
Securing Files and Verifying File Integrity
in Oracle® Solaris 11.3

Part No: E54827
October 2017

Securing Files and Verifying File Integrity in Oracle Solaris 11.3

Part No: E54827

Copyright © 2002, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Référence: E54827

Copyright © 2002, 2017, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d'utilisation et
de divulgation. Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence, transmettre,
distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous
invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est livré sous licence au Gouvernement des Etats-Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le
compte du Gouvernement des Etats-Unis, la notice suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être
utilisé dans des applications à risque, notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou ce matériel dans le cadre
d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour des
applications dangereuses.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d'autres propriétaires
qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une
marque déposée de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de
tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée
dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des
dommages causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Accès aux services de support Oracle

Les clients Oracle qui ont souscrit un contrat de support ont accès au support électronique via My Oracle Support. Pour plus d'informations, visitez le site http://www.oracle.com/
pls/topic/lookup?ctx=acc&id=info ou le site http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs si vous êtes malentendant.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Using This Documentation ...  7

1 Controlling Access to Files ..  9
Using UNIX Permissions to Protect Files ..  9

Commands for Viewing and Securing Files ...  9
File and Directory Ownership ..  10
UNIX File Permissions ..  10
Special File Permissions Using setuid, setgid and Sticky Bit ....................... 11
Default umask Value ..  13
File Permission Modes ...  14

Using File Attributes to Add Security to ZFS Files ..  15
Using Access Control Lists to Protect UFS Files ...  16
Protecting Executable Files From Compromising Security ....................................  17
Protecting Files ...  17

Protecting Files With UNIX Permissions ...  17
▼ How to Display File Information ..  18
▼ How to Change the Owner of a File ..  19
▼ How to Change Group Ownership of a File ..  20
▼ How to Change File Permissions in Symbolic Mode ...............................  21
▼ How to Change File Permissions in Absolute Mode ................................  22
▼ How to Change Special File Permissions in Absolute Mode .....................  23
Protecting Against Programs With Security Risk ...  24
▼ How to Find Files With Special File Permissions ...................................  24

2 Using ACLs and Attributes to Protect Oracle Solaris ZFS Files ....................  27
Oracle Solaris ACL Model .. 27

Rights to Modify ZFS ACLs ...  28
ACL Formats .. 28

5

Contents

ACL Entry Descriptions ...  29
ACL Properties ...  30
ACL Inheritance Flags ...  31

Setting ACLs on ZFS Files ...  32
Command Syntax for Setting and Modifying ACLs .....................................  32
ACL Interaction With Permission Bits ..  36

Setting ACL Inheritance on ZFS Files ..  39
Enabling the ACL on a Directory to Be Inherited ..  39
Effect of file_inherit and dir_inherit Flags ..  40
Effect of ACL Inherit Mode on ACL Inheritance ..  42

Examples of Setting Security-Relevant Attributes on ZFS Files .............................. 46
Preventing Accidental Deletions With the nounlink Attribute ........................  47
Displaying and Changing ZFS File Attributes ...  48

3 Verifying File Integrity by Using BART ...  51
About BART ..  51

BART Features ...  51
BART Components ..  52

About Using BART ...  53
BART Security Considerations ..  54
Using BART ... 54
▼ How to Create a Control Manifest ...  54
▼ How to Customize a Manifest ..  56
▼ How to Compare Manifests for the Same System Over Time ....................  58
▼ How to Compare Manifests From Different Systems ...............................  60
▼ How to Customize a BART Report by Specifying File Attributes ...............  62
▼ How to Customize a BART Report by Using a Rules File ........................  63

BART Manifests, Rules Files, and Reports ..  64
BART Manifest File Format ..  64
BART Rules File Format ..  66
BART Reporting ...  67

Glossary ..  69

Index ..  71

6 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

Using This Documentation

■ Overview – Describes how to protect legitimate files, view hidden file permissions, and
locate suspicious files. Also describes how to verify the integrity of files over time on
Oracle Solaris systems.

■ Audience – System administrators.
■ Required knowledge – Site security requirements.

Product Documentation Library

Documentation and resources for this product and related products are available at http://www.
oracle.com/pls/topic/lookup?ctx=E53394-01.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

Using This Documentation 7

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01
http://www.oracle.com/goto/docfeedback

8 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

 1 ♦ ♦ ♦ C H A P T E R 1

Controlling Access to Files

This chapter describes how to protect files in Oracle Solaris. The chapter also describes how to
protect the system from files whose permissions could compromise the system.
This chapter covers the following topics:

■ “Using UNIX Permissions to Protect Files” on page 9
■ “Using File Attributes to Add Security to ZFS Files” on page 15
■ “Protecting Executable Files From Compromising Security” on page 17
■ “Protecting Files With UNIX Permissions” on page 17
■ “Protecting Against Programs With Security Risk” on page 24

Using UNIX Permissions to Protect Files

You can secure files through UNIX file permissions and through ACLs. Files with sticky bits,
and files that are executable, require special security measures.

Commands for Viewing and Securing Files
This table describes the commands for monitoring and securing files and directories.

TABLE 1 Commands for Securing Files and Directories

Command Description Man Page

ls Lists the files in a directory and information about the files. ls(1)

chown Changes the ownership of a file. chown(1)

chgrp Changes the group ownership of a file. chgrp(1)

chmod Changes permissions on a file. You can use either symbolic mode, which uses
letters and symbols, or absolute mode, which uses octal numbers, to change
permissions on a file.

chmod(1)

Chapter 1 • Controlling Access to Files 9

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ls-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1chown-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1chgrp-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1chmod-1

Using UNIX Permissions to Protect Files

File and Directory Ownership

Traditional UNIX file permissions can assign ownership to three classes of users:

■ user – The file or directory owner, which is usually the user who created the file. The owner
of a file can decide who has the right to read the file, to write to the file (make changes to
it), or, if the file is a command, to execute the file.

■ group – Members of a group of users.
■ others – All other users who are not the file owner and are not members of the group.

The owner of the file can usually assign or modify file permissions. Additionally, the root
account can change a file's ownership. To override system policy, see Example 2, “Enabling
Users to Change the Ownership of Their Own Files,” on page 20.

A file can be one of seven types. Each type is displayed by a symbol:

- (Minus symbol) Text or program

b Block special file

c Character special file

d Directory

l Symbolic link

s Socket

D Door

P Named pipe (FIFO)

UNIX File Permissions

The following table lists and describes the permissions that you can give to each class of user
for a file or directory.

TABLE 2 File and Directory Permissions

Symbol Permission Object Description

r Read File Designated users can open and read the contents of a file.

10 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

Using UNIX Permissions to Protect Files

Symbol Permission Object Description

r Read Directory Designated users can list files in the directory.

w Write File Designated users can modify the contents of the file or delete the file.

w Write Directory Designated users can add files or add links in the directory. They can also
remove files or remove links in the directory.

x Execute File Designated users can execute the file, if it is a program or shell script. They
also can run the program with one of the exec(2) system calls.

x Execute Directory Designated users can open files or execute files in the directory. They also can
make the directory and the directories beneath it current.

- Denied File and
Directory

Designated users cannot read, write, or execute the file.

These file permissions apply to regular files, and to special files such as devices, sockets, and
named pipes (FIFOs).

For a symbolic link, the permissions that apply are the permissions of the file that the link
points to.

You can protect the files in a directory and its subdirectories by setting restrictive file
permissions on that directory. Note, however, that the root role has access to all files and
directories on the system.

Special File Permissions Using setuid, setgid and
Sticky Bit

Three special types of permissions are available for executable files and public directories:
setuid, setgid, and sticky bit. When these permissions are set, any user who runs that
executable file assumes the ID of the owner (or group) of the executable file.

You must be extremely careful when you set special permissions, because special permissions
constitute a security risk. For example, a user can gain root capabilities by executing a program
that sets the user ID (UID) to 0, which is the UID of root. Also, all users can set special
permissions for files that they own, which constitutes another security concern.

You should monitor your system for any unauthorized use of the setuid permission
and the setgid permission to gain root capabilities. A suspicious permission grants
ownership of an administrative program to a user rather than to root or bin. To search for
and list all files that use this special permission, see “How to Find Files With Special File
Permissions” on page 24.

Chapter 1 • Controlling Access to Files 11

Using UNIX Permissions to Protect Files

setuid Permission

When setuid permission is set on an executable file, a process that runs this file is granted
access on the basis of the owner of the file. The access is not based on the user who is running
the executable file. This special permission allows a user to access files and directories that are
normally available only to the owner.

For example, the setuid permission on the passwd command makes it possible for users to
change passwords. A passwd command with setuid permission would resemble the following:

-r-sr-sr-x 1 root sys 56808 Jun 17 12:02 /usr/bin/passwd

This special permission presents a security risk. Some determined users can find a way to
maintain the permissions that are granted to them by the setuid process even after the process
has finished executing.

Note - The use of setuid permissions with the reserved UIDs (0-100) from a program might
not set the effective UID correctly. Use a shell script, or avoid using the reserved UIDs with
setuid permissions.

setgid Permission

The setgid permission is similar to the setuid permission. The process's effective group
ID (GID) is changed to the group that owns the file, and a user is granted access based on
the permissions that are granted to that group. The /usr/bin/mail command has setgid
permissions:

-r-x--s--x 1 root mail 71212 Jun 17 12:01 /usr/bin/mail

When the setgid permission is applied to a directory, files that are created in this directory
belong to the group that owns the directory. The files do not belong to the group to which the
creating process belongs. Any user who has write and execute permissions in the directory can
create a file there. However, the file belongs to the group that owns the directory, not to the
group that the user belongs to.

You should monitor your system for any unauthorized use of the setgid permission to gain
root capabilities. A suspicious permission grants group access to such a program to an unusual
group rather than to root or bin. To search for and list all files that use this permission, see
“How to Find Files With Special File Permissions” on page 24.

12 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

Using UNIX Permissions to Protect Files

Sticky Bit

The sticky bit is a permission bit that protects the files within a directory. If the directory has the
sticky bit set, a file can be deleted only by the file owner, the directory owner, or by a privileged
user. The root user is an example of a privileged user. The sticky bit prevents a user from
deleting other users' files from public directories such as /tmp:

drwxrwxrwt 7 root sys 400 Sep 3 13:37 tmp

Be sure to set the sticky bit manually when you create a swap file or set up a public directory
on a TMPFS file system. For instructions, see Example 5, “Setting Special File Permissions in
Absolute Mode,” on page 24.

Default umask Value

When you create a file or directory, you create it with a default set of permissions. The system
defaults are open. A text file has 666 permissions, which grants read and write permission to
everyone. A directory and an executable file have 777 permissions, which grants read, write,
and execute permission to everyone. Typically, users override the system defaults in their shell
initialization files, such as .bashrc and .kshrc.user. An administrator can also set defaults in
the /etc/profile file.

The value that the umask command assigns is subtracted from the default. This process has
the effect of denying permissions in the same way that the chmod command grants them. For
example, the chmod 022 command grants write permission to group and others. The umask 022
command denies write permission to group and others.

The following table shows some typical umask values and their effect on an executable file.

TABLE 3 umask Settings for Different Security Levels

Level of Security umask Setting Permissions Disallowed

Permissive (744) 022 w for group and others

Moderate (751) 026 w for group, rw for others

Strict (740) 027 w for group, rwx for others

Severe (700) 077 rwx for group and others

For more information about setting the umask value, see the umask(1) man page.

Chapter 1 • Controlling Access to Files 13

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1umask-1

Using UNIX Permissions to Protect Files

File Permission Modes

The chmod command enables you to change the permissions on a file. You must be root or the
owner of a file or directory to change its permissions.

You can use the chmod command to set permissions in either of two modes:

■ Absolute Mode – Use numbers to represent file permissions. When you change permissions
by using the absolute mode, you represent permissions for each triplet by an octal mode
number. Absolute mode is the method most commonly used to set permissions.

■ Symbolic Mode – Use combinations of letters and symbols to add permissions or remove
permissions.

The following table lists the octal values for setting file permissions in absolute mode. You use
these numbers in sets of three to set permissions for owner, group, and other, in that order. For
example, the value 644 sets read and write permissions for owner, and read-only permissions
for group and other.

TABLE 4 Setting File Permissions in Absolute Mode

Octal Value File Permissions Set Permissions Description

0 --- No permissions

1 --x Execute permission only

2 -w- Write permission only

3 -wx Write and execute permissions

4 r-- Read permission only

5 r-x Read and execute permissions

6 rw- Read and write permissions

7 rwx Read, write, and execute permissions

The following table lists the symbols for setting file permissions in symbolic mode. Symbols
can specify whose permissions are to be set or changed, the operation to be performed, and the
permissions that are being assigned or changed.

TABLE 5 Setting File Permissions in Symbolic Mode

Symbol Function Description

u who User (owner)

g who Group

o who Others

a who All

14 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

Using File Attributes to Add Security to ZFS Files

Symbol Function Description

= operator Assign

+ operator Add

- operator Remove

r permissions Read

w permissions Write

x permissions Execute

l permissions Mandatory locking, setgid bit is on, group execution bit is off

s permissions setuid or setgid bit is on

t permissions Sticky bit is on, execution bit for others is on

The who operator permissions designations in the function column specify the symbols that
change the permissions on the file or directory.

who Specifies whose permissions are to be changed.

operator Specifies the operation to be performed.

permissions Specifies what permissions are to be changed.

You can set special permissions on a file in absolute mode or symbolic mode. However, you
must use symbolic mode to set or remove setuid permissions on a directory. In absolute mode,
you set special permissions by adding a new octal value to the left of the permission triplet.
See Example 5, “Setting Special File Permissions in Absolute Mode,” on page 24. The
following table lists the octal values for setting special permissions on a file.

TABLE 6 Setting Special File Permissions in Absolute Mode

Octal Value Special File Permissions

1 Sticky bit

2 setgid

4 setuid

Using File Attributes to Add Security to ZFS Files

In a ZFS file system, you can mark security-relevant files for special treatment. The file
attributes can affect local files, NFS-mounted files, or CIFS-mounted files. The chmod(1) and
ls(1) man pages describe how to set and list file attributes.

Chapter 1 • Controlling Access to Files 15

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1chmod-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ls-1

Using Access Control Lists to Protect UFS Files

File attributes that have security implications include the following:

■ appendonly attribute – Permits adding to the end of a file but prevents modifying existing
contents. This attribute on a log file can prevent changes to log file entries. Requires the
PRIV_FILE_FLAG_SET privilege on the process to set the attribute and all privileges to
remove it.

■ immutable attribute – Prevents modifying or deleting the contents of a file. Also prevents
changing file metadata except for access time updates. On a directory, this attribute prevents
the deletion of the directory and its files. Requires the PRIV_FILE_FLAG_SET privilege on the
process to set the attribute and all privileges to remove it.
For an example, see “Making a ZFS File Immutable” in Securing Files and Verifying File
Integrity in Oracle Solaris 11.3.

■ nounlink attribute – Prevents deletion of critical files or directories. On a directory, this
attribute prevents the deletion or renaming of files. This attribute can prevent the accidental
deletion of files that are critical for an application. Requires the PRIV_FILE_FLAG_SET
privilege on the process to set the attribute and all privileges to remove it.

■ sensitive attribute – Indicates that the file contains keying information, such as PINs or
passwords. Sensitive files are not written to the audit record.

■ readonly attribute – Permits no content change to a CIFS-mounted file. The owner of the
file can set or clear this attribute, or a user or group with the write_attributes permission
can set or clear this attribute.

For more information, see “Examples of Setting Security-Relevant Attributes on ZFS
Files” on page 46.

Using Access Control Lists to Protect UFS Files

Traditional UNIX file protection provides read, write, and execute permissions for the three
user classes: file owner, file group, and other. In a UFS file system, an access control list (ACL)
provides better file security by enabling you to do the following:

■ Define file permissions for the file owner, the group, other, specific users and groups
■ Define default permissions for each of the preceding categories

Note - For ACLs in the ZFS file system and ACLs on NFSv4 files, see Chapter 2, “Using ACLs
and Attributes to Protect Oracle Solaris ZFS Files”.

For example, if you want everyone in a group to be able to read a file, you can simply grant
group read permissions on that file. However, if you want only one person in the group to be
able to write to that file, you can use an ACL.

16 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSFVzfs-modimmut
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSFVzfs-modimmut

Protecting Executable Files From Compromising Security

For more information about ACLs on UFS file systems, see System Administration Guide:
Security Services for the Oracle Solaris 10 release.

Protecting Executable Files From Compromising Security

Programs read and write data on the stack. Typically, they execute from read-only portions of
memory that are specifically designated for code. Some attacks that cause buffers on the stack
to overflow try to insert new code on the stack and cause the program to execute it. Removing
execute permission from the stack memory prevents these attacks from succeeding. Most
programs can function correctly without using executable stacks.

Programs can explicitly mark or prevent stack execution. The mprotect() function in programs
explicitly marks the stack as executable. For more information, see the mprotect(2) man page.

For how to prevent stacks from being used by malicious programs, see “Protecting the Process
Heap and Executable Stacks From Compromise” in Securing Systems and Attached Devices in
Oracle Solaris 11.3.

To prevent system compromise by executables in a mounted filesystem, you can use the
nosetuid and noexec arguments to the mount command. For more information, see the
mount(1M) man page.

Protecting Files

The following procedures protect files with UNIX permissions, locate files with security risks,
and protect the system from compromise by these files.

Protecting Files With UNIX Permissions

The following task map points to procedures that list file permissions, change file permissions,
and protect files with special file permissions.

Task For Instructions

Display file information. “How to Display File Information” on page 18

Change local file ownership. “How to Change the Owner of a File” on page 19

Chapter 1 • Controlling Access to Files 17

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2mprotect-2
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSADsysauth-nx
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSADsysauth-nx
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSADsysauth-nx
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mmount-1m

How to Display File Information

Task For Instructions
“How to Change Group Ownership of a File” on page 20

Change local file permissions. “How to Change File Permissions in Symbolic Mode” on page 21

“How to Change File Permissions in Absolute Mode” on page 22

“How to Change Special File Permissions in Absolute Mode” on page 23

How to Display File Information

Display information about all the files in a directory by using the ls command.

Type the following command to display a long listing of all files in the current
directory.

% ls -la

-l Displays the long format that includes user ownership, group ownership,
and file permissions.

-a Displays all files, including hidden files that begin with a dot (.).

For all options to the ls command, see the ls(1) man page.

Example 1 Displaying File Information

In the following example, a partial list of the files in the /sbin directory is displayed.

% cd /sbin

% ls -l

total 4960

-r-xr-xr-x 1 root bin 12756 Dec 19 2013 6to4relay

lrwxrwxrwx 1 root root 10 Dec 19 2013 accept -> cupsaccept

-r-xr-xr-x 1 root bin 38420 Dec 19 2013 acctadm

-r-xr-xr-x 2 root sys 70512 Dec 19 2013 add_drv

-r-xr-xr-x 1 root bin 3126 Dec 19 2013 addgnupghome

drwxr-xr-x 2 root bin 37 Dec 19 2013 amd64

-r-xr-xr-x 1 root bin 2264 Dec 19 2013 applygnupgdefaults

-r-xr-xr-x 1 root bin 153 Dec 19 2013 archiveadm

-r-xr-xr-x 1 root bin 12644 Dec 19 2013 arp

.

.

.

18 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ls-1

How to Change the Owner of a File

Each line displays information about a file in the following order:

■ Type of file – For example, d. For list of file types, see “File and Directory
Ownership” on page 10.

■ Permissions – For example, r-xr-xr-x. For description, see “File and Directory
Ownership” on page 10.

■ Number of hard links – For example, 2.
■ Owner of the file – For example, root.
■ Group of the file – For example, bin.
■ Size of the file, in bytes – For example, 12644.
■ Date the file was created or the last date that the file was changed – For example, Dec 19

2013.
■ Name of the file – For example, arp.

How to Change the Owner of a File

Before You Begin If you are not the owner of the file or directory, you must be assigned the Object Access
Management rights profile. To change a file that is a public object, you must assume the root
role.

For more information, see “Using Your Assigned Administrative Rights” in Securing Users and
Processes in Oracle Solaris 11.3.

1. Display the permissions on a local file.

% ls -l example-file

-rw-r--r-- 1 janedoe staff 112640 May 24 10:49 example-file

2. Change the owner of the file.

chown stacey example-file

3. Verify that the owner of the file has changed.

ls -l example-file

-rw-r--r-- 1 stacey staff 112640 May 26 08:50 example-file

To change permissions on NFS-mounted files, see Chapter 5, “Commands for Managing
Network File Systems” in Managing Network File Systems in Oracle Solaris 11.3.

Chapter 1 • Controlling Access to Files 19

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVNFSrfsrefer-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVNFSrfsrefer-1

How to Change Group Ownership of a File

Example 2 Enabling Users to Change the Ownership of Their Own Files

Security Consideration – You need a good reason to change the setting of the rstchown
variable to zero. The default setting prevents users from listing their files as belonging to others
so as to bypass space quotas.

In this example, the value of the rstchown variable is set to zero in the /etc/system file. This
setting enables the owner of a file to use the chown command to change the file's ownership to
another user. This setting also enables the owner to use the chgrp command to set the group
ownership of a file to a group that the owner does not belong to. The change goes into effect
when the system is rebooted.

set rstchown = 0

For more information, see the chown(1) and chgrp(1) man pages.

How to Change Group Ownership of a File

Before You Begin If you are not the owner of the file or directory, you must be assigned the Object Access
Management rights. To change a file that is a public object, you must assume the root role.

For more information, see “Using Your Assigned Administrative Rights” in Securing Users and
Processes in Oracle Solaris 11.3.

1. Change the group ownership of a file.

% chgrp scifi example-file

For information about setting up groups, see Chapter 1, “About User Accounts and User
Environments” in Managing User Accounts and User Environments in Oracle Solaris 11.3.

2. Verify that the group ownership of the file has changed.

% ls -l example-file

-rw-r--r-- 1 stacey scifi 112640 June 20 08:55 example-file

Also see Example 2, “Enabling Users to Change the Ownership of Their Own Files,” on page
20.

20 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1chown-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1chgrp-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=ADUSRuserconcept-97366
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=ADUSRuserconcept-97366

How to Change File Permissions in Symbolic Mode

How to Change File Permissions in Symbolic
Mode

In the following procedure, a user changes permissions on a file that the user owns.

1. Change permissions in symbolic mode.

% chmod who operator permissions filename

who Specifies whose permissions are to be changed.

operator Specifies the operation to be performed.

permissions Specifies what permissions are to be changed. For the list of valid
symbols, see Table 5, “Setting File Permissions in Symbolic Mode,” on
page 14.

filename Specifies the file or directory.

2. Verify that the permissions of the file have changed.

% ls -l filename

Note - If you are not the owner of the file or directory, you must be assigned the Object Access
Management rights profile. To change a file that is a public object, you must assume the root
role.

Example 3 Changing Permissions in Symbolic Mode

In the following example, the owner removes read permission others.

% chmod o-r example-file1

the following example, the owner adds read and execute permissions for user, group, and
others.

% chmod a+rx example-file2

In the following example, the owner adds read, write, and execute permissions for group
members.

% chmod g=rwx example-file3

Chapter 1 • Controlling Access to Files 21

How to Change File Permissions in Absolute Mode

How to Change File Permissions in Absolute
Mode

In the following procedure, a user changes permissions on a file that the user owns.

1. Change permissions in absolute mode.

% chmod nnn filename

nnn Specifies the octal values that represent the permissions for the file
owner, file group, and others, in that order. For the list of valid octal
values, see Table 4, “Setting File Permissions in Absolute Mode,” on
page 14.

filename Specifies the file or directory.

Note - If you use the chmod command to change file or directory permissions on objects that
have existing ACL entries, the ACL entries might change as well. The exact changes are
dependent upon the chmod permission operation changes and the file system's aclmode and
aclinherit property values.

For more information, see Chapter 2, “Using ACLs and Attributes to Protect Oracle Solaris ZFS
Files” in Securing Files and Verifying File Integrity in Oracle Solaris 11.3.

2. Verify that the permissions of the file have changed.

% ls -l filename

Note - If you are not the owner of the file or directory, you must be assigned the Object Access
Management rights profile. To change a file that is a public object, you must assume the root
role.

Example 4 Changing Permissions in Absolute Mode

In the following example, the administrator changes the permissions of a directory that is open
to the public from 744 (read, write, execute; read-only; and read-only) to 755 (read, write,
execute; read and execute; and read and execute).

ls -ld public_dir

drwxr--r-- 1 jdoe staff 6023 Aug 5 12:06 public_dir

chmod 755 public_dir

ls -ld public_dir

22 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSFVzfsacl-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSFVzfsacl-1

How to Change Special File Permissions in Absolute Mode

drwxr-xr-x 1 jdoe staff 6023 Aug 5 12:06 public_dir

In the following example, the file owner changes the permissions of an executable shell script
from read and write to read, write, and execute.

% ls -l my_script

-rw------- 1 jdoe staff 6023 Aug 5 12:06 my_script

% chmod 700 my_script

% ls -l my_script

-rwx------ 1 jdoe staff 6023 Aug 5 12:06 my_script

How to Change Special File Permissions in
Absolute Mode

Before You Begin If you are not the owner of the file or directory, you must be assigned the Object Access
Management rights profile. To change a file that is a public object, you must assume the root
role.

For more information, see “Using Your Assigned Administrative Rights” in Securing Users and
Processes in Oracle Solaris 11.3.

1. Change special permissions in absolute mode.

% chmod nnnn filename

nnnn Specifies the octal values that change the permissions on the file or
directory. The leftmost octal value sets the special permissions on the
file. For the list of valid octal values for special permissions, see Table 6,
“Setting Special File Permissions in Absolute Mode,” on page 15.

filename Specifies the file or directory.

Note - When you use the chmod command to change the file group permissions on a file
with ACL entries, both the file group permissions and the ACL mask are changed to the new
permissions. Be aware that the new ACL mask permissions can change the permissions for
additional users and groups who have ACL entries on the file. Use the ls -v command to make
sure that the appropriate permissions are set for all ACL entries. For more information, see the
ls(1) man page.

2. Verify that the permissions of the file have changed.

% ls -l filename

Chapter 1 • Controlling Access to Files 23

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ls-1

How to Find Files With Special File Permissions

Example 5 Setting Special File Permissions in Absolute Mode

In the following example, the administrator sets the setuid permission on the dbprog file.

chmod 4555 dbprog

ls -l dbprog

-r-sr-xr-x 1 db staff 12095 May 6 09:29 dbprog

In the following example, the administrator sets the setgid permission on the dbprog2 file.

chmod 2551 dbprog2

ls -l dbprog2

-r-xr-s--x 1 db staff 24576 May 6 09:30 dbprog2

In the following example, the administrator sets the sticky bit on the public_dir directory.

chmod 1777 public_dir

ls -ld public_dir

drwxrwxrwt 2 jdoe staff 512 May 15 15:27 public_dir

Protecting Against Programs With Security Risk

The following procedures find risky executables on the system and prevent programs from
exploiting process heaps and executable stacks.

■ “How to Find Files With Special File Permissions” on page 24 locates files with the
setuid bit set, but that are not owned by the root user.

■ “Protecting the Process Heap and Executable Stacks From Compromise” in Securing
Systems and Attached Devices in Oracle Solaris 11.3 prevents programs from malicious
software attacks.

How to Find Files With Special File Permissions

This procedure locates potentially unauthorized use of the setuid and setgid permissions on
programs. A suspicious executable file grants ownership to a user rather than to root or bin.

Before You Begin You must assume the root role. For more information, see “Using Your Assigned
Administrative Rights” in Securing Users and Processes in Oracle Solaris 11.3.

1. Find files with setuid permissions by using the find command.

find directory -user root -perm -4000 -exec ls -ldb {} \; >/tmp/filename

24 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSADsysauth-nx
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSADsysauth-nx
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28

How to Find Files With Special File Permissions

find directory Checks all mounted paths starting at the specified directory, which can be
root (/), /usr, /opt, and so on.

-user root Displays files owned only by root.

-perm -4000 Displays files only with permissions set to 4000.

-exec ls -ldb Displays the output of the find command in ls -ldb format. See the
ls(1) man page.

/tmp/filename Is the file that contains the results of the find command.

For more information, see the find(1) man page.

2. Display the results in /tmp/filename.

more /tmp/filename

For background information, see “setuid Permission” on page 12.

Example 6 Finding Files With setuid Permissions

The output from the following example shows that a user in a group called rar has made a
personal copy of /usr/bin/rlogin, and has set the permissions as setuid to root. As a result,
the /usr/rar/bin/rlogin program runs with root permissions.

After investigating the /usr/rar directory and removing the /usr/rar/bin/rlogin command,
the administrator archives the output from the find command.

find /usr -user root -perm -4000 -exec ls -ldb {} \; > /var/tmp/ckprm

cat /var/tmp/ckprm

-rwsr-xr-x 1 root sys 32432 Jul 14 14:14 /usr/bin/atq

-rwsr-xr-x 1 root sys 32664 Jul 14 14:14 /usr/bin/atrm

-rwsr-xr-x 1 root bin 82836 Jul 14 14:14 /usr/bin/cdrw

-r-sr-xr-x 1 root sys 41448 Jul 14 14:14 /usr/bin/chkey

-r-sr-xr-x 1 root bin 7968 Jul 14 14:14 /usr/bin/mailq

-r-sr-sr-x 1 root sys 45364 Jul 14 14:14 /usr/bin/passwd

-rwsr-xr-x 1 root bin 37740 Jul 14 14:14 /usr/bin/pfedit

-r-sr-xr-x 1 root bin 51472 Jul 14 14:14 /usr/bin/rcp

---s--x--- 1 root rar 41592 Jul 24 16:14 /usr/rar/bin/rlogin

-r-s--x--x 1 root bin 213092 Jul 14 14:14 /usr/bin/sudo

-r-sr-xr-x 4 root bin 24056 Jul 14 14:14 /usr/bin/uptime

-r-sr-xr-x 1 root bin 79540 Jul 14 14:14 /usr/bin/xlock

mv /var/tmp/ckprm /var/share/sysreports/ckprm

Chapter 1 • Controlling Access to Files 25

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ls-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1find-1

26 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

 2 ♦ ♦ ♦ C H A P T E R 2

Using ACLs and Attributes to Protect Oracle
Solaris ZFS Files

This chapter provides information about using access control lists (ACLs) to protect your ZFS
files by providing more granular permissions than the standard UNIX permissions.
This chapter covers the following topics:

■ “Oracle Solaris ACL Model” on page 27
■ “Setting ACLs on ZFS Files” on page 32
■ “Setting ACL Inheritance on ZFS Files” on page 39
■ “Examples of Setting Security-Relevant Attributes on ZFS Files” on page 46

Oracle Solaris ACL Model

The Oracle Solaris ACL model fully supports the interoperability that NFSv4 offers between
UNIX and non-UNIX clients. ZFS ACLs are similar to Windows NT-style ACLs, and provide
more fine-grained access control than standard file permissions provide. ACLs are set and
displayed with the chmod and ls commands.

The ACL model has two types of Access Control Entries (ACEs) that affect access checking:
ALLOW and DENY. Therefore, you cannot infer from any single ACE that defines a set of
permissions whether the permissions that are not defined in that ACE are allowed or denied.

For a description of the model, see the NFSv4 ACLs section of the acl(5) man page. For
information about backup products, see “Saving ZFS Data With Other Backup Products” in
Managing ZFS File Systems in Oracle Solaris 11.3.

Chapter 2 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 27

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5acl-5
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVZFSgbscu
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVZFSgbscu

Oracle Solaris ACL Model

Rights to Modify ZFS ACLs

You can assign and modify ACLs of the files and directories that you own. For files that others
own, you must get permission in one of the following ways to assign and modify those ACLs:

■ The owner of the file or directory gave you the write_acl permission:

$ chmod A+user:jdoe:write_acl:f:allow file.1

■ You are assigned the Object Access Management rights profile. If you are not assigned a
profile shell as your default shell, run the pfbash or pfexec command before running the
command that changes the ACL.

■ You are assigned the root role.

ACL Formats

ACLs have two basic formats:

■ Trivial ACL – Contains only entries for traditional UNIX user categories that are
represented as owner@, group@, and everyone@.

For a newly created file, the default ACL grants owner@ all permissions, and prevents
group@ and everyone@ from modifying the file and its attributes:

0:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

1:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

2:everyone@:/** same as group@ **/

For a newly created directory, the default ACL grants owner@ all permissions, and prevents
group@ and everyone@ from modifying the directory and its attributes:

0:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

1:group@:list_directory/read_data/read_xattr/execute/read_attributes/read_acl

/synchronize:allow

2:everyone@:/** same as group@ **/
■ Non-Trivial ACL – Contains entries for added user categories. The entries might also

include inheritance flags, or are ordered in a non-traditional way.

A non-trivial entry is similar to the following example, which grants user jan specific
permissions.

28 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

Oracle Solaris ACL Model

0:user:jan:read_data/write_data:file_inherit:allow

For a description of ACL access privileges, see the NFSv4 ACLs section of the acl(5) man
page.

ACL Entry Descriptions

The following entry illustrates the elements that comprise an ACL entry. These elements apply
to both trivial and non-trivial ACLs.

0:user:jan:read_data/write_data:file_inherit:allow

Index A number at the beginning of the entry, such as the number zero (0) in
the example. The index identifies a specific entry and distinguishes the
entry from others in the ACL.

ACL entry type The user category. In trivial ACLs, only entries for owner@, group@, and
everyone@ are set. Non-trivial ACL entry types are user:username and
group:groupname. In the example, the entry type is user:jan.

Access privileges Permissions that are granted or denied to the entry type. In the example,
the user is granted read_data and write_data.

Inheritance flags An optional list of ACL flags that control how permissions are
propagated in a directory structure. In the sample entry, file_inherit is
also granted to the user.

Permission control Determines whether the permissions in an entry are allowed or denied. In
the example, the permissions are allowed.

The following table describes each ACL entry type.

TABLE 7 ACL Entry Types

ACL Entry Type
Format Description

owner@ Trivial Specifies the access granted to the owner of the object.

group@ Trivial Specifies the access granted to the owning group of the object.

everyone@ Trivial Specifies the access granted to any user or group that does not match any other
ACL entry.

user Non-trivial With a user name, specifies the access granted to an additional user of the
object. Must include the ACL entry ID, which can be a user name or a user ID.

Chapter 2 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 29

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5acl-5

Oracle Solaris ACL Model

ACL Entry Type
Format Description

group Non-trivial With a group name, specifies the access granted to an additional group of the
object. Must include the ACL entry ID, which can be a group name or a group
ID.

ZFS ACL Sets

ZFS ACL sets are predefined combinations of ACL permissions. You cannot extend the sets.

■ full_set – All permissions
■ modify_set – All permissions except write_acl and write_owner
■ read_set – read_data, read_attributes, read_xattr, and read_acl
■ write_set – write_data, append_data, write_attributes, and write_xattr

You can apply an ACL set rather than separately setting individual permissions.

EXAMPLE 7 Applying an ACL Set to a File

With the addition of the read_set ACL set, the user jan can read file contents and the file's
basic and extended attributes, and retain the default permissions.

$ pfexec chmod A+user:jan:read_set:allow file.1

$ ls -v file.1

-r--r--r--+ 1 root root 206695 Jul 20 13:43 file.1

0:user:jan:read_data/read_xattr/read_attributes/read_acl:allow

...

ACL Properties

The ZFS file system includes two properties that affect ACLs:

■ aclmode – Modifies ACL behavior when a file is initially created or controls how an ACL is
modified during a chmod operation.

By default, ACL entries are discarded. Other possible modes are a mask that reduces user or
group permissions, and a passthrough that leaves the ACLs in effect.

For more information about aclmode values, see the aclmode entry in the zfs(1M) man
page and Example 14, “Showing the Effects of the aclmode and aclinherit Properties on
ACL Permissions,” on page 38.

30 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mzfs-1m

Oracle Solaris ACL Model

■ aclinherit – Determines the behavior of ACL inheritance and ACL interaction with chmod
operations.

By default, write_owner and write_acl permissions are removed when an ACL entry is
inherited. Other possible behaviors are to discard all ACL entries, only inherit deny entries,
and leave the ACLs in effect with passthrough.

For more information about aclinherit values, see “Effect of ACL Inherit Mode on ACL
Inheritance” on page 42 and the aclinherit entry in the zfs(1M) man page.

ACL Inheritance Flags

ACL inheritance enables a newly created file or directory to inherit the ACLs that it should
inherit without disregarding the existing permission bits on the parent directory. By default,
ACLs are not inherited. A non-trivial ACL on a directory is not inherited to any subsequent
directory. You must specify the inheritance of an ACL on a file or directory.
ZFS and NFSv4 provide the following inheritance flags. The letters in parentheses are the
compact format of the flag:

■ file_inherit (f) – Inherit from parent directory.
■ dir_inherit (d) – Inherit from parent directory.
■ inherit_only (i) – Newly created files or subdirectories inherit from the parent directory.
■ no_propagate (n) – Inherit only to the first level directory.
■ failed_access (F) – Alarm or audit record created at failed access.
■ successful_access (S) – Alarm or audit record created at successful access.
■ - – No permissions.
■ inherited (I) – Indicator of inheritance.

For a full description of the optional inheritance flags, see the NFSv4 ACLs section of the
acl(5) man page.

In addition, you can change the default ACL inheritance policy on a file system by using
the aclinherit file system property. For more information about this property, see “ACL
Properties” on page 30 and “Setting ACL Inheritance on ZFS Files” on page 39.

Note - Currently, the successful_access, failed_access, and inherited flags apply only to
the SMB server.

Chapter 2 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 31

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mzfs-1m
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5acl-5

Setting ACLs on ZFS Files

Setting ACLs on ZFS Files

The primary rules of ACL access on a ZFS file are as follows:

■ ZFS processes ACL entries in the order they are listed in the ACL, from the top down.
■ Only ACL entries where the specified user matches the requester of the access are

processed.
■ Once an allow permission has been granted, it cannot be denied by a subsequent ACL deny

entry in the same ACL permission set.
■ The owner of the file is granted the write_acl permission unconditionally even if the

permission is explicitly denied. Otherwise, any permission left unspecified is denied.

In the cases of deny permissions or when an access permission is missing, the PRIV_FILE*
privileges determine access. The privileges mechanism prevents file owners from getting
locked out of their files and enables superuser to modify files for recovery purposes. For
more information, see the privileges(5) man page.

Command Syntax for Setting and Modifying ACLs

To set or modify ACLs, use the chmod command. The command syntax resembles the syntax for
setting permission bits on files, except that you type A before typing the operator (+, =, or -).

■ chmod command syntax for trivial ACLs

chmod [options] A[index]{+|=}owner@ |group@ |everyone@: \
 access-permissions/...[:inheritance-flags]:deny | allow file

chmod [options] A-owner@, group@, everyone@: \
 access-permissions/...[:inheritance-flags]:deny | allow file ...

chmod [options] A[index]- file
■ chmod command syntax for non-trivial ACLs

chmod [options] A[index]{+|=}user|group:name: \
access-permissions/...[:inheritance-flags]:deny | allow file

chmod [options] A-user|group:name: \
access-permissions/...[:inheritance-flags]:deny | allow file ...

chmod [options] A[index]- file

The chmod command uses the following operators for ACLs:

■ A+ adds an ACL entry. An+ adds the ACL for the specified index number.

32 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5privileges-5

Setting ACLs on ZFS Files

For example, chmod A+ adds an ACL entry, while chmod A3+ adds an ACL entry to index
number 3.

■ A= replaces the ACL. An= replaces the ACL of the specified index number.

For example, chmod A= replaces an entire ACL, while chmod A3= replaces only the existing
ACL entry of index number 3.

■ A- removes an ACL entry. Use this command syntax to restore a trivial ACL to the file.
After you issue the command, only the entries for owner@, group@, and everyone@ that
comprise a trivial ACL remain.

An- removes the ACL from the specified index number. For example, chmod A3- removes
the existing ACL entry from index number 3.

Permissions and inheritance flags are represented by unique letters listed in the NFSv4 ACLs
section of the acl(5). When you set ZFS ACLs, you can either use the letters that correspond to
those permissions (compact mode) or type the permissions in full (verbose mode).

EXAMPLE 8 Setting ACLs on Files and Directories

The following examples illustrate the use of the chmod command to set ACLs on a file.

The following two commands are equivalent. The first command uses the compact mode of the
permission. Each command grants read and execute permissions to user Tamiko on file.1.

$ chmod A+user:tamiko:rx:allow file.1

$ chmod A+user:tamiko:read_data/execute:allow file.1

Similarly, the following command grants user Tamiko inheritable read, write, and execute
permissions for the newly created dir.2 and its files.

$ chmod A+user:tamiko:rwx:fd:allow dir.2

The verbose mode of the permission grants the same access.

$ chmod A+user:tamiko:list_directory/write_data/execute:file_inherit/dir_inherit:allow

 dir.2

The use of the A+ operator enables group@ to write data to file.1 and does not affect existing
ACL entries.

$ chmod A+group@:w:allow file.1

Chapter 2 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 33

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5acl-5

Setting ACLs on ZFS Files

EXAMPLE 9 Replacing ACLs

The use of the A= operator removes existing ACL entries for file.1 and replaces them
with the single entry for everyone@. This entry removes the remaining default permissions
(read_xattr/read_attributes/read_acl/synchronize:allow) for everyone@.

$ chmod A=everyone@:rx:allow file.1

EXAMPLE 10 Removing ACLs

The following examples illustrate the use of the chmod command to remove ACLs from a file.

This example removes all non-trivial ACL entries for a file without listing each entry to be
removed.

$ chmod A- file.1

In the following example, the owner grants read_data/write_data permissions to group@.
This command removes the other default permissions, read_xattr/read_attributes/
read_acl/synchronize:allow.

$ chmod A1=group@:read_data/write_data:allow file.1

$ ls -v file.1

-rw-rw-r-- 1 root root 206695 Jul 20 13:43 file.1

0:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:read_data/write_data:allow

2:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

EXAMPLE 11 Removing an Added ACL Entry by Index Number

In the following example, read_data/execute permissions are added for the user Alice on the
test.dir directory. Alice's entry is index number 0.

$ chmod A0+user:alice:read_data/execute:allow test.dir

$ ls -dv test.dir

drwxr-xr-x+ 2 root root 2 Jul 20 14:23 test.dir

0:user:alice:list_directory/read_data/execute:allow

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

2:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

34 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

Setting ACLs on ZFS Files

3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

In the following example, access permissions are removed for user Alice by using the index
number of her ACL entry.

$ chmod A0- test.dir

$ ls -dv test.dir

drwxr-xr-x 2 root root 2 Jul 20 14:23 test.dir

0:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

2:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

$ chmod A3=everyone@:list_directory/read_data/read_xattr/execute/read_attributes \

/read_acl/synchronize:allow:failed_access:audit dir1

$ ls -v

total 1

drwxr-xr-x 2 foo staff 2 Feb 1 19:28 dir1

 0:everyone@:list_directory/read_data/read_attributes/read_acl:failed_access:audit

 1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

 /append_data/read_xattr/write_xattr/execute/delete_child

 /read_attributes/write_attributes/read_acl/write_acl/write_owner

 /synchronize:allow

 2:group@:list_directory/read_data/read_xattr/execute/read_attributes

 /read_acl/synchronize:allow

 3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

 /read_acl/synchronize:allow

Displaying ACL Information

With the ls command, you can display ACL information in one of two formats. The -v option
displays the permissions in full or verbose form. The -V option generates compact output by
using letters that represent the permissions and flags.

EXAMPLE 12 Displaying ACLs in Compact and Verbose Format

The following example shows how the same ACL information is displayed in verbose format
and compact format:

Chapter 2 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 35

Setting ACLs on ZFS Files

$ ls -v file.1

-rw-r--r-- 1 root root 206695 Jul 20 14:27 file.1

0:owner@:read_data/write_data/append_data/read_attributes

/write_xattr/read_xattr/write_attributes/read_acl/write_acl

/write_owner/synchronize:allow

1:group@:read_data/read_attributes/read_xattr/read_acl

/synchronize:allow

2:everyone@:read_data/append_data/read_xattr/read_acl

/synchronize:allow

$ ls -V file.1

-rw-r--r-- 1 root root 206695 Jul 20 14:27 file.1

owner@:rw-p--aARWcCos:-------:allow

group@:r-----a-R-c--s:-------:allow

everyone@:r-----a-R-c--s:-------:allow

For a description of ACL access privileges, see the NFSv4 ACLs section of the acl(5) man
page.

ACL Interaction With Permission Bits

In ZFS files, the UNIX permission bits correspond to the ACL entries, but are cached. When
you change a file's permission bits, the file's ACL is updated accordingly. Likewise, modifying
a file's ACL causes changes in the permission bits.

For more information about permission bits, see chmod(1).

The following examples show the relationship between a file or directory's ACLs and the
permission bits and how permission changes in one affect the other.

EXAMPLE 13 Showing How ACLs and Permission Bits Interact

The first example begins with the following ACL for file.2. The permission bits, 644, display
as -rw-r--r--.

$ ls -v file.2

-rw-r--r-- 1 root root 2693 Jul 20 14:26 file.2

0:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

2:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

36 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5acl-5
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1chmod-1

Setting ACLs on ZFS Files

The chmod command removes the ACL entry for everyone@. Accordingly, the read permission
for everyone is also removed, so the permission bits change to 640, which display as -rw-
r-----.

$ chmod A2- file.2

$ ls -v file.2

-rw-r----- 1 root root 2693 Jul 20 14:26 file.2

0:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

Next, the ACL is replaced with just read_data/write_data permissions for everyone@.
Because no owner@ or group@ ACL entry exists to override the permissions for owner and
group, the permission bits become 666, which display as -rw-rw-rw-.

$ chmod A=everyone@:rw:allow file.2

$ ls -v file.2

-rw-rw-rw- 1 root root 2440 Jul 20 14:28 file.3 Permission bits become 666.
0:everyone@:read_data/write_data:allow

If you replace this ACL with read permissions just for user Alice, the file will become
inaccessible because no trivial ACL entries exist. Consequently, the permission bits are set to
000, which denies Alice access to file.2, as well as denies access to everyone else.

$ chmod A=user:alice:r:allow file.2

$ ls -v file.2

----------+ 1 root root 2440 Jul 20 14:28 file.3

0:user:alice:read_data:allow

If you set the permission bits for an inaccessible file, the default trivial ACL permissions
are reset. The following command sets the bits for file.2 to 655. Automatically, the default
trivial ACL permissions are set. Because the permission bits are set to 655, the owner is denied
execute access.

$ pfexec chmod 655 file.2

$ ls -v file.3

-rw-r-xr-x 1 root root 2440 Jul 20 14:28 file.3

0:user:alice:read_data:allow

1:owner@:execute:deny

2:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

3:group@:read_data/read_xattr/execute/read_attributes/read_acl/synchronize:allow

4:everyone@:read_data/read_xattr/execute/read_attributes/read_acl/synchronize:allow

Chapter 2 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 37

Setting ACLs on ZFS Files

EXAMPLE 14 Showing the Effects of the aclmode and aclinherit Properties on ACL Permissions

The following examples illustrate how specific aclmode and aclinherit property values affect
ACL behavior. If these properties are set, ACL permissions for a file or directory are either
reduced or expanded to be consistent with the owning group.

In this example, the administrator who runs the zfs set commands must be assigned the
ZFS File System Management rights profile. To run the chown command, the administrator is
assigned the Object Access Management rights profile.

Suppose that the aclmode property is set to mask and the aclinherit property is set to
restricted in the pool, and that the original file and group ownership and ACL permissions
are as follows:

$ pfbash ; zfs set aclmode=mask system1/data

$ zfs set aclinherit=restricted system1/data

$ ls -lV file.1

-rwxrwx---+ 1 root root 206695 Aug 30 16:03 file.1

user:amy:r-----a-R-c---:-------:allow

user:rory:r-----a-R-c---:-------:allow

group:sysadmin:rw-p--aARWc---:-------:allow

group:staff:rw-p--aARWc---:-------:allow

owner@:rwxp--aARWcCos:-------:allow

group@:rwxp--aARWc--s:-------:allow

everyone@:------a-R-c--s:-------:allow

To understand the meaning of the values set for the two properties, see “ACL
Properties” on page 30.

A chown operation changes the ownership of file.1 to Amy and the group Staff.

$ chown amy:staff file.1

Amy then changes the permission bits for file.1 to 640. Because the ACL properties were
previously set, the permissions for the groups in the ACL are reduced so that they do not exceed
the permissions of the owning Staff.

$ su - amy

$ chmod 640 file.1

$ ls -lV file.1

-rw-r-----+ 1 amy staff 206695 Aug 30 16:03 file.1

user:amy:r-----a-R-c---:-------:allow

user:rory:r-----a-R-c---:-------:allow

group:sysadmin:r-----a-R-c---:-------:allow

group:staff:r-----a-R-c---:-------:allow

owner@:rw-p--aARWcCos:-------:allow

38 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

Setting ACL Inheritance on ZFS Files

group@:r-----a-R-c--s:-------:allow

everyone@:------a-R-c--s:-------:allow

Amy then changes the permission bits to 770. Consequently, the permissions of the groups in
the ACL are also changed to match the permission of the owning group Staff.

$ chmod 770 file.1

$ ls -lV file.1

-rwxrwx---+ 1 amy staff 206695 Aug 30 16:03 file.1

user:amy:r-----a-R-c---:-------:allow

user:rory:r-----a-R-c---:-------:allow

group:sysadmin:rw-p--aARWc---:-------:allow

group:staff:rw-p--aARWc---:-------:allow

owner@:rwxp--aARWcCos:-------:allow

group@:rwxp--aARWc--s:-------:allow

everyone@:------a-R-c--s:-------:allow

Setting ACL Inheritance on ZFS Files

You can determine how ACLs are inherited on files and directories.

The aclinherit property can be set globally on a file system. By default, aclinherit is set to
restricted.

For more information, see “ACL Inheritance Flags” on page 31.

Enabling the ACL on a Directory to Be Inherited

This section identifies the file ACEs that are applied when the file_inherit flag is set.

In the following example, an administrator who is assigned the Object Access Management
rights profile adds read_data/write_data permissions and enables them to be inherited for
user alice in the test2.dir directory.

$ pfbash ; chmod A+user:alice:read_data/write_data:file_inherit:allow test2.dir

$ ls -dv test2.dir

drwxr-xr-x+ 2 root root 2 Jul 20 14:55 test2.dir

0:user:alice:read_data/write_data:file_inherit:allow

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

2:group@:list_directory/read_data/read_xattr/execute/read_attributes/read_acl/

synchronize:allow

Chapter 2 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 39

Setting ACL Inheritance on ZFS Files

3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes/read_acl/

synchronize:allow

In the following example, user alice's permissions are applied on the newly created test2.
dir/file.2 file.

$ touch test2.dir/file.2

$ ls -v test2.dir/file.2

-rw-r--r--+ 1 root root 0 Jul 20 14:56 test2.dir/file.2

0:user:alice:read_data:inherited:allow

1:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

2:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

3:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

■ Because she is granted read_data:file_inherit:allow, she can read the contents of any
newly created file.

■ Because the group permission on the file.2 does not include write_data permission,
alice also does not have this permission. The aclinherit property for this file system
in default mode, restricted, which prevents the user in the ACL from having more
permissions than the group permissions.

The inherit_only permission is applied when the file_inherit or dir_inherit flags are
set. inherit_only propagates the ACL through the directory structure. As such, user alice is
granted or denied permission from everyone@ permissions only if she is the file owner or is a
member of the file's group owner. For example:

$ mkdir test2.dir/subdir.2

$ ls -dv test2.dir/subdir.2

drwxr-xr-x+ 2 root root 2 Jul 20 14:57 test2.dir/subdir.2

0:user:alice:list_directory/read_data/add_file/write_data:file_inherit

/inherit_only/inherited:allow

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

2:group@:list_directory/read_data/read_xattr/execute/read_attributes/read_acl/

synchronize:allow

3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

Effect of file_inherit and dir_inherit Flags

This section provides examples that identify the file and directory ACLs that are applied when
both the file_inherit and dir_inherit flags are set. The examples also show the interaction

40 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

Setting ACL Inheritance on ZFS Files

between ACLs and permission bits when the default aclinherit property, restricted, is in
effect.

EXAMPLE 15 Setting and Viewing Inheritable ACLs

In this example, user alice is granted read, write, and execute permissions that are inherited for
newly created files and directories.

$ pfexec chmod A+user:alice:read_data/write_data/execute:file_inherit/dir_inherit:allow

test3.dir

$ ls -dv test3.dir

drwxr-xr-x+ 2 root root 2 Jul 20 15:00 test3.dir

0:user:alice:list_directory/read_data/add_file/write_data/execute

:file_inherit/dir_inherit:allow

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

2:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

The inherited text in the output for index number 0 is informational.

$ touch test3.dir/file.3

$ ls -v test3.dir/file.3

-rw-r--r--+ 1 root root 0 Jul 20 15:01 test3.dir/file.3

0:user:alice:read_data:inherited:allow

1:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

2:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

3:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

EXAMPLE 16 Viewing Effect of aclinherit restricted on file_inherit:allow ACLs

In these examples, because the permission bits of the parent directory for group@ and
everyone@ deny write and execute permissions, user alice is denied write and execute
permissions despite the chmod command explicitly assigning her these permissions. The default
aclinherit property is restricted, which prevents write_data and execute from being
inherited.

In this example, user alice is granted read, write, and execute permissions that are inherited for
newly created files, but are not propagated to subsequent contents of the directory.

$ pfexec chmod A+user:alice:read_data/write_data/execute:file_inherit/no_propagate:allow

test4.dir

Chapter 2 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 41

Setting ACL Inheritance on ZFS Files

$ ls -dv test4.dir

drwxr--r--+ 2 root root 2 Mar 1 12:11 test4.dir

0:user:alice:list_directory/read_data/add_file/write_data/execute

:file_inherit/no_propagate:allow

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

2:group@:list_directory/read_data/read_xattr/read_attributes/read_acl/synchronize:allow

3:everyone@:list_directory/read_data/read_xattr/read_attributes/read_acl/

synchronize:allow

As a result of the default ACL inheritance value, restricted, the write_data and execute
permissions are removed for alice in file.4 because her permissions cannot be greater than
the group's permissions for files in that directory.

$ touch test4.dir/file.4

$ ls -v test4.dir/file.4

-rw-r--r--+ 1 root root 0 Jul 20 15:09 test4.dir/file.4

0:user:alice:read_data:inherited:allow

1:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

2:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

3:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

Effect of ACL Inherit Mode on ACL Inheritance

This section describes the aclinherit property values.

EXAMPLE 17 ACL Viewing the Effect of discard on ACL Inheritance

If the aclinherit property on a file system is set to discard, then ACLs can potentially be
discarded when the permission bits on a directory change. For example:

$ pfbash ; zfs set aclinherit=discard system1/cindy

$ chmod A+user:alice:read_data/write_data/execute:dir_inherit:allow test5.dir

$ ls -dv test5.dir

drwxr-xr-x+ 2 root root 2 Jul 20 14:18 test5.dir

0:user:alice:list_directory/read_data/add_file/write_data/execute:dir_inherit:allow

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

2:group@:list_directory/read_data/read_xattr/execute/read_attributes/read_acl/

synchronize:allow

3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes/read_acl/

synchronize:allow

42 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

Setting ACL Inheritance on ZFS Files

If, at a later time, you decide to tighten the permission bits on a directory, the non-trivial ACL is
discarded. For example:

$ pfexec chmod 744 test5.dir

$ ls -dv test5.dir

drwxr--r-- 2 root root 2 Jul 20 14:18 test5.dir

0:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

1:group@:list_directory/read_data/read_xattr/read_attributes/read_acl/synchronize:allow

2:everyone@:list_directory/read_data/read_xattr/read_attributes/read_acl/

synchronize:allow

EXAMPLE 18 Viewing the Effect of noallow on ACL Inheritance

In the following example, two non-trivial ACLs with file inheritance are set. One ACL
allows read_data permission, and one ACL denies read_data permission. This example also
illustrates how you can specify two ACEs in the same chmod command.

$ pfbash ; zfs set aclinherit=noallow system1/jdoe

$ chmod A+user:alice:read_data:file_inherit:deny,user:lp:read_data:file_inherit:allow

test6.dir

$ ls -dv test6.dir

drwxr-xr-x+ 2 root root 2 Jul 20 14:22 test6.dir

0:user:alice:read_data:file_inherit:deny

1:user:lp:read_data:file_inherit:allow

2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

3:group@:list_directory/read_data/read_xattr/execute/read_attributes/read_acl/

synchronize:allow

4:everyone@:list_directory/read_data/read_xattr/execute/read_attributes/read_acl/

synchronize:allow

When a new file is created, the ACL that allows read_data permission is discarded.

$ touch test6.dir/file.6

$ ls -v test6.dir/file.6

-rw-r--r--+ 1 root root 0 Jul 20 14:23 test6.dir/file.6

0:user:alice:read_data:inherited:deny

1:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

2:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

3:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

Chapter 2 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 43

Setting ACL Inheritance on ZFS Files

ACL passthrough Inherit Mode

A file system that has the aclinherit property set to passthrough inherits all inheritable ACL
entries without any modifications made to the ACL entries when they are inherited. Files are
created with a permission mode that is determined by the inheritable ACEs. If no inheritable
ACEs exist that affect the permission mode, then the permission mode is set in accordance to
the requested mode from the application.

EXAMPLE 19 ACL Inheritance With ACL Inherit Mode Set to passthrough in Verbose Mode

If the aclinherit property on the system1/cindy file system is set to passthrough, then user
alice would inherit the ACL applied on test4.dir for the newly created file.5 as follows:

$ pfexec zfs set aclinherit=passthrough system1/cindy

$ touch test4.dir/file.5

$ ls -v test4.dir/file.5

-rw-r--r--+ 1 root root 0 Jul 20 14:16 test4.dir/file.5

0:user:alice:read_data/write_data/execute:inherited:allow

1:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

2:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

3:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

EXAMPLE 20 ACL Inheritance With ACL Inherit Mode Set to passthrough in Compact Mode

The following examples use compact ACL syntax to show how to inherit permission bits by
setting aclinherit mode to passthrough.

In this example, an ACL is set on test1.dir to force inheritance. The syntax creates an owner@,
group@, and everyone@ ACL entry for newly created files. Newly created directories inherit an
@owner, group@, and everyone@ ACL entry.

$ pfbash ; zfs set aclinherit=passthrough system1/cindy

$ pwd

/system1/cindy

$ mkdir test1.dir

$ chmod A=owner@:rwxpcCosRrWaAdD:fd:allow,group@:rwxp:fd:allow,

everyone@::fd:allow test1.dir

$ ls -Vd test1.dir

drwxrwx---+ 2 root root 2 Jul 20 14:42 test1.dir

owner@:rwxpdDaARWcCos:fd-----:allow

group@:rwxp----------:fd-----:allow

everyone@:--------------:fd-----:allow

44 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

Setting ACL Inheritance on ZFS Files

In this example, a newly created file inherits the ACL that was specified to be inherited to
newly created files.

$ cd test1.dir

$ touch file.1

$ ls -V file.1

-rwxrwx---+ 1 root root 0 Jul 20 14:44 file.1

owner@:rwxpdDaARWcCos:------I:allow

group@:rwxp----------:------I:allow

everyone@:--------------:------I:allow

In this example, a newly created directory inherits both ACEs that control access to this
directory as well as ACEs for future propagation to children of the newly created directory.

$ mkdir subdir.1

$ ls -dV subdir.1

drwxrwx---+ 2 root root 2 Jul 20 14:45 subdir.1

owner@:rwxpdDaARWcCos:fd----I:allow

group@:rwxp----------:fd----I:allow

everyone@:--------------:fd----I:allow

The fd----I entries are for propagating inheritance and are not considered during access
control.

In the following example, a file is created with a trivial ACL in another directory where
inherited ACEs are not present.

$ cd /system1/cindy

$ mkdir test2.dir

$ cd test2.dir

$ touch file.2

$ ls -V file.2

-rw-r--r-- 1 root root 0 Jul 20 14:48 file.2

owner@:rw-p--aARWcCos:-------:allow

group@:r-----a-R-c--s:-------:allow

everyone@:r-----a-R-c--s:-------:allow

ACL Inherit passthrough-x Mode

When aclinherit=passthrough-x is enabled, files are created with the execute (x) permission
for owner@, group@, or everyone@, but only if execute permission is set in the file creation mode
and in an inheritable ACE that affects the mode.

The following example shows how to inherit the execute permission by setting the aclinherit
mode to passthrough-x.

Chapter 2 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 45

Examples of Setting Security-Relevant Attributes on ZFS Files

$ pfexec zfs set aclinherit=passthrough-x system1/cindy

The following ACL is set on /system1/cindy/test1.dir to provide executable ACL
inheritance for files for owner@.

$ pfexec chmod A=owner@:rwxpcCosRrWaAdD:fd:allow,group@:rwxp:fd:allow,

everyone@::fd:allow test1.dir

$ ls -Vd test1.dir

drwxrwx---+ 2 root root 2 Jul 20 14:50 test1.dir

owner@:rwxpdDaARWcCos:fd-----:allow

group@:rwxp----------:fd-----:allow

everyone@:--------------:fd-----:allow

A file (file1) is created with requested permissions 0666. The resulting permissions are 0660.
The execution permission was not inherited because the creation mode did not request it.

$ touch test1.dir/file1

$ ls -V test1.dir/file1

-rw-rw----+ 1 root root 0 Jul 20 14:52 test1.dir/file1

owner@:rw-pdDaARWcCos:------I:allow

group@:rw-p----------:------I:allow

everyone@:--------------:------I:allow

Next, an executable called t is generated by using the cc compiler in the testdir directory.

$ cc -o t t.c

$ ls -V t

-rwxrwx---+ 1 root root 7396 Dec 3 15:19 t

owner@:rwxpdDaARWcCos:------I:allow

group@:rwxp----------:------I:allow

everyone@:--------------:------I:allow

The resulting permissions are 0770 because cc requested permissions 0777, which caused the
execute permission to be inherited from the owner@, group@, and everyone@ entries.

Examples of Setting Security-Relevant Attributes on ZFS
Files

This section shows how to add security-relevant attributes to ZFS files and how to display them.
For more information, review the following:

■ “Using File Attributes to Add Security to ZFS Files” on page 15
■ ls(1) and chmod(1) man pages

46 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ls-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1chmod-1

Examples of Setting Security-Relevant Attributes on ZFS Files

Note - If you are working in a non-global zone, you cannot set the immutable, nounlink, or
appendonly attributes by default. You must add the privilege file_flag_set to the zone to
enable setting these attributes. See “How to Modify Zone Privileges” in Creating and Using
Oracle Solaris Zones.

EXAMPLE 21 Making a ZFS File Immutable

A user who is assigned the Object Access Management rights profile makes a file immutable by
running the following command:

$ chmod S+ci file.1

$ echo this >>file.1

-bash: file.1: Not owner

$ rm file.1

rm: cannot remove `file.1': Not owner

To display the permissions, the user runs the ls -l/c command:

$ ls -l/c file.1

-rw-r--r--+ 1 root root 206695 Jul 20 14:27 file.1

{A-----im----}

To make the file accessible again, the user runs the following command:

$ chmod S-ci file.1

$ ls -l/c file.1

-rw-r--r--+ 1 root root 206695 Jul 20 14:27 file.1

{A------m----}

EXAMPLE 22 Making a ZFS File Read-Only

The following example shows how to apply read-only access to a ZFS file.

$ chmod S+cR file.2

$ echo this >>file.2

-bash: file.2: Not owner

Preventing Accidental Deletions With the nounlink
Attribute

The nounlink attribute complements the immutability of files or directories in ZFS by securing
them from being accidentally removed. However, unlike the immutable attribute, nounlink

Chapter 2 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 47

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZSOzconf-limitpriv
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZSOzconf-limitpriv

Examples of Setting Security-Relevant Attributes on ZFS Files

only prevents a file from being deleted or renamed. The file can still be changed by applications
or by users.

This behavior is useful for a broad set of files, for example, log files and datafiles from your
database. One obvious requirement is that your application must not delete the files as a regular
pattern of operation. The nounlink attribute would prevent the deletion.

EXAMPLE 23 Protecting Files in a Directory From Deletion

In this example, an administrator who is assigned the Object Access Management rights profile
and a pfbash login shell prevents the accidental deletion of important applications. With the
nounlink attribute set on a directory, the file owners, the administrator, and even the root role
must take extra steps to delete the files in that directory.

$ cd /apps/ADMIN

$ chmod S+vnounlink

$ chmod touch test2

$ chmod echo text >> test2

$ cat test2

 text

$ rm test2

 rm: test not removed: Not owner

$ chmod S-vnounlink test2

$ rm test2

$ ls test2

 test2: No such file or directory

The owner can still update the files in the directory, and can still remove the file contents by
accident. But, even as root, the files are undeletable without removing the nounlink attribute.

nounlink can make a single file undeletable:

$ cd /apps/ADMIN

$ chmod S+vnounlink importantApp

Displaying and Changing ZFS File Attributes

You can display and set special attributes with the following syntax:

$ ls -l/v file.3

-r--r--r-- 1 root root 206695 Jul 20 14:59 file.3

{archive,nohidden,noreadonly,nosystem,noappendonly,nonodump,

noimmutable,av modified,noav_quarantined,nonounlink,nooffline,nosparse}

$ chmod S+cR file.3

48 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

Examples of Setting Security-Relevant Attributes on ZFS Files

$ ls -l/v file.3

-r--r--r-- 1 root root 206695 Jul 20 14:59 file.3

{archive,nohidden,readonly,nosystem,noappendonly,nonodump,noimmutable,

av_modified,noav_quarantined,nonounlink,nooffline,nosparse}

Some of these attributes apply only in an Oracle Solaris SMB environment.

You can clear all attributes on a file. For example:

$ chmod S-a file.3

$ ls -l/v file.3

-r--r--r-- 1 root root 206695 Jul 20 14:59 file.3

{noarchive,nohidden,noreadonly,nosystem,noappendonly,nonodump,

noimmutable,noav_modified,noav_quarantined,nonounlink,nooffline,nosparse}

Chapter 2 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 49

50 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

 3 ♦ ♦ ♦ C H A P T E R 3

Verifying File Integrity by Using BART

This chapter describes the file integrity tool, BART. BART is a command-line tool that enables
you to verify the integrity of files on a system over time. This chapter covers the following
topics:

■ “About BART” on page 51
■ “About Using BART” on page 53
■ “BART Manifests, Rules Files, and Reports” on page 64

About BART

BART is a file integrity scanning and reporting tool that uses cryptographic-strength checksums
and file system metadata to determine changes. BART can help you detect security breaches
or troubleshoot performance issues on a system by identifying corrupted or unusual files.
Using BART can reduce the costs of administering a network of systems by easily and reliably
reporting discrepancies in the files that are installed on deployed systems.

BART enables you to determine what file-level changes have occurred on a system, relative to
a known baseline. You use BART to create a baseline or control manifest from a fully installed
and configured system. You can then compare this baseline with a snapshot of the system at a
later time, generating a report that lists file-level changes that have occurred on the system after
it was installed.

BART Features

BART uses simple syntax that is both powerful and flexible. The tool enables you to track
file changes on a given system over time. You can also track file differences between similar
systems. Such comparisons can help you locate corrupted or unusual files, or systems whose
software is out of date.

Chapter 3 • Verifying File Integrity by Using BART 51

About BART

Additional benefits and uses of BART include the following:

■ You can specify which files to monitor. For example, you can monitor local customizations,
which can assist you in reconfiguring software easily and efficiently.

■ You can troubleshoot system performance issues.

BART Components

BART creates two main files, a manifest and a comparison file, or report. An optional rules file
enables you to customize the manifest and report.

BART Manifest

A manifest is a file-level snapshot of a system at a particular time. The manifest contains
information about attributes of files, which can include some uniquely identifying information,
such as a checksum. Options to the bart create command can target specific files and
directories. A rules file can provide more fine-grained filtering, as described in “BART Rules
File” on page 53.

Note - By default, BART catalogs all ZFS file systems under the root (/) directory. Other file
system types, such as NFS or TMPFS file systems, and mounted CD-ROMs are cataloged.

You can create a manifest of a system immediately after an initial Oracle Solaris installation.
You can also create a manifest after configuring a system to meet your site's security policy.
This type of control manifest provides you with a baseline for later comparisons.

A baseline manifest can be used to track file integrity on the same system over time. It can also
be used as a basis for comparison with other systems. For example, you could take a snapshot
of other systems on your network and then compare those manifests with the baseline manifest.
Reported file discrepancies indicate what you need to do to synchronize the other systems with
the baseline system.

For the format of a manifest, see “BART Manifest File Format” on page 64. To create
a manifest, use the bart create command, as described in “How to Create a Control
Manifest” on page 54.

52 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

About Using BART

BART Report

A BART report lists per-file discrepancies between two manifests. A discrepancy is a change to
any attribute for a given file that is cataloged for both manifests. Additions or deletions of file
entries are also considered discrepancies.

For a useful comparison, the two manifests must target the same file systems. You must also
create and compare the manifests with the same options and rules file.

For the format of a report, see “BART Reporting” on page 67. To create a report, use the
bart compare command, as described in “How to Compare Manifests for the Same System
Over Time” on page 58.

BART Rules File

A BART rules file is a file that you create to filter or target particular files and file attributes for
inclusion or exclusion. You then use this file when creating BART manifests and reports. When
you compare manifests, the rules file aids in flagging discrepancies between the manifests.

Note - When you create a manifest by using a rules file, you must use the same rules file to
create the comparison manifest. You must also use the rules file when comparing the manifests.
Otherwise, the report would list many invalid discrepancies.

Using a rules file to monitor specific files and file attributes on a system requires planning.
Before you create a rules file, decide which files and file attributes to monitor on the system.

As a result of user error, a rules file can also contain syntax errors and other ambiguous
information. If a rules file has errors, these errors are also reported.

For the format of a rules file, see “BART Rules File Format” on page 66 and the
bart_rules(4) man page. To create a rules file, see “How to Customize a BART Report by
Using a Rules File” on page 63.

About Using BART

The bart command is used to create and compare manifests. Any user can run this command.
However, users can only catalog and monitor files that they have permission to access. So, users
and most roles can usefully catalog the files in their home directory, but the root account can
catalog all files, including system files.

Chapter 3 • Verifying File Integrity by Using BART 53

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN4bart-rules-4

How to Create a Control Manifest

BART Security Considerations

BART manifests and reports are readable by anyone. If BART output might contain sensitive
information, take appropriate measures to protect the output. For example, use options that
generate output files with restrictive permissions or place output files in a protected directory.

Using BART

Task Description For Instructions

Create a BART manifest. Generates a list of information about every file that is
installed on a system.

“How to Create a Control
Manifest” on page 54

Create a custom BART manifest. Generates a list of information about specific files that
are installed on a system.

“How to Customize a
Manifest” on page 56

Compare BART manifests. Generates a report that compares changes to a system
over time.

Or, generates a report that compares one or several
systems to a control system.

“How to Compare Manifests
for the Same System Over
Time” on page 58

“How to Compare Manifests From
Different Systems” on page 60

(Optional) Customize a BART
report.

Generates a custom BART report in one of the following
ways:

■ By specifying attributes
■ By using a rules file

“How to Customize a BART
Report by Specifying File
Attributes” on page 62

“How to Customize a BART Report by
Using a Rules File” on page 63

How to Create a Control Manifest

This procedure explains how to create a baseline, or control, manifest for comparison. Use this
type of manifest when you are installing many systems from a central image. Or, use this type
of manifest to run comparisons when you want to verify that the installations are identical. For
more information about control manifests, see “BART Manifest” on page 52. To understand
the format conventions, see Example 24, “Explanation of the BART Manifest Format,” on page
55.

Note - Do not attempt to catalog networked file systems. Using BART to monitor networked
file systems consumes large resources to generate manifests of little value.

54 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

How to Create a Control Manifest

Before You Begin You must assume the root role. For more information, see “Using Your Assigned
Administrative Rights” in Securing Users and Processes in Oracle Solaris 11.3.

1. After customizing your Oracle Solaris system to your site's security
requirements, create a control manifest and redirect the output to a file.

bart create options > control-manifest

-R Specifies the root directory for the manifest. All paths specified by the
rules are interpreted relative to this directory. All paths reported in the
manifest are relative to this directory.

-I Accepts a list of individual files to be cataloged, either on the command
line or read from standard input.

-r Is the name of the rules file for this manifest. A - (minus sign) argument
reads the rules file from standard input.

-n Turns off content signatures for all regular files in the file list. This
option can be used to improve performance. Or, you can use this option
if the contents of the file list are expected to change, as in the case of
system log files.

2. Examine the contents of the manifest.
For an explanation of the format, see Example 24, “Explanation of the BART Manifest
Format,” on page 55.

3. (Optional) Protect the manifest.
One way to protect system manifests is to place them in a directory that only the root account
can access.

mkdir /var/adm/log/bartlogs
chmod 700 /var/adm/log/bartlogs
mv control-manifest /var/adm/log/bartlogs

Choose a meaningful name for the manifest. For example, use the system name and date that
the manifest was created, as in mach1-120313.

Example 24 Explanation of the BART Manifest Format

In this example, an explanation of the manifest format follows the sample output.

bart create

! Version 1.1

Chapter 3 • Verifying File Integrity by Using BART 55

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28

How to Customize a Manifest

! HASH SHA256

! Saturday, September 07, 2013 (22:22:27)

Format:

#fname D size mode acl dirmtime uid gid

#fname P size mode acl mtime uid gid

#fname S size mode acl mtime uid gid

#fname F size mode acl mtime uid gid contents

#fname L size mode acl lnmtime uid gid dest

#fname B size mode acl mtime uid gid devnode

#fname C size mode acl mtime uid gid devnode

/ D 1024 40755 user::rwx,group::r-x,mask:r-x,other:r-x

3ebc418eb5be3729ffe7e54053be2d33ee884205502c81ae9689cd8cca5b0090 0 0

.

.

.

/zone D 512 40755 user::rwx group::r-x,mask:r-x,other:r-x 3f81e892

154de3e7bdfd0d57a074c9fae0896a9e2e04bebfe5e872d273b063319e57f334 0 0

.

.

.

Each manifest consists of a header and file entries. Each file entry is a single line, depending on
the file type. For example, for each file entry in the preceding output, type F specifies a file and
type D specifies a directory. Also listed is information about size, content, user ID, group ID,
and permissions. File entries in the output are sorted by the encoded versions of the file names
to correctly handle special characters. All entries are sorted in ascending order by file name. All
nonstandard file names, such as those that contain embedded newline or tab characters, quote
the nonstandard characters before sorting.

Lines that begin with ! supply metadata about the manifest. The manifest version line indicates
the manifest specification version. The hash line indicates the hash mechanism that was used.
For more information about the SHA256 hash that is used as a checksum, see the sha2(3EXT)
man page.

The date line shows the date on which the manifest was created, in date form. See the date(1)
man page. Some lines are ignored by the manifest comparison tool. Ignored lines include
metadata, blank lines, lines that consist only of white space, and comments that begin with #.

How to Customize a Manifest

You can customize a manifest in one of the following ways:

■ By specifying a subtree

56 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dsha2-3ext
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1date-1

How to Customize a Manifest

Specifying an individual subtree is an efficient way to monitor changes to selected,
important files, such as all files in the /etc directory.

■ By specifying a file name
Specifying a file name is an efficient way of monitoring particularly sensitive files, such as
the files that configure and run a database application.

■ By using a rules file
By using a rules file to create and compare manifests gives you the flexibility to specify
multiple attributes for more than one file or subtree. From the command line, you can
specify a global attribute definition that applies to all files in a manifest or report. From a
rules file, you can specify attributes that do not apply globally.

Before You Begin You must assume the root role. For more information, see “Using Your Assigned
Administrative Rights” in Securing Users and Processes in Oracle Solaris 11.3.

1. Determine which files to catalog and monitor.

2. Create a custom manifest by using one of the following options:

■ By specifying a subtree:

bart create -R subtree

■ By specifying a file name or file names:

bart create -I filename...

For example:

bart create -I /etc/system /etc/passwd /etc/shadow

■ By using a rules file:

bart create -r rules-file

3. Examine the contents of the manifest.

4. (Optional) Save the manifest in a protected directory for future use.
For an example, see Step 3 in “How to Create a Control Manifest” on page 54.

Tip - If you used a rules file, save the rules file with the manifest. For a useful comparison, you
must run the comparison with the rules file.

Chapter 3 • Verifying File Integrity by Using BART 57

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28

How to Compare Manifests for the Same System Over Time

How to Compare Manifests for the Same System
Over Time
By comparing manifests over time, you can locate corrupted or unusual files, detect security
breaches, and troubleshoot performance issues on a system.

Before You Begin You must assume the root role. For more information, see “Using Your Assigned
Administrative Rights” in Securing Users and Processes in Oracle Solaris 11.3.

1. Create a control manifest of the files to monitor on the system.

bart create -R /etc > control-manifest

2. (Optional) Save the manifest in a protected directory for future use.
For an example, see Step 3 in “How to Create a Control Manifest” on page 54.

3. At a later time, prepare an identical manifest to the control manifest.

bart create -R /etc > test-manifest

4. Protect the second manifest.

mv test-manifest /var/adm/log/bartlogs

5. Compare the two manifests.
Use the same command-line options and rules file to compare the manifests that you used to
create them.

bart compare options control-manifest test-manifest > bart-report

6. Examine the BART report for oddities.

Example 25 Tracking File Changes for the Same System Over Time

This example shows how to track the changes in the /etc directory over time. This type of
comparison enables you to locate important files on the system that have been compromised.

■ Create a control manifest.

cd /var/adm/logs/manifests

bart create -R /etc > system1.control.090713

! Version 1.1

! HASH SHA256

! Saturday, September 07, 2013 (11:11:17)

Format:

58 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28

How to Compare Manifests for the Same System Over Time

#fname D size mode acl dirmtime uid gid

#fname P size mode acl mtime uid gid

#fname S size mode acl mtime uid gid

#fname F size mode acl mtime uid gid contents

#fname L size mode acl lnmtime uid gid dest

#fname B size mode acl mtime uid gid devnode

#fname C size mode acl mtime uid gid devnode

/.cpr_config F 2236 100644 owner@:read_data/write_data/append_data/read_xattr/wr

ite_xattr/read_attributes/write_attributes/read_acl/write_acl/write_owner/synchr

onize:allow,group@:read_data/read_xattr/read_attributes/read_acl/synchronize:all

ow,everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

4e271c59 0 0 3ebc418eb5be3729ffe7e54053be2d33ee884205502c81ae9689cd8cca5b0090

/.login F 1429 100644 owner@:read_data/write_data/append_data/read_xattr/write_x

attr/read_attributes/write_attributes/read_acl/write_acl/write_owner/synchronize

:allow,group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow,ev

eryone@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

4bf9d6d7 0 3 ff6251a473a53de68ce8b4036d0f569838cff107caf1dd9fd04701c48f09242e

.

.

.

■ Later, create a test manifest by using the same command-line options.

bart create -R /etc > system1.test.101013

Version 1.1

! HASH SHA256

! Monday, October 10, 2013 (10:10:17)

Format:

#fname D size mode acl dirmtime uid gid

#fname P size mode acl mtime uid gid

#fname S size mode acl mtime uid gid

#fname F size mode acl mtime uid gid contents

#fname L size mode acl lnmtime uid gid dest

#fname B size mode acl mtime uid gid devnode

#fname C size mode acl mtime uid gid devnode

/.cpr_config F 2236 100644 owner@:read_data/write_data/append_data/read_xattr/wr

ite_xattr/read_attributes/write_attributes/read_acl/write_acl/write_owner/synchr

onize:allow,group@:read_data/read_xattr/read_attributes/read_acl/synchronize:all

ow,everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

4e271c59 0 0 3ebc418eb5be3729ffe7e54053be2d33ee884205502c81ae9689cd8cca5b0090

.

.

.

■ Compare the manifests.

Chapter 3 • Verifying File Integrity by Using BART 59

How to Compare Manifests From Different Systems

bart compare system1.control.090713 system1.test.101013

/security/audit_class

mtime 4f272f59

The output indicates that the modification time on the audit_class file has changed since the
control manifest was created. If this change is unexpected, you can investigate further.

How to Compare Manifests From Different
Systems
By comparing manifests from different systems, you can determine if the systems are installed
identically or have been upgraded in synch. For example, if you customized your systems to
a particular security target, this comparison finds any discrepancies between the manifest that
represents your security target, and the manifests from the other systems.

Before You Begin You must assume the root role. For more information, see “Using Your Assigned
Administrative Rights” in Securing Users and Processes in Oracle Solaris 11.3.

1. Create a control manifest.

bart create options > control-manifest

For the options, see the bart(1M) man page.

2. (Optional) Save the manifest in a protected directory for future use.
For an example, see Step 3 in “How to Create a Control Manifest” on page 54.

3. On the test system, use the same bart options to create a manifest.

bart create options > test1-manifest

4. (Optional) Save the manifest in a protected directory for future use.

5. To perform the comparison, copy the manifests to a central location.
For example:

cp control-manifest /net/test-server/var/adm/logs/bartlogs

If the test system is not an NFS-mounted system, use sftp or another reliable means to copy the
manifests to a central location.

6. Compare the manifests and redirect the output to a file.

60 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mbart-1m

How to Compare Manifests From Different Systems

bart compare control-manifest test1-manifest > test1.report

7. Examine the BART report for oddities.

Example 26 Identifying a Suspect File in the /usr/bin Directory

This example compares the contents of the /usr/bin directory on two systems.

■ Create a control manifest.

bart create -R /usr/bin > control-manifest.090713

! Version 1.1

! HASH SHA256

! Saturday, September 07, 2013 (11:11:17)

Format:

#fname D size mode acl dirmtime uid gid

#fname P size mode acl mtime uid gid

#fname S size mode acl mtime uid gid

#fname F size mode acl mtime uid gid contents

#fname L size mode acl lnmtime uid gid dest

#fname B size mode acl mtime uid gid devnode

#fname C size mode acl mtime uid gid devnode

/2to3 F 105 100555 owner@:read_data/read_xattr/write_xattr/execute/read_attribut

es/write_attributes/read_acl/write_acl/write_owner/synchronize:allow,group@:read

_data/read_xattr/execute/read_attributes/read_acl/synchronize:allow,everyone@:re

ad_data/read_xattr/execute/read_attributes/read_acl/synchronize:allow 4bf9d261 0

2 154de3e7bdfd0d57a074c9fae0896a9e2e04bebfe5e872d273b063319e57f334

/7z F 509220 100555 owner@:read_data/read_xattr/write_xattr/execute/read_attribu

tes/write_attributes/read_acl/write_acl/write_owner/synchronize:allow,group@:rea

d_data/read_xattr/execute/read_attributes/read_acl/synchronize:allow,everyone@:r

ead_data/read_xattr/execute/read_attributes/read_acl/synchronize:allow 4dadc48a 0

2 3ecd418eb5be3729ffe7e54053be2d33ee884205502c81ae9689cd8cca5b0090

...

■ Create an identical manifest for each system that you want to compare with the control
system.

bart create -R /usr/bin > system2-manifest.101013

! Version 1.1

! HASH SHA256

! Monday, October 10, 2013 (10:10:22)

Format:

#fname D size mode acl dirmtime uid gid

#fname P size mode acl mtime uid gid

#fname S size mode acl mtime uid gid

Chapter 3 • Verifying File Integrity by Using BART 61

How to Customize a BART Report by Specifying File Attributes

#fname F size mode acl mtime uid gid contents

#fname L size mode acl lnmtime uid gid dest

#fname B size mode acl mtime uid gid devnode

#fname C size mode acl mtime uid gid devnode

/2to3 F 105 100555 owner@:read_data/read_xattr/write_xattr/execute/read_attribut

es/write_attributes/read_acl/write_acl/write_owner/synchronize:allow,group@:read

_data/read_xattr/execute/read_attributes/read_acl/synchronize:allow,everyone@:re

ad_data/read_xattr/execute/read_attributes/read_acl/synchronize:allow 4bf9d261 0

2 154de3e7bdfd0d57a074c9fae0896a9e2e04bebfe5e872d273b063319e57f334

...

■ Copy the manifests to the same location.

cp control-manifest.090713 /net/system2.central/bart/manifests

■ Compare the manifests.

bart compare control-manifest.090713 system2.test.101013 > system2.report

/su:

gid control:3 test:1

/ypcat:

mtime control:3fd72511 test:3fd9eb23

The output indicates that the group ID of the su file in the /usr/bin directory is not the same
as that of the control system. This information might indicate that a different version of the
software was installed on the test system. Because the GID is changed, the more likely reason is
that someone has tampered with the file.

How to Customize a BART Report by Specifying
File Attributes

This procedure is useful to filter the output from existing manifests for specific file attributes.

Before You Begin You must assume the root role. For more information, see “Using Your Assigned
Administrative Rights” in Securing Users and Processes in Oracle Solaris 11.3.

1. Determine which file attributes to check.

2. Compare two manifests that contain the file attributes to be checked.
For example:

bart compare -i lnmtime,mtime control-manifest.121513 \

 test-manifest.010514 > bart.report.010514

62 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28

How to Customize a BART Report by Using a Rules File

Use a comma in the command-line syntax to separate each file attribute.

3. Examine the BART report for oddities.

How to Customize a BART Report by Using a
Rules File

By using a rules file, you can customize a BART manifest for particular files and file attributes
of interest. By using different rules files on default BART manifests, you can run different
comparisons for the same manifests.

Before You Begin You must assume the root role. For more information, see “Using Your Assigned
Administrative Rights” in Securing Users and Processes in Oracle Solaris 11.3.

1. Determine which files and file attributes to monitor.

2. Create a rules file with the appropriate directives.

3. Create a control manifest with the rules file that you created.

bart create -r myrules1-file > control-manifest

4. (Optional) Save the manifest in a protected directory for future use.
For an example, see Step 3 in “How to Create a Control Manifest” on page 54.

5. Create an identical manifest on a different system, at a later time, or both.

bart create -r myrules1-file > test-manifest

6. Compare the manifests by using the same rules file.

bart compare -r myrules1-file control-manifest test-manifest > bart.report

7. Examine the BART report for oddities.

Example 27 Using a Rules File to Customize BART Manifests and the Comparison Report

The following rules file directs the bart create command to list all attributes of the files in the
/usr/bin directory. In addition, the rules file directs the bart compare command to report only
size and content changes in the same directory.

Chapter 3 • Verifying File Integrity by Using BART 63

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSSUPrbactask-28

BART Manifests, Rules Files, and Reports

Check size and content changes in the /usr/bin directory.

This rules file only checks size and content changes.

See rules file example.

IGNORE all

CHECK size contents

/usr/bin

■ Create a control manifest with the rules file that you created.

bart create -r usrbinrules.txt > usr_bin.control-manifest.121013

■ Prepare an identical manifest whenever you want to monitor changes to the /usr/bin
directory.

bart create -r usrbinrules.txt > usr_bin.test-manifest.121113

■ Compare the manifests by using the same rules file.

bart compare -r usrbinrules.txt usr_bin.control-manifest.121013 \

usr_bin.test-manifest.121113

■ Examine the output of the bart compare command.

 /usr/bin/gunzip: add

/usr/bin/ypcat:

delete

The preceding output indicates that the /usr/bin/ypcat file was deleted, and the /usr/bin/
gunzip file was added.

BART Manifests, Rules Files, and Reports

This section describes the format of files that BART uses and creates.

BART Manifest File Format

Each manifest file entry is a single line, depending on the file type. Each entry begins with
fname, which is the name of the file. To prevent parsing problems from special characters
embedded in file names, the file names are encoded. For more information, see “BART Rules
File Format” on page 66.

Subsequent fields represent the following file attributes:

64 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

BART Manifests, Rules Files, and Reports

type Type of file with the following possible values:
■ B for a block device node
■ C for a character device node
■ D for a directory
■ F for a file
■ L for a symbolic link
■ P for a pipe
■ S for a socket

size File size in bytes.

mode Octal number that represents the permissions of the file.

acl ACL attributes for the file. For a file with ACL attributes, this contains
the output from acltotext().

uid Numerical user ID of the owner of this entry.

gid Numerical group ID of the owner of this entry.

dirmtime Last modification time, in seconds, since 00:00:00 UTC, January 1, 1970,
for directories.

lnmtime Last modification time, in seconds, since 00:00:00 UTC, January 1, 1970,
for links.

mtime Last modification time, in seconds, since 00:00:00 UTC January 1, 1970,
for files.

contents Checksum value of the file. This attribute is only specified for regular
files. If you turn off context checking, or if checksums cannot be
computed, the value of this field is -.

dest Destination of a symbolic link.

devnode Value of the device node. This attribute is for character device files and
block device files only.

For more information, see the bart_manifest(4) man page.

Chapter 3 • Verifying File Integrity by Using BART 65

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN4bart-manifest-4

BART Manifests, Rules Files, and Reports

BART Rules File Format

Rules files are text files that consist of lines that specify which files are to be included in the
manifest and which file attributes are to be included in the manifest or the report. Lines that
begin with #, blank lines, and lines that contain white space are ignored by the tool.
The input files have three types of directives:

■ Subtree directive, with optional pattern matching modifiers
■ CHECK directive
■ IGNORE directive

EXAMPLE 28 Rules File Format

<Global CHECK/IGNORE Directives>

<subtree1> [pattern1..]

<IGNORE/CHECK Directives for subtree1>

<subtree2> [pattern2..]

<subtree3> [pattern3..]

<subtree4> [pattern4..]

<IGNORE/CHECK Directives for subtree2, subtree3, subtree4>

Note - All directives are read in order. Later directives can override earlier directives.

A subtree directive must begin with an absolute pathname, followed by zero or more pattern
matching statements.

BART Rules File Attributes

The CHECK and IGNORE statements define which file attributes to track or ignore. The
metadata that begins each manifest lists the attribute keywords per file type. See Example 24,
“Explanation of the BART Manifest Format,” on page 55.

The all keyword indicates all file attributes.

BART Quoting Syntax

The rules file specification language that BART uses is the standard UNIX quoting syntax for
representing nonstandard file names. Embedded tab, space, newline, or special characters are

66 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

BART Manifests, Rules Files, and Reports

encoded in their octal forms to enable the tool to read file names. This nonuniform quoting
syntax prevents certain file names, such as those containing an embedded carriage return, from
being processed correctly in a command pipeline. The rules specification language allows
the expression of complex file name filtering criteria that would be difficult and inefficient to
describe by using shell syntax alone.

For more information, see the bart_rules(4) man page.

BART Reporting

In default mode, a BART report checks all the files installed on the system, with the exception
of modified directory timestamps (dirmtime):

CHECK all

IGNORE dirmtime

If you supply a rules file, then the global directives of CHECK all and IGNORE dirmtime, in that
order, are automatically prepended to the rules file.

BART Output

The following exit values are returned:

0 Success

1 Nonfatal error when processing files, such as permission problems

>1 Fatal error, such as an invalid command-line option

The reporting mechanism provides two types of output: verbose and programmatic:

■ Verbose output is the default output and is localized and presented on multiple lines.
Verbose output is internationalized and is human-readable. When the bart compare
command compares two system manifests, a list of file differences is generated.
The structure of the output is as follows:

filename attribute control:control-val test:test-val

filename Name of the file that differs between the control manifest and the test
manifest.

Chapter 3 • Verifying File Integrity by Using BART 67

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN4bart-rules-4

BART Manifests, Rules Files, and Reports

attribute Name of the file attribute that differs between the manifests that are
compared. The control-val precedes the test-val. When discrepancies
for multiple attributes occur in the same file, each difference is noted
on a separate line.

Following is an example of attribute differences for the /etc/passwd file. The output
indicates that the size, mtime, and contents attributes have changed.

/etc/passwd:

size control:74 test:81

mtime control:3c165879 test:3c165979

contents control:daca28ae0de97afd7a6b91fde8d57afa

test:84b2b32c4165887355317207b48a6ec7

■ Programmatic output is generated with the -p option to the bart compare command. This
output is suitable for programmatic manipulation.
The structure of the output is as follows:

filename attribute control-val test-val [attribute control-val test-val]*

filename Same as the filename attribute in the default format

attribute control-val
test-val

A description of the file attributes that differ between the control and
test manifests for each file

For a list of attributes that are supported by the bart command, see “BART Rules File
Attributes” on page 66.

For more information, see the bart(1M) man page.

68 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mbart-1m

File Security Glossary

Access
Control List
(ACL)

A list associated with a file that contains information about which users or groups have
permission to access or modify the file. An access control list (ACL) provides finer-grained file
security than traditional UNIX file protection provides. For example, an ACL enables you to
allow group read access to a file, while allowing only one member of that group to write to the
file.

policy Generally, a plan or course of action that influences or determines decisions and actions. For
computer systems, policy typically means security policy. Your site's security policy is the set
of rules that define the sensitivity of the information that is being processed and the measures
that are used to protect the information from unauthorized access. For example, security policy
might require that home directories be encrypted.

privilege 1. In general, a power or capability to perform an operation on a computer system that is
beyond the powers of a regular user. A privileged user or privileged application is a user or
application that has been granted additional rights.

2. A discrete right on a process in an Oracle Solaris system. Privileges offer a finer-grained
control of processes than does root. Privileges are defined and enforced in the kernel. For a
full description of privileges, see the privileges(5) man page.

privilege
model

A stricter model of security on a computer system than the superuser model. In the privilege
model, processes require privilege to run. Administration of the system can be divided into
discrete parts that are based on the privileges that administrators have in their processes.
Privileges can be assigned to an administrator's login process. Or, privileges can be assigned to
be in effect for certain commands only.

privileged
user

A user whom you have decided can perform administrative tasks at some level of trust.

public object A file that is owned by the root user and readable by the world, such as any file in the /etc
directory.

rights An alternative to the all-or-nothing superuser model. User rights management and process
rights management enable an organization to divide up superuser's privileges and assign them

Glossary 69

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5privileges-5

rights profile

to users or roles. Rights in Oracle Solaris are implemented as kernel privileges, authorizations,
and the ability to run a process as a specific UID or GID. Rights can be collected in a rights
profile and a role.

rights profile Also referred to as a profile. A collection of security overrides that enable regular users to
perform privileged actions.

role A special identity for running privileged applications that only assigned users can assume.

security
attributes

Overrides to security policy that enable an administrative command to succeed when the
command is run by a user other than superuser. In the superuser model, the setuid root and
setgid programs are security attributes. When these attributes are applied to a command, the
command succeeds no matter who runs the command. In the privilege model, kernel privileges
and other rights replace setuid root programs as security attributes. The privilege model is
compatible with the superuser model, in that the privilege model also recognizes the setuid
and setgid programs as security attributes.

security policy See policy.

70 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

Index

Numbers and Symbols
+ (plus sign)

ACL entry operator for add, 32
file permissions symbol, 14

- (minus sign)
ACL entry operator for remove, 32
ACL no inheritance flag, 31
file permissions symbol, 14
file type symbol, 10

. (dot)
displaying hidden files, 18

32-bit executables
protecting from compromising security, 17

= (equal sign)
ACL entry operator for replace, 32
file permissions symbol, 14

A
absolute mode

changing file permissions, 14, 22
changing special file permissions, 23
description, 14
setting special permissions, 15

Access Control Lists (ACLs) See ACLs
access security

files, 9
UFS ACLs, 16
ZFS, 27
ZFS file attributes, 15

aclinherit property, 30
aclmode property, 30
ACLs

ACL inheritance, 31, 39
aclinherit property, 30
aclmode property, 30
compact display, 35
default entries, 28
description, 15
description from NFSv4, 29
description of entries, 29
description of UFS, 16
displaying, 35
entry types, 29
format of UFS entries, 16
formats, 28
inheritance like NFSv4 ACLs, 31
interaction with permission bits, 36
NFSv4 model, 27
Object Access Management rights profile and, 28
removing, 34
rights required for chmod, 39
rights required to change, 38
sets, 30
setting on ZFS files

description, 32
verbose mode, 32

verbose display, 35
administering

ACLs on ZFS files
description, 32

file permissions, 17, 17
appendonly ZFS file attribute, 15
attributes

keyword in BART, 55
ZFS security, 46

71

Index

B
BART

components, 52
overview, 51
programmatic output, 68
security considerations, 54
task map, 54
verbose output, 67

bart create command, 52, 54
Basic Audit Reporting Tool See BART

C
changing

file ownership, 19
file permissions

absolute mode, 22
special, 23
symbolic mode, 21

group ownership of file, 20
special file permissions, 23

chgrp command
description, 9
syntax, 20

chmod command
changing special permissions, 23, 24
description, 9
rights required, 38
setting ACL inheritance, 39
syntax, 23

chown command
description, 9
rights required, 38

CIFS
file attributes for security, 15

commands
file protection commands, 9

compact display of ACL information, 35
components

BART, 52
control manifests (BART), 51
customizing

manifests, 56

customizing a report (BART), 63

D
defaults

ACL entries, 28
login shell, 28
rights from login shell, 28
umask value, 13

determining
files with setuid permissions, 24

directories, 9
See also files
default ACL entries, 28
displaying files and related information, 9, 18
permissions

defaults, 13
description, 10

public directories, 13
disabling

32-bit executables that compromise security, 17
displaying

ACL entries, 35
ACLs in compact format, 35
ACLs in verbose format, 35
file information, 18
files and related information, 9

dot (.)
displaying hidden files, 18

E
equal sign (=)

ACL entry operator for replace, 32
file permissions symbol, 14

executable stacks
protecting against 32-bit processes, 17

execute permissions
symbolic mode, 14

F
file attributes

72 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

Index

CIFS security, 15
ZFS security, 15, 46

file permission modes
absolute mode, 14
symbolic mode, 14

file systems, 27
See also ZFS
removing trivial ACLs, 34
setting

ACL inheritance on ZFS files (verbose
mode), 39
ACLs on ZFS files, 32, 32, 35

TMPFS, 13
files

BART manifests, 64
changing group ownership, 20
changing ownership, 9, 19
changing special file permissions, 23
default ACL entries, 28
displaying file information, 18
displaying hidden files, 18
displaying information about, 9
file types, 10
finding files with setuid permissions, 24
manifests (BART), 64
ownership

and setgid permission, 12
and setuid permission, 12

permissions
absolute mode, 14, 22
changing, 9, 14, 21
defaults, 13
description, 10
setgid, 12
setuid, 12
sticky bit, 13
symbolic mode, 14, 21, 21
umask value, 13

protecting with UNIX permissions, 17
scanning for integrity, 51
security

changing ownership, 19
changing permissions, 14, 21

directory permissions, 10
displaying file information, 9, 18
file permissions, 10
file types, 10
special file permissions, 15
umask default, 13
UNIX permissions, 9
user classes, 10

special files, 11
symbols of file type, 10
tracking integrity, 51

find command
finding files with setuid permissions, 24

formats
ACLs, of, 28

G
groups

changing file ownership, 20

I
immutable ZFS file attribute, 15

K
keywords

attribute in BART, 55

L
listing

ACLs on ZFS files
compact display, 35
verbose display, 35

log files
BART

programmatic output, 67
verbose output, 67

login shell
default, 28
profile shell, 28

73

Index

rights and, 28

M
managing See administering
manifests, 52

See also bart create
control, 51
customizing, 56
file format, 64
test in BART, 53

minus sign (-)
ACL entry operator for remove, 32
ACL no inheritance flag, 31
file permissions symbol, 14
symbol of file type, 10

N
NFSv4 ACLs See ACLs
non-trivial ACL format, 28
nounlink ZFS file attribute, 15

O
Object Access Management rights profile

ACLs and, 28, 38
Oracle Solaris ACLs See ACLs
ownership of files

changing, 9, 19
changing group ownership, 20
UFS ACLs and, 16
ZFS ACLs and, 15

P
permissions

changing file permissions
absolute mode, 14, 22
chmod command, 9
symbolic mode, 14, 21, 21

defaults, 13
directory permissions, 10

displaying ACL entries, 34
file permissions

absolute mode, 14, 22
ACL entries, 34
changing, 14, 21
description, 10
special permissions, 13, 15
symbolic mode, 14, 21, 21

finding files with setuid permissions, 24
setgid permissions

absolute mode, 15, 24
description, 12
symbolic mode, 14

setuid permissions
absolute mode, 15, 24
description, 12
security risks, 12
symbolic mode, 14

special file permissions, 11, 13, 15
sticky bit, 13
UFS ACLs and, 16
umask value, 13
user classes and, 10
ZFS file attributes and, 15

plus sign (+)
ACL entry operator for add, 32
file permissions symbol, 14

profile shell
rights and, 28

protecting
32-bit executables from compromising security, 17
system from risky programs, 24

protecting files
user procedures, 17
with UFS ACLs, 16
with UNIX permissions, 9, 17
with UNIX permissions task map, 17
with ZFS ACLs, 32
ZFS file attributes and, 15, 46

public directories
sticky bit and, 13

74 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

Index

Q
quoting syntax in BART, 66

R
read permissions

symbolic mode, 14
readonly CIFS file attribute, 15
reporting tool See bart compare
reports

BART, 51
rights

ACLs and, 28
rights profile

Object Access Management, 28
rights profiles

ACLs and, 38
administering ZFS files, 38

rstchown system variable, 20
rules file (BART), 53
rules file attributes See keywords
rules file format (BART), 66
rules file specification language See quoting syntax

S
security

ACLs, 27
BART, 51, 54
file access, 9
ZFS ACLs, 27

sensitive ZFS file attribute, 15
setgid permissions

absolute mode, 15, 24
description, 12
security risks, 12
symbolic mode, 14

sets of ACLs, 30
setting

ACL inheritance, 39
ACLs on ZFS files

description, 32

verbose mode, 32
setuid permissions

absolute mode, 15, 24
description, 12
finding files with permissions set, 24
security risks, 12
symbolic mode, 14

Solaris ACLs See ACLs
special permissions

setgid permissions, 12
setuid permissions, 12
sticky bit, 13

sticky bit permissions
absolute mode, 15, 24
description, 13
symbolic mode, 14

symbolic links
file permissions, 11

symbolic mode
changing file permissions, 21, 21
description, 14

system security
protecting from risky programs, 24
ZFS file attributes, 15

system variables
rstchown, 20

systems
protecting from risky programs, 24
tracking file integrity, 51

T
task maps

protecting files with UNIX permissions, 17
Using BART task map, 54

test manifests
BART, 53

TMPFS file system and security, 13
trivial ACL format, 28
troubleshooting

finding files with setuid permissions, 24

75

Index

U
umask value

and file creation, 13
typical values, 13

UNIX file permissions See files, permissions
user classes of files, 10
user procedures

protecting files, 17
using

BART, 53
file permissions, 17
ZFS ACLs, 32

V
variables

rstchown, 20
verbose display of ACL information, 35
viewing

file permissions, 18

W
write permissions

symbolic mode, 14

Z
ZFS

access controls, 27
file attributes, 15

ZFS File System Management rights profile
ACLs and, 38

zfs set command
rights required, 38

76 Securing Files and Verifying File Integrity in Oracle Solaris 11.3 • October 2017

	Securing Files and Verifying File Integrity in Oracle® Solaris 11.3
	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	Chapter 1 • Controlling Access to Files
	Using UNIX Permissions to Protect Files
	Commands for Viewing and Securing Files
	File and Directory Ownership
	UNIX File Permissions
	Special File Permissions Using setuid, setgid and Sticky Bit
	setuid Permission
	setgid Permission
	Sticky Bit

	Default umask Value
	File Permission Modes

	Using File Attributes to Add Security to ZFS Files
	Using Access Control Lists to Protect UFS Files
	Protecting Executable Files From Compromising Security
	Protecting Files
	Protecting Files With UNIX Permissions
	How to Display File Information
	How to Change the Owner of a File
	How to Change Group Ownership of a File
	How to Change File Permissions in Symbolic Mode
	How to Change File Permissions in Absolute Mode
	How to Change Special File Permissions in Absolute Mode
	Protecting Against Programs With Security Risk
	How to Find Files With Special File Permissions

	Chapter 2 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files
	Oracle Solaris ACL Model
	Rights to Modify ZFS ACLs
	ACL Formats
	ACL Entry Descriptions
	ZFS ACL Sets

	ACL Properties
	ACL Inheritance Flags

	Setting ACLs on ZFS Files
	Command Syntax for Setting and Modifying ACLs
	Displaying ACL Information

	ACL Interaction With Permission Bits

	Setting ACL Inheritance on ZFS Files
	Enabling the ACL on a Directory to Be Inherited
	Effect of file_inherit and dir_inherit Flags
	Effect of ACL Inherit Mode on ACL Inheritance
	ACL passthrough Inherit Mode
	ACL Inherit passthrough-x Mode

	Examples of Setting Security-Relevant Attributes on ZFS Files
	Preventing Accidental Deletions With the nounlink Attribute
	Displaying and Changing ZFS File Attributes

	Chapter 3 • Verifying File Integrity by Using BART
	About BART
	BART Features
	BART Components
	BART Manifest
	BART Report
	BART Rules File

	About Using BART
	BART Security Considerations
	Using BART
	How to Create a Control Manifest
	How to Customize a Manifest
	How to Compare Manifests for the Same System Over Time
	How to Compare Manifests From Different Systems
	How to Customize a BART Report by Specifying File Attributes
	How to Customize a BART Report by Using a Rules File

	BART Manifests, Rules Files, and Reports
	BART Manifest File Format
	BART Rules File Format
	BART Rules File Attributes
	BART Quoting Syntax

	BART Reporting
	BART Output

	File Security Glossary
	Index

