
Internationalizing and Localizing
Applications in Oracle Solaris

Part No: E54758
March 2019

Internationalizing and Localizing Applications in Oracle Solaris

Part No: E54758

Copyright © 2014, 2019, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Référence: E54758

Copyright © 2014, 2019, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d'utilisation et
de divulgation. Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence, transmettre,
distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous
invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est livré sous licence au Gouvernement des Etats-Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le
compte du Gouvernement des Etats-Unis, la notice suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être
utilisé dans des applications à risque, notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou ce matériel dans le cadre
d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour des
applications dangereuses.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d'autres propriétaires
qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une
marque déposée de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de
tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée
dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des
dommages causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Accès aux services de support Oracle

Les clients Oracle qui ont souscrit un contrat de support ont accès au support électronique via My Oracle Support. Pour plus d'informations, visitez le site http://www.oracle.com/
pls/topic/lookup?ctx=acc&id=info ou le site http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs si vous êtes malentendant.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Using This Documentation ...  7

1 Internationalization and Localization Overview ..  9
Overview of Locales ...  9

C Locale ..  9
Locale Categories ..  10
Core Locales ..  11

About Internationalization ...  12
About Localization ..  13

2 Programming Interfaces in the libc Library ..  15
Programming Standards ..  15
Managing System Locales ..  15

Locale-Sensitive Functions ..  16
Locale Functions ...  16
Functions for Retrieving and Formatting the Locale Data ..............................  18

Handling Messages ..  19
gettext APIs ...  19
X/Open catgets APIs ..  28

Converting Codesets ..  29
Converting Codesets by Using iconv Functions ..  30
Functions for Converting Between Unicode Codesets ................................... 34
Processing UTF-8 Strings ...  34

Handling Characters and Character Strings ..  34
Character Types and Definitions ..  35
Integer Coded Character Classification Functions ..  36
Wide-Character Classification Functions ..  37
Character Transliteration Functions ...  39

5

Contents

String Collation ...  40
Conversion Between Multibyte and Wide Characters ...................................  41
Wide-Character Strings ...  42
Wide-Character Input and Output ...  44

Using Regular Expressions .. 45

6 Internationalizing and Localizing Applications in Oracle Solaris • March 2019

Using This Documentation

■ Overview – Describes the processes for internationalization and localization of applications
in the Oracle Solaris 11.3 operating system.

■ Audience – This guide is intended for programmers who want to create internationalized or
localized applications for use with Oracle Solaris 11, with an emphasis on C programming
language interfaces.

■ Required knowledge – This guide assumes basic competence in programming and
familiarity with the C programming language and the UNIX operating system. This guide
also assumes basic knowledge of the internationalization and localization concepts. This
guide assumes that you have the following documentation available for reference:
■ Oracle Solaris 11.3 Programming Interfaces Guide – Describes the Oracle Solaris 11

network and system interfaces used by application developers.
■ International Language Environments Guide for Oracle Solaris 11.3 – Provides an

overview of Oracle Solaris 11 internationalization and localization features and tools for
users and system administrators.

■ Oracle Developer Studio 12.6: C User's Guide and Oracle Developer Studio 12.6: C++
User's Guide– Provides compiler documentation.

■ The Single UNIX Specification, Version 3 – This document, also referred to as SUSv3,
is the IEEE Standard (IEEE Std 1003.1-2001) and The Open Group Technical Standard
that the Oracle Solaris OS implements.

■ The Single UNIX Specification, Version 4 – This document, also referred to as SUSv4, is
the latest version of the standard and the IEEE Std 1003.1-2008.

■ The Unicode Standard, Version 6.0.0 (Mountain View, CA: The Unicode Consortium,
2011. ISBN 978-1-936213-01-6)
http://www.unicode.org/versions/Unicode6.0.0/ – The Unicode Standard that the Oracle
Solaris OS implements.

■ CLDR - Unicode Common Locale Data Repository – A Unicode project providing a
standard repository of locale data.

■ The Report of the IAB Character Set Workshop held 29 February - 1 March, 1996 –
Provides a good description of the issues with character sets.

Using This Documentation 7

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=OSPIG
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=ILEGD
https://docs.oracle.com/cd/E77782_01/html/E77788/
https://docs.oracle.com/cd/E77782_01/html/E77789/index.html
https://docs.oracle.com/cd/E77782_01/html/E77789/index.html
http://www.unix.org/version3/
http://www.unix.org/version4/
http://www.unicode.org/versions/Unicode6.0.0/
http://cldr.unicode.org/
https://www.rfc-editor.org/info/rfc2130

Product Documentation Library

■ CJKV Information Processing, 2nd Edition, by Ken Lunde, O'Reilly Media,
2008 – Provides information about Chinese, Japanese, Korean, and Vietnamese
internationalization.

This guide includes many references to Oracle Solaris manual pages. The manual pages are
online under Oracle Solaris 11.3 Information Library.
If you have installed the man page package on a running Oracle Solaris installation, you
can use the man command. For example, the manual page for the iconv function from
the Standard C Library Functions is referred to as iconv(3C), and can be viewed by the
following command:

$ man -s 3C iconv

Product Documentation Library

Documentation and resources for this product and related products are available at http://www.
oracle.com/pls/topic/lookup?ctx=E53394-01.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

8 Internationalizing and Localizing Applications in Oracle Solaris • March 2019

https://docs.oracle.com/cd/E53394_01/
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aiconv-3c
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01
http://www.oracle.com/goto/docfeedback

 1 ♦ ♦ ♦ C H A P T E R 1

Internationalization and Localization Overview

Internationalization and localization are different procedures. Internationalization is the process
of making software portable between languages or regions, while localization is the process
of adapting software for specific languages or regions. Internationalized software is developed
using interfaces that modify program behavior at runtime in accordance with specific cultural
requirements. Localization involves establishing online information to support a language or
region also called a locale.

Internationalized software works with different native languages and customs and can
be ported from one locale to another without rewriting the software. The Oracle Solaris
system is internationalized, providing the infrastructure and interfaces you need to create
internationalized software.

Overview of Locales

A locale is a collection of language and cultural convention data for a specific region. In the
context of a UNIX operating system such as Oracle Solaris, the term locale has a specific
meaning defined by a set of standards. See the International Language Environments Guide for
Oracle Solaris 11.3 for detailed explanation.

C Locale

The C locale, also known as the POSIX locale, is the POSIX system default locale for all POSIX-
compliant systems. The Oracle Solaris operating system is a POSIX system. The Single UNIX
Specification, Version 3, defines the C locale. Register at http://www.unix.org/version3/
online.html to read and download the specification.
To run the internationalized programs in the C locale use any of the following ways:

■ Unset all locale environment variables. Runs the application in the C locale.

Chapter 1 • Internationalization and Localization Overview 9

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=ILEGD
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=ILEGD
http://www.unix.org/version3/online.html
http://www.unix.org/version3/online.html

Overview of Locales

$ unset LC_ALL LANG LC_CTYPE LC_COLLATE LC_NUMERIC LC_TIME LC_MONETARY LC_MESSAGES

■ Explicitly set the locale to C or POSIX.

$ LC_ALL=C

$ export LANG=C

Some applications check the LANG environment variables without actually calling
setlocale(3C) to reference the current locale. In this case, shell is explicitly set to the C
locale by specifying the LC_ALL and LANG locale environment variables. For the precedence
relationship among locale environment variables, see the setlocale(3C) man page.

To check the current locale settings in a terminal environment, run the locale(1) command.

$ locale

LANG=C

LC_CTYPE="C"

LC_NUMERIC="C"

LC_TIME="C"

LC_COLLATE="C"

LC_MONETARY="C"

LC_MESSAGES="C"

LC_ALL=

Locale Categories

The types of locale categories are as follows:

LC_CTYPE Character classification and case conversion.

LC_TIME Specifies date and time formats, including month names, days of the
week, and common full and abbreviated representations.

LC_MONETARY Specifies monetary formats, including the currency symbol for the locale,
thousands separator, sign position, the number of fractional digits, and so
forth.

LC_NUMERIC Specifies the decimal delimiter (or radix character), the thousands
separator, and the grouping.

LC_COLLATE Specifies a collation order and regular expression definition for the
locale.

10 Internationalizing and Localizing Applications in Oracle Solaris • March 2019

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Asetlocale-3c

Overview of Locales

LC_MESSAGES Specifies the language in which the localized messages are written, and
affirmative and negative responses of the locale (yes and no strings and
expressions).

LO_LTYPE Specifies the layout engine that provides information about language
rendering. Language rendering (or text rendering) depends on the shape
and direction attributes of a script.

Core Locales

The Oracle Solaris core locales are as follows:

Chinese-Simplified zh_CN.UTF-8

Chinese-Traditional zh_TW.UTF-8

English en_US.UTF-8

French fr_FR.UTF-8

German de_DE.UTF-8

Italian it_IT.UTF-8

Japanese ja_JP.UTF-8

Korean ko_KR.UTF-8

Portuguese-
Brazilian

pt_BR.UTF-8

Spanish es_ES.UTF-8

Core locales have better coverage at the level of localized messages than the locales available
for additional installation. Oracle Solaris OS components such as Installer or Package Manager
are localized only in core locales while localized messages for third-party software such as
GNOME or Firefox are often available in more locales.

All locales in the Oracle Solaris environment are capable of displaying localized messages,
provided that the localized messages for the relevant language and application are present.
Additional locales including their localized messages can be added to the system from the
installation repository by modifying the pkg facet properties.

Chapter 1 • Internationalization and Localization Overview 11

About Internationalization

About Internationalization

The word internationalization is often abbreviated as i18n, because there are 18 letters
between the letter i and n. Although there are different definitions of what internationalization
means, in this book, internationalization means making programs generic and flexible so that
requirements for markets around the world are accommodated.

Part of internationalization is making the product localizable, so that the user interface (UI) of
an application can be translated with minimal changes in the source code of the application.

For example, consider a message text in a C program that is coded as follows:

 /* This is not internationalized code */

 printf("This message needs internationalization.");

This message when externalized into a message catalog using the gettext command is written
as follows:

 /* This is internationalized code */

 printf("%s", gettext("This message is now internationalized."));

Another important part of internationalization is to allow processing of data belonging to
different locales without changing the source code.

For example, consider that you have to sort an array of strings. Without internationalization, the
source code would be as follows:

 /* This is not internationalized code, since strcmp() compares byte

 values, producing an invalid sort order */

 if (strcmp((const char *)string[q], (const char *)string[p]) > 0) {

 temp = string[q];

 string[q] = string[p];

 string[p] = temp;

 }

This method of sorting works if the characters to be processed are only from the English locale.
However, for the code to handle characters from different locales, you must use locale-sensitive
functions. Using a locale-sensitive function, the sorting method is written as follows:

 /* This is internationalized code, since strcoll() uses locale

 information to determine sort order */

 if (strcoll((const char *)string[q], (const char *)string[p]) > 0) {

 temp = string[q];

 string[q] = string[p];

 string[p] = temp;

12 Internationalizing and Localizing Applications in Oracle Solaris • March 2019

About Localization

 }

About Localization

The word localization is often abbreviated as l10n, because there are 10 letters between the l
and the n. Localization is the process of customizing an application for a particular locale. For
example, customization involves the following activities:

■ Translating the user interface and related documentation into a different language.
■ Altering some format fields in resource files according to the locale conventions, for

example, changing the date format from mm/dd/yy to yy/mm/dd.
■ Adding code modules that implement locale-specific functionality, for example, an input

method editor for Japanese or a module that calculates Hebrew calendar dates.

Chapter 1 • Internationalization and Localization Overview 13

14 Internationalizing and Localizing Applications in Oracle Solaris • March 2019

 2 ♦ ♦ ♦ C H A P T E R 2

Programming Interfaces in the libc Library

This chapter describes selected application programming interfaces (APIs) related to
internationalization and localization, which are available in the Oracle Solaris C library (Solaris
libc). It also provides code samples which describe the APIs.

Programming Standards

The Oracle Solaris OS supports numerous standards and specifications. The Oracle Solaris
11 release is certified and registered with the UNIX 03 brand conforming to the Single UNIX
Specification, Version 03 (SUSv3) standard. This standard is managed by The Open Group
industry consortium.

Software developers writing applications in the Oracle Solaris environment should be aware of
these standards. Developers can declare that an application complies with a specific standard
by using specific compiler options. The standards that are supported by Oracle Solaris and their
related compiler options are outlined in the standards(5) manual page.

Managing System Locales

The locale setting of an application determines how the application behaves in different locales.
The locale setting is the single most important setting when dealing with internationalized
applications. From a user's perspective, the locale affects many aspects of application's
behavior, and from the programmer's perspective, it affects the behavior of many interfaces that
the system provides. Properly written internationalized applications need to correctly set the
locale.

For more information about locales and how they affect a program's behavior, see International
Language Environments Guide for Oracle Solaris 11.3.

Chapter 2 • Programming Interfaces in the libc Library 15

http://docs.oracle.com/cd/E26502_01/html/E29043/standards-5.html#scrolltoc
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=ILEGD
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=ILEGD

Managing System Locales

Caution - All the internationalized interfaces are MT-Safe with exceptions as mentioned in
the setlocale(3C) man page. For more information about interface classification, see “MT
Interface Safety Levels” in Multithreaded Programming Guide.

Locale-Sensitive Functions

The functions described in this book are locale sensitive. The output of the functions depends
on the locale of the process.

In a C program, the locale is set by using the setlocale() function. The setlocale() function
must be called early in a program so that other functions can use the locale information.

Note - If you do not set any locale in your program, by default the program runs in the C locale.
For more information about the C locale, see “C Locale” on page 9.

Locale Functions

The functions related to system locales are as follows:

setlocale() Set the program locale

localelist() Query installed locales

localelistfree() Free memory associated with a localelist() call

The localelist() function is used to query the locales which are installed on a system.
For information about how to install additional locales on an Oracle Solaris system, see
International Language Environments Guide for Oracle Solaris 11.3.

For more information, see the setlocale(3C), localelist(3C), localelistfree(3C),
environ(5), locale_alias(5), langinfo.h(3HEAD), and nl_types.h(3HEAD) man pages.

EXAMPLE 1 Setting the Locale of a Program

The following code fragment shows how to set the locale to en_US.UTF-8.

#include <locale.h>

16 Internationalizing and Localizing Applications in Oracle Solaris • March 2019

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Asetlocale-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784-01&id=MTPcompat-59005
http://www.oracle.com/pls/topic/lookup?ctx=E36784-01&id=MTPcompat-59005
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=ILEGD
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Asetlocale-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Alocalelist-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Alocalelistfree-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5locale-alias-5
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Flanginfo.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Fnl-types.h-3head

Managing System Locales

 :

(void) setlocale(LC_ALL, "en_US.UTF-8");

Note - If you want to use the locale information from the user environment, pass an empty
string ("") as an argument to the setlocale() function. For information, see the setlocale(3C)
and environ(5) man pages.

EXAMPLE 2 Querying the Locale of a Program

The following code fragment shows how to query the current locale.

#include <locale.h>

 :

char *locale;

 :

locale = setlocale(LC_ALL, NULL);

In this example, the locale variable is set to the current locale of the program.

EXAMPLE 3 Using the Locale Settings From the User Environment

The following code fragment shows how to set the env_locale variable to use the locale
settings from the user environment.

#include <locale.h>

 :

char *env_locale;

env_locale = setlocale(LC_ALL, "");

For example, if the locale in the user environment is es_ES.UTF-8, the env_locale variable is
set to es_ES.UTF-8.

Note - When the environment has different values set for different locale categories (also called
the composite locale setting), the call to the setlocale function with the LC_ALL category,
returns a string that contains values for all the categories separated by the slash character "/".
For example:

"/es_ES.UTF-8/es_ES.UTF-8/es_ES.UTF-8/es_ES.UTF-8/es_ES.UTF-8/de_DE.UTF-8"

This string includes the categories LC_CTYPE, LC_NUMERIC, LC_TIME, LC_COLLATE, LC_MONETARY,
and LC_MESSAGES, where LC_MESSAGES was set in the environment to de_DE.UTF-8.

Chapter 2 • Programming Interfaces in the libc Library 17

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Asetlocale-3c

Managing System Locales

Functions for Retrieving and Formatting the
Locale Data
The functions to retrieve and format the locale data are as follows:

localeconv() Retrieve numeric formatting information

nl_langinfo() Retrieve language and the locale information

strftime() Convert date and time to a string

strptime() Convert character string to a time structure

strfmon() Convert monetary value to a string

These functions are used to query locale-specific data, such as the time format or currency
symbol. The functions can also be used to format time, numeric, or monetary information
according to regional conventions. For more information, see the langinfo.h(3HEAD) and
mktime(3C) man pages.

EXAMPLE 4 Obtaining the Codeset Name of a Locale

The following code fragment shows how to obtain the codeset of the current program's locale.

#include <langinfo.h>

:

char *cs;

cs = nl_langinfo(CODESET);

In this example, for the C locale, the cs variable points to the string "646", which is the
canonical name for the US-ASCII codeset. For more information about codesets, see
“Converting Codesets” on page 29.

EXAMPLE 5 Querying the Affirmative Response String of a Locale

The following code fragment shows how to set the yesstr variable to the yes/no string, which
is used for the affirmative response of the current locale.

#include <langinfo.h>

:

char *yesstr;

yesstr = nl_langinfo(YESSTR);

For example, in the es_ES.UTF-8 locale, yesstr will point to the string sí.

18 Internationalizing and Localizing Applications in Oracle Solaris • March 2019

Handling Messages

EXAMPLE 6 Printing the Local Time

The following code fragment shows how to display the current date and time formatted
according to the regional conventions of the locale that is set for the environment.

#include <stdio.h>

#include <locale.h>

#include <time.h>

 :

char *locale, ftime[BUFSIZ];

time_t t;

locale = setlocale(LC_ALL, "");

if (locale == NULL) {

/* handle error */

}

if (0 != strftime(ftime, BUFSIZ, (char *)NULL, localtime(&t))) {

(void) printf("%s - %s\n", locale, ftime);

}

Handling Messages

Any user-based application will display text information to the user, for example, menu choices,
warning messages, window titles and so on. When an application is localized, the text displayed
to the user must also be in the localized language.
The two sets of APIs for handling messages are described in the following sections:

■ “gettext APIs” on page 19
■ “X/Open catgets APIs” on page 28

gettext APIs

Text messages to be localized must be separated from the source code of the application and
stored in a separate file. These files are referred to as message bundles, message catalogs, or
portable message files. Every programming language provides a set of tools to work with these
files. For example, in programming languages, such as the C, Python, and Perl programming
languages provide gettext functions for translating messages.

You create portable message files with the gettext utility. These files are in plain text, and have
.po as the file extension. You send the portable message file to translators for translation, and

Chapter 2 • Programming Interfaces in the libc Library 19

How to Generate Localized Message Objects for a Shell Script

the translators update the file with the translated text. Post translation, the .po file contains the
message ID with the corresponding translated text. For example:

$ cat cs.po

.

.

#: code.c:37

#,c-format

msgid "My hovercraft is full of eels.\n"

msgstr "Moje vznášedlo je plné úhořů.\n"

However, you can improve the performace of the system by converting a portable object file to
a message object file. A message object file has .mo as the file extension. To convert a portable
object file to a message object file, use the msgfmt utility.

Note - If the messages are wrapped in the gettext functions, translation is done depending on
the current locale. This way the original text messages are used as keys to the message catalog.

How to Generate Localized Message Objects for a Shell Script

1. Prepend /usr/gnu/bin to your PATH environment variable in order to use the GNU
versions of the gettext tools.

2. Extract messages from the shell script into a message file template using the
xgettext command.

3. Create a portable message (.po) file specific to the translation language by using
the msginit command.

4. Translate the created messages in the .po file.

5. Create the LC_MESSAGES directory in the directory specified by the TEXTDOMAINDIR
environment variable.

6. Either create symbolic links or set the LANGUAGE variable.

7. Create the message object (.mo) file.

Example 7 Generating Localized Message Objects for a Shell Script

This example shows how to generate localized message objects for a shell script. It assumes that
you have the following shell script that has calls to the gettext function.

#!/usr/bin/bash

20 Internationalizing and Localizing Applications in Oracle Solaris • March 2019

How to Generate Localized Message Objects for a Shell Script

#

set TEXTDOMAIN and TEXTDOMAINDIR as per the gettext(1) manual page

TEXTDOMAIN=test_gettext_sh

export TEXTDOMAIN

TEXTDOMAINDIR=/home/xxxxx/lib/locale

export TEXTDOMAINDIR

PATH=/usr/gnu/bin:/usr/bin

export PATH

source gettext.sh for using eval_gettext and eval_ngettext

. gettext.sh

f="filename.dat"

Use eval_gettext or eval_ngettext if it refers to shell variables

TRANSLATORS: $f is replaced with a file name

eval_gettext "\$f not found"; echo

gettext "file not found"; echo

echo "`eval_gettext "\\\$f not found"`"

echo "`gettext "file not found"`"

For this shell script, you can create localized message objects by using the following steps:

1. Prepend usr/gnu/bin to your PATH environment variable in order to use the GNU versions
of gettext tools.

$ PATH=/usr/gnu/bin:$PATH

2. Extract messages from the shell script into a message file template using the xgettext
command.

$ xgettext -c"TRANSLATORS:" -L"Shell" test_gettext.sh

A file called messages.po is created, which contains the header information and the
message strings from the shell script. It also includes the explanatory comments for the
translators. The following example shows an excerpt of the messages.po file:

#. TRANSLATORS: $f is replaced with a file name

#: test_gettext.sh:18 test_gettext.sh:21

#, sh-format

msgid "$f not found"

msgstr ""

#: test_gettext.sh:19 test_gettext.sh:22

msgid "file not found"

msgstr ""

Chapter 2 • Programming Interfaces in the libc Library 21

How to Generate Localized Text Messages for a C Program

3. Create a portable message (.po) file which is specific to the translation language by using
the msginit command. For example, use the following command to create a .po file for the
Japanese ja_JP.UTF-8 locale:

$ msginit --no-translator --locale=ja_JP.UTF-8 --input=messages.po

A file called ja.po is created.
4. Translate the messages in the ja.po file.
5. Create the LC_MESSAGES directory in the directory specified by the TEXTDOMAINDIR

environment variable.

$ mkdir -p lib/locale/ja/LC_MESSAGES

6. Either create symbolic links or set the LANGUAGE variable.
■ Create symbolic links

$ ln -s ja lib/locale/ja_JP.UTF-8

■ Set the LANGUAGE variable.

$ LANGUAGE=ja_JP.UTF-8:ja

$ export LANGUAGE

7. Create the message object (.mo) file.

$ msgfmt -o lib/locale/ja/LC_MESSAGES/test_gettext_sh.mo ja.po

How to Generate Localized Text Messages for a C Program

1. Prepend /usr/gnu/bin to your PATH environment variable.

2. Extract messages from the source code into the message file template using the
xgettext command.

3. Create another .po file for the LC_TIME locale category.

4. Create portable message (.po) files specific to the translation language by using
the msginit command.

5. Translate the created .po files.

6. Create the LC_MESSAGES and LC_TIME directories in the directory specified by the
LOCALEDIR variable.

7. Either create symbolic links or set the LANGUAGE variable.

22 Internationalizing and Localizing Applications in Oracle Solaris • March 2019

How to Generate Localized Text Messages for a C Program

8. Create the message object (.mo) files.

Example 8 Generating Localized Text Messages for a C Program

This example shows how to generate localized message objects for a C program. It assumes that
you have the following C program that has calls to the gettext function.

#include <stdio.h>

#include <sys/types.h>

#include <libintl.h>

#include <locale.h>

#include <time.h>

/*

 * _() is used for the strings to extract messages.

 * N_() is used for the string array message to extract messages.

 * T_() is used for the strings to extract messages with working on LC_TIME

 */

#define _(String) gettext (String)

#define gettext_noop(String) String

#define N_(String) gettext_noop (String)

#define T_(String) gettext_noop (String)

#define LOCALEDIR "/home/xxxxx/lib/locale"

#define PACKAGE "test_gettext"

static const char *msg[] = {

 N_("The first message"),

 N_("The second message"),

};

int main(int ac, char **av)

{

 char *file = "test.dat";

 int line = 40;

 int column = 10;

 time_t tloc;

 char time_buf[BUFSIZ];

 setlocale(LC_ALL, "");

 bindtextdomain(PACKAGE, LOCALEDIR);

 textdomain(PACKAGE);

 /*

 * By default, the characters are converted to current locale's encoding.

 * If this is not desired, call bind_textdomain_codeset(). For example,

Chapter 2 • Programming Interfaces in the libc Library 23

How to Generate Localized Text Messages for a C Program

 * if you want "UTF-8" encoding, specify "UTF-8" in the second argument.

 *

 * bind_textdomain_codeset("test_gettext", "UTF-8");

 */

 printf(_("This is a test\n"));

 printf("%s\n", _(msg[0]));

 printf("%s\n", _(msg[1]));

 /* TRANSLATORS:

 First %d is replaced by a line number.

 Second %d is replaced by a column number.

 %s is replaced by a file name. */

 printf(_("ERROR: invalid input at line %1$d, %2$d in %3$s\n"),

 line, column, file);

 /*

 * strftime() works with LC_TIME not LC_MESSAGES so to get properly

 * formatted time messages we have to call dcgettext() with LC_TIME category.

 */

 (void) time(&tloc);

 (void) strftime(time_buf, sizeof (time_buf),

 /* TRANSLATORS:

 This is time format used with strftime().

 Please modify time format to fit your locale by using

 date '+%a %b %e %H:%M:%S' */

 dcgettext(NULL, T_("%a %b %e %H:%M:%S"), LC_TIME),

 localtime(&tloc));

 printf("%s\n", time_buf);

 return(0);

}

For this C program, you can create localized message objects using the following steps:

1. Prepend /usr/gnu/bin to your PATH environment variable:

$ PATH=/usr/gnu/bin:$PATH

2. Extract messages from the source code into the message file template using the xgettext
command:

$ xgettext -c"TRANSLATORS:" -k -k"_" -k"N_" -L"C" test_gettext.c

The messages.po file is created for the LC_MESSAGES locale category. It contains the header
information and the message strings including the explanatory comments for the translators.
The following example shows an excerpt of the messages.po file:

#: test_gettext.c:21

msgid "The first message"

24 Internationalizing and Localizing Applications in Oracle Solaris • March 2019

How to Generate Localized Text Messages for a C Program

msgstr ""

#: test_gettext.c:22

msgid "The second message"

msgstr ""

#: test_gettext.c:43

#, c-format

msgid "This is a test\n"

msgstr ""

#. TRANSLATORS:

#. First %d is replaced by a line number.

#. Second %d is replaced by a column number.

#. %s is replaced by a file name.

#: test_gettext.c:51

#, c-format

msgid "ERROR: invalid input at line %1$d, %2$d in %3$s\n"

msgstr ""

3. Create another .po file for the LC_TIME locale category:

$ xgettext -c"TRANSLATORS:" -k -k"T_" -L"C" -o messages_t.po test_gettext.c

The messages_t.po file is created for the LC_TIME locale category.
4. Create portable message (.po) files which are specific to the translation language by using

the msginit command.
For example, use the following command to create a portable file messages for the Japanese
ja_JP.UTF-8 locale:

$ msginit --no-translator --locale=ja_JP.UTF-8 \

 --input=messages.po

$ msginit --no-translator --locale=ja_JP.UTF-8 --input=messages_t.po \

 --output-file=ja_t.po

The ja.po and ja_t.po files are created.
5. Translate the created ja.po and ja_t.po files.
6. Create the LC_MESSAGES and LC_TIME directories in the directory specified by the LOCALEDIR

variable.

$ mkdir -p lib/locale/ja/LC_MESSAGES lib/locale/ja/LC_TIME

7. Either create symbolic links or set the LANGUAGE variable:
■ Create symbolic links.

Chapter 2 • Programming Interfaces in the libc Library 25

How to Generate Localized Text Messages for a C Program

$ ln -s ja lib/locale/ja_JP.UTF-8

■ Set the LANGUAGE variable.

$ LANGUAGE=ja_JP.UTF-8:ja

$ export LANGUAGE

8. Create the message objects (.mo files).

$ msgfmt -o lib/locale/ja/LC_MESSAGES/test_gettext.mo ja.po

$ msgfmt -o lib/locale/ja/LC_TIME/test_gettext.mo ja_t.po

Message Object File Format

The message object files are created in the following format:

/usr/lib/locale/locale/category/textdomain.mo

The path has several components:

/usr/lib/locale The default path predicate for the message object files. For example,
in case of text domain collisions, the path is specified by a call to the
bindtextdomain() function. In the case of third party software, the
message object files will be available in /usr/share/locale directory.

locale The locale directory.

category The locale category.

textdomain.mo The text domain specified by a textdomain() function call. It is a unique
identifier and the file name for the message catalog.

Consider the following example:

/usr/lib/locale/it_IT.UTF-8/LC_MESSAGES/mymessages.mo

where:

it_IT.UTF-8 The locale directory. This message object contains translations for
Italian language and will be used for this locale and any other which are
symbolic links to this directory.

LC_MESSAGES The locale category.

26 Internationalizing and Localizing Applications in Oracle Solaris • March 2019

How to Generate Localized Text Messages for a C Program

Note - Messages are usually in the LC_MESSAGES and LC_TIME categories.

mymessages The message catalog name.

Oracle Solaris and GNU-compatible gettext Interfaces

The Oracle Solaris gettext APIs provide support for both Oracle Solaris and GNU-compatible
message catalog files. However, some gettext APIs are specific to the GNU-compatible
message catalog files. The Solaris and GNU-compatible gettext interfaces are as follows:

gettext() Retrieve a text string from the message catalog

dgettext() Retrieve a message from a message catalog for a specific domain

textdomain() Set and query the current domain

bindtextdomain() Bind the path for a message domain

dcgettext() Retrieve a message from a message catalog for a specific domain and
category

GNU gettext Interfaces

The gettext APIs that work only with GNU-compatible message catalog files are as follows:

ngettext() Retrieve a text string from the message catalog and choose a plural form

dngettext() Retrieve a text string from the message catalog for a specific domain and
choose a plural form

bind_textdomain_codeset()Specify the output codeset for message catalogs for a domain

dcngettext() Retrieve a text string from the message catalog for a specific domain and
category and choose a plural form

For more information about GNU text message handling, see the GNU gettext reference (http:
//www.gnu.org/software/gettext/manual/gettext.html).

For more information about gettext functions, see the msgfmt(1), xgettext(1), and gettext(1)
man pages.

Chapter 2 • Programming Interfaces in the libc Library 27

http://www.gnu.org/software/gettext/manual/gettext.html
http://www.gnu.org/software/gettext/manual/gettext.html

How to Generate Localized Text Messages for a C Program

Message Handling Tools

The gettext provides functions and command-line tools to create and handle message object
files. Oracle Solaris message objects have a different format from GNU gettext message
objects. The Oracle Solaris variants of command-line tools to handle messages are as follows:

/usr/bin/gettext Retrieve a text string from the message catalog

/usr/bin/msgfmt Create a message object from a portable message file

/usr/bin/

xgettext

Retrieve calls to gettext strings from C programs

The GNU variants of the command-line tools to handle messages are as follows:

/usr/bin/

ggettext

Retrieve a text string from the message catalog

/usr/bin/gmsgfmt Create a message object from a message file

/usr/bin/

gxgettext

Retrieve gettext call strings

To distinguish from Oracle Solaris tools, the GNU variant tools are prefixed with the letter g,
and are symbolic links to the /usr/gnu/bin directory. For example, /usr/bin/ggettext is a
symbolic link to /usr/gnu/bin/gettext.

The GNU gettext tools are part of the text/gnu-gettext package, which also includes other
utilities for processing message catalogs.

Note - The Python gettext implementation supports only the GNU gettext message object
format. Therefore, for Python programs, you must create GNU compatible message objects.

For more information, see the msgcat(1), msgcmp(1), and msgmerge(1) man pages.

X/Open catgets APIs

The X/Open catgets tools and interfaces use numbers as keys to the message catalog.
Therefore, you can have different translations for the same string by using an unique numeric
identifier as a key. However, source code maintenance could be an issue. For example, when
an English message is updated, gettext displays the updated English message in the localized
environment until the updated translations are in place. This practice helps to identify the

28 Internationalizing and Localizing Applications in Oracle Solaris • March 2019

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1msgcat-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1msgcmp-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1msgmerge-1

Converting Codesets

messages that need to be updated. But, in the case of catgets, the localized environment
continues to display the outdated translations unless the numeric key to the message is changed
along with the updated English message.

Note - In Oracle Solaris the catgets APIs that have been added in the X/Open standard are not
commonly used. Unless compliance with the X/Open standard is required, use gettext APIs
and tools.

The X/Open catgets interfaces for handling messages are as follows:

catopen() Open a message catalog

catgets() Read a program message

catclose() Close a message catalog

The command-line tools used with the X/Open catgets interfaces are as follows:

/usr/bin/gencat Generate a formatted message catalog

/usr/bin/genmsg Extract messages from source files

Converting Codesets

In systems, characters are represented as unique scalar values. These scalar values are handled
as bytes or byte sequences. The coded character set is the character set plus the mappings
between the characters and the corresponding unique scalar values. These unique scalar values
are called codeset. For example, 646 (also called US-ASCII) is a codeset as per the ISO/IEC
646:1991 standard for the basic Latin alphabet. The following table shows other examples of
codesets:

Codeset Character Representation

US-ASCII A 0x41

ISO 8859-2 Č 0xC8

EUC-KR Full-width Latin A 0xA3 0xC1

The Unicode standard adds another layer and maps each character to a code point, which is a
number between 0 and 1,114,111. This number is represented differently in each of the Unicode
encoding forms, such as UTF-8, UTF-16, or UTF-32. For example:

Chapter 2 • Programming Interfaces in the libc Library 29

Converting Codesets

Codeset Character Code point Encoding Representation

UTF-8 0xEF 0xBC 0xA1Unicode FULLWIDTH
LATIN CAPITAL
LETTER A

65,313 or 0xFF21

UTF-16LE 0x21 0xFF

Note - A codeset is also referred to as an encoding. Even though, there is a distinction between
these terms, codeset and encoding are used interchangeably.

Code conversion or codeset conversion means converting the byte or byte sequence
representations from one codeset to another codeset. A common approach to conversion is to
use the iconv() family of functions. Some of the terms used in the area of code conversion and
iconv() functions are as follows:

Single-byte codeset Codeset that maps the characters to a set of values ranging from 0 to 255,
or 0x00 to 0xFF. Therefore, a character is represented in a single byte.

Multibyte codeset Codeset that maps some or all of the characters to more than one byte.

Illegal character Invalid character in an input codeset.

Shift sequence Special sequence of bytes in a multibyte codeset that does not map to a
character but instead is a means of changing the state of the decoder.

Incomplete
character

Sequence of bytes that does not form a valid character in an input
codeset. However, it may form a valid character on a subsequent call to
the conversion function, such as the iconv() function, when additional
bytes are provided from the input. This is common when converting a
multibyte stream.

Non-identical
character

Character that is valid in the input codeset but for which an identical
character does not exist in the output codeset.

Non-identical
conversion

Conversion of a non-identical character. Depending on the
implementation and conversion options, these characters can be omitted
in the output or replaced with one or more characters indicating that a
non-identical conversion occurred. The Oracle Solaris iconv() function
replaces non-identical characters with a question mark ('?') by default.

Converting Codesets by Using iconv Functions
The iconv() functions available in the libc library for code conversion are described as
follows:

30 Internationalizing and Localizing Applications in Oracle Solaris • March 2019

Converting Codesets

iconv_open() Code conversion allocation function

iconv() Code conversion function

iconv_close() Code conversion deallocation function

iconvctl() Control and query the code conversion behavior

iconvstr() String-based code conversion function

iconv() functions enable the code conversion of characters or a sequence of characters from
one codeset to another. The iconv_open() function supports various codesets. You can display
information about supported codesets and their aliases currently available on a system by
running the following command:

$ iconv -l

Because iconv modules come in multiple packages, you can extend the default list of available
conversions by installing additional packages. The default installation includes the system/
library/iconv/utf-8 package, which covers the basic set of iconv modules for conversions
among UTF-8, Unicode, and other selected codesets.

You can install additional packages by using the Package Manager application or the pkg
command. If you are using the Package Manager for installation, the additional packages are
available in the System/Internationalization category. If you are using the pkg command,
use the system/library/iconv/* name pattern for installation.

The iconv conversion modules are in the form of fromcode%tocode.so and must be present
in the iconv module library under the /usr/lib/iconv directory for the iconv functions to
use them. Therefore, you cannot convert between any two codesets listed by the iconv -l
command. When all the iconv packages are installed and a required module is not available,
you can do a two-step conversion using a Unicode encoding, for example, UTF-32, as an
intermediary codeset. Alternately, you can develop a custom conversion module. To create
custom iconv conversion modules use the geniconvtbl utility. For information about the input
file format for the geniconvtbl utility, see the geniconvtbl(4) man page.

EXAMPLE 9 Creating Conversion Descriptor Using iconv_open()

The following code fragment shows how to use the iconv_open() function for converting the
string złoty (currency of Poland) from the single-byte ISO 8859-2 codeset to UTF-8. In order to
perform the conversion with iconv, you need to create a conversion descriptor with a call to the
iconv_open() function and verify that the call was successful.

#include <iconv.h>

#include <stdio.h>

Chapter 2 • Programming Interfaces in the libc Library 31

Converting Codesets

iconv_t cd;

 :

cd = iconv_open("UTF-8", "ISO8859-2");

if (cd == (iconv_t)-1) {

 (void) fprintf(stderr, "iconv_open() failed");

 return(1);

}

The target codeset is the first argument to the iconv_open() function.

EXAMPLE 10 Conversion Using iconv()

The following code fragment shows how to convert one codeset to another using the iconv()
function.

Before the actual conversion, certain variables need to be in place to hold the information
returned by the iconv call, such as the output buffer, number of bytes left in the input and
output buffers, and so on.

The L WITH STROKE character is represented as 0xB3 in hexadecimal, in the ISO 8859-2
codeset. Therefore, the input buffer (inbuf), which holds the input string, is set for illustrational
purposes to z\xB3oty. The contents of inbuf would be a result of reading a stream or a file.

#include <iconv.h>

#include <stdio.h>

#include <errno.h>

 :

int ret;

char *inbuf;

size_t inbytesleft, outbytesleft;

char outbuf[BUFSIZ];

char *outbuf_p;

inbuf = "z\xB3oty";

inbytesleft = 5; /* the size of the input string */

For the output buffer to hold the converted string, at least 6 bytes are needed. The L WITH
STROKE character is converted to Unicode character LATIN SMALL LETTER L WITH
STROKE, represented as a two-byte sequence 0xC5 0x82 in UTF-8.

Because in most cases, the actual size of the resulting string is not known before the conversion,
make sure to allocate the output buffer with enough extra space. The BUFSIZ macro defined in
stdio.h is sufficient in this case.

outbytesleft = BUFSIZ;

outbuf_p = outbuf;

32 Internationalizing and Localizing Applications in Oracle Solaris • March 2019

Converting Codesets

This conversion call uses the conversion descriptor cd from the previous example.

ret = iconv(cd, &inbuf, &inbytesleft, &outbuf_p, &outbytesleft);

After the call to iconv, you need to check whether it succeeded. If it was successful and there is
still space in the output buffer, you need to terminate the string with a null character.

 if (ret != (size_t)-1) {

 if (outbytesleft == 0) {

 /* Cannot terminate outbuf as a character string; error return */

 return (-1);

 }

 /* success */

 *outbuf_p = '\0';

 :

 }

If the call is successful, the outbuf will contain the string in the UTF-8 codeset in hexadecimal
notation \x7a\xc5\x82\x6f\x74\x79, or z\xc5\x82oty. The inbuf will now point to the end of
the converted string. The inbytesleft will be 0. The outbytesleft is decremented by 6, which is
the number of bytes put to the output buffer. The outbuf_p points to the end of the output string
in outbuf.

If the call fails, check the errno value to handle the error cases as shown in the following code
fragment:

 if (ret != (size_t)-1)) {

 if (errno == EILSEQ) {

 /* Input conversion stopped due to an input byte that

 * does not belong to the input codeset.

 */

 :

 } else if (errno == E2BIG) {

 /* Input conversion stopped due to lack of space in

 * the output buffer.

 */

 :

 } else if (errno == EINVAL) {

 /* Input conversion stopped due to an incomplete

 * character or shift sequence at the end of the

 * input buffer.

 */

 :

 }

 }

Finally, deallocate the conversion descriptor and any memory associated with it.

iconv_close(cd);

Chapter 2 • Programming Interfaces in the libc Library 33

Handling Characters and Character Strings

Functions for Converting Between Unicode
Codesets

Functions available for converting between any two of the Unicode encoding forms UTF-8, UTF-
16, and UTF-32 are described in the following man pages:

uconv_u8tou16(9F) Convert UTF-8 string to UTF-16

uconv_u8tou32(9F) Convert UTF-8 string to UTF-32

uconv_u16tou8(9F) Convert UTF-16 string to UTF-8

uconv_u16tou32(9F) Convert UTF-16 string to UTF-32

uconv_u32tou8(9F) Convert UTF-32 string to UTF-8

uconv_u32tou16(9F) Convert UTF-32 string to UTF-16

Processing UTF-8 Strings

Functions available for processing Unicode UTF-8 strings are described in the following man
pages:

u8_textprep_str(9F) String-based UTF-8 text preparation

u8_strcmp(9F) UTF-8 string comparison function

u8_validate(9F) Validate UTF-8 characters and calculate the byte length

Note - Use the u8_textprep_str() function to convert a UTF-8 string to uppercase or
lowercase as well as to apply one of the Unicode normalization forms. For more information,
see http://unicode.org/reports/tr15/.

Handling Characters and Character Strings

Character codes used for handling characters and character strings can be categorized into two
groups:

34 Internationalizing and Localizing Applications in Oracle Solaris • March 2019

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN9Fuconv-u8tou16-9f
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN9Fuconv-u8tou32-9f
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN9Fuconv-u16tou8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN9Fuconv-u16tou32-9f
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN9Fuconv-u32tou8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN9Fuconv-u32tou16-9f
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN9Fu8-textprep-str-9f
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN9Fu8-strcmp-9f
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN9Fu8-validate-9f
http://unicode.org/reports/tr15/

Handling Characters and Character Strings

Multibyte (file
code)

File code is used for text data exchange and for storing in a file. It has
fixed byte ordering regardless of the underlying system, which is Big
Endian byte ordering. Codesets like UTF-8, EUC, single-byte codesets,
BIG5, Shift-JIS, PCK, GBK, GB18030, and so on come under this category.
The term multibyte character in the context of the functions described
in this section is a general term that refers to the codeset of the current
locale, even though it might in some cases be a single-byte codeset.

Wide characters
(process code)

Process code is a fixed-width representation of a character used for
internal processing. It is in the native byte ordering of the platform,
which can be either Big Endian or Little Endian. Encodings like UTF-32,
UCS-2, and UCS-4 can be wide-character encodings.

Conversion between multibyte data and wide-character data is often necessary. When a program
takes input from a file, the multibyte data in the file is converted into wide-character process
code by using input functions like fscanf() and fwscanf() or by using conversion functions
like mbtowc() and mbsrtowcs() after the input. To convert output data from wide-character
format to multibyte character format, use output functions like fwprintf() and fprintf() or
apply conversion functions like wctomb() and wcsrtombs() before the output.

Functions for handling characters, wide characters, and corresponding data types are described
in the following sections.

Character Types and Definitions

The ISO/IEC 9899 standard defines the term "wide character" and the wchar_t and wint_t data
types.

■ A wide character is a representation of a single character that fits into an object of type
wchar_t.

■ The wchar_t is an integer type capable of representing all characters for all supported
locales.

■ The wint_t is an integer type capable of storing any valid value of wchar_t or WEOF.
■ A wide-character string (also wide string or process code string) is a sequence of wide

characters terminated by a null wide character code.

Note - The ISO/IEC 9899 standard does not specify the form or the encoding of the contents
for the wchar_t data type. Because it is an implementation-specific data type, it is not portable.
Although many implementations use some Unicode encoding forms for the contents of the
wchar_t data type, do not assume that the contents of wchar_t are Unicode. Some platforms use
UCS-4 or UCS-2 for their wide-character encoding.

Chapter 2 • Programming Interfaces in the libc Library 35

Handling Characters and Character Strings

In Oracle Solaris, the internal form of wchar_t is specific to a locale. In the Oracle Solaris
Unicode locales, wchar_t has the UTF-32 Unicode encoding form, and other locales have
different representations.

Fore more information, see stddef.h(3HEAD) and wchar.h(3HEAD) man pages.

Integer Coded Character Classification Functions
The following functions are used for character classification and return a non-zero value for
true, and 0 for false. With the exception of the isascii() function, all other functions are locale
sensitive, specifically for the LC_CTYPE category of the current locale.

isalpha() Test for an alphabetic character

isalnum() Test for an alphanumeric character

isascii() Test for a 7-bit US-ASCII character

isblank() Test for a blank character

iscntrl() Test for a control character

isdigit() Test for a decimal digit

isgraph() Test for a visible character

islower() Test for a lowercase letter

isprint() Test for a printable character

ispunct() Test for a punctuation character

isspace() Test for a white-space character

isupper() Test for an uppercase letter

isxdigit() Test for a hexadecimal digit

These functions should not be used in a locale with a multibyte codeset, such as UTF-8. Use
the wide-character classification functions described in the following section for multibyte
codesets.

The behavior of some of these functions also depends on the compiler options used at compile
time. The ctype(3C) man page describes the "Default" and "Standard conforming" behaviors

36 Internationalizing and Localizing Applications in Oracle Solaris • March 2019

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Fstddef.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Fwchar.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Actype-3c

Handling Characters and Character Strings

for isalpha(), isgraph(), isprint(), and isxdigit() functions. For example, isalpha()
function is defined as follows:

Default isalpha() Tests for any character for which isupper() or islower() is true.

Standard
Conforming
isalpha()

Tests for any character for which isupper() or islower() is true, or any
character that is one of the current locale-defined set of characters for
which none of iscntrl(), isdigit(), ispunct(), or isspace() is true.
In the C locale, isalpha() returns true only for the characters for which
isupper() or islower() is true.

This has consequences for languages or alphabets which have no case for its letters (also called
unicase), such as Arabic, Hebrew or Thai. For alphabetic characters such as aleph (0xE0) in
the Hebrew legacy locale he_IL.ISO8859-8, the functions isupper() and islower() always
return false. Therefore, even the isalpha() function always returns false. If compiler options
are enabled for the standard conforming behavior, the isalpha() function returns true for such
characters. For more information, see the isalpha(3C) and standards(5) man pages.

See also the Oracle Developer Studio 12.6: C User's Guide, ctype(3C), and SUSv3(5) man
pages.

Wide-Character Classification Functions

The following man pages describe functions that classify wide characters and return a non-zero
value for TRUE, and 0 for FALSE. These functions check the given wide character against named
character classes, such as alpha, lower, or jkana, which are defined in the LC_CTYPE category
of the current locale. Therefore, these functions are locale sensitive.

iswalpha(3C) Test for an alphabetic wide-character

iswalnum(3C) Test for an alphanumeric wide character

iswascii(3C) Test whether a wide character represents a 7-bit US-ASCII character

iswblank(3C) Test for a blank wide character

iswcntrl(3C) Test for a control wide character

iswdigit(3C) Test for a decimal digit wide character

iswgraph(3C) Test for a visible wide character

Chapter 2 • Programming Interfaces in the libc Library 37

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aisalpha-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5standards-5
https://docs.oracle.com/cd/E77782_01/html/E77788/bjapp.html#OSSCGbjate
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Actype-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5susv3-5
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aiswalpha-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aiswalnum-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aiswascii-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aiswblank-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aiswcntrl-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aiswdigit-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aiswgraph-3c

Handling Characters and Character Strings

iswlower(3C) Test for a lowercase letter wide character

iswprint(3C) Test for a printable wide character

iswpunct(3C) Test for a punctuation wide character

iswspace(3C) Test for a white-space wide character

iswupper(3C) Test for an uppercase letter wide character

iswxdigit(3C) Test for a hexadecimal digit wide character

isenglish(3C) Test for a wide character representing an English language character,
excluding US-ASCII characters

isideogram(3C) Test for a wide character representing an ideographic language character,
excluding US-ASCII characters

isnumber(3C) Test for wide character representing digit, excluding US-ASCII
characters

isphonogram(3C) Test for a wide character representing a phonetic language character,
excluding US-ASCII characters

isspecial(3C) Test for a wide character representing a special language character,
excluding US-ASCII characters

The following character classes are defined in all the locales:

■ alnum

■ alpha

■ blank

■ cntrl

■ digit

■ graph

■ lower

■ print

■ punct

■ space

■ upper

■ xdigit

38 Internationalizing and Localizing Applications in Oracle Solaris • March 2019

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aiswlower-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aiswprint-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aiswpunct-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aiswspace-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aiswupper-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aiswxdigit-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aisenglish-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aisideogram-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aisnumber-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aisphonogram-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aisspecial-3c

Handling Characters and Character Strings

The isenglish(), isideogram(), isnumber(), isphonogram(), and isspecial() are legacy
Oracle Solaris specific wide-character classification functions. The character classes for these
functions are defined only in the following Asian locales: ko_KR.EUC, zh_CN.EUC, zh_CN.GBK,
zh_CN.GB18030, zh_HK.BIG5HK, zh_TW.BIG5, and zh_TW.EUC and their variants. The return
values will always be false when used in other locales including Unicode locales.

You can to query for a specific character class in a generic way by using the following
functions:

wctype() Define character class

iswctype() Test character for specified class

EXAMPLE 11 Querying Character Class of a Wide Character

In the following example, calls to the iswctype() and wctype() functions are used to check
whether the given Unicode character belongs to the jhira character class . The jhira character
class is from Japanese Hiragana script.

 wint_t wc;

 int ret;

 setlocale(LC_ALL, "ja_JP.UTF-8");

 /* "\xe3\x81\xba" is UTF-8 for HIRAGANA LETTER PE */

 ret = mbtowc(&wc, "\xe3\x81\xba", 3);

 if (ret == (size_t)-1) {

 /* Invalid character sequence. */

 :

 }

 if (iswctype(wc, wctype("jhira"))) {

 wprintf(L"'%c' is a hiragana character.\n", wc);

 }

The example will produce the following output:

ぺ is a hiragana character.

Character Transliteration Functions
The following functions serve for mapping characters between character classes (character
transliteration). If a mapping for a character is in the character class of the current locale, the
functions return a transliterated character. These functions are locale sensitive.

Chapter 2 • Programming Interfaces in the libc Library 39

Handling Characters and Character Strings

tolower() Convert an uppercase character to lowercase

toupper() Convert a lowercase character to uppercase

towlower() Convert an uppercase wide character to lowercase

towupper() Convert a lowercase wide character to uppercase

The following functions provide a generic way to perform character transliteration:

wctrans() Define character mapping

towctrans() Wide-character mapping

For more information about related functions for Unicode strings, see “Processing UTF-8
Strings” on page 34.

EXAMPLE 12 Transliteration of a Wide Character

The following code fragment shows how to use the towupper() function for transliterating a
Unicode wide character to uppercase.

 wint_t wc;

 int ret;

 setlocale(LC_ALL, "cs_CZ.UTF-8");

 /* "\xc5\x99" is UTF-8 for LATIN SMALL LETTER R WITH CARON */

 ret = mbtowc(&wc, "\xc5\x99", 2);

 if (ret == (size_t)-1) {

 /* Invalid character sequence. */

 :

 }

 wprintf(L"'%c' is uppercase of '%c'.\n", towupper(wc), wc);

The example will produce the following output:

Ř is uppercase of ř.

String Collation

The following functions are used for string comparison based on the collation data of the
current locale:

40 Internationalizing and Localizing Applications in Oracle Solaris • March 2019

Handling Characters and Character Strings

strcoll() String comparison using collating information

strxfrm() String transformation

wcscoll(),

wscoll()

Wide-character string comparison using collating information

wcsxfrm(),

wsxfrm()

Wide-character string transformation

For better performance when sorting large lists of strings, use the strxfrm() and strcmp()
functions instead of the strcoll() function, and the wcsxfrm() and wcscmp() functions instead
of the wcscoll() function.

When using the strxfrm() and wcsxfrm() functions, note that the format of the transformed
string is not in a human-readable form. These functions are used as input to the strcmp() and
wcscmp() function calls respectively.

For more information, see the strcmp(3C) and wcscmp(3C) man pages.

Conversion Between Multibyte and Wide
Characters
The following functions are used for conversion between the codeset of the current locale
(multibyte) and the process code (wide-character representation).

These functions are locale sensitive and depend on the LC_CTYPE category of the current
locale. They return the same error on incomplete characters and illegal characters. For
more information about illegal characters and incomplete characters, see “Converting
Codesets” on page 29.

mblen() Get the number of bytes in a character

mbtowc() Convert a character to a wide-character code

mbstowcs() Convert a character string to a wide-character string

wctomb() Convert a wide-character code to a character

wcstombs() Convert a wide-character string to a character string

The following functions are restartable, and can be used to handle incomplete character cases.
These cases occur when an incomplete character reported from the previous call along with the

Chapter 2 • Programming Interfaces in the libc Library 41

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Astrcmp-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Awcscmp-3c

Handling Characters and Character Strings

additional bytes of the current call is a valid character. In order to store the state information
required for this kind of processing, the functions either use a user-provided or an internal state
structure of type mbstate_t. The mbsinit() function is used to detect whether an mbstate_t
structure is in an initial state.

mbsinit() Determine the conversion object status

mbrlen() Get the number of bytes in a character (restartable)

mbrtowc() Convert a character to a wide-character code (restartable)

mbsrtowcs() Convert a character string to a wide-character string (restartable)

wcrtomb() Convert a wide-character code to a character (restartable)

wcsrtombs() Convert a wide-character string to a character string (restartable)

The following functions are used for conversion between the codeset of the current locale and
the process code. They determine whether the integer-coded character is represented in single-
byte. If not, they return EOF and WEOF respectively.

wctob() Convert a wide-character to a single-byte character, if possible

btowc() Convert a single-byte character to a wide character, if possible

Wide-Character Strings
The following functions are used to handle wide-character strings:

wcslen(),

wslen(),

wcsnlen()

Get length of a fixed-sized wide-character string

wcschr(),

wschr()

Find the first occurrence of a wide character in a wide-character string

wcsrchr(),

wsrchr()

Find the last occurrence of a wide character in a wide-character string

wcspbrk() Scan a wide-character string for a wide-character code

wcscat(),

wscat(),

wcsncat()

Concatenate two wide-character strings

42 Internationalizing and Localizing Applications in Oracle Solaris • March 2019

Handling Characters and Character Strings

wcscmp(),

wscmp(),

wcsncmp()

Compare two wide-character strings

wcscpy(),

wscpy()

Copy a wide-character string

wcsncpy(),

wsncpy()

Copy part of a wide-character string

wcpcpy(),

wcpncpy()

Copy a wide-character string, returning a pointer to its end

wcsspn(),

wsspn()

Get the length of a wide-character substring

wcscspn(),

wscspn

Get the length of a complementary wide-character substring

wcstok(),

wstok()

Split a wide-character string into tokens

wcsstr(),

wscwcs()

Find a wide-character substring

wcwidth(),

wcswidth(),

wscol()

Get the number of column positions of a wide-character or wide-
character string

wscasecmp(),

wsncasecmp()

Case-insensitive wide-character string comparison

wcsdup(),

wsdup()

Duplicate a wide-character string

The wcswcs() function was marked legacy and may be removed from the ISO/IEC 9899
standard in the future. Use wcsstr() function instead.

The functions for converting wide characters to numbers are as follows:

wcstol(),

wstol(),

wcstoll(),

watol(),

watoll(),

watoi()

Convert a wide-character string to a long integer

Chapter 2 • Programming Interfaces in the libc Library 43

Handling Characters and Character Strings

wcstoul(),

wcstoull()

Convert a wide-character string to an unsigned long integer

wcstod(),

wstod(),

wcstof(),

wcstold(),

watof()

Convert a wide-character string to a floating-point number

The following man pages describe functions that list the in-memory operations with wide
characters. They are wide-character equivalents of functions like memset(), memcpy(), and so
on. These functions are not affected by the locale and all wchar_t values are treated identically.

wmemset(3C) Set wide characters in memory

wmemcpy(3C) Copy wide characters in memory

wmemmove(3C) Copy wide characters in memory with overlapping areas

wmemcmp(3C) Compare wide characters in memory

wmemchr(3C) Find a wide character in memory

Wide-Character Input and Output

The following functions are used for wide-character input and output. These functions perform
implicit conversion between file code (multibyte data) and internal process code (wide-
character data).

fgetwc(), getwc() Get a wide-character code from a stream

getwchar() Get a wide character from a standard input stream

fgetws() Get a wide-character string from a stream

getws() (*) Get a wide-character string from a standard input stream

fputwc(), putwc() Put a wide-character code on a stream

putwchar() Put a wide-character code on the standard output stream

fputws() Put a wide-character string on a stream

44 Internationalizing and Localizing Applications in Oracle Solaris • March 2019

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Awmemset-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Awmemcpy-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Awmemmove-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Awmemcmp-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Awmemchr-3c

Using Regular Expressions

putws() (*) Put a wide-character string on the standard output stream

fwide() Set the stream orientation to byte or wide-character

ungetwc() Push wide-character code back into the input stream

The following functions are used for formatting wide-character input and output:

fwprintf(),
wprintf(),
swprintf(),
wsprintf() (*)

Print formatted wide-character output

vfwprintf(),
vwprintf(),
vswprintf()

Wide-character formatted output of a stdarg argument list

fwscanf(),
wscanf(),
swscanf(),
wsscanf() (*)

Convert formatted wide-character input

vfwscanf(),
vwscanf(),
vswscanf()

Convert formatted wide-character input using a stdarg argument list

The functions marked with (*) were added to Oracle Solaris before the UNIX 98 standard that
introduced the Multibyte Support Extension (MSE). They require inclusion of the widec.h
header instead of the default wchar.h.

Using Regular Expressions

The following functions are used for matching filename patterns and regular expressions:

fnmatch() Match a filename or path name

regcomp() Compile the regular expression

regexec() Execute regular expression matching

regerror() Map error codes returned to error messages

regfree() Free memory allocated by the regcomp() function

Chapter 2 • Programming Interfaces in the libc Library 45

46 Internationalizing and Localizing Applications in Oracle Solaris • March 2019

	Internationalizing and Localizing Applications in Oracle Solaris
	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	Chapter 1 • Internationalization and Localization Overview
	Overview of Locales
	C Locale
	Locale Categories
	Core Locales

	About Internationalization
	About Localization

	Chapter 2 • Programming Interfaces in the libc Library
	Programming Standards
	Managing System Locales
	Locale-Sensitive Functions
	Locale Functions
	Functions for Retrieving and Formatting the Locale Data

	Handling Messages
	gettext APIs
	How to Generate Localized Message Objects for a Shell Script
	How to Generate Localized Text Messages for a C Program
	Message Object File Format
	Oracle Solaris and GNU-compatible gettext Interfaces
	GNU gettext Interfaces
	Message Handling Tools

	X/Open catgets APIs

	Converting Codesets
	Converting Codesets by Using iconv Functions
	Functions for Converting Between Unicode Codesets
	Processing UTF-8 Strings

	Handling Characters and Character Strings
	Character Types and Definitions
	Integer Coded Character Classification Functions
	Wide-Character Classification Functions
	Character Transliteration Functions
	String Collation
	Conversion Between Multibyte and Wide Characters
	Wide-Character Strings
	Wide-Character Input and Output

	Using Regular Expressions

