
Resource Management and Oracle®

Solaris Zones Developer's Guide

Part No: E54826
October 2017

Resource Management and Oracle Solaris Zones Developer's Guide

Part No: E54826

Copyright © 2004, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Référence: E54826

Copyright © 2004, 2017, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d'utilisation et
de divulgation. Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence, transmettre,
distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous
invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est livré sous licence au Gouvernement des Etats-Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le
compte du Gouvernement des Etats-Unis, la notice suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être
utilisé dans des applications à risque, notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou ce matériel dans le cadre
d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour des
applications dangereuses.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d'autres propriétaires
qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une
marque déposée de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de
tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée
dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des
dommages causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Accès aux services de support Oracle

Les clients Oracle qui ont souscrit un contrat de support ont accès au support électronique via My Oracle Support. Pour plus d'informations, visitez le site http://www.oracle.com/
pls/topic/lookup?ctx=acc&id=info ou le site http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs si vous êtes malentendant.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Using This Documentation ...  9

1 Resource Management in the Oracle Solaris Operating System ...................  11
Understanding Resource Management in the Oracle Solaris Operating System ..........  11

Resource Management Workload Organization ...  11
Resource Organization .. 12
Resource Controls ...  13
Extended Accounting Facility ..  14

Writing Resource Management Applications ..  14

2 Workload Hierarchy of Projects and Tasks ...  15
Overview of Projects and Tasks ...  15

/etc/project File ...  16
Project and Task API Functions ...  18
Code Examples for Accessing project Database Entries ......................................  19
Programming Issues Associated With Projects and Tasks ......................................  20

3 Using the C Interface to Extended Accounting ...  21
Overview of the C Interface to Extended Accounting ...  21
Extended Accounting API Functions ... 21

exacct System Calls ..  22
Operations on the exacct File ...  22
Operations on exacct Objects ...  22
Extended Accounting Memory Management ..  23
Extended Accounting Miscellaneous Operations ...  24

C Code Examples for Accessing exacct Files ..  24
Programming Issues With exacct Files ...  28

5

Contents

4 Using the Perl Interface to Extended Accounting ...  29
Extended Accounting Overview ...  29
Perl Interface to libexacct ...  30

Perl Interface Object Model ..  30
Benefits of Using the Perl Interface to libexacct .......................................  30
Perl Double-Typed Scalars ..  31

Perl Modules ..  31
Sun::Solaris::Project Module ...  33
Sun::Solaris::Task Module ..  34
Sun::Solaris::Exacct Module ...  35
Sun::Solaris::Exacct::Catalog Module ..  36
Sun::Solaris::Exacct::File Module ...  38
Sun::Solaris::Exacct::Object Module ..  40
Sun::Solaris::Exacct::Object::Item Module ..  41
Sun::Solaris::Exacct::Object::Group Module .......................................  42
Sun::Solaris::Exacct::Object::_Array Module .....................................  43

Perl Code Examples ... 43
Output From the Perl dump Method ..  47

5 Resource Controls in Oracle Solaris ... 51
Overview of Resource Controls ...  51
Resource Controls Flags and Actions ..  52

rlimit, Resource Limit ..  52
rctl, Resource Control ..  52
Resource Control Values and Privilege Levels ..  53
Local Actions and Local Flags ..  53
Global Actions and Global Flags .. 54
Resource Control Sets Associated With a Zone, Project, Processes, and
Tasks ...  55
Signals Used With Resource Controls ...  62

Resource Controls API Functions ...  63
Operate on Action-Value Pairs of a Resource Control ................................... 63
Operate on Local Modifiable Values ...  64
Retrieve Local Read-Only Values ...  64
Retrieve Global Read-Only Actions ..  64

Resource Control Code Examples ..  64

6 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

Contents

Master Observing Process for Resource Controls ..  64
List all the Value-Action Pairs for a Specific Resource Control ......................  66
Set project.cpu-shares and Add a New Value ...  67
Set LWP Limit Using Resource Control Blocks ..  68

Programming Issues Associated With Resource Controls ......................................  69
zonestat Utility for Monitoring Zones Resource Usage .......................................  69

6 Resource Pools in Oracle Solaris ...  71
Overview of Resource Pools ...  71

Scheduling Class ...  72
Dynamic Resource Pool Constraints and Objectives ..  72

System Properties ..  73
Pools Properties ..  74
Processor Set Properties ...  75

Using libpool to Manipulate Pool Configurations ..  76
Manipulate psets ..  77

Resource Pools API Functions ...  77
Functions for Operating on Resource Pools and Associated Elements ..............  78
Functions for Querying Resource Pools and Associated Elements ...................  80

Resource Pool Code Examples ..  83
Ascertain the Number of CPUs in the Resource Pool ...................................  83
List All Resource Pools ..  84
Report Pool Statistics for a Given Pool ...  85
Set pool.comment Property and Add New Property .....................................  85

Programming Issues Associated With Resource Pools ..  86
zonestat Utility for Monitoring Resource Pools in Oracle Solaris Zones .................  87

7 Design Considerations for Resource Management Applications in Oracle
Solaris Zones ..  89

Oracle Solaris Zones Overview ..  89
IP Networking in Oracle Solaris Zones ...  90
About Applications in Oracle Solaris Zones ...  90

General Considerations When Writing Applications for Non-Global Zones .......  91
Specific Considerations for Oracle Solaris 10 Non-Global Zones ....................  93
Specific Considerations for Shared-IP Non-Global Zones .............................. 93

Packaging Considerations in solaris Zones ..  94

7

Contents

API for Zones Monitoring Statistics ...  94
Monitoring Zone File System Activity ..  95
Oracle Solaris 10 Zones ...  96
Oracle Solaris Kernel Zones ..  96

8 Project Configuration Examples ...  99
/etc/project Project File ..  99

Define Two Projects ..  99
Configure Resource Controls ...  100
Configure Resource Pools ...  100
Configure FSS project.cpu-shares for a Project .....................................  100
Configure Five Applications with Different Characteristics ..........................  101

Index ..  105

8 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

Using This Documentation

■ Overview – Describes how to write applications that partition and manage system
resources, such as processor sets and scheduling class, by referencing appropriate
programming APIs.

■ Audience – Developers writing resource management applications for the Oracle Solaris
operating system.

■ Required knowledge – Familiarity with C programming. Experience with virtualized
environments is a plus.

Product Documentation Library

Documentation and resources for this product and related products are available at http://www.
oracle.com/pls/topic/lookup?ctx=E53394-01.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

Using This Documentation 9

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01
http://www.oracle.com/goto/docfeedback

10 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

 1 ♦ ♦ ♦ C H A P T E R 1

Resource Management in the Oracle Solaris
Operating System

Resource management can help developers who are writing either utility applications for
managing computer resources or self-monitoring applications that can check their own usage
and adjust accordingly. This chapter provides an introduction to resource management in the
Oracle Solaris operating system. It covers the following topics:

■ “Understanding Resource Management in the Oracle Solaris Operating
System” on page 11

■ “Writing Resource Management Applications” on page 14

Understanding Resource Management in the Oracle Solaris
Operating System

The main concept behind resource management is that workloads on a server must be balanced
for the system to work efficiently. Without good resource management, faulty runaway
workloads can bring progress to a halt, causing unnecessary delays to priority jobs. Efficient
resource management also enables organizations to economize by consolidating systems.

The Oracle Solaris operating system provides a structure for organizing workloads and
resources, and provides controls for defining the quantity of resources that a particular unit
of workload can consume. For an in-depth discussion of resource management from the
system administrator's viewpoint, see Chapter 1, “Introduction to Resource Management” in
Administering Resource Management in Oracle Solaris 11.3.

Resource Management Workload Organization

The basic unit of workload is the process. Process IDs (PIDs) are numbered sequentially
throughout the system. By default, each user is assigned by the system administrator to a

Chapter 1 • Resource Management in the Oracle Solaris Operating System 11

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmintro-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmintro-1

Understanding Resource Management in the Oracle Solaris Operating System

project, which is a network-wide administrative identifier. Each successful login to a project
creates a new task, which is a grouping mechanism for processes. A task contains the login
process as well as subsequent child processes.

For more information about projects and tasks, see Chapter 2, “About Projects and Tasks” in
Administering Resource Management in Oracle Solaris 11.3 for the system administrator's
perspective or Chapter 2, “Workload Hierarchy of Projects and Tasks” in this document for the
developer's point of view.

Processes can optionally be grouped into non-global zones, which are set up by system
administrators for security purposes and to isolate processes. A zone enables one or more
applications to run isolated from all other applications on the system. Non-global zones are
discussed thoroughly in Creating and Using Oracle Solaris Zones. To learn more about special
precautions for writing resource management applications that run in zones, see Chapter 7,
“Design Considerations for Resource Management Applications in Oracle Solaris Zones”.

Resource Organization

The system administrator can assign workloads to specific CPUs or defined groups of
CPUs in the system. CPUs can be grouped into processor sets, otherwise known as psets. A
pset in turn can be coupled with one or more thread scheduling classes, which define CPU
priorities, into a resource pool. Resource pools provide a convenient mechanism for a system
administrator to make system resources available to users. Chapter 12, “About Resource Pools”
in Administering Resource Management in Oracle Solaris 11.3 covers resource pools for system
administrators. Programming considerations are described in Chapter 6, “Resource Pools in
Oracle Solaris”.

The following diagram illustrates how workload and computer resources are organized in the
Oracle Solaris operating system.

12 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmtaskproj-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmtaskproj-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZSO
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmpool-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmpool-1

Understanding Resource Management in the Oracle Solaris Operating System

FIGURE 1 Workload and Resource Organization in the Oracle Solaris Operating System

Resource Controls

Simply assigning a workload unit to a resource unit is insufficient for managing the quantity
of resources that users consume. To manage resources, the Oracle Solaris operating system
provides a set of flags, actions, and signals that are referred to collectively as resource controls.
Resource controls are stored in the /etc/project file or in a zone's configuration through the
zonecfg command described in zonecfg(1M). The Fair Share Scheduler (FSS), for example,
can allocate shares of CPU resources among workloads based on the specified importance
factor for the workloads. With these resource controls, a system administrator can set privilege

Chapter 1 • Resource Management in the Oracle Solaris Operating System 13

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mzonecfg-1m

Writing Resource Management Applications

levels and limit definitions for a specific zone, project, task, or process. To learn how a
system administrator uses resource controls, see Chapter 6, “About Resource Controls” in
Administering Resource Management in Oracle Solaris 11.3. For programming considerations,
see Chapter 5, “Resource Controls in Oracle Solaris”.

Extended Accounting Facility

In addition to workload and resource organization, the Oracle Solaris operating system provides
the extended accounting facility for monitoring and recording system resource usage. The
extended accounting facility provides system administrators with a detailed set of resource
consumption statistics on processes and tasks.

The facility is described in depth for system administrators in Chapter 4, “About Extended
Accounting” in Administering Resource Management in Oracle Solaris 11.3. The Oracle
Solaris operating system provides developers with both a C interface and a Perl interface
to the extended accounting facility. Refer to Chapter 3, “Using the C Interface to Extended
Accounting” for the C interface or Chapter 4, “Using the Perl Interface to Extended
Accounting” for the Perl interface.

Writing Resource Management Applications

This guide focuses on resource management from the developer's point of view and presents
information for writing the following kinds of applications:

■ Resource administration applications – Utilities to perform such tasks as allocating
resources, creating partitions, and scheduling jobs.

■ Resource monitoring applications – Applications that check system statistics through
kstats to determine resource usage by systems, workloads, processes, and users.

■ Resource accounting utilities – Applications that provide accounting information for
analysis, billing, and capacity planning.

■ Self-adjusting applications – Applications that can determine their use of resources and can
adjust consumption as necessary.

14 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmctrls-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmctrls-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmacct-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmacct-1

 2 ♦ ♦ ♦ C H A P T E R 2

Workload Hierarchy of Projects and Tasks

The chapter discusses the workload hierarchy and provides information about projects and
tasks. It covers the following topics:

■ “Overview of Projects and Tasks” on page 15
■ “Project and Task API Functions” on page 18
■ “Code Examples for Accessing project Database Entries” on page 19
■ “Programming Issues Associated With Projects and Tasks” on page 20

Overview of Projects and Tasks
The Oracle Solaris operating system uses the workload hierarchy to organize the work being
performed on the system. A task is a collection of processes that represents a workload
component. A project is a collection of tasks that represents an entire workload. At any given
time, a process can be a component of only one task and one project. The relationships in the
workload hierarchy are illustrated in the following figure.

FIGURE 2 Workload Hierarchy

A user who is a member of more than one project can run processes in multiple projects at the
same time.

Chapter 2 • Workload Hierarchy of Projects and Tasks 15

Overview of Projects and Tasks

All processes that are started by a process inherit the project and task created by the parent
process. When you switch to a new project in a startup script, all child processes run in the new
project.

An executing user process has an associated user identity (uid), group identity (gid), and
project identity (projid). Process attributes and abilities are inherited from the user, group, and
project identities to form the execution context for a task.

For an in-depth discussion of projects and tasks, see Chapter 2, “About Projects and Tasks”
in Administering Resource Management in Oracle Solaris 11.3. For the administration
commands for managing projects and tasks, see Chapter 3, “Administering Projects and Tasks”
in Administering Resource Management in Oracle Solaris 11.3.

/etc/project File

The project file is the heart of workload hierarchy. The project database is maintained on a
system through the /etc/project file or over the network through a naming service, such as
NIS or LDAP.

The /etc/project file contains five standard projects.

system

This project is used for all system processes and daemons.

user.root

All root processes spawned by root logins and root cron, at, and batch jobs.

noproject

This special project is for IPQoS.

default

A default project is assigned to every user.

group.staff

This project is used for all users in the group staff.

To access the project file programmatically, use the following structure:

struct project {

 char *pj_name; /* name of the project */

16 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmtaskproj-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmtaskproj-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmtaskproj.task-37
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmtaskproj.task-37

Overview of Projects and Tasks

 projid_t pj_projid; /* numerical project ID */

 char *pj_comment; /* project comment */

 char **pj_users; /* vector of pointers to project user names */

 char **pj_groups; /* vector of pointers to project group names */

 char *pj_attr; /* project attributes */

};

The project structure members include the following:

*pj_name

Name of the project.

pj_projid

Project ID.

*pj_comment

User-supplied project description.

**pj_users

Pointers to project user members.

**pj_groups

Pointers to project group members.

*pj_attr

Project attributes. Use these attributes to set values for resource controls and project pools.

Resource usage can be controlled through project attributes, or, for zones, configured through
the zonecfg command. Four prefixes are used to group the types of resource control attributes:

■ project.* – This prefix denotes attributes that are used to control projects. For example,
project.max-locked-memory indicates the total amount of locked memory allowed,
expressed as a number of bytes. The project.pool attribute binds a project to a resource
pool. See Chapter 6, “Resource Pools in Oracle Solaris”.

■ task.* – This prefix is used for attributes that are applied to tasks. For example, the
task.max-cpu-time attribute sets the maximum CPU time that is available to this task's
processes, expressed as a number of seconds.

■ process.* – This prefix is used for process controls. For example, the process.max-
file-size control sets the maximum file offset that is available for writing by this process,
expressed as a number of bytes.

■ zone.* – The zone.* prefix indicates a zone-wide resource control applied to projects,
tasks, and processes in a zone. For example, zone.max-lwps prevents too many LWPs in

Chapter 2 • Workload Hierarchy of Projects and Tasks 17

Project and Task API Functions

one zone from affecting other zones. A zone's total LWPs can be further subdivided among
projects within the zone within the zone by using project.max-lwps entries.

For the complete list of resource controls, see resource-controls(5).

Project and Task API Functions
The following functions are provided to assist developers in working with projects. The
functions use entries that describe user projects in the project database.

See man pages section 3: Extended Library Functions, Volume 3 for additional information on
these functions.

endprojent(3PROJECT)

Close the project database and deallocate resources when processing is complete.

fgetprojent(3PROJECT)

Returns a pointer to a structure containing an entry in the project database. Rather than
using nsswitch.conf, fgetprojent() reads a line from a stream.

getdefaultproj(3PROJECT)

Check the validity of the project keyword, look up the project, and return a pointer to the
project structure if found.

getprojbyid(3PROJECT)

Search the project database for an entry with the number that specifies the project ID.

getprojbyname(3PROJECT)

Search the project database for an entry with the string that specifies project name.

getprojent(3PROJECT)

Returns a pointer to a structure containing an entry in the project database.

inproj(3PROJECT)

Check whether the specified user is permitted to use the specified project.

setproject(3PROJECT)

Calling process joins the target project by creating a new task in the target project.

setprojent(3PROJECT)

Rewind the project database to allow repeated searches.

18 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5resource-controls-5
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3H

Code Examples for Accessing project Database Entries

Reentrant functions getprojent(), getprojbyname(), getprojbyid(), getdefaultproj(), and
inproj() use buffers supplied by the caller to store returned results. These functions are safe
for use in both single-threaded applications and multithreaded applications.

Reentrant functions require three additional arguments:

■ proj

■ buffer

■ bufsize

The proj argument must be a pointer to a project structure allocated by the caller. On
successful completion, these functions return the project entry in this structure. Storage
referenced by the project structure is allocated from the memory specified by the buffer
argument. bufsize specifies the size in number of bytes.

If an incorrect buffer size is used, getprojent() returns NULL and sets errno to ERANGE.

Code Examples for Accessing project Database Entries

EXAMPLE 1 Printing the First Three Fields of Each Entry in the project Database

Note the following key points for this example:

■ setprojent() rewinds the project database to start at the beginning.
■ getprojent() is called with a conservative maximum buffer size that is defined in

project.h.
■ endprojent() closes the project database and frees resources.

#include <project.h>

struct project projent;

char buffer[PROJECT_BUFSZ]; /* Use safe buffer size from project.h */

struct project *pp;

setprojent(); /* Rewind the project database to start at the beginning */

while (1) {

 pp = getprojent(&projent, buffer, PROJECT_BUFSZ);

 if (pp == NULL)

 break;

 printf("%s:%d:%s\n", pp->pj_name, pp->pj_projid, pp->pj_comment);

Chapter 2 • Workload Hierarchy of Projects and Tasks 19

Programming Issues Associated With Projects and Tasks

};

endprojent(); /* Close the database and free project resources */

EXAMPLE 2 Getting a project Database Entry That Matches the Caller's Project ID

The following example calls getprojbyid() to get a project database entry that matches the
caller's project ID. The example then prints the project name and the project ID.

#include <project.h>

struct project *pj;

char buffer[PROJECT_BUFSZ]; /* Use safe buffer size from project.h */

main()

{

 projid_t pjid;

 pjid = getprojid();

 pj = getprojbyid(pjid, &projent, buffer, PROJECT_BUFSZ);

 if (pj == NULL) {

 /* fail; */

 }

 printf("My project (name, id) is (%s, %d)\n", pp->pj_name, pp->pj_projid);

}

Programming Issues Associated With Projects and Tasks

Consider the following issues when writing your application:

■ No function exists to explicitly create a new project.
■ A user cannot log in if no default project for the user exists in the project database.
■ A new task in the user's default project is created when the user logs in.
■ When a process joins a project, the project's resource control and pool settings are applied to

the process.
■ setproject() requires privilege. The newtask command does not require privilege if you

own the process. Either method can be used to create a task, but only newtask can change
the project of a running process.

■ No parent/child relationship exists between tasks.
■ Finalized tasks can be created by using newtask -F or by using setproject() to associate

the caller with a new project. Finalized tasks are useful when trying to accurately estimate
aggregate resource accounting.

20 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

 3 ♦ ♦ ♦ C H A P T E R 3

Using the C Interface to Extended Accounting

This chapter describes the C interface to extended accounting. It covers the following topics:

■ “Overview of the C Interface to Extended Accounting” on page 21
■ “Extended Accounting API Functions” on page 21
■ “C Code Examples for Accessing exacct Files” on page 24

Overview of the C Interface to Extended Accounting
The extended accounting subsystem monitors resource consumption by workloads that are
running on the system. Extended accounting produces accounting records for the workload
tasks and processes.

For an overview of extended accounting and example procedures for administering extended
accounting, see Chapter 4, “About Extended Accounting” in Administering Resource
Management in Oracle Solaris 11.3 and Chapter 5, “Administering Extended Accounting
Tasks” in Administering Resource Management in Oracle Solaris 11.3.

The extended accounting framework has been expanded for zones. Each zone has its own
extended accounting files for task and process-based accounting. The extended accounting files
in the global zone contain accounting records for the global zone and for all non-global zones.
The accounting records contain a zone name tag that the global zone administrator can use
during the extraction of per–zone accounting data from the accounting files in the global zone.

Extended Accounting API Functions
The extended accounting API contains functions that perform actions such as:

■ exacct system calls
■ Operations on the exacct file
■ Operations on exacct objects

Chapter 3 • Using the C Interface to Extended Accounting 21

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmacct-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmacct-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmacct.task.sgm
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmacct.task.sgm

Extended Accounting API Functions

This section provides tables describing these functions. The function name is a link to its man
page.

exacct System Calls
The following table lists the system calls that interact with the extended accounting subsystem.

TABLE 1 Extended Accounting System Calls

Function Description

putacct(2) Provides privileged processes with the ability to tag accounting records with additional data
that is specific to the process

getacct(2) Enables privileged processes to request extended accounting buffers from the kernel for
currently executing tasks and processes

wracct(2) Requests the kernel to write resource usage data for a specified task or process

Operations on the exacct File

The following table lists the functions that provide access to the exacct file.

TABLE 2 exacct File Functions

Function Description

ea_open(3EXACCT) Opens an exacct file.

ea_close(3EXACCT) Closes an exacct file.

ea_get_object(3EXACCT) First time use on a group of objects reads data into an ea_object_t structure.
Subsequent use on the group cycles through the objects in the group.

ea_write_object(3EXACCT) Appends the specified object to the open exacct file.

ea_next_object(3EXACCT) Reads the basic fields (eo_catalog and eo_type) into an ea_object_t
structure and rewinds to the head of the record.

ea_previous_object(3EXACCT) Skips back one object in the exacct file and reads the basic fields
(eo_catalog and eo_type) into an ea_object_t.

ea_get_hostname(3EXACCT) Gets the name of the host on which the exacct file was created.

ea_get_creator(3EXACCT) Determines the creator of the exacct file.

Operations on exacct Objects

The following table lists the functions that are used to access exacct objects.

22 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2putacct-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2getacct-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2wracct-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-open-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-close-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-get-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-write-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-next-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-previous-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-get-hostname-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-get-creator-3exacct

Extended Accounting API Functions

TABLE 3 exacct Object Functions

Function Description

ea_set_item(3EXACCT) Assigns an exacct object and sets its values.

ea_set_group(3EXACCT) Sets the values of a group of exacct objects.

ea_match_object_catalog(3EXACCT) Checks an exacct object's mask to see whether that object has a specific
catalog tag.

ea_attach_to_object(3EXACCT) Attaches an exacct object to a specified exacct object.

ea_attach_to_group(3EXACCT) Attaches a chain of exacct objects as member items of a specified group.

ea_free_item(3EXACCT) Frees the value fields in the specified exacct object.

ea_free_object(3EXACCT) Frees the specified exacct object and any attached hierarchies of objects.

Extended Accounting Memory Management
The following table lists the functions associated with extended accounting memory
management.

TABLE 4 Extended Accounting Memory Management Functions

Link to man page Description

ea_pack_object(3EXACCT) Converts an exacct object from unpacked (in-memory)
representation to packed (in-file) representation.

ea_unpack_object(3EXACCT) Converts an exacct object from packed (in-file) representation to
unpacked (in-memory) representation.

ea_strdup(3EXACCT) Duplicates a string that is to be stored inside an ea_object_t
structure.

ea_strfree(3EXACCT) Frees a string previously copied by ea_strdup().

ea_alloc(3EXACCT) Allocates a block of memory of the requested size. This block can be
safely passed to libexacct functions, and can be safely freed by any
of the ea_free functions.

ea_free(3EXACCT) Frees a block of memory previously allocated by ea_alloc().

ea_free_object(3EXACCT) Frees variable-length data in object hierarchy.

ea_free_item(3EXACCT) Frees value fields of the designated object if EUP_ALLOC is
specified. The object is not freed. ea_free_object() frees the
specified object and any attached hierarchy of objects. If the flag
argument is set to EUP_ALLOC, ea_free_object() also frees any
variable-length data in the object hierarchy. If the flag argument
is set to EUP_NOALLOC, ea_free_object() does not free the
variable-length data. In particular, these flags should correspond to
the flags specified in calls to ea_unpack_object(3EXACCT).

ea_copy_object(3EXACCT) Copies an ea_object_t. If the source object is part of a chain, only
the current object is copied. If the source object is a group, only the
group object is copied without its list of members. The group object

Chapter 3 • Using the C Interface to Extended Accounting 23

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-set-item-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-set-group-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-match-object-catalog-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-attach-to-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-attach-to-group-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-free-item-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-free-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-pack-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-unpack-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-strdup-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-strfree-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-alloc-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-free-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-free-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-free-item-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-copy-object-3exacct

C Code Examples for Accessing exacct Files

Link to man page Description

eg_nobjs and eg_objs fields are set to 0 and NULL respectively.
Use ea_copy_tree() to copy recursively a group or a list of items.

ea_copy_object_tree(3EXACCT) ea_copy_object_tree recursively copies an ea_object_t. All
elements in the eo_next list are copied. Any group objects are
recursively copied. The returned object can be completely freed with
ea_free_object(3EXACCT) by specifying the EUP_ALLOC flag.

ea_get_object_tree() Reads in nobj top-level objects from the file, returning
the same data structure that would have originally been
passed to ea_write_object(). On encountering a group
object,ea_get_object() reads only the group header part of the
group. ea_get_object_tree() reads the group and all its member
items, recursing into subrecords if necessary. The returned object
data structure can be completely freed with ea_free_object() by
specifying the EUP_ALLOC flag.

Extended Accounting Miscellaneous Operations
These functions are associated with miscellaneous operations:

■ ea_error(3EXACCT) – Returns the error value of the last failure recorded by the
invocation of one of the functions of the extended accounting library,libexacct.

■ ea_match_object_catalog(3EXACCT) – Returns TRUE if the exacct object specified by
obj has a catalog tag that matches the mask specified by catmask.

C Code Examples for Accessing exacct Files

This section provides code examples for accessing exacct files.

EXAMPLE 3 Displaying exacct Data for a Designated pid

This example displays a specific pid's exacct data snapshot from the kernel.

...

 ea_object_t *scratch;

 int unpk_flag = EUP_ALLOC; /* use the same allocation flag */

 /* for unpack and free */

 /* Omit return value checking, to keep code samples short */

 bsize = getacct(P_PID, pid, NULL, 0);

24 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-copy-object-tree-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-error-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-match-object-catalog-3exacct

C Code Examples for Accessing exacct Files

 buf = malloc(bsize);

 /* Retrieve exacct object and unpack */

 getacct(P_PID, pid, buf, bsize);

 ea_unpack_object(&scratch, unpk_flag, buf, bsize);

 /* Display the exacct record */

 disp_obj(scratch);

 if (scratch->eo_type == EO_GROUP) {

 disp_group(scratch);

 }

 ea_free_object(scratch, unpk_flag);

 ...

EXAMPLE 4 Identifying Individual Tasks During a Kernel Build

This example evaluates kernel builds and displays a string that describes the portion of the
source tree being built by this task. It displays the portion of the source being built to aid in the
per-source-directory analysis.
Note the following key points for this example:

■ To aggregate the time for a make, which could include many processes, each make is
initiated as a task. Child make processes are created as different tasks. To aggregate across
the makefile tree, the parent-child task relationship must be identified.

■ Add a tag with this information to the task's exacct file. Add a current working directory
string that describes the portion of the source tree being built by this task's make operation.

ea_set_item(&cwd, EXT_STRING | EXC_LOCAL | MY_CWD,

 cwdbuf, strlen(cwdbuf));

 ...

/* Omit return value checking and error processing */

/* to keep code sample short */

ptid = gettaskid(); /* Save "parent" task-id */

tid = settaskid(getprojid(), TASK_NORMAL); /* Create new task */

/* Set data for item objects ptskid and cwd */

ea_set_item(&ptskid, EXT_UINT32 | EXC_LOCAL | MY_PTID, &ptid, 0);

ea_set_item(&cwd, EXT_STRING | EXC_LOCAL | MY_CWD, cwdbuf, strlen(cwdbuf));

/* Set grp object and attach ptskid and cwd to grp */

ea_set_group(&grp, EXT_GROUP | EXC_LOCAL | EXD_GROUP_HEADER);

ea_attach_to_group(&grp, &ptskid);

ea_attach_to_group(&grp, &cwd);

/* Pack the object and put it back into the accounting stream */

Chapter 3 • Using the C Interface to Extended Accounting 25

C Code Examples for Accessing exacct Files

ea_buflen = ea_pack_object(&grp, ea_buf, sizeof(ea_buf));

putacct(P_TASKID, tid, ea_buf, ea_buflen, EP_EXACCT_OBJECT);

/* Memory management: free memory allocate in ea_set_item */

ea_free_item(&cwd, EUP_ALLOC);

 ...

EXAMPLE 5 Reading and Displaying the Contents of a System exacct File

This example shows how to read and display a system exacct file for a process or a task.
Note the following key points for this example:

■ Calls ea_get_object() to get the next object in the file. Calls ea_get_object() in a loop
until EOF enables a complete traversal of the exacct file.

■ catalog_name() uses the catalog_item structure to convert an Oracle Solaris catalog's
type ID to a meaningful string that describes the content of the object's data. The type ID is
obtained by masking the lowest 24 bits, or 3 bytes.

switch(o->eo_catalog & EXT_TYPE_MASK) {

 case EXT_UINT8:

 printf(" 8: %u", o->eo_item.ei_uint8);

 break;

 case EXT_UINT16:

 ...

}

■ The upper 4 bits of TYPE_MASK are used to find out the data type to print the object's actual
data.

■ disp_group() takes a pointer to a group object and the number of objects in the group.
For each object in the group, disp_group() calls disp_obj() and recursively calls
disp_group() if the object is a group object.

/* Omit return value checking and error processing */

/* to keep code sample short */

main(int argc, char *argv)

{

 ea_file_t ef;

 ea_object_t scratch;

 char *fname;

 fname = argv[1];

 ea_open(&ef, fname, NULL, EO_NO_VALID_HDR, O_RDONLY, 0);

 bzero(&scratch, sizeof (ea_object_t));

 while (ea_get_object(&ef, &scratch) != -1) {

 disp_obj(&scratch);

26 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

C Code Examples for Accessing exacct Files

 if (scratch.eo_type == EO_GROUP)

 disp_group(&ef, scratch.eo_group.eg_nobjs);

 bzero(&scratch, sizeof (ea_object_t));

 }

 ea_close(&ef);

}

struct catalog_item { /* convert Oracle Solaris catalog's type ID */

 /* to a meaningful string */

 int type;

 char *name;

 } catalog[] = {

 { EXD_VERSION, "version\t" },

 ...

 { EXD_PROC_PID, " pid\t" },

 ...

 };

 static char *

 catalog_name(int type)

 {

 int i = 0;

 while (catalog[i].type != EXD_NONE) {

 if (catalog[i].type == type)

 return (catalog[i].name);

 else

 i++;

 }

 return ("unknown\t");

 }

 static void disp_obj(ea_object_t *o)

 {

 printf("%s\t", catalog_name(o->eo_catalog & 0xffffff));

 switch(o->eo_catalog & EXT_TYPE_MASK) {

 case EXT_UINT8:

 printf(" 8: %u", o->eo_item.ei_uint8);

 break;

 case EXT_UINT16:

 ...

 }

 static void disp_group(ea_file_t *ef, uint_t nobjs)

 {

 for (i = 0; i < nobjs; i++) {

 ea_get_object(ef, &scratch));

 disp_obj(&scratch);

 if (scratch.eo_type == EO_GROUP)

 disp_group(ef, scratch.eo_group.eg_nobjs);

Chapter 3 • Using the C Interface to Extended Accounting 27

Programming Issues With exacct Files

 }

 }

Programming Issues With exacct Files

■ Note the following issues related to memory management:
■ Use the same allocation flags for ea_free_object() and ea_unpack_object().
■ For string objects, an ea_set_item() results in allocation, and should be followed by

ea_free_item(obj, EUP_ALLOC) to free internal storage.
■ ea_pack_object() and getacct() use zero size. To get size. getacct() should be

called twice: first time with NULL buffer to size buffer to be passed in the second call.
See Example 3-1 in “C Code Examples for Accessing exacct Files” on page 24.

■ In order to be robust in the face of changes to exacct file content, applications should skip
unknown exacct records in exacct files produced by the system.

■ Use EXC_LOCAL for customized accounting to create application-specific records. Use
libexacct as general tracing or debugging facility.
■ See <sys/exacct_catalog.h>.
■ You can customize the data id field of ea_catalog_t.

28 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

 4 ♦ ♦ ♦ C H A P T E R 4

Using the Perl Interface to Extended Accounting

The Perl interface provides a Perl binding to the extended accounting tasks and projects. The
interface allows the accounting files produced by the exacct framework to be read by Perl
scripts. The interface also allows the writing of exacct files by Perl scripts.
This chapter includes the following topics:

■ “Extended Accounting Overview” on page 29
■ “Perl Interface to libexacct” on page 30
■ “Perl Modules” on page 31
■ “Perl Code Examples” on page 43
■ “Output From the Perl dump Method” on page 47

Extended Accounting Overview

Extended accounting (exacct) is an accounting framework for the Oracle Solaris operating
system that provides additional functionality to that provided by the traditional SVR4
accounting mechanism. Traditional SVR4 accounting has these drawbacks:

■ The data collected by traditional accounting cannot be modified.
The type or quantity of statistics SVR4 accounting gathers cannot be customized for each
application. Changes to the data that traditional accounting collects would not work with all
of the existing applications that use the accounting files.

■ The SVR4 accounting mechanism is not open.
Applications cannot embed their own data in the system accounting data stream.

■ The traditional accounting mechanism has no aggregation facilities.
The Oracle Solaris operating system writes an individual record for each process that
exists. No facilities are provided for grouping sets of accounting records into higher-level
aggregates.

Chapter 4 • Using the Perl Interface to Extended Accounting 29

Perl Interface to libexacct

The exacct framework addresses the limitations of traditional accounting and provides a
configurable, open, and extensible framework for the collection of accounting data.

■ The data that is collected can be configured using the exacct API.
■ Applications can either embed their own data inside the system accounting files, or create

and manipulate their own custom accounting files.
■ The lack of data aggregation facilities in the traditional accounting mechanism are

addressed by tasks and projects. Tasks identify a set of processes that are to be considered as
a unit of work. Projects allow the processes executed by a set of users to be aggregated into
a higher-level entity. See the project(4) man page for more details about tasks and projects.

For a more extensive overview of extended accounting, see Chapter 4, “About Extended
Accounting” in Administering Resource Management in Oracle Solaris 11.3.

Perl Interface to libexacct

Perl Interface Object Model
The Sun::Solaris::Exacct module is the parent of all the classes provided by the
libexacct(3LIB) library. libexacct(3LIB) provides operations on types of entities: exacct
format files, catalog tags, and exacct objects. exacct objects are subdivided into two types.

■ Items – Single data values
■ Groups – Lists of items

Benefits of Using the Perl Interface to libexacct

The Perl extensions to extended accounting provide a Perl interface to the underlying
libexacct(3LIB) API and offer the following enhancements:

■ Full equivalence to the C API that provides a Perl interface that is functionally equivalent to
the underlying C API.

The interface provides a mechanism for accessing exacct files that does not require C
coding. All the functionality that is available from C is also available by using the Perl
interface.

■ Ease of use.
Data obtained from the underlying C API is presented as Perl data types. Perl data types
ease access to the data and remove the need for buffer pack and unpack operations.

30 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN4project-4
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmacct-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmacct-1

Perl Modules

■ Automated memory management.
The C API requires the programmer to take responsibility for managing memory when
accessing exacct files. Memory management involves passing the appropriate flags to
functions, such as ea_unpack_object(3EXACCT), and explicitly allocating buffers to pass
to the API. The Perl API removes these requirements because all memory management is
performed by the Perl library.

■ Prevent incorrect use of API.

The ea_object_t structure provides the in-memory representation of exacct records.
The ea_object_t structure is a union type that is used for manipulating both Group and
Item records. As a result, an incorrectly typed structure can be passed to some of the API
functions. The addition of a class hierarchy prevents this type of programming error.

Perl Double-Typed Scalars

The modules described in this document make extensive use of the Perl double-typed scalar
facility. The double-typed scalar facility allows a scalar value to behave either as an integer or
as a string depending upon the context. This behavior is the same as exhibited by the $! Perl
variable (errno). The double-typed scalar facility avoids the need to map from an integer value
into the corresponding string in order to display a value. The following example illustrates the
use of double-typed scalars.

Assume $obj is a Sun::Solaris::Item

my $type = $obj->type();

prints out "2 EO_ITEM"

printf("%d %s\n", $type, $type);

Behaves as an integer, $i == 2

my $i = 0 + $type;

Behaves as a string, $s = "abc EO_ITEM xyx"

my $s = "abc $type xyz";

Perl Modules

The Perl modules each contain a group of related project, task and exacct-related functions.
Each function has the standard Sun::Solaris:: Perl package prefix.

Chapter 4 • Using the Perl Interface to Extended Accounting 31

Perl Modules

TABLE 5 Perl Modules

Module Description

“Sun::Solaris::Project Module” on page 33 Provides functions to access the
project manipulation functions:
getprojid(2), setproject(3PROJECT),
project_walk(3PROJECT),
getprojent(3PROJECT),
getprojbyname(3PROJECT),
getprojbyid(3PROJECT),
getdefaultproj(3PROJECT),
inproj(3PROJECT),
getprojidbyname(3PROJECT),
setprojent(3PROJECT),
endprojent(3PROJECT),
fgetprojent(3PROJECT).

“Sun::Solaris::Task Module” on page 34 Provides functions to access the task manipulation
functions settaskid(2) and gettaskid(2).

“Sun::Solaris::Exacct Module” on page 35 Top-level exacct module. Functions in this
module access both the exacct-related system
calls getacct(2), putacct(2), and wracct(2) as
well as the libexacct(3LIB) library function
ea_error(3EXACCT). This module contains
constants for all the various exacct EO_*, EW_*,
EXR_*, P_* and TASK_* macros.

“Sun::Solaris::Exacct::Catalog Module” on page 36 Provides object-oriented methods to access the
bitfields within an exacct catalog tag as well as the
EXC_*, EXD_* and EXD_* macros.

“Sun::Solaris::Exacct::File Module” on page 38 Provides object-oriented methods to access the
libexacct(3LIB) accounting file functions:
ea_open(3EXACCT), ea_close(3EXACCT),
ea_get_creator(3EXACCT),
ea_get_hostname(3EXACCT),
ea_next_object(3XACCT),
ea_previous_object(3EXACCT),
ea_write_object(3EXACCT).

“Sun::Solaris::Exacct::Object Module” on page 40 Provides object-oriented methods to access the
individual exacct accounting file object. An
exacct object is represented as an opaque reference
that is blessed into the appropriate Sun::Solaris::
Exacct::Object subclass. This module is further
subdivided into the two types of possible object:
Item and Group. Methods are also provided to
access the ea_match_object_catalog(3EXACCT),
ea_attach_to_object(3EXACCT) functions.

“Sun::Solaris::Exacct::Object::Item
Module” on page 41

Provides object-oriented methods to access an
individual exacct accounting file Item. Objects of
this type inherit from Sun::Solaris::Exacct::
Object.

32 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

Perl Modules

Module Description

“Sun::Solaris::Exacct::Object::Group
Module” on page 42

Provides object-oriented methods to access
an individual exacct accounting file Group.
Objects of this type inherit from Sun::Solaris::
Exacct::Object, and provide access to the
ea_attach_to_group(3EXACCT) function. The
Items contained within the Group are presented as a
perl array.

“Sun::Solaris::Exacct::Object::_Array
Module” on page 43

Private array type, used as the type of the array
within a Sun::Solaris::Exacct::Object::Group.

Sun::Solaris::Project Module
The Sun::Solaris::Project module provides wrappers for the project-related system calls and
the libproject(3LIB) library.

Sun::Solaris::Project Constants

The Sun::Solaris::Project module uses constants from the project-related header files.

MAXPROJID

PROJNAME_MAX

PROJF_PATH

PROJECT_BUFSZ

SETPROJ_ERR_TASK

SETPROJ_ERR_POOL

Sun::Solaris::Project Functions, Class Methods, and Object
Methods

The perl extensions to the libexacct(3LIB) API provide the following functions for projects:

setproject(3PROJECT) fgetprojent(3PROJECT)
setprojent(3PROJECT) getprojbyname(3PROJECT)
getdefaultproj(3PROJECT) getprojbyid(3PROJECT)
inproj(3PROJECT) getprojbyname(3PROJECT)
getprojent(3PROJECT) endprojent(3PROJECT)

The Sun::Solaris::Project module has no class methods.

The Sun::Solaris::Project module has no object methods.

Chapter 4 • Using the Perl Interface to Extended Accounting 33

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hsetproject-3project
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hfgetprojent-3project
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hsetprojent-3project
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hgetprojbyname-3project
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hgetdefaultproj-3project
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hgetprojbyid-3project
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hinproj-3project
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hgetprojbyname-3project
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hgetprojent-3project
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hendprojent-3project

Perl Modules

Sun::Solaris::Project Exports

By default, nothing is exported from this module. You can use the tags listed in the following
table to selectively import the constants and functions defined in this module.

Tag Constant or Function

:SYSCALLS getprojid()

:LIBCALLS setproject(), activeprojects(), getprojent(), setprojent(), endprojent(),
getprojbyname(), getprojbyid(), getdefaultproj(), fgetprojent(), inproj(),
getprojidbyname()

:CONSTANTS MAXPROJID_TASK, PROJNAME_MAX, PROJF_PATH, PROJECT_BUFSZ, SETPROJ_ERR,
SETPROJ_ERR_POOL

:ALL :SYSCALLS, :LIBCALLS, :CONSTANTS

Sun::Solaris::Task Module

The Sun::Solaris::Task module provides wrappers for the settaskid(2) and gettaskid(2)
system calls.

Sun::Solaris::Task Constants

The Sun::Solaris::Task module uses the following constants:

TASK_NORMAL

TASK_FINAL

Sun::Solaris::Task Functions, Class Methods, and Object
Methods

The perl extensions to the libexacct(3LIB) API provides the following functions for tasks:

settaskid(2)
gettaskid(2)

The Sun::Solaris::Task module has no class methods.

The Sun::Solaris::Task module has no object methods.

34 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2settaskid-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2gettaskid-2

Perl Modules

Sun::Solaris::Task Exports

By default, nothing is exported from this module. You can use the tags listed in the following
table to selectively import the constants and functions defined in this module.

Tag Constant or Function

:SYSCALLS settaskid(), gettaskid()

:CONSTANTS TASK_NORMAL and TASK_FINAL

:ALL :SYSCALLS and :CONSTANTS

Sun::Solaris::Exacct Module

The Sun::Solaris::Exacct module provides wrappers for the ea_error(3EXACCT) function
and for all the exacct system calls.

Sun::Solaris::Exacct Constants

The Sun::Solaris::Exacct module provides constants from the various exacct header files.
The P_PID, P_TASKID, P_PROJID and all the EW_*, EP_*, EXR_* macros are extracted during
the module build process. The macros are extracted from the exacct header files under /usr/
include and provided as Perl constants. Constants passed to the Sun::Solaris::Exacct
functions can either be an integer value such as EW_FINAL or a string representation of the same
variable such as “EW_FINAL”.

Sun::Solaris::Exacct Functions, Class Methods, and Object
Methods

The perl extensions to the libexacct(3LIB) API provide the following functions for the Sun::
Solaris::Exacct module.

getacct(2) ea_register_catalog

putacct(2) ea_new_file

wracct(2) ea_new_item

ea_error(3EXACCT) ea_new_group

ea_error_str ea_dump_object

Chapter 4 • Using the Perl Interface to Extended Accounting 35

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2getacct-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2putacct-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2wracct-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-error-3exacct

Perl Modules

Note - ea_error_str() is provided as a convenience, so that repeated blocks of code like the
following can be avoided:

if (ea_error() == EXR_SYSCALL_FAIL) {

 print("error: $!\n");

} else {

 print("error: ", ea_error(), "\n");

}

The Sun::Solaris::Exacct module has no class methods.

The Sun::Solaris::Exacct module has no object methods.

Sun::Solaris::Exacct Exports

By default, nothing is exported from this module. The following tags can be used to selectively
import constants and functions defined in this module.

Tag Constant or Function

:SYSCALLS getacct(), putacct(), wracct()

:LIBCALLS ea_error(), ea_error_str()

:CONSTANTS P_PID, P_TASKID, P_PROJID

, EW_*, EP_*, EXR_*

:SHORTAND ea_register_catalog(), ea_new_catalog(), ea_new_file(), ea_new_item(),
ea_new_group(), ea_dump_object()

:ALL :SYSCALLS, :LIBCALLS, :CONSTANTS and :SHORTHAND

:EXACCT_CONSTANTS :CONSTANTS, plus the :CONSTANTS tags for Sun::Solaris::Catalog, Sun::
Solaris::File, Sun::Solaris::Object

:EXACCT_ALL :ALL, plus the :ALL tags for Sun::Solaris::Catalog, Sun::Solaris::File, Sun::
Solaris::Object

Sun::Solaris::Exacct::Catalog Module

The Sun::Solaris::Exacct::Catalog module provides a wrapper around the 32-bit integer
used as a catalog tag. The catalog tag is represented as a Perl object blessed into the Sun::
Solaris::Exacct::Catalog class. Methods can be used to manipulate fields in a catalog tag.

36 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

Perl Modules

Sun::Solaris::Exacct::Catalog Constants

All the EXT_*, EXC_* and EXD_* macros are extracted during the module build process from
the /usr/include/sys/exact_catalog.h file and are provided as constants. Constants passed
to the Sun::Solaris::Exacct::Catalog methods can either be an integer value, such as
EXT_UINT8, or the string representation of the same variable, such as “EXT_UINT8”.

Sun::Solaris::Exacct::Catalog Functions, Class Methods, and
Object Methods

The Perl extensions to the libexacct(3LIB) API provide the following class methods forSun::
Solaris::Exacct::Catalog. Exacct(3PERL) andExacct::Catalog(3PERL).

register

new

The Perl extensions to the libexacct(3LIB) API provide the following object methods for
Sun::Solaris::Exacct::Catalog.

value type_str

type catalog_str

catalog id_str

id

Sun::Solaris::Exacct::Catalog Exports

By default, nothing is exported from this module. The following tags can be used to selectively
import constants and functions defined in this module.

Tag Constant or Function

:CONSTANTS EXT_*, EXC_* and EXD_*.

:ALL :CONSTANTS

Additionally, any constants defined with the register() function can optionally be exported
into the caller's package.

Chapter 4 • Using the Perl Interface to Extended Accounting 37

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hexacct-3perl
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hexacct--catalog-3perl

Perl Modules

Sun::Solaris::Exacct::File Module

The Sun::Solaris::Exacct::File module provides wrappers for the exacct functions that
manipulate accounting files. The interface is object-oriented, and allows the creation and
reading of exacct files. The C library calls that are wrapped by this module are:

ea_open(3EXACCT) ea_write_object(3EXACCT)
ea_close(3EXACCT) ea_get_object(3EXACCT)
ea_next_object(3EXACCT) ea_get_creator(3EXACCT)
ea_previous_object(3EXACCT) ea_get_hostname(3EXACCT)

The file read and write methods operate on Sun::Solaris::Exacct::Object objects. These
methods perform all the necessary memory management, packing, unpacking and structure
conversions that are required.

Sun::Solaris::Exacct::File Constants

Sun::Solaris::Exacct::File provides the EO_HEAD, EO_TAIL, EO_NO_VALID_HDR,
EO_POSN_MSK and EO_VALIDATE_MSK constants. Other constants that are needed by the new()
method are in the standard Perl Fcntl module. Table 6, “$oflags and $aflags Parameters,” on
page 38 describes the action of new() for various values of $oflags and $aflags.

Sun::Solaris::Exacct::File Functions, Class Methods, and
Object Methods

The Sun::Solaris::Exacct::File module has no functions.

The Perl extensions to the libexacct(3LIB) API provide the following class method forSun::
Solaris::Exacct::File.

new

The following table describes the new() action for combinations of the $oflags and $aflags
parameters.

TABLE 6 $oflags and $aflags Parameters

$oflags $aflags Action

O_RDONLY Absent or EO_HEAD Open for reading at the start of the file.

38 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-open-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-write-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-close-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-get-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-next-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-get-creator-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-previous-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dea-get-hostname-3exacct

Perl Modules

$oflags $aflags Action

O_RDONLY EO_TAIL Open for reading at the end of the file.

O_WRONLY Ignored File must exist, open for writing at the end of the
file.

O_WRONLY | O_CREAT Ignored Create file if the file does not exist. Otherwise,
truncate, and open for writing.

O_RDWR Ignored File must exist, open for reading or writing, at the
end of the file.

O_RDWR | O_CREAT Ignored Create file if the file does not exist. Otherwise,
truncate, and open for reading or writing.

Note - The only valid values for $oflags are the combinations of O_RDONLY, O_WRONLY, O_RDWR
or O_CREAT. $aflags describes the required positioning in the file for O_RDONLY. Either EO_HEAD
or EO_TAIL are allowed. If absent, EO_HEAD is assumed.

The perl extensions to the libexacct(3LIB) API provide the following object methods
forSun::Solaris::Exacct::File.

creator

hostname

next

previous

get

write

Note - Close a Sun::Solaris::Exacct::File. There is no explicit close() method for a
Sun::Solaris::Exacct::File. The file is closed when the filehandle object is undefined or
reassigned.

Sun::Solaris::Exacct::File Exports

By default, nothing is exported from this module. The following tags can be used to selectively
import constants that are defined in this module.

Tag Constant or Function

:CONSTANTS EO_HEAD, EO_TAIL, EO_NO_VALID_HDR, EO_POSN_MSK, EO_VALIDATE_MSK.

:ALL :CONSTANTS and Fcntl(:DEFAULT).

Chapter 4 • Using the Perl Interface to Extended Accounting 39

Perl Modules

Sun::Solaris::Exacct::Object Module

The Sun::Solaris::Exacct::Object module serves as a parent of the two possible types of
exacct objects: Items and Groups. An exacct Item is a single data value, an embedded exacct
object, or a block of raw data. An example of a single data value is the number of seconds of
user CPU time consumed by a process. An exacct Group is an ordered collection of exacct
Items such as all of the resource usage values for a particular process or task. If Groups need to
be nested within each other, the inner Groups can be stored as embedded exacct objects inside
the enclosing Group.

The Sun::Solaris::Exacct::Object module contains methods that are common to both
exacct Items and Groups. Note that the attributes of Sun::Solaris::Exacct::Object and all
classes derived from it are read-only after initial creation via new(). The attributes made read-
only prevents the inadvertent modification of the attributes which could give rise to inconsistent
catalog tags and data values. The only exception to the read-only attributes is the array used to
store the Items inside a Group object. This array can be modified using the normal perl array
operators.

Sun::Solaris::Exacct::Object Constants

Sun::Solaris::Exacct::Object provides the EO_ERROR, EO_NONE, EO_ITEM and EO_GROUP
constants.

Sun::Solaris::Exacct::Object Functions, Class Methods, and
Object Methods

The Sun::Solaris::Exacct::Object module has no functions.

The Perl extensions to the libexacct(3LIB) API provide the following class method forSun::
Solaris::Exacct::Object.

dump

The Perl extensions to the libexacct(3LIB) API provide the following object methods
forSun::Solaris::Exacct::Object.

type

catalog

match_catalog

value

40 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

Perl Modules

Sun::Solaris::Exacct::Object Exports

By default, nothing is exported from this module. The following tags can be used to selectively
import constants and functions defined in this module.

Tag Constant or Function

:CONSTANTS EO_ERROR, EO_NONE, EO_ITEM and EO_GROUP

:ALL :CONSTANTS

Sun::Solaris::Exacct::Object::Item Module

The Sun::Solaris::Exacct::Object::Item module is used for exacct data Items. An exacct
data Item is represented as an opaque reference, blessed into the Sun::Solaris::Exacct::
Object::Item class, which is a subclass of the Sun::Solaris::Exacct::Object class. The
underlying exacct data types are mapped onto Perl types as follows.

TABLE 7 exacct Data Types Mapped to Perl Data Types

exacct type Perl internal type

EXT_UINT8 IV (integer)

EXT_UINT16 IV (integer)

EXT_UINT32 IV (integer)

EXT_UINT64 IV (integer)

EXT_DOUBLE NV (double)

EXT_STRING PV (string)

EXT_EXACCT_OBJECT Sun::Solaris::Exacct::Object subclass

EXT_RAW PV (string)

Sun::Solaris::Exacct::Object::Item Constants

Sun::Solaris::Exacct::Object::Item has no constants.

Sun::Solaris::Exacct::Object::Item Functions, Class Methods,
and Object Methods

Sun::Solaris::Exacct::Object::Item has no functions.

Chapter 4 • Using the Perl Interface to Extended Accounting 41

Perl Modules

Sun::Solaris::Exacct::Object::Item inherits all class methods from the Sun::Solaris::
Exacct::Object base class, plus the new() class method.

new

Sun::Solaris::Exacct::Object::Item inherits all object methods from the Sun::Solaris::
Exacct::Object base class.

Sun::Solaris::Exacct::Object::Item Exports

Sun::Solaris::Exacct::Object::Item has no exports.

Sun::Solaris::Exacct::Object::Group Module
The Sun::Solaris::Exacct::Object::Group module is used for exacct Group objects. An
exacct Group object is represented as an opaque reference, blessed into the Sun::Solaris::
Exacct::Object::Group class, which is a subclass of the Sun::Solaris::Exacct::Object
class. The Items within a Group are stored inside a Perl array, and a reference to the array can
be accessed via the inherited value() method. This means that the individual Items within a
Group can be manipulated with the normal Perl array syntax and operators. All data elements of
the array must be derived from the Sun::Solaris::Exacct::Object class. Group objects can
also be nested inside each other merely by adding an existing Group as a data Item.

Sun::Solaris::Exacct::Object::Group Constants

Sun::Solaris::Exacct::Object::Group has no constants.

Sun::Solaris::Exacct::Object::Group Functions, Class
Methods, and Object Methods

Sun::Solaris::Exacct::Object::Group has no functions.

Sun::Solaris::Exacct::Object::Group inherits all class methods from the Sun::Solaris::
Exacct::Object base class, plus the new() class method.

new

Sun::Solaris::Exacct::Object::Group inherits all object methods from the Sun::Solaris::
Exacct::Object base class, plus the new() class method.

42 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

Perl Code Examples

as_hash

as_hashlist

Sun::Solaris::Exacct::Object::Group Exports

Sun::Solaris::Exacct::Object::Group has no exports.

Sun::Solaris::Exacct::Object::_Array Module

The Sun::Solaris::Exacct::Object::_Array class is used internally for enforcing type
checking of the data Items that are placed in an exacct Group. Sun::Solaris::Exacct::
Object::_Array should not be created directly by the user.

Sun::Solaris::Exacct::Object::_Array Constants

Sun::Solaris::Exacct::Object::_Array has no constants.

Sun::Solaris::Exacct::Object::_Array Functions, Class
Methods, and Object Methods

Sun::Solaris::Exacct::Object::_Array has no functions.

Sun::Solaris::Exacct::Object::_Array has internal-use class methods.

Sun::Solaris::Exacct::Object::_Array uses perl TIEARRAY methods.

Sun::Solaris::Exacct::Object::_Array Exports

Sun::Solaris::Exacct::Object::_Array has no exports.

Perl Code Examples

This section shows perl code examples for accessing exacct files.

Chapter 4 • Using the Perl Interface to Extended Accounting 43

Perl Code Examples

EXAMPLE 6 Using the Pseudocode Prototype

In typical use the Perl exacct library reads existing exacct files. Use pseudocode to show the
relationships of the various Perl exacct classes. Illustrate in pseudocode the process of opening
and scanning an exacct file, and processing objects of interest. In the following pseudocode,
the ‘convenience’ functions are used in the interest of clarity.

-- Open the exacct file ($f is a Sun::Solaris::Exacct::File)

my $f = ea_new_file(...)

-- While not EOF ($o is a Sun::Solaris::Exacct::Object)

while (my $o = $f->get())

 -- Check to see if object is of interest

 if ($o->type() == &EO_ITEM)

 ...

 -- Retrieve the catalog ($c is a Sun::Solaris::Exacct::Catalog)

 $c = $o->catalog()

 -- Retrieve the value

 $v = $o->value();

 -- $v is a reference to a Sun::Solaris::Exacct::Group for a Group

 if (ref($v))

 -- $v is perl scalar for Items

 else

EXAMPLE 7 Recursively dumping an exacct Object

sub dump_object

{

 my ($obj, $indent) = @_;

 my $istr = ' ' x $indent;

 #

 # Retrieve the catalog tag. Because we are doing this in an array

 # context, the catalog tag will be returned as a (type, catalog, id)

 # triplet, where each member of the triplet will behave as an integer

 # or a string, depending on context. If instead this next line provided

 # a scalar context, e.g.

 # my $cat = $obj->catalog()->value();

 # then $cat would be set to the integer value of the catalog tag.

 #

44 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

Perl Code Examples

 my @cat = $obj->catalog()->value();

 #

 # If the object is a plain item

 #

 if ($obj->type() == &EO_ITEM) {

 #

 # Note: The '%s' formats provide s string context, so the

 # components of the catalog tag will be displayed as the

 # symbolic values. If we changed the '%s' formats to '%d',

 # the numeric value of the components would be displayed.

 #

 printf("%sITEM\n%s Catalog = %s|%s|%s\n",

 $istr, $istr, @cat);

 $indent++;

 #

 # Retrieve the value of the item. If the item contains in

 # turn a nested exacct object (i.e. a item or group), then

 # the value method will return a reference to the appropriate

 # sort of perl object (Exacct::Object::Item or

 # Exacct::Object::Group). We could of course figure out that

 # the item contained a nested item or group by examining

 # the catalog tag in @cat and looking for a type of

 # EXT_EXACCT_OBJECT or EXT_GROUP.

 my $val = $obj->value();

 if (ref($val)) {

 # If it is a nested object, recurse to dump it.

 dump_object($val, $indent);

 } else {

 # Otherwise it is just a 'plain' value, so display it.

 printf("%s Value = %s\n", $istr, $val);

 }

 #

 # Otherwise we know we are dealing with a group. Groups represent

 # contents as a perl list or array (depending on context), so we

 # can process the contents of the group with a 'foreach' loop, which

 # provides a list context. In a list context the value method

 # returns the content of the group as a perl list, which is the

 # quickest mechanism, but doesn't allow the group to be modified.

 # If we wanted to modify the contents of the group we could do so

 # like this:

 # my $grp = $obj->value(); # Returns an array reference

 # $grp->[0] = $newitem;

 # but accessing the group elements this way is much slower.

 #

 } else {

Chapter 4 • Using the Perl Interface to Extended Accounting 45

Perl Code Examples

 printf("%sGROUP\n%s Catalog = %s|%s|%s\n",

 $istr, $istr, @cat);

 $indent++;

 # 'foreach' provides a list context.

 foreach my $val ($obj->value()) {

 dump_object($val, $indent);

 }

 printf("%sENDGROUP\n", $istr);

 }

}

EXAMPLE 8 Creating a New Group Record and Writing to a File

Prototype list of catalog tags and values.

my @items = (

 [&EXT_STRING | &EXC_DEFAULT | &EXD_CREATOR => "me"],

 [&EXT_UINT32 | &EXC_DEFAULT | &EXD_PROC_PID => $$],

 [&EXT_UINT32 | &EXC_DEFAULT | &EXD_PROC_UID => $<],

 [&EXT_UINT32 | &EXC_DEFAULT | &EXD_PROC_GID => $(],

 [&EXT_STRING | &EXC_DEFAULT | &EXD_PROC_COMMAND => "/bin/stuff"],

);

Create a new group catalog object.

my $cat = new_catalog(&EXT_GROUP | &EXC_DEFAULT | &EXD_NONE);

Create a new Group object and retrieve its data array.

my $group = new_group($cat);

my $ary = $group->value();

Push the new Items onto the Group array.

foreach my $v (@items) {

 push(@$ary, new_item(new_catalog($v->[0]), $v->[1]));

}

Nest the group within itself (performs a deep copy).

push(@$ary, $group);

Dump out the group.

dump_object($group);

EXAMPLE 9 Dumping an exacct File

#!/usr/bin/perl

use strict;

46 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

Output From the Perl dump Method

use warnings;

use blib;

use Sun::Solaris::Exacct qw(:EXACCT_ALL);

die("Usage is dumpexacct

Open the exact file and display the header information.

my $ef = ea_new_file($ARGV[0], &O_RDONLY) || die(error_str());

printf("Creator: %s\n", $ef->creator());

printf("Hostname: %s\n\n", $ef->hostname());

Dump the file contents

while (my $obj = $ef->get()) {

 ea_dump_object($obj);

}

Report any errors

if (ea_error() != EXR_OK && ea_error() != EXR_EOF) {

 printf("\nERROR: %s\n", ea_error_str());

 exit(1);

}

exit(0);

Output From the Perl dump Method
This example shows the formatted output of the Sun::Solaris::Exacct::Object->dump()
method.

GROUP

 Catalog = EXT_GROUP|EXC_DEFAULT|EXD_GROUP_PROC_PARTIAL

 ITEM

 Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_PID

 Value = 3

 ITEM

 Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_UID

 Value = 0

 ITEM

 Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_GID

 Value = 0

 ITEM

 Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_PROJID

 Value = 0

 ITEM

 Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_TASKID

 Value = 0

 ITEM

Chapter 4 • Using the Perl Interface to Extended Accounting 47

Output From the Perl dump Method

 Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_CPU_USER_SEC

 Value = 0

 ITEM

 Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_CPU_USER_NSEC

 Value = 0

 ITEM

 Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_CPU_SYS_SEC

 Value = 890

 ITEM

 Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_CPU_SYS_NSEC

 Value = 760000000

 ITEM

 Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_START_SEC

 Value = 1011869897

 ITEM

 Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_START_NSEC

 Value = 380771911

 ITEM

 Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_FINISH_SEC

 Value = 0

 ITEM

 Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_FINISH_NSEC

 Value = 0

 ITEM

 Catalog = EXT_STRING|EXC_DEFAULT|EXD_PROC_COMMAND

 Value = fsflush

 ITEM

 Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_TTY_MAJOR

 Value = 4294967295

 ITEM

 Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_TTY_MINOR

 Value = 4294967295

 ITEM

 Catalog = EXT_STRING|EXC_DEFAULT|EXD_PROC_HOSTNAME

 Value = mower

 ITEM

 Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_FAULTS_MAJOR

 Value = 0

 ITEM

 Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_FAULTS_MINOR

 Value = 0

 ITEM

 Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_MESSAGES_SND

 Value = 0

 ITEM

 Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_MESSAGES_RCV

 Value = 0

 ITEM

48 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

Output From the Perl dump Method

 Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_BLOCKS_IN

 Value = 19

 ITEM

 Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_BLOCKS_OUT

 Value = 40833

 ITEM

 Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_CHARS_RDWR

 Value = 0

 ITEM

 Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_CONTEXT_VOL

 Value = 129747

 ITEM

 Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_CONTEXT_INV

 Value = 79

 ITEM

 Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_SIGNALS

 Value = 0

 ITEM

 Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_SYSCALLS

 Value = 0

 ITEM

 Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_ACCT_FLAGS

 Value = 1

 ITEM

 Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_ANCPID

 Value = 0

 ITEM

 Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_WAIT_STATUS

 Value = 0

ENDGROUP

Chapter 4 • Using the Perl Interface to Extended Accounting 49

50 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

 5 ♦ ♦ ♦ C H A P T E R 5

Resource Controls in Oracle Solaris

This chapter describes resource controls and their properties.

■ “Overview of Resource Controls” on page 51
■ “Resource Controls Flags and Actions” on page 52
■ “Resource Controls API Functions” on page 63
■ “Resource Control Code Examples” on page 64
■ “Programming Issues Associated With Resource Controls” on page 69

Overview of Resource Controls

Use the extended accounting facility to determine the resource consumption of workloads on
your system. After the resource consumption has been determined, use the resource control
facility to place bounds on resource usage. Bounds that are placed on resources prevent
workloads from over-consuming resources.

For an overview of resource controls and example commands for administering resource
controls, see Chapter 6, “About Resource Controls” in Administering Resource Management in
Oracle Solaris 11.3 and Chapter 7, “Administering Resource Controls Tasks” in Administering
Resource Management in Oracle Solaris 11.3.
The resource control facility adds the following benefits.

■ Dynamically set

Resource controls can be adjusted while the system is running.
■ Containment level granularity

Resource controls are arranged in a containment level of zone, project, task, or process. The
containment level simplifies the configuration and aligns the collected values closer to the
particular zone, project, task, or process.

Chapter 5 • Resource Controls in Oracle Solaris 51

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmctrls-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmctrls-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmctrls.task-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmctrls.task-1

Resource Controls Flags and Actions

Resource Controls Flags and Actions

This section describes flags, actions, and signals associated with resource controls.

rlimit, Resource Limit

rlimit is process-based. rlimit establishes a restricting boundary on the consumption of a
variety of system resources by a process. Each process that the process creates inherits from the
original process. A resource limit is defined by a pair of values. The values specify the current
(soft) limit and the maximum (hard) limit.

A process might irreversibly lower its hard limit to any value that is greater than or equal
to the soft limit. Only a process with root ID can raise the hard limit. See setrlimit() and
getrlimit().

The rlimit structure contains two members that define the soft limit and hard limit.

rlim_t rlim_cur; /* current (soft) limit */

rlim_t rlim_max /* hard limit */

rctl, Resource Control

rctl extends the process-based limits of rlimit by controlling resource consumption by
processes, tasks, and projects defined in the project database.

Note - The rctl mechanism is preferred to the use of rlimit to set resource limits. The only
reason to use the rlimit facility is when portability is required across UNIX platforms.

Applications fall into the following broad categories depending on how an application deals
with resource controls. Based on the action that is taken, resource controls can be further
classified. Most report an error and terminate operation. Other resource controls allow
applications to resume operation and adapt to the reduced resource usage. A progressive chain
of actions at increasing values can be specified for each resource control.

The list of attributes for a resource control consists of a privilege level, a threshold value, and
an action that is taken when the threshold is exceeded.

52 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

Resource Controls Flags and Actions

Resource Control Values and Privilege Levels
Each threshold value on a resource control must be associated with one of the following
privilege levels:

RCPRIV_BASIC

Privilege level can be modified by the owner of the calling process. RCPRIV_BASIC is
associated with a resource's soft limit.

RCPRIV_PRIVILEGED

Privilege level can be modified only by privileged (root) callers. RCPRIV_PRIVILEGED
is associated with a resource's hard limit.

setrctl(2) will only succeed when called as a privileged user in the global zone. Inside a
non-global zone, root cannot set zone-wide controls.

RCPRIV_SYSTEM

Privilege level remains fixed for the duration of the operating system instance.

Figure 4, “Setting Privilege Levels for Signals,” on page 63 shows the timeline for setting
privilege levels for signals that are defined by the /etc/project file process.max-cpu-time
resource control.

Local Actions and Local Flags

The local action and local flags are applied to the current resource control value represented
by this resource control block. Local actions and local flags are value-specific. For each
threshold value that is placed on a resource control, the following local actions and local flags
are available:

RCTL_LOCAL_NOACTION

No local action is taken when this resource control value is exceeded.

RCTL_LOCAL_SIGNAL

The specified signal, set by rctlblk_set_local_action(), is sent to the process that
placed this resource control value in the value sequence.

RCTL_LOCAL_DENY

When this resource control value is encountered, the request for the resource is denied. Set
on all values if RCTL_GLOBAL_DENY_ALWAYS is set for this control. Cleared on all
values if RCTL_GLOBAL_DENY_NEVER is set for this control.

Chapter 5 • Resource Controls in Oracle Solaris 53

Resource Controls Flags and Actions

RCTL_LOCAL_MAXIMAL

This resource control value represents a request for the maximum amount of resource
for this control. If RCTL_GLOBAL_INFINITE is set for this resource control,
RCTL_LOCAL_MAXIMAL indicates an unlimited resource control value that is never
exceeded.

Global Actions and Global Flags

Global flags apply to all current resource control values represented by this resource control
block. Global actions and global flags are set by rctladm(1M). Global actions and global flags
cannot be set with setrctl(). Global flags apply to all resource controls. For each threshold
value that is placed on a resource control, the following global actions and global flags are
available:

RCTL_GLOBAL_NOACTION

No global action is taken when a resource control value is exceeded on this control.

RCTL_GLOBAL_SYSLOG

A standard message is logged by the syslog() facility when any resource control value on
a sequence associated with this control is exceeded.

RCTL_GLOBAL_SECONDS

Defines the unit string of the limit value as seconds.

RCTL_GLOBAL_COUNT

Defines the unit string of the limit value as count.

RCTL_GLOBAL_BYTES

Defines the unit string of the limit value as bytes.

RCTL_GLOBAL_SYSLOG_NEVER

Flag means that RCTL_GLOBAL_SYSLOG cannot be set for this resource control through
rctladm(1M).

RCTL_GLOBAL_NOBASIC

No values with the RCPRIV_BASIC privilege are permitted on this control.

RCTL_GLOBAL_LOWERABLE

Non-privileged callers are able to lower the value of privileged resource control values on
this control.

54 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mrctladm-1m

Resource Controls Flags and Actions

RCTL_GLOBAL_DENY_ALWAYS

The action that is taken when a control value is exceeded on this control always includes
denial of the resource.

RCTL_GLOBAL_DENY_NEVER

The action that is taken when a control value is exceeded on this control always excludes
denial of the resource. The resource is always granted, although other actions can also be
taken.

RCTL_GLOBAL_FILE_SIZE

The valid signals for local actions include the SIGXFSZ signal.

RCTL_GLOBAL_CPU_TIME

The valid signals for local actions include the SIGXCPU signal.

RCTL_GLOBAL_SIGNAL_NEVER

No local actions are permitted on this control. The resource is always granted.

RCTL_GLOBAL_INFINITE

This resource control supports the concept of an unlimited value. Generally, an unlimited
value applies only to accumulation-oriented resources, such as CPU time.

RCTL_GLOBAL_UNOBSERVABLE

Generally, a task or project related resource control does not support observational control
values. An RCPRIV_BASIC privileged control value placed on a task or process generates
an action only if the value is exceeded by the process that placed the value.

Resource Control Sets Associated With a Zone,
Project, Processes, and Tasks

The following figure shows the resource control sets associated with zones, tasks, processes and
a project.

Chapter 5 • Resource Controls in Oracle Solaris 55

Resource Controls Flags and Actions

FIGURE 3 Resource Control Sets for Zone, Task, Project, and Process

More than one resource control can exist on a resource, each resource control at a containment
level in the process model. Resource controls can be active on the same resource for both a

56 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

Resource Controls Flags and Actions

process and collective task or collective project. In this case, the action for the process takes
precedence. For example, action is taken on process.max-cpu-time before task.max-cpu-
time if both controls are encountered simultaneously.

Resource Controls Associated With a Project

Resource controls associated with a project include the following:

project.cpu-cap

Absolute limit on the amount of CPU resources that can be consumed by a project. A value
of 100 means 100 percent of one CPU as the project.cpu-cap setting. A value of 125 is
125 percent, because 100 percent corresponds to one full CPU on the system when using
CPU caps.

project.cpu-shares

The number of CPU shares that are granted to this project for use with the fair share
scheduler, FSS.

project.max-crypto-memory

Total amount of kernel memory that can be used by libpkcs11 for hardware crypto
acceleration. Allocations for kernel buffers and session-related structures are charged
against this resource control.

project.max-locked-memory

Total amount of physical locked memory allowed.

Note that this resource control replaced project.max-device-locked-memory, which has
been removed.

project.max-msg-ids

Maximum number of System V message queues allowed for a project.

project.max-port-ids

Maximum allowable number of event ports.

project.max-processes

Maximum number of process table slots simultaneously available to this project.

Note - Both normal processes and zombie processes take up process table slots. The max-
processes resource control thus protects against zombie processes exhausting the process table.
Note that max-lwps cannot protect against zombie processes exhausting the process table since
zombie processes do not have any LWPs by definition.

Chapter 5 • Resource Controls in Oracle Solaris 57

Resource Controls Flags and Actions

project.max-sem-ids

Maximum number of semaphore IDs allowed for a project.

project.max-shm-ids

Maximum number of shared memory IDs allowed for this project.

project.max-msg-ids

Maximum number of message queue IDs allowed for this project.

project.max-shm-memory

Total amount of System V shared memory allowed for this project.

project.max-lwps

Maximum number of LWPs simultaneously available to this project.

project.max-tasks

Maximum number of tasks allowable in this project.

project.max-contracts

Maximum number of contracts allowed in this project.

Resource Controls Associated With Tasks

Resource controls associated with tasks include the following:

task.max-cpu-time

Maximum CPU time (seconds) available to this task's processes.

task.max-lwps

Maximum number of LWPs simultaneously available to this task's processes.

task.max-processes

Maximum number of process table slots simultaneously available to this task's processes.

Note - Both normal processes and zombie processes take up process table slots. The max-
processes resource control thus protects against zombie processes exhausting the process table.
Note that max-lwps cannot protect against zombie processes exhausting the process table since
zombie processes do not have any LWPs by definition.

58 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

Resource Controls Flags and Actions

Resource Controls Associated With Processes

Resource controls associated with processes include the following:

process.max-address-space

Maximum amount of address space (bytes), as summed over segment sizes, available to
this process.

process.max-core-size

Maximum size (bytes) of a core file that is created by this process.

process.max-cpu-time

Maximum CPU time (seconds) available to this process.

process.max-file-descriptor

Maximum file descriptor index that is available to this process.

process.max-file-size

Maximum file offset (bytes) available for writing by this process.

process.max-msg-messages

Maximum number of messages on a message queue. This value is copied from the resource
control at msgget() time.

process.max-msg-qbytes

Maximum number (bytes) of messages on a message queue. This value is copied from the
resource control at msgget() time. When you set a new project.max-msg-qbytes value,
initialization occurs only on the subsequently created values. The new project.max-msg-
qbytes value does not effect existing values.

process.max-sem-nsems

Maximum number of semaphores allowed for a semaphore set.

process.max-sem-ops

Maximum number of semaphore operations that are allowed for a semop() call. This value
is copied from the resource control at msgget() time.A new project.max-sem-ops value
only affects the initialization of subsequently created values and has no effect on existing
values.

process.max-port-events

Maximum number of events that are allowed per event port.

Chapter 5 • Resource Controls in Oracle Solaris 59

Resource Controls Flags and Actions

Zone-Wide Resource Controls

Zone-wide resource controls are available on a system with zones installed. Zone-wide resource
controls limit the total resource usage of all process entities within a zone.

zone.cpu-cap

Absolute limit on the amount of CPU resources that can be consumed by a non-global
zone. A value of 100 means 100 percent of one CPU as the project.cpu-cap setting.
A value of 125 is 125 percent, because 100 percent corresponds to one full CPU on the
system when using CPU caps.

zone.cpu-shares

Limit on the number of fair share scheduler (FSS) CPU shares for a zone. The scheduling
class must be FSS. CPU shares are first allocated to the zone, and then further subdivided
among projects within the zone as specified in the project.cpu-shares entries. A zone
with a higher number of zone.cpu-shares is allowed to use more CPU than a zone with a
low number of shares.

zone.max-locked-memory

Total amount of physical locked memory available to a zone.

zone.max-lofi

Maximum number of lofi devices that can be created by a zone.

zone.max-lwps

Maximum number of LWPs simultaneously available to this zone

zone.max-msg-ids

Maximum number of message queue IDs allowed for this zone

zone.max-processes

Maximum number of process table slots simultaneously available to this zone

60 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

Resource Controls Flags and Actions

Note - The zone.max-processes resource control enhances resource isolation by preventing a
zone from using too many process table slots and thus affecting other zones. The allocation of
the process table slots resource across projects within the zone can be controlled by using the
project.max-processes resource control. The global property name for this control is max-
processes. The zone.max-processes resource control can also encompass the zone.max-lwps
resource control. If zone.max-processes is set and zone.max-lwps is not set, then zone.max-
lwps is implicitly set to 10 times the zone.max-processes when the zone is booted.

Both normal processes and zombie processes take up process table slots. The max-processes
resource control thus protects against zombie processes exhausting the process table. Note that
max-lwps cannot protect against zombie processes exhausting the process table since zombie
processes do not have any LWPs by definition.

zone.max-sem-ids

Maximum number of semaphore IDs allowed for this zone

zone.max-shm-ids

Maximum number of shared memory IDs allowed for this zone

zone.max-shm-memory

Total amount of shared memory allowed for this zone

zone.max-swap

Total amount of swap that can be consumed by user process address space mappings and
tmpfs mounts for this zone.

For more information, see “Zone-Wide Resource Controls” in Administering Resource
Management in Oracle Solaris 11.3.

For information on configuring zone-wide resource controls, see Chapter 1, “Configuration
Resources for Non-Global Zones” in Oracle Solaris Zones Configuration Resources and
Chapter 1, “How to Plan and Configure Non-Global Zones” in Creating and Using Oracle
Solaris Zones.

Note that it is possible to use the zonecfg command to apply a zone-wide resource control
to the global zone on a system with non-global zones installed. Also note that the setctrl
command will only succeed when called as a privileged user in the global zone. Inside a non-
global zone, root cannot set zone-wide resource controls.

Chapter 5 • Resource Controls in Oracle Solaris 61

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMgbrcy
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMgbrcy
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZCRz.config.ov-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZCRz.config.ov-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZSOz.conf.start-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZSOz.conf.start-1

Resource Controls Flags and Actions

Signals Used With Resource Controls

For each threshold value that is placed on a resource control, the following restricted set of
signals is available:

SIGBART

Terminate the process.

SIGXRES

Signal generated by resource control facility when the resource control limit is exceeded.

SIGHUP

When carrier drops on an open line, the process group that controls the terminal is sent a
hangup signal, SIGHUP.

SIGSTOP

Job control signal. Stop the process. Stop signal not from terminal.

SIGTERM

Terminate the process. Termination signal sent by software.

SIGKILL

Terminate the process. Kill the program.

SIGXFSX

Terminate the process. File size limit exceeded. Available only to resource controls with the
RCTL_GLOBAL_FILE_SIZE property.

SIGXCPU

Terminate the process. CPU time limit exceeded. Available only to resource controls with
the RCTL_GLOBAL_CPUTIME property.

Other signals might be permitted due to global properties of a specific control.

Note - Calls to setrctl() with illegal signals fail.

62 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

Resource Controls API Functions

FIGURE 4 Setting Privilege Levels for Signals

Resource Controls API Functions

The resource controls API contains functions that:

■ “Operate on Action-Value Pairs of a Resource Control” on page 63
■ “Operate on Local Modifiable Values” on page 64
■ “Retrieve Local Read-Only Values” on page 64
■ “Retrieve Global Read-Only Actions” on page 64

Operate on Action-Value Pairs of a Resource
Control

The following list contains the functions that set or get the resource control block.

setrctl(2)
getrctl(2)

Chapter 5 • Resource Controls in Oracle Solaris 63

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2setrctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2getrctl-2

Resource Control Code Examples

Operate on Local Modifiable Values

The following list contains the functions associated with the local, modifiable resource control
block.

rctlblk_set_privilege(3C) rctlblk_set_local_action(3C)
rctlblk_get_privilege(3C) rctlblk_get_local_action(3C)
rctlblk_set_value(3C) rctlblk_set_local_flags(3C)
rctlblk_get_value(3C) rctlblk_get_local_flags(3C)

Retrieve Local Read-Only Values

The following list contains the functions associated with the local, read-only resource control
block.

rctlblk_get_recipient_pid(3C)
rctlblk_get_firing_time(3C)
rctlblk_get_enforced_value(3C)

Retrieve Global Read-Only Actions

The following list contains the functions associated with the global, read-only resource control
block.

rctlblk_get_global_action(3C)
rctlblk_get_global_flags(3C)

Resource Control Code Examples

Master Observing Process for Resource Controls

The following example is the master observer process. Figure 5, “Master Observing Process,”
on page 65 shows the resource controls for the master observing process.

64 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Arctlblk-set-privilege-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Arctlblk-set-local-action-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Arctlblk-get-privilege-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Arctlblk-get-local-action-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Arctlblk-set-value-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Arctlblk-set-local-flags-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Arctlblk-get-value-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Arctlblk-get-local-flags-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Arctlblk-get-recipient-pid-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Arctlblk-get-firing-time-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Arctlblk-get-enforced-value-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Arctlblk-get-global-action-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Arctlblk-get-global-flags-3c

Resource Control Code Examples

Note - The line break is not valid in an /etc/project file. The line break is shown here only to
allow the example to display on a printed or displayed page. Each entry in the /etc/project
file must be on a separate line.

FIGURE 5 Master Observing Process

The key points for the example include the following:

■ Because the task's limit is privileged, the application cannot change the limit, or specify
an action, such as a signal. A master process solves this problem by establishing the same
resource control as a basic resource control on the task. The master process uses the same
value or a little less on the resource, but with a different action, signal = XRES. The master
process creates a thread to wait for this signal.

■ The rctlblk is opaque. The struct needs to be dynamically allocated.
■ Note the blocking of all signals before creating the thread, as required by sigwait(2).
■ The thread calls sigwait(2) to block for the signal. If sigwait() returns the SIGXRES

signal, the thread notifies the master process' children, which adapts to reduce the number of
LWPs being used. Each child should also be modelled similarly, with a thread in each child,
waiting for this signal, and adapting its process' LWP usage appropriately.

rctlblk_t *mlwprcb;

sigset_t smask;

Chapter 5 • Resource Controls in Oracle Solaris 65

Resource Control Code Examples

/* Omit return value checking/error processing to keep code sample short */

/* First, install a RCPRIV_BASIC, v=1000, signal=SIGXRES rctl */

mlwprcb = calloc(1, rctlblk_size()); /* rctl blocks are opaque: */

 rctlblk_set_value(mlwprcb, 1000);

 rctlblk_set_privilege(mlwprcb, RCPRIV_BASIC);

 rctlblk_set_local_action(mlwprcb, RCTL_LOCAL_SIGNAL, SIGXRES);

 if (setrctl("task.max-lwps", NULL, mlwprcb, RCTL_INSERT) == -1) {

 perror("setrctl");

 exit (1);

 }

/* Now, create the thread which waits for the signal */

 sigemptyset(&smask);

 sigaddset(&smask, SIGXRES);

 thr_sigsetmask(SIG_BLOCK, &smask, NULL);

thr_create(NULL, 0, sigthread, (void *)SIGXRES, THR_DETACHED, NULL));

/* Omit return value checking/error processing to keep code sample short */

void *sigthread(void *a)

{

 int sig = (int)a;

 int rsig;

 sigset_t sset;

 sigemptyset(&sset);

 sigaddset(&sset, sig);

 while (1) {

 rsig = sigwait(&sset);

 if (rsig == SIGXRES) {

 notify_all_children();

 /* e.g. sigsend(P_PID, child_pid, SIGXRES); */

 }

 }

}

List all the Value-Action Pairs for a Specific
Resource Control

The following example lists all the value-action pairs for a specific resource control, task.max-
lwps. The key point for the example is that getrctl(2) takes two resource control blocks, and
returns the resource control block for the RCTL_NEXT flag. To iterate through all resource

66 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

Resource Control Code Examples

control blocks, repeatedly swap the resource control block values, as shown here using the
rcb_tmp rctl block.

rctlblk_t *rcb1, *rcb2, *rcb_tmp;

 ...

/* Omit return value checking/error processing to keep code sample short */

rcb1 = calloc(1, rctlblk_size()); /* rctl blocks are opaque: */

 /* "rctlblk_t rcb" does not work */

rcb2 = calloc(1, rctlblk_size());

getrctl("task.max-lwps", NULL, rcb1, RCTL_FIRST);

while (1) {

 print_rctl(rcb1);

 rcb_tmp = rcb2;

 rcb2 = rcb1;

 rcb1 = rcb_tmp; /* swap rcb1 with rcb2 */

 if (getrctl("task.max-lwps", rcb2, rcb1, RCTL_NEXT) == -1) {

 if (errno == ENOENT) {

 break;

 } else {

 perror("getrctl");

 exit (1);

 }

 }

}

Set project.cpu-shares and Add a New Value

The key points of the example include the following:

■ This example is similar to the example shown in “Set pool.comment Property and Add New
Property” on page 85.

■ Use bcopy(), rather than buffer swapping as in “List all the Value-Action Pairs for a
Specific Resource Control” on page 66.

■ To change the resource control value, call setrctl() with the RCTL_REPLACE flag. The
new resource control block is identical to the old resource control block except for the new
control value.

rctlblk_set_value(blk1, nshares);

if (setrctl("project.cpu-shares", blk2, blk1, RCTL_REPLACE) != 0)

The example gets the project's CPU share allocation, project.cpu-shares, and changes its
value to nshares.

/* Omit return value checking/error processing to keep code sample short */

Chapter 5 • Resource Controls in Oracle Solaris 67

Resource Control Code Examples

blk1 = malloc(rctlblk_size());

getrctl("project.cpu-shares", NULL, blk1, RCTL_FIRST);

my_shares = rctlblk_get_value(blk1);

printout_my_shares(my_shares);

/* if privileged, do the following to */

/* change project.cpu-shares to "nshares" */

blk1 = malloc(rctlblk_size());

blk2 = malloc(rctlblk_size());

if (getrctl("project.cpu-shares", NULL, blk1, RCTL_FIRST) != 0) {

 perror("getrctl failed");

 exit(1);

}

bcopy(blk1, blk2, rctlblk_size());

rctlblk_set_value(blk1, nshares);

if (setrctl("project.cpu-shares", blk2, blk1, RCTL_REPLACE) != 0) {

 perror("setrctl failed");

 exit(1);

}

Set LWP Limit Using Resource Control Blocks

In the following example, an application has set a privileged limit of 3000 LWPs that may not
be exceeded. In addition, the application has set a basic limit of 2000 LWPs. When this limit is
exceeded, a SIGXRES is sent to the application. Upon receiving a SIGXRES, the application
might send notification to its child processes that might in turn reduce the number of LWPs the
processes use or need.

/* Omit return value and error checking */

#include <rctl.h>

rctlblk_t *rcb1, *rcb2;

/*

 * Resource control blocks are opaque

 * and must be explicitly allocated.

 */

rcb1 = calloc(rctlblk_size());

rcb2 = calloc(rctlblk_size());

/* Install an RCPRIV_PRIVILEGED, v=3000: do not allow more than 3000 LWPs */

rctlblk_set_value(rcb1, 3000);

rctlblk_set_privilege(rcb1, RCPRIV_PRIVILEGED);

rctlblk_set_local_action(rcb1, RCTL_LOCAL_DENY);

68 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

Programming Issues Associated With Resource Controls

setrctl("task.max-lwps", NULL, rcb1, RCTL_INSERT);

/* Install an RCPRIV_BASIC, v=2000 to send SIGXRES when LWPs exceeds 2000 */

rctlblk_set_value(rcb2, 2000);

rctlblk_set_privilege(rcb2, RCPRIV_BASIC);

rctlblk_set_local_action(rcb2, RCTL_LOCAL_SIGNAL, SIGXRES);

setrctl("task.max-lwps", NULL, rcb2, RCTL_INSERT);

Programming Issues Associated With Resource Controls

Consider the following issues when writing your application:

■ The resource control block is opaque. The control block needs to be dynamically allocated.
■ If a basic resource control is established on a task or project, the process that establishes this

resource control becomes an observer. The action for this resource control block is applied
to the observer. However, some resources cannot be observed in this manner.

■ If a privileged resource control is set on a task or project, no observer process exists.
However, any process that violates the limit becomes the subject of the resource control
action.

■ Only one action is permitted for each type: global and local.
■ Only one basic rctl is allowed per process per resource control.

zonestat Utility for Monitoring Zones Resource Usage

The zonestat utility reports on the CPU, memory, and resource control utilization of the
currently running zones. Each zone's utilization is reported as a percentage of both system
resources and the zone's configured limits. For more information, see Chapter 7, “Design
Considerations for Resource Management Applications in Oracle Solaris Zones”, the
zonestat(1) man page, and “Reporting Active Zone Statistics with the zonestat Utility” in
Creating and Using Oracle Solaris Zones.

Chapter 5 • Resource Controls in Oracle Solaris 69

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1zonestat-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZSOgklbv
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZSOgklbv

70 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

 6 ♦ ♦ ♦ C H A P T E R 6

Resource Pools in Oracle Solaris

This chapter describes resource pools and their properties.

■ “Overview of Resource Pools” on page 71
■ “Dynamic Resource Pool Constraints and Objectives” on page 72
■ “Resource Pools API Functions” on page 77
■ “Resource Pool Code Examples” on page 83
■ “Programming Issues Associated With Resource Pools” on page 86

Overview of Resource Pools

Resource pools provide a framework for managing processor sets and thread scheduling
classes. Resource pools are used for partitioning system resources. Resource pools enable you
to separate workloads so that workload consumption of certain resources does not overlap.
The resource reservation helps to achieve predictable performance on systems with mixed
workloads.

For an overview of resource pools and example commands for administering resource
pools, see Chapter 12, “About Resource Pools” in Administering Resource Management in
Oracle Solaris 11.3 and Chapter 13, “Creating and Administering Resource Pools Tasks” in
Administering Resource Management in Oracle Solaris 11.3.

A processor set groups the CPUs on a system into a bounded entity, on which a process or
processes can run exclusively. Processes cannot extend beyond the processor set, nor can other
processes extend into the processor set. A processor set enables tasks of similar characteristics
to be grouped together and a hard upper boundary for CPU use to be set.

The resource pool framework allows the definition of a soft processor set with a maximum
and minimum CPU count requirement. Additionally, the framework provides a hard-defined
scheduling class for that processor set.

Chapter 6 • Resource Pools in Oracle Solaris 71

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmpool-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmpool-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmpool.task-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmpool.task-1

Dynamic Resource Pool Constraints and Objectives

A zone can be bound to a resource pool through the pool property of the zone configuration.
The zone is bound to the specified pool upon creation of the zone. The pool configuration can
be changed only from the global zone. Zones cannot span multiple pools. All processes in a
zone run in the same pool. However, multiple zones can bind to the same resource pool.
A resource pool defines:

■ Processor set groups
■ Scheduling class

Scheduling Class

Scheduling classes provide different CPU access characteristics to threads that are based on
algorithmic logic. The scheduling classes include:

■ Realtime scheduling class
■ Interactive scheduling class
■ Fixed priority scheduling class
■ Timesharing scheduling class
■ Fair share scheduling class

For an overview of fair share scheduler and example commands for administering the fair
share scheduler, see Chapter 8, “About Fair Share Scheduler” in Administering Resource
Management in Oracle Solaris 11.3 and Chapter 9, “Administering the Fair Share Scheduler
Tasks” in Administering Resource Management in Oracle Solaris 11.3.

Do not mix scheduling classes in a set of CPUs. If scheduling classes are mixed in a CPU set,
system performance might become erratic and unpredictable. Use processor sets to segregate
applications by their characteristics. Assign scheduling classes under which the application best
performs. For more information about the characteristics of an individual scheduling class, see
priocntl(1).

For an overview of resource pools and a discussion of when to use pools, see Chapter 6,
“Resource Pools in Oracle Solaris”.

Dynamic Resource Pool Constraints and Objectives

The libpool library defines properties that are available to the various entities that are managed
within the pools facility. Each property falls into the following categories:

72 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmfss-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmfss-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmfss.task-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmfss.task-1

Dynamic Resource Pool Constraints and Objectives

Configuration constraints

A constraint defines boundaries of a property. Typical constraints are the maximum and
minimum allocations specified in the libpool configuration.

Objective

An objective changes the resource assignments of the current configuration to generate
new candidate configurations that observe the established constraints. An objective has the
following categories:

Workload dependent

A workload-dependent objective varies according to the conditions imposed by the
workload. An example of the workload dependent objective is the utilization
objective.

Workload independent

A workload-independent objective does not vary according to the conditions imposed
by the workload. An example of the workload independent objective is the CPU
locality objective.

An objective can take an optional prefix to indicate the importance of the objective. The
objective is multiplied by this prefix, which is an integer from 0 to INT64_MAX, to
determine the significance of the objective.

For usage examples, see “How to Set Configuration Constraints” in Administering Resource
Management in Oracle Solaris 11.3 and “How to Define Configuration Objectives” in
Administering Resource Management in Oracle Solaris 11.3.

System Properties

system.bind-default (writable boolean)

If the specified pool is not found in /etc/project, bind to pool with the pool.default
property set to TRUE.

system.comment (writable string)

User description of system. system.comment is not used by the default pools commands,
except when a configuration is initiated by the poolcfg utility. In this case, the system puts
an informative message in the system.comment property for that configuration.

system.name (writable string)

User name for the configuration.

Chapter 6 • Resource Pools in Oracle Solaris 73

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMgcvwh
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMgcvwh
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmpool.task-108
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmpool.task-108

Dynamic Resource Pool Constraints and Objectives

system.version (read-only integer)

libpool version required to manipulate this configuration.

Pools Properties

All pools properties except pool.default and pool.sys_id are writable.

pool.active (writable boolean)

If TRUE, mark this pool as active.

pool.comment (writable string)

User description of pool.

pool.default (read-only boolean)

If TRUE, mark this pool as the default pool. See the system.bind-default property.

pool.importance (writable integer)

Relative importance of this pool. Used for possible resource dispute resolution.

pool.name (writable string)

User name for pool. setproject(3PROJECT) uses pool.name as the value for the
project.pool project attribute in the project(4) database.

pool.scheduler (writable string)

Scheduler class to which consumers of this pool are bound. This property is optional and if
not specified, the scheduler bindings for consumers of this pool are not affected. For more
information about the characteristics of an individual scheduling class, see priocntl(1).
Scheduler classes include:
■ RT for realtime scheduler
■ TS for timesharing scheduler
■ IA for interactive scheduler
■ FSS for fair share scheduler
■ FX for fixed priority scheduler

pool.sys_id (read-only integer)

This is the system-assigned pool ID.

74 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

Dynamic Resource Pool Constraints and Objectives

Processor Set Properties

pset.comment (writable string)

User description of resource.

pset.default (read-only boolean)

Identifies the default processor set.

pset.load (read-only unsigned integer)

The load for this processor set. The lowest value is 0. The value increases in a linear
fashion with the load on the set, as measured by the number of jobs in the system run
queue.

pset.max (writable unsigned integer)

Maximum number of CPUs that are permitted in this processor set.

pset.min (writable unsigned integer)

Minimum number of CPUs that are permitted in this processor set.

pset.name (writable string)

User name for the resource.

pset.size (read-only unsigned integer)

Current number of CPUs in this processor set.

pset.sys_id (read-only integer)

System-assigned processor set ID.

pset.type (read-only string)

Names the resource type. Value for all processor sets is pset.

pset.units (read-only string)

Identifies the meaning of size-related properties. The value for all processor sets is
population.

cpu.comment (writable string)

User description of CPU.

pset.resmin

If pset.policy == minmax (writable unsigned integer)

Chapter 6 • Resource Pools in Oracle Solaris 75

Using libpool to Manipulate Pool Configurations

The minimum number of CPUs for the processor set.

If pset.policy == assigned (read-only unsigned integer)
The number of assigned CPUs, cores, or sockets.

pset.resmax

If pset.policy == minmax (writable unsigned integer)
The maximum number of CPUs for the processor set.

If pset.policy == assigned (read-only unsigned integer)
The number of assigned CPUs, cores, or sockets.

pset.ressize (read-only string)

The current number of CPUs, cores, or sockets in the processor set. For pset.policy ==
minmax, this is always the number of CPUs.

pset.restype

The type of CPU resources assigned: CPUs, cores, or sockets. For pset.policy ==
minmax, this is always CPUs.

pset.reslist

The IDs of the assigned CPUs, cores, or sockets. For pset.policy == minmax, this is
always blank.

pset.policy

minmax or assigned, depending on whether the processor set is using quantity-based
allocation or specific assignment.

Using libpool to Manipulate Pool Configurations

The libpool(3LIB) pool configuration library defines the interface for reading and writing
pools configuration files. The library also defines the interface for committing an existing
configuration to becoming the running operating system configuration. The <pool.h> header
provides type and function declarations for all library services.

The resource pools facility brings together process-bindable resources into a common
abstraction that is called a pool. Processor sets and other entities can be configured, grouped,
and labelled in a persistent fashion. Workload components can be associated with a subset of a
system's total resources. The libpool(3LIB) library provides a C language API for accessing
the resource pools facility. The pooladm(1M), poolbind(1M), and poolcfg(1M) make the
resource pools facility available through command invocations from a shell.

76 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

Resource Pools API Functions

Manipulate psets

The following list contains the man page and description of functions associated with creating
or destroying psets and manipulating psets.

processor_bind(2)

Bind an LWP (lightweight process) or set of LWPs to a specified processor.

pset_assign(2)

Assign a processor to a processor set.

pset_bind(2)

Bind one or more LWPs (lightweight processes) to a processor set.

pset_create(2)

Create an empty processor set that contains no processors.

pset_destroy(2)

Destroy a processor set and release the associated constituent processors and processes.

pset_setattr(2), pset_getattr(2)

Set or get processor set attributes.

Resource Pools API Functions

This section lists all of the resource pool functions. Each function has a link to the man page
and a short description of the function's purpose. The functions are divided into two groups,
depending on whether the function performs an action or a query:

■ “Functions for Operating on Resource Pools and Associated Elements” on page 78
■ “Functions for Querying Resource Pools and Associated Elements” on page 80

The imported interfaces for libpool for swap sets is identical to the ones defined in this
document.

Chapter 6 • Resource Pools in Oracle Solaris 77

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2processor-bind-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2pset-assign-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2pset-bind-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2pset-create-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2pset-destroy-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2pset-setattr-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2pset-getattr-2

Resource Pools API Functions

Functions for Operating on Resource Pools and
Associated Elements

The following list contains the man pages and descriptions of interfaces for performing actions
related to pools and the associated elements.

pool_associate(3POOL)

Associate a resource with a specified pool.

pool_component_to_elem(3POOL)

Convert specified component to the pool element type.

pool_conf_alloc(3POOL)

Create a pool configuration.

pool_conf_close(3POOL)

Close the specified pool configuration and release the associated resources.

pool_conf_commit(3POOL)

Commit changes made to the specified pool configuration to permanent storage.

pool_conf_export(3POOL)

Save the given configuration to the specified location.

pool_conf_free(3POOL)

Release a pool configuration.

pool_conf_open(3POOL)

Create a pool configuration at the specified location.

pool_conf_remove(3POOL)

Removes the permanent storage for the configuration.

pool_conf_rollback(3POOL)

Restore the configuration state to the state that is held in the pool configuration's permanent
storage.

pool_conf_to_elem(3POOL)

Convert specified pool configuration to the pool element type.

78 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-associate-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-component-to-elem-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-conf-alloc-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-conf-close-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-conf-commit-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-conf-export-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-conf-free-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-conf-open-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-conf-remove-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-conf-rollback-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-conf-to-elem-3pool

Resource Pools API Functions

pool_conf_update(3POOL)

Update the library snapshot of kernel state.

pool_create(3POOL)

Create a new pool with the default properties and with default resources for each type.

pool_destroy(3POOL)

Destroy the specified pool. The associated resources are not modified.

pool_dissociate(3POOL)

Remove the association between the given resource and pool.

pool_put_property(3POOL)

Set the named property on the element to the specified value.

pool_resource_create(3POOL)

Create a new resource with the specified name and type for the provided configuration.

pool_resource_destroy(3POOL)

Remove the specified resource from the configuration file.

pool_resource_to_elem(3POOL)

Convert specified pool resource to the pool element type.

pool_resource_transfer(3POOL)

Transfer basic units from the source resource to the target resource.

pool_resource_xtransfer(3POOL)

Transfer the specified components from the source resource to the target resource.

pool_rm_property(3POOL)

Remove the named property from the element.

pool_set_binding(3POOL)

Bind the specified processes to the resources that are associated with pool on the running
system.

pool_set_status(3POOL)

Modify the current state of the pools facility.

pool_to_elem(3POOL)

Convert specified pool to the pool element type.

Chapter 6 • Resource Pools in Oracle Solaris 79

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-conf-update-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-create-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-destroy-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-dissociate-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-put-property-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-resource-create-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-resource-destroy-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-resource-to-elem-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-resource-transfer-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-resource-xtransfer-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-rm-property-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-set-binding-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-set-status-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-to-elem-3pool

Resource Pools API Functions

pool_value_alloc(3POOL)

Allocate and return an opaque container for a pool property value.

pool_value_free(3POOL)

Release an allocated property values.

pool_value_set_bool(3POOL)

Set a property value of type boolean.

pool_value_set_double(3POOL)

Set a property value of type double.

pool_value_set_int64(3POOL)

Set a property value of type int64.

pool_value_set_name(3POOL)

Set a name=value pair for a pool property.

pool_value_set_string(3POOL)

Copy the string that was passed in.

pool_value_set_uint64(3POOL)

Set a property value of type uint64.

Functions for Querying Resource Pools and
Associated Elements

The following list contains the man pages and descriptions of interfaces for performing queries
related to pools and the associated elements.

pool_component_info(3POOL)

Return a string that describes the given component.

pool_conf_info(3POOL)

Return a string describing the entire configuration.

pool_conf_location(3POOL)

Return the location string that was provided to pool_conf_open() for the given specified
configuration.

80 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-value-alloc-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-value-free-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-value-set-bool-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-value-set-double-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-value-set-int64-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-value-set-name-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-value-set-string-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-value-set-uint64-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-component-info-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-conf-info-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-conf-location-3pool

Resource Pools API Functions

pool_conf_status(3POOL)

Return the validity status for a pool configuration.

pool_conf_validate(3POOL)

Check the validity of the contents of the given configuration.

pool_dynamic_location(3POOL)

Return the location that was used by the pools framework to store the dynamic
configuration.

pool_error(3POOL)

Return the error value of the last failure that was recorded by calling a resource pool
configuration library function.

pool_get_binding(3POOL)

Return the name of the pool on the running system that contains the set of resources to
which the specified process is bound.

pool_get_owning_resource(3POOL)

Return the resource that currently contains the specified component.

pool_get_pool(3POOL)

Return the pool with the specified name from the provided configuration.

pool_get_property(3POOL)

Retrieve the value of the named property from the element.

pool_get_resource(3POOL)

Return the resource with the given name and type from the provided configuration.

pool_get_resource_binding(3POOL)

Return the name of the pool on the running system that contains the set of resources to
which the given process is bound.

pool_get_status(3POOL)

Retrieve the current state of the pools facility.

pool_info(3POOL)

Return a description of the specified pool.

pool_query_components(3POOL)

Retrieve all resource components that match the specified list of properties.

Chapter 6 • Resource Pools in Oracle Solaris 81

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-conf-status-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-conf-validate-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-dynamic-location-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-error-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-get-binding-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-get-owning-resource-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-get-pool-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-get-property-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-get-resource-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-get-resource-binding-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-get-status-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-info-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-query-components-3pool

Resource Pools API Functions

pool_query_pool_resources(3POOL)

Return a null-terminated array of resources currently associated with the pool.

pool_query_pools(3POOL)

Return the list of pools that match the specified list of properties.

pool_query_resource_components(3POOL)

Return a null-terminated array of the components that make up the specified resource.

pool_query_resources(3POOL)

Return the list of resources that match the specified list of properties.

pool_resource_info(3POOL)

Return a description of the specified resource.

pool_resource_type_list(3POOL)

Enumerate the resource types that are supported by the pools framework on this platform.

pool_static_location(3POOL)

Return the location that was used by the pools framework to store the default configuration
for pools framework instantiation.

pool_strerror(3POOL)

Return a description of each valid pool error code.

pool_value_get_bool(3POOL)

Get a property value of type boolean.

pool_value_get_double(3POOL)

Get a property value of type double.

pool_value_get_int64(3POOL)

Get a property value of type int64.

pool_value_get_name(3POOL)

Return the name that was assigned to the specified pool property.

pool_value_get_string(3POOL)

Get a property value of type string.

pool_value_get_type(3POOL)

Return the type of the data that is contained by the specified pool value.

82 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-query-pool-resources-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-query-pools-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-query-resource-components-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-query-resources-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-resource-info-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-resource-type-list-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-static-location-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-strerror-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-value-get-bool-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-value-get-double-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-value-get-int64-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-value-get-name-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-value-get-string-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-value-get-type-3pool

Resource Pool Code Examples

pool_value_get_uint64(3POOL)

Get a property value of type uint64.

pool_version(3POOL)

Get the version number of the pool library.

pool_walk_components(3POOL)

Invoke callback on all components that are contained in the resource.

pool_walk_pools(3POOL)

Invoke callback on all pools that are defined in the configuration.

pool_walk_properties(3POOL)

Invoke callback on all properties defined for the given element.

pool_walk_resources(3POOL)

Invoke callback on all resources that are associated with the pool.

Resource Pool Code Examples

This section contains code examples of the resource pools interface.

Ascertain the Number of CPUs in the Resource
Pool

sysconf(3C) provides information about the number of CPUs on an entire system. The
following example provides the granularity of ascertaining the number of CPUs that are defined
in a particular application's pools pset.

The key points for this example include the following:

■ pvals[] should be a NULL terminated array.
■ pool_query_pool_resources() returns a list of all resources that match the pvals array

type pset from the application's pool my_pool. Because a pool can have only one instance
of the pset resource, each instance is always returned in nelem. reslist[] contains only
one element, the pset resource.

Chapter 6 • Resource Pools in Oracle Solaris 83

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-value-get-uint64-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-version-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-walk-components-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-walk-pools-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-walk-properties-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hpool-walk-resources-3pool

Resource Pool Code Examples

pool_value_t *pvals[2] = {NULL}; /* pvals[] should be NULL terminated */

/* NOTE: Return value checking/error processing omitted */

/* in all examples for brevity */

conf_loc = pool_dynamic_location();

conf = pool_conf_alloc();

pool_conf_open(conf, conf_loc, PO_RDONLY);

my_pool_name = pool_get_binding(getpid());

my_pool = pool_get_pool(conf, my_pool_name);

pvals[0] = pool_value_alloc();

pvals2[2] = { NULL, NULL };

pool_value_set_name(pvals[0], "type");

pool_value_set_string(pvals[0], "pset");

reslist = pool_query_pool_resources(conf, my_pool, &nelem, pvals);

pool_value_free(pvals[0]);

pool_query_resource_components(conf, reslist[0], &nelem, NULL);

printf("pool %s: %u cpu", my_pool_ name, nelem);

pool_conf_close(conf);

List All Resource Pools

The following example lists all resource pools defined in an application's pools pset.
The key points of the example include the following:

■ Open the dynamic conf file read-only, PO_RDONLY. pool_query_pools() returns the list
of pools in pl and the number of pools in nelem. For each pool, call pool_get_property()
to get the pool.name property from the element into the pval value.

■ pool_get_property() calls pool_to_elem() to convert the libpool entity to an opaque
value. pool_value_get_string() gets the string from the opaque pool value.

conf = pool_conf_alloc();

pool_conf_open(conf, pool_dynamic_location(), PO_RDONLY);

pl = pool_query_pools(conf, &nelem, NULL);

pval = pool_value_alloc();

for (i = 0; i < nelem; i++) {

 pool_get_property(conf, pool_to_elem(conf, pl[i]), "pool.name", pval);

 pool_value_get_string(pval, &fname);

 printf("%s\n", name);

}

pool_value_free(pval);

free(pl);

pool_conf_close(conf);

84 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

Resource Pool Code Examples

Report Pool Statistics for a Given Pool

The following example reports statistics for the designated pool.
The key points for the example include the following:

■ pool_query_pool_resources() gets a list of all resources in rl. Because the last argument
to pool_query_pool_resources() is NULL, all resources are returned. For each resource,
the name, load and size properties are read, and printed.

■ The call to strdup() allocates local memory and copies the string returned by
get_string(). The call to get_string() returns a pointer that is freed by the next call to
get_property(). If the call to strdup() is not included, subsequent references to the string
(s) could cause the application to fail with a segmentation fault.

printf("pool %s\n:" pool_name);

pool = pool_get_pool(conf, pool_name);

rl = pool_query_pool_resources(conf, pool, &nelem, NULL);

for (i = 0; i < nelem; i++) {

 pool_get_property(conf, pool_resource_to_elem(conf, rl[i]), "type", pval);

 pool_value_get_string(pval, &type);

 type = strdup(type);

 snprintf(prop_name, 32, "%s.%s", type, "name");

 pool_get_property(conf, pool_resource_to_elem(conf, rl[i]),

 prop_name, pval);

 pool_value_get_string(val, &res_name);

 res_name = strdup(res_name);

 snprintf(prop_name, 32, "%s.%s", type, "load");

 pool_get_property(conf, pool_resource_to_elem(conf, rl[i]),

 prop_name, pval);

 pool_value_get_uint64(val, &load);

 snprintf(prop_name, 32, "%s.%s", type, "size");

 pool_get_property(conf, pool_resource_to_elem(conf, rl[i]),

 prop_name, pval);

 pool_value_get_uint64(val, &size);

 printf("resource %s: size %llu load %llu\n", res_name, size, load);

 free(type);

 free(res_name);

}

free(rl);

Set pool.comment Property and Add New Property

The following example sets the pool.comment property for the pset. The example also creates a
new property in pool.newprop.

Chapter 6 • Resource Pools in Oracle Solaris 85

Programming Issues Associated With Resource Pools

The key point for the example includes the following:

■ In the call to pool_conf_open(), using PO_RDWR on a static configuration file, requires
the caller to be root.

■ To commit these changes to the pset after running this utility, issue a pooladm -c
command. To have the utility commit the changes, call pool_conf_commit() with a nonzero
second argument.

pool_set_comment(const char *pool_name, const char *comment)

{

 pool_t *pool;

 pool_elem_t *pool_elem;

 pool_value_t *pval = pool_value_alloc();

 pool_conf_t *conf = pool_conf_alloc();

 /* NOTE: need to be root to use PO_RDWR on static configuration file */

 pool_conf_open(conf, pool_static_location(), PO_RDWR);

 pool = pool_get_pool(conf, pool_name);

 pool_value_set_string(pval, comment);

 pool_elem = pool_to_elem(conf, pool);

 pool_put_property(conf, pool_elem, "pool.comment", pval);

 printf("pool %s: pool.comment set to %s\n:" pool_name, comment);

 /* Now, create a new property, customized to installation site */

 pool_value_set_string(pval, "New String Property");

 pool_put_property(conf, pool_elem, "pool.newprop", pval);

 pool_conf_commit(conf, 0); /* NOTE: use 0 to ensure only */

 /* static file gets updated */

 pool_value_free(pval);

 pool_conf_close(conf);

 pool_conf_free(conf);

 /* NOTE: Use "pooladm -c" later, or pool_conf_commit(conf, 1) */

 /* above for changes to the running system */

}

An alternative way of modifying a pool's comment and adding a new pool property is to use
poolcfg(1M).

poolcfg -c 'modify pool pool-name (string pool.comment = "cmt-string")'

poolcfg -c 'modify pool pool-name (string pool.newprop =

 "New String Property")'

Programming Issues Associated With Resource Pools

Consider the following issues when writing your application.

■ Each site can add its own list of properties to the pools configuration.

86 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

zonestat Utility for Monitoring Resource Pools in Oracle Solaris Zones

Multiple configurations can be maintained in multiple configuration files. The system
administrator can commit different files to reflect changes to the resource consumption at
different time slots. These time slots can include different times of the day, week, month, or
seasons depending on load conditions.

■ Resource sets can be shared between pools, but a pool has only one resource set of a given
type. So, the pset_default can be shared between the default and a particular application's
database pools.

■ Use pool_value_*() interfaces carefully. Keep in mind the memory allocation issues for
string pool values. See “Report Pool Statistics for a Given Pool” on page 85.

zonestat Utility for Monitoring Resource Pools in Oracle
Solaris Zones

The zonestat utility can be used to report on the CPU, memory, and resource control utilization
of the currently running zones. Each zone's utilization is reported as a percentage of both
system resources and the zone's configured limits. For more information, see the zonestat(1)
man page and Creating and Using Oracle Solaris Zones.

Chapter 6 • Resource Pools in Oracle Solaris 87

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1zonestat-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZSO

88 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

 7 ♦ ♦ ♦ C H A P T E R 7

Design Considerations for Resource
Management Applications in Oracle Solaris
Zones

This chapter provides a brief overview of Oracle Solaris Zones technology and discusses
potential problems that may be encountered by developers who are writing resource
management applications.

Oracle Solaris Zones Overview

A zone is a virtualized operating system environment that is created within a single instance
of the Oracle Solaris operating system. Oracle Solaris Zones are a partitioning technology
that provides an isolated, secure environment for applications. When you create a zone, you
produce an application execution environment in which processes are isolated from the rest of
the system. This isolation prevents a process that is running in one zone from monitoring or
affecting processes that are running in other zones. Even a process running with root credentials
cannot view or affect activity in other zones. A zone also provides an abstract layer that
separates applications from the physical attributes of the system on which the zone is deployed.
Examples of these attributes include physical device paths and network interface names. The
default non-global zone brand in the Oracle Solaris 11.3 release is the solaris zone.

By default, all systems have a global zone. The global zone has a global view of the Oracle
Solaris environment that is similar to the superuser (root) model. All other zones are referred to
as non-global zones. A non-global zone is analogous to an unprivileged user in the superuser
model. Processes in non-global zones can control only the processes and files within that zone.
Typically, system administration work is mainly performed in the global zone. In rare cases
where a system administrator needs to be isolated, privileged applications can be used in a non-
global zone. In general, though, resource management activities take place in the global zone.

Chapter 7 • Design Considerations for Resource Management Applications in Oracle Solaris Zones 89

IP Networking in Oracle Solaris Zones

For additional isolation, solaris zones with a read-only root can be configured. See Chapter
11, “Configuring and Administering Immutable Zones” in Creating and Using Oracle Solaris
Zones.

For more information on solaris zones, see Creating and Using Oracle Solaris Zones.

IP Networking in Oracle Solaris Zones

IP networking in a zone can be configured in two different ways, depending on whether the
non-global zone is given its own exclusive IP instance or shares the IP layer configuration and
state with the global zone. By default, zones are created with the exclusive-IP type. Through
the zonecfg anet resource, a virtual network (VNIC) is automatically included in the zone
configuration if networking configuration is not specified.

Exclusive-IP zones are assigned zero or more VNIC interface names, and for those network
interfaces they can send and receive any packets, snoop, and change the IP configuration,
including IP addresses and the routing table. Note that those changes do not affect any of the
other IP instances on the system.

For complete information on the zonecfg command and networking in zones, see Oracle
Solaris Zones Configuration Resources.

About Applications in Oracle Solaris Zones

All applications are fully functional in the global zone, as they would be in a conventional
Oracle Solaris operating system. Most applications should run without problem in a non-global
environment as long as the application does not need any privileges. If an application does
require privileges, then the developer needs to take a close look at which privileges are needed
and how a particular privilege is used. If a privilege is required, then a system administrator can
assign the needed privilege to the zone. See Introduction to Oracle Solaris Zones.

90 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZSOglhep
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZSOglhep
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZSOglhep
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZSO
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZCR
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZCR
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZON

About Applications in Oracle Solaris Zones

General Considerations When Writing
Applications for Non-Global Zones

The known situations that a developer should investigate are as follows:

■ System calls that change the system time require the PRIV_SYS_TIME privilege. These
system calls include adjtime(2), ntp_adjtime(2), and stime(2).

■ System calls that need to operate on files that have the sticky bit set require the
PRIV_SYS_CONFIG privilege. These system calls include chmod(2), creat(2), and
open(2).

■ The ioctl(2) system call requires the PRIV_SYS_NET_CONFIG privilege to be able to
unlock an anchor on a STREAMS module.

■ The link(2) and unlink(2) system calls require the PRIV_SYS_LINKDIR privilege to
create a link or unlink a directory in a non-global zone. Applications that install or configure
software or that create temporary directories could be affected by this limitation.

■ The PRIV_PROC_LOCK_MEMORY privilege is required for the mlock(3C), munlock(3C),
mlockall(3C), munlockall(3C), and plock(3C) functions and the MC_LOCK,
MC_LOCKAS, MC_UNLOCK, and MC_UNLOCKAS flags for the memcntl(2) system.
This privilege is a default privilege in a non-global zone. See “Privileges in a Non-Global
Zone” in Creating and Using Oracle Solaris Zones for more information.

■ The mknod(2) system call requires the PRIV_SYS_DEVICES privilege to create a block
(S_IFBLK) or character (S_IFCHAR) special file. This limitation affects applications that
need to create device nodes on the fly.

■ The IPC_SET flag in the msgctl(2) system call requires the PRIV_SYS_IPC_CONFIG
privilege to increase the number of message queue bytes. This limitation affects any
applications that need to resize the message queue dynamically.

■ The nice(2) system call requires the PRIV_PROC_PRIOCNTL privilege to change the
priority of a process. This privilege is available by default in a non-global zone. Another
way to change the priority is to bind the non-global zone in which the application is running
to a resource pool, although scheduling processes in that zone is ultimately decided by the
Fair Share Scheduler.

■ The P_ONLINE, P_OFFLINE, P_NOINTR, P_FAULTED, P_SPARE, and PZ-FORCED
flags in the p_online(2) system call require the PRIV_SYS_RES_CONFIG privilege to
return or change process operational status. This limitation affects applications that need to
enable or disable CPUs.

■ The PC_SETPARMS and PC_SETXPARMS flags in the priocntl(2)system call requires
the PRIV_PROC_PRIOCNTL privilege to change the scheduling parameters of a
lightweight process (LWP).

■ System calls that need to manage processor sets (psets), including binding LWPs to psets
and setting pset attributes require the PRIV_SYS_RES_CONFIG privilege. This limitation

Chapter 7 • Design Considerations for Resource Management Applications in Oracle Solaris Zones 91

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2adjtime-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2ntp-adjtime-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2stime-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2chmod-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2creat-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2link-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2unlink-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Amlock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Amunlock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Amlockall-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Amunlockall-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aplock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2memcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZSOz.admin.ov-18
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZSOz.admin.ov-18
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2mknod-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2msgctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2nice-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2p-online-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2priocntl-2

About Applications in Oracle Solaris Zones

affects the following system calls: pset_assign(2), pset_bind(2), pset_create(2),
pset_destroy(2), and pset_setattr(2).

■ The SHM_LOCK and SHM_UNLOCK flags in the shmctl(2) system call require the
PRIV_PROC_LOCK_MEMORY privilege to share memory control operations. If the
application is locking memory for performance purposes, using the intimate shared memory
(ISM) feature provides a potential workaround.

■ The swapctl(2)system call requires the PRIV_SYS_CONFIG privilege to add or remove
swapping resources. This limitation affects installation and configuration software.

■ The uadmin(2) system call requires the PRIV_SYS_CONFIG privilege to use the
A_REMOUNT, A_FREEZE, A_DUMP, and AD_IBOOT commands. This limitation affects
applications that need to force crash dumps under certain circumstances.

■ The clock-settime(3C) function requires the PRIV_SYS_TIME privilege to set the
CLOCK_REALTIME and CLOCK_HIRES clocks.

■ The cpc_bind_cpu(3CPC) function requires the PRIV_CPC_CPU privilege to bind request
sets to hardware counters. As a workaround, the cpc_bind_curlwp(3CPC) function can be
used to monitor CPU counters for the LWP in question.

■ The pthread_attr_setschedparam(3C) function requires the PRIV_PROC_PRIOCNTL
privilege to change the underlying scheduling policy and parameters for a thread.

■ The timer_create(3C) function requires the PRIV_PROC_CLOCK_HIGHRES privilege
to create a timer using the high-resolution system clock.

■ The APIs that are provided by the following list of libraries are not supported in a non-
global zone. The shared objects are present in the zone's /usr/lib directory, so no link
time errors occur if your code includes references to these libraries. You can inspect your
make files to determine if your application has explicit bindings to any of these libraries
and use pmap(1) while the application is executing to verify that none of these libraries are
dynamically loaded.
■ libdevinfo(3LIB)
■ libcfgadm(3LIB)
■ libpool(3LIB)
■ libsysevent(3LIB)

■ Zones have a restricted set of devices, consisting primarily of pseudo devices that form
part of the Oracle Solaris programming API. These pseudo devices include /dev/null,
/dev/zero, /dev/poll, /dev/random, /dev/tcp, and so on. Physical devices are not
directly accessible from within a zone unless the device has been configured by a system
administrator. Since devices, in general, are shared resources in a system, to make devices
available in a zone requires some restrictions so system security will not be compromised,
as follows:
■ The /dev name space consists of symbolic links, that is, logical paths, to the physical

paths in /devices. The /devices name space, which is available only in the global

92 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2pset-assign-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2pset-bind-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2pset-create-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2pset-destroy-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2pset-setattr-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2shmctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2swapctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2uadmin-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dcpc-bind-cpu-3cpc
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dcpc-bind-curlwp-3cpc
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Apthread-attr-setschedparam-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pmap-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Flibcfgadm-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Flibpool-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Flibsysevent-3lib

About Applications in Oracle Solaris Zones

zone, reflects the current state of attached device instances that have been created by the
driver. Only the logical path /dev is visible in a non-global zone.

■ Processes within a non-global zone cannot create new device nodes. For example,
mknod(2) cannot create special files in a non-global zone. The creat(2), link(2),
mkdir(2), rename(2), symlink(2), and unlink(2) system calls fail with EACCES if a
file in /dev is specified. You can create a symbolic link to an entry in /dev, but that link
cannot be created in /dev.

■ Devices that expose system data are only available in the global zone. Examples of
such devices include dtrace(7D), kmem(7D), kmdb(7d), ksyms(7D), lockstat(7D), and
trapstat(1M).

■ The /dev name space consists of device nodes made up of a default, "safe" set of drivers
as well as device nodes that have been specified for the zone by the zonecfg(1M)
command.

Specific Considerations for Oracle Solaris 10 Non-
Global Zones

LIFC_UNDER_IPMP is not available in Oracle Solaris 10, so applications supported on this
release do not use LIFC_UNDER_IPMP. Thus, applications issuing a SIOCGLIFCONF request
inside an Oracle Solaris 10 zone do not see underlying interfaces, but instead see only see the
IPMP meta-interfaces. The ifconfig command used with the -a option shows the underlying
interfaces because a solaris10 zone uses the Oracle Solaris 11 version of ifconfig, which
passes the special LIFC_UNDER_IPMP. See if_tcp(7P) for details.

Specific Considerations for Shared-IP Non-Global
Zones

For non-global zones that are configured to use the shared-IP instance, the following restrictions
apply.

■ The socket(3SOCKET) function requires the PRIV_NET_RAWACCESS privilege to
create a raw socket with the protocol set to IPPROTO_RAW or IPPROTO_IGMP. This
limitation affects applications that use raw sockets or need to create or inspect TCP/IP
headers.

■ The t_open(3NSL) function requires the PRIV_NET_RAWACCESS privilege to establish
a transport endpoint. This limitation affects applications that use the /dev/rawip device to
implement network protocols as wall as applications that operate on TCP/IP headers.

Chapter 7 • Design Considerations for Resource Management Applications in Oracle Solaris Zones 93

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2mknod-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2creat-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2link-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2mkdir-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2rename-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2symlink-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2unlink-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN7dtrace-7d
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN7kmem-7d
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN7kmdb-7d
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN7ksyms-7d
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN7lockstat-7d
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mtrapstat-1m
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mzonecfg-1m
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN7if-tcp-7p
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Bsocket-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Bt-open-3nsl

Packaging Considerations in solaris Zones

■ No NIC devices that support the DLPI programming interface are accessible in a shared-IP
non-global zone.

■ Each non-global shared-IP zone has its own logical network and loopback interface.
Bindings between upper layer streams and logical interfaces are restricted such that a stream
may only establish bindings to logical interfaces in the same zone. Likewise, packets from
a logical interface can only be passed to upper layer streams in the same zone as the logical
interface. Bindings to the loopback address are kept within a zone with one exception:
When a stream in one zone attempts to access the IP address of an interface in another zone.
While applications within a zone can bind to privileged network ports, they have no control
over the network configuration, including IP addresses and the routing table.

Note that these restrictions do not apply to exclusive-IP zones.

Packaging Considerations in solaris Zones

Using a zone package variant, the various components within a package are specifically tagged
to only be installed in either a global zone (global) or a non-global zone (nonglobal). A given
package can contain a file that is tagged so that it will not be installed into a non-global zone.

API for Zones Monitoring Statistics

libzonestat.so.1 is a public API used by the zonestat command to retrieve and compute
zone-related resource utilization information, with sorting and filtering options available. The
zonestat library reports system wide and per-zone utilization of physical memory, virtual
memory, and CPU resources. The zonestat command is documented in the zonestat(1) man
page.

libzonestat computes commonly needed values, such as differences between two samples,
and percentage used quantities. These statistics eliminate the need for consumers to do complex
calculations. In addition to usage of physical resources, libzonestat also reports resource
usage relative to each zone's configured resource limits.

The basic usage of libzonestat is as follows:

zs_ctl_t zsctl;

 zs_usage_t usage;

 /* open the statistics facility */

 zsctl = zs_open();

94 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1zonestat-1

Monitoring Zone File System Activity

 for (;;) {

 /* read the current usage */

 usage = zs_usage_read(ctl);

 ... Interrogate the usage object for desired information ...

 ...

 if (quit)

 break;

 sleep(some_interval);

 }

 zs_close(zsctl);

The following man pages, ordered to facilitate usage, describe the library interfaces:

■ zs_open(3ZONESTAT)
■ zs_usage(3ZONESTAT)
■ libzonestat(3LIB)
■ zs_resource(3ZONESTAT)
■ zs_zone(3ZONESTAT)
■ zs_pset(3ZONESTAT)
■ zs_pset_zone(3ZONESTAT)
■ zs_property(3ZONESTAT)

Monitoring Zone File System Activity

The fsstat utility can be used to report file operations statistics for non-global zones.

The global zone can see the kstats of all zones on the system. Non-global zones only see the
kstats associated with the zone in which the utility is run. A non-global zone cannot monitor
file system activity in other zones.

The -z option is used to report on file system activity per zone. Multiple -z options can be
used to monitor activity in selected zones. The option has no effect if only used to monitor
mountpoints and not fstypes.

The -Z option is used to report file system activity in all zones on the system. This option has no
effect if used with -z option. The option has no effect if only used to monitor mountpoints and
not fstypes.

Chapter 7 • Design Considerations for Resource Management Applications in Oracle Solaris Zones 95

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Izs-open-3zonestat
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Izs-usage-3zonestat
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Flibzonestat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Izs-resource-3zonestat
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Izs-zone-3zonestat
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Izs-pset-3zonestat
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Izs-pset-zone-3zonestat
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Izs-property-3zonestat

Oracle Solaris 10 Zones

The -A option is used to report on aggregate file system activity for the specified fstypes across
all zones. This is the default behavior if neither -z or the -Z option is used. The -A option has no
effect if only used to monitor mountpoints and not fstypes.

When used with either the -z or the -Z option, the -A option displays the aggregate for the
specified fstypes across all zones on a separate line. The option has no effect if only used to
monitor mountpoints and not fstypes.

See the fsstat(1M) man page for more information.

Oracle Solaris 10 Zones

Oracle Solaris 10 Zones are solaris10 branded zones that host x86 and SPARC Solaris 10 9/10
(or later released Oracle Solaris 10 update) user environments running on the Oracle Solaris
11 kernel. Note that it is possible to use an earlier Oracle Solaris 10 release if you first install
the kernel patch 142909-17 (SPARC) or 142910-17 (x86/x64), or later version, on the original
system.

For more information about solaris10 branded zones, see the following guides:

■ Creating and Using Oracle Solaris 10 Zones.
■ System Administration Guide: Oracle Solaris Containers-Resource Management and

Oracle Solaris Zones (this is the Oracle Solaris 10 version of the guide).
■ Solaris Containers: Resource Management and Solaris Zones Developer’s Guide (this is the

Oracle Solaris 10 version of the guide).

For information about SVR4 packaging and patching used in solaris10 and native zones,
see "Chapter 25, About Packages on an Solaris System With Zones Installed (Overview)" and
"Chapter 26, Adding and Removing Packages and Patches on a Solaris System With Zones
Installed (Tasks)" in the Oracle Solaris 10 guide System Administration Guide: Oracle Solaris
Containers-Resource Management and Oracle Solaris Zones.

Oracle Solaris Kernel Zones

The Oracle Solaris Kernel Zones feature provides a full kernel and user environment within a
zone. Kernel zones also increase kernel separation between the host system and the zone. The
brand name is solaris-kz. Kernel zones are managed by using the existing tools. You can
fully update and modify the zone's installed packages, including the kernel version, without

96 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mfsstat-1m
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZTN
http://www.oracle.com/pls/topic/lookup?ctx=E26505-01&id=SYSADRM
http://www.oracle.com/pls/topic/lookup?ctx=E26505-01&id=SYSADRM
http://www.oracle.com/pls/topic/lookup?ctx=E18752-01&id=RSCMGRDEVGD
http://www.oracle.com/pls/topic/lookup?ctx=E26505-01&id=SYSADRM
http://www.oracle.com/pls/topic/lookup?ctx=E26505-01&id=SYSADRM

Oracle Solaris Kernel Zones

being limited to the packages installed in the global zone. You can run solaris zones within the
kernel zone to produce hierarchical (nested) zones. Kernel zones support suspend and resume.
The Oracle Solaris Kernel Zone can run a Support Repository Update (SRU) or kernel version
that is different from that of the host system.

For information about Oracle Solaris Kernel Zones, see Creating and Using Oracle Solaris
Kernel Zones and Chapter 1, “Configuration Resources for Non-Global Zones” in Oracle
Solaris Zones Configuration Resources.

Chapter 7 • Design Considerations for Resource Management Applications in Oracle Solaris Zones 97

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZKZ
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZKZ
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZCRz.config.ov-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZCRz.config.ov-1

98 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

 8 ♦ ♦ ♦ C H A P T E R 8

Project Configuration Examples

This chapter shows example configurations for the /etc/project file.

■ “Configure Resource Controls” on page 100
■ “Configure Resource Pools” on page 100
■ “Configure FSS project.cpu-shares for a Project” on page 100
■ “Configure Five Applications with Different Characteristics” on page 101

To set resource controls on a zone by using the zonecfg command, see Chapter 1,
“Configuration Resources for Non-Global Zones” in Oracle Solaris Zones Configuration
Resources and “How to Configure the Zone” in Creating and Using Oracle Solaris Zones.

/etc/project Project File

The project file is a local source of project information. The project file can be used in
conjunction with other project sources, including the NIS maps project.byname and project.
bynumber and the LDAP database project. Programs use the getprojent(3PROJECT) routines
to access this information.

Define Two Projects

/etc/project defines two projects: database and appserver. The user defaults are user.
database and user.appserver. The admin default can switch between user.database or
user.appserver.

hostname# cat /etc/project

.

.

.

user.database:2001:Database backend:admin::

Chapter 8 • Project Configuration Examples 99

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZCRz.config.ov-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZCRz.config.ov-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZCRz.config.ov-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZSOz.conf.start-29

/etc/project Project File

user.appserver:2002:Application Server frontend:admin::

.

.

Configure Resource Controls

The /etc/project file shows the resource controls for the application.

hostname# cat /etc/project

.

.

.

development:2003:Developers:::task.ax-lwps=(privileged,10,deny);

process.max-addressspace=(privileged,209715200,deny)

.

.

Configure Resource Pools

The /etc/project file shows the resource pools for the application.

hostname# cat /etc/project

.

.

.

batch:2001:Batch project:::project.pool=batch_pool

process:2002:Process control:::project.pool=process_pool

.

.

.

Configure FSS project.cpu-shares for a Project

Set up FSS for two projects: database and appserver. The database project has 20 CPU shares.
The appserver project has 10 CPU shares.

hostname# cat /etc/project

.

.

100 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

/etc/project Project File

.

user.database:2001:database backend:admin::project.cpu-shares=(privileged,

 20,deny)

user.appserver:2002:Application Server frontend:admin::project.cpu-shares=

 (privileged,10,deny)

.

.

.

Note - The line break in the lines that precede “20,deny” and “(privileged,” is not valid in an
/etc/project file. The line breaks are shown here only to allow the example to display on a
printed or displayed page. Each entry in the /etc/project file must be on a single line.

If the FSS is enabled but each user and application is not assigned to a unique project, then
the users and applications will all run in the same project. By running in the same project, all
compete for the same share, in a timeshare fashion. This occurs because shares are assigned to
projects, not to users or processes. To take advantage of the FSS scheduling capabilities, assign
each user and application to a unique project.

To configure a project, see “Local /etc/project File Format” in Administering Resource
Management in Oracle Solaris 11.3.

Configure Five Applications with Different
Characteristics

The following example configures five applications with different characteristics.

TABLE 8 Target Applications and Characteristics

Application Type and Name Characteristics

Application server, app_server. Negative scalability beyond two CPUs. Assign a two-CPU processor set to
app_server. Use TS scheduling class.

Database instance, app_db. Heavily multithreaded. Use FSS scheduling class.

Test and development, development. Motif based. Hosts untested code execution. Interactive scheduling class
ensures user interface responsiveness. Use process.max-address-space
to impose memory limitations and minimize the effects of antisocial
processing.

Transaction processing engine,
tp_engine.

Response time is paramount. Assign a dedicated set of at least two CPUs
to ensure response latency is kept to a minimum. Use timeshare scheduling
class.

Standalone database instance, geo_db. Heavily multithreaded. Serves multiple time zones. Use FSS scheduling
class.

Chapter 8 • Project Configuration Examples 101

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmtaskproj-12
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=VLZRMrmtaskproj-12

/etc/project Project File

Note - Consolidate database applications (app.db and geo_db) onto a single processor set of at
least four CPUs. Use FSS scheduling class. Application app_db gets 25% of the project.cpu-
shares. Application geo_db gets 75% of the project.cpu-shares.

Edit the /etc/project file. Map users to resource pools for the app_server, app_db,
development, tp_engine, and geo_db project entries.

hostname# cat /etc/project

.

.

.

user.app_server:2001:Production Application Server::

 project.pool=appserver_pool

user.app_db:2002:App Server DB:::project.pool=db_pool,

 project.cpu-shares=(privileged,1,deny)

development:2003:Test and delopment::staff:project.pool=dev.pool,

 process.max-addressspace=(privileged,536870912,deny)

user.tp_engine:Transaction Engine:::project.pool=tp_pool

user.geo_db:EDI DB:::project.pool=db_pool;

 project.cpu-shares=(privileged,3,deny)

Note - The line break in the lines that begin with “project.pool” , “project.cpu-shares=”,
“process.max-addressspace”, and “project.cpu-shares=” is not valid in a project file. The line
breaks are shown here only to allow the example to display on a printed or displayed page. Each
entry must be on one and only one line.

Create the pool.host script and add entries for resource pools.

hostname# cat pool.host

create system host

create pset dev_pset (uint pset.max = 2)

create pset tp_pset (uint pset.min = 2; uint pset.max = 2)

create pset db_pset (uint pset.min = 4; uint pset.max = 6)

create pset app_pset (uint pset.min = 1; uint pset.max = 2)

create pool dev_pool (string pool.scheduler="IA")

create pool appserver_pool (string pool.scheduler="TS")

create pool db_pool (string pool.scheduler="FSS")

create pool tp_pool (string pool.scheduler="TS")

associate pool pool_default (pset pset_default)

associate pool dev_pool (pset dev_pset)

associate pool appserver_pool (pset app_pset)

associate pool db_pool (pset db_pset)

associate pool tp_pool (pset tp_pset)

Run the pool.host script and modify the configuration as specified in the pool.host file.

102 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

/etc/project Project File

hostname# poolcfg -f pool.host

Read the pool.host resource pool configuration file and initialize the resource pools on the
system.

hostname# pooladm -c

Chapter 8 • Project Configuration Examples 103

104 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

Index

B
brands, 96

E
ea_alloc(), 23
ea_copy_object(), 23
ea_copy_object_tree(), 24
ea_free(), 23
ea_free_item(), 23
ea_free_object(), 23
ea_get_object_tree(), 24
ea_pack_object(), 23
ea_strdup(), 23
ea_strfree(), 23
ea_unpack_object(), 23
exacct file

display entry, 24
display string, 25
display system file, 26
dump, 46

exacct object
create record, 46
dump, 44
write file, 46

F
fair share scheduler

access resource control block, 67
fsstat

zone, 95

L
libexacct

perl interface, 30
perl module, 31

libzonestat API, 94

O
Oracle Solaris Kernel Zones, 96
Oracle Solaris Zones

overview, 89

P
programming issues

exacct files, 28
project database, 20
resource controls, 69

project database
get entry, 20
print entries, 19

R
resource controls

display value-action pairs, 66
global action, 54
global flag, 54
local action, 53
local flag, 53
master observer process, 64
privilege levels, 53

105

Index

process, 59
project, 57
signals, 62
task, 58
zone, 60

resource pools
get defined pools, 84
get number of CPUS, 83
get pool statistics, 85
overview, 71
pool properties, 74
processor sets properties, 75
properties, 72
scheduling class, 72
set property, 85
system properties, 73

S
solaris-kz brand, 96

Z
zone

application design considerations, 90
exclusive-IP type, 90
fsstat, 95
IP type, 90
libzonestat, 94
packaging, 94
resource controls, 60
shared-IP, 93
solaris brand, 89
solaris10 brand, 96
zonestat, 94

zonestat

zone, 94
zonestat utility, 69, 87

106 Resource Management and Oracle Solaris Zones Developer's Guide • October 2017

	Resource Management and Oracle® Solaris Zones Developer's Guide
	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	Chapter 1 • Resource Management in the Oracle Solaris Operating System
	Understanding Resource Management in the Oracle Solaris Operating System
	Resource Management Workload Organization
	Resource Organization
	Resource Controls
	Extended Accounting Facility

	Writing Resource Management Applications

	Chapter 2 • Workload Hierarchy of Projects and Tasks
	Overview of Projects and Tasks
	/etc/project File

	Project and Task API Functions
	Code Examples for Accessing project Database Entries
	Programming Issues Associated With Projects and Tasks

	Chapter 3 • Using the C Interface to Extended Accounting
	Overview of the C Interface to Extended Accounting
	Extended Accounting API Functions
	exacct System Calls
	Operations on the exacct File
	Operations on exacct Objects
	Extended Accounting Memory Management
	Extended Accounting Miscellaneous Operations

	C Code Examples for Accessing exacct Files
	Programming Issues With exacct Files

	Chapter 4 • Using the Perl Interface to Extended Accounting
	Extended Accounting Overview
	Perl Interface to libexacct
	Perl Interface Object Model
	Benefits of Using the Perl Interface to libexacct
	Perl Double-Typed Scalars

	Perl Modules
	Sun::Solaris::Project Module
	Sun::Solaris::Project Constants
	Sun::Solaris::Project Functions, Class Methods, and Object Methods
	Sun::Solaris::Project Exports

	Sun::Solaris::Task Module
	Sun::Solaris::Task Constants
	Sun::Solaris::Task Functions, Class Methods, and Object Methods
	Sun::Solaris::Task Exports

	Sun::Solaris::Exacct Module
	Sun::Solaris::Exacct Constants
	Sun::Solaris::Exacct Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct Exports

	Sun::Solaris::Exacct::Catalog Module
	Sun::Solaris::Exacct::Catalog Constants
	Sun::Solaris::Exacct::Catalog Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::Catalog Exports

	Sun::Solaris::Exacct::File Module
	Sun::Solaris::Exacct::File Constants
	Sun::Solaris::Exacct::File Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::File Exports

	Sun::Solaris::Exacct::Object Module
	Sun::Solaris::Exacct::Object Constants
	Sun::Solaris::Exacct::Object Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::Object Exports

	Sun::Solaris::Exacct::Object::Item Module
	Sun::Solaris::Exacct::Object::Item Constants
	Sun::Solaris::Exacct::Object::Item Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::Object::Item Exports

	Sun::Solaris::Exacct::Object::Group Module
	Sun::Solaris::Exacct::Object::Group Constants
	Sun::Solaris::Exacct::Object::Group Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::Object::Group Exports

	Sun::Solaris::Exacct::Object::_Array Module
	Sun::Solaris::Exacct::Object::_Array Constants
	Sun::Solaris::Exacct::Object::_Array Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::Object::_Array Exports

	Perl Code Examples
	Output From the Perl dump Method

	Chapter 5 • Resource Controls in Oracle Solaris
	Overview of Resource Controls
	Resource Controls Flags and Actions
	rlimit, Resource Limit
	rctl, Resource Control
	Resource Control Values and Privilege Levels
	Local Actions and Local Flags
	Global Actions and Global Flags
	Resource Control Sets Associated With a Zone, Project, Processes, and Tasks
	Resource Controls Associated With a Project
	Resource Controls Associated With Tasks
	Resource Controls Associated With Processes
	Zone-Wide Resource Controls

	Signals Used With Resource Controls

	Resource Controls API Functions
	Operate on Action-Value Pairs of a Resource Control
	Operate on Local Modifiable Values
	Retrieve Local Read-Only Values
	Retrieve Global Read-Only Actions

	Resource Control Code Examples
	Master Observing Process for Resource Controls
	List all the Value-Action Pairs for a Specific Resource Control
	Set project.cpu-shares and Add a New Value
	Set LWP Limit Using Resource Control Blocks

	Programming Issues Associated With Resource Controls
	zonestat Utility for Monitoring Zones Resource Usage

	Chapter 6 • Resource Pools in Oracle Solaris
	Overview of Resource Pools
	Scheduling Class

	Dynamic Resource Pool Constraints and Objectives
	System Properties
	Pools Properties
	Processor Set Properties

	Using libpool to Manipulate Pool Configurations
	Manipulate psets

	Resource Pools API Functions
	Functions for Operating on Resource Pools and Associated Elements
	Functions for Querying Resource Pools and Associated Elements

	Resource Pool Code Examples
	Ascertain the Number of CPUs in the Resource Pool
	List All Resource Pools
	Report Pool Statistics for a Given Pool
	Set pool.comment Property and Add New Property

	Programming Issues Associated With Resource Pools
	zonestat Utility for Monitoring Resource Pools in Oracle Solaris Zones

	Chapter 7 • Design Considerations for Resource Management Applications in Oracle Solaris Zones
	Oracle Solaris Zones Overview
	IP Networking in Oracle Solaris Zones
	About Applications in Oracle Solaris Zones
	General Considerations When Writing Applications for Non-Global Zones
	Specific Considerations for Oracle Solaris 10 Non-Global Zones
	Specific Considerations for Shared-IP Non-Global Zones

	Packaging Considerations in solaris Zones
	API for Zones Monitoring Statistics
	Monitoring Zone File System Activity
	Oracle Solaris 10 Zones
	Oracle Solaris Kernel Zones

	Chapter 8 • Project Configuration Examples
	/etc/project Project File
	Define Two Projects
	Configure Resource Controls
	Configure Resource Pools
	Configure FSS project.cpu-shares for a Project
	Configure Five Applications with Different Characteristics

	Index

