

Oracle® Fusion Middleware
Java EE Developer's Guide for Oracle Application Development
Framework

11g Release 2 (11.1.2.4.0)

E17272-05

March 2013

Documentation for Oracle Application Development
Framework (Oracle ADF) developers that describes how to
develop and deploy web-based applications using Java EE,
ADF Model, ADF Controller, and ADF Faces Rich Client
components.

Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application Development Framework 11g
Release 2 (11.1.2.4.0)

E17272-05

Copyright © 2010, 2013 Oracle and/or its affiliates. All rights reserved.

Primary Author: Robin Whitmore, Peter Jew, Patrick Keegan

Contributing Author: Lynn Munsinger, Jeff Falk, Jim Pham

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

v

Contents

Preface ... xi

Audience... xi
Documentation Accessibility ... xi
Related Documents ... xi
Conventions .. xii

What's New in This Guide for Release 11.1.2.4.0 .. xiii

1 Introduction to Building Java EE Web Applications with Oracle ADF

1.1 Introduction to Oracle ADF... 1-1
1.2 Developing with Oracle ADF ... 1-2
1.2.1 Core Development Steps .. 1-3
1.2.2 Supplemental Development Tasks.. 1-4
1.3 Introduction to the Summit Demo Application ... 1-5
1.3.1 How to Download the Application Resources.. 1-5
1.3.2 How to Install and Run the Summit Demo Application .. 1-6
1.3.3 Taking a Look at the Summit Demo Application Code... 1-6

2 Using ADF Model Data Binding in a Java EE Web Application

2.1 Introduction to ADF Model Data Binding .. 2-1
2.2 Exposing Business Services with ADF Data Controls ... 2-4
2.2.1 How to Create ADF Data Controls ... 2-4
2.2.2 What Happens in Your Project When You Create a Data Control............................... 2-5
2.2.2.1 DataControls.dcx Overview Editor ... 2-6
2.2.2.2 Data Controls Panel.. 2-6
2.3 Using the Data Controls Panel .. 2-9
2.3.1 How to Use the Data Controls Panel ... 2-11
2.3.2 What Happens When You Use the Data Controls Panel to Create UI Components.........

2-12
2.3.3 What Happens at Runtime.. 2-18
2.3.4 What You May Need to Know About Iterator Result Caching 2-19
2.3.5 What You May Need to Know About Configuring Validation................................. 2-20
2.3.6 What You May Need to Know About Custom Session Bean Accessor Methods ... 2-21

vi

3 Adding Business Logic to Data Controls

3.1 Introduction to Adding Business Logic to Data Controls... 3-1
3.2 Configuring Data Controls .. 3-2
3.2.1 How to Edit a Data Control.. 3-2
3.2.2 What Happens When You Edit a Data Control .. 3-2
3.3 Working with Attributes.. 3-4
3.3.1 How to Control the Updatability of an Attribute ... 3-4
3.3.2 How to Define a Static Default Value for an Attribute .. 3-4
3.3.3 How to Define a Default Value Using a Groovy Expression .. 3-5
3.3.4 What Happens When You Create a Default Value Using a Groovy Expression 3-6
3.3.5 How to Set UI Hints on Attributes.. 3-7
3.3.6 What Happens When You Set UI Hints on Attributes... 3-7
3.4 Adding Transient Attributes to a Bean.. 3-8
3.4.1 How to Add a Transient Attribute.. 3-8
3.4.2 What Happens When You Add a Transient Attribute... 3-9
3.5 Defining Validation Rules on Attributes Declaratively .. 3-9
3.5.1 How to Add Validation Rules to Attributes ... 3-10
3.5.2 What Happens When You Add a Validation Rule .. 3-11
3.5.3 How to Use the Built-in Declarative Validation Rules.. 3-11
3.5.3.1 Validating Based on a Comparison .. 3-11
3.5.3.2 What Happens When You Validate Based on a Comparison............................. 3-12
3.5.3.3 Validating Using a List of Values.. 3-12
3.5.3.4 What Happens When You Validate Using a List of Values 3-13
3.5.3.5 Ensuring That a Value Falls Within a Certain Range... 3-13
3.5.3.6 What Happens When You Use a Range Validator ... 3-14
3.5.3.7 Validating Against a Number of Bytes or Characters.. 3-14
3.5.3.8 What Happens When You Validate Against a Number of Bytes or Characters

3-15
3.5.3.9 Validating Using a Regular Expression ... 3-15
3.5.3.10 What Happens When You Validate Using a Regular Expression...................... 3-16
3.5.4 How to Use Groovy Expressions For Validation and Business Rules 3-17
3.5.4.1 Referencing Bean Methods in Groovy Validation Expressions.......................... 3-17
3.5.4.2 Validating Using a True/False Expression.. 3-17
3.5.4.3 What Happens When You Add a True/False Expression 3-18
3.5.5 How to Create Validation Error Messages ... 3-18
3.5.5.1 Creating Validation Error Messages... 3-18
3.5.5.2 Localizing Validation Messages .. 3-20
3.5.5.3 Raising Error Message Conditionally Using Groovy... 3-20
3.5.5.4 Embedding a Groovy Expression in an Error Message 3-21
3.5.6 How to Set the Severity Level for Validation Exceptions... 3-21
3.6 Filtering Result Sets with Named Criteria ... 3-22
3.6.1 Use Case for Named Criteria .. 3-22
3.6.2 How to Create Named Criteria Declaratively .. 3-22
3.6.3 What Happens When You Create a Named Criteria .. 3-26
3.6.4 How to Use Bind Variables in Named Criteria .. 3-26
3.6.5 What Happens When You Use Bind Variables in Named Criteria........................... 3-27
3.6.6 What You May Need to Know About Nested Expressions.. 3-27

vii

3.6.7 How to Set User Interface Hints on Named Criteria... 3-27
3.7 Testing Bean Metadata Using the Oracle ADF Model Tester.. 3-29
3.7.1 How to Run the Oracle ADF Model Tester... 3-29
3.7.2 How to Update the Oracle ADF Model Tester to Display Project Changes 3-32
3.7.3 What Happens When You Use the Oracle ADF Model Tester 3-32
3.7.4 How to Test Business Layer Validation .. 3-33
3.7.5 How to Test Alternate Language Message Bundles and UI Hints............................ 3-34
3.7.6 How to Test Row Creation and Default Value Generation.. 3-34
3.7.7 How to Test Named Criteria Using the Oracle ADF Model Tester 3-35
3.8 Groovy Language Support ... 3-36
3.8.1 How to Reference ADF Objects in Groovy Expressions ... 3-37
3.8.2 How to Reference ADF Methods and Attributes in Groovy Expressions................ 3-38

4 Creating a Basic Databound Page

4.1 About Creating a Basic Databound Page .. 4-1
4.2 Using Attributes to Create Text Fields... 4-2
4.2.1 How to Create a Text Field .. 4-2
4.2.2 What Happens When You Create a Text Field ... 4-4
4.2.2.1 Creating and Using Iterator Bindings .. 4-4
4.2.2.2 Creating and Using Value Bindings .. 4-5
4.2.2.3 Using EL Expressions to Bind UI Components .. 4-5
4.3 Creating a Basic Form... 4-6
4.3.1 How to Create a Form .. 4-7
4.3.2 What Happens When You Create a Form ... 4-8
4.4 Incorporating Range Navigation into Forms.. 4-9
4.4.1 How to Insert Navigation Controls into a Form .. 4-10
4.4.2 What Happens When You Create Command Buttons.. 4-11
4.4.2.1 Action Bindings for Built-in Navigation Operations ... 4-11
4.4.2.2 Iterator RangeSize Attribute .. 4-11
4.4.2.3 EL Expressions Used to Bind to Navigation Operations..................................... 4-12
4.5 Creating a Form Using a Method That Takes Parameters... 4-14
4.5.1 How to Create a Form or Table Using a Method That Takes Parameters................ 4-14
4.5.2 What Happens When You Create a Form Using a Method That Takes Parameters

4-15
4.5.3 What Happens at Runtime: Setting Parameters for a Method................................... 4-15
4.5.4 What You May Need to Know About Setting Parameters with Methods 4-16
4.5.5 What You May Need to Know About Using Contextual Events Instead of Parameters..

4-16
4.6 Creating a Form to Edit an Existing Record .. 4-17
4.6.1 How to Create Edit Forms .. 4-17
4.6.2 What Happens When You Use Methods to Change Data.. 4-19
4.6.2.1 Method Bindings ... 4-19
4.6.2.2 Using EL Expressions to Bind to Methods .. 4-19
4.6.3 What You May Need to Know About the Difference Between the Merge and Persist

Methods 4-20
4.6.4 What You May Need to Know About Overriding Declarative Methods................. 4-20
4.7 Creating an Input Form .. 4-21

viii

4.7.1 How to Create an Input Form Using a Task Flow... 4-21
4.7.2 What Happens When You Create an Input Form Using a Task Flow...................... 4-23
4.7.3 What Happens at Runtime: Invoking the Create Action Binding from the Method

Activity 4-24
4.8 Modifying the UI Components and Bindings on a Form .. 4-24

5 Creating ADF Databound Tables

5.1 About Adding Tables ... 5-1
5.2 Creating a Basic Table .. 5-1
5.2.1 How to Create a Basic Table... 5-2
5.2.2 What Happens When You Create a Table .. 5-4
5.2.2.1 Iterator and Value Bindings for Tables ... 5-4
5.2.2.2 Code on the JSF Page for an ADF Faces Table ... 5-5
5.2.3 What You May Need to Know About Setting the Current Row in a Table 5-8
5.3 Creating an Editable Table ... 5-10
5.3.1 How to Create an Editable Table.. 5-11
5.3.2 What Happens When You Create an Editable Table .. 5-14
5.4 Creating an Input Table .. 5-14
5.4.1 How to Create an Input Table... 5-14
5.4.2 What Happens When You Create an Input Table ... 5-16
5.4.3 What Happens at Runtime: How Create and Partial Page Refresh Work 5-18
5.4.4 What You May Need to Know About Creating a Row and Sorting Columns 5-18
5.5 Modifying the Attributes Displayed in the Table ... 5-19

6 Displaying Master-Detail Data

6.1 Introduction to Displaying Master-Detail Data.. 6-1
6.2 Identifying Master-Detail Objects on the Data Controls Panel .. 6-2
6.3 Using Tables and Forms to Display Master-Detail Objects .. 6-3
6.3.1 How to Display Master-Detail Objects in Tables and Forms .. 6-4
6.3.2 What Happens When You Create Master-Detail Tables and Forms 6-5
6.3.2.1 Code Generated in the JSF Page ... 6-5
6.3.2.2 Binding Objects Defined in the Page Definition File... 6-5
6.3.3 What Happens at Runtime: ADF Iterator for Master-Detail Tables and Forms......... 6-7
6.3.4 What You May Need to Know About Displaying Master-Detail Widgets on Separate

Pages 6-7
6.4 Using Trees to Display Master-Detail Objects .. 6-8
6.4.1 How to Display Master-Detail Objects in Trees.. 6-8
6.4.2 What Happens When You Create an ADF Databound Tree...................................... 6-10
6.4.2.1 Code Generated in the JSF Page .. 6-10
6.4.2.2 Binding Objects Defined in the Page Definition File.. 6-11
6.4.3 What Happens at Runtime: Displaying an ADF Databound Tree 6-12
6.5 Using Tree Tables to Display Master-Detail Objects .. 6-12
6.5.1 How to Display Master-Detail Objects in Tree Tables .. 6-13
6.5.2 What Happens When You Create a Databound Tree Table....................................... 6-13
6.5.2.1 Code Generated in the JSF Page .. 6-13
6.5.2.2 Binding Objects Defined in the Page Definition File.. 6-14
6.5.3 What Happens at Runtime: Events .. 6-14

ix

6.5.4 Using the TargetIterator Property ... 6-15
6.6 Using Selection Events with Trees and Tables .. 6-15
6.6.1 How to Use Selection Events with Trees and Tables .. 6-15
6.6.2 What Happens at Runtime: RowKeySet Objects and SelectionEvent Events.......... 6-17

7 Creating Databound Selection Lists

7.1 Introduction to Selection Lists .. 7-1
7.2 Creating a Single Selection List... 7-1
7.2.1 How to Create a Single Selection List Containing Fixed Values 7-3
7.2.2 How to Create a Single Selection List Containing Dynamically Generated Values .. 7-4
7.2.3 What Happens When You Create a Fixed Selection List ... 7-5
7.2.4 What Happens When You Create a Dynamic Selection List... 7-6
7.3 Creating a List with Navigation List Binding... 7-7

8 Creating Databound Search Forms

8.1 Introduction to Creating Search Forms ... 8-1
8.1.1 Query Search Forms .. 8-2
8.1.2 Quick Query Search Forms .. 8-7
8.1.3 Filtered Table and Query-by-Example Searches... 8-7
8.2 Creating Query Search Forms... 8-8
8.2.1 How to Create a Query Search Form with a Results Table or Tree Table................... 8-9
8.2.2 How to Create a Query Search Form and Add a Results Component Later 8-9
8.2.3 How to Persist Saved Searches into MDS ... 8-10
8.2.4 What Happens When You Create a Query Form .. 8-10
8.2.5 What Happens at Runtime: Search Forms .. 8-12
8.3 Setting Up Search Form Properties ... 8-12
8.3.1 How to Set Search Form Properties on the Query Component................................. 8-12
8.4 Creating Quick Query Search Forms .. 8-13
8.4.1 How to Create a Quick Query Search Form with a Results Table or Tree Table 8-13
8.4.2 How to Create a Quick Query Search Form and Add a Results Component Later 8-14
8.4.3 How to Set the Quick Query Layout Format.. 8-14
8.4.4 What Happens When You Create a Quick Query Search Form................................ 8-15
8.4.5 What Happens at Runtime: Quick Query... 8-15
8.5 Creating Standalone Filtered Search Tables .. 8-15

9 Deploying an ADF Java EE Application

9.1 Introduction to Deploying ADF Java EE Web Applications .. 9-1
9.1.1 Developing Applications with Integrated WebLogic Server .. 9-3
9.1.2 Developing Applications for Standalone Application Server....................................... 9-3
9.2 Running a Java EE Application in Integrated WebLogic Server ... 9-5
9.2.1 How to Run an Application in Integrated WebLogic Server .. 9-6
9.2.2 How to Run an Application with Metadata in Integrated WebLogic Server 9-6
9.3 Preparing the Application ... 9-8
9.3.1 How to Create a Connection to the Target Application Server 9-8
9.3.2 How to Create Deployment Profiles.. 9-10
9.3.2.1 Creating a WAR Deployment Profile ... 9-11

x

9.3.2.2 Creating a MAR Deployment Profile ... 9-12
9.3.2.3 Creating an EJB JAR Deployment Profile .. 9-15
9.3.2.4 Creating an Application-Level EAR Deployment Profile 9-15
9.3.2.5 Delivering Customization Classes as a Shared Library....................................... 9-16
9.3.2.6 Viewing and Changing Deployment Profile Properties...................................... 9-17
9.3.2.7 Adding Customization Classes into a JAR .. 9-17
9.3.3 How to Create and Edit Deployment Descriptors... 9-18
9.3.3.1 Creating Deployment Descriptors .. 9-19
9.3.3.2 Viewing or Modifying Deployment Descriptor Properties................................. 9-20
9.3.3.3 Configuring the application.xml File for WebLogic Compatibility 9-20
9.3.3.4 Configuring the web.xml File for WebLogic Compatibility 9-21
9.3.3.5 Enabling the Application for Real User Experience Insight................................ 9-21
9.3.4 How to Deploy Applications with ADF Security Enabled... 9-22
9.3.4.1 Applications That Will Run Using Oracle Single Sign-On (SSO)....................... 9-22
9.3.4.2 Configuring Security for WebLogic Server ... 9-23
9.3.4.2.1 Applications with JDBC Data Source for WebLogic 9-24
9.3.4.3 Configuring Security for WebSphere Server ... 9-24
9.3.4.3.1 Applications with JDBC Data Source for WebSphere 9-25
9.3.4.3.2 Editing the web.xml File to Protect the Application Root for WebSphere 9-25
9.3.5 How to Replicate Memory Scopes in a Clustered Environment 9-25
9.3.6 How to Enable the Application for ADF MBeans.. 9-25
9.3.7 What You May Need to Know About JDBC Data Source for Oracle WebLogic Server ...

9-27
9.4 Deploying the Application .. 9-27
9.4.1 How to Deploy to WebLogic Server from JDeveloper.. 9-30
9.4.2 How to Create an EAR File for Deployment .. 9-31
9.4.3 What You May Need to Know About ADF Libraries .. 9-32
9.4.4 How to Deploy New Customizations Applied to ADF LIbrary................................ 9-32
9.4.4.1 Exporting Customization to a Deployed Application ... 9-33
9.4.4.2 Deploying Customizations to a JAR... 9-33
9.4.5 What You May Need to Know About ADF Libraries .. 9-34
9.4.6 What You May Need to Know About EAR Files and Packaging.............................. 9-34
9.4.7 How to Deploy the Application Using Scripts and Ant ... 9-34
9.4.8 What You May Need to Know About JDeveloper Runtime Libraries 9-34
9.5 Postdeployment Configuration ... 9-34
9.5.1 How to Migrate an Application.. 9-35
9.5.2 How to Configure the Application Using ADF MBeans .. 9-35
9.5.3 How to Configure WebSphere for Result Sets Reuse.. 9-35
9.6 Testing the Application and Verifying Deployment .. 9-35

xi

Preface

Welcome to the Java EE Developer's Guide for Oracle Application Development Framework.

Audience
This document is intended for enterprise developers who need to create and deploy
database-centric Java EE applications using the Oracle Application Development
Framework (Oracle ADF). This guide explains how to build web applications using
the Enterprise JavaBeans (EJB), ADF Model, ADF Controller, and ADF Faces
technologies.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
■ Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development

Framework

■ Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework

■ Oracle Fusion Middleware User Guide for Oracle JDeveloper

■ Oracle Fusion Middleware Skin Editor User's Guide for Oracle Application Development
Framework

■ Oracle Fusion Middleware Administrator's Guide for Oracle Application Development
Framework

■ Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application
Development Framework

xii

■ Oracle Fusion Middleware Mobile Browser Developer's Guide for Oracle Application
Development Framework

■ Oracle Fusion Middleware Performance and Tuning Guide

■ Oracle Fusion Middleware High Availability Guide

■ Oracle Fusion Middleware Installation Guide for Oracle JDeveloper

■ Oracle Fusion Middleware Installation Guide for Oracle Application Development
Framework Skin Editor

■ Oracle JDeveloper Online Help

■ Oracle JDeveloper 11g Release Notes, included with your JDeveloper installation, and
on Oracle Technology Network

■ Oracle Fusion Middleware Java API Reference for Oracle ADF Model

■ Oracle Fusion Middleware Java API Reference for Oracle ADF Controller

■ Oracle Fusion Middleware Java API Reference for Oracle ADF Lifecycle

■ Oracle Fusion Middleware Java API Reference for Oracle ADF Faces

■ Oracle Fusion Middleware Javascript API Reference for Oracle ADF Faces

■ Oracle Fusion Middleware Java API Reference for Oracle ADF Data Visualization
Components

■ Oracle Fusion Middleware Java API Reference for Oracle ADF Share

■ Oracle Fusion Middleware Java API Reference for Oracle Business Component Browser

■ Oracle Fusion Middleware Java API Reference for Oracle Metadata Service (MDS)

■ Oracle Fusion Middleware Tag Reference for Oracle ADF Faces

■ Oracle Fusion Middleware Tag Reference for Oracle ADF Faces Skin Selectors

■ Oracle Fusion Middleware Data Visualization Tools Tag Reference for Oracle ADF Faces

■ Oracle Fusion Middleware Data Visualization Tools Tag Reference for Oracle ADF Skin
Selectors

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xiii

What's New in This Guide for Release
11.1.2.4.0

For Release 11.1.2.4.0, this guide has not been updated. The following table lists the
section that was changed for Release 11.1.2.3.0.

For changes made to Oracle JDeveloper and Oracle Application Development
Framework (Oracle ADF) for this release, see the What’s New page on the Oracle
Technology Network at
http://www.oracle.com/technetwork/developer-tools/jdev/documenta
tion/index.html.

Sections Changes Made

Chapter 9 Deploying an ADF Java EE Application

Section 9.1, "Introduction to Deploying ADF Java EE Web
Applications"

Added information about
deploying applications to
GlassFish Server and
provided references to the
Oracle Fusion Middleware
Fusion Developer's Guide for
Oracle Application Development
Framework and Oracle Fusion
Middleware Administrator's
Guide for Oracle Application
Development Framework.

xiv

1

Introduction to Building Java EE Web Applications with Oracle ADF 1-1

1Introduction to Building Java EE Web
Applications with Oracle ADF

This chapter describes the architecture and key functionality of the Oracle Application
Development Framework (Oracle ADF) when used to build a web application with
session and entity beans that use EJB 3.0 annotations and the Java Persistence API
(JPA), along with ADF Model, ADF Controller, and ADF Faces rich client.

This chapter includes the following sections:

■ Section 1.1, "Introduction to Oracle ADF"

■ Section 1.2, "Developing with Oracle ADF"

■ Section 1.3, "Introduction to the Summit Demo Application"

1.1 Introduction to Oracle ADF
The Oracle Application Development Framework (Oracle ADF) is an end-to-end
application framework that builds on Java Platform, Enterprise Edition (Java EE)
standards and open-source technologies to simplify and accelerate implementing
enterprise applications. If you develop enterprise solutions that search, display, create,
modify, and validate data using web, wireless, desktop, or web services interfaces,
Oracle ADF can simplify your job. Used in tandem, Oracle JDeveloper and Oracle
ADF give you an environment that covers the full development lifecycle from design
to deployment, with drag and drop data binding, visual UI design, and team
development features built in.

Figure 1–1 illustrates where each Oracle ADF module fits in the web application
architecture. The core module in the framework is ADF Model, which is a declarative
data binding facility. The ADF Model layer enables a unified approach to bind any
user interface to any business service, without the need to write code. The other
modules that make up the application technology stack aside from EJBs, are:

■ ADF Faces rich client, which offers a rich library of AJAX-enabled UI components
for web applications built with JavaServer Faces (JSF). For more information about
ADF Faces, refer to the Oracle Fusion Middleware Web User Interface Developer's
Guide for Oracle Application Development Framework.

■ ADF Controller, which integrates JSF with ADF Model. The ADF Controller
extends the standard JSF controller by providing additional functionality, such as
reusable task flows that pass control not only between JSF pages, but also between
other activities, for instance method calls or other task flows. For more information
about ADF Controller, see the "Getting Started with ADF Task Flows" section of
the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

Developing with Oracle ADF

1-2 Java EE Developer's Guide for Oracle Application Development Framework

Figure 1–1 Simple Oracle ADF Architecture

1.2 Developing with Oracle ADF
Oracle ADF emphasizes the use of the declarative programming paradigm throughout
the development process to allow users to focus on the logic of application creation
without having to get into implementation details. Using JDeveloper with Oracle ADF,
you benefit from a high-productivity environment that automatically manages your
application’s declarative metadata for data access, validation, page control and
navigation, user interface design, and data binding.

Note: In addition to ADF Faces, Oracle ADF also supports using the
Swing, JSP, and standard JSF view technologies. For more information
about these technologies, refer to the Oracle Fusion Middleware User
Guide for Oracle JDeveloper. Oracle ADF also provides support for
using Microsoft Excel as a view layer for your application. For more
information, see the Oracle Fusion Middleware Desktop Integration
Developer's Guide for Oracle Application Development Framework.

Developing with Oracle ADF

Introduction to Building Java EE Web Applications with Oracle ADF 1-3

1.2.1 Core Development Steps
At a high level, the declarative development process for a Java EE web application
usually involves the following core steps:

■ Creating an application workspace: Using a wizard, JDeveloper automatically
adds the libraries and configuration needed for the technologies you select, and
structures your application into projects with packages and directories. For more
information, see the "How to Create an Application" section of the Oracle Fusion
Middleware User Guide for Oracle JDeveloper.

■ Creating the persistence model: From your database tables, you create EJB 3.0
entity beans using wizards or dialogs. From those beans, you create the session
bean as the facade that will be used by the pages in your application. For more
information about using JDeveloper with EJBs, see the "Developing with EJB and
JPA Components" section of the Oracle Fusion Middleware User Guide for Oracle
JDeveloper.

■ Creating data controls for your services: Once you’ve created your entity and
session beans, you create the data controls that use metadata interfaces to abstract
the implementation of your EJBs, and describe their operations and data
collections, including information about the properties, methods, and types
involved. These data controls are displayed in the Data Controls panel and can be
dragged to pages to create databound UI components. For more information, see
Chapter 2, "Using ADF Model Data Binding in a Java EE Web Application."

■ Adding declarative metadata to your data controls: You can augment your data
controls with UI control hints, validation rules, criteria for use in search forms, and
other features. For more information, see Chapter 3, "Adding Business Logic to
Data Controls".

■ Implementing the user interface with JSF: JDeveloper’s Data Controls panel
contains a representation of the beans for your application. Creating a user
interface is as simple as dragging an object onto a page and selecting the UI
component you want to display the underlying data. For UI components that are
not databound, you use the Component Palette to drag and drop components.
JDeveloper creates all the page code for you. For more information, see the
"Implementing the User Interface with JSF" section in the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

For information about creating specific types of web pages, see the following in
this guide:

– Chapter 4, "Creating a Basic Databound Page"

– Chapter 5, "Creating ADF Databound Tables"

– Chapter 6, "Displaying Master-Detail Data"

– Chapter 7, "Creating Databound Selection Lists"

– Chapter 8, "Creating Databound Search Forms"

■ Deploying the application: You use wizards and editors to create and edit
deployment descriptors, JAR files, and application server connections. For more
information, see Chapter 9, "Deploying an ADF Java EE Application."

Developing with Oracle ADF

1-4 Java EE Developer's Guide for Oracle Application Development Framework

1.2.2 Supplemental Development Tasks
In addition to the above core steps for developing Java EE applications with Oracle
ADF, JDeveloper provides tools for the tasks in the list below. These tasks are not
covered in detail in this guide.

■ Modeling the database objects: You can create an offline replica of any database,
and use JDeveloper editors and diagrammers to edit definitions and update
schemas. For more information, see the "Modeling with Database Object
Definitions" section of the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework.

■ Creating use cases: Using the UML modeler, you can create use cases for your
application. For more information, see the "Creating Use Cases" section of the
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

■ Designing application control and navigation: You use diagrammers to visually
determine the flow of application control and navigation. JDeveloper creates the
underlying XML for you. For more information, see the "Designing Application
Control and Navigation using ADF Task Flows" section of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

■ Identifying shared resources: You use a resource library that allows you to view
and use imported libraries by simply dragging and dropping them into your
application. For more information, see the "Identifying Shared Resources" section
of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

■ Securing the application: You use editors to create roles and populate these with
test users. You then use a flat file editor to define security policies for these roles
and assign them to specific resources in your application. For more information,
see the "Enabling ADF Security in a Fusion Web Application" chapter in the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

■ Developing pages and applications to allow customization: Using the
customization features provided by the Oracle Metadata Services (MDS), you can
create applications that are customizable by customers yet still easily upgradable,
create pages that allow end users to change the application UI at runtime, and
create applications that are completely customizable at runtime. For more
information, see the "Customizing Applications with MDS" and "Allowing User

Note: The process of developing a Java EE application with Oracle
ADF modules is very similar to developing a Fusion web application.
The main difference is that a Fusion web application uses ADF
Business Components for the back-end services. When the
development process and procedures are the same for both
application types, this guide refers you to the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework
for that information.

Please disregard any information in the Fusion Developer’s guide
regarding ADF Business Components (such as entity objects and view
objects). For similar information for EJB/JPA, refer to the "Developing
with EJB and JPA Components" section of the Oracle Fusion Middleware
User Guide for Oracle JDeveloper.

Introduction to the Summit Demo Application

Introduction to Building Java EE Web Applications with Oracle ADF 1-5

Customizations at Runtime" chapters of the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

■ Testing and debugging: JDeveloper includes an integrated application server that
allows you to fully test your application without needing to package it up and
deploy it. JDeveloper also includes the ADF Declarative Debugger, a tool that
allows you to set breakpoints and examine the data. For more information, see the
"Testing and Debugging ADF Components" chapter of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

1.3 Introduction to the Summit Demo Application
As a companion to this guide, the Summit demo application was created to
demonstrate the use of the Java EE and Oracle ADF web application technology stack
to create transaction-based web applications. The demonstration application is used to
illustrate points and provide code samples.

1.3.1 How to Download the Application Resources
The Summit application requires an existing Oracle database. You run the Summit
application using Oracle JDeveloper 11g Release 2.

Do the following before installing the Summit application:

■ Install Oracle JDeveloper. You need the Studio configuration of Oracle JDeveloper
11g Release 2 to view the application’s projects and run the application using the
JDeveloper integrated server. You can download Oracle JDeveloper from:

http://www.oracle.com/technetwork/developer-tools/jdev/overview/ind
ex.html

■ Download the Summit application ZIP file (Summit_JPA.zip). You can
download the ZIP file from:

http://www.oracle.com/webfolder/technetwork/jdeveloper/downloads/Su
mmit_JPA/Summit_JPA.zip

■ Download the Summit database schema (Summit_Schema.zip). You can
download the ZIP file from:

http://www.oracle.com/webfolder/technetwork/jdeveloper/downloads/Su
mmit_JPA/Summit_Schema.zip

■ Install an Oracle database. The Summit application requires a database for its data.

The SQL scripts were written for an Oracle database, so you will need some
version of an Oracle RDBMS, such as 11g, or XE. The scripts will not install into
Oracle Lite. If you wish to use Oracle Lite or some other database, then you will
need to modify the database scripts accordingly. You can download an Oracle
database from:

http://www.oracle.com/technetwork/index.html

Specifically, the small footprint of the Oracle Express Edition (XE) is ideally suited
for setting up the database on your local machine. You can download it from:

http://www.oracle.com/technetwork/database/express-edition/overview
/index.html

http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://www.oracle.com/technetwork/index.html
http://www.oracle.com/technetwork/database/express-edition/overview/index.html
http://www.oracle.com/technetwork/database/express-edition/overview/index.html

Introduction to the Summit Demo Application

1-6 Java EE Developer's Guide for Oracle Application Development Framework

1.3.2 How to Install and Run the Summit Demo Application
To install and run the summit demo application, follow the instructions that are posted
in the following document:

http://www.oracle.com/technetwork/developer-tools/jdev/learnmore/summit
jpainstructions-364887.pdf

1.3.3 Taking a Look at the Summit Demo Application Code
The Summit application consists of a business services project named Model and a
web user interface project named ViewController. You run the Summit application
by running the ViewController project. The ViewController project uses
JavaServer Faces (JSF) as the view technology, and relies on the ADF Model layer to
interact with the EJBs in the Model project.

Figure 1–2 shows the Application Navigator after you open the file for the application
workspace.

Figure 1–2 The Summit Demo Application Projects in Oracle JDeveloper

Once you have opened the demo application’s projects in Oracle JDeveloper, you can
then begin to review the artifacts within each project. The Model project contains the
Java classes and metadata files that allow the data to be displayed in the web
application. The model package contains Java classes and the DataControls.dcx
file. The persdef.model package contains data control structure files that contain
declarative metadata for some of the beans in the model package. Figure 1–3 shows
the Model project and its associated directories.

Introduction to the Summit Demo Application

Introduction to Building Java EE Web Applications with Oracle ADF 1-7

Figure 1–3 The Model Project in JDeveloper

The ViewController project contains the files for the web interface, including the
backing beans, deployment files, and JSPX files. The Application Sources node
contains the code used by the web client, including a managed bean and the metadata
used by Oracle ADF to display bound data. The Web Content node contains web files,
including the JSP files, images, skin files, deployment descriptors, and libraries.
Figure 1–4 shows the ViewController project and its associated directories.

Introduction to the Summit Demo Application

1-8 Java EE Developer's Guide for Oracle Application Development Framework

Figure 1–4 The ViewController Project in JDeveloper

2

Using ADF Model Data Binding in a Java EE Web Application 2-1

2 Using ADF Model Data Binding in a Java EE
Web Application

This chapter describes how to create ADF model data controls for EJB session beans
and how to use the Data Controls panel to create databound UI components on JSF
web pages.

This chapter includes the following sections:

■ Section 2.1, "Introduction to ADF Model Data Binding"

■ Section 2.2, "Exposing Business Services with ADF Data Controls"

■ Section 2.3, "Using the Data Controls Panel"

For information on configuring the business services that you will bind to UI
components, see Chapter 3, "Adding Business Logic to Data Controls." For more
comprehensive information about using ADF Model data binding, refer to the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

2.1 Introduction to ADF Model Data Binding
ADF Model implements two concepts that enable the decoupling of the user interface
technology from the business service implementation: data controls and declarative
bindings.

Data controls abstract the implementation technology of a business service by using
standard metadata interfaces to describe the service’s operations and data collections,
including information about the properties, methods, and types involved. In an
application that uses an EJB session facade, developers can create data controls for the
facade. Developers can then use the representation of the data control displayed in
JDeveloper’s Data Controls panel (as shown in Figure 2–1) to create UI components
that are automatically bound to the session facade. At runtime, the ADF Model layer
reads the information describing the data controls and bindings from the appropriate
XML files and then implements the two-way connection between the user interface
and the business service.

Introduction to ADF Model Data Binding

2-2 Java EE Developer's Guide for Oracle Application Development Framework

Figure 2–1 Data Controls Panel

Declarative bindings abstract the details of accessing data from data collections in a
data control and of invoking its operations. The following are the basic categories of
binding objects:

■ Value bindings: Used by UI components that display data. Value bindings range
from the most basic variety that work with a simple text field to more
sophisticated list and tree bindings that support the additional needs of list, table,
and tree UI controls.

■ Action bindings: Used by UI command components like hyperlinks or buttons to
invoke built-in or custom operations on data collections or a data control without
writing code.

■ Executable bindings: Include iterator bindings, which are mainly used in the
background to manage the query and the current row. Executable bindings also
include bindings that allow searching and nesting a series of pages within another
page, as well as bindings that cause operations to occur immediately.

Figure 2–2 shows how bindings connect UI components to data control collections and
methods.

Introduction to ADF Model Data Binding

Using ADF Model Data Binding in a Java EE Web Application 2-3

Figure 2–2 Bindings Connect UI Components to Data Controls

The group of bindings supporting the UI components on a page are described in a
page-specific XML file called the page definition file. The ADF Model layer uses this file
at runtime to instantiate the page’s bindings. These bindings are held in a
request-scoped map called the binding container. In a JSF application, the binding
container is accessible during each page request using the EL expression
#{bindings}. Example 2–1 shows the code used for binding a checkbox in a form to
the orderFilled attribute of the OrdersSessionEJBLocal data control.

Example 2–1 Binding Code for a Checkbox in a JSF Web Page

<af:selectBooleanCheckbox value="#{bindings.orderFilled.inputValue}"
 label="#{bindings.orderFilled.label}"
 shortDesc="#{bindings.orderFilled.hints.tooltip}" id="sbc1"/>

To use the ADF Model layer to bind data, you need to use JDeveloper to create a data
control for your services. The data control will then appear as a tree hierarchy in the
Data Controls panel where each subnode in the tree represents a collection, operation,
method or attribute. You can then create databound components by dragging and
dropping those subnodes onto the visual editor for a web page or other user interface
component. For example, you can create databound HTML elements for JSP pages,
databound UI components for JSF pages, and databound Swing UI components for
ADF Swing panels. When you drag a subnode from a data control to a page,

Tip: For more information about ADF EL expressions, see the
"Creating ADF Data Binding EL Expressions" section of the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

Exposing Business Services with ADF Data Controls

2-4 Java EE Developer's Guide for Oracle Application Development Framework

JDeveloper automatically creates the metadata that describes the bindings from the
page to the services. At runtime, the ADF Model layer reads the metadata information
from the appropriate XML files for both the data controls and the bindings, and then
implements the two-way connection between your user interface and your business
services.

2.2 Exposing Business Services with ADF Data Controls
Once you have your application’s services in place, you can use JDeveloper to create
data controls that provide the information needed to declaratively bind UI
components to those services. In a Java EE application, you normally create entity
beans that represent tables in a database and then create a session facade over all the
EJBs. This facade provides a unified interface to the underlying entities. In an Oracle
ADF application, you can create a data control for the session bean, and that data
control will contain representation of all the EJBs under the session bean.

You generate data controls with the Create Data Control command. Data controls
consist of one or more XML metadata files that define the capabilities of the services
that the bindings can work with at runtime. The data controls work in conjunction
with the underlying beans without changing the implementation of the beans.

For example, the Summit demo application uses the summit database schema, which
contains a number of relational database tables. The application’s Model project has a
number of entity beans that represent the tables in the schema used by the Summit
demo application. There is a Customer bean, a Product bean, an Order bean, and so
on. The module also contains a session bean, OrdersSessionEJBBean, which is
used to access the beans created from tables. There is a data control for the session
bean, which allows developers to declaratively create UI pages using the data and
logic contained in the session bean and in the entity beans that the session bean
encapsulates.

2.2.1 How to Create ADF Data Controls
You create data controls from within the Application Navigator of JDeveloper.

Before you begin:
It may be helpful to have a general understanding of using data controls. For more
information, see Section 2.2, "Exposing Business Services with ADF Data Controls.".

You will need to complete this task:

Create an application workspace, JPA/EJB 3.0 entities, and one or more session
beans for the entities. For more information, see the "How to Work with an EJB
Business Services Layer" section of the Oracle Fusion Middleware User Guide for
Oracle JDeveloper.

Note: You can also base a data control on a Java Service Facade class.
With a Java Service Facade, you can expose business methods either
from within an EJB container or without using an EJB container. A
Java Service Facade template is available in the New Gallery. Also
note that any class on which you base a data control must meet the
JavaBeans specification. In particular, the class must have a public
default constructor.

Exposing Business Services with ADF Data Controls

Using ADF Model Data Binding in a Java EE Web Application 2-5

To create a data control:
1. In the Application Navigator, right-click the session bean for which you want to

create a data control and choose Create Data Control from the context menu.

2. In the Choose EJB Interface dialog, choose Local or Remote. For web applications,
typically you would choose Local.

2.2.2 What Happens in Your Project When You Create a Data Control
When you create a data control based on an EJB session bean, JDeveloper creates the
data control definition file (DataControls.dcx), opens the file in the overview
editor, and displays the file’s hierarchy in the Data Controls panel. This file enables the
data control to work directly with the services and the bindings. Figure 2–3 shows the
DataControls.dcx file in the overview editor.

Figure 2–3 DataControls.dcx File in the Overview Editor

Example 2–2 shows the code from the corresponding XML file, which you can view by
clicking on the Source tab in the editor window.

Example 2–2 DataControls.dcx File

<?xml version="1.0" encoding="UTF-8" ?>
<DataControlConfigs xmlns="http://xmlns.oracle.com/adfm/configuration"
version="11.1.2.58.66" id="DataControls"
 Package="model">
 <AdapterDataControl id="OrdersSessionEJBLocal"
FactoryClass="oracle.adf.model.adapter.DataControlFactoryImpl"

Note: If you later rename the bean on which a data control is based,
you must again use the Create Data Control command in order to
regenerate the data control’s metadata.

If you merely make changes to a bean after the data control is created,
you do not have to regenerate the data control. The data control
incorporates any changes made to the bean. However, you might need
to close and reopen the project in order for the data control to
incorporate the changes to the underlying beans.

Exposing Business Services with ADF Data Controls

2-6 Java EE Developer's Guide for Oracle Application Development Framework

ImplDef="oracle.adfinternal.model.adapter.ejb.EjbDCDefinition"
SupportsTransactions="false"
 SupportsSortCollection="true" SupportsResetState="false"
SupportsRangesize="false"
 SupportsFindMode="false" SupportsUpdates="true"
Definition="model.OrdersSessionEJBLocal"
 BeanClass="model.OrdersSessionEJBLocal"
xmlns="http://xmlns.oracle.com/adfm/datacontrol">
 <CreatableTypes>
 <TypeInfo FullName="model.Product"/>
 <TypeInfo FullName="model.Item"/>
 <TypeInfo FullName="model.Ord"/>
 <TypeInfo FullName="model.Customer"/>
 <TypeInfo FullName="model.Emp"/>
 </CreatableTypes>
 <Source>
 <ejb-definition ejb-version="3.0" ejb-name="OrdersSessionEJB"
ejb-type="Session"
 ejb-business-interface="model.OrdersSessionEJBLocal"
ejb-interface-type="local"

initial-context-factory="weblogic.jndi.WLInitialContextFactory"

DataControlHandler="oracle.adf.model.adapter.bean.jpa.JPQLDataFilterHandler"
 xmlns="http://xmlns.oracle.com/adfm/adapter/ejb"/>
 </Source>
 </AdapterDataControl>
</DataControlConfigs>

2.2.2.1 DataControls.dcx Overview Editor
The overview editor for the DataControls.dcx file provides a view of the
master-detail hierarchies of your data model as well as methods from the session
facade. When you select a node, you can view the fields that can be mapped to
database columns in the corresponding entity class in the Attributes tab. In the
Accessors tab, you can view fields for the corresponding entity class that have entity
relationships defined (such as OneToMany and ManyToOne). In the Operations tab,
you can view methods that operate on the entities, such as the add and remove
methods of the collection accessors.

See Table 2–1 for a description of the icons that are used in the overview editor and
Data Controls panel.

You can change the settings for a data control by selecting an element and clicking the
Edit icon. For more information about editing a data control, see Section 3.2,
"Configuring Data Controls."

2.2.2.2 Data Controls Panel
The Data Controls panel appears in the Application Navigator once you have created a
data control. The Data Controls panel serves as a palette, from which you can create
databound UI components by dragging nodes from the Data Controls panel to the
design editor for a web page.

Similar to the DataControls.dcx overview editor, the Data Controls panel reflects
the master-detail hierarchies in your data model by displaying detail data collections
nested under their master data collection. For example, Figure 2–4 shows the Data
Controls panel with the data control for the Summit demo application. The Customer,
Emp, Item, Ord, and Product beans are all represented by accessor returned

Exposing Business Services with ADF Data Controls

Using ADF Model Data Binding in a Java EE Web Application 2-7

collections in the figure, which in turn correspond to named queries defined in the
beans.

Figure 2–4 Data Controls Panel

The Data Controls panel also displays each service method on the session bean as a
method icon whose name matches the method name. If a method accepts arguments,
those arguments appear in a Parameters node as parameters nested inside the
method's node. Objects that are returned by the methods appear as well, as shown in
Figure 2–4.

In addition to the nodes that are displayed in the overview editor for the
DataControls.dcx file, the Data Controls panel displays nodes for other objects that
are available for binding, such as entity bean attributes, built-in operations, and
method parameters.

Each returned collection or object displays any attributes and custom methods that
were defined on the associated bean. Figure 2–5 shows the attributes and methods
defined on the Item bean that is returned by the itemFindAll accessor method.

Tip: If the Data Controls panel is not visible, see the "How to Open
the Data Controls Panel" section of the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework for
instructions on opening the panel.

Exposing Business Services with ADF Data Controls

2-8 Java EE Developer's Guide for Oracle Application Development Framework

Figure 2–5 Child Nodes to Returned Collections

By default, implicit named criteria are created for each attribute that is able to be
queried on a bean. They appear in the Data Controls panel as the All Queriable
Attributes node under the Named Criteria node, as shown in Figure 2–5. This node is
used to create quick search forms, as detailed in Chapter 8, "Creating Databound
Search Forms."

As shown in Figure 2–5, the Operations node under a returned collection in the Data
Controls panel displays all its available built-in operations that are provided by the
data control. If an operation accepts one or more parameters, then those parameters
appear in a nested Parameters node. At runtime, when one of these data collection
operations is invoked by name by the data binding layer, the data control delegates the
call to an appropriate method on the bean interface to handle the built-in functionality.
Most of the built-in operations affect the current row. However, the execute
operation refreshes the data control itself, and the commit and rollback operations
affect all changes made within the boundaries of a transaction. Following are the
built-in operations:

■ Create: Creates a new row that becomes the current row, but does not insert it.

■ Delete: Deletes the current row.

■ Execute: Refreshes the data collection by executing or reexecuting the accessor
method.

■ First: Sets the first row in the row set to be the current row.

■ Last: Sets the last row in the row set to be the current row.

Using the Data Controls Panel

Using ADF Model Data Binding in a Java EE Web Application 2-9

■ Next: Sets the next row in the row set to be the current row.

■ Next Set: Navigates forward one full set of rows.

■ Previous: Sets the previous row in the row set to be the current row.

■ Previous Set: Navigates backward one full set of rows.

■ removeRowWithKey: Tries to find a row using the serialized string representation
of the row key passed as a parameter. If found, the row is removed.

■ setCurrentRowWithKey: Tries to find a row using the serialized string
representation of the row key passed as a parameter. If found, that row becomes
the current row.

■ setCurrentRowWithKeyValue: Tries to find a row using the primary key
attribute value passed as a parameter. If found, that row becomes the current row.

■ commit: Persists to the database all changes that are made in the current
transaction. (Only available for stateful bean-managed session facades that contain
transactional methods)

■ rollback: Reverts all changes made within the context of the current transaction.
(Only available for stateful bean-managed session facades that contain
transactional methods)

The Data Controls panel is a direct representation of the DataControls.dcx file and
any data control structure files that are associated with the data control. By editing the
files, you can change the elements displayed in the panel. Whenever changes are made
to the services on which a data control is based, the data control incorporates those
changes.

2.3 Using the Data Controls Panel
You can design a databound user interface by dragging an item from the Data Controls
panel and dropping it on a page as a specific UI component. When you use a data
control to create a UI component, JDeveloper automatically creates the various code
and objects needed to bind the component to the data control you selected.

In the Data Controls panel, each object is represented by a specific icon. Table 2–1
describes what each icon represents, where it appears in the Data Controls panel
hierarchy, and what components it can be used to create.

Note: By default, JavaBeans components assume the rowIndex as
the key. If you do not explicitly define a key, the index will be used.

Using the Data Controls Panel

2-10 Java EE Developer's Guide for Oracle Application Development Framework

Table 2–1 Data Control Icons and Object Hierarchy

Icon Name Description Used to Create...

Data
Control

Represents a data control. You cannot use the data control itself
to create UI components, but you can use any of the child
objects listed under it. Depending on how your business
services were defined, there may be more than one data control.

Serves as a container for
the other objects, and is
not used to create
anything.

Accessor
Returned
Collection

Represents an object returned by a bean-style accessor method
on the business service. For example, if when you created a
session bean, you chose to also create accessor methods for each
of the Java entities under the session bean, then an accessor
returned collection is displayed for each of those entities.

If an entity contains a relationship to another entity (for
example, a foreign key), then a child accessor returned
collection is shown for that entity. In Oracle ADF, the
relationship between parent and child entities is called a
master-detail relationship.

The children under a collection may be attributes of the
elements that make up the collection, operations on the entire
collection, or operations on the row for each element in the
collection.

For collections: forms,
tables, trees, range
navigation components,
and master-detail widgets.

For single objects: forms,
master-detail widgets, and
selection lists.

For more information
about creating forms, and
navigation components,
see Chapter 4, "Creating a
Basic Databound Page."

For more information
about creating tables, see
Chapter 5, "Creating ADF
Databound Tables."

For information about
creating trees and other
master-detail UI
components, see
Chapter 6, "Displaying
Master-Detail Data."

For information about
creating lists, see
Chapter 7, "Creating
Databound Selection
Lists."

Attribute Represents a discrete data element in an object (for example, an
attribute in a row). Attributes appear as children under the
collections or method returns to which they belong.

This icon is used in the Data Controls panel, but not in the
overview editor for the DataControls.dcx file.

Label, text field, date and
selection list components.

For information about
creating text fields, see
Section 4.2, "Using
Attributes to Create Text
Fields."

Method Represents a method that may accept parameters, perform
some business logic, and optionally return a single value, a
structure, or a collection of a single value and a structure.

Command components.

For methods that accept
parameters: command
components and
parameterized forms.

For information about
creating command
components from
methods, see Section 4.6,
"Creating a Form to Edit
an Existing Record."

For information about
creating parameterized
forms, see Section 4.5,
"Creating a Form Using a
Method That Takes
Parameters."

Using the Data Controls Panel

Using ADF Model Data Binding in a Java EE Web Application 2-11

2.3.1 How to Use the Data Controls Panel
JDeveloper provides you with a predefined set of UI components from which to
choose for each data control item you drop.

To use the Data Controls panel to create UI components:
1. Select an item in the Data Controls panel and drag it onto the visual editor for

your page. For a definition of each item in the panel, see Table 2–1.

2. From the ensuing context menu, select a UI component.

Method
Return

Represents an object that is returned by a method. The returned
object can be a single value or a collection.

A method return appears as a child under the method that
returns it. The objects that appear as children under a method
return can be attributes of the collection, other methods that
perform actions related to the parent collection, or operations
that can be performed on the parent collection.

For single values: text
fields and selection lists.

For collections: forms,
tables, trees, and range
navigation components.

When a single-value
method return is dropped,
code to invoke the method
is not automatically
generated. You have to
also create an invoke
action as an executable, or
drop the corresponding
method as a button to
invoke the method.

Operation Represents a built-in data control operation that performs
actions on the parent object. Data control operations are located
in an Operations node under collections or method returns. The
operations that are children of a particular collection or method
return operate on those objects only.

If an operation requires one or more parameters, they are listed
in a Parameters node under the operation.

This icon is used in the Data Controls panel, but not in the
overview editor for the DataControls.dcx file.

Command components
such as buttons or links.

For information about
creating command
components from
operations, see Section 4.4,
"Incorporating Range
Navigation into Forms."

Parameter Represents a parameter value that is declared by the method or
operation under which it appears. Parameters appear in the
Parameters node under a method or operation.

This icon is used in the Data Controls panel, but not in the
overview editor for the DataControls.dcx file.

Label, text, and selection
list components.

Named
criteria

Represents a query from which you can create a user search
form.

An All Queriable Attributes criteria is generated automatically
for each accessor collection. This criteria can be used to create a
search form where it is possible for the user to query based on
any queriable attribute in the collection.

You can create custom view criteria and add them to the Data
Controls panel. See Section 3.6, "Filtering Result Sets with
Named Criteria".

This icon is used in the Data Controls panel, but not in the
overview editor for the DataControls.dcx file.

Search forms.

For information on
creating search forms, see
Chapter 8, "Creating
Databound Search
Forms."

Table 2–1 (Cont.) Data Control Icons and Object Hierarchy

Icon Name Description Used to Create...

Using the Data Controls Panel

2-12 Java EE Developer's Guide for Oracle Application Development Framework

When you drag an item from the Data Controls panel and drop it on a page,
JDeveloper displays a context menu of all the default UI components available for
the item you dropped.

Figure 2–6 shows the context menu displayed when an accessor returned
collection from the Data Controls panel is dropped on a page.

Figure 2–6 Data Controls Panel Context Menu

Depending on the component you select from the context menu, JDeveloper may
display a dialog that enables you to define how you want the component to look.

The resulting UI component appears in the JDeveloper visual editor, as shown in
Figure 2–7.

Figure 2–7 Databound UI Component: ADF Table

2.3.2 What Happens When You Use the Data Controls Panel to Create UI Components
When a web application is built using the Data Controls panel, JDeveloper does the
following:

■ Creates a DataBindings.cpx file in the default package for the project (if one
does not already exist), and adds an entry for the page.

Tip: Instead of creating automatically bound UI components using
the Data Controls panel, you can create your UI first and then bind the
components to the ADF Model layer. For more information, see the
"Using Simple UI First Development" section of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

Using the Data Controls Panel

Using ADF Model Data Binding in a Java EE Web Application 2-13

DataBindings.cpx files define the binding context (a container object that holds
a list of available data controls and data binding objects) for the application. Each
DataBindings.cpx file maps individual pages to the binding definitions in the
page definition file and registers the data controls used by those pages. Figure 2–8
shows a DataBindings.cpx file in the overview editor of JDeveloper.

Figure 2–8 DataBindings.cpx File in the Overview Editor

Example 2–3 shows the code from the corresponding XML file.

Example 2–3 DataBindings.cpx File

<?xml version="1.0" encoding="UTF-8" ?>
<Application xmlns="http://xmlns.oracle.com/adfm/application"
 version="11.1.2.59.53" id="DataBindings"
 SeparateXMLFiles="false" Package="view" ClientType="Generic">
 <pageMap>
 <page path="/ViewCustomerOrders.jspx"
 usageId="view_ViewCustomerOrdersPageDef"/>
 <page path="/editOrderItems.jspx" usageId="view_editOrderItemsPageDef"/>
 <page path="/CreateOrder.jspx" usageId="view_CreateOrderPageDef"/>
 <page path="PageFlow#addOrd" usageId="view_adfc_config___addOrdPageDef"/>
 <page path="/WEB-INF/create-order-task-flow-definition.xml
 #create-order-task-flow-definition@Create"
 usageId="view_adfc_config___CreatePageDef"/>
 <page path="/EditOrder.jspx" usageId="view_EditOrderPageDef"/>
 <page path="/login.jspx" usageId="view_loginPageDef"/>
 <page path="/viewCust.jspx" usageId="view_viewCustPageDef"/>
 </pageMap>
 <pageDefinitionUsages>
 <page id="view_ViewCustomerOrdersPageDef"

Using the Data Controls Panel

2-14 Java EE Developer's Guide for Oracle Application Development Framework

 path="view.pageDefs.ViewCustomerOrdersPageDef"/>
 <page id="view_editOrderItemsPageDef"
 path="view.pageDefs.editOrderItemsPageDef"/>
 <page id="view_CreateOrderPageDef" path="view.pageDefs.CreateOrderPageDef"/>
 <page id="view_adfc_config___CreatePageDef"
 path="view.pageDefs.adfc_config___CreatePageDef"/>
 <page id="view_adfc_config___addOrdPageDef"
 path="view.pageDefs.adfc_config___addOrdPageDef"/>
 <page id="view_EditOrderPageDef" path="view.pageDefs.EditOrderPageDef"/>
 <page id="view_loginPageDef" path="viewcontroller.pageDefs.loginPageDef"/>
 <page id="view_viewCustPageDef"
 path="viewcontroller.pageDefs.viewCustPageDef"/>
 </pageDefinitionUsages>
 <dataControlUsages>
 <dc id="OrdersSessionEJBLocal" path="model.OrdersSessionEJBLocal"/>
 </dataControlUsages>
</Application>

For more information about the .cpx file, see the "Working with the
DataBindings.cpx File" section of the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

■ Creates the adfm.xml file in the META-INF directory. This file creates a registry
for the DataBindings.cpx file, and is used by the applications metadata layer to
allow customization and personalization of the application. Example 2–4 shows an
example of an adfm.xml file.

Example 2–4 adfm.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<MetadataDirectory xmlns="http://xmlns.oracle.com/adfm/metainf"
 version="11.1.1.0.0">
 <DataBindingRegistry path="view/DataBindings.cpx"/>
</MetadataDirectory>

■ For web applications, registers the ADF binding filter in the web.xml file.

The ADF binding filter preprocesses any HTTP requests that may require access to
the binding context. For more information about the filter, see the "Configuring the
ADF Binding Filter" section of the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

■ Adds the following libraries to the project:

– ADF Model Runtime

– ADF Model Generic Runtime

■ Adds a page definition file (if one does not already exist for the page) to the page
definition subpackage. The default subpackage is view.pageDefs.

The page definition file (pageNamePageDef.xml) defines the ADF binding
container for each page in an application’s view layer. The binding container
provides runtime access to all the ADF binding objects. Figure 2–9 shows a page
definition file in the overview editor of JDeveloper.

Using the Data Controls Panel

Using ADF Model Data Binding in a Java EE Web Application 2-15

Figure 2–9 Page Definition File

■ Configures the page definition file, which includes adding definitions of the
binding objects referenced by the page. Example 2–5 shows the corresponding
XML for a page definition.

Example 2–5 Page Definition File

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
version="11.1.2.59.53" id="CreateOrderPageDef"
 Package="view.pageDefs">
 <parameters/>
 <executables>
 <variableIterator id="variables"/>
 <iterator Binds="root" RangeSize="25" DataControl="OrdersSessionEJBLocal"
 id="OrdersSessionEJBLocalIterator"/>
 <accessorIterator MasterBinding="OrdersSessionEJBLocalIterator"
 Binds="customerFindAll" RangeSize="25"
 DataControl="OrdersSessionEJBLocal"
 BeanClass="model.Customer" id="customerFindAllIterator"/>
 <accessorIterator MasterBinding="customerFindAllIterator"
 Binds="SOrdList" RangeSize="25"
 DataControl="OrdersSessionEJBLocal"
 BeanClass="model.Ord" id="SOrdListIterator"/>
 <iterator Binds="root" RangeSize="25" DataControl="OrdersSessionEJBLocal"
 id="OrdersSessionEJBLocalIterator1"/>
 <accessorIterator MasterBinding="OrdersSessionEJBLocalIterator1"
 Binds="empFindAll" RangeSize="-1"
 DataControl="OrdersSessionEJBLocal"
 BeanClass="model.Emp" id="empFindAllIterator"/>
 </executables>
 <bindings>
 <attributeValues IterBinding="SOrdListIterator" id="id">
 <AttrNames>
 <Item Value="id"/>
 </AttrNames>
 </attributeValues>
 <attributeValues IterBinding="SOrdListIterator" id="dateOrdered">
 <AttrNames>
 <Item Value="dateOrdered"/>

Using the Data Controls Panel

2-16 Java EE Developer's Guide for Oracle Application Development Framework

 </AttrNames>
 </attributeValues>
 <attributeValues IterBinding="SOrdListIterator" id="dateShipped">
 <AttrNames>
 <Item Value="dateShipped"/>
 </AttrNames>
 </attributeValues>
 <attributeValues IterBinding="SOrdListIterator" id="total">
 <AttrNames>
 <Item Value="total"/>
 </AttrNames>
 </attributeValues>
 <button IterBinding="SOrdListIterator" id="orderFilled"
 DTSupportsMRU="false" StaticList="true">
 <AttrNames>
 <Item Value="orderFilled"/>
 </AttrNames>
 <ValueList>
 <Item Value="Y"/>
 <Item Value="N"/>
 </ValueList>
 </button>
 <list IterBinding="SOrdListIterator" id="paymentType"
 DTSupportsMRU="true" StaticList="true">
 <AttrNames>
 <Item Value="paymentType"/>
 </AttrNames>
 <ValueList>
 <Item Value="CASH"/>
 <Item Value="CREDIT"/>
 </ValueList>
 </list>
 <list IterBinding="SOrdListIterator" id="salesRepId"
 DTSupportsMRU="true" StaticList="false"
 ListIter="empFindAllIterator">
 <AttrNames>
 <Item Value="salesRepId"/>
 </AttrNames>
 <ListAttrNames>
 <Item Value="id"/>
 </ListAttrNames>
 <ListDisplayAttrNames>
 <Item Value="firstName"/>
 <Item Value="lastName"/>
 </ListDisplayAttrNames>
 </list>

 <methodAction IterBinding="customerFindAllIterator" id="addOrd"
 RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="addOrd"
 IsViewObjectMethod="false"
 DataControl="OrdersSessionEJBLocal"
 InstanceName="bindings.customerFindAllIterator.
 currentRow.dataProvider"
 IsLocalObjectReference="true"
 ReturnName="data.OrdersSessionEJBLocal.methodResults.
 addOrd_addOrd_addOrd_result">
 <NamedData NDName="order"
 NDValue="#{bindings.SOrdListIterator.currentRow.dataProvider}"
 NDType="model.Ord"/>

Using the Data Controls Panel

Using ADF Model Data Binding in a Java EE Web Application 2-17

 </methodAction>
 <methodAction id="mergeCustomer" RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="mergeCustomer"
 IsViewObjectMethod="false"
 DataControl="OrdersSessionEJBLocal"
 InstanceName="data.OrdersSessionEJBLocal.dataProvider"
 ReturnName="data.OrdersSessionEJBLocal.methodResults.
 mergeCustomer_OrdersSessionEJBLocal_
 dataProvider_mergeCustomer_result">
 <NamedData NDName="customer"
 NDValue="#{bindings.customerFindAllIterator.currentRow.
 dataProvider}"
 NDType="model.Customer"/>
 </methodAction>
 </bindings>
</pageDefinition>

For more information about the page definition file, see the "Working with Page
Definition Files" section of the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework.

■ Adds prebuilt components to the view page.

These prebuilt components include ADF data bindings that reference the binding
objects in the page definition file. Example 2–6 shows JSF page code for
components that have been bound using ADF Model data binding.

Example 2–6 JSF Page Code Fragment with ADF Model Data Binding

.

.

.
<af:table value="#{bindings.Ord.collectionModel}" var="row"
 rows="#{bindings.Ord.rangeSize}"
 emptyText="#{bindings.Ord.viewable ? 'No data to display.' :
 'Access Denied.'}"
 fetchSize="#{bindings.Ord.rangeSize}" rowBandingInterval="0"
 selectedRowKeys="#{bindings.Ord.collectionModel.selectedRow}"
 selectionListener="#{bindings.Ord.collectionModel.makeCurrent}"
 rowSelection="single" id="t1">
 <af:column sortProperty="#{bindings.Ord.hints.dateOrdered.name}"
 sortable="false"
 headerText="#{bindings.Ord.hints.dateOrdered.label}" id="c1">
 <af:outputText value="#{row.dateOrdered}" id="ot1">
 <af:convertDateTime
 pattern="#{bindings.Ord.hints.dateOrdered.format}"/>
 </af:outputText>
 </af:column>
 <af:column sortProperty="#{bindings.Ord.hints.dateShipped.name}"
 sortable="false"
 headerText="#{bindings.Ord.hints.dateShipped.label}" id="c2">
 <af:outputText value="#{row.dateShipped}" id="ot2">
 <af:convertDateTime
 pattern="#{bindings.Ord.hints.dateShipped.format}"/>
 </af:outputText>
 </af:column>
 <af:column sortProperty="#{bindings.Ord.hints.id.name}" sortable="false"
 headerText="#{bindings.Ord.hints.id.label}" id="c3">
 <af:outputText value="#{row.id}" id="ot3"/>
 </af:column>
.

Using the Data Controls Panel

2-18 Java EE Developer's Guide for Oracle Application Development Framework

.

.
■ For applications that use ADF Faces, adds all the files, and configuration elements

required by ADF Faces components. For more information, see the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework.

2.3.3 What Happens at Runtime
When a page contains ADF bindings, at runtime the interaction with the business
services initiated from the client or controller is managed by the application through
the binding context. The binding context is a runtime map (named data and
accessible through the EL expression #{data}) of all data controls and page
definitions within the application.

The ADF lifecycle creates the ADF binding context from the DataControls.dcx,
DataBindings.cpx, and page definition files, as shown in Figure 2–10. The
DataControls.dcx file defines the data controls available to the application at
design time, while the DataBindings.cpx files define what data controls are
available to the application at runtime. A DataBindings.cpx file lists all the data
controls that are being used by pages in the application and maps the binding
containers, which contain the binding objects defined in the page definition files, to
web page URLs, or in the case of a Java Swing application, the Java class. The page
definition files define the binding objects used by the application pages. There is one
page definition file for each page.

Figure 2–10 ADF Binding File Runtime Usage

The binding context does not contain real live instances of these objects. Instead, the
map first contains references that become data control or binding container objects on
demand. When the object (such as the page definition) is released from the application
(such as when a task flow ends or when the binding container or data control is

Using the Data Controls Panel

Using ADF Model Data Binding in a Java EE Web Application 2-19

released at the end of the request), data controls and binding containers turn back into
reference objects. For more information, see the "Understanding the Fusion Page
Lifecycle" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

2.3.4 What You May Need to Know About Iterator Result Caching
When a data control modifies a collection, the data control must instantiate a new
instance of the collection in order for the ADF Model layer to understand that it has
been modified. In other words, although some action in the client may change the
collection, that change will not be reflected in the UI unless a new instance of the
collection is created. However, for performance reasons, accessor and method iterators
cache their results set (by default, the cacheResults attribute on the iterator is set to
true). This setting means that the iterator is refreshed and a new instance of the
collection is created only when the page is first rendered. The iterator is not refreshed
when the page is revisited, for example, if the page is refreshed using partial page
rendering, or if the user navigates back to the page.

For example, say you want to allow sorting on a table on your page. Because you want
the page to refresh after the sort, you add code to the listener for the sort event that
will refresh the table using partial page rendering (for more information, see the
"Rerendering Partial Page Content" chapter of the Oracle Fusion Middleware Web User
Interface Developer's Guide for Oracle Application Development Framework). Because the
instance of the collection for the table has already been instantiated and is cached, the
accessor iterator will not reexecute, which means that a new instance of the collection
with the new sort order will not be created, so the sort order on the page will remain
the same.

To work around this issue, you can either configure the iterator so that it does not
cache the results, or you can place a button on the page that can be used to reexecute
the iterator when the page is refreshed. If your page does not have a button whose
action attribute can be bound to a method, then you can use an invokeAction
executable that will be invoked whenever the page is refreshed.

To set an iterator to not cache its result set:
1. Open the page definition file, and in the Structure window, select the iterator

whose results should not be cached.

2. In the Property Inspector, expand the Advanced section and set CacheResults to
false.

To use a button to reexecute the iterator:
1. From the ADF Faces page of the Component Palette, drag and drop a Button onto

the page.

Note: If your page uses the navigation operations to navigate
through the collection, do not set CacheResults to false, as that
navigation will no longer work. You must use a button to reexecute
the iterator. For more information about the navigation operations, see
Section 4.4, "Incorporating Range Navigation into Forms."

Performance Tip: If you set an iterator to not cache its result set, and
that result set is a collection that may return a large number of rows,
performance will be negatively affected. For large result sets, you
should use an invokeAction.

Using the Data Controls Panel

2-20 Java EE Developer's Guide for Oracle Application Development Framework

2. In the Structure window, right click the button and in the context menu, choose
Bind to ADF Control.

3. In the Bind to ADF Control dialog, expand the accessor associated with the iterator
to reexecute, expand that accessor’s Operations node, and select Execute.

To use an invokeAction to reexecute the iterator:
1. Open the page definition file, and in the Structure window, right-click executables

and choose Insert inside executables > invokeAction.

2. In the Insert invokeAction dialog, set id to a unique name. Use the Binds
dropdown list to select the iterator to be reexecuted.

3. With the newly created invokeAction still selected, in the Property Inspector, set
Refresh to prepareModel.

This setting will cause the accessor method to be invoked during the Prepare
Model phase. This refreshes the binding container.

4. Set RefreshCondition to an EL expression that will cause the refresh to happen
only if any value has actually changed. If this condition is not set, the
invokeAction will be called twice.

For more information about the page lifecycle phases and using the refresh and
refreshCondition attributes, see "About the JSF and ADF Page Lifecycles"
section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

2.3.5 What You May Need to Know About Configuring Validation
In addition to being able to set validation on attributes at the data control level, you
can also set validation on the attribute bindings in a page definition file. When a user
edits or enters data in a field for an attribute for which validation has been defined,
and submits the form, the bound data is validated against the configured rules and
conditions. If validation fails, the application displays an error message.

In most cases, setting validation at the data control level is preferable to setting
validation at the page level. Any validation rules that you set on a data control are
applied in all of the UI components that are created from the data control.

For information and procedures on setting validation on data controls, see Section 3.5,
"Defining Validation Rules on Attributes Declaratively".

For information and procedures on setting validation on individual UI components,
see the "Using Validation in the ADF Model Layer" chapter of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

When you set validation, you can define the error message that will be displayed. By
default, these messages are displayed in a client dialog. You can configure these
messages to display inline instead. For more information, see the "Displaying Hints
and Error Messages for Validation and Conversion" section of the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework.

You can also change the way messages are handled by creating your own error
handling class. For more information, see the "Customizing Error Handling" section of
the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

Using the Data Controls Panel

Using ADF Model Data Binding in a Java EE Web Application 2-21

2.3.6 What You May Need to Know About Custom Session Bean Accessor Methods
By default, when you drag an accessor returned collection from a session bean data
control onto a page, the result is a paginated collection. In this case, the built-in session
bean's queryByRange() method will be referenced from the bindings (instead of the
corresponding getBeanFindAll() method in the session bean). If you have custom
code for a getBeanFindAll(), getBeanFindAllSize(), or
getBeanFindAll(x,y) method on a bean that you want to make sure is used at
runtime, you need to remove the data control's DataControlHandler attribute. You
can remove the DataControlHandler attribute in the source editor for the
DataControls.dcx file. However, when you remove that attribute, the built-in
support for named queries and pagination is also disabled.

Using the Data Controls Panel

2-22 Java EE Developer's Guide for Oracle Application Development Framework

3

Adding Business Logic to Data Controls 3-1

3 Adding Business Logic to Data Controls

This chapter describes how to configure your data controls with custom business logic,
such as validation rules, UI control hints, and default values for attributes. By
configuring your data controls, you can define business logic that is then used
whenever UI components are created from those data controls.

This chapter includes the following sections:

■ Section 3.1, "Introduction to Adding Business Logic to Data Controls"

■ Section 3.2, "Configuring Data Controls"

■ Section 3.3, "Working with Attributes"

■ Section 3.4, "Adding Transient Attributes to a Bean"

■ Section 3.5, "Defining Validation Rules on Attributes Declaratively"

■ Section 3.6, "Filtering Result Sets with Named Criteria"

■ Section 3.7, "Testing Bean Metadata Using the Oracle ADF Model Tester"

■ Section 3.8, "Groovy Language Support"

3.1 Introduction to Adding Business Logic to Data Controls
When you generate data controls, you can use them without further modification to
create bindings between your data model and the UI components in your application.
In addition, you can configure the data controls to add business logic and other
features to your data model so that those features are applied when you use the Data
Controls panel to create UI components. For example, you can configure data controls
to do the following things:

■ Configure default values for attributes.

■ Add labels and tooltips for attributes.

■ Add custom metadata (typically name-value pairs) that can be referenced via
expression language (EL) from the ADF Faces UI.

■ Add calculated attributes.

■ Add attribute-level validation rules with custom error messages.

■ Define declarative search forms.

Configuring Data Controls

3-2 Java EE Developer's Guide for Oracle Application Development Framework

3.2 Configuring Data Controls
When you create a data control for an EJB session bean, a standard set of values and
behaviors are assumed for the data control. For example, the data control determines
how the label for an attribute will display in a client. You can configure these values
and behaviors by creating and modifying data control structure files that corresponds
to your entity beans. You first generate a data control structure file using the overview
editor for the .dcx file.

3.2.1 How to Edit a Data Control
You can make a data control configurable by using the overview editor for the
DataControls.dcx file to create data control structure files that correspond to the
entity beans. You can then edit the individual data control structure files.

Before you begin:
It may be helpful to have a general understanding of data control configuration. For
more information, see Section 3.2, "Configuring Data Controls."

You will need to complete this task:

Create a data control for your session bean, as described in Section 2.2.1, "How to
Create ADF Data Controls."

To edit a data control:
1. In the Application Navigator, double-click DataControls.dcx.

2. In the overview editor, in the Data Controls tree, select an accessor returned
collection for the bean that you would like to configure and click the Edit icon to
generate a data control structure file.

3. In the overview editor of the data control structure file, make the desired
modifications.

3.2.2 What Happens When You Edit a Data Control
When you edit a data control based on an EJB session bean, JDeveloper creates a data
control structure file that contains metadata for the affected bean and opens that file in
the overview editor. This file stores configuration data for the data control that is
specific to that bean, such as any UI hints or validators that you have specified for the
bean.

A data control structure file has the same base name as the entity bean with which it
corresponds. For example, if you click the Edit icon when you have an accessor
returned collection node selected that corresponds with the Customer.java entity
bean, the data control structure file is named Customer.xml. The data control
structure file is generated in a package that corresponds to the package of the bean
class, but with persdef prepended to the package name. For example, in the Summit
application, the Customer.java bean is in the model package, and the
Customer.xml data control definition file is in the persdef.model package. Once a
data control structure file has been generated, you can use the overview editor for that
file to make further configurations.

A data control structure file contains the following information:

■ Attributes: Describes all of the attributes on the service. By default, there is an
attribute for each bean property that is mapped to a database column. You can also
add transient attributes. You can set UI hints that define how these attributes will

Configuring Data Controls

Adding Business Logic to Data Controls 3-3

display in the UI. You can also set other properties, such as whether the attribute
value is required, whether it must be unique, and whether it is visible. For
information about setting UI hints, see the "Defining Attribute UI Hints for View
Objects" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

You can also set validation for an attribute and create custom properties. For more
information on validation, see Section 3.5, "Defining Validation Rules on
Attributes Declaratively." For more information on custom properties, see the
"How to Implement Generic Functionality Driven by Custom Properties" section
of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

■ Accessors: Describes data control elements that return result sets on beans. The
Base Accessors section lists accessors that are based on bean properties for which
an association to another entity class is defined on the property’s field.

■ Named Criteria: Enables you to create rules to filter the rows that are presented.

For more information, see Section 3.6, "Filtering Result Sets with Named Criteria."

■ Operations: Describes methods on the bean that are used by the data control’s
built-in operations, such as add and remove methods, which are used by the
Create and Delete built-in operations, respectively.

Figure 3–1 shows the data control structure file for the Item bean in the Summit demo
application.

Figure 3–1 Data Control Structure File in the Overview Editor

Note: View objects are ADF Business Components used to
encapsulate SQL queries and to simplify working with the results.
When reading this section, simply substitute "bean" for "view object."

Working with Attributes

3-4 Java EE Developer's Guide for Oracle Application Development Framework

3.3 Working with Attributes
When you create a data control for your EJBs, you can create a data control structure
file for the bean in which you can declaratively augment the functionality of the bean’s
persistent attributes. For example, you can create validation rules and set UI hints to
control the default presentation of attributes in UI components. In addition, you can
create transient attributes.

In all cases, you set these properties on the Attributes page of the overview editor of
the data control structure file. For information on creating a data control structure file,
see Section 3.2.1, "How to Edit a Data Control."

3.3.1 How to Control the Updatability of an Attribute
The Updatable property controls whether the value of a given attribute can be
updated. You can select the following values for the Updatable property:

■ Always, the attribute is always updatable

■ Never, the attribute is read-only

Before you begin:
It may be helpful to have an understanding of how you set attribute properties. For
more information, see Section 3.3, "Working with Attributes."

You will need to complete this task:

Create the desired data control structure files as described in Section 3.2.1, "How to
Edit a Data Control."

To set the updatability of an attribute:
1. In the Application Navigator, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute you want to edit, and then click the
Details tab.

4. On the Details page, set the Updatable property.

3.3.2 How to Define a Static Default Value for an Attribute
The Value field in the Details section allows you to specify a static default value for
the attribute when the value type is set to Literal. For example, you might set the
default value of a ServiceRequest entity bean’s Status attribute to Open, or set
the default value of a User bean’s UserRole attribute to user.

Note: The overview editor of a data control structure file shows all of
the attributes, accessors, and operations that are associated with the
bean. However, the data control structure file’s XML source only
contains definitions for elements that you have edited. The base
elements are introspected from the bean. Also, when you make
changes to the underlying bean, the data control inherits those
changes.

Working with Attributes

Adding Business Logic to Data Controls 3-5

Before you begin:
It may be helpful to have an understanding of how you set attribute properties. For
more information, see Section 3.3, "Working with Attributes."

To define a static default value for an attribute:
1. In the Application Navigator, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute you want to edit, and then click the
Details tab.

4. On the Details page, select the Literal option.

5. In the text field below the Literal option, enter the default value for the attribute.

3.3.3 How to Define a Default Value Using a Groovy Expression
You can use a Groovy expression to define a default value for an attribute. This
approach is useful if you want to be able to change default values at runtime.
However, if the default value is always the same, the value is easier to see and
maintain using value field with the Literal type (on the Details tab). For general
information about using Groovy, see Section 3.8, "Groovy Language Support."

Before you begin:
It may be helpful to have an understanding of how you set attribute properties. For
more information, see Section 3.3, "Working with Attributes."

You will need to complete this task:

Create the desired data control structure files as described in Section 3.2.1, "How to
Edit a Data Control."

To define a default value using a Groovy expression:
1. In the Application Navigator, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute you want to edit, and then click the
Details tab.

4. On the Details page, select Expression for the default value type, and click the Edit
button next to the adjoining text field.

5. In the Edit Expression dialog, enter an expression in the field provided, as shown
in Figure 3–2.

Attributes that you reference can include any attribute that is defined for the bean.

Working with Attributes

3-6 Java EE Developer's Guide for Oracle Application Development Framework

Figure 3–2 Edit Expression Editor

6. In the same dialog, select the appropriate recalculate setting.

If you select Always (default), the expression is evaluated each time any attribute
in the row changes. If you select Never, the expression is evaluated only when the
row is created.

7. Optionally, provide a condition for when to recalculate the expression.

For example, the following expression in the Based on the following expression
field causes the attribute to be recalculated when either the Quantity attribute or
the UnitPrice attribute are changed:

return (adf.object.dataProvider.isAttributeChanged("Quantity") ||
adf.object.dataProvider.isAttributeChanged("UnitPrice"));

8. In the Available list at the bottom of the dialog, select any attributes upon which
the value expression or the optional recalculate expression is based and shuttle
each to the Selected list.

9. Click OK to save the expression.

3.3.4 What Happens When You Create a Default Value Using a Groovy Expression
When you define a default value using a Groovy expression, a
<TransientExpression> tag is added within the tag for the corresponding
attribute in the data control structure file. Example 3–1 shows sample XML code for a
Groovy expression that returns the current date for a default value.

Example 3–1 Default Date Value

<TransientExpression>
 <![CDATA[

Working with Attributes

Adding Business Logic to Data Controls 3-7

 adf.currentDate
]]>
</TransientExpression>

3.3.5 How to Set UI Hints on Attributes
You can set UI hints on attributes so that those attributes are displayed and labeled in
a consistent and localizable way by any UI components that use those attributes. To
create UI hints for attributes, use the overview editor for the bean’s data control
structure file, which is accessible from the Application Navigator.

Before you begin:
It may be helpful to have an understanding of how you set attribute properties. For
more information, see Section 3.3, "Working with Attributes."

You will need to complete this task:

Create the desired data control structure files as described in Section 3.2.1, "How to
Edit a Data Control."

To set a UI hint:
1. In the Application Navigator, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute you want to edit, and then click the UI
Hints tab.

4. On the UI Hints page, set the desired UI hints.

For information about the various UI hints, see the "Defining Attribute UI Hints for
View Objects" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

3.3.6 What Happens When You Set UI Hints on Attributes
When you set UI hints on an attribute, JDeveloper treats those hints as properties. Tags
for the properties are added to the bean’s data control structure file and the values for
the properties are stored in a resource bundle file. If the resource bundle file does not
already exist, it is generated in the data control’s package and named according to the
project name when you first set a UI hint. For example, in the Summit demo
application, the resource bundle is called ModelBundle.properties

Example 3–2 shows the code for the price attribute in the Summit demo application’s
Item.xml data control structure file, including tags for the Label and Format Type
hints which have been set for the attribute.

Example 3–2 XML Code for UI Hints

<PDefAttribute
 Name="price">
 <Properties>
 <SchemaBasedProperties>
 <LABEL

Note: View objects are ADF Business Components used to
encapsulate SQL queries and to simplify working with the results.
When reading this section, simply substitute "bean" for "view object."

Adding Transient Attributes to a Bean

3-8 Java EE Developer's Guide for Oracle Application Development Framework

 ResId="${adfBundle['model.ModelBundle']['model.Item.price_LABEL']}"/>
 <FMT_FORMATTER
 ResId="${adfBundle['model.ModelBundle']['model.Item.price_FMT_
 FORMATTER']}"/>
 </SchemaBasedProperties>
 </Properties>
</PDefAttribute>

Example 3–3 shows the corresponding entries for the Label and Format Type hints in
the ModelBundle.properties resource bundle file, which contains the values for
all of the project’s localizable properties.

Example 3–3 Resource Bundle Code for UI Hints

model.Item.price_LABEL=Price
. . .
model.Item.price_FMT_FORMATTER=oracle.jbo.format.DefaultCurrencyFormatter

3.4 Adding Transient Attributes to a Bean
In addition to having attributes that map to columns in an underlying table, your bean
data control structure files can include transient attributes that display calculated
values.

For example, a transient attribute you create, such as FullName, could be calculated
based on the concatenated values of FirstName and LastName attributes.

Once you create the transient attribute, you can use a Groovy expression in the
attribute definition to specify a default value.

3.4.1 How to Add a Transient Attribute
Use the Attributes page of the overview editor to create a transient attribute.

Before you begin:
It may be helpful to have an understanding of transient and calculated attributes. For
more information, see Section 3.4, "Adding Transient Attributes to a Bean."

You will need to complete this task:

Create the desired data control structure files as described in Section 3.2.1, "How to
Edit a Data Control."

To add a transient attribute to a bean’s data control structure file:
1. In the Application Navigator, double-click the bean’s data control structure file.

2. In the overview editor, click the Attributes navigation tab, and then click the New
icon.

3. In the New View Attribute dialog, enter a name for the attribute and click OK.

4. In the overview editor, click the Details tab and select an object type from the
Type dropdown list.

5. Optionally, in the Default Value section, set a default value or enter an expression
to calculate the default value.

For information on setting an expression to calculate the default value, see
Section 3.3.3, "How to Define a Default Value Using a Groovy Expression."

Defining Validation Rules on Attributes Declaratively

Adding Business Logic to Data Controls 3-9

6. If the value will be calculated with an expression, set Updatable to Never.

3.4.2 What Happens When You Add a Transient Attribute
When you add a transient attribute, JDeveloper adds a <ViewAttribute> tag to the
bean’s data control structure file to reflect the new attribute. Example 3–4 shows the
XML code for a transient attribute named LineItemTotal that is based on an
expression that multiplies the values of the price and quantity attributes.

Example 3–4 XML Code for a Transient Attribute

<ViewAttribute
 Name="LineItemTotal"
 IsUpdateable="false"
 IsSelected="false"
 IsPersistent="false"
 PrecisionRule="true"
 Type="java.lang.String"
 ColumnType="$none$">
 SQLType="VARCHAR">
 <RecalcCondition><![CDATA[true]]></RecalcCondition>
 <TransientExpression><![CDATA[price * quantity]]></TransientExpression>
 <Dependencies>
 <Item
 Value="price"/>
 <Item
 Value="quantity"/>
 </Dependencies>
 </ViewAttribute>

3.5 Defining Validation Rules on Attributes Declaratively
The easiest way to create and manage validation rules is through declarative validation
rules. Declarative validation rules are defined using the overview editor, and once
created, are stored in the bean’s data control structure file. Encapsulating the business
logic this way ensures that your business information is validated consistently in every
client that accesses it, and it simplifies maintenance by centralizing where the
validation is stored.

Oracle ADF provides built-in declarative validation rules that satisfy many of your
business needs. You can also base validation on a Groovy expression, as described in
Section 3.5.4, "How to Use Groovy Expressions For Validation and Business Rules."

When you add a validation rule, you supply an appropriate error message and can
later translate it easily into other languages if needed. You can also set the severity
level.

Many of the declarative validation features available for beans are also available at the
page level, should your application warrant the use of page-level validation in
addition to business-layer validation. For more information, see the "Using Validation
in the ADF Model Layer" chapter of the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

Defining Validation Rules on Attributes Declaratively

3-10 Java EE Developer's Guide for Oracle Application Development Framework

3.5.1 How to Add Validation Rules to Attributes
The process for adding a validation rule to a bean is similar for most of the validation
rules, and is done using the Add Validation Rule dialog. You can open this dialog by
opening the bean’s data control structure file, selecting an attribute on Attributes page,
clicking the Validation Rules tab, and then clicking the Add icon

It is important to note that when you define a rule declaratively using the Add
Validation Rule dialog, the rule definition you provide specifies the valid condition for
the attribute. At runtime, the entry provided by the user is evaluated against the rule
definition, and an error or warning is raised if the entry fails to satisfy the specified
criteria. For example, if you specify a Length validator on an attribute that requires it
to be Less Than or Equal To 12, the validation fails if the entry is more than 12
characters, and the error or warning is raised.

To add a declarative validation rule to a data control structure file, use the Attributes
page of the bean’s overview editor.

Before you begin:
It may be helpful to have an understanding of the use of validation rules in data
control structure files. For more information, see Section 3.5, "Defining Validation
Rules on Attributes Declaratively."

You will need to complete this task:

Create the desired data control structure files as described in Section 3.2.1, "How to
Edit a Data Control."

To add a validation rule:
1. In the Application Navigator, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute for which you want to add the
validation rule, and then click the Validation Rules tab.

4. In the Validation Rule section of the page, click the Add Validation Rule icon.

5. In the Add Validation Rule dialog, select the type of validation rule desired from
the Rule Type dropdown list.

6. Use the dialog settings to configure the new rule.

The controls will change depending on the kind of validation rule you select. For
more information about the different validation rules, see Section 3.5.3, "How to
Use the Built-in Declarative Validation Rules."

7. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see
Section 3.5.6, "How to Set the Severity Level for Validation Exceptions."

Note: You can also add validation rules by implementing a custom
validation class. This approach is particularly useful if you need to
define complex parameterized validation rules (such as for checking
credit card numbers) that you will need to use multiple times in your
application. For more information, see the "Implementing Custom
Validation Rules" section of the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

Defining Validation Rules on Attributes Declaratively

Adding Business Logic to Data Controls 3-11

8. Click OK.

3.5.2 What Happens When You Add a Validation Rule
When you add a validation rule to a bean, JDeveloper updates the bean’s data control
structure file to include an entry describing what rule you've used and what rule
properties you've entered.

For example, if you add a compare validation rule to the dateShipped attribute to
ensure that the shipping date does not precede the date in the dateOrdered attribute,
this results in a <validation:CompareValidationBean> entry in the XML file, as
shown in Example 3–5.

Example 3–5 Compare Validator

<validation:CompareValidationBean
 Name="dateShipped_Rule_0"
 ResId="${adfBundle['model.ModelBundle']['model.Ord.dateShipped_Rule_0']}"
 OnAttribute="dateShipped"
 OperandType="EXPR"
 Inverse="false"
 CompareType="GREATERTHANEQUALTO">
 <validation:TransientExpression><![CDATA[dateOrdered]]>
 </validation:TransientExpression>
</validation:CompareValidationBean>

3.5.3 How to Use the Built-in Declarative Validation Rules
The built-in declarative validation rules can satisfy many, if not all, of your business
needs. These rules are easy to implement because you don’t write any code. You use
the user-interface tools to choose the type of validation and how it is used.

Built-in declarative validation rules can be used to:

■ Make a comparison between an attribute and literal value or expression

■ Make sure that a value falls within a certain range, or that it is limited by a certain
number of bytes or characters

■ Validate using a regular expression or evaluate a Groovy expression

3.5.3.1 Validating Based on a Comparison
The Compare validator performs a logical comparison between an entity attribute and
a value. When you add a Compare validator, you specify an operator and something
to compare with. You can compare the following:

■ Literal value

When you use a Compare validator with a literal value, the value in the attribute is
compared against the specified literal value. When using this kind of comparison,
it is important to consider data types and formats. The literal value must conform
to the format specified by the data type of the entity attribute to which you are
applying the rule. In all cases, the type corresponds to the type mapping for the
entity attribute.

For example, an attribute of column type DATE maps to the
oracle.jbo.domain.Date class, which accepts dates and times in the same
format accepted by java.sql.TimeStamp and java.sql.Date. You can use
format masks to ensure that the format of the value in the attribute matches that of
the specified literal.

Defining Validation Rules on Attributes Declaratively

3-12 Java EE Developer's Guide for Oracle Application Development Framework

■ Expression

For information on the expression option, see Section 3.5.4, "How to Use Groovy
Expressions For Validation and Business Rules."

Before you begin:
It may be helpful to have an understanding of the use of validation rules in data
control structure files. For more information, see Section 3.5, "Defining Validation
Rules on Attributes Declaratively."

You will need to complete this task:

Create the desired data control structure files as described in Section 3.2.1, "How to
Edit a Data Control."

To validate based on a comparison:
1. In the Application Navigator, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute for which you want to add the
validation rule, and then click the Validation Rules tab.

4. In the Validation Rule section of the page, click the Add Validation Rule icon.

5. In the Add Validation Rule dialog, in the Rule Type dropdown list, select
Compare. Note that the subordinate fields change depending on your choices.

6. Select the appropriate operator.

7. Select an item in the Compare With list, and based on your selection provide the
appropriate comparison value.

8. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see
Section 3.5.5, "How to Create Validation Error Messages."

9. Click OK.

3.5.3.2 What Happens When You Validate Based on a Comparison
When you create a Compare validator, a <validation:CompareValidationBean>
tag is added to the bean’s data control structure file.

Example 3–5 shows the XML code for the validator on the dateShipped attribute in
the Ord data control structure file.

3.5.3.3 Validating Using a List of Values
The List validator compares an attribute against a list of values. The validator ensures
that the value of the bean attribute is in (or not in, if specified) the list of values.

Before you begin:
It may be helpful to have an understanding of the use of validation rules in data
control structure files. For more information, see Section 3.5, "Defining Validation
Rules on Attributes Declaratively."

You will need to complete this task:

Create the desired data control structure files as described in Section 3.2.1, "How to
Edit a Data Control."

Defining Validation Rules on Attributes Declaratively

Adding Business Logic to Data Controls 3-13

To validate using a list of values:
1. In the Application Navigator, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute for which you want to add the
validation rule, and then click the Validation Rules tab.

4. In the Validation Rule section of the page, click the Add Validation Rule icon.

5. In the Add Validation Rule dialog, in the Rule Type dropdown list, select List.

6. In the Operator field, select In or NotIn, depending on whether you want an
inclusive list or an exclusive list.

7. In the Enter List of Values section, enter the values, one per line.

8. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see
Section 3.5.5, "How to Create Validation Error Messages."

9. Click OK.

3.5.3.4 What Happens When You Validate Using a List of Values
When you validate using a list of values, a <validation:ListValidationBean>
tag is added to the bean’s data control structure file.

3.5.3.5 Ensuring That a Value Falls Within a Certain Range
The Range validator performs a logical comparison between an entity attribute and a
range of values. When you add a Range validator, you specify minimum and
maximum literal values. The Range validator verifies that the value of the entity
attribute falls within the range (or outside the range, if specified).

If you need to dynamically calculate the minimum and maximum values, or need to
reference other attributes on the entity, use the Script Expression validator and provide
a Groovy expression. For more information, see Section 3.8.1, "How to Reference ADF
Objects in Groovy Expressions."

Before you begin:
It may be helpful to have an understanding of the use of validation rules in data
control structure files. For more information, see Section 3.5, "Defining Validation
Rules on Attributes Declaratively."

You will need to complete this task:

Create the desired data control structure files as described in Section 3.2.1, "How to
Edit a Data Control."

To validate within a certain range:
1. In the Application Navigator, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute for which you want to add the
validation rule, and then click the Validation Rules tab.

4. In the Validation Rule section of the page, click the Add Validation Rule icon.

5. In the Add Validation Rule dialog, in the Rule Type dropdown list, select Range.

6. In the Operator field, select Between or NotBetween.

Defining Validation Rules on Attributes Declaratively

3-14 Java EE Developer's Guide for Oracle Application Development Framework

7. In the Minimum Value and Maximum Value fields, enter appropriate values.

8. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see
Section 3.5.5, "How to Create Validation Error Messages."

9. Click OK.

3.5.3.6 What Happens When You Use a Range Validator
When you validate against a range, a <validation:RangeValidationBean> tag is
added to the data control structure file.

Example 3–6 shows the quantity attribute with a minimum of zero and a maximum
of 10.

Example 3–6 Range Validator XML Code

<PDefAttribute
 Name="quantity">
 <validation:RangeValidationBean
 Name="quantity_Rule_0"
 ResId="${adfBundle['model.ModelBundle']['QUANTITY_VALIDATOR']}"
 OnAttribute="quantity"
 OperandType="LITERAL"
 Inverse="false"
 MinValue="0"
 MaxValue="10"/>
. . .
</PDefAttribute>

3.5.3.7 Validating Against a Number of Bytes or Characters
The Length validator validates whether the string length (in characters or bytes) of an
attribute's value is less than, equal to, or greater than a specified number, or whether it
lies between a pair of numbers.

Before you begin:
It may be helpful to have an understanding of the use of validation rules in data
control structure files. For more information, see Section 3.5, "Defining Validation
Rules on Attributes Declaratively."

You will need to complete this task:

Create the desired data control structure files as described in Section 3.2.1, "How to
Edit a Data Control."

To validate against a number of bytes or characters:
1. In the Application Navigator, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute for which you want to add the
validation rule, and then click the Validation Rules tab.

4. In the Validation Rule section of the page, click the Add Validation Rule icon.

5. In the Add Validation Rule dialog, in the Rule Type dropdown list, select Length.

6. In the Operator field, select how to evaluate the value.

Defining Validation Rules on Attributes Declaratively

Adding Business Logic to Data Controls 3-15

7. In the Comparison Type field, select Byte or Character and enter a length.

8. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see
Section 3.5.5, "How to Create Validation Error Messages."

9. Click OK.

3.5.3.8 What Happens When You Validate Against a Number of Bytes or Characters
When you validate using length, a <validation:LengthValidationBean> tag is
added to the data control structure file, as shown in Example 3–7. For example, you
might have a field where the user enters a password or PIN and the application wants
to validate that it is at least 6 characters long, but not longer than 10. You would use
the Length validator with the Between operator and set the minimum and maximum
values accordingly.

Example 3–7 Validating the Length Between Two Values

 <validation:LengthValidationBean
 OnAttribute="pin"
 CompareType="BETWEEN"
 DataType="CHARACTER"
 MinValue="6"
 MaxValue="10"
 Inverse="false"/>

3.5.3.9 Validating Using a Regular Expression
The Regular Expression validator compares attribute values against a mask specified
by a Java regular expression.

If you want to create expressions that can be personalized in metadata, you can use the
Script Expression validator. For more information, see Section 3.5.4, "How to Use
Groovy Expressions For Validation and Business Rules."

Before you begin:
It may be helpful to have an understanding of the use of validation rules in data
control structure files. For more information, see Section 3.5, "Defining Validation
Rules on Attributes Declaratively."

You will need to complete this task:

Create the desired data control structure files as described in Section 3.2.1, "How to
Edit a Data Control."

To validate using a regular expression:
1. In the Application Navigator, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute for which you want to add the
validation rule, and then click the Validation Rules tab.

4. In the Validation Rule section of the page, click the Add Validation Rule icon.

5. In the Add Validation Rule dialog, in the Rule Type dropdown list, select Regular
Expression.

6. In the Operator field, you can select Matches or Not Matches.

Defining Validation Rules on Attributes Declaratively

3-16 Java EE Developer's Guide for Oracle Application Development Framework

7. To use a predefined expression (if available), you can select one from the
dropdown list and click Use Pattern. Otherwise, write your own regular
expression in the field provided.

8. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see
Section 3.5.5, "How to Create Validation Error Messages."

9. Click OK.

Figure 3–3 shows what the dialog looks like when you select a Regular Expression
validator and validate that the Email attribute matches a predefined Email Address
expression.

Figure 3–3 Regular Expression Validator Matching Email Address

3.5.3.10 What Happens When You Validate Using a Regular Expression
When you validate using a regular expression, a <RegExpValidationBean> tag is
added to the data control structure file. Example 3–8 shows an Email attribute that
must match a regular expression.

Example 3–8 Regular Expression Validator XML Code

<validation:RegExpValidationBean

Defining Validation Rules on Attributes Declaratively

Adding Business Logic to Data Controls 3-17

 Name="Email_Rule_0"
 OnAttribute="Email"
 Pattern="[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}"
 Flags="CaseInsensitive"
 Inverse="false"/>

3.5.4 How to Use Groovy Expressions For Validation and Business Rules
Groovy expressions are Java-like scripting code stored in the data control structure file.
You can even change or specify values at runtime.

For more information about creating validation rules, see Chapter 3.5, "Defining
Validation Rules on Attributes Declaratively."

For more information about using Groovy expressions in your business logic, see
Section 3.8, "Groovy Language Support."

3.5.4.1 Referencing Bean Methods in Groovy Validation Expressions
You can call methods on the bean using the adf.source.dataProvider property of
the current object. The adf.source.dataProvider property allows you to access
the bean that is being validated.

If the method is a non-boolean type and the method name is getXyzAbc() with no
arguments, then you access its value as if it were a property named XyzAbc. For
example, the Groovy expression in Example 3–9 would call the getXyzAbc()
method.

Example 3–9 Groovy Expression Calling Sample Methods

adf.source.dataProvider.XyzAbc

For a Boolean property, the same holds true but the JavaBeans component naming
pattern for the getter method changes to recognize isXyzAbc() instead of
getXyzAbc(). If the method on your bean does not match the JavaBeans getter
method naming pattern, or if it takes one or more arguments, then you must call it like
a method using its complete name.

3.5.4.2 Validating Using a True/False Expression
You can use a Groovy expression to return a true/false statement. The Script
Expression validator requires that the expression either return true or false, or that it
calls the adf.error.raise/warn() method. A common use of this feature would
be to validate an attribute value, for example, to make sure that an account number is
valid.

Before you begin:
It may be helpful to have an understanding of validation in data control structure files.
For more information, see Section 3.5, "Defining Validation Rules on Attributes
Declaratively."

Note: Using the adf.error.raise() and adf.error.warn()
methods (rather than simply returning true or false) allows you to
define the message text to show to the user, and to associate a
validator with a specific attribute. For more information, see
Section 3.5.5, "How to Create Validation Error Messages."

Defining Validation Rules on Attributes Declaratively

3-18 Java EE Developer's Guide for Oracle Application Development Framework

You may also find it helpful to understand the use of Groovy in validation rules. For
more information, see Section 3.5.4, "How to Use Groovy Expressions For Validation
and Business Rules."

You will need to complete this task:

Create the desired data control structure files as described in Section 3.2.1, "How to
Edit a Data Control."

To validate using a true/false expression:
1. In the Application Navigator, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute for which you want to add the
validation rule, and then click the Validation Rules tab.

4. In the Validation Rule section of the page, click the Add Validation Rule icon.

5. In the Add Validation Rule dialog, in the Rule Type dropdown list, select Script
Expression.

6. Enter a validation expression in the field provided.

7. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see
Section 3.5.5, "How to Create Validation Error Messages."

8. Click OK.

3.5.4.3 What Happens When You Add a True/False Expression
When you create a Groovy expression, it is saved in the bean’s data control structure
file. The Groovy expression is wrapped by a <TransientExpression> tag. For
some Groovy expressions, the <TransientExpression> tag is wrapped by an
<validation:ExpressionValidationBean> tag as well.

3.5.5 How to Create Validation Error Messages
Validation error messages provide important information for the user: the message
should convey what went wrong and how to fix it.

3.5.5.1 Creating Validation Error Messages

Before you begin:
It may be helpful to have an understanding of the use of validation rules in data
control structure files. For more information, see Section 3.5, "Defining Validation
Rules on Attributes Declaratively."

You will need to complete this task:

Create the desired data control structure files as described in Section 3.2.1, "How to
Edit a Data Control."

To create validation error messages:
1. In the Application Navigator, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute for which you want to create the
validation error message, and then click the Validation Rules tab.

Defining Validation Rules on Attributes Declaratively

Adding Business Logic to Data Controls 3-19

4. In the Validation Rules section of the Attributes page, select the validation rule
that you want to edit and click the Edit Validation Rule icon.

5. In the Edit Validation Rule dialog, click the Failure Handling tab.

6. In the Message Text field, enter your error message.

You can also define error messages in a message bundle file. To select a previously
defined error message or to define a new one in a message bundle file, click the
Select Message icon to open the Select Text Resource dialog.

7. Optionally, define a message token by entering the message token’s name in curly
braces ({}) within the text of the error message. An entry for the token will then
appear in the Token Message Expressions section. Then define the value of the
message token in the Token Message Expressions list.

Figure 3–4 shows a failure message that contains a message token for a validation
rule in the data control structure file. For more information on this feature, see
Section 3.5.5.4, "Embedding a Groovy Expression in an Error Message."

8. Click OK.

Note: The Script Expression validator allows you to enter more than
one error message. This is useful if the validation script conditionally
returns different error or warning messages. For more information,
see Section 3.5.5.3, "Raising Error Message Conditionally Using
Groovy."

Defining Validation Rules on Attributes Declaratively

3-20 Java EE Developer's Guide for Oracle Application Development Framework

Figure 3–4 Failure Handling Message for a Validation Rule

3.5.5.2 Localizing Validation Messages
The error message is a translatable string and is managed in the same way as
translatable UI control hints in a message bundle file. To view the error message for
the defined rule in the message bundle class, locate the String key in the message
bundle that corresponds to the ResId property in the data control structure file entry
for the validator.

3.5.5.3 Raising Error Message Conditionally Using Groovy
You can use the adf.error.raise() and adf.error.warn() methods to
conditionally raise one error message or another depending upon branching in the
Groovy expression. For example, if an attribute value is x, then validate as follows, and
if the validation fails, raise error messageA; whereas if the attribute value is y, then
instead validate a different way and if validation fails, raise error messageB.

If the expression returns false (versus raising a specific error message using the
raise() method), the validator calls the first error message associated with the
validator.

The syntax of the raise() method takes one required parameter (the msgId to use
from the message bundle), and optionally can take the attrName parameter.

Defining Validation Rules on Attributes Declaratively

Adding Business Logic to Data Controls 3-21

You can use either adf.error.raise() or adf.error.warn() methods,
depending on whether you want to throw an exception, or whether you want
processing to continue, as described in Section 3.5.6, "How to Set the Severity Level for
Validation Exceptions."

3.5.5.4 Embedding a Groovy Expression in an Error Message
A validator's error message can contain embedded expressions that are resolved by the
server at runtime. To access this feature, simply enter a named token delimited by
curly braces (for example, {2} or {errorParam}) in the error message text where
you want the result of the Groovy expression to appear.

After entering the token into the text of the error message (on the Failure Handling
tab of the Edit Validation Rule dialog), the Token Message Expressions table at the
bottom of the dialog displays a row that allows you to enter a Groovy expression for
the token. Figure 3–4 shows the failure message that contains a message token for a
validation rule in the Item.xml data control structure file.

The expression shown in Figure 3–4 is a Groovy expression that returns the value of
the quantity attribute. You can also use Groovy expressions to access attribute UI
hints and other objects that are defined in the data control structure file.

You can use the Groovy expression newValue to return the entered value.

For more information about accessing ADF objects using Groovy, see Section 3.8,
"Groovy Language Support."

3.5.6 How to Set the Severity Level for Validation Exceptions
You can set the severity level for validation exceptions to either Informational Warning
or Error. If you set the severity level to Informational Warning, an error message will
display, but processing will continue. If you set the validation level to Error, the user
will not be able to proceed until you have fixed the error.

Under most circumstances you will use the Error level for validation exceptions, so
this is the default setting. However, you might want to implement a Informational
Warning message if the user has a certain security clearance. For example, a store
manager may want to be able to make changes that would surface as an error if a clerk
tried to do the same thing.

To set the severity level for validation exceptions, use the Failure Handling tab of the
Add Validation Rule dialog.

Before you begin:
It may be helpful to have an understanding of the use of validation rules in data
control structure files. For more information, see Section 3.5, "Defining Validation
Rules on Attributes Declaratively."

You will need to complete this task:

Create the desired data control structure files as described in Section 3.2.1, "How to
Edit a Data Control."

To set the severity level of a validation exception:
1. In the Application Navigator, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute for which you want to create the
validation error message, and then click the Validation Rules tab.

Filtering Result Sets with Named Criteria

3-22 Java EE Developer's Guide for Oracle Application Development Framework

4. In the Validation Rules section of the Attributes page, select the validation rule
that you want to edit and click the Edit Validation Rule icon.

5. In the Edit Validation Rule dialog, click the Failure Handling tab and select the
option for either Error or Informational Warning.

6. Click OK.

3.6 Filtering Result Sets with Named Criteria
JDeveloper enables you to create named criteria for data control structure files. Named
criteria can be used in the application’s data model and can be exposed to users as
seeded queries in search forms.

You can specify named criteria on an entity bean in order to filter results to display.
The named criteria object is a row set of one or more named criteria rows, whose
attributes mirror those in the entity bean. The named criteria definition comprises
query conditions that function like the WHERE clause of an SQL query.

In the result set of a named criteria, the data type of each attribute is String, which
enables the use of Query-by-Example operators. For example, this allows the user to
enter conditions such as "OrderId > 304".

You use the Named Criteria page of the overview editor to define named criteria for
specific data control structure files.

3.6.1 Use Case for Named Criteria
You create named criteria definitions when you need to filter individual accessor
results. Named criteria that you define at design time can be used for easy creation of
Query-by-Example search forms that allow the end user to supply values for attributes
of the target data control structure file.

For example, the end user might input the value of a customer name and the date to
filter the results in a web page that displays the rows of a CustomerOrders
collection. The web page designer will see the named criteria in the JDeveloper Data
Controls panel and, from them, easily create a search form. For more information
about the utilizing the named criteria in the Data Controls panel, see Section 8.1.1,
"Query Search Forms."

3.6.2 How to Create Named Criteria Declaratively
To define named criteria for the data control structure file that you wish to filter, you
open the data control structure file in the overview editor and use the Named Criteria
section of the View Criteria page. A dedicated editor that you open from the Named
Criteria section helps you to build the equivalent of a WHERE clause using attribute
names (as opposed to SQL column names). You may define multiple named criteria
for each bean.

Note: In addition to named criteria, there are also implicit criteria
that are generated automatically for entity beans when you create a
data control. Implicit criteria are based on the "FindAll" service
methods that return all data for given tables.

Both named and implicit criteria are available under the Named
Criteria node in the Data Controls panel. Implicit criteria appear as All
Queriable Attributes.

Filtering Result Sets with Named Criteria

Adding Business Logic to Data Controls 3-23

Each named criteria definition consists of the following elements:

■ One or more named criteria rows consisting of an arbitrary number of named
criteria groups or an arbitrary number of references to another named criteria
already defined for the current data control structure file.

■ Optional named criteria groups consisting of an arbitrary number of named
criteria items.

■ Named criteria items consisting of an attribute name, an attribute-appropriate
operator, and an operand. Operands can be a literal value when the filter value is
defined or a bind variable that can optionally utilize a scripting expression that
includes dot notation access to attribute property values.

Expressions are based on the Groovy scripting language, as described in
Section 3.8, "Groovy Language Support."

When you define a named criteria, you control the source of the filtered results. You
can limit the results to:

■ Just the database table specified by the entity bean.

■ Just the in-memory results of the accessor query.

■ Both the database and the in-memory results of the accessor query.

Filtering on both database tables and the accessor’s in-memory results allows you to
filter rows that were created in the transaction but not yet committed to the database.

Named criteria expressions you construct in the Edit View Criteria dialog use logical
conjunctions to specify how to join the selected criteria item or criteria group with the
previous item or group in the expression:

■ AND conjunctions specify that the query results meet both joined conditions. This is
the default for each named criteria item you add.

■ OR conjunctions specify that the query results meet either or both joined
conditions. This is the default for named criteria groups.

Additionally, you may create nested named criteria to have more control over the
logical conjunctions among the various named criteria items. A nested named criteria
group consists of an arbitrary number of nested named criteria items. The nested
criteria place restrictions on the rows that satisfy the criteria under the nested criteria’s
parent named criteria group. For example, you might want to query both a list of
employees with Salary > 3000 and belonging to DeptNo = 10 or DeptNo = 20.
You can define a named criteria with the first group with one item (Salary > 3000)
and a nested named criteria with the second group with two items (DeptNo = 10
and DeptNo =20).

Before you begin:
It may be helpful to have an understanding of named criteria. For more information,
see Section 3.6, "Filtering Result Sets with Named Criteria."

You will need to complete these tasks:

■ Create the desired data control structure files as described in Section 3.2.1, "How to
Edit a Data Control."

■ If the named criteria will use a bind variable in the operand, create the bind
variable as described in Section 3.6.4, "How to Use Bind Variables in Named
Criteria."

Filtering Result Sets with Named Criteria

3-24 Java EE Developer's Guide for Oracle Application Development Framework

To define a named criteria:
1. In the Application Navigator, double-click the data control structure file for which

you want to create the named criteria.

2. In the overview editor, click the Named Criteria navigation tab.

3. In the Named Criteria page, expand the Named Criteria section and click the
Create new view criteria button.

4. In the Create View Criteria dialog, enter the name of the named criteria to identify
its usage in your application.

5. In the Criteria Execution Mode dropdown list, decide how you want the named
criteria to filter the query results.

You can limit the named criteria to filter the database table specified by the
accessor query, the in- memory row set produced by the query, or both the
database table and the in-memory results.

Choosing Both may be appropriate for situations where you want to include rows
created as a result of enforced association consistency. In this case, in-memory
filtering is performed after the initial fetch.

6. Click one of these Add buttons to define the named criteria.

■ Add Item to add a single criteria item. The editor will add the item to the
hierarchy beneath the current group or named criteria selection. By default
each time you add an item, the editor will choose the next attribute to define
the criteria item. You can change the attribute to any attribute that the data
control structure file defines.

■ Add Group to add a new group that will compose criteria items that you
intend to add to it. When you add a new group, the editor inserts the OR
conjunction into the hierarchy. You can change the conjunction as desired.

■ Add Criteria to add a named criteria that you intend to define. This selection
is an alternative to adding a named criteria that already exists in the data
control structure file. When you add a new named criteria, the editor inserts
the AND conjunction into the hierarchy. You can change the conjunction as
desired. Each time you add another named criteria, the editor nests the new
named criteria beneath the current named criteria selection in the hierarchy.
The root node of the hierarchy defines the named criteria that you are
currently editing.

■ Add Named Criteria to add a named criteria that has already been defined in
the data control structure file.

7. Select a named criteria item node in the named criteria hierarchy and define the
added node in the Criteria Item section.

8. Select the desired Attribute for the criteria item. By default the editor adds the first
one in the list.

9. Select the desired Operator.

The list displays only the operators that are appropriate for the selected attribute.
In the case of String and Date type attributes, the Between and Not between

Note: Search forms that the UI designer will create from named
criteria are not able to use named criteria that contain other named
criteria.

Filtering Result Sets with Named Criteria

Adding Business Logic to Data Controls 3-25

operators require you to supply two operand values to define the range. In the
case of Date type attributes, you can select operators that test for a date or date
range (with date values entered in the format YYYY-MM-DD). For example, for
December 16th, 2010, enter 2010-12-16.

10. Select the desired Operand for the named criteria item selection.

■ Select Literal when you want to supply a value for the attribute or when you
want to define a default value for a user-specified search field for a
Query-by-Example search form. When the named criteria defines a query
search form for the user interface, you may leave the Value field empty. In this
case, the user will supply the value. You may also provide a value that will act
as a search field default value that the user will be able to override. The value
you supply in the Value field can include the wildcard characters * or %.

■ Select Bind Variable when you want the value to be determined at runtime
using a bind variable. Click New to display the Bind Variable dialog that lets
you create a new bind variable for the data control structure file. For more
information about creating bind variables, see Section 3.6.4, "How to Use Bind
Variables in Named Criteria."

11. For each item, group, or nested named criteria that you define, optionally change
the default conjunction to specify how the selection should be joined.

■ AND conjunction specifies that the query results meet both joined conditions.
This is the default for each named criteria item or view nested named criteria
that you add.

■ OR conjunction specifies that the query results meet either or both joined
conditions. This is the default for named criteria groups.

12. Optionally, to allow filtering based on the case of the runtime-supplied value,
deselect the Ignore Case option. It is selected by default, preventing such filtering.

The criteria item can be a literal value that you define or a runtime parameter that
the end user supplies. This option is supported for attributes of type String only.
The default disables case sensitive searches.

13. In the Validation dropdown list, decide whether the named criteria item is a
required or an optional part of the attribute value comparison in the generated
WHERE clause.

■ Selectively Required means that the generated WHERE clause will ignore the
named criteria item at runtime if no value is supplied and there exists at least
one criteria item at the same level that has a criteria value. Otherwise, an
exception is thrown.

■ Optional means the named criteria is added to the WHERE clause only if the
value is non-NULL. The default Optional for each new named criteria item
means no exception will be generated for null values.

■ Required means that the WHERE clause will fail to execute and an exception
will be thrown when no value is supplied for the criteria item.

14. If the named criteria uses a bind variable as the operand, decide whether the IS
NULL condition is generated in the WHERE clause. This field is enabled only if you
have selected Optional for the validation of the bind variable.

■ Leave Ignore Null Values selected (default) when you want to permit the
named criteria to return a result even when the bind variable value is not
supplied at runtime. When validation is set to Required or Optionally

Filtering Result Sets with Named Criteria

3-26 Java EE Developer's Guide for Oracle Application Development Framework

Required, the named criteria expects to receive a value and thus this option to
ignore null values is disabled.

For example, leaving this option selected for a bind variable that is used in a
user search form would enable a user to see results from a search without
having to fill in a value for the field with that bind variable.

■ Deselect Ignore Null Values when you expect the named criteria to return a
null result when the bind variable value is not supplied at runtime.

Note that the validation settings Required or Optionally Required also
remove the null value condition but support a different use case. They should
be used in combination with Ignore Null Values feature to achieve the desired
runtime behavior.

15. Click OK.

3.6.3 What Happens When You Create a Named Criteria
When you create a named criteria, the named criteria definition is added to the data
control structure file and appears by name on the Named Criteria page of the
overview editor.

To view XML code for the named criteria, open the source editor for the data control
structure file. Each named criteria definition contains one or more
<ViewCriteriaRow> elements corresponding to the number of groups that you
define in the Create View Criteria dialog.

3.6.4 How to Use Bind Variables in Named Criteria
Bind variables provide you with the means to supply attribute values that are
calculated at runtime to the named criteria.

If the named criteria is to be used in a seeded search, you have the option of making
the bind variable updatable by the end user. With this updatable option, end users will
be expected to enter the value in the search form.

Named criteria execution need not require the bind variable value if the named criteria
item for which the bind variable is assigned is not required. To enforce this desired
behavior, the Bind Variable dialog lets you can specify whether a bind variable is
required or not.

You can define a default value for the bind variable or write scripting expressions for
the bind variable that includes dot notation access to attribute property values.
Expressions are based on the Groovy scripting language, as described in Section 3.8,
"Groovy Language Support."

To add a named bind variable to a named criteria, use the Named Criteria page of the
overview editor for the data control structure file. You can define as many bind
variables as you need.

Before you begin:
It may be helpful to have an understanding of named criteria. For more information,
see Section 3.6, "Filtering Result Sets with Named Criteria."

You will need to complete this task:

Create the desired data control structure files as described in Section 3.2.1, "How to
Edit a Data Control."

Filtering Result Sets with Named Criteria

Adding Business Logic to Data Controls 3-27

To create a named bind variable
1. In the Application Navigator, double-click the data control structure file.

2. In the overview editor, click the Named Criteria navigation tab.

3. On the Named Criteria page, expand the Bind Variables section and click the
Create new bind variable button.

4. In the Bind Variable dialog, enter the name and data type for the new bind
variable.

Because the bind variables share the same namespace as data control structure file
attributes, specify names that don't conflict with existing attribute names.

5. Optionally, specify a default value for the bind variable:

■ When you want the value to be determined at runtime using an expression,
enter a Groovy scripting language expression, select the Expression value type
and enter the expression in the Value field. Optionally, click Edit to open the
Expression dialog. The Expression dialog gives you a larger text area to write
the expression.

■ When you want to define a default value, select the Literal value type and
enter the literal value in the Value field.

6. In the Bind Variable dialog, click the Control Hints tab and specify hints like
Label Text, Format Type, Format mask, and others.

The view layer will use bind variable control hints when you build user interfaces
like search pages that allow the user to enter values for the named bind variables.
The Updatable option controls whether the end user will be allowed to change the
bind variable value through the user interface. If a bind variable is not updatable,
then its value can only be changed programmatically by the developer.

7. Click OK.

3.6.5 What Happens When You Use Bind Variables in Named Criteria
Once you've added one or more named bind variables to a structure definition file,
you gain the ability to easily see and set the values of these variables at runtime.
Information about the name, type, and default value of each bind variable is saved in
the bean’s data control structure file. If you have defined UI hints for the bind
variables, this information is saved in the model project’s message bundle file along
with other UI hints for the data control structure file.

3.6.6 What You May Need to Know About Nested Expressions
Search forms that the UI designer will create from named criteria are not able to work
with all types of nested expressions. Specifically, search forms do not support
expressions with directly nested named criteria. This type of nested expression defines
one named criteria as a direct child of another named criteria. Query search forms do
support nested expressions where you nest the named criteria as a child of a criteria
item which is itself a child of a named criteria. For more information about using
named criteria to create search forms, see Section 8.1.1, "Query Search Forms."

3.6.7 How to Set User Interface Hints on Named Criteria
Named criteria that you create for data control structure file collections can be used by
the web page designer to create Query-by-Example search forms. Web page designers
select your named criteria from the JDeveloper Data Controls panel to create search

Filtering Result Sets with Named Criteria

3-28 Java EE Developer's Guide for Oracle Application Development Framework

forms for the web application. In the web page, the search form utilizes an ADF Faces
query search component that will be bound initially to the named criteria selected in
the Data Controls panel. At runtime, the end user may select among all other named
criteria that appear in the Data Controls panel. Named criteria that the end user can
select in a search form are known as developer-seeded searches. The query component
automatically displays these seeded searches in its Saved Search dropdown list. For
more information about creating search forms and using the ADF query search
component, see Section 8.2, "Creating Query Search Forms."

Because developer-seeded searches are created in the data model project, the UI Hints
page of the Edit View Criteria dialog lets you specify the default properties for the
query component’s runtime usage of individual named criteria. At runtime, the query
component’s behavior will conform to the selections you make for the following
seeded search properties:

To create a seeded search for use by the ADF query search component, you select
Show In List on the UI Hints page of the Edit View Criteria dialog. You deselect Show
In List when you do not want the end user to see the named criteria in their search
form.

Before you begin:
It may be helpful to have an understanding of named criteria. For more information,
see Section 3.6, "Filtering Result Sets with Named Criteria."

You will need to complete these tasks:

■ Create the desired data control structure files as described in Section 3.2.1, "How to
Edit a Data Control."

■ Create the named criteria, as described in Section 3.6.2, "How to Create Named
Criteria Declaratively."

To configure a named criteria for the user interface:
1. In the Application Navigator, double-click the data control structure file that

defines the named criteria you want to use as a seeded search.

2. In the overview editor, click the Named Criteria navigation tab.

3. On the Named Criteria page, select the named criteria that you want to allow in
seeded searches and click the Edit icon.

4. In the Edit View Criteria dialog, click the UI Hints tab and ensure that Show In
List is selected.

This selection determines whether or not the query component will display the
seeded search in its Saved Search dropdown list.

5. Enter a user-friendly display name for the seeded search to be added to the query
component Saved Search dropdown list.

When left empty, the named criteria name displayed in the Edit View Criteria
dialog will be used by the query component.

6. Optionally, enable Query Automatically when you want the query component to
automatically display the search results whenever the end user selects the seeded
search from the Saved Search dropdown list.

By default, no search results will be displayed.

7. Optionally, set the Rendered Mode property for each view criteria item in order to
determine whether the item is displayed for the user in basic mode or advanced
mode.

Testing Bean Metadata Using the Oracle ADF Model Tester

Adding Business Logic to Data Controls 3-29

8. Optionally, apply Criteria Item UI Hints to configure whether the query
component renders individual criteria items when the end user toggles the search
from between basic and advanced mode.

By default, all named criteria items defined by the seeded search will be displayed
in either mode.

If a rendered criteria item is of type Date, you must also define UI hints for the
corresponding bean attribute. Set the bean attribute’s Format Type hint to Simple
Date and set the Format Mask to an appropriate value, as described in the
"Defining Attribute Control Hints for View Objects" section of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework
guide. This will allow the search form to accept date values.

9. Click OK.

3.7 Testing Bean Metadata Using the Oracle ADF Model Tester
Before you start designing the views for your application, you can use the Oracle ADF
Model Tester to test various aspects of your model. For example, if you have added
validation rules or UI control hints to your model, you can test them before binding
those objects to a page. Even after you have your UI pages constructed, the Oracle
ADF Model Tester can assist you in diagnosing problems when they arise. You can
reproduce the issues in the Oracle ADF Model Tester to discover whether the problem
lies in the view or controller layers of the application, or whether there is instead a
problem in the business service layer application module itself.

3.7.1 How to Run the Oracle ADF Model Tester
To test the metadata that you have defined in your data control, use the Oracle ADF
Model Tester, which is accessible from the Application Navigator.

Before you begin:
It may be helpful to have an understanding of the Oracle ADF Model Tester. For more
information, see Section 3.7, "Testing Bean Metadata Using the Oracle ADF Model
Tester."

Note: When your named criteria includes an item that should not be
exposed to the user, use the Rendered Mode setting Never to prevent
it from appearing in the search form. For example, a named criteria
may be created to search for products in the logged-in customer’s cart;
however, you may want to prevent the user from changing the
customer ID to display another customer’s cart contents. In this
scenario, the named criteria item corresponding to the customer ID
would be set to the current customer ID using a named bind variable.
Although the bind variable definition might specify the variable as not
required and not updatable, with the UI hint property Display set to
Hide, only the Rendered Mode setting determines whether or not the
search form displays the value.

Testing Bean Metadata Using the Oracle ADF Model Tester

3-30 Java EE Developer's Guide for Oracle Application Development Framework

To test the bean metadata in your application:
1. In the Application Navigator, expand the project containing the desired data

control.

2. Right-click the appropriate session bean and choose Run.

Wait for the application server to start and for the bean to be loaded on the server.

The Configure Default Domain dialog displays the first time your run your
application and start a new domain in Integrated WebLogic Server. Use the dialog
to define an administrator password for the new domain. Passwords you enter can
be eight characters or more and must have a numeric character.

Alternatively, choose Debug when you want to run the application in the Oracle
ADF Model Tester with debugging enabled. JDeveloper opens the debugger
process panel in the Log window and the various debugger windows. For
example, when debugging using the Oracle ADF Model Tester, you can view
status message and exceptions, step in and out of source code, and manage
breakpoints.

3. Right-click the DataControls.dcx file and choose Run.

The Oracle ADF Model Tester opens, as shown in Figure 3–5

Note: For EJB data controls, the tester only works on data controls
for the remote session bean interface. If you created the data control
based on the local bean interface, you need to add metadata for the
remote bean interface to the DataControls.dcx file in order to use
the tester. You can add metadata for the remote bean interface by
right-clicking the session bean, choosing Create Data Control, and
then selecting the Remote radio button in the Choose EJB Interface
dialog.

When you later use the Data Controls panel to add bindings to pages,
you will see high-level nodes for both the local and remote interfaces.
Each node will contain identical hierarchies of data control collections
that reference the same data control structure files. The only difference
between the two hierarchies is in which session bean interface is
referenced.

Testing Bean Metadata Using the Oracle ADF Model Tester

Adding Business Logic to Data Controls 3-31

Figure 3–5 Oracle ADF Model Tester

Table 3–1 gives an overview of the operations that the Oracle ADF Model Tester
toolbar buttons perform when you display an entity bean.

Table 3–1 Oracle ADF Model Tester Toolbar Buttons

Button Operation Usage

Move to ... row Changes the current row displayed by the
Oracle ADF Model Tester. Moves to the first,
previous, next, or last row.

Insert a new row Creates and inserts a new row.

Delete the current
row

Deletes the current row.

Save changes to
the database

Runs the commit operation on any pending
transactions. However, for EJB data controls,
the changes are not actually committed to the
database.

This button is only available when
transactional methods are implemented on the
session facade.

Discard all
changes since last
save

Discards any pending transactions and
restores the original values.

This button is only available when
transactional methods are implemented on the
session facade.

Specify view
criteria

Displays the View Criteria dialog that you can
use to create and apply view criteria to the
result set.

Testing Bean Metadata Using the Oracle ADF Model Tester

3-32 Java EE Developer's Guide for Oracle Application Development Framework

3.7.2 How to Update the Oracle ADF Model Tester to Display Project Changes
When you are testing your data control, you can iteratively modify the data control
and retest it without redeploying your whole model project. You can merely close and
reopen the Oracle ADF Model Tester in order to reload changes that you have made to
the data control structure files.

If you change Java code or any other files that are packaged in the model project JAR
file, you also need to rebuild and redeploy that JAR to the internal application server.

Before you begin:
It may be helpful to have an understanding of the Oracle ADF Model Tester. For more
information, see Section 3.7, "Testing Bean Metadata Using the Oracle ADF Model
Tester."

To reload the data model metadata in the running Oracle ADF Model Tester:
1. In the Application Navigator, right-click the DataControls.dcx file and choose

Run.

2. In the Oracle ADF Model Tester, test the data model and determine any changes
you want to make.

3. In JDeveloper, make the desired changes to your project.

4. If you have made any changes to Java classes or any other artifacts that are part of
the session bean’s JAR file, rebuild the project. (For example, you can right-click
the data model project in the Application Navigator and choose Rebuild. The
rebuilt JAR file is then deployed to the server.)

If you have only made changes to data control structure files, you do not need to
rebuild the project.

5. Close the Oracle ADF Model Tester.

6. In the Application Navigator, right-click the DataControls.dcx file and choose Run
to reopen the tester with the updated metadata.

3.7.3 What Happens When You Use the Oracle ADF Model Tester
When you launch the Oracle ADF Model Tester, JDeveloper starts the tester in a
separate process and the Oracle ADF Model Tester window appears. The tree at the
left of the window displays all of the accessor returned collections in your data model.
If the data model defines master-detail view instance relationships, the tree will
display them as parent and child nodes. After you double-click the desired collection,
the Oracle ADF Model Tester will display a data view page to inspect the query
results. For example, Figure 3–6 shows the customerFindAll accessor returned
collection that has been double-clicked to display the first record for this collection in
the data view page on the right.

Validate row Validates the current row by applying
validation rules defined in the data control
structure file. Disabled unless at least one field
is editable.

Table 3–1 (Cont.) Oracle ADF Model Tester Toolbar Buttons

Button Operation Usage

Testing Bean Metadata Using the Oracle ADF Model Tester

Adding Business Logic to Data Controls 3-33

Figure 3–6 Oracle ADF Model Tester with the customerFindAll Collection Detail

The following are some of the features of the Oracle ADF Model Tester:

■ You can validate that the UI hints based on the Label Text hint and format masks
are defined correctly. (For more information on setting UI hints, see Section 3.3.5,
"How to Set UI Hints on Attributes.")

■ You can also scroll through the data using the toolbar buttons.

■ You can enter Query-by-Example criteria to find a particular row whose data you
want to inspect. By clicking the Specify View Criteria button in the toolbar, the
View Criteria dialog displays the list of available Query-by-Example criteria.

For example, you can select a view criteria like CustomerInfoCriteria and
enter a query criteria like "H%" for a LastName attribute and click Find to narrow
the search to only those users with a last name that begins with the letter H.

3.7.4 How to Test Business Layer Validation
Depending on the validation rules you have defined, you can try entering invalid
values to trigger and verify validation exceptions.

Before you begin:
It may be helpful to have an understanding of the Oracle ADF Model Tester. For more
information, see Section 3.7, "Testing Bean Metadata Using the Oracle ADF Model
Tester."

You will need to complete this task:

Start the tester as described in Section 3.7.1, "How to Run the Oracle ADF Model
Tester."

Testing Bean Metadata Using the Oracle ADF Model Tester

3-34 Java EE Developer's Guide for Oracle Application Development Framework

To test business layer validation:
1. In the tester, enter a value for an attribute and click the Validate Row icon.

For example, if you have defined a range validation rule for an attribute, enter a
value outside that range, and click the Validate Row icon. You should see an error
similar to following:

(oracle.jbo.AttrSetValException) Valid product codes are between 100 and 999

2. In the toolbar, click the Rollback button to revert data to the previous state.

3.7.5 How to Test Alternate Language Message Bundles and UI Hints
When your application defines alternative languages in your resource message
bundles, you can configure the Oracle ADF Model Tester to recognize these languages.
In the Oracle ADF Model Tester, you can then display the Locale menu and select
among the available language choices.

Testing the language message bundles in the Oracle ADF Model Tester lets you verify
that the translations of the data control UI hints are correctly located. Or, if the
message bundle defines date formats for specific attributes, the tool lets you verify that
date formats change (like 04/12/2007 to 12/04/2007).

Before you begin:
It may be helpful to have an understanding of the Oracle ADF Model Tester. For more
information, see Section 3.7, "Testing Bean Metadata Using the Oracle ADF Model
Tester."

To specify a default language for the Oracle ADF Model Tester:
1. From the Tools menu, choose Preferences.

2. Expand ADF Business Components in the selection panel, and select Tester.

3. In the Oracle ADF Model Tester page, add any locale for which you have created a
resource message bundle to the Selected list.

3.7.6 How to Test Row Creation and Default Value Generation
You can use the Oracle ADF Model Tester to verify that any default values for
attributes are properly generated when you create a new row.

Before you begin:
It may be helpful to have an understanding of the Oracle ADF Model Tester. For more
information, see Section 3.7, "Testing Bean Metadata Using the Oracle ADF Model
Tester."

You may also find it helpful to understand attributes in data control structure files. For
more information, see Section 3.3, "Working with Attributes."

You will need to complete this task:

Start the tester as described in Section 3.7.1, "How to Run the Oracle ADF Model
Tester."

To test row creation and default value generation:
1. In the Oracle ADF Model Tester toolbar, click the Insert a new row button to create

the blank row.

Testing Bean Metadata Using the Oracle ADF Model Tester

Adding Business Logic to Data Controls 3-35

Any fields that have a declarative default value will appear with that value in the
blank row.

2. In the tester, enter all required fields and click the Commit button.

3.7.7 How to Test Named Criteria Using the Oracle ADF Model Tester
The Oracle ADF Model Tester enables you to test your data model using existing
named criteria and by querying with ad hoc criteria.

Before you begin:
It may be helpful to have an understanding of the Oracle ADF Model Tester. For more
information, see Section 3.7, "Testing Bean Metadata Using the Oracle ADF Model
Tester."

You may also find it helpful to understand named criteria. For more information, see
Section 3.6, "Filtering Result Sets with Named Criteria."

To test named criteria and ad hoc query criteria using the Oracle ADF Model
Tester:
1. In the Application Navigator, expand the project containing the desired data

control and session bean.

2. Right-click the session bean, choose Run, and then wait for the bean to be
deployed to the built-in application server.

3. Right-click the DataControls.dcx file and choose Run in order to start the Oracle
ADF Model Tester.

4. In the Oracle ADF Model Tester, double-click the accessor returned collection that
you want to filter.

5. Click the Specify View Criteria toolbar button to test the named criteria.

6. In the View Criteria dialog, perform one of the following tasks:

■ To test a named criteria that you added to a data control structure file in your
project, shuttle that criteria to the Selected list and click Find. Any additional
criteria that you enter in the ad hoc criteria section will be added to the filter.

■ To test ad hoc criteria attributes from a single named criteria row, enter the
desired values for the named criteria and click Find.

For example, Figure 3–7 shows the filter to return all customers who possess a
credit rating of POOR.

Groovy Language Support

3-36 Java EE Developer's Guide for Oracle Application Development Framework

Figure 3–7 Oracle ADF Model Tester View Criteria Dialog

3.8 Groovy Language Support
Groovy is a scripting language with Java-like syntax for the Java platform. The Groovy
scripting language simplifies the authoring of code by employing dot-separated
notation, yet still supporting syntax to manipulate collections, Strings, and JavaBeans.
Groovy language expressions are dynamically compiled and are executed at runtime.
Any Groovy expressions that you create for an ADF application are stored in the data
control structure files of the beans for which they are defined.

Oracle ADF supports the use of the Groovy scripting language in places where access
to data control objects is useful, including attribute validators, attribute default values,
transient attribute value calculations, bind variable default values (in named criteria
filters), and placeholders for error messages (in validation rules). Additionally, Oracle
ADF provides a limited set of built-in keywords that can be used in Groovy
expressions.

Specifically, Oracle ADF provides support for the use of Groovy language expressions
to perform the following tasks:

■ Define a Script Expression validator (see Section 3.5.4.2, "Validating Using a
True/False Expression") or a Compare validator (see Section 3.5.3.1, "Validating
Based on a Comparison").

■ Define error message tokens for handling validation failure (see Section 3.5.5.4,
"Embedding a Groovy Expression in an Error Message").

■ Handle conditional execution of validators (see Section 3.5.5.3, "Raising Error
Message Conditionally Using Groovy").

Groovy Language Support

Adding Business Logic to Data Controls 3-37

■ Define the default value and optional recalculate condition for an entity bean
attribute (see Section 3.3.3, "How to Define a Default Value Using a Groovy
Expression").

■ Determine the value of a transient attribute of a bean’s data control structure file
(see Section 3.4, "Adding Transient Attributes to a Bean").

To perform these tasks in JDeveloper, you use expression editor dialogs that are
specific to the task. For example, when you want to create a default value for a
transient attribute, you use the attribute’s Edit Expression Editor dialog to enter an
expression that determines a runtime value for the attribute. The same dialog also lets
you specify when the value should be calculated (known as a recalculate condition).
Although expressions cannot be verified at design time, all expression editors let you
test the syntax of the expression before you save it.

For more information about the Groovy language, refer to the following web site:

■ http://groovy.codehaus.org/

3.8.1 How to Reference ADF Objects in Groovy Expressions
There is one top-level object named adf that allows you access to objects that the
framework makes available to the Groovy script. The accessible Oracle ADF objects
consist of the following:

■ adf.context - to reference the ADFContext object.

■ adf.object.dataProvider - to reference the bean object on which the
expression is being applied. Other accessible member names come from the
context in which the Groovy script is applied.

■ Entity bean attributes and methods: The context is the bean’s data control
structure file. Through this object you can reference any attributes defined in
the data control structure file as well as any attributes and methods that are
inherited from the bean class.

■ Script validation rules: The context is the validator object
(JboValidatorContext) merged with the entity bean on which the
validator is applied. For details about keywords that you can use in this
context, see Section 3.8.2, "How to Reference ADF Methods and Attributes in
Groovy Expressions."

■ adf.error - in validation rules, to access the error handler that allows the
validation expression to generate exceptions or warnings

You can reference the current date (time truncated) or current date and time using the
following expressions:

■ adf.currentDate

■ adf.currentDateTime

You can use the following built-in aggregate functions on rows of data:

■ rowSetAttr.sum(GroovyExpr)

■ rowSetAttr.count(GroovyExpr)

■ rowSetAttr.avg(GroovyExpr)

■ rowSetAttr.min(GroovyExpr)

■ rowSetAttr.max(GroovyExpr)

Groovy Language Support

3-38 Java EE Developer's Guide for Oracle Application Development Framework

These aggregate functions accept a string-value argument that is interpreted as a
Groovy expression that is evaluated in the context of each row in the row set as the
aggregate is being computed. The Groovy expression must return a numeric value (or
number domain).

3.8.2 How to Reference ADF Methods and Attributes in Groovy Expressions
The simplest example of referencing data control members, including methods and
attributes that the bean and the bean’s data control structure file define, is to reference
attributes that exist in the same bean as the attribute that you apply the expression.

For example, you could define a Groovy expression to calculate the value of a transient
attribute AnnualSalary on a bean with an attribute Sal that specifies the employee’s
monthly salary:

Sal * 12

Or, with Groovy you can write a simple validation rule to compare the attributes of a
single data control structure file using syntax like:

PromotionDate > HireDate

Using Java, this same comparison would look like:

((Date)getAttribute("PromotionDate")).compareTo((Date)getAttribute("HireDate")) > 0

Note that the current object is passed in to the script as the this object, so you can
reference an attribute in the current object by simply using the attribute name. For
example, in an attribute-level or entity-level Script Expression validator, to refer to an
attribute named "HireDate", the script can simply reference HireDate.

Similar to referencing attributes, you can invoke methods as part of your expression.
For example, to define an attribute default value:

adf.object.dataProvider.getDefaultSalaryForGrade()

A method reference requires the prefix adf.object.dataProvider, which allows
you to reference the same entity that defines the attribute on which the expression is
applied.

Note that when you want to reference the method of an entity bean in a validation
rule, you use source instead of object.

adf.source.dataProvider.getDefaultSalaryForGrade()

Use of the source prefix is necessary in validators because the object keyword
implies the validation rule object instead of the entity bean where the method is
defined.

To allow you to reference members of the validator object (JboValidatorContext),
you can use these keywords in your validation rule expression:

■ newValue: in an attribute-level validator, to access the attribute value being set

■ oldValue: in an attribute-level validator, to access the current value of the
attribute being set

For example, you might use the following expression to specify a dynamic validation
rule check of the salary for a salesman.

if (Job == "SALESMAN")
{
 return newValue < adf.source.dataProvider.getMaxSalaryForGrade(Job)

Groovy Language Support

Adding Business Logic to Data Controls 3-39

}
else
return true

Groovy Language Support

3-40 Java EE Developer's Guide for Oracle Application Development Framework

4

Creating a Basic Databound Page 4-1

4 Creating a Basic Databound Page

This chapter describes how to use the Data Controls panel to create databound forms
using ADF Faces components. It includes information on creating text fields from
individual attributes, generating entire forms from accessor returned collections, and
creating forms for editing existing records and creating new records.

This chapter includes the following sections:

■ Section 4.1, "About Creating a Basic Databound Page"

■ Section 4.2, "Using Attributes to Create Text Fields"

■ Section 4.3, "Creating a Basic Form"

■ Section 4.4, "Incorporating Range Navigation into Forms"

■ Section 4.5, "Creating a Form Using a Method That Takes Parameters"

■ Section 4.6, "Creating a Form to Edit an Existing Record"

■ Section 4.7, "Creating an Input Form"

■ Section 4.8, "Modifying the UI Components and Bindings on a Form"

4.1 About Creating a Basic Databound Page
You can create UI pages that allow you to display and collect information using data
controls created for your business services. For example, using the Data Controls
panel, you can drag an attribute for an item, and then choose to display the value
either as read-only text or as an input text field with a label. JDeveloper creates all the
necessary JSF tag and binding code needed to display and update the associated data.
For more information about the Data Controls panel and the declarative binding
experience, see Chapter 2, "Using ADF Model Data Binding in a Java EE Web
Application."

Instead of having to drop individual attributes, JDeveloper allows you to drop all
attributes for an object at once as a form. The actual UI components that make up the
form depend on the type of form dropped. You can create forms that display values,
forms that allow users to edit values, and forms that collect values (input forms).

For example, the Summit demo application contains a page that allows users to view
and edit information about an order, as shown in Figure 4–1. This form was created by
dragging and dropping the SOrdList accessor collection from the Data Controls
panel. (The SOrdList node is nested within the customerFindAll node.)

Using Attributes to Create Text Fields

4-2 Java EE Developer's Guide for Oracle Application Development Framework

Figure 4–1 Edit Order Form in Summit Demo Application

Once you create the UI components, you can then drop built-in operations as
command UI components that allow you to navigate through the records in a
collection or that allow users to operate on the data. For example, you can create a
button that allows users to delete data objects displayed in the form. You can also
modify the default components to suit your needs.

4.2 Using Attributes to Create Text Fields
JDeveloper allows you to create text fields declaratively in a WYSIWYG development
environment for your JSF pages, meaning you can design most aspects of your pages
without needing to look at the code. When you drag and drop items from the Data
Controls panel, JDeveloper declaratively binds ADF Faces text UI components to
attributes on a data control using an attribute binding.

4.2.1 How to Create a Text Field
To create a text field that can display or update an attribute, you drag and drop an
attribute of a collection from the Data Controls panel.

Before you begin:
It may be helpful to have a general understanding of using data control attributes to
create text fields. For more information, see Section 4.2, "Using Attributes to Create
Text Fields."

You will need to complete this task:

Create a data control for your session bean, as described in Section 2.2.1, "How to
Create ADF Data Controls."

To create a bound text field:
1. From the Data Controls panel, select an attribute for a collection. For a description

of the icons that represent attributes and other objects in the Data Controls panel,
see Table 2–1.

For example, Figure 4–2 shows the address attribute under the
customerFindAll accessor collection of the OrdersSessionEJBLocal data
control in the Summit demo application. This is the attribute to drop to display or
enter the first part of an address.

Using Attributes to Create Text Fields

Creating a Basic Databound Page 4-3

Figure 4–2 Attributes Associated with a Collection in the Data Controls Panel

2. Drag the attribute onto the page, and from the context menu choose the type of
widget to display or collect the attribute value. For an attribute, you are given the
following choices:

■ Text:

– ADF Input Text w/ Label: Creates an ADF Faces inputText component
with a nested validator component. The label attribute is populated.

– ADF Input Text: Creates an ADF Faces inputText component with a
nested validator component. The label attribute is not populated.

– ADF Output Text w/ Label: Creates a panelLabelAndMessage
component that holds an ADF Faces outputText component. The label
attribute on the panelLabelAndMessage component is populated.

– ADF Output Text: Creates an ADF Faces outputText component. No
label is created.

– ADF Output Formatted w/Label: Same as ADF Output Text w/Label, but
uses an outputFormatted component instead of an outputText
component. The outputFormatted component allows you to add a
limited amount of HTML formatting. For more information, see the
"Displaying Output Text and Formatted Output Text" section of the Oracle
Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework

– ADF Output Formatted: Same as ADF Output Formatted w/Label, but
without the label.

– ADF Label: An ADF Faces outputLabel component.

■ Single Selections: Creates single selection lists. For more information about
creating lists on a JSF page, see Chapter 7, "Creating Databound Selection
Lists."

For the purposes of this chapter, only the text components (and not the lists) will
be discussed.

Tip: For more information about validators and other attributes of
the inputText component, see the "Using Input Components and
Defining Forms" chapter of the Oracle Fusion Middleware Web User
Interface Developer's Guide for Oracle Application Development Framework.

Using Attributes to Create Text Fields

4-4 Java EE Developer's Guide for Oracle Application Development Framework

4.2.2 What Happens When You Create a Text Field
When you drag an attribute onto a JSF page and drop it as a UI component, among
other things, a page definition file is created for the page (if one does not already
exist). For a complete account of what happens when you drag an attribute onto a
page, see Section 2.3.2, "What Happens When You Use the Data Controls Panel to
Create UI Components." Bindings for the iterator and attributes are created and added
to the page definition file. Additionally, the necessary JSPX page code for the UI
component is added to the JSF page.

4.2.2.1 Creating and Using Iterator Bindings
Whenever you create UI components on a page by dropping an item that is part of a
collection from the Data Controls panel (or you drop the whole collection as a form or
table), JDeveloper creates an iterator binding if it does not already exist. An iterator
binding references an iterator for the data collection, which facilitates iterating over its
data objects. It also manages currency and state for the data objects in the collection.
An iterator binding does not actually access the data. Instead, it simply exposes the
object that can access the data and it specifies the current data object in the collection.
Other bindings then refer to the iterator binding in order to return data for the current
object or to perform an action on the object’s data. Note that the iterator binding is not
an iterator. It is a binding to an iterator.

For example, if you drop the address attribute from the customerFindAll
collection, JDeveloper creates an iterator binding for the OrdersSessionEJBLocal
data control and accessorIterator binding for the customerFindAll collection,
which in turn has the OrdersSessionEJBLocal iterator as its master binding.

The iterator binding’s rangeSize attribute determines how many rows of data are
fetched from a data control each time the iterator binding is accessed. This attribute
gives you a relative set of 1-n rows positioned at some absolute starting location in the
overall row set. By default, the attribute is set to 25.

Example 4–1 shows the iterator bindings created when you drop an attribute from the
customerFindAll accessor collection.

Example 4–1 Page Definition Code for an Iterator Accessor Binding

<executables>
 <variableIterator id="variables"/>
 <iterator Binds="root" RangeSize="25"
 DataControl="OrdersSessionEJBLocal"
 id="OrdersSessionEJBLocalIterator"/>
 <accessorIterator MasterBinding="OrdersSessionEJBLocalIterator"
 Binds="customerFindAll" RangeSize="25"
 DataControl="OrdersSessionEJBLocal"
 BeanClass="model.Customer" id="customerFindAllIterator"/>
</executables>

This metadata allows the ADF binding container to access the attribute values.
Because the iterator binding is an executable, by default it is invoked when the page is

Tip: There is one accessor iterator binding created for each collection
returned from an accessor. This means that when you individually
drop two attributes from the same accessor (or drop the attribute
twice), they use the same binding. This is fine, unless you need the
binding to behave differently for the different components. In that
case, you will need to manually create separate iterator bindings.

Using Attributes to Create Text Fields

Creating a Basic Databound Page 4-5

loaded, thereby allowing the iterator to access and iterate over the collection returned
by the customerFindAll accessor. This means that the iterator will manage all the
objects in the collection, including determining the current row in the collection or
determining a range of address objects.

4.2.2.2 Creating and Using Value Bindings
When you drop an attribute from the Data Controls panel, JDeveloper creates an
attribute binding that is used to bind the UI component to the attribute’s value. This
type of binding presents the value of an attribute for a single object in the current row
in the collection. Value bindings can be used both to display and to collect attribute
values.

For example, if you drop the address attribute under the customerFindAll
accessor as an ADF Output Text w/Label widget onto a page, JDeveloper creates an
attribute binding for the address attribute. This allows the binding to access the
attribute value of the current record. Example 4–2 shows the attribute binding for
address created when you drop the attribute from the customerFindAll accessor.
Note that the attribute value references the iterator named
customerFindAllIterator.

Example 4–2 Page Definition Code for an Attribute Binding

<bindings>
 <attributeValues IterBinding="customerFindAllIterator" id="address">
 <AttrNames>
 <Item Value="address"/>
 </AttrNames>
 </attributeValues
</bindings>

For information regarding the attribute binding element properties, see the "Oracle
ADF Binding Properties" appendix of the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

4.2.2.3 Using EL Expressions to Bind UI Components
When you create a text field by dropping an attribute from the Data Controls panel,
JDeveloper creates the UI component associated with the widget dropped by writing
the corresponding tag to the JSF page.

For example, when you drop the address attribute as an Output Text w/Label
widget, JDeveloper inserts the tags for a panelLabelAndMessage component and
an outputText component. It creates an EL expression that binds the label attribute
of the panelLabelAndMessage component to the label property of hints created
for the address’s binding. This expression evaluates to the label UI hint set in the
data control for the bean. It creates another expression that binds the outputText
component’s value attribute to the inputValue property of the address binding,
which evaluates to the value of the address attribute for the current row. An ID is
also automatically generated for both components.

Example 4–3 shows the code generated on the JSF page when you drop the address
attribute as an Output Text w/Label widget.

Tip: JDeveloper automatically generates IDs for all ADF Faces
components. You can override these values as needed.

Creating a Basic Form

4-6 Java EE Developer's Guide for Oracle Application Development Framework

Example 4–3 JSF Page Code for an Attribute Dropped as an Output Text w/Label

<af:panelLabelAndMessage label="#{bindings.address.hints.label}"
 id="plam1">
 <af:outputText value="#{bindings.address.inputValue}" id="ot1"/>
</af:panelLabelAndMessage>

If instead you drop the address attribute as an Input Text w/Label widget,
JDeveloper creates an inputText component. As Example 4–4 shows, similar to the
output text component, the value is bound to the inputValue property of the
address binding. Additionally, the following properties are also set:

■ label: Bound to the attribute’s label UI hint.

■ required: Bound to the mandatory property, which in turn references the
attribute’s isNotNull property (which is represented by the Mandatory option in
the Details section for the attribute in the overview editor for the bean’s data
control structure file).

■ columns: Bound to the attribute’s displayWidth UII hint, which determines
how wide the text box will be.

■ maximumLength: Bound to the attribute’s Precision option. This property
determines the maximum number of characters per line that can be entered into
the field.

■ shortDesc: Bound to the tooltip UI hint.

In addition, JDeveloper adds a validator component.

Example 4–4 JSF Page Code for an Attribute Dropped as an Input Text w/Label

<af:inputText value="#{bindings.address.inputValue}"
 label="#{bindings.address.hints.label}"
 required="#{bindings.address.hints.mandatory}"
 columns="#{bindings.address.hints.displayWidth}"
 maximumLength="#{bindings.address.hints.precision}">
 shortDesc="#{bindings.address.hints.tooltip}" id="it1">
 <f:validator binding="#{bindings.address.validator}"/>
</af:inputText>

You can change any of these values to suit your needs. For example, the isNotNull
property for the attribute in the data control is set to false by default, which means
that the required attribute on the component will evaluate to false as well. You can
override this value by setting the required attribute on the component to true. If
you decide that all instances of the attribute should be mandatory, then you can
change the Mandatory option for the attribute in the data control structure file, and all
instances will be required. For more information about editing attributes in a data
control, see Section 3.3, "Working with Attributes."

4.3 Creating a Basic Form
Instead of dropping each of the individual attributes of a collection to create a form,
you can create a complete form that displays or collects data for all the attributes on an
object. For example, in the Summit demo application, the form on the
EditOrder.jspx page was created by dropping the ordFindAll accessor collection
from the Data Controls panel.

You can also create forms that provide more functionality than simply displaying data
from a collection. For information about creating a form that allows a user to update
data, see Section 4.6, "Creating a Form to Edit an Existing Record." For information

Creating a Basic Form

Creating a Basic Databound Page 4-7

about creating forms that allow users to create a new object for the collection, see
Section 4.7, "Creating an Input Form." You can also create search forms. For more
information, see Chapter 8, "Creating Databound Search Forms."

4.3.1 How to Create a Form
To create a form using a data control, you bind the UI components to the attributes on
the corresponding object in the data control. JDeveloper allows you to do this
declaratively by dragging and dropping a returned collection from the Data Controls
panel.

Before you begin:
It may be helpful to have a general understanding of creating forms from data
controls. For more information, see Section 4.3, "Creating a Basic Form."

You will need to complete this task:

Create a data control for your session bean, as described in Section 2.2.1, "How to
Create ADF Data Controls."

To create a basic form:
1. From the Data Controls panel, select the collection that returns the data you wish

to display. Figure 4–3 shows the ordFindAll accessor returned collection.

Figure 4–3 productFindAll Accessor in the Data Controls Panel

2. Drag the collection onto the page, and from the context menu choose the type of
form that will be used to display or collect data for the object. For a form, you are
given the following choices:

– ADF Form: Launches the Edit Form Fields dialog that allows you to select
individual attributes instead of having JDeveloper create a field for every
attribute by default. It also allows you to select the label and UI component
used for each attribute. By default, ADF inputText components are used for
most attributes. Each inputText component has the label attribute
populated.

Attributes that are dates use the InputDate component. Additionally, if a UI
hint has been created for an attribute, or if the attribute has been configured to
be a list, then the component set by the hint is used instead. InputText
components contain a validator tag that allows you to set up validation for the
attribute, and if the attribute is a number or a date, a converter is also
included.

Creating a Basic Form

4-8 Java EE Developer's Guide for Oracle Application Development Framework

– ADF Read-Only Form: Same as the ADF Form, but read-only outputText
components are used. Since the form is meant to display data, no validator
tags are added (converters are included). Attributes of type Date use the
outputText component when in a read-only form. All components are
placed inside panelLabelAndMessage components, which have the label
attribute populated. The panelLabelAndMessage components are placed
inside a panelFormLayout component.

3. In the Edit Form Fields dialog, configure your form.

You can add, remove, and reorder form fields.

You can also include navigational controls that allow users to navigate through all
the data objects in the collection. For more information, see Section 4.4,
"Incorporating Range Navigation into Forms." You can also include a Submit
button used to submit the form. This button submits the HTML form and applies
the data in the form to the bindings as part of the JSF/ADF page lifecycle. For
additional help in using the dialog, click Help. All UI components are placed
inside a panelFormLayout component.

4. If you are building a form that allows users to update data, you now need to drag
and drop a method that will perform the update. For more information, see
Section 4.6, "Creating a Form to Edit an Existing Record."

4.3.2 What Happens When You Create a Form
Dropping an object as a form from the Data Controls panel has the same effect as
dropping a single attribute, except that multiple attribute bindings and associated UI
components are created. The attributes on the UI components (such as value) are
bound to properties on that attribute’s binding object (such as inputValue) or to the
values of control hints set on the corresponding service. Example 4–5 shows some of
the code generated on the JSF page when you drop the SOrdList accessor collection
as a default ADF form to create the Edit Order form.

Example 4–5 Code on a JSF Page for an Input Form

<af:panelFormLayout id="pfl1">
 <af:inputText value="#{bindings.id.inputValue}"
 label="#{bindings.id.hints.label}"
 required="#{bindings.id.hints.mandatory}"
 columns="#{bindings.id.hints.displayWidth}"
 maximumLength="#{bindings.id.hints.precision}"
 shortDesc="#{bindings.id.hints.tooltip}" id="it1">
 <f:validator binding="#{bindings.id.validator}"/>
 </af:inputText>
 <af:inputDate value="#{bindings.dateOrdered.inputValue}"
 label="#{bindings.dateOrdered.hints.label}"
 required="#{bindings.dateOrdered.hints.mandatory}"

Tip: For more information about validators, converters, and other
attributes of the inputText component, see the "Using Input
Components and Defining Forms" chapter of the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

Note: If an attribute is marked as hidden on the associated data
control structure file, then no corresponding UI is created for it.

Incorporating Range Navigation into Forms

Creating a Basic Databound Page 4-9

 columns="#{bindings.dateOrdered.hints.displayWidth}"
 shortDesc="#{bindings.dateOrdered.hints.tooltip}" id="id1">
 <f:validator binding="#{bindings.dateOrdered.validator}"/>
 <af:convertDateTime pattern="#{bindings.dateOrdered.format}"/>
 </af:inputDate>
 <af:inputDate value="#{bindings.dateShipped.inputValue}"
 label="#{bindings.dateShipped.hints.label}"
 required="#{bindings.dateShipped.hints.mandatory}"
 columns="#{bindings.dateShipped.hints.displayWidth}"
 shortDesc="#{bindings.dateShipped.hints.tooltip}" id="id2">
 <f:validator binding="#{bindings.dateShipped.validator}"/>
 <af:convertDateTime pattern="#{bindings.dateShipped.format}"/>
 </af:inputDate>
 <af:selectBooleanCheckbox value="#{bindings.orderFilled.inputValue}"
 label="#{bindings.orderFilled.label}"
 shortDesc="#{bindings.orderFilled.hints.tooltip}"
 id="sbc1"/>
 <af:selectOneChoice value="#{bindings.paymentType.inputValue}"
 label="#{bindings.paymentType.label}"
 required="#{bindings.paymentType.hints.mandatory}"
 shortDesc="#{bindings.paymentType.hints.tooltip}"
 id="soc2">
 <f:selectItems value="#{bindings.paymentType.items}" id="si2"/>
 </af:selectOneChoice>
. . .
</af:panelFormLayout>

4.4 Incorporating Range Navigation into Forms
When you create an ADF Form, if you elect to include navigational controls,
JDeveloper includes ADF Faces command components bound to existing navigational
logic on the data control. This built-in logic allows the user to navigate through all the
data objects in the collection. For example, Figure 4–4 shows a form that would be
created if you dragged the ordFindAll accessor and dropped it as an ADF Form that
uses navigation.

Figure 4–4 Navigation in a Form

Note: For information regarding the validator and converter tags,
see the "Validating and Converting Input" chapter of the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

Incorporating Range Navigation into Forms

4-10 Java EE Developer's Guide for Oracle Application Development Framework

4.4.1 How to Insert Navigation Controls into a Form
By default, when you choose to include navigation when creating a form using the
Data Controls panel, JDeveloper creates First, Last, Previous, and Next buttons that
allow the user to navigate within the collection.

You can also add navigation buttons to an existing form manually.

Before you begin:
It may be helpful to have a general understanding of navigation controls. For more
information, see Section 4.4, "Incorporating Range Navigation into Forms."

You will need to complete this task:

Create a data control for your session bean, as described in Section 2.2.1, "How to
Create ADF Data Controls."

To manually add navigation buttons:
1. From the Data Controls panel, select the operation associated with the collection of

objects on which you wish the operation to execute, and drag it onto the JSF page.

For example, if you want to navigate through a collection of orders, you would
drag the Next operation associated with the OrdFindAll accessor. Figure 4–5
shows the operations associated with the OrdFindAll accessor.

Figure 4–5 Operations Associated with a Collection

2. From the ensuing context menu, choose either ADF Button or ADF Link.

Incorporating Range Navigation into Forms

Creating a Basic Databound Page 4-11

4.4.2 What Happens When You Create Command Buttons
When you drop any operation as a command component, JDeveloper:

■ Defines an action binding in the page definition file for the associated operations

■ Configures the iterator binding to use partial page rendering for the collection

■ Inserts code in the JSF page for the command components

4.4.2.1 Action Bindings for Built-in Navigation Operations
Action bindings execute business logic. For example, they can invoke built-in methods
on the action binding object. These built-in methods operate on the iterator or on the
data control itself, and are represented as operations in the Data Controls panel.
JDeveloper provides navigation operations that allow users to navigate forward,
backwards, to the first object in the collection, and to the last object.

Like value bindings, action bindings for operations contain a reference to the iterator
binding when the action binding is bound to one of the iterator-level actions, such as
Next or Previous. These types of actions are performed by the iterator, which
determines the current object and can therefore determine the correct object to display
when a navigation button is clicked.

Action bindings use the RequiresUpdateModel property, which determines
whether or not the model needs to be updated before the action is executed. In the case
of navigation operations, by default this property is set to true, which means that any
changes made at the view layer must be moved to the model before navigation can
occur. Example 4–6 shows the action bindings for the navigation operations.

Example 4–6 Page Definition Code for an Operation Action Binding

<action IterBinding="ordFindAllIterator" id="First"
 RequiresUpdateModel="true" Action="first"/>
<action IterBinding="ordFindAllIterator" id="Previous"
 RequiresUpdateModel="true" Action="previous"/>
<action IterBinding="ordFindAllIterator" id="Next"
 RequiresUpdateModel="true" Action="next"/>
<action IterBinding="ordFindAllIterator" id="Last"
 RequiresUpdateModel="true" Action="last"/>

4.4.2.2 Iterator RangeSize Attribute
Iterator bindings have a rangeSize attribute that the binding uses to determine the
number of data objects to make available for the page for each iteration. This attribute
helps in situations when the number of objects in the data source is quite large. Instead
of returning all objects, the iterator binding returns only a set number, which then
become accessible to the other bindings. Once the iterator reaches the end of the range,
it accesses the next set. Example 4–7 shows the default range size for the ordFindAll
iterator.

Example 4–7 RangeSize Attribute for an Iterator

<accessorIterator MasterBinding="OrdersSessionEJBLocalIterator"
 Binds="ordFindAll" RangeSize="25"
 DataControl="OrdersSessionEJBLocal" BeanClass="model.Ord"

Tip: You can also drop the First, Previous, Next, and Last buttons at
once. To do so, drag the corresponding collection, and from the
context menu, choose Navigation > ADF Navigation Buttons.

Incorporating Range Navigation into Forms

4-12 Java EE Developer's Guide for Oracle Application Development Framework

 id="ordFindAllIterator" ChangeEventPolicy="ppr"/>

By default, the rangeSize attribute is set to 25. This means that a user can view 25
objects, navigating back and forth between them, without needing to access the data
source. The iterator keeps track of the current object. Once a user clicks a button that
requires a new range (for example, clicking the Next button on object number 25), the
binding object executes its associated method against the iterator, and the iterator
retrieves another set of 25 records. The bindings then work with that set. You can
change this setting as needed. You can set it to -1 to have the full record set returned.

Table 4–1 shows the built-in navigation operations provided on data controls and the
result of invoking the operation or executing an event bound to the operation.

4.4.2.3 EL Expressions Used to Bind to Navigation Operations
When you create command components using navigation operations, the command
components are placed in a panelGroupLayout component. JDeveloper creates an
EL expression that binds a navigational command button’s actionListener
attribute to the execute property of the action binding for the given operation.

At runtime an action binding will be an instance of the FacesCtrlActionBinding
class, which extends the core JUCtrlActionBinding implementation class. The
FacesCtrlActionBinding class adds the following methods:

■ public void execute(ActionEvent event): This is the method that is
referenced in the actionListener property, for example
#{bindings.First.execute}.

Note: This rangeSize attribute is not the same as the rows
attribute on a table component.

Note: When you create a navigable form using the Data Controls
panel, the CacheResults property on the associated iterator is set to
true. This ensures that the iterator’s state, including currency
information, is cached between requests, allowing it to determine the
current object. If this property is set to false, navigation will not
work.

Table 4–1 Built-in Navigation Operations

Operation When invoked, the associated iterator binding will...

First Move its current pointer to the beginning of the result set.

Last Move its current pointer to the end of the result set.

Previous Move its current pointer to the preceding object in the result set. If
this object is outside the current range, the range is scrolled
backward a number of objects equal to the range size.

Next Move its current pointer to the next object in the result set. If this
object is outside the current range, the range is scrolled forward a
number of objects equal to the range size.

Previous Set Move the range backward a number of objects equal to the range
size attribute.

Next Set Move the range forward a number of objects equal to the range
size attribute.

Incorporating Range Navigation into Forms

Creating a Basic Databound Page 4-13

This expression causes the binding’s operation to be invoked on the iterator when
a user clicks the button. For example, the First command button’s
actionListener attribute is bound to the execute method on the First
action binding.

■ public String outcome(): This can be referenced in an Action property, for
example #{bindings.Next.outcome}.

This can be used for the result of a method action binding (once converted to a
String) as a JSF navigation outcome to determine the next page to navigate to.

Every action binding for an operation has an enabled boolean property that Oracle
ADF sets to false when the operation should not be invoked. By default, JDeveloper
binds the UI component’s disabled attribute to this value to determine whether or
not the component should be enabled. For example, the UI component for the First
button has the following as the value for its disabled attribute:

#{!bindings.First.enabled}

This expression evaluates to true whenever the binding is not enabled, that is, when
the operation should not be invoked, thereby disabling the button. In this example,
because the framework will set the enabled property on the binding to false
whenever the first record is being shown, the First button will automatically be
disabled because its disabled attribute is set to be true whenever enabled is
False. For more information about the enabled property, see the "Oracle ADF
Binding Properties" appendix of the Oracle Fusion Middleware Fusion Developer's Guide
for Oracle Application Development Framework.

Example 4–8 shows the code generated on the JSF page for navigation operation
buttons. For more information about the partialSubmit attribute on the button, see
the "Enabling Partial Page Rendering Declaratively" section of the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework.

Example 4–8 JSF Code for Navigation Buttons Bound to ADF Operations

<f:facet name="footer">
 <af:panelGroupLayout>
 <af:commandButton actionListener="#{bindings.First.execute}"
 text="First"
 disabled="#{!bindings.First.enabled}"
 partialSubmit="true" id="cb1"/>
 <af:commandButton actionListener="#{bindings.Previous.execute}"
 text="Previous"
 disabled="#{!bindings.Previous.enabled}"
 partialSubmit="true" id="cb2"/>
 <af:commandButton actionListener="#{bindings.Next.execute}"
 text="Next"
 disabled="#{!bindings.Next.enabled}"
 partialSubmit="true" id="cb3"/>
 <af:commandButton actionListener="#{bindings.Last.execute}"
 text="Last"
 disabled="#{!bindings.Last.enabled}"
 partialSubmit="true" id="cb4"/>

Note: Using the outcome method on the action binding implies tying
the view-controller layer too tightly to the model, so it should rarely
be used.

Creating a Form Using a Method That Takes Parameters

4-14 Java EE Developer's Guide for Oracle Application Development Framework

 </af:panelGroupLayoutr>
 </f:facet>

4.5 Creating a Form Using a Method That Takes Parameters
There may be cases where a page needs information before it can display content. For
these types of pages, you create the form using a returned collection from a method
that takes parameters. The requesting page needs to supply the value of the
parameters in order for the method to execute.

4.5.1 How to Create a Form or Table Using a Method That Takes Parameters
To create forms that require parameters, you must be able to access the values for the
parameters in order to determine the record(s) to return. You access those values by
adding logic to a command button on another page that will set the parameter value
on some object that the method can then access.

Before you begin:
It may be helpful to have a general understanding of parameter forms. For more
information, see Section 4.5, "Creating a Form Using a Method That Takes Parameters."

You will need to complete these tasks:

■ Create a data control for your session bean, as described in Section 2.2.1, "How to
Create ADF Data Controls."

■ Create or identify a method on your session bean that will return the items needed
to be displayed in your form. For example, the OrderSessionEJBBean.java
class contains the mergeOrd(Ord) method.

To create a form or table that uses parameters:
1. From the Data Controls panel, drag a collection that is a return of a method that

takes a parameter or parameters and drop it as any type of form.

For example, to create a form that displays when you click a button to edit an
order, you would drag and drop the Ord return, as shown in Figure 4–6.

Figure 4–6 Return of a Custom Method That Takes Parameters

2. In the Edit Form Fields dialog, configure the form as needed and click OK.

For help in using the dialogs, click Help.

Tip: If you add a service method to your session bean after you have
generated the data control, you need to refresh the Data Controls
panel in order to display the new method in the panel. To refresh the
panel, click the Refresh icon.

Creating a Form Using a Method That Takes Parameters

Creating a Basic Databound Page 4-15

Because the method takes parameters, the Edit Action Binding dialog opens,
asking you to set the value of the parameters.

3. In the Action Binding Editor, enter the value for each parameter by clicking the
browse (...) icon in the Value field to open the EL Expression Builder. Select the
node that represents the value for the parameter.

This editor uses the value to create the NamedData element that will represent the
parameter when the method is executed. Since you are dropping a collection that
is a return of the method (unlike a method bound to a command button), this
method will be run when the associated iterator is executed as the page is loaded.
You want the parameter value to be set before the page is rendered. This means
the NamedData element needs to get this value from wherever the sending page
has set it.

4.5.2 What Happens When You Create a Form Using a Method That Takes Parameters
When you use a return of a method that takes parameters to create a form, JDeveloper:

■ Creates an action binding for the method, a method iterator binding for the result
of the method, and attribute bindings for each of the attributes of the object, or in
the case of a table, a table binding. It also creates NamedData elements for each
parameter needed by the method.

■ Inserts code in the JSF page for the form using ADF Faces components.

Example 4–9 shows the action method binding created when you drop the Ord return
of the mergeOrd(Ord) method, where the value for the parameter was set to the
current row data provider of the SOrdListIterator.

Example 4–9 Method Action Binding for a Method Return

<bindings>
 <methodAction id="mergeOrd" RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="mergeOrd"
 IsViewObjectMethod="false" DataControl="OrdersSessionEJBLocal"
 InstanceName="Sdata.OrdersSessionEJBLocal.dataProvider
 ReturnName="data.OrdersSessionEJBLocal.methodResults.mergeOrd_
 OrdersSessionEJBLocal_dataProvider_mergeOrd_result">
 <NamedData NDName="productId"
 NDValue="#{bindings.SOrdListIterator.currentRow.dataProvider}"
 NDType="model.Ord"/>
 </methodAction>
...
</bindings>

4.5.3 What Happens at Runtime: Setting Parameters for a Method
Unlike a method executed when a user clicks a command button, a method used to
create a form is executed as the page is loaded. When the method is executed in order
to return the data for the page, the method evaluates the EL expression for the
NamedData element and uses that value as its parameter. It is then able to return the

Tip: If you are creating a form that displays based on input from the
same page, you can use an ADF Parameter Form to create the action
bindings. First drag the method from the Data Controls panel and
drop it as an ADF Parameter Form. Then drag the method return and
drop it as any kind of form.

Creating a Form Using a Method That Takes Parameters

4-16 Java EE Developer's Guide for Oracle Application Development Framework

correct data. If the method takes more than one parameter, each is evaluated in turn to
set the parameters for the method.

For example, when the EditOrder page loads, it takes the value of the
currentRow.dataProvider parameter on the SOrdListIterator and sets it as
the value of the parameter needed by the mergeOrd(Ord) method. Once that method
executes, it returns only the record that matches the value of the parameter. Because
you dropped the return of the method to create the form, that return is the product
that is displayed.

4.5.4 What You May Need to Know About Setting Parameters with Methods
There may be cases where an action on one page needs to set parameters that will be
used to determine application functionality. For example, you can create a command
button on one page that will navigate to another page, but a component on the
resulting page will display only if the parameter value is false.

You can use a managed bean to pass this parameter between the pages, and to contain
the method that is used to check the value of this parameter. A
setPropertyListener component with the type property set to action, which is
nested in the command button, is then used to set parameter. For more information
about setting parameters using methods, see the "Setting Parameter Values Using a
Command Component" section of the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

4.5.5 What You May Need to Know About Using Contextual Events Instead of
Parameters

Often a page or a region within a page needs information from somewhere else on the
page or from a different region (for more information about regions, see the "Using
Task Flows as Regions" sections of the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework). While you can pass parameters to
obtain that information, doing so makes sense only when the parameters are well
known and the inputs are EL-accessible to the page. Parameters are also useful when a
task flow may need to be restarted if the parameter value changes.

However, suppose you have a task flow with multiple page fragments that contain
various interesting values that could be used as input on one of the pages in the flow.
If you were to use parameters to pass the value, the task flow would need to surface
output parameters for the union of each of the interesting values on each and every
fragment. Instead, for each fragment that contains the needed information, you can
define a contextual event that will be raised when the page is submitted. The page or
fragment that requires the information can then subscribe to the various events and
receive the information through the event.

You can create and configure contextual events using a page definition file. For more
information, see the "Using Contextual Events" section of the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

Note: If you are using task flows, you can use the task flow
parameter passing mechanism. For more information, see the "Using
Parameters in Task Flows" chapter of the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

Creating a Form to Edit an Existing Record

Creating a Basic Databound Page 4-17

4.6 Creating a Form to Edit an Existing Record
You can create a form that allows a user to edit the current data, and then commit
those changes to the data source. To do this, you use methods that can modify data
records associated with the collection to create command buttons. For example, you
can use the default mergeOrd(Ord) method to create a button that allows a user to
update an order.

If the page is not part of a bounded task flow, you need to use the merge or persist
method associated with the collection to merge the changes back into the collection.
For more information about the difference between the two, see Section 4.6.3, "What
You May Need to Know About the Difference Between the Merge and Persist
Methods." If the page is part of a transaction within a bounded task flow, you use the
commit and rollback operations to resolve the transaction in a task flow return
activity. For more information, see the "Using Task Flow Return Activities" section of
the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

4.6.1 How to Create Edit Forms
To use methods on a form, you follow the same procedures as with the operations.

Before you begin:
It may be helpful to have a general understanding of editable forms. For more
information, see Section 4.6, "Creating a Form to Edit an Existing Record."

You will need to complete these tasks:

■ Create a data control for your session bean, as described in Section 2.2.1, "How to
Create ADF Data Controls."

■ Create or identify a method on your session bean that will return the items needed
to be displayed in your form. For example, the OrderSessionEJBBean.java
class contains the mergeOrd(Ord) method.

To create an edit form:
1. From the Data Controls panel, drag the collection for which you wish to create the

form, and choose ADF Form from the context menu.

This creates a form using inputText components, which will allow the user to
edit the data in the fields.

2. From the Data Controls panel, select the merge method associated with the
collection of objects on which you wish the operation to execute, and drag it onto
the JSF page.

For example, if you want to be able to update an order record and will not be
working with that instance again, you would drag the mergeOrd(Ord) method.

3. From the ensuing context menu, choose either ADF Button or ADF Link.

4. In the Edit Action Binding dialog, you need to populate the value for the method’s
parameter. For the merge methods (and the other default methods), this is the
object being updated.

a. In the Parameters section, use the Value dropdown list to select Show EL
Expression Builder.

b. In the Expression Builder, expand the node for the accessor’s iterator, then
expand the currentRow node, and select dataProvider.

Creating a Form to Edit an Existing Record

4-18 Java EE Developer's Guide for Oracle Application Development Framework

This will create an EL expression that evaluates to the data for the current row
in the accessor’s iterator.

c. Click OK.

For example, if you created a form using the ordFindAll accessor collection,
then JDeveloper would have created an accessorIterator binding named
ordFindAllIterator. You would need to select the dataProvider for the
current row under that iterator, as shown in Figure 4–7. This reference means that
the parameter value will resolve to the value of the row currently being shown in
the form.

5. In the Edit Action Binding dialog, click OK.

Figure 4–7 dataProvider for the Current Row on the ordFindAllIterator Binding

Creating a Form to Edit an Existing Record

Creating a Basic Databound Page 4-19

4.6.2 What Happens When You Use Methods to Change Data
When you drop a method as a command button, JDeveloper:

■ Defines a method binding for the method. If the method takes any parameters,
JDeveloper creates NamedData elements that hold the parameter values. For more
information about NamedData elements, see Section 4.5.3, "What Happens at
Runtime: Setting Parameters for a Method."

■ Inserts code in the JSF page for the ADF Faces command component. This code is
similar to the code for any other command button. However, instead of being
bound to the execute method of an action binding for an operation, the buttons
are bound to the execute method of the action binding for the method that was
dropped.

4.6.2.1 Method Bindings
Similar to when you create a button from a built-in operation, when you create a
button from a method, JDeveloper creates an action binding for the method.
Example 4–10 shows the action binding created when you drop the mergeOrd(Ord)
method.

Example 4–10 Page Definition Code for an Action Binding Used by the Iterator

<bindings>
 <methodAction id="mergeOrd" RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="mergeOrd"
 IsViewObjectMethod="false" DataControl="OrdersSessionEJBLocal"
 InstanceName="OrdersSessionEJBLocal.dataProvider"
 ReturnName="OrdersSessionEJBLocal.methodResults.mergeOrd_
 OrdersSessionEJBLocal_dataProvider_persistOrd_result">
 <NamedData NDName="ord"
 NDValue="#{bindings.ordFindAllIterator.currentRow.dataProvider}"
 NDType="model.Ord/>
 </methodAction>
</bindings>

In this example, when the binding is accessed, the method is invoked because the
action property value is invokeMethod.

When you drop a method that takes parameters onto a JSF page, JDeveloper also
creates NamedData elements for each parameter. These elements represent the
parameters of the method. For example, the mergeOrd(Ord) method action binding
contains a NamedData element for the Ord parameter.

4.6.2.2 Using EL Expressions to Bind to Methods
Like creating command buttons using navigation operations, when you create a
command button using a method, JDeveloper binds the button to the method using
the actionListener attribute. The button is bound to the execute property of the

Note: If the page is part of a transaction within a bounded task flow,
then instead of creating a button from the merge method (or other
default method), you would set that method as the value for the
transaction resolution when creating the task flow return activity. For
more information, see the "Using Task Flow Return Activities" section
of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

Creating a Form to Edit an Existing Record

4-20 Java EE Developer's Guide for Oracle Application Development Framework

action binding for the given method. This binding causes the binding’s method to be
invoked on the business service. For more information about the actionListener
attribute, see the "What Happens at Runtime: How Action Events and Action Listeners
Work" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

Like navigation operations, the disabled property on the button uses an EL
expression to determine whether or not to display the button. Example 4–11 shows the
EL expression used to bind the command button to the mergeOrd(Ord) method.

Example 4–11 JSF Code to Bind a Command Button to a Method

<af:commandButton actionListener="#{bindings.merge.Ord.execute}"
 text="mergeOrd"
 disabled="#{!bindings.mergeOrd.enabled}"
 id="cb1"/>

4.6.3 What You May Need to Know About the Difference Between the Merge and Persist
Methods

If when you created your session bean, you chose to expose the merge and persist
methods for a structured object, then those methods appear in the Data Controls panel
and you can use them to create buttons that allow the user to merge and persist the
current instance of the object. Which you use depends on whether the page will need
to interact with the instance once updates are made. If you want to be able to continue
to work with the instance, then you need to use the persist method.

The merge methods are implementations of the JPA EntityManager.merge method.
This method takes the current instance, copies it, and passes the copy to the
PersistenceContext. It then returns a reference to that persisted entity and not to
the original object. This means that any subsequent changes made to that instance will
not be persisted unless the merge method is called again.

The persist methods are implementations of the JPA EntityManager.persist
method. Like the merge method, this method passes the current instance to the
PersistenceContext. However, the context continues to manage that instance so
that any subsequent updates will be made to the instance in the context.

4.6.4 What You May Need to Know About Overriding Declarative Methods
When you drop an operation or method as a command button, JDeveloper binds the
button to the execute method for the operation or method. However, there may be
occasions when you need to add logic before or after the existing logic. JDeveloper

Tip: Instead of binding a button to the execute method on the
action binding, you can bind the button to a method in a backing bean
that overrides the execute method. Doing so allows you to add logic
before or after the original method runs. For more information, see
Section 4.6.4, "What You May Need to Know About Overriding
Declarative Methods."

Tip: When you drop a UI component onto a page, JDeveloper
automatically gives it an ID based on the number of the same type of
component previously dropped, for example, cb1, cb2. You may
want to change the ID to something more descriptive, especially if you
will need to refer to it in a backing bean that contains methods for
multiple UI components on the page.

Creating an Input Form

Creating a Basic Databound Page 4-21

allows you to add logic to a declarative operation by creating a new method and
property on a managed bean that provides access to the binding container. By default,
this generated code executes the operation or method. You can then add logic before or
after this code. JDeveloper automatically binds the command component to this new
method, instead of to the execute property on the original operation or method. Now
when the user clicks the button, the new method is executed. For more information,
see the "Overriding Declarative Methods" section in the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

4.7 Creating an Input Form
You can create a form that allows a user to enter information for a new record and then
commit that record to the data source. You need to use a task flow that contains a
method activity that will call the Create operation before the page with the input
form is displayed. This method activity causes a blank row to be inserted into the row
set which the user can then populate using a form.

For example, if you have an Address bean, you could create a new form that allows
the user to create an address. You might create a create-address-task-flow task
flow that contains a createAddress method activity, which calls the Create
operation on the AddressFindAll accessor. Control is then passed to the
createAddress view activity, which displays a form where the user can enter a new
address, as shown in Figure 4–8.

Figure 4–8 Create an Address

4.7.1 How to Create an Input Form Using a Task Flow
You create an input form within a bounded task flow to ensure proper transaction
handling.

Before you begin:
It may be helpful to have a general understanding of input forms. For more
information, see Section 4.7, "Creating an Input Form."

Tip: For more information about task flows, see the "Creating ADF
Task Flows" part of the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

Note: If your application does not use task flows, then the calling
page should invoke the create operation similar to the way in which
a task flow’s method activity would. For example, you could provide
application logic within an event handler associated with a command
button on the calling page.

Creating an Input Form

4-22 Java EE Developer's Guide for Oracle Application Development Framework

You will need to complete these tasks:

■ Create a data control for your session bean, as described in Section 2.2.1, "How to
Create ADF Data Controls."

■ Create a bounded task flow that will contain both the form and the method
activity that will execute the Create operation. The task flow should start a new
transaction. For procedures, see the "Creating a Task Flow" section of the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

To create an input form:
1. To the bounded task flow, add a method activity. Have this activity execute the

Create operation associated with the accessor for which you are creating the
form. For these procedures on using method activities, see the "Using Method Call
Activities" section of the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework.

For example, to create the form that would allow users to create addresses, you
would have the method activity execute the Create operation associated with the
AddressFindAll accessor.

2. In the Property Inspector, enter a string for the fixed-outcome property. For
example, you might enter create as the fixed-outcome value.

3. Add a view activity that represents the page for the input form. For information
about adding view activities, see the "Using View Activities" section of the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

4. Add a control flow case from the method activity to the view activity. In the
Property Inspector, enter the value of the fixed-outcome property of the method
activity set in Step 2 as the value of the from-outcome of the control flow case.

5. Open the page for the view activity in the design editor, and from the Data
Controls panel, drag the collection for which the form will be used to create a new
record, and choose ADF Form from the context menu.

For example, for the form to create addresses, you would drag the
AddressFindAll accessor collection from the Data Controls panel.

6. In the task flow, add a return activity. This return activity must execute the
commit operation on the data control. For these procedures, see the "Using Task
Flow Return Activities" section of the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

Tip: If you want the user to be able to create multiple entries before
committing to the database, do the following:

1. In the task flow, add another control flow case from the view activity back
to the method activity, and enter a value for the from-outcome method.
For example, you might enter createAnother.

2. Drag and drop a command component from the Component Palette onto
the page, and set the action attribute to the from-outcome just
created. This will cause the task flow to return to the method activity and
reinvoke the Create operation.

Creating an Input Form

Creating a Basic Databound Page 4-23

7. Add a control flow case from the view activity to the return activity. Set the
fixed-outcome attribute to a text string. For example, you might set it to
return.

8. From the Component Palette, drag and drop a button or other command
component that will be used to invoke the return activity. Set the action attribute
to the text string set as the fixed-outcome created in Step 7.

4.7.2 What Happens When You Create an Input Form Using a Task Flow
When you use an ADF Form to create an input form, JDeveloper:

■ Creates an iterator binding for the accessor and an action binding for the Create
operation in the page definition for the method activity. The Create operation is
responsible for creating a row in the row set and populating the data source with
the entered data. In the page definition for the page, JDeveloper creates an iterator
binding for the returned collection and attribute bindings for each of the attributes
of the object in the collection, as for any other form.

■ Inserts code in the JSF page for the form using ADF Faces inputText
components, and in the case of the operations, commandButton components.

For example, the form shown in Figure 4–8 might be displayed by clicking a "Create
Address" link on the main page. This link then navigates to the form where you can
input data for a new address. Once the address is created, and you click the Save
button, you return to the main page. Figure 4–9 shows a
create-address-task-flow task flow with the newAddress method activity.

Figure 4–9 Task Flow for an Input Form

Example 4–12 shows the code in the page definition file for the method activity.

Example 4–12 Page Definition Code for a Creation Method Activity

<executables>
 <iterator Binds="root" RangeSize="25" DataControl="SupplierFacadeLocal"
 id="SupplierFacadeLocalIterator"/>
 <accessorIterator MasterBinding="SupplierFacadeLocalIterator"
 Binds="addresses" RangeSize="25"
 DataControl="SupplierFacadeLocal"
 BeanClass="oracle.fodemo.supplier.model.Addresses"
 id="addressesIterator"/>

Tip: If when you set the return activity to execute the commit
operation the activity shows an error, it is probably because the task
flow itself is not set up to start a transaction. You need to set it to do
so. For more information, see the "Managing Transactions in Task
Flows" section of the Oracle Fusion Middleware Fusion Developer's Guide
for Oracle Application Development Framework.

Modifying the UI Components and Bindings on a Form

4-24 Java EE Developer's Guide for Oracle Application Development Framework

</executables>
<bindings>
 <action IterBinding="addressesIterator" id="Create"
 RequiresUpdateModel="true" Action="createRow"/>
</bindings>

4.7.3 What Happens at Runtime: Invoking the Create Action Binding from the Method
Activity

In the example above, when the newAddress method activity is accessed, the Create
action binding is invoked, which executes the createRow operation, and a new blank
instance for the collection is created. Note that during routing from the method
activity to the view activity, the method activity’s binding container skips validation
for required attributes, allowing the blank instance to be displayed in the form on the
page.

4.8 Modifying the UI Components and Bindings on a Form
Once you use the Data Controls panel to create any type of form, you can then delete
attributes, change the order in which they are displayed, change the component used
to display data, and change the attribute to which the components are bound.

For more information about modifying existing UI components and bindings, see the
"Modifying the UI Components and Bindings on a Form" section of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

5

Creating ADF Databound Tables 5-1

5 Creating ADF Databound Tables

This chapter describes how to use the Data Controls panel to create basic databound
tables that are based on ADF Faces components, including editable tables and input
tables.

This chapter includes the following sections:

■ Section 5.1, "About Adding Tables"

■ Section 5.2, "Creating a Basic Table"

■ Section 5.3, "Creating an Editable Table"

■ Section 5.4, "Creating an Input Table"

■ Section 5.5, "Modifying the Attributes Displayed in the Table"

5.1 About Adding Tables
Unlike forms, tables allow you to display more than one record from a collection
returned by an accessor at a time. Figure 5–1 shows a table that was created by
dragging the Summit demo application’s CustomerFindAll collection and then
selecting four columns for display.

Figure 5–1 Results Table Displays Products That Match the Search Criteria

You can create tables that simply display data, or you can create tables that allow you
to edit or create data. Once you drop an accessor as a table, you can add command
buttons bound to actions that execute some logic on a selected row. You can also
modify the default components to suit your needs.

5.2 Creating a Basic Table
Unlike with forms where you bind the individual UI components that make up a form
to the individual attributes on the collection, with a table you bind the ADF Faces
table component to the complete collection or to a range of n data objects at a time
from the collection. The individual components used to display the data in the
columns are then bound to the attributes. The iterator binding handles displaying the

Creating a Basic Table

5-2 Java EE Developer's Guide for Oracle Application Development Framework

correct data for each object, while the table component handles displaying each
object in a row. JDeveloper allows you to do this declaratively, so that you don’t need
to write any code.

5.2.1 How to Create a Basic Table
To create a table using a data control, you bind the table component to a returned
collection. JDeveloper allows you to do this declaratively by dragging and dropping a
collection from the Data Controls panel.

Before you begin:
It may be helpful to have a general understanding of using data control attributes to
create tables. For more information, see Section 5.2, "Creating a Basic Table."

You will need to complete this task:

Create a data control for your session bean, as described in Section 2.2.1, "How to
Create ADF Data Controls."

To create a databound table:
1. From the Data Controls panel, select a collection.

For example, to create a simple table in the Summit demo application that displays
orders in the system, you would select the ordFindAll accessor collection.

2. Drag the collection onto a JSF page, and from the context menu, choose the
appropriate table.

When you drag the collection, you can choose from the following types of tables:

■ ADF Table: Allows you to select the specific attributes you need your editable
table columns to display, and what UI components to use to display the data.
By default, ADF inputText components are used for most attributes, thus
enabling the table to be editable. Attributes that are dates use the inputDate
component. Additionally, if a UI hint has been created for an attribute, or if the
attribute has been configured to be a list, then the component set by the hint is
used instead. For more information about setting UI hints, see the
Section 3.3.5, "How to Set UI Hints on Attributes."

■ ADF Read-Only Table: Same as the ADF Table; however, each attribute is
displayed in an outputText component.

■ ADF Read-Only Dynamic Table: Allows you to create a table when the
attributes returned and displayed are determined dynamically at runtime.
This component is helpful when the attributes for the corresponding object are
not known until runtime, or you do not wish to hardcode the column names
in the JSF page.

3. The ensuing Edit Table Columns dialog shows each attribute in the collection, and
allows you to determine how these attributes will behave and appear as columns
in your table.

Tip: You can also create a table by dragging a table component from
the Component Palette and completing the Create ADF Faces Table
wizard. For more information, see the "How to Display a Table on a
Page" section of the Oracle Fusion Middleware Web User Interface
Developer's Guide for Oracle Application Development Framework.

Creating a Basic Table

Creating ADF Databound Tables 5-3

Using this dialog, you can do the following:

■ In the Row Selection panel, determine how the ADF Model layer handles
selection. Selecting the Single radio button means that the user can select one
row and the iterator binding will access the iterator to determine the selected
row. Selecting the Multiple radio button means that the user can select
multiple rows and the iterator binding will access the iterator to determine
those selected rows. Select None if you do not want the table to allow
selection.

■ Allow the ADF Model layer to handle column sorting by selecting the Sorting
checkbox. Selecting this option means that the iterator binding will access the
iterator, which will perform an order-by query to determine the order. Select
this option unless you do not want to allow column sorting.

■ Allow the columns in the table to be filtered using entered criteria by selecting
the Filtering checkbox. Selecting this option allows the user to enter criteria in
text fields above each column. That criteria is then used to build a
Query-by-Example (QBE) search on the collection, so that the table will
display only the results returned by the query. For more information, see
Section 8.5, "Creating Standalone Filtered Search Tables."

■ Group columns for selected attributes together under a parent column, by
selecting the desired attributes (shown as rows in the dialog) and clicking the
Group button. Figure 5–2 shows how two grouped columns appear in the
visual editor after the table is created.

Figure 5–2 Grouped Columns in an ADF Faces Table

■ Change the display label for a column by entering text or an EL expression to
bind the label value to something else, such as a key in a resource file. By
default, the label is bound to the label property for any UI hint defined for
the attribute on the table binding. This binding allows you to change the value
of a label text one time in the data control structure file, and have the change
propagate to all pages that display the label.

■ Change the value binding for a column by selecting a different attribute to
bind to. If you simply want to rearrange the columns, you should use the
order buttons. If you do change the attribute binding for a column, the label
for the column also changes.

■ Change the UI component used to display an attribute using the dropdown
menu. The UI components are set based on the table you selected when you
dropped the collection onto the page, on the type of the corresponding
attribute (for example, inputDate components are used for attributes that are
dates), and on whether or not default components were set as UI hints in the
bean’s data control structure file.

Note: If the collection contains a structured attribute (an attribute
that is neither a Java primitive type nor a collection), the attributes of
the structured attributes will also appear in the dialog.

Creating a Basic Table

5-4 Java EE Developer's Guide for Oracle Application Development Framework

■ Change the order of the columns using the order buttons.

■ Add a column using the Add icon. There’s no limit to the number of columns
you can add. When you first click the icon, JDeveloper adds a new column
line at the bottom of the dialog and populates it with the values from the first
attribute in the bound collection; subsequent new columns are populated with
values from the next attribute in the sequence, and so on.

■ Delete a column using the Delete icon.

4. Once the table is dropped on the page, you can use the Property Inspector to set
other display properties of the table. For example, you may want to set the width
of the table to a certain percentage or size. For more information about display
properties, see the "Using Tables and Trees" chapter of the Oracle Fusion Middleware
Web User Interface Developer's Guide for Oracle Application Development Framework.

5. If you want the user to be able to edit information in the table and save any
changes, you need to provide a way to submit and persist those changes. For more
information, see Section 5.3, "Creating an Editable Table." For procedures on
creating tables that allow users to input data, see Section 5.4, "Creating an Input
Table."

5.2.2 What Happens When You Create a Table
Dropping a table from the Data Controls panel has the same effect as dropping a text
field or form. Briefly, JDeveloper does the following:

■ Creates the bindings for the table and adds the bindings to the page definition file

■ Adds the necessary code for the UI components to the JSF page

For more information, see Section 4.2.2, "What Happens When You Create a Text
Field."

5.2.2.1 Iterator and Value Bindings for Tables
When you drop a table from the Data Controls panel, a tree value binding is created. A
tree consists of a hierarchy of nodes, where each subnode is a branch off a higher level
node. In the case of a table, it is a flattened hierarchy, where each attribute (column) is
a subnode off the table. Like an attribute binding used in forms, the tree value binding
references the accessor iterator binding, while the accessor iterator binding references
the iterator for the data control, which facilitates iterating over the data objects in the
collection. Instead of creating a separate binding for each attribute, only the tree
binding to the table node is created. In the tree binding, the AttrNames element

Tip: If one of the attributes for your table is also a primary key, you
may want to choose a UI component that will not allow a user to
change the value.

Tip: If you want to use a component that is not listed in the
dropdown menu, use this dialog to select the outputText
component, and then manually add the other tag to the page.

Tip: When you set the table width to 100%, the table will not include
borders, so the actual width of the table will be larger. To have the
table set to 100% of the container width, expand the Style section of
the Property Inspector, select the Box tab, and set the Border Width
attribute to 0 pixels.

Creating a Basic Table

Creating ADF Databound Tables 5-5

within the nodeDefinition element contains a child element for each attribute that
you want to be available for display or reference in each row of the table.

The tree value binding is an instance of the FacesCtrlHierBinding class that
extends the core JUCtrlHierBinding class to add two JSF specific properties:

■ collectionModel: Returns the data wrapped by an object that extends the
javax.faces.model.DataModel object that JSF and ADF Faces use for
collection-valued components like tables.

■ treeModel: Extends collectionModel to return data that is hierarchical in
nature. For more information, see Chapter 6, "Displaying Master-Detail Data."

Example 5–1 shows the value binding for the table created when you drop the
SOrdList accessor collection.

Example 5–1 Value Binding Entries for a Table in the Page Definition File

<bindings>
 <tree IterBinding="SOrdListIterator" id="SOrdList">
 <nodeDefinition DefName="model.Ord" Name="SOrdList0">
 <AttrNames>
 <Item Value="id"/>
 <Item Value="dateOrdered"/>
 <Item Value="paymentTypeId"/>
 <Item Value="salesRepId"/>
 <Item Value="total"/>
 <Item Value="orderFilled"/>
 <Item Value="dateShipped"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
...
</bindings>

Only the table component needs to be bound to the model (as opposed to the columns
or the text components within the individual cells), because only the table needs access
to the data. The tree binding for the table drills down to the individual structure
attributes in the table, and the table columns can then derive their information from
the table component.

5.2.2.2 Code on the JSF Page for an ADF Faces Table
When you use the Data Controls panel to drop a table onto a JSF page, JDeveloper
inserts an ADF Faces table component, which contains an ADF Faces column
component for each attribute named in the table binding. Each column then contains
another component (such as an inputText or outputText component) bound to the
attribute’s value. Each column’s heading is bound to the labels property for the
control hint of the attribute.

Example 5–2 shows a code excerpt from a table created by dropping the ordFindAll
accessor collection as a read-only table.

Example 5–2 JSF Code for an ADF Faces Read-Only Table

<af:table value="#{bindings.ordFindAll.collectionModel}" var="row"
 rows="#{bindings.ordFindAll.rangeSize}"

Tip: If an attribute is marked as hidden in the associated structure
file, no corresponding UI is created for it.

Creating a Basic Table

5-6 Java EE Developer's Guide for Oracle Application Development Framework

 emptyText="#{bindings.ordFindAll.viewable ? 'No data to display.' :
 'Access Denied.'}"
 fetchSize="#{bindings.ordFindAll.rangeSize}" rowBandingInterval="0"
 id="t1">
 <af:column sortProperty="#{bindings.ordFindAll.hints.dateOrdered.name}"
 sortable="false"
 headerText="#{bindings.ordFindAll.hints.dateOrdered.label}"
 id="c1">
 <af:outputText value="#{row.dateOrdered}" id="ot1">
 <af:convertDateTime
 pattern="#{bindings.ordFindAll.hints.dateOrdered.format}"/>
 </af:outputText>
 </af:column>
 <af:column sortProperty="#{bindings.ordFindAll.hints.dateShipped.name}"
 sortable="false"
 headerText="#{bindings.ordFindAll.hints.dateShipped.label}"
 id="c2">
 <af:outputText value="#{row.dateShipped}" id="ot2">
 <af:convertDateTime
 pattern="#{bindings.ordFindAll.hints.dateShipped.format}"/>
 </af:outputText>
 </af:column>
. . .
</af:table>

The tree binding iterates over the data exposed by the iterator binding. Note that the
table’s value is bound to the collectionModel property, which accesses the
collectionModel object. The table wraps the result set from the iterator binding in a
collectionModel object. The collectionModel allows each item in the collection
to be available within the table component using the var attribute.

In the example, the table iterates over the rows in the current range of the
ordFindAll accessor binding. This binding binds to a row set iterator that keeps
track of the current row. When you set the var attribute on the table to row, each
column then accesses the current data object for the current row presented to the table
tag using the row variable, as shown for the value of the af:outputText tag:

<af:outputText value="#{row.dateOrdered}"/>

When you drop an ADF Table (as opposed to an ADF Read-Only Table), instead of
being bound to the row variable, the value of the input component is implicitly bound
to a specific row in the binding container through the bindings property, as shown
in Example 5–3. Additionally, JDeveloper adds validator and converter components
for each input component. By using the bindings property, any raised exception can be
linked to the corresponding binding object or objects. The controller iterates through
all exceptions in the binding container and retrieves the binding object to get the client
ID when creating FacesMessage objects. This retrieval allows the table to display
errors for specific cells. This strategy is used for all input components, including
selection components such as lists.

Example 5–3 Using Input Components Adds Validators and Converters

<af:table value="#{bindings.ordFindAll.collectionModel}" var="row"
 rows="#{bindings.ordFindAll.rangeSize}"
 emptyText="#{bindings.ordFindAll.viewable ? 'No data to display.' :
 'Access Denied.'}"
 fetchSize="#{bindings.ordFindAll.rangeSize}" rowBandingInterval="0"
 id="t1">
 <af:column sortProperty="#{bindings.ordFindAll.hints.dateOrdered.name}"
 sortable="false"

Creating a Basic Table

Creating ADF Databound Tables 5-7

 headerText="#{bindings.ordFindAll.hints.dateOrdered.label}"
 id="c1">
 <af:inputDate value="#{row.bindings.dateOrdered.inputValue}"
 label="#{bindings.ordFindAll.hints.dateOrdered.label}"
 required="#{bindings.ordFindAll.hints.dateOrdered.mandatory}"
 columns="#{bindings.ordFindAll.hints.dateOrdered.displayWidth}"
 shortDesc="#{bindings.ordFindAll.hints.dateOrdered.tooltip}"
 id="id1">
 <f:validator binding="#{row.bindings.dateOrdered.validator}"/>
 <af:convertDateTime
 pattern="#{bindings.ordFindAll.hints.dateOrdered.format}"/>
 </af:inputDate>
 </af:column>
 <af:column sortProperty="#{bindings.ordFindAll.hints.dateShipped.name}"
 sortable="false"
 headerText="#{bindings.ordFindAll.hints.dateShipped.label}"
 id="c2">
 <af:inputDate value="#{row.bindings.dateShipped.inputValue}"
 label="#{bindings.ordFindAll.hints.dateShipped.label}"
 required="#{bindings.ordFindAll.hints.dateShipped.mandatory}"
 columns="#{bindings.ordFindAll.hints.dateShipped.displayWidth}"
 shortDesc="#{bindings.ordFindAll.hints.dateShipped.tooltip}"
 id="id2">
 <f:validator binding="#{row.bindings.dateShipped.validator}"/>
 <af:convertDateTime
 pattern="#{bindings.ordFindAll.hints.dateShipped.format}"/>
 </af:inputDate>
 </af:column>
 <af:column sortProperty="#{bindings.ordFindAll.hints.id.name}"
 sortable="false"
 headerText="#{bindings.ordFindAll.hints.id.label}" id="c3">
 <af:inputText value="#{row.bindings.id.inputValue}"
 label="#{bindings.ordFindAll.hints.id.label}"
 required="#{bindings.ordFindAll.hints.id.mandatory}"
 columns="#{bindings.ordFindAll.hints.id.displayWidth}"
 maximumLength="#{bindings.ordFindAll.hints.id.precision}"
 shortDesc="#{bindings.ordFindAll.hints.id.tooltip}"
 id="it1">
 <f:validator binding="#{row.bindings.id.validator}"/>
 </af:inputText>
 </af:column>
. . .
</af:table>

For more information about using ADF Faces validators and converters, see the
"Validating and Converting Input" chapter of the Oracle Fusion Middleware Web User
Interface Developer's Guide for Oracle Application Development Framework.

Table 5–1 shows the other attributes defined by default for ADF Faces tables created
using the Data Controls panel.

Creating a Basic Table

5-8 Java EE Developer's Guide for Oracle Application Development Framework

5.2.3 What You May Need to Know About Setting the Current Row in a Table
When you use tables in an application and you allow the ADF Model layer to manage
row selection, the current row is determined by the iterator. When a user selects a row
in an ADF Faces table, the row in the table is shaded, and the component notifies the
iterator of the selected row. To do this, the selectedRowKeys attribute of the table is
bound to the collection model’s selected row, as shown in Example 5–4.

Example 5–4 Selection Attributes on a Table

<af:table value="#{bindings.ordFindAll.collectionModel}" var="row"

Table 5–1 ADF Faces Table Attributes and Populated Values

Attribute Description Default Value

rows Determines how
many rows to
display at one time.

An EL expression that, by default, evaluates to
the rangeSize property of the associated
iterator binding, which determines how many
rows of data are fetched from a data control at
one time. Note that the value of the rows
attribute must be equal to or less than the
corresponding iterator’s rangeSize value, as
the table cannot display more rows than are
returned. For more information about the
rangeSize property, see Section 4.4.2.2,
"Iterator RangeSize Attribute."

emptyText Text to display when
there are no rows to
return.

An EL expression that evaluates to the
viewable property on the iterator. If the table is
viewable, the attribute displays No data to
display when no objects are returned. If the
table is not viewable (for example, if there are
authorization restrictions set against the table),
it displays Access Denied.

fetchSize Number of rows of
data fetched from the
data source.

An EL expression that, by default, evaluates to
the rangeSize property of the associated
iterator binding. For more information about
the rangeSize property, see Section 4.4.2.2,
"Iterator RangeSize Attribute." This attribute
can be set to a larger number than the rows
attribute.

selectedRowKeys The selection state
for the table.

An EL expression that, by default, evaluates to
the selected row on the collection model.

selectionListener Reference to a
method that listens
for a selection event.

An EL expression that, by default, evaluates to
the makeCurrent method on the collection
model.

rowSelection Determines whether
rows are selectable.

Set to single to allow one row to be selected
at a time.

Column Attributes

sortProperty Determines the
property by which to
sort the column.

Set to the column’s corresponding attribute
binding value.

sortable Determines whether
a column can be
sorted.

Set to false. When set to true, the iterator
binding will access the iterator to determine
the order.

headerText Determines the text
displayed at the top
of the column.

An EL expression that, by default, evaluates to
the label UI hint set on the corresponding
attribute.

Creating a Basic Table

Creating ADF Databound Tables 5-9

.

.

.
 selectedRowKeys="#{bindings.ordFindAll.collectionModel.selectedRow}"
 selectionListener="#{bindings.ordFindAll.collectionModel.makeCurrent}"
 rowSelection="single" id="t1">

This binding binds the selected keys in the table to the selected row of the collection
model. The selectionListener attribute is then bound to the collection model’s
makeCurrent property. This binding makes the selected row of the collection the
current row of the iterator.

Although a table can handle selection automatically, there may be cases where you
need to programmatically set the current row for an object on an iterator.

You can call the getKey() method on any view row to get a Key object that
encapsulates the one or more key attributes that identify the row. You can also use a
Key object to find a view row in a row set using the findByKey(). At runtime, when
either the setCurrentRowWithKey or the setCurrentRowWithKeyValue built-in
operation is invoked by name by the data binding layer, the findByKey() method is
used to find the row based on the value passed in as a parameter before the found row
is set as the current row.

The setCurrentRowWithKey and setCurrentRowWithKeyValue operations both
expect a parameter named rowKey, but they differ precisely by what each expects that
rowKey parameter value to be at runtime:

The setCurrentRowWithKey Operation
setCurrentRowWithKey expects the rowKey parameter value to be the serialized
string representation of a view row key. This is a hexadecimal-encoded string that looks
similar to the following string:

000200000002C20200000002C102000000010000010A5AB7DAD9

The serialized string representation of a key encodes all of the key attributes that
might comprise a view row's key in a way that can be conveniently passed as a single
value in a browser URL string or form parameter. At runtime, if you inadvertently
pass a parameter value that is not a legal serialized string key, you may receive
exceptions like oracle.jbo.InvalidParamException or
java.io.EOFException as a result. In your web page, you can access the value of
the serialized string key of a row by referencing the rowKeyStr property of an ADF
control binding (for example. #{bindings.SomeAttrName.rowKeyStr}) or the
row variable of an ADF Faces table (for example, #{row.rowKeyStr}).

setCurrentRowWithKeyValue
The setCurrentRowWithKeyValue operation expects the rowKey parameter value
to be the literal value representing the key of the view row. For example, its value
would be simply "201" to find order number 201.

Note: If you create a custom selection listener, you must create a
method binding to the makeCurrent property on the collection
model (for example,
#{binding.Ord.collectionModel.makeCurrent}) and invoke
this method binding in the custom selection listener before any
custom logic.

Creating an Editable Table

5-10 Java EE Developer's Guide for Oracle Application Development Framework

5.3 Creating an Editable Table
You can create a table that allows the user to edit information within the table, and
then commit those changes to the data source. To do this, you use operations that can
modify data records associated with the returned collection (or the data control itself)
to create command buttons, and place those buttons in a toolbar in the table. For
example, the table in the browse.jspx page has a button that allows the user to
remove a product. While this button currently causes a dialog to display that allows
the user to confirm the removal, the button could be bound to a method that directly
removes the product.

As with editable forms, it is important to note that the ADF Model layer is not aware
that any row has been changed until a new instance of the collection is presented.
Therefore, you need to invoke the execute operation on the accessor iterator in order
for any changes to be committed. For more information, see Section 2.3.4, "What You
May Need to Know About Iterator Result Caching."

When you decide to use editable components to display your data, you have the
option of having the table displaying all rows as editable at once, or having it display
all rows as read-only until the user double-clicks within the row. Figure 5–3 shows a
table whose rows all have editable fields. The page is rendered using the components
that were added to the page (for example, inputText, inputDate, and
inputNumberSpinbox components).

Figure 5–3 Table with Editable Fields

Figure 5–4 shows the same table, but configured so that the user must double-click (or
single-click if the row is already selected) a row in order to edit or enter data. Note that
outputText components are used to display the data in the nonselected rows, even
though the same input components as in Figure 5–3 were used to build the page. The
only row that actually renders those components is the row selected for editing.

Figure 5–4 Table with Clickable Row Selected

Tip: To create a table that allows you to insert a new record into the
data store, see Section 5.4, "Creating an Input Table."

Creating an Editable Table

Creating ADF Databound Tables 5-11

For more information about how ADF Faces table components handle editing, see the
"Editing Data in Tables, Trees, and Tree Tables" section of the Oracle Fusion Middleware
Web User Interface Developer's Guide for Oracle Application Development Framework.

5.3.1 How to Create an Editable Table
To create an editable table, you follow procedures similar to those for creating a basic
table, and then you add command buttons bound to operations. However, in order for
the table to contain a toolbar, you need to add an ADF Faces component that associates
the toolbar with the items in the collection used to build the table.

Before you begin:
It may be helpful to have a general understanding of editable tables. For more
information, see Section 5.3, "Creating an Editable Table."

You will need to complete this task:

Create a data control for your session bean, as described in Section 2.2.1, "How to
Create ADF Data Controls."

To create an editable table:
1. From the Data Controls panel, select the collection to display in the table.

For example, to create a simple table in the Summit demo application that will
allow you to edit customers in the system, you would select the
customerFindAll accessor collection.

2. Drag the accessor onto a JSF page, and from the context menu, choose ADF Table.

3. Use the ensuing Edit Table Columns dialog to determine how the attributes
should behave and appear as columns in your table. Be sure to select the Row
Selection checkbox, which will allow the user to select the row to edit.

For more information about using this dialog to configure the table, see
Section 5.2, "Creating a Basic Table."

4. With the table selected in the Structure window, expand the Behavior section of
the Property Inspector and set the EditingMode attribute. If you want all the rows
to be editable select editAll. If you want the user to click into a row to make it
editable, select clickToEdit.

5. From the Structure window, right-click the table component and select Surround
With from the context menu.

6. In the Surround With dialog, ensure that ADF Faces is selected in the dropdown
list, select the Panel Collection component, and click OK.

The panelCollection component’s toolbar facet will hold the toolbar which, in
turn, will hold the command components used to update the data.

7. In the Structure window, right-click the panelCollection’s toolbar facet folder,
and from the context menu, choose Insert inside toolbar > Toolbar.

This creates a toolbar that already contains a default menu which allows users to
change how the table is displayed, and a Detach link that detaches the entire table
and displays it such that it occupies the majority of the space in the browser
window. For more information about the panelCollection component, see the
"Displaying Table Menus, Toolbars, and Status Bars" section of the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework.

Creating an Editable Table

5-12 Java EE Developer's Guide for Oracle Application Development Framework

8. From the Data Controls panel, select the method or operation associated with the
collection of objects on which you wish to execute the logic, and drag it onto the
toolbar component in the Structure window. This will place the databound
command component inside the toolbar.

For example, if you want to be able to remove a customer record, you would drag
the removeCustomer(Customer) method. Figure 5–5 shows the remove
methods in the Summit demo application.

Figure 5–5 Remove Methods in a Data Control

9. For the context menu, choose Operations > ADF Toolbar Button.

Because the method takes parameters, the Action Binding Editor opens, asking
you to set the value of the parameters.

10. In the Edit Action Binding dialog, you need to populate the value for the method’s
parameter. For the remove methods (and the other default methods), this is the
selected object.

a. In the Parameters section, use the Value dropdown list to select Show EL
Expression Builder.

b. In the Expression Builder, expand the node for the accessor’s iterator, then
expand the currentRow node, and select dataProvider.

This will create an EL expression that evaluates to the data for the current row
in the accessor’s iterator.

c. Click OK.

For example, if you created a table using the ordFindAll accessor, then
JDeveloper would have created an accessorIterator binding named
ordFindAllIterator. You would need to select the dataProvider object for
the current row under that iterator, as shown in Figure 5–6. This reference means
that the parameter value will resolve to the value of the currently selected row.

Creating an Editable Table

Creating ADF Databound Tables 5-13

Figure 5–6 dataProvider for the Current Row on the ordFindAllIterator Binding

11. To notify the ADF Model layer that the collection has been modified, you need to
also bind the toolbar button to a method that will refresh the iterator.

a. Open the page definition for the JSPX file by right-clicking the file and
choosing Go to Page Definition.

b. In the Structure window for the page definition, right-click bindings and
choose Insert inside bindings > Generic Bindings > action.

c. In the Create Action Binding dialog, use the Select an Iterator dropdown list
to select the iterator associated with the collection, and for Operation, select
Execute.

JDeveloper creates an action binding for the execute operation of the iterator.
You now need to have your command button call this operation.

12. In the JSF page, select the command component created when you dropped the
method in Step 8. In the Property Inspector, set Action to the following:

#{bindings.Execute.execute}

Creating an Input Table

5-14 Java EE Developer's Guide for Oracle Application Development Framework

When the command component is clicked, the binding to the action attribute is
evaluated after the binding for the actionListener attribute. This order ensures
that the iterator refreshes and/or executes after the deletion of entity.

5.3.2 What Happens When You Create an Editable Table
Creating an editable table is similar to creating a form used to edit records. Action
bindings are created for the operations dropped from the Data Controls panel. For
more information, see Section 4.6.2, "What Happens When You Use Methods to
Change Data."

5.4 Creating an Input Table
You can create a table that allows users to insert a new blank row into a table and then
add values for each column (any default values set on the corresponding data control
structure file will be automatically populated).

5.4.1 How to Create an Input Table
When you create an input table, you want the user to see the new blank row in the
context of the other rows within the current row set. To allow this insertion, you need
to use the create operation associated with the accessor for the collection that you
used to create the table.

Because the create operation only creates a row in the cache, you also need to add a
button that actually merges the newly created row into the collection. Figure 5–7
shows how this table might look with a new row created.

Creating an Input Table

Creating ADF Databound Tables 5-15

Figure 5–7 Input Table With Buttons for Creating Rows and Saving Data

ADF Faces components can be set so that one component refreshes based on an
interaction with another component, without the whole page needing to be refreshed.
This is known as partial page rendering. When the user clicks the button to create the
new row, you want the table to refresh to display that new row. To have that happen,
you need to configure the table to respond to that user action.

Before you begin:
It may be helpful to have a general understanding of input tables. For more
information, see Section 5.4, "Creating an Input Table."

You will need to complete these tasks:

■ Create a data control for your session bean, as described in Section 2.2.1, "How to
Create ADF Data Controls."

■ Create an editable table, as described in Section 5.3, "Creating an Editable Table."

To create an input table:
1. From the Data Controls panel, drag the Create operation associated with the

dropped collection and drop it as a toolbar button into the toolbar.

Tip: You may want to change the ID to something more
recognizable, such as Create. This will make it easier to identify
when you need to select it as the partial trigger.

Creating an Input Table

5-16 Java EE Developer's Guide for Oracle Application Development Framework

2. In the Structure window, select the table component.

3. In the Property Inspector, expand the Behavior section, click the dropdown menu
for the PartialTriggers attribute, and select Edit.

4. In the Edit Property dialog, expand the toolbar facet for the panelCollection
component and then expand the toolbar that contains the Create command
component. Select that component and shuttle it to the Selected panel. Click OK.
This sets that component to be the trigger that will cause the table to refresh.

5. Create a button that allows the user to merge the new object(s) into the collection.
From the Data Controls panel, drag the merge method associated with the
collection used to create the table, and drop it as a toolbar button or link into the
toolbar.

Figure 5–8 shows the merge method for the Ord collection.

Figure 5–8 Merge Methods in the Data Controls Panel

5.4.2 What Happens When You Create an Input Table
When you use the create operation to create an input table, JDeveloper:

■ Creates an iterator binding for the collection, an action binding for the create
operation, and attribute bindings for the table. The create operation is
responsible for creating the new row in the row set. If you created command
buttons or links using the merge method, JDeveloper also creates an action
binding for that method.

■ Inserts code in the JSF page for the table for the ADF Faces components.

Example 5–5 shows the page definition file for an input table.

Example 5–5 Page Definition Code for an Input Table

<executables>
 <variableIterator id="variables"/>
 <iterator Binds="root" RangeSize="25" DataControl="SessionEJBLocal"

Tip: If you will want the user to be able to continue updating the
row after it is persisted, then you should create the button using the
persist method instead. For more information, see Section 4.6.3, "What
You May Need to Know About the Difference Between the Merge and
Persist Methods."

Creating an Input Table

Creating ADF Databound Tables 5-17

 id="SessionEJBLocalIterator"/>
 <accessorIterator MasterBinding="SessionEJBLocalIterator"
 Binds="suppliersFindAll" RangeSize="25"
 DataControl="SessionEJBLocal" BeanClass="model.Suppliers"
 id="suppliersFindAllIterator"/>
</executables>
<bindings>
 <action IterBinding="suppliersFindAllIterator" id="Create"
 RequiresUpdateModel="true" Action="createRow"/>
 <methodAction id="mergeSuppliers" RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="mergeSuppliers"
 IsViewObjectMethod="false" DataControl="SessionEJBLocal"
 InstanceName="SessionEJBLocal.dataProvider"
 ReturnName="SessionEJBLocal.methodResults.mergeSuppliers_
 SessionEJBLocal_dataProvider_mergeSuppliers_result">
 <NamedData NDName="suppliers"
 NDValue="#{bindings.Create.currentRow.dataProvider}"
 NDType="model.Suppliers"/>
 </methodAction>
 <tree IterBinding="suppliersFindAllIterator" id="suppliersFindAll">
 <nodeDefinition DefName="model.Suppliers">
 <AttrNames>
 <Item Value="email"/>
 <Item Value="phoneNumber"/>
 <Item Value="supplierId"/>
 <Item Value="supplierName"/>
 <Item Value="supplierStatus"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
</bindings>

Example 5–6 shows the code added to the JSF page that provides partial page
rendering, using command toolbar buttons as the triggers to refresh the table.

Example 5–6 Partial Page Trigger Set on a Command Button for a Table

<af:form id="f1">
 <af:panelCollection id="pc1">
 <f:facet name="menus"/>
 <f:facet name="toolbar">
 <af:toolbar id="t2">
 <af:commandToolbarButton actionListener="#{bindings.Create.execute}"
 text="Create New Supplier"
 disabled="#{!bindings.Create.enabled}"
 id="ctb1"/>
 <af:commandToolbarButton
 actionListener="#{bindings.mergeSuppliers.execute}"
 text="Commit New Suppliers"
 disabled="#{!bindings.mergeSuppliers.enabled}"
 id="ctb2"/>
 </af:toolbar>
 </f:facet>
 <f:facet name="statusbar"/>
 <af:table value="#{bindings.suppliersFindAll.collectionModel}"
 var="row" rows="#{bindings.suppliersFindAll.rangeSize}"
 emptyText="#{bindings.suppliersFindAll.viewable ? 'No data to
 display.' : 'Access Denied.'}"
 fetchSize="#{bindings.suppliersFindAll.rangeSize}"
 rowBandingInterval="0"

Creating an Input Table

5-18 Java EE Developer's Guide for Oracle Application Development Framework

 selectedRowKeys=
 "#{bindings.suppliersFindAll.collectionModel.selectedRow}"
 selectionListener=
 "#{bindings.suppliersFindAll.collectionModel.makeCurrent}"
 rowSelection="single" id="t1"
 partialTriggers="::ctb1 ::ctb2">
 <af:column sortProperty="supplierId" sortable="false"
 headerText=
 "#{bindings.suppliersFindAll.hints.supplierId.label}"
 id="c6">
 <af:inputText value="#{row.bindings.supplierId.inputValue}"
 label="#{bindings.suppliersFindAll.hints.supplierId.label}"
 required="#{bindings.suppliersFindAll.hints.supplierId.mandatory}"
 columns="#{bindings.suppliersFindAll.hints.supplierId.displayWidth}"
 maximumLength="#{bindings.suppliersFindAll.hints.supplierId.precision}"
 shortDesc="#{bindings.suppliersFindAll.hints.supplierId.tooltip}"
 id="it4">
 <f:validator binding="#{row.bindings.supplierId.validator}"/>
 <af:convertNumber groupingUsed="false"
 pattern="#{bindings.suppliersFindAll.hints.supplierId.format}"/>
 </af:inputText>
 </af:column>
.
.
.
 </af:table>
 </af:panelCollection>
</af:form>

5.4.3 What Happens at Runtime: How Create and Partial Page Refresh Work
When the button bound to the create operation is invoked, the action executes, and a
new instance for the collection is created as the page is rerendered. Because the button
was configured to be a trigger that causes the table to refresh, the table redraws with
the new empty row shown at the top. When the user clicks the button bound to the
merge method, the newly created rows in the row set are inserted into the database.
For more information about partial page refresh, see the "Rerendering Partial Page
Content" chapter in the Oracle Fusion Middleware Web User Interface Developer's Guide for
Oracle Application Development Framework.

5.4.4 What You May Need to Know About Creating a Row and Sorting Columns
If your table columns allow sorting, and the user has sorted on a column before
inserting a new row, then that new row will not be sorted. To have the column sort
with the new row, the user must first sort the column opposite to the desired sort, and
then re-sort. This is because the table assumes the column is already sorted, so clicking
on the desired sort order first will have no effect on the column.

For example, say a user had sorted a column in ascending order, and then added a
new row. Initially, that row appears at the top. If the user first clicks to sort the column
again in ascending order, the table will not re-sort, as it assumes the column is already
in ascending order. The user must first sort on descending order and then ascending
order.

If you want the data to automatically sort on a specific column in a specific order after
inserting a row, then programmatically queue a SortEvent after the commit, and
implement a handler to execute the sort.

Modifying the Attributes Displayed in the Table

Creating ADF Databound Tables 5-19

5.5 Modifying the Attributes Displayed in the Table
Once you use the Data Controls panel to create a table, you can then delete attributes,
change the order in which they are displayed, change the component used to display
them, and change the attribute binding for the component. You can also add new
attributes, or rebind the table to a new data control.

For more information about modifying existing UI components and bindings, see the
"Modifying the Attributes Displayed in the Table" section of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Modifying the Attributes Displayed in the Table

5-20 Java EE Developer's Guide for Oracle Application Development Framework

6

Displaying Master-Detail Data 6-1

6Displaying Master-Detail Data

This chapter describes how to use the Data Controls panel to create master-detail
objects that are based on ADF Faces components. It shows how to display
master-detail data by using prebuilt master-detail widgets, tables, trees and tree tables
and how to work with selection events.

This chapter includes the following sections:

■ Section 6.1, "Introduction to Displaying Master-Detail Data"

■ Section 6.2, "Identifying Master-Detail Objects on the Data Controls Panel"

■ Section 6.3, "Using Tables and Forms to Display Master-Detail Objects"

■ Section 6.4, "Using Trees to Display Master-Detail Objects"

■ Section 6.5, "Using Tree Tables to Display Master-Detail Objects"

■ Section 6.6, "Using Selection Events with Trees and Tables"

For information about using a selection list to populate a collection with a key value
from a related master or detail collection, see Chapter 7, "Creating Databound
Selection Lists."

6.1 Introduction to Displaying Master-Detail Data
When objects have a master-detail relationship, you can declaratively create pages that
display the data from both objects simultaneously. For example, the page shown in
Figure 6–1 displays a country code in a form at the top of the page and its related
states and provinces in a table at the bottom of the page. This is possible because the
objects have a master-detail relationship. In this example, the Country Code is the
master object and States is the detail object. ADF iterators automatically manage the
synchronization of the detail data objects displayed for a selected master data object.
Iterator bindings simplify building user interfaces that allow scrolling and paging
through collections of data and drilling-down from summary to detail information.

Identifying Master-Detail Objects on the Data Controls Panel

6-2 Java EE Developer's Guide for Oracle Application Development Framework

Figure 6–1 Detail Table

You display master and detail objects in forms and tables. The master-detail form can
display these objects on separate pages. For example, you can display the master
object in a table on one page and detail objects in a read-only form on another page.

6.2 Identifying Master-Detail Objects on the Data Controls Panel
You can declaratively create pages that display master-detail data using the Data
Controls panel. The Data Controls panel displays master-detail related objects in a
hierarchy that mirrors the data model where the detail objects are children of the
master objects.

To display master-detail objects as form or table objects, drag the detail object from the
Data Controls panel and drop it on the page. Its master object is automatically created
on the page.

Figure 6–2 shows two master-detail related accessor returned collections in the Data
Controls panel. ProductImageList appears as a child of ProductFindAll.

Note: There are some cases when the master-detail UI components
that JDeveloper provides cannot provide the functionality you require.
For example, you may need to bind components programatically
instead of using the master-detail UI components.

A master object can have many detail objects, and each detail object
can in turn have its own detail objects, down to many levels of depth.
If one of the detail objects in this hierarchy is dropped from the
Application Navigator as a master-detail form on a page, only its
immediate parent master object displays on the page. The hierarchy
will not display all the way up to the topmost parent object.

If you display the detail object as a tree or tree table object, it is
possible to display the entire hierarchy with multiple levels of depth,
starting with the topmost master object, and traversing detail children
objects at each node.

Using Tables and Forms to Display Master-Detail Objects

Displaying Master-Detail Data 6-3

Figure 6–2 Master-Detail Objects in the Data Controls Panel

In this example, the relationship between ProductFindAll and
ProductImageList is a one-way relationship.

6.3 Using Tables and Forms to Display Master-Detail Objects
You can create a master-detail browse page in a single declarative action using the
Data Controls panel. All you have to do is drop the detail accessor returned collection
on the page and choose the type of widget you want to use.

The prebuilt master-detail widgets available from the Data Controls panel include
range navigation that enables the end user to scroll through the data objects in
collections. You can delete unwanted attributes by removing the text field or column
from the page.

Figure 6–3 shows an example of a prebuilt master-detail widget, which displays
products information in a form at the top of the page and stock levels in a table at the
bottom of the page. When the user clicks the Next button to scroll through the records
in the master data at the top of the page, the page automatically displays the related
detail data.

Note: The master-detail hierarchy displayed in the Data Controls
panel does not reflect the cardinality of the relationship (that is,
one-to-many, one-to-one, many-to-many). The hierarchy simply shows
which accessor returned collection (the master) is being used to
retrieve one or more objects from another accessor returned collection
(the detail).

Using Tables and Forms to Display Master-Detail Objects

6-4 Java EE Developer's Guide for Oracle Application Development Framework

Figure 6–3 Prebuilt Data Controls Panel Master-Detail Widget

6.3.1 How to Display Master-Detail Objects in Tables and Forms
If you do not want to use the prebuilt master-detail widgets, you can drag and drop
the master and detail objects individually from the Data Controls panel as tables and
forms on a single page or on separate pages.

The Data Controls panel enables you to create both the master and detail widgets on
one page with a single declarative action using prebuilt master-detail forms and tables.

To create a master-detail page using the prebuilt ADF master-detail forms and
tables:
1. From the Data Controls panel, locate the detail object.

2. Drag and drop the detail object onto the JSF page.

3. In the context menu, choose one of the following master-details UI components:

■ ADF Master Table, Detail Form: Displays the master objects in a table and the
detail objects in a read-only form under the table.

When a specific data object is selected in the master table, the first related
detail data object is displayed in the form below it. The user must use the form
navigation to scroll through each subsequent detail data object.

■ ADF Master Form, Detail Table: Displays the master objects in a read-only
form and the detail objects in a read-only table under the form.

When a specific master data object is displayed in the form, the related detail
data objects are displayed in a table below it.

■ ADF Master Form, Detail Form: Displays the master and detail objects in
separate forms.

Note: If you want to create an editable master-detail form, drop the
master object and the detail object separately on the page.

Using Tables and Forms to Display Master-Detail Objects

Displaying Master-Detail Data 6-5

When a specific master data object is displayed in the top form, the first
related detail data object is displayed in the form below it. The user must use
the form navigation to scroll through each subsequent detail data object.

■ ADF Master Table, Detail Table: Displays the master and detail objects in
separate tables.

When a specific master data object is selected in the top table, the first set of
related detail data objects is displayed in the table below it.

6.3.2 What Happens When You Create Master-Detail Tables and Forms
When you drag and drop an accessor returned collection from the Data Controls
panel, JDeveloper does many things for you, including adding code to the JSF page
and the corresponding entries in the page definition file.

6.3.2.1 Code Generated in the JSF Page
The JSF code generated for a prebuilt master-detail widget is similar to the JSF code
generated when you use the Data Controls panel to create a read-only form or table. If
you are building your own master-detail widgets, you might want to consider
including similar components that are automatically included in the prebuilt
master-detail tables and forms.

The tables and forms in the prebuilt master-detail widgets include a panelHeader
tag that contains the fully qualified name of the data object populating the form or
table. You can change this label as needed using a string or an EL expression that binds
to a resource bundle.

If there is more than one data object in a collection, a form in a prebuilt master-detail
widget includes four commandButton tags for range navigation: First, Previous,
Next, and Last. These range navigation buttons enable the user to scroll through the
data objects in the collection. The actionListener attribute of each button is bound
to a data control operation, which performs the navigation. The execute property
used in the actionListener binding invokes the operation when the button is
clicked. (If the form displays a single data object, JDeveloper automatically omits the
range navigation components.)

6.3.2.2 Binding Objects Defined in the Page Definition File
Example 6–1 shows the page definition file created for a master-detail page that was
created by dropping WarehouseStockLevelList, which is a detail object under the
ProductFindAll object, on the page as an ADF Master Form, Detail Table.

The executables element defines two accessorIterators: one for the product
(the master object) and one for WarehouseStockLevels (the detail object). At
runtime, the UI-aware data model and the row set iterator keep the row set of the

Tip: If you drop an ADF Master Table, Detail Form or ADF Master
Table, Detail Table widget on the page, the parent tag of the detail
component (for example, panelHeader tag or table tag)
automatically has the partialTriggers attribute set to the id of the
master component. At runtime, the partialTriggers attribute
causes only the detail component to be rerendered when the user
makes a selection in the master component, which is called partial
rendering. When the master component is a table, ADF uses partial
rendering, because the table does not need to be rerendered when the
user simply makes a selection in the facet. Only the detail component
needs to be rerendered to display the new data.

Using Tables and Forms to Display Master-Detail Objects

6-6 Java EE Developer's Guide for Oracle Application Development Framework

detail collection refreshed to the correct set of rows for the current master row as that
current row changes.

The bindings element defines the value bindings. The attribute bindings that
populate the text fields in the form are defined in the attributeValues elements.
The id attribute of the attributeValues element contains the name of each data
attribute, and the IterBinding attribute references an iterator binding to display
data from the master object in the text fields.

The attribute bindings that populate the text fields in the form are defined in the
attributeValues elements. The id attribute of the attributeValues element
contains the name of each data attribute, and the IterBinding attribute references an
iterator binding to display data from the master object in the text fields.

The range navigation buttons in the form are bound to the action bindings defined in
the action elements. As in the attribute bindings, the IterBinding attribute of the
action binding references the iterator binding for the master object.

The table, which displays the detail data, is bound to the table binding object defined
in the table element. The IterBinding attribute references the iterator binding for
the detail object.

Example 6–1 Binding Objects Defined in the Page Definition for a Master-Detail Page

 <executables>
 <variableIterator id="variables"/>
 <iterator Binds="root" RangeSize="25" DataControl="SupplierFacadeLocal"
 id="SupplierFacadeLocalIterator"/>
 <accessorIterator MasterBinding="SupplierFacadeLocalIterator"
 Binds="productFindAll" RangeSize="25"
 DataControl="SupplierFacadeLocal"
 BeanClass="oracle.fodemo.supplier.model.Product"
 id="productFindAllIterator"
 ChangeEventPolicy="ppr"/>
 <accessorIterator MasterBinding="productFindAllIterator"
 Binds="warehouseStockLevelList" RangeSize="25"
 DataControl="SupplierFacadeLocal"
 BeanClass="oracle.fodemo.supplier.model.WarehouseStockLevel"
 id="warehouseStockLevelListIterator"
 ChangeEventPolicy="ppr"/>
 </executables>
 <bindings>
 <action IterBinding="productFindAllIterator" id="First"
 RequiresUpdateModel="true" Action="first"/>
 <action IterBinding="productFindAllIterator" id="Previous"
 RequiresUpdateModel="true" Action="previous"/>
 ...
 <attributeValues IterBinding="productFindAllIterator" id="attribute1">
 <AttrNames>
 <Item Value="warrantyPeriodMonths"/>
 </AttrNames>
 </attributeValues>
 ...
 <tree IterBinding="warehouseStockLevelListIterator"
 id="warehouseStockLevelList">
 <nodeDefinition DefName="oracle.fodemo.supplier.model.WarehouseStockLevel">
 <AttrNames>
 <Item Value="lastUpdateDate"/>
 <Item Value="objectVersionId"/>
 <Item Value="productId"/>
 <Item Value="quantityOnHand"/>

Using Tables and Forms to Display Master-Detail Objects

Displaying Master-Detail Data 6-7

 ...
 <Item Value="warehouseId"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
 </bindings>

6.3.3 What Happens at Runtime: ADF Iterator for Master-Detail Tables and Forms
At runtime, an ADF iterator determines which row from the master table object to
display in the master-detail form. When the form first displays, the first master table
object row appears highlighted in the master section of the form. Detail table rows that
are associated with the master row display in the detail section of the form.

As described in Section 6.3.2.2, "Binding Objects Defined in the Page Definition File,"
ADF iterators are associated with underlying rowsetIterator objects. These
iterators manage which data objects, or rows, currently display on a page. At runtime,
the row set iterators manage the data displayed in the master and detail components.

Both the master and detail row set iterators listen to row set navigation events, such as
the user clicking the range navigation buttons, and display the appropriate row in the
UI. In the case of the default master-detail components, the row set navigation events
are the command buttons on a form (First, Previous, Next, Last).

The row set iterator for the detail collection manages the synchronization of the detail
data with the master data. The detail row set iterator listens for row navigation events
in both the master and detail collections. If a row set navigation event occurs in the
master collection, the detail row set iterator automatically executes and returns the
detail rows related to the current master row.

6.3.4 What You May Need to Know About Displaying Master-Detail Widgets on Separate
Pages

The default master-detail components display the master-detail data on a single page.
However, using the master and detail objects on the Data Controls panel, you can also
display the collections on separate pages, and still have the binding iterators manage
the synchronization of the master and detail objects.

To display master-detail objects on separate pages, create two pages, one for the
master object and one for the detail object, using the individual tables or forms
available from the Data Controls panel. Remember that the detail object iterator
manages the synchronization of the master and detail data. Be sure to drag the
appropriate detail object from the Data Controls panel when you create the page to
display the detail data. For more information, see Section 6.2, "Identifying
Master-Detail Objects on the Data Controls Panel."

To handle the page navigation, create an ADF task flow, and then add two view
activities to it, one for the master page and one for the detail page. Add command
buttons or links to each page, or use the default Submit button available when you
create a form or table using the Data Controls panel. Each button must specify a
navigation rule outcome value in the action attribute. In the
task-flow-defintion.xml file, add a navigation rule from the master data page to
the detail data page, and another rule to return from the detail data page to the master
data page. The from-outcome value in the navigation rules must match the outcome
value specified in the action attribute of the buttons.

Using Trees to Display Master-Detail Objects

6-8 Java EE Developer's Guide for Oracle Application Development Framework

6.4 Using Trees to Display Master-Detail Objects
In addition to tables and forms, you can also display master-detail data in hierarchical
trees. The ADF Faces tree component is used to display hierarchical data. It can
display multiple root nodes that are populated by a binding on a master object. Each
root node in the tree may have any number of branches, which are populated by
bindings on detail objects. A tree can have multiple levels of nodes, each representing
a detail object of the parent node. Each node in the tree is indented to show its level in
the hierarchy.

The tree component includes mechanisms for expanding and collapsing the tree
nodes; however, it does not have focusing capability. If you need to use focusing,
consider using the ADF Faces treeTable component (for more information, see
Section 6.5, "Using Tree Tables to Display Master-Detail Objects"). By default, the icon
for each node in the tree is a folder; however, you can use your own icons for each
level of nodes in the hierarchy.

Figure 6–4 shows an example of a tree that displays two levels of nodes: root and
branch. The root node displays parent product categories such as Media, Office, and
Electronics. The branch nodes display and subcategories under each parent category,
such as Hardware, Supplies, and Software under the Office parent category.

Figure 6–4 Databound ADF Faces Tree

6.4.1 How to Display Master-Detail Objects in Trees
A tree consists of a hierarchy of nodes, where each subnode is a branch off a higher
level node. Each node level in a databound ADF Faces tree component is populated
by a different data collection. In JDeveloper, you define a databound tree using the
Edit Tree Binding dialog, which enables you to define the rules for populating each
node level in the tree. There must be one rule for each node level in the hierarchy. Each
rule defines the following node-level properties:

■ The accessor returned collection that populates that node level

■ The attributes from the accessor returned collection that are displayed at that node
level

To display master-detail objects in a tree:
1. Drag the master object from the Data Controls panel, and drop it onto the page.

This should be the master data that will represent the root level of the tree.

2. In the context menu, choose Trees > ADF Tree.

JDeveloper displays the Edit Tree Binding dialog, as shown in Figure 6–5. You use
the binding editor to define a rule for each level that you want to appear in the
tree.

Using Trees to Display Master-Detail Objects

Displaying Master-Detail Data 6-9

Figure 6–5 Edit Tree Binding Dialog

3. In the Root Data Source dropdown list, select the accessor returned collection that
will populate the root node level.

This will be the master data collection. By default, this is the same collection that
you dragged from the Data Controls panel to create the tree, which was a master
collection.

4. Click the Add icon to add the root data source you selected to the Tree Level
Rules list.

5. In the Tree Level Rules list, select the data source you just added.

6. Select an attribute in the Available Attributes list and move it to the Display
Attributes list.

The attribute will be used to display nodes at the master level.

After defining a rule for the master level, you must next define a second rule for
the detail level that will appear under the master level in the tree.

7. To add a second rule, click the Add icon above the Tree Level Rules list.

A detail data source should appear automatically under the master data source, as
shown in Figure 6–6.

Tip: If you don’t see the accessor returned collection you want in the
Root Data Source list, click the Add button. In the Add Data Source
dialog, select a data control and an iterator name to create a new data
source.

Using Trees to Display Master-Detail Objects

6-10 Java EE Developer's Guide for Oracle Application Development Framework

Figure 6–6 Master-Detail Tree Level Rules

For example, if you specified ProductFindAll as the master root data source,
WarehouseStockLevelList will automatically appear underneath in the Tree
Level Rules list, because the two data sources share a master-detail relationship.

If you are creating a tree with a recursive master-detail hierarchy, then you only
need to define a rule that specifies a data source with a self-accessor. A recursive
tree displays root nodes based on a single collection and displays the child nodes
from the attributes of a self-accessor that recursively fetches data from that
collection. The recursive tree differs from a typical master-detail tree because it
requires only a single rule to define the branches of the tree. A recursive data
source should display the data source followed by the name of the self-accessor in
brackets, as shown in Figure 6–7.

Figure 6–7 Recursive Tree-Level Rule

For example, in a collection defined by EmployeesView, the root node of each
branch could be specified by the ManagerId for the employee, and the child
nodes of the same branch would then be the employees who are related to the
ManagerId, as specified by the self-accessor DirectReports.

8. Click OK.

9. You can add data sources to the Tree Level Rules list to increase the number of
nodes that display in the tree. The order of the remaining data sources should
follow the hierarchy of the nodes you want to display in the tree.

6.4.2 What Happens When You Create an ADF Databound Tree
When you drag and drop from the Data Controls panel, JDeveloper does many things
for you.

When you create a databound tree using the Data Controls panel, JDeveloper adds
binding objects to the page definition file, and it also adds the tree tag to the JSF page.
The resulting UI component is fully functional and does not require any further
modification.

6.4.2.1 Code Generated in the JSF Page
Example 6–2 shows the code generated in a JSF page when you use the Data Controls
panel to create a tree. This sample tree displays the order numbers as the root nodes
and the product names as the leaf nodes.

Example 6–2 Code Generated in the JSF Page for a Databound Tree

<af:tree
 value="#{bindings.orderItemFindAll.treeModel}"

Using Trees to Display Master-Detail Objects

Displaying Master-Detail Data 6-11

 var="node"
 selectionListener="#{bindings.orderItemFindAll.treeModel.makeCurrent}"
 rowSelection="single" id="orderItemsTree">
 <f:facet name="nodeStamp">
 <af:outputText value="#{node}" id="ot2"/>
 </f:facet>
</af:tree>

By default, the af:tree tag is created inside a form. The value attribute of the tree
tag contains an EL expression that binds the tree component to the
orderItemFindAll tree binding object in the page definition file. The treeModel
property in the binding expression refers to an ADF class that defines how the tree
hierarchy is displayed, based on the underlying data model. The var attribute
provides access to the current node.

In the f:facet tag, the nodeStamp facet is used to display the data for each node.
Instead of having a component for each node, the tree repeatedly renders the
nodeStamp facet, similar to the way rows are rendered for the ADF Faces table
component.

The ADF Faces tree component uses an instance of the
oracle.adf.view.faces.model.PathSet class to display expanded nodes. This
instance is stored as the treeState attribute on the component. You may use this
instance to programmatically control the expanded or collapsed state of an element in
the hierarchy. Any element contained by the PathSet instance is deemed expanded.
All other elements are collapsed.

6.4.2.2 Binding Objects Defined in the Page Definition File
Example 6–3 shows the binding objects defined in the page definition file for the ADF
databound tree.

Example 6–3 Binding Objects Defined in the Page Definition File for a Databound Tree

<executables>
 <variableIterator id="variables"/>
 <iterator Binds="root" RangeSize="25" DataControl="SupplierFacadeLocal"
 id="SupplierFacadeLocalIterator"/>
 <accessorIterator MasterBinding="SupplierFacadeLocalIterator"
 Binds="orderItemFindAll" RangeSize="25"
 DataControl="SupplierFacadeLocal"
 BeanClass="oracle.fodemo.supplier.model.OrderItem"
 id="orderItemFindAllIterator"/>
</executables>
<bindings>
 <tree IterBinding="orderItemFindAllIterator" id="orderItemFindAll">
 <nodeDefinition DefName="oracle.fodemo.supplier.model.OrderItem"
 Name="orderItemFindAll0">
 <AttrNames>
 <Item Value="orderId"/>
 </AttrNames>
 <Accessors>
 <Item Value="product"/>
 </Accessors>
 </nodeDefinition>
 <nodeDefinition DefName="oracle.fodemo.supplier.model.Product"
 Name="orderItemFindAll1">
 <AttrNames>
 <Item Value="productName"/>
 </AttrNames>

Using Tree Tables to Display Master-Detail Objects

6-12 Java EE Developer's Guide for Oracle Application Development Framework

 </nodeDefinition>
 </tree>
</bindings>

The tree element is the value binding for all the attributes displayed in the tree. The
iterBinding attribute of the tree element references the iterator binding that
populates the data in the tree. The AttrNames element within the tree element
defines binding objects for all the attributes in the master collection. However, the
attributes that you select to appear in the tree are defined in the AttrNames elements
within the nodeDefinition elements.

The nodeDefinition elements define the rules for populating the nodes of the tree.
There is one nodeDefinition element for each node, and each one contains the
following attributes and subelements:

■ DefName: An attribute that contains the fully qualified name of the data collection
that will be used to populate the node

■ id: An attribute that defines the name of the node

■ AttrNames: A subelement that defines the attributes that will be displayed in the
node at runtime

■ Accessors: A subelement that defines the accessor attribute that returns the next
branch of the tree

The order of the nodeDefintion elements within the page definition file defines the
order or level of the nodes in the tree, where the first nodeDefinition element
defines the root node. Each subsequent nodeDefinition element defines a subnode
of the one before it.

6.4.3 What Happens at Runtime: Displaying an ADF Databound Tree
Tree components use org.apache.myfaces.trinidad.model.TreeModel to
access data. This class extends CollectionModel, which is used by the ADF Faces
table component to access data. For more information about the TreeModel class,
refer to the ADF Faces Javadoc.

When a page with a tree is displayed, the iterator binding on the tree populates the
root nodes. When a user expands or collapses a node to display or hide its branches, a
DisclosureEvent event is sent. The isExpanded method on this event determines
whether the user is expanding or collapsing the node. The DisclosureEvent event
has an associated listener.

The DisclosureListener attribute on the tree is bound to the accessor attribute
specified in the node rule defined in the page definition file. This accessor attribute is
invoked in response to the DisclosureEvent event; in other words, whenever a user
expands the node the accessor attribute populates the branch nodes.

6.5 Using Tree Tables to Display Master-Detail Objects
Use the ADF Faces treeTable component to display a hierarchy of master-detail
collections in a table. The advantage of using a treeTable component rather than a
tree component is that the treeTable component provides a mechanism that
enables users to focus the view on a particular node in the tree.

For example, you can create a tree table that displays three levels of nodes: countries,
states or provinces, and cities. Each root node represents an individual country. The

Using Tree Tables to Display Master-Detail Objects

Displaying Master-Detail Data 6-13

branches off the root nodes display the state or provinces in the country. Each state or
province node branches to display the cities contained in it.

As with trees, to create a tree table with multiple nodes, it is necessary to have
master-detail relationships between the collections. For example, to create a tree table
with three levels of country, state, and city, it was necessary to have a master-detail
relationship from the CountryCodes collection to the StatesandProvinces
collection, and a master-detail relationship from the StatesandProvinces collection
to the Cities collection.

A databound ADF Faces treeTable displays one root node at a time, but provides
navigation for scrolling through the different root nodes. Each root node can display
any number of branch nodes. Every node is displayed in a separate row of the table,
and each row provides a focusing mechanism in the leftmost column.

You can edit the following treeTable component properties in the Property
Inspector:

■ Range navigation: The user can click the Previous and Next navigation buttons to
scroll through the root nodes.

■ List navigation: The list navigation, which is located between the Previous and
Next buttons, enables the user to navigate to a specific root node in the data
collection using a selection list.

■ Node expanding and collapsing mechanism: The user can open or close each node
individually or use the Expand All or Collapse All command links. By default,
the icon for opening and closing the individual nodes is an arrowhead with a plus
or minus sign. You can also use a custom icon of your choosing.

■ Focusing mechanism: When the user clicks on the focusing icon (which is
displayed in the leftmost column) next to a node, the page is redisplayed showing
only that node and its branches. A navigation link is provided to enable the user to
return to the parent node.

6.5.1 How to Display Master-Detail Objects in Tree Tables
The steps for creating an ADF Faces databound tree table are exactly the same as those
for creating an ADF Faces databound tree, except that you drop the accessor returned
collection as an ADF Tree Table instead of an ADF Tree.

6.5.2 What Happens When You Create a Databound Tree Table
When you drag and drop from the Data Controls panel, JDeveloper does many things
for you.

When you create a databound tree table using the Data Controls panel, JDeveloper
adds binding objects to the page definition file, and it also adds the treeTable tag to
the JSF page. The resulting UI component is fully functional and does not require any
further modification.

6.5.2.1 Code Generated in the JSF Page
Example 6–4 shows the code generated in a JSF page when you use the Data Controls
panel to create a tree table. This sample tree table displays two levels of nodes:
products and stock levels.

By default, the treeTable tag is created inside a form. The value attribute of the
tree table tag contains an EL expression that binds the tree component to the
binding object that will populate it with data. The treeModel property refers to an

Using Tree Tables to Display Master-Detail Objects

6-14 Java EE Developer's Guide for Oracle Application Development Framework

ADF class that defines how the tree hierarchy is displayed, based on the underlying
data model. The var attribute provides access to the current node.

Example 6–4 Code Generated in the JSF Page for a Databound ADF Faces Tree Table

<af:treeTable value="#{bindings.orderItemFindAll.treeModel}" var="node"
 selectionListener="#{bindings.orderItemFindAll.treeModel.makeCurrent}"
 rowSelection="single" id="tt1">
 <f:facet name="nodeStamp">
 <af:column id="c1">
 <af:outputText value="#{node}" id="ot1"/>
 </af:column>
 </f:facet>
 <f:facet name="pathStamp">
 <af:outputText value="#{node}" id="ot2"/>
 </f:facet>
</af:treeTable>

In the facet tag, the nodeStamp facet is used to display the data for each node.
Instead of having a component for each node, the tree repeatedly renders the
nodeStamp facet, similar to the way rows are rendered for the ADF Faces table
component. The pathStamp facet renders the column and the path links above the
table that enable the user to return to the parent node after focusing on a detail node.

6.5.2.2 Binding Objects Defined in the Page Definition File
The binding objects created in the page definition file for a tree table are exactly the
same as those created for a tree.

6.5.3 What Happens at Runtime: Events
Tree components use oracle.adf.view.faces.model.TreeModel to access
data. This class extends CollectionModel, which is used by the ADF Faces table
component to access data. For more information about the TreeModel class, refer to
the ADF Faces Javadoc.

When a page with a tree table is displayed, the iterator binding on the treeTable
component populates the root node and listens for a row navigation event (such as the
user clicking the Next or Previous buttons or selecting a row from the range
navigator). When the user initiates a row navigation event, the iterator displays the
appropriate row.

If the user changes the view focus (by clicking on the component’s focus icon), the
treeTable component generates a focus event (FocusEvent). The node to which
the user wants to change focus is made the current node before the event is delivered.
The treeTable component then modifies the focusPath property accordingly. You
can bind the FocusListener attribute on the tree to a method on a managed bean.
This method will then be invoked in response to the focus event.

When a user expands or collapses a node, a disclosure event (DisclosureEvent) is
sent. The isExpanded method on the disclosure event determines whether the user is
expanding or collapsing the node. The disclosure event has an associated listener,
DisclosureListener. The DisclosureListener attribute on the tree table is
bound to the accessor attribute specified in the node rule defined in the page definition
file. This accessor attribute is invoked in response to a disclosure event (for example,
the user expands a node) and returns the collection that populates that node.

Using Selection Events with Trees and Tables

Displaying Master-Detail Data 6-15

The treeTable component includes Expand All and Collapse All links. When a user
clicks one of these links, the treeTable sends a DisclosureAllEvent event. The
isExpandAll method on this event determines whether the user is expanding or
collapsing all the nodes. The table then expands or collapses the nodes that are
children of the root node currently in focus. In large trees, the expand all command
will not expand nodes beyond the immediate children. The ADF Faces treeTable
component uses an instance of the oracle.adf.view.faces.model.PathSet
class to determine expanded nodes. This instance is stored as the treeState attribute
on the component. You can use this instance to programmatically control the
expanded or collapsed state of a node in the hierarchy. Any node contained by the
PathSet instance is deemed expanded. All other nodes are collapsed. This class also
supports operations like addAll() and removeAll().

For more information about the ADF Faces treeTable component, refer to the
oracle.adf.view.faces.component.core.data.CoreTreeTable class in the
ADF Faces Javadoc.

6.5.4 Using the TargetIterator Property
You can expand a node binding in the page definition editor to view the page’s node
Definition elements. These are the same tree binding rules that you can configure
in the tree binding dialog.

For each node definition (rule), you can specify an optional TargetIterator
property. Its value is an EL expression that is evaluated at runtime when the user
selects a row in the tree. The EL expression evaluates an iterator binding in the current
binding container. The iterator binding’s row key attributes match (in order, number,
and data type) the row key of the iterator from which the nodeDefinition type's
rows are retrieved for the tree.

At runtime, when the tree control receives a selectionChanged event, it passes in
the list of keys for each level of the tree. These keys uniquely identify the selected
node.

The tree binding starts at the top of the tree. For each tree level whose key is present in
the Currently Selected Tree Node Keys list, if there is a TargetIterator
property configured for that nodeDefinition, the tree binding performs a
setCurrentRowWithKey() operation on the selected target iterator. It uses the key
from the appropriate level of the Currently Selected Tree Node Keys list.

6.6 Using Selection Events with Trees and Tables
There may be cases when you need to determine which node in a tree or tree table has
been selected in order to handle some processing in your application. For example,
when a user selects a category node in a Browse tree, a selection event is fired. The
listener associated with this event needs to determine the product category of the node
selected, and then to return all products whose category attribute matches that value.

6.6.1 How to Use Selection Events with Trees and Tables
To programmatically use selection events, you need to create a listener in a managed
bean that will handle the selection event and perform the needed logic. You then need
to bind the selectionListener attribute of the tree or table to that listener.

To use selection events with trees and tables:
1. If one does not already exist, create a managed bean to contain the needed listener.

Using Selection Events with Trees and Tables

6-16 Java EE Developer's Guide for Oracle Application Development Framework

2. Create a listener method on the managed bean. For more information about
creating listener methods, see the "Using ADF Faces Server Events" section of the
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework. Your listener should do the following:

a. Access the component using the event source. Example 6–5 shows how the
productCategoriesTreeSelectionListener method on the HomeBean
managed bean accesses the tree that launched the selection event.

Example 6–5 Getting the Source of an Event

public void productCategoriesTreeSelectionListener(SelectionEvent evt) {
 RichTree tree = (RichTree)evt.getSource();

For more information about finding the event source component, see the
"How to Return the Original Source of the Event" section of the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

b. Access the tree model to get the value of the model, use the RowKeySet object
to get the currently selected node, and then set that as the current row on the
model, as shown in Example 6–6. For more information about RowKeySet
objects, see Section 6.6.2, "What Happens at Runtime: RowKeySet Objects and
SelectionEvent Events."

Example 6–6 Setting the Current Row on a Tree Model

TreeModel model = (TreeModel)tree.getValue();
RowKeySet rowKeySet = evt.getAddedSet();
Object key = rowKeySet.iterator().next();
model.setRowKey(key);

c. You can now add logic to execute against the currently selected row. For
example, the productCategoriesTreeSelectionListener method uses
the value binding of the selected row to determine the category ID, and then
uses that value as the parameter for another method that, when executed,
returns all products with that category ID, as shown in Example 6–7.

Example 6–7 Returning Objects That Match a Given Attribute Value

JUCtrlValueBinding nodeBinding =
 (JUCtrlValueBinding)model.getRowData();
Number catId = (Number)nodeBinding.getAttribute("CategoryId");
_selectedCategory = (String)nodeBinding.getAttribute("CategoryName");

OperationBinding ob =
 ADFUtils.findOperation("ProductsByCategoriesExecuteWithParams");
ob.getParamsMap().put("category", catId);
ob.execute();

3. On the associated JSF page, select the tree or table component. In the Property
Inspector, expand the Behavior section and set the value of the
SelectionListener attribute to the listener method just created. You can use
the Edit option from the dropdown method to declaratively select the bean and
the method.

Using Selection Events with Trees and Tables

Displaying Master-Detail Data 6-17

6.6.2 What Happens at Runtime: RowKeySet Objects and SelectionEvent Events
Whenever a user selects a node in a tree (or a row in a table), the component triggers
selection events. A selectionEvent event reports which rows were just deselected
and which rows were just selected. The current selection, that is, the selected row or
rows, is managed by the RowKeySet object, which keeps track of all currently selected
nodes by adding and deleting the associated key for the row into or out of the key set.
When a user selects a new node, and the tree or table is configured for single selection,
then the previously selected key is discarded and the newly selected key is added. If
the tree or table is configured for multiple selection, then the newly selected keys are
added to the set, and the previously selected keys may or may not be discarded, based
on how the nodes were selected. For example, if the user pressed the CTRL key, then
the newly selected nodes would be added to the current set.

Using Selection Events with Trees and Tables

6-18 Java EE Developer's Guide for Oracle Application Development Framework

7

Creating Databound Selection Lists 7-1

7 Creating Databound Selection Lists

This chapter describes how to add selection lists components to pages. It includes
instructions for creating selection components with fixed-value lists or dynamically
generated lists. It also describes how to add navigation list bindings to let users
navigate through a list of objects in a collection.

This chapter includes the following sections:

■ Section 7.1, "Introduction to Selection Lists"

■ Section 7.2, "Creating a Single Selection List"

■ Section 7.3, "Creating a List with Navigation List Binding"

7.1 Introduction to Selection Lists
Selection lists work the same way as do standard JSF list components. ADF Faces list
components, however, provide extra functionality such as support for label and
message display, automatic form submission, and partial page rendering.

When the user selects an item from a navigation list, a corresponding component
bound to the list also changes its value in response to the selection. For example, when
the user selects a product from a shopping list, the table that is bound to the products
list updates to display the details of the selected product.

7.2 Creating a Single Selection List
ADF Faces Core includes components for selecting a single value and multiple values
from a list. For example, selectOneChoice allows the user to select an item from a
dropdown list, and selectManyChoice allow the user to select several items from a
list of checkboxes. Selection list components are described in Table 7–1.

Table 7–1 ADF Faces Single and Multiple List Components

ADF Faces component Description Example

SelectOneChoice Select a single value from a list of items.

SelectOneRadio Select a single value from a set of radio
buttons.

Creating a Single Selection List

7-2 Java EE Developer's Guide for Oracle Application Development Framework

You can create selection lists using the SelectOneChoice ADF Faces component.
The steps are similar for creating other single-value selection lists, such as
SelectOneRadio and SelectOneListbox.

SelectOneListbox Select a single value from a scrollable list of
items.

SelectManyChoice Select multiple values from a scrollable list
of checkboxes. Each selection displays at
the top of the list.

SelectManyCheckbox Select multiple values from a group of
checkboxes.

SelectManyListbox Select multiple values from a scrollable list
of checkboxes.

SelectBooleanRadio Select a radio button in a group of radio
buttons. The buttons can be placed
anywhere on the page.

SelectBooleanCheck
box

Select a checkbox that toggles between
selected and unselected states.

Table 7–1 (Cont.) ADF Faces Single and Multiple List Components

ADF Faces component Description Example

Creating a Single Selection List

Creating Databound Selection Lists 7-3

A databound selection list displays values from an accessor returned collection or a
static list and updates an attribute in another collection or a method parameter based
on the user’s selection. When adding a binding to a list, you use an attribute from the
data control that will be populated by the selected value in the list.

To create a selection list, you choose a base data source and a list data source in the
Edit List Binding dialog:

■ Base data source: Select the accessor returned collection that you want to bind to
your control and that contains the attributes to be updated from user selections.

■ List data source: Select the accessor returned collection that contains the attributes
to display.

 You can create two types of selection lists in the Edit List Binding dialog:

■ Static list: List selections are based on a fixed list that you create manually by
entering values one at a time into the editor.

■ Dynamic list: List selections are generated dynamically based on one or more
databound attribute values.

7.2.1 How to Create a Single Selection List Containing Fixed Values
You can create a selection list containing selections that you code yourself, rather than
retrieving the values from another data source.

Figure 7–1 Selection List Bound to a Fixed List of Values

Before you begin:
Prepare a list of values that you will enter into the component as a fixed list.

To create a list bound to a fixed list of values:
1. From the Data Controls panel, drag and drop the attribute onto the JSF page and

choose Create > Single Selections > ADF Select One Choice.

The Edit List Binding dialog displays. The accessor returned collection containing
the attribute you dropped on the JSF page is selected by default in the Base Data
Source list.

To select a different accessor returned collection, click the Add icon next to the list.

2. Select the Fixed List radio button.

The Fixed List option lets end users choose a value from a static list that you
define.

3. In the Base Data Source Attribute list, choose an attribute.

Note: Using an ADF Model list binding with the
valuePassThru=true on a selectOneChoice component is not
supported. The list binding will return indexes, not values.

Creating a Single Selection List

7-4 Java EE Developer's Guide for Oracle Application Development Framework

The Base Data Source Attribute list contains all of the attributes in the collection
you selected in the Base Data Source list.

4. In the Set of Values box, enter each value you want to appear in the list. Press the
Enter key to set a value before typing the next value. For example, you could add
the payment types ATM and check.

The order in which you enter the values is the order in which the list items are
displayed in the SelectOneChoice control at runtime.

The SelectOneChoice component supports a null value. If the user has not
selected an item, the label of the item is shown as blank, and the value of the
component defaults to an empty string. Instead of using blank or an empty string,
you can specify a string to represent the null value. By default, the new string
appears at the top of the list.

5. Click OK.

7.2.2 How to Create a Single Selection List Containing Dynamically Generated Values
You can populate a selection list component with values dynamically at runtime.

Before you begin:
Define two data sources: one for the list data source that provides the dynamic list of
values, and the other for the base data source that is to be updated based on the user’s
selection.

To create a selection list bound containing dynamically generated values:
1. From the Data Controls panel, drag and drop the attribute onto the JSF page and

choose Create > Single Selections > ADF Select One Choice.

The Edit List Binding dialog displays. The accessor returned collection containing
the attribute you dropped on the JSF page is selected by default in the Base Data
Source list.

To select a different accessor returned collection, click the Add icon next to the list.

2. Select the Dynamic List radio button.

The Dynamic List option lets you specify one or more base data source attributes
that will be updated from another set of bound values.

3. Click the Add button next to List Data Source.

4. In the Add Data Source dialog, select the accessor returned collection that will
populate the values in the selection list.

5. Accept the default iterator name and click OK.

The Data Mapping section of the Edit List Binding dialog updates with a default
data value and list attribute. The Data Value control contains the attribute on the
accessor returned collection that is updated when the user selects an item in the
selection list. The List Attribute Control contains the attribute that populates the
values in the selection list.

Note: The list and base collections do not have to form a
master-detail relationship, but the attribute in the list collection must
have the same type as the base collection attributes.

Creating a Single Selection List

Creating Databound Selection Lists 7-5

6. You can accept the default mapping or select different attributes items from the
Data Value and List Attribute lists to update the mapping.

To add a second mapping, click Add.

7. Click OK.

7.2.3 What Happens When You Create a Fixed Selection List
When you add a fixed selection list, JDeveloper adds source code to the JSF page and
list and iterator binding objects to the page definition file.

Example 7–1 shows the page source code after you add a fixed SelectOneChoice
component to it.

Example 7–1 Fixed SelectOneChoice List in JSF Page Source Code

<af:selectOneChoice value="#{bindings.paymentType.inputValue}"
 label="#{bindings.paymentType.label}"
 required="#{bindings.paymentType.hints.mandatory}"
 shortDesc="#{bindings.paymentType.hints.tooltip}" id="soc1">
 <f:selectItems value="#{bindings.paymentType.items}" id="si1"/>
</af:selectOneChoice>

The f:selectItems tag, which provides the list of items for selection, is bound to
the items property on the paymentType list binding object in the binding container

In the page definition file, JDeveloper adds the definitions for the iterator binding
objects into the executables element, and the list binding object into the bindings
element, as shown in Example 7–2.

Example 7–2 List Binding Object for the Fixed Selection List in the Page Definition File

<executables>
 <variableIterator id="variables"/>
 <iterator Binds="root" RangeSize="25" DataControl="OrdersSessionEJBLocal"
 id="OrdersSessionEJBLocalIterator"/>
 <accessorIterator MasterBinding="OrdersSessionEJBLocalIterator"
 Binds="customerFindAll" RangeSize="25"
 DataControl="OrdersSessionEJBLocal"
 BeanClass="model.Customer" id="customerFindAllIterator"/>
 <accessorIterator MasterBinding="customerFindAllIterator"
 Binds="SOrdList" RangeSize="25"
 DataControl="OrdersSessionEJBLocal"
 BeanClass="model.Ord" id="SOrdListIterator"/>
 <iterator Binds="root" RangeSize="25" DataControl="OrdersSessionEJBLocal"
 id="OrdersSessionEJBLocalIterator1"/>
 <accessorIterator MasterBinding="OrdersSessionEJBLocalIterator1"
 Binds="empFindAll" RangeSize="-1"
 DataControl="OrdersSessionEJBLocal"
 BeanClass="model.Emp" id="empFindAllIterator"/>
</executables>
<bindings>
 <list IterBinding="SOrdListIterator" id="paymentType" DTSupportsMRU="true"
 StaticList="true">
 <AttrNames>
 <Item Value="paymentType"/>
 </AttrNames>
 <ValueList>
 <Item Value="CASH"/>
 <Item Value="CREDIT"/>

Creating a Single Selection List

7-6 Java EE Developer's Guide for Oracle Application Development Framework

 </ValueList>
 </list>
</bindings>

7.2.4 What Happens When You Create a Dynamic Selection List
When you add a dynamic selection list to a page, JDeveloper adds source code to the
JSF page, and list and iterator binding objects to the page definition file.

Example 7–3 shows the page source code after you add a dynamic
SelectOneChoice component to it.

Example 7–3 Dynamic SelectOneChoice List in JSF Page Source Code

<af:selectOneChoice value="#{bindings.salesRepId.inputValue}"
 label="#{bindings.salesRepId.label}"
 required="#{bindings.salesRepId.hints.mandatory}"
 shortDesc="#{bindings.salesRepId.hints.tooltip}" id="soc2">
 <f:selectItems value="#{bindings.salesRepId.items}" id="si2"/>
</af:selectOneChoice>

The f:selectItems tag, which provides the list of items for selection, is bound to
the items property on the salesRepId list binding object in the binding container.

In the page definition file, JDeveloper adds the definitions for the iterator binding
objects into the executables element, and the list binding object into the bindings
element, as shown in Figure 7–4.

Example 7–4 List Binding Object for the Dynamic Selection List in the Page Definition
File

<executables>
 <variableIterator id="variables"/>
 <iterator Binds="root" RangeSize="25" DataControl="OrdersSessionEJBLocal"
 id="OrdersSessionEJBLocalIterator"/>
 <accessorIterator MasterBinding="OrdersSessionEJBLocalIterator"
 Binds="customerFindAll" RangeSize="25"
 DataControl="OrdersSessionEJBLocal"
 BeanClass="model.Customer" id="customerFindAllIterator"/>
 <accessorIterator MasterBinding="customerFindAllIterator"
 Binds="SOrdList" RangeSize="25"
 DataControl="OrdersSessionEJBLocal"
 BeanClass="model.Ord" id="SOrdListIterator"/>
 <iterator Binds="root" RangeSize="25" DataControl="OrdersSessionEJBLocal"
 id="OrdersSessionEJBLocalIterator1"/>
 <accessorIterator MasterBinding="OrdersSessionEJBLocalIterator1"
 Binds="empFindAll" RangeSize="-1"
 DataControl="OrdersSessionEJBLocal"
 BeanClass="model.Emp" id="empFindAllIterator"/>
</executables>
</bindings>
 <list IterBinding="SOrdListIterator" id="salesRepId" DTSupportsMRU="true"
 StaticList="false"
 ListIter="empFindAllIterator">
 <AttrNames>
 <Item Value="salesRepId"/>
 </AttrNames>
 <ListAttrNames>
 <Item Value="id"/>

Creating a List with Navigation List Binding

Creating Databound Selection Lists 7-7

 </ListAttrNames>
 <ListDisplayAttrNames>
 <Item Value="firstName"/>
 <Item Value="lastName"/>
 </ListDisplayAttrNames>
 </list>
</bindings>

The AttrNames element specifies the base data source attributes returned by the base
iterator. The ListAttrNames element defines the list data source attributes that are
mapped to the base data source attributes. The ListDisplayAttrNames element
specifies the list data source attribute that populates the values users see in the list at
runtime.

7.3 Creating a List with Navigation List Binding
Navigation list binding lets users navigate through the objects in a collection. As the
user changes the current object selection using the navigation list component, any
other component that is also bound to the same collection through its attributes will
display from the newly selected object.

In addition, if the collection whose current row you change is the master collection in a
data model master-detail relationship, the row set in the detail collection is
automatically updated to show the appropriate data for the new current master row.

Before you begin:
Create an accessor returned collection in the Data Controls panel.

To create a list that uses navigation list binding:
1. From the Data Controls panel, drag and drop an accessor returned collection to the

page and choose Create > Navigation > ADF Navigation Lists.

2. In the Edit List Binding dialog, from the Base Data Source dropdown list, select
the collection whose members will be used to create the list.

This should be the collection you dragged from the Data Controls panel. If the
collection does not appear in the dropdown menu, click the Add button to select
the collection you want.

3. From the Display Attribute dropdown list, select a single attribute, all the
attributes, or choose Select Multiple to launch a selection dialog.

In the Select Multiple Display Attributes dialog, shuttle the attributes you want to
display from the Available Attributes pane to the Attributes to Display pane.
Click OK to close the dialog.

4. Click OK.

Creating a List with Navigation List Binding

7-8 Java EE Developer's Guide for Oracle Application Development Framework

8

Creating Databound Search Forms 8-1

8 Creating Databound Search Forms

This chapter describes how to create search forms to perform complex searches on
multiple attributes and search forms to search on a single attribute. For complex query
search forms, it describes how to set up the query search form mode, results table,
saved searches list, and personalization. For single attribute search forms, it describes
how to configure the form layout. In addition, it includes information on using
Query-by-Example (QBE) filtered table searches.

This chapter includes the following sections:

■ Section 8.1, "Introduction to Creating Search Forms"

■ Section 8.2, "Creating Query Search Forms"

■ Section 8.3, "Setting Up Search Form Properties"

■ Section 8.4, "Creating Quick Query Search Forms"

■ Section 8.5, "Creating Standalone Filtered Search Tables"

8.1 Introduction to Creating Search Forms
You can create search forms that allow users to enter search criteria into input fields
for known attributes of an object. The search criteria can be entered via input text
fields or selected from a list of values in a popup list picker or dropdown list box. The
entered criteria is constructed into a query to be executed. The results of the query can
be displayed as a table, a form, or another UI component.

Search forms are region-based components that are reusable and personalizable. They
encapsulate and automate many of the actions and iterator management operations
required to perform a query. You can create several search forms on the same page
without any need to change or create new iterators.

The search forms are based on the model-driven af:query and af:quickQuery
components. Because these underlying components are model-driven, the search form
will change automatically to reflect changes in the model. The view layer does not
need to be changed.

The query search form is a full-featured search form. The quick query search form is a
simplified form with only one search criteria. Each of these search forms can be
combined with a filtered table to display the results, thereby enabling additional
search capabilities. You can also create a standalone filtered table to perform searches
without the query or quick query search panel.

A filtered table is a table that has additional Query-by-Example (QBE) search criteria
fields above each searchable column. When the filtering option of a table is enabled,
you can enter QBE-style search criteria for each column to filter the query results.

Introduction to Creating Search Forms

8-2 Java EE Developer's Guide for Oracle Application Development Framework

For more information about individual query and table components, see the "Using
Query Components" and the "Using Tables and Trees" chapters of the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework.

8.1.1 Query Search Forms
The query search form is the standard form for complex transactional searches. You
can build complex search forms with multiple search criteria fields each with a
dropdown list of built-in operators. You can also add custom operators and customize
the list. The query search form supports lists of values, AND and OR conjunctions, and
saving searches for future use.

A query search form has a basic mode and an advanced mode. The user can toggle
between the two modes using the basic/advanced button. At design time, you can
declaratively specify form properties (such as setting the default state) to be either
basic or advanced. Figure 8–1 shows an advanced mode query search form with three
search criteria.

Figure 8–1 Advanced Mode Query Search Form with Three Search Criteria Fields

The advanced mode query form features are:

■ Selecting search criteria operators from a dropdown list

■ Adding custom operators and deleting standard operators

■ Selecting WHERE clause conjunctions of either AND or OR (match all or match any)

■ Dynamically adding and removing search criteria fields at runtime

■ Saving searches for future use

■ Personalizing saved searches

Typically, the query search form in either mode is used with an associated results table
or tree table. For example, the query results for the search form in Figure 8–1 may be
displayed in a table, as shown in Figure 8–2.

Introduction to Creating Search Forms

Creating Databound Search Forms 8-3

Figure 8–2 Results Table for a Query Search

The basic mode has all the features of the advanced mode except that it does not allow
the user to dynamically add search criteria fields. Figure 8–3 shows a basic mode
query search form with three search criteria field. Notice the lack of a dropdown list
next to the Save button used to add search criteria fields in the advanced mode.

Figure 8–3 Basic Mode Query Form with Three Search Criteria Fields

In either mode, each search criteria field can be modified by selecting operators such
as Greater Than and Equal To from a dropdown list, and the entire search panel
can be modified by the Match All/Any radio buttons. Partial page rendering is also
supported by the search forms in almost all situations. For example, if a Between
operator is chosen, another input field will be displayed to allow the user to select the
upper range.

A Match All selection implicitly uses AND conjunctions between the search criteria in
the WHERE clause of the query. A Match Any selection implicitly uses OR conjunctions
in the WHERE clause. Example 8–1 shows how a simplified WHERE clause may appear
(the real WHERE in the view criteria is different) when Match All is selected for the
search criteria shown in Figure 8–1.

Example 8–1 Simplified WHERE Clause Fragment When "Match All" Is Selected

 WHERE (OrderId=4) AND (Quantity < 50) AND (Price > 100)

Example 8–2 shows a simplified WHERE clause if Match Any is selected for the search
criteria shown in Figure 8–3.

Example 8–2 Simplified WHERE Clause Fragment When "Match Any" Is selected

 WHERE (orderId=4) OR (Quantity = 20) OR (Price > 100)

Advanced mode query forms allow users to dynamically add search criteria fields to
the query panel to perform more complicated queries. These user-created search

Introduction to Creating Search Forms

8-4 Java EE Developer's Guide for Oracle Application Development Framework

criteria fields can be deleted, but the user cannot delete existing fields. Figure 8–4
shows how the Add Fields dropdown list is used to add the CategoryId criteria field
to the search form.

Figure 8–4 Dynamically Adding Search Criteria Fields at Runtime

Figure 8–5 shows a user-added search criteria with the delete icon to its right. Users
can click the delete icon to remove the criteria.

Figure 8–5 User-Added Search Criteria with Delete Icon

If either Match All or Match Any is selected and then the user dynamically adds the
second instance of a search criteria, then both Match All and Match Any will be
deselected. The user must reselect either Match All or Match Any before clicking the
Search button.

If you intend for a query search form to have both a basic and an advanced mode, you
can define each search criteria field to appear only for basic, only for advanced, or for
both. When the user switches from one mode to the other, only the search criteria
fields defined for that mode will appear. For example, suppose three search fields for
basic mode (A, B, C) and three search fields for advanced mode (A, B, D) are defined
for a query. When the query search form is in basic mode, search criteria fields A, B,
and C will appear. When it is in advanced mode, then fields A, B, and D will appear.
Any search data that was entered into the search fields will also be preserved when the
form returns to that mode. If the user entered 35 into search field C in basic mode,
switched to advanced mode, and then switched back to basic, field C would reappear
with value 35.

Along with using the basic or advanced mode, you can also determine how much of
the search form will display. The default setting displays the whole form. You can also
configure the query component to display in compact mode or simple mode. The
compact mode has no header or border, and the Saved Search dropdown lists moves
next to the expand/collapse icon. Figure 8–6 shows a query component set to compact
mode.

Introduction to Creating Search Forms

Creating Databound Search Forms 8-5

Figure 8–6 Query Component in Compact Mode

The simple mode displays the component without the header and footer, and without
the buttons normally displayed in those areas. Figure 8–7 shows the same query
component set to simple mode.

Figure 8–7 Query Component in Simple Mode

Users can also create saved searches at runtime to save the state of a search for future
use. The entered search criteria values, the basic/advanced mode state, and the layout
of the results table/component can be saved by clicking the Save button to open a
Save Search dialog, as shown in Figure 8–8. User-created saved searches persist for the
session. If they are intended to be available beyond the session, you must configure a
persistent data store to store them. For Oracle ADF, you can use an access-controlled
data source such as MDS. For more information about using MDS, see the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

Figure 8–8 Runtime Saved Search Dialog Window

Table 8–1 lists the possible scenarios for creators of saved searches, the method of their
creation, and their availability.

Introduction to Creating Search Forms

8-6 Java EE Developer's Guide for Oracle Application Development Framework

End users can manage their saved searches by using the Personalize function in the
Saved Search dropdown list to bring up the Personalize Saved Searches dialog, as
shown in Figure 8–9.

End users can use the Personalize function to:

■ Update a user-created saved search

■ Delete a user-created saved search

■ Set a saved search as the default

■ Set a saved search to run automatically

■ Set the saved search to show or hide from the Saved Search dropdown list

Table 8–1 Design Time and Runtime Saved Searches

Creator
Created at Design time as
View Criteria

Created at Runtime with the
Save Button

Developer Developer-created saved
searches (system searches) are
created during application
development and typically are
a part of the software release.
They are created at design
time as view criteria. They are
usually available to all users
of the application and appear
in the lower part of the Saved
Search dropdown list.

Administrator Administrator-created saved
searches are created during
predeployment by site
administrators. They are
created before the site is made
available to the general end
users. Administrators can
create saved searches (or view
criteria) using the JDeveloper
design time when they are
logged in with the appropriate
role. These saved searches (or
view criteria) appear in the
lower part of the Saved
Search dropdown list.

End User End-user saved searches are
created at runtime using the
query form Save button. They
are available only to the user
who created them. End-user
saved searches appear in the
top part of the Saved Search
dropdown list.

Introduction to Creating Search Forms

Creating Databound Search Forms 8-7

Figure 8–9 Personalize Saved Searches Dialog

8.1.2 Quick Query Search Forms
A quick query search form is intended to be used in situations where a single search
will suffice or as a starting point to evolve into a full query search. Both the query and
quick query search forms are ADF Faces components. A quick query search form has
one search criteria field with a dropdown list of the available searchable attributes
from the associated data collection. Typically, the searchable attributes are all the
attributes in the associated view collection. The user can search against the selected
attribute or search against all the displayed attributes. The search criteria field type
will automatically match the type of its corresponding attribute. An Advanced link
built into the form offers you the option to create a managed bean to control switching
from quick query to advanced mode query search form. For more information, see the
"Using Query Components" chapter in the Oracle Fusion Middleware Web User Interface
Developer's Guide for Oracle Application Development Framework.

You can configure the form to have a horizontal layout, as shown in Figure 8–10.

Figure 8–10 Quick Query Search Form in Horizontal Layout

You can also choose a vertical layout, as shown in Figure 8–11.

Figure 8–11 Quick Query Search Form in Vertical Layout

8.1.3 Filtered Table and Query-by-Example Searches
A filtered table can be created standalone or as the results table of a query or quick
query search form. Filtered table searches are based on Query-by-Example and use the
QBE text or date input field formats. The input validators are turned off to allow for
entering characters such as > and <= to modify the search criteria. For example, you
can enter >1500 as the search criteria for a number column. Wildcard characters may
also be supported. If a column does not support QBE, the search criteria input field
will not render for that column.

The filtered table search criteria input values are used to build the query WHERE clause
with the AND operator. If the filtered table is associated with a query or quick query

Creating Query Search Forms

8-8 Java EE Developer's Guide for Oracle Application Development Framework

search panel, the composite search criteria values are also combined to create the
WHERE clause.

Figure 8–12 shows a query search form with a filtered results table. When the user
enters a QBE search criteria, such as >200 for the id field, the query result is the AND
of the query search criteria and the filtered table search criteria.

Figure 8–12 Query Search Form with Filtered Table

Table 8–2 lists the acceptable QBE search operators that can be used to modify the
search value.

8.2 Creating Query Search Forms
You create a query search form by dropping a named criteria from the Data Controls
panel onto a page. You have a choice of dropping only a search panel, dropping a
search panel with a results table, or dropping a search panel with a tree table.

If you choose to drop the search panel with a table, you can select the filtering option
in the dialog to turn the table into a filtered table.

Typically, you would drop a query search panel with the results table or tree table.
JDeveloper will automatically create and associate a results table or tree table with the
query panel.

If you drop a query panel by itself and want a results component or if you already
have an existing component for displaying the results, you will need to match the
query panel’s ResultsComponentId with the results component’s Id.

Table 8–2 Query-by-Example Search Criteria Operators

Operator Description

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

AND And

OR Or

Creating Query Search Forms

Creating Databound Search Forms 8-9

8.2.1 How to Create a Query Search Form with a Results Table or Tree Table
You create a search form by dragging and dropping a named criteria from the Data
Controls panel onto the page. You have the option of having a results table or only the
query panel.

Before you begin:
You should have created a accessor returned collection in the Data Control panel.

To create a query search form with a results table or tree table:
1. From the Data Controls panel, select the accessor returned collection and expand

the Named Criteria node to display a list of named criteria.

2. Drag a named criteria item and drop it onto the page or onto the Structure
window.

3. From the context menu, choose Create > Query > ADF Query Panel with Table or
Create > Query > ADF Query Panel with Tree Table, as shown in Figure 8–13.

Figure 8–13 Data Controls Panel with Query Context Menu

4. In the Edit Table Columns dialog, you can rearrange any column and select table
options. If you choose the filtering option, the table will be a filtered table.

After you have created the form, you may want to set some of its properties or add
custom functions. For more information on how to do this, see Section 8.3, "Setting Up
Search Form Properties."

8.2.2 How to Create a Query Search Form and Add a Results Component Later
You create a search form by dragging and dropping a named criteria from the Data
Controls panel onto the page. You have the option of having a results table or only the
query panel.

Before you begin:
You should have created a accessor returned collection in the Data Control panel.

To create a query search form and add a results component in a separate step:
1. From the Data Controls panel, select the accessor returned collection and expand

the Named Criteria node to display a list of named criteria.

2. Drag a named criteria item and drop it onto the page or onto the Structure
window.

Note: Dropping All Queriable Attributes onto the page creates a
search form with a search criteria field for each searchable attribute
defined in the underlying collection. If you only want to create search
criteria fields for some of those attributes, create a named criteria with
the attributes you want.

Creating Query Search Forms

8-10 Java EE Developer's Guide for Oracle Application Development Framework

3. Choose Create > Query > ADF Query Panel from the context menu, as shown in
Figure 8–13.

4. If you do not already have a results component, then drag the accessor returned
collection and drop it onto the page as a table, tree, or treetable component.

5. In the Property Inspector for the table, copy the value of the Id field.

6. In the Property Inspector for the query panel, paste the value of the table’s ID into
the query’s ResultsComponentId field.

After you have created the search form, you may want to set some of its properties or
add custom functions. See Section 8.3, "Setting Up Search Form Properties," for more
information.

8.2.3 How to Persist Saved Searches into MDS
If you want saved searches to be persisted to MDS, you need to define the /persdef
namespace in the adf-config.xml file. In addition, you need to perform the regular
MDS configuration, such as specifying metadatapath. Example 8–3 shows an
adf-config.xml file with the /persdef namespace defined.

Example 8–3 Sample adf-config.xml with /persdef Namespace

<persistence-config>
 <metadata-namespaces>
 <namespace path="/persdef" metadata-store-usage="mdsstore"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage id="mdsstore" deploy-target="true"
 default-cust-store="true"/>
 </metadata-store-usage>
 </metadata-store-usages>
</persistence-config>

In order for the added saved searches to be available the next time the user logs in,
cust-config needs to be defined as part of the MDS configuration. For more
information about setting cust-config and MDS, see "How to Create Customization
Classes" of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework

If you are also saving the layout of the results component, the application must have
the ADF PageFlow Runtime and ADF Controller Runtime libraries installed. Set the
project’s technology scope to include ADF Page Flow.

8.2.4 What Happens When You Create a Query Form
When you drop a query search form onto a page, JDeveloper creates an af:query tag
on the page. If you drop a query with table or tree table, then an af:table tag or
af:treeTable tag will follow the af:query tag.

Note: Dropping All Queriable Attributes onto the page creates a
search form with a search criteria field for each searchable attribute
defined in the underlying collection. If you only want to create search
criteria fields for some of those attributes, create a named criteria for
the attributes you want.

Creating Query Search Forms

Creating Databound Search Forms 8-11

Under the af:query tag are several attributes that define the query properties. They
include:

■ The id attribute, which uniquely identifies the query.

■ The resultsComponentId attribute, which identifies the component that will
display the results of the query. Typically, this will be the table or tree table that
was dropped onto the page together with the query. You can change this value to
be the id of a different results component. For more information, see Section 8.2.2,
"How to Create a Query Search Form and Add a Results Component Later."

In the page definition file, JDeveloper creates an iterator, accessorIterators, and a
searchRegion entry in the executables section. Example 8–4 shows the sample
code for a page definition file.

In the page definition file executable section:

■ The iterator RangeSize property is set to a default value of 25. If you want a
different page size, you must edit this value.

■ The iterator id property is set to the root iterator. In the example, the value is set
to OrdersSessionEJBLocalIterator

■ The accessorIterator Binds property is set to the accessor. In the example, the
value is set to itemFindAll.

■ The accessorIterator id property is set to the accessor iterator. In the example, the
value is set to itemFindAllIterator.

■ The searchRegion Criteria property is set to ItemCriteria.

■ The searchRegion Binds property is set to the search iterator. In the example,
the value is set to itemFindAllIterator

■ The searchRegion id property is set to ItemCriteriaQuery.

If the query was dropped onto the page with a table or tree, then in the page definition
file bindings section, a tree element is added with the Iterbinding property set to
the search iterator. In this example, the value is set to itemFindAllIterator.

Example 8–4 Search Form Code in the Page Definition File

 <executables>
 <variableIterator id="variables"/>
 <iterator Binds="root" RangeSize="25" DataControl="OrdersSessionEJBLocal"
 id="OrdersSessionEJBLocalIterator"/>
 <accessorIterator MasterBinding="OrdersSessionEJBLocalIterator"
 Binds="itemFindAll" RangeSize="25"
 DataControl="OrdersSessionEJBLocal"
 BeanClass="model.Item"
 id="itemFindAllIterator"/>
 <searchRegion Criteria="ItemCriteria"
 Customizer="oracle.jbo.uicli.binding.JUSearchBindingCustomizer"
 Binds="itemFindAllIterator"
 id="ItemCriteriaQuery"/>
 </executables>
 <bindings>
 <tree IterBinding="itemFindAllIterator" id="itemFindAll">
 <nodeDefinition DefName="model.Item">
 <AttrNames>
 <Item Value="itemId"/>
 <Item Value="ordId"/>
 <Item Value="price"/>

Setting Up Search Form Properties

8-12 Java EE Developer's Guide for Oracle Application Development Framework

 <Item Value="quantity"/>
 <Item Value="quantityShipped"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
 </bindings>

8.2.5 What Happens at Runtime: Search Forms
At runtime, the search form displays as a search panel on the page. The search panel
will display in either basic mode or advanced mode.

After the user enters the search criteria and clicks Search, a query is executed and the
results are displayed in the associated table, tree table, or component.

8.3 Setting Up Search Form Properties
Search form properties that can be set after the query component has been added to
the JSF page include:

■ id of the results table or results component

■ Show or hide of the basic/advanced button

■ Position of the mode button

■ Default, simple, or compact mode for display

8.3.1 How to Set Search Form Properties on the Query Component
After you have dropped the query search form onto a page, you can edit other form
properties in the Property Inspector, as shown in Figure 8–14. Some of the common
properties you may set are:

■ Enabling or disabling the basic/advanced mode button

■ Setting the ID of the query search form

■ Setting the ID of the results component (for example, a results table)

■ Selecting the default, simple, or compact mode for display

Creating Quick Query Search Forms

Creating Databound Search Forms 8-13

Figure 8–14 Property Inspector for a Query Component

One common option is to show or hide the basic/advanced button.

To enable or hide the basic/advanced button in the query form:
1. In the Structure window, double-click af:query.

2. In the Property Inspector, click the Appearance tab.

3. To enable the basic/advanced mode button, select true from the
ModeChangeVisible field. To hide the basic/advance mode button, select false
from the ModeChangeVisible field.

8.4 Creating Quick Query Search Forms
You can use quick query search forms to let users search on a single attribute of a
collection. Quick query search form layout can be either horizontal or vertical. Because
they occupy only a small area, quick query search forms can be placed in different
areas of a page. You can create a managed bean to enable users to switch from a quick
query to a full query search. For more information about switching from quick query
to query using a managed bean, see the "Using Query Components" chapter in the
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

If you drop a quick query panel with a results table or tree, JDeveloper will
automatically create the results table, as described in Section 8.4.1, "How to Create a
Quick Query Search Form with a Results Table or Tree Table." If you drop a quick
query panel by itself and subsequently want a results table or component or if you
already have one, you will need to match the quick query Id with the results
component’s partialTrigger value, as described in Section 8.4.2, "How to Create a
Quick Query Search Form and Add a Results Component Later."

8.4.1 How to Create a Quick Query Search Form with a Results Table or Tree Table
You can create quick query searches using the full set of searchable attributes and
simultaneously add a table or tree table as the results component.

Creating Quick Query Search Forms

8-14 Java EE Developer's Guide for Oracle Application Development Framework

Before you begin:
Create an accessor returned collection in the Data Control panel.

To create a quick query search form with a results table:
1. From the Data Controls panel, select the accessor returned collection and expand

the Named Criteria node to display a list of named criteria.

2. Drag a named criteria item and drop it onto the page or onto the Structure
window.

3. From the context menu, choose Create > Quick Query > ADF Quick Query Panel
with Table or Create > Quick Query > ADF Quick Query Panel with Tree Table,
as shown in Figure 8–15.

4. In the Edit Table Columns dialog, you can rearrange any column and select table
options. If you choose the filtering option, the table will be a filtered table.

Figure 8–15 Data Control Panel with Quick Query Context Menu

8.4.2 How to Create a Quick Query Search Form and Add a Results Component Later
You can create quick query searches using the full set of searchable attributes and add
a table or tree table as the results component later.

Before you begin:
Create an accessor returned collection in the Data Control panel.

To create a quick query search form and add a results component in a separate
step:
1. From the Data Controls panel, select the accessor returned collection and expand

the Named Criteria node to display a list of named criteria.

2. Drag a named criteria item and drop it onto the page or onto the Structure
window.

3. From the context menu, choose Create > Quick Query > ADF Quick Query Panel.

4. If you do not already have a results component, then drag the accessor returned
collection and drop it onto the page as a table, tree, or treetable component.

5. In the Property Inspector for the quick query, copy the value of the Id field.

6. In the Property Inspector for the results component (for example, a table), paste or
enter the value into the PartialTriggers field.

8.4.3 How to Set the Quick Query Layout Format
The default layout of the form is horizontal. You can change the layout option using
the Property Inspector.

To set the layout:
1. In the Structure window, double-click af:quickQuery.

Creating Standalone Filtered Search Tables

Creating Databound Search Forms 8-15

2. In the Property Inspector, on the Commons page, select the Layout property using
the dropdown list to specify default, horizontal, or vertical.

8.4.4 What Happens When You Create a Quick Query Search Form
When you drop a quick query search form onto a page, JDeveloper creates an
af:quickQuery tag. If you have dropped a quick query with table or tree table, then
an af:table tag or af:treeTable tag is also added.

Under the af:quickQuery tag are several attributes and facets that define the quick
query properties. Some of the tags are:

■ The id attribute, which uniquely identifies the quick query. This value should be
set to match the results table or component’s partialTriggers value.
JDeveloper will automatically assign these values when you drop a quick query
with table or tree table. If you want to change to a different results component, see
Section 8.4.2, "How to Create a Quick Query Search Form and Add a Results
Component Later."

■ The layout attribute, which specifies the quick query layout to be default,
horizontal, or vertical.

■ The end facet, which specifies the component to be used to display the Advanced
link (that changes the mode from quick query to the query). For more information
about creating this function, see the "Using Query Components" chapter of the
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

8.4.5 What Happens at Runtime: Quick Query
At runtime, the quick query search form displays a single search criteria field with a
dropdown list of selectable search criteria items. If there is only one searchable criteria
item, then the dropdown list box will not be rendered. An input component that is
compatible with the selected search criteria type will be displayed, as shown in
Table 8–3. For example, if the search criteria type is date, then inputDate will be
rendered.

In addition, a Search button is rendered to the right of the input field. If the end facet
is specified, then any components in the end facet are displayed. By default, the end
facet contains an Advanced link.

8.5 Creating Standalone Filtered Search Tables
You use query search forms for complex searches, but you can also perform simple
QBE searches using the filtered table. You can create a standalone ADF-filtered table
without the associated search panel and perform searches using the QBE-style search
criteria input fields. For more information about filtered tables, see Section 8.1.3,
"Filtered Table and Query-by-Example Searches."

Table 8–3 Quick Query Search Criteria Field Components

Attribute Type Rendered Component

DATE af:inputDate

VARCHAR af:inputText

NUMBER af:inputNumberSpinBox

Creating Standalone Filtered Search Tables

8-16 Java EE Developer's Guide for Oracle Application Development Framework

When creating a table, you can make almost any table a filtered table by selecting the
filtering option if the option is enabled. There are three ways to create a standalone
filtered table:

■ You can drop a table onto a page from the Component Palette, bind it to a data
collection, and set the filtering option. For more information, see the "Using Query
Components" chapter of the Oracle Fusion Middleware Web User Interface Developer's
Guide for Oracle Application Development Framework.

■ You can create a filtered table by dragging and dropping an accessor returned
collection onto a page and setting the filtering option.

■ You can also create a filtered table or a read-only filtered table by dropping All
Queriable Attributes or a named criteria onto the page. The resulting filtered table
will have a column for each searchable attribute and an input search field above
each column.

You can set the QBE search criteria for each filterable column to be a case-sensitive or
case-insensitive search using the filterFeature attribute of af:column in the
af:table component. For more information, see the "Enable Filtering in Tables"
section of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle
Application Development Framework.

Before you begin:
Create an accessor returned collection in the Data Control panel.

To create a filtered table:
1. From the Data Controls panel, select the accessor returned collection and expand

the Named Criteria node to display a list of all named criteria.

2. Drag a named criteria item and drop it onto the page or onto the Structure
window.

3. From the context menu, choose Create > Tables > ADF Filtered Table or Create >
Tables >ADF Read-Only Filtered Table.

4. In the Edit Table Columns dialog, you can rearrange any column and select table
options. Because the table is created by JDeveloper during quick query creation,
the filtering option is automatically enabled and not user-selectable, as shown in
Figure 8–16.

Creating Standalone Filtered Search Tables

Creating Databound Search Forms 8-17

Figure 8–16 Edit Table Columns Dialog for Filtered Table

Creating Standalone Filtered Search Tables

8-18 Java EE Developer's Guide for Oracle Application Development Framework

9

Deploying an ADF Java EE Application 9-1

9 Deploying an ADF Java EE Application

This chapter describes how to deploy Oracle ADF Java EE applications to a target
application server. It describes how to create deployment profiles, how to create
deployment descriptors, and how to load ADF runtime libraries. It includes
instructions for running an application in the Integrated WebLogic Server as well as
deploying to a standalone Oracle WebLogic Server or IBM WebSphere Application
Server.

This chapter includes the following sections:

■ Section 9.1, "Introduction to Deploying ADF Java EE Web Applications"

■ Section 9.2, "Running a Java EE Application in Integrated WebLogic Server"

■ Section 9.3, "Preparing the Application"

■ Section 9.4, "Deploying the Application"

■ Section 9.5, "Postdeployment Configuration"

■ Section 9.6, "Testing the Application and Verifying Deployment"

9.1 Introduction to Deploying ADF Java EE Web Applications
Deployment is the process of packaging application files as an archive file and
transferring it to a target application server. You can use JDeveloper to deploy Oracle
ADF Java EE web applications directly to the application server (such as Oracle
WebLogic Server or IBM WebSphere Application Server), or indirectly to an archive
file as the deployment target, and then install this archive file to the target server. For
application development, you can also use JDeveloper to run an application in
Integrated WebLogic Server. JDeveloper supports deploying to server clusters. You
cannot use JDeveloper to deploy to individual Managed Servers within a cluster.

Figure 9–1 shows the flow diagram that describes the overall deployment process.
Note that preparing the target application server for deployment by installing the ADF
runtime is described in the Oracle Fusion Middleware Administrator's Guide for Oracle
Application Development Framework

Note: If you are deploying ADF applications to GlassFish Server, see
the "Deploying ADF Applications to GlassFish" appendix in the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework and the "Configuring GlassFish Server"
appendix in the Oracle Fusion Middleware Administrator's Guide for
Oracle Application Development Framework.

Introduction to Deploying ADF Java EE Web Applications

9-2 Java EE Developer's Guide for Oracle Application Development Framework

Figure 9–1 Deployment Overview Flow Diagram

ADF Java EE applications are based on standardized, modular components and can be
deployed to the following application servers:

■ Oracle WebLogic Server

Oracle WebLogic Server provides a complete set of services for those modules and
handles many details of application behavior automatically, without requiring
programming. For information about which versions of Oracle WebLogic Server
are compatible with JDeveloper, see the certification information website at
http://www.oracle.com/technetwork/developer-tools/jdev/docume
ntation/index.html.

■ IBM WebSphere Application Server

Note: Normally, you use JDeveloper to deploy applications for
development and testing purposes. If you are deploying Oracle ADF
Java EE web applications for production purposes, you can use
Enterprise Manager or scripts to deploy to production-level
application servers.

For more information about deployment to later-stage testing or
production environments, see the Oracle Fusion Middleware
Administrator's Guide for Oracle Application Development Framework.

Introduction to Deploying ADF Java EE Web Applications

Deploying an ADF Java EE Application 9-3

For information about which versions of IBM WebSphere are compatible, see the
Oracle Fusion Middleware Third-Party Application Server Guide.

JSF applications that contain ADF Faces components have a few additional
deployment requirements:

■ ADF Faces requires Sun’s JSF Reference Implementation 1.2 and MyFaces 1.0.8 (or
later).

You can use JDeveloper to:

■ Run applications in Integrated WebLogic Server

You can run and debug applications using Integrated WebLogic Server and then
deploy to a standalone WebLogic Server or to WebSphere.

Integrated IBM WebSphere Application Server is not supported for this release.

■ Deploy to Oracle WebLogic Server

You can deploy applications directly to the standalone application server by
creating a connection to the server and choosing the name of that server as the
deployment target.

■ Deploy to an archive file

You can deploy applications indirectly by choosing an EAR file as the deployment
target. The archive file can subsequently be installed on a target Oracle WebLogic
Server instance.

9.1.1 Developing Applications with Integrated WebLogic Server
If you are developing an application in JDeveloper and you want to run the
application in Integrated WebLogic Server, you do not need to perform the tasks
required for deploying directly to Oracle WebLogic Server or to an archive file.
JDeveloper has a default connection to Integrated WebLogic Server and does not
require any deployment profiles or descriptors. Integrated WebLogic Server has a
preconfigured domain that includes the ADF libraries, as well as the
-Djps.app.credential.overwrite.allowed=true setting, that are required to
run Oracle ADF applications. You can run an application by choosing Run from the
JDeveloper main menu.

9.1.2 Developing Applications for Standalone Application Server
Typically, you test and develop your application by running it in Integrated WebLogic
Server. You can then test the application further by deploying it to standalone Oracle
WebLogic Server in development mode to more closely simulate the production
environment.

In general, you use JDeveloper to prepare the application or project for deployment
by:

■ Creating a connection to the target application server

■ Creating deployment profiles (if necessary)

■ Creating deployment descriptors (if necessary)

■ Updating application.xml and web.xml to be compatible with Oracle
WebLogic Server (if required)

■ Enabling the application for Real User Experience Insight (RUEI) in web.xml (if
desired)

Introduction to Deploying ADF Java EE Web Applications

9-4 Java EE Developer's Guide for Oracle Application Development Framework

■ Migrating application-level security policy data to a domain-level security policy
store

■ Configuring the Oracle Single Sign-On (Oracle SSO) service and properties in the
domain jps-config.xml file when you intend the web application to run using
Oracle SSO

You must already have an installed application server. For Oracle WebLogic Server,
you can use the Oracle 11g Installer or the Oracle Fusion Middleware 11g Application
Developer Installer to install one. For other applications servers, follow the
instructions in the applications server documentation to obtain and install the server.

You also must prepare the application server for ADF application deployment. For
more information, see the "Preparing the Standalone Application Server for
Deployment" section of the Oracle Fusion Middleware Administrator's Guide for Oracle
Application Development Framework.

■ Installing the ADF runtime into the application server installation:

– For WebLogic Server

– If you installed Oracle WebLogic Server together with JDeveloper using
the Oracle 11g Installer for JDeveloper, the ADF runtime should already be
installed.

– If the ADF runtime is not installed and you want to use Oracle Enterprise
Manager to manage standalone ADF applications (which are applications
without Oracle SOA Suite or Oracle WebCenter components), use the
Oracle Fusion Middleware 11g Application Developer Installer. This
installer will install the necessary Oracle Enterprise Manager components
into the Oracle WebLogic installation.

– If the ADF runtime is not installed and you do not need to install
Enterprise Manager, use the Oracle 11g Installer for JDeveloper.

– For WebSphere

* Use the Oracle Fusion Middleware 11g Application Developer Installer to
install the ADF runtime and the necessary Oracle Enterprise Manager
components into the WebSphere installation. For information about
installing WebSphere, see the Oracle Fusion Middleware Third-Party
Application Server Guide.

■ Extending Oracle WebLogic Server domains or WebSphere Cells to be
ADF-compatible using the ADF runtime

■ For WebLogic, setting the Oracle WebLogic Server credential store overwrite
setting as required (-Djps.app.credential.overwrite.allowed=true
setting)

■ Creating a global JDBC data source for applications that require a connection to a
data source

After the application and the application server have been prepared, you can:

■ Use JDeveloper to:

– Directly deploy to the application server using the deployment profile and the
application server connection.

– Deploy to an EAR file using the deployment profile. For ADF applications,
WAR and MAR files can be deployed only as part of an EAR file.

Running a Java EE Application in Integrated WebLogic Server

Deploying an ADF Java EE Application 9-5

■ Use Enterprise Manager, scripts, or the application’s administration tool to deploy
the EAR file created in JDeveloper. For more information, see the Oracle Fusion
Middleware Administrator's Guide for Oracle Application Development Framework.

9.2 Running a Java EE Application in Integrated WebLogic Server
JDeveloper is installed with Integrated WebLogic Server, which you can use to test and
develop your application. For most development purposes, Integrated WebLogic
Server will suffice. When your application is ready to be tested, you can select the run
target and then choose the Run command from the main menu.

When you run the application target, JDeveloper detects the type of Java EE module to
deploy based on artifacts in the projects and workspace. JDeveloper then creates an
in-memory deployment profile for deploying the application to Integrated WebLogic
Server. JDeveloper copies project and application workspace files to an "exploded
EAR" directory structure. This file structure closely resembles the EAR file structure
that you would have if you were to deploy the application to an EAR file. JDeveloper
then follows the standard deployment procedures to register and deploy the
"exploded EAR" files into Integrated WebLogic Server. The "exploded EAR" strategy
reduces the performance overhead of packaging and unpackaging an actual EAR file.

In summary, when you select the run target and run the application in Integrated
WebLogic Server, JDeveloper:

■ Detects the type of Java EE module to deploy based on the artifacts in the project
and application

■ Creates a deployment profile in memory

■ Copies project and application files into a working directory with a file structure
that would simulate the "exploded EAR" file of the application.

■ Performs the deployment tasks to register and deploy the simulated EAR into
Integrated WebLogic Server

■ Automatically migrates identities, credentials, and policies

Later on, if you plan to deploy the application to a standalone WebLogic Server
instance, you will need to migrate this security information. For more information,
see Section 9.3.4, "How to Deploy Applications with ADF Security Enabled."

The application will run in the base domain in Integrated WebLogic Server. This base
domain has the same configuration as a base domain in a standalone WebLogic Server
instance. In other words, this base domain will be the same as if you had used the
Oracle Fusion Middleware Configuration Wizard to create a base domain with the
default options in a standalone WebLogic Server instance.

Note: The first time you run an application in Integrated WebLogic
Server, the Configure Default Domain dialog appears for you to define
an administrative password for the new domain.

Note: JDeveloper ignores the deployment profiles that were created
for the application when you run the application in Integrated
WebLogic Server.

Running a Java EE Application in Integrated WebLogic Server

9-6 Java EE Developer's Guide for Oracle Application Development Framework

JDeveloper will extend this base domain with the necessary domain extension
templates, based on the JDeveloper technology extensions. For example, if you have
installed JDeveloper Studio, JDeveloper will automatically configure the Integrated
WebLogic Server environment with the ADF runtime template (JRF Fusion
Middleware runtime domain extension template).

You can explicitly create a default domain for Integrated WebLogic Server. You can use
these domains to run and test your applications. Open the Application Server
Navigator, right-click IntegratedWebLogicServer and choose Create Default Domain.

JDeveloper has a default connection to Integrated WebLogic Server. You do not need to
create a connection to run an application. If you do want to manually create an
application server connection to Integrated WebLogic Server, use the instructions in
Section 9.3.1, "How to Create a Connection to the Target Application Server," to create
the connection, selecting Integrated Server instead of Standalone Server in Step 2.

9.2.1 How to Run an Application in Integrated WebLogic Server
You can test an application by running it in Integrated WebLogic Server. You can also
set breakpoints and then run the application within the ADF Declarative Debugger.

To run an application in Integrated WebLogic Server:
1. In the Application Navigator, select the project, unbounded task flow, JSF page, or

file as the run target.

2. Right-click the run target and choose Run or Debug.

3. The Configure Default Domain dialog displays the first time your run your
application and start a new domain in Integrated WebLogic Server. Use the dialog
to define an administrator password for the new domain. Passwords you enter can
be eight characters or more and must have a numeric character.

9.2.2 How to Run an Application with Metadata in Integrated WebLogic Server
When an application is running in Integrated WebLogic Server, the metadata archive
(MAR) profile itself will not be deployed to a repository, but a simulated Oracle
Metadata Services (MDS) repository will be configured for the application that reflects
the metadata information contained in the MAR. This metadata information is
simulated, and the application runs based on this location in source control.

By default, only the customizations in ADF view and ADF Model are included in the
MAR. If the Java EE application has customizations in other directories, you must
create a custom MAR profile that includes these directories.

Any customizations or documents created by the application that are not configured to
be stored in other MDS repositories are written to this simulated MDS repository
directory. For example, if you customize an object, the customization is written to the
simulated MDS repository. If you execute code that creates a new metadata object,
then this new metadata object is also written to the same location in the simulated
MDS repository. You can keep the default location for this directory (ORACLE_
HOME\jdeveloper\systemXX.XX\o.mds.dt\adrs\Application\AutoGenera
tedMar\mds_adrs_writedir), or you can set it to a different directory. You also
have the option to preserve this directory across different application runs, or to delete
it before each application run.

If your workspace has different working sets, only the metadata from the projects
defined in the working set and their dependent projects will be included in the MAR.
You can view and change a project’s dependencies by right-clicking the project in the

Running a Java EE Application in Integrated WebLogic Server

Deploying an ADF Java EE Application 9-7

Application Navigator, choosing Project Properties, and then selecting Dependencies.
For instance, an application may have several projects but workingsetA is defined to
be viewcontroller2 and viewcontroller5; and viewcontroller5 has a
dependency on modelproject1. When you run or debug workingsetA, only the
metadata for viewcontroller2, viewcontroller5, and modelproject1 will be
included in the MAR for deployment.

There should already be a MAR profile, either generated automatically by JDeveloper,
or manually generated by a user.

To deploy the MAR profile to Integrated WebLogic Server:
1. In the Application Navigator, right-click the application and choose Application

Properties.

2. In the Application Properties dialog, expand Run and choose MDS.

3. In the Run MDS page:

■ Select the MAR profile from the MAR Profile dropdown list

■ Enter a directory path in Override Location if you want to customize the
location of the simulated MDS repository.

■ Select the Directory Content option. You can chose to preserve the
customizations across application runs or delete customizations before each
run.

Select the MAR profile from the MAR Profile dropdown list. Figure 9–2 shows
Demometadata1 selected as the MAR profile.

Figure 9–2 Setting the Run MDS options

Preparing the Application

9-8 Java EE Developer's Guide for Oracle Application Development Framework

9.3 Preparing the Application
Before you deploy an ADF application to a standalone Oracle WebLogic Server
instance, you must perform prerequisite tasks within JDeveloper to prepare the
application for deployment.

Figure 9–3 show the process flow to prepare the application for deployment. After the
application has been prepared and the application server has been prepared as
described in the Oracle Fusion Middleware Administrator's Guide for Oracle Application
Development Framework, you can proceed to deploy the application as described in
Section 9.4, "Deploying the Application."

Figure 9–3 Preparing the Application for Deployment Flow Diagram

9.3.1 How to Create a Connection to the Target Application Server
You can deploy applications to Oracle WebLogic Server via JDeveloper application
server connections. If your application involves customization using MDS, you should
register your MDS repository with the Oracle WebLogic Server domain.

For more information about registering MDS, see the Oracle Application Server
Administrator's Guide.

To create a connection to an application server:
1. Launch the Application Server Connection wizard.

You can:

Preparing the Application

Deploying an ADF Java EE Application 9-9

■ In the Application Server Navigator, right-click Application Servers and
choose New Application Server Connection.

■ In the New Gallery, expand General, select Connections and then
Application Server Connection, and click OK.

■ In the Resource Palette, choose New > New Connections > Application
Server.

2. In the Create AppServer Connection dialog Usage page, select Standalone Server.

3. In the Name and Type page, enter a connection name.

4. In the Connection Type dropdown list, choose:

■ WebLogic 10.3 to create a connection to Oracle WebLogic Server

■ WebSphere Server 7.x to create a connection to IBM WebSphere Server

5. Click Next.

6. On the Authentication page, enter a user name and password for the
administrative user authorized to access the application server.

7. Click Next.

8. On the Configuration page, enter the information for your server:

For WebLogic:

■ The Oracle WebLogic host name is the name of the WebLogic Server instance
containing the TCP/IP DNS where your application (.jar,.war,.ear) will
be deployed.

■ In the Port field, enter a port number for the Oracle WebLogic Server instance
on which your application (.jar,.war,.ear) will be deployed.

If you don’t specify a port, the port number defaults to 7001.

■ In the SSL Port field, enter an SSL port number for the Oracle WebLogic
Server instance on which your application (.jar,.war,.ear) will be
deployed.

Specifying an SSL port is optional. It is required only if you want to ensure a
secure connection for deployment.

If you don’t specify an SSL port, the port number defaults to 7002.

■ Select Always Use SSL to connect to the Oracle WebLogic Server instance
using the SSL port.

■ Optionally enter a WebLogic Domain only if Oracle WebLogic Server is
configured to distinguish nonadministrative server nodes by name.

For WebSphere:

■ In the Host Name field, enter the name of the WebSphere server containing
the TCP/IP DNS where your Java EE applications (.jar, .war, .ear) are
deployed. If no name is entered, the name defaults to localhost.

■ In the SOAP Connector Port field, enter the port number. The host name and
port are used to connect to the server for deployment. The default SOAP
connector port is 8879.

■ In the Server Name field, enter the name assigned to the target application
server for this connection.

Preparing the Application

9-10 Java EE Developer's Guide for Oracle Application Development Framework

■ In the Target Node field, enter the name of the target node for this connection.
A node is a grouping of Managed Servers. The default is machineNode01,
where machine is the name of the machine the node resides on

■ In the Target Cell field, enter the name of the target cell for this connection. A
cell is a group of processes that host runtime components. The default is
machineNode01Cell, where machine is the name of the machine the node
resides on.

■ In the Wsadmin script location field, enter, or browse to, the location of the
wsadmin script file to be used to define the system login configuration for
your IBM WebSphere application server connection. The default location is
websphere-home/bin/wsadmin.sh for Unix/Linux and
websphere-home/bin/wsadmin.bat for Windows.

9. Click Next.

10. If you have chosen WebSphere, the JMX page appears. On the JMX page, enter the
JMX information (optional):

■ Select Enable JMX for this connection to enable JMX.

■ In the RMI Port field, enter the port number of WebSphere's RMI connector
port. The default is 2809.

■ In the WebSphere Runtime Jars Location field, enter or browse to the location
of the WebSphere runtime JARs.

■ In the WebSphere Properties Location (for secure MBEAN access) field, enter
or browse to the location of the file that contains the properties for the security
configuration and the mbeans that are enabled. This field is optional.

11. Click Next.

12. If the SSl Signer Exchange Prompt dialog appears, click Y.

13. On the Test page, click Test Connection to test the connection.

JDeveloper performs several types of connections tests. The JSR-88 test must pass
for the application to be deployable. If the test fails, return to the previous pages of
the wizard to fix the configuration.

14. Click Finish.

9.3.2 How to Create Deployment Profiles
A deployment profile defines the way the application is packaged into the archive that
will be deployed to the target environment. The deployment profile:

■ Specifies the format and contents of the archive file that will be created

■ Lists the source files, deployment descriptors, and other auxiliary files that will be
packaged

■ Describes the type and name of the archive file to be created

■ Highlights dependency information, platform-specific instructions, and other
information

Note: JMX configuration is optional and is not required for
connecting to the WebSphere Application Server. JMX is only needed
for deploying SOA applications.

Preparing the Application

Deploying an ADF Java EE Application 9-11

You need a WAR deployment profile for each web view-controller project that you
want to deploy in your application. If you want to package seeded customizations or
place base metadata in the MDS repository, you need an application-level metadata
archive (MAR) deployment profile as well. For more information about seeded
customizations, see the "Customizing Applications with MDS" section of the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework. If the application has customization classes, you need a JAR file for those
classes and you need to add that JAR when you create the EAR file. If you are using
EJB, you need an EJB JAR profile. Finally, you need an application-level EAR
deployment profile and you must select the projects you want to include from a list,
such as WAR and MAR profiles and customization classes JAR files. When the
application is deployed, the EAR file will include all the projects that were selected in
the deployment profile.

For Oracle ADF applications, you can deploy the application only as an EAR file. The
WAR and MAR files that are part of the application should be included in the EAR file
when you create the deployment profile.

9.3.2.1 Creating a WAR Deployment Profile
You will need to create a WAR deployment profile for each web-based project you
want to package into the application. Typically, the WAR profile will include the
dependent data model projects it requires.

To create WAR deployment profiles for an application:
1. In the Application Navigator, right-click the web project that you want to deploy

and choose New.

You will create a WAR profile for each web project.

2. In the New Gallery, expand General, select Deployment Profiles and then WAR
File, and click OK.

If you don’t see Deployment Profiles in the Categories tree, click the All Features
tab.

3. In the Create Deployment Profile -- WAR File dialog, enter a name for the project
deployment profile and click OK.

4. In the Edit WAR Deployment Profile Properties dialog, choose items in the left
pane to open dialog pages in the right pane. Configure the profile by setting
property values in the pages of the dialog.

■ If you have customization classes in your application, they must be loaded
from the EAR-level application class loader and not from the WAR. You will
later add these customization classes to the EAR.

By default, customization classes are added to the data model project's WAR
class path. So for each WAR, you must exclude the customization classes.

If you created your customization classes in an extension project of the
application, be sure to deselect any customization class archive on the Library
Dependencies page of the WAR deployment profile for each user interface
project.

If you created your customization classes in the data model project of the
application, deselect any customization classes on the File Groups >
WEB-INF/classes > Filters page of the WAR deployment profile for each user
interface project. If you are using a customization.properties file, it
should also be deselected.

Preparing the Application

9-12 Java EE Developer's Guide for Oracle Application Development Framework

■ You might also want to change the Java EE web context root setting (choose
General in the left pane).

By default, when Use Project’s Java EE Web Context Root is selected, the
associated value is set to the project name, for example,
Application1-Project1-context-root. You need to change this if you
want users to use a different name to access the application.

If you are using custom JAAS LoginModule for authentication with JAZN, the
context root name also defines the application name that is used to look up the
JAAS LoginModule.

5. Click OK to exit the Edit WAR Deployment Profile Properties dialog.

6. Click OK again to exit the Project Properties dialog.

7. Repeat Steps 1 through 7 for all web projects that you want to deploy.

9.3.2.2 Creating a MAR Deployment Profile
If you have seeded customizations or base metadata that you want to place in the MDS
repository, you need to create a MAR deployment profile.

The namespace configuration under <mds-config> for MAR content in the
adf-config.xml file is generated based on your selections in the MAR Deployment
Profile Properties dialog.

Although uncommon, an enterprise application (packaged in an EAR) can contain
multiple web application projects (packaged in multiple WARs), but the metadata for
all these web applications will be packaged into a single metadata archive (MAR). The
metadata contributed by each of these individual web applications can be global
(available for all the web applications) or local to that particular web application.

To avoid name conflicts for metadata with global scope, make sure that all metadata
objects and elements have unique names across all the web application projects that
form part of the enterprise application.

To avoid name conflicts and to ensure that the metadata for a particular web
application remains local to that application, you can define a web-app-root for that
web application project.

The web-app-root is an element in the adf-settings.xml file for a web
application project. The adf-settings.xml file should be kept in the META-INF
directory under the public_html directory for the web project. Example 9–1 shows
the contents of a sample adf-settings.xml file.

Example 9–1 web-app-root Element in the adf-settings.xml File

<?xml version="1.0" encoding="UTF-8" ?>
 <adf-settings xmlns="http://xmlns.oracle.com/adf/settings"
 xmlns:wap="http://xmlns.oracle.com/adf/share/http/config">
 <wap:adf-web-config xmlns="http://xmlns.oracle.com/adf/share/http/config">
 <web-app-root rootName="order"/>
 </wap:adf-web-config>
</adf-settings>

In this example, the adf-settings.xml file has a web-app-root element that
defines rootName as order.

If your enterprise application has only one web application project, there is no need to
define a web-app-root element. If your enterprise application has multiple web
application projects, you should supply a web-app-root for all the web applications

Preparing the Application

Deploying an ADF Java EE Application 9-13

except one, without which the deployment will fail. For example, if you have
web-application1, web-application2, and web-application3, two of these
web application projects must define a web-app-root to preclude any name
conflicts.

JDeveloper creates an auto-generated MAR when the Enable User Customizations
and Across Sessions using MDS options are selected in the ADF View page of the
Project Properties dialog or when you explicitly specify the deployment target
directory in the adf-config.xml file.

By default, only the customizations in ADF view and ADF Model are included in the
MAR. If the Java EE application has customizations in other directories, you must
create a custom MAR profile that includes those directories.

Before you begin:
Create an MDS repository for your customization requirements to deploy metadata
using the MAR deployment profile.

To create a MAR deployment profile:
1. In the Application Navigator, right-click the application and choose New.

You will create a MAR profile if you want to include customizations.

2. In the New Gallery, expand General, select Deployment Profiles and then MAR
File, and click OK.

If you don’t see Deployment Profiles in the Categories tree, click the All Features
tab.

3. In the Create Deployment Profile -- MAR File dialog, enter a name for the MAR
deployment profile and click OK.

4. In the Edit MAR Deployment Profile Properties dialog, choose items in the left
pane to open dialog pages in the right pane.

Figure 9–4 shows a sample User Metadata directory tree.

Preparing the Application

9-14 Java EE Developer's Guide for Oracle Application Development Framework

Figure 9–4 Selecting Items for the MAR Deployment Profiles

Note the following important points:

■ To include all customizations, you need only create a file group with the
desired directories.

■ To include files from other than ADF Model and ADF view, create a new file
group under User Metadata with the desired directories and explicitly select
the required content in the Directories page.

■ ADF Model and ADF view directories are added by default. No further action
is required to package the ADF Model and ADF view customizations into the
MAR. ADF view content is added to HTML Root dir, while ADF Model
content is added to User Metadata. If your application has other
customization directories, such as from an EJB project, you must add those
directories.

■ To include the base metadata in the MDS repository, you need to explicitly
select these directories in the dialog.

When you select the base document to be included in the MAR, you also select
specific packages. When you select one package, all the documents (including
subpackages) under that package will be used. When you select a package,
you cannot deselect individual items under that package.

■ If a dependent ADF library JAR for the project contains seeded
customizations, they will automatically be added to the MAR during MAR
packaging. They will not appear in the MAR profile.

■ If ADF Library customizations were created in the context of the consuming
project, those customizations would appear in the MAR profile dialog by
default.

Preparing the Application

Deploying an ADF Java EE Application 9-15

5. Click OK to exit the Edit MAR Deployment Profile Properties dialog.

6. Click OK again to exit the Application Properties dialog.

9.3.2.3 Creating an EJB JAR Deployment Profile
If you are using an EJB module in the data model project, you need to create an EJB
JAR deployment profile.

Before you begin:
Create a data model project that has an EJB module.

To create an EJB JAR deployment profile for an application:
1. In the Application Navigator, right-click the web project that you want to deploy

and choose New.

2. In the New Gallery, expand General, select Deployment Profiles and then EJB
JAR File, and click OK.

If you don’t see Deployment Profiles in the Categories tree, click the All Features
tab.

3. In the Create Deployment Profile -- EJB JAR File dialog, enter a name for the
deployment profile and click OK.

4. In the Edit EJB JAR Deployment Profile Properties dialog, choose items in the left
pane to open dialog pages in the right pane. Configure the profile by setting
property values in the pages of the dialog.

5. Click OK to exit the Edit EJB JAR Deployment Profile Properties dialog.

6. Click OK again to exit the Project Properties dialog.

9.3.2.4 Creating an Application-Level EAR Deployment Profile
The EAR file contains all the necessary application artifacts for the application to run
in the application server. For more information about the EAR file, see Section 9.4.6,
"What You May Need to Know About EAR Files and Packaging."

Before you begin:
■ Add classes into a JAR file, as described in Section 9.3.2.7, "Adding Customization

Classes into a JAR."

■ Create the WAR deployment profiles, as described in Section 9.3.2.1, "Creating a
WAR Deployment Profile."

To create an EAR deployment profile for an application:
1. In the Application Navigator, right-click the application and choose New.

You will create an EAR profile for the application.

2. In the New Gallery, expand General, select Deployment Profiles and then EAR
File, and click OK.

If you don’t see Deployment Profiles in the Categories tree, click the All Features
tab.

3. In the Create Deployment Profile -- EAR File dialog, enter a name for the
application deployment profile and click OK.

Preparing the Application

9-16 Java EE Developer's Guide for Oracle Application Development Framework

4. In the Edit EAR Deployment Profile Properties dialog, choose items in the left
pane to open dialog pages in the right pane. Configure the profile by setting
property values in the pages of the dialog.

Be sure that you:

■ Select Application Assembly and then in the Java EE Modules list, select all
the project profiles that you want to include in the deployment, including any
WAR or MAR profiles.

■ Select Platform, and select the application server you are deploying to, and
then select the target application connection from the Target Connection
dropdown list.

5. If you have customization classes in your application, configure these classes so
that they load from the EAR-level application class loader.

a. In the Edit EAR Deployment Profile Properties dialog, select Application
Assembly.

b. Select the JAR deployment profile that contains the customization classes, and
enter lib in the Path in EAR field at the bottom of the dialog.

The JAR file containing the customization classes is added to the EAR file’s lib
directory.

6. Click OK to exit the Deployment Profile Properties dialog.

7. Click OK again to exit the Application Properties dialog.

9.3.2.5 Delivering Customization Classes as a Shared Library
As an alternative to adding your customization classes to the EAR, as described in
Section 9.3.2.4, "Creating an Application-Level EAR Deployment Profile," you can also
include the customization classes in the consuming application as a shared library.

Note: If you are using a custom JAAS LoginModule for
authentication with JAZN, the context root name also defines the
application name that is used to look up the JAAS LoginModule.

Note: You should have created this JAR as described in
Section 9.3.2.7, "Adding Customization Classes into a JAR."

Note: If you have customization classes in your application, you
must also make sure they are not loaded from the WAR. By default,
customization classes that are added to the data model project's
Libraries & Classpath are packaged to the WAR class path.

To make sure customization classes from an extension project are not
duplicated in the WAR, be sure to deselect any customization class
archive on the Library Dependencies page for the WAR.

If you created your customization classes in the data model project of
the consuming application, deselect any customization classes on the
File Groups > WEB-INF/classes > Filters page for the WAR.

Preparing the Application

Deploying an ADF Java EE Application 9-17

Before you begin:
With the application containing the customization classes open in JDeveloper in the
Studio Developer role, use the procedure described in Section 9.3.2.7, "Adding
Customization Classes into a JAR," making sure that you select Shared Library JAR
File as the type of archive to create.

To create and use a shared library for your customization classes:
1. In the Application Navigator, right-click the customization classes project, and

choose Deploy > deployment-profile.

2. In the Deploy wizard, select Deploy to a Weblogic Application Server and click
Next.

3. Select the appropriate application server, and click Finish.

This makes the shared library available on the application server. You must now
add a reference to the shared library from the consuming application.

4. Open the application you want to customize in JDeveloper in the Studio
Developer role.

5. In the Application Resources panel of the Application Navigator, double-click the
weblogic-application.xml file to open it.

6. In the overview editor, click the Libraries tab.

7. In the Shared Library References section, click the add icon.

8. In the Library Name field of the newly created row in the Shared Library
References table, enter the name of the customization classes shared library you
deployed, and save your changes.

9.3.2.6 Viewing and Changing Deployment Profile Properties
After you have created a deployment profile, you can view and change its properties.

To view, edit, or delete a project’s deployment profile:
1. In the Application Navigator, right-click the project and choose Project Properties.

2. In the Project Properties dialog, click Deployment.

The Deployment Profiles list displays all profiles currently defined for the project.

3. In the list, select a deployment profile.

4. To edit or delete a deployment profile, click Edit or Delete.

9.3.2.7 Adding Customization Classes into a JAR
If your application has customization classes, create a JAR that contains only these
customization classes. When you create your EAR, you can add the JAR to the EAR
assembly. And when you create WAR profiles for your web projects, you must make
sure they don’t include the customization classes JAR.

Before you begin:
Make sure that your project has customization classes. You do not need to perform this
procedure if the application does not have customization classes. For more

Note: This procedure describes how to create and use a shared
library if you are deploying to Oracle Weblogic Server.

Preparing the Application

9-18 Java EE Developer's Guide for Oracle Application Development Framework

information about customization classes, see the "How to Create Customization
Classes" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

To add customization classes into a JAR:
1. In the Application Navigator, right-click the data model project that contains the

customization classes you want to create a JAR for, and choose New.

2. In the New Gallery, expand General, select Deployment Profiles and then JAR
File, and click OK.

Alternatively, if you want to create a shared library, select Shared Library JAR File
from the list of profile types, and click OK.

3. In the Create Deployment Profile -- JAR File dialog, enter a name for the project
deployment profile (for example, CCArchive) and click OK.

4. In the Edit JAR Deployment Profile Properties dialog, select JAR Options.

5. Enter the location for the JAR file.

6. Expand Files Groups > Project Output > Filters.

7. In the Files tab, select the customization classes you want to add to the JAR file. If
you are using a customization.properties file, it needs to be in the same
class loader as the JAR file. You can select the customization.properties file
to package it along with the customization classes in the same JAR.

8. Click OK to exit the Edit JAR Deployment Profile Properties dialog.

9. Click OK again to exit the Project Properties dialog.

10. In the Application Navigator, right-click the project containing the JAR
deployment profile, and choose Deploy > deployment profile > to JAR file.

9.3.3 How to Create and Edit Deployment Descriptors
Deployment descriptors are server configuration files that define the configuration of an
application for deployment and that are deployed with the Java EE application as
needed. The deployment descriptors that a project requires depend on the
technologies the project uses and on the type of the target application server.
Deployment descriptors are XML files that can be created and edited as source files,
but for most descriptor types, JDeveloper provides dialogs or an overview editor that
you can use to view and set properties. If you cannot edit these files declaratively,
JDeveloper opens the XML file in the source editor for you to edit its contents.

You can specify deployment descriptors that are specific to your target Oracle
WebLogic application server instance.

In addition to the standard Java EE deployment descriptors (for example,
application.xml and web.xml), you can also have deployment descriptors that

Note: If you don’t see Deployment Profiles in the Categories tree,
click the All Features tab.

Note: If this is the first time you deploy to a JAR from this
deployment profile, you choose Deploy > deployment profile and
select Deploy to JAR in the wizard.

Preparing the Application

Deploying an ADF Java EE Application 9-19

are specific to your target application server. For example, if you are deploying to
Oracle WebLogic Server, you can also have weblogic.xml,
weblogic-application.xml, and weblogic-ejb-jar.xml.

Make sure that the application EAR file includes a weblogic-application.xml
file that contains a reference to adf.oracle.domain, and that it includes an
ADFApplicationLifecycleListener to clean up application resources between
deployment and undeployment actions. Example 9–2 shows a sample
weblogic-application.xml file.

Example 9–2 Sample weblogic-application.xml

<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-application.xsd"
 xmlns="http://www.bea.com/ns/weblogic/weblogic-application">
 <listener>
 <listener-class>oracle.adf.share.weblogic.listeners.
 ADFApplicationLifecycleListener</listener-class>
 </listener>
 <listener>
 <listener-class>oracle.mds.lcm.weblogic.WLLifecycleListener</listener-class>
 </listener>
 <library-ref>
 <library-name>adf.oracle.domain</library-name>
 <implementation-version>
 </implementation-version>
 </library-ref>
</weblogic-application>

If you are deploying web services, you may need to modify your
weblogic-application.xml and web.xml files as described in the "How to
Deploy Web Services to Oracle WebLogic Server" section of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

If you want to enable the application for Real User Experience Insight (RUEI)
monitoring, you must add a parameter to the web.xml file, as described in
Section 9.3.3.5, "Enabling the Application for Real User Experience Insight."

During deployment, the application’s security properties are written to the
weblogic-application.xml file to be deployed with the application in the EAR
file.

Because Oracle WebLogic Server runs on Java EE 1.5, you may need to modify the
application.xml and web.xml files to be compatible with the server.

9.3.3.1 Creating Deployment Descriptors
JDeveloper automatically creates many of the required deployment descriptors for
you. If they are not present, or if you need to create additional descriptors, you can
explicitly create them.

Before you begin:
Check to see whether JDeveloper has already generated deployment descriptors.

To create a deployment descriptor:
1. In the Application Navigator, right-click the project for which you want to create a

descriptor and choose New.

Preparing the Application

9-20 Java EE Developer's Guide for Oracle Application Development Framework

2. In the New Gallery, expand General, select Deployment Descriptors and then a
descriptor type, and click OK.

If you can’t find the item you want, make sure that you chose the correct project,
and then choose the All Features tab or use the Search field to find the descriptor.
If the item is not enabled, check to make sure that the project does not already
have a descriptor of that type. A project is allowed only one instance of a
descriptor.

JDeveloper starts the Create Deployment Descriptor wizard and then opens the
file in the overview or source editor, depending on the type of deployment
descriptor you choose.

9.3.3.2 Viewing or Modifying Deployment Descriptor Properties
After you have created a deployment descriptor, you can change its properties by
using JDeveloper dialogs or by editing the file in the source editor. The deployment
descriptor is an XML file (for example, application.xml) typically located under
the Application Sources node.

To view or change deployment descriptor properties:
1. In the Application Navigator or in the Application Resources panel, double-click

the deployment descriptor.

2. In the editor window, select either the Overview tab or the Source tab, and
configure the descriptor by setting property values.

If the overview editor is not available, JDeveloper opens the file in the source
editor.

9.3.3.3 Configuring the application.xml File for WebLogic Compatibility
You may need to configure your application.xml file to be compliant with Java EE
1.5.

To configure the application.xml file:
1. In the Application Navigator, right-click the project and choose New.

2. In the New Gallery, expand General, select Deployment Descriptors and then
Java EE Deployment Descriptor Wizard, and click OK.

Note: For EAR files, do not create more than one deployment
descriptor per application or workspace. These files are assigned to
projects, but have application workspace scope. If multiple projects in
an application have the same deployment descriptor, the one
belonging to the launched project will supersede the others. This
restriction applies to application.xml, weblogic-jdbc.xml,
jazn-data.xml, and weblogic.xml.

The best place to create an application-level descriptor is in the
Descriptors node of the Application Resources panel in the
Application Navigator. This ensures that the application is created
with the correct descriptors.

Note: Typically, your project has an application.xml file that is
compatible and you would not need to perform this procedure.

Preparing the Application

Deploying an ADF Java EE Application 9-21

3. In the Select Descriptor page of the Create Java EE Deployment Descriptor dialog,
select application.xml and click Next.

4. In the Select Version page, select 5.0 and click Next.

5. In the Summary page, click Finish.

6. Edit the application.xml file with the appropriate values.

9.3.3.4 Configuring the web.xml File for WebLogic Compatibility
You may need to configure your web.xml file to be compliant with Java EE 1.5 (which
corresponds to servlet 2.5 and JSP 1.2).

To configure the web.xml file:
1. In the Application Navigator, right-click the project and choose New.

2. In the New Gallery, expand General, select Deployment Descriptors and then
Java EE Deployment Descriptor Wizard, and click OK.

3. In the Select Descriptor page of the Create Java EE Deployment Descriptor dialog,
select web.xml and click Next.

4. In the Select Version page, select 2.5 and click Next.

5. In the Summary page, click Finish.

9.3.3.5 Enabling the Application for Real User Experience Insight
Real User Experience Insight (RUEI) is a web-based utility to report on real-user traffic
requested by, and generated from, your network. It measures the response times of
pages and transactions at the most critical points in the network infrastructure. Session
diagnostics allow you to perform root-cause analysis.

RUEI enables you to view server and network times based on the real-user experience,
to monitor your Key Performance Indicators (KPIs) and Service Level Agreements
(SLAs), and to trigger alert notifications on incidents that violate their defined targets.
You can implement checks on page content, site errors, and the functional
requirements of transactions. Using this information, you can verify your business and
technical operations. You can also set custom alerts on the availability, throughput, and
traffic of all items identified in RUEI.

For more information about RUEI, see the Oracle Real User Experience Insight User’s
Guide at http://download.oracle.com/docs/cd/E16339_
01/doc.60/e16359/toc.htm.

You must enable an application for RUEI by adding the context-param tag to the
web.xml file shown in Example 9–3.

Example 9–3 Enabling RUEI Monitoring for an Application in web.xml

<context-param>
 <description>This parameter notifies ADF Faces that the
 ExecutionContextProvider service provider is enabled.
 When enabled, this will start monitoring and aggregating
 user activity information for the client initiated
 requests. By default this param is not set or is false.

Note: Typically, your project has a web.xml file that is compatible
and you would not need to perform this procedure. JDeveloper
creates a starter web.xml file when you create a project.

Preparing the Application

9-22 Java EE Developer's Guide for Oracle Application Development Framework

 </description>
 <param-name>
 oracle.adf.view.faces.context.ENABLE_ADF_EXECUTION_CONTEXT_PROVIDER
 </param-name>
 <param-value>true</param-value>
</context-param>

9.3.4 How to Deploy Applications with ADF Security Enabled
If you are developing an application in JDeveloper using Integrated WebLogic Server,
application security deployment properties are configured by default, which means
that the application and security credentials and policies will be overwritten each time
you redeploy for development purposes. However, the application security
deployment properties are the same for Integrated WebLogic Server and the
standalone WebLogic Server.

9.3.4.1 Applications That Will Run Using Oracle Single Sign-On (SSO)
Before you can deploy and run the web application with Oracle ADF Security enabled
on Oracle WebLogic Server, the administrator of the target server must configure the
domain-level jps-config.xml file for the Oracle Access Manager (OAM) security
provider. To assist with this configuration task, an Oracle WebLogic Scripting Tool
(WLST) script has been provided with the JDeveloper install. For details about
running this configuration script (with command addOAMSSOProvider(loginuri,
logouturi, autologinuri)), see the procedure for configuring Oracle WebLogic
Server for a web application using ADF Security, OAM SSO, and OPSS SSO in the
Oracle Fusion Middleware Security Guide.

Running the configuration script ensures that the ADF Security framework defers to
the OAM service provider to clear the ObSSOCookie token. OAM uses this token to
save the identity of authenticated users and, unless it is cleared during logout, the user
will be unable to log out.

After the system administrator runs the script on the target server, the domain
jps-config.xml file will contain the following security provider definition that is
specific for ADF Security:

<propertySet name="props.auth.uri">
 <property name="login.url.FORM" value="/${app.context}/adfAuthentication"/>
 <property name="logout.url" value=""/>
</propertySet>

Additionally, the authentication type required by SSO is CLIENT-CERT. The web.xml
authentication configuration for the deployed application must specify the
<auth-method> element as one of the following CLIENT-CERT types.

WebLogic supports two types of authentication methods:

■ For FORM-type authentication method, specify the elements like this:

<login-config>
 <auth-method>CLIENT-CERT,FORM</auth-method>
 <realm-name>myrealm</realm-name>
 <form-login-config>
 <form-login-page>/login.html</form-login-page>
 <form-error-page>/error.html</form-error-page>
 </form-login-config>
</login-config>

Preparing the Application

Deploying an ADF Java EE Application 9-23

■ For BASIC-type authentication method, specify the elements like this:

<login-config>
 <auth-method>CLIENT-CERT,BASIC</auth-method>
 <realm-name>myrealm</realm-name>
</login-config>

WebSphere supports a single authentication method. Specify the elements like this:

<login-config>
 <auth-method>CLIENT-CERT</auth-method>
 <realm-name>myrealm</realm-name>
 <form-login-config>
 <form-login-page>/login.html</form-login-page>
 <form-error-page>/error.html</form-error-page>
 </form-login-config>
</login-config>

You can configure the web.xml file either before or after deploying the web
application. For further details about setting up the authentication method for Single
Sign-On, see the Oracle Fusion Middleware Security Guide.

9.3.4.2 Configuring Security for WebLogic Server
In a development environment, JDeveloper will automatically migrate
application-level credentials, identities, and policies to the remote WebLogic Server
instance only if the server is set up to be in development mode. Integrated WebLogic
Server is set up in development mode by default. You can set up a remote WebLogic
Server to be in development mode during Oracle WebLogic Server domain creation
using the Oracle Fusion Middleware Configuration Wizard. For more information
about configuring Oracle WebLogic Server domains, see Oracle Fusion Middleware
Creating Domains Using the Configuration Wizard.

JDeveloper will not migrate application-level security credentials to WebLogic Server
setup in production mode. Typically, in a production environment, administrators will
use Enterprise Manager or WLST scripts to deploy an application, including its
security requirements.

When you deploy an application to WebLogic Server, credentials (in the
cwallet.sso and jazn-data.xml files) will either overwrite or merge with the
WebLogic Server domain-level credential store, depending on whether a property in
weblogic-application.xml is set to OVERWRITE or MERGE. In production-mode
WebLogic Server, to avoid security risks, only MERGE is allowed. For
development-mode WebLogic Server, you can set to OVERWRITE to test user names
and passwords. You can also set the property by running setDomainEnv.cmd or
setDomainEnv.sh with the following option added to the command (usually located
in ORACLE_HOME/user_projects/domains/MyDomain/bin).

For setDomainEnv.cmd:

set EXTRA_JAVA_PROPERTIES=-Djps.app.credential.overwrite.allowed=true
 %EXTRA_JAVA_PROPERTIES%

For setDomainEnv.sh:

EXTRA_JAVA_PROPERTIES="-Djps.app.credential.overwrite.allowed=true
 ${EXTRA_JAVA_PROPERTIES}"
export EXTRA_JAVA_PROPERTIES

If the Administration Server is already running, you must restart it for this setting to
take effect.

Preparing the Application

9-24 Java EE Developer's Guide for Oracle Application Development Framework

You can check to see whether WebLogic Server is in production mode by using the
Oracle WebLogic Server Administration Console or by verifying the following line in
the WebLogic Server config.xml file:

<production-mode-enabled>true</production-mode-enabled>

By default, JDeveloper sets the application’s credentials, identities, and policies to
OVERWRITE mode. That is, the Application Policies, Credentials, and Users and
Groups options are selected by default in the Application Properties dialog
Deployment page. However, an application’s credentials will be migrated only if the
target WebLogic Server instance is set to development mode with
-Djps.app.credential.overwrite.allowed=true.

Policy migration only works in development-mode. Identity migration only works
when using JDeveloper to directly deploy to WebLogic Server regardless of whether it
is in development or production-mode.

When your application is ready for deployment to a production environment, you
should remove the identities from the jazn-data.xml file or disable the migration of
identities by deselecting Users and Groups from the Application Properties dialog.
Application credentials must be manually migrated outside of JDeveloper.

For more information about migrating application credentials and other jazn-data
user credentials, see the Oracle Containers for J2EE Security Guide.

9.3.4.2.1 Applications with JDBC Data Source for WebLogic

If your application uses application-level JDBC data sources with password indirection
for database connections, you may need to create credential maps in WebLogic Server
to enable the database connection. For more information, see Section 9.3.7, "What You
May Need to Know About JDBC Data Source for Oracle WebLogic Server."

9.3.4.3 Configuring Security for WebSphere Server
Applications with credentials and policies in the jazn-data.xml and cwallet.sso
files can be migrated to WebSphere. You will need to perform additional tasks in
WebSphere Be aware that the opss-application.xml file is not included in the
application EAR file if it is intended for WebSphere.

Note: Before you migrate the jazn-data.xml file to a production
environment, check that the policy store does not contain duplicate
permissions for a grant. If a duplicate permission (one that has the
same name and class) appears in the file, the administrator migrating
the policy store will receive an error and the migration of the policies
will be halted. You should manually edit the jazn-data.xml file to
remove any duplicate permissions from a grant definition.

Note: Before you migrate the jazn-data.xml file to a production
environment, check that the policy store does not contain duplicate
permissions for a grant. If a duplicate permission (one that has the
same name and class) appears in the file, the administrator migrating
the policy store will receive an error and the migration of the policies
will be halted. You should manually edit the jazn-data.xml file to
remove any duplicate permissions from a grant definition.

Preparing the Application

Deploying an ADF Java EE Application 9-25

For more information about setting up WebSphere to accept credentials and policies,
see the Oracle Fusion Middleware Third-Party Application Server Guide.

9.3.4.3.1 Applications with JDBC Data Source for WebSphere

If your application uses application-level JDBC data sources with password indirection
for database connections, you will need to create a JDBC data source in WebSphere.
For more information, see the IBM WebSphere documentation.

9.3.4.3.2 Editing the web.xml File to Protect the Application Root for WebSphere

When you enable ADF Security for your web application, the web.xml file includes
the Java EE security constraint allPages to protect the Java EE application root. By
default, to support deploying to Oracle WebLogic Server, JDeveloper specifies the URL
pattern for the security constraint as / (backslash). If you intend to deploy the
application to IBM WebSphere, the correct URL pattern is /* (backslash-asterisk).
Before you deploy the application to WebSphere, manually edit the web.xml file for
your application to change the allPages security constraint as follows:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>allPages</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 . . .
</security-constraint>

9.3.5 How to Replicate Memory Scopes in a Clustered Environment
If you are deploying an application that is intended to run in a clustered environment,
you need to ensure that all managed beans with a lifespan longer than one request are
serializable, and that the ADF framework is aware of changes to managed beans
stored in ADF scopes (view scope and page flow scope).

For more information, see the "How to Set Managed Bean Memory Scopes in a
Server-Cluster Environment" section of the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

9.3.6 How to Enable the Application for ADF MBeans
An ADF application uses many XML files for setting configuration information. Some
of these configuration files have ADF MBean counterparts that are deployed with the
application. After the application has been deployed, you can change configuration
properties by accessing the ADF MBeans using the Enterprise Manager Fusion
Middleware Control MBean browser.

To enable ADF MBeans, you must register them in the web.xml file. Example 9–4
shows a web.xml file with listener entries for connections and configuration.

Example 9–4 Enabling ADF MBeans in the web.xml File

<listener>
 <listener-class>
 oracle.adf.mbean.share.connection.ADFConnectionLifeCycleCallBack
 </listener-class>
</listener>
<listener>
 <listener-class>
 oracle.adf.mbean.share.config.ADFConfigLifeCycleCallBack</listener-class>
</listener>

Preparing the Application

9-26 Java EE Developer's Guide for Oracle Application Development Framework

Additionally, the ADFConnection and ADFConfig MBeans require the application to
be configured with an MDS repository. MDS configuration entries in the
adf-config.xml file for a file-based MDS are shown in Example 9–5. For more
information about configuring MDS, see the Oracle Application Server Administrator's
Guide.

Example 9–5 MDS Configuration Entries in the adf-config.xml File

<adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config" version="11.1.1.000">
 <persistence-config>
 <metadata-store-usages>
 <metadata-store-usage
 default-cust-store="true" deploy-target="true" id="myFileStore">
 <metadata-store name="myReposName"
 class-name=
 "oracle.mds.persistence.stores.file.FileMetadataStore">
 <property name="metadata-path" value="C:\Temp\"/>
 <property name="partition-name" value="myAppName"/>
 </metadata-store>
 </metadata-store-usage>
 </metadata-store-usages>
 </persistence-config>
 </mds-config>
</adf-mds-config>

In a production environment, an MDS repository that uses a database is required. You
can use JDeveloper, Enterprise Manager Fusion Middleware Control, or WLST
commands to switch from a file-based repository to a database MDS repository.

Additionally, if several applications are sharing the same MDS configuration, you can
ensure that each application has distinct customization layers by defining a
adf:adf-properties-child property in the adf-config.xml file. JDeveloper
automatically generates this entry when creating applications. If your
adf-config.xml file does not have this entry, add it to the file with code similar to
that of Example 9–6.

Example 9–6 Adding MDS Partition Code to the adf-config.xml File

<adf:adf-properties-child xmlns="http://xmlns.oracle.com/adf/config/properties">
 <adf-property name="adfAppUID" value="Application3-4434"/>
 <adf-property name="partition_customizations_by_application_id"
 value="true"/>
</adf:adf-properties-child>

The value attribute is either generated by JDeveloper or you can set it to any unique
identifier within the server farm where the application is deployed. This value can be
set to the value attribute of the adfAppUID property.

When adf-property name is set to adfAppUid, then the corresponding value
property should be set to the name of the application. By default, JDeveloper generates
the value property using the application’s package name. If the package name is not
specified, JDeveloper generates the value property by using the workspace name and
a four-digit random number.

For more information about configuring Oracle ADF applications using ADF MBeans,
see the Oracle Fusion Middleware Administrator's Guide for Oracle Application Development
Framework.

Deploying the Application

Deploying an ADF Java EE Application 9-27

9.3.7 What You May Need to Know About JDBC Data Source for Oracle WebLogic
Server

An Oracle ADF Java EE application can use a JDBC data source to connect to the
database. You use the Oracle WebLogic Server Administration Console to configure a
JDBC data source. A JDBC data source has three types: global, application level, and
application level with password indirection. You generally set up a global JDBC data
source in WebLogic Server. Any application that requires access to that database can
use that JDBC data source. An application can also include application-level JDBC
data sources. When the application is packaged for deployment, if the Auto Generate
and Synchronize weblogic-jdbc.xml Descriptor During Deployment option is
selected, JDeveloper creates a connection_name-jdbc.xml file for each connection
that was defined. Each connection’s information is written to the corresponding
connection_name-jdbc.xml file (entries are also changed in
weblogic-application.xml and web.xml). When the application is deployed to
WebLogic Server, the server looks for application-level data source information before
it looks for the global data source.

If the application is deployed with password indirection set to true, WebLogic Server
will look for the connection_name-jdbc.xml file for user name information and it
will then attempt to locate application-level credential maps for these user names to
obtain the password. If you are using JDeveloper to directly deploy the application to
WebLogic Server, JDeveloper automatically creates the credential map and populates
the map to the server using an MBean call.

However, if you are deploying to an EAR file, JDeveloper will not be able to make the
MBean call to WebLogic Server. You must set up the credential maps using the Oracle
WebLogic Administration Console. Even if you have a global JDBC data source set up,
if you do not also have credential mapping set up, WebLogic Server will not be able to
map the credentials with passwords and the connection will fail. For more information
about JDBC data sources, password indirection, and how to set up application
credential mappings, see "JDBC Data Sources" in the "Deploying Applications" section
of the JDeveloper online help.

For more information, see the "Preparing the Standalone Application Server for
Deployment" section of the Oracle Fusion Middleware Administrator's Guide for Oracle
Application Development Framework.

9.4 Deploying the Application
You can use JDeveloper to deploy applications directly to the standalone application
server or create an archive file and use other tools to deploy to the application server.

Figure 9–5 show the process flow for deploying an application and also for deploying
customizations to the target standalone application server.

Deploying the Application

9-28 Java EE Developer's Guide for Oracle Application Development Framework

Figure 9–5 Application Deployment Flow Diagram

Table 9–1 describes some common deployment techniques that you can use during the
application development and deployment cycle. The deployment techniques are listed

Note: Before you begin to deploy applications that use Oracle ADF
to the standalone application server, you need to prepare the
application server environment by performing tasks such as installing
the ADF runtime and creating and extending domains or cells. For
more information, see the "Preparing the Standalone Application
Server for Deployment" section of the Oracle Fusion Middleware
Administrator's Guide for Oracle Application Development Framework.

Deploying the Application

Deploying an ADF Java EE Application 9-29

in order from deploying on development environments to deploying on production
environments. It is likely that in the production environment, the system
administrators deploy applications by using Enterprise Manager or the WLST
scripting tool.

Any necessary MDS repositories must be registered with the application server. If the
MDS repository is a database, the repository maps to a data source with MDS-specific
requirements.

If you are deploying the application to Oracle WebLogic Server, make sure to target
this data source to the WebLogic Administration Server and to all Managed Servers to
which you are deploying the application. For more information about registering
MDS, see the Oracle Application Server Administrator's Guide.

If you are using the application server’s administrative consoles or scripts to deploy an
application packaged as an EAR file that requires MDS repository configuration in
adf-config.xml, you must run the getMDSArchiveConfig command to
configure MDS before deploying the EAR file. MDS configuration is required if the
EAR file contains a MAR file or if the application is enabled for DT@RT (Design Time
At Run Time).

For more information about WLST commands, see the Oracle Fusion Middleware
WebLogic Scripting Tool Command Reference. For more information about wsadmin
commands, see the Oracle Fusion Middleware Third-Party Application Server Guide and
the Oracle Fusion Middleware Configuration Guide for WebSphere.

Table 9–1 Deployment Techniques for Development or Production Environments

Deployment Technique Environment When to Use

Run directly from JDeveloper Test or
Development

When you are developing your application. You want
deployment to be quick because you will be repeating
the editing and deploying process many times.

JDeveloper contains Integrated WebLogic Server, on
which you can run and test your application.

Use JDeveloper to directly deploy to the
target application server

Test or
Development

When you are ready to deploy and test your application
on an application server in a test environment.

On the test server, you can test features (such as LDAP
and Oracle Single Sign-On) that are not available on the
development server.

You can also use the test environment to develop your
deployment scripts, for example, using Ant.

Use JDeveloper to deploy to an EAR file,
then use the target application server’s
tools for deployment

Test or
Development

When you are ready to deploy and test your application
on an application server in a test environment. As an
alternative to deploying directly from JDeveloper, you
can deploy to an EAR file and then use other tools to
deploy to the application server.

On the test server, you can test features (such as LDAP
and Oracle Single Sign-On) that are not available on the
development server.

You can also use the test environment to develop your
deployment scripts, for example, using Ant.

Use Enterprise Manager or WLST scripts
to deploy applications

Production When your application is in a test and production
environment. In production environments, system
administrators usually use Enterprise Manager or run
WLST scripts to deploy applications.

Deploying the Application

9-30 Java EE Developer's Guide for Oracle Application Development Framework

If you plan to configure ADF connection information or adf-config.xml using ADF
MBeans after the application has been deployed, make sure that the application is
configured with MDS and that you have the MBean listeners enabled in the web.xml
file. For more information, see Section 9.3.6, "How to Enable the Application for ADF
MBeans."

9.4.1 How to Deploy to WebLogic Server from JDeveloper

Before you begin:
Create an application-level deployment profile that deploys to an EAR file.

To deploy to the target application server from JDeveloper:
1. In the Application Navigator, right-click the application and choose Deploy >

deployment profile.

2. In the Deploy wizard Deployment Action page, select Deploy to Application
Server and click Next.

3. In the Select Server page, select the application server connection.

4. If you are deploying to a WebLogic Server instance, the WebLogic Options page
appears. Select a deploy option and click Next.

5. Click Finish.

During deployment, you can see the process steps displayed in the deployment
Log window. You can inspect the contents of the modules (archives or exploded
EAR) being created by clicking on the links that are provided in the log window.
The archive or exploded EAR file will open in the appropriate editor or directory
window for inspection.

If the adf-config.xml file in the EAR file requires MDS repository
configuration, the Deployment Configuration dialog appears for you to choose the
target metadata repository or shared metadata repositories, as shown in
Figure 9–6. The Repository Name dropdown list allows you to choose a target

Note: When you are deploying to Oracle WebLogic Server from
JDeveloper, ensure that the HTTP Tunneling property is enabled in the
Oracle WebLogic Server Administration Console. This property is
located under Servers > ServerName > Protocols. ServerName refers
to the name of Oracle WebLogic Server.

Note: JDeveloper does not support deploying applications to
individual Managed Servers that are members of a cluster. You may
be able to target one or more Managed Servers within a cluster using
the Oracle WebLogic Server Administration Console or other Oracle
WebLogic tools; however, the cluster can be negatively affected. For
more information about deploying to Oracle WebLogic Server
clusters, see the Oracle Application Server Administrator's Guide.

Note: If you are deploying an ADF application, do not use the
Deploy to all instances in the domain option.

Deploying the Application

Deploying an ADF Java EE Application 9-31

metadata repository from a list of metadata repositories registered with the
Administration Server. The Partition Name dropdown list allows you to choose
the metadata repository partition to which the application's metadata will be
imported during deployment. You can use WLST/wsadmin scripts, Oracle
WebLogic Server Administration Tool, or WebSphere Administrative Tool,
respectively, to configure and register MDS. For more information about managing
the MDS repository, see the Oracle Application Server Administrator's Guide.

Figure 9–6 MDS Configuration and Customization for Deployment

For more information on creating application server connections, see Section 9.3.1,
"How to Create a Connection to the Target Application Server."

9.4.2 How to Create an EAR File for Deployment
You can also use the deployment profile to create an archive file (EAR file). You can
then deploy the archive file using Enterprise Manager, WLST scripts, or Oracle
WebLogic Server Administration Console.

Note: If you are deploying a Java EE application, click the
application menu next to the Java EE application in the Application
Navigator.

Tip: You may get an exception in JDeveloper when trying to deploy
large EAR files. The workaround is to deploy the application using the
Oracle WebLogic Server Administration Console.

Deploying the Application

9-32 Java EE Developer's Guide for Oracle Application Development Framework

Although an Oracle ADF Java EE application is encapsulated in an EAR file (which
usually includes WAR, MAR, and JAR components), it may have parts that are not
deployed with the EAR.

To create an EAR archive file:
■ In the Application Navigator, right-click the application containing the

deployment profile, and choose Deploy > deployment profile > to EAR file.

If an EAR file is deployed at the application level, and it has dependencies on a
JAR file in the data model project and dependencies on a WAR file in the
view-controller project, then the files will be located in the following directories by
default:

– ApplicationDirectory/deploy/EARdeploymentprofile.EAR

– ApplicationDirectory/ModelProject/deploy/JARdeploymentprofil
e.JAR

– ApplicationDirectory/ViewControllerProject/deploy/WARdeployme
ntprofile.WAR

9.4.3 What You May Need to Know About ADF Libraries
An ADF Library is a JAR file that contains JAR services registered for ADF
components such as ADF task flows, pages, or application modules. If you want the
ADF components in a project to be reusable, you create an ADF Library deployment
profile for the project and then create an ADF Library JAR based on that profile.

An application or project can consume the ADF Library JAR when you add it using
the Resource Palette or manually by adding it to the library classpath. When the ADF
Library JAR is added to a project, it will be included in the project’s WAR file if the
Deployed by Default option is selected.

For more information, see the "Reusing Application Components" section of the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

9.4.4 How to Deploy New Customizations Applied to ADF LIbrary
If you have created new customizations for an ADF Library, you can use the MAR
profile to deploy these customizations to any deployed application that consumes that
ADF Library. For instance, applicationA, which consumes ADFLibraryB, was
deployed to a remote application server. Later on, when new customizations are
added to ADFLibraryB, you only need to deploy the updated customizations into
applicationA. You do not need to repackage and redeploy the whole application,
nor do you need to manually patch the MDS repository.

Tip: Choose View >Log and select the Deployment tab to see
messages generated during the creation of the archive file.

Note: This procedure is for applying ADF Library customization
changes to an application that has already been deployed to a remote
application server. It is not for the initial packaging of customizations
into a MAR that will eventually be a part of an EAR. For information
about the initial packaging of the customization using a MAR, see
Section 9.3.2.2, "Creating a MAR Deployment Profile."

Deploying the Application

Deploying an ADF Java EE Application 9-33

To deploy ADF Library customizations, create a new MAR profile that includes only
the customizations to be deployed and then use JDeveloper to:

■ Deploy the customizations directly into the MDS repository in the remote
application server.

■ Deploy the customizations to a JAR. And then import the JAR into the MDS
repository using tools such as the Fusion Middleware Control.

9.4.4.1 Exporting Customization to a Deployed Application
You can export the customizations directly from JDeveloper into the MDS repository
for the deployed application on the remote application server.

Before you begin:
Create new customizations to the ADF Library using JDeveloper.

To export the customizations directly into the application server:
1. In the Application Navigator, right-click the application and choose Deploy >

metadata.

2. In the Deploy Metadata dialog Deployment Action page, select Export to a
Deployed Application and click Next.

If the MAR profile is included in any of the application’s EAR profiles, Export to a
Deployed Application will be dimmed and disabled.

3. In the Application Server page, select the application server connection and click
Next.

4. For WebLogic Server, the Server Instance page appears. In this page, select the
server instance where the deployed application is located and click Next.

5. In the Deployed Application page, select the application you want to apply the
customizations to and click Next.

6. In the Sandbox Instance page, if you want to deploy to a sandbox, select Deploy to
an associated sandbox, choose the sandbox instance and click Next.

7. In the Summary page, verify the information and click Finish.

9.4.4.2 Deploying Customizations to a JAR
When you deploy the ADF Library customizations to a JAR, you are packaging the
contents as defined by the MAR profile.

Before you begin:
Create new customizations to the ADF Library using JDeveloper.

To deploy the customizations as a JAR
1. In the Application Navigator, right-click the application and choose Deploy >

metadata.

2. In the Deploy Metadata dialog Deployment Action page, select Deploy to MAR.

3. In the Summary page, click Finish.

4. Use Enterprise Manager Fusion Middleware Control or the application server’s
administration tool to import the JAR into the MDS repository.

Postdeployment Configuration

9-34 Java EE Developer's Guide for Oracle Application Development Framework

9.4.5 What You May Need to Know About ADF Libraries
An ADF Library is a JAR file that contains JAR services registered for ADF
components such as ADF task flows or pages. If you want the ADF components in a
project to be reusable, you create an ADF Library deployment profile for the project
and then create an ADF Library JAR based on that profile.

An application or project can consume the ADF Library JAR when you add it using
the Resource Palette or manually by adding it to the library classpath. When the ADF
Library JAR is added to a project, it will be included in the project’s WAR file if the
Deployed by Default option is selected.

For more information, see the "Reusing Application Components" section of the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

9.4.6 What You May Need to Know About EAR Files and Packaging
When you package an Oracle ADF application into an EAR file, it can contain the
following:

■ WAR files: Each web-based view-controller project should be packaged into a
WAR file.

■ MAR file: If the application has customizations that are deployed with the
application, it should be packaged into a MAR.

■ ADF Library JAR files: If the application consumes ADF Library JARs, these JAR
files may be packaged within the EAR.

■ Other JAR files: The application may have other dependent JAR files that are
required. They can be packaged within the EAR.

9.4.7 How to Deploy the Application Using Scripts and Ant
You can deploy the application using commands and automate the process by putting
those commands in scripts. The ojdeploy command can be used to deploy an
application without JDeveloper. You can also use Ant scripts to deploy the application.
JDeveloper has a feature to help you build Ant scripts. Depending on your
requirements, you may be able to integrate regular scripts with Ant scripts.

For more information about commands, scripts, and Ant, see the Oracle Fusion
Middleware Administrator's Guide for Oracle Application Development Framework.

9.4.8 What You May Need to Know About JDeveloper Runtime Libraries
When an application is deployed, it includes some of its required libraries with the
application. The application may also require shared libraries that have already been
loaded to WebLogic Server as JDeveloper runtime libraries. It may be useful to know
which JDeveloper libraries are packaged within which WebLogic Server shared library.
For a listing of the contents of the JDeveloper runtime libraries, see the Oracle Fusion
Middleware Administrator's Guide for Oracle Application Development Framework.

9.5 Postdeployment Configuration
After you have deployed your application to WebLogic Server, you can perform
configuration tasks.

Testing the Application and Verifying Deployment

Deploying an ADF Java EE Application 9-35

9.5.1 How to Migrate an Application
If you want to migrate an Oracle ADF Java EE application from one WebLogic Server
to another WebLogic Server, you may need to perform some of the same steps you did
for a first time deployment.

In general, to migrate an application, you would:

■ Load the ADF runtime (if it is not already installed) to the target application
server. For more information, see the "Preparing the Standalone Application
Server for Deployment" section of the Oracle Fusion Middleware Administrator's
Guide for Oracle Application Development Framework.

■ Configure the target WebLogic Server instance with the correct database or URL
connection information.

■ Migrate security information from the source to the target. For instructions, see
Section 9.3.4, "How to Deploy Applications with ADF Security Enabled."

■ Deploy the application using Enterprise Manager, Oracle WebLogic
Administration Console, or scripts. For more information, see the Oracle Fusion
Middleware Administrator's Guide for Oracle Application Development Framework.

9.5.2 How to Configure the Application Using ADF MBeans
If ADF MBeans were enabled and packaged with the deployed application, you can
configure ADF properties using the Enterprise Manager Fusion Middleware Control
MBean Browser. For instructions to enable an application for MBeans, see Section 9.3.6,
"How to Enable the Application for ADF MBeans."

For information on how to configure ADF applications using ADF MBeans, see the
Oracle Fusion Middleware Administrator's Guide for Oracle Application Development
Framework.

9.5.3 How to Configure WebSphere for Result Sets Reuse
ADF applications deployed to WebSphere Application Server use shared database
connections. You need to set the non-transactional datasource and
DisableMultiThreadedServletConnectionMgmt properties in WebSphere to
allow the application to reuse result sets across requests.

If you do not set these properties, WebSphere will close the result sets between
requests.

For more information, see the "Configuring WebSphere Application Server" section in
the Oracle Fusion Middleware Administrator's Guide for Oracle Application Development
Framework

9.6 Testing the Application and Verifying Deployment
After you deploy the application, you can test it from Oracle WebLogic Server. To
test-run your ADF application, open a browser window and enter a URL:

■ For non-Faces pages: http://<host>:port/<context root>/<page>

■ For Faces pages: http://<host>:port/<context root>/faces/<view_
id>

where <view_id> is the view ID of the ADF task flow view activity.

Testing the Application and Verifying Deployment

9-36 Java EE Developer's Guide for Oracle Application Development Framework

Tip: The context root for an application is specified in the
view-controller project settings by default as
ApplicationName/ProjectName/context-root. You can
shorten this name by specifying a name that is unique across the
target application server. Right-click the view-controller project, and
choose Project Properties. In the Project Properties dialog, select Java
EE Application and enter a unique name for the context root.

Note: /faces has to be in the URL for Faces pages. This is because
JDeveloper configures your web.xml file to use the URL pattern of
/faces in order to be associated with the Faces Servlet. The Faces
Servlet does its per-request processing, strips out /faces part in the
URL, then forwards the URL to the JSP. If you do not include the
/faces in the URL, then the Faces Servlet is not engaged (since the
URL pattern doesn't match). Your JSP is run without the necessary JSF
per-request processing.

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide for Release 11.1.2.4.0
	1 Introduction to Building Java EE Web Applications with Oracle ADF
	1.1 Introduction to Oracle ADF
	1.2 Developing with Oracle ADF
	1.2.1 Core Development Steps
	1.2.2 Supplemental Development Tasks

	1.3 Introduction to the Summit Demo Application
	1.3.1 How to Download the Application Resources
	1.3.2 How to Install and Run the Summit Demo Application
	1.3.3 Taking a Look at the Summit Demo Application Code

	2 Using ADF Model Data Binding in a Java EE Web Application
	2.1 Introduction to ADF Model Data Binding
	2.2 Exposing Business Services with ADF Data Controls
	2.2.1 How to Create ADF Data Controls
	2.2.2 What Happens in Your Project When You Create a Data Control
	2.2.2.1 DataControls.dcx Overview Editor
	2.2.2.2 Data Controls Panel

	2.3 Using the Data Controls Panel
	2.3.1 How to Use the Data Controls Panel
	2.3.2 What Happens When You Use the Data Controls Panel to Create UI Components
	2.3.3 What Happens at Runtime
	2.3.4 What You May Need to Know About Iterator Result Caching
	2.3.5 What You May Need to Know About Configuring Validation
	2.3.6 What You May Need to Know About Custom Session Bean Accessor Methods

	3 Adding Business Logic to Data Controls
	3.1 Introduction to Adding Business Logic to Data Controls
	3.2 Configuring Data Controls
	3.2.1 How to Edit a Data Control
	3.2.2 What Happens When You Edit a Data Control

	3.3 Working with Attributes
	3.3.1 How to Control the Updatability of an Attribute
	3.3.2 How to Define a Static Default Value for an Attribute
	3.3.3 How to Define a Default Value Using a Groovy Expression
	3.3.4 What Happens When You Create a Default Value Using a Groovy Expression
	3.3.5 How to Set UI Hints on Attributes
	3.3.6 What Happens When You Set UI Hints on Attributes

	3.4 Adding Transient Attributes to a Bean
	3.4.1 How to Add a Transient Attribute
	3.4.2 What Happens When You Add a Transient Attribute

	3.5 Defining Validation Rules on Attributes Declaratively
	3.5.1 How to Add Validation Rules to Attributes
	3.5.2 What Happens When You Add a Validation Rule
	3.5.3 How to Use the Built-in Declarative Validation Rules
	3.5.3.1 Validating Based on a Comparison
	3.5.3.2 What Happens When You Validate Based on a Comparison
	3.5.3.3 Validating Using a List of Values
	3.5.3.4 What Happens When You Validate Using a List of Values
	3.5.3.5 Ensuring That a Value Falls Within a Certain Range
	3.5.3.6 What Happens When You Use a Range Validator
	3.5.3.7 Validating Against a Number of Bytes or Characters
	3.5.3.8 What Happens When You Validate Against a Number of Bytes or Characters
	3.5.3.9 Validating Using a Regular Expression
	3.5.3.10 What Happens When You Validate Using a Regular Expression

	3.5.4 How to Use Groovy Expressions For Validation and Business Rules
	3.5.4.1 Referencing Bean Methods in Groovy Validation Expressions
	3.5.4.2 Validating Using a True/False Expression
	3.5.4.3 What Happens When You Add a True/False Expression

	3.5.5 How to Create Validation Error Messages
	3.5.5.1 Creating Validation Error Messages
	3.5.5.2 Localizing Validation Messages
	3.5.5.3 Raising Error Message Conditionally Using Groovy
	3.5.5.4 Embedding a Groovy Expression in an Error Message

	3.5.6 How to Set the Severity Level for Validation Exceptions

	3.6 Filtering Result Sets with Named Criteria
	3.6.1 Use Case for Named Criteria
	3.6.2 How to Create Named Criteria Declaratively
	3.6.3 What Happens When You Create a Named Criteria
	3.6.4 How to Use Bind Variables in Named Criteria
	3.6.5 What Happens When You Use Bind Variables in Named Criteria
	3.6.6 What You May Need to Know About Nested Expressions
	3.6.7 How to Set User Interface Hints on Named Criteria

	3.7 Testing Bean Metadata Using the Oracle ADF Model Tester
	3.7.1 How to Run the Oracle ADF Model Tester
	3.7.2 How to Update the Oracle ADF Model Tester to Display Project Changes
	3.7.3 What Happens When You Use the Oracle ADF Model Tester
	3.7.4 How to Test Business Layer Validation
	3.7.5 How to Test Alternate Language Message Bundles and UI Hints
	3.7.6 How to Test Row Creation and Default Value Generation
	3.7.7 How to Test Named Criteria Using the Oracle ADF Model Tester

	3.8 Groovy Language Support
	3.8.1 How to Reference ADF Objects in Groovy Expressions
	3.8.2 How to Reference ADF Methods and Attributes in Groovy Expressions

	4 Creating a Basic Databound Page
	4.1 About Creating a Basic Databound Page
	4.2 Using Attributes to Create Text Fields
	4.2.1 How to Create a Text Field
	4.2.2 What Happens When You Create a Text Field
	4.2.2.1 Creating and Using Iterator Bindings
	4.2.2.2 Creating and Using Value Bindings
	4.2.2.3 Using EL Expressions to Bind UI Components

	4.3 Creating a Basic Form
	4.3.1 How to Create a Form
	4.3.2 What Happens When You Create a Form

	4.4 Incorporating Range Navigation into Forms
	4.4.1 How to Insert Navigation Controls into a Form
	4.4.2 What Happens When You Create Command Buttons
	4.4.2.1 Action Bindings for Built-in Navigation Operations
	4.4.2.2 Iterator RangeSize Attribute
	4.4.2.3 EL Expressions Used to Bind to Navigation Operations

	4.5 Creating a Form Using a Method That Takes Parameters
	4.5.1 How to Create a Form or Table Using a Method That Takes Parameters
	4.5.2 What Happens When You Create a Form Using a Method That Takes Parameters
	4.5.3 What Happens at Runtime: Setting Parameters for a Method
	4.5.4 What You May Need to Know About Setting Parameters with Methods
	4.5.5 What You May Need to Know About Using Contextual Events Instead of Parameters

	4.6 Creating a Form to Edit an Existing Record
	4.6.1 How to Create Edit Forms
	4.6.2 What Happens When You Use Methods to Change Data
	4.6.2.1 Method Bindings
	4.6.2.2 Using EL Expressions to Bind to Methods

	4.6.3 What You May Need to Know About the Difference Between the Merge and Persist Methods
	4.6.4 What You May Need to Know About Overriding Declarative Methods

	4.7 Creating an Input Form
	4.7.1 How to Create an Input Form Using a Task Flow
	4.7.2 What Happens When You Create an Input Form Using a Task Flow
	4.7.3 What Happens at Runtime: Invoking the Create Action Binding from the Method Activity

	4.8 Modifying the UI Components and Bindings on a Form

	5 Creating ADF Databound Tables
	5.1 About Adding Tables
	5.2 Creating a Basic Table
	5.2.1 How to Create a Basic Table
	5.2.2 What Happens When You Create a Table
	5.2.2.1 Iterator and Value Bindings for Tables
	5.2.2.2 Code on the JSF Page for an ADF Faces Table

	5.2.3 What You May Need to Know About Setting the Current Row in a Table

	5.3 Creating an Editable Table
	5.3.1 How to Create an Editable Table
	5.3.2 What Happens When You Create an Editable Table

	5.4 Creating an Input Table
	5.4.1 How to Create an Input Table
	5.4.2 What Happens When You Create an Input Table
	5.4.3 What Happens at Runtime: How Create and Partial Page Refresh Work
	5.4.4 What You May Need to Know About Creating a Row and Sorting Columns

	5.5 Modifying the Attributes Displayed in the Table

	6 Displaying Master-Detail Data
	6.1 Introduction to Displaying Master-Detail Data
	6.2 Identifying Master-Detail Objects on the Data Controls Panel
	6.3 Using Tables and Forms to Display Master-Detail Objects
	6.3.1 How to Display Master-Detail Objects in Tables and Forms
	6.3.2 What Happens When You Create Master-Detail Tables and Forms
	6.3.2.1 Code Generated in the JSF Page
	6.3.2.2 Binding Objects Defined in the Page Definition File

	6.3.3 What Happens at Runtime: ADF Iterator for Master-Detail Tables and Forms
	6.3.4 What You May Need to Know About Displaying Master-Detail Widgets on Separate Pages

	6.4 Using Trees to Display Master-Detail Objects
	6.4.1 How to Display Master-Detail Objects in Trees
	6.4.2 What Happens When You Create an ADF Databound Tree
	6.4.2.1 Code Generated in the JSF Page
	6.4.2.2 Binding Objects Defined in the Page Definition File

	6.4.3 What Happens at Runtime: Displaying an ADF Databound Tree

	6.5 Using Tree Tables to Display Master-Detail Objects
	6.5.1 How to Display Master-Detail Objects in Tree Tables
	6.5.2 What Happens When You Create a Databound Tree Table
	6.5.2.1 Code Generated in the JSF Page
	6.5.2.2 Binding Objects Defined in the Page Definition File

	6.5.3 What Happens at Runtime: Events
	6.5.4 Using the TargetIterator Property

	6.6 Using Selection Events with Trees and Tables
	6.6.1 How to Use Selection Events with Trees and Tables
	6.6.2 What Happens at Runtime: RowKeySet Objects and SelectionEvent Events

	7 Creating Databound Selection Lists
	7.1 Introduction to Selection Lists
	7.2 Creating a Single Selection List
	7.2.1 How to Create a Single Selection List Containing Fixed Values
	7.2.2 How to Create a Single Selection List Containing Dynamically Generated Values
	7.2.3 What Happens When You Create a Fixed Selection List
	7.2.4 What Happens When You Create a Dynamic Selection List

	7.3 Creating a List with Navigation List Binding

	8 Creating Databound Search Forms
	8.1 Introduction to Creating Search Forms
	8.1.1 Query Search Forms
	8.1.2 Quick Query Search Forms
	8.1.3 Filtered Table and Query-by-Example Searches

	8.2 Creating Query Search Forms
	8.2.1 How to Create a Query Search Form with a Results Table or Tree Table
	8.2.2 How to Create a Query Search Form and Add a Results Component Later
	8.2.3 How to Persist Saved Searches into MDS
	8.2.4 What Happens When You Create a Query Form
	8.2.5 What Happens at Runtime: Search Forms

	8.3 Setting Up Search Form Properties
	8.3.1 How to Set Search Form Properties on the Query Component

	8.4 Creating Quick Query Search Forms
	8.4.1 How to Create a Quick Query Search Form with a Results Table or Tree Table
	8.4.2 How to Create a Quick Query Search Form and Add a Results Component Later
	8.4.3 How to Set the Quick Query Layout Format
	8.4.4 What Happens When You Create a Quick Query Search Form
	8.4.5 What Happens at Runtime: Quick Query

	8.5 Creating Standalone Filtered Search Tables

	9 Deploying an ADF Java EE Application
	9.1 Introduction to Deploying ADF Java EE Web Applications
	9.1.1 Developing Applications with Integrated WebLogic Server
	9.1.2 Developing Applications for Standalone Application Server

	9.2 Running a Java EE Application in Integrated WebLogic Server
	9.2.1 How to Run an Application in Integrated WebLogic Server
	9.2.2 How to Run an Application with Metadata in Integrated WebLogic Server

	9.3 Preparing the Application
	9.3.1 How to Create a Connection to the Target Application Server
	9.3.2 How to Create Deployment Profiles
	9.3.2.1 Creating a WAR Deployment Profile
	9.3.2.2 Creating a MAR Deployment Profile
	9.3.2.3 Creating an EJB JAR Deployment Profile
	9.3.2.4 Creating an Application-Level EAR Deployment Profile
	9.3.2.5 Delivering Customization Classes as a Shared Library
	9.3.2.6 Viewing and Changing Deployment Profile Properties
	9.3.2.7 Adding Customization Classes into a JAR

	9.3.3 How to Create and Edit Deployment Descriptors
	9.3.3.1 Creating Deployment Descriptors
	9.3.3.2 Viewing or Modifying Deployment Descriptor Properties
	9.3.3.3 Configuring the application.xml File for WebLogic Compatibility
	9.3.3.4 Configuring the web.xml File for WebLogic Compatibility
	9.3.3.5 Enabling the Application for Real User Experience Insight

	9.3.4 How to Deploy Applications with ADF Security Enabled
	9.3.4.1 Applications That Will Run Using Oracle Single Sign-On (SSO)
	9.3.4.2 Configuring Security for WebLogic Server
	9.3.4.3 Configuring Security for WebSphere Server

	9.3.5 How to Replicate Memory Scopes in a Clustered Environment
	9.3.6 How to Enable the Application for ADF MBeans
	9.3.7 What You May Need to Know About JDBC Data Source for Oracle WebLogic Server

	9.4 Deploying the Application
	9.4.1 How to Deploy to WebLogic Server from JDeveloper
	9.4.2 How to Create an EAR File for Deployment
	9.4.3 What You May Need to Know About ADF Libraries
	9.4.4 How to Deploy New Customizations Applied to ADF LIbrary
	9.4.4.1 Exporting Customization to a Deployed Application
	9.4.4.2 Deploying Customizations to a JAR

	9.4.5 What You May Need to Know About ADF Libraries
	9.4.6 What You May Need to Know About EAR Files and Packaging
	9.4.7 How to Deploy the Application Using Scripts and Ant
	9.4.8 What You May Need to Know About JDeveloper Runtime Libraries

	9.5 Postdeployment Configuration
	9.5.1 How to Migrate an Application
	9.5.2 How to Configure the Application Using ADF MBeans
	9.5.3 How to Configure WebSphere for Result Sets Reuse

	9.6 Testing the Application and Verifying Deployment

