/manifest/site/oracle/db
cp database.xml /lib/svc/manifest/site/oracle/db
svcadm restart manifest-import

Note - Before you enable the service, create and install the method script (“Start/Stop Method
Script for the Oracle Database Instance Control Service” on page 60) and add service
instances (“Add Database Service Instances” on page 62).

Start/Stop Method Script for the Oracle Database
Instance Control Service

The following is the start/stop method script, svc-oracle-database, for both the database
service and the listener service. This method uses the sqlplus command to start and stop
database service instances, and uses the l1snrctl command to start and stop listener service
instances.

Developing System Services in Oracle Solaris 11.3 « September 2018

Creating a Service to Start or Stop an Oracle Database Instance

#!/usr/bin/bash

#

Copyright (c) 2015, 2018, Oracle and/or its affiliates. All rights reserved.
#

Load SMF constants and functions
. /lib/svc/share/smf_include.sh

if [[-z "$SMF_FMRI" 1]; then

echo "this script can only be invoked by smf(5)"
exit $SMF EXIT ERR NOSMF

fi

[[-d "$ORACLE_HOME" || -d "$ORACLE HOME/lib" 11 || \
smf_method exit $SMF_EXIT ERR CONFIG dir failed "ORACLE HOME: $ORACLE HOME: directory
is not set properly"

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ORACLE_HOME/lib

stop_listener()

{

"$ORACLE _HOME/bin/lsnrctl" stop "$1" || exit $SMF EXIT ERR FATAL
}

start_listener()
{
if "$ORACLE HOME/bin/lsnrctl" status "$1" >/dev/null; then
echo "Listener '$1' has already been started - restart it now ..."
"$ORACLE_HOME/bin/1lsnrctl" stop "$1" || exit $SMF EXIT ERR_FATAL
fi

"$ORACLE_HOME/bin/lsnrctl" start "$1" || exit $SMF EXIT ERR FATAL
}

stop_database()

{
export ORACLE SID="$1"

"$ORACLE HOME/bin/sqlplus" /nolog <<-EOF || exit $SMF EXIT ERR FATAL
connect / as sysdba
shutdown immediate
quit
EOF
}

start_database()

{
export ORACLE SID="$1"

Chapter 5 ¢ Creating Services to Manage Oracle Database Instances 61

Creating a Service to Start or Stop an Oracle Database Instance

"$ORACLE HOME/bin/sqlplus" /nolog <<-EOF || exit $SMF EXIT ERR FATAL
connect / as sysdba
startup
quit
EOF
}

case "$1:$2" in
"listener:start") start listener "$3";;
"listener:stop") stop listener "$3";;
"db:start") start database "$3";;
"db:stop") stop database "$3";;
*)
echo "Usage: $0 {db|listener} {start|stop} {ORACLE SID}"
exit $SMF EXIT ERR CONFIG

esac

Install the method script:

cp svc-oracle-database /lib/svc/method

Typically, method scripts have the following ownership:

chown root:bin /lib/svc/method/svc-oracle-database

Ensure the script is executable. Typically, method scripts have the following access:

chmod 555 /1lib/svc/method/svc-oracle-database

Add Database Service Instances

Verify that the start/stop method script is installed and executable.

Add instances by using the svccfg add command and specifying the name of a database
instance as the name of the service instance. In the following example, sales db is the name of
an Oracle Database instance:

$ svccfg -s site/oracle/db/database add sales_db

$ svccfg -s database:sales_db

svc:/site/oracle/db/database:sales db> addpropvalue general/complete astring: dev
svc:/site/oracle/db/database:sales db> addpropvalue general/enabled boolean: true
svc:/site/oracle/db/database:sales db> refresh
svc:/site/oracle/db/database:sales db> exit

62 Developing System Services in Oracle Solaris 11.3 « September 2018

Creating an Oracle Database Listener Service

The service method uses the service instance name to select the Oracle Database on which to
operate. In this example, the following command starts the sales db Oracle Database instance:

svcadm enable database:sales_db
Note that the preceding svccfg command set this service instance to be enabled by default.

Verify that the database service is installed and the sales db instance is online:

svcs database

The following command stops the sales db Oracle Database instance:

svcadm disable database:sales_db

Creating an Oracle Database Listener Service

This section describes the Oracle Database listener service manifest and the start/stop method
script that is used in that manifest.

The listener is a process that manages the incoming traffic of client connection requests to the
database instance.

Listener Service Manifest

The following are some features to note about the Oracle Database listener service. See the
service manifest following this list.

® Asin the Oracle Database instance control service (database service), the service name
and manifest name are the same. The service is named site/oracle/db/listener. The
manifest file name is listener.xml and is located at /lib/svc/manifest/site/oracle/
db/listener.xml.

® No default instance is defined for this service. Add instances by using the svccfg add
command. The name of each instance must match the name of an Oracle Database instance.

m Three dependencies are defined. In addition to the two dependencies defined for the
database service, the listener service depends on the database service.

® The method credential element is the same as the method credential element in the
database service manifest except that the user oracle is in the group oinstall.

® The method script is the same as the database service method script: /1ib/svc/method/
svc-oracle-database. The listener argument calls the listener start or stop function

Chapter 5 ¢ Creating Services to Manage Oracle Database Instances 63

Creating an Oracle Database Listener Service

instead of the database start or stop function. The %m, %i, and timeout seconds arguments
are the same as for the database service.

® The action authorization property is the same as for the database service.

<?xml version="1.0"7?>
<!DOCTYPE service bundle SYSTEM "/usr/share/lib/xml/dtd/service bundle.dtd.1l">
<l--

Copyright (c) 2015, 2018, Oracle and/or its affiliates. All rights reserved.

Define a service to start or stop an Oracle Database instance.
-->

<service bundle type="manifest" name="site/oracle/db/listener">
<service name="site/oracle/db/listener" type="service" version="1">

<dependency type="service"

name="filesystem dependency"

grouping="require all"

restart_on="none">

<service fmri value="svc:/system/filesystem/local"/>
</dependency>

<dependency type="service"
name="multi user dependency"
grouping="require all"
restart_on="none">
<service fmri value="svc:/milestone/multi-user"/>
</dependency>

<dependency type="service"
name="database dependency"
grouping="require all"
restart_on="none">
<service fmri value="svc:/site/oracle/db/database"/>
</dependency>

<method_context>
<method credential user="oracle" group="oinstall" />
<method environment>
<envvar name="ORACLE HOME" value="/opt/oracle/product/home" />
</method_environment>
</method_context>

<exec_method type="method"
name="start"
exec="/lib/svc/method/svc-oracle-database listener %m %i"
timeout seconds="0"/>

64 Developing System Services in Oracle Solaris 11.3 « September 2018

Creating an Oracle Database Listener Service

<exec_method type="method"
name="stop"
exec="/1lib/svc/method/svc-oracle-database listener %m %i"
timeout seconds="0"/>

<property group name="general" type="framework">
<propval type="astring"
name="action_ authorization"
value="solaris.smf.manage.oracle"/>
</property group>

<stability value="Evolving"/>
</service>

</service bundle>

Add name and description metadata to the manifest so that users can get information about this
service from the svcs and svccfg describe commands. See the template element in the DTD.

Ensure the service manifest is valid:
svccfg validate listener.xml

To install the service, copy the manifest to /1ib/svc/manifest and restart the manifest-
import service:

cp listener.xml /lib/svc/manifest/site/oracle/db/listener.xml
svcadm restart manifest-import

Note - Before you enable the service, create and install the method script (“Start/Stop Method
Script for the Oracle Database Instance Control Service” on page 60) and add service
instances (“Add Listener Service Instances” on page 65).

Add Listener Service Instances

Verify that the start/stop method script is installed and executable.

Add instances by using the svccfg add command and specifying LISTENER as the name of the
service instance, as described in Listener Control Utility in the Database Net Services Reference
documentation.

$ svccfg -s site/oracle/db/listener add LISTENER

$ svccfg -s listener:LISTENER

svc:/site/oracle/db/listener:LISTENER> addpropvalue general/complete astring: dev
svc:/site/oracle/db/listener:LISTENER> addpropvalue general/enabled boolean: true
svc:/site/oracle/db/listener:LISTENER> refresh

Chapter 5 ¢ Creating Services to Manage Oracle Database Instances 65

https://docs.oracle.com/cd/E11882_01/network.112/e10835/lsnrctl.htm#NETRF101

Creating an Oracle Database Listener Service

svc:/site/oracle/db/listener:LISTENER> exit

The following command starts the listener:

svcadm enable listener:LISTENER

Note that the preceding svccfg command set this service instance to be enabled by default.
Verify that the listener service is installed and the LISTENER instance is online:

svcs listener

The following command stops the listener:

svcadm disable listener:LISTENER

66 Developing System Services in Oracle Solaris 11.3 « September 2018

* e CHAPTER 6

Using a Stencil to Create a Configuration File

If your application cannot use libscf library interfaces to read properties, you can use a
stencil to create a configuration file. A stencil service creates configuration files by using a
stencil file and property values defined in the stencil service. A stencil file contains a structural
definition of a configuration file that is required by an application that is not integrated with
SMF but stores its configuration in SMF. Stencil services enable you to take advantage of SMF
configuration management with no change to the existing application.

If an application requires multiple configuration files, specify each configuration file in a
separate property group.

Configuration files are generated immediately before the service instance start or refresh
method is executed. If you update the stenciled property values, refresh or restart the service
to incorporate the changes into the configuration file before the application starts and reads the
configuration file.

This chapter describes:

= How to create a stencil service
= The Puppet stencil service in Oracle Solaris

m The Kerberos stencil service in Oracle Solaris

Creating a Stencil Service

A stencil file contains a structural definition of a configuration file that is required by an
application that is not integrated with SMEF, but stores its configuration in SMF. The svcio
utility generates the configuration file from the definitions in the stencil file and properties in
the SMF service. See the svcio(1) man page for more information about the svcio utility and
the smf stencil(4) man page for information about stencil file format.

Chapter 6 * Using a Stencil to Create a Configuration File 67

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1svcio-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN4smf-stencil-4

How to Create a Stencil Service

68

How to Create a Stencil Service

Add a configfile type property group to the service.

Property groups of type configfile tell SMF how to generate configuration files. This stencil
service property group tells the svcio utility the path and ownership to use to create the
configuration file. SMF regenerates configuration for stencil-aware services before running the
start or refresh methods.

Each configfile type property group describes a single configuration file for the service and
tells svcio how to generate these files from other properties stored in the SMF repository.

A configfile type property group has the following properties:

path The path to which to write the configuration file, for example /etc/
svc.conf.
stencil The path of the stencil file to use, relative to /1ib/svc/stencils. For

example, if the value of the stencil property is svc.stencil, the /lib/
svc/stencils/svc.stencil file will be used.

mode The mode to use for the configuration file (path), for example 644.

owner The owner to set for the configuration file (path). If this property is not
set, the owner of the file is the user who invokes svcio.

group The group to set for the configuration file (path). If this property is not
set, the group will be the default group for path.

Create a stencil file.

The stencil file tells the svcio utility the format to use to create the configuration file. The
svcio utility converts SMF properties into application-specific configuration files based on the
stencil. See the smf_stencil(4) man page for information about stencil file format.

Put your stencil file in the /1ib/svc/stencils directory, and specify the name of the stencil file
as the value of the stencil property in the configfile type property group.

Developing System Services in Oracle Solaris 11.3 « September 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN4smf-stencil-4

Puppet Stencil Service

Puppet Stencil Service

Puppet is a toolkit for managing the configuration of many systems. For information about
using Puppet on Oracle Solaris, see Using Puppet to Perform Configuration Management in
Oracle Solaris 11.3.

On Oracle Solaris, the Puppet application is managed by SMF.

High Level View of Puppet Services
When you install the system/management/puppet package, you get two SMF service instances:
puppet:master and puppet:agent. These instances are disabled by default.

After you enable these instances, the following command shows that both puppet:master and
puppet:agent are contract services:

$ svcs -p puppet

STATE STIME FMRI

online 17:19:32 svc:/application/puppet:agent
17:19:32 2565 puppet

online 17:19:32 svc:/application/puppet:master
17:19:32 2567 puppet

The following command shows a little more information about the processes started by the
contract services:

$ ps -o pid,args -p 2565,2567

PID COMMAND
2565 /usr/ruby/1.9/bin/ruby /usr/sbin/puppet agent --logdest /var/log/puppet/puppet-
2567 /usr/ruby/1.9/bin/ruby /usr/sbin/puppet master --logdest /var/log/puppet/puppet

As suggested by the ps output, puppet is writing to log files in /var/log/puppet:

$ s /var/log/puppet
puppet-agent.log puppet-master.log

Initial Puppet Configuration File

Puppet expects to use a configuration file named /etc/puppet/puppet.conf. The /usr/sbin/
puppet application reads configuration information from /etc/puppet/puppet.conf and not
from properties set in the application/puppet service instances. To provide the required
configuration file, each puppet instance provides a stencil file and configfile property

Chapter 6 * Using a Stencil to Create a Configuration File 69

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVPUP
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVPUP

Puppet Stencil Service

70

group. The configfile property group tells the svcio utility to run and create the specified
configuration file. The stencil file is used to write data from service property values to the
configuration file in the correct format.

The following command shows all puppet service properties that are in a property group of
type configfile. This output shows that both instances of the puppet service have the same
configfile properties with the same values. Each puppet service instance provides the path to
the configuration file, the mode of the configuration file, and the path to the stencil file.

$ svcprop -g configfile puppet
svc:/application/puppet:master/:properties/puppet stencil/mode astring 0444
svc:/application/puppet:master/:properties/puppet stencil/path astring /etc/puppet/
puppet.conf

svc:/application/puppet:master/:properties/puppet _stencil/stencil astring puppet.stencil
svc:/application/puppet:agent/:properties/puppet stencil/mode astring 0444
svc:/application/puppet:agent/:properties/puppet stencil/path astring /etc/puppet/
puppet.conf

svc:/application/puppet:agent/:properties/puppet stencil/stencil astring puppet.stencil

The following commands confirm that these instance properties are inherited from the parent
service.

$ svccfg -s puppet listprop -1 all puppet_stencil

puppet stencil configfile manifest

puppet stencil/mode astring manifest 0444

puppet stencil/path astring manifest /etc/puppet/puppet.conf
puppet stencil/stencil astring manifest puppet.stencil

$ svccfg -s puppet:agent listprop -1 all puppet_stencil
$ svccfg -s puppet:master listprop -1 all puppet_stencil

For your infrastructure, you might need puppet:agent1 and puppet:agent?2 instances, for
example. In that case, you would customize property values and add properties for each
instance as shown in “Modifying the Puppet Configuration File” on page 71.

The following is the initial content of the configuration file, /etc/puppet/puppet.conf:

WARNING: THIS FILE GENERATED FROM SMF DATA.

DO NOT EDIT THIS FILE. EDITS WILL BE LOST.

#

See puppet.conf(5) and http://docs.puppetlabs.com/guides/configuring.html
for details.

Puppet Stencil File

The content of the stencil file tells you what properties and other information are written to the
configuration file. The puppet.stencil path that is the value of the puppet stencil/stencil

Developing System Services in Oracle Solaris 11.3 « September 2018

Puppet Stencil Service

property is relative to /1ib/svc/stencils. The following is the content of the stencil file,
/lib/svc/stencils/puppet.stencil:

WARNING: THIS FILE GENERATED FROM SMF DATA.

DO NOT EDIT THIS FILE. EDITS WILL BE LOST.

#

See puppet.conf(5) and http://docs.puppetlabs.com/guides/configuring.html
for details.

; walk each instance and extract all properties from the config PG
%/ (svc:/$%s:(.*)/:properties)/ {

%{$%1/general/enabled:?

[$%2]

%/ $%1/config/(.*)/ {

$%3 = $%{$%1/config/$%3} }

-

In the stencil file, svc:/$%s: (.*)/:properties (or %1) expands to svc:/application/
puppet:agent/:properties and svc:/application/puppet:master/:properties, where
.* (or %2) matches every instance. The instance name is then used to label the block in the
configuration file. The next occurrence of .* (or %3) matches every property in the config
property group for the %1 service instance. The stencil tells svcio to write the property name
and the value of that property from the service instance to the configuration file.

Modifying the Puppet Configuration File

As you can see in “Initial Puppet Configuration File” on page 69, initially only the literal
comment lines are written to the configuration file. Writing property values to the configuration
file is prevented by the test of the value of the general/enabled property in the stencil file. The
following command shows that by default, the value of the general/enabled property is false:

$ svcprop -p general/enabled puppet
svc:/application/puppet:master/:properties/general/enabled boolean false
svc:/application/puppet:agent/:properties/general/enabled boolean false

Using the svcadm enable command to enable an instance does not change the value of the
general/enabled property. When you change the value of the general/enabled property to
true and restart the instance, all the properties in the config property group for that instance
are written to the configuration file.

$ svccfg -s puppet:agent setprop general/enabled=true
$ svcprop -p general/enabled puppet:agent

false

$ svcadm refresh puppet:agent

Chapter 6 * Using a Stencil to Create a Configuration File 71

Puppet Stencil Service

72

$ svcprop -p general/enabled puppet:agent
true
$ svcadm restart puppet:agent

The following command shows that initially the only property in the config property group is
the path to the log file for each instance:

$ svcprop -p config puppet

svc:/application/puppet:master/:properties/config/logdest astring /var/log/puppet/
puppet-master.log

svc:/application/puppet:agent/:properties/config/logdest astring /var/log/puppet/puppet-
agent.log

The config property for the enabled instance has been added to the configuration file in a block
labeled with the instance name:

WARNING: THIS FILE GENERATED FROM SMF DATA.

DO NOT EDIT THIS FILE. EDITS WILL BE LOST.

#

See puppet.conf(5) and http://docs.puppetlabs.com/guides/configuring.html
for details.

[agent]
logdest = /var/log/puppet/puppet-agent.log

The Puppet configuration documentation says that the configuration file can have [main],
[agent], and [master] blocks. Configuration in the [main] block applies to both the agent

and the master. For the Puppet agent, configuration in the [agent] block overrides the same
configuration in the [main] block. For the Puppet master, configuration in the [master] block
overrides the same configuration in the [main] block. If you want to provide a [main] block for
configuration that is common to both the agent and master, create a puppet:main instance and
appropriate config properties for that instance.

The following commands show how to add configuration to your Puppet configuration file.

$ svccfg -s puppet:agent

svc:/application/puppet:agent> setprop config/report=true
svc:/application/puppet:agent> setprop config/pluginsync=true
svc:/application/puppet:agent> refresh
svc:/application/puppet:agent> exit

$ svcadm restart puppet:agent

$ cat /etc/puppet/puppet.conf

WARNING: THIS FILE GENERATED FROM SMF DATA.

DO NOT EDIT THIS FILE. EDITS WILL BE LOST.

#

See puppet.conf(5) and http://docs.puppetlabs.com/guides/configuring.html
for details.

Developing System Services in Oracle Solaris 11.3 « September 2018

Kerberos Stencil Service

[agent]

logdest = /var/log/puppet/puppet-agent.log
pluginsync = true
report = true

Similar commands can be used to remove properties and change property values. See Chapter
4, “Configuring Services” in Managing System Services in Oracle Solaris 11.3. To add a main
instance, use the svccfg add command as shown in “Adding Service Instances” in Managing
System Services in Oracle Solaris 11.3.

Kerberos Stencil Service

Another example of an Oracle Solaris service that uses a stencil is Kerberos. The following
command shows that the configfile property group is krb5 conf, the stencil file is /1ib/svc/
stencils/krb5.conf.stencil, and the configuration file is /etc/krb5/krb5. conf.

$ svcprop -g configfile svc:/system/kerberos/install:default
krb5 conf/disabled boolean true

krb5 conf/group astring sys

krb5 conf/mode integer 644

krb5 conf/owner astring root

krb5 conf/path astring /etc/krb5/krb5.conf

krb5 conf/stencil astring krb5.conf.stencil

These values are set in the service manifest as shown below. They could be changed by using
svccfg setprop.

<property group type="configfile" name="krb5 conf">
<propval name="disabled" type="boolean" value="true" />
<propval name="path" type="astring"
value="/etc/krb5/krb5.conf" />
<propval name="stencil" type="astring"
value="krb5.conf.stencil" />
<propval name="mode" type="integer" value="0644" />
<propval name="owner" type="astring" value="root" />
<propval name="group" type="astring" value="sys" />
</property group>

You can view the stencil file in /1ib/svc/stencils/krb5.conf.stencil and the resultant
configuration file in /etc/krb5/krb5. conf.

Chapter 6 * Using a Stencil to Create a Configuration File 73

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFeqbwh
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFeqbwh
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFaddinst
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVFaddinst

74 Developing System Services in Oracle Solaris 11.3 « September 2018

Index

A
ASM, 57
authorizations, 14, 23

Automatic Storage Management (ASM), 57

auxiliary state property, 35

C

configfile type property group,
configuration files, 13, 14, 67
cron, 31

DTD, 17

F
FMRI
property, 21

instances
naming, 20

K

Kerberos
stencil service example, 73

L
libscf library, 67
batch operation functions,

M
manifests, 17
site directory, 18
standard location, 18
metadata, 18
method scripts
exit codes, 23
helper functions, 23
methods, 17
restricting use, 23
standard location, 18

(0]

Oracle Database, 57
ASM, 57
listener service, 63
start/stop service, 58

P

periodic property group, 36

periodic services, 31
auxiliary_state property,
last invocation, 36
next invocation, 36
periodic property group,

14

35

36, 38

75

Index

periodic_method element, 32, 33, 44
restarter, 35

scheduled services, 43

start method, 36

start property group, 36

periodic-restarter periodic services restarter

service, 32,44
permissions, 14
privileges, 14,23
profiles, 17

site directory, 18

standard location, 18
properties

naming, 20
property groups

naming, 20

type, 21
Puppet

stencil service example, 69
Python scripts, 23

R

restarters
periodic-restarter periodic services
restarter, 32, 44
svc.periodicd periodic services restarter
daemon, 32,44

rights profiles, 14

roles, 14

run control scripts
converting to SMF service, 26

S

schedule property groups, 48
scheduled services, 43
auxiliary state property, 48
frequency, 51, 51
last invocation, 48
next invocation, 48
restarter, 48

schedule property groups, 48
frequency property, 51,51
scheduled method element, 44
frequency attribute, 45, 51, 51
start method, 48
start property group, 48
security, 23
rights, 14
service bundles
DTD, 17
service metadata, 18
services
naming, 20
periodic, 31
restricting use, 23
scheduled, 43
start property group, 36
stencil files, 14, 67
stencil service, 67
Kerberos example, 73
Puppet example, 69
svc.periodicd periodic services restarter
daemon, 32,44

svc:/system/svc/periodic-restarter periodic

services restarter, 32, 44
svcadm command
synchronous options, 14
svcbundle command
creating manifests, 19
installing automatically, 20
rc-script service, 26
svccfg command
describe subcommand, 18
validate subcommand, 18
svcio utility, 14, 67

76 Developing System Services in Oracle Solaris 11.3 « September 2018

	Developing System Services in Oracle® Solaris 11.3
	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	Chapter 1 • Introduction to Developing Service Management Facility Services
	SMF Documentation
	New Features in This Release
	Service Management Privileges

	Chapter 2 • Using SMF to Control Your Application
	Creating an SMF Service
	Creating an SMF Service Using the Service Bundle Generator Tool
	How to Create an SMF Service Using svcbundle

	Naming Services, Instances, Property Groups, and Properties
	Property Group Types and Property Types
	Creating Service Instance Methods
	Service Method Scripts
	Securing Service Tasks

	Service Development Best Practices
	Service Method Best Practices
	Use SMF Method Exit and Useful Exit Reason
	Use Dependencies, Avoid Using Timeouts

	Provide Documentation
	Validate the Service Manifest
	Use Standard Locations

	Converting a Run Control Script to an SMF Service
	How to Convert a Run Control Script to an SMF Service

	Creating a Service Using Multiple Manifests

	Chapter 3 • Creating a Service to Run Periodically
	Periodic Services
	Creating a Periodic Service
	Specifying the periodic_method Element
	Periodic Service Scheduling Constraints Attributes
	Other Periodic Service Scheduling Attributes
	Periodic Service Start Method Attributes and Context

	Storing Periodic Service Data in the Service Configuration Repository
	Restarter Properties
	periodic Property Group
	Last and Next Start Method Invocations
	start Property Group

	Creating a Periodic Service Using the Service Bundle Generator Tool
	How to Create a Periodic Service Using svcbundle

	Scheduling Executions of a Periodic Service Start Method
	Scheduling After Instance is Initially Enabled
	Scheduling After System Downtime
	Scheduling After Service Restart
	Scheduling After Start Method Problems

	Chapter 4 • Creating a Service to Run on a Specific Schedule
	Scheduled Services
	Creating a Scheduled Service
	Specifying the scheduled_method Element
	Scheduled Service Scheduling Constraints Attributes
	Other Scheduled Service Scheduling Attributes
	Scheduled Service Start Method Attributes and Context

	Storing Scheduled Service Data in the Service Configuration Repository
	Creating a Scheduled Service Using the Service Bundle Generator Tool
	How to Create a Scheduled Service Using svcbundle

	Scheduling Executions of a Scheduled Service Start Method
	Scheduling One Invocation Per Interval
	Scheduling One Invocation Per Multiple Intervals
	Scheduling Invocations at Irregular Intervals
	Resolving Multiple Possible Invocations in One Interval
	Scheduling After System Downtime
	Scheduling After Service Restart
	Scheduling After Start Method Problems

	Chapter 5 • Creating Services to Manage Oracle Database Instances
	Configuring the Environment
	Creating a Service to Start or Stop an Oracle Database Instance
	Database Instance Control Service Manifest
	Start/Stop Method Script for the Oracle Database Instance Control Service
	Add Database Service Instances

	Creating an Oracle Database Listener Service
	Listener Service Manifest
	Add Listener Service Instances

	Chapter 6 • Using a Stencil to Create a Configuration File
	Creating a Stencil Service
	How to Create a Stencil Service

	Puppet Stencil Service
	High Level View of Puppet Services
	Initial Puppet Configuration File
	Puppet Stencil File
	Modifying the Puppet Configuration File

	Kerberos Stencil Service

	Index

