

[1] Oracle® Fusion Middleware
Developer's Guide for Oracle Identity Manager

11g Release 2 (11.1.2.1.0)

E27150-24

June 2015

Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager, 11g Release 2 (11.1.2.1.0)

E27150-24

Copyright © 1991, 2015, Oracle and/or its affiliates. All rights reserved.

Primary Author: Debapriya Datta

Contributing Author: Prakash Hulikere

Contributors: Atul Goyal, Javed Beg, Rajesh Pakkath, Sanjay Rallapalli

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

List of ExamplesList of FiguresList of Tables

Preface ... xxxix

Audience... xxxix
Documentation Accessibility ... xxxix
Related Documents ... xxxix
Conventions ... xl

Part I Concepts

1 Product Overview

1.1 Key Features and Benefits.. 1-1
1.1.1 Ease of Deployment... 1-2
1.1.2 Simplified UI Customization ... 1-2
1.1.3 Simplified Configuration.. 1-2
1.1.4 Flexibility and Resilience .. 1-2
1.1.5 Maximum Reuse of Existing Infrastructure... 1-3
1.1.6 Extensive User Management.. 1-3
1.1.7 Web-Based User Self-Service ... 1-3
1.1.8 Modular and Scalable Architecture .. 1-3
1.1.9 Based on Leading Software Development Standards .. 1-4
1.1.10 Powerful and Flexible Process Engine.. 1-4
1.1.11 Built-In Change Management.. 1-5
1.1.12 Workflow and Policy... 1-5
1.1.13 Audit and Compliance Management ... 1-6
1.1.14 Integration Solutions ... 1-8
1.1.15 User Provisioning .. 1-8
1.2 System Requirements and Certification .. 1-9

2 Product Architecture

2.1 How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager 2-1
2.1.1 Presentation Tier .. 2-2
2.1.2 Business Services Tier ... 2-2
2.1.2.1 The API Services ... 2-3
2.1.2.2 Integration Services .. 2-4
2.1.2.2.1 Connector Framework.. 2-4

iv

2.1.2.2.2 Identity Connectors... 2-4
2.1.2.2.3 Adapter Factory... 2-6
2.1.2.2.4 Generic Technology Connector ... 2-7
2.1.2.2.5 Remote Manager.. 2-9
2.1.2.3 Platform Services ... 2-10
2.1.2.3.1 Plug-In Framework .. 2-11
2.1.2.3.2 SoD Engine Framework... 2-11
2.1.3 Middleware Tier ... 2-12
2.1.3.1 Request Service and Approval Workflow ... 2-12
2.1.3.2 Authorization Service ... 2-14
2.1.3.3 UI Customization Framework... 2-15
2.1.3.4 Scheduler Service... 2-16
2.1.3.5 Reporting .. 2-17
2.1.4 The Data Tier ... 2-17
2.1.4.1 Oracle Identity Manager Database ... 2-18
2.1.4.2 The Metadata Store.. 2-18
2.1.4.3 The Identity Store .. 2-19
2.1.4.4 Integration Between LDAP Identity Store and Oracle Identity Manager......... 2-20
2.1.4.4.1 Configuring the Integration with LDAP... 2-20
2.1.4.4.2 Provisioning Data From Oracle Identity Manager to LDAP Identity Store

2-21
2.1.4.4.3 Managing Users.. 2-22
2.1.4.4.4 Managing Roles .. 2-22
2.1.4.4.5 Reconciliation From LDAP Identity Store to Oracle Identity Manager 2-22
2.1.4.4.6 Consolidated LDAP Sync Full Reconciliation.. 2-23
2.2 System Components .. 2-26

3 Security Architecture

3.1 Security Model... 3-2
3.1.1 Admin Role Assignment .. 3-2
3.1.2 Attribute-Level Security for the User Attributes.. 3-17
3.1.2.1 Using Plug-ins to Pass Attributes for Policy Evaluation 3-19
3.1.3 Policy Obligations... 3-20
3.2 Functional and Data Security Mapping.. 3-21
3.3 Publishing Entities to Organizations .. 3-46
3.4 Managing OES Policies ... 3-47
3.4.1 Customizing the Authorization Policies ... 3-47
3.4.1.1 Controlling Who can View Which Users ... 3-48
3.4.1.2 Controlling Who can Modify Which Users ... 3-49
3.4.1.3 Controlling Who can View Which Links ... 3-49
3.4.1.4 Controlling Who can Request an Account in an Application Instance 3-51
3.4.1.5 Controlling Who can Modify an Account.. 3-51
3.4.1.6 Controlling Who can Manage an Application Instance....................................... 3-51
3.4.1.7 Controlling Who can Change User Password... 3-51
3.4.1.8 Controlling Who can Change Account Password .. 3-51
3.4.1.9 Controlling Which Operations Are Direct or Request-Based 3-52
3.4.1.10 Controlling the Denied Attributes for Self... 3-56

v

3.5 Enforcing Functional Security.. 3-56
3.5.1 Implementing Task Flow or Region... 3-57
3.5.2 Defining Actions ... 3-57
3.5.3 Implementing Field-Level Security.. 3-58

Part II Application Provisioning

4 Developing Application Instances

4.1 Creating IT Resources .. 4-1
4.2 Managing IT Resources.. 4-3
4.2.1 Viewing IT Resources.. 4-4
4.2.2 Modifying IT Resources.. 4-4
4.2.3 Deleting IT Resources.. 4-5
4.3 Managing Resources By Using the Design Console .. 4-5
4.3.1 Overview of Resource Management... 4-5
4.3.2 IT Resources Type Definition Form .. 4-6
4.3.2.1 Defining a Template (a Resource Type) for IT Resources 4-7
4.3.2.2 Tabs on the IT Resource Type Definition Form ... 4-7
4.3.2.2.1 IT Resource Type Parameter Tab .. 4-7
4.3.2.2.2 IT Resource Tab ... 4-8
4.3.2.3 IT Resource Type Definition Table .. 4-8
4.3.3 Rule Designer Form... 4-8
4.3.3.1 Creating a Rule... 4-10
4.3.3.2 Tabs on the Rule Designer Form ... 4-11
4.3.3.2.1 Rule Elements Tab.. 4-11
4.3.3.2.2 Usage Tab .. 4-14
4.3.3.3 Rule Designer Table ... 4-14
4.3.4 Resource Objects Form... 4-15
4.3.4.1 Creating a Resource Object .. 4-16
4.3.4.2 Tabs on the Resource Objects Form.. 4-17
4.3.4.2.1 Depends On Tab... 4-17
4.3.4.2.2 Object Authorizers Tab.. 4-18
4.3.4.2.3 Process Determination Rules Tab .. 4-18
4.3.4.2.4 Event Handlers/Adapters Tab... 4-19
4.3.4.2.5 Resource Audit Objectives .. 4-20
4.3.4.2.6 Status Definition Tab ... 4-21
4.3.4.2.7 Administrators Tab .. 4-22
4.3.4.2.8 Password Policies Rule Tab .. 4-23
4.3.4.2.9 User-Defined Fields Tab.. 4-24
4.3.4.2.10 Process Tab.. 4-24
4.3.4.2.11 Object Reconciliation Tab.. 4-24
4.3.4.3 Multiple Trusted Source Reconciliation... 4-28
4.3.4.3.1 Multiple Trusted Source Reconciliation Using MTS-Compatible Connectors.....

4-29
4.3.4.3.2 Multiple Trusted Source Reconciliation Using Connectors That Are Not

MTS-Compatible 4-31
4.3.5 Service Account Management .. 4-36

vi

4.4 Converting a Disconnected Application Instance to Connected Application Instance. 4-36
4.4.1 Creating a Disconnected Application Instance in the Production Environment 4-37
4.4.2 Exporting Disconnected Application Instance From Production Environment 4-38
4.4.3 Importing the Disconnected Application Instance in Test Environment................. 4-39
4.4.4 Modifying the Application Instance from Disconnected to Connected 4-40
4.4.5 Testing the Connected Application Instance.. 4-42

5 Developing Provisioning Processes

5.1 Overview of Process Management... 5-1
5.2 Email Definition Form.. 5-1
5.2.1 Specifying the E-Mail Server.. 5-2
5.2.2 Email Definition Form .. 5-2
5.2.3 Creating an E-Mail Definition.. 5-3
5.3 Process Definition Form... 5-5
5.3.1 Creating a Process Definition... 5-7
5.3.2 Tabs on the Process Definition Form .. 5-8
5.3.2.1 Tasks Tab ... 5-9
5.3.2.1.1 Adding a Process Task.. 5-9
5.3.2.1.2 Editing a Process Task ... 5-10
5.3.2.1.3 Deleting a Process Task ... 5-10
5.3.2.2 Reconciliation Field Mappings Tab .. 5-10
5.3.2.2.1 User Account Status Reconciliation... 5-11
5.3.2.2.2 Mapping a Target Resource Field to Oracle Identity Manager 5-12
5.3.2.2.3 Deleting a Mapping ... 5-14
5.3.2.3 Administrators Tab ... 5-14
5.3.2.3.1 Assigning a Role to a Process Definition .. 5-14
5.3.2.3.2 Removing a Role From a Process Definition.. 5-14
5.3.3 Modifying Process Tasks ... 5-15
5.3.3.1 General Tab .. 5-15
5.3.3.1.1 Modifying a Process Task's General Information.. 5-17
5.3.3.1.2 Triggering Process Tasks for Events Defined in

Lookup.USR_PROCESS_TRIGGERS Fields 5-19
5.3.3.2 Integration Tab... 5-20
5.3.3.2.1 Assigning an Adapter or Event Handler to a Process Task......................... 5-21
5.3.3.2.2 Mapping Adapter Variables ... 5-22
5.3.3.2.3 Removing an Adapter or Event Handler from a Process Task 5-22
5.3.3.3 Task Dependency Tab... 5-22
5.3.3.3.1 Assigning a Preceding Task to a Process Task... 5-23
5.3.3.3.2 Removing a Preceding Task from a Process Task ... 5-23
5.3.3.3.3 Assigning a Dependent Task to a Process Task... 5-23
5.3.3.3.4 Removing a Dependent Task from a Process Task 5-23
5.3.3.4 Responses Tab.. 5-24
5.3.3.4.1 Adding a Response to a Process Task ... 5-24
5.3.3.4.2 Removing a Response from a Process Task.. 5-25
5.3.3.4.3 Assigning a Generated Task to a Process Task .. 5-25
5.3.3.4.4 Removing a Generated Task From a Process Task.. 5-25
5.3.3.5 Undo/Recovery Tab ... 5-25

vii

5.3.3.5.1 Assigning an Undo Task to a Process Task .. 5-26
5.3.3.5.2 Removing an Undo Task From a Process Task.. 5-26
5.3.3.5.3 Assigning a Recovery Task to a Process Task.. 5-26
5.3.3.5.4 Removing a Recovery Task from a Process Task .. 5-27
5.3.3.6 Notification Tab ... 5-27
5.3.3.6.1 Assigning an E-Mail Notification to a Process Task 5-27
5.3.3.6.2 Removing an E-mail Notification from a Process Task 5-28
5.3.3.7 Task to Object Status Mapping Tab .. 5-28
5.3.3.7.1 Mapping a Process Task Status to a Provisioning Status 5-29
5.3.3.7.2 Unmapping a Process Task Status From a Provisioning Status.................. 5-29
5.3.3.8 Assignment Tab of the Editing Task Window .. 5-29
5.3.3.8.1 Adding a Rule to a Process Task.. 5-31
5.3.3.8.2 Removing a Rule from a Process Task .. 5-32

6 Developing Process Forms

6.1 Creating a Form... 6-3
6.2 Tabs of the Form Designer Form .. 6-4
6.2.1 Additional Columns Tab .. 6-4
6.2.1.1 Adding a Data Field to a Form ... 6-7
6.2.1.2 Removing a Data Field From a Form .. 6-8
6.2.1.3 Setting the Value of the AccountPassword Property.. 6-9
6.2.2 Child Table(s) Tab.. 6-9
6.2.2.1 Assigning a Child Table to a Form ... 6-10
6.2.2.2 Removing a Child Table from a Form.. 6-10
6.2.3 Object Permissions Tab.. 6-10
6.2.3.1 Assigning a User Group to a User-Created Form... 6-11
6.2.3.2 Removing a User Group From a User-Created Form .. 6-11
6.2.4 Properties Tab ... 6-11
6.2.4.1 Adding a Property and Property Value to a Data Field 6-12
6.2.4.2 Adding a Property and Property Value for Customized Look up Query 6-13
6.2.4.3 Removing a Property and Property Value From a Data Field............................ 6-16
6.2.5 Administrators Tab... 6-16
6.2.5.1 Assigning Privileges to a User Group for a Record of a User-Created Form... 6-16
6.2.5.2 Removing User Group Privileges for a Record of a User-Created Form 6-16
6.2.6 Usage Tab... 6-17
6.2.7 Pre-Populate Tab... 6-17
6.2.8 Default Columns Tab ... 6-17
6.2.9 User Defined Fields Tab .. 6-17
6.3 Creating an Additional Version of a Form... 6-18

7 Managing Lookup Definitions and Remote Manager

7.1 Overview.. 7-1
7.2 Lookup Definition Form .. 7-1
7.2.1 Creating a Lookup Definition .. 7-3
7.2.2 Lookup Code Information Tab .. 7-3
7.2.2.1 Creating and Modifying a Lookup Value... 7-3

viii

7.2.2.2 Deleting a Lookup Value... 7-4
7.2.3 Configuring Challenge Questions for the User... 7-5
7.3 Remote Manager Form... 7-5

Part III Connectors

8 Using the Adapter Factory

8.1 Introduction to Adapters ... 8-1
8.2 Types of Adapters... 8-3
8.3 Adapter Environment and Tools.. 8-7
8.3.1 Configuring the Adapter Environment.. 8-7
8.3.2 Remote Manager.. 8-7
8.3.3 The Adapter Factory.. 8-8
8.3.4 Compiling Adapters.. 8-8
8.3.4.1 Automatic Compilation of Adapters ... 8-8
8.3.4.2 Compiling Adapters Manually... 8-9
8.4 Defining Adapters .. 8-9
8.5 Tabs of the Adapter Factory Form .. 8-11
8.5.1 Adapter Tasks ... 8-11
8.5.2 Execution Schedule... 8-11
8.5.3 Resources ... 8-11
8.5.4 Variable List... 8-12
8.5.5 Usage Lookup ... 8-12
8.5.6 Responses... 8-12
8.6 Disabling and Re-enabling Adapters .. 8-13
8.7 About Adapter Variables.. 8-13
8.7.1 Creating an Adapter Variable ... 8-13
8.7.2 Modifying an Adapter Variable ... 8-15
8.7.3 Deleting an Adapter Variable ... 8-15
8.8 Creating Adapter Tasks .. 8-15
8.8.1 Types of Adapter Tasks ... 8-16
8.8.2 Creating a Java Task... 8-17
8.8.3 Creating a Remote Task ... 8-21
8.8.4 Creating a Stored Procedure Task.. 8-22
8.8.5 Creating a Utility Task ... 8-25
8.8.6 To Create an Oracle Identity Manager API Task ... 8-26
8.8.7 Reassigning the Value of an Adapter Variable .. 8-28
8.8.8 Adding an Error Handler Task... 8-29
8.8.9 Creating a Logic Task... 8-30
8.9 Modifying Adapter Tasks... 8-33
8.10 Changing the Order and Nesting of Tasks... 8-33
8.11 Deleting Adapter Tasks... 8-34
8.12 Working with Responses .. 8-35
8.12.1 To Create a Response ... 8-35
8.12.2 To Modify a Response.. 8-36
8.12.3 To Delete a Response.. 8-36
8.13 Scheduling Rule Generators and Entity Adapters.. 8-37

ix

8.13.1 Scheduling Rule Generators and Entity Adapters... 8-37
8.14 Working with Rule Generator Adapters .. 8-38
8.14.1 Mapping Rule Generator Adapter Variables.. 8-38
8.14.2 Associating Rule Generators with Processes.. 8-41
8.14.3 Removing Rule Generators from Form Fields.. 8-42
8.15 Working with Entity Adapters .. 8-42
8.16 Working with Task Assignment Adapters... 8-42
8.16.1 Attaching Task Assignment Adapters to Process Tasks... 8-43
8.16.2 Removing Task Assignment Adapters from Process Tasks....................................... 8-46
8.16.2.1 To Remove a Task Assignment Adapter from a Process Task 8-46
8.17 Working with Prepopulate Adapters ... 8-47
8.17.1 Attaching Prepopulate Adapters to Form Fields ... 8-47
8.17.2 Removing Prepopulate Adapters from Form Fields ... 8-50
8.18 Working with Process Task Adapters... 8-50
8.18.1 Guidelines for Working with a Process Task Adapter ... 8-50
8.18.2 Attaching Process Task Adapters to Process Tasks... 8-51
8.18.3 Removing Process Task Adapters from Process Tasks... 8-55
8.18.3.1 To Remove a Process Task Adapter from a Process Task 8-55
8.19 Adapter Mapping Information .. 8-56
8.19.1 Adapter Task Mapping Information.. 8-56
8.19.1.1 Adapter Variables.. 8-56
8.19.1.2 Adapter Task.. 8-57
8.19.1.3 Literal .. 8-57
8.19.1.4 Adapter References ... 8-57
8.19.1.5 Organization Definition.. 8-58
8.19.1.6 Process Definition.. 8-58
8.19.1.7 User Definition... 8-58
8.19.2 Adapter Variable Mapping Information ... 8-59
8.19.2.1 From the Variable List Tab... 8-60
8.19.2.2 Process Task Adapter Variable Mappings... 8-61
8.19.2.3 Task Assignment Adapter Variable Mappings... 8-63
8.19.2.4 Rule Generator and Entity Adapter Variable Mappings..................................... 8-65
8.19.2.5 Prepopulate Adapter Variable Mappings.. 8-66
8.20 Defining Error Messages... 8-67

9 Understanding the Identity Connector Framework

9.1 Advantages of ICF .. 9-1
9.2 Introducing the ICF Architecture ... 9-2
9.3 Using the ICF API ... 9-6
9.3.1 The ConnectorInfoManagerFactory Class ... 9-6
9.3.2 The ConnectorInfoManager Interface... 9-7
9.3.3 The ConnectorKey Class... 9-7
9.3.4 The ConnectorInfo Interface .. 9-7
9.3.5 The APIConfiguration Interface .. 9-8
9.3.6 The ConfigurationProperties Interface... 9-8
9.3.7 The ConnectorFacadeFactory Class .. 9-8
9.3.8 The ConnectorFacade Interface ... 9-8

x

9.4 Introducing the ICF SPI.. 9-9
9.4.1 Implementing the Required Interfaces ... 9-9
9.4.1.1 org.identityconnectors.framework.spi.Connector... 9-9
9.4.1.1.1 Implementing the init Method ... 9-10
9.4.1.1.2 Implementing the dispose Method.. 9-11
9.4.1.1.3 Implementing the getConfiguration Method... 9-11
9.4.1.2 org.identityconnectors.framework.spi.Configuration ... 9-12
9.4.1.2.1 The validate() Method ... 9-12
9.4.1.2.2 The setConnectorMessages() Method ... 9-13
9.4.1.2.3 The getConnectorMessages() Method... 9-13
9.4.2 Implementing the Feature-based Interfaces ... 9-13
9.4.2.1 org.identityconnectors.framework.spi.PoolableConnector................................. 9-14
9.4.2.2 org.identityconnectors.framework.spi.AttributeNormalizer 9-15
9.4.3 Implementing the Operation Interfaces .. 9-15
9.4.3.1 Implementing the SchemaOp Interface.. 9-16
9.4.3.2 Implementing the CreateOp Interface.. 9-17
9.4.3.3 Implementing the DeleteOp Interface .. 9-18
9.4.3.4 Implementing the SearchOp Interface.. 9-19
9.4.3.4.1 Implementing the createFilterTranslator Method ... 9-19
9.4.3.4.2 Implementing the executeQuery Method... 9-19
9.4.3.5 Implementing the UpdateOp Interface .. 9-20
9.4.4 Common Classes... 9-21
9.5 Extending an Identity Connector Bundle... 9-23
9.6 Using an Identity Connector Server.. 9-24
9.6.1 Using the Java Connector Server.. 9-26
9.6.1.1 Installing and Configuring a Java Connector Server ... 9-26
9.6.1.2 Running the Java Connector Server on Microsoft Windows 9-27
9.6.1.3 Running the Java Connector Server on Solaris and Linux 9-28
9.6.1.4 Installing an Identity Connector in a Java Connector Server 9-29
9.6.1.5 Using SSL to Communicate with a Connector Server.. 9-29
9.6.2 Using the Microsoft .NET Framework Connector Server... 9-29
9.6.2.1 Installing the .NET Connector Server... 9-30
9.6.2.2 Configuring the .NET Connector Server.. 9-30
9.6.2.3 Configuring Trace Settings... 9-31
9.6.2.4 Running the .NET Connector Server .. 9-31
9.6.2.5 Installing Multiple Connectors on a .NET Connector Server 9-31

10 Developing Identity Connectors Using Java

10.1 Developing a Flat File Connector .. 10-1
10.1.1 Supporting Classes for File Input and Output Handling ... 10-9
10.2 Uploading the Identity Connector Bundle to Oracle Identity Manager Database....... 10-27
10.2.1 Registering the Connector Bundle with Oracle Identity Manager.......................... 10-27
10.2.2 Creating Basic Identity Connector Metadata.. 10-28
10.2.2.1 Creating the IT Resource Type Definition ... 10-28
10.2.2.2 Creating the Resource Object... 10-29
10.2.2.3 Creating Lookups .. 10-30
10.2.2.3.1 Creating the Main Configuration Lookup.. 10-30

xi

10.2.2.3.2 Creating Object Type Configuration Lookup .. 10-31
10.2.3 Creating Provisioning Metadata .. 10-32
10.2.3.1 Creating a Process Form... 10-32
10.2.3.2 Creating Adapters ... 10-34
10.2.3.3 Creating A Process Definition ... 10-36
10.2.3.4 Creating a Provisioning Attribute Mapping Lookup... 10-39
10.2.3.4.1 Field Flags Used in the Provisioning Attributes Map................................. 10-40
10.2.4 Creating Reconciliation Metadata .. 10-41
10.2.4.1 Creating a Reconciliation Schedule Task ... 10-41
10.2.4.1.1 Defining the Schedule Task .. 10-41
10.2.4.1.2 Creating a Scheduled Task.. 10-42
10.2.4.2 Creating a Reconciliation Profile... 10-43
10.2.4.3 Setting a Reconciliation Action Rule... 10-44
10.2.4.4 Creating Reconciliation Mapping ... 10-45
10.2.4.4.1 Field Flags Used in the Reconciliation Attributes Map 10-46
10.2.4.5 Defining a Reconciliation Matching Rule .. 10-46
10.3 Provisioning a Flat File Account.. 10-47
10.4 Configuring SSL for Java Connector Server... 10-47

11 Developing Identity Connectors Using .NET

11.1 Developing a Flat File .NET Connector .. 11-1
11.2 Deploying the Identity Connector Bundle on .NET Connector Server.......................... 11-11
11.2.1 Registering the Connector Bundle with .NET Connector Server 11-11
11.2.2 Creating Basic Identity Connector Metadata.. 11-12
11.2.2.1 Creating the IT Resource Type Definition ... 11-12
11.2.2.2 Creating the Resource Object... 11-13
11.2.2.3 Creating Lookups .. 11-14
11.2.2.3.1 Creating the Main Configuration Lookup.. 11-14
11.2.2.3.2 Creating Object Type Configuration Lookup .. 11-15
11.2.3 Creating Provisioning Metadata .. 11-16
11.2.3.1 Creating a Process Form... 11-16
11.2.3.2 Creating Adapters ... 11-18
11.2.3.3 Creating A Process Definition ... 11-20
11.2.3.4 Creating a Provisioning Attribute Mapping Lookup... 11-25
11.2.3.4.1 Field Flags Used in the Provisioning Attributes Map................................. 11-26
11.2.4 Creating Reconciliation Metadata .. 11-27
11.2.4.1 Creating a Reconciliation Schedule Task ... 11-27
11.2.4.1.1 Defining the Schedule Task .. 11-28
11.2.4.1.2 Creating a Scheduled Job .. 11-28
11.2.4.2 Creating a Reconciliation Profile... 11-29
11.2.4.3 Setting a Reconciliation Action Rule... 11-30
11.2.4.4 Creating Reconciliation Mapping ... 11-31
11.2.4.4.1 Field Flags Used in the Reconciliation Attributes Map 11-32
11.2.4.5 Defining a Reconciliation Matching Rule .. 11-33
11.3 Provisioning a Flat File Account.. 11-34

xii

12 Integrating ICF with Oracle Identity Manager

12.1 ICF Common .. 12-1
12.2 Integration Architecture.. 12-1
12.3 Global Oracle Identity Manager Lookups.. 12-2
12.3.1 Main Lookup Configuration ... 12-3
12.3.2 User Management Configuration... 12-4
12.3.3 Recon Transformation Lookup

(Lookup.CONNECTOR_NAME.UM.ReconTransformation) 12-7
12.3.4 Recon Validation Lookup (Lookup.CONNECTOR_NAME.UM.ReconValidation)

12-7
12.3.5 Optional Defaults Lookup... 12-8
12.4 IT Resource.. 12-9
12.5 Provisioning.. 12-9
12.5.1 ICF Provisioning Manager .. 12-9
12.5.1.1 APIs for Provisioning.. 12-9
12.5.1.2 Account Related Operations .. 12-10
12.5.1.3 Multivalued Operations ... 12-10
12.5.1.4 Other operations .. 12-11
12.5.2 Provisioning Lookup.. 12-11
12.5.3 Non-User Object Types.. 12-12
12.5.4 Optional Lookups for Provisioning ... 12-12
12.5.4.1 Provisioning Validation Lookup... 12-13
12.5.5 Optional Flags in Lookups for Provisioning Attribute Map.................................... 12-13
12.5.6 Compound attributes in Provisioning Attribute Map .. 12-14
12.6 Concepts of Reconciliation in ICF Common.. 12-14
12.6.1 Types of Reconciliation.. 12-14
12.6.1.1 Target and Trusted Reconciliation.. 12-14
12.6.1.2 Full, Incremental Reconciliation.. 12-15
12.6.1.3 Advanced Incremental Reconciliation ... 12-15
12.6.1.4 Delete Reconciliation... 12-15
12.6.1.5 Group Lookup Reconciliation ... 12-15
12.6.2 List of Reconciliation Artifacts in Oracle Identity Manager..................................... 12-15
12.6.2.1 Lookups for Reconciliation .. 12-16
12.7 Predefined Scheduled Tasks .. 12-17
12.7.1 LookupReconTask .. 12-17
12.7.2 SearchReconTask .. 12-18
12.7.3 SearchReconDeleteTask ... 12-18
12.7.4 SyncReconTask.. 12-18
12.8 ICF Filter Syntax... 12-19

13 Using Java APIs for ICF Integration

14 Configuring ICF Connectors

14.1 Configuring Connector Load Balancer ... 14-1
14.2 Configuring Validation of Data During Reconciliation and Provisioning...................... 14-3
14.3 Configuring Transformation of Data During User Reconciliation................................... 14-5
14.4 Configuring Resource Exclusion Lists .. 14-7

xiii

14.5 Setting SSL for Connector Server and OIM.. 14-9
14.5.1 Troubleshooting SSL .. 14-10
14.6 Adding Target System Attributes ... 14-10
14.6.1 Adding Target System Attributes for Provisioning... 14-10
14.6.2 Adding Target System Attributes for Target Reconciliation.................................... 14-13
14.6.3 Adding Target System Attributes for Trusted Reconciliation 14-14

15 Understanding ICF Best Practices and FAQs

15.1 Best Practices for ICF ... 15-1
15.2 FAQs on ICF ... 15-2

16 Understanding Generic Technology Connectors

16.1 Requirement for Generic Technology Connectors.. 16-1
16.2 Functional Architecture of Generic Technology Connectors .. 16-2
16.2.1 Providers and Data Sets of the Reconciliation Module... 16-3
16.2.2 Providers and Data Sets of the Provisioning Module ... 16-4
16.2.3 Oracle Identity Manager Data Sets .. 16-5
16.3 Features of Generic Technology Connectors ... 16-5
16.3.1 Features Specific to the Reconciliation Module.. 16-5
16.3.1.1 Trusted Source Reconciliation ... 16-6
16.3.1.2 Account Status Reconciliation ... 16-6
16.3.1.3 Full and Incremental Reconciliation ... 16-7
16.3.1.4 Batched Reconciliation.. 16-7
16.3.1.5 Reconciliation of Multivalued Attribute Data (Child Data) Deletion................ 16-7
16.3.1.6 Failure Threshold for Stopping Reconciliation ... 16-8
16.3.2 Other Features ... 16-8
16.3.2.1 Custom Data Fields and Field Mappings .. 16-8
16.3.2.2 Custom Providers.. 16-8
16.3.2.3 Multilanguage Support... 16-8
16.3.2.4 Custom Date Formats ... 16-8
16.3.2.5 Propagation of Changes in Oracle Identity Manager User Attributes to Target

Systems 16-9
16.4 Connector Objects Created by the Generic Technology Connector Framework............ 16-9
16.4.1 Both Reconciliation and Provisioning Are Selected .. 16-9
16.4.2 Only Reconciliation Is Selected... 16-11
16.4.3 Only Provisioning Is Selected ... 16-11
16.5 Roadmap for Information on Generic Technology Connectors in This Guide............. 16-11

17 Predefined Providers for Generic Technology Connectors

17.1 Shared Drive Reconciliation Transport Provider.. 17-1
17.2 CSV Reconciliation Format Provider .. 17-7
17.3 SPML Provisioning Format Provider.. 17-7
17.3.1 Run-Time Parameters... 17-9
17.3.2 Design Parameters.. 17-9
17.3.3 Nonmandatory Parameters... 17-11
17.3.4 Parameters with Predetermined Values.. 17-11

xiv

17.4 Web Services Provisioning Transport Provider .. 17-12
17.4.1 Configuring SSL Communication Between Oracle Identity Manager and the Target

System Web Service 17-12
17.5 Transformation Providers... 17-15
17.5.1 Concatenation Transformation Provider .. 17-15
17.5.2 Translation Transformation Provider.. 17-16
17.5.2.1 Configuring Account Status Reconciliation .. 17-18
17.6 Validation Providers.. 17-21

18 Creating Custom Providers for Generic Technology Connectors

18.1 Role of Providers.. 18-1
18.1.1 Role of Providers During Generic Technology Connector Creation......................... 18-1
18.1.2 Role of Providers During Reconciliation... 18-3
18.1.3 Role of Providers During Provisioning ... 18-5
18.2 Creating Custom Providers .. 18-7
18.2.1 Determining Provider Requirements .. 18-8
18.2.1.1 Determining the Reconciliation Provider Requirements..................................... 18-8
18.2.1.2 Determining the Provisioning Provider Requirements 18-8
18.2.2 Identifying the Provider Parameters ... 18-9
18.2.3 Developing Java Code Implementations of the Value Objects 18-9
18.2.4 Developing Java Code Implementations of the Provider SPI Methods 18-10
18.2.5 Developing Java Code for Logging and Exception Handling 18-10
18.2.6 Creating the Provider XML File ... 18-10
18.2.7 Creating Resource Bundle Entries for the Provider .. 18-13
18.2.8 Deploying the Provider ... 18-14
18.3 Reusing Providers.. 18-15
18.3.1 Reusing Reconciliation Providers .. 18-15
18.3.2 Reusing Provisioning Providers ... 18-16
18.4 Deploying the Custom Providers .. 18-17

19 Creating and Managing Generic Technology Connectors

19.1 Overview... 19-1
19.2 Creating Generic Technology Connectors ... 19-1
19.2.1 Determining Provider Requirements .. 19-2
19.2.2 Selecting the Providers to Include ... 19-2
19.2.3 Addressing the Prerequisites .. 19-2
19.2.4 Using Identity System Administration to Create the Connector............................... 19-3
19.2.4.1 Step 1: Provide Basic Information Page ... 19-3
19.2.4.2 Step 2: Specify Parameter Values Page... 19-5
19.2.4.3 Step 3: Modify Connector Configuration Page ... 19-12
19.2.4.3.1 Adding or Editing Fields in Data Sets... 19-19
19.2.4.3.2 Removing Fields from Data Sets .. 19-26
19.2.4.3.3 Removing Mappings Between Fields.. 19-26
19.2.4.3.4 Removing Child Data Sets .. 19-26
19.2.4.4 Step 4: Verify Connector Form Names Page ... 19-27
19.2.4.5 Step 5: Verify Connector Information Page ... 19-28
19.2.5 Configuring Reconciliation ... 19-29

xv

19.2.6 Configuring Provisioning.. 19-29
19.2.7 Creating the Form and Publishing the Application Instance................................... 19-30
19.2.8 Enabling Logging.. 19-31
19.3 Managing Generic Technology Connectors... 19-31
19.3.1 Modifying Generic Technology Connectors... 19-31
19.3.2 Exporting Generic Technology Connectors .. 19-32
19.3.3 Importing Generic Technology Connectors.. 19-33
19.4 Using the Generic Connection Pool Framework in Custom Connectors 19-34
19.4.1 Providing concrete implementation for ResourceConnection interface................. 19-34
19.4.2 Defining Additional ITResource Parameters.. 19-35
19.4.3 Getting and Releasing Connections from the Pool .. 19-36
19.4.4 Using a Third-party Pool ... 19-37
19.4.5 Example: Implementation of ResourceConnection ... 19-37
19.5 Best Practices .. 19-39
19.5.1 Working with the Provide Basic Information Page ... 19-40
19.5.2 Working with the Specify Parameter Values Page .. 19-41
19.5.3 Working with the Modify Connector Configuration Page....................................... 19-42
19.5.3.1 Names of Fields ... 19-42
19.5.3.2 Password Fields ... 19-42
19.5.3.3 Password-Like Fields .. 19-43
19.5.3.4 Mappings .. 19-43
19.5.3.5 Oracle Identity Manager Data Sets ... 19-44
19.5.4 Working with Shared Drive Reconciliation Transport Provider............................. 19-44
19.5.5 Working with Custom Providers ... 19-45
19.5.6 Working with Connector Objects ... 19-45
19.5.7 Modifying Generic Technology Connectors... 19-46

20 Troubleshooting Generic Technology Connectors

20.1 General Issues for Generic Technology Connectors ... 20-1
20.1.1 Creation Issues .. 20-1
20.1.2 Multi-language Support .. 20-3
20.1.3 Other General Issues .. 20-6
20.2 Configuration Issues for Generic Technology Connectors .. 20-7
20.2.1 Names of Generic Technology Connectors and Connector Objects 20-7
20.2.2 Step 3: Modify Connector Configuration Page .. 20-8
20.2.3 Errors During Connector Creation... 20-11
20.2.4 Errors During Reconciliation .. 20-11
20.2.5 Errors During Provisioning .. 20-13

Part IV Requests and Approval Processes

21 Developing Workflows for Approval and Manual Provisioning

21.1 Introducing Workflows... 21-1
21.1.1 Overview of Workflows .. 21-1
21.1.2 Workflow Concepts.. 21-2
21.1.3 Workflow Architecture .. 21-4

xvi

21.2 Predefined SOA Composites.. 21-5
21.3 Creating New SOA Composites .. 21-6
21.3.1 Creating a New SOA Composite.. 21-6
21.3.2 Deploying a SOA Composite in Oracle SOA Server ... 21-8
21.3.3 Prerequisites for Communication to Oracle Identity Manager Through SSL Mode

21-8
21.4 Developing Workflows: Vision Request Tutorial ... 21-9
21.4.1 Introducing the Tutorial .. 21-9
21.4.2 Prerequisites .. 21-9
21.4.2.1 Deploying the Request Web Service... 21-10
21.4.2.2 Securing the Web Service ... 21-10
21.4.3 Creating the Application Instance.. 21-11
21.4.3.1 Creating the FinApp Application Instance.. 21-11
21.4.3.2 Defining Application Instance Attributes and Creating a Form 21-11
21.4.3.3 Publishing the Application Instance to One or More Organizations 21-13
21.4.3.4 Linking Entitlements to the Application Instance .. 21-14
21.4.3.5 Publishing the Application Instance With Entitlements to the Catalog.......... 21-15
21.4.4 Configuring FinApp in the Catalog ... 21-15
21.4.5 Creating and Configuring the SOA Composite for Approval 21-16
21.4.5.1 Creating the Approval Workflow ... 21-16
21.4.5.2 Copying the WSDL and XSD Files.. 21-17
21.4.5.3 Configuring Partner Links ... 21-17
21.4.5.4 Making Request and Catalog Data Available to the BPEL Process 21-19
21.4.5.5 Configuring Workflow Selection .. 21-23
21.4.5.6 Configuring Human Tasks... 21-30
21.4.5.6.1 Configuring the Parallel Human Task .. 21-30
21.4.5.6.2 Configuring the Serial Approval Task .. 21-32
21.4.5.6.3 Configuring the Default Approval Task... 21-34
21.4.5.7 Configuring the Human Task and BPEL Mappings .. 21-35
21.4.5.7.1 Configuring the Serial Approval Human Task.. 21-35
21.4.5.7.2 Configuring the Parallel Human Task .. 21-39
21.4.5.7.3 Configuring Auto Approval ... 21-39
21.4.5.8 Deploying the SOA Composite ... 21-40
21.4.5.9 Creating the Approval Policies.. 21-40
21.5 Configuring Default Request-Level and Operation-Level Approval Composites 21-41
21.6 Creating and Deploying Custom Task Details Taskflow... 21-42
21.6.1 Prerequisites for Developing Custom Task Details Taskflow 21-42
21.6.2 Developing Custom Task Details Taskflow.. 21-42
21.6.3 Developing Custom Task Details for Email Notification (Optional) 21-48
21.6.4 Deploying the Task Details Taskflow.. 21-48
21.6.5 Configuring Human Task and Taskflow Permissions .. 21-49
21.6.6 Testing the Custom Taskflow ... 21-50
21.7 Understanding Request Datasets .. 21-50
21.8 Extending Request Management Operations .. 21-51
21.8.1 Running Custom Code Based on Request Status Change.. 21-51
21.8.2 Validating Request Data .. 21-52
21.8.3 Prepopulation of an Attribute Value During Request Creation 21-53
21.9 Enabling Auto-Approval for Self Registration Requests ... 21-54

xvii

22 Using Segregation of Duties (SoD)

22.1 Understanding the SoD Validation Process... 22-1
22.2 Introducing the SoD Invocation Library .. 22-2
22.3 Installing the SoD-enabled Connectors .. 22-4
22.4 Deploying the SIL and SIL Providers ... 22-4
22.5 Configuring the SoD Engine .. 22-5
22.5.1 Configuring Oracle Application Access Controls Governor...................................... 22-5
22.5.2 Configuring SAP GRC ... 22-7
22.5.3 Configuring Oracle Identity Analytics .. 22-8
22.6 Enabling and Disabling SoD .. 22-9
22.6.1 Enabling SoD ... 22-9
22.6.2 Disabling SoD.. 22-10
22.7 Enabling SSL Communication ... 22-11
22.7.1 Enabling SSL Between Oracle Application Access Controls Governor and Oracle

Identity Manager 22-11
22.7.2 Enabling SSL Between SAP GRC and Oracle Identity Manager 22-12
22.7.3 Calling SoD Check Web Service Over SSL.. 22-13
22.8 Configuring Workflows on Non SoD-enabled Connectors .. 22-14
22.8.1 Modifying the Approval Workflow for SoD .. 22-14
22.8.2 Modifying the Provisioning Workflow for SoD... 22-27
22.9 Marking Child Process Form Tables That Hold Entitlement Data................................. 22-31
22.9.1 Marking Request Dataset Attributes That Hold Entitlement Data 22-31
22.9.2 Marking Child Process Form Tables That Hold Entitlement Data 22-31
22.10 Custom Combination of Target Systems and SoD Engines... 22-32
22.10.1 Using a Custom Target System... 22-32
22.10.1.1 Addressing Prerequisites ... 22-32
22.10.1.2 Creating the Transformation Layer .. 22-32
22.10.1.3 Deploying the Transformation Layer ... 22-33
22.10.1.4 Modifying the Registration XML File... 22-33
22.10.1.5 Registering the New Target System ... 22-35
22.10.1.5.1 Running the Registration Script and Providing Registration Information...........

22-35
22.10.1.5.2 Recording the Names of the System Types .. 22-38
22.10.2 Adding Custom SoD Engine... 22-39
22.10.2.1 Addressing Prerequisites ... 22-40
22.10.2.2 Creating an IT Resource to Hold Information about the SoD Engine 22-40
22.10.2.3 Implementing the Service Components for the Provider.................................. 22-41
22.10.2.4 Deploying the Service Components ... 22-41
22.10.2.5 Modifying the Registration XML File for the New SoD Engine....................... 22-41
22.10.2.6 Registering the New SIL Provider .. 22-43
22.11 Performing Role SoD Check with Oracle Identity Analytics .. 22-43
22.11.1 Enabling Role SoD Check .. 22-44
22.11.2 Using Role SoD Check ... 22-44
22.11.2.1 SoD Check When A User Requests a Role... 22-44
22.11.2.2 SoD Check When A User Revokes a Role.. 22-45
22.11.2.3 SoD Check When an Administrator Requests To Assign Roles 22-46
22.11.2.4 SoD Check When an Administrator Requests To Revoke Roles 22-48

xviii

22.12 Using SoD in Provisioning Workflow .. 22-49
22.12.1 Provisioning Application Instance With Child Data... 22-49
22.12.2 Modifying Application Instance to Add or Delete Child Data................................ 22-51
22.12.3 Provisioning Entitlements to a User .. 22-52
22.12.4 Revoking Entitlements From a User .. 22-52
22.12.5 Requesting for Roles and Entitlements ... 22-52
22.12.6 Requesting for Roles and Application Instances With Child Data 22-52
22.12.7 Request Provisioning With the DefaultSODApproval Workflow 22-52
22.12.8 Requesting for Role With an Access Policy Attached ... 22-53
22.12.9 Provisioning Based on Access Policies Without Approval 22-53
22.12.10 Provisioning Based on Access Policies With Approval .. 22-53
22.12.11 Requesting for Entitlements From Two Application Instances 22-54
22.13 Enabling Logging for SoD-Related Events... 22-54
22.14 Troubleshooting SoD Check... 22-54

Part V Data Synchronization

23 Customizing Reconciliation

23.1 Reconciliation Features ... 23-1
23.1.1 Performance Enhancement Features ... 23-1
23.1.1.1 New Metadata Model - Profiles .. 23-2
23.1.1.2 Parameters to Control Flow and Processing of Events .. 23-2
23.1.1.3 Grouping of Events by Reconciliation Runs.. 23-2
23.1.1.4 Grouping of Events by Batches ... 23-3
23.1.1.5 Implementing Reconciliation Engine Logic in the Database 23-3
23.1.1.6 Improved Java Engine .. 23-3
23.1.1.7 Improved Database Schema... 23-3
23.1.2 Web-Based Event Management Interface ... 23-4
23.1.3 Other Features ... 23-4
23.1.3.1 Staging Tables .. 23-4
23.1.3.2 Handling of Race Conditions... 23-5
23.1.3.3 Ad Hoc Linking ... 23-6
23.2 Reconciliation Architecture .. 23-6
23.2.1 Reconciliation Profile ... 23-8
23.2.2 Reconciliation Metadata .. 23-11
23.2.3 Reconciliation Target.. 23-12
23.2.4 Reconciliation Run.. 23-12
23.2.5 Reconciliation APIs... 23-12
23.2.6 Reconciliation Schema ... 23-12
23.2.7 Reconciliation Engine... 23-13
23.2.7.1 Matching Module .. 23-13
23.2.7.2 Action Module ... 23-15
23.2.8 Connector for Reconciliation... 23-16
23.2.9 Archival .. 23-17
23.2.10 Backward Compatibility.. 23-17
23.2.11 Reconciliation Event Management... 23-17
23.3 Defining Reconciliation Rules .. 23-18

xix

23.3.1 Defining a Reconciliation Rule ... 23-19
23.3.2 Adding a Rule Element.. 23-19
23.3.3 Nesting a Rule Within a Rule.. 23-21
23.3.4 Deleting a Rule Element or Rule .. 23-21
23.4 Developing Reconciliation Scheduled Tasks ... 23-21
23.5 Updating Reconciliation Profiles Manually... 23-23
23.5.1 Creating and Updating Reconciliation Profiles.. 23-23
23.5.2 Changing the Profile Mode ... 23-24
23.6 Understanding Reconciliation APIs.. 23-24
23.6.1 The ReconOperationsService API .. 23-25
23.6.2 Invoking Non-scheduled Task-Based Reconciliation in a Multithreaded Environment ..

23-27
23.7 Postprocessing for Trusted Reconciliation... 23-29
23.8 Troubleshooting Reconciliation ... 23-29
23.8.1 Troubleshooting General Reconciliation Issues ... 23-30
23.8.2 Troubleshooting Database-Related Reconciliation Issues .. 23-31
23.8.3 Troubleshooting Reconciliation Profile Configuration Failures.............................. 23-32
23.9 Populating Data in the RECON_EXCEPTIONS Table ... 23-33
23.10 Reconciliation Best Practices .. 23-34
23.10.1 Additional Indexes Requirement for Matching Module .. 23-34
23.10.2 Collecting Database Schema Statistics for Reconciliation Performance 23-36
23.11 Monitoring Reconciliation Performance Using DMS ... 23-37

24 Using the Bulk Load Utility

24.1 Features of the Bulk Load Utility... 24-1
24.2 Prerequisites for Running the Bulk Load Utility... 24-2
24.2.1 Installing the Bulk Load Utility .. 24-2
24.2.1.1 Scripts That Constitute the Utility... 24-3
24.2.1.2 Temporary Tables Used During a Bulk Load Operation 24-3
24.2.1.3 Options Offered by the Utility... 24-4
24.2.2 Preparing Your Database for a Bulk Load Operation ... 24-5
24.2.2.1 Creating a Tablespace for Temporary Tables.. 24-5
24.2.2.2 Creating a Datafile in the Oracle Identity Manager Tablespace......................... 24-5
24.3 Running the Utility .. 24-6
24.4 Loading OIM User Data.. 24-7
24.4.1 Setting a Default Password for OIM Users Added by the Utility 24-8
24.4.2 Creating the Input Source for the Bulk Load Operation... 24-8
24.4.2.1 Using CSV Files As the Input Source ... 24-8
24.4.2.2 Creating Database Tables As the Input Source... 24-10
24.4.3 Determining Values for the Input Parameters of the Utility.................................... 24-11
24.4.4 Monitoring the Progress of the Operation .. 24-13
24.4.5 Handling Exceptions Recorded During the Operation .. 24-13
24.4.6 Fixing Exceptions and Reloading Data Records .. 24-14
24.4.7 Verifying the Outcome of the Bulk Load Operation ... 24-15
24.4.8 Generating an Audit Snapshot ... 24-15
24.5 Loading Account Data .. 24-16
24.5.1 Creating the Input Source for the Bulk Load Operation... 24-17

xx

24.5.1.1 Using CSV Files As the Input Source ... 24-17
24.5.1.2 Creating Database Tables As the Input Source ... 24-18
24.5.2 Determining Values for the Input Parameters of the Utility.................................... 24-19
24.5.3 Monitoring the Progress of the Operation .. 24-21
24.5.4 Handling Exceptions Recorded During the Operation... 24-21
24.5.5 Fixing Exceptions and Reloading Data Records .. 24-22
24.5.6 Verifying the Outcome of the Bulk Load Operation ... 24-23
24.6 Loading Role, Role Hierarchy, Role Membership, and Role Category Data 24-23
24.6.1 Creating the Input Source for the Bulk Load Operation... 24-24
24.6.1.1 Using CSV Files As the Input Source ... 24-24
24.6.1.2 Creating Database Tables As the Input Source ... 24-26
24.6.1.3 Determining the UGP_NAME Generated After Role Load 24-26
24.6.2 Determining Values for the Input Parameters of the Utility.................................... 24-26
24.6.3 Monitoring the Progress of the Operation .. 24-28
24.6.4 Handling Exceptions Recorded During the Operation... 24-28
24.6.5 Fixing Exceptions and Reloading Data Records .. 24-29
24.6.6 Verifying the Outcome of the Bulk Load Operation ... 24-30
24.7 Data Recorded During the Operation... 24-30
24.8 Gathering Diagnostic Data from the Bulk Load Operation .. 24-32
24.9 Cleaning Up After a Bulk Load Operation .. 24-32

25 Configuring LDAP Container Rules

26 Developing Scheduled Tasks

26.1 Overview of Task Creation... 26-1
26.1.1 Steps in Task Creation.. 26-1
26.1.2 Example of Scheduled Task .. 26-2
26.2 Defining the Metadata for the Scheduled Task ... 26-2
26.3 Configuring the Scheduled Task XML File .. 26-3
26.4 Developing the Scheduled Task Class .. 26-4
26.5 Configuring the Plug-in XML File... 26-4
26.6 Creating the Directory Structure for the Scheduled Task.. 26-5
26.7 Scheduled Task Configuration File ... 26-6
26.7.1 Structure of the Scheduler XML File.. 26-6
26.7.2 The scheduledTasks Element.. 26-7
26.7.3 The task Element... 26-7
26.7.4 The name Element .. 26-8
26.7.5 The class Element.. 26-8
26.7.6 The description Element .. 26-8
26.7.7 The retry Element ... 26-9
26.7.8 The parameters Element .. 26-9
26.7.9 The string-param Element... 26-10
26.7.10 The number-param Element ... 26-10
26.7.11 The boolean-param Element ... 26-11
26.8 Best Practices for Creating Custom Scheduled Tasks... 26-11
26.9 Using the isStop() Method.. 26-12

xxi

Part VI Custom Operations

27 Developing Plug-ins

27.1 Plug-ins and Plug-in Points.. 27-1
27.1.1 Plug-ins and Event Handlers .. 27-1
27.1.2 Plug-in Stores .. 27-2
27.1.2.1 File Store.. 27-2
27.1.2.2 Database Store.. 27-3
27.2 Using Plug-ins in Deployments ... 27-3
27.3 Plug-in Points ... 27-3
27.4 Configuring Plug-ins ... 27-5
27.5 Developing Custom Plug-ins ... 27-6
27.5.1 Developing Plug-ins... 27-6
27.5.2 Declaring Plug-ins .. 27-7
27.6 Registering Plug-ins... 27-7
27.6.1 Registering and Unregistering Plug-ins By Using APIs ... 27-7
27.6.2 Registering and Unregistering Plug-ins By Using the Plugin Registration Utility. 27-8
27.7 Migrating Plug-ins ... 27-9

28 Developing Event Handlers

28.1 Orchestration Concepts... 28-1
28.2 Using Custom Event Handlers .. 28-3
28.3 Developing Custom Event Handlers .. 28-4
28.3.1 Implementing the SPI and Creating a JAR ... 28-5
28.3.1.1 Development Considerations .. 28-5
28.3.1.2 Methods and Arguments.. 28-6
28.3.1.3 Code Samples... 28-6
28.3.1.4 Creating a JAR File With Custom Event Handler Code 28-10
28.3.1.5 Handling Exceptions... 28-10
28.3.1.6 Managing Transactions .. 28-11
28.3.2 Defining Custom Events Definition XML... 28-11
28.3.2.1 Elements in the Event Handler XML Files... 28-11
28.3.2.2 Sample Event Definitions ... 28-13
28.3.3 Creating and Registering a Plug-in ZIP .. 28-14
28.4 Sequencing the Execution of Event Handlers.. 28-14
28.5 Writing Custom Validation Event Handlers ... 28-15
28.6 Best Practices .. 28-17
28.7 Migrating Event Handlers .. 28-17
28.8 Troubleshooting Event Handlers .. 28-18
28.9 Managing Event Handlers Using the Design Console... 28-19
28.9.1 Event Handler Manager Form.. 28-19
28.9.2 Data Object Manager Form ... 28-21
28.9.2.1 Tabs of the Data Object Manager Form.. 28-23
28.9.2.1.1 Attach Handlers Tab.. 28-23
28.9.2.1.2 Assigning an Event Handler or Adapter to a Data Object 28-23
28.9.2.1.3 Organizing the Execution Schedule of Event Handlers or Adapters 28-24

xxii

28.9.2.1.4 Removing an Event Handler or Adapter from a Data Object 28-24
28.9.2.1.5 Map Adapters Tab.. 28-24

29 Understanding Context

29.1 Child Context.. 29-1
29.2 Context Types... 29-1

Part VII Customization

30 Customizing the Interface

30.1 Customization Concepts ... 30-2
30.1.1 Deployment of UI Libraries and Applications ... 30-2
30.1.2 Overview of MDS Customization .. 30-3
30.1.3 Overview of the Web Composer .. 30-3
30.2 Managing Sandboxes .. 30-4
30.2.1 Handling Concurrency Conflicts.. 30-6
30.2.1.1 Troubleshooting Concurrency Issues ... 30-7
30.2.2 Creating a Sandbox... 30-8
30.2.3 Activating and Deactivating a Sandbox .. 30-9
30.2.4 Viewing and Modifying Sandbox Details ... 30-9
30.2.5 Exporting and Importing a Sandbox ... 30-10
30.2.6 Publishing a Sandbox... 30-10
30.2.7 Checking Out an Item from Cart.. 30-11
30.2.8 Deleting a Sandbox... 30-11
30.2.9 Reverting Changes to Default Settings.. 30-12
30.3 Skin Customization in Oracle Identity Manager... 30-13
30.3.1 Configuring a New Skin .. 30-13
30.3.2 Configuring Skin for Legacy Advance Console... 30-15
30.3.3 Changing Branding and Logo... 30-16
30.4 Customizing Pages at Runtime.. 30-20
30.4.1 Using Expression Language in UI Customization... 30-21
30.4.1.1 Avaliable EL Expressions in the User Context.. 30-21
30.4.1.2 Available EL Expressions in the RequestFormContext 30-22
30.4.1.3 Internationalization for Resource Strings .. 30-23
30.4.2 Showing or Hiding UI Components Conditionally... 30-24
30.4.3 Showing Request Profiles Conditionally... 30-25
30.4.4 Validating Input Data Using ADF Validators .. 30-25
30.4.5 Marking Input Attribute as Required.. 30-26
30.4.6 Adding a Link or Button.. 30-26
30.4.7 Hiding and Deleting an ADF Component .. 30-28
30.4.8 Showing and Hiding Attributes ... 30-29
30.4.9 Customizing the User Registration and Other Unauthenticated Pages 30-30
30.4.10 Customizing Certification Pages .. 30-30
30.5 Securing UI Components.. 30-31
30.5.1 Securing a Custom Taskflow Using APM... 30-31
30.5.2 Securing a Task Flow Region Using EL Expressions .. 30-32

xxiii

30.6 Customizing Oracle Identity Manager Help ... 30-33
30.6.1 Adding Custom Help Topics .. 30-33
30.6.2 Adding Inline Help .. 30-34
30.7 Customizing the Home Page.. 30-35
30.8 Customizing Challenge Questions.. 30-37
30.9 Customizing the Transitional UI ... 30-40
30.9.1 Customizing Search Drop-Down Item .. 30-41
30.9.2 Customizing Number of Search Drop-Down Items and Search Results................ 30-41
30.10 Developing Managed Beans and Task Flows .. 30-42
30.10.1 Setting Up the ViewController Project .. 30-42
30.10.2 Setting Up a Model Project.. 30-43
30.10.3 Adding Custom Managed Bean ... 30-44
30.10.4 Deploying Custom Code to Oracle Identity Manager .. 30-45
30.10.5 Using Managed Beans.. 30-45
30.10.5.1 Showing Components Conditionally ... 30-46
30.10.5.2 Prepopulating Fields Conditionally ... 30-47
30.10.5.3 Setting a Conditional Mandatory Field.. 30-48
30.10.5.4 Implementing Custom Field Validation .. 30-50
30.10.5.5 Implementing Custom Cascading LOVs ... 30-52
30.10.5.6 Customizing Forms By Using RequestFormContext ... 30-52
30.10.5.7 Overriding the Submit Button in Request Catalog... 30-55
30.10.5.8 Developing Home Page Portlets ... 30-55
30.10.5.9 Launching Taskflows .. 30-57
30.10.5.10 Creating an External Link .. 30-58
30.10.6 Using Managed Beans to Populate Request Attributes .. 30-58
30.10.6.1 Populating Request Attributes Using Managed Beans...................................... 30-58
30.10.6.2 Populating Request Attributes by Using the Prepopulate Plug-in 30-63
30.11 Migrating UI Customizations .. 30-64
30.12 UI Customization Best Practice.. 30-65
30.13 Rolling Back UI Customization.. 30-65

Part VIII Interfaces to Integrate With Other Applications

31 Using APIs

31.1 Accessing Oracle Identity Manager Services ... 31-1
31.1.1 Using OIMClient... 31-1
31.1.2 Using the tcUtilityFactory ... 31-2
31.2 Oracle Identity Manager Services.. 31-2
31.2.1 Services in Oracle Identity Manager 11g .. 31-3
31.2.2 Legacy Services or Utilities.. 31-3
31.3 Commonly Used Services... 31-3
31.3.1 Mapping Between Legacy and New Services .. 31-4
31.4 Developing Clients for Oracle Identity Manager.. 31-4
31.4.1 Prerequisites for Developing Clients ... 31-4
31.4.2 Setup and Configuration ... 31-5
31.5 Working With Legacy Oracle Identity Manager APIs ... 31-5

xxiv

31.5.1 Using a Result Set Object ... 31-5
31.5.2 Handling Oracle Identity Manager Exceptions.. 31-6
31.5.3 Cleaning Up... 31-6
31.6 Code Sample ... 31-7

32 Using SPML Services

32.1 Introduction .. 32-2
32.1.1 About SPML Interactions .. 32-2
32.1.2 Integration Interface ... 32-2
32.2 General Considerations... 32-3
32.2.1 Assigning SPML Admin Role to the User... 32-3
32.2.2 Creating Autoapproval Policies ... 32-4
32.3 Create Identity (SPML Core Service: addRequest) ... 32-5
32.4 Modify Users, Roles, Change Attributes and Role Memberships (SPML Core Service:

modifyRequest) 32-6
32.5 Delete an Identity or Role (SPML Core Service: deleteRequest)....................................... 32-7
32.6 Check Request Status (SPML Core Service: statusRequest) .. 32-7
32.7 List Available Targets (SPML Core Service: listTargets).. 32-8
32.8 Disable a User (SPML Suspend Service: suspendRequest) ... 32-8
32.9 Enable a User (SPML Suspend Service: resumeRequest) .. 32-9
32.10 Check if User is Active (SPML Suspend Service: activeRequest) 32-9
32.11 Validate a Username (SPML Username Service: validateUsername) 32-10
32.12 Obtain a Username (SPML Username: suggestUsername) ... 32-10
32.13 Lookup an Identity or Role (SPML Core Service: lookupRequest) 32-10
32.14 Reset Password (SPML Core Service: resetPasswordRequest) 32-12
32.15 Lookup Username Policy (SPML Username Service: lookupUsernamePolicy)........... 32-13
32.16 Cancel/Withdraw Request (SPML Async Service: cancelRequest) 32-13
32.17 Batch Request (SPML Batch Request Service: batchRequest).. 32-14
32.18 Securing SPML Web Services... 32-14
32.18.1 About Web Services Security .. 32-14
32.18.2 A Request Example .. 32-15
32.18.3 Applying Policies.. 32-15
32.19 Operations Not Supported ... 32-15
32.20 SPML Attributes and LDAP Mappings, and Oracle Identity Manager Attributes...... 32-16
32.20.1 Identity PSO Attributes.. 32-16
32.20.1.1 Custom Identity Attributes .. 32-19
32.20.2 Role PSO Attributes.. 32-19
32.20.2.1 Custom Role Attributes .. 32-20
32.20.3 Preference Attributes.. 32-20
32.20.4 Special Character Restrictions in Oracle Identity Manager Attributes................... 32-25
32.20.4.1 Characters Available in All Attributes ... 32-25
32.20.4.2 Special Characters in the Password Field .. 32-25
32.20.4.3 Usage of Single Quotation Mark ... 32-25
32.20.4.4 Usage of Semicolon ... 32-26
32.20.4.5 Unsupported Special Characters... 32-26
32.20.5 Operation Data.. 32-26
32.20.5.1 Passing Operation Data .. 32-26

xxv

32.20.5.2 Passing Reference Data... 32-27
32.21 SPML Examples ... 32-27
32.21.1 SPML Example - Add User ... 32-28
32.21.2 SPML Example - Delete User .. 32-32
32.21.3 SPML Example - Modify User .. 32-32
32.21.4 SPML Example - Resume User ... 32-33
32.21.5 SPML Example - Suggest User Name.. 32-34
32.21.6 SPML Example - Suspend User .. 32-34
32.21.7 SPML Example - Validate User Name... 32-35
32.21.8 SPML Example - Check If User is Active .. 32-35
32.21.9 SPML Example - Lookup Username Policy.. 32-35
32.21.10 SPML Example – Add User with Role Assignment .. 32-36
32.21.11 SPML Example - Assign Role Membership .. 32-38
32.21.12 SPML Example – Revoke Role Membership .. 32-38
32.21.13 SPML Example - Add Role.. 32-39
32.21.14 SPML Example - Add Role with Parent .. 32-40
32.21.15 SPML Example - Modify Role... 32-41
32.21.16 SPML Example - Add Parent to a Role.. 32-41
32.21.17 SPML Example - Role Grant ... 32-42
32.21.18 SPML Example - Delete Role .. 32-43
32.21.19 SPML Example - Status Request... 32-43
32.21.20 SPML Example - Identity/Role Lookup ... 32-46
32.21.21 SPML Example - Reset Password... 32-49
32.21.22 SPML Example - Reset Password with Notification ... 32-50
32.21.23 SPML Example - Lookup User Name Policy.. 32-50
32.21.24 SPML Example - Cancel Request ... 32-51
32.21.25 SPML Example - Batch Request.. 32-52

33 Using URLs

Part IX Notification Service

34 Developing Notification Events

34.1 Notification Concepts.. 34-1
34.2 Developing Custom Notification... 34-2
34.2.1 Building the Notification Logic .. 34-2
34.2.1.1 Defining Event Metadata.. 34-2
34.2.1.1.1 Deploying the Notification Event .. 34-4
34.2.1.2 Creating the Resolver Class ... 34-4
34.2.2 Creating Plug-in Pack Containing the Resolver Class .. 34-7
34.2.3 Building the Invocation Logic... 34-7
34.2.4 Configuring the Notification Service ... 34-7
34.3 Troubleshooting Notification... 34-8
34.3.1 Issues Related to Incorrect URL.. 34-9
34.3.2 Incorrect Outgoing Server EMail Driver Properties.. 34-10
34.3.3 Error Generated at the SOA Server.. 34-13

xxvi

34.3.4 Authentication Failure ... 34-15
34.3.5 Issues Related to Failed Email Delivery Not Reported Through EM 34-22

35 Using the Callback Service

35.1 Introducing the Callback Service... 35-1
35.1.1 Using Callbacks... 35-2
35.1.2 Understanding Event Processing ... 35-3
35.1.3 Retrying Callbacks.. 35-4
35.2 Mapping Oracle Identity Manager Attributes... 35-4
35.3 Sending Event Callbacks... 35-6
35.4 Configuring the Callback Service .. 35-8
35.4.1 Understanding CallbackConfiguration.xml ... 35-8
35.4.2 Importing CallbackConfiguration.xml .. 35-12
35.4.3 Adding the OIM.DefaultTenantGUID System Property .. 35-13
35.5 Troubleshooting the Callback Service... 35-13

Part X Customization Lifecycle

36 Understanding Customization Types

37 Deploying and Undeploying Customizations

37.1 Migrating User Modifiable Metadata Files .. 37-1
37.1.1 Exporting Metadata Files to MDS .. 37-1
37.1.2 Importing Metadata Files from MDS... 37-2
37.1.3 Deleting Metadata Files from MDS.. 37-2
37.1.4 User Modifiable Metadata Files.. 37-2
37.1.5 Creating MDS Backup.. 37-3
37.2 Migrating JARs and Resource Bundle .. 37-3
37.2.1 Upload JAR Utility ... 37-5
37.2.2 Download JAR Utility .. 37-5
37.2.3 Delete JAR Utility ... 37-6
37.2.4 Upload Resource Bundle Utility... 37-6
37.2.5 Download Resource Bundle Utility ... 37-6
37.2.6 Delete Resource Bundle Utility... 37-7

38 Migrating Configurations and Customizations

38.1 Using the Deployment Manager.. 38-1
38.1.1 Features of the Deployment Manager ... 38-2
38.1.2 Exporting Deployments... 38-4
38.1.3 Importing Deployments .. 38-6
38.1.4 Best Practices Related to Using the Deployment Manager .. 38-9
38.1.4.1 Export System Objects Only When Necessary.. 38-9
38.1.4.2 Export Related Groups of Objects... 38-9
38.1.4.3 Group Definition Data and Operational Data Separately 38-10
38.1.4.4 Use Logical Naming Conventions for Versions of a Form................................ 38-10
38.1.4.5 Export Root to Preserve a Complete Organizational Hierarchy 38-10

xxvii

38.1.4.6 Provide Clear Export Descriptions ... 38-10
38.1.4.7 Check All Warnings Before Importing... 38-10
38.1.4.8 Check Dependencies Before Exporting Data... 38-11
38.1.4.9 Match Scheduled Task Parameters ... 38-11
38.1.4.10 Deployment Manager Actions on Reimported Scheduled Tasks 38-11
38.1.4.11 Compile Adapters and Enable Scheduled Tasks .. 38-12
38.1.4.12 Export Entity Adapters Separately ... 38-12
38.1.4.13 Check Permissions for Roles.. 38-12
38.1.4.14 Back Up the Database ... 38-12
38.1.4.15 Import Data When the System Is Quiet ... 38-12
38.1.4.16 Migrating Custom Data Objects .. 38-13
38.1.4.17 Remove Data Object Fields Before Importing Event Handlers as Dependencies.......

38-13
38.1.5 Troubleshooting the Deployment Manager ... 38-13
38.1.5.1 Troubleshooting Deployment Manager Issues ... 38-13
38.1.5.2 Enabling Logging for the Deployment Manager.. 38-15
38.2 Moving from a Test to a New Production Environment Using Movement Scripts..... 38-16
38.3 Migrating the Policies.. 38-19
38.3.1 Troubleshooting Migration of Policies .. 38-19

Part XI Reports and Audit

39 Configuring Reports

39.1 What is Oracle Identity Manager Reports? .. 39-1
39.2 What is Oracle BI Publisher? .. 39-2
39.3 Licensing ... 39-2
39.4 Deploying Oracle Identity Manager Reports... 39-2
39.4.1 Creating the Metadata Repository ... 39-3
39.4.2 Installing BI Publisher 11g (11.1.1.6) .. 39-4
39.5 Configuring Oracle Identity Manager Reports ... 39-5
39.5.1 Configuring Security on BI Publisher 11g (11.1.1.6) .. 39-5
39.5.2 Configuring Data Sources for Running Oracle Identity Manager Reports.............. 39-6
39.5.2.1 Configuring Oracle Identity Manager JDBC Connection.................................... 39-7
39.5.2.2 Configuring BPEL-Based JDBC Connection.. 39-7
39.6 Generating Oracle Identity Manager Reports ... 39-8
39.6.1 Generating Sample Reports Against the Sample Data Source................................... 39-8
39.6.2 Generating Reports Against the Oracle Identity Manager JDBC Data Source........ 39-9
39.6.3 Generating Reports Against the BPEL-Based JDBC Data Source.............................. 39-9

40 Understanding Auditing

40.1 Audit Levels.. 40-1
40.2 Tables Used for Storing Information About Auditors ... 40-2
40.3 Issuing Audit Messages .. 40-2

Part XII Appendixes

xxviii

A General Customization Concepts

A.1 Rule Elements, Variables, Data Types, and System Properties... A-1
A.2 Service Accounts .. A-14
A.2.1 Service Account Customization: Scenario One .. A-15
A.2.2 Service Account Customization: Scenario Two.. A-16
A.3 Design Console Actions .. A-16

B The FacesUtils Class

Index

xxix

List of Examples

9–1 ConnectorInfoManagerFactory Implementation ... 9-6
9–2 ConnectorInfoManager Implementation... 9-7
9–3 ConnectorKey Implementation... 9-7
9–4 ConnectorInfo Implementation .. 9-7
9–5 APIConfiguration Definition... 9-8
9–6 setPropertyValue Method Signature.. 9-8
9–7 ConfigurationProperties Implementation... 9-8
9–8 ConnectorFacadeFactory Definition .. 9-8
9–9 ConnectorFacade Implementation ... 9-8
9–10 Flat File Connector Implementation ... 9-10
9–11 init Method Implementation .. 9-10
9–12 dispose Method Implementation... 9-11
9–13 getConfiguration Method Implementation.. 9-11
9–14 Configuration Implementation .. 9-12
9–15 validate Method Implementation.. 9-13
9–16 setConnectorMessages Method Definition .. 9-13
9–17 getConnectorMessages Method Definition.. 9-13
9–18 Flat File Poolable Connector Implementation ... 9-14
9–19 checkAlive Method Implementation .. 9-15
9–20 normalizeAttribute Method Defintion.. 9-15
9–21 schema Method Signature .. 9-16
9–22 schema Method Implementation... 9-17
9–23 create Method Signature ... 9-17
9–24 create Method Implementation.. 9-17
9–25 delete Method Signature... 9-18
9–26 delete Method Implementation ... 9-18
9–27 createFilterTranslator Method Signature ... 9-19
9–28 createFilterTranslator Method Implementation .. 9-19
9–29 executeQuery Method Signature... 9-20
9–30 executeQuery Method Implementation.. 9-20
9–31 update Method Signature ... 9-20
9–32 update Method Implementation.. 9-21
9–33 Defined Trace Settings... 9-31
10–1 Implementation of AbstractConfiguration... 10-2
10–2 Implementation of PoolableConnector... 10-4
10–3 Implementation of AbstractFilterTranslator<T>... 10-8
10–4 The MANIFEST.MF File.. 10-9
10–5 FlatFileIOFactory.. 10-10
10–6 FlatFileMetadata... 10-10
10–7 FlatFileParser .. 10-13
10–8 FlatFileWriter.. 10-16
10–9 FlatfileLineIterator ... 10-19
10–10 FlatfileUserAccount ... 10-21
10–11 FlatfileAccountConversionHandler .. 10-25
10–12 Messages.Properties .. 10-27
10–13 Deployment Manager XML with Scheduled Task Details .. 10-41
11–1 Implementation of AbstractConfiguration... 11-2
11–2 Implementation of PoolableConnector... 11-3
11–3 Implementation of AbstractFilterTranslator<T>... 11-9
11–4 Deployment Manager XML with Scheduled Task Details .. 11-28
19–1 An Example of ResourceConnection Implementation ... 19-38
21–1 Associating plug-ins With Data Validators and Prepopulate Adapters........................ 21-52
22–1 Sample Run of the Registration Script .. 22-38
23–1 Sample Reconciliation Profile .. 23-8

xxx

23–2 Invoking Non-scheduled Task-based Reconciliation in a Multithreaded Environment
23-27

24–1 Sample Log File Generated After Loading OIM User Data... 24-13
24–2 Sample Log File Generated After Loading Account Data ... 24-21
24–3 Sample Log File Generated After Loading OIM Role Data ... 24-28
26–1 Sample XML for a Scheduled Task ... 26-3
26–2 Directory Structure for the Scheduled Task... 26-5
28–1 Custom Email Validation.. 28-7
28–2 Custom Preprocess Event Handler to Set Middle Name... 28-7
28–3 Sample Custom Post Process Event Handler... 28-8
28–4 Custom User Postprocess Event Handler With bulkExecute Method............................. 28-9
28–5 Using Context in the isApplicable Method.. 28-9
28–6 Sample Metadata XML File for Custom Event Definitions ... 28-13
31–1 Retrieving Oracle Identity Manager Information ... 31-7
35–1 Sample CallbackConfiguration.xml .. 35-10
B–1 Sample FacesUtils Class .. B-1

xxxi

List of Figures

2–1 Oracle Identity Manager Architecture... 2-2
2–2 ICF Architecture.. 2-5
2–3 Functional Architecture of a Generic Technology Connector .. 2-8
2–4 Remote Manager Architecture ... 2-10
2–5 SoD Validation Process in Oracle Identity Manager .. 2-12
2–6 Request Service and SOA Integration... 2-13
2–7 OES-Based Authorization Service ... 2-14
2–8 UI Customization Framework ... 2-16
2–9 Oracle Identity Manager Scheduler Architecture ... 2-17
2–10 Oracle Identity Manager and LDAP ... 2-20
2–11 System Components of Oracle Identity Manager ... 2-26
3–1 OES-Based Authorization Service .. 3-2
3–2 The OrclOIMUserViewerDirectWithObligationPolicy .. 3-19
3–3 The Edit Obligation Attribute Dialog Box.. 3-19
4–1 The IT Resources Type Definition Form.. 4-6
4–2 Rule Designer Form.. 4-9
4–3 Rule Elements Tab of the Rule Designer Form.. 4-12
4–4 Edit Rule Element Window.. 4-13
4–5 Usage Tab of the Rule Designer Form .. 4-14
4–6 Rule Designer Table... 4-15
4–7 The Resource Objects Form .. 4-20
4–8 Trusted Source Reconciliation by User Type... 4-33
4–9 Trusted Source Reconciliation for Specific OIM User Attributes 4-36
4–10 Child Attributes.. 4-38
4–11 Export Summary .. 4-39
4–12 Import Summary.. 4-39
5–1 Email Definition Form.. 5-2
5–2 Process Definition Form... 5-6
5–3 Tasks Tab of the Process Definition Form... 5-9
5–4 Reconciliation Field Mappings Tab of the Process Definition Form 5-10
5–5 Handler Selection Dialog Box .. 5-21
6–1 Form Designer Form... 6-2
6–2 Add Property Dialog Box ... 6-12
6–3 Add Property Dialog Box - Filled.. 6-13
6–4 Add Property Dialog Box ... 6-14
6–5 Edit Property Dialog Box .. 6-15
7–1 Lookup Definition Form .. 7-2
7–2 Remote Manager Form... 7-5
8–1 Adapter Factory Form.. 8-8
8–2 Adapter Manager Form ... 8-9
8–3 Error Message Definition Form ... 8-67
9–1 Identity Connector Framework Deployment ... 9-3
9–2 Compatibility Between the ICF and Connector Bundles .. 9-3
9–3 Deployment Methodology to Support Multiple Versions of Same Target 9-4
9–4 Connector Server Remote System Framework... 9-5
9–5 ICF Framework ... 9-6
9–6 ICF Connectors and Connector Server ... 9-25
10–1 IT Resource Type Definition in Design Console ... 10-29
10–2 Resource Objects in Design Console ... 10-29
10–3 Lookup Definition in Design Console .. 10-31
10–4 Second Lookup Definition in Design Console... 10-32
10–5 Form Designer in Design Console... 10-33
10–6 Properties of Form Designer in Design Console ... 10-34
10–7 Adapter Factory Variable List in Design Console... 10-35

xxxii

10–8 Adapter Factory in Design Console .. 10-36
10–9 Process Definition in Design Console ... 10-37
10–10 Editing Task Screen in Design Console .. 10-37
10–11 Integration Tab in Design Console .. 10-38
10–12 Configure Responses in Design Console.. 10-39
10–13 Task to Object Status Mapping .. 10-39
10–14 The Scheduled Task Screen ... 10-43
10–15 Object Reconciliation in Design Console.. 10-44
10–16 Reconciliation Action Rules in Design Console .. 10-45
10–17 Reconciliation Field Mapping in Design Console ... 10-46
10–18 Adding Reconciliation Matching Rule.. 10-47
11–1 IT Resource Type Definition in Design Console ... 11-13
11–2 Resource Objects in Design Console ... 11-13
11–3 Lookup Definition in Design Console .. 11-15
11–4 Second Lookup Definition in Design Console... 11-16
11–5 Form Designer in Design Console... 11-17
11–6 Properties of Form Designer in Design Console ... 11-18
11–7 Adapter Factory Variable List in Design Console... 11-19
11–8 Adapter Factory in Design Console .. 11-20
11–9 Process Definition in Design Console ... 11-21
11–10 Editing Task Screen in Design Console .. 11-22
11–11 Integration Tab in Design Console .. 11-23
11–12 Configure Responses in Design Console.. 11-24
11–13 Task to Object Status Mapping .. 11-25
11–14 Lookup Code Mapping... 11-26
11–15 Scheduled Task Screen in Advanced Console... 11-29
11–16 Object Reconciliation in Design Console.. 11-30
11–17 Reconciliation Action Rules in Design Console .. 11-31
11–18 Reconciliation Field Mapping in Design Console ... 11-32
11–19 Adding Reconciliation Matching Rule.. 11-33
12–1 OIM-ICF Connector Development Architecture... 12-2
12–2 Oracle Identity Manager Connector Lookup Hierarchy.. 12-3
12–3 Graphical Representation of Filter Syntax ... 12-20
14–1 Connector Server Load Balancer ... 14-2
16–1 Functional Architecture of a Generic Technology Connector ... 16-3
17–1 Communication Between the SPML Provisioning Format Provider and the Target System..

17-8
18–1 Metadata Detection Process ... 18-2
18–2 Role of Providers During Reconciliation.. 18-4
18–3 Role of Providers During Provisioning .. 18-6
19–1 Step 3: Modify Connector Configuration Page.. 19-14
19–2 Step 3: Modify Connector Configuration Page After Addition of a Field..................... 19-27
21–1 Workflow Architecture ... 21-4
21–2 Attributes .. 21-12
21–3 Attribute Configuration .. 21-13
21–4 Entitlements List .. 21-14
21–5 Entitlement Availability to Organizations ... 21-15
21–6 Catalog Item Attributes... 21-16
21–7 Partner Link Swim Lane ... 21-18
21–8 The Create Partner Link Dialog Box ... 21-18
21–9 Configure WS Policies ... 21-19
21–10 AssignRequestWSURL.. 21-19
21–11 Partner Link and Operation ... 21-20
21–12 AssignRequestInput .. 21-21
21–13 Input Mapping ... 21-21

xxxiii

21–14 InvokeCatalogOperation .. 21-22
21–15 InvokeCatalogOperation Configuration .. 21-22
21–16 AssignCatalogInput... 21-22
21–17 InvokeCatalogOperation Input Mapping .. 21-23
21–18 Adding Business Rule Component ... 21-23
21–19 catalogData Variable Input Mapping ... 21-24
21–20 workflowtype Variable Output Mapping .. 21-25
21–21 AssignRuleInput .. 21-25
21–22 catalogData Variable Output Mapping .. 21-26
21–23 The stageType Property .. 21-26
21–24 Approval Rules .. 21-27
21–25 Switch Activity ... 21-27
21–26 Switch Case Steps... 21-28
21–27 Renamed Conditions ... 21-28
21–28 Dragging Default Human Task ... 21-29
21–29 Adding Human Tasks ... 21-29
21–30 Manager and Review Team Stages ... 21-31
21–31 Manager Participant Rule ... 21-31
21–32 Review Team Stage.. 21-32
21–33 Review Team Participant Rule... 21-32
21–34 Serial Stages .. 21-33
21–35 Rule for Manager Stage... 21-34
21–36 Rule for Review Team Stage .. 21-34
21–37 Default Approval Task.. 21-34
21–38 Participant List Rule .. 21-35
21–39 Human Task Activity .. 21-35
21–40 Task Parameters and BPEL Variable Mapping ... 21-36
21–41 Identification Key and Requester ID Mapping ... 21-37
21–42 The panelTabbed Layout .. 21-45
21–43 OIM View Shared Library .. 21-46
21–44 Task Details DataControl.. 21-48
22–1 SoD Validation Process in Oracle Identity Manager .. 22-2
22–2 Architecture of SoD Implementation in Oracle Identity Manager 22-4
22–3 The TopologyName Parameter.. 22-14
22–4 Request History for Asynchronous SoD Check .. 22-15
22–5 Workflow with SoDCheck Web Service Call ... 22-16
22–6 Switch Case With Approval Tasks .. 22-17
22–7 Assignment of the Approval Task... 22-17
22–8 Modified Workflow To Perform SoD Check ... 22-19
22–9 SoD Check Partner Link.. 22-20
22–10 Final Assign Activity ... 22-21
22–11 The Invoke Dialog Box .. 22-21
22–12 The Receive Dialog Box... 22-22
22–13 Switch Case ... 22-23
22–14 Configuring WS Policies for Request.. 22-24
22–15 Select Client Security Policies... 22-24
22–16 Select Server Security Policies .. 22-25
22–17 Conflicting Entitlements ... 22-50
22–18 Resource Provisioning Details ... 22-51
22–19 SoD Check Result in Request Details.. 22-51
23–1 Reconciliation Architecture .. 23-6
23–2 Reconciliation Rules Form.. 23-18
23–3 The <matchingRule> Tag Element.. 23-35
27–1 Plug-ins and Event Handlers ... 27-2
27–2 Exporting Plug-ins ... 27-9

xxxiv

28–1 Orchestration Stages .. 28-3
28–2 Exporting Plug-ins ... 28-18
28–3 Event Handler Manager Form ... 28-20
28–4 Data Object Manager Form .. 28-22
30–1 Oracle Identity Manager UI Libraries... 30-2
30–2 Oracle Web Composer Architecture ... 30-4
30–3 The Object Library in WebCenter Composer .. 30-17
30–4 The Structure Pane... 30-18
30–5 The Component Properties Dialog Box .. 30-19
30–6 Panel Selection for Adding Link.. 30-27
30–7 The Add Content Dialog Box ... 30-27
30–8 The Child Components Tab ... 30-29
30–9 Unauthenticated Page Links .. 30-30
30–10 The Add Box Above Icon on the Toolbar ... 30-36
30–11 A New Container ... 30-37
30–12 The Add Content Dialog Box ... 30-37
30–13 The Lookup.Weblciient.Questions Lookup Code... 30-38
30–14 Challenge Question on the Forgot Password Page... 30-40
32–1 Sample Approval Policy Rule .. 32-5
34–1 Notification Configuration Test... 34-8
35–1 Callback Service Process ... 35-4
38–1 Deployment Manager Import Failure... 38-14
39–1 Oracle Identity Manager Reports Architecture ... 39-2

xxxv

List of Tables

3–1 Organization-Scoped Admin Roles and Permissions... 3-4
3–2 Global Admin Roles and Permissions ... 3-13
3–3 Default Authorization Policies.. 3-21
3–4 OES Application Roles and Policies... 3-43
3–5 Application Role Mapping .. 3-45
3–6 Mapping Between Legacy and New Roles ... 3-45
3–7 Admin Roles to View or Search Users in Scoped Organizations..................................... 3-48
3–8 Admin Roles to Modify Users in Scoped Organizations .. 3-49
3–9 Admin Roles to Control the View of Links ... 3-49
3–10 Admin Roles for Requesting an Account in an Application Instance............................. 3-51
3–11 Admin Roles for Modifying an Account ... 3-51
3–12 Admin Roles for Changing User Password .. 3-51
3–13 Admin Roles for Permissions on Selected Users.. 3-52
3–14 Admin Roles for Permissions on Selected Accounts ... 3-52
3–15 Request-Based Operations... 3-52
4–1 Fields of the IT Resources Type Definition Form.. 4-6
4–2 Fields of the Rule Designer Form .. 4-9
4–3 Fields of the Edit Rule Element Dialog Box .. 4-12
4–4 Information in the Rule Designer Table .. 4-15
4–5 Fields of the Resource Objects Form .. 4-16
4–6 Rule Conditions and Possible Rule Actions.. 4-27
5–1 Fields of the Email Definition Form.. 5-3
5–2 Fields of the Process Definition Form ... 5-6
5–3 Fields of the General Tab of the Editing Task Dialog Box .. 5-15
5–4 Fields of the Assignment Tab of the Editing Task Window... 5-30
6–1 Fields of the Form Designer Form... 6-2
6–2 Fields of the Additional Columns Tab.. 6-5
6–3 Fields of the Add Property Dialog Box.. 6-12
6–4 Fields of the Add Property Dialog Box.. 6-14
7–1 Fields of the Lookup Definition Form .. 7-2
8–1 Items on the Map To Menu ... 8-14
8–2 Options in the Object Instance Selection Window... 8-17
8–3 Regions of the Add an Adapter Factory Task Window.. 8-18
8–4 Regions of the Add an Adapter Factory Task Window.. 8-23
8–5 Types of Operands.. 8-29
8–6 Actions Resulting from Particular Conditional Statements ... 8-31
8–7 Regions of the Add Adapter Factory Logic Task Window... 8-31
8–8 Add Adapter Factory Logic Task Parameters for FOR Conditional Statement 8-32
8–9 Fields of the Data Mapping for Variable Dialog Box... 8-40
8–10 Fields of the Edit Data Mapping for Variable Dialog Box .. 8-44
8–11 Fields of the Prepopulate Adapter Dialog Box... 8-47
8–12 Fields of the Map Adapter Variables WIndow... 8-48
8–13 Fields of the Data Mapping for Variable WIndow .. 8-53
8–14 Fields of the Error Message Definition Form.. 8-68
9–1 Properties in the ConnectorServer.properties File... 9-26
9–2 Options Supported by the ConnectorServer.bat Script... 9-27
9–3 Options Supported by the connectorserver.sh Script.. 9-28
10–1 Form Designer Fields ... 10-33
11–1 Form Designer Fields ... 11-17
12–1 Lookup Configuration for Connector .. 12-3
12–2 User Management Lookup Configuration for Connector .. 12-4
12–3 Reconciliation Transformation Lookup... 12-7
12–4 Reconciliation Validation Lookup.. 12-8

xxxvi

12–5 Lookup.CONNECTOR_NAME.UM.Recon.Defaults.Trusted Attriburtes..................... 12-8
12–6 IT Resource Parameter ... 12-9
12–7 Provisioning Lookup Attributes... 12-11
12–8 Configuration Lookup for Connector .. 12-12
12–9 ICF Common Reconciliation Parameters .. 12-14
12–10 Common Group Lookup Parameters .. 12-15
12–11 Attribute Mapping for Lookup.CONNECTOR_NAME.UM.ReconAttrMap.............. 12-16
12–12 Identity Connector Lookup Reconciliation Attributes .. 12-17
12–13 Identity Connector Target Search Reconciliation Attributes.. 12-18
12–14 Identity Connector Target Search Delete Reconciliation Attributes 12-18
12–15 Identity Connector Target Sync Reconciliation Attributes ... 12-19
12–16 Keywords and Syntax for the Filter Attribute .. 12-21
17–1 Validation Providers... 17-21
18–1 Value Objects Used During Provider Operations.. 18-9
18–2 Logging Modules Specific to the Supported Provider Types .. 18-10
18–3 Elements of the Provider XML File .. 18-11
19–1 Sample Entries for the Step 1: Provide Basic Information Page....................................... 19-5
19–2 Sample Entries for the Step 2: Specify Parameter Values Page...................................... 19-11
19–3 Display of Data Sets and Fields Under Various Input Conditions................................ 19-18
19–4 Lookup Properties .. 19-23
19–5 Methods of ResourceConnection... 19-35
19–6 ITResource Parameters.. 19-35
19–7 Methods of the GenericPool Interface... 19-37
20–1 Common Errors Encountered During Reconciliation ... 20-12
20–2 Common Errors Encountered During Provisioning.. 20-13
21–1 Predined SOA Composites .. 21-5
21–2 Default Request Datasets Shipped with Oracle Identity Manager................................ 21-50
22–1 Variables to Assign ... 22-20
22–2 Troubleshooting SoD Check.. 22-55
23–1 Elements in the Reconciliation Profile XML ... 23-9
23–2 Reconciliation Status Events.. 23-13
23–3 Action Rules... 23-15
23–4 Transformation Properties... 23-20
23–5 Troubleshooting Reconciliation .. 23-30
23–6 Troubleshooting Reconciliation Profile Configuration Failures 23-33
24–1 Structure of a Sample Database Table ... 24-11
24–2 Structure of a Sample Database Table ... 24-19
24–3 Structure of a Sample Child Database Table... 24-19
24–4 Structure of a Sample Database Table ... 24-26
24–5 Structure of the OIM_BLKLD_LOG Table .. 24-30
26–1 Properties of the scheduledTasks Element ... 26-7
26–2 Properties of the task Element .. 26-7
26–3 Properties of the name Element.. 26-8
26–4 Properties of the class Element ... 26-8
26–5 Properties of the description Element.. 26-9
26–6 Properties of the retry Element ... 26-9
26–7 Properties of the parameters Element.. 26-9
26–8 Properties of the string-param Element... 26-10
26–9 Properties of the number-param Element... 26-10
26–10 Properties of the boolean-param Element... 26-11
26–11 Variables and Constants for Creating Custom Scheduled Tasks 26-11
27–1 Plug-in Points .. 27-4
28–1 Methods to Implement Event Handlers .. 28-6
28–2 SPIs to Write Custom Event Handlers... 28-10
28–3 Typical Sub-elements within the eventhandlers Element... 28-11

xxxvii

28–4 Typical Attributes of Sub-elements within the eventhandlers Element 28-12
28–5 Troubleshooting Event Handlers ... 28-18
28–6 Fields of the Event Handler Manager Form ... 28-20
28–7 Fields of the Data Object Manager Form... 28-22
30–1 Toubleshooting Concurrency Issues .. 30-7
30–2 Entity Artifacts for Customization ... 30-20
30–3 EL Expressions in User Context.. 30-21
30–4 EL Expressions in RequestFormContext ... 30-22
30–5 ADF Validators.. 30-25
30–6 Properties that Determine the Number of Menus on a Search Page............................. 30-41
31–1 Commonly Used Services.. 31-3
31–2 Mapping Between Legacy and New Services... 31-4
32–1 Identity Creation with addRequest ... 32-6
32–2 Role Membership Management with modifyRequest ... 32-6
32–3 Role Membership Deletion with deleteRequest .. 32-7
32–4 Check Request Status .. 32-7
32–5 Obtaining Targets with listTargets.. 32-8
32–6 Suspending a User with suspendRequest .. 32-8
32–7 Re-enabling a User with resumeRequest.. 32-9
32–8 Checking if User Has Been Suspended with activeRequest... 32-9
32–9 Checking Username Validity with resumeRequest.. 32-10
32–10 Obtaining a Username with suggestUsername... 32-10
32–11 Identity/Role Lookup using lookupRequest.. 32-11
32–12 Reseting the user password with resetPasswordRequest... 32-12
32–13 Lookup Username policy details with lookupUsernamePolicy 32-13
32–14 Cancel a Request with cancelRequest .. 32-13
32–15 Executing Batch Request with batchRequest .. 32-14
32–16 Identity PSO Attributes... 32-16
32–17 Valid Values of employeeType.. 32-18
32–18 PSO Role Attributes... 32-19
32–19 Preference Attributes.. 32-22
33–1 Task Flows and Direct URLs... 33-1
35–1 Oracle Identity Manager / Callback Service User Attribute Mapping........................... 35-5
35–2 Oracle Identity Manager / Callback Service Role Attribute Mapping........................... 35-6
35–3 Callback Initiated Events ... 35-6
35–4 Trobleshooting Callback Service .. 35-14
36–1 Oracle Identity Manager Artifacts and Type of Utilities .. 36-2
38–1 Parameter Import Rules ... 38-11
38–2 Troubleshooting Deployment Manager .. 38-15
38–3 Troubleshooting Migration of Policies .. 38-19
A–1 Rule Elements to Create Oracle Identity Manager Rules.. A-1
A–2 Variables to Create Templates .. A-8
A–3 Properties Associated with Data Types for Creating Oracle Identity Manager Forms A-10
A–4 Service Account Management Tasks and Corresponding APIs A-15
A–5 Oracle identity Manager Actions, Conditions, and Results ... A-17

xxxviii

xxxix

Preface

The Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager describes
how to develop and customize various components and features of Oracle Identity
Manager.

Audience
This guide is intended for developers who use Oracle Identity Manager development
tools to customize the product according to the requirements of an organization. The
customization involves using APIs, configuring requests and approval workflows,
developing connectors by using Identity Connector Framework, Generic Technology
Connector, or Adapter Factory, and customizing the user interface.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, refer to the following documents:

■ Oracle Fusion Middleware Administrator's Guide for Oracle Identity Manager

■ Oracle Fusion Middleware User's Guide for Oracle Identity Manager

■ Oracle Fusion Middleware Installation Guide for Oracle Identity and Access Management

■ Oracle Fusion Middleware Enterprise Deployment Guide for Oracle Identity Management

■ Oracle Fusion Middleware Suite Integration Overview

■ Oracle Fusion Middleware User Reference for Oracle Identity Management

■ Oracle Fusion Middleware High Availability Guide

■ Oracle Fusion Middleware Administrator's Guide for Oracle Access Management

xl

■ Oracle Fusion Middleware Administrator's Guide for Oracle Adaptive Access Manager

■ Oracle Fusion Middleware Developer's Guide for Oracle Adaptive Access Manager

■ Oracle Fusion Middleware Administrator's Guide for Oracle Identity Navigator

■ Oracle Fusion Middleware Authorization Policy Manager Administrator's Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part I
Part I Concepts

This part provides concepts related to Oracle Identity Manager architecture and
security.

It contains the following chapters:

■ Chapter 1, "Product Overview"

■ Chapter 2, "Product Architecture"

■ Chapter 3, "Security Architecture"

1

Product Overview 1-1

1Product Overview

[2]

Oracle Identity Manager is an enterprise identity management system that manages
user's access privileges in enterprise IT resources by controlling users, roles, accounts,
and entitlements. It provides the functionalities for provisioning, identity and role
administration, approval and request management, policy-based entitlement
management, technology integration, and audit and compliance automation. Oracle
Identity Manager is designed to administer intranet as well as extranet users, roles,
and organizational access privileges across a company's resources throughout the
entire identity management life cycle.

Oracle Identity Manager platform automates access rights management, security, and
provisioning of IT resources. It connects users to resources, and revokes and restricts
unauthorized access to protect sensitive corporate information.

This chapter contains the following sections:

■ Key Features and Benefits

■ System Requirements and Certification

1.1 Key Features and Benefits
Oracle Identity Manager architecture is flexible and scalable, and provides the
following features:

■ Ease of Deployment

■ Simplified UI Customization

■ Simplified Configuration

■ Flexibility and Resilience

■ Maximum Reuse of Existing Infrastructure

■ Extensive User Management

■ Web-Based User Self-Service

■ Modular and Scalable Architecture

■ Based on Leading Software Development Standards

■ Powerful and Flexible Process Engine

■ Built-In Change Management

■ Workflow and Policy

Key Features and Benefits

1-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Audit and Compliance Management

■ Integration Solutions

■ User Provisioning

1.1.1 Ease of Deployment
Oracle Identity Manager provides a flexible Deployment Manager utility to assist in
the migration of integration and configuration information between environments.
The utility exports integration and configuration information as XML files. These files
are then imported into the destination environment, which can be staging or
production. You can use the XML files to archive configurations and maintain
versions, as well as replicate integrations.

The Deployment Manager provides you with the flexibility to select what to import
and export. It also helps you to identify data object dependencies during both import
and export steps. This flexibility enables you to merge integration work done by
multiple people and to ensure the integrity of any migration.

1.1.2 Simplified UI Customization
Oracle Identity Manager provides a browser-based customization framework that
does not require writing codes or relying on developers. The interface is based on
Application Development Framework (ADF), which ensures that all customizations
are consistent and safe from upgrades and patches. The browser-based customization
can be performed by using the Oracle Web Composer.

Oracle Identity Manager also provides business-friendly user personalization by
enabling users to save and reuse frequently-searched items, configure columns in the
search results table, and sort and filter data.

1.1.3 Simplified Configuration
Oracle Identity Manager abstracts and simplifies the configuration complexities
through a business user-friendly extension framework for all entities. This allows
users to extend the user, role, organization, catalog, and resource schemas by using the
Form Designer. In addition, Web browser-based management of disconnected
applications is allowed instead of cumbersome configuration in the Design Console.
The SOA Tasklist embedded in Oracle Identity Manager simplifies disconnected
application fulfillment, in which the provisioning of a disconnected resource is
performed manually. To do so, SOA Tasklist leverages additional features of the SOA
Tasklist, such as reassign or suspend manual application fulfillment.

1.1.4 Flexibility and Resilience
You can deploy Oracle Identity Manager in single or multiple server instances.
Multiple server instances provide optimal configuration options, supporting
geographically dispersed users and resources for increased flexibility, performance,
and control. The Java 2 Enterprise Edition (J2EE) application server model of Oracle
Identity Manager also provides scalability, fault tolerance, redundancy, failover, and
system load balancing. As deployments grow, moving from a single server to a
multiserver implementation is a seamless operation.

Key Features and Benefits

Product Overview 1-3

1.1.5 Maximum Reuse of Existing Infrastructure
To lower cost, minimize complexity, and leverage existing investments, Oracle Identity
Manager is built on an open architecture. This allows Oracle Identity Manager to
integrate with and leverage existing software and middleware already implemented
within the IT infrastructure of an organization. For example, if an implementation
requires integrating with an existing customer portal, then the advanced APIs of
Oracle Identity Manager offer programmatic access to a comprehensive set of system
functions. This allows IT staff to customize any part of its Oracle Identity Manager
provisioning implementation to meet the specific needs of the organization.

1.1.6 Extensive User Management
Oracle Identity Manager enables you to define unlimited user organizational
hierarchies and roles. It supports inheritance, customizable user ID policy
management, password policy management, and user access policies that reflect
customers' changing business needs. It also helps you to manage application
parameters and entitlements, and to view a history of resource allocations. In addition,
it provides delegated administration with comprehensive permission settings for user
management.

Oracle Identity Manager contains a Web-based customizable Oracle Identity Manager
Self Service that helps you extensively in user management.

1.1.7 Web-Based User Self-Service
Oracle Identity Manager contains a customizable Web-based, user self-service portal.
This portal enables management of user information, self registration, changing
passwords, resetting forgotten passwords, retrieving forgotten user login, requesting
available applications, reviewing and editing available entitlements, and initiating or
reacting to workflow tasks.

1.1.8 Modular and Scalable Architecture
Oracle Identity Manager is built on Java EE architecture. The J2EE application server
model of Oracle Identity Manager provides scalability, fail over, load-balancing, and
Web deployment. It is based on an open, standards-based technology and has a
three-tier architecture (the client application, an Oracle Identity Manager supported
J2EE-compliant Application Server, and an ANSI SQL-compliant database). Oracle
Identity Manager can provision LDAP-enabled and non-LDAP-enabled applications.

Java EE is a standard, robust, scalable, and secure platform that forms the basis for
many enterprise applications. Oracle Identity Manager runs on leading Java EE
compliant application server platforms, including Oracle WebLogic, to take advantage
of the performance and scalability features inherent in these servers. Java EE defines a
set of standardized, modular components, provides a complete set of services to those
components, and handles many details of the application behavior.

The application server, on which Oracle Identity Manager runs, provides the life-cycle
management, security, deployment, and run-time services to the logical components
that constitute the Oracle Identity Manager application. These services include:

■ Scalable management of resources through clustering and failover: A cluster in
Java EE architecture is defined as a group of two or more Java EE compliant Web
or application servers that cooperate with each other through transparent object
replication mechanisms to ensure that each server in the group presents the same
content. Each server or node in the cluster is identical in configuration and acts as
a single virtual server. Any Java EE server in the cluster can handle client requests

Key Features and Benefits

1-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

directed to this virtual server independently, which gives the impression of a
single entity hosting the Java EE application in the cluster.

High availability refers to the capability to ensure that applications hosted in the
middle tier remain consistently accessible and operational to the clients. This is
achieved through the redundancy of multiple Web and application servers within
the cluster, and is implemented by the failover mechanisms of the cluster. If an
application component fails to process its task, then the cluster's failover
mechanism reroutes the task and any supporting information to a copy of the
object on another server to continue the task. Oracle Identity Manager supports a
clustered environment. This includes ensuring that the EJBs and the Value Objects
used to store data support serialization for the object replication to work.

■ Transaction management through load balancing: Load balancing refers to the
capability to optimally partition inbound client processing requests across all the
Java EE servers that constitute a cluster based on certain factors, such as capacity,
availability, response time, current load, historical performance, and
administrative priorities placed on the clustered servers. A load balancer, which
can be based on software or hardware, sits between the Internet and the physical
server cluster, acting as a virtual server. When each client request arrives, the load
balancer decides how the Java EE server satisfies that request.

■ Security management: Oracle Identity Manager architecture relies on the
application server for certain security services as part of its overall security
infrastructure. In addition, Oracle Identity Manager leverages the Java EE security
framework to provide a secure application environment. It also has a flexible
permission model to provide control over the various functions within the
application

■ Messaging: The basic concept behind messaging is that distributed applications
can communicate by using a self-contained package of business data and routing
headers. These packages are called messages. While RMI and HTTP rely on a
two-way active communication between a client and a server, messaging relies on
two or more interested parties communicating asynchronously through a
messaging server without waiting for a response. Java Messaging Service (JMS) is
a wrapper API incorporated in the J2EE standard as a way to standardize
messaging functionality. All standard application servers provide their own JMS
server implementations as a part of their service offerings.

1.1.9 Based on Leading Software Development Standards
Oracle Identity Manager incorporates leading industry standards. For example, Oracle
Identity Manager components are fully based on a J2EE architecture, so customers can
run them from within their standard application server environments. Complete J2EE
support results in performance and scalability benefits while aligning with existing
customer environments to leverage in-house expertise.

Oracle develops its identity management products on a foundation of current and
emerging standards. For example, Oracle is a Management Board member of Liberty
Alliance, and incorporates Liberty Alliance developments in its solutions. Oracle
participates in the Provisioning Services Technical Committee (PSTC), which operates
under the auspices of the Organization for the Advancement of Structured
Information Standards (OASIS).

1.1.10 Powerful and Flexible Process Engine
With Oracle Identity Manager, you can create business and provisioning process
models in easy-to-use applications. Process models include support for approval

Key Features and Benefits

Product Overview 1-5

workflows and escalations. You can track the progress of each provisioning event,
including the current status of the event and error code support. Oracle Identity
Manager supports complex, branching, and nested processes with data interchange
and dependencies. The process flow is fully customizable and does not require
programming.

1.1.11 Built-In Change Management
Oracle Identity Manager enables you to package new processes, import and export
existing ones, and move packages from one system to another.

1.1.12 Workflow and Policy
The use of workflow and policy to automate business and IT processes can lead to
improved operational efficiency, enhanced security, and more cost-effective
compliance tracking. Oracle Identity Manager provides the following features in this
category.

Policy Management
Oracle Identity Manager enables policy-based automated provisioning of resources
with fine-grained entitlements. For any set of users, administrators can specify access
levels for each resource to be provisioned, granting each user only the exact level of
access required to complete the job. These policies can be driven by user roles or
attributes, enabling implementation of role-based access control as well as
attribute-based access control. Effective blending of role-based and attribute-based
policies is key to a scalable and manageable organization provisioning solution.

A request goes through multiple approvals before it is executed. When the request is
submitted, it must acquire approvals at different levels. An approval in the system can
be configured by using an approval policy. An approval policy defines the approval
process to be invoked and the approval rules associated with the policy. These
approval rules help the request engine to select the approval process. Business analysts
can define approval policies and approval rules.

Workflow Management
Oracle Identity Manager supports the separation of approval and provisioning
workflows. An approval workflow enables an organization to model its preferred
approval processes for managing resource access requests. A provisioning workflow
enables an organization to automate IT tasks for provisioning resources with the most
complex of provisioning procedures.

The separation of these two workflows empowers business and IT process owners to
manage work efficiently with minimum cross-process interferences. It also enables an
organization to leverage existing workflows already deployed in systems such as a
help desk and HRMS. Oracle Identity Manager provides the Workflow Visualizer that
allows business users, administrators, and auditors to visualize task sequences and
dependencies to understand process flow and the Workflow Designer to edit and
manage the process flow.

Dynamic Error Handling
The error-handling capability of Oracle Identity Manager enables you to handle
exceptions that occur during provisioning. Frequent problems, for example, absence of
resources, do not stop the entire provisioning transaction or cause it to fail. Business
logic defined within the provisioning workflow offers customized fail-safe capabilities
within an Oracle Identity Manager implementation.

Key Features and Benefits

1-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Transaction Integrity
Based on embedded state management capabilities, Oracle Identity Manager provides
the high level of transaction integrity required by other mission-critical organization
systems. Oracle Identity Manager features a state engine with rollback and recovery
capabilities. When a provisioning transaction fails or is stopped, the system is able to
recover and roll back to the last successful state or reroute to a different path, in
accordance with predefined rules.

Real-Time Request Tracking
To maintain better control and provide improved visibility into all provisioning
processes, Oracle Identity Manager enables users and administrators to track request
status in real time, at any point during a provisioning transaction.

1.1.13 Audit and Compliance Management
Identity management forms a key component in any audit compliance solution of an
organization. Oracle Identity Manager helps an organization to minimize risk and
reduces the cost of meeting internal and external governance and security audits. This
section discusses the features of Oracle Identity Manager that are listed in the audit
and compliance management category.

Identity Reconciliation
Reconciliation is one of the significant capabilities of Oracle Identity Manager that
enables it to monitor and track the creation, updation, and deletion of account across
all managed resources. The process of reconciliation is performed by the reconciliation
engine. If Oracle Identity Manager detects any accounts or changes to user access
privileges are affected beyond its control, then the reconciliation engine can
immediately take corrective action, such as undo the change or notify you. Oracle
Identity Manager also helps you to detect and map existing accounts in target
resources. This helps in the creation of an organization-wide identity and access profile
for each employee, partner, or customer user.

Rogue and Orphan Account Management
A rogue account is an account created "out of process" or beyond the control of the
provisioning system. An orphan account is an operational account without a valid
owner. These accounts represent serious security risks to an organization. Oracle
Identity Manager can monitor rogue and orphan accounts continuously. By combining
denial access policies, workflows, and reconciliation, an organization can perform the
required corrective actions when such accounts are discovered, in accordance with
security and governance policies.

Service Accounts
Oracle Identity Manager can also manage the life cycle of special service accounts, also
known as administrator accounts. These accounts have special life cycle requirements
that extend beyond the life cycle of an assigned user and across the life cycles of
multiple assigned users. Proper management of service accounts can help to eliminate
another source of potential orphan accounts.

Comprehensive Reporting and Auditing
Oracle Identity Manager reports on both the history and the current state of the
provisioning environment. Some of the identity data captured by Oracle Identity
Manager includes user identity profile history, role membership history, user resource
access, and fine-grained entitlement history. Oracle Identity Manager also captures

Key Features and Benefits

Product Overview 1-7

data generated by its workflow, policy, and reconciliation engines. By combining this
data along with identity data, an organization has all the required data to address any
identity and access-related audit inquiry.

Attestation
Attestation, also referred to as recertification, is a key part of Sarbanes-Oxley
compliance and a highly recommended security best practice. Organizations meet
these attestation requirements mostly through manual processes based on spreadsheet
reports and e-mails. These manual processes tend to be fragmented, are difficult and
expensive to manage, and have little data integrity and auditability.

Oracle Identity Manager offers an attestation feature that can be deployed quickly to
enable an organization-wide attestation process that provides automated report
generation, delivery, and notification. Attestation reviewers can review fine-grained
access reports within an interactive user interface that supports fine-grained certify,
reject, decline, and delegate actions. All report data and reviewer actions are captured for
future auditing needs. Reviewer actions can optionally trigger corrective action by
configuring the workflow engine of Oracle Identity Manager.

Identity Certification
Identity certification enables Oracle Identity Manager to offer the following features in
a single product:

■ Access-request: Request privileges from a catalog, obtain approvals

■ Fulfillment: Automated or manual provisioning

■ Access-review: Certification of entities in Oracle Identity Manager

Identity certification also provides the following:

■ Delegation of individual line-items within a certification allows a reviewer to
spread the work among several people (who can work in parallel). This allows
users who are responsible for reviewing access within an enterprise to spread the
workload, and complete the work quickly.

■ Two-phased review allows a single certification to combine the two key
perspectives that inform access-review, which are:

– The business reviewer, typically a Line-of-Business (LOB) manager

– A technical reviewer, typically an IT expert or an application owner

Note: The attestation feature has been deprecated in Oracle Identity
Manager 11g Release 2 (11.1.2.1.0). Attestation has been replaced by
identity certification. See the following sections for information about
identity certification:

■ "Managing Tasks" and "Using Identity Certification" in the Oracle
Fusion MIddleware User's Guide for Oracle Identity Manager

■ "Managing Identity Certification" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Manager

However, the attestation feature is available if you upgrade from
Oracle Identity Manager Release 9.x or 11g Release 1 (11.1.1) or 11g
Release 2 (11.1.2).

Key Features and Benefits

1-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

1.1.14 Integration Solutions
A scalable and flexible integration architecture is critical for the successful deployment
of organization provisioning solutions. Oracle Identity Manager offers a proven
integration architecture and predefined connectors for fast and low-cost deployments.

Adapter Factory
Integrating most provisioning systems with managed resources is not easy.
Connecting to proprietary systems might be difficult. The Adapter Factory eliminates
the complexity associated with creating and maintaining these connections. The
Adapter Factory provided by Oracle Identity Manager is a code-generation tool that
enables you to create Java classes.

The Adapter Factory provides rapid integration with commercial or custom systems.
Users can create or modify integrations by using the graphical user interface of the
Adapter Factory, without programming or scripting. When connectors are created,
Oracle Identity Manager repository maintains their definitions, creating
self-documenting views. You use these views to extend, maintain, and upgrade
connectors.

Predefined Connectors
Oracle Identity Manager offers an extensive library of predefined connectors for
commercial applications and other identity-aware systems that are used widely. By
using these connectors, an organization can get a head start on application integration.
Each connector supports a wide range of identity management functions. These
connectors use the most appropriate integration technology recommended for the
target resource, whether it is proprietary or based on open standards. These connectors
enable out-of-the-box integration between a set of heterogeneous target systems and
Oracle Identity Manager. Because the connectors provide a set of components that
were originally developed by using the Adapter Factory, you can further modify them
with the Adapter Factory to enable the unique integration requirements of each
organization.

Generic Technology Connectors
If you do not need the customization features of the Adapter Factory to create your
custom connector, you can use the Generic Technology Connector (GTC) feature of
Oracle Identity Manager to create the connector.

Identity Connectors
The Identity Connector Framework (ICF) decouples the connectors from Oracle
Identity Manager. As a result, connectors can be used with any product. Identity
connectors are designed to separate the implementation of an application from the
dependencies of the system that the application is attempting to connect to.

1.1.15 User Provisioning
Provisioning provides outward flow of user information from Oracle Identity Manager
to a target system. Provisioning is the process by which an action to create, modify, or
delete user information in a resource is started from Oracle Identity Manager and
passed into the resource. The provisioning system communicates with the resource
and specifies changes to be made to the account.

Provisioning includes the following:

■ Automated user identity and account provisioning: This manages user identities
and accounts in multiple systems and applications. For example, when an

System Requirements and Certification

Product Overview 1-9

employee working in the payroll department is created in the human resources
system, accounts are also automatically created for this user in the e-mail,
telephone, accounting, and payroll reports systems.

■ Workflow and policy management: This enables identity provisioning.
Administrators can use interfaces provided by provisioning tools to create
provisioning processes based on security policies.

■ Reporting and auditing: This enables creating documentation of provisioning
processes and their enforcement. This documentation is essential for audit,
regulatory, and compliance purposes.

■ Attestation: This enables administrators to confirm users' access rights on a
periodic basis.

■ Access deprovisioning: When the access for a user is no longer required or valid in
an organization, Oracle Identity Manager revokes access on demand or
automatically, as dictated by role or attribute-based access policies. This ensures
that a user's access is promptly terminated where is it no longer required. This is
done to minimize security risks and prevent paying for access to costly resources,
such as data services.

1.2 System Requirements and Certification
Before deploying and using Oracle Identity Manager, you must ensure that your
environment meets the minimum installation requirements.

The following URL contains information about supported installation types,
platforms, operating systems, databases, JDKs, and third-party products for Oracle
Fusion Middleware:

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certific
ation-100350.html

System Requirements and Certification

1-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

2

Product Architecture 2-1

2Product Architecture

[3]

The architecture of Oracle Identity Manager provides a number of compelling
technical benefits for deploying a provisioning solution as part of identity and access
management. Oracle Identity Manager has a flexible architecture that can handle IT
and business requirements without requiring changes to existing infrastructure,
policies, or procedures.

Oracle Identity Manager architecture is described in the following sections:

■ How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

■ System Components

2.1 How Oracle Identity Manager Works: The Tiers of Oracle Identity
Manager

Oracle Identity Manager is based on the n-tier J2EE application architecture. Oracle
Identity Manager architecture contains the following tiers:

■ Presentation Tier

■ Business Services Tier

■ Middleware Tier

■ The Data Tier

Figure 2–1 illustrates Oracle Identity Manager architecture.

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

2-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 2–1 Oracle Identity Manager Architecture

2.1.1 Presentation Tier
The Presentation tier consists of three clients: Oracle Identity Self Service, Oracle
Identity System Administration, and Oracle Identity Manager Design Console.

Oracle Identity Self Service is a Web-based thin client that can be accessed from any
Web browser. This Web client provides user self-service and delegated administration
features in a single interface that serve most of the users of Oracle Identity Manager.

Oracle Identity System Administration is a Web-based thin client that provides
administrative and system management functions.

Oracle Identity Manager Design Console provides system configuration and
development capabilities, including form, workflow design, and adapter creation and
management. The Design Console is implemented as a Java Swing client that
communicates directly with the Business Services layer in the application. You can
access Oracle Identity Manager Design Console by using a desktop Java client.

Oracle Identity manager interfaces support a highly sophisticated delegated
administration model, guaranteeing that users can only work on those parts of the
application configuration for which they are authorized.

In many enterprises, there is a requirement for the provisioning system to support a
custom developed client. Some of the requirements that drive this are:

■ Integration of the client into an existing enterprise portal and adherence to
enterprise portal standards

■ Creation of custom flows for user interaction

■ Creation of custom pages built around unique requirements from the provisioning
system

To support customization, Oracle Identity Manager exposes the bulk of the necessary
functionality via its published public APIs. The client environment for Oracle Identity
Manager is customizable via Java APIs.

2.1.2 Business Services Tier
The Business Services Tier is implemented as an Enterprise JavaBeans (EJB)
application. The core functionality for Oracle Identity Manager platform is

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

Product Architecture 2-3

implemented in Java using a highly modular, object-oriented methodology. This
makes Oracle Identity Manager flexible and extensible. The Business Services Tier for
Oracle Identity Manager includes the following services and capabilities:

■ The Core Services that comprise the core of the business features offered by Oracle
Identity Manager, such as the User Management Service, the Policy Management
Services, and the Provisioning and Reconciliation Services.

■ The API Services that describe the APIs supported by Oracle Identity Manager
that allow custom clients to integrate with Oracle Identity Manager. This includes
a rich set of APIs that expose the business functionality of Oracle Identity Manager
for use by custom clients, in product customization, and in plug-in and adapter
development.

■ The Integration Services based on the Adapter Factory and Connector Framework,
which dynamically generates integration code based on the metadata definition of
the adapters.

■ The Platform Services that are crucial to the business features offered by Oracle
Identity Manager, such as the Request Management Service, the Entity Manager
Service, and the Scheduler Service.

The Business Services Tier is described in the following sections:

■ The API Services

■ Integration Services

■ Platform Services

2.1.2.1 The API Services
The API Services describe the APIs supported by Oracle Identity Manager that allow
custom clients to integrate with Oracle Identity Manager. This includes a rich set of
APIs that expose the business functionality of Oracle Identity Manager for use by
custom clients, in product customization, and in plug-in and adapter development.

The API Services consist of:

■ SPML APIs: Service Provisioning Markup Language (SPML) is a standard for
managing the provisioning and allocation of identity information and system
resources within and between organizations. Oracle Identity Manager supports a
set of SPML-based Web services that expose identity administration functionality
to the clients. The APIs provide support for:

– Adding, modifying, and deleting identities

– Adding, modifying, and deleting roles

– Adding and deleting role memberships

These APIs support requests coming into Oracle Identity Manager for
administration purposes, which is distinct and separate from SPML as the protocol
used to integrate with provisioning targets.

■ EJB APIs: Highly granular access to the functionality of the platform is via a set of
EJB. These session beans are the basis for functionality implemented in Oracle
Identity Manager Web application clients. It is also the interface that custom clients
can use to access Oracle Identity Manager capabilities.

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

2-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

2.1.2.2 Integration Services
A scalable and flexible integration architecture is critical for the successful deployment
of provisioning solutions. Oracle Identity Manager offers an integration architecture
for fast and low-cost deployments.

Oracle Identity Manager integration services provide all the components required to
support the development, deployment, and maintenance of connectors. The
integration services includes:

■ Connector Framework

■ Identity Connectors

■ Adapter Factory

■ Generic Technology Connector

■ Remote Manager

2.1.2.2.1 Connector Framework

Oracle Identity Manager connectors are packaged solutions that are used to integrate
with target applications for the purposes of managing identities in those applications.
Examples of such target applications are Microsoft Active Directory or Oracle
E-Business Suite. A connector can be predefined by Oracle for particular target
systems or can be custom developed.

Because a predefined connector is designed specifically for the target application, it
offers the quickest integration method. These connectors support popular business
applications such as Oracle eBusiness Suite, PeopleSoft, Siebel, JD Edward and SAP, as
well as technology applications such as Active Directory, Java Directory Server, UNIX,
databases, and RSA ClearTrust. Predefined connectors offer the quickest integration
alternative because they are designed specifically for the target application. They use
integration technologies recommended by target and are preconfigured with
application specific attributes.

If predefined connectors does not use integration technologies recommended by
target, then a custom connector can be developed. The Adapter Factory tool in Oracle
Identity Manager Design Console provides a definitional user interface that facilitates
such custom development efforts without coding or scripting.

A connector contains:

■ Multiple connector-specific Oracle Identity Manager entities such as resource
objects, data forms, provisioning workflows, and adapters

■ Target-specific Java libraries that provide the underlying functions such as
connectivity, authentication and user account management

■ Event triggers that wire provisioning operations to both identity profile changes
and policy operations

The connector framework combines all of these components together into a functional
connector that is run at appropriate times, either manually based on user interaction or
based on system triggering. It defines the various operational triggers, policy triggers,
and hooks that allow the connector operation to be tailored to specific requirements.

2.1.2.2.2 Identity Connectors

Connectors are deployed with Oracle Identity Manager, which affects the portability of
the connectors across various Oracle Identity Manager releases. The Identity
Connector Framework (ICF) decouples the connectors from Oracle Identity Manager.

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

Product Architecture 2-5

As a result, connectors can be used with any product. Identity connectors are designed
to separate the implementation of an application from the dependencies of the system
that the application is attempting to connect to.

Identity connectors have the following components:

■ The identity connector framework: Provides a container that separates the
connector bundle from the application. The framework provides many common
features that developers would otherwise need to implement on their own. For
example, the framework can provide connection pooling, buffering, timeouts, and
filtering. The identity connector framework is separated into two parts:

– The API: Applications use the API to call connectors

– The SPI: Developers can create connectors by implementing the SPI

■ Identity connector bundle: The specific implementation for a given resource
target

■ The connector server (optional): Allows an application to remotely run one or
more connector bundles that are deployed on another system. Connector servers
are available in both Java™ and .NET. The .NET connector server is needed only if
you are using .NET connector bundles, whereas the Java connector server is
available for connector bundles written in Java.

Figure 2–2 shows the ICF architecture:

Figure 2–2 ICF Architecture

Connector SPI
Connector SPI interfaces represent operations supported on a connector. A connector
developer can choose to implement one or more operation interfaces for framing target
system calls. Extension on existing interfaces or creating new interfaces is not
supported. The SPI is broken up into required interfaces, feature-based interfaces, and
operation interfaces such as create, update, delete, and search.

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

2-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ The required interfaces include the
org.identityconnectors.framework.spi.Connector interface and the
org.identityconnectors.framework.spi.Configuration interface. These interfaces
must be implemented in order for the API to understand which class contains the
implementation of the configuration and which contains the implementation of
the operations.

■ The feature-based interfaces are the
org.identityconnectors.framework.spi.AttributeNormalizer and
org.identityconnectors.framework.spi.PoolableConnector interfaces.

■ The operation interfaces determine the features that the connector supports such
as create, delete, or search. See Oracle Fusion Middleware Java API Reference for
Oracle Identity Manager for details.

Connector API
The connector API is responsible for presenting a consistent view of a connector
regardless of the operations it has implemented. For the convenience of the SPI
developer, there are several common features that are provided by default. For most of
these features there is no need for the application developer to handle the APIs, only
configure them. Following is a list of API features:

■ Provide connection pooling to those connectors that require it and avoid the need
for the API to see it, because not all connectors have connections. In addition, if the
connector uses connection pooling, it is not the responsibility of the API developer
to handle the connections, nor dispose of them during error conditions.

■ Provide timeouts to all operations. The API consumer should only configure the
appropriate timeout if the default is unacceptable. Each SPI developer should not
have to implement such a common service and, for this reason, it is implemented
in the framework.

■ Provide search filtering by way of a simple interface that accepts a large variety of
filters. The connector developer only needs to implement whichever filters the
resource natively supports. The rest is handled by the framework.

■ Provide search/sync buffering, allowing queries and updates to be handled in
chunks if need be. The application need not worry about this, as it is handled
within the framework.

■ Provide scripting via Groovy and Boo .NET for connectors. This allows for great
flexibility within a connector, because the framework can run scripts both on the
connector and on the target resource (if supported).

■ The SPI developer has the ability to choose different implementations of an
operation. For instance there are two types of updates. This is hidden from the API
consumer because there is no need for the application developer to call two
different operations that essentially do the same thing. Instead the framework will
figure out which operation the connector supports and make the appropriate calls.

2.1.2.2.3 Adapter Factory

The Adapter Factory is a code-generation tool provided by Oracle Identity Manager. It
enables an Oracle Identity Manager application developer to create Java classes,
known as adapters.

A resource has an associated provisioning process, which in turn has various tasks
associated with it. Each task in turn has an adapter associated to it, which in turn can
connect to the target resource to carry out the required operations.

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

Product Architecture 2-7

An adapter provides the following benefits:

■ It extends the internal logic and functionality of Oracle Identity Manager.

■ It interfaces with any software resource by connecting to that resource with the
help of the API of the resource.

■ It enables the integration between Oracle Identity Manager and an external
system.

■ It can be generated without manually writing code.

■ It can be maintained easily because all the definitions for the adapter are stored in
a repository. This repository can be edited through a GUI.

■ A user in Oracle Identity Manager can retain the domain knowledge about the
integration, while another user can maintain the adapter.

■ It can be modified and upgraded.

The Adapter Factory provides rapid integration with commercial or custom systems.
Users can create or modify integrations by using the graphical user interface of the
Adapter Factory, without programming or scripting. When connectors are created,
Oracle Identity Manager repository maintains the definitions and creates
self-documenting views. You use these views to extend, maintain, and upgrade
connectors.

2.1.2.2.4 Generic Technology Connector

Predefined Oracle Identity Manager connectors are designed for commonly used
target systems such as Microsoft Active Directory and PeopleSoft Enterprise
Applications. The architecture of a predefined connector is based on either the APIs
that the target system supports or the data repository type and schema in which the
target system stores user data.

The use of a predefined connector is the recommended integration method when such
a connector is available for the target system. However, in some instances you might
want to integrate Oracle Identity Manager with a target system that has no
corresponding predefined connector. For example, XYZ Travels Inc. owns a custom
Web-based application that its customers use to request airline fare quotes. Agents,
who are also employees of XYZ Travels, respond to these requests by using the same
application. Customers register themselves to create accounts in this application.
However, XYZ Travels employees need to have accounts auto-provisioned based on
their HR job title. Account management functions, such as create, update, and delete,
of the application are available through Java APIs. There is no predefined connector
available to integrate the custom application with Oracle Identity Manager. Therefore,
you must create the custom connectors that call the Java APIs exposed by the target
application.

To integrate Oracle Identity Manager with a target system that has no corresponding
predefined connector, you can create a custom connector to link the target system and
Oracle Identity Manager. If you do not need the customization features of the Adapter
Factory, then you can create the connector by using the Generic Technology Connector
(GTC) feature of Oracle Identity Manager.

You can quickly and easily build a basic connector without advanced features and
customized behavior by using generic connectivity technologies such as SPML and
JDBC. GTC is a wizard that provides an alternative environment for connector
development to rapidly create all the necessary functional components that make up a
target system connector in Oracle Identity Manager.

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

2-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

The GTC framework provides basic components that are used to rapidly assemble a
custom connector. The reconciliation and provisioning modules of a generic
technology connector are composed of these reusable components that you select.
Each component performs a specific function during provisioning or reconciliation.
The components are:

■ Reconciliation:

– Reconciliation Transport Provider: This provider is responsible for moving the
reconciled data from the target system to Oracle Identity Manager.

– Reconciliation Format Provider: This provider parses the message received
from the target system, which contains the reconciled data, into a data
structure that can be interpreted by the reconciliation engine in Oracle identity
Manager.

– Validation Provider: This provider validates any data received before passing
it on to the reconciliation engine.

■ Provisioning:

– Provisioning Format Provider: This provider converts Oracle identity
Manager provisioning data into a format that is supported by the target
system.

– Provisioning Transport Provider: This provider carries the provisioning
message received from the Provisioning Format Provider to the target system.

Figure 2–3 shows the functional architecture of a generic technology connector.

Figure 2–3 Functional Architecture of a Generic Technology Connector

Generic technology connectors have the following features:

■ Features specific to the reconciliation module are:

– Generic technology connector in trusted source reconciliation: A generic
technology connector can be used for trusted source reconciliation. During
reconciliation in trusted mode, if the reconciliation engine detects new target
system accounts, then it creates corresponding OIM Users. If the reconciliation
engine detects changes to existing target system accounts, then the same
changes are made in the corresponding OIM Users.

Generic Technology Connector

Oracle
Identity

Manager

Provisioning
Format
Provider

Transformation
Providers

Provisioning
Transport
Provider

Provisioning
Staging

Data Sets

Reconciliation
Transport
Provider

Reconciliation
Format
Provider

Validation
Providers

Transformation
Providers

Reconciliation
Staging

Data Sets

Source
Data Sets

Target
System OIM

Data Sets

Provisioning Module

Reconciliation Module

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

Product Architecture 2-9

– Generic technology connector in account status reconciliation: User account
status information is used to track whether or not the owner of a target system
account is to be allowed to access and use the account. If the target system
does not store account status information in the format in which it is stored in
Oracle Identity Manager, then you can use the predefined Translation
Transformation Provider to implement account status reconciliation.

– Generic technology connector in full or incremental reconciliation: While
creating a generic technology connector, you can specify that you want to use
the connector for full or incremental reconciliation. In incremental
reconciliation, only target system records that have changed after the last
reconciliation run are reconciled (stored) into Oracle Identity Manager. In full
reconciliation, all the reconciliation records are extracted from the target
system.

– Generic technology connector for batched reconciliation: To exercise more
control over the reconciliation process, you can use the generic technology
connector to specify a batch size for reconciliation. By doing this, you can
break into batches the total number of records that the reconciliation engine
fetches from the target system during each reconciliation run.

– Generic technology connector in reconciliation of multivalued attribute data
(child data) deletion: You can specify whether or not you want to reconcile
into Oracle Identity Manager the deletion of multivalued attribute data on the
target system.

– Generic technology connector in failure threshold for stopping
reconciliation: During reconciliation, Validation Providers can be used to run
checks on target system data before it is stored in Oracle Identity Manager.
You can set a failure threshold to automatically stop a reconciliation run if the
percentage of records that fail the validation checks to the total number of
records processed exceeds the specified threshold percentage.

■ Other features of generic technology connectors are:

– Custom Providers: If the predefined providers shipped with Oracle Identity
Manager do not address the transport, format change, validation, or
transformation requirements of your operating environment, then you can
create custom providers.

– Multilanguage Support: Generic technology connectors can handle both
ASCII and non-ASCII user data.

– Custom Date Formats: While creating a generic technology connector, you can
specify the format of date values in target system records that are extracted
during reconciliation and the format in which date values must be sent to the
target system during provisioning.

– Propagation of Changes in OIM User Attributes to Target Systems: While
creating a generic technology connector, you can enable the automatic
propagation of changes in OIM User attributes to the target system.

2.1.2.2.5 Remote Manager

When your adapter uses Java tasks, you must configure Oracle Identity Manager to
find the appropriate Java APIs. The Java APIs are located in JAR files in the Meta Data
Store (MDS). Sometimes, instead of directly communicating with the third-party
system, Oracle Identity Manager must use an Oracle Identity Manager component that
acts like a proxy. This component is known as Remote Manager. The Remote Manager
is used for:

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

2-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Invoking nonremotable APIs through Oracle Identity Manager

■ Invoking APIs that do not support Secure Sockets Layer (SSL) over secure
connections

The Remote Manager is an Oracle Identity Manager server component that runs on a
target system computer. It provides the network and security layer required to
integrate with applications that do not have network-aware APIs or do not provide
security. It is built as a lightweight Remote Method Invocation (RMI) server. The
communication protocol is RMI tunneled through Hypertext Transfer Protocol/Secure
(HTTP/S).

The J2EE RMI framework enables the creation of virtually transparent, distributed
services and applications. RMI-based applications consist of Java objects making
method calls to one another, regardless of their location. This enables one Java object to
call methods on another Java object residing on another virtual computer in the same
manner in which methods are called on a Java object residing on the same virtual
computer.

Figure 2–4 shows an overview of the Remote Manager architecture.

Figure 2–4 Remote Manager Architecture

2.1.2.3 Platform Services
The Platform Services include:

■ Plug-In Framework

■ SoD Engine Framework

See Also: "Installing and Configuring a Remote Manager" for
information about the Remote Manager and its configuration in the
Oracle Fusion Middleware Administrator's Guide for Oracle Identity
Manager

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

Product Architecture 2-11

2.1.2.3.1 Plug-In Framework

The Plug-in Framework allows customers to easily extend and customize the
capabilities of the out-of-the-box Oracle Identity Manager features. The features
expose specific plug-in points in the business logic where extensibility can be
provided. An interface definition accompanies each such point and is called the
plug-in interface. Customers can create code that extends these plug-in interfaces and
defines customizations based on their business needs. These plug-ins are deployed
and registered with Oracle Identity Manager by using the Plug-in Manager. Oracle
Identity Manager then incorporates the plug-ins into the feature processing from that
point onward.

Feature developers do not have to keep a track of where the custom implementations
are stored and how they are loaded. The plug-in framework supports loading plug-ins
from the classpath, from the file system, and from the database.

2.1.2.3.2 SoD Engine Framework

An attempt to enforce good compliance practices is through the definition of
Segregation of Duties (SoD) policies. SoD is broadly defined as a way of preventing a
user from acquiring a conflicting set of entitlements. This conflicting set is also referred
to as a toxic combination. An example of a toxic combination is that a person should
not have the ability to create and approve the same purchase order. Enterprises often
have business application-specific SoD engines that define and enforce SoD policies on
the entitlements users have within those business applications. Examples of such SoD
engines are OAACG and SAP GRC.

The SoD Engine Framework allows customers to integrate Oracle Identity Manager
with their choice of SoD Engine to enable SoD checks at appropriate points in the
request and provisioning process. Oracle Identity Manager can send a request for an
SoD check to the SoD Engine through the SoD Invocation Library (SIL). SIL provides a
common service interface to all supported SoD engines. The common service interface
provides an abstraction on the business components within Oracle Identity Manager.
As a result, SoD checks do not have to take care of the correct data formats required by
the SoD Engine and also the interpretation of the results returned.

SoD checks can be run at various times in the provisioning lifecycle, such as during an
access request, during the approval workflow execution, or during the provisioning
execution. If a violation is detected, then the request or resource is marked as being in
violation, and the approver or administrator is responsible for deciding whether to
proceed or not. If violations are detected during request processing, then various
approval workflows can be invoked that allow for higher levels of approval.

Figure 2–5 shows the flow of data during the SoD validation process.

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

2-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 2–5 SoD Validation Process in Oracle Identity Manager

2.1.3 Middleware Tier
The Middleware Tier in Oracle Identity Manager architecture consists of the following:

■ Request Service and Approval Workflow

■ Authorization Service

■ UI Customization Framework

■ Scheduler Service

■ Reporting

2.1.3.1 Request Service and Approval Workflow
Oracle Identity Manager architecture includes a request service that allows you to
configure approval workflows. To deliver this functionality, Oracle Identity Manager
uses Oracle Service Oriented Architecture (SOA) Suite.

Oracle SOA Suite enables you to build service-oriented applications and deploy them
to your choice of middleware platform. It consists of a number of components, but for
the purposes of delivering comprehensive workflow capabilities, Oracle Identity
Manager relies on the following components:

■ BPEL Process Manager: Oracle BPEL Process Manager provides a comprehensive
solution for creating, deploying, and managing cross-application business
processes with both automated and human workflow steps. It also provides audit
trails for both completed and running processes, and process history that enables
process improvement.

■ Human Request Service: Although the BPEL standard does not cover manual
tasks, it supports asynchronous services. Therefore, the Oracle SOA Suite supports
the Human Request Service, which is a manual task service, so that manual steps
can be included in standard BPEL processes. Oracle Identity Self Service includes a
task list that allows users to view and interact with assigned tasks being managed
within the Human Request Service.

See Also: Chapter 22, "Using Segregation of Duties (SoD)" for
detailed information about SoD

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

Product Architecture 2-13

■ BPEL Designer: The Oracle BPEL Designer is available as a plug-in for JDeveloper
and offers a visual design paradigm for creating and deploying BPEL-based
processes.

Oracle Identity Manager embeds SOA task list in the UI. This optimizes and simplifies
the interaction of users with the SOA suite. The approvers can approve requests
originating in Oracle Identity Manager by using the embedded SOA task list.

Embedded SOA task lists in Oracle Identity Manager enable making relevant data
about the Oracle Identity Manager entities available to the SOA instance as Oracle
Business Rules (OBR) facts on top of the default Web services. Therefore, writing
complex JAVA code to resolve approver and approval routing in SOA workflows can
be avoided. The following data is available in the SOA composites as OBR facts:

■ User attribute for requestor and beneficiary

■ All metadata associated with the base entity of requested item

■ All metadata associated with the catalog entry of the requested item

Figure 2–6 shows the integration between the request service and SOA.

Figure 2–6 Request Service and SOA Integration

The request service also provides the services used to raise and track requests in
Oracle Identity Manager. A request allows a user to ask that an action be taken after
obtaining the necessary approvals, and that a tracking record of the entire process and
its status be maintained. The request can be for various types of actions that are
defined as request types. The request types can be:

■ Creating, modifying, or deleting an entity

■ Enabling or disabling an entity

■ Adding or removing an identity as a member of a role

■ Granting and revoking entitlements

■ Provisioning, deprovisioning, enabling, disabling, and modifying application
instances

Note: Application instance is a new entity introduced in Oracle
Identity Manager 11g Release 2 (11.1.2.1.0). For information about
application instances, see "Managing Application Instances" in Oracle
Fusion Middleware Administrator's Guide for Oracle Identity Manager.

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

2-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

The request service supports various types of requests and has the ability to
accommodate multiple request types. Oracle Identity Manager provides a number of
predefined request types that cover the most common use cases.

The request service also provides support for heterogeneous requests that enable
requesting for multiple types of entities in the same request. For example, assigning
roles, provisioning application instances, and granting entitlements are supported in a
single request.

The request service defines the flow models by which data provided in a request flows
through the various services in Oracle Identity Manager. This includes invoking
approval workflows at the correct time, monitoring the status of the workflows, and
running the request if approval is received.

Both transaction data and history data for requests is maintained, which supports
audit and compliance requirements.

2.1.3.2 Authorization Service
Oracle Identity Manager requires a strong level of access control over what users can
view and change in the application. To meet this requirement, Oracle Identity Manager
lets you define authorization policies that determine at run time whether or not a
particular action is allowed. This is controlled by the authorization service that uses
Oracle Entitlements Server (OES) embedded within Oracle Identity Manager. OES is
an authorization product and enables centralized management of entitlements and
authorization policies to granularly determine access to both application components
and application business objects.

The OES architecture is made up of two major components. The administration
application acts as the policy administration point (PAP) and is used to manage policy,
configuration, roles, and entitlements. The second major component is the use of one
or more Security Modules (SMs) that are stored in the application container. The SMs
evaluate fine-grain access control polices at the policy decision point (PDP) and
enforce it at the policy enforcement point (PEP).

Figure 2–7 shows the architecture of OES-based authorization service:

Figure 2–7 OES-Based Authorization Service

Each time a privilege check is requested, the following takes place:

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

Product Architecture 2-15

■ Oracle Identity Manager connects to the authorization service to prepare access
decision for the operations performed on protected entities.

■ The service then finds and evaluates the policy or policies that apply to the
resource.

■ All information required to evaluate a policy is collected by the Security Modules
at run time.

■ If the policy references subject by role, all roles are evaluated and the access
decision is made.

Oracle Identity Manager provides an abstraction service on top of OES that optimizes
and simplifies the definition of policies in Oracle Identity Manager. This service
includes a policy definition UI that allows the definition of authorization policies that
are feature specific and support fine-grained controls for attributes and functions on
entities such as users and roles.

2.1.3.3 UI Customization Framework
Oracle Identity Manager leverages Application Development Framework (ADF) to
provide simple and business-friendly UI customization without the need to write
code. The components used for customization are:

■ Oracle Web Composer: Oracle Identity Manager supports Web browser-based UI
customization and not IDE or JDeveloper-based customizations. JDeveloper is
used to create pages, page fragments, regions, tabs and other UI artifacts. After
these artifacts are deployed in Oracle Identity Manager, additional customizations
can be done on this new content by using Oracle Web Composer.

Oracle Web Composer enables you perform browser-based run-time
customization or personalization of pages, Changing page layouts, adding items
to pages, and performing branding. Customizations can be temporarily saved,
reviewed, and then finalized as deployment specific, tenant specific, or user
specific. This provides durable customizations across patches and upgrade
because UI customizations are preserved separately from the code and UI
metadata.

■ ADF Business Editor: Using the ADF Business Editor, you can extend or add
custom attributes to user, role, organization, catalog, and application instance
entities. In addition, you can configure request datasets for users, resource objects,
and application instances.

■ Meta Data Store (MDS): Customizations and personalizations are stored in file
system or database by using Oracle MDS.

Figure 2–8 illustrates the components of the UI customization framework.

Note: If you want to use JDeveloper, then you can use APIs and
build pages from scratch rather than customize predefined pages.
There will be no interoperability between IDE and Web browser-
based UI customizations.

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

2-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 2–8 UI Customization Framework

2.1.3.4 Scheduler Service
Business systems frequently make use of scheduling systems, which are configured to
run other programs at specified times. Scheduling systems run applications that
generate reports, reformat data, or perform audits at regular intervals of time.
Scheduling systems often run batch jobs or scheduled jobs that perform routine work
automatically at a prescribed time.

Scheduling systems are an integral part of any enterprise provisioning solution.
Provisioning often involves tasks to be performed in a time-based manner. Some
examples are:

■ Running a nightly job to reconcile all changes made directly on a managed
application

■ Do escalations of assigned tasks that have not been handled within a specified
time period

■ Execute requests at a specific time

Oracle Identity Manager platform includes the Scheduler to provide the scheduling
capabilities necessary for enterprise provisioning requirements. This Service is
managed as part of Oracle Identity Manager platform and not as an independent
product. Figure 2–9 provides an overview of Oracle Identity Manager Scheduler
architecture.

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

Product Architecture 2-17

Figure 2–9 Oracle Identity Manager Scheduler Architecture

Key capabilities provided by the Scheduler service are:

■ The ability to create simple or complex schedules for running thousands of jobs

■ The ability to run the scheduling service as a clustered service to provide the
necessary high availability capabilities including fail-over and load balancing

■ The ability to persist the job definitions for management and fail-over support

■ The ability to create, modify, enable, disable, and delete jobs and manage
individual job runs by using an administrative UI

■ The ability to run a job in an ad-hoc fashion outside of regularly scheduled runs

■ The ability to manage errors and failures

■ The ability to maintain history of job runs, including statistics and results of these
runs

■ The ability to manage the Scheduler service itself

2.1.3.5 Reporting
The rich set of data stored in Oracle Identity Manager repository can be viewed
through detailed reports that support management and compliance requirements.
Oracle Identity Manager provides support for data reporting through the use of Oracle
BI Publisher, which is an enterprise reporting solution and provides a single reporting
environment to author, manage, and deliver all of your reports and business
documents. Utilizing a set of familiar desktop tools, such as Microsoft Word, Microsoft
Excel, or Adobe Acrobat, you can create and maintain report layouts based on data
from diverse sources, including Oracle Identity Management products.

Oracle Identity Manager provides a set of standard Oracle BI Publisher report
templates. However, you can customize each template to change its look and feel. in
addition, you can create your own custom reports by leveraging Oracle Identity
Manager database schema.

2.1.4 The Data Tier
Oracle Identity Manager is driven by data and metadata, which provides flexibility
and adaptability to Oracle Identity Manager functionalities. Oracle Identity Manager
data tier consists of Oracle Identity Manager repository or database, which manages
and stores Oracle Identity Manager data and metadata in an ANSI SQL 92-compliant
relational database, and an optional LDAP Identity Store.

Quartz
Scheduler

Application Server

Oracle Identity Manager

Application Server Boundry
(if necessary)

Scheduled
Job

Oracle Identity
Manager APIs

Administrative Console
Scheduler Management

Scheduler Reference

Scheduler Service

Oracle Identity
Manager
Database

Uses

Runs

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

2-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

This section describes the data tier in the following topics:

■ Oracle Identity Manager Database

■ The Metadata Store

■ The Identity Store

■ Integration Between LDAP Identity Store and Oracle Identity Manager

2.1.4.1 Oracle Identity Manager Database
Oracle Identity Manager repository is the authoritative store for the Who Has What,
When, How, and Why data that is the core value of the identity administration and
provisioning system. The data stored in Oracle Identity Manager database falls into
the following broad categories:

■ Entity Data: Users, organizations, roles, role memberships, resources, provisioned
resources

■ Transactional Data: Requests, approval and provisioning workflow instances,
human tasks

■ Audit Data: Request history, user profile history

High Availability
The database provides a scalable and redundant data layer to avoid downtime and
performance issues. Reliability, recoverability, timely error detection, and continuous
operations are primary characteristics of a highly available solution.

Oracle Identity Manager architecture relies on the corresponding capabilities provided
by the Database Management System that is used with the product. These capabilities
must:

■ Encompass redundancy across all components

■ Provide protection and tolerance from computer failures, storage failures, human
errors, data corruption, lost writes, system hangs or slowdown, and site disasters

■ Recover from outages as quickly and transparently as possible

■ Provide solutions to eliminate or reduce planned downtime

■ Provide consistent high performance

■ Be easy to deploy, manage, and scale

■ Achieve Service Level Agreements (SLAs) at the lowest possible total cost of
ownership

A broad range of high availability and business continuity solutions are available. You
can find out more about maximizing database availability by using technologies such
as Oracle Real Application Clusters (Oracle RAC) and Oracle Data Guard at the
following Web site:

http://www.oracle.com/technetwork/database/features/availability/maa-09089
0.html

2.1.4.2 The Metadata Store
The logic underlying Oracle Identity Manager is metadata driven. The structural and
behavioral aspects are described by using metadata. Oracle Identity Manager
architecture relies on Oracle Metadata Services (MDS) to provide a unified store for
metadata. This ensures consistent and reliable access to the metadata for Oracle

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

Product Architecture 2-19

Identity Manager and for the other Fusion Middleware components that it is built on.
The same metadata that is used during the design phase of an application is used at
application runtime through the metadata services layer. This ensures consistency
through the lifecycle of Oracle Identity Manager. MDS also provides common
administrative tooling for the metadata that can be used across various types of
metadata stored in the common repository.

Key features and architectural principles of the MDS include:

■ Simplified resource management through a single, unified repository for all
artifacts used by various Fusion Middleware components

■ Management of the metadata lifecycle for each artifact as it moves through the
various stages of development, testing, staging, and production

■ Sharing and reuse of metadata across components

■ Categorization and reuse of artifacts, encouraging reuse, and promoting
consistency

■ Versioning capabilities, which form the basis for various features

■ An upgrade-safe and layered customization mechanism through which metadata
and application logic can be tailored per usage of the metadata

■ Advanced caching and assembling techniques coupled with configurable tuning
options to optimize performance

Metadata accessed and managed via MDS can be in a file-based repository or a
database-based repository. In Oracle Identity Manager architecture, the metadata is in
Oracle Identity Manager database to take advantage of some of the advanced
performance and availability features that this mode provides.

MDS provides features using which you can create applications to meet customization
requirements, such as modifying applications to suit the requirements of a specific
business group, customizing applications to suit the individual preferences of a user,
and creating applications that are customizable at run time. For more information
about customizing Oracle Identity Manager by using MDS features, see "Customizing
the Interface" on page 30-1.

2.1.4.3 The Identity Store
Oracle Identity Manager provides the ability to integrate an LDAP-based identity store
into Oracle Identity Manager architecture. You can connect and manage an
LDAP-based identity store directly from Oracle Identity Manager. Using this feature,
you can use advanced user management capabilities of Oracle Identity Manager,
including request-based creation and management of identities, to manage the
identities within the corporate identity store.

In this deployment architecture, user identity information is stored in Oracle Identity
Manager database to support the relational functionality necessary for Oracle Identity
Manager to function, as well as in the LDAP store. All data is kept in sync
transparently without the need for provisioning actions and setting up policies and
rules. Identity operations started within Oracle Identity Manager, such as user creation
or modification, are run on both the stores in a manner that maintains transactional
integrity. In addition, any changes in the LDAP store made outside of Oracle Identity
Manager is pulled into Oracle Identity Manager and made available as a part of the
identity context.

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

2-20 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

2.1.4.4 Integration Between LDAP Identity Store and Oracle Identity Manager
Oracle Identity Manager users and roles are stored in Oracle Identity Manager
database. However, when a user, role, or role membership change takes place in Oracle
Identity Manager, this information is propagated to LDAP identity store. If user, role,
or role membership change takes place in LDAP directly, then these changes are
synchronized into Oracle Identity Manager. The synchronization involves:

■ User creation, modification, deletion, change in enable or disable states, and
password change are made in LDAP in addition to the internal Oracle Identity
Manager tables.

■ Role creation, modification, and deletion actions update the LDAP groups,
including membership changes.

■ Initial load of users, roles, and role memberships are synchronized.

■ Direct changes to user profile in LDAP are reconciled to Oracle Identity Manager.

■ Direct changes to roles and role memberships in LDAP are reconciled to Oracle
Identity Manager.

When changes are made in the user and role data, the actual operation is performed
with the help of the kernel handlers. These handlers go through an orchestration
lifecycle of various stages, such as validation, preprocessing, action, and
postprocessing. For more information about the various stages of kernel orchestration,
see "Developing Event Handlers" on page 28-1.

Oracle Identity Manager kernel orchestration connects to the Entity Manager, which in
turn connects to the LDAP provider. The LDAP provider connects to Oracle Virtual
Directory (OVD). The OVD is an interface to various directory systems, such as Oracle
Internet Directory, iPlanet, and Active Directory. The LDAP provider reaches the
LDAP data by using OVD. Figure 2–10 shows the communication between Oracle
Identity Manager and LDAP:

Figure 2–10 Oracle Identity Manager and LDAP

The integration configuration and synchronization of data between Oracle Identity
Manager and the LDAP identity store are described in the following sections:

■ Configuring the Integration with LDAP

■ Provisioning Data From Oracle Identity Manager to LDAP Identity Store

■ Reconciliation From LDAP Identity Store to Oracle Identity Manager

2.1.4.4.1 Configuring the Integration with LDAP Configuring the integration between
Oracle Identity Manager and LDAP is performed while installing Oracle Identity
Manager. You can choose to install Oracle Identity Manager with or without LDAP. If
you install Oracle Identity Manager with LDAP, then you must install OVD and
Oracle Internet Directory, create a container to store reserved users, create a new user

Oracle Identity Manager

Kernel Orchestration

Entity Manager

LDAP Provider OVD LDAP

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

Product Architecture 2-21

in Oracle Identity Manager to perform Oracle Identity Manager operations, and
configure OVD and Oracle Internet Directory for Oracle Identity Manager. For
information about how to perform these configuration steps, see "Setting Up LDAP
Synchronization" in the Oracle Fusion Middleware Installation Guide for Oracle Identity
and Access Management.

After installing Oracle Identity Manager with LDAP enabled, you must open the
following scheduled jobs and update their Last Change Number parameter with the
last changelog number value of Oracle Internet Directory:

■ LDAP User Create and Update Reconciliation

■ LDAP User Delete Reconciliation

■ LDAP Role Membership Reconciliation

■ LDAP Role Hierarchy Reconciliation

■ LDAP Role Create and Update Reconciliation

■ LDAP Role Delete Reconciliation

In addition, you must enable these scheduled jobs after updating the Last Change
Number parameter. To do so, see "Disabling and Enabling Jobs" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Identity Manager.

2.1.4.4.2 Provisioning Data From Oracle Identity Manager to LDAP Identity Store Oracle
Identity Manager database stores the user and role information. When the user and
role information is updated in Oracle Identity Manager, then the external repositories,
such as the LDAP directory, must also be updated.

The LDAP changes are performed before Oracle Identity Manager changes. If Oracle
Identity Manager changes fail, then the LDAP changes must be reverted to the original
state. This is achieved by correcting an enable operation with a disable operation, a
create operation with a delete operation, and a modification operation with another
modification operation with the original values.

For instance, when a user is created, the validation processes are performed in the
validation stage, such as password or any other policy validation. In the preprocessing
stage, the user is created in LDAP first. Then, in the action stage, the user is to be
created in Oracle Identity Manager. If there is an error in creating the user in Oracle
Identity Manager, then the user must be deleted from LDAP because the
corresponding user could not be created in Oracle Identity Manager. The operation to
revert the change made is provided by the kernel handlers through the compensation
method, which is predefined in Oracle Identity Manager.

To synchronize date from Oracle Identity Manager to LDAP, the location of the LDAP
must be known to Oracle Identity Manager. The information about the LDAP location
is stored in Oracle Identity Manager as the DirectoryServer IT resource. This is a
default IT resource provided by Oracle Identity Manager. The various parameters of

See Also: "Managing Scheduled Tasks" for detailed information
about scheduled jobs in the Oracle Fusion Middleware Administrator's
Guide for Oracle Identity Manager.

Note: Each handler has predefined execute and compensate
methods. The execute method runs any operation, such as creating a
user. The compensate method is called when an error occurs to revert
the operation performed by the execute method.

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

2-22 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

this IT resource, which you can specify while installing Oracle Identity Manager,
allows the connection between Oracle Identity Manager and LDAP.

In order to identify the same entry in Oracle Identity Manager and LDAP, the
Distinguished Name (DN) and GUID attributes are used. Each entry has the DN
attribute in LDAP, which indicates the unique location of an entry in LDAP. The GUID
attribute is an unique ID to identify the entry. The DN and GUID for users and roles
are stored in columns in the users and role tables in Oracle Identity Manager database.
For information about how to synchronize user-defined fields between Oracle Identity
Manager and LDAP, refer "Synchronizing User-Defined Fields Between Oracle
Identity Manager and LDAP" in the Oracle Fusion Middleware Administrator's Guide for
Oracle Identity Manager.

This section describes the following topics:

■ Managing Users

■ Managing Roles

2.1.4.4.3 Managing Users The following user operations can be performed to
synchronize data from Oracle Identity Manager to LDAP:

■ Create user

■ Update user

■ Delete user

■ Enable user

■ Disable user

■ Lock user

■ Unlock user

■ Add role member

■ Delete role member

■ Change password

2.1.4.4.4 Managing Roles The following role operations can be performed to
synchronize data from Oracle Identity Manager to LDAP:

■ Create role

■ Update role

■ Delete role

■ Add role to a member

■ Add and Update role

■ Remove role from a member

■ Add role hierarchy

■ Remove role hierarchy

2.1.4.4.5 Reconciliation From LDAP Identity Store to Oracle Identity Manager When changes
in the identities are made directly in the LDAP identity store, the changes must be
replicated to Oracle Identity Manager through authoritative source reconciliation. The
identities include users and roles.

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

Product Architecture 2-23

Reconciling users from LDAP to Oracle Identity Manager works with the general
configuration of reconciliation, which includes the scheduled tasks for reconciliation.

The role reconciliation works only with the LDAP groups. Role reconciliation supports
creation, updation, and deletion of roles. Role membership reconciliation supports
creation and deletion of role memberships being driven from changes in an external
LDAP directory.

Without roles and users being present in Oracle Identity Manager, role membership
reconciliation will fail. Therefore, configure the LDAP synchronization scheduled jobs
to run in the following order:

1. Fusion Applications Role Category Seeding

2. LDAP Role Create and Update Reconciliation

3. LDAP Role Hierarchy Reconciliation

4. LDAP User Create and Update Reconciliation

5. LDAP Role Membership Reconciliation

For each of these jobs, except Fusion Applications Role Category Seeding, there is a
parallel job to do the full reconciliation. All these jobs, except Fusion Applications Role
Category Seeding, perform the reconciliation based on change logs, whereas full
reconciliation jobs use the search base to do the reconciliation.

2.1.4.4.6 Consolidated LDAP Sync Full Reconciliation The LDAP Consolidated Full
Reconciliation scheduled job runs the following jobs in order:

1. LDAP User Create and Update Full Reconciliation

See Also: "Managing Scheduled Tasks" for information about
scheduler and scheduled tasks in the Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Manager.

Note: Instead of using LDAP synchronization reconciliation jobs to
reconcile users from LDAP to Oracle Identity Manager, if the Bulk
Load utility is used, then subsequent operation on these users might
fail if LDAP synchronization is enabled. To avoid this, all the users
that are loaded in Oracle Identity Manager must be updated with
correct GUID and DN values, and all these users in LDAP must be
updated with an object class called orclIDXPerson.

For detailed information about the Bulk Load utility, see "Using the
Bulk Load Utility" on page 24-1.

Note: Fusion Applications Role Category Seeding is a predefined
scheduled task that is generated only when LDAP synchronization is
enabled, along with other LDAP synchronization scheduled jobs. This
job gets all distinct business categories in LDAP and creates them as
OIM role categories.

For a list of the predefined scheduled jobs, see "Predefined Scheduled
Tasks" in the Oracle Fusion Middleware Administrator's Guide for Oracle
Identity Manager.

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

2-24 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

2. LDAP Role Create and Update Full Reconciliation

3. LDAP Role Membership Full Reconciliation

4. LDAP Role Hierarchy Full Reconciliation

When you run the LDAP Consolidated Full Reconciliation scheduled job, the job
status of the previous job and all event status for that particular job are checked
because the next job must be run in a particular order. If any job fails to run, then the
automatic run of the jobs stop, and error messages are logged in the diagnostic log.

You can also run the individual jobs by selecting the radio buttons on the LDAP Sync
Consolidated Full Reconciliation job details page. The job details contain all the
common parameters for the four full reconciliation reconciliation jobs. In addition, you
can specify the values for the following parameters of the LDAP Sync Consolidated
Full Reconciliation scheduled job:

■ Reconciliation Search Base: Search base for the full reconciliation of users or roles.
This defines the location in the LDAP directory from which the LDAP search
begins.

■ Reconciliation Role Search Filter: Search filter for full reconciliation of roles. This
filter allows certain role/group entries in the subtree of the LDAP directory and
excludes others.

■ Reconciliation User Search Filter: Search filter for full reconciliation of users. This
filter allows certain user entries in the subtree of the LDAP directory and excludes
others.

Based on the values entered for the Reconciliation Search Base and/or Reconciliation
User Search Filter and Reconciliation Role Search Filter parameters, the user and role
accounts are pulled into Oracle Identity Manager from LDAP when the LDAP Sync
Consolidated Full Reconciliation job is run. As a result of this full reconciliation, the
delete happens in the Oracle Identity Manager database for the deleted entries in
LDAP from that particular node.

The Reconciliation Search Base and Reconciliation Search Filter parameters support
the following:

■ Reconciling the user or role account from LDAP to Oracle Identity Manager
database:

This provides the option to perform fine-grained reconciliation of a particular user
or role. The value of the Reconciliation Search Base parameter is:

"cn=cokeuser1,cn=users,cn=subrealm1,dc=us,dc=oracle,dc=com"

■ All users and roles or groups under the node is reconciled:

The value of Reconciliation Search Base is:

See Also: "LDAP Scheduled Tasks" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Manager for information about
the LDAP Consolidated Full Reconciliation scheduled job

Note: The LDAP User Delete Full Reconciliation and LDAP Role
Delete Full Reconciliation jobs are not part of LDAP Consolidated Full
Reconciliation. These scheduled jobs are disabled by default. They can
be enabled by selecting the radio buttons and can be run individually.

How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager

Product Architecture 2-25

"cn=tenant1,dc=us,dc=oracle,dc=com"

Here, the user full reconciliation and role full reconciliation are triggered.
Therefore, all the users and roles or groups under the tenant1 node are reconciled.

■ All users under the node is reconciled:

The value of Reconciliation Search Base is:

"cn=users,cn=tenant1,dc=us,dc=oracle,dc=com"

Here, all the users under the tenant1 node are reconciled.

■ All roles or groups under the node is reconciled:

The value of the Reconciliation Search Base parameter is:

"cn=groups,cn=tenant1,dc=us,dc=oracle,dc=com"

Here, all roles or groups under the tenant1 node are reconciled.

The Reconciliation Search Base and Reconciliation Search Filter parameters are not
bound together for LDAPSync Full reconciliation. Reconciliation Search Filter can be
empty. Search Base can be used for provisioning or pushing entries from Oracle
Identity Manager to LDAP, while Reconciliation Search Base can be used to perform
full reconciliation from LDAP to Oracle Identity Manager database. If a value is not
provided for Reconciliation Search Base, then the value for Search Base from the
'Directory Resource' IT resource configuration is used for both provisioning and full
reconciliation.

Sample values for the Reconciliation Search Base parameter:

"cn=tenant1,dc=us,dc=oracle,dc=com"

Sample values for the Search Base parameter:

"dc=us,dc=oracle,dc=com"

Sample values for the Reconciliation User Search Filter and Reconciliation Role Search
Filter parameters:

(objectclass=orclAPPIDPerson)
(title=foobar)

Messages Logged For the LDAP Sync Consolidated Full Reconciliation
Scheduled Job
The following is a list of messages for the LDAP Sync Consolidated Full Reconciliation
scheduled job that are logged in the Oracle Identity Manager diagnostic log files:

LDAP Sync Full Reconciliation Scheduler job {0} is currently Running.
LDAP Sync Full Reconciliation Scheduler job {0} is not currently Running. It has
Stopped.
LDAP Sync Full Reconciliation Scheduler job {0} is currently being Interrupted
while running.
LDAP Sync Full Reconciliation Scheduler job {0} is not currently Running. It has
Failed.
Error occurred while running the LDAP Sync User Full Reconciliation scheduler job.
Please refer to the OIM Server logs for more details.
LDAP Sync Full Reconciliation Scheduler job {0} is not currently Running. It has
been Shutdown.
LDAP Sync Full Reconciliation Scheduler job {0} is not currently Running.
SQLException has occurred.

System Components

2-26 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

All LDAPSync Full Reconciliation jobs ran successfully and Stopped.

2.2 System Components
Oracle Identity Manager is built on an enterprise-class, modular architecture that is
both open and scalable. Each module plays a critical role in the overall functionality of
the system. Figure 2–11 illustrates the system components of Oracle Identity Manager.

Figure 2–11 System Components of Oracle Identity Manager

Oracle Identity Manager user interfaces define and administer the provisioning
environment. Oracle Identity Manager offers two user interfaces to satisfy both
administrator and user requirements:

■ Powerful Java-based Oracle Identity Manager Design Console for developers and
system administrators

■ Web-based Administration and Oracle Identity Manager Self Service interfaces for
identity administrators and users respectively

This section describes the following Oracle Identity Manager components:

■ Identity Administration

■ Provisioning

■ Audit and Reports

■ Reconciliation and Bulk Load

■ Common Services

■ Workflow and Request Management

■ Infrastructure and Middleware Integration

System Components

Product Architecture 2-27

■ Connector Framework

Identity Administration
Identity administration includes creation and management of identities in Oracle
Identity Manager. Identities include users, organizations, and roles. Identity
administration also enables password management and user Oracle Identity Manager
Self Service operations. Identity administration is performed by using Oracle Identity
Manager Administration and Oracle Identity Manager Self Service Web clients, and
the SPML Web service.

Provisioning
The provisioning transactions are assembled and modified in the provisioning
module. This module maintains the "who" and "what" of provisioning. User profiles,
access policies, and resources are defined in the provisioning module, as are business
process workflows and business rules.

The Provisioning Server is the run-time engine for Oracle Identity Manager. It runs the
provisioning process transactions as defined through Oracle Identity Manager
Administration and Oracle Identity Manager Design Console and maintained within
the provisioning module.

Audit and Reports
The audit and compliance functions include evaluating a person, organization, system,
process, project, or product. This occurs by capturing data generated by the suite's
workflow, policy, and reconciliation engines. By combining this data with identity
data, an enterprise has all the information it requires to address any identity and to
access a related audit inquiry. Audits are performed to ascertain the validity and
reliability of information, and also provide an assessment of a system's internal
control.

Reporting is the process of generating a formal document, which is created as a result
of an audit. The report is subsequently provided to a user, such as an individual, a
group of persons, a company, a government, or even the general public, as an
assurance service so that the user can make decisions, based on the results of the audit.
An enterprise can create reports on both the history and the current state of its
provisioning environment. Some captured identity data includes user identity profile
history, role membership history, user resource access, and fine-grained entitlement
history.

Reconciliation and Bulk Load
The reconciliation engine ensures consistency between the provisioning environment
of Oracle Identity Manager and Oracle Identity Manager managed resources within
the organization. The reconciliation engine discovers illegal accounts created outside
Oracle Identity Manager. The reconciliation engine also synchronizes business roles
located inside and outside the provisioning system to ensure consistency.

If you want to load a large amount of data from other repositories in your organization
into Oracle Identity Manager, then you can use the Bulk Load utility. The Bulk Load
utility reduces the downtime in loading the data. In addition, Bulk Load utility import
Oracle Identity Manager users, roles, role memberships, and accounts provisioned to
users.

Common Services
Various services are grouped together that are shared and used by other Oracle
Identity Manager components. These services are:

System Components

2-28 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Form Designer: A form that allows you to create process and resource object
forms that do not come packaged with Oracle Identity Manager.

■ Scheduler: A service that provides the capability to run specific jobs at specific
schedules. This service can be used by users, application developers, connector
developer, and administrators to create and configure a Job to be run at specified
intervals. In addition, this service provides administrative capabilities to manage
the functionality of jobs and their schedules.

■ Notification Templates: A common notification service is used by other functional
components to send notifications to interested parties about events occurring in
Oracle Identity Manager. In addition, this service provides the administrative
capabilities for notification template management. A notification template is used
for sending the outgoing notifications. These templates typically contain the
variables that refer to the available data to provide more contextual content.

■ System Properties: A system property is an entity that controls the configuration
aspect of an application. In addition, to the default system properties, you can
create and manage system properties in Oracle Identity Manager.

■ Deployment Manager: The Deployment Manager is a tool for exporting and
importing Oracle Identity Manager configurations. The Deployment Manager
enables you to export the objects that make up your Oracle Identity Manager
configuration.

Workflow and Request Management
Various operations in Oracle Identity Manager cannot be performed directly. Instead,
the operations must be requested. The request management service provides a
mechanism to create, approve, and manage requests. A request is an entity created by
the users or administrators who want to perform a specific action, which requires a
discretionary permission to be obtained from someone or some process before the
action can be performed. For example, a user can create a request to gain access to a
laptop computer, a manager can approve the request and create an open requisition,
and an IT resource administrator can approve the request.

The primary goal of a provisioning solution is to manage requests and provision
resources. Request service provides an abstraction layer on the Business Process
Execution Language (BPEL) 11g workflow engine. Functional components such as
request, provisioning, and certification interacts with the workflow engine for human
approvals. Request service caters to the various functional components in Oracle
Identity Manager by managing workflow instances and categories, and provides an
abstraction layer on BPEL.

Infrastructure and Middleware Integration
The Adapter Factory, Kernel Orchestration mechanism, Context Manager, and Plug-in
Framework are designed to eliminate the need for hard-coding integrations with these
systems.

Connector Framework
The integration solution strategy of Oracle Identity Manager provides connectors to
various heterogeneous identity-aware IT systems. This strategy is designed to
minimize custom development, maximize the reuse of code, and reduce deployment
time. The tiers of the integration solution are:

■ Out-of-the box integration using predefined connectors and predefined generic
technology connector providers

System Components

Product Architecture 2-29

■ Identity connectors that are designed to separate the implementation of an
application from the dependencies of the system that the application is attempting
to connect to

■ Connectors based on custom generic technology connector providers

■ Custom connectors using the Adapter Factory

System Components

2-30 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

3

Security Architecture 3-1

3Security Architecture

[4]

Oracle Identity Manager controls access to the application by the users to allow or
prevent the users to perform various operations in the application. This is controlled
by the authorization engine embedded in Oracle Identity Manager with the help of
authorization policies. The purpose of authorization policies is to control user's access
to Oracle Identity Manager application, which includes data, UI, and API. The
authorization policies determine at runtime whether or not a particular action is
allowed. Authorization policies can be defined that satisfy the authorization
requirements within Oracle Identity Manager.

In Oracle Identity Manager, authorization policy management is centralized as an
administrative feature. Oracle Identity Manager's authorization policy management
and enforcement engine is based on an embedded version of Oracle Entitlements
Server (OES), which is Oracle's entitlements administration product. These
authorization policies secure access control to the Oracle Identity Manager application,
thereby defining 'who can do what on what data' inside the application.

Oracle Identity Manager supports the following:

■ Use standard ADF security model for functional security and use OES best
practices for data security.

■ Use a consistent architecture that supports delegated administration of various
entities in Oracle Identity Manager, such as roles, organizations, entitlements,
application instances, and LDAP groups.

■ Use a consistent architecture that lets backend make various security decisions, for
example, who can request what, who can have what, and who needs to go through
approval. This architecture facilitates the security of catalog-based request module
and of converged UI and backend of self service and delegated-administration.

■ Support for a scoping mechanism for delegated administration and data security
of various entities. All entities are scoped by the organization structure defined as
Oracle Identity Manager metadata.

Figure 3–1 shows the architecture of OES-based authorization service:

Security Model

3-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 3–1 OES-Based Authorization Service

The authorization and security model is described in the following sections:

■ Security Model

■ Functional and Data Security Mapping

■ Publishing Entities to Organizations

■ Managing OES Policies

■ Enforcing Functional Security

3.1 Security Model
The security model is described in the following sections:

■ Admin Role Assignment

■ Attribute-Level Security for the User Attributes

■ Policy Obligations

3.1.1 Admin Role Assignment
The new authorization model works on the basis of the admin role assignment to a
user. There are two types of admin roles, global and scoped. Global admin roles, such
as System Administrator, System Configuration Administrator, Catalog System
Administrator, SPML Admin, Certification Administrator, and Certification Viewer,
can only be assigned in the context of the Top organization only. Scoped admin roles
can be assigned in the context of both Top as well as other organizations.

The Top organization is at the root of the organization hierarchy in Oracle Identity
Manager. Authorization policies are created according to the admin roles. Admin roles
are predefined in Oracle Identity Manager, and new admin roles cannot be added.
Admin roles cannot be created, updated, deleted, searched, or requested.

Admin roles are predefined for each entity type. The entity type admin roles are
scoped because entity management is performed by delegated administrators. Each
entity has the following admin roles defined for it:

■ Entity Administrator: Can manage the entire lifecycle of the entity and perform
any operation on the entity.

■ Entity Viewer: Can view the entity in the catalog or request profile and request for
the entity.

Starts policy
protected

action

Defines
authorization
policy using
OES UI

Oracle Identity Manager

Oracle Entitlements Server

Authorization Engine Management API

Policy Definition
Service (PAP)

User

Authorization Service
(PEP/PDP)

System Administrator/
System Configurator

Oracle Identity
Manager Entity

and Policy Repository

Security Model

Security Architecture 3-3

■ Entity Authorizer: Can view the entity in the catalog or request profiles and
request for it, but does not require approval. There is no authorizer on the
organization entity because organization membership cannot be requested.
Similarly, there is no authorizer for the user. The user admin and user authorizer
are the same.

Admin roles have no hierarchy. However, admin role membership organization
scoping is hierarchy-aware, and can be cascaded downwards to the child
organizations. Admin role membership is always given in an organization scope, and
can only be assigned by the System Administrator or the Organization Administrator.
The Organization Administrator can assign the admin role for that organization for
which it is the Organization Administrator. System Configuration Administrators
cannot assign admin roles. Admin roles do not have autogroup membership or role
membership rules.

The System Administrator and System Configuration Administrator admin roles are
available only to the Top organization. Therefore, only System Administrators and
System Configuration Administrators can assign System Administrator and System
Configuration Administrator roles because they have access to the Top organization.

The permissions a user has on a entity can be of the following types:

■ Inherent permissions: The organization to which a user is a member is referred as
the Home organization for that user. A user has certain implicit permissions on the
entities available to the Home organization. These permissions are automatically
assigned to a user. For example, a Role Administrator does not need explicit Role
Viewer privileges to view and request for roles available to the Home
organization. However, to view and request for roles in another organization, Role
Viewer privileges must be explicitly assigned to the same Role Administrator.

■ Management hierarchy: If User A is the manager of User B and User C, then User
A has implicit permissions on User B and User C. If User B and User C are in a
different organization, then User A has implicit permissions on User B and User C.
User A does not need explicit privileges on the direct reports, irrespective of which
organization the direct reports belong. Privileges through management hierarchy
is applicable globally, and every manager is able to perform user administration
operations on their reports.

Each admin role in Oracle Identity Manager has one-to-one mapping to the
application roles in the OES. The application roles have associated policies that govern
what permissions are allowed for users who belong to this role. If you want to change

Note:

■ Entity refers to role, user, organization, entitlement, and
application instance.

■ See "Admin Roles" in the Oracle Fusion Middleware User's Guide for
Oracle Identity Manager for a description of each admin role

Note:

■ Admin roles are stored only in Oracle Identity Manager database
and are not stored or synchronized in LDAP data store.

■ The admin roles cannot be requested and are never exposed to the
users.

Security Model

3-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

the functional and data constraints on these policies, then you must open the
respective policy in Authorization Policy Management (APM) UI in OES, and modify
the policy.

Table 3–1 lists the organization-scoped admin roles in Oracle Identity Manager and the
corresponding permissions provided by the admin roles.

Note: In Table 3–1 and Table 3–2, you will come across implicit
permissions called org basic info, role basic info, entitlement basic
info, and appinstance basic info. The basic-info permission gives the
permission only to view-search the given entity. Consider the
following examples:

■ View Org permission provides all the permissions defined for the
Organization Viewer admin role, but org basic info provides the
permissions only to search and view the organization attributes.

■ The User Viewer admin role provides the basic info permission on
roles, organizations, application instances, and entitlements in
that scoped organization.

Table 3–1 Organization-Scoped Admin Roles and Permissions

Admin Role in
Oracle Identity
Manager Implicit Permissions

Organization Scoped
Permissions

Request or Direct
Operation

User Administrator Organization Viewer Search User
(attribute-level security)

NA

Role Viewer View User
(attribute-level security)

NA

Entitlement Viewer Create User Direct

AppInstance Viewer Delete User Direct

Modify User
(attribute-level security)

Direct

Lock User NA

Unlock User NA

Enable User Direct

Disable User Direct

Grant Role Direct

Revoke Role Direct

Grant Accounts Direct

Revoke Accounts Direct

Grant Entitlements Direct

Revoke Entitlements Direct

Change User Password NA

Change Account
Passwords

NA

Modify User Account Direct

Enable User Account Direct

Security Model

Security Architecture 3-5

Disable User Account Direct

View Org NA

View Role NA

View Entitlements NA

View Application
Instance

NA

View Requests NA

View Admin Role
Memberships

NA

View Role Memberships NA

View User Accounts NA

View User Entitlements NA

View Proxy NA

Add Proxy Direct

Delete Proxy Direct

Help Desk Org Basic Info Search User
(attribute-level security)

NA

Role Basic Info View User
(attribute-level security)

NA

Entitlement Basic
Info

Enable User Request

AppInstance Basic
Info

Disable User Request

Unlock User ONLY IF
locked out due to failed
logins

Direct

Change User Password Direct

View Org NA

View Role NA

View Entitlements NA

View Application
Instance

NA

View Requests NA

View Role Memberships NA

View Proxy NA

View User Accounts NA

View User Entitlements NA

User Viewer Organization Viewer Create User Request

Role Viewer Delete User Request

Table 3–1 (Cont.) Organization-Scoped Admin Roles and Permissions

Admin Role in
Oracle Identity
Manager Implicit Permissions

Organization Scoped
Permissions

Request or Direct
Operation

Security Model

3-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Entitlement Viewer Modify User
(attribute-level security)

Request

AppInstance Viewer Search User
(attribute-level security)

NA

View User
(attribute-level security)

NA

Enable User Request

Disable User Request

Grant Role Request

Revoke Role Request

Grant Accounts Request

Revoke Accounts Request

Grant Entitlements Request

Revoke Entitlements Request

Modify User Account Request

View Org NA

View Role NA

View Entitlements NA

View Application
Instance

NA

View Requests NA

View Role Memberships NA

View Proxy NA

Enable User Account Request

Disable User Account Request

View Admin Role
Memberships

NA

Add Admin roles NA

Delete Admin roles NA

Modify Admin Role
membership

NA

View User Accounts NA

View User Entitlements NA

Role Viewer Org Basic Info Grant Role Request

User Basic Info Revoke Role Request

View Org NA

View Role NA

View Users NA

Table 3–1 (Cont.) Organization-Scoped Admin Roles and Permissions

Admin Role in
Oracle Identity
Manager Implicit Permissions

Organization Scoped
Permissions

Request or Direct
Operation

Security Model

Security Architecture 3-7

View Role Memberships NA

Organization Viewer Org Basic Info Search Org NA

User Basic Info View Org NA

AppInstance Info View Users NA

Entitlement Info View Role NA

View AppInstance NA

View Entitlement NA

View All Publications NA

View All Org Members NA

View Admin Role &
memberships

NA

View Accounts
Provisioned to Org

NA

Application Instance
Viewer

User Basic Info Search Application
Instance

NA

Org Basic Info View Application
Instance (excluding
passwords)

NA

Entitlement Info Grant Account Request

Revoke Accounts Request

Modify User Account Request

Enable User Account Request

Disable User Account Request

View Org NA

View User NA

View AppInstance NA

View Entitlements NA

View User Accounts NA

View User Entitlements NA

Entitlement Viewer User Basic Info Search Entitlement NA

Org Basic Info View Entitlement NA

AppInstance Basic
Info

Grant Entitlement Request

Revoke Entitlement Request

View Orgs NA

View Users NA

View AppInstance NA

View User Accounts NA

Table 3–1 (Cont.) Organization-Scoped Admin Roles and Permissions

Admin Role in
Oracle Identity
Manager Implicit Permissions

Organization Scoped
Permissions

Request or Direct
Operation

Security Model

3-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

View User Entitlements NA

Role Administrator

Note: The Role
Administrator admin
role can only manage
the lifecycle of roles
within their
organization scope
but does not have the
permissions to
grant/revoke roles
to/from any user. If
Role administrator
needs this
functionality, either
assign the Role
Viewer admin role if
request needs to be
approved, or the Role
Authorizer admin
role if request needs
no approval, within
the scope of the
organizations in
which they need this
functionality.

User Basic Info Search Role NA

Org Basic Info View Role NA

Create Role Direct

Modify Role Direct

Delete Role Direct

View Role Members NA

Manage Role Hierarchy Direct

Publish role (only to
allowed orgs)

Direct

Unpublish role (only to
allowed orgs)

Direct

Manage Role
Membership Rules

Direct

Create Role Category Direct

Update Role Category Direct

Delete Role Category Direct

View Users NA

View Orgs NA

View Role Memberships NA

Table 3–1 (Cont.) Organization-Scoped Admin Roles and Permissions

Admin Role in
Oracle Identity
Manager Implicit Permissions

Organization Scoped
Permissions

Request or Direct
Operation

Security Model

Security Architecture 3-9

Application Instance
Administrator

Note: The
Application Instance
Administrator admin
role can only manage
the lifecycle of
application instances
within their
organization scope
but does not have the
permissions to
grant/revoke
application instances
to/from any user. If
Application Instance
administrator needs
this functionality,
either assign the
Application Instance
Viewer admin role if
request needs to be
approved, or the
Application Instance
Authorizer admin
role if request needs
no approval, within
the scope of the
organizations in
which they need this
functionality.

User Basic Info Create Application
instance

Direct

Org Basic Info Modify Application
instance

Direct

Entitlement
Administrator

Delete Application
instance

Direct

Search Application
Instance

NA

View Application
Instance

NA

Publish Application
Instance (only to allowed
orgs)

Direct

Unpublish Application
Instance (only to allowed
orgs)

Direct

Publish Entitlements
(only to allowed orgs)

Direct

Unpublish Entitlements
(only to allowed orgs)

Direct

Access Advanced UI NA

View accounts NA

View Users NA

Table 3–1 (Cont.) Organization-Scoped Admin Roles and Permissions

Admin Role in
Oracle Identity
Manager Implicit Permissions

Organization Scoped
Permissions

Request or Direct
Operation

Security Model

3-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

View Orgs NA

View User Accounts NA

View User Entitlements NA

Organization
Administrator

User Basic Info Search Org NA

AppInstance Basic
Info

View Org NA

Entitlement Basic
Info

Create Organization Direct

Role Basic Info Modify Organization Direct

Delete Organization Direct

All Role Admin
Privileges for Admin
Roles.

Direct

Update Organization
Hierarchy (for a specific
organization)

Direct

Associate password
policy

Direct

View members NA

View roles published NA

View app instances
published

NA

View entitlements
published

NA

View accounts
(provisioned to org)

Note: Provisioning
resources to organization
is allowed only to the
System Administrator.

NA

Table 3–1 (Cont.) Organization-Scoped Admin Roles and Permissions

Admin Role in
Oracle Identity
Manager Implicit Permissions

Organization Scoped
Permissions

Request or Direct
Operation

Security Model

Security Architecture 3-11

Entitlement
Administrator

Note: The
Entitlement
Administrator admin
role can only manage
the lifecycle of
entitlements within
their organization
scope but does not
have the permissions
to grant/revoke
entitlements to/from
any user. If
Entitlement
administrator needs
this functionality,
either assign the
Entitlement Viewer
admin role if request
needs to be
approved, or the
Entitlement
Authorizer admin
role if request needs
no approval, within
the scope of the
organizations in
which they need this
functionality.

User Basic Info Search Entitlements NA

AppInstance Basic
Info

View Entitlements NA

Org Basic Info add Entitlements (API) Direct

delete Entitlements (API) Direct

update Entitlements
(API)

Direct

Publish Entitlement (only
to allowed orgs)

Direct

Unpublish Entitlement
(only from allowed orgs)

Direct

View orgs NA

View User NA

View app instance NA

View accounts NA

View Entitlement
Members

NA

View Published
Entitlements (API) org
data security applies

NA

Catalog System
Administrator

AppInstance Basic
Info

Edit Catalog metadata Direct

Table 3–1 (Cont.) Organization-Scoped Admin Roles and Permissions

Admin Role in
Oracle Identity
Manager Implicit Permissions

Organization Scoped
Permissions

Request or Direct
Operation

Security Model

3-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Entitlement Basic
Info

Create Request Profiles Direct

Role Basic Info Modify Request Profiles Direct

Delete Request Profiles Direct

View application
instances

NA

View entitlements NA

View roles NA

Role Authorizer User Basic Info View Role NA

Org Basic Info Grant Role Direct

Revoke Role Direct

View Orgs NA

View Users NA

View Role Memberships NA

Application Instance
Authorizer

User Basic Info Search Application
Instance

NA

Org Basic Info View Application
Instance (excluding
passwords)

NA

Grant account Direct

Revoke account Direct

Modify account Direct

Enable account Direct

Disable account Direct

View Org NA

View Entitlements NA

View Users NA

View User Accounts NA

View User Entitlements NA

Entitlement
Authorizer

User Basic Info Search Entitlement NA

Org Basic Info View Entitlement NA

AppInstance Basic
Info

Grant Entitlement Direct

Revoke Entitlement Direct

View Users NA

View Orgs NA

View Application
Instance

NA

Table 3–1 (Cont.) Organization-Scoped Admin Roles and Permissions

Admin Role in
Oracle Identity
Manager Implicit Permissions

Organization Scoped
Permissions

Request or Direct
Operation

Security Model

Security Architecture 3-13

Table 3–2 lists the global admin roles in Oracle Identity Manager and the
corresponding permissions provided by the admin roles. These admin roles are
assigned through the Top organization.

View User Accounts NA

View User Entitlements NA

Note: The System Administrator admin role is not listed in Table 3–2.
The System Administrator admin role has global permissions for all
operations.

Table 3–2 Global Admin Roles and Permissions

Admin Role in
Oracle Identity
Manager Impicit Permissions Explicit Permissions

Request or Direct
Operation

Catalog System
Administrator

App Instance Basic
Info

Edit Catalog metadata Direct

Entitlement Basic Info Create Request Profiles Direct

Role Basic Info Modify Request
Profiles

Direct

Delete Request Profiles Direct

View Application
Instances

NA

ViewRentitlements NA

View Roles NA

System Configuration
Administrator

Role Basic Info View Forms NA

Org Basic Info Create Forms NA

Application Instance
Basic Info

Modify Forms NA

Entitlement Basic Info Delete Forms NA

Import Connector NA

Export Connector NA

View Resource Object NA

Create Resource Object NA

Modify Resource
Object

NA

Delete Resource Object NA

View Application
Instance

NA

Table 3–1 (Cont.) Organization-Scoped Admin Roles and Permissions

Admin Role in
Oracle Identity
Manager Implicit Permissions

Organization Scoped
Permissions

Request or Direct
Operation

Security Model

3-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Create Application
Instance

NA

Modify Application
Instance

NA

Delete Application
Instance

NA

Publish Application
Instance

NA

View Entitlement NA

Publish Entitlement NA

Delete Entitlement

(using APIs)

NA

Modify Entitlement

(using APIs)

NA

Add Entitlement

(using APIs)

NA

View Approval
Policies

NA

Create Approval
Policies

NA

Modify Approval
Policies

NA

Delete Approval
Policies

NA

Access Advanced UI NA

View Password Policy NA

Create Password
Policy

NA

Modify Password
Policy

NA

Delete Password
Policy

NA

View Notification NA

Create Notification NA

Delete Notification NA

Modify Notification NA

Add Locale to
Notification

NA

Remove Locale To
Notification

NA

Complete Async Event
Handlers

NA

Table 3–2 (Cont.) Global Admin Roles and Permissions

Admin Role in
Oracle Identity
Manager Impicit Permissions Explicit Permissions

Request or Direct
Operation

Security Model

Security Architecture 3-15

Orchestration
Operation

NA

Register Plugin NA

Unregister Plugin NA

View scheduled Jobs NA

Search Scheduled Jobs

Start Scheduler NA

Stop Scheduler NA

Add Task NA

Modify Task NA

Delete Task NA

Create Trigger NA

Delete Trigger NA

Modify Trigger NA

View Jobs NA

Create Jobs NA

Modify Jobs NA

Delete Jobs NA

Enable Jobs NA

Disable Jobs NA

Run-now Jobs NA

Pause Jobs NA

Resume Jobs NA

Stop Jobs NA

Reset Status NA

View System
Properties

NA

Create System
Properties

NA

Modify System
Properties

NA

Delete System
Properties

NA

View Attributes NA

Add Attributes NA

Modify Attributes NA

Delete Attributes NA

Table 3–2 (Cont.) Global Admin Roles and Permissions

Admin Role in
Oracle Identity
Manager Impicit Permissions Explicit Permissions

Request or Direct
Operation

Security Model

3-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Add Derived
Attributes

NA

SPML Admin Create, modify, and
delete users

Request

Search users on all the
attributes

NA

Enable user status Request

Disable user status Request

Add role memberships Request

Delete role
memberships

Request

Search roles on all the
attributes

NA

Create, modify, and
delete roles

Request

Certification
Administrator

Certification Viewer View Proxy User NA

User Basic Info ViewUser Admin Role NA

Role Basic Info View User
Entitlements

NA

Organization Basic
Info

View Requests NA

Application Instance
Basic Info

View User Accounts NA

Entitlement Basic Info View User Roles NA

View Certification
Configuration

NA

Update Certification
Configuration

NA

Update Certification NA

Access Advanced UI NA

View scheduled Jobs NA

Search Scheduled Jobs NA

Start Scheduler NA

Stop Scheduler NA

Add Task NA

Modify Task NA

Delete Task NA

Create Trigger NA

Delete Trigger NA

Modify Trigger NA

Table 3–2 (Cont.) Global Admin Roles and Permissions

Admin Role in
Oracle Identity
Manager Impicit Permissions Explicit Permissions

Request or Direct
Operation

Security Model

Security Architecture 3-17

3.1.2 Attribute-Level Security for the User Attributes
Oracle Identity Manager supports attribute-level security only for user attributes. The
security for all other entities is supported at the entity-instance level.

Oracle Identity Manager contains the default User Viewer, User Administrator, and
User HelpDesk admin roles along with the corresponding default authorization
policies in OES. The default policies allow the User Viewer and User Administrator to
view and modify all the user attributes including the attributes that are added as
user-defined fields (UDFs), without requiring any changes to the default policies.

The User Viewer policy has the default constraint set as the deniedattributes
obligation in the policy, and by default, it contains NULL list for the attributes.

View Jobs NA

Create Jobs NA

Modify Jobs NA

Delete Jobs NA

Enable Jobs NA

Disable Jobs NA

Run-now Jobs NA

Pause Jobs NA

Resume Jobs NA

Stop Jobs NA

Certification Viewer

Note: The only
permission explicitly
granted to the
Certification Viewer
admin role is View
Certification.
Permissions to view
other entities are
dynamically granted
and scoped to those
entities referenced in
a certification.

View Certification NA

Note: The following permissions in Oracle Identity Manager are not
governed by OES policies:

■ Create / Update / Delete Access Policies

■ Add / Modify / Remove Lookup

■ Import / Export using the Deployment Manager

■ Attestation Administration

Table 3–2 (Cont.) Global Admin Roles and Permissions

Admin Role in
Oracle Identity
Manager Impicit Permissions Explicit Permissions

Request or Direct
Operation

Security Model

3-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Therefore, all users belonging to the User Viewer role are allowed to view all user
attributes by default.

The User Administrator policy has the default constraint set as the deniedattributes
obligation in the policy with a NULL list of attributes, and all users belonging to the
User Administrator role are allowed to view and modify all user attributes by default.
The User HelpDesk policy also has the default constraint set as the deniedattributes
obligation in the policy with a NULL list of attributes.

When you add a new UDF, there is no need to change the User Viewer policy. This is
because, this policy has default constraint set as deniedattributes, and by default a
NULL list for the attributes. This automatically enables the users belonging to the User
Viewer role to view the UDFs. There is no need to change the User Administrator
policy because the constraint to view and modify all attributes automatically enables
the users belonging to the User Administrator role to view and modify these UDFs.

Only if you want to restrict certain attributes to be viewed or modified, then you can
change the policies in OES to include such attributes in the deny list. When you want
to restrict the list of attributes to be viewed by the User Viewer role or restrict the list
of attributes to be viewed and modified by the User Administrator role, you must
open the respective policy in the APM UI in OES, and include the list of attributes to
be restricted in the deny attribute list of the policy. For example, if you want to restrict
the Salary user attribute to be available only for the User Administrator role and not
for the User Viewer role, then use the APM UI and modify the User Viewer role to
include the Salary attribute in the deny list. When Oracle Identity Manager queries
OES to provide a list of attributes for the User Viewer role, OES provides all user
attributes but excludes the attributes specified in the Deny List, which is the Salary
attribute in this example. Here, there are no changes required for User Admin policy
because the 'View and Modify All Attributes' returns the Salary information to be
viewed and modified by the users belonging to the User Administrator role.

To change the denied attributes, open the required OES policy in APM UI. In this
example, an OES policy by name OrclOIMUserViewerDirectWithObligationPolicy has
been opened that gives the permission to view-search user for the User Viewer admin
role, as shown in Figure 3–2:

Security Model

Security Architecture 3-19

Figure 3–2 The OrclOIMUserViewerDirectWithObligationPolicy

You can click the OrclOIMDeniedAttributesDirect attribute in edit mode, and then
provide the denied attributes, separated by commas, as shown in Figure 3–3:

Figure 3–3 The Edit Obligation Attribute Dialog Box

3.1.2.1 Using Plug-ins to Pass Attributes for Policy Evaluation
You can use the oracle.iam.platform.authopss.plugin.AttributeResolver plug-in point
to pass the attributes to OES for policy evaluation. To add a new attribute to be used in
policies (condition), you must add the attributes in a Map by using the following
methods:

To resolve the attributes of the target entity on which the logged-in user is working:

Security Model

3-20 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

public Map<String, Object> resolveResourceAttributes(String subjectId,
PolicyConstants.Resources resourceType, String resourceId) throws Exception;

To resolve the attributes related to logged-in user:

public Map<String, Object> resolveSubjectAttributes(String subjectId, Policy
Constants.Resources resourceType) throws Exception;

See Chapter 27, "Developing Plug-ins" for information about developing and using
plug-ins.

3.1.3 Policy Obligations
If a user has multiple roles that have different authorization policies applicable in the
same context, then the user's access rights are the cumulative rights across those
policies. For example, the authorization check for the permission to search for users
returns a list of obligations. This is a list of obligations from each applicable
authorization policy. These obligations from multiple policies are combined to get a
unified search result.

The following types of obligations are returned as a result of multiple authorization
policies:

■ OrclOIMOrgScopingDirect: This is used to search the given entity for the
intent-based search. This is supported only for view-search.

■ OrclOIMOrgScopingWithHierarchy: This considers the hierarchy of the Admin
Role organization scoping, and it can search entities in down hierarchy. This
allows users to view and modify user profiles without approval as applicable for
the organization in which the user has the appropriate admin role, and its
suborganizations. This is controlled by the Hierarchy Aware data constraint.

■ OrclOIMNeedApproval: This obligation defines if the authorization policies are
applicable, then the operation requires approval or not. If the value of this flag is
true, then a request is created. If the value is false, then it is a direct operation.

■ OrclOIMUserManagementScoping: This is used for making the search criteria to
search in the management chain of the user.

■ OrclOIMDeniedAttributesWithoutApproval: This defines the obligation for the
user attributes that are denied for modification without a request approval.

■ OrclOIMDeniedAttributesDirect: This defined the obligation for the user
attributes that are denied for the view user operation as a direct operation.

■ OrclOIMDeniedAttributesWithApproval: This defines the obligation for the user
attributes that are denied for modification with a request approval.

The following are examples of policy obligations returned as a result of multiple
authorization policies:

■ The user with role viewer admin role for an organization need approval to grant a
role to the user. The role viewer can view all users in the organization with
hierarchy as a result of OrgScopingWithHierarchy policy obligation. For the same
organization, granting a role to a user is a direct operation for a user with the role
authorizer admin role.

■ Suppose there are two admin roles assigned to a user in the same organization
scoping, User Viewer and User Administrator. When both the users try to modify
a user, the first admin role policy returns approval-required, and other policy
returns that approval is not required. As a result, no request would be raised, and

Functional and Data Security Mapping

Security Architecture 3-21

the cumulative effect of two approval-required obligations is NO-approval
required.

■ As a result of the OrgScopingDirect policy obligation, a user with the role
authorizer admin role can view all users in an organization. The same user with
role authorizer admin role can be denied modifying a few attributes by the
DeniedAttributesWithApproval policy obligation, and as a result, the attributes
are not displayed to the user.

■ Suppose a user is a Role Viewer in Org1 and Role Authorizer in Org2. Then if the
user searches for the roles, then the obligation returned from policy1 is
OrgScopingDirect = org1 and OrgScopingDirect = org2. Therefore, roles will be
returned from both the organizations.

3.2 Functional and Data Security Mapping
Table 3–3 lists the admin roles and the corresponding application roles, default
authorization policies, and policy obligations.

Table 3–3 Default Authorization Policies

Admin Role in
Oracle Identity
Manager

Application Role
in OES Policy Name Description Obligation

Authenticated Role authenticated-role Role Category
View Policy

This Policy controls if
authenticated users can view
role categories.

Role Administrator OIM Role
Administrator

OIM RoleCategory
RoleAdmin Policy

This policy controls the
creation, modification, and
deletion of role categories by
the Role Administrator admin
role.

Catalog
Administrator

OIM Catalog
Administrator
Role

Catalog
Administration
Policy

Catalog Administrator is a
global admin role. Catalog
Administrators are responsible
for managing catalog items and
their metadata. This Policy
specifies the actions that a
member of the role can take.

Organization
Administrator

OIM Organization
Administrator

Organization
Administration
Policy

This policy specifies the actions
that an Organization
Administrator can perform.
This policy can also be
configured to require an
approval.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMOrgani
zationAdminOrgs
WithHierarchy

OrclOIMOrgScopi
ngDirect=OrclOI
MOrganizationA
dminOrgsDirect

Organization
Administrator

OIM Organization
Administrator

OIM
OrgAdministrator
Basic Info
Application
Instance Direct
Policy

This policy specifies the direct
view and search permissions
on application instances by
Organization Administrators.

OrclOIMOrgScopi
ngDirect=OrclOI
MOrganizationA
dminOrgsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMOrgani
zationAdminOrgs
WithHierarchy

Functional and Data Security Mapping

3-22 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Organization
Administrator

OIM Organization
Administrator

OIM
OrgAdministrator
Basic Info IT
Resource
Entitlement Direct
Policy

This policy specifies the direct
view and search permissions
on entitlements by
Organization Administrators.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMOrgani
zationAdminOrgs
WithHierarchy

OrclOIMOrgScopi
ngDirect=OrclOI
MOrganizationA
dminOrgsDirect

Organization
Administrator

OIM Organization
Administrator

OIM
OrgAdministrator
Basic Info Role
Direct Policy

This policy specifies the direct
view and search permissions
on roles by Organization
Administrators.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMOrgani
zationAdminOrgs
WithHierarchy

OrclOIMOrgScopi
ngDirect
Attribute=OrclOI
MOrganizationA
dminOrgsDirect

Organization
Administrator

OIM Organization
Administrator

OIM
OrgAdministrator
Basic Info User
Direct
WithAttributes
Policy

This policy specifies the direct
view and search permissions
on users and user attributes by
Organization Administrators.

OrclOIMOrgScopi
ngDirect=OrclOI
MOrganizationA
dminOrgsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMOrgani
zationAdminOrgs
WithHierarchy

OrclOIMDeniedA
ttributesDirect=

Organization
Viewer

OIM Organization
Viewer

Organization
Viewer Policy for
View Actions

Organization Viewer is an
organization-scoped admin
role. This policy specifies the
actions that members of this
role can take, which do not
require approval. By default,
the policy specifies that all
view actions do not require
approval.

OrclOIMOrgScopi
ngDirect=OrclOI
MOrganizationVi
ewerOrgsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMOrgani
zationViewerOrgs
WithHierarchy

Organization
Viewer

OIM Organization
Viewer

OIM OrgViewer
Basic Info
Application
Instance Direct
Policy

This policy specifies the direct
view and search permissions
on application instances by
Organization Viewers.

OrclOIMOrgScopi
ngDirect=OrclOI
MOrganizationVi
ewerOrgsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMOrgani
zationViewerOrgs
WithHierarchy

Table 3–3 (Cont.) Default Authorization Policies

Admin Role in
Oracle Identity
Manager

Application Role
in OES Policy Name Description Obligation

Functional and Data Security Mapping

Security Architecture 3-23

Organization
Viewer

OIM Organization
Viewer

OIM OrgViewer
Basic Info IT
Resource
Entitlement Direct
Policy

This policy specifies the direct
view and search permissions
on entitlements by
Organization Viewers.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMOrgani
zationViewerOrgs
WithHierarchy

OrclOIMOrgScopi
ngDirect=OrclOI
MOrganizationVi
ewerOrgsDirect

Organization
Viewer

OIM Organization
Viewer

OIM OrgViewer
Basic Info Role
Direct Policy

This policy specifies the direct
view and search permissions
on roles by Organization
Viewers.

OrclOIMOrgScopi
ngDirect=OrclOI
MOrganizationVi
ewerOrgsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMOrgani
zationViewerOrgs
WithHierarchy

Organization
Viewer

OIM Organization
Viewer

OIM OrgViewer
Basic Info User
Direct
WithAttributes
Policy

This policy specifies the direct
view and search permissions
on users and user attributes by
Organization Viewers.

OrclOIMOrgScopi
ngDirect=OrclOI
MOrganizationVi
ewerOrgsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMOrgani
zationViewerOrgs
WithHierarchy

OrclOIMDeniedA
ttributesDirect=

Application
Instance
Administrator

OIM Application
Instance
Administrator
Role

Application
Instance
Administrator
Policy

The Application Instance
Administrator admin role is an
organization-scoped role. This
policy controls the actions that
members of the role can
perform and whether or not the
actions require approval.

OrclOIMOrgScopi
ngDirect=OrclOI
MApplicationInst
anceAdminOrgsD
irect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMApplica
tionInstanceAdmi
nOrgsWithHierar
chy

Application
Instance
Administrator

OIM Application
Instance
Administrator
Role

OIM
ApplicationInstanc
eAdministrator
Basic Info User
Direct
WithAttributes
Policy

This policy specifies the direct
view and search permissions
on users and user attributes by
Application Instance
Administrators.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMApplica
tionInstanceAdmi
nOrgsWithHierar
chy

OrclOIMOrgScopi
ngDirect=OrclOI
MApplicationInst
anceAdminOrgsD
irect

OrclOIMDeniedA
ttributesDirect=

Table 3–3 (Cont.) Default Authorization Policies

Admin Role in
Oracle Identity
Manager

Application Role
in OES Policy Name Description Obligation

Functional and Data Security Mapping

3-24 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Application
Instance
Administrator

OIM Application
Instance
Administrator
Role

OIM
ApplicationInstanc
eAdministrator
Basic Info
Organization
Direct Policy

This policy specifies the direct
view and search permissions
on organizations by
Application Instance
Administrators.

OrclOIMOrgScopi
ngDirect=OrclOI
MApplicationInst
anceAdminOrgsD
irect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMApplica
tionInstanceAdmi
nOrgsWithHierar
chy

Application
Instance
Authorizer

OIM Application
Instance
Authorizer Role

Application
Instance
Authorizer Policy

An Application Instance
Authorizer is an admin role in
Oracle Identity Manager.
Application Instance
Authorizers can
grant/revoke/modify
application instances to user
accounts without approval.
This policy controls whether or
not an Application Instance
Authorizer can view/search
application instances and
application instance attributes.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMApplica
tionInstanceAuth
orizerOrgsWithHi
erarchy

OrclOIMOrgScopi
ngDirect=OrclOI
MApplicationInst
anceAuthorizerOr
gsDirect

Application
Instance
Authorizer

OIM Application
Instance
Authorizer Role

Application
Instance
Authorizer Policy

Application Instance
Authorizers can
grant/revoke/modify
application instances to user
accounts without approval.
This policy controls whether or
not an Application Instance
Authorizer can view/search
application instances and
application instance attributes.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMApplica
tionInstanceAuth
orizerOrgsWithHi
erarchy

OrclOIMOrgScopi
ngDirect=OrclOI
MApplicationInst
anceAuthorizerOr
gsDirect

OrclOIMNeedAp
proval=false

Application
Instance
Authorizer

OIM Application
Instance
Authorizer Role

OIM
ApplicationInstanc
eAuthorizer Basic
Info User Direct
WithAttributes
Policy

This policy specifies the direct
view and search permissions
on users and user attributes by
Application Instance
Authorizers.

OrclOIMDeniedA
ttributesDirect=

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMApplica
tionInstanceAuth
orizerOrgsWithHi
erarchy

OrclOIMOrgScopi
ngDirect=OrclOI
MApplicationInst
anceAuthorizerOr
gsDirect

Table 3–3 (Cont.) Default Authorization Policies

Admin Role in
Oracle Identity
Manager

Application Role
in OES Policy Name Description Obligation

Functional and Data Security Mapping

Security Architecture 3-25

Application
Instance
Authorizer

OIM Application
Instance
Authorizer Role

OIM
ApplicationInstanc
eAuthorizer Basic
Info Organization
Direct Policy

This policy specifies the direct
view and search permissions
on organizations by
Application Instance
Authorizers.

OrclOIMOrgScopi
ngDirect=OrclOI
MApplicationInst
anceAuthorizerOr
gsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMApplica
tionInstanceAuth
orizerOrgsWithHi
erarchy

Application
Instance Viewer

OIM Application
Instance Viewer
Role

OIM Application
Instance Viewer
Direct Policy

This policy specifies the
operations that Application
Instance Viewers can perform
directly.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMApplica
tionInstanceView
erOrgsWithHierar
chy

OrclOIMOrgScopi
ngDirect=OrclOI
MApplicationInst
anceViewerOrgsD
irect

Application
Instance Viewer

OIM Application
Instance Viewer
Role

Application
Instance Viewer
Policy for Request
actions

The Application Instance
Viewer admin role is an
organization-scoped role. This
policy controls the actions that
members of the role can
perform and whether or not the
actions require approval.

OrclOIMOrgScopi
ngDirect=OrclOI
MApplicationInst
anceViewerOrgsD
irect

OrclOIMNeedAp
proval=true

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMApplica
tionInstanceView
erOrgsWithHierar
chy

Application
Instance Viewer

OIM Application
Instance Viewer
Role

OIM
ApplicationInstanc
eViewer Basic Info
IT Resource
Entitlement Direct
Policy

This policy specifies the direct
view and search permissions
on entitlements by Application
Instance Viewers.

OrclOIMOrgScopi
ngDirect=OrclOI
MApplicationInst
anceViewerOrgsD
irect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMApplica
tionInstanceView
erOrgsWithHierar
chy

Table 3–3 (Cont.) Default Authorization Policies

Admin Role in
Oracle Identity
Manager

Application Role
in OES Policy Name Description Obligation

Functional and Data Security Mapping

3-26 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Application
Instance Viewer

OIM Application
Instance Viewer
Role

OIM
ApplicationInstanc
eViewer Basic Info
User Direct
WithAttributes
Policy

This policy specifies the direct
view and search permissions
on users and user attributes by
Application Instance Viewers.

OrclOIMDeniedA
ttributesDirect=

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMApplica
tionInstanceView
erOrgsWithHierar
chy

OrclOIMOrgScopi
ngDirect=OrclOI
MApplicationInst
anceViewerOrgsD
irect

Application
Instance Viewer

OIM Application
Instance Viewer
Role

OIM
ApplicationInstanc
eViewer Basic Info
Organization
Direct Policy

This policy specifies the direct
view and search permissions
on organizations by
Application Instance Viewers.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMApplica
tionInstanceView
erOrgsWithHierar
chy

OrclOIMOrgScopi
ngDirect=OrclOI
MApplicationInst
anceViewerOrgsD
irect

Authenticated Role authenticated-role Home Org Policy
for Application
Instances

This Policy allows a user to
implicitly view the application
instances and application
instance attributes that have
been published to the user's
home organization.

OrclOIMOrgScopi
ngDirect=OrclOI
MUserHomeOrgs

Authenticated Role authenticated-role Application
Instance Policy for
Home Org

This policy controls the actions
that a user can take on accounts
in the user's Home
Organization and whether
these actions require approval.
By default, actions by non-User
Administrators on accounts in
the same Home Organization
require approval.

OrclOIMOrgScopi
ngDirect=OrclOI
MUserHomeOrgs

OrclOIMNeedAp
proval=true

System
Configuration
Administrator

OIM System
Configurator

Password Policy
Management
Policy

This policy controls the
password policy management
actions that members of the
System Administrator or
System Configuration
Administrator can take.

Organization
Administrator

OIM Organization
Administrator

OIM Password
Policy OrgAdmin
ViewSearch Policy

This policy specifies the view
and search permissions on
password policies by
Organization Administrators.

Table 3–3 (Cont.) Default Authorization Policies

Admin Role in
Oracle Identity
Manager

Application Role
in OES Policy Name Description Obligation

Functional and Data Security Mapping

Security Architecture 3-27

Entitlement
Administrator

OIM Entitlement
Administrator

Entitlement
Administrator
Policy for
entitlement
management
actions

An Entitlement Administrator
is an organization scoped
admin role in Oracle Identity
Manager. This policy controls
the actions a member of this
role can perform without
requiring approval.

OrclOIMOrgScopi
ngDirect=OrclOI
MEntitlementAd
minOrgsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMEntitle
mentAdminOrgs
WithHierarchy

Entitlement
Administrator

OIM Entitlement
Administrator

OIM
EntitlementAdmin
istrator Basic Info
Application
Instance Direct
Policy

This policy specifies the direct
view and search permissions
on application instances by
Entitlement Administrators.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMEntitle
mentAdminOrgs
WithHierarchy

OrclOIMOrgScopi
ngDirect=OrclOI
MEntitlementAd
minOrgsDirect

Entitlement
Administrator

OIM Entitlement
Administrator

OIM
EntitlementAdmin
istrator Basic Info
User Direct
WithAttributes
Policy

This policy specifies the direct
view and search permissions
on users and user attributes by
Entitlement Administrators.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMEntitle
mentAdminOrgs
WithHierarchy

OrclOIMOrgScopi
ngDirect=OrclOI
MEntitlementAd
minOrgsDirect

OrclOIMDeniedA
ttributesDirect=

Entitlement
Administrator

OIM Entitlement
Administrator

OIM
EntitlementAdmin
istrator Basic Info
Organization
Direct Policy

This policy specifies the direct
view and search permissions
on organizations by
Entitlement Administrators.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMEntitle
mentAdminOrgs
WithHierarchy

OrclOIMOrgScopi
ngDirect=OrclOI
MEntitlementAd
minOrgsDirect

Entitlement
Authorizer

OIM Entitlement
Authorizer

Entitlement
Authorizer Policy
for View Actions

An Entitlement Authorizer is
an admin role in Oracle
Identity Manager. Entitlement
Authorizers can
grant/revoke/modify
entitlements to user accounts
without approval. This policy
controls whether an
Entitlement Authorizer can
view/search entitlements and
entitlement attributes.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMEntitle
mentAuthorizerO
rgsWithHierarchy

OrclOIMOrgScopi
ngDirect=OrclOI
MEntitlementAut
horizerOrgsDirect

Table 3–3 (Cont.) Default Authorization Policies

Admin Role in
Oracle Identity
Manager

Application Role
in OES Policy Name Description Obligation

Functional and Data Security Mapping

3-28 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Entitlement
Authorizer

OIM Entitlement
Authorizer

Entitlement
Authorizer Policy
for Request
Actions

Entitlement Authorizers can
grant/revoke/modify
entitlements to user accounts
without approval. This policy
controls the actions that can be
performed by an Entitlement
Authorizer as part of a request.
This policy is used by the
request engine to determine if a
particular action taken by the
Entitlement Authorizer is direct
or through request.

OrclOIMOrgScopi
ngDirect=OrclOI
MEntitlementAut
horizerOrgsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMEntitle
mentAuthorizerO
rgsWithHierarchy

OrclOIMNeedAp
proval=false

Entitlement
Authorizer

OIM Entitlement
Authorizer

OIM
EntitlementAuthor
izer Basic Info
Application
Instance Direct
Policy

This policy specifies the direct
view and search permissions
on application instances by
Entitlement Authorizers.

OrclOIMOrgScopi
ngDirect=OrclOI
MEntitlementAut
horizerOrgsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMEntitle
mentAuthorizerO
rgsWithHierarchy

Entitlement
Authorizer

OIM Entitlement
Authorizer

OIM
EntitlementAuthor
izer Basic Info
User Direct
WithAttributes
Policy

This policy specifies the direct
view and search permissions
on users and user attributes by
Entitlement Authorizers.

OrclOIMDeniedA
ttributesDirect=

OrclOIMOrgScopi
ngDirect=OrclOI
MEntitlementAut
horizerOrgsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMEntitle
mentAuthorizerO
rgsWithHierarchy

Entitlement
Authorizer

OIM Entitlement
Authorizer

OIM
EntitlementAuthor
izer Basic Info
Organization
Direct Policy

This policy specifies the direct
view and search permissions
on organizations by
Entitlement Authorizers.

OrclOIMOrgScopi
ngDirect=OrclOI
MEntitlementAut
horizerOrgsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMEntitle
mentAuthorizerO
rgsWithHierarchy

Entitlement Viewer OIM Entitlement
Viewer

Entitlement
Viewer Policy for
View Actions

An Entitlement Viewer is an
organization-scoped admin role
in Oracle Identity Manager.
This Policy specifies whether
an entitlement viewer can
search for entitlements and
view its attributes without
approval. By default, no
approval is required.

OrclOIMOrgScopi
ngDirect=OrclOI
MEntitlementVie
werOrgsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMEntitle
mentViewerOrgs
WithHierarchy

Table 3–3 (Cont.) Default Authorization Policies

Admin Role in
Oracle Identity
Manager

Application Role
in OES Policy Name Description Obligation

Functional and Data Security Mapping

Security Architecture 3-29

Entitlement Viewer OIM Entitlement
Viewer

OIM Entitlement
Viewer Policy for
Request Actions

This policy is an
organization-scoped policy,
which allows members of the
role to request granting,
revoking, and modifying
entitlements that are published
to their organizations. An
entitlement grant or revoke by
an Entitlement Viewer results
in a request.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMEntitle
mentViewerOrgs
WithHierarchy

OrclOIMOrgScopi
ngDirect=OrclOI
MEntitlementVie
werOrgsDirect

OrclOIMNeedAp
proval=true

Entitlement Viewer OIM Entitlement
Viewer

OIM
EntitlementViewer
Basic Info
Application
Instance Direct
Policy

This policy specifies the direct
view and search permissions
on application instances by
Entitlement Viewers.

OrclOIMOrgScopi
ngDirect=OrclOI
MEntitlementVie
werOrgsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMEntitle
mentViewerOrgs
WithHierarchy

Entitlement Viewer OIM Entitlement
Viewer

OIM
EntitlementViewer
Basic Info User
Direct
WithAttributes
Policy

This policy specifies the direct
view and search permissions
on users and user attributes by
Entitlement Viewers.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMEntitle
mentViewerOrgs
WithHierarchy

OrclOIMDeniedA
ttributesDirect=

OrclOIMOrgScopi
ngDirect=OrclOI
MEntitlementVie
werOrgsDirect

Entitlement Viewer OIM Entitlement
Viewer

OIM
EntitlementViewer
Basic Info
Organization
Direct Policy

This policy specifies the direct
view and search permissions
on organizations by
Entitlement Viewers.

OrclOIMOrgScopi
ngDirect=OrclOI
MEntitlementVie
werOrgsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMEntitle
mentViewerOrgs
WithHierarchy

Authenticated Role authenticated-role Home Org Policy
for viewing
Entitlements

This Policy allows a user to
implicitly view the entitlements
and entitlement attributes that
have been published to the
user's home organization.

OrclOIMOrgScopi
ngDirect
=OrclOIMUserHo
meOrgs

Authenticated Role authenticated-role HomeOrg Policy
for actions on
Entitlements

This policy specifies the actions
that a user can take on the
entitlements provisioned to
another user in the same home
organization, and whether
these actions require approval.
By default, approval is
required.

OrclOIMNeedAp
proval=true

OrclOIMOrgScopi
ngDirect=OrclOI
MUserHomeOrgs

Table 3–3 (Cont.) Default Authorization Policies

Admin Role in
Oracle Identity
Manager

Application Role
in OES Policy Name Description Obligation

Functional and Data Security Mapping

3-30 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Catalog
Administrator

OIM Catalog
Administrator
Role

Request Profile
Management
Policy

This policy controls the actions
that a member of the Catalog
Administrator role can perform
while managing request
profiles.

Authenticated Role authenticated-role OIM Request
Profile All User
ViewSearch Policy

This policy controls the view
and search permissions on
requests catalogs by all users.

System
Configuration
Administrator

OIM System
Configurator

OIM Approval
Policy
Administrator
Policy

This policy controls the
permissions for approval policy
administration by the System
Configuration Administrator.

System
Configuration
Administrator

OIM System
Configurator

Diagnostic
Dashboard
Administrator
Policy

The Diagnostic Dashboard is a
diagnostic utility for Oracle
Identity Manager. This policy
specifies who can access the
Diagnostic Dashboard and
what actions they can perform.

System
Configuration
Administrator

OIM System
Configurator

OIM resource
object
administration
Policy

This policy controls the
permissions for resource object
administration by the System
Configuration Administrators.

System
Configuration
Administrator

OIM System
Configurator

Notification
Administrator
Policy

This policy specifies the actions
that a notification
administrator can perform.

System
Configuration
Administrator

OIM System
Configurator

OIM Platform
Service
Administrator
Policy

This policy specifies the actions
that a platform service
administrator can perform.

System
Configuration
Administrator

OIM System
Configurator

Plugin
Administrator
Policy

This policy controls who can
register and unregister
plug-ins. By default, only
members of the System
Administrator and System
Configuration Administrator
admin roles can register and
unregister plug-ins.

System
Configuration
Administrator

OIM System
Configurator

System
Configurator
Policy for System
Admin Console

This policy controls whether
members of the System
Configuration Administrator
admin role can access Oracle
Identity System
Administration.

Application
Instance
Administrator

OIM Application
Instance
Administrator

OIM UI App
Instance
Administrator
Policy

This policy specifies the actions
that an Application Instance
Administrator can perform in
the UI.

Entitlement
Administrator

OIM Entitlement
Administrator

OIM UI
Entitlement
Administrator
Policy

This policy specifies the actions
that an Entitlement
Administrator can perform in
the UI.

Table 3–3 (Cont.) Default Authorization Policies

Admin Role in
Oracle Identity
Manager

Application Role
in OES Policy Name Description Obligation

Functional and Data Security Mapping

Security Architecture 3-31

Application
Instance
Administrator

System
Configuration
Administrator

OIM Application
Instance
Administrator

OIM System
Configurator

Request Dataset
Policy

This Policy is used to control
the actions that members of the
System Configuration
Administrator role can perform
on request datasets.

OrclOIMOrgScopi
ngDirect=OrclOI
MSystemConfigu
ratorOrgsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMSystem
ConfiguratorOrgs
WithHierarchy

System
Configuration
Administrator

OIM System
Configurator

Reconciliation
Administrator
Policy

A Reconciliation Administrator
can perform actions on
reconciliation events. This
policy controls what actions a
Reconciliation Administrator
can perform.

System
Configuration
Administrator

OIM System
Configurator

OIM Scheduler
Administrator
Policy

A Scheduler Administrator can
perform actions on scheduled
tasks. This policy controls what
actions a Scheduler
Administrator can perform.

System
Configuration
Administrator

OIM System
Configurator

System Properties
Administration
Policy

This policy specifies the actions
and determines who can
perform them as part of
managing the Oracle Identity
Manager system properties.
The default behavior allows
only the System Configuration
Administrators to manage the
system properties.

System
Configuration
Administrator

OIM System
Configurator

OIM User
Management
Configuration
Administrator
Policy

This policy controls what user
configuration capabilities are
available to a member of the
System Configuration
Administrator role.

Authenticated Role authenticated-role Home Org Policy
for Organizations

This policy allows a user to
implicitly view the application
instances, accounts,
entitlements and entitlement
attributes, and users that have
been published to the user's
home organization.

OrclOIMOrgScopi
ngDirect=OrclOI
MUserHomeOrgs

OrclOIMNeedAp
proval=true

Table 3–3 (Cont.) Default Authorization Policies

Admin Role in
Oracle Identity
Manager

Application Role
in OES Policy Name Description Obligation

Functional and Data Security Mapping

3-32 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

User
Administrator

OIM User Admin User Admin Policy
for user
modification

User Admin is an
organization-scoped admin
role. Members of this role
manage users, and their actions
do not require approval. This
policy specifies whether User
Administrators can modify
user attributes, the attributes
they cannot modify, and
whether their modification
requires approval. By default,
members of this role can
modify all user attributes, and
their actions do not require
approval.

OrclOIMDeniedA
ttributesWithoutA
pproval=

OrclOIMNeedAp
proval=false

OrclOIMOrgScopi
ngDirect=OrclOI
MUserAdminOrg
sDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMUserAd
minOrgsWithHier
archy

User
Administrator

OIM User Admin User
Administrator
Policy for Admin
Actions

A User Administrator is an
organization-scoped admin
role. Members of this role can
perform actions on users in
their organizations' scope
without approval. This policy
covers all actions other than
view actions. It returns an
obligation indicating that
approval is not required for the
enabled actions.

OrclOIMNeedAp
proval=false

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMUserAd
minOrgsWithHier
archy

OrclOIMOrgScopi
ngDirect=OrclOI
MUserAdminOrg
sDirect

User
Administrator

OIM User Admin OIM User Admin
Policy direct with
attributes

This policy controls the direct
actions that the User
Administrators can perform on
users and user attributes.

OrclOIMDeniedA
ttributesDirect=

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMUserAd
minOrgsWithHier
archy

OrclOIMOrgScopi
ngDirect=OrclOI
MUserAdminOrg
sDirect

User
Administrator

OIM User Admin User Admin Policy
for
non-requestable
actions

User Administrator is an
organization-scoped admin
role. Members of this role
manage users, and their actions
do not require approval. This
Policy specifies the actions a
member of the role can perform
on a user, which do not require
approval.

OrclOIMOrgScopi
ngDirect=OrclOI
MUserAdminOrg
sDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMUserAd
minOrgsWithHier
archy

Table 3–3 (Cont.) Default Authorization Policies

Admin Role in
Oracle Identity
Manager

Application Role
in OES Policy Name Description Obligation

Functional and Data Security Mapping

Security Architecture 3-33

User Help Desk OIM User
Password Admin

Help Desk Policy
for managing user
status

This policy controls the actions
that member of the User Help
Desk admin role can take as
part of managing a user's
account status and whether it
requires approvals. By default,
members of the role can
enable/disable a user's status
without approval.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMUserHe
lpDeskOrgsWith
Hierarchy

OrclOIMOrgScopi
ngDirect=OrclOI
MUserHelpDesk
OrgsDirect

OrclOIMNeedAp
proval=true

User Help Desk OIM User
Password Admin

OIM User
HelpDesk Policy
for modify user
accounts

This policy controls the actions
that a member of the User Help
Desk admin role can take as
part of modifying a user's
account.

OrclOIMNeedAp
proval=false

OrclOIMOrgScopi
ngDirect=OrclOI
MUserHelpDesk
OrgsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMUserHe
lpDeskOrgsWith
Hierarchy

User Help Desk OIM User
Password Admin

Help Desk Admin
Policy for User
search

User Help Desk is an
organization-scoped admin
role. Members of this role can
search for users, modify user
profiles, and change user
passwords. This policy
specifies whether members of
the role can search for users
and whether they can view any
user attributes. By default,
members of this admin role can
see all user attributes.

OrclOIMOrgScopi
ngDirect=OrclOI
MUserHelpDesk
OrgsDirect

OrclOIMDeniedA
ttributesDirect=

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMUserHe
lpDeskOrgsWith
Hierarchy

User Help Desk OIM User
Password Admin

Help Desk User
Policy for
Password
Management

Members of the User Help
Desk admin role can search for
users, modify user profiles, and
change user passwords. This
policy specifies whether
members of the role can
manage user passwords,
lock/unlock accounts, and
view requests raised by users

OrclOIMOrgScopi
ngDirect=OrclOI
MUserHelpDesk
OrgsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMUserHe
lpDeskOrgsWith
Hierarchy

Table 3–3 (Cont.) Default Authorization Policies

Admin Role in
Oracle Identity
Manager

Application Role
in OES Policy Name Description Obligation

Functional and Data Security Mapping

3-34 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

User Help Desk OIM User
Password Admin

OIM User
HelpDesk
UnLockUser
Policy direct

This policy determines if the
User Help Desk can directly
unlock a user account.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMUserHe
lpDeskOrgsWith
Hierarchy

OrclOIMOrgScopi
ngDirect=OrclOI
MUserHelpDesk
OrgsDirect

OrclOIMAllowOn
lyIfLockedByFail
LoginAttempts=tr
ue

User Help Desk OIM User
Password Admin

OIM HelpDesk
Basic Info
Application
Instance Direct
Policy

This policy specifies the direct
view and search permissions
on application instances by
members of the User Help
Desk admin role.

OrclOIMOrgScopi
ngDirect=OrclOI
MUserHelpDesk
OrgsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMUserHe
lpDeskOrgsWith
Hierarchy

User Help Desk OIM User
Password Admin

OIM HelpDesk
Basic Info IT
Resource
Entitlement Direct
Policy

This policy specifies the direct
view and search permissions
on IT resource entitlements by
members of the User Help
Desk admin role.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMUserHe
lpDeskOrgsWith
Hierarchy

OrclOIMOrgScopi
ngDirect=OrclOI
MUserHelpDesk
OrgsDirect

User Help Desk OIM User
Password Admin

OIM HelpDesk
Basic Info Role
Direct Policy

This policy specifies the direct
view and search permissions
on roles by members of the
User Help Desk admin role.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMUserHe
lpDeskOrgsWith
Hierarchy

OrclOIMOrgScopi
ngDirect=OrclOI
MUserHelpDesk
OrgsDirect

User Help Desk OIM User
Password Admin

OIM HelpDesk
Basic Info
Organization
Direct Policy

This policy specifies the direct
view and search permissions
on organizations by members
of the User Help Desk admin
role.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMUserHe
lpDeskOrgsWith
Hierarchy

OrclOIMOrgScopi
ngDirect=OrclOI
MUserHelpDesk
OrgsDirect

Table 3–3 (Cont.) Default Authorization Policies

Admin Role in
Oracle Identity
Manager

Application Role
in OES Policy Name Description Obligation

Functional and Data Security Mapping

Security Architecture 3-35

User Viewer OIM User Viewer User Viewer Policy
for Request
Actions

User Viewer is an
organization-scoped admin
role. This policy controls
whether a member of the
admin role can modify a user's
profile and whether the action
requires approval or not. By
default, user modification
requests submitted by
members of the User Viewer
role require approval.

OrclOIMNeedAp
proval=true

OrclOIMDeniedA
ttributesWithApp
roval=

OrclOIMOrgScopi
ngDirect=OrclOI
MUserViewerOrg
sDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMUserVie
werOrgsWithHier
archy

User Viewer OIM User Viewer User Viewer Policy
for User
management

This policy controls what
actions can be performed by a
member of the User Viewer
role, and whether or not those
actions require approval.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMUserVie
werOrgsWithHier
archy

OrclOIMOrgScopi
ngDirect=OrclOI
MUserViewerOrg
sDirect

OrclOIMNeedAp
proval=true

User Viewer OIM User Viewer Default User
Viewer Policy

The User Viewer admin role
controls what users and their
attributes and grants an
authenticated user can search
for and view.

OrclOIMOrgScopi
ngDirect=OrclOI
MUserViewerOrg
sDirect

OrclOIMDeniedA
ttributesDirect=

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMUserVie
werOrgsWithHier
archy

User Viewer OIM User Viewer User Viewer Policy This policy controls the
attributes and the relationships
of a user that a member of the
User Viewer admin role can
view.

OrclOIMOrgScopi
ngDirect=OrclOI
MUserViewerOrg
sDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMUserVie
werOrgsWithHier
archy

Table 3–3 (Cont.) Default Authorization Policies

Admin Role in
Oracle Identity
Manager

Application Role
in OES Policy Name Description Obligation

Functional and Data Security Mapping

3-36 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Authenticated Role authenticated-role Management
Chain Policy for
user modification

This policy specifies whether a
user can modify another user in
the user's management chain
and if the action requires
approval. The policy also
specifies which user attributes
do not require approval. By
default, modification of any
user attribute excluding
password requires approval.

OrclOIMUserMan
agementScoping=
OrclOIMUserId

OrclOIMNeedAp
proval=true

OrclOIMDeniedA
ttributesWithApp
roval=

Authenticated Role authenticated-role Management
Chain Policy for
actions on users

This policy controls what
actions a user can perform on
other users in their
management chain and
whether those actions require
approval. By default, approval
is required.

OrclOIMNeedAp
proval=true

OrclOIMUserMan
agementScoping=
OrclOIMUserId

Authenticated Role authenticated-role Management
Chain Policy for
User search

This policy allows users to
search for other users in their
management chain and view
allowed attributes. By default,
users can view all attributes of
other users in their
management chain.

OrclOIMDeniedA
ttributesDirect=

OrclOIMUserMan
agementScoping=
OrclOIMUserId

Authenticated Role authenticated-role Management
Chain Policy for
Admin Role
actions

This policy controls the actions
that a user can take on admin
roles granted to other users tin
their management chain.

OrclOIMUserMan
agementScoping=
OrclOIMUserId

Authenticated Role authenticated-role Home
Organization
Approval Policy

A home organization is the
default organization that a user
belongs to. This policy controls
what actions a user can take in
the user's home organization,
and it is used by the request
engine to determine whether
the action requires approval or
not.

OrclOIMOrgScopi
ngDirect=OrclOI
MUserHomeOrgs

OrclOIMNeedAp
proval=true

Authenticated Role authenticated-role Home
Organization
Approval with
Attributes Policy

This policy controls what
actions a user can take in the
user's home organization, and
it is used by the request engine
to determine whether the
action requires approval or not.

OrclOIMDeniedA
ttributesWithApp
roval=USR_PASS
WORD

OrclOIMNeedAp
proval=true

OrclOIMOrgScopi
ngDirect=OrclOI
MUserHomeOrgs

Authenticated Role authenticated-role Home Org Policy
for User attributes

This policy controls the user
attributes that are not visible to
users when searching for and
viewing user profiles of other
users in the same home
organization. By default, users
can view all attributes.

OrclOIMOrgScopi
ngDirect=OrclOI
MUserHomeOrgs

OrclOIMDeniedA
ttributesDirect=

Table 3–3 (Cont.) Default Authorization Policies

Admin Role in
Oracle Identity
Manager

Application Role
in OES Policy Name Description Obligation

Functional and Data Security Mapping

Security Architecture 3-37

Authenticated Role authenticated-role Home Org Policy
for viewing user
access

This policy controls the actions
that a user can take while
viewing the access of another
user in the same home
organization.

OrclOIMOrgScopi
ngDirectAttribute
OrclOIMUserHo
meOrgs

Authenticated Role authenticated-role Policy for
modification of
self user profile

This policy specifies the user
attributes that a user can
modify in the user's own user
profile, and whether the
modification needs approval.
By default, a user can modify
any attribute in the user's own
profile, and the modification
requires approval.

OrclOIMNeedAp
proval=true

OrclOIMDeniedA
ttributesWithApp
roval=

Authenticated Role authenticated-role User Self Service
Policy for Request
Actions

This policy controls the actions
authenticated users can take in
Identity Self Service, and
whether or not approvals are
required.

OrclOIMNeedAp
proval=true

Authenticated Role authenticated-role User attribute
view Policy for self

This policy specifies whether
an authenticated user can view
the user's own user attributes,
and the attributes that cannot
be viewed. By default, all user
attributes can be viewed.

OrclOIMDeniedA
ttributesDirect=

Authenticated Role authenticated-role User Self Service
Policy for view
actions

This policy specifies the actions
that a user can take on the
user's own profile, which does
not initiate a request.

SPML Admin OIM SPML Admin SPML Admin
Policy for User
updates

SPML Admin is a global admin
role. This admin role is used by
the SPML web service to carry
out user management
operations. This policy specifies
whether members of the role
can modify users and if the
action requires approval. By
default, user modification by
members of the role requires
approval.

OrclOIMOrgScopi
ngDirect=OrclOI
MSPMLAdminOr
gsDirect

OrclOIMNeedAp
proval=true

OrclOIMDeniedA
ttributesWithApp
roval=

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMSPMLA
dminOrgsWithHi
erarchy

SPML Admin OIM SPML Admin SPML Admin
Policy for actions
on Users

This policy controls that actions
that a member of the SPML
Admin role can take while
managing users and whether
approval is required. By
default, user management
actions performed by members
of this role require approval.

OrclOIMOrgScopi
ngDirect=OrclOI
MSPMLAdminOr
gsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMSPMLA
dminOrgsWithHi
erarchy

OrclOIMNeedAp
proval=true

Table 3–3 (Cont.) Default Authorization Policies

Admin Role in
Oracle Identity
Manager

Application Role
in OES Policy Name Description Obligation

Functional and Data Security Mapping

3-38 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

SPML Admin OIM SPML Admin SPML
Administrator
Policy

This policy specifies the actions
that the SPML Admin can take
on users.

OrclOIMDeniedA
ttributesDirect=

OrclOIMOrgScopi
ngDirect=OrclOI
MSPMLAdminOr
gsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMSPMLA
dminOrgsWithHi
erarchy

SPML Admin OIM SPML Admin SPML Admin
Policy for role
membership
actions

This policy controls the role
membership actions that a
member of the SPML Admin
role can perform and whether
the actions require approval. By
default, the actions require
approval.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMSPMLA
dminOrgsWithHi
erarchy

OrclOIMOrgScopi
ngDirect=OrclOI
MSPMLAdminOr
gsDirect

OrclOIMNeedAp
proval=true

SPML Admin OIM SPML Admin OIM Role SPML
Admin Policy
direct with
attributes

This policy specifies the actions
that the SPML Admin can
directly take on roles and role
attributes.

Role Authorizer OIM Role
Authorizer

Role Authorizer
Policy for View
actions

The Role Authorizer admin
role is an organization-scoped
role. This policy controls the
actions a Role Authorizer can
perform without requiring
approval. Actions, such as
viewing role memberships and
searching for roles, do not
require approval. Searching for
roles that are
organization-scoped and
viewing role members do not
require approval.

OrclOIMOrgScopi
ngDirect=OrclOI
MRoleAuthorizer
OrgsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMRoleAu
thorizerOrgsWith
Hierarchy

Role Authorizer OIM Role
Authorizer

Role Authorizer
Policy for Request
actions

This policy controls the actions
a Role Authorizer can perform
that require approval. By
default, granting and revoking
of role membership by a
member of this role does not
require approval.

OrclOIMNeedAp
proval=false

OrclOIMOrgScopi
ngDirect=OrclOI
MRoleAuthorizer
OrgsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMRoleAu
thorizerOrgsWith
Hierarchy

Table 3–3 (Cont.) Default Authorization Policies

Admin Role in
Oracle Identity
Manager

Application Role
in OES Policy Name Description Obligation

Functional and Data Security Mapping

Security Architecture 3-39

Role Authorizer OIM Role
Authorizer

OIM
RoleAuthorizer
Basic Info
Organization
Direct Policy

This policy specifies the direct
view and search permissions
on organizations by Role
Authorizers.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMRoleAu
thorizerOrgsWith
Hierarchy

OrclOIMOrgScopi
ngDirect=OrclOI
MRoleAuthorizer
OrgsDirect

Role Authorizer OIM Role
Authorizer

OIM
RoleAuthorizer
Basic Info User
Direct
WithAttributes
Policy

This policy specifies the direct
view and search permissions
on users and user attributes by
Role Authorizers.

OrclOIMOrgScopi
ngDirect=OrclOI
MRoleAuthorizer
OrgsDirect

OrclOIMDeniedA
ttributesDirect=

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMRoleAu
thorizerOrgsWith
Hierarchy

Role Viewer OIM Role Viewer Role Viewer Policy A Role Viewer is an admin role
in Oracle Identity Manager.
This policy controls what
actions a member of the role
can perform. By default, this
policy allows a member of this
admin role to search for and
view roles.

OrclOIMOrgScopi
ngDirect=OrclOI
MRoleViewerOrg
sDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMRoleVie
werOrgsWithHier
archy

Role Viewer OIM Role Viewer Role Viewer Policy
for Role
Membership

This policy controls the actions
that a role viewer can perform
and whether those actions
require approval. By default,
approval is required.

OrclOIMOrgScopi
ngDirect=OrclOI
MRoleViewerOrg
sDirect

OrclOIMNeedAp
proval=true

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMRoleVie
werOrgsWithHier
archy

Role Viewer OIM Role Viewer OIM RoleViewer
Basic Info
Organization
Direct Policy

This policy specifies the direct
view and search permissions
on organizations by Role
Viewers.

OrclOIMOrgScopi
ngDirect=OrclOI
MRoleViewerOrg
sDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMRoleVie
werOrgsWithHier
archy

Table 3–3 (Cont.) Default Authorization Policies

Admin Role in
Oracle Identity
Manager

Application Role
in OES Policy Name Description Obligation

Functional and Data Security Mapping

3-40 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Role Viewer OIM Role Viewer OIM RoleViewer
Basic Info User
Direct
WithAttributes
Policy

This policy specifies the direct
view and search permissions
on users and user attributes by
Role Viewers.

OrclOIMDeniedA
ttributesDirect=

OrclOIMOrgScopi
ngDirect=OrclOI
MRoleViewerOrg
sDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMRoleVie
werOrgsWithHier
archy

Authenticated Role authenticated-role Home Org Policy
for Role
memberships

This policy controls the grant
role membership and revoke
role membership actions that a
user can perform in the user's
home org and whether it
requires approval. By default,
approval is required.

OrclOIMNeedAp
proval=true

OrclOIMOrgScopi
ngDirect=OrclOI
MUserHomeOrgs

Authenticated Role authenticated-role Home Org Policy
for Roles

This policy allows a user to
implicitly view the roles and
role attributes that have been
published to the user's home
organization.

OrclOIMOrgScopi
ngDirect=OrclOI
MUserHomeOrgs

Role Administrator OIM Role
Administrator

OIM Role
Administrator
Policy with
approval

Role Administrator is an
organization-scoped admin
role. This policy specifies the
actions that the Role
Administrator can perform
with approval.

OrclOIMOrgScopi
ngDirect=OrclOI
MRoleAdminOrg
sDirect

OrclOIMNeedAp
proval=false

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMRoleAd
minOrgsWithHier
archy

Role Administrator OIM Role
Administrator

Role
Administrator
Policy

This Policy controls what
actions a member of the Role
Administrator admin role can
perform.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMRoleAd
minOrgsWithHier
archy

OrclOIMOrgScopi
ngDirect=OrclOI
MRoleAdminOrg
sDirect

Role Administrator OIM Role
Administrator

OIM
RoleAdministrator
Basic Info
Organization
Direct Policy

This policy specifies the direct
view and search permissions
on organizations by Role
Administrators.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMRoleAd
minOrgsWithHier
archy

OrclOIMOrgScopi
ngDirect=OrclOI
MRoleAdminOrg
sDirect

Table 3–3 (Cont.) Default Authorization Policies

Admin Role in
Oracle Identity
Manager

Application Role
in OES Policy Name Description Obligation

Functional and Data Security Mapping

Security Architecture 3-41

Role Administrator OIM Role
Administrator

OIM
RoleAdministrator
Basic Info User
Direct
WithAttributes
Policy

This policy specifies the direct
view and search permissions
on users and user attributes by
Role Administrators.

OrclOIMOrgScopi
ngDirect=OrclOI
MRoleAdminOrg
sDirect

OrclOIMDeniedA
ttributesDirect=

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMRoleAd
minOrgsWithHier
archy

System
Configuration
Administrator

OIM System
Configurator

System
Configurator
Policy for OIM
entities

The System Configuration
Administrator admin role is a
global role. This policy controls
what actions a member of the
role can perform on users,
entitlements, roles,
organizations, and application
instances. Members can
manage application instances
in the Identity System
Administration, but have
viewer admin role capabilities
in the Identity Self Service.

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMSystem
ConfiguratorOrgs
WithHierarchy

OrclOIMOrgScopi
ngDirect=OrclOI
MSystemConfigu
ratorOrgsDirect

System
Configuration
Administrator

OIM System
Configurator

System
Configurator
Policy

This policy controls the actions
that members of the System
Configuration Administrator
admin role can perform.
Members of this admin role
carry out post-install product
configuration activities, and
can perform all configuration
activities that a system
administrator can. However,
members of the System
Configuration Administrator
admin role do not have the
implicit user, role, and
application instance
administrator capabilities that
members of the System
Administrator admin role have.

System
Configuration
Administrator

OIM System
Configurator

System
Configurator
Policy deny policy
for User

This policy controls the actions
that a member of the System
Configuration Administrator
can perform for the user entity.

Catalog
Administrator

OIM Catalog
Administrator
Role

View Policy for
Catalog
Administrators

This policy controls the view
permission on catalog entities
for the Catalog Administrator.

OrclOIMOrgScopi
ngDirect=OrclOI
MCatalogAdmin
OrgsDirect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMCatalog
AdminOrgsWith
Hierarchy

Table 3–3 (Cont.) Default Authorization Policies

Admin Role in
Oracle Identity
Manager

Application Role
in OES Policy Name Description Obligation

Functional and Data Security Mapping

3-42 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

There are some application roles in OES that cannot be granted to users in Oracle
Identity Manager, and therefore, do not have corresponding admin roles in Oracle
Identity Manager. The policies associated with these application roles are used for
request-related operations. For example, the policies associated with the OIM Request
Approver application role are used to control the operations of the approver of a

Authenticated Role authenticated-role OIM Entity
Assigned to User
Direct Policy

This policy controls the actions
that authenticated users can
perform on the assigned
entities.

Authenticated Role authenticated-role OIM Entity
Assigned to User
Approval Policy

This policy controls the actions
that authenticated users can
perform on the assigned
entities.

OrclOIMNeedAp
proval=true

Certification
Administrator

OIM Certification
Administrator

OIM UI
Certification
Administrator
Policy

This policy grants access to
Identity System Administration
UI that contains screens for
certification configuration and
certification definition.

Certification
Administrator

OIM Certification
Administrator

Certification
Administrator All
Entities Search
Policy

This policy grants view and
search capability to Oracle
Identity Manager entities
required to design certification
definitions. The entities include
application instances,
entitlements, organizations,
users, enterprise roles, and
catalog items. This policy is
used to construct certification
definitions.

OrclOIMOrgScopi
ngDirect=OrclOI
MCertificationAd
ministratorOrgsD
irect

OrclOIMOrgScopi
ngWithHierarchy
=OrclOIMCertific
ationAdministrat
orOrgsWithHierar
chy

Certification
Administrator

OIM Certification
Administrator

Certification
Administrator
Policy

This policy grants update
access to certification
configuration objects, such as
certification configuration and
definitions.

Certification
Administrator

OIM Certification
Administrator

Scheduler
Certification
Administrator
Policy

This policy grants access to the
Scheduler. Certifications are
produced from certification
definitions by running a
scheduled job.

Certification
Administrator

OIM Certification
Administrator

Certification
Certification
Administrator
Policy

This policy grants update
access to certification instances.

Note: Certification view and
update access for reviewers
(non-admin users) are granted
directly by the certification
authorization.

Certification
Viewer

OIM Certification
Viewer

Certification
Certification
Viewer Policy

This policy grants view access
to certification instances.

Note: Certification
Administrator has all
Certification Viewer privileges.

Table 3–3 (Cont.) Default Authorization Policies

Admin Role in
Oracle Identity
Manager

Application Role
in OES Policy Name Description Obligation

Functional and Data Security Mapping

Security Architecture 3-43

request. Table 3–4 lists the application roles that do not have corresponding admin
roles in Oracle Identity Manager, and the associated policies.

Table 3–4 OES Application Roles and Policies

Application Role in
OES Policy Name Description Obligation

OIM Request
Approver

OIM Request
Approver Role Policy

This policy specifies the permissions to
view and search roles by the request
approver.

OIM Request
Requestor

OIM Request
Requestor Role Policy

This policy specifies the permissions to
view and search roles by the requester.

OIM Request
Beneficiary

OIM Request
Beneficiary Role
Policy

This policy specifies the permissions to
view and search roles by the
beneficiary of a request.

OIM Request
Approver

OIM Request
Approver
ApplicationInstance
Policy

This policy specifies the permissions to
view and search application instances
by the request approver.

OIM Request
Requestor

OIM Request
Requestor
ApplicationInstance
Policy

This policy specifies the permissions to
view and search application instances
by the requester.

OIM Request
Beneficiary

OIM Request
Beneficiary
ApplicationInstance
Policy

This policy specifies the permissions to
view and search application instances
by the beneficiary of a request.

OIM Request
Approver

OIM Request
Approver
Entitlement Policy

This policy specifies the permissions to
view and search entitlements by the
request approver.

OIM Request
Requestor

OIM Request
Requestor
Entitlement Policy

This policy specifies the permissions to
view and search entitlements by the
requester.

OIM Request
Beneficiary

OIM Request
Beneficiary
Entitlement Policy

This policy specifies the permissions to
view and search entitlements by the
beneficiary of a request.

OIM Request
Approver

OIM Request
Approver User Policy

This policy specifies the permissions to
view and search users by the request
approver.

OrclOIMDeniedAttributes
Direct=

OIM Request
Requestor

OIM Request
Requestor User
Policy

This policy specifies the permissions to
view and search users by the requester.

OrclOIMDeniedAttributes
Direct=

OIM Request
Beneficiary

OIM Request
Beneficiary User
Policy

This policy specifies the permissions to
view and search users by the
beneficiary of a request.

OrclOIMDeniedAttributes
Direct=

OIM Request
Delegated Admin

OIM Request
Delegated Admin
Role Policy

This policy specifies the permissions to
view and search roles by the delegated
administrators.

OIM Request Target
Entity

OIM Request Target
Entity Role Policy

This policy specifies the permissions to
view and search roles by the target
users of a request.

OIM Request
Delegated Admin

OIM Request
Delegated Admin
User Policy

This policy specifies the permissions to
view and search users by the delegated
administrators.

Functional and Data Security Mapping

3-44 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Application-role hierarchies for application roles are defined in OES. This means that a
user that has been granted an application role on a given organization can perform all
actions of application roles present in that given organization hierarchy. For example,
if a user has the OrclOIMUserViewer application role (in other words, the User Viewer

OIM Request Target
Entity

OIM Request Target
Entity User Policy

This policy specifies the permissions to
view and search users by the target
users of a request.

OIM Request
Delegated Admin

OIM Request
Delegated Admin
ITResEntitlement
Policy

This policy specifies the permissions to
view and search IT resource
entitlements by the delegated
administrators.

OIM Request Target
Entity

OIM Request Target
Entity
ITResEntitlement
Policy

This policy specifies the permissions to
view and search IT resource
entitlements by the target users of a
request.

OIM Request
Delegated Admin

OIM Request
Delegated Admin
ApplicationInstance
Policy

This policy specifies the permissions to
view and search application instances
by the delegated administrators.

OIM Request Target
Entity

OIM Request Target
Entity
ApplicationInstance
Policy

This policy specifies the permissions to
view and search application instances
by the target users of a request.

OIM Request
Certification Viewer

OIM Certification
Request Certifier
Target Entity Role
Policy

This policy grants view access to role
entities. This policy is granted to
Request Certification Viewer, which is
dynamically granted to the logged-in
user to view the roles referenced in a
certification for which the user is a
certifier (reviewer).

OIM Request
Certification Viewer

OIM Certification
Request Certifier
Target Entity User
Policy

This policy grants view access to user
entities. This policy is granted to
Request Certification Viewer, which is
dynamically granted to the logged-in
user to view the users referenced in a
certification for which the user is a
certifier (reviewer).

OIM Request
Certification Viewer

OIM Certification
Request Certifier
Target Entity
ITResEntitlement
Policy

This policy grants view access to
entitlement entities. This policy is
granted to Request Certification
Viewer, which is dynamically granted
to the logged-in user to view the
entitlements referenced in a
certification for which the user is a
certifier (reviewer).

OIM Request
Certification Viewer

OIM Certification
Request Certifier
Target Entity
ApplicationInstance
Policy

This policy grants view access to
application instance entities. This
policy is granted to Request
Certification Viewer, which is
dynamically granted to the logged-in
user to view the application instances
referenced in a certification for which
the user is a certifier (reviewer).

Table 3–4 (Cont.) OES Application Roles and Policies

Application Role in
OES Policy Name Description Obligation

Functional and Data Security Mapping

Security Architecture 3-45

Admin role) on a given organization, then the user can perform all the actions of the
OrclOIMApplicationInstanceViewerRole, OrclOIMEntitlementViewer,
OrclOIMOrgViewer, and OrclOIMRoleViewer application roles present in that given
organization.

Table 3–5 lists the mapping between an application role and the corresponding
application roles in a given organization. Note that a user that has been granted an
application role listed in the second column can perform all the actions by the
corresponding application role in the first column.

In Oracle Identity Manager 11g Release 2 (11.1.2.1.0), some of the roles from the earlier
release have either been removed or replaced with another role. Table 3–6 provides a
mapping between the legacy and new roles.

Table 3–5 Application Role Mapping

Application Role Application Role Mapped To

OrclOIMRoleViewer OrclOIMUserAdmin, OrclOIMUserViewer

OrclOIMOrgViewer OrclOIMUserAdmin, OrclOIMUserViewer,
OrclOIMSPMLAdmin

OrclOIMEntitlementViewer OrclOIMUserAdmin, OrclOIMUserViewer

OrclOIMEntitlementAdministrator OrclOIMApplicationInstanceAdministratorRole

OrclOIMApplicationInstanceViewerRole OrclOIMUserAdmin, OrclOIMUserViewer

OrclOIMCertificationViewer OrclOIMCertificationAdministrator

Table 3–6 Mapping Between Legacy and New Roles

Legacy Role New Role

SCHEDULER ADMINISTRATORS SYSTEM CONFIGURATORS

DEPLOYMENT MANAGER
ADMINISTRATORS

SYSTEM CONFIGURATORS

NOTIFICATION TEMPLATE
ADMINISTRATORS

SYSTEM CONFIGURATORS

SOD ADMINISTRATORS SYSTEM ADMINISTRATORS

GENERATE_USERNAME_ROLE SYSTEM ADMINISTRATORS

IDENTITY USER ADMINISTRATORS USER ADMIN

USER CONFIGURATION
ADMINISTRATORS

SYSTEM CONFIGURATORS

ACCESS POLICY ADMINISTRATORS SYSTEM CONFIGURATORS

RECONCILIATION ADMINISTRATORS SYSTEM ADMINISTRATORS

RESOURCE ADMINISTRATORS SYSTEM CONFIGURATORS

GENERIC CONNECTOR
ADMINISTRATORS

SYSTEM CONFIGURATORS

APPROVAL POLICY ADMINISTRATORS SYSTEM CONFIGURATORS

REQUEST ADMINISTRATORS SYSTEM ADMINISTRATORS

REQUEST TEMPLATE ADMINISTRATORS SYSTEM CONFIGURATORS

PLUGIN ADMINISTRATORS SYSTEM CONFIGURATORS

Publishing Entities to Organizations

3-46 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

3.3 Publishing Entities to Organizations
Publishing en entity to an organization is making the entity available to that
organization. The enterprise roles, entitlements, or application instances can be
published by respective administrators to a list of organizations to enable these to be
granted to the users of those organizations. Enterprise roles, entitlements, and
application instances are published to a list of organizations to make these:

ATTESTATION CONFIGURATION
ADMINISTRATORS

SYSTEM CONFIGURATORS

ATTESTATION EVENT ADMINISTRATORS SYSTEM ADMINISTRATORS

ROLE ADMINISTRATORS ROLE ADMIN

USER NAME ADMINISTRATOR The legacy role has been removed and there is
no corresponding role in the current release.
Will rely on Admin roles.

IDENTITY ORGANIZATION
ADMINISTRATORS

ORGANIZATION ADMIN

IT RESOURCE ADMINISTRATORS APPLICATION INSTANCE ADMIN

REPORT ADMINISTRATORS The legacy role has been removed and there is
no corresponding role for the current release
because there are no links to reports from
Oracle Identity Manager.

SPML_APP_ROLE SPML_APP_ROLE

There is no change to this enterprise role.
However, a corresponding role with the
privileges is seeded in OES.

Note: This role is not used in Oracle Identity
Manager.

ALL USERS ALL USERS

This role will remain as an enterprise role.
Therefore, there is no corresponding application
role in OES.

This role is required in Oracle Identity Manager
Enterprise Edition for the access policy-based
provisioning operations.

SYSTEM CONFIGURATION
ADMINISTRATORS

SYSTEM CONFIGURATORS

This role has all privileges as the SYSTEM
ADMINISTRATORS role, except for the ability
to manage users, roles, organizations, and
provisioning. This admin role is used for system
configuration tasks for which a complete access
to the system as the SYSTEM
ADMINISTRATORS role is not required.

SYSTEM ADMINISTRATORS SYSTEM ADMINISTRATORS

This role remains as is to provide full privileges
on the system. This role allows unrestricted
permissions enforced at the code level (no
declarative security model for this role).
Therefore, there are no corresponding policies
in OES for this role.

Table 3–6 (Cont.) Mapping Between Legacy and New Roles

Legacy Role New Role

Managing OES Policies

Security Architecture 3-47

■ Requestable to users under the list of organizations

■ Manageable to the list of organization administrators to manage these roles

When an entity administrator creates an entity, then that entity is automatically made
available to all the organizations for which the administrator has entity admin role. For
example, when a user with Role Administrator privilege creates an enterprise role, the
newly created role is automatically made available to all the organizations on which
the user is the Role Administrator. This avoids the need to create and then publish the
entities for administrators in their respective organizations (or organization
hierarchies). However, if the entity is required to be published to other organizations,
then the entity must be manually published.

Entity administrators can publish the entities to organizations by using the entity
detail pages. For example, publishing a role to a set of organizations is done from the
Organizations tab of the Role Details page.

For information about how to publish the following entities to organizations:

■ Publishing a role to an organization: See "Publishing Roles to an Organization" in
the Oracle Fusion Middleware User's Guide for Oracle Identity Manager.

■ Publishing an application instance with or without entitlements to an
organization: See "Publishing an Application Instance to Organizations" in the
Oracle Fusion Middleware Administrator's Guide for Oracle Identity Manager.

3.4 Managing OES Policies
As listed in Table 3–3, each admin role in Oracle Identity Manager has a one-to-one
mapping with a policy role in OES, which has a corresponding OES policy. To
customize the default authorization policies, you can modify the OES policies by using
the Authorization Policy Management (APM) UI. For example, to restrict the list of
attributes to be viewed by a specific admin role, you can update the
OrclOIMDeniedAttributes policy obligation in APM in the corresponding OES
policies. Similarly, to restrict the list of attributes to be edited by a specific admin role,
you can update the OrclOIMDeniedAttributesWithApproval obligation.

For information about managing OES policies by using the APM UI, see "Managing
Policies and Policy Objects" in the Oracle Fusion Middleware Oracle Authorization Policy
Manager Administrator's Guide (Oracle Fusion Applications Edition).

3.4.1 Customizing the Authorization Policies
The default functionality of authorization security in Oracle Identity Manager can be
customized in one or more of the following ways:

■ Changing the existing policy's allowed actions.

■ Changing the obligations. This includes:

– Changing the denied-attributes list

– Changing the approval-required Boolean flag from true/false

– Changing the scoping attributes

■ Changing the policy conditions. This includes:

– Adding a FALSE condition to disable the policy

– Changing the default condition in the policy

Managing OES Policies

3-48 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

– Adding a resource/dynamic attribute, and then using those attributes in the
existing policies

■ Deleting the default policies

The following sections provide the mapping between admin roles and authorization
policies that can be modified to customize the default authorization:

■ Controlling Who can View Which Users

■ Controlling Who can Modify Which Users

■ Controlling Who can View Which Links

■ Controlling Who can Request an Account in an Application Instance

■ Controlling Who can Modify an Account

■ Controlling Who can Manage an Application Instance

■ Controlling Who can Change User Password

■ Controlling Who can Change Account Password

■ Controlling Which Operations Are Direct or Request-Based

■ Controlling the Denied Attributes for Self

3.4.1.1 Controlling Who can View Which Users
Controlling who can view which users can be controlled by using the admin roles
listed in Table 3–7. These admin roles provide permissions to users to view or search
users in scoped organizations.

Table 3–7 Admin Roles to View or Search Users in Scoped Organizations

Admin Role Associated Authorization Policy Name

ApplicationInstanceAdmini
stratorRole

ApplicationInstanceAdministratorBasicInfoUserDirectWithAttri
butesPolicy

ApplicationInstanceAuthori
zerRole

ApplicationInstanceAuthorizerBasicInfoUserDirectWithAttribut
esPolicy

ApplicationInstanceViewer
Role

ApplicationInstanceViewerBasicInfoUserDirectWithAttributesPo
licy

EntitlementAdministrator EntitlementAdministratorBasicInfoUserDirectWithAttributesPol
icy

EntitlementAuthorizer EntitlementAuthorizerBasicInfoUserDirectWithAttributesPolicy

EntitlementViewer EntitlementViewerBasicInfoUserDirectWithAttributesPolicy

OrgAdministrator OrgAdministratorBasicInfoUserDirectWithAttributesPolicy

OrgViewer OrgViewerBasicInfoUserDirectWithAttributesPolicy

RoleAdministrator RoleAdministratorBasicInfoUserDirectWithAttributesPolicy

RoleAuthorizer RoleAuthorizerBasicInfoUserDirectWithAttributesPolicy

RoleViewer RoleViewerBasicInfoUserDirectWithAttributesPolicy

UserAdmin UserAdminDirectWithAttributesPolicy

UserHelpDesk UserHelpDeskDirectWithAttributesPolicy

No Admin role, but home
organization

UserHomeOrgDirectWithAttributesPolicy

Managing OES Policies

Security Architecture 3-49

To control the users that any user can view, update the admin roles assigned, as listed
in Table 3–7. If you want to limit the users from home organizations, then you must
change the authorization policies.

3.4.1.2 Controlling Who can Modify Which Users
Table 3–8 lists the admin roles and associated authorization policies that control who
can modify which users.

To control the users that any user can modify, update the admin roles assigned, as
listed in Table 3–8. If you want to limit the users from home organizations, then you
must change the associated authorization policies.

3.4.1.3 Controlling Who can View Which Links
Table 3–9 lists the admin roles, associated authorization policies, and the
corresponding links that are enabled because of the policies.

No Admin role, but for
management hierarchy

UserManagementChainDirectWithAttributesPolicy

SPMLAdmin UserSPMLAdminDirectWithAttributesPolicy

No Admin role, but for self UserSelfServiceDirectWithAttributesPolicy

UserViewer UserViewerDirectWithAttributesPolicy

Table 3–8 Admin Roles to Modify Users in Scoped Organizations

Admin Role Associated Authorization Policy Name

UserAdmin UserAdminApprovalWithAttributesPolicy

No Admin role, but home
organization

UserHomeOrgApprovalWithAttributesPolicy

No Admin role, but for
management hierarchy

UserManagementChainApprovalWithAttributesPolicy

SPMLAdmin UserSPMLAdminApprovalWithAttributesPolicy

No Admin role, but for self UserSelfServiceApprovalWithAttributesPolicy

UserViewer UserViewerApprovalWithAttributesPolicy

Table 3–9 Admin Roles to Control the View of Links

Admin Role
Associated Authorization Policy
Name

Links Enabled Because of
the Policy

UserAdmin UserAdminApprovalPolicy enableUserStatus,
modifyUserAccounts,
deleteUserAccounts,
addUserEntitlements,
disableUserStatus,
addUserRoles, createUser,
disableUserAccount,
deleteUserRoles,
deleteUser,
deleteUserEntitlements,
enableUserAccount,
addUserAccounts

Table 3–7 (Cont.) Admin Roles to View or Search Users in Scoped Organizations

Admin Role Associated Authorization Policy Name

Managing OES Policies

3-50 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

As listed in Table 3–9, the admin roles and associated policies provide the permissions
to enable the links according to the allowed actions. You can update the authorization
policies and change the enabled links with the policies, or assign the admin roles
accordingly.

UserHelpDesk UserHelpDeskApprovalPolicy enableUserStatus,
disableUserStatus

UserHelpDesk UserHelpDeskUserAccountsPolicy modifyUserAccounts

No Admin role, but
home organization

UserHomeOrgApprovalPolicy enableUserStatus,
modifyUserAccounts,
deleteUserAccounts,
addUserEntitlements,
disableUserStatus,
createUser, addUserRoles,
disableUserAccount,
deleteUserRoles,
deleteUser,
deleteUserEntitlements,
enableUserAccount,
addUserAccounts

No Admin role, but for
management hierarchy

UserManagementChainApprovalPolic
y

enableUserStatus,
modifyUserAccounts,
deleteUserAccounts,
addUserEntitlements,
disableUserStatus,
addUserRoles, createUser,
disableUserAccount,
deleteUserRoles,
deleteUser,
deleteUserEntitlements,
enableUserAccount,
addUserAccounts

No Admin role, but for
self

UserSelfServiceApprovalPolicy addUserRoles,
deleteUserRoles,
deleteUserEntitlements,
deleteUserAccounts,
addUserEntitlements,
addUserAccounts

SPMLAdmin UserSPMLAdminApprovalPolicy enableUserStatus,
disableUserStatus,
createUser, addUserRoles,
deleteUserRoles,
deleteUser

UserViewer UserViewerApprovalPolicy enableUserStatus,
modifyUserAccounts,
deleteUserAccounts,
addUserEntitlements,
disableUserStatus,
addUserRoles, createUser,
disableUserAccount,
deleteUserRoles,
deleteUser,
deleteUserEntitlements,
enableUserAccount,
addUserAccounts

Table 3–9 (Cont.) Admin Roles to Control the View of Links

Admin Role
Associated Authorization Policy
Name

Links Enabled Because of
the Policy

Managing OES Policies

Security Architecture 3-51

3.4.1.4 Controlling Who can Request an Account in an Application Instance
Table 3–10 lists the admin roles and associated authorization policies that control
which user can request an account in an application instance.

3.4.1.5 Controlling Who can Modify an Account
Table 3–11 lists the admin roles and associated authorization policies that control who
can modify an account.

3.4.1.6 Controlling Who can Manage an Application Instance
The Application Instance Administrator admin role and the associated
ApplicationInstanceAdministratorDirectPolicy authorization policy can be used to
control who can manage an application instance.

3.4.1.7 Controlling Who can Change User Password
Table 3–12 lists admin roles and associated authorization policies that control who can
change user's password.

3.4.1.8 Controlling Who can Change Account Password
Table 3–13 lists the permission on the selected users for the change account password.

Table 3–10 Admin Roles for Requesting an Account in an Application Instance

Admin Role Associated Authorization Policy Name

ApplicationInstanceAuthori
zerRole

ApplicationInstanceAuthorizerApprovalPolicy

No Admin role, but
app-instance published in
user's home organization

ApplicationInstanceHomeOrgApprovalPolicy

ApplicationInstanceViewer
Role

ApplicationInstanceViewerApprovalPolicy

Table 3–11 Admin Roles for Modifying an Account

Admin Role Associated Authorization Policy Name

ApplicationInstanceAuthori
zerRole

ApplicationInstanceAuthorizerApprovalPolicy

No Admin role, but
app-instance published in
user's home organization

ApplicationInstanceHomeOrgApprovalPolicy

ApplicationInstanceViewer
Role

ApplicationInstanceViewerApprovalPolicy

No admin-role, The
app-instance provisioned to
the user only

EntityUserAssignmentApprovalPolicy

Table 3–12 Admin Roles for Changing User Password

Admin Role Associated Authorization Policy Name

UserAdmin UserAdminDirectPolicy

UserHelpDesk UserHelpDeskDirectPolicy

No Admin role, but for self UserSelfServiceDirectPolicy

Managing OES Policies

3-52 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Table 3–14 is for the selected accounts on which you have the permission to change
account password.

3.4.1.9 Controlling Which Operations Are Direct or Request-Based
The operations listed in Table 3–15 and the associated authorization policies enable the
operations to be request bound. You can change the approvalrequired obligation in the
associated authorization policies to make them direct operation.

Table 3–13 Admin Roles for Permissions on Selected Users

Admin Roles Associated Authorization Policy Name

UserAdmin UserAdminDirectPolicy

UserHelpDesk UserHelpDeskDirectPolicy

No Admin role, but for self UserSelfServiceDirectPolicy

Table 3–14 Admin Roles for Permissions on Selected Accounts

Admin Roles Associated Authorization Policy Name

ApplicationInstanceAuthori
zerRole

ApplicationInstanceAuthorizerDirectPolicy

No Admin role, but
app-instance published in
user's home organization

ApplicationInstanceHomeOrgDirectPolicy

ApplicationInstanceViewer
Role

ApplicationInstanceViewerDirectPolicy

No admin-role, The
app-instance provisioned to
the user only

EntityUserAssignmentDirectPolicy

Table 3–15 Request-Based Operations

Request-Based Operation Associated Authorization Policy Name

enablenApplicationInstance ApplicationInstanceHomeOrgApprovalPolicy

revokeApplicationInstance ApplicationInstanceHomeOrgApprovalPolicy

modifyAccountApplicationI
nstance

ApplicationInstanceHomeOrgApprovalPolicy

disableApplicationInstance ApplicationInstanceHomeOrgApprovalPolicy

provisionApplicationInstanc
e

ApplicationInstanceHomeOrgApprovalPolicy

enablenApplicationInstance ApplicationInstanceViewerApprovalPolicy

revokeApplicationInstance ApplicationInstanceViewerApprovalPolicy

modifyAccountApplicationI
nstance

ApplicationInstanceViewerApprovalPolicy

disableApplicationInstance ApplicationInstanceViewerApprovalPolicy

provisionApplicationInstanc
e

ApplicationInstanceViewerApprovalPolicy

deleteRoleMemberships EntityUserAssignmentApprovalPolicy

enablenApplicationInstance EntityUserAssignmentApprovalPolicy

revokeApplicationInstance EntityUserAssignmentApprovalPolicy

Managing OES Policies

Security Architecture 3-53

modifyAccountApplicationI
nstance

EntityUserAssignmentApprovalPolicy

disableApplicationInstance EntityUserAssignmentApprovalPolicy

revokeITResourceEntitleme
nt

EntityUserAssignmentApprovalPolicy

modifyProvisionedEntitlem
ent

EntityUserAssignmentApprovalPolicy

grantITResourceEntitlement EntitlementHomeOrgApprovalPolicy

bulkRequestForEntitlements EntitlementHomeOrgApprovalPolicy

revokeITResourceEntitleme
nt

EntitlementHomeOrgApprovalPolicy

modifyProvisionedEntitlem
ent

EntitlementHomeOrgApprovalPolicy

grantITResourceEntitlement EntitlementViewerApprovalPolicy

bulkRequestForEntitlements EntitlementViewerApprovalPolicy

revokeITResourceEntitleme
nt

EntitlementViewerApprovalPolicy

modifyProvisionedEntitlem
ent

EntitlementViewerApprovalPolicy

deleteRoleMemberships EntityUserAssignmentApprovalPolicy

enablenApplicationInstance EntityUserAssignmentApprovalPolicy

revokeApplicationInstance EntityUserAssignmentApprovalPolicy

modifyAccountApplicationI
nstance

EntityUserAssignmentApprovalPolicy

disableApplicationInstance EntityUserAssignmentApprovalPolicy

revokeITResourceEntitleme
nt

EntityUserAssignmentApprovalPolicy

modifyProvisionedEntitlem
ent

EntityUserAssignmentApprovalPolicy

viewPublishedAccounts OrganizationHomeOrgDirectPolicy

viewProvisionedAccounts OrganizationHomeOrgDirectPolicy

viewSearchEntity OrganizationHomeOrgDirectPolicy

viewPublishedEntitlements OrganizationHomeOrgDirectPolicy

deleteRoleMemberships EntityUserAssignmentApprovalPolicy

enablenApplicationInstance EntityUserAssignmentApprovalPolicy

revokeApplicationInstance EntityUserAssignmentApprovalPolicy

modifyAccountApplicationI
nstance

EntityUserAssignmentApprovalPolicy

disableApplicationInstance EntityUserAssignmentApprovalPolicy

revokeITResourceEntitleme
nt

EntityUserAssignmentApprovalPolicy

Table 3–15 (Cont.) Request-Based Operations

Request-Based Operation Associated Authorization Policy Name

Managing OES Policies

3-54 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

modifyProvisionedEntitlem
ent

EntityUserAssignmentApprovalPolicy

deleteRoleMemberships RoleHomeOrgApprovalPolicy

addRoleMemberships RoleHomeOrgApprovalPolicy

deleteRoleMemberships RoleSPMLAdminApprovalPolicy

deleteRole RoleSPMLAdminApprovalPolicy

addRoleMemberships RoleSPMLAdminApprovalPolicy

createRole RoleSPMLAdminApprovalPolicy

modifyRole RoleSPMLAdminApprovalPolicy

deleteRoleMemberships RoleViewerApprovalPolicy

addRoleMemberships RoleViewerApprovalPolicy

enableUserStatus UserHelpDeskApprovalPolicy

disableUserStatus UserHelpDeskApprovalPolicy

enableUserStatus UserHomeOrgApprovalPolicy

modifyUserAccounts UserHomeOrgApprovalPolicy

deleteUserAccounts UserHomeOrgApprovalPolicy

addUserEntitlements UserHomeOrgApprovalPolicy

disableUserStatus UserHomeOrgApprovalPolicy

createUser UserHomeOrgApprovalPolicy

addUserRoles UserHomeOrgApprovalPolicy

disableUserAccount UserHomeOrgApprovalPolicy

deleteUserRoles UserHomeOrgApprovalPolicy

deleteUser UserHomeOrgApprovalPolicy

deleteUserEntitlements UserHomeOrgApprovalPolicy

enableUserAccount UserHomeOrgApprovalPolicy

addUserAccounts UserHomeOrgApprovalPolicy

modifyUser UserHomeOrgApprovalWithAttributesPolicy

enableUserStatus UserManagementChainApprovalPolicy

modifyUserAccounts UserManagementChainApprovalPolicy

deleteUserAccounts UserManagementChainApprovalPolicy

addUserEntitlements UserManagementChainApprovalPolicy

disableUserStatus UserManagementChainApprovalPolicy

addUserRoles UserManagementChainApprovalPolicy

createUser UserManagementChainApprovalPolicy

disableUserAccount UserManagementChainApprovalPolicy

deleteUserRoles UserManagementChainApprovalPolicy

deleteUser UserManagementChainApprovalPolicy

Table 3–15 (Cont.) Request-Based Operations

Request-Based Operation Associated Authorization Policy Name

Managing OES Policies

Security Architecture 3-55

To disable the users to search/raise-request for the user's peers except direct reportees,
perform the following steps:

1. Disable/deactivate/delete the home-org policies for the user to disallow peer
permissioning. These policies are as follows:

■ User Home Org Approval Policy

deleteUserEntitlements UserManagementChainApprovalPolicy

enableUserAccount UserManagementChainApprovalPolicy

addUserAccounts UserManagementChainApprovalPolicy

modifyUser UserManagementChainApprovalWithAttributesPolicy

enableUserStatus UserSPMLAdminApprovalPolicy

disableUserStatus UserSPMLAdminApprovalPolicy

createUser UserSPMLAdminApprovalPolicy

addUserRoles UserSPMLAdminApprovalPolicy

deleteUserRoles UserSPMLAdminApprovalPolicy

deleteUser UserSPMLAdminApprovalPolicy

modifyUser UserSPMLAdminApprovalWithAttributesPolicy

addUserRoles UserSelfServiceApprovalPolicy

deleteUserRoles UserSelfServiceApprovalPolicy

deleteUserEntitlements UserSelfServiceApprovalPolicy

deleteUserAccounts UserSelfServiceApprovalPolicy

addUserEntitlements UserSelfServiceApprovalPolicy

addUserAccounts UserSelfServiceApprovalPolicy

modifyUser UserSelfServiceApprovalWithAttributesPolicy

enableUserStatus UserViewerApprovalPolicy

modifyUserAccounts UserViewerApprovalPolicy

deleteUserAccounts UserViewerApprovalPolicy

addUserEntitlements UserViewerApprovalPolicy

disableUserStatus UserViewerApprovalPolicy

addUserRoles UserViewerApprovalPolicy

createUser UserViewerApprovalPolicy

disableUserAccount UserViewerApprovalPolicy

deleteUserRoles UserViewerApprovalPolicy

deleteUser UserViewerApprovalPolicy

deleteUserEntitlements UserViewerApprovalPolicy

enableUserAccount UserViewerApprovalPolicy

addUserAccounts UserViewerApprovalPolicy

modifyUser UserViewerApprovalWithAttributesPolicy

Table 3–15 (Cont.) Request-Based Operations

Request-Based Operation Associated Authorization Policy Name

Enforcing Functional Security

3-56 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ User Home Org Direct Policy

■ User Home Org Direct With Attributes Policy

2. To disallow users to search, view, and raise requests for indirect reportees:

a. By default, Oracle Identity Manager allows searching, viewing, and raising
requests for direct and indirect reportess. To remove the permissioning from
indirect reportees, create an authorization plug-in, pass an attribute as
isDirectReportee, and return its value as TRUE/FALSE.

b. Update the following user policies to use the attribute in policy condition:

– User Management Chain Approval Policy

– User Management Chain Approval With Attributes Policy

– User Management Chain Direct With Attributes Policy

3.4.1.10 Controlling the Denied Attributes for Self
To control the denied attributes for self profile, modify policy obligations for the
following authorization policies by using APM:

■ OrclOIMUserHomeOrgDirectWithAttributesPolicy

■ OrclOIMUserSelfServiceDirectWithAttributesPolicy

3.5 Enforcing Functional Security
You can enforce security by the following ways:

■ UI-level security: This is used for UI-level validations to enforce security. For
example, you can implement field-level security to ensure that only users with
permissions to view and edit fields are able to access the fields. The fields are
disabled or not displayed for users who do not have permissions on the fields.
This type of security enforcement is at the UI level, and can be overridden if you
use APIs to perform the validation.

■ Backend security: To enforce security at the backend, you can modify the OES
policies by using the APM UI.

For implementing functional security, first a JAVA authorization file is created in
PlatformUI. This file contains the UIPermission variables for all the permissions
defined in PolicyConstants (OES policies) for each functionality or page or module. All
the authorization files have an entry in the adfc-config.xml file in the MainUI project in
JDeveloper.

Implementing functional security involves the following:

■ Implementing Task Flow or Region

Note: To enforce functional security at the UI level, you must be
aware of the following:

■ UI components and how to customize the components. See
"Customizing the Interface" on page 30-1 for details.

■ Expression Language (EL) syntax and usage. See "Using
Expression Language in UI Customization" on page 30-21 for
details.

Enforcing Functional Security

Security Architecture 3-57

■ Defining Actions

■ Implementing Field-Level Security

3.5.1 Implementing Task Flow or Region
This level of implementation determines if the taskflow region is to be hidden or
disabled to the user based on the permissions of the user. For securing a region,
consider the following example:

On the my-access-accounts.jsff page, the taskflow details-information-tf is rendered
selectively to the end users by using an expression that follows the Expression
Language (EL) syntax, as shown:

rendered="#{oimappinstanceAuth.view[bindings.appInstanceKey].allowed}"

Here:

■ oimappinstanceAuth is the mapped name of the ApplicationInstanceAuthz.java
authorization bean in the adfc-config.xml file.

■ view is the name of the UIPermission that is to be checked, where the permission
defined in ApplicationInstanceAuthz.java, which is the actual bean file for
reference of oimappinstanceAuth, is the following:

private UIPermission view = new
UIPermission(PolicyConstants.Resources.APPLICATION_INSTANCE.getId(),
PolicyConstants.ApplicationInstanceActions.VIEW_SEARCH.getId());

■ appInstanceKey is the ID of the application instance that the user is trying to view
passed as a parameter.

3.5.2 Defining Actions
If actions, such as create, modify, disable, enable, revoke, delete, and withdraw
request, are to be hidden or disabled for the user based on the user's permissions. For
example, the Create button is displayed only to users with permission to create users.

Permissions defined in UserAuthz.java based on PolicyConstants is:

private UIPermission create = new UIPermission
(PolicyConstants.Resources.USER.getId(),
PolicyConstants.UserActions.CREATE.getId());

Mapping entry for UserAuthz.java in adfc-config.xml in the MainUI project is as
follows:

<managed-bean id="__30">
<managed-bean-name id="__36">oimuserAuth</managed-bean-name>
<managed-bean-class
id="__29">oracle.iam.ui.platform.view.authz.UserAuthz</managed-bean-class>
<managed-bean-scope id="__31">session</managed-bean-scope>
</managed-bean>

Now, you can define EL expression for permission that is defined in the JSFF page. In
search-users.jsff, use the following EL expression in the rendered attribute, which is
the Create button in this example:

<af:commandToolbarButton
rendered="#{oimuserAuth.create.allowed}"

Enforcing Functional Security

3-58 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

The EL expression defined in the rendered attribute hides or shows the button based
on the Boolean value returned. Otherwise, the button can be made to read-only by
defining the EL expression as disabled attribute instead of rendered. The Create button
is now only shown to users whose role have permission defined in policies.

Similarly, you can define EL expressions for other actions, such as modify, enable, and
disable. Another example of using EL expressions is to specify that reset password will
be available to HelpDesk Admin only, and it will be hidden or read-only for other
users.

3.5.3 Implementing Field-Level Security
Fields are displayed based on whether the user has permission to view those fields.
For securing display fields, consider the following example:

On the userdetails.jsff page, under the Attributes tab, the user attributes, such as First
Name, Last Name, and so on, have been secured by using the following EL expression:

rendered="#{oimuserAuth.viewSearch.attributes[bindings.firstName.hints.OIM_ATTRIBU
TE]}"

Here:

■ oimuserAuth is the mapped name of UserAuthz.java in the adfc-config.xml.

■ viewsearch is the UIPermission name, and the Oracle Identity Manager attribute
name for the field to be secured is passed as a parameter.

Part II
Part II Application Provisioning

This part describes how to configure application-specific connectors.

It contains the following chapters:

■ Chapter 4, "Developing Application Instances"

■ Chapter 5, "Developing Provisioning Processes"

■ Chapter 6, "Developing Process Forms"

■ Chapter 7, "Managing Lookup Definitions and Remote Manager"

4

Developing Application Instances 4-1

4Developing Application Instances

[5]

Application instance is a provisionable entity. It is a combination of IT resource
instance (target connectivity and connector configuration) and resource object
(provisioning mechanism). Application instances have business-friendly names that
are easier to remember. Creating and managing application instances are performed
by using the Oracle Identity System Administration.

Application instances can be connected or disconnected. A connected application
instance has a connector defined for the provisioning of entities. A disconnected
application instance is used for the provisioning of a disconnected resource, for which
a connector is not defined, and therefore, the provisioning is performed manually by
the administrator.

For information about application instance concepts and how to create and manage
application instances, see "Managing Application Instances" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Identity Manager.

This chapter describes how application developers can manage resource objects and IT
resources manually. In addition, it describes the procedure to convert a disconnected
application instance to a connected application instance.

This chapter includes the following topics related to managing resources, IT resources,
and application instances:

■ Creating IT Resources

■ Managing IT Resources

■ Managing Resources By Using the Design Console

■ Converting a Disconnected Application Instance to Connected Application
Instance

4.1 Creating IT Resources
To create an IT resource:

1. Login to Oracle Identity System Administration.

Note: The IT resource type is created before the IT resource can be
created. The IT resource type can be created either by using the Design
Console, or by importing the IT resource type using the Deployment
Manager.

Creating IT Resources

4-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

2. Under Configuration, click IT Resource. The Manage IT Resource page is
displayed.

3. Click Create IT Resource. The Create IT Resource wizard is displayed.

4. On the Step 1: Provide IT Resource Information page, enter the following
information:

■ IT Resource Name: Enter a name for the IT resource.

■ IT Resource Type: Select an IT resource type for the IT resource.

If you want to create an IT resource of the Remote Manager type, then select
Remote Manager from the IT Resource Type list.

■ Remote Manager: If you want to associate the IT resource with a particular
remote manager, then select the remote manager from this list. If you do not
want to associate the IT resource with a remote manager, then leave this field
blank.

5. Click Continue.

6. On the Step 2: Specify IT Resource Parameter Values page, specify values for the
parameters of the IT resource, and then click Continue.

7. On the Step 3: Set Access Permission to IT Resource page, if you want to assign
roles to the IT resource and set access permissions for the roles, then:

a. Click Assign Role.

b. For the roles that you want to assign to the IT resource, select Assign and the
access permissions that you want to set. For example, if you want to assign the ALL
USERS role and set the Read and Write permissions to this role, then you must
select the respective check boxes in the row, as well as the Assign check box, for
this role.

c. Click Assign.

8. On the Step 3: Set Access Permission to IT Resource page, if you want to modify
the access permissions of roles assigned to the IT resource, then:

a. Click Update Permissions.

b. Depending on whether you want to set or remove specific access permissions
for roles displayed on this page, select or deselect the corresponding check boxes.

c. Click Update.

9. On the Step 3: Set Access Permission to IT Resource page, if you want to unassign
a role from the IT resource, then:

Note: If you select Remote Manager from the IT Resource Type list,
then you must not select a remote manager from the Remote Manager
list.

Note: You cannot modify the access permissions of the SYSTEM
ADMINISTRATORS role. You can modify the access permissions of only
other roles that you assign to the IT resource.

Managing IT Resources

Developing Application Instances 4-3

a. Select the Unassign check box for the role that you want to unassign.

b. Click Unassign.

10. Click Continue.

11. On the Step 4: Verify IT Resource Details page, review the information that you
provided on the first, second, and third pages. If you want to make changes in the
data entered on any page, click Back to revisit the page and then make the
required changes.

12. To proceed with the creation of the IT resource, click Continue.

13. The Step 5: IT Resource Connection Result page displays the results of a
connectivity test that is run using the IT resource information. If the test is
successful, then click Create. If the test fails, then you can perform one of the
following steps:

■ Click Back to revisit the previous pages and then make corrections in the IT
resource creation information.

■ Click Cancel to stop the procedure, and then begin from the first step onward.

■ Proceed with the creation process by clicking Continue. You can fix the
problem later, and then rerun the connectivity test by using the Diagnostic
Dashboard.

14. Click Finish.

4.2 Managing IT Resources
To locate an IT resource:

1. In Oracle Identity System Administration, under Configuration, click IT Resource.
The Manage IT Resource page is displayed.

2. On the Manage IT Resource page, you can use one of the following search options
to locate the IT resource that you want to view:

■ IT Resource Name: Enter the name of the IT resource, and then click Search.

■ IT Resource Type: Select the IT resource type of the IT resource, and then click
Search.

■ Click Search.

On the Manage IT Resource page, the list of IT resources that meet the search criteria is
displayed.

From this point onward, you can perform one of the following procedures on the IT
resource:

■ Viewing IT Resources

Note: You cannot unassign the SYSTEM ADMINISTRATORS role. You can
unassign only other roles that you assign to the IT resource.

Note: If no errors are encountered, then the label of the button is
Create, not Continue.

See "Test Basic Connectivity" on page 16-11 for more information.

Managing IT Resources

4-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Modifying IT Resources

■ Deleting IT Resources

4.2.1 Viewing IT Resources
To view an IT resource:

1. From the list of IT resources displayed in the search results, click the IT resource
name.

2. If you want to view the IT resource parameters and their values, then select
Details and Parameters from the list at the top of the page. Similarly, if you want
to view the administrative roles assigned to the IT resource, then select
Administrative Roles from the list.

4.2.2 Modifying IT Resources
To modify an IT resource:

1. From the list of IT resources displayed in the search results, click the edit icon for
the IT resource that you want to modify.

2. If you want to modify values of the IT resource parameters, then:

a. Select Details and Parameters from the list at the top of the page.

b. Make the required changes in the parameter values.

c. To save the changes, click Update.

3. If you want to modify the administrative roles assigned to the IT resource, first
select Administrative Roles from the list at the top of the page and then perform
the required modification.

4. If you want to unassign an administrative role, select the Unassign check box in
the row in which the role name is displayed and then click Unassign.

5. If you want to assign new administrative roles to the IT resource, then:

a. Click Assign Role.

b. For the administrative roles that you want to assign to the IT resource, select
the access permission check boxes and the Assign check box.

c. Click Assign.

Note: If you want to edit the IT resource, then click the edit icon in
the same row.

Note:

■ When you click Unassign, the administrative roles that you select
are immediately unassigned from the IT resource. You are not
prompted to confirm that you want to unassign the selected
administrative roles.

■ You cannot unassign the SYSTEM ADMINISTRATORS role.

Managing Resources By Using the Design Console

Developing Application Instances 4-5

6. If you want to modify the access permissions of the administrative roles that are
currently assigned to the IT resource, then:

a. Click Update Permissions.

b. Depending on the changes that you want to make, select or deselect the check
boxes in the table.

c. To save the changes, click Update.

4.2.3 Deleting IT Resources
To delete an IT resource:

1. From the list of IT resources displayed in the search results, click the Delete icon
for the IT resource that you want to delete.

2. To confirm that you want to delete the IT resource, click Confirm Delete.

4.3 Managing Resources By Using the Design Console
This chapter describes resource management in the Design Console. It contains the
following sections:

■ Overview of Resource Management

■ IT Resources Type Definition Form

■ Rule Designer Form

■ Resource Objects Form

■ Service Account Management

4.3.1 Overview of Resource Management
The Resource Management folder provides you with tools to manage Oracle Identity
Manager resources. This folder contains the following forms:

■ IT Resources Type Definition: Use this form to create resource types that are
displayed as lookup values on the IT Resources form.

■ Rule Designer: Use this form to create rules that can be applied to password
policy selection, automatic role membership, provisioning process selection, task
assignment, and prepopulating adapters.

■ Resource Objects: Use this form to create and manage resource objects. These
objects represent resources that you want to make available to users and
organizations.

Note: You cannot change the access permissions of the SYSTEM
ADMINISTRATORS role.

Note: Deleting IT resource instances soft-deletes the corresponding
application instances.

See Also: See Chapter 8, "Using the Adapter Factory" for more
information about adapters and adapter tasks

Managing Resources By Using the Design Console

4-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

4.3.2 IT Resources Type Definition Form
The IT Resources Type Definition form is in the Resource Management folder. You use
the IT Resources Type Definition form to classify IT resource types, for example, AD,
Microsoft Exchange, and Solaris. Oracle Identity Manager associates resource types
with resource objects that it provisions to users and organizations.

After you define an IT resource type on this form, it is available for selection when you
define an IT resource. The type is displayed in the Create IT Resource and Manage IT
Resource pages of Advanced Administration.

IT resource types are templates for the IT resource definitions that reference them. If an
IT resource definition references an IT resource type, the resource inherits all of the
parameters and values in the IT resource type. The IT resource type is the general IT
classification, for example, Solaris. The resource is an instance of the type, for example,
Solaris for Statewide Investments.

You must associate every IT resource definition with an IT resource type.

Figure 4–1 shows the IT Resources Type Definition form.

Figure 4–1 The IT Resources Type Definition Form

Table 4–1 describes the fields of the IT Resources Type Definition form.

Table 4–1 Fields of the IT Resources Type Definition Form

Field Name Description

Server Type The name of the IT resource type

Insert Multiple Specifies whether or not this IT resource
type can be referenced by more than one IT
resource

Note: If an IT resource must access an external resource but is not
able to do so by using the network, you must associate it with a
remote manager. For more information, see "Installing and
Configuring a Remote Manager" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Manager.

Managing Resources By Using the Design Console

Developing Application Instances 4-7

4.3.2.1 Defining a Template (a Resource Type) for IT Resources
To define an IT resource type:

1. Enter the name of the IT resource type in the Server Type field, for example,
Solaris.

2. To make the IT resource type available for multiple IT resources, select Insert
Multiple.

3. Click Save.

The IT resource type is defined. You can select it when defining IT resources in the
Create IT Resource page of Advanced Administration.

4.3.2.2 Tabs on the IT Resource Type Definition Form
After you save the basic information for a new IT resource type, and when an IT
resource type is returned on a query, the fields on the tabs of the IT Resources Type
Definition form's lower region are enabled.

The IT Resources Type Definition form contains the following tabs:

■ IT Resource Type Parameter tab

■ IT Resource tab

4.3.2.2.1 IT Resource Type Parameter Tab You use the IT Resource Type Parameter tab to
specify default values and encryption settings for all connection parameters for the IT
resource type, as shown in Figure 4–1. Oracle recommends that you do not specify
default values for passwords and encrypted fields. Parameters and values on this tab
are inherited by all IT resources that reference this IT resource type.

When you define a new parameter, the parameter and its values and encryption
settings are added to the current IT resource type and to any new or existing IT
resource definitions that reference this IT resource type. For an applicable resource
definition, the new parameter is displayed in the Details and Parameters section of
the Create IT Resource and Manage IT Resource pages of Advanced Administration.

Adding a Parameter to an IT Resource Type
To add a parameter to an IT Resource Type:

1. Click Add.

A new row is displayed in the IT Resource Type Parameter tab.

2. In the Field Name field, enter the name of the parameter.

3. In the Default Field Value field, enter a default value.

This value is inherited by all IT resources that reference this IT resource type

4. Select or clear the Encrypted option.

This check box determines if this parameter's value is masked, that is, represented
with asterisk (*) in a form field.

If you want the parameter's value to be masked, select this check box.

5. Click Save.

Note: You can customize the values and encryption settings for these
parameters within each IT resource.

Managing Resources By Using the Design Console

4-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Removing a Parameter from an IT Resource Type
To remove a parameter from an IT Resource Type:

1. Select the parameter you want to remove.

2. Click Delete.

The parameter and its associated value are removed from the IT resource type and
from IT resource definitions that reference this type.

4.3.2.2.2 IT Resource Tab This tab displays IT resources that reference a selected IT
resource type. All IT resources on this tab share the same parameters, but the values
can be unique for each IT resource.

4.3.2.3 IT Resource Type Definition Table
The IT Resource Type Definition Table displays the following information:

4.3.3 Rule Designer Form
Rules are criteria that enable Oracle Identity Manager to match conditions and take
action based on them. A rule can be assigned to a specific resource object or process, or
a rule can apply to all resource objects or processes.

The following are examples of rule usage:

■ Determining a password policy to apply to a resource object of type Application.

■ Enabling users to be added to roles automatically.

■ Specifying the provisioning process that apply to a resource object after that
resource object is assigned to a request.

■ Determining how a process task is assigned to a user.

■ Specifying which prepopulate adapter is executed for a given form field.

The Rule Designer form shown in Figure 4–2 is in the Resource Management folder.
You use this form to create and manage rules that are used with resources.

Field Name Description

Server Type The name of the resource asset type, as defined in the IT
Resource Type Definition form

Insert Multiple Indicates whether or not multiple instances of this IT
Resource Definition can be created

See Also: Oracle Identity Manager Tools Reference for more
information about prepopulate adapters

Managing Resources By Using the Design Console

Developing Application Instances 4-9

Figure 4–2 Rule Designer Form

There are four types of rules:

General: Enables Oracle Identity Manager to add a user to a role automatically and to
determine the password policy that is assigned to a resource object.

Process Determination: Determines the provisioning processes for a for a resource
object.

Task Assignment: Specifies the user or role that is assigned to a process task.

Prepopulate: Determines which prepopulate adapter is executed for a form field.

A rule contains the following items:

A rule element: Consists of an attribute, an operator, and a value. In Figure 4–2, the
attribute is User Login, the operator is ==, and the value is XELSYSADM.

A nested rule: If one rule must be placed inside another rule for logic purposes, the
internal rule is known as a nested rule. In Figure 4–2, a Rule to Prevent Solaris Access
is nested in a Rule for Solaris.

An operation: When a rule contains multiple rule elements or nested rules, an
operation shows the relationship among the components. In Figure 4–2, if the AND
operation is selected, the User Login==XELSYSADM rule element and the Rule to
Prevent Solaris Access nested rule must both be true for the rule to be successful.

Table 4–2 describes the fields of the Rule Designer form.

Table 4–2 Fields of the Rule Designer Form

Field Name Description

Name The rule's name.

Managing Resources By Using the Design Console

4-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

4.3.3.1 Creating a Rule
To create a rule:

AND/OR These options specify the operation for the rule.

To stipulate that a rule is successful only when all the outer rule
elements and nested rules are true, select AND. To indicate that a rule
is successful if any of its outer rule elements or nested rules are TRUE,
select OR.

Important: These options do not reflect the operations for rule elements
that are contained within nested rules. In Figure 4–2, the AND
operation applies to the User Login == XELSYSADM rule element and
the Rule to Prevent Solaris Access nested rule. However, this
operation has no effect on the Object Name != Solaris rule element
within the Rule to Prevent Solaris Access rule.

Type The rule's classification status. A rule can belong to one of four types:

■ General: Enables Oracle Identity Manager to add a user to a role
automatically and determines the password policy that is assigned
to a resource object.

■ Process Determination: Determines the provisioning processes for
a resource object.

■ Task Assignment: Determines which user or role is assigned to a
process task.

■ Prepopulate: Determines which prepopulate adapter is used for a
form field.

Sub-Type A rule of type Process Determination, Task Assignment, or Prepopulate
can be categorized into one of four subtypes:

■ Organization Provisioning: Classifies the rule as a provisioning
rule. Determines the organization for which a process is
provisioned, a task is assigned, or the prepopulate adapter is
applied.

■ User Provisioning: Classifies the rule as a provisioning rule.
Determines the user for which a process is provisioned, a task is
assigned, or a prepopulate adapter is applied.

For Task Assignment or Prepopulate rule types, the approval and
standard approval items are not displayed in the Sub-Type box. The
Sub-Type box is grayed out for the General rule type.

Object The resource object to which this rule is assigned.

All Objects If selected, the rule can be assigned to all resource objects.

Process The process to which this rule is assigned.

All Processes If selected, the rule can be assigned to all processes.

Description Explanatory information about the rule.

Note: In the following procedure, note that the options do not apply
to rule elements within nested rules. For example, in Figure 4–2 the
AND operation applies to the User Login==XELSYSADM rule element
and the Rule to Prevent Solaris Access nested rule. But this operation
has no effect on the Object Name != Solaris rule element in the Rule
to Prevent Solaris Access rule.

Table 4–2 (Cont.) Fields of the Rule Designer Form

Field Name Description

Managing Resources By Using the Design Console

Developing Application Instances 4-11

1. Open the Rule Designer form.

2. In the Name field, enter the name of the rule.

3. To stipulate that a rule is successful only when all of its rule elements or nested
rules are true, select the AND option.

To indicate that a rule is successful if any of its rule elements or nested rules are
true, select the OR option.

4. Click the Type box, and in the custom menu select the classification status
(General, Process Determination, Task Assignment, or Prepopulate) to associate
with the rule.

For Process Determination, click Sub-Type and select the classification status
(Organizational Provisioning, User Provisioning, Approval, or Standard
Approval) to associate with the rule.

For Task Assignment or Prepopulate, click Sub-Type and select the classification
status (Organization Provisioning or User Provisioning) to associate with the
rule.

If you select General from the Type box, go to Step 7.

5. To associate the rule with a single resource object, double-click the Object lookup
field, and in the Lookup dialog box select a resource object.

If you want the rule to be available to all resource objects, select the All Objects
option.

6. To assign a rule to one process, double-click the Process lookup field, and from the
Lookup dialog box, select the process to associate with the rule.

If you want the rule to be available to all processes, select the All Processes option.

7. In the Description field, enter explanatory information about the rule.

8. Click Save.

4.3.3.2 Tabs on the Rule Designer Form
The Rule Designer form contains the following tabs:

■ Rule Elements tab

■ Usage tab

Each of these tabs is discussed in the following sections.

4.3.3.2.1 Rule Elements Tab From this tab, you can create and manage elements and
nested rules for a rule. For example, in Figure 4–3, the Rule for Solaris contains the
User Login==XELSYSADM rule element. It also has a nested Rule to Prevent Solaris

Note: The only processes that are displayed in this Lookup window
are the ones that are associated with the resource object you selected
in Step 5.

Note: If you select a resource object in Step 5 by selecting the All
Processes option, this rule is available to every process that is
associated with the selected resource object.

Managing Resources By Using the Design Console

4-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Access. Figure 4–3 displays the Rule Elements tab of the Rule Designer form.

Figure 4–3 Rule Elements Tab of the Rule Designer Form

The rule in Figure 4–3 can be applied to a provisioning process for the Solaris resource
object. After this resource object is assigned to a request, the rule is triggered. If the
target user's login is XELSYSADM, and the name of the resource object is Solaris, the
Solaris resource object is provisioned to the user. Otherwise, the user cannot access
Solaris.

When a rule element or nested rule is no longer valid, remove it from the rule.

The following procedures describe how to:

■ Add a rule element to a rule

■ Add a nested rule to a rule

■ Remove a rule element or nested rule from a rule

Adding a Rule Element to a Rule
To add a rule element to a rule:

1. Click Add Element.

The Edit Rule Element dialog box is displayed.

The custom menus in the boxes on the Edit Rule Element dialog box reflect the
items in the Type and Sub-Type boxes of the Rule Designer form.

Table 4–3 describes the data fields in the Edit Rule Element dialog box.

Table 4–3 Fields of the Edit Rule Element Dialog Box

Name Description

Attribute Source From this box, select the source of the attribute. For example, if the
attribute you wish to select is Object Name, the attribute source to
select would be Object Information.

User-Defined Form This field displays the user-created form that is associated with the
attribute source that is displayed in the adjacent box.

Note: If Process Data are not displayed in the Attribute Source
box, the User-Defined Form field will be empty.

Managing Resources By Using the Design Console

Developing Application Instances 4-13

2. Set the parameters for the rule you are creating, as shown in Figure 4–4.

Figure 4–4 Edit Rule Element Window

In this example, if the Login ID of the target user is XELSYSADM, the rule element
is true. Otherwise, it is false.

3. From the Toolbar of the Edit Rule Element dialog box, click Save, and click Close.

The rule element is displayed in the Rule Elements tab of the Rule Designer form.

4. From the main screen's toolbar, click Save.

The rule element is added to the rule.

Adding a Nested Rule to a Rule
To nest a rule within a rule:

1. Click Add Rule.

The Select Rule dialog box is displayed.

2. Select a nested rule and click Save.

3. Click Close.

The nested rule is displayed in the Rule Elements tab of the Rule Designer form.

4. From the main screen's Toolbar, click Save.

The nested rule is added to the rule.

Attribute From this box, select the attribute for the rule.

Operation From this box, select the relationship between the attribute and the
attribute value (== or !=)

Attribute Value In this field, enter the value for the attribute.

Note: The attribute's value is case-sensitive.

See Also: For more information about the parameters, see "Rule
Elements Tab" on page 4-11.

Note: In the following procedure, only rules of the same type and
subtype as the parent rule are displayed in the Select Rule window.

Table 4–3 (Cont.) Fields of the Edit Rule Element Dialog Box

Name Description

Managing Resources By Using the Design Console

4-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Removing a Rule Element or Nested Rule from a Rule
To remove a rule element or a nested rule:

1. Select the rule element or nested rule that you want to remove.

2. Click Delete.

The rule element or nested rule is removed from the rule.

4.3.3.2.2 Usage Tab This tab is displayed on the Rule Designer form. The information
in the Usage tab reflects the rule's classification type. For example, if a rule type is
prepopulate, the user-created field that this rule is applied to is displayed in this tab.

Figure 4–5 shows the Usage tab.

Figure 4–5 Usage Tab of the Rule Designer Form

This tab displays the following items:

■ The password policy, resource object, process, process task, auto-role membership
criteria, role, Oracle Identity Manager form field, and prepopulate adapter
associated with a rule.

■ A one-letter code, signifying the rule's classification type: P=Provisioning.

This code is displayed for process determination rules only.

■ The rule's priority number.

4.3.3.3 Rule Designer Table
The Rule Designer Table, as shown in Figure 4–6, displays all available rules defined in
the Rule Designer form.

Managing Resources By Using the Design Console

Developing Application Instances 4-15

Figure 4–6 Rule Designer Table

Table 4–4 shows the information displayed in the Rule Designer Table.

4.3.4 Resource Objects Form
The Resource Objects form is in the Resource Management folder. You use this form to
create and manage the resource objects for the Oracle Identity Manager resources that
you want to provision for organizations or users. Resource object definitions are
templates for provisioning the resource. However, the provisioning of the resource
depends on the design of the provisioning processes that you link to the resource
object.

Table 4–4 Information in the Rule Designer Table

Field Name Description

Rule Name The name of the rule.

Rule Type A rule can belong to one of four types:

■ General: Enables Oracle Identity Manager to add a
user to a role automatically and determines the
password policy that is assigned to a resource object.

■ Process Determination: Determines the provisioning
processes that are selected for a resource object.

■ Task Assignment: Determines which user, role, or
both are assigned to a process task.

■ Pre-Populate: Determines which prepopulate adapter
is executed for a given form field.

Rule Sub-Type A rule of type Process Determination, Task Assignment,
or Pre-Populate can be categorized into one of four
sub-types:

■ Organization Provisioning: Classifies the rule as a
provisioning rule.

You use this subtype to determine the organization
for which a process is provisioned, a task is assigned,
or the prepopulate adapter is applied.

■ User Provisioning: Classifies the rule as a
provisioning rule.

You use this subtype to determine the user for which
a process is provisioned, a task is assigned, or a
pre-populate adapter is applied.

Rule Operator The relationship between the attribute and the attribute
value represented by the == or != operators.

Description Explanatory information about the rule.

Last Updated The date when the rule was last updated.

Managing Resources By Using the Design Console

4-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Table 4–5 describes the data fields of the Resource Objects form.

4.3.4.1 Creating a Resource Object
To create a resource object:

1. Open the Resource Objects form.

2. In the Name field, enter the name of the resource object.

3. To request the resource object for a user, select Order For User.

To request the resource object for an organization, select Order For Organization.

4. Double-click the Type lookup field.

From the Lookup dialog box that is displayed, select the classification status
(Application, Generic, or System) to associate with the resource object.

5. If you want to use the resource object for trusted source user reconciliation, you
must select the Trusted Source option. Otherwise, go to Step 6.

6. Click Save.

The resource object is created.

Table 4–5 Fields of the Resource Objects Form

Field Name Description

Table Name The name of the resource object form that is associated with this
resource. (This is actually the name of the table that represents the
form.)

Order For
User/Order For
Organization

Options that determine whether or not the resource object can be
requested for users or organizations.

To request the resource object for a user, select Order For User. To
request the resource object for an organization, select Order For
Organization.

Type The resource object's classification status. A resource object can
belong to one of the following types:

■ Application: Classifies this resource object as an application.

■ Generic: Contains business-related processes.

■ System: Oracle Identity Manager uses this type of resource
object internally.

Do not modify system resource objects without first consulting
Oracle.

■ Disconnected: Classifies the resource object as a disconnected
resource.

Trusted Source You can select this check box if you want to use the resource object
for trusted user reconciliation.

By default, this check box is not selected. It is selected by default only
for the Xellerate User resource object.

Note: A resource object can be requested for either one user or one
organization.

Managing Resources By Using the Design Console

Developing Application Instances 4-17

4.3.4.2 Tabs on the Resource Objects Form
When you start the Resource Objects form and create a resource object, the tabs of this
form become functional.

The Resource Objects form contains the following tabs:

■ Depends On Tab

■ Object Authorizers Tab

■ Process Determination Rules Tab

■ Event Handlers/Adapters Tab

■ Resource Audit Objectives

■ Status Definition Tab

■ Administrators Tab

■ Password Policies Rule Tab

■ User-Defined Fields Tab

■ Process Tab

■ Object Reconciliation Tab

4.3.4.2.1 Depends On Tab From this tab, you can select resource objects that Oracle
Identity Manager must provision before provisioning the current resource object. If
Oracle Identity Manager can provision the current resource object without first
provisioning a resource object that is displayed on the Depends On tab, you must
remove that resource object from the tab.

In addition, you must setup a parent-child relationship between the application
instances as well. This is done by opening the application instance for the dependent
resource and selecting the independent application instance as the parent from the
drop-down for parent application instance. See "Managing Application Instances" in
the Oracle Fusion Middleware Administrator's Guide for Oracle Identity Manager for
information about the application instance UI.

The following topics are related to the Depends On tab:

■ Selecting a resource object on which the current resource object is dependent

■ Removing the dependent resource object

Selecting a Dependent Resource Object
To select a dependent resource object:

1. Click Assign.

The Assignment dialog box is displayed.

2. Select the resource object.

3. Click OK.

The dependent resource object is selected.

Removing a Dependent Resource Object
To remove a dependent resource object:

1. Select the dependent resource object that you want to remove.

2. Click Delete.

Managing Resources By Using the Design Console

4-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

The resource object is removed from the Depends On tab.

4.3.4.2.2 Object Authorizers Tab Use this tab to specify roles that are the object
authorizers for this resource. You can select users who are members of the Object
Authorizers roles as targets for task assignments.

Each role on the Object Authorizers tab has a priority number. The priority number
can also be referenced when a task assigned to a role is escalated due to lack of action.
You can increase or decrease the priority number for any role on this tab.

For example, suppose that you configure members of the SYSTEM
ADMINISTRATORS roles to be object authorizers. Also suppose that a process task
associated with this resource object has a task assignment rule attached to it. The first
user authorized to complete this process task is the user with the priority number 1. If
the user does not complete the process task in a user-specified time, Oracle Identity
Manager reassigns the task to the user with the next priority in the SYSTEM
ADMINISTRATORS role.

Assigning a Role to a Resource Object
To assign a role to a resource object:

1. Click Assign.

The Assignment dialog box is displayed.

2. Select a role.

3. Click OK.

The role is selected.

Removing a Role from a Resource Object
To remove a role from a resource object:

1. Select the desired role.

2. Click Delete.

The role is removed from the Object Authorizers tab.

4.3.4.2.3 Process Determination Rules Tab A resource object is a template for the resource
that is provisioned to users or organizations. This template can be linked to multiple
provisioning processes. Oracle Identity Manager uses process determination rules to
select a provisioning process when a resource is requested or directly provisioned.

Process determination rules provide the following criteria:

■ Which provisioning process to select when a resource is requested

■ Which provisioning process to select when a resource is provisioned directly

Each provisioning process has a process determination rule. Each rule and process
combination has a priority number that indicates the order in which Oracle Identity
Manager will evaluate it.

If the condition of a rule is false, Oracle Identity Manager evaluates the rule with the
next highest priority. If a rule is true, Oracle Identity Manager executes the process
associated with it.

See Also: "Rule Designer Form" on page 4-8 and "Assignment Tab of
the Editing Task Window" on page 5-29 for more information about
task assignment rules and process tasks

Managing Resources By Using the Design Console

Developing Application Instances 4-19

Adding a Process Determination Rule to a Resource Object
To add a process determination rule to a resource object:

1. Click Add in the Provisioning Processes region, depending on the rule or process
combination you intend to create.

2. From the row that is displayed, double-click the Rules lookup field.

3. From the Lookup dialog box, select a rule, and assign it to the resource object (only
rules of Process Determination type are available for selection).

4. Click OK.

5. In the adjacent column, double-click the Processes lookup field.

6. From the Lookup dialog box, select a process, and assign it to the rule.

7. Click OK.

8. Enter a numeric value in the Priority field.

This determines the order in which Oracle Identity Manager evaluates the rule
and process combination.

9. Click Save.

The rule and process combination is added to the resource object.

Remove a Process Determination Rule From a Resource Object
To remove a process determination rule from a resource object:

1. Select a rule and process combination.

2. Click Delete.

The rule and process combination is removed from the resource object.

4.3.4.2.4 Event Handlers/Adapters Tab A resource object's provisioning process contains
tasks that must be completed automatically. When this occurs, you must assign an
event handler or an adapter to the resource object. An event handler is a software
routine that provides the processing of this specialized information. An adapter is a
specialized type of event handler that generates Java code, which enables Oracle
Identity Manager to communicate and interact with external resources.

When an event handler or adapter that is assigned to a resource object that is no longer
valid, you must remove it from the resource object.

For this example, the adpAUTOMATEPROVISIONINGPROCESS adapter was
assigned to the Solaris resource object. Once this resource object is assigned to a
request, Oracle Identity Manager triggers the adapter, and the associated provisioning
process is executed automatically.

Assigning an Event Handler or Adapter to a Resource Object
To assign an event handler to an adapter or a resource object:

1. Click Assign.

The Assignment dialog box is displayed.

2. Select an event handler, and assign it to the resource object.

3. Click OK.

The event handler is assigned to the resource object.

Managing Resources By Using the Design Console

4-20 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Remove an Event Handler or Adapter from a Resource Object
To remove an event handler or adapter from a resource object, perform the following
steps:

1. Select an event handler.

2. Click Delete.

The event handler is removed from the resource object.

4.3.4.2.5 Resource Audit Objectives The Resource Objects form in the Design Console
includes a resource attribute named Resource Audit Objectives. This resource
attribute helps you link resources to regulatory mandates.

Figure 4–7 The Resource Objects Form

A lookup is defined for the values of the Resource Audit Objectives resource attribute.
The predefined values in the Resource Audit Objectives list are:

■ SOX (Hosts Financially Significant Information)

■ HIPAA (Hosts Private Healthcare Information)

■ GLB (Hosts Non-Public Information)

■ Requires Quarterly Review

■ Requires Annual Review

You can extend this list by editing the Lookups.Resource Audit Objective.Type lookup
by using the Lookup Definition Form in the Design Console.

Managing Resources By Using the Design Console

Developing Application Instances 4-21

4.3.4.2.6 Status Definition Tab You use this tab to set provisioning status for a resource
object. A provisioning status indicates the status of a resource object throughout its
lifecycle, until it is provisioned to the target user or organization.

Every provisioning status of a resource object is associated with a task status for the
relevant provisioning process. Oracle Identity Manager selects the provisioning
process when the resource object is assigned to a request. For example, if the Provision
for Developers process is selected, and a task in this process achieves Completed
status, the corresponding status of the resource object can be set to Provisioned. This
way, you can see how the resource object relates to the provisioning process, quickly
and easily.

A resource object has the following predefined statuses:

■ Waiting: This resource object depends on other resource objects that have not yet
been provisioned.

■ Revoked: The resources represented by the resource object are provisioned to
target users or organizations that have been permanently deprovisioned from
using the resources.

■ Ready: This resource object either does not depend on any other resource objects,
or all resource objects upon which this resource object depends are provisioned.

After a resource is assigned to a request and the resource object's status is Ready,
Oracle Identity Manager evaluates the process determination rules to determine
the provisioning process. When this happens, the status of the resource object
changes to Provisioning.

■ Provisioning: The resource object is assigned to a request and a provisioning
process has been selected.

■ Provisioned: The resources represented by the resource object are provisioned to
the target users or organizations.

■ Provide Information: Additional information is required before the resources
represented by the resource object can be provisioned to the target users or
organizations.

■ None: This status does not represent the provisioning status of the resource object.
Rather, it signifies that a task that belongs to the provisioning process that Oracle
Identity Manager selects has no effect on the status of the resource object.

■ Enabled: The resources represented by the resource object are provisioned to the
target users or organizations, and these users or organizations have access to the
resources.

■ Disabled: The resources represented by the resource object are provisioned to the
target users or organizations, but these users or organizations have temporarily
lost access to the resources.

Each provisioning status has a corresponding Launch Dependent check box. If the
check box is selected and if the parent resource object achieves that provisioning
status, then Oracle Identity Manager will continue the provisioning of the dependent
resource object.

For example, suppose that the Exchange resource object depends on Active Directory
and has the Launch Dependent check box selected for the Provisioned and Enabled
provisioning statuses. When the provisioning status of Active Directory changes to
Provisioned or Enabled, and if Exchange provisioning is waiting on it, then Oracle
Identity Manager will continue the provisioning process of Exchange.

Managing Resources By Using the Design Console

4-22 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

You might want to add additional provisioning statuses to a resource object to reflect
the various task statuses of a provisioning process. For example, when the status of a
task that belongs to a provisioning process is Rejected, you might want to set the
corresponding provisioning status of the resource object to Revoked.

Similarly, when an existing provisioning status is no longer valid, you must remove it
from the resource object.

The following sections discuss how to add a provisioning status to a resource object
and remove a provisioning status from a resource object.

Adding a Provisioning Status to a Resource Object
To add a provisioning status to a resource object:

1. Click Add.

2. Add a provisioning status in the Status field.

3. When you want other, dependent resource objects to launch their own
provisioning process once the resource object achieves the provisioning status you
are adding, select the Launch Dependent check box. Otherwise, go to Step 4.

4. Click Save.

The provisioning status is added to the resource object.

Removing a Provisioning Status from a Resource Object
The following procedure describes removing a provisioning status from a resource
object:

1. Select a provisioning status.

2. Click Delete.

The provisioning status is removed from the resource object.

4.3.4.2.7 Administrators Tab This tab is used to select roles that can view, modify, and
delete the current resource object.

When the Write check box is selected, the corresponding role can modify the current
resource object. When the Delete check box is selected, the associated role can delete
the current resource object.

The following sections describe how to assign a role to a resource object, and remove a
role from a resource object.

Assigning a Role to a Resource Object
To assign a role to a resource object:

1. Click Assign.

The Assignment dialog box is displayed.

2. Select the role, and assign it to the resource object.

3. Click OK.

The role is displayed in the Administrators tab. By default, all members of this
role can view the active record.

4. If you want this role to be able to modify the current resource object, select the
corresponding Write check box.

Managing Resources By Using the Design Console

Developing Application Instances 4-23

Otherwise, go to Step 5.

5. If you want this role to be able to delete the current resource object, select the
associated Delete check box.

Otherwise, go to Step 6.

6. Click Save.

The role is assigned to the resource object.

Removing a Role from a Resource Object
To remove a role from a resource object:

1. Highlight the role that you want to remove.

2. Click Delete.

The role is removed from the resource object.

4.3.4.2.8 Password Policies Rule Tab If a resource object is of type Application, and you
want to provision the resource object to a user or organization, you might want that
user or organization to meet password criteria before accessing the resource object.
This password criteria is created and managed in the form of password policies. These
policies are created by using the Password Policies form.

Because the resource object definition is only a template for governing how a resource
is to be provisioned, Oracle Identity Manager must be able to make determinations
about how to provision the resource based on actual conditions and rules. These
conditions might not be known until the resource is actually requested. Therefore,
rules must be linked to the various processes and password policies associated with a
resource. This enables Oracle Identity Manager to decide which ones to invoke in any
given context.

Oracle Identity Manager determines which password policy to apply to the resource
when creating or updating a particular user's account. This is done by evaluating the
password policy rules of the resource and applying the criteria of the policy associated
with the first rule that is satisfied. Each rule has a priority number, which indicates the
order in which Oracle Identity Manager will evaluate it.

The following sections discuss how to add and remove a password policy rule from a
resource object.

Adding a Password Policy Rule to a Resource Object
To add a password policy rule to a resource object:

1. Click Add.

2. From the row that is displayed, double-click the Rule lookup field.

3. From the Lookup dialog box, select a rule, and assign it to the resource object.

4. Click OK.

5. In the adjacent column, double-click the Policy lookup field.

6. From the Lookup dialog box, select an associated password policy, and assign it to
the resource object.

7. Click OK.

8. Add a numeric value in the Priority field.

This field contains the rule's priority number.

Managing Resources By Using the Design Console

4-24 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

9. Click Save.

The password policy rule is added to the resource object.

Removing a Password Policy Rule from a Resource Object
To remove a password policy from a resource object:

1. Select a password policy rule.

2. Click Delete.

The password policy rule is removed from the resource object.

4.3.4.2.9 User-Defined Fields Tab You use this tab to view and access user-defined fields
that were created for the Resource Objects form. After a user-defined field is created, it
is displayed on this tab and can accept and supply data.

4.3.4.2.10 Process Tab The Process tab displays all provisioning processes that are
associated with the current resource object. The Default check boxes on this tab
indicate what provisioning processes are the defaults for the resource.

For example, suppose that the Solaris resource object has one provisioning processes
(Provision Solaris for Devel.) associated with it. The Provision Solaris for Devel. has
been designated as the default provisioning process for this resource object.

4.3.4.2.11 Object Reconciliation Tab The Object Initial Reconciliation Date field on the
Object Reconciliation Tab displays the date when initial reconciliation was performed
for the resource.

The date value stored in the Object Initial Reconciliation Date field is used to
distinguish between initial reconciliation and subsequent reconciliations events. This

Note:

■ If the resource type is Order for Organization, you cannot attach a
password policy to the resource object. The exception to this rule
is the Xellerate User resource object. Although this resource object
is of Order for Organization type, password policies can be
attached to it.

■ If two or more rules evaluate to True, the password policy
attached to the rule with the highest priority is applied.

■ A Default rule is predefined in Oracle Identity Manager. This rule
always evaluates to True. If no rules have been created through
the Rule Designer, a password policy can be attached to the
Default rule.

Note: You create provisioning processes and associate them with a
resource by using the Process Definition form. Each process can be
linked to a process determination rule by using the Process
Determination Rules tab of the Resource Object form.

Note: The purpose of initial reconciliation is to bring all the user
accounts from the target system into Oracle Identity Manager.

Managing Resources By Using the Design Console

Developing Application Instances 4-25

date value is used by the two exception reports. These exception reports display
differences in the entitlements a user must have as compared to what the user actually
has in the target system. The differences in entitlements are determined by using
reconciliation data, along with other data items. The exception reports return data
associated with only those reconciliation events that are created after the date stored in
the Object Initial Reconciliation Date field. In addition, exception data is generated
only if the Initial Object Reconciliation Date field displays a date value that is in the
past. If required, you can enter a date value in this field so that the exception reports
are generated.

The Object Reconciliation tab contains two subtabs, Reconciliation Fields and
Reconciliation Action Rules.

■ The Reconciliation Fields tab is used to define the fields on the target resources or
trusted sources that are to be reconciled with (for example, mapped to)
information in Oracle Identity Manager

■ The Reconciliation Action Rules tab is used to specify the actions Oracle Identity
Manager is to take when particular matching conditions are met.

Click the Create Reconciliation Profile button in the Object Reconciliation tab to
generate reconciliation profile whenever any changes are made to the resource object
or associated process forms.

Reconciliation Fields Tab
This tab is used to define the fields on the target resources or trusted sources that are
to be reconciled with (for example, mapped to) information in Oracle Identity
Manager. For each field on the target system or trusted source, the following
information will be listed:

■ Name of the field on the target resource or trusted source that is to be reconciled
with data in Oracle Identity Manager (for example, targetfield1)

■ Data type associated with the field (for example, String). Possible values are
multi-valued, string, number, date, IT resource

■ Indicator that designates whether or not this field is required in a reconciliation
event

The following is an example of a reconciliation field definition:

TargetField1 [String], Required

In the Reconciliation Fields tab, you can perform the following:

■ Add a reconciliation field

The following procedure adds fields from the target system or trusted source to
the list of fields that are to be reconciled with information in Oracle Identity
Manager.

Note: Oracle Identity Manager will not begin to match provisioning
processes, users or organizations to the reconciliation event until all
fields are processed on the Reconciliation section of the Event
Management tab in the Advanced Administration.

Managing Resources By Using the Design Console

4-26 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

To add a reconciliation field:

1. Click Add Field.

The Add Reconciliation Field dialog box is displayed.

2. Enter the name of the field on the target resource or trusted source in the Field
Name field.

 This is the name that will reference the target resource or trusted source field
in Oracle Identity Manager.

3. Select one of the following values from the menu in the Field Type field:

– Multi-Valued

This is meant for use with fields that contain one or more component
fields.

– String

– String

– Date

– IT resource

During reconciliation event creation, the value this field receives must be
the same as the name of an IT resource defined in Oracle Identity Man-
ager.

4. Select the Required check box.

If selected, the reconciliation field must be processed on the Reconciliation
section of the Event Management tab in the Advanced Administration before
Oracle Identity Manager will begin matching a provisioning process, user, or
organization to the reconciliation event. If this check box is not selected, the
inability to process this field in a reconciliation event will not prevent
matching from occurring.

5. Click Save.

The field will be available for mapping in the resource's default provisioning
process.

■ Delete a reconciliation field

Use the following procedure to remove a target system field from the list of fields
that are to be reconciled with information in Oracle Identity Manager. For a
trusted source, this must be the user resource definition.

To delete a reconciliation field:

1. Select the field you wish to remove.

2. Click Delete Field.

Note: Before Oracle Identity Manager can successfully perform
reconciliation with an external target resource or trusted source, the
fields you have defined on this tab must be mapped to the appropriate
Oracle Identity Manager fields by using the Field Mappings tab of the
resource's default provisioning process.

Managing Resources By Using the Design Console

Developing Application Instances 4-27

The selected field will be removed from the list of fields with which Oracle
Identity Manager reconciles data on the target system (this will have no effect
on the data in the target system itself).

Reconciliation Action Rules Tab
By using this tab, you can specify the actions that Oracle Identity Manager will
perform when some matches within reconciliation event records are encountered. Each
record in this tab is a combination of:

■ The matching condition criteria

■ The action to be performed

The conditions and actions from which you can select are predefined. Depending on
the matching conditions, certain actions might not be applicable. A complete list of the
available options is provided in Table 4–6.

Adding a Reconciliation Action Rule

To add a reconciliation action rule:

1. Click Add Field.

The Add a new Action Rule dialog box is displayed.

2. Select the desired value from the Rule Condition menu.

This is the matching condition that will cause the associated action to be executed.
Each match condition can only be assigned to a single rule action.

3. Select a value from the Rule Action menu.

This is the action that will be executed if the matching condition is met.

4. Click Save, and close the Add a new Action Rule dialog box.

Deleting a Reconciliation Action Rule

To delete a reconciliation action rule:

1. Select the matching action combination to delete.

Table 4–6 Rule Conditions and Possible Rule Actions

Rule Condition Possible Rule Actions

No matches found None

Create User (only available with the trusted source)

One Process Match
Found

None

Establish Link

Multiple Process
Matches Found

None

One Entity Match
Found

None

Establish Link

Multiple Entity
Matches Found

None

See Also: "Assignment Tab of the Editing Task Window" on
page 5-29 for a description of the classification types for the users and
roles listed in the preceding table

Managing Resources By Using the Design Console

4-28 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

2. Click Delete.

The reconciliation action rule will be removed and the action associated with its
condition will not be executed automatically.

4.3.4.3 Multiple Trusted Source Reconciliation
You can create the reconciliation fields, reconciliation action rules, field mappings, and
matching roles for the Xellerate User resource object and the process definition.

If there are two trusted sources from which you want to reconcile identities to create
OIM Users, you are not able to configure a single resource object (Xellerate User) for
both the trusted sources. Even if you create reconciliation fields for both the trusted
sources in the Xellerate User resource object, you cannot create the corresponding
reconciliation field mappings in the Xellerate User process definition.

You can configure resource objects other than Xellerate User as trusted sources for
identity reconciliation. You can do this by selecting the Trusted Source check box in
the Resource Objects form while creating a resource object.

For a resource object to which the Trusted Source flag is attached, you can create
multiple reconciliation fields to denote the target system fields. You can also configure
the reconciliation action rule in which if there are no process matches found, either a
user is created or the data is sent to the administrator or authorizer for identity
creation. If a process match is found, the link is established.

When defining provisioning process for trusted source resources, do not attach
user-defined process forms. For these provisioning processes, reconciliation field
mappings can be created between reconciliation fields defined on the resource and
OIM User attributes.

The attribute authoritative sources feature means that the sources are trusted for only
attributes of the identities and not the identities themselves. You can configure
attribute authoritative source reconciliation by creating appropriate reconciliation
action rules. If no process match is found, it is assigned to the administrator. This
ensures that a user is not created by mistake even if there are no matches found. If a
process match is found, the reconciliation action rule will establish a link.

The following sections discuss two use cases in which you can implement multiple
trusted source reconciliation:

■ Multiple Trusted Source Reconciliation Using MTS-Compatible Connectors

Note: If the resource object is for target resource reconciliation, then
the mapping is between the reconciliation fields and process data
fields.

Do not use any resource objects that are defined as a trusted source for
provisioning activities. These resources are meant to be used only for
OIM Users' reconciliation.

Note: At some places in this document:

- Multiple trusted source reconciliation has been referred to as MTS.

- The terms fields and attributes have been used interchangeably.

Managing Resources By Using the Design Console

Developing Application Instances 4-29

■ Multiple Trusted Source Reconciliation Using Connectors That Are Not
MTS-Compatible

4.3.4.3.1 Multiple Trusted Source Reconciliation Using MTS-Compatible Connectors

The following sections discuss scenarios in which you can implement multiple trusted
source reconciliation by using MTS-compatible connectors:

■ Configuring MTS-Compatible Connectors for Trusted Source Reconciliation by
User Type

■ Configuring MTS-Compatible Connectors for Trusted Source Reconciliation of
Specific OIM User Attributes

Configuring MTS-Compatible Connectors for Trusted Source Reconciliation by
User Type
In this context, user type refers to the type of users whose records you want to
reconcile. Examples of user types are Employee and Customer.

To implement trusted source reconciliation by user type, perform the procedure to
implement trusted source reconciliation while deploying the connectors of each target
system that you want to configure as a trusted source.

During reconciliation, all the target system records of the specified user types are
reconciled. If the target systems contain multiple user types, you can use the Limited
Reconciliation feature to specify the user type for which records must be reconciled
from each target system.

Configuring MTS-Compatible Connectors for Trusted Source Reconciliation of
Specific OIM User Attributes
You might want to configure trusted source reconciliation for specific OIM User
attributes from multiple target systems. The procedure to implement this is described
with the help of the following sample scenario:

You want to reconcile identities from one target system, for example TS1, and specific
attributes of these identities (for example attr1, attr2, and attr3) from another target
system, for example TS2. This means that TS1 is the trusted source for the identities,
and TS2 is the trusted source for specific attributes of those identities and not the
identities themselves. TS1 must provide all the mandatory OIM User attributes for the
successful creation of an OIM User. TS2 will provide only those OIM User attributes
(either a mandatory OIM User attribute or a non-mandatory one) for which TS2 is the
trusted source. If you reconcile a mandatory OIM User attribute from TS2, the value of
this attribute overwrites the value contained in this attribute after the OIM User is
created from TS1. If you want to reconcile only non-mandatory OIM User attributes
from TS2, you can choose not to reconcile these attributes from TS1 during OIM User
creation.

Note: For both use cases, create reconciliation profiles by referring to
"Creating New Reconciliation Profiles" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Manager.

Note: To determine whether or not your connector is
MTS-compatible, see connector-specific documentation.

Managing Resources By Using the Design Console

4-30 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

For the TS1 connector:

1. Perform all the steps required to deploy the TS1 connector and configure it for
trusted source reconciliation.

2. In the Reconciliation Fields tab on the Object Reconciliation page, delete all the
TS1 attributes that you want to reconcile from TS2 (in this case attr1, attr2, and
attr3).

3. In the Reconciliation Field Mappings tab on the Process Definition page, delete all
the mappings other than the ones you want to retain.

Instead of deleting reconciliation fields, you can remove the reconciliation field
mappings of those fields for which you do not want to reconcile the values into the
OIM User created through reconciliation.

4. In the Reconciliation Action Rules tab on the Object Reconciliation page, ensure
that the following rule condition and action mappings exist:

Rule Condition: No Matches Found

Action: Create User

For the TS2 connector:

1. Perform all the steps required to deploy the TS2 connector and configure it for
trusted source reconciliation.

2. In the Reconciliation Field Mappings tab on the Process Definition page, delete all
the mappings other than the ones you want to retain.

Instead of deleting reconciliation fields, you can also choose to just remove the
reconciliation field mappings of those fields for which you do not want to
reconcile the values into the OIM User created through reconciliation.

3. In the Reconciliation Fields tab on the Object Reconciliation page, delete all the
TS2 attributes other than attr1, attr2, and attr3. In addition, retain the attributes
that you want to use to match OIM Users with existing TS2 accounts. This means
that you retain only those attributes that will be used for reconciliation rule
evaluation. For example, you might want to use the username attribute in Oracle
Identity Manager to match the value of the first name attribute in TS1.

4. In the Reconciliation Action Rules tab on the Object Reconciliation page, create
rule conditions and action mappings. One of these rule condition-action mappings
must be the following:

Rule Condition: No Matches Found

Note: When there are multiple trusted sources, the logic to reconcile
the entity attributes from the trusted sources is provided by the
connector.

See Also: The documentation for the connector you are deploying
for information about the procedure to configure trusted source
reconciliation

See Also: The documentation for the connector you are deploying
for information about the procedure to configure trusted source
reconciliation

Managing Resources By Using the Design Console

Developing Application Instances 4-31

Action: Anything other than Create User

4.3.4.3.2 Multiple Trusted Source Reconciliation Using Connectors That Are Not
MTS-Compatible

For a connector that is not MTS-compatible, the following prerequisites must be
addressed before you can use the connector in a multiple trusted source reconciliation
setup:

i. Only one of the trusted source resource objects can be Xellerate User. In your
operating environment, if the Xellerate User resource object is already in use by a
connector for trusted source reconciliation, for the trusted source connector that you
want to configure, you must create a new resource object and process definition.

ii. The scheduled task of the connector must have an attribute that accepts the name of
the resource object used for trusted source user reconciliation as its value.

The following sections discuss scenarios in which you can implement multiple trusted
source reconciliation by using non-MTS-compatible connectors:

■ Configuring Non-MTS-Compatible Connectors for Trusted Source Reconciliation
by User Type

■ Configuring Non-MTS-Connectors for Trusted Source Reconciliation of Specific
OIM User Attributes

Configuring Non-MTS-Compatible Connectors for Trusted Source Reconciliation
by User Type
In this context, user type refers to the type of users whose records you want to
reconcile. Examples of user types are Contractor, Employee, and Customer.

You use Microsoft Active Directory and Oracle e-Business Suite as trusted sources in
your operating environment. Active Directory is used to store information about
identities that belong to the Contractor user type. Oracle e-Business Suite is used to
store information about identities that belong to the Customer and Employee user
type. You want to reconcile Contractor records from Active Directory and Employee
records from Oracle e-Business Suite. To do this, perform the following:

For Active Directory:

1. Perform all the steps required to deploy the Active Directory connector and
configure it for trusted source reconciliation.

When you import the connector XML file for trusted source reconciliation,
information specific to Active Directory is added in the Xellerate User resource
object and process definition.

2. On the Resource Object tab, create the ActDir resource object for trusted source
reconciliation with Active Directory.

Note: To determine whether or not your connector is
MTS-compatible, see connector-specific documentation.

See Also: The documentation for the connector you are deploying
for information about the procedure to configure trusted source
reconciliation

Managing Resources By Using the Design Console

4-32 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

While creating the resource object:

a. Select the Trusted Source check box on the Resource Object tab.

b. On the Object Reconciliation>>Reconciliation Fields tab, see Xellerate User
resource object and add the Active Directory-specific fields that you want to
reconcile in ActDir. All the mandatory OIM User fields must be covered by
the fields that you add on this tab.

3. On the Object Reconciliation>>Reconciliation Action Rules tab, create rule
conditions and action mappings. One of these rule condition-action mappings
must be the following:

Rule Condition: No Matches Found

Action: Create User

4. Delete the fields specific to Active Directory and the corresponding rules from the
Xellerate User resource object.

5. Create the ActDir process definition in the Process Definition form.

For detailed information about the procedure to create a process definition, see
"Process Definition Form" on page 5-5. Based on the reconciliation field mappings
in the Xellerate User process definition, on the Reconciliation Field Mappings
tab, add the reconciliation field mappings for the ActDir process definition.

6. Delete the Active Directory-specific field mappings in the Xellerate User
resource object.

7. In the Reconciliation Rule Builder form on the Reconciliation Rules page, query
and open the reconciliation rule for this connector and change the value of the
Object field to map to the resource object that you have created. By default, the
value of this field is mapped to that of the Xellerate User resource object.

For Oracle e-Business Suite, repeat all the steps you performed for Active Directory.
Perform the following steps of that procedure differently for the Oracle e-Business
Employee Reconciliation connector:

1. On the Resource Object tab, create the EmpRecon resource object for trusted source
reconciliation with Oracle e-Business Suite.

2. On the Object Reconciliation>>Reconciliation Action Rules tab, create rule
conditions and action mappings. One of these rule condition-action mappings
must be the following:

Rule Condition: No Matches Found

Action: Create User

Note: You can assign any name to the resource object. This
procedure is based on the use of ActDir as the name assigned to the
resource object.

For detailed information about the procedure to create a resource
object, see "Resource Objects Form" on page 4-15.

Note: You can assign a name to the resource object. This procedure is
based on the use of EmpRecon as the name assigned to the resource
object.

Managing Resources By Using the Design Console

Developing Application Instances 4-33

Use the Limited Reconciliation feature to specify that only identities that belongs
to the Employee user type must be reconciled.

3. After you add the fields and the reconciliation rules, delete the Oracle e-Business
Suite-specific fields and the corresponding rules created in the Xellerate User
resource object.

4. Create the EmpRecon process definition in the Process Definition form. For detailed
information about the procedure to create a process definition, see "Process
Definition Form" on page 5-5. Based on the Xellerate User reconciliation field
mappings, on the Reconciliation Field Mappings tab, add the field mappings for
the EmpRecon process definition.

5. Delete the Oracle e-Business Suite-specific field mappings in the Xellerate User
resource object.

6. On the Reconciliation Rules>>Reconciliation Rule Builder form, query and open
the reconciliation rule for this connector and change the value of the Object field to
map to the resource object that you have created. By default, the value of this field
is mapped to that of the Xellerate User resource object.

For both Active Directory and Oracle e-Business Suite, perform the rest of the steps
required to configure trusted source reconciliation. For example, while configuring the
reconciliation scheduled task for each connector, specify the name of the trusted source
resource object that must be used during trusted source user reconciliation.

The current value of the scheduled task attribute would be Xellerate User and it
must be updated with the name of the new resource object configured for trusted
source user reconciliation for this connector.

Figure 4–8 shows the design time implementation of trusted source reconciliation
based on the user type.

Figure 4–8 Trusted Source Reconciliation by User Type

Managing Resources By Using the Design Console

4-34 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Configuring Non-MTS-Connectors for Trusted Source Reconciliation of Specific
OIM User Attributes
You might want to configure trusted source reconciliation for specific OIM User
attributes from multiple target systems. The procedure to implement this is described
with the help of the following sample scenario:

You use Microsoft Active Directory and IBM Lotus Notes as your target systems. You
want to reconcile identities from Active Directory and only the value of the e-mail
address attribute of each identity (reconciled into Oracle Identity Manager from
Active Directory) from Lotus Notes. To achieve this:

For the Active Directory connector:

1. Perform all the steps required to deploy the Active Directory connector and
configure it for trusted source reconciliation.

When you import the connector XML file for trusted source reconciliation, Active
Directory-specific information is added in the Xellerate User resource object and
process definition.

2. On the Resource Object tab, create the ActDir resource object for trusted source
reconciliation with Active Directory.

While creating the resource object:

i. Select the Trusted Source check box on the Resource Object tab.

ii. On the Object Reconciliation>>Reconciliation Fields tab, see Xellerate User
resource object and add the Active Directory-specific fields that you want to
reconcile in ActDir. All the mandatory OIM User fields must be covered by the
fields that you add on this tab.

3. On the Object Reconciliation>>Reconciliation Action Rules tab, create rule
conditions and action mappings. One of these rule condition-action mapping must
be the following:

Rule Condition: No Matches Found

Action: Create User

4. Delete the Active Directory-specific fields and the corresponding rules from the
Xellerate User resource object.

5. Create the ActDir process definition in the Process Definition form. For detailed
information about the procedure to create a process definition, see "Process
Definition Form" on page 5-5. Based on the reconciliation field mappings in the

See Also: The documentation for the connector you are deploying
for information about the procedure to configure trusted source
reconciliation

Note:

You can assign any name to the resource object. This procedure is
based on the use of ActDir as the name assigned to the resource
object.

For detailed information about the procedure to create a resource
object, see "Resource Objects Form" on page 4-15.

Managing Resources By Using the Design Console

Developing Application Instances 4-35

Xellerate User process definition, on the Reconciliation Field Mappings tab,
create the field mappings for the ActDir process definition.

6. Delete the Active Directory-specific field mappings in the Xellerate User
resource object.

7. On the Reconciliation Rules>>Reconciliation Rule Builder form, query and open
the reconciliation rule for this connector and change the value of the Object field to
map to the resource object that you have created. By default, the value of this field
is mapped to that of the Xellerate User resource object.

For IBM Lotus Notes, repeat all the steps you performed for Active Directory. Perform
the following steps of that procedure differently for the Lotus Notes connector:

1. On the Resource Object tab, create the LotNotes resource object for trusted source
reconciliation with Lotus Notes.

2. When you create the resource object, add only the e-mail address attribute.

3. On the Object Reconciliation>>Reconciliation Action Rules tab, create rule
conditions and action mappings. Create any rule condition other than user
creation if no matches are found. If a match is found, the link is established.

4. After you have added the fields and the reconciliation rules, delete the Lotus
Notes-specific fields and the corresponding rules created in the Xellerate User
resource object.

5. Create the LotNotes process definition in the Process Definition form. For detailed
information about the procedure to create a process definition, see "Process
Definition Form" on page 5-5. Based on the Xellerate User reconciliation field
mappings, on the Reconciliation Field Mappings tab, add the field mappings for
the LotNotes process definition.

6. Delete the Lotus Notes-specific field mappings in the Xellerate User resource
object.

For both Active Directory and Lotus Notes, perform the rest of the steps required to
configure trusted source reconciliation. For example, while configuring the
reconciliation scheduled task for each connector, specify the name of the trusted source
resource object that must be used during reconciliation.

The current value of the scheduled task attribute would be Xellerate User and it
must be updated with the name of the new resource object configured for trusted
source user reconciliation for this connector.

Figure 4–9 shows the design time implementation of trusted source reconciliation of
specific OIM User attributes.

Note: You can assign a name to the resource object. This procedure is
based on the use of LotNotes as the name assigned to the resource
object.

Converting a Disconnected Application Instance to Connected Application Instance

4-36 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 4–9 Trusted Source Reconciliation for Specific OIM User Attributes

4.3.5 Service Account Management
Oracle Identity Manager supports service accounts. Service accounts are general
administrator accounts (for example, admin1, admin2, admin3, and so on) that are
used for maintenance purposes, and are typically shared by a set of users. The model
for managing and provisioning service accounts is slightly different from normal
provisioning.

Service accounts are requested, provisioned, and managed in the same manner as
regular accounts. They use the same resource objects, provisioning processes, and
process forms as regular accounts. A service account is distinguished from a regular
account by an internal flag.

When a user is provisioned with a service account, Oracle Identity Manager manages a
mapping from the user's identity to the service account. When the resource is revoked,
or the user gets deleted, the provisioning process for the service account does not get
canceled (which would cause the undo tasks to start). Instead, a task is inserted into
the provisioning process (the same way Oracle Identity Manager handles Disable and
Enable actions). This task removes the mapping from the user to the service account,
and returns the service account to the pool of available accounts.

This management capability is available through APIs.

4.4 Converting a Disconnected Application Instance to Connected
Application Instance

To describe the procedure to convert a disconnected application instance to a
connected application instance, the following assumptions have been made:

■ A disconnected application instance exists in Oracle Identity Manager
deployment, for example, the production environment. This disconnected
application instance will be exported to another deployment of Oracle Identity
Manager, for example, a test environment, and converted to a connected

Converting a Disconnected Application Instance to Connected Application Instance

Developing Application Instances 4-37

application instance. After testing the connected application instance in the test
environment, it will be imported in the production environment again.

■ The application instance, process definition, forms, IT resource type definition,
and IT resource retain the same name while converting a disconnected application
instance to connected application instance.

The following are the broad-level steps to convert a disconnected application instance
to a connected application instance:

■ Import the existing disconnected resource from the existing environment to the
test environment.

■ Modify the implementation of the application instance, such as resource object
definition and process definition.

■ Test the application instance by provisioning it to users and validating the
behavior for enable, disable, revoke, and update tasks.

■ Export the new connected resource from the test environment and import it to the
production environment.

4.4.1 Creating a Disconnected Application Instance in the Production Environment
To create a disconnected application instance in the production environment:

1. Login to Oracle Identity System Administration.

2. Click Sandboxes to access sandbox management, create a sandbox, and activate it.
See "Managing Sandboxes" on page 30-4 for information about sandboxes and
how to create, activate, and publish sandboxes.

3. Under Configuration, click Application Instances. Click Create on the toolbar to
open the Create Application Instance page.

4. Enter values in the Name and Display Name fields, such as LaptopAppInstance.

5. Select the Disconnected option to specify a disconnected application instance.
Selecting the Disconnected option disables the rest of the fields in the page, such as
Resource Object, IT Resource Instance, Form, and Parent AppInstance.

Note: Optionally, the disconnected resource can be converted to a
connected resource in the same environment. See "Modifying the
Application Instance from Disconnected to Connected" on page 4-40
for further details.

Note:

■ Only the resource is exported between environments and not the
application instance.

■ This section outlines the steps to import/export the resource of
the application instance by using the Deployment Manager.
Alternatively, the connector upgrade utility can also be used for
import/export of the resource. See "Managing Connector
Lifecycle" in the Oracle Fusion Middleware Administrator's Guide for
Oracle Identity Manager for information about using the connector
upgrade utility.

Converting a Disconnected Application Instance to Connected Application Instance

4-38 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

6. Click Save, and then click OK to confirm creation of the FinApp application
instance. The artifacts for a disconnected application instance are created.

7. Go to the Manage Sandboxes page, and publish the sandbox.

Upon successful creation of the application instance, organization and entitlements
can be configured if necessary. For testing purpose, create four or five users and
provision the newly created disconnected application instance to the users. Ensure that
the users have the application instance in one of the following status: Provisioned,
Enabled, Disabled, and Revoke. Try modifying one of the users to ensure that the
account can be successfully updated.

4.4.2 Exporting Disconnected Application Instance From Production Environment
To export the disconnected application instance from the production environment:

1. Login to Oracle Identity System Administration. In the left pane, under System
Management, click Export. The Deployment Manager wizard is displayed in a
new window.

2. Search for the disconnected application instance. To do so, in the search section,
select Resource from the list, enter the name of the disconnected application
instance, for example LaptopApplication*, and click Search. The disconnected
application instance is displayed in the Search Results section.

3. Select LaptopApplicationInstance in the Search Results section, and then click
Select Children. The Select Children page is displayed.

4. Select the required child attributes, as shown in Figure 4–10:

Figure 4–10 Child Attributes

5. Click Select Dependencies. The Select Dependencies page is displayed.

6. Click Confirmation. In the Confirmation page, click Add For Export.

7. After verifying that all the required dependencies are displayed in the export
summary, as shown in Figure 4–11, click Export.

Converting a Disconnected Application Instance to Connected Application Instance

Developing Application Instances 4-39

Figure 4–11 Export Summary

8. Provide a name to the XML file, such as DisconnectedLaptopExp.xml. Upon
successful export, a message is displayed.

4.4.3 Importing the Disconnected Application Instance in Test Environment
To import the disconnected application instance in test environment:

1. In the left pane of the Oracle Identity System Administration, under System
Management, click Import.

2. Provide the path to the exported XML file, and then click OK. A confirmation
page is displayed. Click Add File.

3. In the Substitutions page, you can provide substitutions for users or groups. If
there are no substitutions, then click Cancel Substitution.

4. In the import summary, as shown in , check for any unresolved dependency, and
then click Import.

Figure 4–12 Import Summary

Converting a Disconnected Application Instance to Connected Application Instance

4-40 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

5. Verify that the process definition, resource object, and forms have been
successfully imported.

4.4.4 Modifying the Application Instance from Disconnected to Connected
In the environment where the application instance has been imported, make the
following changes to convert the disconnected application instance to a connected
application instance:

1. Login to the Design Console.

2. Expand Resource Management. Click Resource Objects to open the Resource
Objects form.

3. Change the type of the resource object from Disconnected to Application.

4. Define new IT resource parameters in conjunction with the connected resource as
required in the IT Resource Type Definition form.

5. Modify the existing IT resource (assuming that the ITResource is the same) with
the new parameters added in step 4.

6. Expand Process Management, and click Process Definition to open the Process
Definition form.

7. Search the process definition of the disconnected application instance. The
following tasks are displayed:

■ ManualProvisioningStart

■ ManualProvisioningEnd

■ ManualEnableStart

■ ManualEnableEnd

■ ManualDisableStart

■ ManualDisableEnd

■ ManualRevokeStart

■ ManualRevokeEnd

8. For each task, perform the following:

a. Rename the task. For example, change the task name from
ManualProvisioningStart to XXManualProvisioningStart.

b. Make sure the Conditional option is selected. In addition, ensure that the
Required for Completion option is not selected.

c. If the task is an enable/disable/revoke task, then change the task effect to No
effect.

d. In the Integration tab, disassociate the adapters attached to the task by clicking
on Remove.

e. Remove task dependency, if any.

f. Remove undo/recovery/generated tasks, if any.

g. Change the object status mapping, if any, to none.

Converting a Disconnected Application Instance to Connected Application Instance

Developing Application Instances 4-41

9. There is a task by the name PARENT_FORM_NAME Updated. This task triggers
whenever the parent form is updated. Make sure to disassociate the existing
adapters attached to the task and customize the task as required.

10. If there are any tasks related to the child form, then make sure to remove the
triggers for create/update/delete by clicking Clear. If these tasks are not going to
be reused, then disassociate the adapters attached to these tasks and rename the
tasks to ensure that they do not run. Oracle recommends creating new tasks for
each create, update, and delete trigger.

11. Define custom adapters for the create, disable, enable, revoke, and update account
tasks. If there are child tables, then make sure to define custom adapters for the
same.

12. Create the following tasks in the process definition, and associate the
corresponding adapters to each of those tasks. Map the required undo/recovery
tasks and set the object status mapping.

■ Create User: Ensure that in the task properties, the Required for Completion
option is selected and the Conditional option is not selected.

■ Disable User: Ensure that the task effect is Disable Processes or Access to
Application.

■ Enable User: Ensure that the task effect is Enable Processes or Access to
Application.

■ Delete User: Ensure that the task effect is Revoke Processes or Access to
Application.

■ ATTRIBUTE_NAME Updated: For each attribute defined in the process form,
corresponding update tasks have to be created. These tasks are triggered on
updates to the process form, for example, Account Name Update, Account ID
Updated, and so on.

13. If there is a child table, then define tasks for each trigger type, such as create,
update, and delete.

Test the connected application instance by provisioning it to a few users in the test
environment. You must define a new application instance with the modified resource
object and IT resource to provision the application instance to users.

Note: Step 6a through 6g are to ensure that the existing tasks for
disconnected application instance do not start when the application
instance is exported as a connected application instance.

Note:

■ Optionally, the same tasks for the child data can be retained but
custom adapters must be defined for the create/update/delete
trigger.

■ For a disconnected application instance with child data, the task
with the delete trigger will be associated with the tcCompleteTask
adapter. Make sure to define and attach a custom adapter to this
task to enable proper deletion of entitlement or child data.

Converting a Disconnected Application Instance to Connected Application Instance

4-42 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

4.4.5 Testing the Connected Application Instance
After converting the disconnected application instance to a connected application
instance:

■ Export the modified resource from the test environment.

■ Import the modified resource to the production environment.

5

Developing Provisioning Processes 5-1

5Developing Provisioning Processes

[6]

This chapter describes process management with the Design Console. It contains the
following topics:

■ Overview of Process Management

■ Email Definition Form

■ Process Definition Form

5.1 Overview of Process Management
The Process Management folder provides you with tools for creating and managing
Oracle Identity Manager processes and e-mail templates.

This folder contains the following forms:

■ Email Definition: This form enables you to create templates for e-mail
notifications.

■ Process Definition: This form lets you create and manage provisioning processes.
It also lets you start the Workflow Definition Renderer that displays your
workflow definition graphically.

5.2 Email Definition Form
The Email Definition form, as shown in Figure 5–1, is located in the Process
Management folder. You use this form to create templates for e-mail notifications.
These notifications can be set for sending to the user when:

■ A task is assigned to the user.

■ The task achieves a particular status.

Email Definition Form

5-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 5–1 Email Definition Form

You apply e-mail definitions through the Assignment tab of the Process Definition
form.

5.2.1 Specifying the E-Mail Server
Before using the Email Definition form, you must specify the address of the e-mail
server that Oracle Identity Manager will use to send e-mail notifications to users.

In Oracle Identity Manager 11g Release 2 (11.1.2.1.0), the e-mail server is specified by
using Oracle Identity System Administration. To specify the e-mail server:

1. Login to Oracle Identity System Administration.

2. Under System Management, click System Configuration.

3. Search for the Email Server system property, and click the property to open the
details of the property.

4. Ensure that the property name is set to the name of the resource asset instance that
represents your e-mail server, and click Save.

5. When this IT resource is displayed, specify the IP address of the e-mail server and
the name and password of the user who validates the usage of this server.

5.2.2 Email Definition Form
Table 5–1 describes the fields of the Email Definition form.

Note: The value of the Email Server system property must be the
e-mail server IT resource and not the hostname of the e-mail server.

Email Definition Form

Developing Provisioning Processes 5-3

5.2.3 Creating an E-Mail Definition
To create an e-mail definition:

1. Open the Email Definition form.

Table 5–1 Fields of the Email Definition Form

Field Name Description

Name The name of the e-mail definition.

Type This region contains three options for the following:

■ Whether or not to categorize the e-mail definition as related to a
request or a provisioning process

■ Whether or not to associate a variable for the e-mail definition
with a request or a provisioning process

■ Whether or not to associate a variable for the e-mail definition
with a general process

To classify the e-mail definition as a provisioning definition or to
associate the e-mail variable with a provisioning process, select the
Provisioning Related option.

To categorize the e-mail definition as a general announcement, select
the General option.

Object Name From this lookup field, select the resource object that is associated
with the provisioning process to which the e-mail definition is related.

Note: Leave this lookup field empty to make the e-mail definition
available for use with all resource objects.

Process Name From this lookup field, select a provisioning process that was assigned
to the selected resource object. This is the provisioning process to
which the e-mail definition is to be related.

Note: If the Provisioning Related option is not selected, both the
Object Name and Process Name lookup fields are grayed out.

Language From this lookup field, select the language that is associated with the
e-mail definition.

Region From this lookup field, select the region that is associated with the
language in the e-mail definition.

Targets Select the source of the variable for the e-mail definition. For example,
if the variable you want to select is User Login, then the source to
select is the User Profile Information.

Note: The items that are displayed in this box reflect the options you
selected from the Type region.

Variables From this box, select the variable for the e-mail definition, for
example, User Login. The variables, which are displayed in this box,
reflect the items you selected from the Targets box.

From Currently, two types of users can be selected from this box:

■ Requester: The user who created the request.

■ User: Any Oracle User with an e-mail address, which is displayed
in the Contact Information tab of their Users form.

User Login The ID of the user in the From region of the e-mail notification.

Note: If the User item is not displayed in the From box, the User
Login field is grayed out.

Subject The title of the e-mail definition.

Body The content of the e-mail definition.

Email Definition Form

5-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

2. In the Name field, enter the name of the e-mail definition.

3. If the e-mail definition is to be used with a provisioning process, select the
Provisioning Related option.

4. Double-click the Language lookup field, and select a language to associate with
this e-mail definition.

5. Double-click the Region lookup field, and select a region to associate with the
e-mail definition language.

6. Click Save.

The remaining data fields of the Email Definition form are now operational.

7. To associate this e-mail definition with a particular resource object, double-click
the Object Name lookup field in the Lookup dialog box. Then, select the resource
object that is associated with the provisioning process to which this e-mail
definition is related.

Leave this lookup field empty to make the e-mail definition available for use with
all resource objects.

8. Double-click the Process Name lookup field.

From the Lookup dialog box, select a provisioning process that is assigned to the
resource object you selected in Step 7. This is the provisioning process to which
this e-mail definition is to be related.

9. Click the From box.

From the custom menu that is displayed, select the type of the user (Requester,
User, or Manager of Provisioned User) that is displayed in the From region of the
e-mail notification.

10. Optional. If you have selected the User option in the From box, double-click the
User Login lookup field.

From the Lookup dialog box, select the user ID that is displayed in the From
region of the e-mail notification.

If you did not select the User item in the From box, the User Login field is grayed
out.

11. Add information in the Subject field.

This field contains the title of the e-mail definition.

Note: E-mail notification is based on the locale that was specified
when you first installed Oracle Identity Manager.

Note: If the Provisioning Related option is not selected, both the
Object Name and Process Name lookup fields are grayed out.

Note: If the Provisioning Related option is not selected in Step 3, the
Manager of Provisioned User item will not be displayed in the From
box.

Process Definition Form

Developing Provisioning Processes 5-5

12. Add information in the Body text area.

This text area contains the contents of the e-mail definition.

13. When necessary, populate the Subject field and Body text area with e-mail
variables.

The following table describes the e-mail variables that you can customize for the
e-mail definition.

14. Create an e-mail variable for the Subject field or Body text area.

15. Click Save.

The e-mail definition is created.

5.3 Process Definition Form
A process is the mechanism for representing a logical workflow for provisioning in
Oracle Identity Manager. Process definitions consist of tasks. Process tasks represent
the steps that you must complete to fulfill the purpose of a process. For example, in a
provisioning process, tasks are used to enable a user or organization to access the
target resource.

The Process Definition form shown in Figure 5–2 is in the Process Management folder.
You use this form to create and manage the provisioning processes that you associate
with your resource objects.

Name Description

Type These options specify if a variable for the e-mail definition will be
related to a provisioning process.

To associate the e-mail variable with a provisioning process, select
the Provisioning Related option.

Targets From this box, select the source of the variable for the e-mail
definition. For example, if you want to use the User Login
variable, the source to select will be User Profile Information.

Variables From this box, select the variable for the e-mail definition, for
example, User Login.

Note: The items that are displayed in the custom menu of the
Targets box reflect the selection of either the Provisioning Related or
the General radio button. Similarly, the items that are displayed in the
custom menu of the Variables box correspond to the items that are
displayed in the Targets, Location Types, and Contact Types boxes.

Process Definition Form

5-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 5–2 Process Definition Form

In Figure 5–2, the Xellerate Organization provisioning process is created and assigned
to the resource object of the same name.

Table 5–2 describes the fields of the Process Definition form.

Note: Not all the form columns are captured in Figure 5–2;
additional field columns extend on the right of the Tasks table.

Table 5–2 Fields of the Process Definition Form

Field Name Description

Name The name of the process.

Type The classification type of the process definition.

Object Name The name of the resource object to which the process will be
assigned.

Map Descriptive
Field

Click this button to select a field that will be used as an identifier of
the process definition after an instance is assigned to a resource
object.

Render Workflow Click this button to start a Web browser and display the current
workflow definition by using the Workflow Renderer tool.

Default Process This check box determines if the current process is the default
provisioning process for the resource object with which it is
associated.

Select the check box to set the process as the default provisioning
process for the resource object to which it is assigned. If you deselect
the check box, the process will not be the default. It will only be
invoked if a process selection rule causes it to be chosen.

Process Definition Form

Developing Provisioning Processes 5-7

5.3.1 Creating a Process Definition
To create a process definition:

1. Open the Process Definition form.

2. In the Name field, type the name of the process definition.

3. Double-click the Type lookup field.

From the Lookup dialog box that is displayed, select the classification type
(Approval) of the process definition.

4. Double-click the Object Name lookup field.

From the Lookup dialog box that is displayed, select the resource object that will
be associated with the process definition.

5. Optional. Select the Default Process check box to make this the default
provisioning process for the resource object to which it is assigned.

If you do not want the current process definition to be the default, go to Step 6.

Auto Save Form This check box designates whether Oracle Identity Manager
suppresses the display of the custom form associated with this
provisioning process or display it and allow a user to supply it with
data each time the process is instantiated.

Select this check box to automatically save the data in the custom
process form without displaying the form. If you select this check
box, you must supply either system-defined data or ensure that an
adapter is configured to populate the form with the required data
because the user will not be able to access the form. Deselect this
check box to display the custom process form and allow users to
enter data into its fields.

Auto Pre-Populate This check box designates whether the fields of a custom form are
populated by Oracle Identity Manager or a user. Two types of forms
are affected:

■ Forms that are associated with the process

■ Forms that contain fields with prepopulated adapters attached
to them

If the Auto Pre-Populate check box is selected, when the associated
custom form is displayed, the fields that have prepopulate adapters
attached to them will be populated by Oracle Identity Manager.

When this check box is deselected, a user must populate these fields
by clicking the Pre-Populate button on the toolbar or by manually
entering the data.

Note: This setting does not control the triggering of the prepopulate
adapter. It only determines if the contents resulting from the
execution of the adapter are displayed in the associated form field(s)
because of Oracle Identity Manager or a user.

For more information about prepopulate adapters, see "Working
with Prepopulate Adapters" on page 8-47.

Note: This check box is only relevant if you have created a process
form that is to be associated with the process and prepopulate
adapters are used with that form.

Table Name The name of the table that represents the form that is associated
with the process definition.

Table 5–2 (Cont.) Fields of the Process Definition Form

Field Name Description

Process Definition Form

5-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

6. Optional. Select the Auto Save Form check box to suppress the display of the
provisioning process' custom form and automatically save the data in it.

This setting is only applicable to provisioning processes.

To display provisioning process' custom form and solicit users for information,
deselect this check box.

7. If a custom form is to be associated with the process definition, this form contains
fields that have prepopulate adapters attached to them, and you want these fields
to be populated automatically by Oracle Identity Manager, select the Auto
Pre-Populate check box.

If the fields of this form are to be populated manually (by an user clicking the
Pre-Populate button on the Toolbar), deselect the Auto Pre-Populate check box.

8. Double-click the Table Name lookup field.

From the Lookup window that is displayed, select the table that represents the
form associated with the process definition.

9. Click Save.

The process definition is created and the Map Descriptive Field button is enabled.
If you click this button, the Map Descriptive Field dialog box is displayed.

From this window, you can select the field (for example, the Organization Name
field) that will be used as an identifier of the process definition when an instance
of the process is assigned to a resource object. This field and its value will be
displayed in the reconciliation Manger form.

5.3.2 Tabs on the Process Definition Form
After you start the Process Definition form and create a process definition, the tabs of
this form become functional.

The Process Definition form contains the following tabs:

■ Tasks Tab

Note: If you select the Auto Save Form check box, ensure that all
fields of the associated "custom" process form have adapters
associated with them. However, a process form can have default data
or object to the process data flow mapping or organization defaults.

For more information about adapters and their relationship with fields
of custom forms, see Chapter 8, "Using the Adapter Factory".

Note: If the process definition has no custom form associated with it,
or this form's fields have no pre-populate adapters attached to them,
deselect the Auto Pre-Populate check box. For more information
about prepopulate adapters, see "Working with Prepopulate
Adapters" on page 8-47.

See Also: If a process has a custom process form attached to it, the
fields on that form will also be displayed in this window and be
available for selection.

Process Definition Form

Developing Provisioning Processes 5-9

■ Reconciliation Field Mappings Tab

■ Administrators Tab

Each of these tabs is described in the following sections.

5.3.2.1 Tasks Tab
You use this tab to:

■ Create and modify the process tasks that comprise the current process definition

■ Remove a process task from the process definition (when it is no longer valid)

Figure 5–3 displays the Tasks tab of the Process Definition form.

Figure 5–3 Tasks Tab of the Process Definition Form

5.3.2.1.1 Adding a Process Task

Process tasks represent the steps that you must complete in a process.

To add a process task:

1. Click Add.

The Creating New Task dialog box is displayed.

2. In the Task Name field, enter the name of the process task.

3. From the Toolbar of the Creating New Task window, click Save. Then, click Close.

The process task is added to the process definition.

See Also: See "Modifying Process Tasks" on page 5-15 for
information about editing process tasks

Process Definition Form

5-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

5.3.2.1.2 Editing a Process Task

For instructions about how to edit and set process tasks, see "Modifying Process Tasks"
on page 5-15.

5.3.2.1.3 Deleting a Process Task

To delete a process task:

1. Select the process task that you want to delete.

2. Click Delete.

The process task is removed from the process definition.

5.3.2.2 Reconciliation Field Mappings Tab
You use the Reconciliation Field Mappings tab shown in Figure 5–4 to define a
relationship between data elements in a target system or trusted source and fields in
Oracle Identity Manager.

Figure 5–4 Reconciliation Field Mappings Tab of the Process Definition Form

Only fields that you define in the Reconciliation Fields tab of the associated resource
are available for mapping. Using a reconciliation event, these mappings determine
which fields in Oracle Identity Manager to populate with information from the target
system. For target resources (not trusted sources), you can use this tab to indicate
which fields are key fields. Key fields determine the values that must be same on the
process form and the reconciliation event to generate a match on the Processes
Matched Tree tab of the Reconciliation Manager form.

For each mapping, the following information is displayed:

■ Name of the field, as defined on the Reconciliation Fields tab of the associated
resource, on the target system or trusted source that is to be reconciled with data in
Oracle Identity Manager.

■ Data type associated with the field, as defined on the Reconciliation Fields tab of
the associated resource.

Possible values are Multi-Valued, String, Number, Date, and IT resource.

Note: The IT Resource must be marked as a key field.

Process Definition Form

Developing Provisioning Processes 5-11

■ For trusted sources: For user discovery, mapping of the data in the trusted source
field to the name of a field on the users form, or for organization discovery,
mapping of the data in the trusted source field to the name of a field on the Oracle
Identity Manager Organizations form.

If you are performing user and organization discovery with a trusted source,
organization discovery must be conducted first.

■ For target resources: The name of the field on the resource's custom (provisioning)
process form to which the data in the target resources field is to be mapped.

■ For target resources: Indicator designating if the field is a key field in the
reconciliation for this target resource.

For provisioning processes to match a reconciliation event data, the key field
values in their process forms must be the same as those in the reconciliation event.

5.3.2.2.1 User Account Status Reconciliation

To configure user account status reconciliation, you must do the following:

■ For trusted sources: You must create a reconciliation field, for example, Status, in
the corresponding trusted resource object, which denotes the status of the user in
the target. The value of this field must be either Active or Disabled. This
reconciliation field must be mapped to the user attribute status in the
corresponding process definition.

■ For target resources: You must create a reconciliation field, for example, Status, in
the corresponding resource object, which denotes the status of the resource in the
target. This reconciliation field must be mapped to the process attribute
OIM_OBJECT_STATUS in the corresponding process definition. The following
statuses are supported for target resource reconciliation:

– Revoked

– Provisioned

– Ready

– Provide Information

– Enabled

– None

– Waiting

– Provisioning

See Also: "Multiple Trusted Source Reconciliation" on page 4-28 for
information about how fields are mapped for multiple trusted source
reconciliation

Note: Oracle recommends configuring both the entitlement attribute
and the key attribute for the child data in reconciliation field
mappings to enable effective duplicate entitlement or child data
validation. See "Duplicate Validation for Entitlements or Child Data"
in the Oracle Fusion Middleware Administrator's Guide for Oracle Identity
Manager for information about duplicate validation for entitlements or
child data.

Process Definition Form

5-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

– Disabled

5.3.2.2.2 Mapping a Target Resource Field to Oracle Identity Manager

You can map the fields on a target resource or trusted source, as defined on the
Reconciliation Fields tab of the associated resource definition, to applicable fields in
Oracle Identity Manager. These mappings determine the fields that must be updated
in Oracle Identity Manager in a reconciliation event. These mappings occur when you
click one of the following on the Reconciliation Manager form:

■ The Create User or Create Organization button

■ The Link button on the Matched Users or Matched Organizations tab

■ The Establish Link button on the Processes Matched Tree tab

For user discovery on a trusted source, you define the fields to be mapped from the
User resource to fields in the User provisioning process. The fields (that is, the user
attributes) to which you will map your trusted source fields are derived from the
Users form.

For organization discovery on a trusted source, you define fields to be mapped from
the Oracle Identity Manager Organization resource to fields in the Oracle Identity
Manager Organization provisioning process. The fields (that is, the organization
attributes) to which you will map your trusted source fields are derived from the
Organizations form.

After you have accessed the provisioning process definition for the associated resource
and selected the Reconciliation Field Mappings tab, use one of the two procedures
described in the following sections.

Mapping a Single Value Field
To map a single value field:

1. Click Add Field Map.

The Add Reconciliation Field Mappings dialog box is displayed.

2. Select the field on the target system that you want to map from the menu in the
Field Name field.

Oracle Identity Manager will automatically supply the field type based on what
was entered for this field on the associated Resource Object form.

3. For trusted sources:

Select a value from the User Attribute menu and click OK. Go to Step 4.

For target resources:

Double-click Process Data Field. Select the correct mapping from the Lookup
dialog box and click OK.

4. If you are defining mapping for a trusted source, go to step 5.

Set the Key Field for Reconciliation Matching check box for target resources only.
If this check box is selected, Oracle Identity Manager evaluates if the value of this
field on the provisioning process form matches the value of the field in the
reconciliation event. All matched processes are displayed on the Processes
Matched Tree tab of the Reconciliation Manager form. If this check box is
deselected, Oracle Identity Manager does not require the value of this field to
match the process form and reconciliation event for process matching.

Process Definition Form

Developing Provisioning Processes 5-13

5. Click Save.

The mapping for the selected fields is applied the next time a reconciliation event
is received from the target resource or trusted source.

Mapping a Multi-Value Field (For Target Resources Only)
To map a multi-value field:

1. Click Add Table Map.

The Add Reconciliation Table Mappings dialog box is displayed.

2. Select the multi-value field on the target system that you want to map from the
menu in the Field Name field.

Oracle Identity Manager will automatically supply the field type based on what
was entered for this field on the associated Resource Object form.

3. Select the child table you defined on the target resource's process form from the
Table Name menu.

4. Double-click Process Data Field, and select the correct mapping from the Lookup
dialog box, and click OK.

5. Save and close the Add Reconciliation Table Mappings dialog box.

6. Right-click the multi-value field you just mapped, and select Define a property
field map from the menu that is displayed.

7. Select the component (child) field you want to map.

Oracle Identity Manager will automatically supply the field type based on what
was entered for this field on the associated Resource Object form.

8. Double-click the Process Data Field field.

Select the correct mapping from the Lookup dialog box and click OK.

9. Set the Key Field for Reconciliation Matching check box.

If this check box is selected, Oracle Identity Manager compares the field value on
the provisioning process child form with the field value in the reconciliation event.
All matching processes are displayed on the Processes Matched Tree tab of the
Reconciliation Manager form. If you deselect this check box, the value of this field
does not have to match on the process form and reconciliation event for process
matching. Ensure that at least one component (child) field of each multi-valued
field is set as a key field. This improves the quality of the matches generated on
the Process Matched Tree tab.

10. Repeat Steps 6 through 9 for each component (child) field defined on the
multi-value field.

11. Click Save.

Note: To set a field as a key field, it must be set as required on the
Object Reconciliation tab of the applicable resource.

Note: Key fields must be set as required on the Object
Reconciliation tab of the applicable resource.

Process Definition Form

5-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

The mapping for the selected fields will be applied the next time a reconciliation
event is received from the target resource.

5.3.2.2.3 Deleting a Mapping

This procedure is used to delete a mapping that has been established between a field
in Oracle Identity Manager and a field on the target system or trusted source as
defined on the Reconciliation Fields tab of the associated resource definition.

To delete a mapping:

1. Go to the provisioning process definition for the associated resource.

2. Select the Reconciliation Field Mappings tab.

3. Select the field mapping you want to delete.

4. Click Delete Map.

The mapping for the selected field is deleted.

5.3.2.3 Administrators Tab
You use this tab to select the roles that can view, modify, and delete the current process
definition.

On this tab, when the Write check box is selected, the corresponding role can read and
modify the current process definition. When the Delete check box is selected, the
associated role can delete the current process definition.

5.3.2.3.1 Assigning a Role to a Process Definition

To assign a role:

1. Click Assign.

The Groups window is displayed.

2. Select the unassigned role, and assign it to the process definition.

3. Click OK.

The role is displayed in the Administrators tab.

4. To enable this role to view or modify, or view and modify the current process
definition, double-click the corresponding Write check box. Otherwise, go to Step
5.

5. To enable this role to delete the current process definition, double-click the
associated Delete check box. Otherwise, go to Step 6.

6. Click Save.

The role is assigned to the process definition.

5.3.2.3.2 Removing a Role From a Process Definition

To remove a role:

1. Highlight the role that you want to remove.

2. Click Delete.

The role is removed from the process definition.

Process Definition Form

Developing Provisioning Processes 5-15

5.3.3 Modifying Process Tasks
To modify a process task for a process definition, double-click its row heading. The
Editing Task window is displayed, containing additional information about the
process task.

The Editing Task window contains the following tabs:

■ General Tab

■ Integration Tab

■ Task Dependency Tab

■ Responses Tab

■ Undo/Recovery Tab

■ Notification Tab

■ Task to Object Status Mapping Tab

■ Assignment Tab of the Editing Task Window

5.3.3.1 General Tab
You use this tab to set high-level information for the task that you want to modify. For
this example, the Create User task is used to create a user in the Solaris environment.

Table 5–3 describes the fields of the General tab.

Note: You must not modify the Xellerate Users process definition.

Table 5–3 Fields of the General Tab of the Editing Task Dialog Box

Field Name Description

Task Name The name of the process task.

Task Description Explanatory information about the process task.

Duration The expected completion time of the current process task in days,
hours, and minutes.

Conditional This check box determines if a condition is met to add the current
process task to the process.

Select this check box to prevent the process task from being added to
the process unless a condition has been met.

Clear this check box to not require the condition to be met for the
process task to be added to the process.

Required for
Completion

This check box determines if the current process task must be
completed for the process to be completed.

Select this check box to require the process task to have a status of
Completed before the process can be completed.

Deselect this check box to ensure that the status of the process task
does not affect the completion status of the process.

Constant Duration Not applicable

Process Definition Form

5-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Task Effect From this box, select the process action you want to associate with the
task, for example, disable or enable. A process can enable or disable a
user's access to a resource. When the disable action is chosen, all tasks
associated with the disable action are inserted.

Note: If you do not want the process task to be associated with a
particular process action, select NONE from the box.

Disable Manual
Insert

This check box determines if a user can manually add the current
process task to the process.

Select this check box to prevent the process task from being added to
the process manually.

Deselect this check box to enable a user to add the process task to the
process.

Allow Cancellation
while Pending

This check box determines if the process task can be canceled if its
status is Pending.

Select this check box to allow the process task to be canceled if it has a
Pending status.

Deselecting this check box to prevent the process task from being
canceled if its status is Pending.

Allow Multiple
Instances

This check box determines if the process task can be inserted into the
current process more than once.

Select this check box to enable multiple instances of the process task
to be added to the process.

Deselect this check box to enable the process task to be added to the
current process only once.

Retry Period in
Minutes

If a process task is rejected, this field determines the interval before
Oracle Identity Manager inserts a new instance of that task with the
status of Pending.

When the value of the Retry Period in Minutes field is 30, it means
that if the Create User process task is rejected, then in 30 minutes
Oracle Identity Manager adds a new instance of this task and assigns
it a status of Pending.

Note: If you specify a value for this field, then you must ensure the
following:

■ The Task Timed Retry scheduled job is not disabled. See the
"Predefined Scheduled Tasks" section in Oracle Fusion Middleware
Administrator's Guide for more information.

■ Frequency of the Task Timed Retry scheduled job is less than or
equal to value of this field.

■ The Allow Multiple Instances checkbox of the process task that
is being retried must be selected.

Retry Count Determines how many times Oracle Identity Manager retries a
rejected task. When the value of the Retry Count field is 5, it means
that if the Create User process task is rejected, then Oracle Identity
Manager adds a new instance of this task, and assigns it a status of
Pending. When this process task is rejected for the fifth time, Oracle
Identity Manager no longer inserts a new instance of it.

Table 5–3 (Cont.) Fields of the General Tab of the Editing Task Dialog Box

Field Name Description

Process Definition Form

Developing Provisioning Processes 5-17

5.3.3.1.1 Modifying a Process Task's General Information

To modify the general information for a process task:

1. Double-click the row heading of the task you want to modify.

The Editing Task dialog box is displayed.

2. Click the General tab.

3. In the Description field, enter explanatory information about the process task.

4. Optional. In the Duration area, enter the expected completion time of the process
task (in days, hours, and minutes).

5. If you want a condition to be met for the process task to be added to the Process
Instance, select the Conditional check box. Otherwise, go to Step 6.

6. When you want the completion status of the process to depend on the completion
status of the process task, select the Required for Completion check box.

By doing so, the process cannot be completed if the process task does not have a
status of Completed.

If you do not want the status of the process task to affect the completion status of
the process, go to Step 7.

7. To prevent a user from manually adding the process task into a currently running
instance of the process, select the Disable Manual Insert check box. Otherwise, go
to Step 8.

Child Table/ Trigger
Type

These boxes specify the action that Oracle Identity Manager performs
in the child table of a custom form that is associated with the current
process, as indicated by the Table Name field of the Process
Definition form.

From the Child Table box, select the child table of the custom form
where Oracle Identity Manager will perform an action.

From the Trigger Type box, specify the action that Oracle Identity
Manager is to perform in the child table. These actions include:

■ Insert. Adds a new value to the designated column of the child
table

■ Update. Modifies an existing value from the corresponding
column of the child table

■ Delete. Removes a value from the designated column of the
child table

Note: If the custom process form does not have any child tables
associated with it, the Child Table box will be empty. In addition, the
Trigger Type box will be grayed out.

Off-line This flag is applicable only for user attribute propagation tasks. If the
flag is set for a user attribute propagation task, the task insertion is
asynchronous.

Note: If you select the Conditional check box, you must specify the
condition to be met for the task to be added to the process.

Table 5–3 (Cont.) Fields of the General Tab of the Editing Task Dialog Box

Field Name Description

Process Definition Form

5-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

8. To enable a user to cancel the process task if its status is Pending, select the Allow
Cancellation while Pending check box. Otherwise, go to Step 9.

9. To allow this task to be inserted multiple times in a single process instance, select
the Allow Multiple Instances check box. Otherwise, go to Step 10.

10. Click the Task Effect box.

From the custom menu that is displayed, select one of the following:

■ Enable Process or Access to Application. If a resource is reactivated by using
the enable function, all tasks with this effect are inserted into the process. If
you select this option, you must also select the Allow Multiple Instances
check box.

■ Disable Process or Access to Application. If a resource is deactivated by
using the disable function, all tasks with this effect are inserted into the
process. If you select this option, you must also select the Allow Multiple
Instances check box.

■ Revoke Process or Access to Application. When the resource is revoked, the
revoke workflow is executed without canceling the existing tasks in the
provisioning process.

■ No Effect. This is the default process action associated with all tasks. If this
option is selected, the task is only inserted during normal provisioning unless
it is conditional.

11. Optional. If the process task is Rejected, you might want Oracle Identity Manager
to insert a new instance of this process task (with a status of Pending).

For this to occur, enter a value in the Retry Period in Minutes field. This
designates the time in minutes that Oracle Identity Manager waits before adding
this process task instance.

In the Retry Count field, enter the number of times Oracle Identity Manager will
retry a rejected task. For example, suppose 3 is displayed in the Retry Count field.
If the task is rejected, Oracle Identity Manager adds a new instance of this task,
and assigns it a status of Pending. After this process task is rejected for the fourth
time, Oracle Identity Manager no longer inserts a new instance of the process task.

12. From the Child Table box, select the child table of the custom form where Oracle
Identity Manager will perform an action.

From the Trigger Type box, specify the action that Oracle Identity Manager will
perform in the child table. These actions include the following:

■ Insert: Adds a new value to the designated column of the child table

■ Update: Modifies an existing value from the corresponding column of the
child table

■ Delete: Removes a value from the designated column of the child table

Note: If either Retry Period or Retry Count is selected, you must
specify parameters for the other option because they are both related.

Note: If the custom process form does not have any child tables
associated with it, the Child Table box will be empty. In addition, the
Trigger Type box will be grayed out.

Process Definition Form

Developing Provisioning Processes 5-19

13. Click Save.

The modifications to the process task's top-level information reflects the changes
you made in the General tab.

5.3.3.1.2 Triggering Process Tasks for Events Defined in Lookup.USR_PROCESS_TRIGGERS
Fields

When a user attribute is defined in Lookup.USR_PROCESS_TRIGGERS, for each
modification of the attribute, the corresponding process task is triggered for each
provisioned resource. This is same for the First Name, Last Name, Display Name
(USR_DISPLAY_NAME) user attributes and custom user attributes. However, for the
Lookup.USR_PROCESS_TRIGGERS fields USR_STATUS, USR_LOCKED,
USR_LOCKED_ON, and USR_MANUALLY_LOCKED, the attached process task is
not triggered.

The following sections describe how to trigger the process tasks for the
Lookup.USR_PROCESS_TRIGGERS fields:

For the USR_STATUS Attribute
It is not possible to run a task via Lookup.USR_PROCESS_TRIGGERS for the
USR_STATUS attribute because this attribute is processed separately by Oracle
Identity Manager. This attribute is changed by enabling, disabling, or deleting a user.
These operations have a special effect on the provisioned resources because the
corresponding process tasks are started via the Task Effect setting, as described in
Table 5–3, " Fields of the General Tab of the Editing Task Dialog Box". For these three
operations, the Lookup.USR_PROCESS_TRIGGERS is not used. Therefore, when the
status changes, perform the following to run the process task:

For transition from Disabled to Enabled status:

1. In the Process Definition form, create a process task named Enable User.

2. Open the Editing Task window, and click the General tab.

3. From the Task Effect list, select Enables Process or Access to Application.

4. Select Conditional and specify the condition to be met for the task to be added to
the process.

For transition from Enabled to Disabled status:

1. In the Process Definition form, create a process task named Disable User.

2. Open the Editing Task window, and click the General tab.

3. From the Task Effect list, select Enables Process or Access to Application.

4. Select Conditional and specify the condition to be met for the task to be added to
the process.

For transition from Enabled/Disabled/Provisioned to Revoked status:

1. In the Process Definition form, create a process task named Delete User.

2. Then set this task as an Undo task for the Create User task, which is the task that
creates the user and is typically unconditional.

3. Select Conditional and specify the condition to be met for the task to be added to
the process.

Process Definition Form

5-20 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

For the USR_LOCKED, USR_LOCKED_ON, USR_MANUALLY_LOCKED
Attributes
The lock and unlock operations, are handled in Oracle Identity Manager as separate
orchestrations. The orchestration is on:

entity-type="User" operation="LOCK"

Or:

entity-type="User" operation="UNLOCK"

The event handler that does the evaluation for Lookup.USR_PROCESS_TRIGGERS is:

oracle.iam.transUI.impl.handlers.TriggerUserProcesses

This is triggered only in the following user orchestrations:

■ MODIFY: For generic fields

■ CHANGE_PASSWORD, RESET_PASSWORD: For USR_PASSWORD
propagation

■ ENABLE, DISABLE, DELETE: For handling the execution of process tasks

For lock/unlock operations, the TriggerUserProcesses event handler is not triggered.
Therefore, for the attributes modified through lock/unlock operations, the
Lookup.USR_PROCESS_TRIGGERS is not checked.

If you want to run custom code for these operations when these fields are changed,
then you can create event handlers and register them on the orchestrations mentioned
in this section.

5.3.3.2 Integration Tab
By using the Integration tab, you can:

■ Automate a process task by attaching an event handler or task adapter to it.

■ Map the variables of the task adapter, so Oracle Identity Manager can pass the
appropriate information when the adapter is triggered. This occurs when the
process task's status is Pending.

■ Break the link between the adapter handler and the process task, once the adapter
or event handler is no longer applicable with the process task.

For example, suppose that the adpSOLARISCREATEUSER adapter is attached to the
Create User process task. This adapter has nine adapter variables, all of which are
mapped correctly as indicated by the Y that precedes each variable name.

Note: when the OIM user is deleted, for each completed task in each
resource, Oracle Identity Manager tries to run the Undo tasks.

Note: Event handlers are preceded with tc (Thor class), such as
tcCheckAppInstalled. These are event handlers that Oracle provides.
Customer-created event handlers cannot have a tc prefix in their
name. Adapters are preceded with adp, for example,
adpSOLARISCREATEUSER.

Process Definition Form

Developing Provisioning Processes 5-21

5.3.3.2.1 Assigning an Adapter or Event Handler to a Process Task

The following procedure describes how to assign an adapter or event handler to a
process task.

To assign an adapter or event handler to a process task:

1. Double-click the row heading of the process task to which you want to assign an
event handler or adapter.

The Editing Task window is displayed.

2. Click the Integration tab.

3. Click Add.

The Handler Selection dialog box is displayed, as shown in Figure 5–5.

4. To assign an event handler to the process task, select the System option.

To add an adapter to the process task, select the Adapter option. A list of event
handlers or adapters, which you can assign to the process task, is displayed in the
Handler Name region.

Figure 5–5 Handler Selection Dialog Box

5. Select the event handler or adapter that you want to assign to the process task.

6. From the Handler Selection window's Toolbar, click Save.

A confirmation dialog box is displayed.

See Also: Chapter 8, "Using the Adapter Factory" and Chapter 28,
"Developing Event Handlers" for more information about adapters
and event handlers

Important: If you assign an adapter to the process task, the adapter
will not work until you map the adapter variables correctly. See
"Mapping Adapter Variables" on page 5-22 for details.

Process Definition Form

5-22 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

7. Click OK.

The event handler or adapter is assigned to the process task.

5.3.3.2.2 Mapping Adapter Variables

To map an adapter variable:

1. Select the adapter variable that you want to map.

2. Click Map.

The Data Mapping for Variable window is displayed.

3. Complete the Map To, Qualifier, IT Asset Type, IT Asset Property, Literal Value,
and Old Value fields.

4. From the Data Mapping for Variable window's Toolbar, click Save.

5. Click Close.

The mapping status for the adapter variable changes from N to Y. This indicates
that the adapter variable has been mapped.

5.3.3.2.3 Removing an Adapter or Event Handler from a Process Task

To remove an adapter or event handler from a process task:

1. Click Remove.

A confirmation dialog box is displayed.

2. Click OK.

The event handler or adapter is removed from the process task.

5.3.3.3 Task Dependency Tab
You use the Task Dependency tab to determine the logical flow of process tasks in a
process. Through this tab, you can:

■ Assign preceding tasks to a process task.

These tasks must have a status of Completed before Oracle Identity Manager or a
user can trigger the current process task.

■ Assign dependent tasks to a process task.

Oracle Identity Manager or a user can trigger these tasks only after the current
process task has a status of Completed.

■ Break the link between a preceding task and the current task so that the preceding
task's completion status no longer has any effect on the current task being
triggered.

See Also: "Adapter Mapping Information" on page 8-56 for more
information about the items to select in this procedure

Note: To trigger a task associated with a change to a parent form
field, the name of the task must be field Updated, where field is the
name of the parent form field. If the task is not named according to
this convention, it is not triggered during a field update.

Process Definition Form

Developing Provisioning Processes 5-23

■ Break the link between the current task and a dependent task so that the current
task's completion status no longer has any bearing on triggering the dependent
tasks.

For example, the Create User process task does not have any preceding tasks. Oracle
Identity Manager triggers this task whenever the task is inserted into a process (for
example, when an associated resource is requested). The Create User process task has
seven dependent tasks. Before completion of this process task, each dependent task
will have a status of Waiting. Once this task achieves a status of Completed, each of
these process tasks are assigned a status of Pending, and Oracle Identity Manager can
trigger them.

5.3.3.3.1 Assigning a Preceding Task to a Process Task

To assign a preceding task to a process task:

1. Double-click the row heading of the process task to which you want to assign a
preceding task.

The Editing Task window is displayed.

2. Click the Task Dependency tab.

3. From the Preceding Tasks region, click Assign.

The Assignment window is displayed.

4. From this window, select the preceding task, and assign it to the process task.

5. Click OK.

The preceding task is assigned to the process task.

5.3.3.3.2 Removing a Preceding Task from a Process Task

To remove a preceding task from a process task:

1. Select the preceding task that you want to delete.

2. From the Preceding Tasks region, click Delete.

The preceding task is removed from the process task.

5.3.3.3.3 Assigning a Dependent Task to a Process Task

To assign a dependent task to a process task:

1. Double-click the row heading of the process task to which you want to assign a
dependent task.

The Editing Task window is displayed.

2. Click the Task Dependency tab.

3. From the Dependent Tasks region, click Assign.

The Assignment window is displayed.

4. From this window, select the dependent task, and assign it to the process task.

5. Click OK.

The dependent task is assigned to the process task.

5.3.3.3.4 Removing a Dependent Task from a Process Task

To remove a dependent task from a process task:

Process Definition Form

5-24 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

1. Select the dependent task that you want to delete.

2. From the Dependent Tasks region, click Delete.

The dependent task is removed from the process task.

5.3.3.4 Responses Tab
You use the Responses tab to do the following:

■ Define the response codes that can be received in conjunction with the execution
of a particular process tasks. You can use response codes to represent specific
conditions on the target system.

■ Define the conditional tasks that are started if a response code is received during
execution of this process task. These tasks are called generated tasks.

■ Remove a response from a process task.

■ Remove a generated task from a process task.

For example, when a Create User process task is completed, the SUCCESS response is
activated. This response displays a dialog box with the message "The user was created
successfully." In addition, Oracle Identity Manager triggers the Enable User process
task.

5.3.3.4.1 Adding a Response to a Process Task

To add a response to a process task:

1. Double-click the row heading of the process task to which you want to add a
response.

The Editing Task window is displayed.

2. Click the Responses tab.

3. In the Responses region, click Add.

A blank row is displayed in the Responses region.

4. Enter information in the Response field.

This field contains the response code value. This field is case-sensitive.

5. Enter information in the Description field. This field contains explanatory
information about the response.

If the process task triggers the response, this information is displayed in the task
information dialog box.

6. Double-click the Status lookup field.

From the Lookup window that is displayed, select a task status level. If the
response code is received, it will cause the task to be set to this status.

7. Click Save.

The response you added would now reflect the settings you have entered.

Note: By default, the UNKNOWN response is defined for each
process task that is rejected. This way, even when the system
administrator does not add any responses to a process task, if this task
is rejected, the user will be notified in the form of an error message in
a dialog box.

Process Definition Form

Developing Provisioning Processes 5-25

5.3.3.4.2 Removing a Response from a Process Task

To remove a response from a process task:

1. Select the response that you want to delete.

2. From the Responses region, click Delete.

The response is removed from the process task.

5.3.3.4.3 Assigning a Generated Task to a Process Task

To assign a generated task to a process task:

1. Double-click the row heading of the process task to which you want to assign a
generated task.

The Editing Task window is displayed.

2. Click the Responses tab.

3. Select the response code for which you want to assign generated tasks.

4. From the Tasks to Generate region, click Assign.

The Assignment window is displayed.

5. From this window, select the generated task, and assign it to the process task
response.

6. Click OK.

The generated task is assigned to the process task.

5.3.3.4.4 Removing a Generated Task From a Process Task

To remove a generated task from a process task:

1. Select a response code.

2. Select the generated task that you want to delete.

3. From the Tasks to Generate region, click Delete.

The generated task is removed from the process task.

5.3.3.5 Undo/Recovery Tab
You use the Undo/Recovery tab for the following:

■ To define process tasks that are triggered when the current process task is
canceled. These process tasks are known as undo tasks.

■ To remove an undo task from a process task, when it is no longer valid.

■ To define process tasks that are triggered when the current process task is rejected.
These tasks are called recovery tasks.

■ To remove a recovery task from a process task.

Note: You will not be able to delete a response from a process task
that is invoked for any provisioning instance, even if the response is
existing or is newly added. However, if the process task is not invoked
for any provisioning instance, you will be able to delete the response.

Process Definition Form

5-26 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

For example, if the Create User process task has a Cancelled status, the Delete User
undo task is triggered. Similarly, if the Create User task is Rejected, Oracle Identity
Manager triggers the Enable User recovery task.

The following sections describe how to assign an undo and recovery task to the
current process task, and how to remove an undo and recovery task from the current
process task.

5.3.3.5.1 Assigning an Undo Task to a Process Task

To assign an undo task to a process task:

1. Double-click the row heading of the process task to which you want to assign an
undo task.

The Editing Task window is displayed.

2. Click the Undo/Recovery tab.

3. In the Undo Tasks region, click Assign.

The Assignment window is displayed.

4. From this window, select the undo task, and assign it to the process task.

5. Click OK.

The undo task is assigned to the process task.

5.3.3.5.2 Removing an Undo Task From a Process Task

To remove an undo task from a process task:

1. Select the undo task that you want to delete.

2. From the Undo Tasks region, click Delete.

The undo task is removed from the process task.

5.3.3.5.3 Assigning a Recovery Task to a Process Task

To assign a recovery task to a process task:

1. Double-click the row heading of the process task to which you want to assign a
recovery task.

The Editing Task window is displayed.

2. Click the Undo/Recovery tab.

3. From the Recovery Tasks region, click Assign.

The Assignment window is displayed.

4. From this window, select the recovery task, and assign it to the process task.

Note: When the current process task is rejected, Oracle Identity
Manager triggers recovery tasks that are assigned to the process task.
If you select the Complete on Recovery check box, Oracle Identity
Manager changes the status of the current process task from Rejected
to Unsuccessfully Completed upon completion of all recovery tasks
that are generated. This enables Oracle Identity Manager to trigger
other dependent process tasks.

Process Definition Form

Developing Provisioning Processes 5-27

5. Click OK.

The recovery task is assigned to the process task.

6. Optional. If you want the status of the current process task to change from
Rejected to Unsuccessfully Completed upon completion of all recovery tasks that
are generated (so Oracle Identity Manager can trigger other, dependent process
tasks) select the Complete on Recovery check box. Otherwise, do not select this
check box.

5.3.3.5.4 Removing a Recovery Task from a Process Task

To remove an recovery task from a process task:

1. Select the recovery task that you want to delete.

2. From the Recovery Tasks region, click Delete.

The recovery task is removed from the process task.

5.3.3.6 Notification Tab
You use this tab to designate the e-mail notification to be generated when the current
process task achieves a particular status. A separate e-mail notification can be
generated for each status a task can achieve. If an e-mail notification is no longer valid,
you can remove it from the Notification tab.

For example, when the Create User process task achieves a status of Completed, Oracle
Identity Manager sends the Process Task Completed e-mail notification to the user
who is to be provisioned with the resource. If the Create User process task is rejected,
the Process Task Completed e-mail notification is sent to the user and the user's
manager.

The following sections describe how to assign e-mail notifications to a process task,
and remove e-mail notifications from a process task.

5.3.3.6.1 Assigning an E-Mail Notification to a Process Task

To assign an e-mail notification to a process task:

1. Double-click the row heading of the process task to which you want to assign an
e-mail notification.

The Editing Task dialog box is displayed.

2. Click the Notification tab.

3. Click Assign.

The Assignment dialog box is displayed.

4. From this window, select the e-mail template definition to use, and assign it to the
process task.

5. Click OK.

The name of the e-mail notification is displayed in the Notification tab.

Note: Oracle Identity Manager can only send an e-mail notification
to a user if you first create a template for the e-mail message by using
the Email Definition form.

See "Email Definition Form" on page 5-1 for details.

Process Definition Form

5-28 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

6. Double-click the Status lookup field.

From the Lookup window that is displayed, select a completion status level. When
the process task achieves this status level, Oracle Identity Manager will send the
associated e-mail notification.

7. Select the check boxes that represent the users who will receive the e-mail
notification.

Currently, an e-mail notification can be sent to the following users:

■ Assignee. This user is responsible for completing the associated process task.

■ Requester. This user requested the process that contains the corresponding
process task.

■ User. This user will be provisioned with the resource once the associated
process task is Completed.

■ User's Manager. This user is the supervisor of the user, who will be
provisioned with the resource once the corresponding process task is
Completed.

8. Click Save.

The e-mail notification is assigned to the process task.

5.3.3.6.2 Removing an E-mail Notification from a Process Task

The following procedure describes how to remove an e-mail notification from a
process task.

To remove an e-mail notification from a process task:

1. Select the e-mail notification that you want to delete.

2. Click Delete.

The e-mail notification is removed from the process task.

5.3.3.7 Task to Object Status Mapping Tab
A resource object contains data that is used to provision resources to users and
applications.

In addition, a resource object is provided with predefined provisioning statuses, which
represent the various statuses of the resource object throughout its life cycle as it is
being provisioned to the target user or organization.

The provisioning status of a resource object is determined by the status of its
associated provisioning processes, and the tasks that comprise these processes. For this
reason, you must provide a link between the status of a process task and the
provisioning status of the resource object to which it is assigned.

The Task to Object Status Mapping tab is used to create this link. Also, when this
connection is no longer required, or you want to associate a process task status with a
different provisioning status for the resource object, you must break the link that
currently exists.

Note: Provisioning statuses are defined in the Status Definition tab
of the Resource Objects form.

Process Definition Form

Developing Provisioning Processes 5-29

For this example, there are five mappings among process task statuses and
provisioning statuses of a resource object. When the Create User process task achieves
a status of Completed, the associated resource object will be assigned a provisioning
status of Provisioned. However, if this task is canceled, the provisioning status for the
resource object will be Revoked. None indicates that this status has no effect on the
provisioning status of the resource object.

The following sections describe how to map a process task status to a provisioning
status and unmap a process task status from a provisioning status.

5.3.3.7.1 Mapping a Process Task Status to a Provisioning Status

To map an process task status to a provisioning status:

1. Double-click the row heading of the process task, which has a status that you want
to map to the provisioning status of a resource object.

The Editing Task window is displayed.

2. Click the Task to Object Status Mapping tab.

3. Select the desired process task status.

4. Double-click the Object Status lookup field.

From the Lookup window that is displayed, select the provisioning status of the
resource object to which you want to map the process task status.

5. Click OK.

The provisioning status you selected is displayed in the Task to Object Status
Mapping tab.

6. Click Save.

The process task status is mapped to the provisioning status.

5.3.3.7.2 Unmapping a Process Task Status From a Provisioning Status

To unmap an process task status from a provisioning status:

1. Select the desired process task status.

2. Double-click the Object Status lookup field.

From the Lookup window that is displayed, select None. None indicates that this
status has no effect on the provisioning status of the resource object.

3. Click OK.

The provisioning status of None is displayed in the Task to Object Status
Mapping tab.

4. Click Save.

The process task status is no longer mapped to the provisioning status of the
resource object.

5.3.3.8 Assignment Tab of the Editing Task Window
This tab is used to specify assignment rules for the current process task. These rules
will determine how the process task will be assigned.

Process Definition Form

5-30 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

If the criteria of the Solaris Process Tasks - User rule are not satisfied, Oracle Identity
Manager evaluates the criteria of the Solaris Process Tasks - Group rule. If that rule's
criteria are met, the task is assigned to the SYSTEM ADMINISTRATORS role, and the
task is marked to escalate in 10 minutes.

Table 5–4 describes the fields of the Assignment tab.

Note: Task assignment rules are useful when associated with tasks
that are to be completed manually. Most provisioning process tasks
are automated, and as a result, they might not require task assignment
rules.

Note: Only rules with a classification type of Task Assignment can
be assigned to a process task. For more information about specifying
the classification type of a rule, see "Rule Designer Form" on page 4-8.
In addition, a Default rule is predefined in Oracle Identity Manager.
This rule always evaluates to True. Therefore, it can be used as a
safeguard mechanism to ensure that at least one predefined task
assignment occurs if all the other rules fail.

Table 5–4 Fields of the Assignment Tab of the Editing Task Window

Field Name Description

Rule The name of the Task Assignment rule to evaluate.

Target Type The classification type of the user or role that is responsible for
completing the current process task. Currently, the process task can be
assigned to:

■ User. An Oracle Identity Manager user.

■ Role. A role.

■ Group User with Least Load. The member of the specified role
with the fewest process tasks assigned.

■ Request Target User's Manager. The supervisor of the user who
is being provisioned with the resource.

■ Object Authorizer User with Least Load. The member of the
role (designated as an Object Authorizer role for the resource)
with the fewest process tasks assigned.

■ Object Administrator. A role that is defined as an administrator
of the associated resource object.

■ Object Administrator User with Least Load. The member of the
role (designated as an Object Administrator role) with the fewest
process tasks assigned.

Note: Object Authorizer and Object Administrator roles are defined
in the Object Authorizers and Administrators tabs, respectively, of
the Resource Objects form.

Adapter This is the name of the adapter. Double-click this field to get a lookup
form for all existing adapters.

Adapter Status This is the status of the adapter.

Group The role to which the current process task is assigned.

User The user to which the current process task is assigned.

Process Definition Form

Developing Provisioning Processes 5-31

The following sections describe adding a task assignment rule to a process task and
how to remove it from the process task.

5.3.3.8.1 Adding a Rule to a Process Task

To add a rule to a process task:

1. Double-click the row heading of the task to which you want to add a rule.

The Editing Task window is displayed.

2. Click the Assignment tab.

3. Click Add.

A blank row is displayed in the Assignment tab.

4. Double-click the Rule lookup field.

From the Lookup window that is displayed, select the rule that you want to add to
the process task. Then, click OK.

5. Double-click the Target Type lookup field.

From the Lookup window that is displayed, select the classification type of the
user or role (User, Role, Group User with Least Load, Request Target User's
Manager, Object Authorizer User with Least Load, Object Administrator, Object
Administrator User with Least Load) that is responsible for completing the process
task. Then, click OK.

6. Double-click the Group lookup field.

From the Lookup window that is displayed, select the role that is responsible for
completing the process task. This setting is only necessary if you selected Group
or Group User with Least Load in the Target Type field. Then, click OK.

OR

Double-click the User lookup field. From the Lookup window that is displayed,
select the user who is responsible for completing the process task. This setting is
only necessary if you selected User in the Target Type field. Then, click OK.

7. Double-click the Email Name field.

From the Lookup window that is displayed, select the e-mail notification that will
be sent to the corresponding user or role once the task is assigned. Click OK. Then,
select the Send Email check box.

Email Name & Send
Email

By selecting an e-mail notification from the Email Name lookup field,
and selecting the Send Email check box, Oracle Identity Manager will
send the e-mail notification to a user or role once the current process
task is assigned.

Escalation Time The amount of time (in milliseconds) that the user or role, which is
associated with the rule that Oracle Identity Manager triggers, has to
complete the process task. If this process task is not completed in the
allotted time, Oracle Identity Manager will re-assign it to another user
or role. The escalation rule adheres to the order defined by the target
type parameter.

Priority The priority number of the rule that is associated with the current
process task. This number indicates the order in which Oracle
Identity Manager will evaluate the rule.

Table 5–4 (Cont.) Fields of the Assignment Tab of the Editing Task Window

Field Name Description

Process Definition Form

5-32 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

If you do not want Oracle Identity Manager to send an e-mail notification when
the task is assigned, go to Step 8.

8. In the Escalation Time field, enter the time (in milliseconds) that the selected user
or role has to complete the process task.

When you do not want to associate a time limit with the rule you are adding to the
process task, leave the Escalation Time field empty, and proceed to Step 10.

9. In the Priority field, enter the priority number of the rule that you are adding to
the process task.

10. Click Save.

The rule is added to the process task.

5.3.3.8.2 Removing a Rule from a Process Task

To remove a rule from a process task:

1. Select the rule that you want to delete.

2. Click Delete.

The rule is removed from the process task.

6

Developing Process Forms 6-1

6Developing Process Forms

[7]

The information required to provision resources to a target user or organization cannot
always be retrieved from an existing Oracle Identity Manager form. You can use the
Form Designer form in the Development Tools folder of the Design Console to create a
form with fields that contain the relevant information. After creating the form, you
assign it to the process or resource object that is associated with provisioning resources
to the user or organization. Figure 6–1 shows the Form Designer Form.

Oracle Identity Manager displays a resource object or process form that a user creates
by using the Form Designer form for the following reason:

When the process form is attached to the appropriate provisioning process, and the
Launch Form menu command is selected by right-clicking the process from the Object
Process Console tab of the Organizations or Users forms.

For example, when Oracle Identity Manager or one of its users attempts to complete
the resource object or process, the assigned form is triggered. When this occurs, either
Oracle Identity Manager or a user populates the fields of this form. After the data is
saved, the corresponding process or resource object can achieve a status of Completed,
and Oracle Identity Manager can provision the appropriate resources to the target
organizations or users.

6-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 6–1 Form Designer Form

For example, the Solaris form (represented by the UD_SOLARIS name in the Table
Name field) has been created and assigned to both the Solaris resource object and
provisioning process.

Table 6–1 describes the data fields of the Form Designer form.

Note: The table name contains a UD_ prefix, followed by the form
name. For this example, because the name of the form is SOLARIS, its
table name is UD_SOLARIS.

Table 6–1 Fields of the Form Designer Form

Field Name Description

Table Name The name of the database table that is associated with the form.

Note: The table name contains the UD_ prefix, followed by the form
name. If the name of the form is SOLARIS, its table name is
UD_SOLARIS.

Description Explanatory information about the form.

Important: The text that is displayed in the Description field is the
name of the form.

Preview Form When you click this button, the form is displayed. This way, you can
see how it looks and functions before you make it active.

Creating a Form

Developing Process Forms 6-3

The following sections describes how to work with forms:

■ Creating a Form

■ Tabs of the Form Designer Form

■ Creating an Additional Version of a Form

6.1 Creating a Form
To create a form:

1. Open the Form Designer form.

2. In the Table Name field, enter the name of the database table that is associated
with the form.

3. In the Description field, enter explanatory information about the form.

Form Type These options are used to designate if the form is to be assigned to a
process or a resource object.

If you select the Process option, the form is associated with an
approval or provisioning process.

Object Name This is the name of the resource that can be provisioned (for example,
a database, server, software application, file, or directory access).
Also, referred to as a resource object name.

Double-click this field to see the available resource object names.

Latest Version The most recent version of the form.

Active Version The version of the form that is used with the designated process or
resource object.

Note: After a version of the form is displayed in the Active Version
field, it cannot be modified.

Current Version This version of the form is being viewed and contains information,
which is displayed throughout the various tabs of the Form Designer
form.

Create New Version If you click this button, you can assign an additional name to the
existing version of a form. As a result, you can modify this version,
without effecting the original version of the form.

Note: If you create a new version of the form and click Refresh, the
name that you provided for this version is displayed in the Current
Version box.

Make Version Active By clicking this button, you can specify that the current version of the
form is the one that is to be assigned to the process or resource object.
In other words, this version is now active.

Note: After a version of the form is active, it cannot be modified.
Instead, you must create another additional version of the form (by
clicking the Create New Version button).

Note: The table name contains the UD_ prefix followed by the form
name. If the name of the form is SOLARIS, its table name is
UD_SOLARIS.

Table 6–1 (Cont.) Fields of the Form Designer Form

Field Name Description

Tabs of the Form Designer Form

6-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

4. Select the Process option. This is because the form is assigned to a provisioning
process.

5. Click Save.

The form is created. The words Initial Version are displayed in the Latest Version
field. This signifies that you can populate the tabs of the Form Designer form with
information, so the form is functional with its assigned process or resource.

6.2 Tabs of the Form Designer Form
After you open the Form Designer form, and create a form, the tabs of this form
become functional. The Form Designer form contains the following tabs:

■ Additional Columns Tab

■ Child Table(s) Tab

■ Object Permissions Tab

■ Properties Tab

■ Administrators Tab

■ Usage Tab

■ Pre-Populate Tab

■ Default Columns Tab

■ User Defined Fields Tab

6.2.1 Additional Columns Tab
You use the Additional Columns tab to create and manage data fields. These data
fields are displayed on the associated form that is created by using the Form Designer
form.

Table 6–2 describes the data fields of the Additional Columns tab.

Note: When you create an application instance, associate a process
form with it and publish the sandbox, and then make some changes to
the process form in the Design Console, such as add new fields or
prepopulate adapters, then the changes are not reflected in the
application instance. To reflect the changes in the application instance,
create a new process form and associate it with the application
instance. The recommended method to do so is by using the Form
Designer in Oracle Identity System Administration, and not the Form
Designer form in the Design Console. See "Managing Forms" in the
Oracle Fusion Middleware Administrator's Guide for Oracle Identity
Manager for details.

Tabs of the Form Designer Form

Developing Process Forms 6-5

Table 6–2 Fields of the Additional Columns Tab

Name Description

Name The name of the data field that is displayed in the database and is recognized by
Oracle Identity Manager.

Note: This name consists of the <TABLENAME_> prefix followed by the name of th
data field.

For example, if the name in the Table Name field of the Form Designer form is
UD_PASSWORD and the name for the data field is USERNAME, the data field nam
that is displayed in the database and that Oracle Identity Manager recognizes, woul
be UD_PASSWORD_USERNAME.

Variant Type From this lookup field, select the variant type for the data field. The variant type
denotes the type of data that the field accepts.

This data field must be one of nine variant types: Byte, Double, Date, Byte Array,
Boolean, Long, String, Short, and Integer.

Length The length in characters of the data field.

Field Label The label that is associated with the data field. This label is displayed next to the dat
field on the form that is generated by Oracle Identity Manager.

Tabs of the Form Designer Form

6-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Field Type From this lookup field, select the data type of the data field. The data type represents
how the data must be displayed in the field.

You can select one of the following data types:

■ TextField: This data field is displayed on the generated form as a text field.

If the text field is display-only (the text in the field is displayed in red font), a user
can use the field only to run a query. Otherwise, the user can also populate the
field with information, and save it to the database.

■ LookupField: This data field is displayed on the generated form as a lookup field.

If this lookup field is display-only, a user can use the field only to run a query.
Otherwise, the user can also populate the field with a value from the associated
Lookup window, and save this value to the database.

■ TextArea: This data field is displayed on the generated form as a text area.

If this text area is display-only, a user can only read the information that is
displayed in it. Otherwise, the user can also populate the text area with data, and
save this information to the database.

■ ITResourceLookupField: This data field is displayed on the generated form as a
lookup field. From this lookup field, a user can select a lookup value that
represents an IT resource, and save this value to the database.

Note: If you select this data field, you must specify the type of server for the IT
resource from the Property Value field.

For more information about adding a property value to a data field, see "Adding
a Property and Property Value to a Data Field" on page 6-12.

■ DateFieldWithDialog: This data field is displayed on the generated form as a text
field.

If this text field is display-only, a user can use the field only to run a query.

Otherwise, the user can also populate the field with a date and time (by
double-clicking the field and selecting a date and time from the Date & Time
window). Then, this date and time can be saved to the database.

■ CheckBox: This data field is displayed on the generated form as a check box.

If this check box is display-only, a user can only see whether the check box is
selected or deselected. Otherwise, the user can also select or deselect the check
box, and save this setting to the database.

■ PasswordField: The text entered in this field is displayed as a series of asterisk (*)
characters.

Oracle Identity Manager checks if a field with field type as Password Field has
the AccountPassword property set to true. If so, then password policies apply. If
such a field does not exist, then Oracle Identity Manager checks if a field of
Password Field type having name in the FORM_NAME_PASSWORD format
exists. If so, then password policies apply.

Oracle Identity Manager automatically sets AccountPassword=true to a field with
field type as Password Field and name in the FORM_NAME_PASSWORD format
when such a field is being created.

For information about setting the AccountPassword property to true, see "Setting
the Value of the AccountPassword Property" on page 6-9.

For information about adding a property value to a data field, see "Adding a
Property and Property Value to a Data Field" on page 6-12.

■ RadioButton: This data field is displayed on the generated form as an option.

A user can select or deselect the radio button, and save this setting to the
database.

■ DataCombobox: This data field is displayed on the generated form as a list.

A user can select an item from the list and save this selection to the database.

■ DisplayOnlyField: This data field is not enabled for the user to enter a value.
This type of fields can only display data based on values in other fields.

Table 6–2 (Cont.) Fields of the Additional Columns Tab

Name Description

Tabs of the Form Designer Form

Developing Process Forms 6-7

6.2.1.1 Adding a Data Field to a Form
To add a data field to a form:

1. In the Additional Columns tab, click Add.

A blank row is displayed in the Additional Columns tab.

2. In the Name field, enter the name of the data field, which is displayed in the
database, and is recognized by Oracle Identity Manager.

3. Double-click the Variant Type lookup field.

From the Lookup window that is displayed, select the variant type for the data
field.

Currently, a data field can have one of nine variant types: Byte, Double, Date, Byte
Array, Boolean, Long, String, Short, and Integer.

4. In the Length field, enter the length (in characters) of the data field.

Default Value This value is displayed in the associated data field after the form is generated and if
no other default value was specified from the following scenarios:

■ A pre-populate adapter, which is attached to the form field, is run.

■ A data flow exists between a field of a custom form assigned to one process and
field of a custom form associated with another process.

■ A resource object, which has been requested for an organization, has a custom
form attached to it. In addition, one of the fields of this custom form has a defau
value associated with it. It is strongly recommended that you do not specify
default values for passwords and encrypted fields.

Order The Order field is not used in Oracle Identity Manager 11g Release 2 (11.1.2.1.0).

Application Profile This check box designates if the most recent value of this field should be displayed o
the Object Profile tab of the Users form after the resource associated with this form h
been provisioned to the user and achieved the Enabled status.

If this check box is selected, the label and value of this field is displayed on the Obje
Profile tab of the Users form for users provisioned with the resource.

Encrypted This check box determines if the information, which is displayed in the associated
data field, is to be encrypted when it is transmitted between the server and the clien

If this check box is selected, the information that is displayed in the data field is
encrypted when it is transmitted between the client and the server.

Note: Password fields are encrypted by default. When a data field of
password field type is created, the value is displayed as asterisk (*)
characters, and the data is encrypted in the database.

Note: This name consists of the <TABLENAME_> prefix, followed
by the name of the data field.

For example, if the name that is displayed in the Table Name field is
UD_PASSWORD, and the name for the data field is USERNAME, the
data field name that is displayed in the database and Oracle Identity
Manager recognizes, would be UD_PASSWORD_USERNAME.

Table 6–2 (Cont.) Fields of the Additional Columns Tab

Name Description

Tabs of the Form Designer Form

6-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

5. In the Field Label field, enter the label that will be associated with the data field.

This label is displayed next to the data field on the form that is generated by
Oracle Identity Manager.

6. Double-click the Field Type lookup field.

From the Lookup dialog box that is displayed, select the data type for the data
field. Presently, a data field can have one of nine data types: Text Field, Lookup
Field, Text Area, IT Resource Lookup Field, Date Field, Check Box, Password
Field, Radio Button, and box.

7. In the Default Value field, enter the value that is displayed in the associated data
field once the form is generated, and if no other default value has been specified.

8. In the Order field, enter the sequence number, which will represent where the data
field will be positioned on the generated form.

For example, a data field with an order number of 2 is displayed below a data field
with an order number of 1.

9. If you want a specific organization or user's values to supersede the value that is
displayed in the Default Value field, select the Application Profile check box.
Otherwise, go to Step 10.

10. If you want the information that is displayed in the data field to be encrypted
when it is transmitted between the client and the server, select the Encrypted
check box. Otherwise, go to Step 11.

11. Click Save.

6.2.1.2 Removing a Data Field From a Form
To remove a data field from a form:

1. Delete all properties that are associated with the data field you want to remove by
following the instructions in Section 6.2.4.3, "Removing a Property and Property
Value From a Data Field".

2. Select the data field that you want to remove.

3. Click Delete.

The data field is removed from the form.

See Also: Table 6–2 for more information about data types

See Also: Table 6–2 for more information about the scenarios where
a default value could be set

Note: While adding a new field, if you assign it the same name as a
field that was removed, the variant type (data type) of the new field
remains the same as that of the field that was removed. For example,
suppose you remove the Addr1 field to which the String variant type
was applied. You create a field with the same name and apply the
Boolean variant type to it. Now, when you view or use the form on
which the new Addr1 field is added, the variant type of the field is
String and not Boolean.

Tabs of the Form Designer Form

Developing Process Forms 6-9

While adding a new field, if you assign it the same name as a field that was removed,
the variant type (data type) of the new field remains the same as that of the field that
was removed. For example, suppose you remove the Addr1 field to which the String
variant type was applied. You create a field with the same name and apply the Boolean
variant type to it. Now, when you view or use the form on which the new Addr1 field
is added, the variant type of the field is String and not Boolean.

6.2.1.3 Setting the Value of the AccountPassword Property
To set the value of the AccountPassword property to true:

1. Create a password field in Form Designer form.

2. Click the Properties tab.

3. Select the password field, and click Add Property.

4. From the Property Name list, select AccountPassword.

5. In the Property Value field, enter true.

6. Click Save.

6.2.2 Child Table(s) Tab
Sometime you might have to add the same data fields to multiple forms that are
created by using the Form Designer form. There are two ways to do this:

■ You can add the data fields to each form manually, through the form's Additional
Columns tab.

■ You can group the data fields together and save them under one form name. Then,
you can assign this form to each form that requires these data fields.

If this form contains the data fields that are required by another form, it is known as a
child table.

Assigning child tables to a form increases your efficiency as a user. Without child
tables, for every form that needs data fields, you would have to set the parameters for
each field. For example, if five forms require the identical data field, you would have
to set the parameters for this field five, separate times (one for each form).

If you use a child table for one form, and decide that you want to apply it to another
form, the Design Console enables you to do so. Remove the child table from the first
form, and assign it to the target form. This way, the child table that you assign to one
form can be reused for all forms created with the Form Designer form.

You can configure Oracle Identity Manager to perform one of the following actions in
a column of a child table:

■ Insert: Adds a new value to the designated column of the child table

■ Update: Modifies an existing value from the corresponding column of the child
table

■ Delete: Removes a value from the designated column of the child table

See Also: See Section 5.3, "Process Definition Form" for more
information about setting up Oracle Identity Manager to insert, edit,
or delete a value from in a column of a child table

Tabs of the Form Designer Form

6-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

For example, suppose that the UD_SOUTH child table is assigned to the Results of
1Q 2004 Sales form (represented by the UD_SALES2 table name). After this form is
started, the data fields in the UD_SOUTH child table are displayed in the form.

The following sections describe how to assign a child table to a form and how to
remove a child table from a form.

6.2.2.1 Assigning a Child Table to a Form
To assign a child table to a form:

1. Click Assign.

The Assignment window is displayed.

2. From this window, select the child table, and assign it to the form.

3. Click OK.

The selected child table is assigned to the form.

6.2.2.2 Removing a Child Table from a Form
To remove a child table from a form:

1. Select the child table that you want to remove.

2. Click Delete.

The child table is removed from the form.

6.2.3 Object Permissions Tab
You use this tab to select the user groups that can add, modify, and remove
information from a custom form when it is instantiated.

When the Allow Insert check box is selected, the corresponding user group can add
information into the fields of the user-created form. If this check box is not selected,
the user group cannot populate the fields of this form.

When the Allow Update check box is selected, the associated user group can modify
existing information in the fields of the user-created form. If this check box is not
selected, the user group cannot edit the fields of this form.

When the Allow Delete check box is selected, the corresponding user group can delete
data from instantiations of the user-created form. If this check box is not selected, the
user group cannot delete data from fields of this form (when it is instantiated).

Suppose the SYSTEM ADMINISTRATORS user group can create, modify, and delete
information that is displayed in the Results of 1Q 2004 Sales form (represented by the
UD_SALES2 name in the Table Name field). The IT DEPARTMENT user group can
only delete records of this form (its Allow Insert and Allow Update check boxes are
not selected). The HR DEPARTMENT user group can create and modify information

Note: If the form, which is represented by the child table, has not
been made active, you cannot assign it to the parent form.

Note: If the form that is represented by the child table is active, it
will not be displayed in the Assignment window, and you will not be
able to assign it to the parent form.

Tabs of the Form Designer Form

Developing Process Forms 6-11

from within the Results of 1Q 2004 Sales form. However, because the Allow Delete
check box is not selected, this user group is not able to delete this information.

The following section describes how to assign a user group to a user-created form, and
remove a user group from a user-created form.

6.2.3.1 Assigning a User Group to a User-Created Form

To assign a user group to a user-created form:

1. Click Assign.

The Assignment dialog box is displayed.

2. Select the user group, and assign it to the form that was created by a user.

3. Click OK.

The user group is displayed in the Object Permissions tab.

4. If you do not want this user group to be able to add information into a record of
the user-created form, double-click the corresponding Allow Insert check box.
Otherwise, go to Step 5.

5. If you do not want this user group to be able to modify information from within a
record of the user-created form, double-click the associated Allow Update check
box. Otherwise, go to Step 6.

6. If you do not want this user group to be able to delete a record of the user-created
form, double-click the corresponding Allow Delete check box. Otherwise, go to
Step 7.

7. Click Save.

The user group is assigned to the user-created form.

6.2.3.2 Removing a User Group From a User-Created Form

To remove a user group from a user-created form:

1. Select the user group that you want to remove.

2. Click Delete.

The user group is removed from the user-created form.

6.2.4 Properties Tab
You use the Properties Tab of the Form Designer Form to assign properties and
property values to the data fields that are displayed on the form that is created
through the Form Designer form.

For example, suppose that the Results of 1Q 2004 Sales form has two data fields: User
Name and Password. Each data field contains the following properties:

■ Required, which determines whether or not the data field must be populated for
the generated form to be saved. The default value for the Required property is
false.

■ Visible Field, which establishes whether the data field is displayed on the form,
once Oracle Identity Manager generates the form. The default value for the
Visible Field property is true.

Tabs of the Form Designer Form

6-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Because the property values for the Required and Visible Field properties are true
for both data fields, once the Results of 1Q 2004 Sales form is generated, both of these
data fields are displayed. In addition, each field must be populated for the form to be
saved.

The following sections describe how to add a property and property value to a data
field, and how to remove them from the data field.

6.2.4.1 Adding a Property and Property Value to a Data Field
To add a property and property value to a data field:

1. Select the data field to which you want to add a property and property value.

2. Click Add Property.

The Add Property dialog box is displayed, as shown in Figure 6–2.

Figure 6–2 Add Property Dialog Box

In this example, the User Name data field was selected (as indicated by User
Name displayed in the Column Name field). In addition, the data type of this field
is a text field.

Table 6–3 lists the fields of the Add Property dialog box.

Note: The Properties tab is grayed out until you create a data field
for the form by using the Additional Columns tab.

For more information about the properties and property values you
can select, see "Rule Elements, Variables, Data Types, and System
Properties" on page A-1.

Note: The text that is displayed in the Column Name and Column
Type fields are the names and types of data fields you selected.

Table 6–3 Fields of the Add Property Dialog Box

Name Description

Column Name The name of the data field.

Column Type The data type of the data field.

Property Name From this box, select the property for the data field.

Property Value In this field, enter the property value, which is associated with the
property that is displayed in the Property Name box.

Tabs of the Form Designer Form

Developing Process Forms 6-13

3. Set the parameters for the property and property value that you are adding to the
data field. Figure 6–3 shows the Add Property dialog box with values.

Figure 6–3 Add Property Dialog Box - Filled

For this example, because the value of the Required property for the User Name
data field was set to true, once the associated form is generated, this field must be
populated. Otherwise, the form cannot be saved.

4. From the Add Property window's Toolbar, click Save.

5. Click Close.

The property and property value are added to the data field.

6.2.4.2 Adding a Property and Property Value for Customized Look up Query

To add a property and a property value for a customized lookup query:

1. Select the data field to which you want to add a property and a property value.

2. Click Add Property.

The Add Property dialog box is displayed, as shown in Figure 6–4.

Note: The menu items displayed in the Property Name box reflect
the data type of the selected data field.

See Also: See "Rule Elements, Variables, Data Types, and System
Properties" on page A-1 for more information about the parameters
and property values to select

Tabs of the Form Designer Form

6-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 6–4 Add Property Dialog Box

In this example, the Name data field was selected (as indicated by Name
displayed in the Column Name field). In addition, the data type of this field is a
lookup field.

The boxes of the Add Property dialog box are used to help build the WHERE
clause in the custom lookup query. As you select the values for each box (from the
menu), the WHERE clause is appended to the custom lookup query.

Table 6–4 describes the regions of the Add Property dialog box. Initially, all the
fields are grayed out. After you have defined the lookup query and clicked Save,
the fields become active.

Note: The text that is displayed in the Column Name and Column
Type fields shows the name and type of the data field you selected
(from the Properties tab of the Form Designer).

Table 6–4 Fields of the Add Property Dialog Box

Name Description

Column Name The name of the data field.

Column Type The data type of the data field.

Property Name From this list, select the property for the data field.

Property Value In this field, enter the property value, which is associated with the
property that is displayed in the Property Name box.

In the case of a lookup query, you must specify both the Oracle
Identity Manager form and field, which will be referenced for the
query and will be recognized by the database.

For example, if Oracle Identity Manager is referring to the user's
login, you enter select usr_key fromusr in the Property Value field.
After clicking Save, the Filter Column is active with all the
columns of tables.

Tabs of the Form Designer Form

Developing Process Forms 6-15

3. Set the parameters for the property and the property value that you are adding to
the data field. Figure 6–5 shows the Edit Property dialog box.

Figure 6–5 Edit Property Dialog Box

Filter Column This is the Oracle Identity Manager form field that is referenced for
the lookup query, and which is recognized by the database. This
field is populated with all columns of table specified in the
Property Value field. If multiple tables are used in the query, all
tables are shown.

For example, usr.USR_LOGIN signifies that Oracle Identity Manager
will see the User Login field from the Users form for the lookup
query.

Source After the Filter Column variable is selected, the Source field is
populated with all possible sources of value. The list of values in
this field is dependent upon the type of form, for which the lookup
field is being defined. For instance, the list displayed is different if
the lookup query is for an Object form or a Process form. The
Source field is a user-friendly name for the value that is displayed
in the Filter Column box.

For example, Requester Information refers to the usr.USR portion
of the Filter Column value.

Field This field is populated based on what value is selected in the
Source field. Use this field to create the SELECT statement, which is
needed for the column name.

For example, the User Login corresponds to the _LOGIN part in
the Filter Column value.

Note: The menu items displayed in the Property Name box show the
data type of the selected data field.

The Source and Field boxes of the Add Property dialog box are
applicable only when Lookup Query is displayed in Property Name.

Table 6–4 (Cont.) Fields of the Add Property Dialog Box

Name Description

Tabs of the Form Designer Form

6-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

6.2.4.3 Removing a Property and Property Value From a Data Field

To remove a property and property value from a data field:

1. Select the property and the property value that you want to remove.

2. Click Delete Property.

The property and its associated value are removed from the data field.

6.2.5 Administrators Tab
This tab is used to select the user groups that can view, modify, and delete the current
record of the form that was created by a user by using the Form Designer form.

When the Write check box is selected, the corresponding user group can view and
modify information for the current record of the form. If this check box is not selected,
the user group cannot view or edit information for this record.

When the Delete check box is selected, the associated user group can remove
information from the current record of the form. If this check box is not selected, the
user group cannot delete information from this record.

The following sections describe how to assign administrative privileges to a user
group for a record of a user-created form and remove administrative privileges from a
user group for a record of a user-created form.

6.2.5.1 Assigning Privileges to a User Group for a Record of a User-Created Form
To assign administrative privileges to a user group for a record of a user-created form:

1. Click Assign.

The Assignment dialog box is displayed.

2. Select the user group, and assign it to the record of the user-created form.

3. Click OK.

The user group is displayed in the Administrators tab.

4. If you want this user group to be able to create and modify information for the
current record of the user-created form, double-click the corresponding Write
check box. Otherwise, go to Step 5.

5. If you want this user group to be able to remove information from the current
record of the user-created form, double-click the associated Delete check box.
Otherwise, go to Step 6.

6. Click Save.

The user group now has administrative privileges for this record of the
user-created form.

6.2.5.2 Removing User Group Privileges for a Record of a User-Created Form
To remove administrative privileges from a user group for a record of a user-created
form:

1. Select the user group that you want to remove.

2. Click Delete.

Tabs of the Form Designer Form

Developing Process Forms 6-17

The user group no longer has administrative privileges for this record of the
user-created form.

6.2.6 Usage Tab
In this tab, you can see the resource objects and processes to which the current form
has been assigned.

For example, the Solaris form (represented by the UD_SOLARIS name in the Table
Name field) was created and assigned to both the Solaris resource object and
provisioning process.

6.2.7 Pre-Populate Tab
You use this tab is to do the following:

■ Attach a pre-populate adapter to a data field of the user-created form.

■ Select the rule that will determine if this adapter will be executed to populate the
designated data field with information.

■ Set the priority number for the selected rule.

■ Map the adapter variables of the prepopulate adapter to their correct locations.

6.2.8 Default Columns Tab
A form that is created by using the Form Designer form is composed of two types of
data fields:

■ Data fields that are created by a user (by using the Additional Columns tab)

■ Data fields that are created by Oracle Identity Manager, and added to the form,
once the form is created

Through the Default Columns tab, you can see the names, variant types, and lengths
of the data fields, which are added, by default, to a user-created form. As a result, by
viewing these data fields, you can see all data fields for this type of form, without
starting SQL*Plus, or a similar database application.

6.2.9 User Defined Fields Tab
This tab is used to view and access any user-defined fields that were created for the
Form Designer form. Once a user-defined field has been created, it is displayed on this
tab and is able to accept and supply data.

Note: The table name contains the UD_ prefix, followed by the form
name. For this example, because the name of the form is Solaris, its
table name is UD_SOLARIS.

This tab will be populated with information only after you click Make
Version Active.

See Also: Chapter 8, "Using the Adapter Factory" for more
information about prepopulate adapters, attaching pre-populate
adapters to fields of user-created forms, or mapping the variables of a
pre-populate adapter

Creating an Additional Version of a Form

6-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

6.3 Creating an Additional Version of a Form
Sometimes, when you create a form and populate the tabs of the Form Designer form
with information, so the form will work with the process or resource object to which it
will be assigned, you might want to create a different version of the form. This way,
you can modify this version, without changing the original version of the form.

To create an additional version of a form:

1. Open the Form Designer form.

2. Search for the specific form of which you want to create a different version.

3. Click the Current Version box.

From the drop-down menu that is displayed, select the version of the form of
which you are creating an additional version.

4. Click the Create New Version button.

The Create a New Version window is displayed.

5. In the Label field, enter the name of the additional version of the form.

6. From the Create a New Version window's toolbar, click Save.

7. From this toolbar, click Close.

The additional version of the form is created. When you click the Current Version
box, the version's name, which you entered into the Label field in Step 5, is
displayed. By selecting this version, you can populate the tabs of the Form
Designer form with information, without changing the original version of the
form.

If you use the new form version to manage all users, then run the Form Version
Control (FVC) utility after the new form version is made active. See "Using the Form
Version Control Utility" in the Oracle Fusion Middleware Administrator's Guide for Oracle
Identity Manager for information about the FVC utility.

7

Managing Lookup Definitions and Remote Manager 7-1

7Managing Lookup Definitions and Remote
Manager

[8]

This section describes how to use the Design Console to administer Oracle Identity
Manager. It contains the following topics:

■ Overview

■ Lookup Definition Form

■ Remote Manager Form

7.1 Overview
The Design Console Administration folder provides system administrators with tools
for managing Oracle Identity Manager administrative features. This folder contains
the following forms:

■ Lookup Definition: You use this form to create and manage lookup definitions. A
lookup definition represents a lookup field and the values you can access from
that lookup field.

■ Remote Manager: You use this form to display information about the servers that
Oracle Identity Manager uses to communicate with third-party programs. These
servers are known as remote managers.

7.2 Lookup Definition Form
A lookup definition represents one of the following:

■ The name and description of a text field

■ A lookup field and the values that are accessible from that lookup field by
double-clicking it

■ A box, and the commands that can be selected from that box

Note: Oracle Identity Manager recommends that you create and
manage lookups by using the Oracle Identity System Administration.
See "Managing Lookups" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Manager for details.

Lookup Definition Form

7-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

These items, which contain information pertaining to the text field, lookup field, or
box, are known as lookup values. Users can access lookup definitions from one of two
locations:

■ A form or tab that comes packaged with Oracle Identity Manager

■ A user-created form or tab built by using the Form Designer form

The Lookup Definition form shown in Figure 7–1 is in the Design Console
Administration folder. You use this form to create and manage lookup definitions.

Figure 7–1 Lookup Definition Form

Table 7–1 describes the data fields of the Lookup Definition form.

Table 7–1 Fields of the Lookup Definition Form

Field Name Description

Code The name of the lookup definition.

Field The name of the table column of the form or tab from which
the text field, lookup field, or box field will be accessible.

Lookup Type/Field
Type

These options designate if the lookup definition is to represent
a text field, a lookup field, or a box.

If you select the Field Type option, the lookup definition will
represent a text field.

If you select the Lookup Type option, the lookup definition is
to represent either a lookup field or a box, along with the
values that are to be accessible from that lookup field or box.

Note: For forms or tabs that come packaged with Oracle
Identity Manager, the lookup definition has already been set as
either a lookup field or a box. This cannot be changed.
However, you can add or modify the values that are accessible
from the lookup field or box.

For forms or tabs that are user defined, the user determines
whether the lookup definition represents a lookup field or a
box through the Additional Columns tab of the Form
Designer form.

For more information about specifying the data type of a
lookup definition, see "Additional Columns Tab".

Required By selecting this check box, the lookup definition is designated
as required. As a result, Oracle Identity Manager will not
allow the contents of the corresponding form or tab to be
saved to the database until the field or box, represented by the
lookup definition, is supplied with data.

Lookup Definition Form

Managing Lookup Definitions and Remote Manager 7-3

The following sections describe how to create a lookup definition.

7.2.1 Creating a Lookup Definition
To create a lookup definition:

1. Open the Lookup Definition form.

2. In the Code field, enter the name of the lookup definition.

3. In the Field field, enter the name of the table column of the Oracle Identity
Manager or user-created form or tab, from which the text field, lookup field, or
box field will be accessible.

4. If the lookup definition is to represent a lookup field or box, select the Lookup
Type option.

If the lookup definition is to represent a text field, select the Field Type option.

5. Optional. To save the contents of this form or tab only when the field or box
represented by the lookup definition is supplied with data, select the Required
check box. Otherwise, go to Step 6.

6. In the Group field, enter the name of the Oracle Identity Manager or user-defined
form on which the lookup definition is displayed.

You must follow naming conventions for the text you enter into the Code, Field,
and Group fields.

7. Click Save.

The lookup definition is created. The associated text field, lookup field, or box will
be displayed in the Oracle Identity Manager or user-defined form or tab you
specified.

7.2.2 Lookup Code Information Tab
The Lookup Code Information tab is in the lower half of the Lookup Definition form.
You use this tab to create and manage detailed information about the selected lookup
definition. This information includes the names, descriptions, language codes, and
country codes of a value pertaining to the lookup definition. These items are known as
lookup values.

The following procedures show how to create, modify, and delete a lookup value.

7.2.2.1 Creating and Modifying a Lookup Value
To create or modify a lookup value:

Group The name of the Oracle Identity Manager or user-defined form
on which the lookup definition is to be displayed.

See Also: See "Lookup Definition Form" on page 7-1 for more
information about naming conventions

Table 7–1 (Cont.) Fields of the Lookup Definition Form

Field Name Description

Lookup Definition Form

7-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

1. Open the Lookup Definition form.

2. Access a lookup definition.

3. If you are creating a lookup value, click Add.

A blank row is displayed in the Lookup Code Information tab.

If you are modifying a lookup value, select the lookup value that you want to edit.

4. Add or edit the information in the Code Key field.

This field contains the name of the lookup value.

In addition, if the Lookup Type option is selected, this field also represents what is
displayed in the lookup field or box once the user makes a selection.

5. Add or edit the information in the Decode field.

This field contains a description of the lookup value.

If the Lookup Type option is selected, this field also represents one of the
following:

■ The items that is displayed in a lookup window after the user double-clicks
the corresponding lookup field

■ The commands that are to be displayed in the associated box

6. Click Save.

The lookup value you created or modified now reflects the settings you have
entered.

7.2.2.2 Deleting a Lookup Value
To delete a lookup value:

1. Open the Lookup Definition form.

Note: For internationalization purpose, you must provide both a
language and country code for a lookup value.

When creating a new lookup definition, you must save it before
adding lookup values to it.

Note: The decode value is a humanly readable description of the
field. The encode value is the actual code value that is used for
provisioning. For example, decode value can be an LDAP group
name, and encode value is the LDAP group GUID.

Caution: Deleting a lookup value might cause problems depending
on what the lookup represents. For example, if a lookup value
represents an entitlement and it is deleted, then it must be removed
from various locations, such as any access policy with that entitlement
or any user account having that entitlement granted. Therefore, Oracle
recommends that you check all the possible effects before deleting a
lookup value.

Remote Manager Form

Managing Lookup Definitions and Remote Manager 7-5

2. Search for a lookup definition.

3. Select the lookup value that you want to remove.

4. Click Delete. The selected lookup value is deleted.

7.2.3 Configuring Challenge Questions for the User
You can configure challenge questions for the users by using the Lookup Definition
Form. These challenge questions are prompted if the user forgets the password and
tries to retrieve it. The user must enter the same answers provided while creating a
password.

To configure challenge questions for the user:

1. Login to Oracle Identity Manager Design Console.

2. Navigate to Administration, Lookup Definition.

3. Search for the Lookup for challenge questions, that is, lookup Code =
Lookup.WebClient.Questions.

4. In the Lookup Code Information tab, add questions by entering the appropriate
values in the Code Key and Decode fields.

5. Click Add.

6. Add this key to the custom resource bundle.

7.3 Remote Manager Form
The Remote Manager is a lightweight network server that enables you to integrate
with target systems whose APIs cannot communicate over a network, or that have
network awareness but are not secure. The Remote Manager works as a server on the
target system, and an Oracle Identity Manager server works as its client. The Oracle
Identity Manager server sends a request for the Remote Manager to instantiate the
target system APIs on the target system itself, and invokes methods on its behalf.

The Remote Manager form shown in Figure 7–2 is in the Design Console
Administration folder. It displays the following:

■ The names and IP addresses of the remote managers that communicate with
Oracle Identity Manager

■ Whether or not the remote manager is running

■ Whether or not it represents IT resources that Oracle Identity Manager can use

Figure 7–2 Remote Manager Form

For this example, you can define only one remote manager that can communicate with
Oracle Identity Manager: RManager.

Although this remote manager can handshake with Oracle Identity Manager, it is
unavailable because the Running check box is deselected. Since the IT Resource check

Remote Manager Form

7-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

box is selected, this remote manager represents an IT resource or resources that can be
used by Oracle Identity Manager.

Part III
Part III Connectors

This part familiarizes you with tools and features for Oracle Identity Manager
developers, and provides some simple examples to illustrate the concepts.

It contains the following chapters:

■ Chapter 8, "Using the Adapter Factory"

■ Chapter 9, "Understanding the Identity Connector Framework"

■ Chapter 10, "Developing Identity Connectors Using Java"

■ Chapter 11, "Developing Identity Connectors Using .NET"

■ Chapter 12, "Integrating ICF with Oracle Identity Manager"

■ Chapter 13, "Using Java APIs for ICF Integration"

■ Chapter 14, "Configuring ICF Connectors"

■ Chapter 15, "Understanding ICF Best Practices and FAQs"

■ Chapter 16, "Understanding Generic Technology Connectors"

■ Chapter 17, "Predefined Providers for Generic Technology Connectors"

■ Chapter 18, "Creating Custom Providers for Generic Technology Connectors"

■ Chapter 19, "Creating and Managing Generic Technology Connectors"

■ Chapter 20, "Troubleshooting Generic Technology Connectors"

8

Using the Adapter Factory 8-1

8 Using the Adapter Factory

[9]

Adapters are Java programs that enable you to integrate Oracle Identity Manager with
other software solutions. This chapter describes how to create adapters using the
Adapter Factory form. It contains these sections:

■ Introduction to Adapters

■ Types of Adapters

■ Adapter Environment and Tools

■ Defining Adapters

■ Tabs of the Adapter Factory Form

■ Disabling and Re-enabling Adapters

■ About Adapter Variables

■ Creating Adapter Tasks

■ Modifying Adapter Tasks

■ Changing the Order and Nesting of Tasks

■ Deleting Adapter Tasks

■ Working with Responses

■ Scheduling Rule Generators and Entity Adapters

■ Working with Rule Generator Adapters

■ Working with Entity Adapters

■ Working with Task Assignment Adapters

■ Working with Prepopulate Adapters

■ Working with Process Task Adapters

■ Adapter Mapping Information

■ Defining Error Messages

8.1 Introduction to Adapters
To be effective, it must be possible to integrate an access rights management
application, such as Oracle Identity Manager, with other software solutions. This is
necessary not only because there are many resources, but also because there is no
single integration standard for connecting to these resources.

Introduction to Adapters

8-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

The traditional way to tackle this challenge is by using the common functionality that
is supported by all the integrations. To do this, you need developers who can write
this code. In addition, every time an existing software resource is modified, or a new
one is added, you must write more code.

The Adapter Factory is a code-generation tool provided by Oracle Identity Manager. It
helps you create Java classes, known as adapters, that simplify the integration
challenge.

A resource has an associated provisioning process, which in turn has various tasks
associated with it. Each task in turn has an adapter associated to it, which in turn can
connect to the target resource to carry out the required operations.

An adapter provides the following benefits:

■ It extends the internal logic and functionality of Oracle Identity Manager.

■ It interfaces with any software resource, by connecting to that resource by using
the API of the resource.

■ It enables the integration between Oracle Identity Manager and an external
system.

■ It can be generated without manually writing code. However, Oracle Identity
Manager does not restrict you from writing your own code for creating adapters.

■ It is lightweight and specific to your needs.

■ It can be maintained easily because all of the definitions for the adapter are stored
in a repository. This repository can be edited through a GUI.

■ One Oracle Identity Manager user can retain the domain knowledge about the
integration, while another user can maintain the adapter.

■ It can be modified and upgraded efficiently.

Adapters can be developed for a range of tasks:

■ A process task adapter, which allows Oracle Identity Manager to automate the
completion of a process task.

■ A task assignment adapter, which enables Oracle Identity Manager to automate
the assignment of a process task to a user or group.

■ A rule generator, which incorporates business rules to the fields of either an Oracle
Identity Manager form or a user-defined form (created by using the Form
Designer form), so these fields can be populated automatically and saved to the
Oracle Identity Manager database.

■ A pre-populate adapter, which is a specific type of rule generator adapter that can
be attached to a user-created form field. The data generated by this type of adapter

Note: Oracle Identity Manager can connect to external systems such
as databases and directory servers by using Java APIs for JDBC and
LDAP. In addition, for all other APIs, such as C, C++, VB, and
COM/DCOM, you can create a Java wrapper so that Oracle Identity
Manager can communicate with the API directly.

Note: For more information about the Form Designer form, see
"Developing Process Forms" on page 6-1.

Types of Adapters

Using the Adapter Factory 8-3

can appear either automatically or manually. In addition, it uses criteria that
enable Oracle Identity Manager to determine which pre-populate adapter will be
applied to the designated form field. It populates the designated form field
without saving this information to the Oracle Identity Manager database.

■ An entity adapter, which is attached to an Oracle Identity Manager or user-created
form field. Oracle Identity Manager triggers an entity adapter on preinsert,
preupdate, predelete, postinsert, postupdate, or postdelete. After this occurs, the
field to which the adapter is attached is populated automatically and saved to the
Oracle Identity Manager database.

8.2 Types of Adapters
This section provides additional details about the five adapter types.

Rule Generator Adapters
Certain business rules must be applied to perform field validations and enter default
values into the forms which either come packaged with Oracle Identity Manager or are
created by Oracle Identity Manager users. For example, for the Users form, you might
want Oracle Identity Manager to generate the User ID automatically by concatenating
the user's first name and last name.

To do this, you must create a specific type of adapter, which is designed to modify the
field value in a form. This type of adapter, which can generate, modify, or verify the
value of a form field automatically, is called a rule generator. Oracle Identity Manager
triggers a rule generator on preinsert and preupdate.

After you create this adapter and attach it to a form, Oracle Identity Manager
automatically updates the field value for all records of that form, and saves this
information to the Oracle Identity Manager database.

If you create a rule generator that contains adapter variables, you must map these
adapter variables to their proper locations. Otherwise, the adapter will not be
functional.

You can also attach this type of adapter to a provisioning process. Once the process is
provisioned to a target user or organization, Oracle Identity Manager will trigger the
associated rule generator.

On occasion, a rule generator which has been assigned to a provisioning process might
no longer be needed to complete the process. If this happens, you can remove the rule
generator from the provisioning process. Similarly, after you attach one rule generator
to a form field, you can connect a different rule generator to that form field. When this
occurs, you must first remove the rule generator currently attached to the form field.

Entity Adapters
Similar to rule generator adapters, entity adapters are also responsible for generating,
modifying, or verifying the value of a form field automatically, and saving this
information to the Oracle Identity Manager database.

Note: Oracle Identity Manager also allows you to create
postprocessing handlers on entities, such as user, role, and
organization.

Types of Adapters

8-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Some differences between rule generators and entity adapters are:

■ Execution schedule. Entity adapters can be triggered by Oracle Identity Manager
on preinsert, preupdate, predelete, postinsert, postupdate, and postdelete. A rule
generator adapter can be executed only on preinsert and preupdate.

■ Manual field value modification. The adapter populates the form field to which
an entity adapter is attached. An Oracle Identity Manager user should not edit this
value because the entity adapter will overwrite this modification. As a result, the
modification will not be saved to the database.

Similarly, the adapter also populates the form field to which a rule generator
adapter is attached. However, an Oracle Identity Manager user can edit this value
because this modification will take precedence over the value that the rule
generator adapter generates. Because of this, the modification will be saved to the
database.

■ Background color of form field. If a rule generator is attached to a form field, the
field will appear in a particular background color such as pink. This is a visual
indicator that the field has a rule generator attached to it. On the other hand, when
an entity adapter is attached to a form field, the field will not have a distinct
background color.

Task Assignment Adapters
For a process task that must be completed manually, you can configure Oracle Identity
Manager to automate the assignment of the task to either a specific user or a user who
belongs to a particular role. This is achieved through the use of a task assignment
adapter. Task assignment adapters are used only for assigning a task to a particular
user or role.

When a task that is associated with specific provisioning process is created using the
Tasks tab in the Process Definition form of the Design Console, you can choose the rule
that decides if adapter will be picked up for execution. Note that this rule is defined in
the Rule Definition form of the Design Console. An example of a rule is "Target User's
Org name is XYZ. If this rule is satisfied, then the corresponding task assignment is
picked up. However, you can have multiple rules defined and used while deciding
task assignment. For multiple rules, Oracle Identity Manager associates priority with
the task assignment functionality to decide the order in which the rule determination
must occur. When the rule is determined, corresponding task assignment is run.

For this example, Oracle Identity Manager will trigger the Associate Adapter with
User rule first (because it has the highest priority). If the condition of this rule is TRUE,
it is successful. As a result, Oracle Identity Manager will associate the related task
assignment adapter (the Assign Task to User adapter) with the process task.

Note: In Oracle Identity Manager 11g Release 2 (11.1.2.1.0), creating
new entity adapters and modifying existing entity adapters are not
supported.

Note: In other words, the task assignment rule allows Oracle Identity
Manager to decide whether to assign a process task to a user or role.
The task assignment adapter enables Oracle Identity Manager to
determine which user or role will be the recipient of the process task.

Types of Adapters

Using the Adapter Factory 8-5

On the other hand, when the condition of a rule is FALSE, the rule has failed. Oracle
Identity Manager triggers the rule with the next highest priority. If this rule is
successful, then Oracle Identity Manager assigns the designated adapter to the target
process task.

So, in this example, if the Associate Adapter with User rule fails, then Oracle Identity
Manager triggers the Associate Adapter with Role rule. If this rule is successful, then
Oracle Identity Manager associates the related task assignment adapter (the Assign
Task to Role adapter) to the process task.

After assigning a rule to a task assignment adapter, if this type of adapter contains
adapter variables, you must map these variables to their proper locations. Otherwise,
the adapter will not be functional.

Finally, when a task assignment adapter becomes invalid, or is no longer necessary for
Oracle Identity Manager to allocate the process task to a user or group, you must
remove the adapter from the task.

Prepopulate Adapters
Sometimes a user-created form contains both fields that can be populated by Oracle
Identity Manager and fields into which an Oracle Identity Manager user must enter
data. When the information that the user types into a field is contingent upon the data
that appears in a system-generated field, Oracle Identity Manager must first populate
this field. When the form is displayed, the user can view the system-generated data to
enter information into the appropriate fields.

This is achieved by creating a type of rule generator known as a prepopulate adapter.
By attaching it to a field designated to be system-generated, you enable Oracle Identity
Manager to automatically populate this field with the appropriate information,
without saving this information to the Oracle Identity Manager database.

The data generated by a prepopulate adapter can appear automatically or it can be
manually entered. Oracle Identity Manager displays this information automatically
when the Auto-prepopulate check box is selected for a provisioning process. When
this check box is cleared, an Oracle Identity Manager user must manually generate the
displaying of the data that is generated by the prepopulate adapter. To do this, click
the prepopulate button on the form section of the Direct Provisioning wizard in the
Web client, while provisioning the form to a user.

You can use the same prepopulate adapter for different form fields. In addition, you
can designate multiple prepopulate adapters to be associated with a particular field.
As a result, Oracle Identity Manager must know which prepopulate adapter it must
select for the form field. This requires the use of prepopulate rules. These rules enable
Oracle Identity Manager to select one prepopulate adapter, which is associated with a
form field, when this prepopulate adapter is assigned to the field.

Each prepopulate adapter has a prepopulate rule associated with it. In addition every
rule has a priority number which indicates the order in which Oracle Identity Manager
triggers it.

For example, Oracle Identity Manager can trigger the Rule for Uppercase User ID rule
first because it has the highest priority. If the condition of this rule is TRUE, it is
successful. As a result, Oracle Identity Manager will attach the related prepopulate
adapter (the Display Uppercase Letters for User ID adapter) to the User ID field.

On the other hand, when the condition of a rule is FALSE, the rule has failed. Oracle
Identity Manager will trigger the rule with the next highest priority. If this rule is
successful, Oracle Identity Manager will attach the associated adapter to the
designated field.

Types of Adapters

8-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

So, in this example, if the Rule for Uppercase User ID rule fails, Oracle Identity
Manager will trigger the Rule for Lowercase User ID rule. If this rule is successful,
Oracle Identity Manager will attach the related prepopulate adapter (the Display
Lowercase Letters for User ID adapter) to the User ID field.

After assigning a rule to a prepopulate adapter, if this type of adapter contains adapter
variables, you must map these adapter variables to their proper locations. Otherwise,
the adapter will not be functional.

Finally, when a prepopulate adapter associated with a field is no longer valid, you
must remove the adapter from the field.

Process Task Adapters
A process task adapter enables Oracle Identity Manager to automatically execute
process tasks in provisioning processes.

Each process and process task has a status, which indicates the stage of its completion.
The statuses for a process or process task are listed in the following table in order of
importance.

The status level of a process represents the most important status level of its process
tasks, which must be completed for the process to be completed. Suppose a process
has three process tasks, each process task has a different status level (Completed,
Waiting, and Rejected), and all three process tasks must be completed for the process to
complete. Because the highest task status level is Rejected, the status level of the
process is also Rejected.

A process task can be managed in these ways:

■ It can be handled manually by using the Object Process Console tab of the
Organizations or Users forms, or the Oracle Identity Manager Web Application.

Task Status Description

C Completed: This process/process task has been completed
successfully.

MC Manually Completed: This process task has been completed
successfully by an Oracle Identity Manager user (that is,
manually).

P Pending: This process/process task is in the process of being
completed. All preceding tasks and processes, respectively, have
been completed.

PX Pending Cancellation: This process task will be canceled, but this
task has to be completed first before it can be canceled.

R Rejected: This process/process task has not been completed
successfully or has not been approved. The status of rejected
process tasks can only be changed to Canceled or Unsuccessfully
Completed.

S Suspended: This process/process task has been put on hold
temporarily.

UC Unsuccessfully Completed: This process task has been set to
Completed. However, it had been rejected before.

W Waiting: This process/process task cannot be completed until all
preceding process tasks or processes are completed.

X This process/process task has been stopped. Its status cannot
change anymore

Adapter Environment and Tools

Using the Adapter Factory 8-7

■ An Oracle Identity Manager process can be configured so that one (or more) of its
tasks is triggered automatically once it achieves a status of Pending.

8.3 Adapter Environment and Tools
This section contains these topics:

■ Configuring the Adapter Environment

■ Remote Manager

■ The Adapter Factory

■ Compiling Adapters

8.3.1 Configuring the Adapter Environment
To construct adapter tasks, ensure that Oracle Identity Manager has access to the target
API JAR files and third-party applications to which you want to connect.

When your adapter uses Java tasks, you must configure Oracle Identity Manager to
find the appropriate Java APIs. To do this, you must place the .jar files that contain
these APIs into the Meta Data Store (MDS).

Then, you can access the Java classes associated with these Java APIs and use them in
the Java task you are creating.

To configure Oracle Identity Manager to reference JAR and class files:

1. Open the JavaTasks subdirectory, which can be found within the OIM_HOME/
directory path. For example, C:\oracle\Xellerate\JavaTasks.

2. Place the JAR file or files into this subdirectory. You can use these files to create
Java tasks within an adapter without restarting the server.

8.3.2 Remote Manager
Sometimes, instead of directly communicating with the third-party system, Oracle
Identity Manager must use an Oracle Identity Manager component that acts like a
proxy. This component is known as Remote Manager.

The Remote Manager is used for:

■ Invoking nonremotable APIs through Oracle Identity Manager

■ Invoking APIs that do not support Secure Sockets Layer (SSL) over secure
connections

To configure the Remote Manager, follow the instructions described in Oracle Fusion
Middleware Installation Guide for Oracle Identity and Access Management.

The Connector Server also has the ability to run Action Scripts. See "Understanding
the Identity Connector Framework" on page 9-1 for information about the Identity
Connector Server.

See Also: Chapter 36, "Understanding Customization Types" for
information about utilities to modify Oracle Identity Manager
metadata

Adapter Environment and Tools

8-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

8.3.3 The Adapter Factory
As stated earlier, an adapter is a Java class created by an Oracle Identity Manager user
through the Adapter Factory, which is accessed through the Design Console.

Adapters extend the internal logic and functionality of Oracle Identity Manager. In
addition, they interact with any IT resource by connecting to that resource's API.

The Adapter Factory is a code-generation tool provided by Oracle Identity Manager
that enables a user to create Java classes, known as adapters. Figure 8–1 shows the
Adapter Factory Form in the Design Console.

Figure 8–1 Adapter Factory Form

8.3.4 Compiling Adapters
Oracle Identity Manager provides various options for compilation, including:

■ compile individual adapters one at a time

■ compile a set of adapters at once

■ compile all adapters that exist in the Oracle Identity Manager database with a
single click

8.3.4.1 Automatic Compilation of Adapters
Adapters are compiled automatically when you import connector files by using the
Deployment Manager. The compiled adapter class files are stored in the Oracle
Identity Manager database, as opposed to the file system, from where they are loaded
at run time. The following two APIs are available to compile adapters
programmatically:

■ public void compileAdapter (String adapterName): This API compiles a single
adapter and stores the compiled classfile in the database. It takes the name of the
adapter as a parameter. If the adapter is not found or if there are any errors, the
API throws an appropriate exception.

■ public void compileAll: This API compiles all adapters in a system. If it
encounters any errors during compilation, it throws an exception of the type
tcBulkException. This exception comprises all the individual errors that the API
encounters during compilation.

You can modify the adapters manually if you make any changes.

Defining Adapters

Using the Adapter Factory 8-9

8.3.4.2 Compiling Adapters Manually
The Adapter Manager form is located in the Development Tools folder. You use it to
compile multiple adapters simultaneously.

To manually compile multiple adapters, perform these steps:

1. Open the Adapter Manager form.

The Adapter Manager form is in the Development Tools folder. It is used to
compile multiple adapters simultaneously, as shown in Figure 8–2.

Figure 8–2 Adapter Manager Form

2. To compile every adapter that resides within the Oracle Identity Manager
database, select the Compile All option.

To compile multiple adapters, select the adapters you want to compile. Then,
select the Compile Selected option.

To compile all adapters that do not have an OK status, select the Compile
Previously Failed option.

3. Click the Start button.

Oracle Identity Manager will compile the adapters that match the criteria you
specified in Step 2.

8.4 Defining Adapters
To define an adapter:

1. Log in to Oracle Identity Manager Design Console.

Note: You must set the path of the JDK directory in the
XL.CompilerPath system property. Otherwise, an error is encountered
during the adapter compilation stage when you import an XML file
using the Deployment Manager.

Refer to the "System Properties in Oracle Identity Manager" in the
Oracle Fusion Middleware System Administrator's Guide for Oracle
Identity Manager for information about setting values of system
properties.

Tip: Oracle Identity Manager lets you review the record of any
adapter that appears within the Adapter Manager form to see detailed
information about the adapter.

 To view an adapter's record, select the desired adapter and either
double-click its row header, or right-click the adapter, and select the
Launch Adapter command from the menu that appears.

Defining Adapters

8-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

2. Open the Adapter Factory form. This form is in the Development Tools folder in
the Design Console.

3. In the Adapter Name field, enter the name of the adapter, for example, Create
Solaris User.

4. Double-click the Adapter Type lookup field.

The Lookup window is displayed, displaying the five types of Oracle Identity
Manager adapters. These are:

■ Process Task

■ Rule Generator

■ Pre-populate Rule Generator

■ Entity

■ Task Assignment

5. To enable the adapter to automate a process task, select Process Task (T).

To incorporate business rules into an Oracle Identity Manager or user-defined
form field, select Rule Generator (R). For example, for the User ID field of a form,
you can configure Oracle Identity Manager to concatenate the initial letter of the
user's first name with the user's last name.

You can attach a type of rule generator adapter to a user-created form field, so that
it can:

■ Display the data, which is generated by the adapter, automatically or
manually.

■ Use criteria that enable Oracle Identity Manager to determine which adapter is
applied to the designated form field.

To attach the adapter to an Oracle Identity Manager or user-defined form field,
and have Oracle Identity Manager trigger the adapter on preinsert, preupdate,
predelete, postinsert, postupdate, or postdelete, select Entity (E).

To allow the adapter to automate the allocation of a process task to a user or
group, select Task Assignment (A).

6. Select the type of adapter you want, for example, Process Task (T). Then, click OK.

Note: Although the adapter name can contain special characters,
Oracle recommends that you do not use them because there might be
run-time errors.

Tip: If you create an entity adapter, then an error might be generated
while compiling the adapter on computers with less file limits. To
avoid this problem, change the file limits in the
/etc/security/limits.conf file to the following:

soft nofile 4096

hard nofile 4096

Then, restart Oracle Identity Manager.

Tabs of the Adapter Factory Form

Using the Adapter Factory 8-11

7. In the Description field, type a description for the adapter, for example, This
adapter is used to create a new user for the Solaris environment.

8. From the toolbar, click Save.

The adapter is now stored in the Oracle Identity Manager database.

8.5 Tabs of the Adapter Factory Form
The Adapter Factory form in the Design Console contains the following tabs:

■ Adapter Tasks

■ Execution Schedule

■ Resources

■ Variable List

■ Usage Lookup

■ Responses

8.5.1 Adapter Tasks
In the Adapter Tasks tab, you can create and manage the atomic function calls of an
adapter. These function calls are known as adapter tasks.

The sequence of calls is vital because these calls in turn gets converted into Java
statements. In other words, if you put an Else call before an If call, then the adapter is
not compiled. In addition, you must understand the logical flow of java program while
creating adapter. Analogically, this is like writing an algorithm instead of a program
with Java syntax.

8.5.2 Execution Schedule
The Execution Schedule tab lets you specify when you want Oracle Identity Manager
to trigger a rule generator or an entity adapter. You can schedule Oracle Identity
Manager to run a rule generator (Adapter Type R) on preinsert and/or preupdate. You
can also configure Oracle Identity Manager to execute an entity adapter (Adapter Type
E) on preinsert, preupdate, predelete, postinsert, postupdate, or postdelete.

8.5.3 Resources
From the Resources tab, you can:

See Also: "Developing Process Forms" on page 6-1 for more
information about the Form Designer form

Caution: Process task adapters and task assignment adapters,
which are attached to process tasks, are triggered once the process
task's status becomes Pending. Therefore, you do not specify when
Oracle Identity Manager will trigger these types of adapters, Oracle
Identity Manager disables the Execution Schedule tab for them.

Also, because Oracle Identity Manager always triggers pre-populate
adapters on preinsert, Oracle Identity Manager disables the check
boxes of this tab for pre-populate adapters.

Tabs of the Adapter Factory Form

8-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Click the Java APIs subtab to see the Java APIs that are being used by the adapter.

■ Click the Other subtab to document a non-Java API file to the adapter, if necessary.

8.5.4 Variable List
For prepopulation adapters, the data is passed to adapter input variables and are
processed by using adapter logic. The adapter returns output variable, which is then
assigned to process form field.

From the Variable List tab, you can:

■ Create, modify, and delete adapter variables.

■ Set the data type and provide a description for each variable.

■ Map an adapter variable to a literal or an adapter reference. You can also postpone
the mapping until it is attached to a process task or a form field.

You also can resolve the value of the adapter variable at run time, when it is attached
to a process task and the process task is run. As a result, process-specific data is
available to map to this variable.

8.5.5 Usage Lookup
For a process task or task assignment adapter, the Usage Lookup tab displays the
process task to which the adapter is attached, as well as the process of which this
process task is a member.

For a rule generator or entity adapter, this tab shows the Oracle Identity Manager form
and associated data object to which the adapter is attached. In addition, it displays the
execution schedule of the adapter, along with a sequence number that represents the
order in which Oracle Identity Manager will trigger the adapter.

For a pre-populate adapter, this tab displays the user-defined form and form field to
which the adapter is attached. Also, it shows the pre-populate rule that is associated
with the adapter.

8.5.6 Responses
The Responses tab is used for defining meaningful responses to the process task. These
responses depend on the execution result of the adapter. The various error messages
returned by the external system can be mapped to these responses in a way that they
make sense in the context of the process task. On attaching the adapter to a process
task, the status bucket, which consists of Pending, Completed, and Rejected, of the
process task (and subsequently the Object status) can be set, based on the adapter
response code.

Note: This Resources tab does not represent resource objects.

Tip: Oracle Identity Manager enables the Responses tab only for
process task adapters. If an adapter is a task assignment, rule
generator, pre-populate, or entity adapter, Oracle Identity Manager
disables this tab.

About Adapter Variables

Using the Adapter Factory 8-13

8.6 Disabling and Re-enabling Adapters
To disable an adapter so that it cannot be used with a process task or form field, select
the Disable Adapter option, and save the adapter.

To re-enable it, clear the Disable Adapter option, and save the adapter.

8.7 About Adapter Variables
For a newly-created adapter to work, you can map data to the parameters of the
adapter tasks. For this reason, you create placeholders, also known as adapter
variables, to map the data at run time.

Once an adapter variable is not needed for the adapter to run, you can remove it from
the adapter. After you have deleted the adapter variable, ensure to recompile the
adapter.

8.7.1 Creating an Adapter Variable
To create an adapter variable:

1. Select the adapter to which you wish to add an adapter variable, for example, the
Create Solaris User adapter.

2. Select the Variable List tab.

3. Click Add.

The Add a Variable window is displayed.

4. When you do not want Oracle Identity Manager to be able to change the adapter
variable value after it is activated, select Final.

5. In the Variable Name field, enter the name of the adapter variable, for example,
SolarisUserID.

6. From the Type menu, select the classification type of the adapter variable, such as
String. The available items are:

■ Object

■ IT Resource

■ String

■ Boolean

■ Character

■ Byte

■ Date

■ Integer

■ Float

Note: An adapter variable can be reused for all adapter tasks.

Caution: The adapter variable name cannot contain spaces.

About Adapter Variables

8-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Long

■ Short

■ Double

7. Within the Description text area, you can enter explanatory information about the
adapter variable.

8. From the Map To menu, you can map your adapter variable to one of the items
listed in Table 8–1.

9. On the toolbar in the Add a Variable window, click Save. The information for your
adapter variable is stored in the Oracle Identity Manager database.

Close the Add a Variable window to activate the main screen. The name,
classification type, mapping selection, and description of the adapter variable you
created appear in the child table of the Variable List tab.

This adapter variable now belongs to the adapter in the Adapter Factory form. It is
saved to the Oracle Identity Manager database, and the adapter variable is ready to
use.

Table 8–1 Items on the Map To Menu

Name Description

Literal This adapter variable is mapped to a constant (or literal).

Resolve at Run time This adapter variable's mapping occurs later, at run time.
Selecting this option increases the reusability of the adapter.

Adapter References This adapter variable gives access to an Oracle Identity Manager
database reference or an Oracle Identity Manager data object
reference.

System Date When this adapter variable is triggered by Oracle Identity
Manager, it is mapped to the current date and time of the Server.

Note: This option appears only when you select the Date type.

Note: When you select the object type, a Qualifier menu is displayed
within the Add a Variable window. From this menu, you can select
either of the following:

■ Database Reference. If you select this item, the adapter variable is
mapped to the reference of the database that the Oracle Identity
Manager is currently running against.

■ Data Object Reference. If you select this item, the adapter variable
is mapped to an Oracle Identity Manager data object.

Note: If you select the IT Resource type, a Resource Type menu is
displayed within the Add a Variable window. From this menu, you
can select one of the IT resource types that have been created by using
the IT Resource Type Definition form. By doing so, you can map the
adapter variable to a parameter of this IT resource type.

Creating Adapter Tasks

Using the Adapter Factory 8-15

8.7.2 Modifying an Adapter Variable
To modify an adapter variable:

1. Select the adapter that contains the adapter variable you want to edit, for example,
the Create Solaris User adapter.

2. Click the Variable List tab and double-click the row header of the adapter variable
you want to modify. The Edit a Variable window is displayed, showing
information about the adapter variable.

3. Make the necessary edits, for example, changing the adapter variable's data type
from String to Character.

4. On the Edit a Variable toolbar, click Save. The modified information about the
adapter variable is stored in the Oracle Identity Manager database.

5. Close the Edit a Variable window to activate the main screen. The adapter variable
you modified appears within the child table of the Adapter Factory form.

8.7.3 Deleting an Adapter Variable
When an adapter variable is no longer necessary for the adapter to run, you can
remove it from the adapter. To do this:

1. Select the adapter that contains an adapter variable you want to remove, for
example, the Create Solaris User adapter.

2. Select the Variable List tab.

3. From the list of this tab, select the adapter variable you want to delete.

4. Click Delete.

5. Recompile the adapter after deleting any variable.

The adapter variable disappears from the child table. The adapter variable has been
deleted.

8.8 Creating Adapter Tasks
After you construct the adapter and create its variables, you can create the atomic
function calls of an adapter. These function calls are known as adapter tasks.

This section explains adapter tasks and how to create tasks:

■ Types of Adapter Tasks

■ Creating a Java Task

■ Creating a Remote Task

■ Creating a Stored Procedure Task

■ Creating a Utility Task

■ To Create an Oracle Identity Manager API Task

■ Reassigning the Value of an Adapter Variable

■ Adding an Error Handler Task

Note: Ensure that you check your data mappings and recompile the
adapter, especially if you change the adapter variable's data type.

Creating Adapter Tasks

8-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Creating a Logic Task

8.8.1 Types of Adapter Tasks
Oracle Identity Manager allows you to create the following adapter tasks:

■ A Java task, which allows an adapter to communicate with an external source by
invoking Java API.

■ A remote task, which enables an adapter to call a method on an API. This API
resides on a computer that is external to Oracle Identity Manager.

This type of task is used mostly with integrations of third-party APIs that are not
network-enabled. A remote manager executes the remote API method, which is
located on a remote computer. In addition, if the third-party API does not use SSL,
you can use the remote manager to invoke third-party APIs over SSL-protected
communication. Remote tasks can also be used with integrations of third-party
APIs, which are network-enabled, but are not located on the Oracle Identity
Manager server for scalability purposes. The remote API method is still executed
by a remote manager. However, because the third-party API is network-enabled,
the remote manager does not have to reside on the target system.

■ A stored procedure task, which allows Oracle Identity Manager to map to and
execute SQL programs located within a particular database schema. These
programs are known as stored procedures. They contain information, such as SQL
statements, which are pre-compiled for greater efficiency.

By incorporating a stored procedure task into an adapter, and attaching this
adapter to a process task, Oracle Identity Manager can incorporate stored
procedures on any Oracle Database or Microsoft SQL Server database that is
accessible on its network. This includes retrieving primitive values from stored
procedures.

■ A utility task, which enables you to populate an adapter with methods and APIs
that come packaged with Oracle Identity Manager. In addition, this type of task
provides you with access to the Java Standard Library APIs.

■ An Oracle Identity Manager API task, which enables access to Oracle Identity
Manager published APIs from adapter tasks. This allows for enhanced portability
of adapter code.

■ A set variable task, which allows you to set a variable within an adapter.

■ An error handler task, which lets you display any errors associated with an
adapter that occur at run time. In addition, you can see the reasons for the errors,
along with possible solutions.

■ A logic task, which lets you build a conditional statement within an adapter.

You can create the following types of logic tasks:

■ FOR loops

■ WHILE loops

■ IF statements

■ ELSE statements

■ ELSE IF statements

■ BREAK statements

■ RETURN statements

Creating Adapter Tasks

Using the Adapter Factory 8-17

■ CONTINUE statements

■ SET VARIABLE statements

■ Handle Error statements

For classification purposes, Oracle Identity Manager represents each type of adapter
task by an icon. The icon, which precedes the task name, is a visual indicator of the
type of task it is. For example, "J" represents a Java task, and "LT" represents a logic
task.

To see a list of these icons, select the Adapter Tasks tab, and click Legend. The Legend
window appears, displaying the following list of icons:

■ Functional Task

– Java

– Remote

– Stored Procedure

■ Utility Task

– Utility

– Oracle Identity Manager API

■ Logical Task

8.8.2 Creating a Java Task
Oracle Identity Manager can handshake with an external source through a Java API.
To make this happen, you must add a task to an adapter which, when triggered by
Oracle Identity Manager, initiates communications with the external source. This type
of task is called a Java task.

To create a Java task:

1. Select the adapter to which you want to add a Java task, for example, the Update
Solaris Password adapter.

2. Select the Adapter Tasks tab.

3. Click Add.

After the Adapter Task Selection window is displayed, select the Functional Task
option.

4. From the display area to the right of this option, select the Java item, and click
Continue.

The Object Instance Selection window is displayed.

Table 8–2 explains the options in the Object Instance Selection window.

See Also: Section 8.8.9, "Creating a Logic Task" for more information
about the types of logic tasks you can build

Table 8–2 Options in the Object Instance Selection Window

Option Description

New Object Instance When you click this option, you are creating a new Java object
instance.

Creating Adapter Tasks

8-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

5. Click an option—for example, New Object Instance—and click Continue. The Add
an Adapter Factory Task window is displayed.

Table 8–3 lists and describes the various regions of the Add an Adapter Factory
Task window:

6. In the Task Name field, enter the name of the task you are creating, for example,
Update Password.

7. (Optional.) To make your Java object reusable, select Persistent Instance, type the
name of the instance of this task in the text field located to the right of the check
box.

Persistent Instance You can call the method on a persistent object by clicking this
option, clicking the adjacent combo box, and selecting an object
instance from the drop-down menu.

Task Return Value Instance You can call this method on an object returned by an adapter
task defined earlier by clicking this option, clicking the combo
box, and selecting an adapter task from the drop down list.

Note: When the Persistent Instance option is grayed out, it indicates
that you have not defined any persistent objects for your adapter.
Similarly, if the Task Return Value Instance option is grayed out, none
of the tasks have Java Object return values associated with them.

Table 8–3 Regions of the Add an Adapter Factory Task Window

Name Description

Task Name This field displays the name of the Java task.

Persistent Instance If this Java object is to be used again, the check box is selected,
and the name of the task instance is entered in the adjacent field.

API Source This combo box contains a list of all JAR and class files to which
you have access.

Application API This combo box contains a list of all class files to which you have
access, and which belong to the JAR file that has been selected
from the API Source list.

Constructors This text area displays all the constructors, which are available
for the Java object.

Methods This text area shows a list of all the methods, which are available
for the Java object.

Application Method
Parameters

This area contains the parameters of the selected constructor and
method. These parameters are mapped to the adapter variables
and Oracle Identity Manager components.

Caution: Ensure that name of the instance contains no spaces.

Table 8–2 (Cont.) Options in the Object Instance Selection Window

Option Description

Creating Adapter Tasks

Using the Adapter Factory 8-19

8. Select the API Source. The JAR files appear, which Oracle Identity Manager
references from the JavaTasks subdirectory of the OIM_HOME/ directory path—for
example, C:\oracle\Xellerate\JavaTasks.

9. Select the Application API. The class files, which belong to the JAR file you
selected in the API Source, appear.

10. From the Constructors area, select the method to be used to initialize the Java class
you selected.

11. From the Methods area, select the method that will be used with your Java task.

12. From the toolbar, click Save.

The information pertaining to the Java task is stored in the Oracle Identity
Manager database. You can now access the parameters of your Java task's
constructors and methods. These parameters appear in the Application Method
Parameters region of the Add an Adapter Factory Task window.

13. To display the Java class constructors and methods for which you must set
mappings, click the plus icons displayed to the left of the Constructor and Method
icons.

14. Select the parameter of the constructor or method for which you must set a
mapping.

15. In the Description text area, you can enter a description for this mapping.

16. Click the Map to combo box, and select an item that you can map to the parameter
of the constructor or method, for example, Adapter Variables.

17. Set the appropriate mappings.

18. Click Set.

The parameter of the selected constructor or method now appears in blue. This
signifies that it has been mapped.

Note: To reference a session with the target resource multiple times
during the life of the adapter, and not just once, select Persistent
Instance.

Tip: By setting the Java object to be persistent, the next time you
create a Java object, it appears in the Persistent Instance list of the
Object Instance Selection window. In addition, you do not have to
map the constructor to all adapter tasks of the same Java object.

See Also: Section 8.3.1, "Configuring the Adapter Environment" for
instructions on how to enable Oracle Identity Manager to use
third-party JAR files with a Java task

See Also: "Adapter Mapping Information" on page 8-56 for more
information about which mappings to set

Tip: To remove a parameter mapping, right-click the appropriate
parameter, and select Un-Map Parameter from the popup menu that
appears.

Creating Adapter Tasks

8-20 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

19. Repeat steps 15 through 18 for all parameters of the constructors and methods that
appear in the Application Method Parameters region.

20. On the Add an Adapter Factory Task window toolbar, click Save. The information
pertaining to the Java task is stored in the Oracle Identity Manager database.

21. On the toolbar, click Close. The Add an Adapter Factory Task window disappears,
and the main screen is active once again. The Java task that you created—for
example, Update Password—appears within the Adapter Factory form.

22. (Optional.) To create additional Java tasks for the adapter, repeat steps 3-21.

If the adapter is logically complete, and all variables on the adapter tasks are
mapped, you can compile it to use with a process task or form field.

23. To compile the adapter, click Build.

The text in the Compile Status field changes from Recompile to OK. This indicates
that Oracle Identity Manager compiled the adapter and found no errors. You can
now attach the adapter to a process task or form field.

24. (Optional.) To see the code that Oracle Identity Manager generates, from the
toolbar, click Notes.

The Notes window is displayed, containing the code that Oracle Identity Manager
generated.

Tip: You can create different types of adapter tasks, and add them to
the adapter.

Note: If, after clicking Build, CODE GEN ERROR appears in the
Compile Status field, it means that Oracle Identity Manager
encountered one of two types of errors while validating and
compiling the adapter:

■ Validation Error

While Oracle Identity Manager is checking the adapter to verify
that it is valid, an error is found. This error can result from a
parameter of an adapter task not being mapped, a parameter
being mapped improperly, or an adapter task being placed out of
order.

Because Oracle Identity Manager generates code for an adapter
only after it is validated, if Oracle Identity Manager encounters a
validation error, it does not create any code.

■ Java Compilation Error

Oracle Identity Manager has verified that the adapter is valid.
However, while Oracle Identity Manager is compiling the adapter,
an error is found. This error can result from assigning an incorrect
data type to an adapter task parameter.

Because Oracle Identity Manager has validated the adapter, it
generates code. However, Oracle Identity Manager stops building
code at the point of the compilation where it encounters the error.

Creating Adapter Tasks

Using the Adapter Factory 8-21

8.8.3 Creating a Remote Task
A remote task enables an adapter to invoke an API method by using the Remote
Manager. This API resides on a computer that is external to Oracle Identity Manager.
This section explains how to create a remote task.

1. Select the adapter to which you wish to add a remote task.

2. Click the Adapter Tasks tab.

3. Click Add.

The Adapter Task Selection window is displayed.

4. Select the Functional Task option.

5. From the display area to the right of the button, select the Remote item to create a
remote task. Then, click Continue.

The Object Instance Selection window is displayed.

6. Click Continue.

The Add an Adapter Factory Task window is displayed.

7. In the Task Name field, enter the name of the remote task you are creating.

8. (Optional.) If you want your remote task to be reusable, select the Persistent
Instance option. Then, type the name of the instance of this task in the text field,
located to the right of the check box.

Tip: Once you create a Java task, and add it to an adapter, you can
see the following information by accessing the Resources tab of the
Adapter Factory form:

■ The JAR and class files used to create the Java task.

■ The name, which represents the directory path that contains these
JAR and class files.

Note: Before creating a remote task, ensure that you define an
adapter variable with a classification type of IT Resource, as well as
select one of the IT resources that have been created by using the IT
Resource Type Definition form.

Note: To learn more about the choices of this window, refer to
Section 8.8.2, "Creating a Java Task".

Caution: Ensure that the name of the instance contains no spaces.

See Also:

Section 8.8.2, "Creating a Java Task" for more information about the regions of
the Add an Adapter Factory Task window

Section 8.3.1, "Configuring the Adapter Environment" for information about
how to enable Oracle Identity Manager to use third-party JAR files with a Java
task

Creating Adapter Tasks

8-22 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

9. From the Add an Adapter Factory Task window, select a JAR file, class file,
constructor, and method. Then, set the mappings for the parameters of the
constructor and method.

10. From the Add an Adapter Factory Task window toolbar, click Save.

The information pertaining to the remote task is stored in the Oracle Identity
Manager database.

11. From this window toolbar, click Close.

The Add an Adapter Factory Task window disappears, and the main screen is
active once again. The remote task that you created appears within the Adapter
Factory form.

12. (Optional.) To create additional remote tasks for the adapter, repeat Steps 3
through 11.

You are now ready to compile the adapter, so it can be used with a process task or
form field.

13. To compile the adapter, click Build.

The text in the Compile Status field changes from Recompile to OK. This indicates
that Oracle Identity Manager compiled the adapter and did not find any errors.
You can now attach the adapter to a process task or form field, so Oracle Identity
Manager can communicate with the external API.

8.8.4 Creating a Stored Procedure Task
Through Oracle Identity Manager, you can map to and execute SQL programs that are
located within a particular database schema. These SQL programs are known as stored
procedures. Stored procedures contain information, such as SQL statements, which are
precompiled for greater efficiency.

For this to occur, you must add a stored procedure task to an adapter. When triggered
by Oracle Identity Manager, this task incorporates stored procedures on any Oracle
Database or Microsoft SQL Server database that is accessible on its network. This
includes retrieving primitive values from stored procedures.

Take these steps to create a stored procedure task:

Note: One of the input parameters will have a classification type of
IT Resource. You must associate this parameter with an adapter
variable of type IT Resource.

See Also: "Adapter Mapping Information" on page 8-56 for more
information about which mappings to select

Creating Adapter Tasks

Using the Adapter Factory 8-23

1. For Oracle Identity Manager Installations that use Oracle Database, copy the
ojdbc14.jar file from the OIM_HOME/ext/ directory to the
OIM_DC_HOME/xlclient/ext directory.

For Oracle Identity Manager Installations that use Microsoft SQL Server, you must
obtain the following files from Microsoft and copy them to the
OIM_DC_HOME/xlclient/ext directory:

■ msbase.jar

■ mssqlserver.jar

■ msutil.jar

2. Select the adapter to which you wish to add a stored procedure task, for example,
the Update User ID adapter.

3. Click the Adapter Tasks tab.

4. Click Add.

The Adapter Task Selection window is displayed.

5. Select the Functional Task option.

6. From the display area to the right of the option, select Stored Procedure, and click
Continue. The Add an Adapter Factory Task window is displayed.

The following table lists and describes the regions of the Add an Adapter Factory
Task window.

Note: The parameter values and server type for the database schema
are set within the IT Resources form.

The server type of the schema must be set to Database. Otherwise,
Oracle Identity Manager cannot reference the database schema during
the creation of a stored procedure task, the execution of a stored
procedure task, or both.

In addition, Oracle Identity Manager uses values, which are
represented by parameters—for example, Database Name or URL—to
connect to the schema. As a result, the stored procedures contained
within the schema, can be executed.

Table 8–4 Regions of the Add an Adapter Factory Task Window

Name Description

Task Name Displays the name of the stored procedure task.

Description Displays explanatory information about the stored procedure
task.

Database Lists the databases defined in the IT Resources form.

Important: Only those IT resources with a server type of
Database appear in the Database list.

Schema Lists the schemas, which are associated with the database that
appears in the Database list.

Procedure Lists the stored procedures, which reside within the database
schema that is displayed in the Schema list.

Creating Adapter Tasks

8-24 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

7. In the Task Name field, enter the name of the stored procedure task you are
creating (for example, Update ID).

8. In the Description text area, you can enter a description for this stored procedure
task.

9. Click the Database list. The databases, which are defined in the IT Resources form,
appear.

10. Click the Schema list. The schemas appear, which are associated with the database
you selected.

11. Click the Procedure list. The stored procedures, which reside within the database
schema that you selected from the Schema combo box, appear.

12. From the Add an Adapter Factory Task window's toolbar, click Save. The
information pertaining to the stored procedure task is saved into the Oracle
Identity Manager database.

Connection Status Displays the status of the connection between Oracle Identity
Manager and the database that contains the target stored
procedure.

When Oracle Identity Manager can connect to the database,
Connection Established is displayed in the Connection Status
region.

Note: If Oracle Identity Manager cannot connect, Connection
Failed appears in the display area. In addition, the Notes button
of the Add an Adapter Factory Task window is enabled.
Clicking this button shows you why a connection could not be
established, for example:

 Exception Type:

 java.lang.ClassNotFoundExceptionMessage:

 java.lang.ClassNotFoundException:

 oracle.jdbc.driver.OracleDriver

In this example, Oracle Identity Manager could not connect to
the designated database because it could not find a particular
Java class.

Parameters Contains parameters that can be mapped to the stored
procedure. These parameters appear after you select a database,
schema, and stored procedure and save this information to the
Oracle Identity Manager database.

Note: If Oracle Identity Manager cannot connect to the database you
selected, Connection Failed appears in the display area. In addition, the
Notes button of the Add an Adapter Factory Task window is enabled.
Clicking this button shows you why a connection could not be
established.

Tip: Schemas and stored procedures appear only after you select a
database to which Oracle Identity Manager can connect. Based on this
selection, related schemas and stored procedures appear in the
corresponding combo boxes.

Table 8–4 (Cont.) Regions of the Add an Adapter Factory Task Window

Name Description

Creating Adapter Tasks

Using the Adapter Factory 8-25

You can now set the mappings for the parameter(s) of the stored procedure. These
parameters appear in the Parameters region of the Add an Adapter Factory Task
window.

13. From the Add an Adapter Factory Task window's toolbar, click Save. The
mappings that you have set for the parameter(s) of the stored procedure task are
stored in the Oracle Identity Manager database.

14. From this window's toolbar, click Close.

The Add an Adapter Factory Task window disappears, and the main screen is
active once again. The stored procedure task you created (for example, Update ID)
appears within the Adapter Factory form.

15. (Optional.) Repeat steps 3 through 13 to create additional stored procedure tasks
for the adapter.

16. To compile the adapter, click Build.

The text in the Compile Status field changes from Recompile to OK. This indicates
that Oracle Identity Manager compiled the adapter and did not find any errors.
You can now attach the adapter to a process task or form field, so Oracle Identity
Manager can map to and execute the stored procedure you selected.

8.8.5 Creating a Utility Task
The Adapter Factory is shipped with a library of utility classes and methods, which
increase the efficiency of developing adapters.

These utility classes and methods are contained within the xlUtils.jar,
xlIntegration.jar, and rt.jar files. A Java task you create by using a class or method
from one of these JAR files is called a utility task.

1. Select the adapter to which you wish to add a utility task, for example, the Update
Solaris User Group adapter.

2. Click the Adapter Tasks tab.

3. Click Add.

The Adapter Task Selection window is displayed.

4. Select the Utility Task option.

5. From the display area to the right of the option, select Utility, and click Continue.
The Object Instance Selection window is displayed.

Note: Oracle Identity Manager automatically maps the database and
schema of the selected stored procedure. However, Oracle Identity
Manager enables you to override these mappings.

See Also: "Adapter Mapping Information" on page 8-56 for more
information about which mappings to select

See Also: Oracle Fusion Middleware Java API Reference for Oracle
Identity Manager for more information about the class files that
contains the xlUtils.jar, xlAPI.jar, xlIntegration.jar, and rt.jar files

Creating Adapter Tasks

8-26 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

6. Click Continue. The Add an Adapter Factory Task window is displayed

7. In the Task Name field, enter the name of the utility task you are creating, for
example, Update User Group.

8. (Optional.) If you want your utility task to be reusable, select Persistent Instance,
type the name of the instance of this task in the text field to the right of the check
box.

9. Click the Application API list. The class files appear, which belong to the
xlUtils.jar, xlIntegration.jar, and rt.jar files.

10. From the Add an Adapter Factory Task window, select a constructor and method.
Then, set the mappings for the parameters of the constructor and method.

11. From the Add an Adapter Factory Task window's toolbar, click Save. The
information pertaining to the utility task is stored in the Oracle Identity Manager
database.

12. From this window's toolbar, click Close.

The Add an Adapter Factory Task window disappears, and the main screen is
active once again. The utility task that you created (for example, Update User
Group) appears within the Adapter Factory form.

13. (Optional.) Repeat steps 3 through 12 to create additional utility tasks for the
adapter.

You are now ready to compile the adapter, so it can be used with a process task or
form field.

14. To compile the adapter, click Build.

The text in the Compile Status field changes from Recompile to OK. This indicates
that Oracle Identity Manager compiled the adapter and did not find any errors.
You can now attach the adapter to a process task or form field.

8.8.6 To Create an Oracle Identity Manager API Task
For greater portability of the adapter code, an Oracle Identity Manager API task
enables Adapter tasks to call APIs published by Oracle Identity Manager. This is better

See Also: "Creating a Java Task" on page 8-17 to learn more about
the choices of this window

Caution: Ensure that name of the instance does not contain any
spaces.

See Also:

"Creating a Java Task" on page 8-17 for more information about the regions of
the Add an Adapter Factory Task window

"Configuring the Adapter Environment" on page 8-7

Note: The xlUtils.jar, xlIntegration.jar, and rt.jar files contain all of
the class files that you can use for a utility task. Therefore, you do not
have to access the API Source list.

Creating Adapter Tasks

Using the Adapter Factory 8-27

than accessing Oracle Identity Manager data directly through hardcoded SQL
statements.

The Adapter Factory is shipped with a library of utility classes and methods, which
increase the efficiency of developing adapters that contain Oracle Identity Manager
API tasks. These utility classes and methods are contained within the xlAPI.jar file.

To create this type of adapter task:

1. Select the adapter to which you wish to add an Oracle Identity Manager API task,
for example, the Get User's Password adapter.

2. Click the Adapter Tasks tab.

3. Click Add.

The Adapter Task Selection window is displayed.

4. Select the Utility Task option.

5. From the display area to the right of the option, select Xellerate API, and click
Continue. The Object Instance Selection window is displayed.

6. Click Continue. The Add an Adapter Factory Task window is displayed.

7. In the Task Name field, enter the name of the Oracle Identity Manager API task
you are creating, for example, Retrieve Password).

8. (Optional.) If you want your Oracle Identity Manager API task to be reusable,
select Persistent Instance. Then, type the name of the instance of this task in the
text field to the right of the check box.

9. Click the Application API list. The class files appear, which belong to the
xlAPI.jar file.

10. From the Add an Adapter Factory Task window, select a class file, constructor, and
method. Then, set the mappings for the parameters of the constructor and method.

See Also: Oracle Fusion Middleware Java API Reference for Oracle
Identity Manager for more information about the class files that contain
the xlUtils.jar, xlAPI.jar, xlIntegration.jar, and rt.jar files

See Also: "Creating a Java Task" on page 8-17 to learn more about
this window

Tip: Ensure that name of the instance contains no spaces.

See Also:

"Creating a Java Task" on page 8-17 for more information about the regions of
the Add an Adapter Factory Task window

"Configuring the Adapter Environment" on page 8-7 to learn how to enable
Oracle Identity Manager to use third-party JAR files with a Java task

Note: The xlAPI.jar file contains all of the class files that you can
use for an Oracle Identity Manager API task. Therefore, you do not
have to access the API Source list.

Creating Adapter Tasks

8-28 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

11. From the Add an Adapter Factory Task window's toolbar, click Save. The
information pertaining to the Oracle Identity Manager API task is stored in the
Oracle Identity Manager database.

12. Close the Add an Adapter Factory window to activate the main screen. The Oracle
Identity Manager API task that you created—for example, Retrieve
Password—appears within the Adapter Factory form.

13. (Optional.) To create additional Oracle Identity Manager API tasks for the adapter,
repeat steps 3 through 12.

You are now ready to compile the adapter, so it can be used with a process task or
form field.

14. To compile the adapter, click Build.

The text in the Compile Status field changes from Recompile to OK. This indicates
that Oracle Identity Manager compiled the adapter and did not find any errors.
You can now attach the adapter to a process task or form field, so Oracle Identity
Manager can communicate with a third-party application.

8.8.7 Reassigning the Value of an Adapter Variable
Sometimes, for an adapter to accomplish its required objective, you must reassign the
value of one adapter variable to another adapter variable, a different type of adapter
task, or a constant (or literal). The task that enables you to reallocate an adapter
variable value is known as a set variable task.

For example, you can create a set variable task to set the adapter variable return value
to equal the output of an adapter task (UserName) if the User ID length is fewer than
11 characters.

To create a set variable task:

1. Select the adapter to which you wish to add a set variable task (for example, the
Check the Solaris User ID adapter).

2. Click the Adapter Tasks tab.

3. Click Add. The Adapter Task Selection window is displayed.

4. Select the Logic Task option.

5. From the display area, select SET VARIABLE, and click Continue. The Add Set
Variable Task Parameters window is displayed.

6. From the Variable Name list, select the adapter variable that has a value you want
to reassign—for example, Adapter return value.

7. From the Operand Type list, select the type of operand that will provide the value
for the variable.

See Also: "Adapter Mapping Information" on page 8-56 for more
information about which mappings to select

See Also: "About Adapter Variables" on page 8-13 for information
about adapter variables

Tip: You can reassign an adapter variable's value to another adapter
variable, a different type of adapter task, or a literal.

Creating Adapter Tasks

Using the Adapter Factory 8-29

Use Table 8–5 to understand the various types of operands.

The following task sets the adapter variable's return value to be equal to the
UserName adapter variable.

1. On the toolbar in the Add Set Variable Task Parameters window, click Save. The
set variable task you created is stored in the Oracle Identity Manager database.

2. On the Add Set Variable Task Parameters window toolbar, click Close. The Add
Set Variable Task Parameters window disappears, and the main screen is active
once again. The set variable task that you created, for example, Set Adapter
return value = UserName, appears in the Adapter Factory form.

3. (Optional.) Repeat Steps 3-9 to create additional set variable tasks for the adapter.

You are now ready to compile the adapter, so it can be used with a process task or
form field.

4. To compile the adapter, click Build. The text in the Compile Status field changes
from Recompile to OK. Oracle Identity Manager compiled the adapter and found
no errors. You can attach the adapter to a process task or form field.

8.8.8 Adding an Error Handler Task
To add an error handler task:

1. An adapter task can return errors. When this occurs, the process task or form field
to which the adapter is attached gets rejected.

You can attach your own customizable error messages, which will be displayed to
the user. These messages are known as error handler tasks.

For example, you can attach an error handler task to an adapter that will display
an error message when the length of a User ID is greater than 10 characters.

2. Select the adapter to which you wish to add an error handler task (for example,
the Check the Solaris User ID adapter).

Table 8–5 Types of Operands

Operand Name Description

Variable If you select this operand type, adapter variables appear in the
Operand Qualifier list. From this list, select the specific adapter
variable that will provide the reassigned value.

Note: The only adapter variables that will appear in the
Operand Qualifier combo box will be those variables that have
the same data type as the adapter variable that is displayed
within the Variable Name combo box.

Adapter Task By selecting this operand type, adapter tasks are displayed in
the Operand Qualifier combo box. From this combo box, select
the particular adapter task that will provide the reallocated
value.

Note: The only adapter tasks that will appear in the Operand
Qualifier combo box will be those tasks that have the same data
type as the adapter variable that is displayed within the Variable
Name combo box.

Literal When you select this operand type, types of literals appear in the
Operand Qualifier combo box. From this combo box, select the
type of literal that will provide the reallocated value. Then, type
the specific literal into the field that appears underneath the
combo box.

Creating Adapter Tasks

8-30 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

3. Click the Adapter Tasks tab.

4. Click Add.

The Adapter Task Selection window is displayed.

5. Select the Logic Task option.

6. From the display area, select Handle Error, and click Continue. The Add an
Adapter Factory Task window is displayed.

7. Double-click this window's lookup field. The Lookup window is displayed,
displaying the error handler tasks you can add to the adapter.

8. Select the error handler task you want, for example, ADAPTER.USERIDLENERR.

9. Click OK. The Lookup window disappears, and the Add an Adapter Factory Task
window is active. In addition, the error handler task you selected appears in the
field of this window.

10. From the Add an Adapter Factory Task window toolbar, click Save. The error
handler task you incorporated into the adapter is stored in the Oracle Identity
Manager database.

11. From this window's toolbar, click Close.

The Add an Adapter Factory Task window disappears, and the main screen is
active once again. The error handler task you added, for example, Handle
Error.ADAPTER.USERIDLENERR, appears within the child table of the Adapter
Factory form.

12. (Optional.) Repeat Steps 3-10 to create additional error handler tasks for the
adapter.

If the adapter is logically complete and all variables on the adapter tasks are
mapped, you can compile it to use with a process task or form field.

13. To compile the adapter, click Build.

The text in the Compile Status field changes from Recompile to OK. This indicates
that Oracle Identity Manager compiled the adapter and did not find any errors.
You can now attach the adapter to a process task or form field.

8.8.9 Creating a Logic Task
While defining the adapter, you can add conditional statements to the adapter to
control its logic flow. These conditional statements are known as logic tasks. For
example, you can create a logic task that will trigger an action if the length of a User ID
is greater than 10 characters.

Note: The only error handler tasks that appear in this Lookup
window are the ones that begin with ADAPTER—such as
ADAPTER.USERIDLENERR).

If you do not see the error handler task that you want to incorporate
into the adapter, you can create one by accessing the Error Message
Definition form. Refer to "Defining Error Messages" on page 8-67.

See Also: "Defining Error Messages" on page 8-67 for information
about creating error messages by using the Error Message Definition
form

Creating Adapter Tasks

Using the Adapter Factory 8-31

To create a logic task:

1. Select the adapter to which you wish to add a logic task (for example, the Check
the Solaris User ID adapter).

2. Click the Adapter Tasks tab.

3. Click Add. The Adapter Task Selection window is displayed.

4. Select the Logic Task option.

5. From the display area, select the type of logic task you want to create. Then, click
Continue.

To see what happens when you select a particular conditional statement, refer to
Table 8–6.

Table 8–7 explains the various regions of the Add Adapter Factory Logic Task
Parameters window:

Note: If you select a conditional expression, and click Continue, one
of the following actions occurs:

Oracle Identity Manager adds the conditional statement to the adapter
directly; or

A secondary window is displayed, containing fields about the
conditional expression that you can configure.

Table 8–6 Actions Resulting from Particular Conditional Statements

Conditional Statement
Statement Is Added to the
Adapter Directly Secondary Window Appears

FOR X

WHILE X

IF X

ELSE X

ELSE IF X

BREAK X

RETURN X

CONTINUE X

Table 8–7 Regions of the Add Adapter Factory Logic Task Window

Name Description

Operand Type These combo boxes contain types of operands, such as adapter
tasks and adapter variables.

Comparator Combo Box From this combo box, you can set the relationship between two
operands (for example, <, =, >).

Operand Qualifier These combo boxes contain the qualifiers for the operands.

Literal Text Box When you select the Literal operand type, enter the specific
literal into this field.

Creating Adapter Tasks

8-32 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

For the FOR conditional expression, use Table 8–8 to understand the various
regions of this Add Adapter Factory Logic Task Parameters window.

6. Set the parameters for your conditional expression.

This logic task will check to see if the length of the User ID is greater than 10
characters.

7. From the Add Adapter Factory Logic Task Parameters window toolbar, click Save.

The logic task you created is stored in the Oracle Identity Manager database.

8. From this window toolbar, click Close. The Add Adapter Factory Logic Task
Parameters window disappears, and the main screen is active once again. The
logic task that you created—for example, If (Check ID Length > 10)—appears
within the Adapter Factory form.

9. (Optional.) Repeat Steps 3-8 to create additional logic tasks for the adapter.

You are now ready to compile the adapter, so it can be used with a process task or
form field.

10. To compile the adapter, click Build.

The text in the Compile Status field changes from Recompile to OK. This indicates
that Oracle Identity Manager compiled the adapter and did not find any errors.
You can now attach the adapter to a process task or form field.

Note: By selecting the FOR conditional statement, an Add Adapter
Factory Logic Task Parameters window is displayed. However, it
contains different text and combo boxes.

Table 8–8 Add Adapter Factory Logic Task Parameters for FOR Conditional Statement

Name Description

Operand Type These combo boxes contain types of operands, such as adapter
tasks and adapter variables.

Comparator Combo Box From this combo box, you can set the relationship between two
operands (for example, <, =, >).

Operand Qualifier These combo boxes contain the qualifiers for the operands.

Increment Combo Box Within this area, you can set whether the initial value will
increase or decrease, and by how much.

Note: If you select the ELSE, BREAK, RETURN, or CONTINUE
conditional expressions, proceed to Step 8.

Caution: All adapter tasks that can be executed for a condition of a
logic task should be nested properly under that logic task.

See Also: Section 8.10, "Changing the Order and Nesting of Tasks"
for more information about nesting tasks

Changing the Order and Nesting of Tasks

Using the Adapter Factory 8-33

8.9 Modifying Adapter Tasks
The following procedure will show you how to edit an adapter task, in case you must
make changes to it. To modify an adapter task

1. Select the adapter that contains the adapter task you wish to edit (for example, the
Update Solaris User Group adapter).

2. Click the Adapter Tasks tab.

3. Double-click the adapter task that you want to modify.

The Edit Adapter Factory Task Parameters window is displayed, displaying
information that relates to the adapter task you selected. Within this window,
make the necessary modifications.

4. On the Edit Adapter Factory Task Parameters window toolbar, click Save.

The information you modified is stored in the Oracle Identity Manager database.

5. On the toolbar, click Close.

The Edit Adapter Factory Task Parameters window disappears. The main screen is
active again. The modified task appears within the child table of the Adapter
Factory form. You must re-compile the adapter, so it can be used with a process
task or form field.

6. To recompile the adapter, click Build.

The text in the Compile Status field changes from Recompile to OK. This indicates
that Oracle Identity Manager compiled the adapter and did not find any errors.
You can now attach the adapter to a process task or form field.

8.10 Changing the Order and Nesting of Tasks
If you add multiple tasks to an adapter, you can either change the order in which the
tasks are executed, or place one task inside of another task for the adapter to work.

The following procedure will show you how to change the order and nesting of tasks.

To change the order and nesting of tasks:

1. Select the adapter that contains tasks of which you want to change the order
and/or nest (for example, the Check the Solaris User ID adapter).

2. Click the Adapter Tasks tab.

The tasks appear, which belong to the current adapter.

Caution: You cannot modify the API call inside a Java, Xellerate
API, or Utility task. The adapter task has to be deleted and
re-created.

In addition, if CODE GEN ERROR appears in the Compile Status
field, Oracle Identity Manager encountered errors while compiling
the adapter. Rectify the errors, if necessary re-do the adapter task
modifications, and compile the adapter again.

Caution: You should not change the order and nesting of adapter
tasks unless you understand the mapping dependencies of the
adapter tasks.

Deleting Adapter Tasks

8-34 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

In this example, the following changes must occur:

■ The error handler task must be nested inside of the IF (Check ID Length > 10)
logic task.

■ The set variable task has to be nested inside of the ELSE logic task.

■ The IF logic task precedes the ELSE logic task.

Therefore, you must first reorganize the logic tasks. Then, you must nest the error
handler task and set variable task inside of the IF and ELSE logic tasks,
respectively. To reorganize tasks:

3. Select the task that must run before another task, and click the Up arrow button.
The selected task will switch places with the task that precedes it.

or

Select the task that must be executed after another task, and click the Down arrow
button. The highlighted task is displayed below the task that previously followed
it.

To nest tasks/remove task nestings:

4. Select the task that must be placed inside of another task, and click the Right
arrow button. The selected task will be nested inside of the task that appears above
it.

or

Select the task that no longer be nested inside of another task, and click the Left
arrow button. The highlighted task will not be nested inside of the task that is
displayed above it.

5. On the toolbar, click Save.

The order and nesting of the adapter's tasks is stored in the Oracle Identity
Manager database. If the adapter is logically complete and all variables on the
adapter tasks are mapped, you can compile it to use with a process task or form
field.

6. To compile the adapter, click Build.

The text in the Compile Status field changes from Recompile to OK. This indicates
that Oracle Identity Manager compiled the adapter and did not find any errors.
You can now attach the adapter to a process task or form field.

8.11 Deleting Adapter Tasks
When an adapter task is no longer necessary for the adapter to run, you must remove
it from the adapter. To delete an adapter task:

1. Select the adapter that contains the task you wish to remove (for example, the
Update Solaris User Group adapter).

2. Click the Adapter Tasks tab.

3. Select the task that you want to remove (for example, the CONTINUE logic task).

Caution: If you see CODE GEN ERROR in the Compile Status
field, Oracle Identity Manager found errors while compiling the
adapter. Rectify the errors, if necessary re-do the adapter task
modifications, and compile the adapter again.

Working with Responses

Using the Adapter Factory 8-35

4. Click Delete.

The selected task is deleted and disappears from the child table.

5. On the toolbar, click Save.

6. Recompile the adapter.

8.12 Working with Responses
Adapters can have different outcomes, called responses. Based on these responses,
adapters can trigger other process tasks.

For example, if the adapter returns a True response, the process task's status can be set
automatically to Completed. However, if the adapter returns a False response, the
process task's status can be set automatically to Rejected, and another process task can
be triggered.

These responses can be added, modified, or removed on the Responses tab of the
Adapter Factory form.

The following procedures will show you how to create, modify, and delete responses.

8.12.1 To Create a Response
1. Select the adapter to which you want to add responses (for example, the Create

Solaris User adapter).

2. Click the Responses tab.

3. Click Add.

An empty row is inserted into the Responses tab.

4. Click the field that appears within the Code Name column.

5. Enter a code, which represents a response type that can be generated (for example,
True).

6. Click the field that appears within the Description column.

7. Enter a description for this response (for example, The user was created successfully.).

8. Double-click the field that appears within the Status column.

The Lookup popup window is displayed, containing the different status levels that
you can associate with the response.

Caution: While deleting adapter tasks, ensure that the logic of the
adapter is consistent and maintained.

Note: Responses are used only with process task adapters, because
these adapters are attached to process tasks. Rule generators,
pre-populate adapters, and entity adapters are not connected to
processes. In addition, task assignment adapters are not associated
with responses. Therefore, if the active adapter is a task assignment
adapter, rule generator, pre-populate adapter, or entity adapter, Oracle
Identity Manager disables the Responses tab.

Working with Responses

8-36 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

9. Click the desired status level (for example, Completed (C)). Then, click OK.

The Lookup window disappears, and the Responses tab is active once again.

10. Create another response, by clicking the Add button, and entering False and The
user was not created successfully. into the Code Name and Description fields,
respectively. Then, access the Lookup window, and assign the Rejected (R) status
level to this response.

11. On the toolbar, click Save.

The responses that you created for this adapter have been stored in the Oracle
Identity Manager database. After you attach this adapter to a process task, these
responses will appear in the Responses tab of the Editing Task window of the
Process Definition form.

8.12.2 To Modify a Response
The following procedure demonstrates how to edit a response.

1. Select the adapter that contains the response you want to edit (for example, the
Create Solaris User adapter).

2. Click the Responses tab.

3. Double-click the field of the response, which contains information that you want
to modify.

a. If the field is a text field, Oracle Identity Manager enables it. You can now edit
the contents within this field.

b. When the field is a lookup field, the Lookup popup window is displayed,
containing the different status levels that you can associate with the response.
Click the desired status level, click OK.

For example, double-click the Status column of the False response, select the
Suspended (S) status level, and click OK.

4. On the toolbar, click Save.

The information that you modified for the response is stored in the Oracle Identity
Manager database.

8.12.3 To Delete a Response
When a response is no longer necessary, you can delete it from the adapter.

1. Select the adapter, which contains a response that you want to remove.

2. Click the Responses tab.

3. Select the response that you want to delete.

4. Click Delete.

The response disappears. This indicates that Oracle Identity Manager has deleted the
response.

Note: For more information about Oracle Identity Manager's status
levels, refer to Chapter 4, "About Process Task Adapters" on page 4-1.

Scheduling Rule Generators and Entity Adapters

Using the Adapter Factory 8-37

8.13 Scheduling Rule Generators and Entity Adapters
Oracle Identity Manager triggers a process task adapter or a task assignment adapter
automatically if it is attached to a process task, and the process task's status is Pending.
In addition, Oracle Identity Manager always triggers pre-populate adapters on
pre-insert. Therefore, you do not schedule when process task adapters, task
assignment adapters, or pre-populate adapters will be executed.

On the other hand, a rule generator and an entity adapter are attached to a form field.
The only way that Oracle Identity Manager will be able to execute the rule generator
or entity adapter is for you to specify when it will be triggered. You do this through
the Execution Schedule tab.

Using this tab, you can determine that Oracle Identity Manager will trigger the rule
generator or entity adapter on preinsert or preupdate. In addition, you can also
schedule an entity adapter to be executed on predelete, postinsert, postupdate, and
postdelete.

This procedure demonstrates how to configure Oracle Identity Manager to trigger a
rule generator or entity adapter.

8.13.1 Scheduling Rule Generators and Entity Adapters
To schedule rule generator and entity adapters:

1. Select the rule generator or entity adapter that you want Oracle Identity Manager
to trigger (for example, Solaris User ID Generator).

2. Click the Execution Schedule tab.

The contents of the Execution Schedule tab appear.

The following table will help you understand the various check boxes of the
Execution Schedule tab:

Note: If an entity adapter is attached to a process form or an object
form for validation of field values, these adapters will trigger if we
edit data in these forms after completing direct or request
provisioning.

Note: When you work with process task adapters or pre-populate
adapters, you do not use the Execution Schedule tab. As a result, this
tab, as well as its contents, are grayed out.

Name Description

Pre-Insert By clicking this check box, Oracle Identity Manager can
trigger the rule generator or entity adapter before the
record is inserted into the database.

Pre-Update When you click this check box, Oracle Identity Manager
can trigger the rule generator or entity adapter before the
record is updated in the database.

Pre-Delete By clicking this check box, Oracle Identity Manager can
trigger the entity adapter before the record is deleted from
the database.

Working with Rule Generator Adapters

8-38 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

3. Enable the desired check boxes. Then, from the toolbar, click Save.

The criteria you set for Oracle Identity Manager to execute the rule generator or
entity adapter is stored in the Oracle Identity Manager database.

8.14 Working with Rule Generator Adapters
This section explains how to work with rule generator adapters, and contains these
topics:

■ Mapping Rule Generator Adapter Variables

■ Associating Rule Generators with Processes

■ Removing Rule Generators from Form Fields

8.14.1 Mapping Rule Generator Adapter Variables
After creating a rule generator, you must map the adapter variables of the rule
generator to their proper locations to ensure that the adapter will function as intended.

To map these adapter variables, access the Data Object Manager form from the
Development Tools/Business Rule Definition folder of the Design Console.

To map the adapter variables of a rule generator to their proper locations:

1. Open the Data Object Manager form. In the Design Console workshops, the Data
Object Manager form is displayed.

The following table lists and describes the various regions of the Data Object
Manager form:

Post-Insert When you click this check box, Oracle Identity Manager
can trigger the entity adapter after the record is inserted
into the database.

Post-Update By clicking this check box, Oracle Identity Manager can
trigger the entity adapter after the record is updated in the
database.

Post-Delete When you click this check box, Oracle Identity Manager
can trigger the entity adapter after the record is deleted
from the database.

Note: By clicking the check boxes of the Execution Schedule tab, you
are defining the times when Oracle Identity Manager can trigger the
rule generator or entity adapter. The Data Object Manager form allows
you to specify when Oracle Identity Manager will trigger the rule
generator or entity adapter.

For more information about the Data Object Manager form, refer to
"Mapping Rule Generator Adapter Variables".

Name Description

Form Description
Field

From this lookup field, select the form that contains the field to
which you are attaching the rule generator.

Name Description

Working with Rule Generator Adapters

Using the Adapter Factory 8-39

2. Double-click the Form Description field. A Lookup dialog box appears with the
forms to which you can attach rule generators.

3. Select the form you want (for example, Solaris). Then, click OK.

4. On the toolbar, click Save.

The selected form, the form's data object, and the rule generator adapters
associated with the form appear. In addition, Oracle Identity Manager enables the
Map Adapters tab.

For this example, the Solaris form has been selected. Its data object
Thor.CarrierBase.tcUD_SOLARIS appears, along with the four rule generator
adapters associated with it (adpCONVERTTOLOWERCASE, adpSOLARISHMDSTRINGGEN,
adpSETSOLARISASSET, and adpSETPASSWORDFROMMAIN). Oracle Identity Manager
will trigger these four rule generators on preinsert.

Based on the sequence numbers of these adapters, Oracle Identity Manager will
trigger the adpCONVERTTOLOWERCASE adapter first, followed by the
adpSOLARISHMDSTRINGGEN, adpSETSOLARISASSET, and adpSETPASSWORDFROMMAIN
adapters respectively.

For these rule generators to work properly, you must map the adapter variables to
their proper locations.

5. Click the Map Adapters tab.

6. From the Name combo box, select the rule generator, which has adapter variables
that can be mapped (for example, the adpCONVERTTOLOWERCASE rule generator).

Data Object Field This field displays the name of the data object, which is
represented by the selected form.

Attach Handlers Tab This tab displays:

■ The rule generators that are attached to the selected form.

■ The execution schedule of the rule generators associated
with this form.

■ The order in which Oracle Identity Manager will run the
rule generators.

■ Insert, update, and delete permissions for roles.

Map Adapters Tab This tab displays:

■ The names of the rule generators that are associated with
the form;

■ The status of these adapters.

■ The names, descriptions, and mapping statuses of the rule
generators' adapter variables.

Note: The Map Adapters tab is grayed out until an adapter is
assigned to the current data object.

Tip: To change the sequence of triggering a rule generator:

1. Click Assign. The Event Handlers dialog box is displayed.

2. Select the rule generator from.

3. Click the up arrow and down arrow buttons to modify the order of the
rule generator.

Name Description

Working with Rule Generator Adapters

8-40 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

The Map Adapters tab now displays the following:

■ The name of the rule generator that is to be attached to the form.

■ The status of the rule generator.

■ The names, descriptions, and mapping statuses of the rule generator's adapter
variables.

7. Set the mappings for each variable that appears in the Adapter Variables region of
the Map Adapters tab. To do so, double-click the row header of the variable you
want to map (for example, Data). The Data Mapping for Variable dialog box is
displayed.

Table 8–9 describes the various fields of the Data Mapping for Variable dialog box.

See Also: "Attaching Process Task Adapters to Process Tasks" on
page 8-51 for information about various mapping statuses for an
adapter

Table 8–9 Fields of the Data Mapping for Variable Dialog Box

Field Name Description

Variable Name This field displays the name of the adapter variable for which
you are setting a mapping (for example, Data).

Data Type This field shows the data type of the adapter variable (for
example, String is the data type for the Data adapter variable).

Map To This field contains the source and target locations of the
mappings you can set for the adapter variable (for example,
User Definition).

When you map the adapter variable to a location or a contact,
Oracle Identity Manager enables the adjacent combo box. From
this combo box, select the specific type of location or contact to
which you are mapping the adapter variable.

If you are not mapping the adapter variable to a location or
contact, this combo box is grayed out.

Qualifier This field contains the qualifiers for the mapping you selected
in the Map To combo box (for example, User Login).

IT Asset Type This field enables you to select a specific IT Resource (for
example, Solaris) when you map an adapter variable to an IT
Resource, and this variable's data type is String.

If you are not mapping the adapter variable to an IT Resource,
or the variable's data type is not String, this field does not
appear.

IT Asset Property This field enables you to select a specific field that will receive
the results of the mapping (for example, User Name), when you
map an adapter variable to an IT Resource, and this variable's
data type is String.

If you are not mapping the adapter variable to an IT Resource,
or the variable's data type is not String, this field does not
appear.

Important: The IT Asset Type and IT Asset Property fields are
included within this window for backward compatibility. The
preferred way is to create an adapter variable with a data type
of IT Resource, in which case these fields will not appear.

Working with Rule Generator Adapters

Using the Adapter Factory 8-41

Complete the Map To, Qualifier, IT Asset Type, IT Asset Property, and Literal
Value fields.

8. Click Save. Then, click Close

The Data Mapping for Variable window disappears. The Map Adapters tab is
active again.

9. On the main screen toolbar, click Save.

Repeat Steps 7 and 8 for all adapter variables that can be mapped.

The contents in the Status field change from Mapping Incomplete to Ready. In
addition, the mapping statuses for the adapter variables change from No (N) to Yes (Y).

This signifies that all the adapter variables for the rule generator adapter have been
mapped correctly. You are now ready to attach this rule generator to a provisioning
process, so it can be triggered after the process is provisioned to a target user or
organization.

8.14.2 Associating Rule Generators with Processes
After you map the adapter variables of a rule generator to their proper locations, you
must attach it to a provisioning process. Then, once the process is provisioned to a
target user or organization, Oracle Identity Manager will trigger the associated rule
generator.

Similarly, when a rule generator, which has been assigned to a provisioning process, is
no longer needed for the process to be completed, you must remove the rule generator
from the provisioning process.

To assign a rule generator to a provisioning process or remove a rule generator from a
provisioning process, access the Event Handlers/Adapters tab in the Process
Definition form. This form can be found in the Process Management folder.

Literal Value When you map the adapter variable to a literal, type the name
of the specific literal in this field (for example, IBM).

If you are not mapping the adapter variable to a literal, this
field does not appear.

See Also: "Adapter Mapping Information" on page 8-56 for more
information about the mappings to select

Tip: When you map all the adapter variables for a rule generator that
is associated with a form, a quick way to see the form to which it is
attached as well as the execution schedule of the rule generator, is by
accessing the Usage Lookup tab of the Adapter Factory form.

After the rule generator is assigned to a process, and the process is
provisioned, the rule generator will be executed by Oracle Identity
Manager.

Table 8–9 (Cont.) Fields of the Data Mapping for Variable Dialog Box

Field Name Description

Working with Entity Adapters

8-42 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

8.14.3 Removing Rule Generators from Form Fields
Sometimes, after you attach a rule generator to a form field, you can connect a
different rule generator to that form field. When this occurs, you must first remove the
rule generator that is currently attached to the form field.

To remove a rule generator from a form field, perform the following steps:

1. Open the Data Object Manager form.

2. Select the form that contains a rule generator you want to remove.

3. The selected form, along with its rule generators, appear in the Data Object
Manager form.

4. Click the rule generator that you want to remove from the form field.

5. Click Delete.

The selected rule generator no longer appears in the Data Object Manager form. This
indicates that you have removed the rule generator from the form field.

8.15 Working with Entity Adapters
For information about working with entity adapters, see:

■ Entity Adapters in "Types of Adapters" on page 8-3.

■ The procedures in "Working with Rule Generator Adapters" on page 8-38 for
details about mapping the variables of an entity adapter with Oracle Identity
Manager forms and/or provisioning processes.

8.16 Working with Task Assignment Adapters
This section contains these topics:

Caution: If you remove a rule generator from a form and if the
class name of the form's data object matches the table name of a
provisioning process, you will not be able to assign the rule
generator to that provisioning process.

For example, suppose the adpCONVERTTOLOWERCASE rule
generator is removed from the Solaris form. If the class name of the
form's associated data object is UD_SOLARIS, the rule generator
cannot be assigned to any provisioning process with a table name of
UD_SOLARIS.

Caution: If you attempt to remove a rule generator from a form
field, and if an error box appears, the adapter has already been
associated with a provisioning process. First, detach the rule
generator from the process. Then, you can remove it from the form
field.

Note: In Oracle Identity Manager 11g Release 2 (11.1.2.1.0), creating
new entity adapters and modifying existing entity adapters are not
supported.

Working with Task Assignment Adapters

Using the Adapter Factory 8-43

■ Attaching Task Assignment Adapters to Process Tasks

■ Removing Task Assignment Adapters from Process Tasks

8.16.1 Attaching Task Assignment Adapters to Process Tasks
After creating a task assignment adapter, you must attach it to a process task so that
Oracle Identity Manager can automate the assignment of the task to a user or role.

To connect a task assignment adapter to a process task, access the Assignment tab
(from the Process Definition form). From this tab, you can also map any adapter
variables to their proper locations.

The following procedure shows you how to attach a task assignment adapter to a
process task.

1. Open the Process Definition form, which is located in the Process Management
folder.

Within the Oracle Identity Manager workspace, the Process Definition form
appears.

2. Select the process, which contains a task to which you want to attach an adapter.

The selected process, along with its tasks, appears in the Process Definition form.

3. Double-click the row header of the task to which you want to attach a task
assignment adapter.

The Editing Task window appears, containing information about the task (for
example, the Get Solaris UUID process task).

4. Click the Assignment tab. The Assignment dialog box is displayed.

5. From this tab, click Add.

A blank row appears within the Assignment tab.

The following table lists the relevant fields of the Assignment tab:

6. Double-click the Priority field. From this field, set the priority number for the
associated task assignment rule.

 Field Name Description

Priority From this field, set the priority number for the associated task
assignment rule.

Rule From this lookup field, select the rule that will determine if the
associated adapter will be used to automate the assignment of the
process task to a user or role.

Target Type From this lookup field, specify whether the task is to be assigned to
an Oracle Identity Manager user or role.

Adapter From this lookup field, select the adapter that is to be associated
with the designated task assignment rule.

Adapter Status This field displays the mapping status of the adapter's variables.

See "Attaching Process Task Adapters to Process Tasks" on
page 8-51 for information about the various mapping statuses for
an adapter.

Working with Task Assignment Adapters

8-44 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

7. Double-click the Rule lookup field. From the Lookup dialog box that is displayed,
select the rule that will determine if the associated adapter will be used to
automate the assignment of the process task to a user or role.

8. Double-click the Target Type lookup field. From the Lookup dialog box that is
displayed, specify whether the task is to be assigned to an Oracle Identity
Manager user or role.

9. Double-click the Adapter lookup field. From the Lookup dialog box that is
displayed, specify the task assignment adapter that is to be associated with the
rule you selected in Step 7 of this procedure.

10. On the toolbar that is displayed within the Assignment tab, click Save.

The mapping status of the task assignment adapter variables is displayed within
the Adapter Status field. Use the following table to decide which action to
perform, based on the adapter's mapping status.

11. Click Map.

The Adapter Variables window appears. It displays the following information:

■ The name of the task assignment adapter that is attached to the process task;

■ The status of the adapter; and

■ The mapping statuses, names, and descriptions of the adapter's variables.

12. Set the mappings for each variable that appears in the Adapter Variables region of
this window. To do so, double-click the row header of the variable you want to
map (for example, UUID).

The Edit Data Mapping for Variable dialog box is displayed.

Table 8–10 lists the fields of the Edit Data Mapping for Variable dialog box is
displayed.

Mapping Status Action

Ready The adapter does not have any variables that can be
mapped. In other words, none of the adapter variables are
return variables or have been designated as Resolve at Run
time. So, proceed to Step 14 of this procedure.

Mapping Incomplete At least one of the adapter's variable must be mapped. So,
proceed to Step 11 of this procedure.

Adapter Unavailable After the adapter had been compiled successfully, it was
modified. As a result, you must recompile the adapter.

Note: To learn more about the various mapping statuses for an
adapter, see "Attaching Process Task Adapters to Process Tasks" on
page 8-51.

Table 8–10 Fields of the Edit Data Mapping for Variable Dialog Box

Field Name Description

Variable Name This field displays the name of the adapter variable for which you are
setting a mapping (for example, UUID).

Data Type This field shows the data type of the adapter variable (for example,
String is the data type for the UUID variable).

Working with Task Assignment Adapters

Using the Adapter Factory 8-45

13. Complete the Map To, Qualifier, IT Asset Type, IT Asset Property, Literal Value,
and Old Value fields.

14. On the toolbar, click Save. Then, click Close.

Map To This field contains the types of mappings that you can set for the
adapter variable (for example, IT Resources).

When you map the adapter variable to a location or a contact, Oracle
Identity Manager enables the adjacent combo box. From this combo
box, select the specific type of location or contact to which you are
mapping the adapter variable.

In addition, if you map the adapter variable to a custom process form,
and this form contains child table(s), Oracle Identity Manager enables
the adjacent combo box. From this combo box, select the child table to
which you are mapping the adapter variable.

If you are not mapping the adapter variable to a location, contact, or
child table of a custom process form, this combo box is grayed out.

Qualifier This field contains the qualifiers for the mapping you selected in the
Map To combo box (for example, IT Asset).

IT Asset Type This field enables you to select a specific IT Resource (for example,
Solaris) when you map an adapter variable to an IT Resource, and this
variable's data type is String.

If you are not mapping the adapter variable to an IT Resource, or the
variable's data type is not String, this field does not appear.

IT Asset Property This field enables you to select a specific field that will receive the
results of the mapping (for example, Unique ID), when you map an
adapter variable to an IT Resource, and this variable's data type is
String.

If you are not mapping the adapter variable to an IT Resource, or if the
variable's data type is not String, this field does not appear.

Important: The IT Asset Type and IT Asset Property fields are included
within this window for backward compatibility. The preferred way is
to create an adapter variable with a data type of IT Resource, in which
case these fields will not appear.

Literal Value When you map the adapter variable to a literal, use this field to specify
the specific literal value.

If you are not mapping the adapter variable to a literal, this field does
not appear.

Old Value By selecting this check box, you map the adapter variable to the value
that was originally in the selected Qualifier field before modification.

Process task adapters associated with process tasks are conditionally
triggered when some field on the process form is changed. If you click
the Old Value option, and the process task is marked Conditional, the
value that is passed to the adapter is the previous value of the field.
This is useful in cases of fields that accept passwords.

For example, if you want to disallow setting the password to the same
value, you can use the old value for comparison.

If you are not mapping the adapter variable to a field that belongs to a
child table of a custom process form, this check box is grayed out.

See Also: "Adapter Mapping Information" on page 8-56 for more
information about the mappings to select

Table 8–10 (Cont.) Fields of the Edit Data Mapping for Variable Dialog Box

Field Name Description

Working with Task Assignment Adapters

8-46 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

The Edit Data Mapping for Variable window disappears. The Adapter Variables
dialog box is active again.

The contents in the Status field change from Mapping Incomplete to Ready. In
addition, the mapping statuses for the adapter's variables change from No (N) to
Yes (Y).

15. Click Save. Then, click Close.

The Adapter Variable dialog box disappears, and the Assignment tab is active
once again.

The adapter that you assigned to the process task (for example, Assign Solaris Task)
now has a status of Ready.

16. From the toolbar that appears within the Assignment tab, click Save and Close

The Assignment tab disappears, and the main screen is active once again. This
signifies that the task assignment adapter is attached to the process task.

8.16.2 Removing Task Assignment Adapters from Process Tasks
When a task assignment adapter either becomes invalid, or is no longer necessary for
Oracle Identity Manager to allocate the process task to a user or role, you must remove
the adapter from the task.

8.16.2.1 To Remove a Task Assignment Adapter from a Process Task
To detach a task assignment adapter from a process task, perform the following tasks:

1. Open the Process Definition form.

The Process Definition form appears in the Design Console workspace.

2. Select the process, which contains a task from which you want to remove an
adapter (for example, the Solaris 8 process).

The selected process, along with its tasks, appears in the Process Definition form.

3. Double-click the row header of the process task from which you want to remove
the adapter (for example, the Get Solaris UUID task).

The Editing Task dialog box is displayed, containing information about the process
task.

4. Click the Assignment tab.

The Assignment tab appears, displaying information about the adapter that is
attached to the process task.

5. Highlight the row, containing the adapter that you want to remove from the
process task.

6. Click Delete. The adapter no longer appears within the Assignment tab.

7. Click Save. Then, click Close.

The Assignment tab disappears, and the Main Screen is active once again. This
signifies that the task assignment adapter is removed from the process task.

Note: Once you attach a task assignment adapter to a process task, a
quick way to see the process and the task to which it is connected is by
accessing the Usage Lookup tab of the Adapter Factory form.

Working with Prepopulate Adapters

Using the Adapter Factory 8-47

8.17 Working with Prepopulate Adapters
This section contains these topics:

■ Attaching Prepopulate Adapters to Form Fields

■ Removing Prepopulate Adapters from Form Fields

8.17.1 Attaching Prepopulate Adapters to Form Fields
To attach a prepopulate adapter to a form field, perform the following steps:

1. Select the field to which a prepopulate adapter will be attached.

2. Select the rule that will determine if the adapter will be used to populate the
designated field with information.

3. Select the adapter that will be associated with the designated field.

4. Set the priority number of the selected rule.

5. Map the adapter variables of the prepopulate adapter to their proper locations.

6. Open the Form Designer form.

7. Query for the form to which you want to attach a prepopulate adapter (for
example, Solaris).

8. Click the prepopulate tab.

The prepopulate adapters, which have already been attached to the form you
queried, appear within this tab.

9. Click Add.

The prepopulate Adapters dialog box is displayed.

Table 8–11 lists and describes the fields of the prepopulate Adapters dialog box.

Note: To attach a prepopulate adapter to a form field, you must
ensure the following:

■ The form is not in an active state. Otherwise, create a new form
version.

■ After attaching the adapter, you must activate the form to be able
to use it.

Note: If no adapters have been attached to a form field, the
prepopulate tab will be empty.

Table 8–11 Fields of the Prepopulate Adapter Dialog Box

Name Description

Field Name This combo box contains a list of all of the form fields to which
a prepopulate adapter can be attached.

Rule From this lookup field, select the rule that will determine if the
associated adapter will be used to populate the designated
form field with information.

Working with Prepopulate Adapters

8-48 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

10. From the Field Name combo box, select the form field, such as User ID, to which
the prepopulate adapter will be attached.

11. Double-click the Rule lookup field. From the Lookup dialog box that is displayed,
select the rule that will determine if the associated adapter will be used to
populate the designated form field with information (for example, Rule for
Lowercase User ID).

12. Double-click the Adapter lookup field. From the Lookup dialog box that is
displayed, choose the adapter that will be associated with the field you selected in
Step 10, for example, Display Lowercase Letters for User ID.

13. In the Order field, enter the priority number of the rule you selected in Step 11, for
example, 2.

14. On the prepopulate Adapters window toolbar, click Save.

15. Mapping Incomplete appears within the Adapter Status field. This signifies that
the adapter you selected contains variables that have not been mapped correctly.
These variables can be mapped to their proper locations. Otherwise, the adapter
will not work.

16. Set the mappings for each variable that appears in the Adapter Variables region of
the prepopulate Adapters window. To do so, double-click the row header of the
variable you want to map, for example, UserID.

The Map Adapter Variables window is displayed.

Table 8–12 describes the fields of the Map Adapter Variables window.

Adapter From this lookup field, select the adapter that will be
associated with the designated field.

Order From this field, set the priority number of the selected rule.

Adapter Status This field displays the mapping status of the adapter variables.

See "Attaching Process Task Adapters to Process Tasks" on
page 8-51 for information about the various mapping statuses
for an adapter.

Adapter Variables This area displays the following:

■ Mapped: The mapping statuses of the adapter's variables.
"Y" indicates that an adapter variable has been mapped
properly; "N" indicates that this variable has not been
mapped correctly.

■ Name: The names of the adapter variables.

■ Mapped to: The form fields to which the variables are
mapped If an adapter variable is not yet mapped, the
corresponding cell in this column will be empty.

Table 8–12 Fields of the Map Adapter Variables WIndow

Field Name Description

Variable Name This field displays the name of the adapter variable for which
you are setting a mapping (for example, UserID).

Data Type This field shows the data type of the adapter variable (for
example, String is the data type for the UserID adapter variable).

Table 8–11 (Cont.) Fields of the Prepopulate Adapter Dialog Box

Name Description

Working with Prepopulate Adapters

Using the Adapter Factory 8-49

17. Complete the Map To, Qualifier, IT Asset Type, IT Asset Property, and Literal
Value fields.

18. On the Map Adapter Variable window toolbar, click Save. Then, click Close.

The Map Adapter Variables window disappears. The prepopulate Adapters
window is active again.

The text in the Adapter Status field changes from Mapping Incomplete to Ready.
In addition, the mapping statuses for the adapter's variables change from No (N)
to Yes (Y).

19. On the prepopulate Adapters window toolbar, click Close.

The prepopulate Adapters window disappears, and the Form Designer form is active
again. The prepopulate adapter, which you attached to the User ID form field (Display
Lowercase Letters for User ID), appears in the prepopulate tab of the Results of 1Q
Sales 2003 form.

After a process, which references this form, is provisioned to a target user or
organization, the form will appear. Oracle Identity Manager will check to see if the

Map To This field contains the types of mappings that you can set for the
adapter variable (for example, Process Data).

When you map the adapter variable to a location or a contact,
Oracle Identity Manager enables the adjacent combo box. From
this combo box, select the specific type of location or contact to
which you are mapping the adapter variable.

If you are not mapping the adapter variable to a location or
contact, this combo box is grayed out.

Qualifier This field contains the qualifiers for the mapping you selected in
the Map to combo box (for example, User ID).

IT Asset Type This field enables you to select a specific IT Resource (for
example, Solaris) when you map an adapter variable to an IT
Resource, and this variable's data type is String.

If you are not mapping the adapter variable to an IT Resource, or
the variable's data type is not String, this field does not appear.

IT Asset Property This field enables you to select a specific field that will receive
the results of the mapping (for example, User Name), when you
map an adapter variable to an IT Resource, and this variable's
data type is String.

If you are not mapping the adapter variable to an IT Resource, or
the variable's data type is not String, this field does not appear.

Important: The IT Asset Type and IT Asset Property fields are
included within this window for backward compatibility. The
preferred way is to create an adapter variable with a data type of
IT Resource, in which case these fields will not appear.

Literal Value When you map the adapter variable to a literal, use this field to
specify the specific literal value.

If you are not mapping the adapter variable to a literal, this field
does not appear.

See Also: "Adapter Mapping Information" on page 8-56 for more
information about the mappings to select

Table 8–12 (Cont.) Fields of the Map Adapter Variables WIndow

Field Name Description

Working with Process Task Adapters

8-50 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

prepopulate rule, which has the highest priority, is valid. If so, Oracle Identity
Manager will assign the associated prepopulate adapter to the designated field (User
ID), and execute it. At this point, one of the following actions occur:

■ If the Auto-prepopulate check box is selected for the provisioning process, Oracle
Identity Manager will display the data that is generated by the prepopulate
adapter automatically.

■ If the Auto-prepopulate check box is cleared, an Oracle Identity Manager user
must manually trigger the displaying of the data that is generated by the
prepopulate adapter. To do this, the administrator must click the prepopulate
button on the form section of the direct provisioning wizard in the Web client,
while provisioning the form to a user.

8.17.2 Removing Prepopulate Adapters from Form Fields
If a prepopulate adapter, which has been associated with a form field, is no longer
valid, you must remove the adapter from the field.

To remove a prepopulate adapter from a form field:

1. Select the prepopulate adapter that you want to remove.

2. Click Delete. The prepopulate adapter is removed from the form field. It cannot be
triggered when the form is launched.

3. After removing the adapter, you must activate the form.

8.18 Working with Process Task Adapters
This section contains these topics:

■ Guidelines for Working with a Process Task Adapter

■ Attaching Process Task Adapters to Process Tasks

■ Removing Process Task Adapters from Process Tasks

8.18.1 Guidelines for Working with a Process Task Adapter
After you create a process task adapter, you attach it to the appropriate process task by
using the Integration tab of the Process Definition form. From this tab, you can also
map any variables of the adapter to their proper locations, which were designated as
either Resolve at Run time or as an adapter return variable.

For example, the adapter named adpSOLARISPASSWORDUPDATED is connected to
the Password Updated task of the Solaris process.

After you attach an adapter to a process task, for the adapter to be functional, it might
need data from fields of other forms. For this example, the

Tip: Once you allocate a prepopulate adapter to a form field, and
assign a prepopulate rule to the adapter, a quick way to see the
association among the adapter, the form field, and the rule is by
accessing the Usage Lookup tab of the Adapter Factory form.

Note: Before removing the prepopulate adapter from a form field,
you must create a new version of the form.

Working with Process Task Adapters

Using the Adapter Factory 8-51

adpSOLARISPASSWORDUPDATED adapter cannot work unless it obtains the
following information:

■ The user's Oracle Identity Manager ID and password.

■ The user's Solaris ID and password.

■ The IP address where Solaris is located.

Therefore, it must get this information from the UserID, Passwd, SolarisUserID,
SolarisUserPasswd, and ServerAddress adapter variables respectively. These five variables
are created by using the Adapter Factory form. The "Y" that precedes each adapter
variable signifies that it has been mapped correctly.

The form that enables you to create process-specific fields, which will be used by a
process to obtain the information it needs, is called the Form Designer. When you
create these fields, Oracle Identity Manager stores them into a table. Then, by
associating this table with a process (through the Table Name lookup field of the
Process Definition form), the adapter, which you attach to a task of this process, will
use the table to retrieve the appropriate data.

If you want to modify this table, you can do so through the Form Designer form.

The UD_SOLARIS table contains two fields: UD_SOLARIS_USERID and
UD_SOLARIS_PASSWD. By accessing this record of the Form Designer form, you can
edit the fields of the table.

Once you attach the process task adapter to a dependent process task, and the status of
this process task is Pending (the status of the previous process task is Completed), Oracle
Identity Manager will trigger the adapter automatically. When the process task is an
independent task, Oracle Identity Manager will execute the adapter as soon as the
process is requested.

The result of the adapter being executed represents the state of the process task. When
the adapter is finished successfully, the process task to which this adapter is attached
will have a status of Completed.

On the other hand, if the adapter cannot perform its designated function, the process
task to which this adapter is attached will have a status of Rejected. By discovering the
cause of the error, you can modify the process task and/or adapter so it can run
successfully.

8.18.2 Attaching Process Task Adapters to Process Tasks
In the previous chapter, you learned how to create a process task adapter. You must
attach it to a process task to execute that process task automatically.

To connect an adapter to a process task, access the Integration tab (from the Process
Definition form). From this tab, you can also map any adapter variables to their proper
locations.

Note: To determine why a process task might have failed:

Find the process task. When the process task has not yet been
provisioned to the target user or organization, it is located in the To
Do List or Pending Approvals. To find the task:

1. Log in as the user.

2. Select the To Do List link or the Pending Approvals links in the left side of
the window.

Working with Process Task Adapters

8-52 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

The following procedure shows you how to attach a process task adapter to a process
task:

1. Open the Process Definition form, which is located in the Process Management
folder.

In the Oracle Identity Manager Workspace, the Process Definition form appears.

2. Select the process, which contains a task to which you want to attach an adapter.
The selected process, along with its tasks, appears in the Process Definition form.
For this example, the Solaris process has been selected.

3. Double-click the row header of the task to which you want to attach an adapter.
The Editing Task window appears, containing information about the task (for
example, the Password Updated process task).

4. Click the Integration tab.

5. Click Add.

The Handler Selection window appears.

6. To access Oracle Identity Manager adapters, click the Adapter option.

The adapters appear, which you can attach to the process task.

7. From this region, select the adapter that you want to attach to the process task, for
example, the adpSOLARISPASSWORDUPDATED adapter.

8. From the Handler Selection window's toolbar, click Save.

A dialog box appears, stating that the adapter was successfully added to the
process task.

9. Click OK.

The dialog box disappears, and the Integration tab is now active. This tab now
displays the following:

■ The name of the adapter that is attached to the process task;

■ The status of the adapter; and

■ The names, descriptions, and mapping statuses of the adapter's variables.

Tip: For classification purposes, the first three letters of each
adapter's name are adp. For classification purposes, the first three
letters of each adapter's name are adp.

Note: An adapter can have one of three mapping statuses:

Ready. This adapter has been successfully compiled, and all of its
variables have been mapped correctly.

Mapping Incomplete. This adapter has been successfully compiled, but
at least one of its variables have not been mapped correctly.

Adapter Unavailable. After this adapter had been compiled successfully,
it was modified, and recompiled.

Working with Process Task Adapters

Using the Adapter Factory 8-53

10. Set the mappings for each variable that appears in the Adapter Variables region of
the Integration tab. To do so, double-click the row header of the variable you want
to map (for example, SolarisUserID).

The Data Mapping for Variable window is displayed.

Table 8–13 describes the fields of the Data Mapping for Variable window.

Note: If an adapter does not have any mappable variables, the
Adapter Variables region is empty. In addition, the Status field will
display either Ready or Adapter Unavailable, depending on whether the
adapter has to be recompiled.

Note: A mappable adapter variable either has been designated as
Resolve at Run time or it is an adapter return variable.

Note: Once you attach the adapter to the process task, any responses
that you defined for the adapter appear in the Responses tab of the
Editing Task window.

Table 8–13 Fields of the Data Mapping for Variable WIndow

Field Name Description

Variable Name This field displays the name of the adapter variable for which
you are setting a mapping (for example, SolarisUserID).

Data Type This field shows the data type of the adapter variable (for
example, String is the data type for the SolarisUserID variable).

Map To This field contains the types of mappings that you can set for
the adapter variable (for example, IT Resources).When you map
the adapter variable to a location or a contact, Oracle Identity
Manager enables the adjacent combo box. From this combo
box, select the specific type of location or contact to which you
are mapping the adapter variable. In addition, if you map the
adapter variable to a custom process form, and this form
contains child table(s), Oracle Identity Manager enables the
adjacent combo box. From this combo box, select the child table
to which you are mapping the adapter variable. If you are not
mapping the adapter variable to a location, contact, or child
table of a custom process form, this combo box is grayed out.

Qualifier This field contains the qualifiers for the mapping you selected
in the Map to combo box (for example, IT Asset).

IT Asset Type This field enables you to select a specific IT Resource (for
example, Solaris) when you map an adapter variable to an IT
Resource, and this variable's data type is String.

If you are not mapping the adapter variable to an IT Resource,
or the variable's data type is not String, this field does not
appear.

Working with Process Task Adapters

8-54 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

11. Complete the Map To, Qualifier, IT Asset Type, IT Asset Property, Literal Value,
and Old Value fields.

12. On the toolbar, click Save. Then, click Close.

The Data Mapping for Variable window disappears. The Integration tab is active
again.

13. On the Editing Task window toolbar, click Save.

The contents in the Status field change from Mapping Incomplete to Ready. In
addition, the mapping statuses for the adapter's variables change from No (N) to
Yes (Y).

14. On the toolbar, click Close.

The Editing Task window disappears, and the main screen is active once again.
The adapter you added to the Password Updated task
(adpSOLARISPASSWORDUPDATED) appears in the Process Definition form.

This signifies that the adpSOLARISPASSWORDUPDATED process task adapter
was attached to the Password Updated process task.

IT Asset Property This field enables you to select a specific field that will receive
the results of the mapping (for example, User Name), when you
map an adapter variable to an IT Resource, and this variable's
data type is String.

If you are not mapping the adapter variable to an IT Resource,
or the variable's data type is not String, this field does not
appear.

Important: The IT Asset Type and IT Asset Property fields are
included within this window for backward compatibility. The
preferred way is to create an adapter variable with a data type
of IT Resource, in which case these fields will not appear.

Literal Value When you map the adapter variable to a literal, use this field to
specify the specific literal value.

If you are not mapping the adapter variable to a literal, this
field does not appear.

Old Value By selecting this check box, you map the adapter variable to the
value that was originally in the selected Qualifier field before
modification.

Process task adapters associated with process tasks are
conditionally triggered when some field on the process form
gets changed. If you click the Old Value option, and the process
task is marked Conditional, the value that is passed to the
adapter is the previous value of the field, before it got
modified. This is useful in cases of fields that accept passwords.
For example, if you want to disallow setting the password to
the same value, you can use the old value for comparison.

If you are not mapping the adapter variable to a field that
belongs to a child table of a custom process form, this check
box is grayed out.

See Also: "Adapter Mapping Information" on page 8-56 for more
information about the mappings to select

Table 8–13 (Cont.) Fields of the Data Mapping for Variable WIndow

Field Name Description

Working with Process Task Adapters

Using the Adapter Factory 8-55

8.18.3 Removing Process Task Adapters from Process Tasks
If a process task adapter is no longer necessary for Oracle Identity Manager to
complete the process task automatically, or when you wish to attach a different
adapter to a process task, you must first remove the adapter that is attached to the
process task.

This procedure will show you how to remove a process task adapter from a process
task.

8.18.3.1 To Remove a Process Task Adapter from a Process Task
1. Open the Process Definition form.

In the Design Console workspace, the Process Definition form appears.

2. Select the process, which contains a task from which you want to remove an
adapter (for example, the Solaris process).

The selected process, along with its tasks, appears in the Process Definition form.

3. Double-click the row header of the process task from which you want to remove
the adapter (for example, the Password Updated task).

The Editing Task window appears, containing information about the process task.
Click the Integration tab.

4. Click the Integration tab.

The Integration tab displays information about the adapter that is attached to the
process task.

5. Click Remove.

A dialog box appears, asking if you want to remove the adapter from the process
task.

6. Click OK.

A dialog box appears, signifying that the adapter has been removed from the
process task.

7. Click OK.

The contents of the adapter no longer appear in the Integration tab.

8. On the toolbar, click Close.

The Editing Task window disappears, and the main screen is active once again.
The adapter that was once linked to the Password Updated task
(adpSOLARISPASSWORDUPDATED) no longer appears in the child table of the
Process Definition form.

This signifies that you have removed the adapter from the process task.

Tip: Once you attach a process task adapter to a process task, a quick
way to see the process and task to which it is connected is by
accessing the Usage Lookup tab of the Adapter Factory form.

Adapter Mapping Information

8-56 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

8.19 Adapter Mapping Information
An adapter is a Java class, generated by the Adapter Factory, which enables Oracle
Identity Manager to interact with an external JAR file, a target IT resource (for
example, a resource asset), or a user-defined form. The Adapter Factory is a
code-generation tool provided by Oracle Identity Manager, which enables a User
Administrator to create Java classes.

An adapter extends the internal logic and functionality of Oracle Identity Manager. It
automates process tasks, and defines the rules for the auto-generation and validation
of data in fields within Oracle Identity Manager. There are five types of adapters: task
assignment adapters, task adapters, rule generator adapters, pre-populate adapters,
and entity adapters.

The following topics are discussed in this section:

■ Adapter Task Mapping Information

■ Adapter Variable Mapping Information

8.19.1 Adapter Task Mapping Information
An adapter task is one of the several possible components within an adapter. And this
is a logical step within an adapter, equivalent to calling a programming language
method. The following types of adapter tasks are available: Functional Tasks (Java
Task, Remote Task, and Stored Procedure Task), Utility Tasks (Utility Task and Oracle
Identity Manager API Task), and Logic Tasks (Set Variable Task and Error Handler
Task).

This section lists the mappings that you can set for the parameters of an adapter task,
in the following topics:

■ Adapter Variables

■ Adapter Task

■ Literal

■ Adapter References

■ Organization Definition

■ Process Definition

■ User Definition

8.19.1.1 Adapter Variables
The following table lists and describes the items of the Map To list box of the Data
Mapping for Variable window and the Name list box to which you can map the
parameters of an adapter variable for an adapter task.

Adapter Mapping Information

Using the Adapter Factory 8-57

8.19.1.2 Adapter Task
The following table lists and describes the items of the Map To, Name, and Output
combo boxes of the Adapter Factory form to which you can map the parameters of an
adapter task.

8.19.1.3 Literal
The following table lists and describes the items of the Map To and Type combo boxes,
as well as the Value field of the Adapter Factory form, to which you can map the
parameters of a constant (or literal) for an adapter task.

8.19.1.4 Adapter References
The following table lists and describes the items of the Map To and Type combo boxes
of the Adapter Factory form to which you can map the parameters of an adapter
reference for an adapter task.

Map To Combo Box Name Combo Box Description

Adapter Variables A list of adapter
variables are
displayed

You can map the parameter to the
adapter variables that you created for
this adapter.

Note: When the adapter variable's
classification type is Object, it cannot be
used with process task adapters.

Note: If the adapter variable's
classification type is IT Resource, then
an Attribute combo box is displayed.
From this combo box, select the
attribute of the IT resource to which you
wish to map the parameter.

Map To Combo Box Name Combo Box Output combo Box Description

Adapter Task A list of adapter tasks
are displayed.

A list of output
variables pertaining
to the selected
adapter task is
displayed.

You can map the
parameter to the
adapter tasks that
you created for this
adapter.

Map To Combo
Box Type Combo Box Value Field Description

Literal String, Boolean,
Character, Byte, Date,
Integer, Float, Long,
Short, Double

Enter the value of the
literal into this field.

You can map the
parameter to a String,
Boolean, Character,
Byte, Date, Integer,
Float, Long, Short, or
Double data type,
respectively.

Map To Combo Box Type Combo Box Description

Adapter References Event Handler Name or
Database Reference

You can map the parameter to the active
adapter.

Adapter Mapping Information

8-58 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

8.19.1.5 Organization Definition
The following table lists and describes the items of the Map To and Field combo boxes
of the Adapter Factory form to which you can map the parameters of an organization
definition for an adapter task.

8.19.1.6 Process Definition
The following table lists and describes the items of the Map To and Field combo boxes
of the Adapter Factory form to which you can map the parameters of a process
definition for an adapter task.

8.19.1.7 User Definition
The following table lists and describes the items of the Map To and Field combo boxes
of the Adapter Factory form to which you can map the parameters of a user definition
for an adapter task.

Map To combo
box Field Combo Box Description

Organization
Definition

Organization Name You can map the parameter to the
Organization Name field of the
Organizations form.

Organization Type You can map the parameter to the Type field
of the Organizations form.

Organization ID You can map the parameter to the
Organization # field of the Organizations
form.

Organization Parent You can map the parameter to the Parent
Organization field of the Organizations
form.

Organization Status You can map the parameter to the Status
field of the Organizations form.

Organization Parent
ID

You can map the parameter to the
parent_key field in the ACT database table.

Any fields that are
displayed in the User
Defined Fields tab of
the Organizations
form.

You can map the parameter to the selected
user-defined field.

Map To Combo Box Field Combo Box Description

Process Definition Name You can map the parameter to the Name field
of the Process Definition form.

Type You can map the parameter to the Type field
of the Process Definition form.

Map To Combo
Box Field Combo Box Description

User Definition User Key You can map the parameter to a key, representing
a unique record of the Users form.

First Name You can map the parameter to the First Name
field of the Users form.

Adapter Mapping Information

Using the Adapter Factory 8-59

8.19.2 Adapter Variable Mapping Information
For a newly created adapter to work, you can map data to the parameters of the
adapter's tasks. For this reason, you create placeholders, also known as adapter
variables, to map the data at run time. Once an adapter variable is not needed for the
adapter to run, you can remove it from the adapter. After you have deleted the adapter
variable, recompile the adapter.

Middle Initial You can map the parameter to the Middle Name
field of the Users form.

Last Name You can map the parameter to the Last Name
field of the Users form.

User Login You can map the parameter to the User ID field of
the Users form.

Password You can map the parameter to user password of
the Users form.

Type You can map the parameter to the Xellerate Type
field of the Users form.

User Status You can map the parameter to the Status field of
the Users form.

Role You can map the parameter to the Role field of
the Users form.

Identity You can map the parameter to the Identity field
of the Users form.

Disabled You can map the parameter to the Disable User
check box of the Users form.

Organization You can map the parameter to the Organization
field of the Users form.

Manager You can map the parameter to the Manager field
of the Users form.

Start Date You can map the parameter to the Start Date field
of the Users form.

End Date You can map the parameter to the End Date field
of the Users form.

Email You can map the parameter to the Email field of
the Users form.

Provisioning Date You can map the parameter to the Provisioning
Date field of the Users form.

Provisioned Date You can map the parameter to the Provisioned
Date field of the Users form.

Deprovisioning
Date

You can map the parameter to the
Deprovisioning Date field of the Users form.

Deprovisioned
Date

You can map the parameter to the Deprovisioned
Date field of the Users form.

Any fields that
are displayed in
the User Defined
Fields tab of the
Users form.

You can map the parameter to the selected
user-defined field.

Map To Combo
Box Field Combo Box Description

Adapter Mapping Information

8-60 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

When an adapter variable is not the adapter return variable, or it is not designated as
Resolve at Run time, it should be mapped within the Variable List tab of the Adapter
Factory form. On the other hand, if the adapter variable is classified as an adapter
return variable, or the adapter variable is set to Resolve at Run time, it can be mapped
at another location within Oracle Identity Manager. This location is contingent upon
the adapter's type. For example, the variables of a process task adapter will be mapped
at a different place than the variables of a pre-populate adapter. The following table
lists the variables of a particular type of adapter that can be mapped.

The following topics are discussed in this section:

■ From the Variable List Tab

■ Process Task Adapter Variable Mappings

■ Task Assignment Adapter Variable Mappings

■ Rule Generator and Entity Adapter Variable Mappings

■ Prepopulate Adapter Variable Mappings

8.19.2.1 From the Variable List Tab
The following table lists the mappings that you can set from the Variable List tab.

Adapter Type Location

Process Task The Integration tab of the Editing Task window

Task Assignment The Assignment tab of the Editing Task window

Rule Generator The Map Adapters tab of the Data Object Manager form

Pre-Populate The Pre-Populate tab of the Form Designer form

Entity The Map Adapters tab of the Data Object Manager form

Variable Type Map To Qualifier/Resource Type

Object Adapter References Database References

Data Object References

Set at run time (for
Task Assignment
adapters only)

Database References

Data Object References

IT Resource Resolve at Run time The IT Resource types that are
displayed in the Table view of the IT
Resources Type Definition form

String, Character,
Byte, Integer, Float,
Long, Short, Double

Literal If you are mapping the adapter
variable to a literal, a Literal Value
field is displayed below the Resource
Type combo box. Within this field,
enter the value of this literal.

Resolve at Run time NA

Adapter References Event Handler Name

Note: If the data type of the adapter
variable is not String, Adapter
References cannot be selected from the
Map To combo box.

Adapter Mapping Information

Using the Adapter Factory 8-61

8.19.2.2 Process Task Adapter Variable Mappings
The following table lists the process task adapter variable mappings.

Boolean Literal Boolean. If you select this resource
type, two Literal Value options are
displayed below the Resource Type
combo box: True and False.

Select the option that corresponds to
the value of the adapter variable.

Resolve at Run time NA

Date Literal If you are mapping the adapter
variable to a literal, a Literal Value
lookup field is displayed below the
Resource Type combo box.

 Double-click this lookup field. From
the Date & Time window that is
displayed, select the date and time that
will be the value of this literal.

Resolve at Run time NA

System Date NA

Note: This variable's value will reflect
Oracle Identity Manager's date and
time. Hence, you do not map it.

Variable Type Map To Qualifier/Description

Object (Adapter
Return Variable)

Process Data You can map the parameter to a field
of either the associated custom process
form, or a child table that belongs to
this form.

Response Code NA

Task Information Note. You can map the parameter to
the Note tab of the Task List form.

Reason. You can map the parameter to
the Error Details window. To access
this window, double-click a task that is
displayed within the Task List form.

Process Definition Name. You can map the parameter to
the Name field of the Process
Definition form.

Type. You can map the parameter to
the Type lookup field of the Process
Definition form.

Object (Adapter
Return Variable)

Organization
Definition

The fields of the Organizations form to
which you can map the adapter
variable.

Note: Because the data type of the
adapter variable is Object, you cannot
select Organization ID from the
Qualifier combo box.

User Definition The fields of the Users form to which
you can map the adapter variable.

Variable Type Map To Qualifier/Resource Type

Adapter Mapping Information

8-62 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

IT Resource IT Resource You can map the parameter to an IT
resource. This IT resource is a member
of the IT resource type that is
displayed in parenthesis from within
the Data Type field.

Process Data You can map the parameter to a field
of the associated process-specific form.

Note: The only field names that are
displayed in this combo box are ones
with a data type of IT Resource
Lookup Field.

String, Boolean,
Character, Byte, Date,
Integer, Float, Long,
Short, Double

Process Data You can map the parameter to a field
of either the associated custom process
form, or a child table that belongs to
this form.

Task Information Note. You can map the parameter to
the Note tab of the Task List form.

Reason. You can map the parameter to
the Error Details window. To access
this window, double-click a task that is
displayed within the Task List form.

Process Definition Name. You can map the parameter to
the Name field of the Process
Definition form.

Type. You can map the parameter to
the Type lookup field of the Process
Definition form.

Organization
Definition

The fields of the Organizations form to
which you can map the adapter
variable.

String, Boolean,
Character, Byte, Date,
Integer, Float, Long,
Short, Double

User Definition The fields of the Users form to which
you can map the adapter variable.

Variable Type Map To Qualifier/Description

Adapter Mapping Information

Using the Adapter Factory 8-63

8.19.2.3 Task Assignment Adapter Variable Mappings
The following table lists the task assignment adapter variable mappings.

Literal If you are mapping the adapter
variable to a literal, and the variable's
data type is String, Character, Byte,
Integer, Float, Long, Short, or Double,
a Literal Value field is displayed below
the Qualifier combo box. Within the
field, enter the value of this literal.

When you are mapping the adapter
variable to a literal, and the variable's
data type is Boolean, two Literal Value
options are displayed below the
Qualifier combo box: True and False.
Select the option that corresponds to
the value of the adapter variable.

If you are mapping the adapter
variable to a literal, and the variable's
data type is Date, a Literal Value
lookup field is displayed below the
Qualifier combo box. Double-click this
lookup field. From the Date & Time
window that is displayed, select the
date and time that will be the value of
this literal.

String IT Resources If you are mapping the adapter
variable to an IT Resource, three
combo boxes are displayed below the
Map To combo box: Qualifier, IT Asset
Type, and IT Asset Property. From
these combo boxes, select the qualifier
for the mapping, the specific name of
the IT resource, and the field of the IT
resource that will receive the results of
the mapping.

Note: If the data type of the adapter
variable is not String, IT Resources
cannot be selected from the Map To
combo box.

Variable Type Map To Qualifier/Description

IT Resource Object Data You can map the parameter to an IT
resource's instance key. This IT
resource is a member of the IT resource
type that is displayed in parenthesis
from within the Data Type field.

IT Resource You can map the parameter to an IT
resource.

Object (Adapter
Return Value)

Object Data You can map the parameter to a field
of either the associated custom
resource object form, or a child table
that belongs to this form.

Response Code NA

Variable Type Map To Qualifier/Description

Adapter Mapping Information

8-64 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Task Information The fields of the Task List form to
which you can map the adapter
variable.

Process Definition The fields of the Process Definition
form to which you can map the
adapter variable.

Organization
Definition

The fields of the Organizations form to
which you can map the adapter
variable.

User Definition The fields of the Users form to which
you can map the adapter variable.

String, Boolean,
Character, Byte, Date,
Integer, Float, Long,
Short, Double

Object Data You can map the parameter to a
resource object's instance key.

Task Information The fields of the Task List form to
which you can map the adapter
variable.

Process Definition The fields of the Process Definition
form to which you can map the
adapter variable.

Organization
Definition

The fields of the Organizations form to
which you can map the adapter
variable.

String, Boolean,
Character, Byte, Date,
Integer, Float, Long,
Short, Double

User Definition The fields of the Users form to which
you can map the adapter variable.

Request Info Request ID. You can map the
parameter to the Request ID field of
the Requests form.

Request Action. You can map the
parameter to the Request Action field
of the Requests form.

Request Priority. You can map the
parameter to the Request Priority field
of the Requests form.

Request Target User The fields of the Users form to which
you can map the adapter variable.

Request Target
Organization

The fields of the Organizations form to
which you can map the adapter
variable.

Requester Info The fields of the Users form to which
you can map the adapter variable.

Variable Type Map To Qualifier/Description

Adapter Mapping Information

Using the Adapter Factory 8-65

8.19.2.4 Rule Generator and Entity Adapter Variable Mappings
The following table lists the rule generator and entity adapter variable mappings.

Literal If you are mapping the adapter
variable to a literal, a Literal Value
field is displayed below the Qualifier
combo box. Within the field, enter the
value of this literal.

Note: If the data type of the adapter
variable is Boolean, two options are
displayed in place of the field: True
and False. Select the option that
reflects the value of the adapter
variable.

Note: If the data type of the adapter
variable is Object, Literal cannot be
selected from the Map To combo box.

String IT Resources Resource Instance. You can map the
parameter to an IT resource's instance
key. This IT resource is a member of
the IT resource type that is displayed
in parenthesis from within the Data
Type field.

IT Asset Type. You can map the
parameter to an IT resource type.

String IT Resources IT Asset Property. You can map this
parameter to one of the properties that
comprise the selected IT resource type.

Variable Type Map To Qualifier/Description

Object (Adapter
Return Variable), IT
Resource, String,
Boolean, Character,
Byte, Date, Integer,
Float, Long, Short

Literal If you are mapping the adapter variable
to a literal, a Literal Value field is
displayed below the Qualifier combo
box. Within the field, enter the value of
this literal.

Note: If the data type of the adapter
variable is Object, Literal cannot be
selected from the Map To combo box.

Entity Field You can map the adapter variable to a
field of the associated process form.
The name of this form is displayed in
the Form Description field of the Data
Object Manager form.

Organization
Definition

The fields of the Organizations form to
which you can map the adapter
variable.

Note: If the data type of the adapter
variable is not Object, you cannot select
Organization ID and Organization
Parent ID from the Qualifier combo
box.

User Definition The fields of the Users form to which
you can map the adapter variable.

Variable Type Map To Qualifier/Description

Adapter Mapping Information

8-66 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

8.19.2.5 Prepopulate Adapter Variable Mappings
The following table lists the prepopulate adapter variable mappings.

Variable Type Map To Qualifier/Description

IT Resource IT Resource You can map the parameter to an IT
resource. This IT resource is a member
of the IT resource type that is displayed
in parenthesis from within the Data
Type field.

Process Data You can map the parameter to a field of
the associated process-specific form.

Note: The only field names that are
displayed in this combo box are ones
with a data type of IT Resource Lookup
Field.

Object, String,
Boolean, Character,
Byte, Date, Integer,
Float, Long, Short,
Double

Process Data You can map the parameter to a field of
the associated process-specific form.

Organization
Definition

The fields of the Organizations form to
which you can map the adapter
variable.

User Definition The fields of the Users form to which
you can map the adapter variable.

String, Boolean,
Character, Byte, Date,
Integer, Float, Long,
Short, Double

Literal If you are mapping the adapter variable
to a literal, and the variable's data type
is String, Character, Byte, Integer, Float,
Long, Short, or Double, a Literal Value
field is displayed below the Qualifier
combo box. Within the field, enter the
value of this literal.

When you are mapping the adapter
variable to a literal, and the variable's
data type is Boolean, two Literal Value
options are displayed below the
Qualifier combo box: True and False.
Select the option that corresponds to
the value of the adapter variable.

If you are mapping the adapter variable
to a literal, and the variable's data type
is Date, a Literal Value lookup field is
displayed below the Qualifier combo
box. Double-click this lookup field.
From the Date & Time window that is
displayed, select the date and time that
will be the value of this literal.

Defining Error Messages

Using the Adapter Factory 8-67

8.20 Defining Error Messages
The Error Message Definition form, as shown in Figure 8–3, is in the Development
Tools folder of the Design Console. It is used to:

■ Create the error messages that are displayed in dialog boxes when certain
problems occur.

■ Define the error messages that users can access when they create error handler
tasks by using the Adapter Factory form.

The error messages you create are displayed on the Identity Self Service or Identity
System Administration if they are added to an adapter definition while creating a
new adapter by using an error handler logic task based on a failure condition.

Figure 8–3 Error Message Definition Form

Table 8–14 describes the data fields of the Error Message Definition form.

String IT Resources If you are mapping the adapter variable
to an IT Resource, three combo boxes
are displayed below the Map To combo
box: Qualifier, IT Asset Type, and IT
Asset Property. From these combo
boxes, select the qualifier for the
mapping, the specific name of the IT
resource, and the field of the IT
resource that will receive the results of
the mapping.

Note: If the data type of the adapter
variable is not String, then IT Resources
cannot be selected from the Map To
combo box.

Note: If an entity adapter is attached to a process form or an object
form for validation of field values, these adapters will run if you edit
data in these forms after completing direct or request provisioning.

Oracle Identity Manager 11g Release 2 (11.1.2.1.0) does not support
creating new entity adapters.

Variable Type Map To Qualifier/Description

Defining Error Messages

8-68 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

When you create an error message, Oracle Identity Manager populates the Key field
with a unique identification number. When a condition occurs that causes the error
message to be displayed, the text in the Description field is displayed in a dialog box.

To create an error message:

1. Open the Error Messaging Definition form.

2. In the Code field, enter the code that represents the error message definition.

3. In the Description field, enter a description for the error message.

4. In the Remedy field, you can enter a description for how to correct the condition
that causes the error message to be displayed.

5. In the Help URL field, you can enter the link to the URL that contains an online
Help topic for this error message.

6. (Optional) Double-click the Action Lookup field.

From the Lookup dialog box that is displayed, you can select a code that
represents the seriousness of the condition that causes the error message to be
displayed. These codes, listed by degree of seriousness (from lowest to highest),
are:

Table 8–14 Fields of the Error Message Definition Form

Field Name Description

Key The error message definition's unique, system-generated identification
number.

Code The code that represents the error message definition.

Reset Count When you click this button, Oracle Identity Manager resets the counter
to zero. This counter is the number of times the error message is
displayed.

Description A description of the error message.

Remedy A description of how to correct the condition that caused the error
message to be displayed.

Help URL The link to the URL that contains an online Help topic for this error
message.

Action A one-letter code, representing the seriousness of the condition that
causes the error message to be displayed.

An error message has three levels of seriousness: Error (E), Rejection
(R), and Fatal Rejection (F).

Severity For classification purposes, you can categorize the seriousness of the
condition that results in the error message being displayed, even
further.

An error message has five sub-levels of severity: None (N), Low (L),
Medium (M), High (H), and Crash (C).

Note Explanatory information about the error message.

Note: After you create an error message definition, to reset the count
of how many times the error message is displayed, click the Reset
Count button. This resets the count to zero.

Defining Error Messages

Using the Adapter Factory 8-69

■ Error (E). Oracle Identity Manager stores the error message, and stops any
related operations from being triggered. Instead, the operation rolls back to
the previous operation.

■ Reject (R). Oracle Identity Manager stores the rejection message, but it does
not prevent subsequent operations from being executed.

■ Fatal Reject (F). Oracle Identity Manager stores the rejection message, and it
stops any subsequent operations from being triggered. However, it stores all
operations that were executed up to the fatal rejection.

7. (Optional) Double-click the Severity Lookup field. From the Lookup dialog box
that is displayed, you can select a code (None (N), Low (L), Medium (M), High
(H), or Crash (C)). This code presents a detailed classification of the code that is
displayed in the Action lookup field.

8. In the Note field, enter explanatory information about the error message.

9. Click Save.

The error message is created.

After creating error messages by using the Error Message Definition form, you
must add new error codes and advice messages in the Oracle Identity Manager
customResources.properties resource bundle. These localized error codes and
advice messages will be displayed in Identity Self Service or Identity System
Administration.

Defining Error Messages

8-70 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

9

Understanding the Identity Connector Framework 9-1

9Understanding the Identity Connector
Framework

[10]

Identity connectors are components developed to link Oracle Identity Manager with
external stores of applications, directories, and databases. Oracle Identity Manager
provides support for developing and building identity connectors by using the
Identity Connector Framework (ICF). ICF decouples Oracle Identity Manager from
other applications to which it connects. Therefore, you can build and test an identity
connector before integrating it with Oracle Identity Manager. This chapter contains
conceptual information and sample code in the following sections:

■ Advantages of ICF

■ Introducing the ICF Architecture

■ Using the ICF API

■ Introducing the ICF SPI

■ Extending an Identity Connector Bundle

■ Using an Identity Connector Server

9.1 Advantages of ICF
ICF provides the following benefits:

■ Single platform: Identity Connectors are shared between Oracle Identity Manager
and Oracle Waveset (OW), which means they are built on top of the same platform
so that a single connector can be used for both OIM and OW to communicate with
external identity-aware applications.

■ Simple installation: ICF offers simple installation as most of the manual
configuration during installation, such as copying the connector files and the
external code files are automatically taken care by ICF.

■ Stateless by design: Identity connectors are stateless by design. An identity
connector stores nothing. The calling application supplies to the connector the
values for its configuration, including the information required to connect to the
target application. This is because, identity connectors are stateless, each bundle

Note: Earlier releases of Oracle Identity Manager have other options
for building identity connectors. These options are still supported, but
it is recommended that you build new identity connectors by using
the ICF.

Introducing the ICF Architecture

9-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

implementation are kept as simple as possible, and coupling the implementation
with that of the calling application is also prevented.

■ ICF Common: ICF provides common connector integration layer for all ICF based
connectors in OIM and no development effort is required to develop ICF
Common.

■ Remote Execution: ICF supports remote execution of connector server using Java
or .NET implementation.

■ JVM Isolation: Remote ICF provides JVM isolation, which means running a Java
connector on a different host avoids JVM conflicts.

■ Reuse: In future, other products can reuse Identity Connectors.

9.2 Introducing the ICF Architecture
Identity connectors allow Oracle Identity Manager to carry out user provisioning and
reconciliation operations on target systems in the enterprise. ICF decouples any calling
application, such as Oracle Identity Manager, from the implementation of the
connector. ICF also decouples the implementation of the connector from the calling
application. The same connector implementation can work with several different
calling applications. Figure 9–1 illustrates how this is accomplished by situating the
ICF API and SPI between Oracle Identity Manager and the target system.

The API implementation always post-processes the results returned by the SPI Search
operation. This double-checks the SPI implementation if the connector bundle does
not implement all Filter types, or does not implement them properly for all attributes.
If the implementation of Search in the SPI returns every object of the specified type,
then the API implementation discards every object that does not match the specified
Filter. Post-processing in the API implementation is expensive in terms of
processing-time and network-bandwidth, and therefore, it is more efficient if each
connector-bundle supports every type of filter (search predicate or logical operator)
that the target application can support natively. See the details for Filter Translator in
"Common Classes" on page 9-21.

Figure 9–1 illustrates that the calling application sees only the ICF API. The ICF API
dedicates a classloader to each connector bundle, so that the calling application is not
exposed to the classes and libraries in the implementation of the connector-bundle
(SPI). Bundle classloader also ensures isolation between the bundles as well as making
any bundled library available to the connector bundle only, thereby avoiding conflicts
between dependencies.

Introducing the ICF Architecture

Understanding the Identity Connector Framework 9-3

Figure 9–1 Identity Connector Framework Deployment

Figure 9–2 illustrates the backwards compatibility of the ICF. Newer bundles may be
deployed without affecting existing ones. In addition, newer versions of the ICF are
generally backward-compatible with existing bundles. Therefore, any connector
should work with a new version of framework.

Figure 9–2 Compatibility Between the ICF and Connector Bundles

Figure 9–3 illustrates deployment methodology of the ICF. Framework supports LCM
to clone connector to support multiple versions of the same target. In addition,
Framework supports connection pooling.

Introducing the ICF Architecture

9-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 9–3 Deployment Methodology to Support Multiple Versions of Same Target

Figure 9–4 illustrates Framework installed on remote system. This enables remote
execution of connector server using Java or .NET implementation with targets being
local or remote to connector bundles. This is required when a connector bundle is not
directly executed with in an application and ICF allows the application to
communicate with externally deployed bundles. In addition, the connector artifacts
can be same for local or remote system.

Introducing the ICF Architecture

Understanding the Identity Connector Framework 9-5

Figure 9–4 Connector Server Remote System Framework

Figure 9–5 illustrates ICF Framework, which enables the convergence of Oracle
Identity Manager and Oracle Waveset (OW) connectors to a single connector, best of
both.

Using the ICF API

9-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 9–5 ICF Framework

9.3 Using the ICF API
The org.identityconnectors.framework.api package contains the ICF API. Oracle
Identity Manager uses the API to call Connector implementations. The API provides a
consistent view of any implemented Connector, regardless of the supported
operations. The following sections explain these interfaces and classes.

■ The ConnectorInfoManagerFactory Class

■ The ConnectorInfoManager Interface

■ The ConnectorKey Class

■ The ConnectorInfo Interface

■ The APIConfiguration Interface

■ The ConfigurationProperties Interface

■ The ConnectorFacadeFactory Class

■ The ConnectorFacade Interface

9.3.1 The ConnectorInfoManagerFactory Class
The ConnectorInfoManagerFactory class allows Oracle Identity Manager to load
Connector classes from a set of bundles. The static getInstance method returns an
object of type ConnectorInfoManagerFactory. This object can then be used to get a
reference to the ConnectorInfoManager. (See Section 9.3.2, "The
ConnectorInfoManager Interface" for more information.) Example 9–1 illustrates the
ConnectorInfoManagerFactory implementation.

Example 9–1 ConnectorInfoManagerFactory Implementation

//create ConnectorInfoManagerFactory

Using the ICF API

Understanding the Identity Connector Framework 9-7

ConnectorInfoManagerFactory cInfoManagerFactory =
 ConnectorInfoManagerFactory.getInstance();

9.3.2 The ConnectorInfoManager Interface
The ConnectorInfoManager interface maintains a list of ConnectorInfo instances. Each
instance describes an identity connector. ConnectorInfoManager can be obtained by
calling the getLocalManager method on the ConnectorInfoManagerFactory, and a list
of bundle URLs is passed to it. ConnectorInfoManager can also by obtained by calling
getRemoteManager method on the ConnectorInfoManagerFactory. The
getRemoteManager method accepts an instance of
RemoteFrameworkConnectionInfoand, which is used for getting information about
connectors deployed on Connector Server.

In Example 9–2, cInfoManagerFactory is the instance of the
ConnectorInfoManagerFactory and bundleURL is a list of bundle URLs that may point
to directories consisting of JAR-ed or un-JAR-ed bundles.

Example 9–2 ConnectorInfoManager Implementation

//get the ConnectorInfoManager
ConnectorInfoManager cInfoManager =
 cInfoManagerFactory.getLocalManager(bundleURL);

9.3.3 The ConnectorKey Class
A ConnectorKey uniquely identifies a Connector instance within an installation. The
ConnectorKey class takes a bundleName (name of the Connector bundle), a
bundleVersion (version of the Connector bundle) and a connectorName (name of the
Connector bundle) as illustrated in Example 9–3.

Example 9–3 ConnectorKey Implementation

//get the ConnectorKey reference
ConnectorKey flatFileConnectorKey =
 new ConnectorKey(bundleName, bundleVersion, connectorName);

9.3.4 The ConnectorInfo Interface
The ConnectorInfo interface contains information about a specific identity connector. It
contains the display name, key and message details regarding the particular identity
connector. Example 9–4 illustrates how to implement the ConnectorInfo.

Example 9–4 ConnectorInfo Implementation

//get the ConnectorInfo
ConnectorInfo info =
 cInfoManager.findConnectorInfo(flatFileConnectorKey);

In the example, cInfoManager is the ConnectorInfoManager and flatFileConnectorKey
is the identity connector key.

Using the ICF API

9-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

9.3.5 The APIConfiguration Interface
The APIConfiguration interface shows the configuration properties from both the SPI
and the API sides. The getConfigurationProperties method returns a
ConfigurationProperties instance based on the connector Configuration
implementation, initialized to the defaults. Caller can then modify the properties, as
required. Example 9–5 illustrates this.

Example 9–5 APIConfiguration Definition

APIConfiguration apiConfig =
 info.createDefaultAPIConfiguration();

9.3.6 The ConfigurationProperties Interface
The ConfigurationProperties interface encapsulates the SPI Configuration and uses
reflection to identify the individual properties that are available for an application to
manipulate. Set all of the identity connector's configuration properties using the
setPropertyValue method as defined in Example 9–6.

Example 9–6 setPropertyValue Method Signature

public void setPropertyValue
 (java.lang.String name, java.lang.Object value)

Example 9–7 illustrates an implementation of the ConfigurationProperties interface.

Example 9–7 ConfigurationProperties Implementation

//get the default APIConfiguration
ConfigurationProperties flatFileConfigProps =
 apiConfig.getConfigurationProperties();

9.3.7 The ConnectorFacadeFactory Class
The ConnectorFacadeFactory class allows an application to get a Connector instance
and to manage a pool of Connector instances. Example 9–8 illustrates the
ConnectorFacadeFactory definition.

Example 9–8 ConnectorFacadeFactory Definition

//get a reference to ConnectorFacadeFactory
ConnectorFacadeFactory facadeFactory =
 ConnectorFacadeFactory.getinstance();

9.3.8 The ConnectorFacade Interface
The ConnectorFacade interface is used by the target system to invoke identity
connector operations by representing a specific identity connector on the API side.
Example 9–9 illustrates the ConnectorFacade implementation.

Example 9–9 ConnectorFacade Implementation

//create a ConnectorFacade (nothing but a reference to Connector on SPI side)
ConnectorFacade connectorFacade = facadeFactory.newInstance(apiConfig)

Introducing the ICF SPI

Understanding the Identity Connector Framework 9-9

9.4 Introducing the ICF SPI
Developers implement the ICF SPI to create identity connectors. The ICF SPI is made
up of many interfaces but the developer need only implement those supported by the
target system. SPI can again be classified into required, operation, and feature-based
interfaces. Required interfaces must be implemented irrespective of the operations
supported and they help to create the connector and maintain the connection with the
target system, while operation interfaces help the connector to support various
operations. Feature-based interfaces support certain features supported by the ICF.

The following sections have more information.

■ Implementing the Required Interfaces

■ Implementing the Feature-based Interfaces

■ Implementing the Operation Interfaces

■ Common Classes

9.4.1 Implementing the Required Interfaces
All identity connectors are required to provide an implementation of two interfaces.
These two interfaces declare and initialize the identity connector with the target
system. The following sections have more information.

■ org.identityconnectors.framework.spi.Connector

■ org.identityconnectors.framework.spi.Configuration

9.4.1.1 org.identityconnectors.framework.spi.Connector
This is the main interface to declare an identity connector. Many connectors create the
connection to the target system when the connection is required, removing the
connection when finished with it, and disposing of any resources it has used. The
interface provides the init and dispose life cycle methods for this purpose.

Every connector implementation must be annotated with @ConnectorClass. This is
required because the ICF would scan all top level .class files in the connector bundle
looking for classes that have the @ConnectorClass annotation, therefore,
autodiscovering connectors that are defined in the bundle. This annotation requires
the following elements:

■ configurationClass: This is the configuration class for this connector. This class
has all the information about the target that can be used by the connector to
connect and perform various provisioning and reconciliation operations. See
section "org.identityconnectors.framework.spi.Configuration" on page 9-12 for
more information on how to implement the configuration class.

■ displayNameKey: Display name key that must be present in the message catalog.

Example 9–10 is a sample connector implementation.

Note: Connector implementations must be annotated with type
org.identityconnectors.framework.spi.ConnectorClass by providing
the configurationClass and displayNameKey information. The
displayNameKey must be a key defined in the Messages.properties
file.

Introducing the ICF SPI

9-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Example 9–10 Flat File Connector Implementation

/**
 * Flat file connector implementation. This connector supports create,
 * delete, search and update operations.
 */
@ConnectorClass
 (configurationClass=FlatFileConfigurationImpl.class,
 displayNameKey="FLAT_FILE_CONNECTOR")
public class FlatFileConnector implements Connector,
 CreateOp, DeleteOp,SearchOp<Map<String, String>>,UpdateOp{

In Example 9–10:

■ CreateOp: Helps the connector to create an entity on the target system

■ DeleteOp: Helps the connector to delete an entity on the target system

■ SearchOp: Helps the connector to search an entity on the target system

■ UpdateOp: Helps the connector to update an existing entity on the target system

See "Implementing the Operation Interfaces" on page 9-15 for more information.

The following sections contain information and sample code that illustrates how you
might implement the Connector methods. For complete code regarding a Connector
implementation, see "Developing a Flat File Connector" on page 10-1.

■ Implementing the init Method

■ Implementing the dispose Method

■ Implementing the getConfiguration Method

9.4.1.1.1 Implementing the init Method

The init method initializes the connector. The connector initializes itself with the
configuration instance as provided with the annotation @ConnectorClass. The init
method takes a Configuration object as an argument. The Configuration object has all
the information required by the Connector to connect to the target system.

Example 9–11 illustrates how to implement the init method of interfaces in JDK 1.6.

Example 9–11 init Method Implementation

@Override
 public void init(Configuration config) {
 this.flatFileConfig = (FlatFileConfiguration) config;

 FlatFileIOFactory flatFileIOFactory =
 FlatFileIOFactory.getInstance(flatFileConfig);
 this.flatFileMetadata = flatFileIOFactory.getMetadataInstance();
 this.flatFileParser = flatFileIOFactory.getFileParserInstance();
 this.flatFileWriter = flatFileIOFactory.getFileWriterInstance();
 log.ok("Initialization done");
 }

Note: In this document, all code samples use the methods
implementing interfaces in JDK 1.6.

Introducing the ICF SPI

Understanding the Identity Connector Framework 9-11

The init method implementation shown in Example 9–11 does the following:

■ Stores the configuration information of the target system. This can be used later
while performing an operation.

■ Initializes all the supporting classes it uses while performing any provisioning and
reconciliation operations.

9.4.1.1.2 Implementing the dispose Method

The dispose method disposes of any resources held by this Connector instance. Once
the method is called, the Connector instance is discarded and can not be used.
Example 9–12 illustrates how to implement the dispose method.

Example 9–12 dispose Method Implementation

/**
 * Disposes any resource used by the connector.
 */
 @Override
 public void dispose() {
//close any open FileReader or FileWriter instances.

//close connection with the target

//close connection if any with database
 }

9.4.1.1.3 Implementing the getConfiguration Method

The getConfiguration method returns the Configuration instance passed to the
Connector when the init method was used. Example 9–13 illustrates how to implement
the getConfiguration method.

Example 9–13 getConfiguration Method Implementation

/**
 * returns the Configuration of this connector
 */
@Override
public Configuration getConfiguration() {
 return this.flatFileConfig;
}

Note: FlatFileIOFactory, FlatFileMetadata, FlatFileParser and
FlatFileWriter are supporting classes and are not part of the ICF. An
implementation of these classes is illustrated in "Developing a Flat File
Connector" on page 10-1.

Note: Sometimes, components must be able to access the
Configuration instance after initialization. This is supported by the
accessor method getConfiguration().

Introducing the ICF SPI

9-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

9.4.1.2 org.identityconnectors.framework.spi.Configuration
The implementation of this interface encapsulates the configuration of a connector.
Configuration implementation includes all the necessary information of the target
system, which is used by the Connector implementation to connect to the target
system and perform various reconciliation and provisioning operations. The
implementation should have a default Constructor with setters and getters defined for
its properties. Every property declared may not be required but if a property is
required, then it should be marked required using the annotation
org.identityconnectors.framework.spi.ConfigurationProperty. Configuration
implementation is a Java bean and all the instance variables (mandatory or not) do
have default values. For example, a string userName is used to connect to the target
system and this is a mandatory attribute. This has a default value of null. When
userName is a mandatory attribute, ICF expects a value to be provided by Oracle
Identity Manager. In other words, Oracle Identity Manager cannot miss out this
parameter. If missed, then the connector throws ConfigurationException.

The implementation should check that all required properties are available and
validated before passing itself to the Connector. The interface provides a validate
method for this purpose. For example, there are three mandatory configuration
parameters, such as the IP address of the target, the username to connect to the target,
and the password for the user. The validate method implementation can check for
non-NULL values and valid IP address by using regex.

Example 9–14 Configuration Implementation

/**
 * Configuration implementation for the flat file connector.
 */
public class FlatFileConfigurationImpl extends AbstractConfiguration{

The following sections contain information and sample code that illustrates how you
might implement the Configuration methods.

The Configuration implementation must provide implementation for the following
methods:

■ The validate() Method

■ The setConnectorMessages() Method

■ The getConnectorMessages() Method

9.4.1.2.1 The validate() Method

The validate method checks that the values of all required properties are set. It also
validates that all values of configuration properties are valid. In other words, it
validates that all values of the configuration properties are in the expected range and
have the expected format. If the configuration is not valid, then the implementations
generate the most specific RuntimeException available. When no specific exception is
available, the implementations can throw ConfigurationException. Example 9–15
illustrates how to implement the validate method.

Note: ICF also provides a convenient base class
org.identityconnectors.framework.spi.AbstractConfiguration for
configuration objects to extend.

Introducing the ICF SPI

Understanding the Identity Connector Framework 9-13

Example 9–15 validate Method Implementation

@Override
 public void validate() {
 // Validate if file exists and is usable
 boolean validFile = (this.storeFile.exists() &&
 this.storeFile.canRead() &&
 this.storeFile.canWrite() &&
 this.storeFile.isFile());
 if (!validFile)
 throw new ConfigurationException("User store file not valid");
 FlatFileIOFactory.getInstance(this);
 }

Here, if the target flat file provided is valid or not is checked, such as is a file, is
writeable, is readable. If not valid, then an exception is generated.

Implementations of the validate method should NOT connect to the target system to
validate the properties.

9.4.1.2.2 The setConnectorMessages() Method

The setConnectorMessages method sets the
org.identityconnectors.framework.common.objects.ConnectorMessages message
catalog instance, allowing the Connector to localize messages. Example 9–16 illustrates
the setConnectorMessages method definition.

Example 9–16 setConnectorMessages Method Definition

public final void setConnectorMessages(ConnectorMessages messages) {
_connectorMessages = messages;
}

9.4.1.2.3 The getConnectorMessages() Method

The getConnectorMessages method returns the ConnectorMessages set by the
setConnectorMessages method. Example 9–17 illustrates the getConnectorMessages
method definition.

Example 9–17 getConnectorMessages Method Definition

public final ConnectorMessages getConnectorMessages() {
return _connectorMessages;
}

9.4.2 Implementing the Feature-based Interfaces
The following sections contain information on the interfaces used to enable identity
connector pooling and attribute normalizing.

■ org.identityconnectors.framework.spi.PoolableConnector

■ org.identityconnectors.framework.spi.AttributeNormalizer

Note: This implementation depends on an instance variable (private
File storeFile) and a supporting class (FlatFileIOFactory). A complete
implementation is illustrated in "Developing a Flat File Connector" on
page 10-1.

Introducing the ICF SPI

9-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

9.4.2.1 org.identityconnectors.framework.spi.PoolableConnector
Connection pooling by ICF is a feature provided by the ICF in which the framework
maintains a pool of connector instances and uses them while performing provisioning
and reconciliation operations. Connectors can make use of pooling by implementing
the PoolableConnector interface instead of plain Connector interface. To make use of
this feature, implement the PoolableConnector interface. If you implement the
Connector interface, then ICF creates a new connector instance for every operation,
creates a new connection with the target, completes the provisioning/reconciliation
operation, removes the connection with the target system, and finally disposes this
connector instance. Therefore, the advantages of implementing PoolableConnector is
that a pool of configurable connector instances are maintained and are reused for
many operations.

Some of configurable options are:

■ Maximum connector objects in the pool that are idle and active (_maxObjects)

■ Maximum connector objects that are idle (_maxIdle)

■ Max time to wait if the pool is waiting for a free object to become available before
failing (_maxWait)

■ Minimum time to wait before evicting an idle object (_minEvictableIdleTimeMillis)

■ Minimum number of idle objects (_minIdle)

These values must be set by connector API developer, and if not provided, then the
following default values are used:

■ _maxObjects = 10

■ _maxIdle = 10

■ _maxWait = 150 * 1000 ms

■ _minEvictableIdleTimeMillis = 120 * 1000 ms

■ _minIdle = 1

The PoolableConnector interface extends the Connector interface. It is implemented to
enable identity connector pooling that ICF provides. ICF must make sure that the
Connector instance is alive before being used. For this purpose, the interface provides
a checkAlive method. Example 9–18 is a sample flat file PoolableConnector
implementation.

Example 9–18 Flat File Poolable Connector Implementation

/**
 * Flat file connector implementation. This is a poolable connector
 which supports create, delete, search and update operations.
 */
@ConnectorClass
 (configurationClass=FlatFileConfigurationImpl.class,
 displayNameKey="FLAT_FILE_CONNECTOR")
public class FlatFileConnector implements PoolableConnector,
 CreateOp, DeleteOp,SearchOp<Map<String, String>>,UpdateOp{

To implement the PoolableConnector interface, provide an implementation of the
checkAlive method along with all the methods discussed in Section 9.4.1.1,
"org.identityconnectors.framework.spi.Connector." The checkAlive method
determines if the Connector instance is alive and can be used for operations on the
target system. checkAlive can be called often thus the developer should make sure the
implementation is fast. The method should throw a specific RuntimeException (if

Introducing the ICF SPI

Understanding the Identity Connector Framework 9-15

available) when the Connector is no longer alive. Example 9–19 illustrates how to
implement the checkAlive method.

Example 9–19 checkAlive Method Implementation

/**
* Checks if this connector is alive, if not throws a RuntimeException
*/
@Override
public void checkAlive() {
//check if the connector is still connected to target
}

9.4.2.2 org.identityconnectors.framework.spi.AttributeNormalizer
This interface must be implemented by a Connector that needs to normalize any
attributes passed to it. A normalizer converts values to a standard form for the
purpose of display, consumption, or comparison. For example, a normalizer might
convert text values to a specific case, trim whitespace, or order the elements of a DN in
a specific way.

The interface defines a normalizeAttribute method for this purpose. This method takes
an ObjectClass and an Attribute to be normalized as arguments and returns the
normalized Attribute. Attribute normalization is applied during many operations
including:

■ Filters that are passed to SearchOp

■ Results returned from SearchOp

■ Results returned from SyncOp

■ Attributes passed to UpdateAttributeValuesOp

■ Uids returned from UpdateAttributeValuesOp

■ Attributes passed to UpdateOp

■ Uids returned from UpdateOp

■ Attributes passed to CreateOp

■ Uids returned from CreateOp

■ Uids passed to DeleteOp

Example 9–20 illustrates the normalizeAttribute method definition.

Example 9–20 normalizeAttribute Method Defintion

public Attribute normalizeAttribute (ObjectClass oClass, Attribute attribute) {
if (attribute instanceof Uid) {
return new Uid(LdapUtil.createUniformUid((String)newValues.get(0),
configuration.getSuffix()));
}
}

9.4.3 Implementing the Operation Interfaces
Each operation interface defines an action that the Connector may perform on a target
system, if supported by it. The operation interfaces belong to the
org.identityconnectors.framework.spi.operations package. The names of these

Introducing the ICF SPI

9-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

operation interfaces are listed below, but subsequent sections elaborate on each
interface:

■ AuthenticateOp

■ CreateOp

■ DeleteOp

■ ResolveUsernameOp

■ SchemaOp

■ ScriptOnConnectorOp

■ ScriptOnResourceOp

■ SearchOp<T>SyncOp

■ TestOp

■ UpdateAttributeValuesOp

■ UpdateOp

The following sections contain more information on some of these operations.

■ Implementing the SchemaOp Interface

■ Implementing the CreateOp Interface

■ Implementing the DeleteOp Interface

■ Implementing the SearchOp Interface

■ Implementing the UpdateOp Interface

9.4.3.1 Implementing the SchemaOp Interface
The SchemaOp interface is implemented to allow the connector to describe the objects
it can handle on the target system. The schema that a connector returns describes the
object-classes that it exposes for management. Each object-class has a name, a
description, and a set of attribute definitions. Each attribute definition has a name, a
syntax, and certain flags that describe its properties, such as multi-valued,
single-valued, readable, or writeable.

The schema that a connector returns describes the attributes of each type of object that
the connector exposes. Sometimes, this requires translation from an internal
representation to this Schema format. In other instances, the Schema presents as an
attribute; something that is natively available only via calls to the target API.
Irrespective of how the SPI implementation accomplishes the mapping between the
native representation and the corresponding ConnectorObject, the Schema provides
the metadata that describes what a client can expect to find in a ConnectorObject of
each type, which is objectClass.

To implement this interface, provide an implementation for the schema method as
defined in Example 9–21.

Example 9–21 schema Method Signature

public Schema schema

The implementation should return the schema containing the types of objects that this
identity connector supports.

Introducing the ICF SPI

Understanding the Identity Connector Framework 9-17

Example 9–22 schema Method Implementation

@Override
 public Schema schema() {
 SchemaBuilder flatFileSchemaBldr = new SchemaBuilder(this.getClass());
 Set<AttributeInfo> attrInfos = new HashSet<AttributeInfo>();
 for (String fieldName : flatFileMetadata.getOrderedTextFieldNames()) {
 AttributeInfoBuilder attrBuilder = new AttributeInfoBuilder();
 attrBuilder.setName(fieldName);
 attrBuilder.setCreateable(true);
 attrBuilder.setUpdateable(true);
 attrInfos.add(attrBuilder.build());
 }

// Supported class and attributes
 flatFileSchemaBldr.defineObjectClass
 (ObjectClass.ACCOUNT.getDisplayNameKey(), attrInfos);
 return flatFileSchemaBldr.build();
 }

9.4.3.2 Implementing the CreateOp Interface
The CreateOp interface is implemented to enable creating objects on the target system.
To implement this interface, provide an implementation of the create() method, as
shown in Example 9–23.

Example 9–23 create Method Signature

public Uid create
 (ObjectClass objectClass, Set<Attribute> attributes,
 OperationOptions options)

This method takes an ObjectClass (for example, account or group), a set object
attributes, and operation options. The implementation creates an object on the target
system by using passed object attributes and object type defined by ObjectClass. The
ObjectClass argument specifies the class of object to create. The class of object to be
created is one of the inputs to the create operation. ObjectClass is the first argument to
the create() method, as shown in Example 9–24.

Example 9–24 create Method Implementation

@Override
 public Uid create(ObjectClass arg0, Set<Attribute> attrs,
 OperationOptions ops) {

 System.out.println("Creating user account " + attrs);
 assertUserObjectClass(arg0);
 try {
 FlatFileUserAccount accountRecord = new FlatFileUserAccount(attrs);
 // Assert uid is there
 assertUidPresence(accountRecord);

 // Create the user
 this.flatFileWriter.addAccount(accountRecord);

 // Return uid

Note: The Uid should not appear in the returned schema.

Introducing the ICF SPI

9-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 String uniqueAttrField = this.flatFileConfig
 .getUniqueAttributeName();
 String uniqueAttrVal = accountRecord
 .getAttributeValue(uniqueAttrField);
 System.out.println("User " + uniqueAttrVal + " created");

 return new Uid(uniqueAttrVal);
 } catch (Exception ex) {

 // If account exists
 if (ex.getMessage().contains("exists"))
 throw new AlreadyExistsException(ex);

 // For all other causes
 System.out.println("Error in create " + ex.getMessage());
 throw ConnectorException.wrap(ex);
 }
 }

If the operation is successful, Uid instance representing object identifier on the target
system is supposed to be created and returned. The caller can then use the Uid to refer
to the created object.

9.4.3.3 Implementing the DeleteOp Interface
The DeleteOp interface is implemented to enable deleting objects from the target
system. To implement this interface, provide an implementation for the delete method
as defined in Example 9–25.

Example 9–25 delete Method Signature

public void delete
 (ObjectClass objectClass, Uid uid, OperationOptions options)

This method takes an ObjectClass (for example, account or group), the Uid of the
object being deleted from the target system, and operation options. The
implementation deletes the object identified by the provided Uid from the target
system. if the object does not exist on the target system, then an
org.identityconnectors.framework.common.exceptions.UnknownUidException is
generated. Example 9–26 illustrates how to implement the delete method.

Example 9–26 delete Method Implementation

@Override
 public void delete(ObjectClass arg0, Uid arg1, OperationOptions arg2) {
 final String uidVal = arg1.getUidValue();
 this.flatFileWriter.deleteAccount(uidVal);
 log.ok("Account {0} deleted", uidVal);
 }

Note: If the delete operation fails, then ICF generates subclasses of
RuntimeException. See Oracle Fusion Middleware Java API Reference for
Identity Connector Framework for details.

Introducing the ICF SPI

Understanding the Identity Connector Framework 9-19

9.4.3.4 Implementing the SearchOp Interface
The SearchOp interface is implemented to enable searching objects on the target
system. Here, the search operation consists of:

■ Creation of a native filter to implement search conditions that are specified
generically.

■ Executing the actual query.

Implementing these methods in the SPI allows the API to support search. The API
performs (by post-processing the result) any filtering that the connector does not
perform, for example, by translating any specified filter conditions into native search
conditions.

To implement this interface, provide an implementation for the createFilterTranslator
and executeQuery methods as documented in the following sections.

■ Implementing the createFilterTranslator Method

■ Implementing the executeQuery Method

9.4.3.4.1 Implementing the createFilterTranslator Method

The createFilterTranslator method returns an instance of implementation of
FilterTranslator, which converts the ICF Filter object passed to it from the API side into
a native query. Following the conversion, ICF passes the query to the executeQuery
method. Example 9–27 illustrates the createFilterTranslator method definition.

Example 9–27 createFilterTranslator Method Signature

public FilterTranslator createFilterTranslator
 (ObjectClass oClass, OperationsOptions options)

Example 9–28 illustrates an implementation of the createFilterTranslator method.

Example 9–28 createFilterTranslator Method Implementation

@Override
public FilterTranslator<Map<String, String>> createFilterTranslator
 (ObjectClass arg0, OperationOptions arg1) {
 return new ContainsAllValuesImpl() {
 };
}

This example supports only a single type of search predicate, which is
ContainsAllValues. See "Implementation of AbstractFilterTranslator<T>" on page 10-8
for an example of an implementation of ContainsAllValuesImpl. The implementation
of ContainsAllValues translates into native form a condition of the form: Attribute A
contains all of the values V(1), V(2) ... V(N).

For information on the
org.identityconnectors.framework.common.objects.filter.FilterTranslator, see
"Common Classes" on page 9-21.

9.4.3.4.2 Implementing the executeQuery Method

Note: The return value should not be null.

Introducing the ICF SPI

9-20 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

The executeQuery method is called for every query produced by the FilterTranslator
implementation (as documented in "Implementing the createFilterTranslator Method"
on page 9-19). It takes an ObjectClass (for example, account or group), the query, an
instance of ResultsHandler used as a callback to handle found objects, and operation
options, as illustrated in Example 9–29.

Example 9–29 executeQuery Method Signature

public void executeQuery
 (ObjectClass oClass, T query,
 ResultsHandler handler, OperationOptions options)

The implementation of the executeQuery method searches for the target objects by
using the passed query, creates instances of ConnectorObject for each target object
found, and uses ResultsHandler to handle ConnectorObjects. ConnectorObject is ICF
representation of target resource object. It contains information such as ObjectClass,
Uid, Name, and Set of Attributes. ConnectorObject is central to search. executeQuery
streams ConnectorObjects into the ResultsHandler, and therefore, to the client.
Example 9–30 illustrates how to implement the exectueQuery method.

Example 9–30 executeQuery Method Implementation

@Override
 public void executeQuery(ObjectClass objectClass,
 Map<String, String> matchSet, ResultsHandler resultHandler,
 OperationOptions ops) {

// searches the flat file for accounts which fulfil the condition 'matchSet'
created by FilterTranslator
 Iterator<FlatFileUserAccount> userAccountIterator = this.flatFileParser
 .getAccountIterator(matchSet);

boolean handleMore = true;
 while (userAccountIterator.hasNext() && handleMore) {
 FlatFileUserAccount userAcc = userAccountIterator.next();
 ConnectorObject userAccObject = convertToConnectorObject(userAcc);
 // Let the client handle the result by doing callback
 handleMore = resultHandler.handle(userAccObject);
 }
 while (userAccountIterator.hasNext()) {
 FlatFileUserAccount userAcc = userAccountIterator.next();
 ConnectorObject userAccObject = convertToConnectorObject(userAcc);
 if (!resultHandler.handle(userAccObject)) {
 System.out.println("Not able to handle " + userAcc);
 break;
 }
 }
 }

9.4.3.5 Implementing the UpdateOp Interface
The UpdateOp interface is implemented to enable updating objects on the target
system. To implement this interface, provide an implementation of the update method
as defined in Example 9–31.

Example 9–31 update Method Signature

public Uid update(ObjectClass oClass, Uid uid,

Introducing the ICF SPI

Understanding the Identity Connector Framework 9-21

 Set<Attribute> attributes, OperationOptions options)

This method takes an ObjectClass (for example, account or group), Uid of the object
being updated, a set of object attributes being updated, and operation options. The
implementation updates the object on the target system identified by the Uid with the
new values of attributes. If the object identified by the Uid does not exist on the target
system, then an UnknowUidException is generated. Example 9–32 illustrates how to
implement the update method.

Example 9–32 update Method Implementation

@Override
 public Uid update(ObjectClass arg0, Uid arg1,
 Set<Attribute> arg2, OperationOptions arg3) {
 String accountIdentifier = arg1.getUidValue();
 // Fetch the account
 FlatFileUserAccount accountToBeUpdated = this.flatFileParser
 .getAccount(accountIdentifier);

 // Update
 accountToBeUpdated.updateAttributes(arg2);
 this.flatFileWriter
 .modifyAccount(accountIdentifier, accountToBeUpdated);
 log.ok("Account {0} updated", accountIdentifier);

 // Return new uid
 String newAccountIdentifier = accountToBeUpdated
 .getAttributeValue
 (this.flatFileConfig.getUniqueAttributeName());
 return new Uid(newAccountIdentifier);
 }

9.4.4 Common Classes
There are many ICF classes mentioned in the previous sections. The most important
classes are:

■ org.identityconnectors.framework.common.objects.Attribute

An Attribute is a named collection of values within a target system object. A target
system object may have many attributes and each may have many values. In its
simplest form, an Attribute can be considered a name-value pair of a target system
object. Empty and null values are supported. The developer should use
org.identityconnectors.framework.common.objects.AttributeBuilder to construct
Attribute instances.

■ org.identityconnectors.framework.common.objects.Uid

A single-valued Attribute (Uid is a subclass of Attribute) that represents the
unique identifier of an object on the target resource. Ideally, it should be
immutable.

Note: All attributes are syntactically multivalued in this model. A
particular attribute being singlevalued is only a semantic restriction.

Introducing the ICF SPI

9-22 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ org.identityconnectors.framework.common.objects.ObjectClass

An ObjectClass defines the type of the object on the target system. Account, group,
or organization are examples of such types. ICF defines predefined ObjectClasses
for account (ObjectClass.ACCOUNT) and group (ObjectClass.GROUP).

■ org.identityconnectors.framework.common.objects.ConnectorObject

A ConnectorObject represents an object (for example, an account or group) on the
target system. The developer must use
org.identityconnectors.framework.common.objects.ConnectorObjectBuilder to
construct a ConnectorObject.

■ org.identityconnectors.common.security.GuardedString

A guarded string is a secure String implementation which solves the problem of
storing passwords in memory in a plain String format. Passwords are stored as
Bytes in an encrypted format. The encryption key will be randomly generated.

■ org.identityconnectors.framework.common.objects.filter.FilterTranslator

A FilterTranslater object is responsible for converting all the filters specified on the
API side of the ICF into native queries during a search operation. ICF Filters
support both search predicates and logical operators:

– Search predicates match objects based on the values of a specified attribute.
For example, an EqualsFilter returns true when at least one value of an
attribute is equal to a specified value.

– Logical operators AND and OR join search predicates to build complex
expressions. For example, an expression of the form "A AND B" is true only if
both A and B are true. An expression of the form "A OR B" is true if at least
one of A or B is true.

The ICF provides the AbstractFilterTranslator<T> base class to make search
implementation easier. A FilterTranslator sub class should override the following
whenever possible.

– createAndExpression(T, T)

– createOrExpression(T, T)

– createContainsExpression(ContainsFilter, boolean)

– createEndsWithExpression(EndsWithFilter, boolean)

– createEqualsExpression(EqualsFilter, boolean)

– createGreaterThanExpression(GreaterThanFilter, boolean)

– createGreaterThanOrEqualExpression(GreaterThanOrEqualFilter, boolean)

– createStartsWithExpression(StartsWithFilter, boolean)

– createContainsAllValuesExpression(ContainsAllValuesFilter, boolean)

For more information see Section 9.4.3.4, "Implementing the SearchOp Interface."

■ org.identityconnectors.framework.common.objects.ResultsHandler

This is a callback interface for operations returning one or more results. The sub
class should provide an implementation to the handle method whereas the caller

Note: A singlevalued attribute is particularly relevant to UID being a
unique identifier.

Extending an Identity Connector Bundle

Understanding the Identity Connector Framework 9-23

can decide what to do with the results. Currently, this is used only by the
SearchOp interface. For more information, see Section 9.4.3.4, "Implementing the
SearchOp Interface."

9.5 Extending an Identity Connector Bundle
An identity connector bundle is the specific implementation for a particular target
system. The bundle is a Java archive (JAR) that contains all the files required by the
identity connector to connect to the target system and perform operations. It also has
special attributes (defined in the MANIFEST file) that are recognized by the ICF. These
are:

■ ConnectorBundle-FrameworkVersion is the minimum version of the ICF required
for this identity connector bundle to work. Newer ICF versions will be backwards
compatible.

■ ConnectorBundle-Name is the unique name for this identity connector bundle; it
is generally the package name.

■ ConnectorBundle-Version is the version of this bundle. Within a given
deployment of Oracle Identity Manager, the ConnectorBundle-Name and
ConnectorBundle-Version combination should be unique.

You extend an identity connector bundle, for example, to reuse common code. The
AbtractDatabaseConnector is a good example, because different types of connectors
can reuse the same basic logic that accesses database tables using JDBC. A connector
for database tables might share this common code with a connector for Oracle
Database users, a connector for IBM DB2 database users, and a connector for MySQL
users.

A given Connector can be extended by adding the extended bundle to the /lib
directory of a new bundle and creating a new class that subclasses the target class. This
can be illustrated with the AbstractDatabaseConnector bundle. The common logic
would be in a common bundle as follows:

■ META-INF/MANIFEST.MF

– ConnectorBundle-FrameworkVersion: 1.0

– ConnectorBundle-Name: org.identityconnectors.database.common

– ConnectorBundle-Version: 1.0

■ org.identityconnectors/database/common/AbstractDatabaseConnector.class

■ org/identityconnectors/database/common/* (other common source files)

■ lib/

There would be as many database (resource) specific bundles as needed. For example:

Note: You do not extend the original bundle. Instead, you extend the
connector by embedding the original bundle in a new bundle that
wraps the original bundle.

Note: This identity connector would not have a @ConnectorClass
annotation.

Using an Identity Connector Server

9-24 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ META-INF/MANIFEST.MF

– ConnectorBundle-FrameworkVersion: 1.0

– ConnectorBundle-Name: org.identityconnectors.database.mysql

– ConnectorBundle-Version: 1.0

■ org/identityconnectors/database/mysql/MySQLConnector.class (subclass of
AbstractDatabaseConnector)

■ org/identityconnectors/database/mysql/* (other MySQL source files)

■ lib/org.identityconnectors.database.common-1.0.jar (parent bundle described
above)

■ lib/* (specific database drivers and libraries as needed)

9.6 Using an Identity Connector Server
An identity connector server is required when an identity connector bundle is not
directly executed within your application. By using one or more identity connector
servers, the ICF architecture permits your application to communicate with externally
deployed identity connector bundles. Identity connector servers are available for
Java™ and Microsoft .NET Framework applications.

A single connector server can support multiple ICF connectors, and these ICF
connectors may be of different connector types. A single ICF connector can be used to
communicate with multiple targets.

Figure 9–6 shows how Oracle Identity Manager connectors integrate with resources
via ICF connectors:

Note: This identity connector would have a @ConnectorClass
annotation.

Using an Identity Connector Server

Understanding the Identity Connector Framework 9-25

Figure 9–6 ICF Connectors and Connector Server

In Figure 9–6:

■ Oracle Identity Manager connectors do not directly interact with the target
resource. Instead, the create, read, update, delete, and query (CRUDQ) operations
are performed via the appropriate ICF connector.

■ A single ICF Connector can be used to connect to multiple resources of the same
resource type. In Figure 9–6, an ICF Connector for LDAP is used to connect to a
local LDAP resource, as well as being used to connect to a remote LDAP resource.

■ The .NET Connector Server is used to deploy .NET ICF Connectors on the target
host. An Active Directory resource is connected in this manner.

■ An ICF Connector for Google Apps provides a connection to Google Apps across
the Internet.

■ While not shown in the diagram, a Connector Server can support multiple ICF
Connectors of different resource types.

The types of connector servers are described in the following sections:

■ Using the Java Connector Server

■ Using the Microsoft .NET Framework Connector Server

Using an Identity Connector Server

9-26 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

9.6.1 Using the Java Connector Server
A Java Connector Server is used when you do not want to execute a Java Connector
Bundle in the same Java Virtual Machine (JVM) as the application. This deployment
may be beneficial in terms of performance as the bundle works faster when deployed
on the same host as the managed target system. In addition, use Java Connector Server
to eliminate possibility of an application JVM crash because of faulty JNI-based
connector.

Using the Java connector server is described in the following sections:

■ Installing and Configuring a Java Connector Server

■ Running the Java Connector Server on Microsoft Windows

■ Running the Java Connector Server on Solaris and Linux

■ Installing an Identity Connector in a Java Connector Server

■ Using SSL to Communicate with a Connector Server

9.6.1.1 Installing and Configuring a Java Connector Server
To install and configure the Java Connector Server:

1. Create a new directory on the computer on which you want to install the Java
Connector Server. In this section, CONNECTOR_SERVER_HOME represents this
directory.

2. Unzip the Java Connector Server package in your new directory from Step 1. Java
Connector Server is available for download in the Oracle Technology Network
Web site at the following URL:

http://www.oracle.com/technetwork/index.html

3. In the ConnectorServer.properties file in the conf/ directory, set the properties as
required by your deployment. Table 9–1 lists the properties in the
ConnectorServer.properties file:

Tip: Get the following information (defined during installation) for
use during either Connector Server configuration.

■ Host name and IP address

■ Connector Server port

■ Connector Server key

■ SSL enabled

Table 9–1 Properties in the ConnectorServer.properties File

Property Description

connectorserver.port Port on which the Java Connector Server listens for requests. The
default value is 8759.

connectorserver.bundleDir Directory where the connector bundles are deployed. The
default value is bundles.

connectorserver.libDir Directory in which to place dependent libraries. The default
value is lib.

Using an Identity Connector Server

Understanding the Identity Connector Framework 9-27

4. Set the properties in the ConnectorServer.properties file, as follows:

■ To set connectorserver.key, run the Java Connector Server with the /setKey
option. See "Running the Java Connector Server on Microsoft Windows" on
page 9-27 and "Running the Java Connector Server on Solaris and Linux" on
page 9-28 for more information.

■ For all other properties, edit the ConnectorServer.properties file manually.

5. The conf directory also contains the logging.properties file, which you can edit if
required by your deployment.

9.6.1.2 Running the Java Connector Server on Microsoft Windows
To run the Java Connector Server on Microsoft Windows, use the ConnectorServer.bat
script, as follows:

1. Make sure that you have set the properties required by your deployment in the
ConnectorServer.properties file, as described in "Installing and Configuring a Java
Connector Server" on page 9-26.

2. Change to the CONNECTOR_SERVER_HOME\bin directory and find the
ConnectorServer.bat script.

Table 9–2 lists the options supported by the ConnectorServer.bat script:

connectorserver.usessl If set to true, the Java Connector Server uses SSL for secure
communication. The default value is false.

If you specify true, then use the following options on the
command line when you start the Java Connector Server:

■ -Djavax.net.ssl.keyStore

■ -Djavax.net.ssl.keyStoreType (optional)

■ -Djavax.net.ssl.keyStorePassword

connectorserver.ifaddress Bind address. To set this property, uncomment it in the file, if
required. The bind address can be useful if there are more NICs
installed on the computer.

connectorserver.key Java Connector Server key.

Table 9–2 Options Supported by the ConnectorServer.bat Script

Option Description

/install [serviceName] ["-J
java-option"]

Installs the Java Connector Server as a Microsoft Windows
service.

Optionally, you can specify a service name and Java options. If
you do not specify a service name, then the default name is
ConnectorServerJava.

/run ["-J java-option"] Runs the Java Connector Server from the console.

Optionally, you can specify Java options. For example, to run the
Java Connector Server with SSL:

ConnectorServer.bat /run
"-J-Djavax.net.ssl.keyStore=mykeystore.jks"
"-J-Djavax.net.ssl.keyStorePassword=password"

Table 9–1 (Cont.) Properties in the ConnectorServer.properties File

Property Description

Using an Identity Connector Server

9-28 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

3. If you need to stop the Java Connector Server, then stop the respective Microsoft
Windows service.

9.6.1.3 Running the Java Connector Server on Solaris and Linux
To run the Java Connector Server on Solaris and Linux, use the connectorserver.sh
script, as follows:

1. Make sure that you have set the properties required by your deployment in the
ConnectorServer.properties file, as described in "Installing and Configuring a Java
Connector Server" on page 9-26.

2. Change to the CONNECTOR_SERVER_HOME/bin directory.

3. Use the chmod command to set the permissions to make the connectorserver.sh
script executable.

4. Run the connectorserver.sh script.

Table 9–3 lists the options supported by the connectorserver.sh script:

/setKey [key] Sets the Java Connector Server key. The ConnectorServer.bat
script stores the hashed value of the key in the
connectorserver.key property in the ConnectorServer.properties
file.

/uninstall [serviceName] Uninstalls the Java Connector Server. If you do not specify a
service name, then the script uninstalls the ConnectorServerJava
service.

Table 9–3 Options Supported by the connectorserver.sh Script

Option Description

/run [-Jjava-option] Runs the Java Connector Server in the console. Optionally, you
can specify one or more Java options. For example, to run the
Java Connector Server with SSL:

./connectorserver.sh /run
-J-Djavax.net.ssl.keyStore=mykeystore.jks
-J-Djavax.net.ssl.keyStorePassword=password

/start [-Jjava-option] Runs the Java Connector Server in the background. Optionally,
you can specify one or more Java options.

/stop Stops the Java Connector Server, waiting up to 5 seconds for the
process to end.

/stop n Stops the Java Connector Server, waiting up to n seconds for the
process to end.

/stop -force Stops the Java Connector Server. Waits up to 5 seconds, and then
uses the kill -KILL command if the process is still running.

/stop n -force Stops the Java Connector Server. Waits up to n seconds, and then
uses the kill -KILL command if the process is still running.

/setKey key Sets the Java Connector Server key. The connectorserver.sh script
stores the hashed value of the key in the connectorserver.key
property in the ConnectorServer.properties file.

Table 9–2 (Cont.) Options Supported by the ConnectorServer.bat Script

Option Description

Using an Identity Connector Server

Understanding the Identity Connector Framework 9-29

9.6.1.4 Installing an Identity Connector in a Java Connector Server
This section contains the procedures to deploy a Java Connector Bundle in a Java
Connector Server.

1. Change to the bundles directory in your Java Connector Server directory.

2. Copy the Java Connector Bundle JAR to the bundles directory.

3. Add any applicable third party JAR files required by the identity connector to the
lib directory.

4. Restart the Java Connector Server.

9.6.1.5 Using SSL to Communicate with a Connector Server
Follow these steps to communicate with a Connector Server using Secure Sockets
Layer (SSL).

1. Deploy an SSL certificate to the Connector Server's system.

2. Configure your Connector Server to provide SSL sockets.

3. Configure your application to communicate with the Connector Server using SSL.

Refer to the target system's manual for specific notes on configuring connections
to identity connector servers. You will indicate to your application that an SSL
connection is required when establishing a connection for each SSL-enabled
connector server. Additionally, if any of the SSL certificates used by your
connector servers are issued by a non-standard certificate authority, your
application must be configured to respect the additional authorities. Refer to your
manual for notes regarding certificate authorities.

9.6.2 Using the Microsoft .NET Framework Connector Server
The use of a Microsoft .NET Framework (.NET) Connector Server is useful when an
application is written in Java but a Connector Bundle is written using C#. Because a
Java Platform, Enterprise Edition (JEE™) application cannot load C# classes, you can
deploy the C# bundles under a .NET Connector Server. The Java application can then
communicate with the C# (.NET) Connector Server over the network. The C# (.NET)
Connector Server serves as a proxy to provide any authenticated application access to
the C# bundles. The following sections contain additional information.

■ Installing the .NET Connector Server

Note: Java applications may solve the issue of non-standard
certificate authorities by expecting the following Java system
properties to be passed when launching the application:

■ javax.net.ssl.trustStorePassword

For example:

-Djavax.net.ssl.trustStorePassword=changeit

■ javax.net.ssl.trustStore

For example:

-Djavax.net.ssl.trustStore=/usr/myApp_cacerts

Alternately, the non-standard certificate authorities may be imported
to the standard ${JAVA_HOME}/lib/security/cacerts directory.

Using an Identity Connector Server

9-30 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Configuring the .NET Connector Server

■ Configuring Trace Settings

■ Running the .NET Connector Server

■ Installing Multiple Connectors on a .NET Connector Server

9.6.2.1 Installing the .NET Connector Server
The minimum requirements to run a .NET Connector Server are:

■ Microsoft Windows Server 2003 or 2008

■ Microsoft .NET Framework 3.5 or higher

Refer to the particular .NET identity connector documentation to determine if there are
additional requirements.

To install the .NET Connector Server, execute the ServiceInstall.msi file and follow the
instructions displayed in the Installation Wizard. Upon completion of the installation,
the Connector Server will be installed as a Windows Service.

9.6.2.2 Configuring the .NET Connector Server
Follow this procedure to configure the .NET Connector Server. Common
configurations include port, trace and SSL settings as well as the Connector Server key.

1. Start the Microsoft Services Console.

2. Check to see if the Connector Server is currently running. If yes, stop it.

3. Set the key for the Connector Server using the command prompt.

This key is required by any client that connects to this Connector Server.

a. Change to the directory in which the Connector Server was installed.

By default: \Program Files\Identity Connectors\Connector Server

b. Execute the following command:

ConnectorServer /setkey NEWKEY

where NEWKEY is the value for the key.

4. Configure additional properties by inspecting the settings in
connectorserver.exe.config.

The connectorserver.exe.config file contains information about the Connector
Server. The port, SSL configuration and trace settings are most commonly
changed. Port and SSL settings are in a tag called AppSettings as follows:

<add key="connectorserver.port" value="8759" />
<add key="connectorserver.usessl" value="false" />
<add key="connectorserver.certificatestorename"
value="ConnectorServerSSLCertificate" />
<add key="connectorserver.ifaddress" value="0.0.0.0" />

The port can be set by changing the value of connectorserver.port. To use SSL, set
the value of connectorserver.usessl to true, and set the value of
connectorserver.certifacatestorename to the name of your certificate store. The
listening socket can be bound to a particular address, or can be left as 0.0.0.0. For
more information about configuring the Connector Server with SSL, see
Section 9.6.1.5, "Using SSL to Communicate with a Connector Server." For
information on trace setting configurations, see Section 9.6.2.3, "Configuring Trace

Using an Identity Connector Server

Understanding the Identity Connector Framework 9-31

Settings."

9.6.2.3 Configuring Trace Settings
The Connector Server uses the standard .NET trace mechanism. Trace settings are
defined in the connectorserver.exe.config configuration file. Example 9–33 illustrates
how they are defined.

Example 9–33 Defined Trace Settings

<system.diagnostics>
 <trace autoflush="true" indentsize="4">
 <listeners>
 <remove name="Default" />
 <add name="myListener"
 type="System.Diagnostics.TextWriterTraceListener"
 initializeData="c:\connectorserver2.log"
 traceOutputOptions="DateTime">
 <filter type="System.Diagnostics.EventTypeFilter"
 initializeData="Information" />
 </add>
 </listeners>
 </trace>
</system.diagnostics>

The default settings are a good starting point but you may change these settings as
follows.

■ For less tracing, change the filter type's initializeData setting to Warning or Error.

■ For more verbose logging, set the value to Verbose or All.

Any configuration changes require that the Connector Server be stopped and
restarted.

9.6.2.4 Running the .NET Connector Server
The best way to run the .NET Connector Server is as a Windows Service. During
installation, the Connector Server is installed as a Windows service. If this is not
adequate for your environment, the Connector Server may be installed or uninstalled
as a Windows Service by using the /install or /uninstall arguments at the command
prompt.

To run the Connector Server interactively, issue the command ConnectorServer /run.

9.6.2.5 Installing Multiple Connectors on a .NET Connector Server
To install new identity connectors, change to the directory where the Connector Server
was installed, extract the new identity connector ZIP into it, and restart the Connector
Server.

Caution: The amount of logging performed has a direct effect on the
performance of the Connector Servers.

Note: For more information about the tracing options, see Microsoft
.NET documentation for System.Diagnostics.

Using an Identity Connector Server

9-32 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

10

Developing Identity Connectors Using Java 10-1

10Developing Identity Connectors Using Java

[11]

This chapter is a tutorial that walks through the procedures necessary to develop an
identity connector using the Identity Connector Framework (ICF) and the Oracle
Identity Manager metadata. It includes information about important ICF classes and
interfaces, the connector bundle, the connector server, and code samples for
implementing a flat file identity connector and creating Oracle Identity Manager
metadata for user provisioning and reconciliation processes. It contains the following
sections:

■ Developing a Flat File Connector

■ Uploading the Identity Connector Bundle to Oracle Identity Manager Database

■ Provisioning a Flat File Account

■ Configuring SSL for Java Connector Server

10.1 Developing a Flat File Connector
The procedure for developing a flat file connector is to develop an implementation of
the Configuration interface followed by the implementation of the Connector class.
Before beginning, you must prepare IO representation modules for all flat file
connector operations. This might include all or some of the following:

■ Read the column names of the flat file and prepare metadata information.

■ Add a record to the flat file with the corresponding column values separated by
the specified delimiter.

■ Delete a record to the flat file based on the UID value.

■ Search operations on flat file.

This tutorial is focused on identity connector development, and therefore, these
preparations are not discussed in detail.

Developing a Flat File Connector

10-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

To develop a flat file connector:

1. Implement the configuration class for the Flat File Connector by extending the
org.identityconnectors.framework.spi.AbstractConfiguration base class.

Example 10–1 is a sample of this. See Section 9.4.1.2,
"org.identityconnectors.framework.spi.Configuration" for more information.

Example 10–1 Implementation of AbstractConfiguration

package org.identityconnectors.flatfile;
import java.io.File;
import org.identityconnectors.flatfile.io.FlatFileIOFactory;
import org.identityconnectors.framework.common.exceptions.ConfigurationException;
import org.identityconnectors.framework.spi.AbstractConfiguration;
import org.identityconnectors.framework.spi.ConfigurationProperty;
/**
 * Class for storing the flat file configuration
 */
public class FlatFileConfiguration extends AbstractConfiguration {
/*
 * Storage file name
 */
private File storeFile;
/*
 * Delimeter used
 */
private String textFieldDelimeter;
/*
 * Unique attribute field name
 */
private String uniqueAttributeName = "";
/*
 * Change attribute field name. Should be numeric
 */
private String changeLogAttributeName = "";

public File getStoreFile() {
return storeFile;
}

public String getTextFieldDelimeter() {
return textFieldDelimeter;
}

 public String getUniqueAttributeName() {

Note: The following supporting classes are used for file input and
output handling during identity connector operations:

■ org.identityconnectors.flatfile.io.FlatFileIOFactory

■ org.identityconnectors.flatfile.io.FlatFileMetadata

■ org.identityconnectors.flatfile.io.FlatFileParser

■ org.identityconnectors.flatfile.io.FlatFileWriter

See "Supporting Classes for File Input and Output Handling" on
page 10-9 for the implementations of the input and output handling
supporting classes.

Developing a Flat File Connector

Developing Identity Connectors Using Java 10-3

 return uniqueAttributeName;
 }

 public String getChangeLogAttributeName() {
 return changeLogAttributeName;
 }

 /**
 * Set the store file
 * @param storeFile
 */
 @ConfigurationProperty(order = 1, helpMessageKey = "USER_ACCOUNT_STORE_HELP",
 displayMessageKey = "USER_ACCOUNT_STORE_DISPLAY")
 public void setStoreFile(File storeFile) {
 this.storeFile = storeFile;
 }

 /**
 * Set the text field delimeter
 * @param textFieldDelimeter
 */
 @ConfigurationProperty(order = 2,
 helpMessageKey = "USER_STORE_TEXT_DELIM_HELP",
 displayMessageKey = "USER_STORE_TEXT_DELIM_DISPLAY")
 public void setTextFieldDelimeter(String textFieldDelimeter) {
 this.textFieldDelimeter = textFieldDelimeter;
 }

 /**
 * Set the field whose values will be considered as unique attributes
 * @param uniqueAttributeName
 */
 @ConfigurationProperty(order = 3, helpMessageKey = "UNIQUE_ATTR_HELP",
 displayMessageKey = "UNIQUE_ATTR_DISPLAY")
 public void setUniqueAttributeName(String uniqueAttributeName) {
 this.uniqueAttributeName = uniqueAttributeName;
 }

 /**
 * Set the field name where change number should be stored
 * @param changeLogAttributeName
 */
 @ConfigurationProperty(order = 3, helpMessageKey = "CHANGELOG_ATTR_HELP",
 displayMessageKey = "CHANGELOG_ATTR_DISPLAY")
 public void setChangeLogAttributeName(String changeLogAttributeName) {
 this.changeLogAttributeName = changeLogAttributeName;
 }
 @Override
 public void validate() {

 // Validate if file exists and is usable
 boolean validFile = (this.storeFile.exists() &&
 this.storeFile.canRead() &&
 this.storeFile.canWrite() &&
 this.storeFile.isFile());

 if (!validFile)
 throw new ConfigurationException("User store file not valid");

 // Validate if there is a field on name of unique attribute field name

Developing a Flat File Connector

10-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 // Validate if there is a field on name of change attribute field name
 FlatFileIOFactory.getInstance(this);
 // Initialization does the validation
 }

}

2. Create connector class for the Flat File Connector by implementing the
org.identityconnectors.framework.spi.Connector interface.

Example 10–2 implements the CreateOp, DeleteOp, SearchOp and UpdateOp
interfaces and thus supports all four operations. The FlatFileMetadata,
FlatFileParser and FlatFileWriter classes are supporting classes. Their
implementation is not shown as they do not belong to the ICF.

Example 10–2 Implementation of PoolableConnector

package org.identityconnectors.flatfile;

import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set;

import org.identityconnectors.flatfile.io.FlatFileIOFactory;
import org.identityconnectors.flatfile.io.FlatFileMetadata;
import org.identityconnectors.flatfile.io.FlatFileParser;
import org.identityconnectors.flatfile.io.FlatFileWriter;
import org.identityconnectors.framework.api.operations.GetApiOp;
import org.identityconnectors.framework.common.exceptions.AlreadyExistsException;
import org.identityconnectors.framework.common.exceptions.ConnectorException;
import org.identityconnectors.framework.common.objects.Attribute;
import org.identityconnectors.framework.common.objects.AttributeInfo;
import org.identityconnectors.framework.common.objects.AttributeInfoBuilder;
import org.identityconnectors.framework.common.objects.ConnectorObject;
import org.identityconnectors.framework.common.objects.ConnectorObjectBuilder;
import org.identityconnectors.framework.common.objects.ObjectClass;
import org.identityconnectors.framework.common.objects.OperationOptions;
import org.identityconnectors.framework.common.objects.ResultsHandler;
import org.identityconnectors.framework.common.objects.Schema;
import org.identityconnectors.framework.common.objects.SchemaBuilder;
import org.identityconnectors.framework.common.objects.Uid;
import
org.identityconnectors.framework.common.objects.filter.AbstractFilterTranslator;
import org.identityconnectors.framework.common.objects.filter.FilterTranslator;
import org.identityconnectors.framework.spi.Configuration;
import org.identityconnectors.framework.spi.ConnectorClass;
import org.identityconnectors.framework.spi.PoolableConnector;
import org.identityconnectors.framework.spi.operations.CreateOp;
import org.identityconnectors.framework.spi.operations.DeleteOp;
import org.identityconnectors.framework.spi.operations.SchemaOp;
import org.identityconnectors.framework.spi.operations.SearchOp;
import org.identityconnectors.framework.spi.operations.UpdateOp;

/**
 * The main connector class
 */
@ConnectorClass(configurationClass = FlatFileConfiguration.class, displayNameKey =

Developing a Flat File Connector

Developing Identity Connectors Using Java 10-5

"FlatFile")
public class FlatFileConnector implements SchemaOp, CreateOp, DeleteOp,
 UpdateOp, SearchOp<Map<String, String>>, GetApiOp, PoolableConnector {

 private FlatFileConfiguration flatFileConfig;
 private FlatFileMetadata flatFileMetadata;
 private FlatFileParser flatFileParser;
 private FlatFileWriter flatFileWriter;
 private boolean alive = false;

 @Override
 public Configuration getConfiguration() {
 return this.flatFileConfig;
 }

 @Override
 public void init(Configuration config) {
 this.flatFileConfig = (FlatFileConfiguration) config;

 FlatFileIOFactory flatFileIOFactory =
 FlatFileIOFactory.getInstance(flatFileConfig);
 this.flatFileMetadata = flatFileIOFactory.getMetadataInstance();
 this.flatFileParser = flatFileIOFactory.getFileParserInstance();
 this.flatFileWriter = flatFileIOFactory.getFileWriterInstance();
 this.alive = true;
 System.out.println("init called: Initialization done");
 }

 @Override
 public void dispose() {
 this.alive = false;
 }

 @Override
 public Schema schema() {
 SchemaBuilder flatFileSchemaBldr = new SchemaBuilder(this.getClass());
 Set<AttributeInfo> attrInfos = new HashSet<AttributeInfo>();
 for (String fieldName : flatFileMetadata.getOrderedTextFieldNames()) {
 AttributeInfoBuilder attrBuilder = new AttributeInfoBuilder();
 attrBuilder.setName(fieldName);
 attrBuilder.setCreateable(true);
 attrBuilder.setUpdateable(true);
 attrInfos.add(attrBuilder.build());
 }

 // Supported class and attributes
 flatFileSchemaBldr.defineObjectClass
 (ObjectClass.ACCOUNT.getDisplayNameKey(),attrInfos);
 System.out.println("schema called: Built the schema properly");
 return flatFileSchemaBldr.build();
 }

 @Override
 public Uid create(ObjectClass arg0, Set<Attribute> attrs,
 OperationOptions ops) {

 System.out.println("Creating user account " + attrs);
 assertUserObjectClass(arg0);
 try {
 FlatFileUserAccount accountRecord = new FlatFileUserAccount(attrs);

Developing a Flat File Connector

10-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 // Assert uid is there
 assertUidPresence(accountRecord);

 // Create the user
 this.flatFileWriter.addAccount(accountRecord);

 // Return uid
 String uniqueAttrField = this.flatFileConfig
 .getUniqueAttributeName();
 String uniqueAttrVal = accountRecord
 .getAttributeValue(uniqueAttrField);
 System.out.println("User " + uniqueAttrVal + " created");

 return new Uid(uniqueAttrVal);
 } catch (Exception ex) {

 // If account exists
 if (ex.getMessage().contains("exists"))
 throw new AlreadyExistsException(ex);

 // For all other causes
 System.out.println("Error in create " + ex.getMessage());
 throw ConnectorException.wrap(ex);
 }
 }

 @Override
 public void delete(ObjectClass arg0, Uid arg1, OperationOptions arg2) {
 final String uidVal = arg1.getUidValue();
 this.flatFileWriter.deleteAccount(uidVal);
 System.out.println("Account " + uidVal + " deleted");
 }

 @Override
 public Uid update(ObjectClass arg0, Uid arg1, Set<Attribute> arg2,
 OperationOptions arg3) {
 String accountIdentifier = arg1.getUidValue();
 // Fetch the account
 FlatFileUserAccount accountToBeUpdated = this.flatFileParser
 .getAccount(accountIdentifier);

 // Update
 accountToBeUpdated.updateAttributes(arg2);
 this.flatFileWriter
 .modifyAccount(accountIdentifier, accountToBeUpdated);
 System.out.println("Account " + accountIdentifier + " updated");

 // Return new uid
 String newAccountIdentifier = accountToBeUpdated
 .getAttributeValue(this.flatFileConfig.getUniqueAttributeName());
 return new Uid(newAccountIdentifier);
 }

 @Override
 public FilterTranslator<Map<String, String>> createFilterTranslator(
 ObjectClass arg0, OperationOptions arg1) {
 // TODO: Create a fine grained filter translator

 // Return a dummy object as its not applicable here.
 // All processing happens in the execute query

Developing a Flat File Connector

Developing Identity Connectors Using Java 10-7

 return new AbstractFilterTranslator<Map<String, String>>() {
 };
 }

 @Override
 public ConnectorObject getObject(ObjectClass arg0, Uid uid,
 OperationOptions arg2) {
 // Return matching record
 String accountIdentifier = uid.getUidValue();
 FlatFileUserAccount userAcc = this.flatFileParser
 .getAccount(accountIdentifier);
 ConnectorObject userAccConnObject = convertToConnectorObject(userAcc);
 return userAccConnObject;
 }

 /*
 * (non-Javadoc)
 * This is the search implementation.
 * The Map passed as the query here, will map to all the records with
 * matching attributes.
 *
 * The record will be filtered if any of the matching attributes are not
 * found
 *
 * @see
 * org.identityconnectors.framework.spi.operations.SearchOp#executeQuery
 * (org.identityconnectors.framework.common.objects.ObjectClass,
 * java.lang.Object,
 * org.identityconnectors.framework.common.objects.ResultsHandler,
 * org.identityconnectors.framework.common.objects.OperationOptions)
 */
 @Override
 public void executeQuery(ObjectClass objectClass,
 Map<String, String> matchSet, ResultsHandler resultHandler,
 OperationOptions ops) {

 System.out.println("Inside executeQuery");

 // Iterate over the records and handle individually
 Iterator<FlatFileUserAccount> userAccountIterator = this.flatFileParser
 .getAccountIterator(matchSet);

 while (userAccountIterator.hasNext()) {
 FlatFileUserAccount userAcc = userAccountIterator.next();
 ConnectorObject userAccObject = convertToConnectorObject(userAcc);
 if (!resultHandler.handle(userAccObject)) {
 System.out.println("Not able to handle " + userAcc);
 break;
 }
 }
 }

 private void assertUserObjectClass(ObjectClass arg0) {
 if (!arg0.equals(ObjectClass.ACCOUNT))
 throw new UnsupportedOperationException(
 "Only user account operations supported.");

 }

 private void assertUidPresence(FlatFileUserAccount accountRecord) {

Developing a Flat File Connector

10-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 String uniqueAttrField = this.flatFileConfig.getUniqueAttributeName();
 String uniqueAttrVal = accountRecord.getAttributeValue(uniqueAttrField);

 if (uniqueAttrVal == null) {
 throw new IllegalArgumentException("Unique attribute not passed");
 }
 }

 private ConnectorObject convertToConnectorObject(FlatFileUserAccount userAcc)
{
 ConnectorObjectBuilder userObjBuilder = new ConnectorObjectBuilder();
 // Add attributes
 List<String> attributeNames = this.flatFileMetadata
 .getOrderedTextFieldNames();
 for (String attributeName : attributeNames) {
 String attributeVal = userAcc.getAttributeValue(attributeName);
 userObjBuilder.addAttribute(attributeName, attributeVal);

 if (attributeName.equals(this.flatFileConfig
 .getUniqueAttributeName())) {
 userObjBuilder.setUid(attributeVal);
 userObjBuilder.setName(attributeVal);
 }
 }
 return userObjBuilder.build();
 }

 @Override
 public void checkAlive() {
 if (!alive)
 throw new RuntimeException("Connection not alive");
 }

}

3. This connector supports only the ContainsAllValuesFilter operation. Implement
the ContainsAllValuesFilter operation Example 10–3 illustrates the sample
implementation of
org.identityconnectors.framework.common.objects.filter.AbstractFilterTranslator<
T> that defines the filter operation.

Example 10–3 Implementation of AbstractFilterTranslator<T>

package org.identityconnectors.flatfile.filteroperations;

import java.util.HashMap;
import java.util.Map;

import org.identityconnectors.framework.common.objects.Attribute;
import
org.identityconnectors.framework.common.objects.filter.AbstractFilterTranslator;
import
org.identityconnectors.framework.common.objects.filter.ContainsAllValuesFilter;

public class ContainsAllValuesImpl extends AbstractFilterTranslator<Map<String,
String>>{
@Override
protected Map<String, String> createContainsAllValuesExpression(
ContainsAllValuesFilter filter, boolean not) {
Map<String, String> containsAllMap = new HashMap<String, String>();

Developing a Flat File Connector

Developing Identity Connectors Using Java 10-9

Attribute attr = filter.getAttribute();
containsAllMap.put(attr.getName(), attr.getValue().get(0).toString());
return containsAllMap;
}
}

4. Create the connector bundle JAR. The MANIFEST.MF file must contain the
following entries:

■ ConnectorBundle-FrameworkVersion

■ ConnectorBundle-Name

■ ConnectorBundle-Version

Example 10–4 shows the contents of the MANIFEST.MF file:

Example 10–4 The MANIFEST.MF File

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.7.0
Created-By: 14.1-b02 (Sun Microsystems Inc.)
ConnectorBundle-FrameworkVersion: 1.0
ConnectorBundle-Name: org.identityconnectors.flatfile
ConnectorBundle-Version: 1.0
Build-Number: 609
Subversion-Revision: 4582

5. Update the connector bundle JAR as created in step 4. To do so:

a. Extract the connector bundle JAR into any desired location.

b. Create a lib directory in the directory in which you extracted the JAR.

c. Add the dependent third-party JARs into the lib directory.

d. JAR the entire directory.

10.1.1 Supporting Classes for File Input and Output Handling
This section shows the implementation of the following supporting classes for file
input and output handling:

■ Example 10–5, "FlatFileIOFactory"

■ Example 10–6, "FlatFileMetadata"

■ Example 10–7, "FlatFileParser"

■ Example 10–8, "FlatFileWriter"

■ Example 10–9, "FlatfileLineIterator"

■ Example 10–10, "FlatfileUserAccount"

■ Example 10–11, "FlatfileAccountConversionHandler"

■ Example 10–12, "Messages.Properties"

Example 10–5 shows the implementation of the FlatFileIOFactory supporting class:

Note: The MANIFEST.MF file must contain the entries listed in step
4.

Developing a Flat File Connector

10-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Example 10–5 FlatFileIOFactory

package org.identityconnectors.flatfile.io;

import org.identityconnectors.flatfile.FlatFileConfiguration;

public class FlatFileIOFactory {

 private FlatFileMetadata flatFileMetadata;
 private FlatFileConfiguration flatFileConfig;

 /**
 * Provides instance of the factory
 * @param flatfileConfig Configuration bean for the flat file
 */
 public static FlatFileIOFactory getInstance(FlatFileConfiguration fileConfig)
{
 return new FlatFileIOFactory(fileConfig);
 }

 /**
 * Making it private to avoid public instantiation. Encouraging use of
getInstance
 * @param fileConfig
 */
 private FlatFileIOFactory(FlatFileConfiguration fileConfig) {
 this.flatFileConfig = fileConfig;
 this.flatFileMetadata = new FlatFileMetadata(flatFileConfig);
 System.out.println("Metadata set");
 }

 /**
 * Returns the metadata instance
 * @return
 */
 public FlatFileMetadata getMetadataInstance() {
 return this.flatFileMetadata;
 }

 /**
 * Returns the FlatFileParser instance
 * @return
 */
 public FlatFileParser getFileParserInstance() {
 return new FlatFileParser(this.flatFileMetadata, this.flatFileConfig);
 }

 /**
 * Returns the FlatFileWriter instance
 * @return
 */
 public FlatFileWriter getFileWriterInstance() {
 return new FlatFileWriter(this.flatFileMetadata, this.flatFileConfig);
 }
}
Example 10–6 shows the implementation of the FlatFileMetaData supporting class:

Example 10–6 FlatFileMetadata

package org.identityconnectors.flatfile.io;

Developing a Flat File Connector

Developing Identity Connectors Using Java 10-11

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;

import org.identityconnectors.flatfile.FlatFileConfiguration;

/**
 * This class contains all the metadata related information Example: Ordering of
 * columns, Number of columns etc.
 *
 * @author harsh
 *
 */
public class FlatFileMetadata {

 private FlatFileConfiguration fileConfig;

 private List<String> orderedTextFieldNames;

 private String changeLogFieldName;
 private String uniqueAttributeFiledName;

 /**
 * Instantiates the class with the file configuration.
 * Making it package private to encourage instantiation from Factory class
 * @param fileConfig
 */
 FlatFileMetadata(FlatFileConfiguration fileConfig) {
 /*
 * Ideally you should not take connector specific configuration class in
 * flat file resource classes. Change if this has to go to production.
 * Probably make another configuration class for flat file with same
 * signatures.
 */
 this.fileConfig = fileConfig;

 initializeMetadata();
 validateConfigProps();
 }

 /**
 * Returns the text field names in the order of their storage
 *
 * @return
 */
 public List<String> getOrderedTextFieldNames() {
 return this.orderedTextFieldNames;
 }

 /**
 * Returns the number of columns
 */
 public int getNumberOfFields() {
 int numberOfTextFields = this.orderedTextFieldNames.size();
 return numberOfTextFields;
 }

Developing a Flat File Connector

10-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 /**
 * Specifies if number of tokens are matching with the standard length of
metadata
 * @param countTokens
 * @return
 */
 public boolean isDifferentFromNumberOfFields(int countTokens) {
 return (getNumberOfFields() != countTokens);
 }

 /**
 * Reads the header line and sets the metadata
 */
 private void initializeMetadata() {
 // Read the file.
 File recordsStore = this.fileConfig.getStoreFile();

 try {
 BufferedReader storeFileReader = new BufferedReader(new FileReader(
 recordsStore.getAbsolutePath()));

 // Read the header line
 String headerString = storeFileReader.readLine();

 // Tokenize the headerString
 StringTokenizer tokenizer = new StringTokenizer(headerString,
 fileConfig.getTextFieldDelimeter());

 this.orderedTextFieldNames = new ArrayList<String>();
 while (tokenizer.hasMoreTokens()) {
 String header = tokenizer.nextToken();
 this.orderedTextFieldNames.add(header);
 }

 System.out.println("Columns read - " + this.orderedTextFieldNames);
 } catch (IOException e) {
 throw new RuntimeException("How can I read a corrupted file");
 }

 // Store the change log and unique attribute field names
 this.changeLogFieldName = fileConfig.getChangeLogAttributeName();
 this.uniqueAttributeFiledName = fileConfig.getUniqueAttributeName();
 }

 /**
 * Validate if the attribute names in config props object are present in the
 * column names
 *
 * @throws RuntimeException
 * if validation fails
 */
 private void validateConfigProps() {
 // Check if unique attribute col name is present
 if (!this.orderedTextFieldNames.contains(this.changeLogFieldName))
 throw new RuntimeException("Change log field name "
 + this.changeLogFieldName + " not found in the store file ");

 // Check if change col name is present
 if (!this.orderedTextFieldNames.contains(this.uniqueAttributeFiledName))

Developing a Flat File Connector

Developing Identity Connectors Using Java 10-13

 throw new RuntimeException("Unique attribute field name "
 + this.uniqueAttributeFiledName
 + " not found in the store file");
 }
}
Example 10–7 shows the implementation of the FlatFileParser supporting class:

Example 10–7 FlatFileParser

package org.identityconnectors.flatfile.io;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;

import org.identityconnectors.flatfile.FlatFileConfiguration;
import org.identityconnectors.flatfile.FlatFileUserAccount;
import org.identityconnectors.flatfile.utils.AccountConversionHandler;

public class FlatFileParser {

 private File recordsStore;
 private FlatFileConfiguration fileConfig;
 private FlatFileMetadata metadata;
 private AccountConversionHandler accountConverter;

 /**
 * Instantiates the parser class. Making it package private to encourage
 * instantiation from Factory class
 *
 * @param metadata
 * @param fileConfig
 */
 FlatFileParser(FlatFileMetadata metadata, FlatFileConfiguration fileConfig) {
 this.fileConfig = fileConfig;
 this.recordsStore = fileConfig.getStoreFile();
 this.accountConverter = new AccountConversionHandler(metadata,
 fileConfig);
 this.metadata = metadata;
 }

 /**
 * Returns all accounts in the file
 *
 * @return
 */
 public List<FlatFileUserAccount> getAllAccounts() {
 try {
 BufferedReader userRecordReader = new BufferedReader(
 new FileReader(recordsStore.getAbsolutePath()));
 String recordStr;

 // Skip headers
 userRecordReader.readLine();

Developing a Flat File Connector

10-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 // Loop over records and make list of objects
 List<FlatFileUserAccount> allAccountRecords = new
ArrayList<FlatFileUserAccount>();
 while ((recordStr = userRecordReader.readLine()) != null) {
 try {
 FlatFileUserAccount accountRecord = accountConverter
 .convertStringRecordToAccountObj(recordStr);
 allAccountRecords.add(accountRecord);
 } catch (RuntimeException e) {
 System.out.println("Invalid entry " + e.getMessage());
 }
 }
 userRecordReader.close();

 return allAccountRecords;
 } catch (IOException e) {
 throw new RuntimeException("How can I read a corrupted file");
 }
 }

 /**
 * Gets the account of matching account identifier
 *
 * @param accountIdentifier
 * @return
 */
 public FlatFileUserAccount getAccount(String accountIdentifier) {

 /*
 * I know its not right to get all account details. Don't want to focus
 * on efficiency and scalability as this is just a sample.
 */
 // Iterate over all records and check for matching account
 Map<String, String> matchSet = new HashMap<String, String>();
 matchSet.put(fileConfig.getUniqueAttributeName(), accountIdentifier);
 for (FlatFileUserAccount userRecord : getAllAccounts()) {
 if (userRecord.hasMatchingAttributes(matchSet))
 return userRecord;
 }

 // Got nothing..
 return null;
 }

 /**
 * Returns all records with matching Attributes If more than attributes are
 * passed. it will check all the attributes
 *
 * @param matchSet
 * Checks if all provided attributes are matched
 */
 public List<FlatFileUserAccount> getAccountsByMatchedAttrs(
 Map<String, String> matchSet) {
 /*
 * I know its not right to get all account details. Don't want to focus
 * on efficiency and scalability as this is just a sample.
 */
 // Iterate over all records and check for matching account
 List<FlatFileUserAccount> matchingRecords = new

Developing a Flat File Connector

Developing Identity Connectors Using Java 10-15

ArrayList<FlatFileUserAccount>();
 for (FlatFileUserAccount userRecord : getAllAccounts()) {
 if (userRecord.hasMatchingAttributes(matchSet))
 matchingRecords.add(userRecord);
 }

 return matchingRecords;
 }

 /**
 * Returns the records that fall after the specified change number This
 * function helps in checking the function of sync
 *
 * @param changeNumber
 * the change number for the last search
 */
 public List<FlatFileUserAccount> getUpdatedAccounts(int changeNumber) {
 /*
 * I know its not right to get all account details. Don't want to focus
 * on efficiency and scalability as this is just a sample.
 */
 // Iterate over all records and check for matching account
 List<FlatFileUserAccount> matchingRecords = new
ArrayList<FlatFileUserAccount>();
 String changeLogAttrName = fileConfig.getChangeLogAttributeName();
 for (FlatFileUserAccount userRecord : getAllAccounts()) {
 int recordChangeNumber = userRecord
 .getChangeNumber(changeLogAttrName);
 if (recordChangeNumber >= changeNumber)
 matchingRecords.add(userRecord);
 }
 return matchingRecords;

 }

 /**
 * Returns an iterator that iterates over the records. This is provided for
 * dynamic retrieval of records
 *
 * @param matchSet
 * Filters the records by matching the given attributes. Use null
 * or empty set to avoid filtering
 * @return
 */
 public Iterator<FlatFileUserAccount> getAccountIterator(
 Map<String, String> matchSet) {
 Iterator<FlatFileUserAccount> recordIterator = new FlatFileLineIterator(
 this.metadata, this.fileConfig, matchSet);

 return recordIterator;
 }

 /**
 * Gives the next change number. Logic is max of existing change numbers + 1
 * @return
 */
 public int getNextChangeNumber() {
 int maximumChangeNumber = 0;

 /*

Developing a Flat File Connector

10-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 * I know its not right to get all account details. Don't want to focus
 * on efficiency and scalability as this is just a sample.
 */
 // Iterate over all records and check for matching account
 String changeLogAttrName = fileConfig.getChangeLogAttributeName();
 for (FlatFileUserAccount userRecord : getAllAccounts()) {
 int changeNumber = userRecord.getChangeNumber(changeLogAttrName);

 if (changeNumber >= maximumChangeNumber) {
 maximumChangeNumber = changeNumber + 1;
 }
 }
 return maximumChangeNumber;
 }
}

Example 10–8 shows the implementation of the FlatFileWriter supporting class:

Example 10–8 FlatFileWriter

package org.identityconnectors.flatfile.io;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;

import org.identityconnectors.flatfile.FlatFileConfiguration;
import org.identityconnectors.flatfile.FlatFileUserAccount;
import org.identityconnectors.flatfile.utils.AccountConversionHandler;

/**
 * Class for searching operations on files
 *
 * @author Harsh
 */
public class FlatFileWriter {

 private File recordsStore;
 private FlatFileParser recordParser;
 private FlatFileConfiguration fileConfig;
 private AccountConversionHandler accountConverter;

 /**
 * Initializes the writer with the configuration Making it package private
 * to encourage use of Factory class for global instantiation
 *
 * @param metadata
 * @param fileConfig
 */
 FlatFileWriter(FlatFileMetadata metadata, FlatFileConfiguration fileConfig) {
 this.fileConfig = fileConfig;

 this.recordsStore = fileConfig.getStoreFile();
 recordParser = new FlatFileParser(metadata, fileConfig);
 accountConverter = new AccountConversionHandler(metadata, fileConfig);
 }

Developing a Flat File Connector

Developing Identity Connectors Using Java 10-17

 /**
 * Appends the user record at the end of
 *
 * @param accountRecord
 */
 public void addAccount(FlatFileUserAccount accountRecord) {
 try {
 BufferedWriter userRecordWriter = new BufferedWriter(
 new FileWriter(this.recordsStore.getAbsolutePath(), true));

 // Set the latest changelog number
 int latestChangeNumber = recordParser.getNextChangeNumber();
 accountRecord.setChangeNumber(fileConfig
 .getChangeLogAttributeName(), latestChangeNumber);

 // Validate if same account id doesn't exist
 String accountUid = accountRecord.getAttributeValue(fileConfig
 .getUniqueAttributeName());
 FlatFileUserAccount accountByAccountId = recordParser
 .getAccount(accountUid);

 if (accountByAccountId != null)
 throw new RuntimeException("Account " + accountUid
 + " already exists");

 // Put the user record in formatted way
 String userRecordAsStr = accountConverter
 .convertAccountObjToStringRecord(accountRecord);
 userRecordWriter.write("\n" + userRecordAsStr);

 // Close the output stream
 userRecordWriter.close();
 } catch (IOException e) {// Catch exception if any
 throw new RuntimeException("How can I write on a corrupted file");
 }
 }

 /**
 * Removes the entry for respective account identifier
 *
 * @param accountIdentifier
 */
 public void deleteAccount(String accountIdentifier) {
 String blankRecord = "";
 this.modifyAccountInStore(accountIdentifier, blankRecord);
 }

 /**
 * Updates the entry with respective account identifier
 *
 * @param accountIdentifier
 * @param updatedAccountRecord
 * @return new accountIdentifier
 */
 public String modifyAccount(String accountIdentifier,
 FlatFileUserAccount updatedAccountRecord) {

 // Frame a record string and update back to file
 int nextChangeNumber = recordParser.getNextChangeNumber();

Developing a Flat File Connector

10-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 String changeNumberFieldName = fileConfig.getChangeLogAttributeName();
 updatedAccountRecord.setChangeNumber(changeNumberFieldName,
 nextChangeNumber);

 String newRecordAsStr = accountConverter
 .convertAccountObjToStringRecord(updatedAccountRecord);
 // Update to the file
 this.modifyAccountInStore(accountIdentifier, newRecordAsStr);

 // Return new UID
 String uniqueAttrFieldName = fileConfig.getUniqueAttributeName();
 String newAccountIdentifier = updatedAccountRecord
 .getAttributeValue(uniqueAttrFieldName);
 return newAccountIdentifier;
 }

 /**
 * Returns the complete flat file as string.
 *
 * @return
 */
 private String getCompleteFlatFileAsStr() {
 try {
 BufferedReader userRecordReader = new BufferedReader(
 new FileReader(recordsStore.getAbsolutePath()));
 String recordStr;

 // Loop over records and make list of objects
 StringBuilder flatFileStr = new StringBuilder();
 while ((recordStr = userRecordReader.readLine()) != null) {
 if (!recordStr.isEmpty())
 flatFileStr.append(recordStr + "\n");
 }
 userRecordReader.close();

 return flatFileStr.toString();
 } catch (IOException e) {
 throw new RuntimeException("How can I read a corrupted file");
 }
 }

 /**
 * Updates the account with the new record. this can also be used for delete
 *
 * @param accountIdentifier
 * @param updatedRecord
 */
 private void modifyAccountInStore(String accountIdentifier,
 String updatedRecord) {
 try {
 // Load the complete flat file
 String completeFlatFile = this.getCompleteFlatFileAsStr();

 // Construct the string to be removed and replace it with blank
 FlatFileUserAccount accountToBeRemoved = recordParser
 .getAccount(accountIdentifier);
 String updatableString = accountConverter
 .convertAccountObjToStringRecord(accountToBeRemoved);
 String updatedFlatFile = completeFlatFile.replaceAll(
 updatableString, updatedRecord);

Developing a Flat File Connector

Developing Identity Connectors Using Java 10-19

 // Rewrite the file
 BufferedWriter userRecordWriter = new BufferedWriter(
 new FileWriter(this.recordsStore.getAbsolutePath(), false));
 userRecordWriter.write(updatedFlatFile);

 /*** debug ***/
 System.out.println("Old string " + updatableString);
 System.out.println("New String" + updatedRecord);
 System.out.println("new file - " + updatedFlatFile);

 /******/
 // Close the output stream
 userRecordWriter.close();
 } catch (IOException e) {// Catch exception if any
 throw new RuntimeException("How can I write on a corrupted file");
 }
 }
}

Example 10–9 FlatfileLineIterator

package org.identityconnectors.flatfile.io;
 .
 import java.io.BufferedReader;
 import java.io.File;
 import java.io.FileReader;
 import java.io.IOException;
 import java.util.Iterator;
 import java.util.Map;
 .
 import org.identityconnectors.flatfile.FlatFileConfiguration;
 import org.identityconnectors.flatfile.FlatFileUserAccount;
 import org.identityconnectors.flatfile.utils.AccountConversionHandler;
 .
 /**
 * Iterator class to fetch the records dynamically during search operations
 This
 * is needed to prevent VM overloading when all records are stored in memory
 *
 * @author admin
 *
 */
 public class FlatFileLineIterator implements Iterator<FlatFileUserAccount> {
 .
 private File recordsStore;
 private AccountConversionHandler accountConverter;
 private FlatFileUserAccount nextRecord;
 private BufferedReader userRecordReader;
 private Map<String, String> attrConstraints;
 .
 /**
 * Making it package private to prevent global initialization
 *
 * @param metadata
 * @param fileConfig
 * @param attributeValConstraints
 * Iterator will apply this constraint and filter the result
 */

Developing a Flat File Connector

10-20 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 FlatFileLineIterator(FlatFileMetadata metadata,
 FlatFileConfiguration fileConfig,
 Map<String, String> attributeValConstraints) {
 this.recordsStore = fileConfig.getStoreFile();
 this.accountConverter = new AccountConversionHandler(metadata,
 fileConfig);
 this.attrConstraints = attributeValConstraints;
 .
 initializeReader();
 this.nextRecord = readNextValidRecord();
 }
 .
 private void initializeReader() {
 try {
 userRecordReader = new BufferedReader(new FileReader(recordsStore
 .getAbsolutePath()));
 .
 // Skip headers
 userRecordReader.readLine();
 .
 } catch (IOException io) {
 throw new IllegalStateException("Unable to read "
 + recordsStore.getName());
 }
 }
 .
 @Override
 public boolean hasNext() {
 return (nextRecord != null);
 }
 .
 @Override
 public FlatFileUserAccount next() {
 FlatFileUserAccount currentRecord = this.nextRecord;
 this.nextRecord = readNextValidRecord();
 return currentRecord;
 }
 .
 @Override
 public void remove() {
 // Nothing to do here
 }
 .
 /**
 * Returns next valid record. This happens after applying
 *
 * @return
 */
 private FlatFileUserAccount readNextValidRecord() {
 try {
 FlatFileUserAccount userAccObj = null;
 String recordStr;
 // Match the constraints or read next line
 do {
 System.out.println("Before record string");
 recordStr = getNextLine();
 .
 // No more records ??
 if (recordStr == null)
 return null;

Developing a Flat File Connector

Developing Identity Connectors Using Java 10-21

 .
 userAccObj = accountConverter
 .convertStringRecordToAccountObj(recordStr);
 } while (!userAccObj.hasMatchingAttributes(attrConstraints));

 return userAccObj;
 } catch (Exception e) {
 System.out.println("Error reading record" + e.getMessage());
 e.printStackTrace();
 return null;
 }
 }
.
 private String getNextLine() throws IOException {
 String nextLine = userRecordReader.readLine();
 .
 // No records ??
 if (nextLine == null) {
 this.userRecordReader.close();
 return null;
 }
 .
 if (nextLine.trim().isEmpty()) {
 return getNextLine();
 }
 .
 return nextLine;
 }
 }

Example 10–10 FlatfileUserAccount

 package org.identityconnectors.flatfile;
 .
 import java.util.HashMap;
 import java.util.HashSet;
 import java.util.Map;
 import java.util.Set;
 .
 import org.identityconnectors.framework.common.objects.Attribute;
 .
 /**
 * Object representing a user entity
 *
 * @author admin
 *
 */
 public class FlatFileUserAccount {
 .
 /*
 * Mandatory attribute names
 */
 private Set<String> mandatoryAttrNames = new HashSet<String>();
 .
 /*
 * Attributes making the account
 */
 private Map<String, String> attributes = new HashMap<String, String>();
 .

Developing a Flat File Connector

10-22 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 /**
 * Instantiates the attribute value map
 *
 * @param mandatoryAttributeNames
 * Names of the attributes that are necessary
 * @param attributeValMap
 * Name value map for the attributes.
 * @throws IllegalStateException
 * If mandatory attributes are not found in attribute val map
 */
 public FlatFileUserAccount(Set<String> mandatoryAttributeNames,
 Map<String, String> attributeValMap) {
 // Check if mandatory attribute values are passed
 Set<String> attrValuesKeySet = attributeValMap.keySet();
 if (!attrValuesKeySet.containsAll(mandatoryAttributeNames))
 throw new IllegalStateException("Mandatory attributes missing");
 .
 // Initialize
 this.mandatoryAttrNames = mandatoryAttributeNames;
 this.attributes = attributeValMap;
 .
 }

 /**
 * Instantiates the attribute value map.
 * Considers all attributes to be mandatory
 * @param attributeValMap
 */
 public FlatFileUserAccount(Map<String, String> attributeValMap) {
 this.mandatoryAttrNames = attributeValMap.keySet();
 this.attributes = attributeValMap;
 }

 /**
 * Instantiates the attribute value map
 * @param attrs
 */
 public FlatFileUserAccount(Set<Attribute> attrs) {
 for(Attribute attr: attrs) {
 String attrName = attr.getName();

 //Consider first value. Multivalued not supported
 String attrVal = (String) attr.getValue().get(0);
 this.attributes.put(attrName, attrVal);
 }
 }
 .
 /**
 * Updates the set of attributes. If new attributes present, they are
 added,
 * If old attributes are present in the parameter set, values are updated
 *
 * @param updatedAttributeValMap
 */
 public void updateAttributes(Map<String, String> updatedAttributeValMap)
 {
 this.attributes.putAll(updatedAttributeValMap);
 }

 /**

Developing a Flat File Connector

Developing Identity Connectors Using Java 10-23

 * Updates the set of attributes.
 * @param upatedAttributes
 */
 public void updateAttributes(Set<Attribute> upatedAttributes) {
 Map<String, String> updatedAttributeValMap = new HashMap<String,
 String>();
 for(Attribute attr: upatedAttributes) {
 String attrName = attr.getName();

 //Consider first value. Multivalued not supported
 String attrVal = (String) attr.getValue().get(0);
 updatedAttributeValMap.put(attrName, attrVal);
 }
 this.attributes.putAll(updatedAttributeValMap);
 }
.
 /**
 * Deletes the attributes with given name.
 *
 * @param attributeKeys
 * Set of the attribute names that are needed
 * @throws UnsupportedOperationException
 * if delete for mandatory attributes is attempted
 */
 public void deleteAttributes(Set<String> attributeKeys) {
 // Check if mandatory attributes are not there.
 for (String attrKey : attributeKeys) {
 if (this.mandatoryAttrNames.contains(attrKey))
 throw new UnsupportedOperationException(
 "Delete for mandatory attributes not supported. Try
 update");
 // Not deleting here as it might result inconsistent
 }
 // Remove the attributes
 for (String attrKey : attributeKeys) {
 this.attributes.remove(attrKey);
 }
 }
 .
 /**
 * Gets the attribute of a given name
 *
 * @param attributeName
 * @return
 * @throws IllegalArgumentException
 * if attribute is not there for a given name
 */
 public String getAttributeValue(String attributeName) {
 return this.attributes.get(attributeName);
 }
 .
 /**
 * Returns the current set of attributes
 *
 * @return
 */
 public Map<String, String> getAllAttributes() {
 return this.attributes;
 }
 .

Developing a Flat File Connector

10-24 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 /**
 * Returns true if all passed attributes are matching for this object
 *
 * @param attrValMap
 * @return
 */
 public boolean hasMatchingAttributes(Map<String, String> attrValMap) {
 boolean noFilterSupplied = (attrValMap == null)||
 (attrValMap.isEmpty());
 if (noFilterSupplied)
 // No filter. Everything matches
 return true;

 // Iterate to match attributes one by one
 Set<String> keySet = attrValMap.keySet();
 for (String attrName : keySet) {
 String objAttrVal = this.attributes.get(attrName);
 String passedValue = attrValMap.get(attrName);
 .
 if (!objAttrVal.equals(passedValue))
 // This attribute is not same
 return false;
 }
 .
 // All attributes are same
 return true;
 }
 .
 /**
 * Returns the change log number
 *
 * @param changeLogAttrName
 * attribute representing the number
 * @return
 */
 public int getChangeNumber(String changeLogAttrName) {
 String changeNumStr = this.attributes.get(changeLogAttrName);
 int changeNumber = 0;
 .
 try {
 changeNumber = Integer.parseInt(changeNumStr);
 } catch (Exception e) {
 System.out.println("Not a valid change log number "
 + changeLogAttrName + " :" + changeNumStr);
 }
 .
 return changeNumber;
 }

 /**
 * Sets the given attribute with a new value
 * @param attrName
 * @param attrVal
 */
 public void setAttribute(String attrName, String attrVal) {
 this.attributes.put(attrName, attrVal);
 }

 /**
 * Updates the changelog number

Developing a Flat File Connector

Developing Identity Connectors Using Java 10-25

 * @param changeLogAttrName
 * @param newChangeNumber
 */
 public void setChangeNumber(String changeLogAttrName, int
 newChangeNumber) {
 String changeNumberValStr = "" + newChangeNumber;
 this.attributes.put(changeLogAttrName, changeNumberValStr);
 }
 .
 @Override
 public String toString() {
 // Just print the attributes
 return this.attributes.toString();
 }
 .
 }

Example 10–11 FlatfileAccountConversionHandler

 package org.identityconnectors.flatfile.utils;
 .
 import java.util.HashMap;
 import java.util.List;
 import java.util.Map;
 import java.util.Set;
 import java.util.StringTokenizer;
 .
 import org.identityconnectors.flatfile.FlatFileConfiguration;
 import org.identityconnectors.flatfile.FlatFileUserAccount;
 import org.identityconnectors.flatfile.io.FlatFileMetadata;
 .
 /**
 * Class for the utility functions
 *
 * @author Admin
 *
 */
 public class AccountConversionHandler {
 .
 private FlatFileConfiguration fileConfig;
 private FlatFileMetadata metadata;
 .
 /**
 * Instantiates the handler class. But needs the configuration
 *
 * @param metadata
 * @param fileConfig
 */
 public AccountConversionHandler(FlatFileMetadata metadata,
 FlatFileConfiguration fileConfig) {
 this.fileConfig = fileConfig;
 this.metadata = metadata;
 }
 .
 /**
 * Converts strings records to the user account objects.
 *
 * @param accountRecord
 * @return

Developing a Flat File Connector

10-26 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 * @throws RuntimeException
 * If string is not formatted as per accepted standards
 */
 public FlatFileUserAccount convertStringRecordToAccountObj(
 String accountRecord) {
 .
 StringTokenizer tokenizer = new StringTokenizer(accountRecord,
 fileConfig.getTextFieldDelimeter());
 .
 // Assert number of columns matching with number of tokens
 if (metadata.isDifferentFromNumberOfFields(tokenizer.countTokens()))
 throw new RuntimeException(
 "Number of tokens doesn't match number of columns");
 .
 // Get the attributes
 List<String> attrNames = metadata.getOrderedTextFieldNames();
 Map<String, String> attrValMap = new HashMap<String, String>();
 .
 // Number of tokens are same. Same loop will work
 for (String attrName : attrNames) {
 String attrVal = "";
 if (tokenizer.hasMoreTokens())
 attrVal = tokenizer.nextToken();
 .
 attrValMap.put(attrName, attrVal);
 }
 .
 // Assumption : All attributes are mandatory for user. Change with
 the
 // change in assumption
 Set<String> mandatoryAttributeNames = attrValMap.keySet();
 FlatFileUserAccount userAccountRecordObj = new FlatFileUserAccount(
 mandatoryAttributeNames, attrValMap);
 return userAccountRecordObj;
 .
 }
 .
 /**
 * Converts account objects to storable string records
 *
 * @param accountObj
 * @return
 */
 public String convertAccountObjToStringRecord(
 FlatFileUserAccount accountObj) {
 StringBuilder strRecord = new StringBuilder();
 .
 // Build the string record from the object
 List<String> attrNames = metadata.getOrderedTextFieldNames();

 int index=0;
 for (String attrName: attrNames) {
 String attrVal = accountObj.getAttributeValue(attrName);
 strRecord.append(attrVal);

 // Add delimeter
 if (index < attrNames.size()-1) {
 strRecord.append(fileConfig.getTextFieldDelimeter());
 index++;
 } else {

Uploading the Identity Connector Bundle to Oracle Identity Manager Database

Developing Identity Connectors Using Java 10-27

 // Record ended
 String newLineCharacter = "\n";
 strRecord.append(newLineCharacter);
 break;
 }
 }
 return strRecord.toString();
 }
 .
 /**
 * Asserts if given object is not null
 *
 * @param message
 * @param obj
 */
 public void assertNotNull(String message, Object obj) {
 if (obj == null)
 throw new RuntimeException(message);
 }

 }

Example 10–12 Messages.Properties

USER_ACCOUNT_STORE_HELP=File in which user account will be stored
USER_ACCOUNT_STORE_DISPLAY=User Account File
USER_STORE_TEXT_DELIM_HELP=Text delimeter used for separating the columns
USER_STORE_TEXT_DELIM_DISPLAY=Text Field Delimeter
UNIQUE_ATTR_HELP=The name of the attribute which will act as unique identifier
UNIQUE_ATTR_DISPLAY=Unique Field
CHANGELOG_ATTR_HELP=The name of the attribute which will act as changelog
CHANGELOG_ATTR_DISPLAY=Changelog Field

10.2 Uploading the Identity Connector Bundle to Oracle Identity Manager
Database

The identity connector bundle must be available to ICF in Oracle Identity Manager
database. Follow the list of sections in order to integrate the ICF identity connector
with Oracle Identity Manager. Some of the procedures include configuration by using
the Oracle Identity Manager Design Console.

■ Registering the Connector Bundle with Oracle Identity Manager

■ Creating Basic Identity Connector Metadata

■ Creating Provisioning Metadata

■ Creating Reconciliation Metadata

10.2.1 Registering the Connector Bundle with Oracle Identity Manager
The connector bundle must be available for the Connector Server local to Oracle
Identity Manager. Following is the procedure to accomplish this:

1. Copy the connector bundle JAR to the machine on which Oracle Identity Manager
in installed.

2. Run the following command to upload the JAR.

Uploading the Identity Connector Bundle to Oracle Identity Manager Database

10-28 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

$MW_HOME/server/bin/UploadJars.sh

3. Select ICFBundle as the JAR type.

4. Enter the location of the connector bundle JAR.

5. Press Enter.

10.2.2 Creating Basic Identity Connector Metadata
This metadata configuration is needed for both provisioning and reconciliation. The
set of procedures in this section are completed by using the Oracle Identity Manager
Design Console.

■ Creating the IT Resource Type Definition

■ Creating the Resource Object

■ Creating the Main Configuration Lookup

■ Creating Object Type Configuration Lookup

10.2.2.1 Creating the IT Resource Type Definition
An IT resource type definition is the representation of a resource's connection
information. The configuration parameters in the IT resource type definition should be
matched with the configuration parameters of the connector bundle. The values of the
parameters in the IT resource will be set in the bundle configuration.

1. Log in to the Oracle Identity Manager Design Console.

2. Click IT Resource Type Definition under Resource Management.

3. Create a new IT Resource Type Definition with the Server Type defined as Flat
File.

4. Add the following parameters as illustrated in Figure 10–1.

■ Configuration Lookup is the marker of the main configuration lookup for the
resource. The name of the parameter must be Configuration Lookup. It is a
good practice to add a value to Default Field Value.

■ textFieldDelimeter maps to the textFieldDelimeter parameter in the bundle
configuration. The value of this parameter will be passed.

■ storeFile maps to the storeFile parameter in the bundle configuration. The
value of this parameter will be passed.

Note: In this chapter, DW_HOME represents
$MW_HOME/Oracle_IDM1.

Note: You may include parameters the bundle configuration is not
using. They produce no negative effects on the bundle operations.

Uploading the Identity Connector Bundle to Oracle Identity Manager Database

Developing Identity Connectors Using Java 10-29

Figure 10–1 IT Resource Type Definition in Design Console

10.2.2.2 Creating the Resource Object
The resource object is the Oracle Identity Manager representation of a resource. The
connector bundle is tied to the resource object.

1. Log in to the Oracle Identity Manager Design Console.

2. Click Resource Objects under Resource Management.

3. Create a new resource object with the name FLATFILERO.

As the resource object is a target resource don't check the Trusted Source box as
illustrated in Figure 10–2.

Figure 10–2 Resource Objects in Design Console

Uploading the Identity Connector Bundle to Oracle Identity Manager Database

10-30 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

10.2.2.3 Creating Lookups
Separate lookups have to be defined for different objects supported by the connector
bundle. This lookup can contain provisioning and reconciliation related information
for those objects. The Main Configuration Lookup is the root for object specific
lookups as it contains the pointers to those lookups. The following sections contain
information on how to create lookups.

■ Creating the Main Configuration Lookup

■ Creating Object Type Configuration Lookup

10.2.2.3.1 Creating the Main Configuration Lookup The Configuration Lookup (as defined
in Section 10.2.2.1, "Creating the IT Resource Type Definition") holds connector bundle
configurations that are not counted as connection information. If a configuration
parameter is not found in the IT Resource Type Definition, Oracle Identity Manager
will look in the Configuration Lookup. The main Configuration Lookup contains
bundle properties and bundle configurations. Bundle Property parameters are
mandatory as they are needed for identifying the correct bundle. Bundle
configurations that are not defined as part of the IT resource type definition (discussed
in Section 10.2.2.1, "Creating the IT Resource Type Definition") can be declared here.

1. Log in to the Oracle Identity Manager Design Console.

2. Click Lookup Definition under Administration.

3. Create a new lookup and add Lookup.FF.Configuration as the value for Code.

4. Add the following Lookup Code Information as illustrated in Figure 10–3.

■ Add VERSION as the required Bundle Version.

■ Add org.identityconnectors.flatfile as the required Bundle Name.

■ Add org.identityconnectors.flatfile.FlatFileConnector as the required
Connector Name.

■ Add AccountId as the value of uniqueAttributeName. AccountId is a unique
string identifier that represents the account to be provisioned or reconciled. It
is the name of the column in the flat file. AccountId is unique and is used to
represent a user (account detail) uniquely.

■ Add ChangeNumber as the value of changeLogAttributeName. When an
account is created, a number is attached to it indicating the total accounts
created. This value is maintained in the variable called ChangeNumber.

■ OBJECT_TYPE_NAME Configuration Lookup is the configuration lookup for
the particular object type. In this example, the object type is User as User
Configuration Lookup is defined.

Note: The values for Code Key should match exactly as illustrated.
The values for Decode are specific to the connector bundle.

Uploading the Identity Connector Bundle to Oracle Identity Manager Database

Developing Identity Connectors Using Java 10-31

Figure 10–3 Lookup Definition in Design Console

10.2.2.3.2 Creating Object Type Configuration Lookup Object type configuration lookup
contains the parameters specific to the particular object type. Object type is an entity
over which an identity connector operates. It is mapped to ICF ObjectClass. In
Section 10.2.2.3.1, "Creating the Main Configuration Lookup," User Configuration
Lookup has been referenced so that User is the object type, in this case mapped to
ObjectClass.ACCOUNT. (Roles and UserJobData are two other object types.) The
object type name has to match with ObjectClass name supported by the identity
connector bundle. The User object type is mapped to predefined
ObjectClass.ACCOUNT, the Group object type is mapped to predefined
ObjectClass.GROUP. If the identity connector supports multiple objects, then this step
must be repeated for each.

1. Log in to the Oracle Identity Manager Design Console.

2. Click Lookup Definition under Administration.

3. Create a new Lookup and add Lookup.FF.UM.Configuration as the Code.

4. Set the following attributes as illustrated in Figure 10–4.

■ Provisioning Attribute Map takes a value of Lookup.FF.UM.ProvAttrMap.
This lookup contains the mapping between Oracle Identity Manager fields
and identity connector attributes. The mapping is used during provisioning.

■ Reconciliation Attribute Map takes a value of
Lookup.FF.UM.ReconAttributeMap. This lookup contains the mapping

Note: Because these use cases cover only the basic functionality, the
configuration is kept to the mandatory attribute.

Note: This tutorial focuses on the minimum configurations needed
to run an identity connector.

Uploading the Identity Connector Bundle to Oracle Identity Manager Database

10-32 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

between Oracle Identity Manager reconciliation fields and identity connector
attributes. The mapping is used during reconciliation.

Figure 10–4 Second Lookup Definition in Design Console

10.2.3 Creating Provisioning Metadata
The following sections should be followed in order to configure Oracle Identity
Manager for flat file provisioning.

■ Creating a Process Form

■ Creating Adapters

■ Creating A Process Definition

■ Creating a Provisioning Attribute Mapping Lookup

10.2.3.1 Creating a Process Form
A process form is used as the representation of object attributes on Oracle Identity
Manager. This facilitates user input to set object attributes before passed to the
connector bundle for an operation.

Attributes defined in the process form are not conventions. The form is a way to
challenge the attributes that need to be passed to the identity connector. In general,
define an attribute for each supported attribute in the identity connector.

Note: It is good practice to have a one to one mapping on the
identity connector attributes.

Uploading the Identity Connector Bundle to Oracle Identity Manager Database

Developing Identity Connectors Using Java 10-33

There should be a field for querying the IT resource that should be associated with the
respective IT Resource Type Definition. Variable type of each field should map to the
type of the object attribute.

1. Log in to the Oracle Identity Manager Design Console.

2. Click Form Designer under Development Tools.

3. Create a new form with the Table Name UD_FLAT_FIL as illustrated in
Figure 10–5.

Figure 10–5 Form Designer in Design Console

4. Add the attributes defined in the connector schema, as listed in Table 10–1.

Table 10–1 Form Designer Fields

Name Variant Field Label Field Type

UD_FLAT_FIL_FIRSTNAME String First Name TextField

UD_FLAT_FIL_UID String Universal ID TextField

UD_FLAT_FIL_CHANGENO String Change Number TextField

UD_FLAT_FIL_MAILID String Email ID TextField

UD_FLAT_FIL_SERVER long Server ITResource

UD_FLAT_FIL_LASTNAME String Last Name TextField

UD_FLAT_FIL_ACCOUNTID String Account ID TextField

UD_FLAT_FIL_RETURN String Return ID TextField

Uploading the Identity Connector Bundle to Oracle Identity Manager Database

10-34 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

5. Click the Properties tab.

6. Add the following properties to Server(ITResourceLookupField) as illustrated in
Figure 10–6.

■ Required = true

■ Type = Flat File

Figure 10–6 Properties of Form Designer in Design Console

7. Save the form.

8. Click Make Version Active.

10.2.3.2 Creating Adapters
An adapter has to be created for all operations supported by the connector bundle,
including Create, Update, and Delete.

1. Log in to the Oracle Identity Manager Design Console.

2. Click Adapter Factory under Development Tools.

3. Create a new adapter and add FFCreateUser as the Adapter Name.

4. Add Process Task as the Adapter Type.

5. Save the adapter.

6. Click the Variable List tab and add the following variables, as shown in
Figure 10–7.

Note: The flat file column names are FirstName, ChangeNo,
EmailID, Server, LastName, and AccountID.

Uploading the Identity Connector Bundle to Oracle Identity Manager Database

Developing Identity Connectors Using Java 10-35

■ objectType with Type String and Mapped as Resolve at runtime.

■ processInstanceKey with Type long and Mapped as Resolve at runtime.

■ itResourceFieldName with Type String and Mapped as Resolve at runtime.

Figure 10–7 Adapter Factory Variable List in Design Console

7. Add a Java functional task to the adapter by following this sub procedure, as
shown in Figure 10–8.

a. Click the Adapter Tasks tab.

b. Select the adapter and click Add.

c. Select Java from the task options.

d. Select icf-oim-intg.jar from the API source.

e. Select oracle.iam.connetors.icfcommon.prov.ICProvisioninManager as the
API Source.

f. Select createObject as the method for the task.

g. Save the configurations.

h. Map the variables (previously added to the Variables List) against the
appropriate method inputs and outputs.

i. Map the configuration parameters against the appropriate method inputs and
outputs.

Database Reference maps to Database Reference (Adapter References) and
Return Variable maps to Return Variable (Adapter Variables).

Uploading the Identity Connector Bundle to Oracle Identity Manager Database

10-36 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 10–8 Adapter Factory in Design Console

8. Save and build the adapter.

10.2.3.3 Creating A Process Definition
Process Definition defines the behavior of the connector bundle for a particular
operation. Every operation has a corresponding task associated with it. This procedure
will configure the process definition and integration of the process task for the Create
operation.

1. Log in to the Oracle Identity Manager Design Console.

2. Click Process Definition under the Process Management tab.

3. Create a new process definition and name it Flat File as illustrated in Figure 10–9.

Uploading the Identity Connector Bundle to Oracle Identity Manager Database

Developing Identity Connectors Using Java 10-37

Figure 10–9 Process Definition in Design Console

4. Select Provisioning as the Type of process.

5. Provide the resource Object Name for the identity connector; in this example,
FLATFILERO.

6. Provide the process form Table Name; in this example, UD_FLAT_FIL.

7. Add a process task and name it Create User.

8. Double click Create User to edit as illustrated in Figure 10–10.

Figure 10–10 Editing Task Screen in Design Console

Uploading the Identity Connector Bundle to Oracle Identity Manager Database

10-38 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

9. Click the Integration tab.

10. Click Add and select the FFCreateUser adapter from the list as illustrated in
Figure 10–11.

The adapter will be available only after it is compiled.

Figure 10–11 Integration Tab in Design Console

11. Map the variables as follows to set the response code returned by the identity
connector.

■ Adapter Return Variable – Response Code

■ Object Type – [Literal:String] User (Name of the object type)

■ Process Instance Key – [Process Data] Process Instance

■ IT Resource Field Name – [Literal:String] UD_FLAT_FIL_SERVER (Form field
name that contains the IT resource information)

12. Click the Responses tab and configure the responses as illustrated in Figure 10–12.

■ UNKNOWN can be described as Unknown response received with a status of R
(Rejected).

■ SUCCESS can be described as Operation completed with a status of C
(Completed).

■ ERROR can be described as Error occurred with a status of R.

Uploading the Identity Connector Bundle to Oracle Identity Manager Database

Developing Identity Connectors Using Java 10-39

Figure 10–12 Configure Responses in Design Console

13. Click the Task to Object Status Mapping tab.

14. Update the Object Status to Provisioned for Status C, as shown in Figure 10–13:

Figure 10–13 Task to Object Status Mapping

15. Save the process task.

10.2.3.4 Creating a Provisioning Attribute Mapping Lookup
Provisioning Attribute Mapping Lookup contains mappings of Oracle Identity
Manager fields to identity connector bundle attributes. In the Provisioning Attribute
Mapping Lookup:

■ Code keys are Field Labels of the process form.

■ Decodes are identity connector bundle attributes.

■ Child form attributes can be configured as embedded objects in inputs.

■ The identity connector's provisioning operation returns the UID in response. This
can be set in a form field by coding it against the identity connector bundle
attribute.

Uploading the Identity Connector Bundle to Oracle Identity Manager Database

10-40 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Following is the procedure to create a Provisioning Attribute Mapping Lookup.

1. Log in to the Oracle Identity Manager Design Console.

2. Click Lookup Definition under the Administration tab.

3. Create a new lookup and name it Lookup.FF.UM.ProvAttrMap.

The name of this lookup is referred from the object type configuration lookup. See
Section 10.2.2.3.2, "Creating Object Type Configuration Lookup."

4. Add the form Field Labels as the code keys and identity connector bundle
attributes as the decode.

■ Return ID : __UID__

■ Account ID: AccountId

■ Change Number: ChangeNumber

■ First Name: FirstName

■ Last Name: LastName

■ Email ID: MailId

10.2.3.4.1 Field Flags Used in the Provisioning Attributes Map

For provisioning attributes mapping, the following field flags can be appended to the
code key:

■ LOOKUP: This must be specified for all fields whose values are obtained by
running a lookup reconciliation job. The values obtained from lookup
reconciliation job have IT Resource Name/Key appended to it. Specifying this flag
helps ICF integration to remove the appended value just before passing them onto
the bundle. For example, the code key for a field with label Database whose value
is obtained by running a lookup reconciliation job looks similar to
Database[LOOKUP].

■ IGNORE: This must be specified for all fields whose values are to be ignored and
not sent to bundle. For example, the code key for a field with label Database
whose value need not be sent to bundle looks similar to Database[IGNORE].

■ WRITEBACK: This must be specified for all fields whose values need to be
written back into the process form right after the create or update operation.
Adding this flag makes the ICF integration layer call ICF Get API to get values of
attributes marked with the WRITEBACK flag. For example, the code key for a
field with label Database whose value needs to be written back to the process form
right after create/update looks similar to Database[WRITEBACK]. For this to
work, the connector must implement the GetApiOp interface and provide an
implementation for the ConnectorObject getObject(ObjectClass objClass,Uid
uid,OperationOptions options) API. This API searches the target for the account
whose Uid is equal to the passed in Uid, and builds a connector object containing
all the attributes (and their values) that are to be written back to process form.

Note: The LOOKUP flag can be specified for both Provisioning and
Reconciliation Attribute Map. For provisioning, IT Resource Name/IT
Resource Key prefix must be removed. For reconciliation, IT Resource
Name/IT Resource Key prefix must be added.

Uploading the Identity Connector Bundle to Oracle Identity Manager Database

Developing Identity Connectors Using Java 10-41

■ DATE: This must be specified for fields whose type need to be considered as Date,
without which the values are considered as normal strings. For example, the code
key for a field with label Today whose value needs to be displayed in the date
format looks similar to Today[DATE].

■ PROVIDEONPSWDCHANGE: This must be specified for all fields that need to
be provided to the bundle(target) when a password update happens. Some targets
expect additional attributes to be specified on every password change. Specifying
the PROVIDEONPSWDCHANGE flag, tells ICF integration to send all the extra
fields or attributes whenever a password change is requested. For example, the
code key for a field with label Extra Attribute Needed for Password Change
whose value needs to be provided to bundle(target) while password update looks
similar to Extra Attribute Needed for Password
Change[PROVIDEONPSWDCHANGE].

10.2.4 Creating Reconciliation Metadata
This section contains the procedures to configure the reconciliation of records from the
flat file. We will use the target reconciliation as an example; trusted reconciliation can
also be configured in a similar fashion. Do the procedures in the listed order.

1. Creating a Reconciliation Schedule Task

2. Creating a Reconciliation Profile

3. Setting a Reconciliation Action Rule

4. Creating Reconciliation Mapping

5. Defining a Reconciliation Matching Rule

10.2.4.1 Creating a Reconciliation Schedule Task
By default, reconciliation uses a Search operation on the connector bundle. This
operation is invoked with a schedule task configured using Oracle Identity Manager.
This procedure is comprised of the following sub procedures.

1. Defining the Schedule Task

2. Creating a Scheduled Task

10.2.4.1.1 Defining the Schedule Task To define the scheduled task:

1. Create a Deployment Manager XML file containing the scheduled task details as
shown in Example 10–13. Make sure to update database value to your database.

Example 10–13 Deployment Manager XML with Scheduled Task Details

<?xml version = '1.0' encoding = 'UTF-8'?>
<xl-ddm-data version="2.0.1.0" user="XELSYSADM"
database="jdbc:oracle:thin:@localhost:5524/estView.regress.rdbms.dev.mycompany.com
" exported-date="1307546406635" description="FF">
<scheduledTask repo-type="MDS" name="Flat File Connector User Reconciliation"
mds-path="/db" mds-file="Flat File Connector User Reconciliation.xml">
 <completeXml>
 <scheduledTasks xmlns="http://xmlns.oracle.com/oim/scheduler">
 <task>

Note: If the connector does not implement the GetApiOp interface,
then the WRITEBACK flag does not work and an error is generated.

Uploading the Identity Connector Bundle to Oracle Identity Manager Database

10-42 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 <name>Flat File Connector User Reconciliation</name>
 <class>oracle.iam.connectors.icfcommon.recon.SearchReconTask</class>
 <description>Flat File Connector User Reconciliation</description>
 <retry>0</retry>
 <parameters>
 <string-param required="false" encrypted="false"
helpText="Filter">Filter</string-param>
 <string-param required="false" encrypted="false"
helpText="Incremental Recon Date Attribute">Incremental Recon Date
Attribute</string-param>
 <string-param required="false" encrypted="false" helpText="IT
Resource Name">IT Resource Name</string-param>
 <string-param required="false" encrypted="false" helpText="Object
Type">Object Type</string-param>
 <string-param required="false" encrypted="false" helpText="Latest
Token">Latest Token</string-param>
 <string-param required="false" encrypted="false" helpText="Resource
Object Name">Resource Object Name</string-param>
 </parameters>
 </task>
 </scheduledTasks>
 </completeXml>
</scheduledTask>
</xl-ddm-data>

2. Save the file as Flat File Connector User Reconciliation.xml.

3. Login to Oracle Identity System Administration. Under System Management, click
Import.

4. Select the Flat File Connector User Reconciliation.xml file, and click Import.

5. Complete the steps in the wizard.

10.2.4.1.2 Creating a Scheduled Task This procedure explains how to create a scheduled
task.

1. Log in to the Oracle Identity Manager Advanced Administration.

2. Click Scheduler under the System Management tab.

3. Add a schedule task and add Flat File Connector User Reconciliation as the type as
illustrated in Figure 10–14.

Uploading the Identity Connector Bundle to Oracle Identity Manager Database

Developing Identity Connectors Using Java 10-43

Figure 10–14 The Scheduled Task Screen

4. Set the parameters as follows:

■ IT Resource Name takes a value of Flat File.

■ Resource Object Name takes a value of FLATFILERO.

■ Object Type takes a value of User.

5. Click Apply.

10.2.4.2 Creating a Reconciliation Profile
A reconciliation profile defines the structure of the object attributes while
reconciliation. The reconciliation profile should contain all the attributes that have
reconciliation support.

1. Log in to the Oracle Identity Manager Design Console.

2. Click Resource Objects under Resource Management.

3. Open the FLATFILERO resource object.

4. Click the Object Reconciliation tab as illustrated in Figure 10–15.

Uploading the Identity Connector Bundle to Oracle Identity Manager Database

10-44 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 10–15 Object Reconciliation in Design Console

5. Add following reconciliation fields:

■ First Name [String]

■ Universal ID [String]

■ Email ID [String]

■ IT Resource Name [String]

■ Last Name [String]

■ Account ID [String], Required

6. Save the configuration.

10.2.4.3 Setting a Reconciliation Action Rule
A Reconciliation Action Rule defines the behavior of reconciliation. In this procedure,
define the expected action when a match is found. This procedure assumes you are
logged into the Oracle Identity Manager Design Console.

1. Open the FLATFILERO resource object.

2. Click the Object Reconciliation tab.

3. Click the Reconciliation Action Rules tab in the right frame.

Uploading the Identity Connector Bundle to Oracle Identity Manager Database

Developing Identity Connectors Using Java 10-45

Figure 10–16 Reconciliation Action Rules in Design Console

4. Add an action rule defined as One Process Match Found (Rule Condition) and
Establish Link (Action).

5. Add an action rule defined as One Entity Match Found (Rule Condition) and
Establish Link (Action).

6. Click Create Reconciliation Profile.

7. Click Save.

10.2.4.4 Creating Reconciliation Mapping
The reconciliation mapping has to be done in the process definition. This is to map the
supported reconciliation fields (from resource object) to the process form fields. This
mapping is needed only for configuring target reconciliation.

1. Log in to the Oracle Identity Manager Design Console.

2. Click Process Definition under Process Management.

3. Open the Flat File process definition.

4. Click the Reconciliation Field Mappings tab as illustrated in Figure 10–17.

Uploading the Identity Connector Bundle to Oracle Identity Manager Database

10-46 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 10–17 Reconciliation Field Mapping in Design Console

5. Add mappings between the reconciliation profile fields and the process form
fields.

■ First Name[String] = UD_FLAT_FIL_FIRSTNAME

■ Email ID[String] = UD_FLAT_FIL_MAILID

■ IT Resource Name[String] = UD_FLAT_FIL_SERVER

■ Last Name[String] = UD_FLAT_FIL_LASTNAME

■ Account ID [String] = UD_FLAT_FIL_ACCOUNTID <KEY>

<KEY> sets Account ID as a key field.

6. Save the configuration.

10.2.4.4.1 Field Flags Used in the Reconciliation Attributes Map

For reconciliation attributes mapping, the following field flags can be appended to the
code key:

■ TRUSTED: This must be specified in the Recon Attribute Map for the field that
represents the status of the account. This flag must be specified only for trusted
reconciliation. If this is specified, then the status of the account is either Active or
Disabled. Otherwise, the status is either Enabled or Disabled. For example, the
code key for a field with label Status whose value needs to be either
Active/Disabled must look similar to Status[TRUSTED].

■ DATE: In Recon Attribute Map, this must be specified for fields whose type need
to be considered as Date. For example, the code key for a field with label Today
whose value needs to be displayed in the date format must look similar to
Today[DATE].

10.2.4.5 Defining a Reconciliation Matching Rule
A reconciliation matching rule defines the equation for calculating the user match.

1. Log in to the Oracle Identity Manager Design Console.

Configuring SSL for Java Connector Server

Developing Identity Connectors Using Java 10-47

2. Open the Reconciliation Rules form under Development Tools.

3. Click Add Rule.

Figure 10–18 Adding Reconciliation Matching Rule

4. Select resource object FLATFILERO.

5. Save and add the rule element.

User Login from the user profile data equals the Account ID resource attribute.

6. Save the rule.

10.3 Provisioning a Flat File Account
The flat file connector is ready to work. Now, the user needs to log in to Oracle
Identity Manager and create an IT resource (target) using the following procedure.

■ Create IT resource of type "Flat File".

■ Provide the IT resource parameters as appropriate.

■ Provide the configuration parameters in Lookup.FF.Configuration as appropriate.

10.4 Configuring SSL for Java Connector Server
To enable SSL for Java connector server:

1. Edit $CONNECTOR_SERVER_HOME/conf/ConnectorServer.properties as the
following:

connectorserver.usessl=true
connectorserver.keyStore={full path to your keystore file}
connectorserver.keyStoreType=JKS (optionally you can set key store type, if

Configuring SSL for Java Connector Server

10-48 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

not set JSK is used by default)

2. Provide key store password:

a. Set it in ConnectorServer.properties.

b. Set connectorserver.promptKeyStorePassword=false in
ConnectorServer.properties.

c. Set the password:

cd $CONNECTOR_SERVER/bin

For UNIX

connectorserver.sh /setKeyStorePassword thepassword

For Windows

ConnectorServer.bat /setKeyStorePassword thepassword

This command will set the encrypted value to
"connectorserver.keyStorePassword" in ConnectorServer.properties.

3. Ask for key store password every time by starting the connector server set
connectorserver.promptKeyStorePassword=true in ConnectorServer.properties.

The following example snippet shows the ConnectorServer.properties shipped
with Java Connector Server:

.
##
The port we are to run on
##
connectorserver.port=8759
##
The bundle directory in which to find the bundles
##
connectorserver.bundleDir=bundles
.
##
The bundle directory in which to find any libraries needed by bundles at
runtime
##
connectorserver.libDir=lib
.
##
Set to true to use SSL.
NOTE: Check also the following settings which are related to SSL:
connectorserver.promptKeyStorePassword
connectorserver.keyStore
connectorserver.keyStoreType
connectorserver.keyStorePassword
connectorserver.usessl=false
.
##
If set to true the user is prompted for key store password at startup.
If set to false the key store password needs to be set with
-setKeyStorePassword command first.
##
connectorserver.promptKeyStorePassword=true
.
##

Configuring SSL for Java Connector Server

Developing Identity Connectors Using Java 10-49

Full path to key store.
##
connectorserver.keyStore=/tmp/KeyStore.jks
.
##
KeyStore type
##
#connectorserver.keyStoreType=JKS
.
##
Encrypted password. Set this by using the -setKeyStorePassword flag.
It is used only if connectorserver.promptKeyStorePassword is set to false.
##
connectorserver.keyStorePassword=
.
##
Optionally specify a specific address to bind to
##
#connectorserver.ifaddress=localhost
.
##
Secure hash of the gateway key. Set this by using the
-setKey flag
##
connectorserver.key=lmA6bMfENJGlIDbfrVtklXFK32s\=
.
##
Use standard JDK logging
##
connectorserver.loggerClass=org.identityconnectors.common.logging.impl.JDKLogge
r

Configuring SSL for Java Connector Server

10-50 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

11

Developing Identity Connectors Using .NET 11-1

11Developing Identity Connectors Using .NET

[12]

This chapter is a tutorial that walks through the procedures necessary to develop an
identity connector in .NET using the Identity Connector Framework (ICF) and the
Oracle Identity Manager metadata. It includes information about important ICF
classes and interfaces, the connector bundle, the connector server, and code samples
for implementing a flat file .NET identity connector and creating Oracle Identity
Manager metadata for user provisioning and reconciliation processes. It contains the
following sections:

■ Section 11.1, "Developing a Flat File .NET Connector"

■ Section 11.2, "Deploying the Identity Connector Bundle on .NET Connector Server"

■ Section 11.3, "Provisioning a Flat File Account"

11.1 Developing a Flat File .NET Connector
The procedure for developing a flat file connector is to develop an implementation of
the Configuration interface followed by the implementation of the Connector class. In
the documentation we would discuss sample implementation of a flat file connector
showing Create, Delete, Update and Search operations. To keep implementations and
documentation simple, Configuration properties and Schema supported by connector
have been kept to a minimum. This connector implementation should only be used as
a sample which would help to create actual connectors.

To keep the connector implementation simple, lets assume that flat file has only Name,
Gender, Qualification, Age attributes. We would have only two configurations File
Location and Delimiter. Rest configurations would be hardcoded in the sample.

1. Setting up the project in Microsoft Visual Studio and using the connector:

a. Create a new visual studio project of type library.

b. Make sure to add the following dlls as references:

- Common.dll

- Framework.dll

- FrameworkInternal.dll

- System.dll

- System.Core.dll

These dlls should be available with the .NET connector server.

Developing a Flat File .NET Connector

11-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

2. Implement the configuration class for the Flat File Connector by extending the
Org.IdentityConnectors.Framework.Spi.AbstractConfiguration base class.

Example 11–1 Implementation of AbstractConfiguration

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Org.IdentityConnectors.Framework.Spi;?
using Org.IdentityConnectors.Framework.Common.Exceptions;?
using System.IO;

namespace Org.IdentityConnector.FlatFileConnector?
{
 /// <summary>
 /// Configuration class for flat file connector representing target system
information?
 /// </summary>
 public class FlatFileConfiguration : AbstractConfiguration?
 {
 #region FileName
 /// <summary>
 /// Target file name
 /// </summary>
 /// <value>
 /// File name with complete path. As for executing the .NET Connector
bundle we need .NET Connector Server, hence the file should reside
 /// on the machine where the connector server is present.
 /// </value>
 [ConfigurationProperty(Required = true, Order = 1)]
 public String FileName { get; set; }
 #endregion

 #region Delimiter
 /// <summary>
 /// Delimiter used within the target flat file
 /// </summary>
 /// <value>
 /// Delimter
 /// </value>
 [ConfigurationProperty(Required = true, Order = 2)]
 public String Delimiter { get; set; }
 #endregion

 #region
 /// <summary>
 /// Validates if the configuration properties provided are as requiered,
if not throw ConfigurationException
 /// </summary>
 public override void Validate()
 {
 if (this.FileName == null || this.FileName.Length == 0)
 {
 throw new ConfigurationException("Configuration property FileName
cannot be null or empty");
 }
 if (!File.Exists(this.FileName))
 {
 throw new ConfigurationException("Target file " + this.FileName +

Developing a Flat File .NET Connector

Developing Identity Connectors Using .NET 11-3

" does not exist");
 }
 if (this.Delimiter == null || this.Delimiter.Length == 0)
 {
 throw new ConfigurationException("Configuration property Delimiter
cannot be null or empty");
 }
 }
 #endregion
 }
}

3. Create connector class for the Flat File Connector by implementing different SPI
interfaces Org.IdentityConnectors.Framework.Spi.

Example 11–2 implements the
PoolableConnector,CreateOp,SchemaOp,TestOp,DeleteOp,UpdateOp,SearchOp<S
tring> interfaces and thus supports all CRUD operations

Example 11–2 Implementation of PoolableConnector

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Org.IdentityConnectors.Framework.Spi;
using System.IO;
using Org.IdentityConnectors.Framework.Common.Exceptions;
using System.Security.AccessControl;
using Org.IdentityConnectors.Framework.Spi.Operations;
using Org.IdentityConnectors.Framework.Common.Objects;
using Org.IdentityConnectors.Common;

namespace Org.IdentityConnector.FlatFileConnector
{
 /// <summary>
 /// FlatFileConnector showing implementation of SchemaOp, test, create,
delete, update and search operations.
 /// </summary>

[ConnectorClass("FlatFileConnector_DisplayNameKey",typeof(FlatFileConfiguration))]
 public class FlatFileConnector :
PoolableConnector,CreateOp,SchemaOp,TestOp,DeleteOp,UpdateOp,SearchOp<String>
 {

 /// <summary>
 /// Flat file configuration instance. This instance has the target system
information.
 /// </summary>
 private FlatFileConfiguration config;

 #region Init
 /// <summary>
 /// Create a connection to target and store it for later use. But here we
just set attributes of target file
 /// name to Normal
 /// </summary>
 /// <param name="config">Configuration Object</param>
 public void Init(Configuration config)

Developing a Flat File .NET Connector

11-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 {
 this.config = (FlatFileConfiguration)config;
 File.SetAttributes(this.config.FileName, FileAttributes.Normal);
 }
 #endregion

 #region CreateOp Members
 /// <summary>
 /// This creates a new row in the target file with the data as sent in the
'attrs'
 /// </summary>
 /// <param name="objClass">The ObjectClass. Here we support only
Account</param>
 /// <param name="attrs">Attributes of this Account that need to be created
on target</param>
 /// <param name="options">Will always be empty</param>
 /// <returns>Unique id Uid, representing the Account which was just
created</returns>
 public Uid Create(ObjectClass objClass, ICollection<ConnectorAttribute>
attrs, OperationOptions options)
 {
 ConnectorAttribute NameAttribute =
ConnectorAttributeUtil.Find(Name.NAME, attrs);
 ConnectorAttribute AgeAttribute = ConnectorAttributeUtil.Find("Age",
attrs);
 ConnectorAttribute QualificationAttribute =
ConnectorAttributeUtil.Find("Qualification", attrs);
 ConnectorAttribute GenderAttributute =
ConnectorAttributeUtil.Find("Gender", attrs);
 StreamWriter writer = File.AppendText(this.config.FileName);
 writer.WriteLine("\nName:" +
ConnectorAttributeUtil.GetAsStringValue(NameAttribute) + this.config.Delimiter +
"Age:" + ConnectorAttributeUtil.GetAsStringValue(AgeAttribute) +
this.config.Delimiter + "Qualification:" +
ConnectorAttributeUtil.GetAsStringValue(QualificationAttribute) +
this.config.Delimiter + "Gender:" +
ConnectorAttributeUtil.GetAsStringValue(GenderAttributute));
 writer.Flush();
 writer.Dispose();
 writer.Close();
 return new
Uid(ConnectorAttributeUtil.GetAsStringValue(NameAttribute));
 }
 #endregion

 #region DeleteOp Members
 /// <summary>
 /// Deletes an entity from target flat file. We support only ACCOUNT
object class.
 /// If the Uid (user name) is not found then UnknownUidException is thrown
 /// </summary>
 /// <param name="objClass"></param>
 /// <param name="uid"></param>
 /// <param name="options"></param>
 public void Delete(ObjectClass objClass, Uid uid, OperationOptions
options)

Developing a Flat File .NET Connector

Developing Identity Connectors Using .NET 11-5

 {
 String[] allLines = File.ReadAllLines(this.config.FileName);
 String[] newLines = new String[allLines.Length];
 Boolean userExisted = false;
 for (int i = 0; i < allLines.Length; i++)
 {
 char[] separator = new char[] { '$' };
 String[] thisLineSplit = allLines[i].Split(separator);

 String name = "";
 foreach (String str in thisLineSplit)
 {
 if (str.StartsWith("Name"))
 {
 name = str;
 break;
 }
 }
 if (!name.Equals("Name" + ":" + uid.GetUidValue()))
 {
 newLines[i] = allLines[i];
 }
 else
 {
 userExisted = true;
 }

 }
 if (userExisted)
 {
 File.WriteAllText(this.config.FileName, String.Empty);
 File.WriteAllLines(this.config.FileName, newLines);
 }
 else
 {
 throw new UnknownUidException("Uid "+uid.GetUidValue()+" not
found");
 }
 }
 #endregion

 #region UpdateOp Members
 /// <summary>
 /// Updates information of an existing user on the target flat file
 /// </summary>
 /// <param name="objclass">The ObjectClass. Here we support only
user</param>
 /// <param name="uid">Unique id of the user using which we can find out
the user on target. This is the returned vaue by CreateOp implementation</param>
 /// <param name="replaceAttributes">Updated attributes of user which
should replace all existing user information on target</param>
 /// <param name="options">This will always be empty</param>
 /// <returns>Updated uid. It can be the same value which was provided to
this method.</returns>
 public Uid Update(ObjectClass objclass, Uid uid,
ICollection<ConnectorAttribute> replaceAttributes, OperationOptions options)
 {
 String uidValue = uid.GetUidValue();
 String[] allLines = File.ReadAllLines(this.config.FileName);
 String[] updatedLines = new String[allLines.Length];

Developing a Flat File .NET Connector

11-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 Boolean userExists = false;
 Uid updatedUid = uid;
 for(int i = 0; i < allLines.Length; i++)
 {
 String[] thisLineSplit = allLines[i].Split(new char[] { '$' });
 String name = "";
 foreach (String str in thisLineSplit)
 {
 if (str.StartsWith("Name"))
 {
 name = str;
 break;
 }
 }
 String nameToBeUpdated = "Name:" + uidValue;
 if (!name.Equals(nameToBeUpdated))
 {
 updatedLines[i] = allLines[i];
 }
 else
 {
 ConnectorAttribute NameAttribute =
ConnectorAttributeUtil.Find(Name.NAME, replaceAttributes);
 ConnectorAttribute AgeAttribute =
ConnectorAttributeUtil.Find("Age", replaceAttributes);
 ConnectorAttribute QualificationAttribute =
ConnectorAttributeUtil.Find("Qualification", replaceAttributes);
 ConnectorAttribute GenderAttribute =
ConnectorAttributeUtil.Find("Gender", replaceAttributes);
 updatedLines[i] =
"Name:"+NameAttribute.Value.First().ToString()+this.config.Delimiter+

AgeAttribute.Name+":"+AgeAttribute.Value.First().ToString()+this.config.Delimiter+

QualificationAttribute.Name+":"+QualificationAttribute.Value.First().ToString()+th
is.config.Delimiter+

GenderAttribute.Name+":"+GenderAttribute.Value.First().ToString();
 userExists = true;
 updatedUid = new Uid(NameAttribute.Value.First().ToString());
 }

 }
 File.WriteAllText(this.config.FileName, String.Empty);
 File.WriteAllLines(this.config.FileName, updatedLines);
 if (!userExists)
 {
 throw new UnknownUidException("User "+uid.GetUidValue()+" not
found");
 }
 return updatedUid;
 }

 #endregion

 #region SearchOp<string> Members

 /// <summary>
 /// Returns a filter translator used by ExecuteQuery. The functionality of
filter translator is to translate any filters provided by calling application

Developing a Flat File .NET Connector

Developing Identity Connectors Using .NET 11-7

(OIM/OW/OPAM) to native queries.
 /// </summary>
 /// <param name="oclass">The ObjectClass. We support only ACCOUNT</param>
 /// <param name="options">Options</param>
 /// <returns>FilterTranslator instance</returns>

 public
Org.IdentityConnectors.Framework.Common.Objects.Filters.FilterTranslator<string>
CreateFilterTranslator(ObjectClass oclass, OperationOptions options)
 {
 return new FlatFileFilterTranslator();
 }

 /// <summary>
 /// Performs search on target based on query. Uses the handler instance to
return back the searched result.
 /// </summary>
 /// <param name="oclass">The ObjectClass. This tells if we have to search
for user (ACCOUNT) or group (GROUP). We support only user</param>
 /// <param name="query">Query as returned by FilterTranslator</param>
 /// <param name="handler">handler to return back result to caller</param>
 /// <param name="options">Options containing what attributes of entity to
return back</param>
 public void ExecuteQuery(ObjectClass oclass, string query, ResultsHandler
handler, OperationOptions options)
 {

 String[] results = GetResults(query);
 foreach (String result in results)
 {
 Console.WriteLine("Result = "+result);
 String result1 = result.Trim();
 if (result1.Length > 0)
 {
 Console.WriteLine("Submitting result = " + result1);
 SubmitConnectorObject(result1, handler);
 }
 }
 }

 #region SchemaOp Members
 /// <summary>
 /// Defines the schema supported by this connector
 /// </summary>
 /// <returns>Schema</returns>
 public Schema Schema()
 {
 SchemaBuilder schemaBuilder = new
SchemaBuilder(SafeType<Connector>.Get(this));
 ICollection<ConnectorAttributeInfo> connectorAttributeInfos = new
List<ConnectorAttributeInfo>();

connectorAttributeInfos.Add(ConnectorAttributeInfoBuilder.Build("Name"));

connectorAttributeInfos.Add(ConnectorAttributeInfoBuilder.Build("Age"));

connectorAttributeInfos.Add(ConnectorAttributeInfoBuilder.Build("Qualification"));

connectorAttributeInfos.Add(ConnectorAttributeInfoBuilder.Build("Gender"));
 schemaBuilder.DefineObjectClass(ObjectClass.ACCOUNT_NAME,

Developing a Flat File .NET Connector

11-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

connectorAttributeInfos);
 return schemaBuilder.Build();
 }

 #endregion

 #region TestOp Members
 /// <summary>
 /// Should ideally test the connecttion with target. But here we just
print something as we have assumed that target file is on same machine
 /// </summary>
 public void Test()
 {
 Console.Write("Tested connection!");
 }

 #endregion

 #region CheckAlive
 /// <summary>
 /// Check connection to target system is alive or not. But here we just
check if target file name
 /// provided in the FlatFileConfiguration is available or not.
 /// </summary>
 public void CheckAlive()
 {
 if (!File.Exists(this.config.FileName))
 {
 throw new ConnectorException("Target file " + this.config.FileName
+ " does not exist");
 }
 }
 #endregion

 #region Dispose
 /// <summary>
 /// Remove connection from target, dispose any of the resources used. But
here we just chill.
 /// </summary>
 public void Dispose()
 {
 //chill :)
 }
 #endregion

 private void SubmitConnectorObject(String result, ResultsHandler handler)
 {
 ConnectorObjectBuilder cob = new ConnectorObjectBuilder();
 String[] resultSplit = result.Split(new char[]{'$'});
 ICollection<ConnectorAttribute> attrs = new
List<ConnectorAttribute>();
 foreach (String str in resultSplit)
 {
 ConnectorAttributeBuilder cab = new ConnectorAttributeBuilder();
 cab.AddValue(str.Split(new char[] { ':' })[1]);
 if (str.StartsWith("Name"))
 {

Developing a Flat File .NET Connector

Developing Identity Connectors Using .NET 11-9

 cob.SetName(Name.NAME);
 cob.SetUid(str.Split(new char[] { ':' })[1]);
 cab.Name = Name.NAME;
 }
 else
 {
 cab.Name = str.Split(new char[] { ':' })[0];
 }
 attrs.Add(cab.Build());
 }
 cob.AddAttributes(attrs);
 handler(cob.Build());
 }

 private String[] GetResults(String query)
 {
 String[] allLines = File.ReadAllLines(this.config.FileName);
 String[] results = allLines;
if (query != null)
 {
 for (int i = 0; i < allLines.Length; i++)
 {
 String[] thisLineSplit = allLines[i].Split(new char[]{'$'});
 Boolean foundResult = false;
 foreach (String str in thisLineSplit)
 {
 if (str.StartsWith("Name") && str.Equals(query))
 {
 foundResult = true;
 break;
 }
 }
 if (foundResult)
 {
 return new String[] {allLines[i]};
 }
 }
 }

 return results;
 }

 #endregion
 }
}

4. This connector supports only the CreateEqualsExpression operation. Implement
the CreateEqualsExpression. Example 11–3 illustrates the sample implementation
of
Org.IdentityConnectors.Framework.Common.Objects.Filters.AbstractFilterTransla
tor<T> that defines the filter operation.

Example 11–3 Implementation of AbstractFilterTranslator<T>

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Org.IdentityConnectors.Framework.Common.Objects.Filters;
using Org.IdentityConnectors.Framework.Common.Objects;

Developing a Flat File .NET Connector

11-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

namespace Org.IdentityConnector.FlatFileConnector
{
 /// <summary>
 /// FlatFileFilterTranslator. This translator converts the equalsFilter
provided by the calling application to native query which can be used by the
connector while searching.
 /// The implementation shown supports only equals filter. i.e it has provided
implementation for only CreateEqualsExpression, this means that if any other
filter is provided
 /// by the calling application, it would not be translated as a native query
and search implementation gets all users and filtering will be done by ICF with
all results.
 ///
 /// </summary>
 public class FlatFileFilterTranslator : AbstractFilterTranslator<String>
 {
 /// <summary>
 /// Creates a native query for equals filter and returns it only if equals
filter is constructed for Name attribute and not for any other attributes.
 /// </summary>
 /// <param name="filter">Filter provided by calling application</param>
 /// <param name="not"></param>
 /// <returns></returns>
 protected override string CreateEqualsExpression(EqualsFilter filter, bool
not)
 {
 ConnectorAttribute attr = filter.GetAttribute();
 if (attr.Name.Equals(Name.NAME))
 {
 return "Name:" + attr.Value.First().ToString();
 }
 return null;
 }
 }
}

5. Implement the different classes (as mentioned in steps 2, 3, and 4).

6. Make a note of AssemblyVersion present in the AssemblyInfo.cs of the project.

Sample AssemblyInfo.cs file:

using System.Reflection;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;

// General Information about an assembly is controlled through the following
// set of attributes. Change these attribute values to modify the information
// associated with an assembly.
[assembly: AssemblyTitle("FlatFileConnector")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("Oracle Corporation")]
[assembly: AssemblyProduct("FlatFileConnector")]
[assembly: AssemblyCopyright("Copyright © Oracle Corporation 2012")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]

// Setting ComVisible to false makes the types in this assembly not visible
// to COM components. If you need to access a type in this assembly from

Deploying the Identity Connector Bundle on .NET Connector Server

Developing Identity Connectors Using .NET 11-11

// COM, set the ComVisible attribute to true on that type.
[assembly: ComVisible(true)]

// The following GUID is for the ID of the typelib if this project is exposed
to COM
[assembly: Guid("79eec317-62bd-49a5-9512-88d61135684c")]

// Version information for an assembly consists of the following four values:
//
// Major Version
// Minor Version
// Build Number
// Revision
//
// You can specify all the values or you can default the Build and Revision
Numbers
// by using the '*' as shown below:
// [assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]

7. Build the project. The project must create the connector DLL.

11.2 Deploying the Identity Connector Bundle on .NET Connector Server
For all the connectors that are implemented in .NET, you need to have .NET Connector
Server for the execution of the connector. The connector bundle cannot be deployed
within Oracle Identity Manager. Therefore, you must perform the following
procedures in order to integrate the ICF .NET Identity Connector with Oracle Identity
Manager:

■ Section 11.2.1, "Registering the Connector Bundle with .NET Connector Server"

■ Section 11.2.2, "Creating Basic Identity Connector Metadata"

■ Section 11.2.3, "Creating Provisioning Metadata"

■ Section 11.2.4, "Creating Reconciliation Metadata"

11.2.1 Registering the Connector Bundle with .NET Connector Server
For registering or deploying the connector bundle on .NET Connector Server, perform
the following steps:

1. Install the .NET Connector Server. See Section 9.6.2.1, "Installing the .NET
Connector Server" for more information about installing the .NET Connector
Server.

2. Stop the Connector Server. Make sure that Connector Server Service is not
running.

3. Copy the connector DLL in the CONNECTOR_SERVER_HOME location.
CONNECTOR_SERVER_HOME is the location where ConnectorServer.exe and
other connector server related files are present after .NET Connector Server
installation.

4. Start the .NET Connector Server.

Deploying the Identity Connector Bundle on .NET Connector Server

11-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

11.2.2 Creating Basic Identity Connector Metadata
This metadata configuration is needed for both provisioning and reconciliation.
Perform the following procedures by using the Oracle Identity Manager Design
Console.

■ Section 11.2.2.1, "Creating the IT Resource Type Definition"

■ Section 11.2.2.2, "Creating the Resource Object"

11.2.2.1 Creating the IT Resource Type Definition
An IT resource type definition is the representation of a resource's connection
information. The configuration parameters in the IT resource type definition should be
matched with the configuration parameters of the connector bundle. The values of the
parameters in the IT resource will be set in the bundle configuration.

1. Log in to the Oracle Identity Manager Design Console.

2. Click IT Resource Type Definition under Resource Management.

3. Create a new IT Resource Type Definition with the Server Type defined as Flat
File.

4. Add the following parameters as illustrated in Figure 11–1.

■ Configuration Lookup is the marker of the main configuration lookup for the
resource. The name of the parameter must be Configuration Lookup. It is a
good practice to add a value to Default Field Value.

■ Delimiter maps to the Delimiter parameter in the bundle configuration. The
value of this parameter will be passed.

■ FileName maps to the FileName parameter in the bundle configuration. The
value of this parameter will be passed.

■ Connector Server Name, provide the connector server IT Resource name
where .NET Connector Server is running.

Note: You may include parameters the bundle configuration is not
using. They produce no negative effects on the bundle operations.

Deploying the Identity Connector Bundle on .NET Connector Server

Developing Identity Connectors Using .NET 11-13

Figure 11–1 IT Resource Type Definition in Design Console

11.2.2.2 Creating the Resource Object
The resource object is the Oracle Identity Manager representation of a resource. The
connector bundle is tied to the resource object.

1. Log in to the Oracle Identity Manager Design Console.

2. Click Resource Objects under Resource Management.

3. Create a new resource object with the name Flat File.

As the resource object is a target resource, do not check the Trusted Source box as
illustrated in Figure 11–2.

Figure 11–2 Resource Objects in Design Console

Deploying the Identity Connector Bundle on .NET Connector Server

11-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

11.2.2.3 Creating Lookups
Separate lookups have to be defined for different objects supported by the connector
bundle. This lookup can contain provisioning and reconciliation related information
for those objects. The Main Configuration Lookup is the root for object specific
lookups as it contains the pointers to those lookups. The following sections contain
information on how to create lookups.

■ Creating the Main Configuration Lookup

■ Creating Object Type Configuration Lookup

11.2.2.3.1 Creating the Main Configuration Lookup The Configuration Lookup (as defined
in Section 11.2.2.1, "Creating the IT Resource Type Definition") holds connector bundle
configurations that are not counted as connection information. If a configuration
parameter is not found in the IT Resource Type Definition, Oracle Identity Manager
will look in the Configuration Lookup. The main Configuration Lookup contains
bundle properties and bundle configurations. Bundle Property parameters are
mandatory as they are needed for identifying the correct bundle. Bundle
configurations that are not defined as part of the IT resource type definition (discussed
in Section 11.2.2.1, "Creating the IT Resource Type Definition") can be declared here.

1. Log in to the Oracle Identity Manager Design Console.

2. Click Lookup Definition under Administration.

3. Create a new lookup and add Lookup.FlatFile.Configuration as the value for
Code.

4. Add the following Lookup Code Information as illustrated in Figure 11–3.

■ Add AssemblyVersion as the required Bundle Version.

■ Add FlatFile.Connector as the required Bundle Name. The bundle name can
be identified from the connector dll name. Connector DLL is in
BUNDLE_NAME.dll format.

■ Add Org.IdentityConnector.FlatFileConnector.FlatFileConnector as the
required Connector Name.

■ OBJECT_TYPE_NAME Configuration Lookup is the configuration lookup for
the particular object type. In this example, the object type is User as User
Configuration Lookup is defined.

Note: The values for Code Key should match exactly as illustrated.
The values for Decode are specific to the connector bundle.

Deploying the Identity Connector Bundle on .NET Connector Server

Developing Identity Connectors Using .NET 11-15

Figure 11–3 Lookup Definition in Design Console

11.2.2.3.2 Creating Object Type Configuration Lookup Object type configuration lookup
contains the parameters specific to the particular object type. Object type is an entity
over which an identity connector operates. It is mapped to ICF ObjectClass. In
Section 11.2.2.3.1, "Creating the Main Configuration Lookup," User Configuration
Lookup has been referenced so that User is the object type, in this case mapped to
ObjectClass.ACCOUNT. (Roles and UserJobData are two other object types.) The
object type name has to match with ObjectClass name supported by the identity
connector bundle. The User object type is mapped to predefined
ObjectClass.ACCOUNT, the Group object type is mapped to predefined
ObjectClass.GROUP. If the identity connector supports multiple objects, then this step
must be repeated for each.

1. Log in to the Oracle Identity Manager Design Console.

2. Click Lookup Definition under Administration.

3. Create a new Lookup and add Lookup.FlatFile.UM.Configuration as the Code.

4. Set the following attributes as illustrated in Figure 11–4.

■ Provisioning Attribute Map takes a value of
Lookup.FlatFile.UM.ProvAttrMap. This lookup contains the mapping
between Oracle Identity Manager fields and identity connector attributes. The
mapping is used during provisioning.

■ Reconciliation Attribute Map takes a value of
Lookup.FlatFile.UM.ReconAttributeMap. This lookup contains the mapping
between Oracle Identity Manager reconciliation fields and identity connector
attributes. The mapping is used during reconciliation.

Note: Because these use cases cover only the basic functionality, the
configuration is kept to the mandatory attribute.

Note: This tutorial focuses on the minimum configurations needed
to run an identity connector.

Deploying the Identity Connector Bundle on .NET Connector Server

11-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 11–4 Second Lookup Definition in Design Console

11.2.3 Creating Provisioning Metadata
The following sections should be followed in order to configure Oracle Identity
Manager for flat file provisioning.

■ Section 11.2.3.1, "Creating a Process Form"

■ Section 11.2.3.2, "Creating Adapters"

■ Section 11.2.3.3, "Creating A Process Definition"

■ Section 11.2.3.4, "Creating a Provisioning Attribute Mapping Lookup"

11.2.3.1 Creating a Process Form
A process form is used as the representation of object attributes on Oracle Identity
Manager. This facilitates user input to set object attributes before passed to the
connector bundle for an operation.

Attributes defined in the process form are not conventions. The form is a way to
challenge the attributes that need to be passed to the identity connector. In general,
define an attribute for each supported attribute in the identity connector.

There should be a field for querying the IT resource that should be associated with the
respective IT Resource Type Definition. Variable type of each field should map to the
type of the object attribute.

1. Log in to the Oracle Identity Manager Design Console.

2. Click Form Designer under Development Tools.

3. Create a new form with the Table Name UD_FLATFILE as illustrated in
Figure 11–5.

Note: It is good practice to have a one to one mapping on the
identity connector attributes.

Deploying the Identity Connector Bundle on .NET Connector Server

Developing Identity Connectors Using .NET 11-17

Figure 11–5 Form Designer in Design Console

4. Add the attributes defined in the connector schema, as listed in Table 11–1.

5. Click the Properties tab.

6. Add the following properties to Server(ITResourceLookupField) as illustrated in
Figure 11–6.

■ Required = true

■ Type = Flat File

Table 11–1 Form Designer Fields

Name Variant Field Label Field Type

UD_FLATFILE_NAME String Name TextField

UD_FLATFILE_AGE String Age TextField

UD_FLATFILE_QUALIFICATIO
N

String Qualification TextField

UD_FLATFILE_GENDER String Gender LookupField

UD_FLATFILE_RETURNIDQ String Return Id DOField

UD_FLATFILE_ITRESOURCE Long IT Resource ITResourceLooku
p

Note: The flat file column names are FirstName, ChangeNo,
EmailID, Server, LastName, and AccountID.

Deploying the Identity Connector Bundle on .NET Connector Server

11-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 11–6 Properties of Form Designer in Design Console

7. Save the form.

8. Click Make Version Active.

11.2.3.2 Creating Adapters
An adapter has to be created for all operations supported by the connector bundle,
including Create, Update, and Delete.

1. Log in to the Oracle Identity Manager Design Console.

2. Click Adapter Factory under Development Tools.

3. Create a new adapter and add Flat File Create User as the Adapter Name.

4. Add Process Task as the Adapter Type.

5. Save the adapter.

6. Click the Variable List tab and add the following variables, as shown in
Figure 11–7.

■ objectType with Type String and Mapped as Resolve at runtime.

■ processInstanceKey with Type long and Mapped as Resolve at runtime.

■ itResourceFieldName with Type String and Mapped as Resolve at runtime.

Deploying the Identity Connector Bundle on .NET Connector Server

Developing Identity Connectors Using .NET 11-19

Figure 11–7 Adapter Factory Variable List in Design Console

7. Add a Java functional task to the adapter by following this sub procedure, as
shown in Figure 11–8.

a. Click the Adapter Tasks tab.

b. Select the adapter and click Add.

c. Select Java from the task options.

d. Select icf-oim-intg.jar from the API source.

e. Select oracle.iam.connetors.icfcommon.prov.ICProvisioninManager as the
API Source.

f. Select createObject as the method for the task.

g. Save the configurations.

h. Map the variables (previously added to the Variables List) against the
appropriate method inputs and outputs.

i. Map the configuration parameters against the appropriate method inputs and
outputs.

Database Reference maps to Database Reference (Adapter References) and
Return Variable maps to Return Variable (Adapter Variables).

Deploying the Identity Connector Bundle on .NET Connector Server

11-20 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 11–8 Adapter Factory in Design Console

8. Save and build the adapter.

11.2.3.3 Creating A Process Definition
Process Definition defines the behavior of the connector bundle for a particular
operation. Every operation has a corresponding task associated with it. This procedure
will configure the process definition and integration of the process task for the Create
operation.

1. Log in to the Oracle Identity Manager Design Console.

2. Click Process Definition under the Process Management tab.

3. Create a new process definition and name it Flat File as illustrated in Figure 11–9.

Deploying the Identity Connector Bundle on .NET Connector Server

Developing Identity Connectors Using .NET 11-21

Figure 11–9 Process Definition in Design Console

4. Select Provisioning as the Type of process.

5. Provide the resource Object Name for the identity connector; in this example, Flat
File.

6. Provide the process form Table Name; in this example, UD_FLATFILE.

7. Add a process task and name it Create User.

8. Double click Create User to edit as illustrated in Figure 11–10.

Deploying the Identity Connector Bundle on .NET Connector Server

11-22 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 11–10 Editing Task Screen in Design Console

9. Click the Integration tab.

10. Click Add and select the adpFLATFILECREATEUSER from the list as illustrated in
Figure 11–11.

The adapter will be available only after it is compiled.

Deploying the Identity Connector Bundle on .NET Connector Server

Developing Identity Connectors Using .NET 11-23

Figure 11–11 Integration Tab in Design Console

11. Map the variables as follows to set the response code returned by the identity
connector.

■ Adapter Return Variable – Response Code

■ Object Type – [Literal:String] User (Name of the object type)

■ Process Instance Key – [Process Data] Process Instance

■ IT Resource Field Name – [Literal:String] UD_FLATFILE_ITRESOURCE (Form
field name that contains the IT resource information)

12. Click the Responses tab and configure the responses as illustrated in Figure 11–12.

■ UNKNOWN can be described as Unknown response received with a status of R
(Rejected).

■ SUCCESS can be described as Operation completed with a status of C
(Completed).

■ ERROR can be described as Error occurred with a status of R.

Deploying the Identity Connector Bundle on .NET Connector Server

11-24 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 11–12 Configure Responses in Design Console

13. Click the Task to Object Status Mapping tab.

14. Update the Object Status to Provisioned for Status C, as shown in Figure 11–13:

Deploying the Identity Connector Bundle on .NET Connector Server

Developing Identity Connectors Using .NET 11-25

Figure 11–13 Task to Object Status Mapping

15. Save the process task.

11.2.3.4 Creating a Provisioning Attribute Mapping Lookup
Provisioning Attribute Mapping Lookup contains mappings of Oracle Identity
Manager fields to identity connector bundle attributes. In the Provisioning Attribute
Mapping Lookup:

■ Code keys are Field Labels of the process form.

■ Decodes are identity connector bundle attributes.

■ Child form attributes can be configured as embedded objects in inputs.

■ The identity connector's provisioning operation returns the UID in response. This
can be set in a form field by coding it against the identity connector bundle
attribute.

Following is the procedure to create a Provisioning Attribute Mapping Lookup.

1. Log in to the Oracle Identity Manager Design Console.

2. Click Lookup Definition under the Administration tab.

3. Create a new lookup and name it Lookup.FlatFile.UM.ProvAttrMap.

The name of this lookup is referred from the object type configuration lookup. See
Section 11.2.2.3.2, "Creating Object Type Configuration Lookup."

Deploying the Identity Connector Bundle on .NET Connector Server

11-26 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

4. Add the form Field Labels as the code keys and identity connector bundle
attributes as the decode as shown in Figure 11–14.

■ Name : __NAME__

■ Gender: Gender

■ Return Id: __UID__

■ Age: Age

■ Qualification: Qualification

Figure 11–14 Lookup Code Mapping

11.2.3.4.1 Field Flags Used in the Provisioning Attributes Map

For provisioning attributes mapping, the following field flags can be appended to the
code key:

■ LOOKUP: This must be specified for all fields whose values are obtained by
running a lookup reconciliation job. The values obtained from lookup
reconciliation job have IT Resource Name/Key appended to it. Specifying this flag
helps ICF integration to remove the appended value just before passing them onto
the bundle. For example, the code key for a field with label Database whose value
is obtained by running a lookup reconciliation job looks similar to
Database[LOOKUP].

Note: These properties are advanced options and can be skipped for
the current implementation of the connector.

Note: The LOOKUP flag can be specified for both Provisioning and
Reconciliation Attribute Map. For provisioning, IT Resource Name/IT
Resource Key prefix must be removed. For reconciliation, IT Resource
Name/IT Resource Key prefix must be added.

Deploying the Identity Connector Bundle on .NET Connector Server

Developing Identity Connectors Using .NET 11-27

■ IGNORE: This must be specified for all fields whose values are to be ignored and
not sent to bundle. For example, the code key for a field with label Database
whose value need not be sent to bundle looks similar to Database[IGNORE].

■ WRITEBACK: This must be specified for all fields whose values need to be
written back into the process form right after the create or update operation.
Adding this flag makes the ICF integration layer call ICF Get API to get values of
attributes marked with the WRITEBACK flag. For example, the code key for a
field with label Database whose value needs to be written back to the process form
right after create/update looks similar to Database[WRITEBACK]. For this to
work, the connector must implement the GetApiOp interface and provide an
implementation for the ConnectorObject getObject(ObjectClass objClass,Uid
uid,OperationOptions options) API. This API searches the target for the account
whose Uid is equal to the passed in Uid, and builds a connector object containing
all the attributes (and their values) that are to be written back to process form.

■ DATE: This must be specified for fields whose type need to be considered as Date,
without which the values are considered as normal strings. For example, the code
key for a field with label Today whose value needs to be displayed in the date
format looks similar to Today[DATE].

■ PROVIDEONPSWDCHANGE: This must be specified for all fields that need to
be provided to the bundle(target) when a password update happens. Some targets
expect additional attributes to be specified on every password change. Specifying
the PROVIDEONPSWDCHANGE flag, tells ICF integration to send all the extra
fields or attributes whenever a password change is requested. For example, the
code key for a field with label Extra Attribute Needed for Password Change
whose value needs to be provided to bundle(target) while password update looks
similar to Extra Attribute Needed for Password
Change[PROVIDEONPSWDCHANGE].

11.2.4 Creating Reconciliation Metadata
This section contains the procedures to configure the reconciliation of records from the
flat file. We will use the target reconciliation as an example; trusted reconciliation can
also be configured in a similar fashion. Do the procedures in the listed order.

■ Section 11.2.4.1, "Creating a Reconciliation Schedule Task"

■ Section 11.2.4.2, "Creating a Reconciliation Profile"

■ Section 11.2.4.3, "Setting a Reconciliation Action Rule"

■ Section 11.2.4.4, "Creating Reconciliation Mapping"

■ Section 11.2.4.5, "Defining a Reconciliation Matching Rule"

11.2.4.1 Creating a Reconciliation Schedule Task
By default, reconciliation uses a Search operation on the connector bundle. This
operation is invoked with a schedule task configured using Oracle Identity Manager.
This procedure is comprised of the following sub procedures.

1. Section 11.2.4.1.1, "Defining the Schedule Task"

2. Section 11.2.4.1.2, "Creating a Scheduled Job"

Note: If the connector does not implement the GetApiOp interface,
then the WRITEBACK flag does not work and an error is generated.

Deploying the Identity Connector Bundle on .NET Connector Server

11-28 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

11.2.4.1.1 Defining the Schedule Task To define the scheduled task:

1. Create a Deployment Manager XML file containing the scheduled task details as
shown in Example 11–4. Make sure to update database value to your database.

Example 11–4 Deployment Manager XML with Scheduled Task Details

<?xml version = '1.0' encoding = 'UTF-8'?>
<xl-ddm-data version="2.0.1.0" user="XELSYSADM"
database="jdbc:oracle:thin:@localhost:5524/estView.regress.rdbms.dev.mycompany.com
" exported-date="1307546406635" description="FF">
<scheduledTask repo-type="MDS" name="Flat File Connector User Reconciliation"
mds-path="/db" mds-file="Flat File Connector User Reconciliation.xml">
 <completeXml>
 <scheduledTasks xmlns="http://xmlns.oracle.com/oim/scheduler">
 <task>
 <name>Flat File Connector User Reconciliation</name>
 <class>oracle.iam.connectors.icfcommon.recon.SearchReconTask</class>
 <description>Flat File Connector User Reconciliation</description>
 <retry>0</retry>
 <parameters>
 <string-param required="false" encrypted="false"
helpText="Filter">Filter</string-param>
 <string-param required="false" encrypted="false"
helpText="Incremental Recon Date Attribute">Incremental Recon Date
Attribute</string-param>
 <string-param required="false" encrypted="false" helpText="IT
Resource Name">IT Resource Name</string-param>
 <string-param required="false" encrypted="false" helpText="Object
Type">Object Type</string-param>
 <string-param required="false" encrypted="false" helpText="Latest
Token">Latest Token</string-param>
 <string-param required="false" encrypted="false" helpText="Resource
Object Name">Resource Object Name</string-param>
 </parameters>
 </task>
 </scheduledTasks>
 </completeXml>
</scheduledTask>
</xl-ddm-data>

2. Save the file as Flat File Connector User Reconciliation.xml.

3. Login into the Identity System Administration. Under System Management, click
Import.

4. Select the Flat File Connector User Reconciliation.xml file, and click Import.

5. Complete the steps in the wizard.

11.2.4.1.2 Creating a Scheduled Job This procedure explains how to create a scheduled
task.

1. Log in to the Oracle Identity Manager Advanced Administration.

2. Click Scheduler under the System Management tab.

3. Click New for creating a new scheduled job. After that provide the job name as
Flat File and in the Task field, select the value as Flat File Connector User
Reconciliation from the lookup. Once the job is created, provide the values in the
job as shown in Figure 11–15.

Deploying the Identity Connector Bundle on .NET Connector Server

Developing Identity Connectors Using .NET 11-29

4. Add a scheduled task and add Flat File Connector User Reconciliation as the type
as illustrated in Figure 11–15.

Figure 11–15 Scheduled Task Screen in Advanced Console

5. Set the parameters as follows:

■ IT Resource Name takes a value of Flat File.

■ Resource Object Name takes a value of FLATFILE.

■ Object Type takes a value of User.

6. Click Apply.

11.2.4.2 Creating a Reconciliation Profile
A reconciliation profile defines the structure of the object attributes while
reconciliation. The reconciliation profile should contain all the attributes that have
reconciliation support.

1. Log in to the Oracle Identity Manager Design Console.

2. Click Resource Objects under Resource Management.

3. Open the Flat File resource object.

4. Click the Object Reconciliation tab as illustrated in Figure 11–16.

Deploying the Identity Connector Bundle on .NET Connector Server

11-30 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 11–16 Object Reconciliation in Design Console

5. Add following reconciliation fields:

■ Return Id [String] , Required]

■ Name [String] , Required

■ Gender [String]

■ Age [String]

■ Gender [String]

■ IT Resource Name [IT Resource] , Required

6. Save the configuration.

11.2.4.3 Setting a Reconciliation Action Rule
A Reconciliation Action Rule defines the behavior of reconciliation. In this procedure,
define the expected action when a match is found. This procedure assumes you are
logged into the Oracle Identity Manager Design Console.

1. Open the Flat File resource object.

2. Click the Object Reconciliation tab.

3. Click the Reconciliation Action Rules tab in the right frame.

Deploying the Identity Connector Bundle on .NET Connector Server

Developing Identity Connectors Using .NET 11-31

Figure 11–17 Reconciliation Action Rules in Design Console

4. Add an action rule defined as One Process Match Found (Rule Condition) and
Establish Link (Action).

5. Add an action rule defined as One Entity Match Found (Rule Condition) and
Establish Link (Action).

6. Click Create Reconciliation Profile.

7. Click Save.

11.2.4.4 Creating Reconciliation Mapping
The reconciliation mapping has to be done in the process definition. This is to map the
supported reconciliation fields (from resource object) to the process form fields. This
mapping is needed only for configuring target reconciliation.

1. Log in to the Oracle Identity Manager Design Console.

2. Click Process Definition under Process Management.

3. Open the Flat File process definition.

4. Click the Reconciliation Field Mappings tab as illustrated in Figure 11–18.

Deploying the Identity Connector Bundle on .NET Connector Server

11-32 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 11–18 Reconciliation Field Mapping in Design Console

5. Add mappings between the reconciliation profile fields and the process form
fields.

■ ReturnId[String] = UD_FLATFILE_RETURNID

■ Name[String] = UD_FLATFILE_NAME, <KEY>

■ Age[String] = UD_FLATFILE_AGE

■ Gender[String] = UD_FLATFILE_GENDER

■ Qualification[String] = UD_FLATFILE_QUALIFICATION

■ IT Resource Name[IT Resource] = UD_FLATFILE_ITRESOURCE,<KEY>

6. Save the configuration.

11.2.4.4.1 Field Flags Used in the Reconciliation Attributes Map 9

For reconciliation attributes mapping, the following field flags can be appended to the
code key:

■ TRUSTED: This must be specified in the Recon Attribute Map for the field that
represents the status of the account. This flag must be specified only for trusted
reconciliation. If this is specified, then the status of the account is either Active or
Disabled. Otherwise, the status is either Enabled or Disabled. For example, the
code key for a field with label Status whose value needs to be either
Active/Disabled must look similar to Status[TRUSTED].

Note: These properties are advanced options and can be skipped for
the current implementation of the connector

Deploying the Identity Connector Bundle on .NET Connector Server

Developing Identity Connectors Using .NET 11-33

■ DATE: In Recon Attribute Map, this must be specified for fields whose type need
to be considered as Date. For example, the code key for a field with label Today
whose value needs to be displayed in the date format must look similar to
Today[DATE].

11.2.4.5 Defining a Reconciliation Matching Rule
A reconciliation matching rule defines the equation for calculating the user match.

1. Log in to the Oracle Identity Manager Design Console.

2. Open the Reconciliation Rules form under Development Tools.

3. Click Add Rule.

Figure 11–19 Adding Reconciliation Matching Rule

4. Select resource object Flat File.

5. Once the reconciliation rule element is added, make sure to check Active flag so
that the reconciliation rule is made active.

6. Save and add the rule element.

User Login from the user profile data equals the Name resource attribute.

7. Save the rule.

Note: You must recreate the reconciliation profile whenever you
make any changes to the reconciliation rule.

Provisioning a Flat File Account

11-34 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

11.3 Provisioning a Flat File Account
The flat file connector is ready to work so now the user needs to log in to Oracle
Identity Manager and create an IT resource (target) using the following procedure.

■ Create IT resource of type "Flat File".

■ Provide the IT resource parameters as appropriate.

■ Provide the configuration parameters in Lookup.FlatFile.Configuration as
appropriate.

12

Integrating ICF with Oracle Identity Manager 12-1

12Integrating ICF with Oracle Identity Manager

[13]

Oracle Identity Manager's goal is to manage the business logic of Identity
administration, and delegate the execution of provisioning and reconciliation
operations to Identity Connector Framework (ICF). ICF with Oracle Identity Manager
(OIM) unites all the scheduled tasks and the provisioning tasks for all ICF based
connectors.

This chapter contains conceptual information about ICF-OIM integration in the
sections:

■ Section 12.1, "ICF Common"

■ Section 12.2, "Integration Architecture"

■ Section 12.3, "Global Oracle Identity Manager Lookups"

■ Section 12.4, "IT Resource"

■ Section 12.5, "Provisioning"

■ Section 12.6, "Concepts of Reconciliation in ICF Common"

■ Section 12.7, "Predefined Scheduled Tasks"

■ Section 12.8, "ICF Filter Syntax"

12.1 ICF Common
OIM ICF Integration Layer is an implementation of ICF API on one side and invokes
OIM APIs (icf-oim-intg.jar) on the other side. This reduces the complexity of the
connector developer as it provides API abstraction. It also support provisioning and
reconciliation operations. See Section 12.5, "Provisioning" and Section 12.6, "Concepts
of Reconciliation in ICF Common" for more information about provisioning and
reconciliation using ICF Common.

12.2 Integration Architecture
The following is the ICF-OIM integration architecture.

Global Oracle Identity Manager Lookups

12-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 12–1 OIM-ICF Connector Development Architecture

12.3 Global Oracle Identity Manager Lookups
Lookups is used to store OIM configuration metadata. IT Resource parameter
Configuration Lookup points to main Configuration Lookup that encapsulates all the
Oracle Identity Manager specific configuration information.

Based on the lookup configuration, you can classify your properties into the following
three classes:

■ IT Resource: connectivity properties: contains all properties that are used for
making a connection to the target system.

■ Main Configuration Lookup Configuration Properties: contains non-connectivity
properties that alter the mode of reconciliation or provisioning, and are not
required for connection. There is a thin line of difference between connectivity and
configuration properties, therefore one property can be assigned to both of them.

■ Object Type: specific lookups (for example, user management configuration),
mapping lookups for specific object type (for example, User, Group,
Organizational Unit).

Note: LOADFROMURL flag can be used in IT Resource or Main
Configuration Lookup in the code (key) field, for example,
sampleProperty[LOADFROMURL]. For properties marked as this, the
value (decode value) is a URL. ICF integration will read the contents
of the file stored in the given URL and use it as the value of given
property at runtime. This is useful for large values that cannot fit
directly into a lookup.

Global Oracle Identity Manager Lookups

Integrating ICF with Oracle Identity Manager 12-3

Figure 12–2 illustrates the global Oracle Identity Manager lookups from which most of
the Connectors use the User Management Lookups.

Figure 12–2 Oracle Identity Manager Connector Lookup Hierarchy

This section discusses the following topics:

■ Section 12.3.1, "Main Lookup Configuration"

■ Section 12.3.2, "User Management Configuration"

■ Section 12.3.3, "Recon Transformation Lookup
(Lookup.CONNECTOR_NAME.UM.ReconTransformation)"

■ Section 12.3.4, "Recon Validation Lookup
(Lookup.CONNECTOR_NAME.UM.ReconValidation)"

■ Section 12.3.5, "Optional Defaults Lookup"

12.3.1 Main Lookup Configuration
IT Resource parameter Configuration Lookup points to Main Configuration Lookup,
which encapsulates all the OIM specific configuration information.

Configuration lookup, denoted as Lookup.CONNECTOR_NAME.Configuration, is
the top level entry that refers to subordinate lookups for reconciliation and
provisioning. The configuration lookup has the following structure:

Table 12–1 Lookup Configuration for Connector

Configuration Key Value Description

Connector Name org.identityconnectors.CO
NNECTOR_NAME.Conn
ector

Identity Connector Main Class. This is the
class that implements SPI operations of ICF
framework.

Global Oracle Identity Manager Lookups

12-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

12.3.2 User Management Configuration
These lookups control the mapping for provisioning and reconciliation. In addition,
these lookups might also configure transformation and validation.

This lookup contains the following keys:

■ Before Create Action Language: This key if present in the
Lookup.CONNECTOR_NAME.UM.Configuration, which informs ICF that there is
a script whose language is the value of this key. The value of this key
(Groovy/cmd) informs the language of the script that needs to be executed by ICF
before create operation.

■ Before Create Action File: This key if present in the
Lookup.CONNECTOR_NAME.UM.Configuration, informs ICF that a script
represented by the value of this key needs to be executed by ICF before create
action. This script must be accessible to Oracle Identity Manager Server.

■ Before Create Action Target: This key if present in the
Lookup.CONNECTOR_NAME.UM.Configuration, informs ICF that script as
defined by previous two keys must be executed either on resource or on connector.
Depending on this configuration the ICF API runScriptOnConnector or
runScriptOnResource will be exectuted.

Table 12–1 describes the User Management lookup configuration.

Bundle Name org.identityconnectors.CO
NNECTOR_NAME

Identity Connector bundle name

Bundle Version 11.1.1.5.x Identity Connector bundle version

User Configuration
Lookup

Note: Other object
types may be
defined, for
example, for
Generic LDAP
connector: Group
Configuration
Lookup, OU
Configuration
Lookup.

Lookup.CONNECTOR_N
AME.UM.Configuration

Link to User specific configuration lookup.
Note: User should be the object type. If you
need to support any other object type, you
can use OBJECT_TYPE Configuration
Lookup as the key.

Table 12–2 User Management Lookup Configuration for Connector

Configuration
Key Value

Mandatory Field
Type Description

Provisioning
Attribute Map

Lookup.CONNECTO
R_NAME.UM.ProvAt
trMap

Y This lookup contains the
mapping between Oracle
Identity Manager fields and
identity connector attributes.
The mapping is used during
provisioning.

Table 12–1 (Cont.) Lookup Configuration for Connector

Configuration Key Value Description

Global Oracle Identity Manager Lookups

Integrating ICF with Oracle Identity Manager 12-5

Recon Attribute
Map

Lookup.CONNECTO
R_NAME.UM.Recon
AttrMap

Y This lookup contains the
mapping between Oracle
Identity Manager reconciliation
fields and identity connector
attributes. The mapping is
used during reconciliation.

Recon Attribute
Defaults

Lookup.CONNECTO
R_NAME.UM.Recon
Defaults

N This mapping contains the
default values for OIM
attributes, that are substituted,
if no value is provided by
connector during
reconciliation.

Recon
Transformation
Lookup

Lookup.CONNECTO
R_NAME.UM.ReconT
ransformation

N Lookup for Transformation by
doing Reconciliation Task.
Transformation is used in all
Reconciliation Tasks except
LookupReconTask.

Recon Validation
Lookup

Lookup.CONNECTO
R_NAME.UM.Recon
Validation

N Lookup used for Validation by
running Reconciliation Task.
Validation is used in all
Reconciliation Tasks except
LookupReconTask.

Recon Exclusion
List

Lookup.CONNECTO
R_NAME.UM.ReconE
xclusionList

N Exclusion list is a way to
address un-managed accounts
for the connector. While
reconciliation/provisioning.
Any match from the exclusion
list will not be processed by
OIM.

There are two types of rules
supported by the exclusion list:

■ Matching rules

Direct Matching Rule

Code Key: Reconciliation
field name

Decode Key: Excluded
field value

■ Pattern Matching Rule

Suffix with [PATTERN] tag to
enable pattern matching

Code Key:
ReconFieldName[PATTERN]

Decode Key: Exclusion pattern

Exclusion patterns should
follow the nomenclature
defined in
java.util.regex.Pattern

See the Recon Exclusion List
key in this table.

Provisioning
Exclusion List

Lookup.CONNECTO
R_NAME.UM.ProvEx
clusionList

N In provisioning, code key is the
Form label name, and decode
key is the excluded
value/pattern.

Table 12–2 (Cont.) User Management Lookup Configuration for Connector

Configuration
Key Value

Mandatory Field
Type Description

Global Oracle Identity Manager Lookups

12-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Provisioning
Validation
Lookup

Lookup.CONNECTO
R_NAME.UM.ProvVa
lidation

N Lookup for Validation by
Provisioning.

ICF defines the concept of
OperationOption, it is an extra
parameter list, that can be sent
to any operation. It is up to the
connector implementation to
define the use of these
operation options.

Operation
Options Map

Lookup.CONNECTO
R_NAME.UM.Operati
onOptions

N The code key is a constant
Operation Options Map. The
decode value name of lookup
that will be used as a map of
operation options.

For example, in
Lookup.Domino.UM.Operatio
nOptions the code key is
CACertifier[UPDATE,DELETE
] and the decode value is
CACertifier, which means that
this attribute will be sent to
calls of Update and Delete
operations as an extra
operation option.

If you want to configure the
action run, then you need to
provide three parameters for
scripting:

■ Language

■ File

■ Target

Scripting
Attributes

The triggering time of the
script is controlled by these
labels in your lookup key:

■ Before

■ After

The provisioning operation
type that the script is attached
on is controlled by these labels:

■ Create

■ Update

■ Delete

Before Create
Action Language

SCRIPTING_LANGU
AGE_NAME

N Language of the Action which
will be executed, for example,
Groovy/cmd. If you want to
configure the action run, then
you need to provide three
options, Language/File/Target
You can configure Before/After
actions for the following
provisioning operations:
Create/Update/Delete.

Table 12–2 (Cont.) User Management Lookup Configuration for Connector

Configuration
Key Value

Mandatory Field
Type Description

Global Oracle Identity Manager Lookups

Integrating ICF with Oracle Identity Manager 12-7

12.3.3 Recon Transformation Lookup
(Lookup.CONNECTOR_NAME.UM.ReconTransformation)

Transformation code is in an external Oracle Identity Manager Java Task, used in all
Reconciliation Tasks except LookupReconTask. It is a Java class uploaded
(transforming data coming from Target System during reconciliation) to Oracle
Identity Manager repository.

The Java class performing transformation needs to have a method with the signature
public Object transform(HashMap arg0, HashMap arg1, String arg2) implemented. ICF
would look for this method with the exact signature.

Transform java class template is as follows:

public class MyTransformer implements
oracle.iam.connectors.common.transform.Transformation {
 public Object transform(java.util.HashMap hmUserDetails, java.util.HashMap
hmEntitlementDetails, String sField) {
 String sFirstName= (String)hmUserDetails.get("First Name");
 String sLastName= (String)hmUserDetails.get("Last Name");
 String sFullName=sFirstName+"."+sLastName;
 return sFullName;
 }
}

The name of lookup storing the Recon Transformation Lookup is defined in Main
Configuration Lookup (Lookup.CONNECTOR_NAME.Configuration) as shown in
Table 12–3.

12.3.4 Recon Validation Lookup (Lookup.CONNECTOR_NAME.UM.ReconValidation)
Validation code is in an external Oracle Identity Manager Java task, Used for
validating data coming from Target System during Reconciliation. It is a Java class
uploaded (transforming data coming from Target System during reconciliation) to
Oracle Identity Manager repository.

Before Create
Action File

FILE_PATH N File containing script which
needs to be executed. This file
needs to be accessible to Oracle
Identity Manager Server.

Before Create
Action Target

Connector or
Resource

N Target of the action, can be
Connector or Resource.
Depending on this
configuration the ICF API
runScriptOnConnector or
runScriptOnResource will be
used.

Table 12–3 Reconciliation Transformation Lookup

Key Value Description

Recon Field Name <transformationClassName>

com.validationexample.MyTr
ansform

Java class which performs
transformation for this recon field.

Table 12–2 (Cont.) User Management Lookup Configuration for Connector

Configuration
Key Value

Mandatory Field
Type Description

Global Oracle Identity Manager Lookups

12-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

The Java class performing validation needs to have a method with the signature public
boolean validate (HashMap arg0, HashMap arg1, String arg2) implemented. ICF
would look for this method with the exact signature.

The validation Java class template is as follows:

public class MyValidator implements
oracle.iam.connectors.common.validate.Validator {
 public boolean validate(java.util.HashMap hmUserDetails, java.util.HashMap
hmEntitlementDetails,String sField) throws
oracle.iam.connectors.common.ConnectorException {
 boolean isValid = false;
 // validation code goes HERE
 return isValid;
 }
}

The name of lookup storing the Recon Validation Lookup is defined in main
configuration lookup (Lookup.CONNECTOR_NAME.Configuration) as shown in
Table 12–4.

12.3.5 Optional Defaults Lookup
Missing values for reconciliation are substituted by default values defined in the
following table. User Type is a required OIM attribute, that typically is not contained
on the target resource. You can set the default value in here.

For example, trusted reconciliation requires a set of attributes from the connector to
have a non-empty value. However, not all resources can supply all of these attribute
types, so we need to provide some default values. Table 12–5 lists all required
attributes for reconciliation, and possible default values for them.

If connector can supply all attributes needed in reconciliation, then this table becomes
optional.

Table 12–4 Reconciliation Validation Lookup

Key Value Description

Recon Field Name <transformationClassName
>

com.validationexample.My
Validator

Java class which performs validation for
this recon field.

Table 12–5 Lookup.CONNECTOR_NAME.UM.Recon.Defaults.Trusted Attriburtes

Key Value

Last Name CONNECTOR_DEPENDENT_VALUE

Organization Xellerate users

User Type End-User

Employee Type Full-Time

First Name CONNECTOR_DEPENDENT_VALUE

Note: These default values are supported only for single valued
fields, which means the multivalued or child table attributes are not
supported.

Provisioning

Integrating ICF with Oracle Identity Manager 12-9

12.4 IT Resource
IT Resource contains connectivity parameters for Target System. These parameters are
required for all the connectors using ICF integration.

Table 12–6 describes the common IT Resource parameters.

12.5 Provisioning
The section contains the following topics:

■ Section 12.5.1, "ICF Provisioning Manager"

■ Section 12.5.2, "Provisioning Lookup"

■ Section 12.5.3, "Non-User Object Types"

■ Section 12.5.4, "Optional Lookups for Provisioning"

■ Section 12.5.5, "Optional Flags in Lookups for Provisioning Attribute Map"

■ Section 12.5.6, "Compound attributes in Provisioning Attribute Map"

12.5.1 ICF Provisioning Manager
ICF Provisioning Manager unites the access to provisioning methods of connectors
into one Java Task that serves all connectors.

The public methods are divided into four groups:

■ Section 12.5.1.1, "APIs for Provisioning"

■ Section 12.5.1.2, "Account Related Operations"

■ Section 12.5.1.3, "Multivalued Operations"

■ Section 12.5.1.4, "Other operations"

12.5.1.1 APIs for Provisioning
The following are the single-valued CRUD object types.

createObject
Creates object of a specified type on the target resource, the values are taken from the
current Form.

Signature: public String createObject(String objectType)l

See Also: The documentation for the connector you are deploying
for information about the IT Resource parameters of the target system
and the Connector Server

Table 12–6 IT Resource Parameter

Parameter Description

Connector Server Name IT Resource name of Connector Server. The IT Resource needs to
be of type Connector Server. This field is a mandatory field, but
the value is optional.

Configuration Lookup Name of the main configuration lookup. This field is a
mandatory field

Provisioning

12-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

deleteObject
Deletes object of a specified type on the target resource.

Signature: public String deleteObject(String objectType)

updateAttributeValue
Updates object on target resource, only the attribute with the provided label is
updated.

Signature: public String updateAttributeValue(String objectType, String
attrFieldName)

updatePassword
Use this method in Adapter ONLY if you need to provide old password value,
currently there is no way to get the old value using the formAPI. If you don't need old
password value to change the password, use #updateAttributeValue(String, String)
method instead.

Signature: public String updatePassword(String objectType, String pswdFieldLabel,
String oldPassword)

12.5.1.2 Account Related Operations
The following are the account related provisioning operations.

enableUser
Deprecated, use enableObject() instead.

Signature: public String enableUser()

disableUser
Deprecated, use disableObject() instead.

Signature: public String disableUser()

enableObject
Example usage for User: enableObject("User").

Signature: public String enableObject(String objectType)

disableObject
Signature: public String disableObject(String objectType)

12.5.1.3 Multivalued Operations
The following are the multivalued operations used in provisioning.

updateAttributeValues
Use this method if there is a group update of fields. This will be useful when a set of
attributes have to updated together.

Signature: public String updateAttributeValues(String objectType, String[] labels)
public String updateAttributeValues(String objectType, Map<String, String> fields)
public String updateAttributeValues(String objectType, Map<String, String> fields,
Map<String, String> oldFields)}}}

Provisioning

Integrating ICF with Oracle Identity Manager 12-11

addChildTableValue
Updates the target by adding the newly added row in child table.

Signature: public String addChildTableValue(String objectType, String
childTableName, long childPrimaryKey)

removeChildTableValue
Updates the target by removing the row which was just deleted from child table.

Signature: public String removeChildTableValue(String objectType, String
childTableName, Integer taskInstanceKey)

updateChildTableValue
Updates the target by removing the deleted row and adding the newly created row.

Signature: public String updateChildTableValue(String objectType, String
childTableName, Integer taskInstanceKey, long childPrimaryKey)

updateChildTableValue
Updates values provided in child table on target resource.

Signature: public String updateChildTableValues(String objectType, String
childTableName)

12.5.1.4 Other operations
The following is the other operation used in provisioning.

setEffectiveITResourceName
If the connector needs to use different IT Resource for provisioning operations, it can
be set by this method.

Signature: public void setEffectiveITResourceName(String itResourceName)

12.5.2 Provisioning Lookup
Lookup.CONNECTOR_NAME.UM.ProvAttrMap contains basic attribute mapping for
two classes of attributes:

■ Single valued attributes: simple string key + value pairs.

■ Multivalued attributes (Child tables in Oracle Identity Manager): These are further
divided by the depth of hierarchy:

– Simple multivalued attributes: represent records of data stored in child table,
see second row in Table 12–7.

– Complex multivalued attributes: multiple levels of embedded objects, see last
row in Table 12–7.

Table 12–7 Provisioning Lookup Attributes

Key Value Description

Form Field Label ConnectorAttributeName This is a basic mapping type,
simple Form Label Name to
single value Connector Attribute
Name

Provisioning

12-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

12.5.3 Non-User Object Types
There are number of other entities that can be provisioned for example LDAP
Organizational Unit (also called OU), or LDAP Group or Group. In this case you need
to fill in the OBJECT_TYPE in the following examples:

Main Configuration Lookup Lookup.CONNECTOR_NAME.Configuration

Provisioning Lookup Lookup.CONNECTOR_NAME.OBJECT_TYPE.ProvAttrMap

12.5.4 Optional Lookups for Provisioning

Child Form
Name>~<Child
Form Field Label

ConnectorAttributeName This maps child form field to
multivalued
ConnectorAttributeName

Child Form
Name>~<Child
Form Field Label

ConnectorAttributeName>~<Embe
ddedObjectClass>~<EmbeddedAttr
ibuteName

This maps child form field to
EmbeddedAttribute of the
embedded object, which object
class is EmbeddedObjectClass
and it is included in
ConnectorAttributeName

Table 12–8 Configuration Lookup for Connector

Key Value Description

objectType
Configuration Lookup

Lookup.<ConnectorName>.<
objectType>.ProvAttrMap

Group Configuration
Lookup

Lookup.LDAP.Group.ProvAtt
rMap

Example for LDAP Group

Key Value Description

FORM_FIELD_LABE
L_ON_THE_PROCE
SS_FORM

Target system
attribute name

Attribute mapping
between Oracle
Identity Manager and
the connector.

Key Value Description

FORM_FIELD_NAM
E [Create, Update,
Delete]

ConnectorOperation
OptionName

This field is used for
generic definition.

For example, where
the field is mapped to
operation option for
CreateOp that is sent
to connector named
as
myOperationOption.

myField[Create] myOperationOption

Table 12–7 (Cont.) Provisioning Lookup Attributes

Key Value Description

Provisioning

Integrating ICF with Oracle Identity Manager 12-13

12.5.4.1 Provisioning Validation Lookup
Validation code is in an external OIM Java Task, it is a Java class uploaded to OIM
repository. Validation java class template:

public class MyValidator implements
oracle.iam.connectors.common.validate.Validator {
 public boolean validate(java.util.HashMap hmUserDetails, java.util.HashMap
hmEntitlementDetails,String sField) throws
oracle.iam.connectors.common.ConnectorException {
 boolean isValid = false;
 // validation code goes HERE
 return isValid;
 }
}

The name of lookup storing the Recon Validation Lookup is defined in Main
Configuration Lookup (Lookup.CONNECTOR_NAME.Configuration).

12.5.5 Optional Flags in Lookups for Provisioning Attribute Map
ICF-OIM Integration offers some advanced flags that modify the way provisioning is
done. The following is the example for formats of flags in look up key:

<key value>[<flag>]
<key value>[<flag1, flag2, flag3>]

Let us assume we have a Group OIM attribute that is mapped to UnixGroup
Connector attribute. This OIM attribute is populated by a UI lookup. The correct row
in Provisioning lookup will be:

nullLookup key: Group[LOOKUP]
Lookup value: UnixGroup }}}

The following is the list of flags and their effects.

Provisioning Lookup Flag: TRUSTED
For some attributes (for example trusted reconciliation of __ENABLE__ attribute), you
need to pass on different values for trusted and target mode of operation. For most of
the connectors which support status Reconciliation use code key: Status[Trusted], and
decode value: __ENABLE__.

Provisioning Lookup Flag: IGNORE
An attribute marked as IGNORE, will be ignored during provisioning.

Provisioning Lookup Flag: WRITEBACK
If a field has WRITEBACK property, then update of that form field is:

1. update the value on the target system

2. query the value back from the target system (in order to get a normalized value)

3. update this normalized value on the user form.

Key Value Description

Form Field Label validatorClassName

com.validationexamp
le.MyValidator

Java class which
performs validation
for this recon field.

Concepts of Reconciliation in ICF Common

12-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Provisioning Lookup Flag: DATE
Use this flag to mark date fields. Oracle Identity Manager will apply the localized date
format to these fields.

Provisioning Lookup Flag: PROVIDEONPSWDCHANGE
Use this flag to mark additional attributes that are needed for password change
operation. By default only __PASSWORD__ attribute is sent, if no flag is applied.

12.5.6 Compound attributes in Provisioning Attribute Map
ICF Common enables to use Groovy expressions on the right hand side, so that
provisioned attribute can be computed based on multiple fields. For example, in
Active Directory Connector, decode value for the name field is: .

__NAME__=CN=${Common_Name},${Organization_Name}

12.6 Concepts of Reconciliation in ICF Common
ICF Common leverages the definition and types of reconciliation defined by Oracle
Identity Manager server. IT Resource Name / Resource Object Name and Object Type
are mandatory attributes reconciliation using ICF Common. Any target system
attribute can be used as Latest Token Attribute.

This section contains the following topics:

■ Section 12.6.1, "Types of Reconciliation"

■ Section 12.6.2, "List of Reconciliation Artifacts in Oracle Identity Manager"

12.6.1 Types of Reconciliation
Reconciliation involves pulling identities from resource (also referred as target) to
destination (Oracle Identity Manager). Reconciliation can be classified based on
following criteria:

■ Destination type: trusted, target recon.

■ Scope: full, incremental recon.

Table 12–9 illustrates the common reconciliation parameters.

12.6.1.1 Target and Trusted Reconciliation
Scheduled task name include keywords such as trusted, target, to determine the type
of destination. By choosing the scheduled task, it is determined whether trusted or
target reconciliation is launched.

Table 12–9 ICF Common Reconciliation Parameters

Parameter Field Setting Description

Filter Optional Filter to limit the number of reconciled
accounts, or to select specific set of users.

IT Resource Name Mandatory Name of IT Resource instance to
reconciliation.

Object Type Constant User object class

Resource Object
Name

Constant Determines what OIM Resource Object to use
for reconciliation.

Concepts of Reconciliation in ICF Common

Integrating ICF with Oracle Identity Manager 12-15

12.6.1.2 Full, Incremental Reconciliation
Full reconciliation involves reconciling all existing user records from the target system
into Oracle Identity Manager. During Full Reconciliation, scheduled task is launched
for the first time, it is run in full reconciliation mode and from next runs happen in
incremental mode. It is possible to switch manually between full/incremental
reconciliation modes by emptying the Latest Token field on the scheduled task.

If no value is supplied in Incremental Recon Date Attribute and Incremental Recon
Attribute, reconciliation is considered as Target Recon.

The following scheduled tasks offer optional incremental reconciliation:

■ Connector Target User Reconciliation

■ Connector Trusted User Reconciliation

12.6.1.3 Advanced Incremental Reconciliation
The format of Latest Token is altered by setting the Recon Date Format scheduled task
parameter. The formatting string needs to follow standard pattern used in Java. For
more information about formatting string used in Java, see Java Doc on Oracle
Technology Network.

By default the Latest Token is long value that holds Unix/POSIX time.

12.6.1.4 Delete Reconciliation
Some connectors supports both trusted and target reconciliation of deleted accounts.
Target reconciliation evaluate which OIM users have lost their account on the resource,
and unassign this resource in Oracle Identity Manager. Trusted Delete Reconciliation
goes further, and deletes the OIM User.

12.6.1.5 Group Lookup Reconciliation
Some connectors may support reconciliation of Groups, or other object classes to
Lookups.

Before the first use of provisioning with the connector, it is advised to launch Lookup
reconciliation. This reconciliation populate the Lookup.CONNECTOR_NAME.ObjectType
table with groups available on an IT Resource that is being reconciled. The
reconciliation is performed by the Connector Lookup Reconciliation scheduled task.

You need to set the IT resource parameter name, the rest of the parameters are constant
as shown in Table 12–9.

Table 12–10 illustrates the common reconciliation parameters.

For example, the list of names returned by the connector is used to populate the
lookup for provisioning. When a new user is provisioned, the group field can display
the list of available groups.

12.6.2 List of Reconciliation Artifacts in Oracle Identity Manager
In Oracle Identity Manager, there are two methods of control over reconciliation:

■ Lookups for Reconciliation: they define mapping, transformation of the attributes.

Table 12–10 Common Group Lookup Parameters

Code Key Decode Key Object Type

Form field name Connector attribute Group, or other

Concepts of Reconciliation in ICF Common

12-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Scheduled tasks - they define the way reconciliation is executed on connector side,
or determine account/lookup mode of reconciliation.

12.6.2.1 Lookups for Reconciliation
The following are the lookups for reconciliation:

Reconciliation Attribute Map Lookup
The reconciliation attribute map contains the following pairs:

■ Code key: Resource Object reconciliation field name

■ Decode: Target system attribute name

Table 12–11 illustrates this mapping
(Lookup.CONNECTOR_NAME.UM.ReconAttrMap) used by Scheduled tasks that
perform reconciliation.

Example showing Design Console updates to setup reconciliation with child
table
The following is the example showing Design Console updates to setup reconciliation
with child table:

■ Child table name: UD_FF_CHILD

■ Column name: UD_FF_CHILD_ROLE

■ Field label: Role

To set up reconciliation with the above child table:

1. Open Resource Object under Resource Management.

2. Create a new Reconciliation Data field under Object Reconciliation tab.

Note: Resource Objects are different for Trusted and Target mode of
reconciliation.

Table 12–11 Attribute Mapping for Lookup.CONNECTOR_NAME.UM.ReconAttrMap

Key Value Description

Recon Field Name ConnectorAttributeNa
me

This is a basic mapping type, single value
Connector Attribute Name to simple Recon
Field.

Recon Field
Name~Child Recon
Field Name

ConnectorAttributeNa
me

This maps multivalued
ConnectorAttributeName to child recon
field.

Recon Field
Name~Child Recon
Field Name

ConnectorAttributeNa
me~EmbeddedObjectCl
ass~EmbeddedAttribut
e

This maps embedded attribute to child recon
field

Note: While creating a new Reconciliation Data field, you must
ensure that the field name be Roles and Field Type be Multi-Valued
Attribute. This represents the child table as a whole UD_FF_CHILD.

Predefined Scheduled Tasks

Integrating ICF with Oracle Identity Manager 12-17

3. Right click on the newly created Reconciliation Data Field and define a new
property field as Role. This represents the actual column of the child table
UD_FF_CHILD_ROLE.

4. Open Reconciliation Field Mapping under Process Definition.

5. Click on Add Table Map.

6. Select Field Name as Roles.

7. Select Table Name as UD_FF_CHILD.

8. Right click on the newly created field name Roles, click on Define proper
field name.

9. Select Role for field name.

10. Select Process data field as UD_FF_CHILD_ROLE.

11. Update Lookup.CONNECTOR_NAME.UM.ReconAttrMap to include new
lookup field with code key = Roles~Role and decode = Role (this should be
connector side attribute name).

12. Go back to Resource Object and create reconciliation profile.

13. Clear cache.

12.7 Predefined Scheduled Tasks
ICF-OIM integration provides the following list of predefined scheduled tasks that a
connector supports:

■ Section 12.7.1, "LookupReconTask"

■ Section 12.7.2, "SearchReconTask"

■ Section 12.7.3, "SearchReconDeleteTask"

■ Section 12.7.4, "SyncReconTask"

12.7.1 LookupReconTask
This scheduled task is based on ICF SearchOp based reconciliation. Oracle Identity
Manager form field of type lookup stores a set of predefined values. These values
originate from the connector's search query. The Code Key Attribute is the form field's
name, and the Decode Attribute is the name of attribute on the target system (also
called Connector).

Internally, this task invokes a search operation on the connector for the given Object
Type that is translated to ICF Object Class eventually.

Table 12–12 Identity Connector Lookup Reconciliation Attributes

Key Value

IT Resource Name Specifies the name of the IT resource for target system
installation.

Object Type User

Lookup Name This attribute holds the name of the lookup definition that maps
each lookup definition with the data source from which values
must be fetched.

Decode Attribute Specifies the Decode Key column of the lookup definition.

Predefined Scheduled Tasks

12-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

12.7.2 SearchReconTask
The following is the ICF SearchOp based reconciliation.

12.7.3 SearchReconDeleteTask
This scheduled task is used for ICF SearchOp based reconciliation.

12.7.4 SyncReconTask
This scheduled task is used for ICF SyncOp based reconciliation. The Sync Token field
persists the token of last synchronization.

Code Key Attribute Specifies the Code Key column of the lookup definition.

Filter Allows to create sophosticated filtration expressions in order to
speed up/refine scheduled task execution.

Table 12–13 Identity Connector Target Search Reconciliation Attributes

Key Value

IT Resource Name Specifies the name of the IT resource for target system
installation.

Resource Object Name Specifies the name of the Resource Object used for reconciliation.

Object Type User

Filter Allows to create sophisticated filtration expressions in order to
speed up/refine scheduled task execution.

Latest Token Used in Filter as one of the criteria in incremental reconciliation.
Any target system attribute can be used as Latest Token
Attribute. This value is calculated as follows:

If a reconciliation has fetched 100 records and Timestamp is
chosen as a Incremental Recon Attribute, then Latest Token =
Max Timestamp of all 100 records. It is not the Schedule task
execution end timestamp.

Incremental Recon Date
Attribute (optional, type
Date)

Attribute used to update Latest Token.

Note: If no value is supplied in Incremental Recon Date
Attribute, then reconciliation is considered as Target
Reconciliation.

Incremental Recon Attribute
(optional, type long)

Attribute used to update Latest Token.

Note: If no value is supplied in Incremental Recon Attribute ,
then reconciliation is considered as Target Reconciliation.

Table 12–14 Identity Connector Target Search Delete Reconciliation Attributes

Key Value

IT Resource Name Specifies the name of the IT resource for target system
installation.

Resource Object Name Specifies the name of the Resource Object used for reconciliation

Object Type User

Filter Allows to create sophisticated filtration expressions in order to
speed up/refine scheduled task execution.

Table 12–12 (Cont.) Identity Connector Lookup Reconciliation Attributes

Key Value

ICF Filter Syntax

Integrating ICF with Oracle Identity Manager 12-19

12.8 ICF Filter Syntax
GroovyFilterBuilder allows to create sophisticated filtration expressions in order to
speed up/refine scheduled task execution.

Examples
The following example could limit the number of reconciled accounts to only those,
where account name starts with letter "a", this filter is denoted by the following
expression:

startsWith('__NAME__', 'a')

Some more advanced search could require to filter only those account names, which
end with "z" letter, therefore the filter is:

startsWith('__NAME__', 'a') & endsWith('__NAME__', 'z')

Figure 12–3 shows the graphical scheme of Filter Syntax.

Table 12–15 Identity Connector Target Sync Reconciliation Attributes

Key Value

IT Resource Name Specifies the name of the IT resource for target system
installation.

Resource Object Name Specifies the name of the Resource Object used for reconciliation

Object Type User

Filter Allows to create sophisticated filtration expressions in order to
speed up/refine scheduled task execution.

Sync Token Token of last synchronization.

WARNING: The GroovyFilterBuilder uses the connector attribute
name for filtration. See Connector documentation for the attribute
name.

ICF Filter Syntax

12-20 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 12–3 Graphical Representation of Filter Syntax

It is also possible to use a shortcut for and/or operators.

For example, <filter1> & <filter2> instead of and (<filter1>, <filter2>) , analogically
replace or with |.

Definition in EBNF format:
The following is the Extended Backus–Naur Form (EBNF) description of the
expression language used for Search Filters in reconciliation.

syntax = expression (operator expression)*
operator = 'and' | 'or'
expression = ('not')? filter
filter = ('equalTo' | 'contains' | 'containsAllValues' | 'startsWith' | 'endsWith'

ICF Filter Syntax

Integrating ICF with Oracle Identity Manager 12-21

| 'greaterThan' | 'greaterThanOrEqualTo' | 'lessThan' | 'lessThanOrEqualTo') '('
'attributeName' ',' attributeValue ')'
attributeValue = singleValue | multipleValues
singleValue = 'value'
multipleValues = '[' 'value_1' (',' 'value_n')* ']'

Table 12–16 lists the filter syntax that you can use and the corresponding description
and sample values.

Note: Filters with wildcard characters are not supported.

Table 12–16 Keywords and Syntax for the Filter Attribute

Filter Syntax Description

String Filters

startsWith('ATTRIBUTE_NAME','PREFIX') Records whose attribute value starts with the specified prefix are
reconciled.

Example: startsWith('userPrincipalName','John')

In this example, all records whose userPrincipalName begins with
'John' are reconciled.

endsWith('ATTRIBUTE_NAME','SUFFIX') Records whose attribute value ends with the specified suffix are
reconciled.

Example: endsWith('sn','Doe')

In this example, all records whose last name ends with 'Doe' are
reconciled.

contains('ATTRIBUTE_NAME','STRING') Records where the specified string is contained in the attribute's
value are reconciled.

Example: contains('displayName','Smith')

In this example, all records whose display name contains 'Smith' are
reconciled.

containsAllValues('ATTRIBUTE_NAME',['S
TRING1','STRING2', . . . ,'STRINGn'])

Records that contain all the specified strings for a given attribute are
reconciled.

Example: containsAllValues('objectClass',['person','top'])

In this example, all records whose objectClass contains both "top"
and "person" are reconciled.

Equality and Inequality Filters

equalTo('ATTRIBUTE_NAME','VALUE') Records whose attribute value is equal to the value specified in the
syntax are reconciled.

Example: equalTo('sAMAccountName','Sales Organization')

In this example, all records whose sAMAccountName is Sales
Organization are reconciled.

ICF Filter Syntax

12-22 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

greaterThan('ATTRIBUTE_NAME','VALUE') Records whose attribute value (string or numeric) is greater than (in
lexicographical or numerical order) the value specified in the syntax
are reconciled.

Example 1: greaterThan('cn','bob')

In this example, all records whose common name is present after the
common name 'bob' in the lexicographical order (or alphabetical
order) are reconciled.

Example 2: greaterThan('employeeNumber','1000')

In this example, all records whose employee number is greater than
1000 are reconciled.

greaterThanOrEqualTo('ATTRIBUTE_NAM
E','VALUE')

Records whose attribute value (string or number) is lexographically
or numerically greater than or equal to the value specified in the
syntax are reconciled.

Example 1: greaterThanOrEqualTo('sAMAccountName','S')

In this example, all records whose sAMAccountName is equal to 'S'
or greater than 'S' in lexicographical order are reconciled.

Example 2: greaterThanOrEqualTo('employeeNumber','1000')

In this example, all records whose employee number is greater than
or equal to 1000 are reconciled.

lessThan('ATTRIBUTE_NAME','VALUE') Records whose attribute value (string or numeric) is less than (in
lexicographical or numerical order) the value specified in the syntax
are reconciled.

Example 1: lessThan('sn','Smith')

In this example, all records whose last name is present after the last
name 'Smith' in the lexicographical order (or alphabetical order) are
reconciled.

Example 2: lessThan('employeeNumber','1000')

In this example, all records whose employee number is less than
1000 are reconciled.

lessThanOrEqualTo('ATTRIBUTE_NAME','
VALUE')

Records whose attribute value (string or numeric) is lexographically
or numerically less than or equal to the value specified in the syntax
are reconciled.

Example 1: lessThanOrEqualTo('sAMAccountName','A')

In this example, all records whose sAMAccountName is equal to 'A'
or less than 'A' in lexicographical order are reconciled.

Example 2: lessThanOrEqualTo('employeeNumber','1000')

In this example, all records whose employee numer is less than or
equal to 1000 are reconciled.

Complex Filters

Table 12–16 (Cont.) Keywords and Syntax for the Filter Attribute

Filter Syntax Description

ICF Filter Syntax

Integrating ICF with Oracle Identity Manager 12-23

<FILTER1> & <FILTER2> Records that satisfy conditions in both filter1 and filter2 are
reconciled. In this syntax, the logical operator & (ampersand
symbol) is used to combine both filters.

Example: startsWith('cn', 'John') & endsWith('sn', 'Doe')

In this example, all records whose common name starts with John
and last name ends with Doe are reconciled.

<FILTER1> | <FILTER2> Records that satisfy either the condition in filter1 or filter2 are
reconciled. In this syntax, the logical operator | (vertical bar) is used
to combine both filters.

Example: contains('sAMAccountName', 'Andy') |
contains('sn', 'Brown')

In this example, all records that contain 'Andy' in the sAMAccount
Name attribute or records that contain 'Brown' in the last name are
reconciled.

not(<FILTER>) Records that do not satisfy the given filter condition are reconciled.

Example: not(contains('cn', 'Mark'))

In this example, all records that does not contain the common name
'Mark' are reconciled.

Table 12–16 (Cont.) Keywords and Syntax for the Filter Attribute

Filter Syntax Description

ICF Filter Syntax

12-24 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

13

Using Java APIs for ICF Integration 13-1

13Using Java APIs for ICF Integration

[14]

To build a custom connector, you must first implement the Identity Connector
(ICF-based connector) by implementing the ICF SPI. After this, you need to create OIM
artifacts to integrate the Identity Connector to Oracle Identity Manager, which can
reuse ICProvisioningManager (part of ICF integration) in their Adapter Tasks to
invoke provisioning operations on Identity Connector, and also can reuse
Reconciliation Tasks that are implemented in ICF integration. Therefore, by using ICF
integration, you need not write any integration code in java, ICF integration uses ICF
APIs to access the Identity Connectors.

For information about Java APIs related to ICF integration, see Oracle Fusion
Middleware Java API Reference for Identity Connector Framework.

For information about Java APIs related to Oracle Identity Manager, see Oracle Fusion
Middleware Java API Reference for Oracle Identity Manager.

13-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

14

Configuring ICF Connectors 14-1

14Configuring ICF Connectors

[15]

This chapter provides the information about the common customization procedures
that needs to be performed for all ICF connectors.

The following are the topics discussed under this chapter:

■ Section 14.1, "Configuring Connector Load Balancer"

■ Section 14.2, "Configuring Validation of Data During Reconciliation and
Provisioning"

■ Section 14.3, "Configuring Transformation of Data During User Reconciliation"

■ Section 14.4, "Configuring Resource Exclusion Lists"

■ Section 14.5, "Setting SSL for Connector Server and OIM"

■ Section 14.6, "Adding Target System Attributes"

14.1 Configuring Connector Load Balancer
A connector server is an application that enables remote execution of an Identity
Connector. If there are multiple connector servers, then you must ensure the high
availability of the connector server for the remote execution of the Identity connector
and failover management. Therefore, you must configure a load balancer for a
connector server. Figure 14–1 depicts the typical configuration for a cluster of
connector servers. The flow in the figure is based on the assumption that the required
connector bundle is deployed across all the connector servers.

Configuring Connector Load Balancer

14-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 14–1 Connector Server Load Balancer

To configure the load balancer for a connector server:

1. Install connector server on nodes including the connector bundle. This involves
copying and running the server binaries on all nodes.

2. Setup your load balancer so that every request on port 8759 (default for connector
server, which is configurable) is being load balanced across the nodes created in
Step 1.

3. Create a connector server IT resource, and point it to your host deployed with load
balancer.

4. Configure your connector IT resource with the following details:

■ host: target address

■ connector server name: use the name created in Step 3.

Note: You must make sure to double-check that the incoming port of
load balancer is same as the one given in connector server IT resource.
In addition, you must check that the ports set up for cluster nodes
match the one used for configuring your load balancer.

Configuring Validation of Data During Reconciliation and Provisioning

Configuring ICF Connectors 14-3

14.2 Configuring Validation of Data During Reconciliation and
Provisioning

The Lookup.CONNECTOR_NAME.ProvValidations and
Lookup.CONNECTOR_NAME.UM.ReconValidations lookup definitions hold
single-valued data to be validated during provisioning and reconciliation operations,
respectively.

For example, you can validate data fetched from the First Name attribute to ensure
that it does not contain the number sign (#). In addition, you can validate data entered
in the First Name field on the process form so that the number sign (#) is not sent to
the target system during provisioning operations.

To configure validation of data:

1. Write code that implements the required validation logic in a Java class with a
fully qualified domain name (FQDN), such as
org.identityconnectors.CONNECTOR_NAME.extension.CONNECTOR_NAMEValidator
.

This validation class must implement the validate method. The following sample
validation class checks if the value in the First Name attribute contains the number
sign (#):

package com.validationexample;

import java.util.HashMap;

public class MyValidator {
 public boolean validate(HashMap hmUserDetails, HashMap
hmEntitlementDetails, String sField) throws ConnectorException {

 /* You must write code to validate attributes. Parent
 * data values can be fetched by using hmUserDetails.get(field)
 * For child data values, loop through the
 * ArrayList/Vector fetched by hmEntitlementDetails.get("Child
Table")
 * Depending on the outcome of the validation operation,
 * the code must return true or false.
 */
 /*
 * In this sample code, the value "false" is returned if the field
 * contains the number sign (#). Otherwise, the value "true" is
 * returned.
 */
 boolean valid = true;
 String sFirstName = (String) hmUserDetails.get(sField);
 for (int i = 0; i < sFirstName.length(); i++) {

Note: The Lookup.CONNECTOR_NAME.UM.ProvValidations and
Lookup.CONNECTOR_NAME.UM.ReconValidations lookup
definitions are optional and do not exist by default.

You must add these lookups as decode values to the
Lookup.CONNECTOR_NAME.UM.Configuration lookup definition
to enable exclusions during provisioning and reconciliation
operations. See the respective connector guide for more information
about setting up the lookup definition for user operations.

Configuring Validation of Data During Reconciliation and Provisioning

14-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 if (sFirstName.charAt(i) == '#') {
 valid = false;
 break;
 }
 }
 return valid;

 }
}

2. Log in to the Design Console.

3. Create one of the following new lookup definitions:

■ To configure validation of data for reconciliation:

Lookup.CONNECTOR_NAME.UM.ReconValidations

■ To configure validation of data for provisioning:

Lookup.CONNECTOR_NAME.UM.ProvValidations

4. In the Code Key column, enter the resource object field name that you want to
validate. For example, Alias.

5. In the Decode column, enter the class name. For example,
org.identityconnectors.CONNECTOR_NAME.extension.CONNECTOR_NAMEValidator
.

6. Save the changes to the lookup definition.

7. Search for and open the Lookup.CONNECTOR_NAME.UM.Configuration
lookup definition.

8. In the Code Key column, enter one of the following entries:

■ To configure validation of data for reconciliation:

Recon Validation Lookup

■ To configure validation of data for provisioning:

Provisioning Validation Lookup

9. In the Decode column, enter one of the following entries:

■ To configure validation of data for reconciliation:

Lookup.CONNECTOR_NAME.UM.ReconValidations

■ To configure validation of data for provisioning:

Lookup.CONNECTOR_NAME.UM.ProvValidations

10. Save the changes to the lookup definition.

11. Create a JAR with the class and upload it to the Oracle Identity Manager database
as follows:

Run the Oracle Identity Manager Upload JARs utility to post the JAR file created
in Step 7 to the Oracle Identity Manager database. This utility is copied into the
following location when you install Oracle Identity Manager:

Note: Before you use this utility, verify that the WL_HOME environment
variable is set to the directory in which Oracle WebLogic Server is
installed.

Configuring Transformation of Data During User Reconciliation

Configuring ICF Connectors 14-5

For Microsoft Windows:

OIM_HOME/server/bin/UploadJars.bat

For UNIX:

OIM_HOME/server/bin/UploadJars.sh

When you run the utility, you are prompted to enter the login credentials of the
Oracle Identity Manager administrator, URL of the Oracle Identity Manager host
computer, context factory value, type of JAR file being uploaded, and the location
from which the JAR file is to be uploaded. Select 1 as the value of the JAR type.

12. Run the PurgeCache utility to clear content related to request datasets from the
server cache.

13. Perform reconciliation or provisioning to verify validation for the field, for
example, Alias.

14.3 Configuring Transformation of Data During User Reconciliation
The Lookup.CONNECTOR_NAME.UM.ReconTransformations lookup definition
holds single-valued user data to be transformed during reconciliation operations. For
example, you can use First Name and Last Name values to create a value for the Full
Name field in Oracle Identity Manager.

To configure transformation of single-valued user data fetched during reconciliation:

1. Write code that implements the required transformation logic in a Java class with a
fully qualified domain name (FQDN), such as
org.identityconnectors.CONNECTOR_NAME.extension.CONNECTOR_NAMETransform
ation.

This transformation class must implement the transform method. The following
sample transformation class creates a value for the Full Name attribute by using
values fetched from the First Name and Last Name attributes of the target system:

package com.transformationexample;

import java.util.HashMap;

public class MyTransformer {
 public Object transform(HashMap hmUserDetails, HashMap
hmEntitlementDetails, String sField) throws ConnectorException {
 /*

See Also: "Migrating JARs and Resource Bundle" on page 37-3 for
detailed information about the Upload JARs utility

Note: The
Lookup.CONNECTOR_NAME.UM.ReconTransformations lookup
definition is optional and does not exist by default.

You must add this lookup as decode value to the
Lookup.CONNECTOR_NAME.UM.Configuration lookup definition
to enable exclusions during provisioning and reconciliation
operations. See the respective connector guide for more information
about setting up the lookup definition for user operations.

Configuring Transformation of Data During User Reconciliation

14-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 * You must write code to transform the attributes.
 * Parent data attribute values can be fetched by
 * using hmUserDetails.get("Field Name").
 * To fetch child data values, loop through the
 * ArrayList/Vector fetched by hmEntitlementDetails.get("Child
Table")
 * Return the transformed attribute.
 */
 String sFirstName = (String) hmUserDetails.get("First Name");
 String sLastName = (String) hmUserDetails.get("Last Name");
 return sFirstName + "." + sLastName;

 }
}

2. Log in to the Design Console.

3. Create a new lookup definition,
Lookup.CONNECTOR_NAME.UM.ReconTransformations.

4. In the Code Key column, enter the resource object field name you want to
transform. For example, Alias.

5. In the Decode column, enter the class name. For example,
org.identityconnectors.CONNECTOR_NAME.extension.CONNECTOR_NAMETransform
ation.

6. Save the changes to the lookup definition.

7. Search for and open the Lookup.CONNECTOR_NAME.UM.Configuration
lookup definition.

8. In the Code Key column, enter Recon Transformation Lookup.

9. In the Decode column, enter Lookup.CONNECTOR_NAME.UM.ReconTransformations.

10. Save the changes to the lookup definition.

11. Create a JAR with the class and upload it to the Oracle Identity Manager database
as follows:

Run the Oracle Identity Manager Upload JARs utility to post the JAR file created
in Step 7 to the Oracle Identity Manager database. This utility is copied into the
following location when you install Oracle Identity Manager:

For Microsoft Windows:

OIM_HOME/server/bin/UploadJars.bat

For UNIX:

OIM_HOME/server/bin/UploadJars.sh

When you run the utility, you are prompted to enter the login credentials of the
Oracle Identity Manager administrator, URL of the Oracle Identity Manager host
computer, context factory value, type of JAR file being uploaded, and the location
from which the JAR file is to be uploaded. Select 1 as the value of the JAR type.

Note: Before you use this utility, verify that the WL_HOME environment
variable is set to the directory in which Oracle WebLogic Server is
installed.

Configuring Resource Exclusion Lists

Configuring ICF Connectors 14-7

12. Run the PurgeCache utility to clear content related to request datasets from the
server cache.

13. Perform reconciliation to verify transformation of the field, for example, Alias.

14.4 Configuring Resource Exclusion Lists
The Lookup.CONNECTOR_NAME.UM.ProvExclusionList and
Lookup.CONNECTOR_NAME.UM.ReconExclusionList lookup definitions hold user
IDs of target system accounts for which you do not want to perform provisioning and
reconciliation operations, respectively.

The following is the format of the values stored in these lookups:

To add entries in the lookup for exclusions during provisioning operations:

1. On the Design Console, expand Administration and then double-click Lookup
Definition.

2. Create a new lookup definition,
Lookup.CONNECTOR_NAME.UM.ProvExclusionList.

See Also: "Migrating JARs and Resource Bundle" on page 37-3 for
detailed information about this utility.

Note: The Lookup.CONNECTOR_NAME.UM.ProvExclusionList
and Lookup.CONNECTOR_NAME.UM.ReconExclusionList lookup
definitions are optional and do not exist by default.

You must add these lookups as decode values to the
Lookup.CONNECTOR_NAME.UM.Configuration lookup definition
to enable exclusions during provisioning and reconciliation
operations. See the respective connector guide for more information
about setting up the lookup definition for user operations.

Code Key Decode Sample Values

User Login Id
resource object field
name

User ID of a user Code Key: User Login Id

Decode: User001

User Login Id
resource object field
name with the
[PATTERN] suffix

A regular expression
supported by the
representation in the
java.util.regex.Pa
ttern class

Code Key: User Login Id[PATTERN]

To exclude users matching any of the user
ID 's User001, User002, User088, then:

Decode: User001|User002|User088

To exclude users whose user ID 's start with
00012, then:

Decode: 00012*

See Also: For information about the
supported patterns, visit
http://download.oracle.com/javase/6/d
ocs/api/java/util/regex/Pattern.html

Configuring Resource Exclusion Lists

14-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

3. Click Add.

4. In the Code Key and Decode columns, enter the first user ID to exclude.

5. Repeat Steps 3 and 4 for the remaining user IDs to exclude.

For example, if you do not want to provision users with user IDs User001,
User002, and User088 then you must populate the lookup definition with the
following values:

You can also perform pattern matching to exclude user accounts. You can specify
regular expressions supported by the representation in the
java.util.regex.Pattern class.

For example, if you do not want to provision users matching any of the user IDs
User001, User002, and User088, then you must populate the lookup definition
with the following values:

If you do not want to provision users whose user IDs start with 00012, then you
must populate the lookup definition with the following values:

6. Click Save.

Note: To specify user IDs to be excluded during reconciliation
operations, create a new lookup definition called
Lookup.CONNECTOR_NAME.UM.ReconExclusionList and add
entries to that lookup.

Note: The Code Key represents the resource object field name on
which the exclusion list is applied during provisioning operations.

Code Key Decode

User Login Id User001

User Login Id User002

User Login Id User088

See Also: For information about the supported patterns, visit
http://download.oracle.com/javase/6/docs/api/java/util/regex
/Pattern.html

Code Key Decode

User Login
Id[PATTERN]

User001|User002|User088

Code Key Decode

User Login
Id[PATTERN]

00012*

Setting SSL for Connector Server and OIM

Configuring ICF Connectors 14-9

14.5 Setting SSL for Connector Server and OIM
To set up the SSL communication between Connector Server and Oracle Identity
Manager:

1. Generate a new SSL key (or you can reuse your existing key):

keytool -genkey -alias keyconnserv -keyalg dsa -keystore <yourKeyStore.jks>
-storepass <yourPassword> -validity 360

2. Export the newly generated public key:

keytool -export -keystore <yourKeyStore.jks> -storepass <yourPassword> -alias
keyconnserv -file icfkey-public.cer

3. Configure your Connector Server for SSL, and start using the new keystore set in
Step 1.

4. Import the public key generated in Step 2 (icfkey-public.cer) to OIM keystore.

5. Configure IT Resource such as host, port, and so on. These parameters will be
passed on to Connector Server (an extra field of IT Resource).

6. Configure Connector Server, using SSL:

a. Deploy an SSL certificate to the Connector Server's system.

b. Configure your Connector Server to provide SSL sockets.

c. Configure your application to communicate with the Connector Server using
SSL.

Refer to the target system's manual for specific notes on configuring
connections to identity connector servers. You will indicate to your application
that an SSL connection is required when establishing a connection for each
SSL-enabled connector server. Additionally, if any of the SSL certificates used
by your connector servers are issued by a non-standard certificate authority,
your application must be configured to respect the additional authorities.
Refer to your manual for notes regarding certificate authorities.

7. Import the public key generated in Step 2 to OIM keystore.

If you follow to choose the default Weblogic keystore, perform the following:

Note:

Java applications may solve the issue of non-standard certificate
authorities by expecting the following Java system properties to be
passed when launching the application:

■ javax.net.ssl.trustStorePassword

For example:

-Djavax.net.ssl.trustStorePassword=changeit

■ javax.net.ssl.trustStore

For example:

-Djavax.net.ssl.trustStore=/usr/myApp_cacerts

Alternately, the non-standard certificate authorities may be imported
to the standard ${JAVA_HOME}/lib/security/cacerts directory.

Adding Target System Attributes

14-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

keytool -import -trustcacerts -alias icfkey -file icfkey-public.cer -keystore
<pathToYouKeystore>

For example default Weblogic keystores are: server/lib/DemoTrust.jks and
server/lib/DemoIdentity.jks.

14.5.1 Troubleshooting SSL
The following is an example of exception in connector server logs:

java.net.SocketException: Default SSL context init failed: null

This means that the path to keystore is incorrect. To handle this exception, make sure
you provide the following full/absolute path:

For UNIX

./connectorserver.sh /run "-J-Djavax.net.ssl.keyStore=/path/to/mykeystore.jks"
"-J-Djavax.net.ssl.keyStorePassword=changeit"

For Windows

./connectorserver.sh /run "-J-Djavax.net.ssl.keyStore=C:\path\to\mykeystore.jks"
"-J-Djavax.net.ssl.keyStorePassword=changeit"

You must also ensure the following check points:

■ Check your configuration folder for the setting of connector server configuration
to use SSL

■ Restart your WLS after importing public keys from the connector server, if the
public key present in OIM keystore

14.6 Adding Target System Attributes
Adding target system attributes includes the following subsections:

■ Section 14.6.1, "Adding Target System Attributes for Provisioning"

■ Section 14.6.2, "Adding Target System Attributes for Target Reconciliation"

■ Section 14.6.3, "Adding Target System Attributes for Trusted Reconciliation"

14.6.1 Adding Target System Attributes for Provisioning
By default, the target system attributes are mapped for provisioning between Oracle
Identity Manager and the target system. If required, you can map additional attributes
for provisioning by performing these steps.

Note: If you add an attribute with a Date type field, make sure that
you add the [Date] suffix in the Lookup definition code key.

For example, if you add _LAST_PASSWORD_CHANGE_DATE_,
when you make changes in the code key for
Lookup.CONNECTOR_NAME.UM.ReconAttrMap or
Lookup.CONNECTOR_NAME.UM.ProvAttrMap, specify the
attribute as:

_LAST_PASSWORD_CHANGE_DATE_[Date]

Adding Target System Attributes

Configuring ICF Connectors 14-11

To add a target system attribute for provisioning, follow these steps:

1. Add a new form field. To add a new field to the Process form:

a. Open the Form Designer form. This form is in the Development Tools folder of
the Oracle Identity Manager Design Console.

b. Query for the UD_CONNECTOR_NAMECON form.

c. Click Create New Version. The Create a New Version dialog box is displayed.

d. In the Label field, enter the name of the version.

e. Click Save and close the dialog box.

f. From the Current Version box, select the version name that you entered in the
Label field in Step 4.

g. On the Additional Columns tab, click Add.

h. Specify the new field name and other values.

i. Click Save.

j. Click Make Version Active to make the new form field visible to the user.

Now, if you go to Oracle Identity Manager and try to provision a new user to
Connector, you should see the new form field. Next, you must add the new
form field to the Provisioning Mapping Lookup.

2. Add the new field to the Provisioning Mapping Lookup. After creating a new
form field, you must add that field to the Provisioning Mapping Lookup, as
follows:

a. Expand Administration and then double-click Lookup Definition.

b. In the Lookup Definition window, search for CONNECTOR_NAME.

The Design Console returns
Lookup.CONNECTOR_NAME.UM.ProvAttrMap.

c. Select the Lookup Definition Table tab, and select
Lookup.CONNECTOR_NAME.UM.ProvAttrMap.

The Lookup Code Information tab maps the Oracle Identity Manager form
field names and the CONNECTOR_NAME Identity Connector attributes.
Where the Code Key column contains the Oracle Identity Manager field labels
and the Decode column contains the attribute names supported by the
CONNECTOR_NAME identity connector.

d. Add a new record for the new form field. Type the new form field name into
the Code Key column and type the CONNECTOR_NAME identity connector
attribute name into the Decode column.

e. Click Save.

Now, when you create a new CONNECTOR_NAME user, the connector will
get the new attribute as part of the create operation.

At this point, the process task only handles creates. Next, you must change the
process task to also handle updates. Instructions are described in the next
steps.

Note: In this section, the term "attribute" refers to the identity data
fields that store user data.

Adding Target System Attributes

14-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

3. Change the process task to handle updates, as follows:

a. In the Design Console, expand Process Management and then double-click
Process definition.

b. Search for and select process CONNECTOR_NAME User.

c. In the Task column, look for an update task that is similar to the one you want
to add and select that entry.

d. Click Add.

e. In the Creating New Task dialog, select the General tab and enter a Task Name
and a Task Description.

The Task Name is important because it will be the form name field. Be sure to
include the event you want the task to handle. For example, if you add the
Building field for provisioning, then add the Building Updated task. Now, this
update event will be triggered when the Building field is updated.

f. In the Task Properties section, set the following properties as noted:

-Conditional: Enabled

-Required for Completion: Disabled

-Disable Manual Insert: Disabled

-Allow Cancellation while Pending: Enabled

-Allow Multiple Instances: Enabled

You do not have to change any of the remaining properties.

g. Save your changes.

h. To add an Event Handler, select the Integration tab, and then click Add.

i. When the Handler Select dialog box displays, select Adapter as the handler
type and then perform the following steps:

Select adapter
adpCONNECTOR_NAMECONNECTORUPDATEATTRIBUTEVALUE and
click Save.

Map all of the variables that are configured for the event adapter.

In the Adapter Variables section, double-click a variable name to open the Edit
Data Mapping For Variable dialog box. Specify the following values for each
variable in turn. Be sure to save your changes after each mapping.

j. Save and close the Creating New Task dialog.

Variable Name Map To Qualifier Literal Value

itResourceFieldName Literal String UD_CONNECTOR_NAM
ECON_SERVER

processInstanceKey Process Data Process Instance

Adapter return value Response Code

objectType Literal String User

attrName Literal String Enter your new label

Adding Target System Attributes

Configuring ICF Connectors 14-13

k. Check the Task column on the Process Definition tab to verify that the new
process task is listed. Also verify that the new form field is available and
working in Oracle Identity Manager.

14.6.2 Adding Target System Attributes for Target Reconciliation
By default, the target system attributes are mapped for reconciliation between Oracle
Identity Manager and the target system. If required, you can map additional attributes
for target reconciliation as described in this section.

To add a new target system attribute for target reconciliation, follow these steps:

1. In the resource object definition, add a reconciliation field corresponding to the
new attribute, as follows:

a. Open the Resource Objects form. This form is in the Resource Management
folder.

b. Click Query for Records.

c. On the Resource Objects Table tab, double-click the CONNECTOR_NAME
User resource object to open it for editing.

d. On the Object Reconciliation tab, click Add Field to open the Add
Reconciliation Field dialog box.

e. Specify a value for the field name that is the name of the new Attribute on
your Form.

For example: Building

f. From the Field Type list, select a data type for the field.

For example: String

g. Save the values that you enter, and then close the dialog box.

h. If required, repeat Steps d through g to map more fields.

i. Click Create Reconciliation Profile. This copies changes made to the resource
object into the MDS.

2. If a corresponding field does not exist in the process form, then add a new column
in the process form, as follows:

a. Open the Form Designer form. This form is in the Development tools folder.

b. Query for the UD_CONNECTOR_NAMECON form.

c. Click Create New Version. The Create a New Version dialog box is displayed.

d. In the Label field, enter the name of the version.

e. Click Save and close the dialog box.

Note:

■ Perform this procedure only if you want to add new target system
attributes for reconciliation.

■ In the following steps, a new attribute called BUILDING will be
added, its connector attribute name is BUILDING, and the form
field name is Building. Names are case-sensitive.

Adding Target System Attributes

14-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

f. From the Current Version box, select the version name that you entered in the
Label field in Step 3.

g. On the Additional Columns tab, click Add.

h. In the Name field, enter the name of the data field and then enter the other
details of the field.

Note: Repeat Steps g and h if you want to add more attributes.

i. Click Save and then click Make Version Active.

3. Modify the process definition to include the mapping between the newly added
attribute and the corresponding reconciliation field:

a. Open the Process Definition form. This form is in the Process Management
folder of the Design Console.

b. Click the Query for Records icon.

c. On the Process Definition Table tab, double-click the CONNECTOR_NAME
User process definition.

d. On the Reconciliation Field Mappings tab, click Add Field Map to open the
Add Reconciliation Field Mapping dialog box.

e. From the Field Name list, select the name of the resource object that you
added in Step 2e.

f. Double-click Process Data Field and select the corresponding process form
field from the Lookup dialog box. Then, click OK.

g. Click Save and close the dialog box.

h. If required, repeat Steps c through g to map more fields.

4. Go to the reconciliation lookup,
Lookup.CONNECTOR_NAME.UM.ReconAttrMap, and add a new record for the
new attribute using the following values:

■ Code Key - Name of the reconciliation field

■ Decode - Name of the CONNECTOR_NAME attribute

5. In the Design Console, regenerate the reconciliation profile for the Resource
Object.

14.6.3 Adding Target System Attributes for Trusted Reconciliation
By default, the attributes for trusted source reconciliation are mapped between Oracle
Identity Manager and the target system. If required, you can map additional attributes
for trusted reconciliation as described in this section.

To add a new target system attribute for trusted reconciliation, follow these steps:

Note:

■ Perform this procedure only if you want to add new target system
attributes for reconciliation.

■ In the following steps, a new attribute called BUILDING will be
added, its connector attribute name is BUILDING, and the form
field name is Building. Names are case-sensitive.

Adding Target System Attributes

Configuring ICF Connectors 14-15

1. In the resource object definition, add a reconciliation field corresponding to the
new attribute, as follows:

a. Open the Resource Objects form. This form is in the Resource Management
folder.

b. Click Query for Records.

c. On the Resource Objects Table tab, double-click the CONNECTOR_NAME
Trusted User resource object to open it for editing.

d. On the Object Reconciliation tab, click Add Field to open the Add
Reconciliation Field dialog box.

e. Specify a value for the field name that is the name of the new Attribute on
your Form.

For example: Building

f. From the Field Type list, select a data type for the field.

For example: String

g. Save the values that you enter, and then close the dialog box.

h. If required, repeat Steps d through g to map more fields.

i. Click Create Reconciliation Profile. This copies changes made to the resource
object into the MDS.

2. If a corresponding field does not exist in the process form, then add a new column
in the process form, as follows:

a. Open the Form Designer form. This form is in the Development tools folder.

b. Query for the UD_CONNECTOR_NAMECON form.

c. Click Create New Version. The Create a New Version dialog box is displayed.

d. In the Label field, enter the name of the version.

e. Click Save and close the dialog box.

f. From the Current Version box, select the version name that you entered in the
Label field in Step 3.

g. On the Additional Columns tab, click Add.

h. In the Name field, enter the name of the data field and then enter the other
details of the field.

Note: Repeat Steps g and h if you want to add more attributes.

i. Click Save and then click Make Version Active.

3. Modify the process definition to include the mapping between the newly added
attribute and the corresponding reconciliation field:

a. Open the Process Definition form. This form is in the Process Management
folder of the Design Console.

b. Click the Query for Records icon.

c. On the Process Definition Table tab, double-click the CONNECTOR_NAME
Trusted User process definition.

d. On the Reconciliation Field Mappings tab, click Add Field Map to open the
Add Reconciliation Field Mapping dialog box.

Adding Target System Attributes

14-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

e. From the Field Name list, select the name of the resource object that you
added in Step 2e.

f. Double-click Process Data Field and select the corresponding process form
field from the Lookup dialog box. Then, click OK.

g. Click Save and close the dialog box.

h. If required, repeat Steps c through g to map more fields.

4. Go to the reconciliation lookup,
Lookup.CONNECTOR_NAME.UM.ReconAttrMap.Trusted, and add a new record
for the new attribute using the following values:

■ Code Key - Name of the reconciliation field

■ Decode - Name of the CONNECTOR_NAME attribute

15

Understanding ICF Best Practices and FAQs 15-1

15Understanding ICF Best Practices and FAQs

[16]

This chapter enlists the best practices and Frequently Asked Questions (FAQ) on ICF.
The list is discussed in the following sections:

■ Section 15.1, "Best Practices for ICF"

■ Section 15.2, "FAQs on ICF"

15.1 Best Practices for ICF
The following are the best practices that you need to follow while using ICF:

■ Use common Scheduled tasks, and ICProvisioningManager.

■ Keep IT Resource parameters count to minimum, IT Resource should contain
connectivity related parameters only, the rest needs to be in the Main Connector
Configuration Lookup.

■ Logging in ICF Connectors:

ICF Integration for Oracle Identity Manager logs all the input/output parameters
of all calls to ICF Connector interfaces. You must ensue that the following points
are taken care while logging:

– If required, you can enhance the logging with in-depth logging messages.

– You must not log messages that involves password information or sensitive
data.

– In case you encounter ConnectorException error, then you must wrap the
target specific exception, and provide any additional details.

– Turn on Logging for ICF Common by switching on logging for
oracle.iam.connectors.icfcommon.

■ Connector Load Balancer

– In order to use SSL-encrypted communication between Oracle Identity
Manager and connector servers, you need to copy the SSL keystore on all
connector server nodes, and maintain its consistency if SSL key changes.

– Connector server uses a proprietary (non-HTTP) protocol, and SSL encryption.

– All connector server nodes under the load balancer should contain the same
set of bundles.

FAQs on ICF

15-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

15.2 FAQs on ICF
The following are the FAQs on ICF:

■ Why lookup reconciliation data contains tilda (~)?

Tilda (~) notation in lookup reconciliation is to separate Lookups for different IT
Resources. In the following example, Key will be a programmatic key, whereas
Value will be a user-friendly display name:

Lookup Key: <IT Resource Key>~<Lookup key>

Lookup Value: <IT Resource Name>~<Lookup value>

■ What is bulk attribute update and how to set it up?

Bulk attribute update in OIM means that all the changed attributes will be sent to
the connector in one method call, instead of updating each attribute individually
(default option).

In order to enable your connector for bulk attribute update, make sure:

– all your attributes have their respective process tasks for individual update,
typically named as, ATTRIBUTE_NAME updated.

– you have an extra process task named, UD_FORM_NAME updated. This task
will be used for bulk update.

■ Search-based versus sync-based reconciliation: when to use what?

It is based on the capabilities of connector/target resource. Most connectors
support search, some of them (LDAP) support sync operation too. Where
available, sync-based reconciliation is preferred due to higher efficiency.

Sync-based reconciliation is more efficient than search-based reconciliation
because, it can process both additions/removals in one run. With search-based
reconciliation, you need to run search reconciliation first and then run search
delete reconciliation, which is double the effort.

■ How to configure Connector Pooling?

See Release 11.1.1.5.0 version of the Connector documentation for information
about Connector Pooling and its configuration.

■ How to use Groovy to extend connector functionality?

In order to have an extendable connector, you need to implement
ScriptOnConnector or ScriptOnResource ICF SPIs. Connectors might support
various scripting languages, based on target resource capabilities. By default, ICF
supports groovy scripts with ScriptOnConnector for all java based connectors. You
must always refer the connector documentation to understand the scripting
languages for a given connector. See Chapter 14, "Configuring ICF Connectors" for
more information about how to customize the connector.

■ What are the basic requirements (such as memory, disk space, CPU, and so on) for
Connector Server?

The connector server can run in any Java 6 environment and above. The
requirements are same as of those of Java and Oracle Identity Manager.

See Release 11.1.1.5.0 version of the Connector documentation for the supported
versions of JDK and Oracle Identity Manager.

■ Does one connector server version support all ICF Connector versions?

FAQs on ICF

Understanding ICF Best Practices and FAQs 15-3

Connector Server version equals ICF version. ICF is backward compatible with
previously released connector versions.

■ How to troubleshoot connector server related issues?

Set up log level to FINEST in logging configuration file of the Connector Server. If
the default port 8759 is taken, than set a different port number in the Connector
Server configuration.

■ When to deploy connector on Connector Server and when to deploy connector
locally into Oracle Identity Manager?

Only .NET connectors require Connectors Server, others can be deployed directly
into Oracle Identity Manager.

FAQs on ICF

15-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

16

Understanding Generic Technology Connectors 16-1

16 Understanding Generic Technology
Connectors

[17]

This chapter introduces generic technology connectors and the features that Oracle
Identity Manager provides for working with generic technology connectors.

This chapter contains the following sections:

■ Requirement for Generic Technology Connectors

■ Functional Architecture of Generic Technology Connectors

■ Features of Generic Technology Connectors

■ Connector Objects Created by the Generic Technology Connector Framework

■ Roadmap for Information on Generic Technology Connectors in This Guide

16.1 Requirement for Generic Technology Connectors
Predefined Oracle Identity Manager connectors are designed for commonly used
target systems such as Microsoft Active Directory and PeopleSoft Enterprise
Applications. A predefined connector is developed using the Adapter Factory
approach, and its architecture is based on either the APIs that the target system
supports or the data repository type and schema in which the target system stores user
data.

Since they are developed using the Adapter Factory, predefined connectors offer
extensive workflow and adapter customization capabilities. The use of a predefined
connector is the recommended integration method when such a connector is available
for the target system.

There may be scenarios in which you want to integrate Oracle Identity Manager with a
target system that has no corresponding predefined connector. The following are
examples of such scenarios:

Scenario 1: All employees of Acme Inc. are allotted disk space on a backup server.
Employees send requests to the system administrator for managing their accounts on
the backup server. The system administrator has developed a Web-based application
to capture, review, and act on requests from employees. The front end of this
application is a Web service that accepts and stores data in CSV format. Employee
account data stored in the back end can be exported as XML files to a specified
location.

Scenario 2: Ceeam Travels Inc. owns a custom Web-based application that its
customers use to request airline fare quotes. Agents, who are also employees of Ceeam

Functional Architecture of Generic Technology Connectors

16-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Travels, respond to these requests by using the same application. Customers register
themselves to create accounts in this application. However, Ceeam Travels employees
need to have accounts auto-provisioned based on their HR job title. Account
management functions (such as create, update, and delete) of the application are
available through Java APIs.

In both these scenarios, you need to create a custom connector to link the target system
and Oracle Identity Manager. If you are looking for a simple way to create your
custom connector and do not need the customization features of the Adapter Factory,
you can create the connector by using the Generic Technology Connector feature of
Oracle Identity Manager. As described in the Section 16.2, "Functional Architecture of
Generic Technology Connectors", providers are the building blocks of generic
technology connectors.

■ In Scenario 1, you can use the predefined shared drive reconciliation transport
provider and CSV reconciliation format provider to create a generic technology
connector that reconciles data stored in a flat file into Oracle Identity Manager.

■ In Scenario 2, there is no predefined provider available to integrate the custom
application with Oracle Identity Manager. In this case, you can use the instructions
provided in Chapter 18, "Creating Custom Providers for Generic Technology
Connectors" to create the custom providers that call the Java APIs exposed by the
target application.

16.2 Functional Architecture of Generic Technology Connectors
Like a predefined connector, a generic technology connector acts as the bridge for
reconciliation and provisioning operations between Oracle Identity Manager and a
target system. Functionally, a generic technology connector can be divided into a
reconciliation module and provisioning module. When you create a generic
technology connector, you can specify whether you want to include both modules, or
include the reconciliation module only, or include the provisioning module only.

A predefined connector provides reconciliation and provisioning functionality in the
context of the same target. In contrast, the reconciliation and provisioning modules of
a generic technology connector are composed of reusable components that you choose.
Each component performs a specific function during provisioning or reconciliation.
For example, you can create a connector that performs trusted source reconciliation
from flat files and provides target resource provisioning using the SPML protocol to an
SPML-enabled target.

In this guide, the components that constitute a generic technology connector are called
providers.

Each provider performs a transport, format change, validation, or transformation
function on the data that it receives as input. In other words, data items processed by a
provider are moved to a new location, validated against specified criteria, or undergo
modification in structure or value. In this guide, the term data sets is used to describe
data structures arranged in the form of layers, with data flowing from one layer to
another during provisioning and reconciliation.

While creating a generic technology connector, you can specify the fields (user identity
metadata) that must be included in each data set. You can also define mappings
between fields of different data sets. A mapping serves one of the following purposes:

■ Establishes a data flow path between fields of two data sets for use either in
provisioning or reconciliation.

Functional Architecture of Generic Technology Connectors

Understanding Generic Technology Connectors 16-3

A mapping of this type forms the basis for validations or transformations to be
performed on data that is fetched from the target system.

■ Creates a basis for comparing (matching) field values of two data sets.

Figure 16–1 shows the functional architecture of a generic technology connector.

Figure 16–1 Functional Architecture of a Generic Technology Connector

The following sections describe the providers and data sets that constitute a generic
technology connector:

■ Providers and Data Sets of the Reconciliation Module

■ Providers and Data Sets of the Provisioning Module

■ Oracle Identity Manager Data Sets

16.2.1 Providers and Data Sets of the Reconciliation Module
The reconciliation module consists of the following providers and data sets:

Functional Architecture of Generic Technology Connectors

16-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Reconciliation Transport Provider

A reconciliation transport provider carries reconciliation data from the target
system to Oracle Identity Manager. The manner in which this provider carries the
reconciliation data depends on the implementation of the provider. For example, a
reconciliation transport provider can read data from a file, or accept data from a
Web service, or query a database.

■ Reconciliation Format Provider

A reconciliation format provider parses the reconciliation data fetched by the
reconciliation transport provider and converts this data into data structures that
can be stored in Oracle Identity Manager.

■ Source

A Source data set holds the data processed by the reconciliation format provider.
This data set can have child data sets.

■ Validation Provider

A validation provider checks the data in the source data sets against criteria you
specify before passing the data to the reconciliation engine of Oracle Identity
Manager.

■ Transformation Provider

A transformation provider included in the reconciliation module modifies data
received from the validation providers before passing on the data for the creation
of reconciliation events in Oracle Identity Manager.

The following is an example of a transformation provider function:

Suppose the following are the values of two fields in the target system

First Name: John

Last Name: Doe

A transformation provider can be used to create the following reconciliation field
output:

Login ID: John.Doe

■ Reconciliation Staging

A reconciliation staging data set holds user data that has been processed by the
validation providers and transformation providers. This data set can have child
data sets.

16.2.2 Providers and Data Sets of the Provisioning Module
The provisioning module consists of the following providers and data sets:

■ Transformation Provider

A transformation provider can be used to modify data items at the following
stages:

Note: You can include more than one validation provider in a
generic technology connector.

Features of Generic Technology Connectors

Understanding Generic Technology Connectors 16-5

– A transformation provider included in the provisioning module modifies data
entered in Oracle Identity Manager process forms before the data is sent to the
target system.

■ Provisioning Staging

A provisioning staging data set holds user data before it is sent to the provisioning
format provider. This data is the output of the transformation functions that are
run on the user data for a trusted source or account data for a target system, which
are stored in Oracle Identity Manager. This data set can have child data sets.

■ Provisioning Format Provider

A provisioning format provider converts Oracle Identity Manager provisioning
data (received from the transformation provider) into a format that is supported
by the target system.

■ Provisioning Transport Provider

A provisioning transport provider carries provisioning data from the provisioning
format provider to the target system. The manner in which this provider carries
reconciliation data depends on the implementation of the provider. For example, a
provider can copy data into a file, or send data to a Web service, or post data to a
database.

16.2.3 Oracle Identity Manager Data Sets
The Oracle Identity Manager data sets represent data that is stored in Oracle Identity
Manager. Although these data sets are not part of the reconciliation or provisioning
module, they are considered part of the generic technology connector because you can
add fields to these data sets and create mappings between fields of these data sets and
other data sets. The following are the Oracle Identity Manager data sets:

■ OIM - User

The OIM - User data set holds the metadata (set of identity fields) that defines the
Oracle Identity Manager User. In trusted source reconciliation, this data set
receives newly created or modified user account information from the
reconciliation staging data set. In target resource reconciliation, the fields of the
OIM - User data set can be used to establish a match between target system user
accounts and existing Oracle Identity Manager users. This data set does not have
child data sets.

■ OIM - Account

The OIM - Account data set holds the user account information that is stored in
the process form fields of Oracle Identity Manager. This user account information
is received from the reconciliation staging data sets. The OIM - Account data set
can have child data sets.

16.3 Features of Generic Technology Connectors
The following sections discuss the features of generic technology connectors:

■ Features Specific to the Reconciliation Module

■ Other Features

16.3.1 Features Specific to the Reconciliation Module
The following features are specific to the reconciliation module:

Features of Generic Technology Connectors

16-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Trusted Source Reconciliation

■ Account Status Reconciliation

■ Full and Incremental Reconciliation

■ Batched Reconciliation

■ Reconciliation of Multivalued Attribute Data (Child Data) Deletion

■ Failure Threshold for Stopping Reconciliation

16.3.1.1 Trusted Source Reconciliation
A generic technology connector can be used for trusted source reconciliation. During
reconciliation in trusted mode:

■ If the reconciliation engine detects new target system accounts, it creates
corresponding Oracle Identity Manager users.

■ If the reconciliation engine detects changes to existing target system accounts, the
same changes are made in the corresponding Oracle Identity Manager users.

A generic technology connector that is used for trusted source reconciliation cannot be
used for provisioning. This design feature was incorporated to ensure that you do not
create or modify through Oracle Identity Manager user account information on a
target system that is designated as a trusted source.

Connector objects, such as IT resources and resource objects, are created automatically
at the end of the generic technology connector creation process. By default, the
resource object of a generic technology connector is a trusted resource object. In other
words, a generic technology connector is already compatible with the Multiple Trusted
Source reconciliation feature. This feature is discussed in Chapter 5, "Developing
Provisioning Processes".

16.3.1.2 Account Status Reconciliation
User account status information is used to track whether or not the owner of a target
system account is to be allowed to access and use the account. If the target system does
not store account status information in the format in which it is stored in Oracle
Identity Manager, you can use the predefined translation transformation provider to
implement account status reconciliation.

Note: While creating a generic technology connector, if you do not
select the Trusted Source reconciliation option, target resource
reconciliation is enabled. In target resource reconciliation, only
modifications to target system accounts are reconciled. New target
system accounts detected during reconciliation are not created
automatically in Oracle Identity Manager.

Note: In trusted source reconciliation, the reconciliation of
multivalued (child) data is not supported.

Features of Generic Technology Connectors

Understanding Generic Technology Connectors 16-7

16.3.1.3 Full and Incremental Reconciliation
While creating a generic technology connector, you can specify that you want to use
the connector for full or incremental reconciliation.

You select incremental reconciliation if the target system supports a method for the
reconciliation engine to identify records that have changed since the last reconciliation
run. For example, if the target system time stamps the creation of or changes made to
user records, the reconciliation engine can identify records that have been added or
modified since the last reconciliation run. In incremental reconciliation, only target
system records that have changed after the last reconciliation run are reconciled
(stored) into Oracle Identity Manager.

You select full reconciliation if any one of the following conditions is true:

■ The target system does not support any method for the reconciliation engine to
identify records that have changed since the last reconciliation run.

■ You want to perform first-time reconciliation of all user account records in the
target system.

In full reconciliation, all the reconciliation records are extracted from the target system.
However, the optimized reconciliation feature identifies and ignores records that have
already been reconciled in Oracle Identity Manager. This helps reduce the space
occupied by reconciliation data. If this feature were not present, the amount of data
stored in the Oracle Identity Manager database would increase rapidly with each
reconciliation run.

16.3.1.4 Batched Reconciliation
You can specify a batch size for reconciliation. By doing this, you can break into
batches the total number of records that the reconciliation engine fetches from the
target system during each reconciliation run. This feature provides more control over
the reconciliation process.

16.3.1.5 Reconciliation of Multivalued Attribute Data (Child Data) Deletion
You can specify whether or not you want to reconcile into Oracle Identity Manager the
deletion of multivalued attribute data on the target system.

Note:

User account status reconciliation can be implemented independently
of whether you select trusted source or target resource reconciliation.

The Design Console offers features for implementing account status
reconciliation, without using the translation transformation provider.
For more information, see Section 5.3.2.2, "Reconciliation Field
Mappings Tab".

Note: The outcome of both full and incremental reconciliation is the
same:

■ All the target system records are reconciled during the first
reconciliation run.

■ From the second reconciliation run onward, target system records
that are created or updated after the last reconciliation run are
reconciled into Oracle Identity Manager.

Features of Generic Technology Connectors

16-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

16.3.1.6 Failure Threshold for Stopping Reconciliation
During reconciliation, validation providers can be used to run checks on target system
data before it is stored in Oracle Identity Manager. You can set a failure threshold to
automatically stop a reconciliation run if the percentage of records that fail the
validation checks to the total number of records processed exceeds the specified
threshold percentage.

16.3.2 Other Features
The following features are not specific to the reconciliation or provisioning module:

■ Custom Data Fields and Field Mappings

■ Custom Providers

■ Multilanguage Support

■ Custom Date Formats

■ Propagation of Changes in Oracle Identity Manager User Attributes to Target
Systems

16.3.2.1 Custom Data Fields and Field Mappings
While creating a generic technology connector, you can specify the identity fields and
field mappings (data flow paths) that must be used during reconciliation and
provisioning.

16.3.2.2 Custom Providers
You can create custom providers if the predefined providers shipped with Oracle
Identity Manager do not address the transport, format change, validation, or
transformation requirements of your operating environment.

16.3.2.3 Multilanguage Support
Generic technology connectors can handle both ASCII and non-ASCII data (multibyte
characters), which represent a user, an account, or some other type of provisioned
resource object.

16.3.2.4 Custom Date Formats
While creating a generic technology connector, you can specify:

■ The format of date values in target system records that are extracted during
reconciliation

■ The format in which date values must be sent to the target system during
provisioning

Note: Generic technology connectors do not support the
reconciliation of parent data deletion. For example, if the account of
user John Doe is deleted from the target system, you cannot use a
generic technology connector to reconcile this user account deletion
into Oracle Identity Manager.

Connector Objects Created by the Generic Technology Connector Framework

Understanding Generic Technology Connectors 16-9

16.3.2.5 Propagation of Changes in Oracle Identity Manager User Attributes to
Target Systems
While creating a generic technology connector, you can enable the automatic
propagation of changes in Oracle Identity Manager User attributes to the target
system.

16.4 Connector Objects Created by the Generic Technology Connector
Framework

The list of connector objects created by the generic technology connector framework
depends on the combination of the reconciliation and provisioning options that you
select on the Step 1: Basic Information page:

■ Both Reconciliation and Provisioning Are Selected

■ Only Reconciliation Is Selected

■ Only Provisioning Is Selected

16.4.1 Both Reconciliation and Provisioning Are Selected
The following objects are created when you select both the provisioning and
reconciliation options on the Step 1: Basic Information page:

■ IT resource type

The parameters of the IT resource type are the run-time parameters of the format
and transport providers (for both reconciliation and provisioning) that you select
on the first page.

■ IT resource

The IT resource is an instance of the IT resource type. It contains the run-time
parameter values of the providers.

■ Resource object

The resource object holds the values of the fields that constitute the reconciliation
staging parent data set. For each reconciliation staging child data set, multilevel
reconciliation fields (with corresponding child fields as their attributes) are created
automatically.

■ Application instance

Note: Except for the form names, the names of the generic
technology connector objects are in the GTC_NAME_GTC format, where
GTC_NAME is the name that you assign to the connector.

For example, if you specify DBTables_conn as the name of a generic
technology connector that you create, all the connector objects (except
the forms) are named DBTables_conn_GTC.

Note: When you select the trusted source reconciliation option, a
trusted resource object is one of the objects created automatically at
the end of the connector creation process.

Connector Objects Created by the Generic Technology Connector Framework

16-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

The combination of IT resource (target connectivity and connector configuration)
and resource object (provisioning mechanism). This is a provisionable entity.

■ Parent and child forms

Parent and child forms are based on the OIM - Account data set and its child data
sets, respectively. By default, the names of the forms are the same as the names of
their corresponding data sets. On the Step 3: Verify Form Names page, you can
change the form names as required.

■ Process definition

The process definition contains the reconciliation field mappings and the
system-defined and provisioning-specific process tasks. See Section 19.2.6,
"Configuring Provisioning" for information about the process tasks that are
included in the process definition.

■ Generic adapter

The generic adapter contains the code for all the provisioning functions that a
generic technology connector performs.

■ Scheduled task

During a reconciliation run, the scheduled task triggers the reconciliation
processes in the predefined sequence. Section 19.2.5, "Configuring Reconciliation"
provides information about setting up the scheduled task.

■ Reconciliation rule

The reconciliation rule consists of rule elements. A single rule element represents a
mapping created between a field of the reconciliation staging data set and a field
of the OIM - User data set.

■ Action rules

Any one of the following default action rules are created for target resource
reconciliation:

Any one of the following default action rules are created for trusted source
reconciliation:

The user group to which the creator of the generic technology connector belongs is
made the administrator of the following connector objects that are created
automatically during the generic technology connector creation process:

■ IT resource

■ Resource object (Administrator and Object Authorizer)

Rule Condition Action

One Entity Match Found Establish Link

One Process Match Found Establish Link

Rule Condition Action

No Matches Found Create User

One Entity Match Found Establish Link

One Process Match Found Establish Link

Roadmap for Information on Generic Technology Connectors in This Guide

Understanding Generic Technology Connectors 16-11

■ All forms

■ Process definition

■ Reconciliation fields

■ Reconciliation field mappings

16.4.2 Only Reconciliation Is Selected
See "Both Reconciliation and Provisioning Are Selected" on page 16-9 for the list of
objects that are created when you select both the Reconciliation and Provisioning
options. From that list, the following objects are not created when you select only the
Reconciliation option on the Step 1: Basic Information page:

■ Generic adapter.

■ Provisioning-specific process tasks.

However, the process definition itself and its constituent system-defined process
tasks are created.

16.4.3 Only Provisioning Is Selected
See "Both Reconciliation and Provisioning Are Selected" on page 16-9 for the list of
objects that are created when you select both the Reconciliation and Provisioning
options. From that list, the following objects are not created when you select only the
Provisioning option on the Step 1: Basic Information page:

■ Scheduled task

■ Reconciliation rule

■ Reconciliation fields

■ Reconciliation field mappings

16.5 Roadmap for Information on Generic Technology Connectors in This
Guide

The following is an overview of the remaining chapters and appendixes on generic
technology connectors:

■ Chapter 17, "Predefined Providers for Generic Technology Connectors" provides a
survey of available providers, which include the shared drive reconciliation
transport provider, CSV reconciliation format provider, SPML provisioning format
provider, Web Services provisioning transport provider, transformation provider,
and validation provider.

■ Chapter 18, "Creating Custom Providers for Generic Technology Connectors"
explains the role of providers during provisioning and reconciliation, and
describes how to create custom providers.

■ Chapter 19, "Creating and Managing Generic Technology Connectors" describes
how to create and maintain Generic Technology Connectors, and how to use the
generic Connection Pool Framework in custom connectors.

■ Chapter 20, "Troubleshooting Generic Technology Connectors" describes general
and configuration issues related to Generic Technology Connectors and how to
troubleshoot the issues.

Roadmap for Information on Generic Technology Connectors in This Guide

16-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

17

Predefined Providers for Generic Technology Connectors 17-1

17 Predefined Providers for Generic Technology
Connectors

[18]

The following predefined providers are shipped Oracle Identity Manager:

■ Shared Drive Reconciliation Transport Provider

■ CSV Reconciliation Format Provider

■ SPML Provisioning Format Provider

■ Web Services Provisioning Transport Provider

■ Transformation Providers

■ Validation Providers

17.1 Shared Drive Reconciliation Transport Provider
The shared drive reconciliation transport provider reads data from flat files stored in
staging directories and moves the files to an archiving directory. The staging and
archiving directories must be shared for access from the Oracle Identity Manager
server.

The following are parameters of this provider:

■ Staging Directory (Parent identity data)

Use this parameter to specify the path of the directory in which files containing
parent data are stored. It is mandatory to specify a value for this parameter. This is
a run-time parameter.

In this guide, parent data means the user account information that is stored in the
target system.

Sample value for this parameter:

See Also: "Integration Solutions" in the Oracle Fusion Middleware
User's Guide for Oracle Identity Manager

Note: You must determine the values of parameters for providers
that you decide to use. You would need to use these values while
creating the generic technology connector by using Oracle Identity
System Administration.

Shared Drive Reconciliation Transport Provider

17-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

T:/TargetSystemDirectory/ParentData

Data stored in the parent data files must conform to the following conventions:

– First line of the file

The first line of the parent data file must be the file header that describes the
contents of the file.

The file header can be preceded by any number of lines that begin with the
hash-mark or pound-sign (#). These are ignored while the file is read.
However, you must ensure that there are no spaces at the start of the header. If
you are using a language other than English, you must not enter non-ASCII
characters on this line.

– Second line of the file

The second line of the parent data file must contain the field names (metadata)
for the data in the file.

If you are using a language other than English, you must not enter non-ASCII
characters on this line. See the Note in the preceding point for more
information about this limitation.

– Third line of the file onward

From the third line onward, the parent data file can contain data in the
language that you have selected for Oracle Identity Manager. This language
can have an ASCII or non-ASCII character set. See "Multilanguage Support"
on page 16-8 for more information about this limitation.

Even if there is no data from the third line onward, reconciliation will take
place and the files are archived.

The following are contents of a sample parent data file:

##Active Directory user
Name TD,Address TD,User ID TD
John Doe,Park Street,jodoe
Jane Doe,Mark Street,jadoe

Note: If the staging directory is not on the server on which Oracle
Identity Manager is installed, it must be shared and mapped as a
network drive on the Oracle Identity Manager server.

Note: There are no checks to stop you from entering non-ASCII
characters on the first line. In addition, the generic technology
connector framework can parse such characters. However, the use of
non-ASCII characters would result in problems at the time when the
connector objects are automatically created for the generic technology
connector that you create.

Note: In the generic technology connector context, the term
metadata refers to the set of identity fields that constitute the user
account information.

Shared Drive Reconciliation Transport Provider

Predefined Providers for Generic Technology Connectors 17-3

■ Staging Directory (Multivalued identity data)

Use this parameter to specify the path of the directory in which files containing
multivalued (or child) account or identity data (for example, role membership
data) are stored. It is not mandatory to specify a value for this parameter. This is a
run-time parameter.

Sample value for this parameter:

T:/TargetSystemDirectory/ChildData

For each type of multivalued account or identity data, there must be a different file
in the shared directory. For example, if the multivalued user data for a particular
target system is group membership data and role data, there must be one file for
group membership data and a different file for role data.

Data stored in the child data files must conform to the conventions (first line,
second line, and remaining lines) that are specified for the parent data files.

In addition, the same unique field must be present in the parent data file and each
child data file. This field is used to uniquely link each record in the child data files
with a single record in the parent data file. This structure is similar to the concept
of integrity constraints (primary key-foreign key) in RDBMSs.

The following are contents of a sample child data file holding role information that
is linked to the sample parent data file listed earlier:

###Role
User ID TD,Role Name TD,Role Type TD
jodoe,admin1,admin
jadoe,admin2,admin

See Also: "Permissions to Be Set on the Staging and Archiving
Directories"

Note: In this guide, the terms multivalued account or identity data
and child data have been used interchangeably.

Note:

■ The staging directory for parent data files cannot be the same as
the staging directory for multivalued user data files. In addition, if
the staging directory is not on the same server on which Oracle
Identity Manager is installed, it must be shared and mapped as a
network drive on the Oracle Identity Manager server.

■ If you select the Trusted Source Reconciliation option on the Step
1: Provide Basic Information page, you must not specify a value
for the Staging Directory (Multivalued Identity Data) parameter.
This is because the reconciliation of multivalued (child) data is not
supported in trusted source reconciliation.

Note: The unique field must be the first field in the child data files.

Shared Drive Reconciliation Transport Provider

17-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

The following are contents of a sample child data file holding group membership
information that is linked to the sample parent data file listed earlier:

###Group Membership
User ID TD,Group Name TD,Group Type TD
jodoe,OracleDev1,OracleDev
jadoe,OracleDev2,OracleDev
jadoe,OracleDev3,OracleDev
jadoe,OracleDev4,OracleDev
jadoe,OracleDev5,ConnectorDev

Note that the name of the unique field, User ID TD, is the same in the child data
files and the parent data file.

On the Step 3: Modify Connector Configuration page as described in "Step 3:
Modify Connector Configuration Page" on page 19-12, the name of a child data set
is the same as the header that you provide in the child data file. For these sample
child data files, the child data sets would be labeled Role and Group Membership.
In addition, on the Step 4: Verify Connector Form Names page, the default names
displayed for forms corresponding to the child data sets would be Role and Group
Membership. As mentioned in "Step 4: Verify Connector Form Names Page" on
page 19-27, you can either accept the default form names or change them.

■ Archiving Directory

Use this parameter to specify the path of the directory in which parent and child
data files that have already been reconciled are to be stored. This is a run-time
parameter.

It is mandatory to specify a value for this parameter.

At the end of the reconciliation run, the data files are copied into the archiving
directory and deleted from the staging directory.

The files moved to the archiving directory are not time stamped or marked in any
way. Therefore, while specifying the path of the archiving directory, bear in mind
the following guidelines:

– The archiving directory path that you specify must not be the same as the
staging directory path. If you specify the same path, the existing files in the
archiving directory are deleted at the end of the reconciliation run.

– If data files with the same names as the files used in the last reconciliation run
are placed in the staging directory, the existing files in the archiving directory
are overwritten by the new files from the staging directory at the end of the
current reconciliation run.

These points are also mentioned in "Step 2: Specify Parameter Values Page" on
page 19-5.

■ File Prefix

Use this parameter to specify the prefix used to filter the names of files in the
staging directories for both parent and child data files. During reconciliation, all

See Also: "Permissions to Be Set on the Staging and Archiving
Directories"

See Also: "Permissions to Be Set on the Staging and Archiving
Directories"

Shared Drive Reconciliation Transport Provider

Predefined Providers for Generic Technology Connectors 17-5

files (in the staging directories) with names that start with the specified prefix are
processed, regardless of the file extension. This is a run-time parameter.

For example:

If you specify usrdata as the value of the File Prefix parameter, data is parsed
from the following files placed in the staging directory for multivalued (child) user
data files:

usrdataRoleData.csv
usrdataGroupMembershipData.txt

Data is not extracted from the following files in the same directory, because the file
names do not begin with usrdata:

RoleData.csv
GroupMembershipData.txt

■ Specified Delimiter

Use this parameter to specify the character that is used as the delimiter character
in the parent and child data files. You can specify only a single character as the
value of this parameter. This is a run-time parameter. This parameter overrides the
Tab Delimiter parameter.

■ Tab Delimiter

Use this parameter to specify whether or not the file is delimited by tabs. This is a
run-time parameter. This parameter is ignored if you specify a value for the
Specified Delimiter parameter.

■ Fixed Column Width

If the input file contains fixed-width data, use this parameter to specify the width
in characters of the data columns. This is a run-time parameter.

This parameter is ignored if you specify a value for the Specified Delimiter or Tab
Delimiter parameter.

■ Unique Attribute (Parent Data)

For multivalued user data, use this parameter to specify the field that is common
to both the parent data and child data files. In the examples described earlier, the
requirement for a unique attribute is fulfilled by the User ID TD field, which is
present in both the parent and child data files. This is a run-time parameter.

Note: You cannot use the space character () as a delimiter.

In addition, you must ensure that the character you specify is used
only as the delimiter in the data files. If this character is also used
inside the data itself, the data row (or record) is not parsed correctly.
For example, you must not use the comma (,) as the delimiter if any
data value contains a comma.

Note: In this context, the term "fixed-width" refers to the number of
characters in the data field, not the byte length of the field. This means
that, for example, four characters of single-byte data and four
characters of multibyte data are the same in terms of width.

Shared Drive Reconciliation Transport Provider

17-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ File Encoding

Use this parameter to specify the character set encoding used in the parent and
data files. This is a design parameter.

Specify Cp1251 for data files stored on a computer running an operating system
with the English-language setting. This is the canonical name for the java.io API
that is supported by the generic technology connector framework. For any other
language that you select from the list given in the "Multilanguage Support"
section, you must specify the canonical name for the corresponding java.io API
listed on the following Web page:

http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html

For example, if you want to specify the encoding set for the Traditional Chinese
language on a Microsoft Windows computer, you specify MS950 as the value of the
File Encoding parameter.

Permissions to Be Set on the Staging and Archiving Directories
You must ensure that the required permissions are set on the staging and archiving
directories. The following table describes the effect of the various permissions on the
shared directories that are used to hold staging and archiving data files.

Note: If you select the Trusted Source Reconciliation option on the
Step 1: Provide Basic Information page, you must not specify a value
for the Unique Attribute (Parent Data) parameter. This is because the
reconciliation of multivalued (child) data is not supported in trusted
source reconciliation.

Note: The canonical name that you specify for the API must be
entered exactly the way it is displayed on this Web page. You must not
change the case (uppercase or lowercase) of the canonical name.

Storage Entity
Access
Permission Reason for Access Permission Requirement

Staging directory for
parent data files

Read This permission is required for reconciliation to take place. An
error message is logged if this permission is not applied.

Staging directory for
parent data files

Write This permission is required for the deletion of data files from the
parent staging directory at the end of the archive process.

Staging directory for
parent data files

Execute Not applicable

Staging directory for
child data files

Read This permission is required for the reconciliation of child data.
An error message is logged if this permission is not applied.

Staging directory for
child data files

Write This permission is required for the deletion of data files from the
child staging directory at the end of the archive process.

Staging directory for
child data files

Execute Not applicable

SPML Provisioning Format Provider

Predefined Providers for Generic Technology Connectors 17-7

17.2 CSV Reconciliation Format Provider
The CSV reconciliation format provider converts reconciliation data that is in
character-delimited, tab-delimited, or fixed-length format into a format that is
supported by Oracle Identity Manager.

Although the CSV reconciliation format provider is packaged as a standalone
provider, all of its parameters are bundled with the shared drive transport provider. If
you select the shared drive transport provider on the Step 1: Provide Basic Information
page, you must select the CSV format provider. When you select this provider, its
parameters are displayed along with the shared drive transport provider parameters.

17.3 SPML Provisioning Format Provider
The SPML provisioning format provider converts the provisioning data generated
during a provisioning operation on Oracle Identity Manager into an SPML request
that can be processed by an SPML-compatible target system.

Archiving directory Write This permission is required for the copying of parent and child
data files to the archiving directory during the archive process.
Even if this permission is not applied:

■ Parent and child data reconciliation takes place.

■ Files are deleted from the parent and child staging
directories if the required permissions have been set on those
directories.

Archiving directory Execute Not applicable

Parent or child data file
in staging directory

Read This permission is required for the reconciliation of the data in
the file. An error message is logged if this permission is not
applied.

Parent or child data file
in staging directory

Write This permission is required for the deletion of the data file at the
end of the archive process. An error message is logged if this
permission is not applied. However, data in this file is reconciled.

Parent or child data file
in staging directory

Execute Not applicable

Note: Data files in the staging directory cannot be deleted if they are
open in any editor or are open for writing by any other program.

Storage Entity
Access
Permission Reason for Access Permission Requirement

SPML Provisioning Format Provider

17-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 17–1 shows the setup of the system in which the SPML provisioning format
provider acts as the requesting authority (RA), and the target system provides the
provisioning service provider (PSP) and the provisioning service target (PST).

Figure 17–1 Communication Between the SPML Provisioning Format Provider and the
Target System

During actual provisioning, a Velocity template engine is used to create the
SOAP-SPML requests. For the following processes, the provider generates SOAP
requests based on the SPML 2.0 DSML profile:

■ Add request

■ Modify request for the following Oracle Identity Manager process tasks:

– Field updated

– Add child data

– Modify child data

– Delete child data

■ Suspend request (for Disable Oracle Identity Manager process tasks)

■ Resume request (for Enable Oracle Identity Manager process tasks)

■ Delete request

The Create Organization, Update Organization, and Delete Organization are not
supported. This is because the resource object created for a generic technology
connector does not support provisioning operations for organizations. The Create
Group, Update Group, and Delete Group operations are not supported. This is
because Oracle Identity Manager does not support operations to provision groups.

When you select this provider, the following identity fields are displayed by default on
the Step 3: Modify Connector Configuration page as described in "Step 3: Modify

Note: Each SPML request is sent in a SOAP message. The SOAP
header carries authentication information for the request. The actual
SPML request data is the SOAP message body.

See Chapter 32, "Using SPML Services" for information about the
structure of the SPML-SOAP message.

You can access sample SOAP messages in the following directory:

OIM_HOME/GTC/Samples/spml

For information about the SPML specification, see the following Web
page on the OASIS Web site at

http://www.oasis-open.org/specs/index.php#spmlv2.0

SPML Provisioning Format Provider

Predefined Providers for Generic Technology Connectors 17-9

Connector Configuration Page" on page 19-12, along with the ID field:

■ objectClass

■ containerID

For each provisioning task (for example, Create User and Modify User), the provider
generates a request in a predefined format.

The following sections discuss the parameters of this provider:

■ Run-Time Parameters

■ Design Parameters

Depending on the application server that you use, some of the run-time and design
parameters are mandatory and some have fixed values. The following sections discuss
these parameters:

■ Nonmandatory Parameters

■ Parameters with Predetermined Values

17.3.1 Run-Time Parameters
The following are run-time parameters of the SPML provisioning format provider:

■ Target ID

This value uniquely identifies the target system for provisioning operations.

■ User Name (authentication)

This is the user name of the account required to connect to the target system (PST)
through the Web service interface (PSP).

■ User Password (authentication)

This is the password of the user account required to connect to the target system
(PST) through the Web service interface (PSP).

17.3.2 Design Parameters
The following are design parameters of the SPML provisioning format provider:

■ Web Service SOAP Action

In the WSDL file, this is the value of the soapAction attribute of the operation
element.

■ WSSE Configured for SPML Web Service?

Select this check box if the Web service is configured to authenticate incoming
requests by using WS-Security credentials.

■ Custom Authentication Credentials Namespace

See Also: For more information about the SOAP elements and
attributes mentioned in this section, visit the following Web site

http://www.w3.org/TR/wsdl20/

Note: You need not specify a value for this parameter if you select
the SPML Web Service WSSE Configured? check box.

SPML Provisioning Format Provider

17-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

This is the name of the credentials namespace that you have defined for the Web
service. In most cases, this namespace is the same as the target namespace.

■ Custom Authentication Header Element

This is the name of the element that will contain the credentials of the user account
used to connect to the target system. In other words, this is the parent element in
the custom authentication section of the SOAP message header.

■ Custom Element to Store User Name

This is the name of the element in the custom authentication section that will
contain the user name you specify as the value of the User Name (authentication)
parameter.

■ Custom Element to Store Password

This is the name of the element in the custom authentication section that will
contain the user name you specify as the value of the User Password
(authentication) parameter.

■ SPML Web Service Binding Style (DOCUMENT or RPC)

In the WSDL file, this is the value of the style attribute of the binding element.
You must enter either DOCUMENT or RPC.

■ SPML Web Service Complex Data Type

In the WSDL file, this is the value of the name attribute of the complexType element.
This parameter is applicable only if the binding style is DOCUMENT. You must
specify a value for this parameter if the target Web service is running on Oracle
WebLogic Server.

■ SPML Web Service Operation Name

In the WSDL file, this is the value of the name attribute of the operation element.
This parameter is applicable only if the binding style is RPC.

■ SPML Web Service Target Namespace

In the WSDL file, this is the value of the targetNamespace attribute of the
definition element.

■ SPML Web Service Soap Message Body Prefix

Note: You need not specify a value for this parameter if you select
the SPML Web Service WSSE Configured? check box.

Note: You need not specify a value for this parameter if you select
the SPML Web Service WSSE Configured? check box.

Note: You need not specify a value for this parameter if you select
the SPML Web Service WSSE Configured? check box.

Note: You must enter the value DOCUMENT or RPC. Do not use
lowercase letters in the value that you specify.

SPML Provisioning Format Provider

Predefined Providers for Generic Technology Connectors 17-11

This is the name of the custom prefix element that contains the SOAP message
body. If the target Web service is running on Oracle WebLogic Server, IBM
WebSphere Application Server, JBoss Application Server, or Oracle Application
Server, then you need not specify a value for this parameter. However, if you are
using a different application server, you must enter the name of the custom prefix
element. The following is the prefix element if the Web service is running on
Oracle WebLogic Server:

<SPMLv2Document xmlns="http://xmlns.oracle.com/OIM/provisioning">

■ ID Attribute for Child Dataset Holding Group Membership Information

This is the name of the unique identifier field for a provisioning staging child data
set that holds group membership information. For provisioning operations on the
child data set that contains this field, the SOAP packet will contain SPML code for
group operations. The following is an SPML code block for this type of group
operation:

<modification modificationMode="add">
 <capabilityData capabilityURI="urn:oasis:names:tc:SPML:2:0:reference"
mustUnderstand="true">
 <reference typeOfReference="memberOf"
xmlns="urn:oasis:names:tc:SPML:2:0:reference">
 <toPsoID ID="Groups:1" targeted="120"/>
</reference>
 </capabilityData>
</modification>

For provisioning operations on the child data sets that do not contain this field, the
SOAP packet will contain ordinary SPML code. The following is an SPML code
block for this type of group operation:

<modification>
 <dsml:modification name="Group Membership" operation="add">
 <dsml:value>AdminOra, System Admins, USA</dsml:value>
 </dsml:modification>
</modification>

17.3.3 Nonmandatory Parameters
For Oracle WebLogic Server, you need not specify values for the following parameters:

■ SPML Web Service Complex Data Type

■ SPML Web Service Soap Message Body Prefix

■ ID Attribute for Child Dataset Holding Group Membership Information

17.3.4 Parameters with Predetermined Values
For Oracle WebLogic Server, you can specify predetermined values for the following
parameters:

■ Web Service URL: http://IP_address:port_number/spmlws/OIMProvisioning

■ SPML Web Service Binding style (DOCUMENT or RPC): RPC

■ SPML Web Service Operation Name: processRequest

Web Services Provisioning Transport Provider

17-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

17.4 Web Services Provisioning Transport Provider
The Web Services provisioning transport provider acts as a Web service client and
carries provisioning request data from Oracle Identity Manager to the target system
Web service.

The following types of target system Web services are supported:

■ RPC-literal

■ RPC-encoded

■ DOCUMENT-literal

The following is the parameter of the Web Services provisioning transport provider:

Web Service URL

Use this parameter to specify the URL of the Web service that you want to use for
sending a provisioning request to the target system. This is a run-time parameter. In
the WSDL file, the Web service URL is the value of the location attribute of the
wsdlsoap:address element.

If you include the Web Services provisioning transport provider in the generic
technology connector that you create, you may want to configure Secure Sockets Layer
(SSL) communication between the target system and Oracle Identity Manager. The
following section provides information about this procedure.

17.4.1 Configuring SSL Communication Between Oracle Identity Manager and the
Target System Web Service

This section describes the procedure to configure the application server on which
Oracle Identity Manager is installed for SSL communication.

You can perform this procedure only if all the following conditions are true:

■ You want to include the Web Services provisioning transport provider in the
generic technology connector that you plan to create.

■ The target Web service is running on an SSL-enabled application server.

To configure SSL communication between Oracle Identity Manager and the target
system Web service:

1. Export the target application server certificate as follows:

■ For a target system Web service deployed on JBoss Application Server, Oracle
WebLogic Server, or Oracle WebLogic Server, run the following command:

JAVA_HOME/jre/bin/keytool -export -alias default -file
exported-certificate-file -keystore app-server-specific-keystore
-storetype jks –storepass keystore-password –provider
sun.security.provider.Sun

In this command:

* Replace JAVA_HOME with the full path to the SUN JDK directory.

Note: You can perform this procedure prior to creating the generic
technology connector.

Web Services Provisioning Transport Provider

Predefined Providers for Generic Technology Connectors 17-13

* Replace exported-certificate-file with the name of the file in which
you want the exported certificate to be stored.

* Replace app-server-specific-keystore with the path to the keystore on
the application server.

* Replace keystore-password with the password for the keystore.

■ For a target system Web service deployed on IBM WebSphere Application
Server or Oracle WebLogic Server on AIX, run the following command:

JAVA_HOME/jre/bin/keytool -export -alias default -file
exported-certificate-file -keystore app-server-specific-keystore -storetype
jks –storepass keystore-password -provider com.ibm.crypto.provider.IBMJCE

In this command:

* Replace JAVA_HOME with the full path to the IBM JDK directory.

* Replace exported-certificate-file with the name of the file in which
you want the exported certificate to be stored.

* Replace app-server-specific-keystore with path to the keystore on the
application server.

* Replace keystore-password with the password for the keystore.

When the command is run, the exported certificate file is stored in the file that
you specify as the value of exported-certificate-file.

2. Import the certificate file exported in the preceding step into the Oracle Identity
Manager truststore as follows:

a. Copy the certificate file exported in the preceding step into a temporary
directory on the Oracle Identity Manager server.

b. Run the following command:

JAVA_HOME/jre/bin/keytool -import -trustcacerts -alias servercert -noprompt
-keystore OIM_HOME\config\.xlkeystore -file certificate_file

In this command:

– Replace JAVA_HOME with full path to the JDK directory. For Oracle Identity
Management Server deployed on IBM WebSphere Application Server, the
path must be that of the IBM JDK directory. For Oracle Identity Manager
deployed on JBoss Application Server, Oracle WebLogic Server, or Oracle
WebLogic Server, the path must be that of the SUN JDK directory.

– Replace OIM_HOME with the full path of the Oracle Identity Manager home
directory

– Replace certificate_file with the path of the temporary directory into
which you copy the certificate file.

3. Import the Oracle Identity Manager certificate into the target system application
server truststore as follows:

Note: If the application server is enabled for one-way SSL
communication, you need not perform the rest of this procedure.

Web Services Provisioning Transport Provider

17-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

a. Export the Oracle Identity Manager certificate file.

For Oracle Identity Manager deployed on Oracle WebLogic Server, run the
following command:

JAVA_HOME/jre/bin/keytool -export -alias xell -file
OIM_HOME\config\xell.cert -keystore OIM_HOME\config\.xlkeystore -storetype
jks –provider sun.security.provider.Sun

In this command:

- Replace JAVA_HOME with the full path to the SUN JDK directory.

- Replace OIM_HOME with the full path of the Oracle Identity Manager home
directory.

b. Import the certificate file that you export in Step 3a into the truststore of the
application server as follows:

Copy the exported Oracle Identity Manager certificate file to a temporary
directory on the target application server.

Next, run the following command on the target application server:

– If the target application server is JBoss Application Server, Oracle
WebLogic Server, or Oracle WebLogic Server, run the following command:

JAVA_HOME/jre/bin/keytool –import –alias alias -trustcacerts -file
OIM-certificate-file -keystore app-server-specific-truststore
-storetype jks –storepass truststore-password –provider
sun.security.provider.Sun

In this command:

* Replace JAVA_HOME with the full path to the SUN JDK directory.

* Replace alias with an alias for the certificate in the truststore of the tar-
get application server.

* Replace OIM-certificate-file with the name of the exported Oracle
Identity Manager certificate file.

* Replace app-server-specific-truststore with path to the truststore on
the target application server.

* Replace truststore-password with the password for the truststore on
the target application server.

– If the target application server is IBM WebSphere Application Server, run
the following command:

JAVA_HOME/jre/bin/keytool -import -alias alias -trustcacerts -file
OIM-certificate-file -keystore app-server-specific-truststore
-storetype pkcs12 –storepass truststore-password -provider
com.ibm.crypto.provider.IBMJCE

In this command:

* Replace JAVA_HOME with the full path to the SUN JDK directory.

* Replace alias with an alias for the certificate in the target truststore.

Note: Perform the following steps only if the application server is
enabled for two-way SSL communication.

Transformation Providers

Predefined Providers for Generic Technology Connectors 17-15

* Replace OIM-certificate-file with the name of the exported
Oracle Identity Manager certificate file.

* Replace app-server-specific-truststore with the path to the trust-
store on the target application server.

* Replace truststore-password with the password for the truststore on
the target application server.

17.5 Transformation Providers

A transformation provider is used to transform user data while it is in transit between
the source and destination data sets listed in the following table.

The following predefined transformation providers are available in Oracle Identity
Manager:

■ Concatenation Transformation Provider

■ Translation Transformation Provider

17.5.1 Concatenation Transformation Provider
You use the concatenation transformation provider to concatenate the values of two
fields of data sets to create the input for a single field of another data set.

The following example explains the output format of this provider:

Suppose the input values are the following fields of the source data set:

■ First Name: John

■ Last Name: Doe

When the concatenation transformation provider is applied to these two fields, the
output value is as follows:

John Doe

See Also: SSL configuration documentation for the target
application server

Note: Use the information provided in this section while performing
the instructions given in Section 19.2.4.3, "Step 3: Modify Connector
Configuration Page" .

Source Data Set Destination Data Set Purpose of the Transformation

Source Reconciliation Staging Data is transformed before it is used to
create reconciliation events.

Oracle Identity
Manager

Provisioning Staging Data is transformed before it is used to
create the provisioning request to be sent to
the target system.

Note: As shown in the preceding example, the concatenation
transformation provider adds a space between the values of the two
input fields.

Transformation Providers

17-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

The following procedure describes how to add a concatenation transformation
provider while creating a generic technology connector:

On the Step 2: Mapping page in the pop-up window, perform the following steps:

1. From the Dataset list in the Input 1 region, select the data set containing the first
field that you want to concatenate. From the Field Name list, select the first field.
Alternatively, you can use the Literal option to specify a literal (or fixed) value as
the first concatenation input.

For the example described earlier, from the Dataset list in the Input 1 region, select
the data set containing the First Name field. Then, from the Field Name list, select
First Name.

2. From the Dataset list in the Input 2 region, select the data set containing the
second field that you want to concatenate. Then, from the Field Name list, select
the second field. Alternatively, you can use the Literal option to specify a literal (or
fixed) value as the second concatenation input.

For the example described earlier, from the Dataset list in the Input 2 region, select
the data set containing the Last Name field. Then, from the Field Name list, select
Last Name.

17.5.2 Translation Transformation Provider
A translation operation involves accepting a certain (literal) value as input and
converting it into another value.

The following example illustrates a translation operation:

Suppose the Source data set contains the Country field and data values stored in this
field can take one of the following values:

■ Austria

■ France

■ Germany

■ India

■ Japan

When these values are propagated to the reconciliation staging data set, you want to
convert these values to the following:

■ AT

■ FR

■ DE

■ IN

■ JP

To automate this translation, you can use the translation transformation provider.

Note: This procedure explains in detail the instruction given in Step
5 of Section 19.2.4.3.1, "Adding or Editing Fields in Data Sets" . It is
assumed that you have already selected the Concatenation option
from the Mapping Action list on the Step 1: Field Information page
and that you have performed Steps 2 and 3 given in that section.

Transformation Providers

Predefined Providers for Generic Technology Connectors 17-17

To use the translation transformation provider:

1. Use the Design Console to create a lookup definition that stores the input and
decoded values.

For the Country field example described earlier, the Code Key and Decode values
are as shown in the following table.

2. Define a transformation (translation) mapping between the input field and output
field for the translation. As mentioned earlier, a transformation can be set up
between the following pairs of data sets:

■ Source and Reconciliation Staging

■ Oracle Identity Manager and Provisioning Staging

a. On the Step 3: Mapping page, from the Dataset list in the Input region, select
the data set containing the field that will provide the input value for the
translation operation. Then, from the Field Name list, select the field itself.

For the Country field example described earlier, select the data set containing
the Country field and select the Country field.

b. In the Lookup Code Name region, select Literal and enter the name of the
lookup definition that you create in the preceding step.

See Also: Section 7.2.1, "Creating a Lookup Definition"

Note: While creating a lookup definition in the Lookup Definition
form, you must select the Lookup Type option, and not the Field Type
option.

Code Key Decode

Austria AT

France FR

Germany DE

India IN

Japan JP

Note: This procedure explains in detail the instruction given in Step
5 of Section 19.2.4.3.1, "Adding or Editing Fields in Data Sets". It is
assumed that you have already selected the Concatenation option
from the Mapping Action list on the Step 1: Field Information page
and that you have performed Steps 2 and 3 given in that section.

Note: You must not specify a data set name and field in the Lookup
Code Name region. Although there is no validation to stop you from
selecting a data set name and field, the translation operation would
fail during actual reconciliation or provisioning operations.

This point is also mentioned in the Mappings section .

Transformation Providers

17-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

For the Country field example described earlier, select Literal and select the
lookup definition you create in Step 1.

17.5.2.1 Configuring Account Status Reconciliation
User account status information is used to track whether or not the owner of a target
system account is to be allowed to access and use the account. If required, you can use
the translation transformation provider to reconcile account status information.

You need to use the translation transformation provider only if account status values
used in the target system are not the same as the values used in Oracle Identity
Manager. For a target resource, Oracle Identity Manager uses the following values:

■ Enabled state: Enabled

■ Disabled state: Disabled

For a trusted source, Oracle Identity Manager uses the following values:

■ Enabled state: Active

■ Disabled state: Disabled

The procedure to configure account status reconciliation can be summarized as
follows:

1. Create a lookup definition that maps the status values used in the target system
with the values used in Oracle Identity Manager.

2. While creating the generic technology connector, use the translation
transformation provider to create a transformation mapping between the fields
that hold account status values in the Source data set and the reconciliation
staging data set.

The following example describes the action that you must perform:

Suppose the following fields are used to hold account status values:

■ The User Status field of the Source data set holds the values True (for a user in
the Enabled state) and False (for a user in the Disabled state).

■ The User Status field of the reconciliation staging data set must hold one of the
following pairs of values:

– For target resource reconciliation, the field must hold Enabled or
Disabled.

– For trusted source reconciliation, the field must hold Active or Disabled.

You must create a transformation mapping that converts the True/False values in
the User Status field of the Source data set into corresponding Enabled/Disabled

Note: The Design Console offers an alternative method to configure
account status reconciliation. This method does not involve the use of
a generic technology connector. Section 5.3.2.2.1, "User Account Status
Reconciliation" describes this method.

Note: Detailed instructions to perform these steps are provided later
in this section.

Transformation Providers

Predefined Providers for Generic Technology Connectors 17-19

or Active/Disabled values. During reconciliation, these converted values are sent
to the User Status field of the reconciliation staging data set.

3. Create a mapping between the field that holds account status values in the
reconciliation staging data set and one of the following fields:

■ The OIM Object Status field of the OIM – Account data set, for target resource
reconciliation

■ The Status field of the OIM – User data set, for trusted source reconciliation

During reconciliation, this mapping is used to propagate status values from the
reconciliation staging data set to the OIM – Account or OIM – User data set.

Detailed steps to configure account status reconciliation are as follows:

1. Create a lookup definition that maps the status values used in the target system
with the values used in Oracle Identity Manager.

The Code Key values in the lookup definition must be the same as the values used
to represent the account status in the target system. The Code Key and Decode
values for both trusted and target resource reconciliation are as shown in the
following table:

Examples of Code Key values are True/False, Yes/No, and 1/0. The Decode
values must be set to the exact value, including the case (uppercase and
lowercase), shown in the table.

2. The procedure to create the generic technology connector is described in
Chapter 19, "Creating and Managing Generic Technology Connectors". While
creating the generic technology connector, perform the following steps on the Step
3: Modify Connector Configuration page:

See Also: Section 7.2, "Lookup Definition Form"

Code Key
Decode (for Trusted
Source Reconciliation)

Decode (for Target Resource
Reconciliation)

Target system status value for a
user account that is in the
Enabled state

Active Enabled

Target system status value for a
user account that is in the
Disabled state

Disabled Disabled

Note: While creating the lookup definition in the Lookup Definition
form, you must select the Lookup Type option, and not the Field Type
option.

Note: These steps are a condensed version of the procedure
described in Section 19.2.4.3.1, "Adding or Editing Fields in Data Sets".
Refer to that section for a description of the terms and GUI elements
mentioned in the following steps.

Transformation Providers

17-20 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

a. If the target system status field is displayed on the Step 3: Modify Connector
Configuration page, click the Edit icon for the field in the reconciliation
staging data set.

If the field is not displayed, click the Add icon of the reconciliation staging
data set.

b. On the Step 1: Field Information page, specify values for the following GUI
elements:

– Field Name: If you are adding the field, specify a name for it. The field
name that you specify must contain only ASCII characters, because
non-ASCII characters are not allowed.

– Mapping Action: Select Create Mapping With Translation from this list.

– Matching Only: Ensure that this check box is deselected.

– Create End-to-End Mapping: If you are adding the field, select this check
box.

– Multi-Valued Field: Ensure that this check box is deselected.

– Data Type: Select the data type of the field.

– Length: Specify the character length of the field.

– Required: Select this check box if you want to ensure that the field always
contains a value.

– Encrypted: Ensure that this check box is deselected.

– Password Field: Ensure that this check box is deselected.

c. Click Continue.

d. On the Step 3: Provide Mapping Information page, perform the following
steps:

In the Input region:

– From the Dataset list, select Source.

– From the Field Name list, select the field that stores status values.

In the Lookup Code Name region, select Literal and enter the name of the
lookup definition that you create in Step 1.

e. If required, select a validation check for the field and click Add. In other
words, select the validation provider that you want to use.

f. Click Continue, and click Close.

3. Create a mapping between the status field of the reconciliation staging data set
and either the OIM Object Status field of the OIM - Account data set or the Status
field of the OIM - User data set as follows:

a. For target resource reconciliation, click the edit icon for the OIM Object Status
field of the OIM - Account data set.

For target resource reconciliation, click the edit icon for the Status field of the
OIM - User data set.

Note: These steps are a condensed version of the procedure
described in Section 19.2.4.3.1, "Adding or Editing Fields in Data Sets".

Validation Providers

Predefined Providers for Generic Technology Connectors 17-21

b. On the Step 1: Field Information page, specify values for the following GUI
elements:

– Mapping Action: Select Create Mapping Without Transformation from
this list.

– Matching Only: Ensure that this check box is deselected.

c. Click Continue.

d. In the Input region on the Step 3: Mapping page, select the status field of the
reconciliation staging data set.

e. Click Continue, Continue, and click Close.

f. To add or edit other fields displayed on the Step 3: Modify Connector
Configuration page, continue with the procedure described in
Section 19.2.4.3.1, "Adding or Editing Fields in Data Sets".

17.6 Validation Providers
Table 17–1 describes the validation providers that are shipped with Oracle Identity
Manager.

Note: If a mapping already exists between the status field of the
reconciliation staging data set and the OIM Object Status field or
Status field, apply the instructions given in this step only where
required.

Note: Except for the Validate Date Format provider, all the providers
in this table are implementations of methods of the GenericValidator
class in the Apache Jakarta Commons API.

Table 17–1 Validation Providers

Validation Provider Description

IsBlankOrNull Returns true if the field value is null and is not blank

IsInRange Returns true if the field value is within a range specified by a
minimum and maximum value pair

IsByte Checks if the field value can be converted to a byte primitive

IsDouble Checks if the field value can be converted to a double primitive

IsFloat Checks if the field value can be converted to a float primitive

IsInteger Checks if the field value can be converted to an integer primitive

IsLong Checks if the field value can be converted to a long primitive

IsShort Checks if the field value can be converted to a short primitive

MatchRegexp Checks if the field value matches the specified regular expression

Note: A regular expression is a string that is used to describe or
match a set of strings according to specific syntax rules.

MaxLength Checks if the length of the field value is less than or equal to the
specified value

Validation Providers

17-22 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

MinLength Checks if the length of the field value is greater than or equal to
the specified value

Validate Date Format Validates date values in target system records before these records
are reconciled into Oracle Identity Manager

The value of the Source Date Format parameter is used as the basis
for validation. This validation provider is applied if you specify a
value for the Source Date Format parameter on the Step 2: Specify
Parameter Values page, regardless of whether or not you select
this provider on the Step 3: Modify Connector Configuration page.

Note: Unlike the other providers in this table, the Validate Date
Format is not an implementation of a method of the
GenericValidator class in the Apache Jakarta Commons API.

Table 17–1 (Cont.) Validation Providers

Validation Provider Description

18

Creating Custom Providers for Generic Technology Connectors 18-1

18 Creating Custom Providers for Generic
Technology Connectors

[19]

You will need to create custom providers to address provider requirements that cannot
be addressed by the predefined providers. This chapter discusses the steps to create
custom providers.

Topics in this chapter include:

■ Role of Providers

■ Creating Custom Providers

■ Reusing Providers

■ Deploying the Custom Providers

18.1 Role of Providers
The following sections discuss the role of providers during generic technology
connector creation and use:

■ Role of Providers During Generic Technology Connector Creation

■ Role of Providers During Reconciliation

■ Role of Providers During Provisioning

18.1.1 Role of Providers During Generic Technology Connector Creation
You create a generic technology connector by using the Identity System
Administration. Defining data sets and the flow of data between these data sets is one
of the tasks of the connector creation procedure. The metadata detection process
facilitates this task.

In the generic technology connector context, the term metadata refers to the set of
identity fields that constitute the user account information. The term metadata
detection refers to the reading and parsing of target system metadata by the providers.

The metadata detection feature is supported for all the provider types. In other words,
when you create a custom provider, you can incorporate into the provider the
capability to read metadata.

Note: The Javadocs use the term metadata definition instead of
metadata detection.

Role of Providers

18-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 18–1 shows the metadata detection process.

Figure 18–1 Metadata Detection Process

The following sequence of steps describe the process of metadata detection. This
sequence of steps is based on the assumption that you select both the Reconciliation
and Provisioning options while creating the generic technology connector. If you do
not select either option, the corresponding steps are not performed.

1. The initialize method of the reconciliation transport provider is called to create
an instance of that provider.

2. The initialize method of the reconciliation format provider is called to create an
instance of that provider.

See Also: Oracle Fusion Middleware Java API Reference for Oracle
Identity Manager for detailed information about the SPI methods and
value objects mentioned in the following steps.

In the Javadocs, the terms metadata detection and metadata
definition have been used interchangeably.

Role of Providers

Creating Custom Providers for Generic Technology Connectors 18-3

3. The getMetadata method of the reconciliation transport provider is called to fetch
metadata from the target system. The output of this method is the TargetSchema
value object containing metadata fetched from the target system.

4. The parseMetadata method of the reconciliation format provider is called to parse
metadata fetched from the target system. The output of this method is the
OIMSchema value object containing metadata fetched from the target system.

5. The initialize method of the provisioning transport provider is called to create
an instance of that provider.

6. The initialize method of the provisioning format provider is called to create an
instance of that provider.

7. If the reconciliation transport provider and reconciliation format provider are not
able to detect metadata, Steps 1 through 4 are repeated for the provisioning
transport provider and provisioning format provider.

The shared drive reconciliation transport provider and CSV reconciliation format
provider can detect metadata from the target system. However, this function is not
supported for the Web Services provisioning transport provider and SPML
provisioning format provider.

18.1.2 Role of Providers During Reconciliation
Figure 18–2 shows the role of providers during reconciliation.

Note: The OIMSchema value object corresponds to the Source data sets
discussed in Section 16.2.1, "Providers and Data Sets of the
Reconciliation Module" .

Note: After a provider is initialized, it is stored in the Oracle Identity
Manager cache until any one of the following events occurs:

■ Cache is purged.

■ Oracle Identity Manager is restarted.

■ The generic technology connector is modified after it is created.

The validation providers and transformation providers are
instantiated only when they are needed. They are not stored in cache.

Role of Providers

18-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 18–2 Role of Providers During Reconciliation

The following steps describe the role of providers during reconciliation:

1. If an instance of the reconciliation transport provider is not available in cache, the
initialize method is called to create an instance of that provider.

2. If an instance of the reconciliation format provider is not available in cache, the
initialize method is called to create an instance of that provider.

3. While using the Identity System Administration to create a generic technology
connector, you can specify a batch size for the reconciliation run. By using this
parameter, you break the total number of records that the reconciliation engine
fetches from the target system, during each reconciliation run, into batches. The
default value of this parameter is All.

Role of Providers

Creating Custom Providers for Generic Technology Connectors 18-5

If you do not specify a batch size, at this stage of reconciliation, the getFirstPage
method of the reconciliation transport provider is called to fetch the entire set of
target system records that are ready for reconciliation.

If you specify a batch size, the getFirstPage method of the reconciliation
transport provider is called to fetch the first batch of target system records for
reconciliation. The getNextPage method of the same provider is called (multiple
times, if required) if there are more batches of target system records for
reconciliation.

4. The parseRecords method of the reconciliation format provider is called to
process each record of the TargetRecord value objects array. The output of this
method is an array of OIMRecord value objects.

5. While creating the generic technology connector, if you select validation providers
to validate data while it is in transit from the Source data sets to the reconciliation
staging data sets:

a. An instance of the validation provider is created.

b. The validate method of each validation provider is run on the specified
attribute of each record of the OIMRecord value objects array.

If you do not select validation providers while creating the generic technology
connector, Step 5 is not performed and each element of the OIMRecord value
objects array is passed on to Step 6.

6. While creating the generic technology connector, if you selected transformation
providers to modify data that is in transit from the Source data sets to the
reconciliation staging data sets:

a. An instance of the transformation provider is created.

b. The transformData method of the transformation providers processes the
OIMRecord value objects array that was generated as the output of one of the
following:

– The validate method of each validation provider (if you selected
validation providers)

– The parseRecords method of the reconciliation format provider (if you
did not select validation providers)

If you do not select transformation providers while creating the generic
technology connector, Step 6 is not performed and each element of the OIMRecord
value objects array from the previous step (Step 4 or 5) is passed on to Step 7.

7. At this stage, the OIMRecord value objects array corresponds to the reconciliation
staging data sets discussed in Section 16.2.1, "Providers and Data Sets of the
Reconciliation Module" . Each element of the OIMRecord value objects array is
passed on to the reconciliation engine.

8. At the end of the reconciliation procedure, the end method of the reconciliation
transport provider is called. This method returns a string value, which the generic
technology connector framework stores in the Timestamp parameter of the IT
resource. The framework uses the Timestamp parameter to track the stage at which
the reconciliation run was completed.

18.1.3 Role of Providers During Provisioning
Figure 18–3 shows the role of providers during provisioning.

Role of Providers

18-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 18–3 Role of Providers During Provisioning

The following steps describe the role of providers during provisioning:

1. If an instance of the provisioning transport provider is not available in cache, the
initialize method is called to create an instance of that provider.

2. If an instance of the provisioning format provider is not available in cache, the
initialize method is called to create an instance of that provider.

3. The generic technology connector adapter is one of the connector objects created
when you create the generic technology connector. This adapter converts the
provisioning data record into a hashmap of name-value pairs. This hashmap
contains process instance data. Each hashmap is converted into an element of the
OIMRecord value object. At this stage, the OIMRecord value object corresponds to
the Oracle Identity Manager data sets discussed in Section 16.2.3, "Oracle Identity
Manager Data Sets".

Creating Custom Providers

Creating Custom Providers for Generic Technology Connectors 18-7

4. While creating the generic technology connector, if you select transformation
providers to modify data that is in transit from the Oracle Identity Manager data
sets to the provisioning staging data sets:

a. An instance of the transformation provider is created.

b. The transformData method of the transformation providers processes the
specified attributes of the input OIMRecord value object and converts these
records into an output OIMRecord value object. At this stage, the OIMRecord
value object corresponds to the provisioning staging data sets discussed in
Section 16.2.2, "Providers and Data Sets of the Provisioning Module" .

5. The formatData method of the provisioning format provider is called to process
the OIMRecord value object. The output of this process is the TargetOperation
value object.

6. The sendData method of the provisioning transport provider is called to send the
TargetOperation value object to the target system.

7. If the provisioning operation is a Create request, the outcome is one of the
following events:

■ On successful completion of the Create operation on the target system, the ID
field value assigned to the newly created user account is returned by the
sendData method. This value is passed on to the generic technology connector
framework, which posts this value to the database.

■ If the ID field value is not returned, it is assumed that the Create operation has
failed. An error message is displayed on the Identity System Administration.

■ If the operation fails at any stage after the name-value pairs are created, an
error message is displayed on the Identity System Administration.

If the provisioning operation is an Update or Delete request, the ID field is one of
the name-value pairs. When this type of provisioning request is sent, the outcome
is one of the following events:

■ If the operation fails at any stage after the name-value pairs are created, an
error message is displayed on the Identity System Administration.

■ On successful completion of the Update or Delete operation, the ID field value
may or may not be returned depending on the implementation of the
provisioning transport provider.

In either case, the generic technology connector framework does not need the
ID field value.

18.2 Creating Custom Providers
The procedure to create custom providers consists of the following steps:

1. Determining Provider Requirements

2. Identifying the Provider Parameters

3. Developing Java Code Implementations of the Value Objects

4. Developing Java Code Implementations of the Provider SPI Methods

5. Developing Java Code for Logging and Exception Handling

6. Creating the Provider XML File

7. Creating Resource Bundle Entries for the Provider

Creating Custom Providers

18-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

8. Deploying the Provider

18.2.1 Determining Provider Requirements
Guidelines for determining provider requirements are as follows:

■ Determining the Reconciliation Provider Requirements

■ Determining the Provisioning Provider Requirements

18.2.1.1 Determining the Reconciliation Provider Requirements
Apply the following guidelines to determine the reconciliation provider requirements:

■ If you want to use the target system only as a source of user account information
for Oracle Identity Manager, you need only the reconciliation transport provider
and reconciliation format provider. You do not need the provisioning transport
provider and provisioning format provider.

If you are going to include the reconciliation module in the generic technology
connector, you must include both the reconciliation transport provider and the
reconciliation format provider, even if you do not need any one of these providers.

The function of the reconciliation format provider is to convert target system data
into a format that is supported by Oracle Identity Manager. Even if the target
system generates data in a format supported by Oracle Identity Manager, you
must include the reconciliation format provider when you create the generic
technology connector.

■ You must create custom providers only to address provider requirements that are
not addressed by the predefined providers.

The types of providers you must include in the generic technology connector
depend on the data formats and data transport mechanisms that your target
system supports. If any combination of the data formats and data transport
mechanisms are compatible with any combination of the predefined providers,
you need not create custom providers.

For example, if your target system can generate reconciliation data files in
comma-delimited format, you can use the shared drive reconciliation transport
provider and CSV reconciliation format provider. You need not create custom
reconciliation providers.

18.2.1.2 Determining the Provisioning Provider Requirements
Apply the following guidelines to determine the provisioning provider requirements
for the provisioning module:

■ If you want to use the target system only as a target for provisioning operations
initiated on Oracle Identity Manager, you need only the provisioning transport
provider and provisioning format provider. You do not need the reconciliation
transport provider and reconciliation format provider.

If you are going to include the provisioning module in the generic technology
connector, you must include both the provisioning transport provider and the
provisioning format provider, even if you do not need any one of these providers.
This guideline is illustrated by the following example:

The function of the provisioning format provider is to convert Oracle Identity
Manager data into a format that is supported by the target system. Even if the

See Also: Section 18.3, "Reusing Providers"

Creating Custom Providers

Creating Custom Providers for Generic Technology Connectors 18-9

target system supports the output data format of Oracle Identity Manager, you
must include the provisioning format provider when you create the generic
technology connector.

■ You must create custom providers only to address provider requirements that are
not addressed by the predefined providers.

The types of providers you must include in the generic technology connector
depend on the data formats and data transport mechanisms that your target
system supports. If any combination of the data formats and data transport
mechanisms are compatible with any combination of the predefined providers,
you need not create custom providers.

For example, if your target system is a Web service that can accept and parse
SPML-based provisioning requests packaged in SOAP messages, you can use the
SPML provisioning format provider and Web Services provisioning transport
provider. You need not create custom provisioning providers.

18.2.2 Identifying the Provider Parameters
Provider parameters are the values that a provider must have in order to perform its
intended function. For example, a provisioning transport provider that copies
provisioning request files to a target system server will need the connection
parameters required to connect to the target system.

While creating a generic technology connector, you specify values for the parameters
of the providers that you select for the generic technology connector.

For the custom provider that you are creating, you must identify all the parameters
required for the provider to function. You must also categorize these parameters as
run-time and design parameters.

A run-time parameter represents a value that is not constrained by the design of the
provider. For example, the location of the directories containing data files that you
want to reconcile is a run-time parameter. A design parameter represents a value or set
of values that is defined as part of the provider design. For example, the character set
encoding formats that can be parsed by a reconciliation format provider are a design
parameter for that provider.

18.2.3 Developing Java Code Implementations of the Value Objects
Develop the Java code implementations of the value objects listed in Table 18–1. As
described earlier, these value objects are used at various stages of provider operations.

See Also: Reusing Providers on page 18-15

Note: You need not develop Java code implementations of the value
objects that you are not going to include in the generic technology
connector.

Table 18–1 Value Objects Used During Provider Operations

Area of Use Value Object Javadocs Package

Metadata Detection TargetSchema com.thortech.xl.gc.vo.designtime

OIMSchema com.thortech.xl.gc.vo.designtime

Provisioning TargetOperation com.thortech.xl.gc.vo.runtime

Creating Custom Providers

18-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

18.2.4 Developing Java Code Implementations of the Provider SPI Methods
Develop the Java code implementations of the SPI methods that are used during
provider operations. As described earlier, these SPI methods are called at various
stages of provider operations. See the Package com.thortech.xl.gc.spi page of the
Javadocs for links to information about the SPI methods of each provider.

18.2.5 Developing Java Code for Logging and Exception Handling
Oracle recommends that you to incorporate logging in the Java code implementations
of the value objects and SPI methods. By doing this, you can simplify troubleshooting
errors that may occur when you use the providers.

The logging modules for the generic technology connector framework are an extension
of the logging functionality of Oracle Identity Manager. Table 18–2 lists the modules
that are specific to the supported provider types.

See Oracle Fusion Middleware Java API Reference for Oracle Identity Manager for
information about incorporating exception handling in the custom provider.

18.2.6 Creating the Provider XML File
The provider XML file contains the data required to register the provider with the
generic technology connector framework. You must create the provider XML file.
Table 18–3 describes the elements that you can include in the provider XML files for
custom providers.

Reconciliation TargetRecord com.thortech.xl.gc.vo.runtime

OIMRecord com.thortech.xl.gc.vo.runtime

Note: You need not develop Java code implementations of SPI
methods for the providers that you are not going to include in the
generic technology connector.

Table 18–2 Logging Modules Specific to the Supported Provider Types

Logging Module
Functional Module of the Generic
Technology Connector Framework

XELLERATE.GC.PROVIDER.PROVISIONINGFORMAT Provisioning format provider

XELLERATE.GC.PROVIDER.PROVISIONINGTRANSPORT Provisioning transport provider

XELLERATE.GC.PROVIDER.RECONCILIATIONTRANSPORT Reconciliation transport provider

XELLERATE.GC.PROVIDER.RECONCILIATIONFORMAT Reconciliation format provider

XELLERATE.GC.PROVIDER.TRANSFORMATION Transformation Provider

XELLERATE.GC.PROVIDER.VALIDATION Validation Provider

Note: You can use a single provider XML file to define any number
of providers. Alternatively, you can create a provider XML file for
each provider that you create.

Table 18–1 (Cont.) Value Objects Used During Provider Operations

Area of Use Value Object Javadocs Package

Creating Custom Providers

Creating Custom Providers for Generic Technology Connectors 18-11

You must ensure that the provider XML file adheres to the schema definition provided
in MDS. The locations for schema and provider definition XML files are as follows:

PROVIDER_DEF_XSD_LOCATION = "/db/GTC/Schema";

PROVIDER_DEF_XML_LOCATION = "/db/GTC/ProviderDefinitions";

Table 18–3 Elements of the Provider XML File

Element Description

Provider Root element of the provider XML file

Reconciliation Parent element of the configuration elements that are used to describe
reconciliation providers

Provisioning Parent element of the configuration elements that are used to describe
provisioning providers

Transformation Parent element of the configuration elements that are used to describe
transformation providers

Validation Parent element of the configuration elements that are used to describe
validation providers

ReconTransportProvider Parent element of the configuration elements that are used to describe a
reconciliation transport provider

This element has the following attributes:

name: Name of the provider

class: Name of the Java class of the provider implementation

ReconFormatProvider Parent element of the configuration elements that are used to describe a
reconciliation format provider

This element has the following attributes:

name: Name of the provider

class: Name of the Java class of the provider implementation

ProvFormatProvider Parent element of the configuration elements that are used to describe a
provisioning format provider

This element has the following attributes:

■ name: Name of the provider

■ class: Name of the Java class of the provider implementation

ProvTransportProvider Parent element of the configuration elements that are used to describe a
provisioning transport provider

This element has the following attributes:

■ name: Name of the provider

■ class: Name of the Java class of the provider implementation

TransformationProvider Parent element of the configuration elements that are used to describe a
transformation provider

This element has the following attributes:

■ name: Name of the provider

■ class: Name of the Java class of the provider implementation

ValidationProvider Parent element of the configuration elements that are used to describe a
validation provider

This element has the following attributes:

■ name: Name of the provider

■ class: Name of the Java class of the provider implementation

Creating Custom Providers

18-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Configuration Parent element of the configuration elements of any type of provider

Parameter Element that provides information about a parameter of a provider

The Parameter element has the following attributes:

■ type: Type of parameter, either Runtime or Designtime

■ datatype: Data type of parameter, either String or Boolean. Any
parameter whose data type is not Boolean must be represented as a string.

■ required: Specifies whether or not the parameter is mandatory

■ encrypted: Specifies whether or not the parameter display must be
encrypted

■ name: Name of the parameter

■ datalength: Character length of the parameter value

DefaultAttribute Child element of the Configuration element

This element must be included only in the ProvFormatProvider element. It has
the following attributes:

■ datatype: Data type of parameter, either String or Boolean. Any
parameter whose data type is not Boolean must be represented as a string.

■ name: Name of the parameter

■ encrypted: Specifies whether or not the parameter display must be
encrypted

■ size: Size of the default attribute

Some data attributes included in the provisioning request are essential for the
provisioning operation to be successfully completed. Because the provisioning
format provider generates the final provisioning input data format, the
definition of this provider must include these mandatory data attributes.
Therefore, if such attributes are required by a target system, they must be
defined by using the DefaultAttribute element in the provisioning format
provider XML file.

Response Child element of the Configuration element

This element must be included only in the ProvFormatProvider,
ProvTransportProvider, TransformationProvider, and
ValidationProvider elements. It represents the response returned from the
providers that are called by the provisioning engine. This response is
displayed on the Identity System Administration. This element has the
following attributes:

■ code: Corresponds to the Oracle Identity Manager process task response
code to be generated

■ description: Corresponds to the description of the Oracle Identity
Manager process task response code to be generated

Note:

For a provisioning format provider or provisioning transport provider, you
must ensure that the sum of the number of characters of the name attribute of
the ProvFormatProvider or ProvTransportProvider element and the number
of characters of the Response element is less than or equal to 70. If the sum of
the number of characters exceeds 70, the response code cannot be stored in the
database and an error is thrown.

See Also: "Migrating User Modifiable Metadata Files" on page 37-1
for detailed information importing and exporting files and modifying
Oracle Identity Manager metadata

Table 18–3 (Cont.) Elements of the Provider XML File

Element Description

Creating Custom Providers

Creating Custom Providers for Generic Technology Connectors 18-13

18.2.7 Creating Resource Bundle Entries for the Provider
A resource bundle is a file containing locale-specific text strings. At run time, Oracle
Identity Manager reads these text strings and displays them as GUI element labels and
messages on the Identity System Administration. The file extension of a resource
bundle is .properties.

During installation of Oracle Identity Manager, resource bundles for each of the
supported languages are copied to the Oracle Identity Manager server. These include
the resource bundles for the predefined providers.

For a custom provider, you must create resource bundle entries for each locale that you
plan to use. The following is a summary of the steps involved in creating a resource
bundle:

1. Open a new file in a text editor.

2. In this file, create entries for the following text strings:

■ Provider names

The format for provider names is as follows:

gc.provider.Provider_Type.Provider_Name=Label_string_in_the_required_langua
ge

The following is an English-language example of the provider name entry for
a provisioning format provider:

gc.provider.ProvFormatProvider.SPML=SPML

■ Provider parameter labels and description

The format for provider parameter labels and parameter descriptions is as
follows:

Provider_Type.Provider_Name.Parameter_Name.label=Parameter_label_in_the_req
uired_language
gc.Provider_Type.Provider_Name.Parameter_Name.description=Parameter_descrip
tion_in_the_required_language

The following is an English-language example of the provider parameter label
and parameter description entries for a provisioning format provider:

gc.ProvFormatProvider.SPML.targetID.label=Target ID
gc.ProvFormatProvider.SPML.targetID.description=Target ID of the
provisioning target

■ Response codes and descriptions

The format for response codes and descriptions is as follows:

GC.GCPROV.PROVIDER_TYPE.PROVIDER_NAME.RESPONSE_CODE=Response_code_in_the_re
quired_language

Note: ■In the resource bundle, you must provide localized text for
the part of each line that follows the equal sign (=).

■ The Provider_Type, Parameter_Name, and RESPONSE_CODE values
mentioned in this section must be the same as the values you
specify in the provider XML file while performing the procedure
described in Section 18.2.6, "Creating the Provider XML File".

Creating Custom Providers

18-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

GC.GCPROV.PROVIDER_TYPE.PROVIDER_NAME.RESPONSE_CODE.description=Description
_in_the_required_language

The following is an English-language example of the response code and
description entries for a provisioning format provider:

GC.GCPROV.ProvFormatProvider.SPML.SPML_VELOCITY_PROPERTIES_NOT_READ=SPML
Velocity Properties Not Read
GC.GCPROV.ProvFormatProvider.SPML.SPML_VELOCITY_PROPERTIES_NOT_READ.descrip
tion=Necessary SPML template properties could not be read.

■ Metadata detection error messages

The format for metadata detection error messages is as follows:

gc.error.Provider_Type.Provider_Name.ERROR_CODE=Error_Description

Here, ERROR_CODE must be the same as the value of the errorCode string
passed as an argument to the constructor of the exception class. For example,
the following is one of the constructors of the
ReconciliationTransportException class:

ReconciliationTransportException(java.lang.String errorCode,
java.lang.String isMessage)

You must add lines in the resource bundle for all possible values of the
errorCode string.

The following is an English-language example of the metadata detection error
message for a reconciliation transport provider:

gc.error.ReconTransportProvider.SharedDrive.NO_READ_FILE=There are no
readable files to detect metadata.

3. Save and close the resource bundle.

18.2.8 Deploying the Provider
To deploy the provider:

1. Deploy the JAR files as follows:

a. Compile and package all the Java code files in a JAR file.

b. Copy the JAR file into the following directory:

OIM_HOME/JavaTasks

In addition, upload the JAR files to Oracle Identity Manager database. See
"Deploying the Custom Providers" on page 18-17 for details.

2. Deploy the provider XML files as follows:

a. Upload the provider XML file to MDS at the following location:

PROVIDER_DEF_XML_LOCATION = "/db/GTC/ProviderDefinitions":

b. Restart Oracle Identity Manager.

Note: In a clustered environment, you must copy each file that you
create to the corresponding directory on each node of the cluster.

Reusing Providers

Creating Custom Providers for Generic Technology Connectors 18-15

c. To check if the provider XML file has been correctly registered:

i. Log in to Oracle Identity System Administration.

ii. Under Configuration, click Generic Connector. Click Create. If there are
any errors in the provider XML file, an error message is displayed.

If an error message is displayed, fix the problem in the XML file, restart Oracle
Identity Manager, and repeat Steps i and ii.

Repeat this procedure until no error messages are displayed when you click
Create.

3. Deploy the provider resource bundles as follows:

a. Upload the resource bundles to the MDS by using the
UploadResourceBundles.sh utility present in the OIM_HOME/bin/ directory.
See "Migrating JARs and Resource Bundle" on page 37-3 for information about
running the utility.

b. For the new resource bundle entries to take effect, either run the PurgeCache
script or restart the application server.

18.3 Reusing Providers
Format providers and transport providers work in pairs. During reconciliation, the
output of the reconciliation transport provider is passed on to the reconciliation format
provider. During provisioning, the output of the provisioning format provider is
passed on to the provisioning transport provider. This means that the implementation
of the transport providers and format providers is linked through the implementation
of the value objects that are passed between them. This dependency forms the basis of
guidelines on reusing format providers and transport providers.

In contrast, a validation provider or transformation provider does not have any such
dependency on other providers. Therefore, there are no guidelines on reusing
validation Providers and transformation Providers. You can reuse both predefined and
custom transformation and validation providers, because their action is not specific to
the data format or data transport mechanism of the target system.

Guidelines on reusing format providers and transport providers are dividing into the
following sections:

■ Reusing Reconciliation Providers

■ Reusing Provisioning Providers

18.3.1 Reusing Reconciliation Providers
As described in Section 18.1.2, "Role of Providers During Reconciliation", the
TargetRecord value object is used to exchange data between the reconciliation
transport provider and the reconciliation format provider. The reconciliation transport
provider creates an array of TargetRecord value objects for the target system records
fetched during reconciliation. The reconciliation format provider processes the data in
the value objects array and passes it on to the reconciliation engine.

Suppose the operating environment of your organization contains two target systems,
TS1 and TS2. TS1 offers a Web-based interface for extracting data during reconciliation.
TS2 provides APIs for enabling other applications to read data from its identity store.
Both target systems support the same data format. If you want to reconcile user data
from both target systems, you must create one generic technology connector for each
target system. For each generic technology connector, you must create a reconciliation

Reusing Providers

18-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

transport provider. However, instead of creating a reconciliation format provider for
each generic technology connector, you can create and reuse a single reconciliation
format provider. Similarly, if TS1 and TS2 supported the same data transport
mechanism (even if they do not support the same data format), you can reuse the
reconciliation transport provider and create different reconciliation format providers.

If you want to reuse a reconciliation transport provider, you must ensure that the
implementation of the TargetRecord value object does not contain code that is specific
to the function performed by the reconciliation format provider. If you want to reuse a
reconciliation format provider, you must ensure that the implementation of the
TargetRecord value object does not contain code that is specific to the function
performed by the reconciliation transport provider.

Reusing the Predefined Reconciliation Providers
The implementation of the shared drive reconciliation transport provider and CSV
reconciliation format provider is such that these predefined providers are built for a
fixed combination of data formats and a single data transport mechanism. The shared
drive reconciliation transport provider reads data from flat files and passes an array of
TargetRecord value objects to the CSV reconciliation format provider.

Implementation of the shared drive reconciliation transport provider is based on two
factors: paged reconciliation and multivalued (child) data reconciliation. These factors
require the provider to be able to parse target system data before it can create an array
of TargetRecord value objects. In other words, the ability of the shared drive
reconciliation transport provider to parse certain types of target system data and the
ability of the CSV reconciliation format provider to use only the output provided by
the shared drive reconciliation transport provider makes them interdependent.
Therefore, the parameters of the CSV reconciliation format provider are bundled along
with those of the shared drive reconciliation transport provider.

For this reason, you cannot use the shared drive reconciliation transport provider with
a custom reconciliation format provider and you cannot use the CSV format provider
with a custom reconciliation transport provider.

18.3.2 Reusing Provisioning Providers
As described in Section 18.1.3, "Role of Providers During Provisioning", the
TargetOperation value object is used to exchange data between the provisioning
transport provider and the provisioning format provider. The provisioning format
provider creates a TargetOperation value object out of the provisioning data to be
sent to the target system. The provisioning transport provider passes this value object
to the target system.

Suppose the operating environment of your organization contains two target systems,
TS1 and TS2. TS1 offers a Web-based interface for accepting provisioning request data.
TS2 provides APIs for enabling provisioning data to be written to the identity store.
Both target systems support the same data format. If you want to perform
provisioning operations on both target systems, you must create one generic
technology connector for each target system. For each generic technology connector,
you must create a provisioning transport provider. However, instead of creating a
provisioning format provider for each generic technology connector, you can create
and reuse a single provider.

If TS1 and TS2 supported the same data transport mechanism but different data
formats, you can reuse the provisioning transport provider and create different
provisioning format providers.

Deploying the Custom Providers

Creating Custom Providers for Generic Technology Connectors 18-17

If you want to reuse the provisioning transport provider, you must ensure that the
implementation of the TargetOperation value object does not contain code that is
specific to the function performed by the provisioning format provider. If you want to
reuse the provisioning format provider, you must ensure that the implementation of
the TargetOperation value object does not contain code that is specific to the function
performed by the provisioning transport provider.

Reusing the Predefined Provisioning Providers
If the target system is a Web service, you can use the Web Services provisioning
transport provider along with any custom provisioning format provider that you
create. This is illustrated by the following example:

As mentioned earlier in this guide, the SPML provisioning format provider supports
only a subset of the provisioning operations that are described in the SPML
specification. You can develop a custom provisioning format provider that supports all
the SPML provisioning operations. If the target system is a Web service, you can use
the Web Services provisioning transport provider to carry SPML requests from your
custom provisioning format provider to the target system.

Similarly, you can use the SPML provisioning format provider along with a custom
provisioning transport provider to send SPML requests to an SPML-based target
system.

The following is the implementation of the TargetOperation value object that is
created by the SPML provisioning format provider and used as an input for the Web
Services provisioning transport provider:

com.thortech.xl.gc.impl.prov.WSTransportTargetOperation

See Oracle Fusion Middleware Java API Reference for Oracle Identity Manager for
information about this class.

If you want to reuse the SPML provisioning format provider, you must create a custom
transport provider that can accept an instance of this class as input and call the
relevant set method. Similarly, if you want to reuse the Web Services provisioning
transport provider, you must create a custom provisioning format provider that can
create an instance of this class and call the relevant get method.

18.4 Deploying the Custom Providers
To deploy the custom providers:

1. Upload the Provider definition XML file to the MDS location
/db/GTC/ProviderDefinitions. Oracle Identity Manager provides utilities to
export/import data to and from MDS repository.

See Chapter 36, "Understanding Customization Types" for information about the
MDS utilities.

2. The provider resource bundles and JAR files need to be uploaded to Oracle
Identity Manager database. Utilities are available in OIM_HOME/bin/ directory
for uploading resource bundles and JAR files to Oracle Identity Manager database.

See Chapter 37, "Deploying and Undeploying Customizations" for information
about the upload resource bundles and JAR utilities.

Deploying the Custom Providers

18-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

19

Creating and Managing Generic Technology Connectors 19-1

19 Creating and Managing Generic Technology
Connectors

[20]

This chapter explains how to create and maintain Generic Technology Connectors. It
contains these sections:

■ Overview

■ Creating Generic Technology Connectors

■ Managing Generic Technology Connectors

■ Using the Generic Connection Pool Framework in Custom Connectors

■ Best Practices

19.1 Overview
Providers are the starting point for developing generic technology connectors. Oracle
Identity Manager provides a standard set of providers that you can use as building
blocks of your generic technology connectors. For details about these providers, see
Chapter 17, "Predefined Providers for Generic Technology Connectors".

If no suitable provider is available, you can develop a provider to fit your
requirements. For details, see Chapter 18, "Creating Custom Providers for Generic
Technology Connectors".

Finally, if generic technology connectors do not meet your integration requirements,
you can make use of the programmatic options available with adapters. For details,
see Chapter 8, "Using the Adapter Factory".

19.2 Creating Generic Technology Connectors
This section explains how to create generic technology connectors.

The procedure to create a generic technology connector is composed of the following
steps:

■ Determining Provider Requirements

■ Selecting the Providers to Include

■ Addressing the Prerequisites

■ Using Identity System Administration to Create the Connector

■ Configuring Reconciliation

Creating Generic Technology Connectors

19-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Configuring Provisioning

■ Creating the Form and Publishing the Application Instance

■ Enabling Logging

19.2.1 Determining Provider Requirements
As mentioned in Chapter 17, "Predefined Providers for Generic Technology
Connectors", the following providers can be used as the building blocks of the generic
technology connectors you create:

■ Reconciliation Transport Provider

■ Reconciliation Format Provider

■ Provisioning Transport Provider

■ Provisioning Format Provider

■ Transformation Provider

■ Validation Provider

See Section 16.2, "Functional Architecture of Generic Technology Connectors" for the
definitions of these providers. Then, based on your knowledge of the data formats and
data transport mechanisms supported by the target system, identify the providers that
must be included in the generic technology connector that you create. If the target
system supports multiple data formats and data transport mechanisms, you must
select a single combination of the transport and format providers discussed in the first
chapter. You cannot include, for example, multiple reconciliation format providers in a
single generic technology connector.

19.2.2 Selecting the Providers to Include
Identify the predefined providers that can be used to meet your provider
requirements. See Chapter 17, "Predefined Providers for Generic Technology
Connectors" for information about the predefined providers.

If all your provider requirements are addressed by the predefined providers, you need
not create custom providers. You must create custom providers to address only the
requirements that are not addressed by the predefined providers. See Chapter 18,
"Creating Custom Providers for Generic Technology Connectors" for information
about creating custom providers.

19.2.3 Addressing the Prerequisites
You must address the following prerequisites:

■ If you are creating the generic technology connector on a production server, enable
the cache for the following cache categories:

– GenericConnector

– GenericConnectorProviders

■ Testing connectivity between the target system server and the Oracle Identity
Manager server

You must take steps to ensure that connectivity can be established between the
target system server and the Oracle Identity Manager server. For example, in a

See Also: Section 19.2.1, "Determining Provider Requirements"

Creating Generic Technology Connectors

Creating and Managing Generic Technology Connectors 19-3

UNIX environment, you must enter the fully qualified host name of the Oracle
Identity Manager server in the /etc/hosts file on the target system server.

■ Creating the user account to be used for creating the generic technology connector

All users belonging to the SYSTEM ADMINISTRATORS group of Oracle Identity
Manager can create generic technology connectors. Alternatively, members of a
group to which you assign the required menu items and permissions can create
generic technology connectors.

The required menu items are as follows:

– Create Generic Technology Connector menu item

– Manage Generic Technology Connector menu item

The required permissions are as follows:

– Form Designer (Allow Insert, Write Access, Delete Access)

– Structure Utility. Additional Column (Allow Insert, Write Access, Delete
Access)

– Meta-Table Hierarchy (Allow Insert, Write Access, Delete Access)

If these permissions are not correctly assigned to the group, an error is thrown
when the user clicks the Create button on the final Identity System Administration
page for creating generic technology connectors.

19.2.4 Using Identity System Administration to Create the Connector
To navigate to the first Identity System Administration page for creating a generic
technology connector, login to Identity System Administration, and click Generic
Connector under Configuration. In the Manage Connectors page, click Create.

From this point onward, page-wise instructions are provided in the following sections:

■ Step 1: Provide Basic Information Page

■ Step 2: Specify Parameter Values Page

■ Step 3: Modify Connector Configuration Page

■ Step 4: Verify Connector Form Names Page

■ Step 5: Verify Connector Information Page

19.2.4.1 Step 1: Provide Basic Information Page
To provide basic information about the generic technology connector that you want to
create, use this page as follows

1. In the Name field, specify a name for the generic technology connector.

The following are guidelines related to selecting a name for the generic technology
connector:

■ The name must not be the same as that of any other connector (predefined
connector or generic technology connector) on this Oracle Identity Manager
installation.

■ The name must not be the same as that of any other connector object (such as
resource objects, IT resources, and process forms) on this Oracle Identity
Manager installation.

Creating Generic Technology Connectors

19-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ The name must not contain non-ASCII characters, because Oracle Identity
Manager does not support non-ASCII characters in connector names.
However, you can include the underscore character (_) in the name.

2. If you want to use the generic technology connector for reconciliation, select
Reconciliation and perform the following steps:

■ From the Transport Provider list, select the reconciliation transport provider
that you want to use for this connector. This list displays the predefined
reconciliation transport providers and the reconciliation transport providers
that you create.

■ From the Format Provider list, select the reconciliation format provider that
you want to use for this connector. This list displays the predefined
reconciliation format providers and the reconciliation format providers that
you create.

■ If you want to use the connector to perform trusted source reconciliation with
the target system, select Trusted Source Reconciliation.

3. If you want to use the generic technology connector for provisioning, select
Provisioning and perform the following steps:

Note: An error message is displayed if you specify a name that is the
same as the name of an existing connector. However, an error message
is not displayed if you specify a name that is the same as the name of
an existing connector object. Therefore, you must ensure that the name
you want to specify is not the same as the name of any existing
connector object.

See Section 16.4, "Connector Objects Created by the Generic
Technology Connector Framework" for more information about
connector objects that are automatically created as part of the generic
technology connector creation process.

See Also: Section 20.2.1, "Names of Generic Technology Connectors
and Connector Objects" for information about limitations related to
the names of generic technology connectors.

Note: If you select the shared drive reconciliation transport provider,
you must also select the CSV reconciliation format provider because
all the parameters of this provider are bundled with the parameters of
the shared drive reconciliation transport provider.

Note: If you select the Trusted Source Reconciliation check box, the
Provisioning region of the page is disabled. This is because you cannot
provision to a target system that you designate as a trusted source.
You can only reconcile data from a trusted source.

Note: You can select only Reconciliation, only Provisioning, or both
Reconciliation and Provisioning.

Creating Generic Technology Connectors

Creating and Managing Generic Technology Connectors 19-5

■ From the Transport Provider list, select the provisioning transport provider
that you want to use for this connector. This list displays the predefined
provisioning transport providers and the provisioning transport providers
that you create.

If you select the Web Services provisioning transport provider and if Secure
Sockets Layer (SSL) is enabled for the target Web service, you must perform
the procedure described in Section 17.4.1, "Configuring SSL Communication
Between Oracle Identity Manager and the Target System Web Service".

■ From the Format Provider list, select the provisioning format provider that
you want to use for this connector. This list displays the predefined
provisioning format providers and the provisioning format providers that you
create.

If you select the SPML provisioning format provider, you must also select the
Web Services provisioning transport provider because the parameters of this
provider are related to the parameters of the Web Services provisioning
transport provider.

4. Click Continue.

Table 19–1 lists sample entries for the GUI elements on the Step 1: Provide Basic
Information page.

19.2.4.2 Step 2: Specify Parameter Values Page
Use this page to specify values for the parameters of the providers that you select on
the Step 1: Provide Basic Information page.

On this page, the provider parameters are divided into two categories:

■ Run-time parameters

Run-time parameters are input variables of the providers that you select on the
previous page. A run-time parameter represents a value that is not constrained by
the design of the provider. For example, the location of the directories containing
the data files that you want to reconcile is a run-time parameter.

■ Design parameters

Table 19–1 Sample Entries for the Step 1: Provide Basic Information Page

Label on the Step 1:
Provide Basic
Information Page Sample Value or Action Reference Information

Name field MyGTC2 NA

Reconciliation check box Check box selected NA

Transport Provider list Shared Drive shared drive reconciliation transport provider

Format Provider list CSV CSV Reconciliation format provider

Provisioning check box Check box selected NA

Transport Provider list Web Services Web Services provisioning transport provider

Format Provider list SPML SPML provisioning format provider

See Also: Chapter 17, "Predefined Providers for Generic Technology
Connectors" for detailed information about the run-time parameters of
predefined providers that you select on the Step 1: Provide Basic
Information page

Creating Generic Technology Connectors

19-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

The parameters listed in this section are either design parameters of providers or
reconciliation-specific parameters that are common to all generic technology
connectors. A design parameter represents a value or set of values that is defined
as part of the provider design.

For example:

The format of data files that can be parsed by a format provider is a design
parameter for that provider. While designing the provider, you define the set of
formats the provider can parse. On the Step 2: Specify Parameter Values page, you
specify the particular format (from the set of supported formats) that an instance
of the format provider must parse.

The following are reconciliation-specific design parameters:

– Batch Size

Use this parameter to specify a batch size for the reconciliation run. By using
this parameter, you can break into batches the total number of records that the
reconciliation engine fetches from the target system during each reconciliation
run.

The default value of this parameter is All.

– Stop Reconciliation Threshold

During reconciliation, data from the reconciliation format provider is accepted
as input by the validation provider. Some of the reconciliation data records
may not clear the validation checks. You can use the Stop Reconciliation
Threshold parameter to automatically stop reconciliation if the percentage of
records that fail the validation checks to the total number of reconciliation
records processed exceeds the specified value.

The following example illustrates how this parameter works:

Suppose you specify 20 as the value of the Stop Reconciliation Threshold
parameter. This means that you want reconciliation to stop if the percentage of
failed records to the total number of records processed becomes equal to or
greater than 20. Suppose the second and eighth records fail the validation
checks. At this stage, the number of failed records is 2 and the total number of
records processed is 8. The percentage of failed records is 25, which is greater
than the specified threshold of 20. Therefore, reconciliation is stopped after the
eighth record is processed.

See Also: Chapter 17, "Predefined Providers for Generic Technology
Connectors" for detailed information about the design parameters of
predefined providers that you select on the Step 1: Provide Basic
Information page

Note: If you do not select the Reconciliation option on the previous
page, these reconciliation-specific design parameters are not displayed
on this page.

Creating Generic Technology Connectors

Creating and Managing Generic Technology Connectors 19-7

The default value of this parameter is None. This default value specifies that
during a reconciliation run, you want all the target system records to be
processed, regardless of the number of records that fail the checks.

– Stop Threshold Minimum Records

If you use the Stop Reconciliation Threshold parameter, there may be a
problem if invalid records are encountered right at the beginning of the
reconciliation run. For example, suppose you specify 40 as the value of the
Stop Reconciliation Threshold parameter. When reconciliation starts, suppose
the first record fails the validation checks. At this stage, the percentage of
failed records to total records processed is 100. Therefore, reconciliation would
stop immediately after the first record is processed.

To avoid such situations, you can use the Stop Threshold Minimum Records
parameter in conjunction with the Stop Reconciliation Threshold parameter.
The Stop Threshold Minimum Records parameter specifies the number of
records that must be processed by the validation provider before the Stop
Reconciliation Threshold validation is enabled.

The following example illustrates how this parameter works:

Suppose you specify the following values:

Stop Reconciliation Threshold: 20

Stop Threshold Minimum Records: 80

With these values, from the eighty-first record onward, the Stop Reconciliation
Threshold validation is enabled. In other words, after the eightieth record is
processed, if any record fails the validation check, the reconciliation engine
calculates the percentage of failed records to total records processed.

The default value of this parameter is None.

– Reconciliation Type

Note:

■ The Stop Reconciliation Threshold parameter is used during
reconciliation only if you select validation Providers on the Step 3:
Modify Connector Configuration page.

■ If reconciliation is stopped because the actual percentage of failed
records exceeds the specified percentage, the records that have
already been reconciled into Oracle Identity Manager are not
removed.

Note:

■ The Stop Threshold Minimum Records parameter is used during
reconciliation only if you select validation Providers on the Step 3:
Modify Connector Configuration page.

■ You must specify a value for the Stop Threshold Minimum
Records parameter if you specify a value for the Stop
Reconciliation Threshold parameter.

Creating Generic Technology Connectors

19-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Use this parameter to specify whether you want the reconciliation engine to
perform incremental or full reconciliation.

In incremental reconciliation, only target system records that are newly added
or modified after the last reconciliation run are brought to Oracle Identity
Manager. Reconciliation events are created for each of these records.

In full reconciliation, all target system records are brought to Oracle Identity
Manager. The optimized reconciliation feature identifies and ignores records
that have already been reconciled. Reconciliation events are created for the
remaining records.

You must select incremental reconciliation if either one of the following
conditions is true:

* The target system time stamps or uniquely marks (in some way) files or
individual data records that it generates, and the reconciliation transport
provider can recognize records that have been time stamped or marked by
the target system.

For example:

Suppose the target system can time stamp the creation of or modifications
to user data records. If you can create a custom reconciliation transport
provider that can read this time-stamp information, only new or modified
data records will be transported to Oracle Identity Manager during recon-
ciliation.

* The target system provides only data records that are newly added or
modified after the last reconciliation run.

If neither of these conditions is true, you must select full reconciliation.

– Reconcile Deletion of Multivalued Attribute Data

Use this parameter to specify whether or not you want to reconcile into Oracle
Identity Manager the deletion of multivalued attribute data (child data) on the
target system.

The following example explains how this design parameter works:

There is an account for user John Doe on the target system. This user is a
member of two user groups, CREATE USERS and REVIEW PERMISSIONS, on the
target system. This user account (along with the group membership
information) also exists on Oracle Identity Manager.

On the target system, suppose this user is removed from the REVIEW
PERMISSIONS group. During the next reconciliation run, the action that will be
taken in Oracle Identity Manager depends on whether or not you select the
Reconcile Deletion of Multivalued Attribute Data check box:

* If you select the check box, information about this user being a member of
the REVIEW PERMISSIONS group on the target system is removed from the
Oracle Identity Manager database. All other changes made to this user
account on the target system are also reconciled.

Note: The outcome of both full and incremental reconciliation is the
same: target system records that are created or updated after the last
reconciliation run are reconciled into Oracle Identity Manager.

Creating Generic Technology Connectors

Creating and Managing Generic Technology Connectors 19-9

* If you do not select the check box, information about this user being a
member of the REVIEW PERMISSIONS group on the target system is not
removed from the Oracle Identity Manager database. However, all other
changes made to this user account on the target system are reconciled.

– Source Date Format

Use this parameter to specify the format in which date values are stored in the
target system.

The format that you specify is used to validate date values fetched during
reconciliation and to convert the date values to the format used internally by
Oracle Identity Manager.

The Validate Date Format provider is one of the predefined validation
providers. During a reconciliation run, the Validate Date Format provider uses
the source date format to validate date values fetched from the target system.
Only date values that match the source date format are converted to the date
format used by Oracle Identity Manager and reconciled. This format
validation and conversion applies to all date fields (for example, Date of Birth
and Hire Date) of the target system.

For information about the date formats that you can specify, see the following
page on the Sun Java Web site:

http://java.sun.com/docs/books/tutorial/i18n/format/simpleDateForma
t.html

The default value of the Source Date Format parameter is the date format
specified as the value of the XL.DefaultDateFormat system property. If you do
not specify a value for the Source Date Format parameter, the default date
format is used for date validation during reconciliation.

The following example illustrates how the Source Date Format parameter is
used:

Suppose the following are date values in the target system:

– Date 1: 05/04/2007 06:25:44 PM

– Date 2: 05/06/2007 07:31:44 PM

See Also: "Validation Providers" on page 17-21 for more information
about validation providers

Note: If you want the source date format to be used in date
validation, while performing the procedure described in
Section 19.2.4.3.1, "Adding or Editing Fields in Data Sets", you must:

■ Map date fields of the Source data sets to date fields of the
reconciliation staging data sets.

■ Edit each date field of the reconciliation staging data sets and set
its data type to the Date data type.

See Also: "System Properties in Oracle Identity Manager" in the
Oracle Fusion Middleware Administrator's Guide for Oracle Identity
Manager for information about the system properties of Oracle
Identity Manager

Creating Generic Technology Connectors

19-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

– Date 3: Thu, Apr 9, '98

– Date 4: 07/03/2008 02:15:55 PM

Scenario 1:

While creating the connector, you had entered the following as the value of the
Source Date Format parameter:

MM/dd/yyyy hh:mm:ss a

During a reconciliation run, the record containing the Date 3 value is not
reconciled because it does not conform to the specified source date format.

Scenario 2:

While creating the connector, you had not entered a value for the Source Date
Format parameter. Therefore, during a reconciliation run, all four records are
validated against the date format specified as the value of the
XL.DefaultDateFormat system property.

The following is a provisioning-specific design parameter:

■ Target Date Format

Use this parameter to specify the format in which you want to send date
values to the target system during provisioning operations.

During a provisioning operation, date values are converted to the format that
you specify as the value of the Target Date Format parameter. This format
conversion applies to all date fields (for example, Date of Birth and Hire Date)
that are used in the provisioning operation.

For information about the date formats that you can specify, see the following
page on the Sun Java Web site:

http://java.sun.com/docs/books/tutorial/i18n/format/simpleDateForma
t.html

If you do not specify a date format, the following date format is used as the
default value of this parameter:

yyyy/MM/dd hh:mm:ss z

The following example illustrates how the Target Date Format parameter is
used:

During a provisioning operation, any date value that you enter will be in the
yyyy/MM/dd hh:mm:ss z format.

Scenario 1:

While creating the connector, you had entered the following as the value of the
Target Date Format parameter:

yyyy.MM.dd G 'at' hh:mm:ss z

During a provisioning operation, an Oracle Identity Manager date value (for
example, 2007/05/04 06:25:44 IST) will be converted into the target date
format (for example, 2007.05.04 AD at 06:25:44 IST) and sent to the target
system.

Note: If you do not select the Provisioning option on the previous
page, this provisioning-specific design parameter is not displayed.

Creating Generic Technology Connectors

Creating and Managing Generic Technology Connectors 19-11

Scenario 2:

While creating the connector, you had not entered a value for the Target Date
Format parameter. During a provisioning operation, date values are sent to the
target system in the (default) yyyy/MM/dd hh:mm:ss z format.

After you specify values for the run-time and design parameters, click Continue.

Table 19–2 lists sample entries for the Step 2: Specify Parameter Values page. The GUI
elements displayed on this page are based on the entries made on the Step 1: Provide
Basic Information page.

Note: If any value that you provide on this page is not correct, an
error message is displayed at the top of the page after you click
Continue. If this happens, fix the parameter value and click Continue
again.

Table 19–2 Sample Entries for the Step 2: Specify Parameter Values Page

Label on the Step 2: Specify Parameter
Values Page Sample Value or Action Reference Information

Run-Time Parameters of the Shared Drive
Reconciliation Transport Provider

Section 17.1, "Shared Drive
Reconciliation Transport
Provider"

Staging Directory (Parent Identity Data)
field

D:\gctestdata\commaDelimited\
parent

NA

Staging Directory (Multivalued Identity
Data) field

D:\gctestdata\commaDelimited\
child

NA

Archiving Directory field D:\gctestdata\commaDelimited\
archive

NA

File Prefix field file NA

Specified Delimiter field , NA

Tab Delimiter check box Check box not selected NA

Fixed Column Width field NA

Unique Attribute (Parent Data) field UserIDTD NA

Run-Time Parameter of the Web Services
Provisioning Transport Provider

Section 17.4, "Web Services
Provisioning Transport
Provider"

Web Service URL field http://acme123:8080/spmlws/se
rvices/HttpSoap11

NA

Run-Time Parameters of the SPML
Provisioning Format Provider

Section 17.3, "SPML
Provisioning Format Provider"

Target ID field target NA

User Name (authentication) field xelsysadm NA

User Password (authentication) field NA

Design Parameters of the Shared Drive
Reconciliation Transport Provider

Section 17.1, "Shared Drive
Reconciliation Transport
Provider"

File Encoding field Cp1251 NA

Creating Generic Technology Connectors

19-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

19.2.4.3 Step 3: Modify Connector Configuration Page
Use this page to define data sets and mappings between the fields of the data sets. In
other words, you use this page to specify the user data fields that you want to:

■ Propagate from the target system to Oracle Identity Manager during reconciliation

■ Propagate from Oracle Identity Manager to the target system during provisioning

In the generic technology connector context, the term metadata refers to the set of
identity fields that constitute the user account information on the target system.

Design Parameters of the Web Services
Provisioning Transport Provider

Section 17.4, "Web Services
Provisioning Transport
Provider"

Web Service SOAP Action field http://xmlns.oracle.com/OIM/pr
ovisioning/processRequest

NA

Design Parameters of the SPML
Provisioning Format Provider

Section 17.3, "SPML
Provisioning Format Provider"

WSSE Configured for SPML Web Service?
check box

Check box not selected NA

Custom Authentication Credentials
Namespace field

http://xmlns.oracle.com/OIM/pr
ovisioning

NA

Custom Authentication Header Element
field

OIMUser NA

Custom Element to Store User Name field OIMUserId NA

Custom Element to Store Password field OIMUserPassword NA

SPML Web Service Binding Style
(DOCUMENT or RPC) field

RPC NA

SPML Web Service Complex Data Type
field

NA

SPML Web Service Operation Name field processRequest NA

SPML Web Service Target Namespace field http://xmlns.oracle.com/OIM/pr
ovisioning

NA

SPML Web Service Soap Message Body
Prefix field

NA

ID Attribute for Child Dataset Holding
Group Membership Information field

NA

Generic Design Parameters NA

Target Date Format field yyyy-MM-dd hh:mm:ss.fffffffff NA

Batch Size field All NA

Stop Reconciliation Threshold field None NA

Stop Threshold Minimum Records field None NA

Source Date Format field yyyy/MM/dd hh:mm:ss z NA

Reconcile Deletion of Multivalued Attribute
Data check box

Check box selected NA

Reconciliation Type list Incremental NA

Table 19–2 (Cont.) Sample Entries for the Step 2: Specify Parameter Values Page

Label on the Step 2: Specify Parameter
Values Page Sample Value or Action Reference Information

Creating Generic Technology Connectors

Creating and Managing Generic Technology Connectors 19-13

First Name, Last Name, Hire Date, and Department ID are examples of user data fields
that constitute metadata. The values assigned to these fields constitute the user data on
the target system. For example, the identity information of user John Doe on the target
system can be composed of the following fields:

■ First Name: John

■ Last Name: Doe

■ Hire Date: 04-December-2007

■ Department ID: Sales

■ . . .

After you click the Continue button on the Step 2: Specify Parameter Values page, the
metadata displayed on the Step 3: Modify Connector Configuration page depends on
the following factors:

■ Input provided on the Step 1: Provide Basic Information and Step 2: Specify
Parameter Values pages

■ Availability of sample target system data

Oracle Identity Manager performs the following steps while attempting to detect
metadata:

1. The reconciliation transport provider and reconciliation format provider try to
fetch and parse metadata from the target system.

Together, the shared drive reconciliation transport provider and CSV reconciliation
format provider can detect metadata from the target system. If you want custom
providers to perform the same function, you must ensure that:

■ The Java code for the reconciliation transport provider contains an
implementation of the getMetadata() method of the
ReconTransportProvider interface.

■ The Java code for the reconciliation format provider contains an
implementation of the parseMetadata() method of the ReconFormatProvider
interface.

If these providers successfully fetch and parse metadata from the target system,
Oracle Identity Manager uses information returned by them to display metadata
and the following step is not performed.

2. If the reconciliation transport provider and reconciliation format provider cannot
fetch and parse metadata from the target system, the provisioning transport
provider and provisioning format provider try to perform this function.

Note: In the generic technology connector context, the term
metadata detection refers to the process in which sample user data is
read from the target system and the corresponding metadata (identity
field names) is displayed on the Step 3: Modify Connector
Configuration page.

See Also: Chapter 18, "Creating Custom Providers for Generic
Technology Connectors"

Creating Generic Technology Connectors

19-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

The Web Services provisioning transport provider and SPML provisioning format
provider cannot detect metadata from the target system. If you want custom
providers to be able to detect metadata, you must ensure that:

■ The Java code for the provisioning transport provider contains an
implementation of the defineMetadata() method of the
ProvisioningTransportProvider interface.

■ The Java code for the provisioning format provider contains an
implementation of the parseMetadata() method of the
ProvisioningFormatProvider interface.

If the provisioning transport provider and provisioning format provider
successfully fetch and parse metadata from the target system, Oracle Identity
Manager uses information returned by these providers to display metadata. If
these providers are not successful, only the default fields defined for any of the
provisioning-specific providers that you select are displayed. For example, the ID
field of the OIM - Account data set and the objectClass and containerID fields of
the provisioning staging data set are displayed by default. These data sets and
fields are discussed later in this guide.

 Figure 19–1 shows the Step 3: Modify Connector Configuration page for the sample
entries listed at the end of the "Step 1: Provide Basic Information Page" and "Step 2:
Specify Parameter Values Page" sections.

Figure 19–1 Step 3: Modify Connector Configuration Page

■ Data Sets

■ Mappings

Creating Generic Technology Connectors

Creating and Managing Generic Technology Connectors 19-15

Data Sets
The data sets displayed on the Step 3: Modify Connector Configuration page are
categorized as follows:

■ Source

The Source data sets are displayed only if you select the Reconciliation option on
the first page, regardless of whether or not you select the Provisioning option.

■ Reconciliation Staging

The reconciliation staging data sets are displayed only if you select the
Reconciliation option on the Step 1: Provide Basic Information page, regardless of
whether or not you select the Provisioning option.

■ Oracle Identity Manager

The Oracle Identity Manager data sets are always displayed, regardless of the
options you select on the Step 1: Provide Basic Information page. However, the
OIM - Account data set and its child data sets are not displayed if you select the
Trusted Source Reconciliation option on the Step 1: Provide Basic Information
page. To overcome this issue, you must perform the following steps:

1. Open the generic technology connector and navigate to Jgraph screen.

2. In the Reconciliation Staging of the Jgraph screen, modify the field data type
to Date for all the fields which holds date value.

3. Save the connector.

The fields displayed in the OIM - User data set are predefined for the Oracle
Identity Manager User. You can show or minimize the full list of OIM - User data
set fields by clicking the arrow icon at the top of the data set. The following fields
are displayed in the minimized state of the data set:

– User ID

– Email

– Password

– First Name

– Last Name

These fields constitute the minimum set of Oracle Identity Manager User fields for
which values must be defined. You can designate some or all of the remaining
OIM - User data set fields as mandatory Oracle Identity Manager User fields for
your Oracle Identity Manager installation. You do this by ensuring that these
fields always hold values when the Oracle Identity Manager User is created.

Note: If you select the Trusted Source Reconciliation option on the
Step 1: Provide Basic Information Page, all the fields of the OIM - User
data set are displayed and you cannot use the arrow icon to minimize
the display.

Creating Generic Technology Connectors

19-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

You can add user-defined fields (UDFs) to the list of predefined Oracle Identity
Manager User fields by using the Design Console. These UDFs are displayed in
the OIM - User data set on the Step 3: Modify Connector Configuration page.

Depending on the options that you select on the Step 1: Provide Basic Information
page, some fields are displayed by default on the Step 3: Modify Connector
Configuration page:

– ID field

The ID field is displayed by default in the OIM - Account data set, regardless
of whether or not you select the Reconciliation option or Provisioning option
on the Step 1: Provide Basic Information page. When an account is created,
this field is used to store the value that uniquely identifies the account in
Oracle Identity Manager and in the target system. For a particular user, this
unique field is used to direct other operations, such as modify, delete, enable,
disable, and child data operations.

Every target system would have a unique field for tracking the creation of and
updates made to a user account. While creating a custom provisioning
transport provider, you must ensure that the provider retrieves this unique
field value from the target system at the end of a Create User operation. This
value must be used to populate the ID field of the OIM - Account data set.

During reconciliation, the value of the ID field must come from the
corresponding unique field of the reconciliation staging data set. To set this
up, you must create a mapping between the two fields. The procedure to
create a mapping is discussed later in this section.

– objectClass field

The objectClass field is displayed by default in the OIM - Account data set
and provisioning staging data set only if you select the SPML provisioning
format provider on the Step 1: Provide Basic Information page.

– containerID field

Note: Data set and field names that take up more than a certain
amount of space are truncated and dots are displayed after the
truncated part of the names. For example, the Deprovisioning Date
field of the OIM - User data set is displayed as follows:

Deprovisioning Da..

To view the full name of a field, you can click the edit icon for that
field or the field to which that field is mapped. In the pop-up window,
the field name that you want to view is on either the first page or the
second page, depending on the data set to which the field belongs.

Caution: If you select both the Provisioning and Reconciliation
options while creating a generic technology connector and if you do
not create a mapping between the ID field and the unique field of the
target system, records that are linked through reconciliation cannot be
used for provisioning operations (such as modify, delete, enable,
disable, and child data operations). This is because the ID field is not
populated in the linked records.

Creating Generic Technology Connectors

Creating and Managing Generic Technology Connectors 19-17

The containerID field is displayed by default in the OIM - Account data set
and provisioning staging data set only if you select the SPML provisioning
format provider on the Step 1: Provide Basic Information page.

■ Provisioning Staging

The provisioning staging data sets are displayed only if you select the
Provisioning option on the first page, regardless of whether or not you select the
Reconciliation option.

The display of data sets on the Step 3: Modify Connector Configuration page depends
on the input that you provide on the Step 1: Provide Basic Information page and Step
2: Specify Parameter Values page. The display of fields within the data sets depends on
whether or not metadata detection has taken place.

This is illustrated by the following example:

Suppose you select only the Reconciliation option on the Step 1: Provide Basic
Information page. In addition, metadata detection has not taken place. Under these
conditions, the display of data sets and fields on the Step 3: Modify Connector
Configuration page can be summarized as follows:

The following data sets are displayed:

■ Source

■ Reconciliation Staging

■ Oracle Identity Manager

The fields that constitute the data sets are not displayed.

In addition, if you had selected the Trusted Source Reconciliation option on the Step 1:
Provide Basic Information page, the OIM - Account data set and its child data sets are
not displayed.

In Table 19–3, Scenario 1 shows the outcome of this set of input conditions. The rest of
the scenarios in this table describe the display of data sets and fields under the
combination of input conditions listed in the first row and first column of the table.

Note: Metadata detection does not take place if any of the following
conditions are true:

■ Sample target system data (including metadata) is not available.

■ The Transport and format providers that you select are not
capable of detecting metadata from sample target system data.

Creating Generic Technology Connectors

19-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Mappings
Each flow line displayed on the Step 3: Modify Connector Configuration page
represents a mapping (link) between two fields of different data sets. A mapping
serves one of the following purposes:

■ Establishes a data flow path between fields of two data sets, for either
provisioning or reconciliation

A mapping of this type forms the basis for validations or transformations to be
performed on data.

■ Creates a basis for comparing (matching) field values of two data sets

The following are examples of matching-only mappings:

– Mappings created between fields of the reconciliation staging data set and the
OIM - User data set form the basis of a reconciliation rule.

Table 19–3 Display of Data Sets and Fields Under Various Input Conditions

Only Reconciliation Option
Selected

Both Reconciliation and
Provisioning Options
Selected

Only Provisioning Option
Selected

Metadata detection
has not taken place

Scenario 1

The following data sets are
displayed:

■ Source

■ Reconciliation Staging

■ Oracle Identity Manager

The fields that constitute the
data sets are not displayed.

If you select the Trusted
Source Reconciliation option
on the Step 1: Provide Basic
Information page, the OIM -
Account data set and its child
data sets are not displayed.

Scenario 2

The following data sets are
displayed:

■ Source

■ Reconciliation Staging

■ Oracle Identity
Manager

■ Provisioning Staging

The fields that constitute
the data sets are not
displayed.

Scenario 3

The following data sets are
displayed:

■ Oracle Identity
Manager

■ Provisioning Staging

The fields that constitute
the data sets are not
displayed.

Metadata detection
has taken place

Scenario 4

The following data sets are
displayed:

■ Source

■ Reconciliation Staging

■ Oracle Identity Manager

The fields that constitute the
data sets are displayed.

If you select the Trusted
Source Reconciliation option
on the Step 1: Provide Basic
Information page, the OIM -
Account data set and its child
data sets are not displayed.

Scenario 5

The following data sets are
displayed:

■ Source

■ Reconciliation Staging

■ Oracle Identity
Manager

■ Provisioning Staging

The fields that constitute
the data sets are displayed.

Scenario 6

The following data sets are
displayed:

■ Oracle Identity
Manager

■ Provisioning Staging

The fields that constitute
the data sets are displayed.

See Also: Section 20.1.2, "Multi-language Support" for information
about limitations related to the display of non-ASCII characters on
this page

Creating Generic Technology Connectors

Creating and Managing Generic Technology Connectors 19-19

– A mapping between the unique field of the reconciliation staging data set and
the ID field of the OIM - Account data set helps identify the key field for
reconciliation matching. Along with the ID field, other fields of the OIM -
Account data set can be (matching-only) mapped to corresponding fields of
the reconciliation staging data set to create a composite key field for
reconciliation matching.

You can perform the following actions on the Step 3: Modify Connector Configuration
page:

■ Adding or Editing Fields in Data Sets

■ Removing Fields from Data Sets

■ Removing Mappings Between Fields

■ Removing Child Data Sets

19.2.4.3.1 Adding or Editing Fields in Data Sets Identity fields detected through metadata
detection are displayed on the Step 3: Modify Connector Configuration page. You can
modify these fields and the mappings between them. If required, you can also add
new fields on this page and create mappings between them.

The following is a summary of the actions that you can perform while adding or
editing fields on the Step 3: Modify Connector Configuration page:

■ Default attributes (such as the data type and length) are assigned to the fields
displayed through metadata detection. You must edit these fields to set the
required attributes for them.

■ You can create transformation mappings between fields by using a transformation
provider. While performing this action, you can use the predefined concatenation
transformation provider or translation transformation provider, or a custom
transformation provider that you have created.

■ You can create matching-only mappings between fields of the reconciliation
staging data set and Oracle Identity Manager data sets. Matching-only mappings
that you create between the reconciliation staging data set and the OIM - User data
set forms the reconciliation rule. Matching-only mappings that you create between
the reconciliation staging data set and the OIM - Account data set identifies the
key field for reconciliation matching.

Note: These actions are described in detail in the procedure that
follows this list. The procedure also describes the conditions that must
be fulfilled before you can perform some of these actions.

Note: Oracle Identity Manager can recognize date values fetched
during reconciliation only if you set the Date data type for fields of the
reconciliation staging data sets. In addition, if you have specified a
value for the Source Date Format parameter on the Step 2: Specify
Parameter Values page, you must map date fields of the Source data
sets to the corresponding date fields of the reconciliation staging data
sets.

The Source Date Format parameter is described in Section 19.2.4.2,
"Step 2: Specify Parameter Values Page".

Creating Generic Technology Connectors

19-20 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ You can add a child data set to an existing data set.

■ You can encrypt the value of a field, both in the process form and in the database.

■ You can designate a field as a lookup field and select an input source for the field.
The input source can be a lookup definition or a combination of columns from
Oracle Identity Manager database tables.

■ You can configure user account status reconciliation.

If you want to configure user account status reconciliation, refer to the
"Configuring Account Status Reconciliation" section.

To add or edit a field in a data set:

1. Depending on whether you want to add or edit a field, click the Add icon for the
data set or the edit icon for the field.

2. On the Step 1: Field Information page, specify values for the following GUI
elements:

■ Field Name: If you are adding a field, specify a name for the field. The field
name that you specify must contain only ASCII characters, because non-ASCII
characters are not allowed.

■ Mapping Action: Select the type of mapping that you want to create with this
field as the destination field of the mapping. You can select one of the
following mapping actions:

– Select Create Mapping Without Transformation if you only want to
create a one-to-one mapping between a source (input) field and the field
that you are adding or editing, and you do not want to use a
transformation provider.

– Select the Remove Mapping option if you are editing the field and you
want to remove the mapping for which this field is the destination field.
The procedure to remove a mapping is covered in detail in the Removing
Mapping Between Fields section.

– The transformation mapping options displayed in the Mapping Action list
are based on the predefined transformation providers and the custom
transformation providers that you create. The following menu options
correspond to the predefined transformation providers:

* Create Mapping With Concatenation

* Create Mapping With Translation

Note: The display of the GUI elements and pages described in the
following steps depends on the data set in which you are adding or
editing a field. For example, the Required and Encrypted check boxes
are not displayed if you are adding or editing a field in a Source data
set.

See Also: Section 19.2.4.3, "Step 3: Modify Connector Configuration
Page" for information about validations applied to the names of fields

See Also: Section 17.5, "Transformation Providers" for information
about these predefined transformation providers

Creating Generic Technology Connectors

Creating and Managing Generic Technology Connectors 19-21

Apply the following guidelines while selecting a transformation mapping:

* You can create transformation mappings only between fields of the
following data sets:

- Source and Reconciliation Staging

- Oracle Identity Manager and Provisioning Staging

This means that, for example, you cannot create transformation mappings
between a field in a reconciliation staging data set and a field in an Oracle
Identity Manager data set.

You cannot create a 1-to-2 mapping with the following source and destina-
tion fields:

Source field: Unique field of the reconciliation staging data

Destination fields: User ID field of the OIM - User data set and ID field of
the OIM - Account data set

This mapping is not supported. Instead, you must create a one-to-one
mapping between the unique field of the reconciliation staging data and
either the User ID field (of the OIM - User data set) or the ID field (of the
OIM - Account data set).

* Ensure that all the fields of provisioning staging data sets are mapped to
corresponding fields of OIM - User and OIM - Account data sets.

* When you create a mapping that has any field of the OIM - User data set
as the source or destination field, the display of the OIM - User data set
fields list is frozen in the position it was in (expanded or minimized) when
the mapping was created. To unfreeze the display of the OIM - User data
set so that you are able to use the arrow icon, you must remove all
mappings that have any OIM - User data set field as the source or
destination field.

* A literal field can be used as one of the input fields of a transformation
field. If you select the Literal option, you must enter a value in the field.
You must not leave the field blank after selecting it.

See Section 19.2.4.3, "Step 3: Modify Connector Configuration Page" for
information about limitations related to creating transformation mappings.

■ Matching Only: Select this check box if the field is to be used as the
destination field of a matching-only mapping. As mentioned earlier in this
document, you can create the following types of matching-only mappings:

– To create the reconciliation rule, you create matching-only mappings
between fields of the reconciliation staging data set and the OIM - User
data set. Each mapping represents a reconciliation rule element. If there
are child data sets, you must ensure that the names of fields of the
reconciliation staging data set that are input fields for the matching-only
mappings are not used in any of the reconciliation staging child data sets.

– To specify the key field for reconciliation matching, you create a
matching-only mapping between the unique field of the reconciliation
staging data set and the ID field of the OIM - Account data set. Along with

Note: You must create matching-only mappings for both parent and
child data sets.

Creating Generic Technology Connectors

19-22 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

the ID field, other fields of the OIM - Account data set can be
(matching-only) mapped to corresponding fields of the reconciliation
staging data set to create a composite key field for reconciliation matching.

■ Create End-to-End Mapping: If you are adding a field, select this check box if
you want the same field to be added in all the data sets that are displayed to
the right of the data set in which you are adding the field.

■ Multi-Valued Field: Select this check box if you want to add a child data set. If
you select this check box, the name that you specify in the Field Name field is
used as the name of the child data set.

■ Data Type: Select the data type of the field.

After metadata detection, the String data type is applied by default to all the
fields of the reconciliation staging and OIM - Account data sets. Where
required, you must use the Data Type list to specify the actual data type of
each field.

■ Length: Specify the character length of the field.

■ Required: Select this check box if you want to ensure that the field always
contains a value.

■ Encrypted: Select this check box if the value of the field must be stored in
encrypted form in the Oracle Identity Manager database.

■ Password Field: Select this check box if the value of the field must be
encrypted on the process form. Values of fields for which this check box is
selected are displayed as asterisks (*) on the process forms.

■ Lookup Field: Select this check box if you want to make the field a lookup
field.

3. Click Continue.

4. If you select the Lookup Field check box on the Step 1: Field Information page, the
Step 2: Lookup Properties page is displayed. On this page, you can select and

Caution: If the name of a reconciliation staging field used in a
matching-only mapping were to be reused as the name of a field in a
reconciliation staging child data set, matching would not take place
during a reconciliation run.

This known issue is explained in the Modify Connector Config Page
section .

Note: If you select the Trusted Source Reconciliation check box on
the Step 1: Provide Basic Information page, this check box (in selected
or deselected state) is ignored. This is because the reconciliation of
multivalued (child) data is not supported in trusted source
reconciliation.

Note: If you select the Encrypted and Password Field check boxes,
see Section 19.5.3.3, "Password-Like Fields" for information about
guidelines that you must follow.

Creating Generic Technology Connectors

Creating and Managing Generic Technology Connectors 19-23

specify values for any combination of the lookup properties described in
Table 19–4.

Table 19–4 Lookup Properties

Lookup Property Value

Column Names In the Property Value field, enter the name of the database column containing the values
that must be displayed in the lookup window. If required, you can enter multiple database
column names separated by commas.

Note: If you select the Lookup Column Name property, you must also select the Column
Names property, which is described later in this table.

After you enter a value in the Property Value field, click Submit.

The following SQL query can be used to illustrate how the Column Names and Lookup
Column Name properties are used:

SELECT USR_FIRST_NAME, USR_LOGIN, USR_LAST_NAME FROM USR

Suppose you set the following as the values of the two properties:

- Column Names: USR_FIRST_NAME, USR_LAST_NAME

- Lookup Column Name: USR_LOGIN

When the user selects a particular USR_FIRST_NAME, USR_LAST_NAME combination from the
lookup window, the corresponding USR_LOGIN value is stored in the database.

Column Captions In the Property Value field, enter the name of the column heading that must be displayed
in the lookup window. If multiple columns are going to be displayed in the lookup
window, enter multiple column captions separated by commas, for example, Organization
Name, Organization Status.

After you enter a value in the Property Value field, click Submit.

Column Widths In the Property Value field, enter the character width of the column that must be displayed
in the lookup window. This must be the same as the maximum length of the underlying
field or column from which data values are drawn to populate the lookup field.

If the lookup window is going to display multiple columns, enter multiple column widths
separated by commas.

After you enter a value in the Property Value field, click Submit.

Creating Generic Technology Connectors

19-24 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Lookup Query To specify a value for the Lookup Query property:

1. In the Property Value field, enter the SQL query (without the WHERE clause) that must
be run when a user double-clicks the lookup field to populate the data columns
displayed in the lookup window.

2. Click Submit.

3. On the Step 2: Add Validation page, select values from the following lists to create a
WHERE clause for the SELECT statement that you specify in Step 1:

- Filter Column

- Source

- Field Name

From the values that you select, the WHERE clause is created as follows:

WHERE Filter_Column=Source.Field_Name

4. Click Save.

To correctly display the data returned from a query, you must add a lookupfield.header
property to the xlWebAdmin_locale.properties file.

For example, consider the following SQL query:

SELECT usr_status FROM usr

To view the data returned from the query, you must add the following entry to the
xlWebAdmin_locale.properties files:

lookupfield.header.users.status=User Status

If the xlWebAdmin_locale.properties file does not contain a lookupfield.header
property for your specified query, the Identity System Administration displays a lookup
window after you click the corresponding lookup icon.

The syntax for a lookupfield.header property is as follows:

lookupfield.header.column_code=display value

The column_code portion of the entry must be lowercase and any spaces must be replaced
by underscore characters (_).

By default, the following entries for lookup field column headers are already available in
the xlWebAdmin_locale.properties file:

lookupfield.header.lookup_definition.lookup_code_information
 .code_key=Value
lookupfield.header.lookup_definition.lookup_code_information
 .decode=Description
lookupfield.header.users.manager_login=User ID
lookupfield.header.organizations.organization_name=Name
lookupfield.header.it_resources.key=Key
lookupfield.header.it_resources.name=Instance Name
lookupfield.header.users.user_id=User ID
lookupfield.header.users.last_name=Last Name
lookupfield.header.users.first_name=First Name
lookupfield.header.groups.group_name=Group Name
lookupfield.header.objects.name=Resource Name
lookupfield.header.access_policies.name=Access Policy Name

Table 19–4 (Cont.) Lookup Properties

Lookup Property Value

Creating Generic Technology Connectors

Creating and Managing Generic Technology Connectors 19-25

If you want to edit the value of a property that is displayed in the table on the Step
2: Lookup Properties page, select the edit option for that property and click Edit. If
you want to remove a property that is displayed in the table, select the delete
option for that property and click Delete.

After you specify properties for the lookup field, click Continue.

5. If you select a transformation option from the Mapping Action list on the Step 1:
Field Information page, the Step 3: Mapping page is displayed. Use this page to
define the transformation function that you want to perform on the input data to
the field that you are adding. The steps to be performed depend on the
transformation provider option (concatenation, translation, or custom
transformation provider) that you select on the previous page:

If you select a predefined transformation provider (transformation, concatenation
or translation), see Transformation Providers for detailed information about the
procedure to specify parameter values for the predefined transformation provider.

Lookup Code In the Property Value field, enter the lookup definition code name. This code must
generate all information pertaining to the lookup field, including lookup values and the
text that is displayed with the lookup field when a lookup value is selected. The
classification type of the lookup definition code must be of Lookup Type (that is, the
Lookup Type option on the Lookup Definition form must be selected).

To enter a lookup code, open the Lookup Definition form, query for the required code, and
copy the code into the Property Value field.

After you enter a value in the Property Value field, click Submit.

Note:

The Lookup Code property can be used to replace the combination of the Column
Captions, Column Names, Column Widths, Lookup Column Name, and Lookup Query
properties. In addition, the information contained in the Lookup Code property
supersedes any values set in these five lookup properties.

If you want to implement lookup fields reconciliation, create a scheduled task that
populates the lookup code.

Lookup Column
Name

In the Property Value field, enter the name of the database column containing the value
that must be stored corresponding to the Column Names value selected by the user in the
lookup window. If required, you can enter multiple database column names separated by
commas.

Note: If you select the Column Names property, you must also select the Lookup Column
Name property. See the "Lookup Column Name" row in this table for more information
about how these two properties are used.

After you enter a value in the Property Value field, click Submit.

Auto Complete If you enter True in the Property Value field, users can filter the values displayed in the
lookup window by entering the first few characters of the value they want to select and
double-clicking the lookup field. The outcome of this action is that only lookup values that
begin with the characters entered by the users are displayed in the lookup window. For
example, for the State lookup field, a user can enter New in the field. When the user
double-clicks the State lookup field, only states that begin with New (for example, New
Hampshire, New Jersey, New Mexico, and New York) are displayed in the lookup
window.

If you do not want to let users filter the display of values in the lookup field, enter False in
the Property Value field.

The default value of the Auto Complete property is False.

After you enter a value in the Property Value field, click Submit.

Table 19–4 (Cont.) Lookup Properties

Lookup Property Value

Creating Generic Technology Connectors

19-26 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

That section also provides detailed information about configuring user account
status reconciliation.

You must use the translation transformation provider if you want to configure the
reconciliation of user account status information. This procedure is described in
Section 17.5.2, "Translation Transformation Provider".

After you specify values for the transformation provider, click Continue.

6. If required, select a validation check for the field and click Add. In other words,
select the validation provider that you want to use.

The validation options displayed in this list are based on the predefined validation
Providers and any custom validation Providers that you create.

7. Click Continue, and click Close.

8. If you do not want to perform any other action on the Step 3: Modify Connector
Configuration page, click the Close button that is displayed at the top of the page.
You must perform the previous step before you click this Close button.

19.2.4.3.2 Removing Fields from Data Sets To remove a field from a data set:

1. Click the Delete icon for that field.

2. If you do not want to perform any other action on the Step 3: Modify Connector
Configuration page, click the Close button that is displayed at the top of the page.

19.2.4.3.3 Removing Mappings Between Fields To remove a mapping:

1. Click the edit icon for the destination field of the mapping that you want to
remove.

2. On the Step 1: Field Information page, select Remove Mapping from the
Transformation list.

3. Click Continue.

4. On the last page, click Close.

5. If you do not want to perform any other action on the Step 3: Modify Connector
Configuration page, click the Close button that is displayed at the top of the page.

19.2.4.3.4 Removing Child Data Sets To remove a child data set:

1. Click the Delete icon for the data set.

2. If you do not want to perform any other action on the Step 3: Modify Connector
Configuration page, click the Close button that is displayed at the top of the page.

Figure 19–2 shows the Step 3: Specify Connector Configuration page after the MyField
field was added to the OIM - Account and provisioning staging data sets.

Note: If the destination field itself is the source field for another
mapping, that mapping is not removed.

Creating Generic Technology Connectors

Creating and Managing Generic Technology Connectors 19-27

Figure 19–2 Step 3: Modify Connector Configuration Page After Addition of a Field

19.2.4.4 Step 4: Verify Connector Form Names Page
Use this page to specify form names for the process forms corresponding to the OIM -
Account data set and its child data sets.

The generic technology connector framework automatically creates certain objects
after you submit all the information required to create a generic technology connector.
Parent and child process forms corresponding to the OIM - Account data sets are
examples of objects that are automatically created. Each process form on a particular
Oracle Identity Manager installation must have a unique name.

On the Step 4: Verify Connector Form Names page, the generic technology connector
framework displays default names for these process forms based on the names of the
corresponding data sets. You must verify and, if required, change the names of these
forms to ensure that they are unique for this installation of Oracle Identity Manager.
While changing the name of a form, you must use only ASCII characters. An error
message is displayed if you specify non-unique form names or if any name contains
non-ASCII characters.

Note: If you select the Trusted Source Reconciliation option on the
Step 1: Provide Basic Information page, the OIM - Account data set
and its child data sets are not created. Therefore, this page is not
displayed if you select the Trusted Source Reconciliation option.

See Also: Section 16.4, "Connector Objects Created by the Generic
Technology Connector Framework"

Creating Generic Technology Connectors

19-28 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

After you specify the form names, click Continue.

Instead of clicking Continue, you can click Back to return to the Step 2: Specify
Parameter Values page. However, metadata detection does not take place if you make
changes on this page and click the Continue button. This is to ensure that any
customization in the data set structure and mappings made during the first pass
through this page does not get overwritten. You can manually add or edit fields and
mappings on the Step 3: Modify Connector Configuration page.

19.2.4.5 Step 5: Verify Connector Information Page
Use this page to review information that you have provided up to this point for
creating generic technology connectors. The following is a page-wise explanation of
the changes that are permitted on the earlier pages:

■ Step 1: Provide Basic Information page

You can use either the View link or Back button to reopen and view the
information provided on the Step 1: Provide Basic Information page. You cannot
change the information displayed on this page, because any change in this
information would amount to creating a new generic technology connector.

■ Step 2: Specify Parameter Values page

You can use either the Change link or Back button to reopen this page. You can
change parameter values on this page. However, metadata detection does not take
place when you submit the changed values. This is to ensure that any
customization in the data set structure and mappings made during the first pass
through this page does not get overwritten. You can manually add or edit fields
and mappings on the Step 3: Modify Connector Configuration page.

■ Step 3: Modify Connector Configuration page

You can use the Change link to reopen this page and add or edit fields and
mappings.

■ Step 4: Verify Connector Form Names page

You cannot revisit this page.

After you verify all the information displayed on the Step 5: Verify Connector
Information page, click Create.

At this stage, the generic technology connector framework creates all the standard
connector objects on the basis of the information that you provide. The list of these
objects includes the connector XML file, which is created and imported automatically
into Oracle Identity Manager. Except for the form names, the names of the connector
objects are in the GTCname_GTC format.

For example, if you specify DB_conn as the name of a generic technology connector that
you create, all (except the forms) the connector objects are named DB_CONN_GTC.

At the end of the process, a message stating that the connector has been successfully
created is displayed on the page.

Note: You cannot revisit this page, so ensure that the form names
that you specify meet all the requirements before you click Continue.

See Also: Section 16.4, "Connector Objects Created by the Generic
Technology Connector Framework"

Creating Generic Technology Connectors

Creating and Managing Generic Technology Connectors 19-29

19.2.5 Configuring Reconciliation

A reconciliation scheduled task is created automatically when you create the generic
technology connector. To configure and run this scheduled task, follow the instructions
in the "Creating and Managing Scheduled Tasks" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Manager.

19.2.6 Configuring Provisioning

A process definition is one of the objects that are automatically created when you
create a generic technology connector. The name of the process definition is in the
following format:

GTC_name_GTC

For example, if the name of the generic technology connector is WebConn, the name of
the process definition is WebConn_GTC.

The process tasks that constitute this process definition can be divided into two types:

■ System-defined process tasks

System-defined process tasks are included by default in all newly created process
definitions.

■ Provisioning-specific process tasks

Provisioning-specific process tasks are included in the process definition of a
generic technology connector only if you select the Provisioning option on the Step
1: Provide Basic Information page, regardless of whether or not you select the
Reconciliation option.

The following are provisioning-specific process tasks:

Note: If the creation process fails, objects that are created are not
automatically deleted. This point is also mentioned in Section 20.1.1,
"Creation Issues".

See Section 20.2.3, "Errors During Connector Creation" for a listing of
error messages related to the creation process.

Note: If you select only the Provisioning option on the Step 1:
Provide Basic Information page, you can skip this section because you
need not configure reconciliation.

Note: The name of the scheduled task is in the following format:

GTC_Name_GTC

For example, if the name of the generic technology connector is
WebConn, the name of the scheduled task is WebConn_GTC.

Note: If you select only the Reconciliation option on the Step 1:
Provide Basic Information page, you can skip this section because you
need not configure provisioning.

Creating Generic Technology Connectors

19-30 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Create User

■ Delete User

■ Enable User

■ Disable User

■ Updated Field_Name (this task is created for each field of the OIM - Account data
set, except the ID field)

■ For mappings created between fields of the OIM - User data set and the
provisioning staging data set, the following process tasks are created:

– Change User_data_set_field_name

– Edit Provisioning_Staging_field_name

For example, suppose you create a mapping between the Last Name field of the
OIM - User data set and the LName field of the provisioning staging data set. The
following process tasks are automatically created along with the rest of the
provisioning-specific process tasks:

– Change Last Name

– Edit LName

In addition, the following provisioning-specific process tasks are created for each child
data set of the OIM - Account data set:

■ Child Table Child_Form_Name row Inserted

■ Child Table Child_Form_Name row Updated

■ Child Table Child_Form_Name row Deleted

All provisioning-specific process tasks have the following default assignments:

■ Target Type: Group User With Highest Priority

■ Group: SYSTEM ADMINISTRATORS

■ User: XELSYSADM

If required, you can modify these default assignments by following the instructions
given in "Modifying Process Tasks" on page 5-15.

19.2.7 Creating the Form and Publishing the Application Instance
To create the form and publish the application instance, which is created created when
you select both the provisioning and reconciliation options on the Step 1: Basic
Information page, perform the following steps:

1. Create a form specific to the GTC resource object.

2. Attach the form to the GTC application instance.

3. Publish the GTC application instance to the required organizations.

Note: To view a provisioned account in the new UI, the process form
should have a field for IT resource. The value for this IT resource field
should be populated during a reconciliation run.

Managing Generic Technology Connectors

Creating and Managing Generic Technology Connectors 19-31

19.2.8 Enabling Logging

See "Enabling System Logging" in the Oracle Fusion Middleware Administrator's Guide
for Oracle Identity Manager for information about enabling logging in Oracle Identity
Manager.

19.3 Managing Generic Technology Connectors
The generic technology connector framework offers features that enable you to modify
a generic technology connector. In addition, you can export or import a generic
technology connector by using the Deployment Manager.

This section contains these topics:

■ Modifying Generic Technology Connectors

■ Exporting Generic Technology Connectors

■ Importing Generic Technology Connectors

19.3.1 Modifying Generic Technology Connectors

Note: This is an optional step. Perform the procedure discussed in
this section only if you want to enable logging for the generic
technology connector.

Caution: The Design Console can be used to modify connector
objects that are automatically created at the end of the generic
technology connector creation process. If you use the Manage Generic
Technology Connector feature to modify a generic technology
connector whose connector objects have been customized by using the
Design Console, all the customization work done using the Design
Console would get overwritten. Therefore, Oracle recommends that
you to follow one of the following guidelines:

■ Do not use the Design Console to modify generic technology
connector objects.

The exception to this guideline is the IT resource. You can modify
the parameters of the IT resource by using the Design Console.
However, for the changes to take effect, you must purge the cache
either before or after you modify IT resource parameters.

■ If you use the Design Console to modify generic technology
connector objects, do not use the Manage Generic Technology
Connector feature to modify the generic technology connector.

See Section 16.4, "Connector Objects Created by the Generic
Technology Connector Framework" for information about connector
objects that are created automatically by the framework.

In addition, you can modify only one connector at a time. If you try to
use the Modify pages for two different connectors at the same time on
the same computer, the Modify features would not work correctly.

Appendix 20, "Troubleshooting Generic Technology Connectors"
discusses both these points.

Managing Generic Technology Connectors

19-32 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

To modify a generic technology connector:

1. Login to the Identity System Administration.

2. Under Configuration, click Generic Connector.

3. Search for the connector that you want to modify. To simplify your search, you can
use a combination of the search criteria provided on this page. Alternatively, to
view all the generic technology connectors that have been created on this Oracle
Identity Manager installation, click Search connectors without specifying any
search criteria.

4. In the results that are displayed, click the generic technology connector that you
want to modify.

5. Click Edit Parameters. The Step 2: Specify Parameter Values page of the connector
creation process is displayed. From this point onward, follow the procedure
described in the Step 2 section.

19.3.2 Exporting Generic Technology Connectors
You can export the XML file of a generic technology connector. This XML file contains
definitions for all the objects that are part of the connector. If you want to use the same
generic technology connector on a new Oracle Identity Manager installation, you must
first export the XML file and import it into the new Oracle Identity Manager
installation.

To export the connector XML file:

1. In the Oracle Identity Manager Advanced Administration, under System
Management, click Export Deployment Manager File.

2. On the first page of the Deployment Manager Wizard, select Generic Connector
from the list and click Search.

3. In the search results, select the generic technology connector whose XML file you
want to export.

4. Click Select Children.

5. For the selected generic technology connector, select the child entities that you
want to export and click Select Dependencies.

6. Select the dependencies that you want to export, and click Confirmation.

Note: The only difference between this procedure and the procedure
that you follow to create the generic technology connector procedure
is that automatic metadata detection does not take place when you
modify an existing generic technology connector.

Caution: If you modify attributes of fields of the OIM - Account data
set or its child data sets, corresponding changes are not made in the
Oracle Identity Manager database entries for these data sets. At the
same time, no error message is displayed.

Therefore, Oracle recommends that you do not modify the fields or
child data sets of the OIM - Account data set.

This point has also been discussed in Section 20.2.2, "Step 3: Modify
Connector Configuration Page".

Managing Generic Technology Connectors

Creating and Managing Generic Technology Connectors 19-33

7. After you verify that the elements displayed on the page cover your export
requirements, click Add for Export.

8. Click Exit wizard and show full selection, and click OK.

19.3.3 Importing Generic Technology Connectors
To copy a generic technology connector to a different Oracle Identity Manager
installation:

1. If the connector uses custom providers, you must copy the files created during
provider creation to the appropriate directories on the destination Oracle Identity
Manager installation.

2. Export the connector XML file on the source Oracle Identity Manager installation.

3. Import the connector XML file on the destination Oracle Identity Manager
installation.

To import the connector XML file:

1. In the Oracle Identity Manager Advanced Administration, under System
Management, click Import Deployment Management File. A dialog box for
locating files is displayed.

See Also: "Chapter 18, "Creating Custom Providers for Generic
Technology Connectors" for more information about these provider
files and the directories into which you must copy them

Caution: You must ensure that the names you select for a generic
technology connector and its constituent objects on a staging server do
not cause naming conflicts with existing connectors and objects on the
production server.

The following scenario explains why you must follow this guideline:

Suppose you create a generic technology connector on a staging
server, and want to import the connector to a production server. While
creating the generic technology connector on the staging server, you
would have ensured that the names of the generic technology
connector and the connector objects are unique on that server. At the
same time, you must also ensure that the names are not the same as
the names of connectors and connector objects on the production
server.

If any of the names happen to be the same, the old objects would be
overwritten by the new objects when you import the connector XML
file from the staging server to the production server. No message is
displayed during the overwrite process, and the process would lead to
eventual failure of the affected connectors.

This is also mentioned inSection 20.2.1, "Names of Generic Technology
Connectors and Connector Objects"

To ensure that you are able to revert to a working state in the event
that an object is overwritten, you must create a backup of the
destination Oracle Identity Manager database before you import a
connector XML file.

Using the Generic Connection Pool Framework in Custom Connectors

19-34 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

2. Locate and open the connector XML file from the directory into which you copy it.

3. Click Add File.

4. Click Next, Next, and Skip.

5. Click View Selections.

The contents of the connector XML file are displayed on the Import page. You may
see a cross-shaped icon along with some nodes. These nodes represent Oracle
Identity Manager entities that are redundant. Before you import the connector
XML file, you must remove these entities by right-clicking each node and selecting
Remove.

6. Click Import. The connector file is imported into Oracle Identity Manager.

After you import the connector XML file, you must update the run-time parameters of
the generic technology connector.

To update the values of the run-time parameters, follow the procedure described in
Section 19.5.7, "Modifying Generic Technology Connectors".

19.4 Using the Generic Connection Pool Framework in Custom
Connectors

Custom connectors can choose to use the Generic Connection Pool framework
(sometimes referred to as the GCP) for any connection pooling needs.

Internally, the Generic Connection Pool framework uses Oracle Universal Connection
Pool (UCP) as the default connection pooling mechanism.

Basic steps to use the Generic Connection Pool in a custom connector include:

1. Provide a concrete implementation for the ResourceConnection interface.

The implementation should also have a default constructor with no parameters.

2. Define the additional fields in the ITResource definition.

3. Invoke the Generic Connection Pool to obtain and release connections from the
pool.

Topics in this section include:

■ Providing concrete implementation for ResourceConnection interface

■ Defining Additional ITResource Parameters

■ Getting and Releasing Connections from the Pool

■ Using a Third-party Pool

■ Example: Implementation of ResourceConnection

19.4.1 Providing concrete implementation for ResourceConnection interface
The connection pool makes use of the concrete implementation of
ResourceConnection to create and close connections, and to validate connections to

Note: These values are not copied in the connector XML file when
you export it.

Using the Generic Connection Pool Framework in Custom Connectors

Creating and Managing Generic Technology Connectors 19-35

the target. Thus, you should ensure that this concrete implementation class is available
as a jar file under the JavaTasks folder.

Table 19–5 describes key methods of ResourceConnection:

19.4.2 Defining Additional ITResource Parameters
Table 19–6 lists other ITResource parameters for which you should provide
appropriate values:

Table 19–5 Methods of ResourceConnection

Method Description

Create Connection This method is called while initializing the pool (to create initial number of
connections) and for pool life-cycle events as needed. A hashmap named
itResourceInfoMap is available as parameter with ITResource values to this method.

The method returns the ResourceConnection which is the actual physical connection
to the target.

Close Connection The pool invokes this method when it needs to close a connection in the course of
pool life-cycle events.

Heartbeat This method is used to maintain the TCP heartbeat (or TCP keepalive) of the
connection to the target. The method keeps the TCP connection alive, so that the
connection does not time out from the target side.

Validate This method returns true or false to indicate whether the connection is still valid.

The Generic Connection Pool invokes the method if "validate connection on borrow"
is set to true. It is invoked for connections that have been in the pool for some time.

If the method returns false, the pool will discard that connection, create a new
connection, and return to the requester.

Table 19–6 ITResource Parameters

Field Description Sample Value and Notes

Abandoned
connection timeout

Connection timeout for abandoned
connections in seconds. After the timeout
elapses, the connection is reclaimed.

900

Connection wait
timeout

Wait time in seconds for a connection to
establish.

60

Inactive connection
timeout

Connection timeout, in seconds, for inactive
connections in the pool that are idle. Note:
These are not borrowed connections.

300

Initial pool size Initial number of connections in the pool. 3

Max pool size Maximum number of connections that the
pool can create.

30

Min pool size Minimum number of connections that the
pool must maintain.

2

Validate connection
on borrow

Indicates if connections should be validated.
See Table 19–5 for a detailed explanation.

true or false

Timeout check
interval

Frequency, in seconds, at which to check
timeout properties.

30

Pool preference Denotes the preferred pooling mechanism.
Default pool implementation is UCP.

"Default" (for UCP). "Native" (for Native
implementation)

Using the Generic Connection Pool Framework in Custom Connectors

19-36 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Note the following:

■ Updating the ITResource parameters from the Design Console does not refresh
the pool. Update values through the Identity System Administration or through
the APIs.

■ Avoid updating values when the pool is in use.

19.4.3 Getting and Releasing Connections from the Pool
Consumers of the Generic Connection Pool can invoke the ConnectionService to get
pooled connections to the target, and also to return connections back to the pool.

This example code gets a connection from the pool and returns it based on ITResource
Name:

import com.oracle.oim.gcp.exceptions.ConnectionServiceException;
import com.oracle.oim.gcp.pool.ConnectionService;
import com.oracle.oim.gcp.resourceconnection.ResourceConnection;

public class ConnectionPoolClient {

 public void testConnection(String itResName)
 {
 try{
 //Request for connection from the connection pool
 ConnectionService service = new ConnectionService();
 ResourceConnection myConnection =
 service.getConnection(itResName);

Connection pooling
supported

Denotes whether pooling is supported. If
pooling is not supported, returned
connections will not be pooled connections.
Recommended default is true.

true or false.

Target supports only
one connection

Denotes whether the target system supports
only one connection at a time. When set to
true, irrespective of other properties, the
following pool parameters are used:

■ Min Pool Size = 0

■ Initial Pool Size = 0

■ Max Pool Size = 1

Recommended default is false

true if target can handle only one
connection, false otherwise.

ResourceConnection
class definition

The concrete implementation of the
ResourceConnection class

com.oracle.oim.ad.ADResourceConnec
tionImpl

Native connection
pool class definition

The wrapper to the native pool mechanism
that implements the GenericPool. Set a value
only if the pool preference is set to Native.

com.oracle.oim.ad.ADNativePool

Pool excluded fields Comma-separated list of fields not needed for
creating a connection. When any of the
specified fields are updated, the GCP pool is
not refreshed.

Note: Fields in this list are not available as part
of the HashMap parameter to the
createConnection method.

Recon TimeStamp,ADSync Enabled

Table 19–6 (Cont.) ITResource Parameters

Field Description Sample Value and Notes

Using the Generic Connection Pool Framework in Custom Connectors

Creating and Managing Generic Technology Connectors 19-37

 //"myConnection" is the connection
 //use the connection...

 //Release connection back to the connection pool
 //Connections should always be returned this way.

 service.releaseConnection(myConnection);
 }
 catch(ConnectionServiceException e)
 {
 //handle
 }
 }

You can also request connections to the target using ITResource Key. Here is an
example:

ConnectionService service = new ConnectionService();
ResourceConnection myConnection = service.getConnection(itResourceKey);

19.4.4 Using a Third-party Pool
As mentioned earlier in the section, you can use any third-party pool for your custom
connector. However, in addition to the steps described earlier, you must provide a
concrete implementation of the GenericPool interface as a wrapper to the third-party
pool.

Table 19–7 lists the methods invoked for the GenericPool interface:

19.4.5 Example: Implementation of ResourceConnection
This example demonstrates an implementation of the ResourceConnection interface.
Key methods are highlighted.

Note: It If the custom connector does not wish to use the UCP pool,
it can choose to use GCP with the Native option, though there are no
significant advantages to this. With the Native pool preference, the
responsibility of maintaining and implementing the pool rests with
the custom connector.

Table 19–7 Methods of the GenericPool Interface

Method Purpose

initializePool(PoolConfiguration
poolConfig)

To initialize the pool. The PoolConfiguration data object
contains all pool-related parameters.

borrowConnectionFromPool() To request a connection.

returnConnectionToPool(Resource
Connection resConn)

To return a connection to the pool.

refreshPool(PoolConfiguration
newPoolConfig)

To refresh the pool with updated values.

destroyPool() To remove the pool (for example when ITResource is
deleted).

Using the Generic Connection Pool Framework in Custom Connectors

19-38 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Example 19–1 An Example of ResourceConnection Implementation

/**
* Sample implementation for Socket Connections:
*/
import java.io.IOException;
import java.net.InetSocketAddress;
import java.net.Socket;
import java.net.SocketException;
import java.net.UnknownHostException;

import com.oracle.oim.gcp.exceptions.ResourceConnectionCloseException;
import com.oracle.oim.gcp.exceptions.ResourceConnectionCreateException;
import com.oracle.oim.gcp.exceptions.ResourceConnectionValidationxception;
import com.oracle.oim.gcp.resourceconnection.ResourceConnection;

public class SocketResourceConnectionImpl extends Socket implements
ResourceConnection {
 public SocketResourceConnectionImpl() {
 super();

 }
 /**
 * Sample: Concrete implementation for closing a socket connection
 */
 public void closeConnection() throws ResourceConnectionCloseException{
 if(!this.isClosed()){
 try {
 this.close();
 } catch (IOException e) {
 throw new
 ResourceConnectionCloseException("[Client
 ResourceConnection implementation]
 Failed to close socket connection! ");
 }
 }
 }
 /**
 * Sample : Concrete implementation for creating a socket connection.
 * The return value is the actual physical socket connection
 *
 */
 public ResourceConnection createConnection(HashMap itResInfoMap)
 throws ResourceConnectionCreateException {
 ResourceConnection r = null;
 SocketResourceConnectionImpl i = new
 SocketResourceConnectionImpl();

 try {
//HashMap has all ITResource related information that is needed
//for connecting to target.
 String serverAddress= ((String) itResInfoMap.get
 ("Server Address")).trim();
//utility method getIntValue returns an int for a String

 int port =
 getIntValue(((String)itResInfoMap.get("Port")).trim());

 System.out.println("Connecting to Socket with IP Address "
 + serverAddress+" at port "+ port);
 InetSocketAddress inet = new

Best Practices

Creating and Managing Generic Technology Connectors 19-39

 InetSocketAddress(serverAddress,port);
 i.connect(inet);
 if(!i.isConnected()){
 throw new ResourceConnectionCreateException
 (" Failed to create socket: connection failure");
}
r = (ResourceConnection)i;
 } catch (UnknownHostException e) {
 throw new ResourceConnectionCreateException("
 [Client ResourceConnection implementation]
 Failed to create socket connection!", e);
 } catch (IOException e) {
 throw new ResourceConnectionCreateException("
 [Client ResourceConnection implementation]
 Failed to create socket connection! ",e);
 }

 return r;
}
 /**
 * Sample : Concrete implementation for heartbeat of a socket connection
 */
 public void heartbeat() throws ResourceConnectionValidationxception {
 try {
 this.setKeepAlive(true);

 } catch (SocketException e) {
 throw new
 ResourceConnectionValidationxception
 ("[Client ResourceConnection implementation]
 Failed to set heartbeat ");
 }

 }
 /**
 * Sample: Concrete implementation for validating connection
 */
 public boolean isValid() {
 if(this.isBound()){

 return true;

 }else{
 return false;
 }
 }
}

19.5 Best Practices
This section contains these topics:

■ Working with the Provide Basic Information Page

■ Working with the Specify Parameter Values Page

■ Working with the Modify Connector Configuration Page

■ Working with Shared Drive Reconciliation Transport Provider

Best Practices

19-40 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Working with Custom Providers

■ Working with Connector Objects

■ Modifying Generic Technology Connectors

19.5.1 Working with the Provide Basic Information Page
Apply the following guidelines while specifying a name for a generic technology
connector:

■ Summary:

Ensure that the name contains only ASCII characters. You can include the
underscore (_) character, but do not include any other non-ASCII character in the
name.

Description:

For most of the connector objects that are automatically created at the end of the
connector creation process, the name of the generic technology connector is part of
the name of the object itself. For example, if the name of the generic technology
connector is WebConn, the name of its scheduled task is WebConn_GTC.

In the Oracle Identity Manager database, there is no provision for storing objects
with names in non-ASCII characters. Therefore, an error message is displayed if
you enter non-ASCII characters while specifying the name of a generic technology
connector.

■ Ensure that the name is not the same as the name of any connector or connector
object on the Oracle Identity Manager installation.

■ If you plan to create the generic technology connector on a staging server and
move it to a production server, ensure that the name of the generic technology
connector does not cause naming conflicts with existing connectors or connector
objects on the production server.

■ Before you import a generic technology connector created on a staging server to a
production server, create a backup of the destination Oracle Identity Manager
database to ensure that you are able to revert to a working state in the event that a
connector object is overwritten.

■ If you select the shared drive transport provider, you must select the CSV format
provider.

■ If you select the SPML provisioning format provider, you must select the Web
Services provisioning transport provider.

■ If you select the shared drive reconciliation transport provider, ensure that there is
data in the prescribed format on at least the first two lines of the parent and child
data files provided by the target system for reconciliation. The prescribed form of
data is discussed in Section 17.1, "Shared Drive Reconciliation Transport Provider"
.

■ If you select the shared drive reconciliation transport provider, ensure that the
required permissions are set on the staging and archiving directories before
reconciliation begins. The required permissions are discussed in the "Permissions
to Be Set on the Staging and Archiving Directories" section .

■ Do not try to create more than one generic technology connector at a time, even
from different sessions of the Identity System Administration for the same Oracle
Identity Manager installation.

Best Practices

Creating and Managing Generic Technology Connectors 19-41

19.5.2 Working with the Specify Parameter Values Page
This section describes the following known issues related to the input that you specify
on the Step 2: Specify Parameter Values page:

■ Summary:

If you use the shared drive reconciliation transport provider, :

– Do not specify the same path for the staging and archiving directories.
Existing files in the archiving directory are deleted if you specify the same
path for both directories.

– Ensure that the names of files in the staging directory are different from the
names of files in the archiving directory. If the file names happen to be the
same, existing files in the archiving directory are overwritten at the end of a
reconciliation run.

Description:

When you use the shared drive reconciliation transport provider, after each
reconciliation run, data files are moved from the staging directory to the archiving
directory. The files moved to the archiving directory are not time-stamped or
marked in any way. Therefore, when you use the shared drive transport provider,
bear in mind the following guidelines:

– The archiving directory path and name that you specify must not be the same
as the staging directory path and name. If you specify the same path and
name, the existing files in the archiving directory are deleted at the end of the
reconciliation run.

– During the current reconciliation run, if data files with the same names as the
files used in the last reconciliation run are placed in the staging directory, the
existing files in the archiving directory are overwritten by the new files from
the staging directory. This can be illustrated by the following example:

Suppose that at the end of the last reconciliation run, the following files were
moved automatically from the staging directory to the archiving directory:

usrdataParentData.csv
usrdataRoleData.csv
usrdataGroupMembershipData.txt

For the current reconciliation run, you place the following files in the staging
directory:

usrdataParentData.csv
usrdataRoleData_04Feb07.csv
usrdataGroupMembershipData_04Feb07.txt

At the end of the current reconciliation run, these files are moved to the
archiving directory. When this happens, the old usrdataParentData.csv file is
overwritten by the new one.

Therefore, if you want to ensure that files in the archiving directory are not
overwritten at the end of a reconciliation run, you must ensure that the names
of files in the staging directory are not the same as the names of files in the
archiving directory.

■ Summary:

Metadata detection does not take place a second time if you go back to the Step 2:
Specify Parameter Values page. Therefore, if required, you must manually make

Best Practices

19-42 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

changes in the fields and field mappings displayed on the Step 3: Modify
Connector Configuration page.

Description:

Suppose you want to change a value that you provide on the Step 2: Specify
Parameter Values page. You can return to this page from the Step 4: Verify
Connector Form Names or Step 5: Verify Connector Information page. However,
metadata detection would not take place a second time when you click the
Continue button after changing the provider parameter value. This functionality is
aimed at preserving changes that you may have manually made on the Step 3:
Modify Connector Configuration page.

As an extension of this functionality, metadata detection does not take place even
when you modify an existing generic technology connector.

19.5.3 Working with the Modify Connector Configuration Page
This section discusses best practices related to the following areas:

■ Names of Fields

■ Password Fields

■ Password-Like Fields

■ Mappings

■ Oracle Identity Manager Data Sets

19.5.3.1 Names of Fields
Note that the following validations are applied when you specify a field name while
adding or editing fields:

■ Two fields that belong to the same data set (parent or child) cannot have the same
name.

■ Two child data sets of the same parent data set cannot have the same name.

■ The name of a field in a parent data set cannot be the same as the name of one of
its child data sets.

■ Two different child data sets can have fields that have the same name, regardless
of whether or not the child data sets belong to the same parent data set. For
example, the GroupMembership data set and Role data set can each have a field
with the name UsrID.

■ Two different parent data sets can have fields that have the same name. Similarly,
these data sets can also have child data sets that have the same name.

■ The name of a child data set can be the same as that of one of its fields.

19.5.3.2 Password Fields
To ensure the security of passwords, password information must not be reconciled
through a generic technology connector. In other words, you must ensure that the
Source and reconciliation staging data sets do not contain the Password field. In
addition, you must not map any field of the reconciliation staging data sets to the
Password field of the OIM - User data set.

Best Practices

Creating and Managing Generic Technology Connectors 19-43

19.5.3.3 Password-Like Fields
A password-like field is a field to which you set the Encrypted and Password Field
attributes (by selecting the Encrypted and Password Field check boxes). You can create
a password-like field by setting these two attributes to a field that you add to the OIM
- Account data set.

To secure the contents of password-like fields, bear in mind the following guidelines
while adding or editing these fields:

■ You can use the Password Field and Encrypted check boxes to secure the display
and storage of password information in Oracle Identity Manager. However, when
you map password-like fields to fields of the provisioning staging data set, you
must take all necessary precautions to secure the data propagated in these fields.
For example, you must ensure that this data is not stored in a plain-text file on the
target system at the end of a provisioning operation.

Oracle recommends creating only one-to-one mappings between the password
field of the OIM - Account data set and the provisioning staging data set. In other
words, this password field must not be used as an input field for a transformation
mapping with a provisioning staging field. The same precaution must be taken for
the Password field of the OIM - User data set.

■ As mentioned earlier, the Password field is one of the predefined fields of the OIM
- User data set. The Password Field and Encrypted attributes are set for this field.
By using the Design Console, you can set the Password Field and Encrypted
attributes for a UDF that you create. This would give the newly created UDF the
same properties as the existing Password field. However, the generic technology
connector framework treats this field the same as any other text field (with the
String data type) and the contents are not encrypted in the Identity Self Service,
Identity System Administration, or database.

See also Section 20.1, "General Issues for Generic Technology Connectors".

19.5.3.4 Mappings
Apply the following best practices while working with fields of the Oracle Identity
Manager data sets:

■ Summary:

If you select the translation transformation provider to create a mapping, specify
the name of a lookup definition in the Lookup Code Name region. If you specify a
data set name and field in the Lookup Code Name region, translation would fail
during actual reconciliation or provisioning operations.

Description:

If you select the translation transformation provider while creating a mapping, the
Step 2: Mapping page displays options for selecting a field from a data set and
specifying a literal. Because you are using the translation transformation provider,
you must select the Literal option and enter the name of the lookup definition that
contains the Code Key and Decode values for the translation. You must not select a
data set name and field in the Lookup Code Name region. Although there is no
validation to stop you from selecting a data set name and field, the translation
operation would fail during actual reconciliation or provisioning operations.

■ Create a mapping between the ID field of the OIM - Account data set and the field
that uniquely identifies records of the reconciliation staging data set.

Best Practices

19-44 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Along with the ID field, other fields of the OIM - Account data set can be
(matching-only) mapped to corresponding fields of the reconciliation staging data
set to create a composite key field for reconciliation matching.

■ Create mappings between all fields in provisioning staging data sets and
corresponding fields in Oracle Identity Manager data sets.

■ To create a reconciliation rule, you create matching-only mappings between fields
of the reconciliation staging data set and the OIM - User data set. If there are child
data sets, ensure that the names of fields of the reconciliation staging data set that
are input fields for the matching-only mappings are not used in any of the
reconciliation staging child data sets. If you do not follow this guideline,
reconciliation would fail.

This has also been mentioned in the section "Step 3: Modify Connector
Configuration Page".

■ A literal field can be used as one of the input fields of a transformation mapping. If
you select the Literal option, you must enter a value in the field. You must not
leave the field blank after selecting it.

19.5.3.5 Oracle Identity Manager Data Sets
Apply the following best practices while working with fields of the Oracle Identity
Manager data sets:

■ For trusted source reconciliation, the following fields of the OIM – User data set
must always hold values:

– User ID

– First Name

– Last Name

– Organization Name

– Xellerate Type

– Role

In addition, you can select other OIM – User fields that must be populated when a
user account is created through reconciliation. For each of these fields, you must
create mappings with the corresponding fields of the reconciliation staging data
sets. During a reconciliation run, you must ensure that the fields of the target
system that serve as the source for these fields always hold values.

For provisioning, you can select fields of the OIM – User and OIM – Account data
sets whose values must be propagated to the target system. After you identify
these fields, create mappings between them and their corresponding fields in the
provisioning staging data sets. During a provisioning operation, you must enter
values for each of these fields.

■ If required, add user-defined fields (UDFs) to the list of predefined OIM - User
data set fields. See "Configuring User Attributes" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Manager for details.

■ Do not modify or delete attributes of OIM - Account data set fields in an existing
generic technology connector.

19.5.4 Working with Shared Drive Reconciliation Transport Provider
Summary

Best Practices

Creating and Managing Generic Technology Connectors 19-45

If parent records and child data records are created and linked in both the target
system and Oracle Identity Manager, you must ensure that the staging directory
contains both parent data and child data files at the start of each reconciliation run.

Description

Suppose there are parent data records with associated child data records in the target
system. To reconcile these records into Oracle Identity Manager, you place the parent
and child data files containing these records in the staging directory. During the
reconciliation run, the child data records are linked to their corresponding parent data
records. Before the start of any subsequent reconciliation run, if you remove the child
data files from the staging directory, reconciliation events are not created for this form
of child data record deletion. If you want to remove child data records for specific
parent data records, you must remove the child data records from the child data file.
You must ensure that the child data file is placed in the staging directory for each
reconciliation run, even if there are no child data records (from the third line onward)
in the files.

19.5.5 Working with Custom Providers
Apply the following guideline while working with custom providers:

When you develop code for a custom provisioning transport provider, ensure that the
provider returns the unique field value at the end of a Create User operation. This
functionality is implemented by the sendData method of the provisioning transport
provider. See "Role of Providers During Provisioning" for more information.

19.5.6 Working with Connector Objects
Apply the following guidelines while working with connector objects created
automatically during generic technology connector creation:

■ Summary:

Do not attempt to use for provisioning the resource object created automatically
for a reconciliation-only generic technology connector.

Description:

Suppose you select only the Reconciliation option while creating a generic
technology connector. At the end of the creation process, a resource object is one of
the objects created automatically for this generic technology connector. However,
you cannot provision this resource object to any user because a generic adapter is
not created for a reconciliation-only generic technology connector.

■ Summary:

Do not attempt to provision generic technology connector resource objects to
organizations defined in Oracle Identity Manager.

Description:

A resource object is one of the connector objects that get created automatically
during generic technology connector creation. This resource object can be
provisioned only to Oracle Identity Manager Users. You must not attempt to
provision it to organizations defined in Oracle Identity Manager.

This has also been mentioned in the Connector Objects section .

■ You can use the Design Console to customize connector objects that are
automatically created during generic technology connector creation. After you
customize connector objects, if you perform a Manage Generic Technology

Best Practices

19-46 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Connector operation, all the customization done on the connector objects would be
overwritten. Therefore, Oracle recommends that you to apply one of the following
guidelines:

– Do not use the Design Console to modify generic technology connector
objects.

The exception to this guideline is the IT resource. You can modify the
parameters of the IT resource by using the Design Console. However, if you
have enabled the cache for the GenericConnector and
GenericConnectorProviders categories, you must purge the cache either
before or after you modify IT resource parameters.

– If you use the Design Console to modify generic technology connector objects,
do not use the Manage Generic Technology Connector feature to modify the
generic technology connector.

This has also been mentioned in Section 19.5.6, "Working with Connector Objects".

■ Prepopulate adapters are not part of the set of connector objects that are created
automatically when you create a generic technology connector. However, while
creating a generic technology connector, you can map provisioning input to literals
and user data fields. Although this feature cannot be used to prepopulate the User
Defined Form, it can be used to prepopulate the provisioning data packet.

19.5.7 Modifying Generic Technology Connectors
Apply the following best practice while modifying generic technology connectors:

Do not try to modify more than one generic technology connector at a time, even from
different sessions of the Identity System Administration for the same Oracle Identity
Manager installation.

20

Troubleshooting Generic Technology Connectors 20-1

20 Troubleshooting Generic Technology
Connectors

[21]

This chapter describes how to troubleshoot problems that you might encounter during
development. It contains these sections:

■ General Issues for Generic Technology Connectors

■ Configuration Issues for Generic Technology Connectors

20.1 General Issues for Generic Technology Connectors
This section describes general issues for generic technology connectors. It contains
these topics:

■ Creation Issues

■ Multi-language Support

■ Other General Issues

20.1.1 Creation Issues
This section describes the following known issues related to the connector objects that
are automatically created by the generic technology connector framework:

■ Summary:

– No warning is displayed if the name that you specify for a generic technology
connector is the same as the name of an existing connector object.

– No warning is displayed if an existing connector object is overwritten by a
new connector object when you import a connector XML file.

Description:

This point has also been discussed in the "Names of Generic Technology
Connectors and Connector Objects" section.

■ Summary:

After an error occurs during generic technology connector creation, form names
are not displayed on the Step 4: Verify Connector Form Names page when you
revisit that page by clicking Back on the Step 5: Verify Connector Information
page.

This is intentional and not the result of an issue or limitation of the software.

General Issues for Generic Technology Connectors

20-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Description:

As mentioned earlier in this guide, some connector objects are automatically
created even if the overall generic technology connector creation process fails. This
set of connector objects includes process forms whose names you specify on the
Step 4: Verify Connector Form Names page. In the event that the connector
creation process fails, you are prompted to enter new form names through the
display of blank fields on the Step 4: Verify Connector Form Names page. This is
to ensure that the uniqueness checks on the process form names are reapplied
when you submit the new form names.

As an alternative to revisiting the previous pages and providing input for creating
the generic technology connector, you can start all over again from the Step 1:
Provide Basic Information page and re-create the generic technology connector.

■ Summary:

You cannot provision generic technology connector resource objects to
organizations defined in Oracle Identity Manager.

Description:

A resource object is one of the connector objects that get created automatically
during generic technology connector creation. This resource object can be
provisioned only to Oracle Identity Manager Users. You must not attempt to
provision it to organizations defined in Oracle Identity Manager.

■ Summary:

Customization work done on objects of a generic technology connector would be
overwritten if you perform a Manage Generic Technology Connector operation.

Description:

You can use the Design Console to customize connector objects that are
automatically created during generic technology connector creation. However,
after you customize connector objects, if you perform a Manage Generic
Technology Connector operation, then all the customization done on the connector
objects would be overwritten. Therefore, Oracle recommends that you to apply
one of the following guidelines:

■ Do not use the Design Console to modify generic technology connector
objects.

The exception to this guideline is the IT resource. You can modify the
parameters of the IT resource by using the Design Console. However, if you
have enabled the cache for the GenericConnector and
GenericConnectorProviders categories, then you must purge the cache either
before or after you modify IT resource parameters.

■ If you use the Design Console to modify generic technology connector objects,
then do not use the Manage Generic Technology Connector feature to modify
the generic technology connector.

■ Connector objects that are automatically created are not deleted even if the generic
technology connector creation process fails.

■ Summery:

When you create a new GTC based on Database Application Table, configure
connection parameters, and select the custom transformation provider in the
reconciliation staging to apply a concatenation to the attribute, such as
ID_EMPLEADO, the custom transformation provider is visible and you can select

General Issues for Generic Technology Connectors

Troubleshooting Generic Technology Connectors 20-3

it, but when you click Continue to provide mapping information, an error is
loggged, and you are not able to provide parameters to the Transformation. The
error is similar to the following:

<Sep 29, 2011 6:31:32 PM CDT> <Error>
<org.apache.struts.tiles.taglib.InsertTag> <BEA-000000> <ServletException in
'/gc/ModifyConnectorTransParamsTiles.jsp': null
javax.servlet.ServletException: java.lang.reflect.InvocationTargetException

Description:

The possible reason of this error is missing entries in the properties files. To resolve
this issue, the resource bundles must be added in the following files:

■ $MW_HOME/Oracle_IDM1/server/customResources/customResources_en.pro
perties

■ The corresponding translations for the other locales used

20.1.2 Multi-language Support
This section describes the following known issues related to the Multilanguage
Support feature:

■ Summary:

No warning is displayed if there are non-ASCII characters in the first or second
line of the data files in the staging directory.

Description:

There is no support for non-ASCII data in the metadata of target system user data.
If you use the CSV Reconciliation format provider, then this limitation means that
you cannot include non-ASCII characters in the metadata line (second line) of the
parent and child data files that you store in the staging directory.

The reason for this limitation is as follows:

The generic technology connector framework creates User Defined process forms
in Oracle Identity Manager and names the forms and their fields on the basis of
the input metadata. In addition, database tables and columns are created for these
forms and their fields, respectively. Because non-ASCII characters cannot be used
in database object names, these characters are not supported in the target system
metadata.

The generic technology connector framework may be able to parse and correctly
display non-ASCII characters in the first and second lines of the data files.
However, to ensure that the connector objects are created correctly, you must
ensure that non-ASCII characters are not used in the first and second lines of the
data files.

■ Summary:

For any language that Oracle Identity Manager supports, if the browser language
setting does not match the operating system language setting of the Oracle

Note: From the third line onward in the data files, the field data
values can contain non-ASCII characters. These data values are
reconciled and stored in the Oracle Identity Manager database.

General Issues for Generic Technology Connectors

20-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Identity Manager server, then data is not displayed correctly on the Step 3: Modify
Connector Configuration page.

Description:

The Step 3: Modify Connector Configuration page displays an image that is
dynamically created by the generic technology connector framework. The
following are limitations related to the display of localized text items on this page:

The language in which you want field labels to be displayed must match the
following language settings:

– Oracle Identity Manager language

– Operating system language

– Browser language

If the browser language setting is the same as the operating system language
setting of the Oracle Identity Manager server, then all the text items (field names
and GUI element labels) are displayed in the required language.

If the browser language is not the same as the operating system language, then the
following static labels would be displayed in English (regardless of the browser
language):

– Labels of the OIM - User and OIM - Account data sets: "User" and "Account"

– Labels of the fields that constitute the OIM - User data set:

* "User ID"

* "Email"

* "First Name"

* "Last Name"

For non-ASCII languages, labels for the remaining items on the Step 3: Modify
Connector Configuration page would not be displayed correctly.

■ Summary:

Certain text items displayed on the Step 3: Modify Connector Configuration page
are always displayed in English.

Description:

Some of the static text displayed on the Step 3: Modify Connector Configuration
page are not localized. For example, suppose you create a generic technology
connector named MyGTC. When you provision the resource object of this connector
to a user, the following text is displayed on the page:

Note:

■ Localized GUI element labels are displayed only if you create and
use resource bundles that contain localized labels for these GUI
elements.

■ If you are using the Traditional Chinese or Simplified Chinese
language, then the browser locale (language and country/region)
must be the same as the operating system locale (language and
country/region) for all the text items to be displayed in the
required language.

General Issues for Generic Technology Connectors

Troubleshooting Generic Technology Connectors 20-5

Provisioning form for MyGTC

Child Form of MyGTC representing child-dataset: child_data_set_name

The static part of this text is always displayed in English.

If required, you can localize the static text as follows:

1. For the language to which you want to localize the text, open the
corresponding customResources.properties file by importing it from MDS. The
files for all the languages that Oracle Identity Manager supports are in MDS.
To import the customResources.properties file from MDS, see "Migrating User
Modifiable Metadata Files" on page 37-1.

The following example illustrates this step of the procedure.

Suppose you specify the following values while creating a generic technology
connector:

– Connector Name: MyGTC

– Parent Form name: ADUser

– Child data set name: ADUserRole

– Child form name: ADURole1

If you want the static text to be displayed in the Spanish language, then open
the customResources_es.properties file. This file is in MDS.

2. In the customResources.properties file for the required language, add the
following lines:

global.UD_PARENT_FORM_NAME.description=Localized_text_for_"Provisioning
form for" GTC_name

global.UD_CHILD_FORM_NAME.description=Localized_text_for_"Child Form of"
GTC_name Localized_text_for_"representing the child data set":
child_data_set_name

In these two lines, replace:

* PARENT_FORM_NAME with the name of the parent form

The parent form name is always converted to uppercase letters in Oracle
Identity Manager. Therefore, the name that you enter must be in upper-
case letters.

* Localized_text_for_"Provisioning form for" with localized text for
the words "Provisioning form for"

* GTC_name with the name of the generic technology connector

* CHILD_FORM_NAME with the name of the child form

The child form name is always converted to uppercase letters in Oracle
Identity Manager. Therefore, the name that you enter must be in upper-
case letters.

Note: You can access the customResources.properties file for the
required language from the Oracle Identity Manager page on the
Oracle Technology Network (OTN) Web site at the following URL:

http://www.oracle.com/technetwork/index.html

General Issues for Generic Technology Connectors

20-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

* Localized_text_for_"Child Form of" with localized text for the words
"Child form for"

* child_data_set_name with the name of the child data set

For example:

For the Spanish language, add the following lines in the
customResources_es.properties file:

global.UD_ADUSER.description=Spanish_text_for_"Provisioning form for" MyGTC

global.UD_ADUROLE1.description=Spanish_text_for_"Child Form of" MyGTC
Spanish_text_for_"representing the child data set": ADUserRole

20.1.3 Other General Issues
This section describes the following known issues that do not fall under any of the
preceding categories:

■ Summary:

Unsafe-Filename exceptions may be thrown during the generic technology
connector creation process.

Description:

On Oracle WebLogic Server and Oracle Application Server, the Unsafe-Filename
exception may be thrown during the generic technology connector creation
process. This exception can be ignored. The generic technology connector creation
process is not affected by the occurrence of these exceptions. This issue is not seen
on IBM WebSphere Application Server and JBoss Application Server.

■ Generic technology connectors do not support the reconciliation of parent data
deletion.

You cannot use a generic technology connector to reconcile the deletion of parent
data. For example, if the account of user John Doe is deleted from the target
system, then you cannot use a generic technology connector to reconcile this user
deletion in Oracle Identity Manager.

■ Summary:

The contents of a UDF are not encrypted if the Password Field and Encrypted
attributes have been set for the field by using the Design Console.

Description:

As mentioned earlier, the Password field is one of the predefined fields of the OIM
- User data set. The Password Field and Encrypted attributes are set for this field.
By using the Design Console, you can set the Password Field and Encrypted
attributes for a UDF that you create. This would give the newly created UDF the
same properties as the existing Password field. However, the generic technology
connector framework treats this field the same as any other text field (with the
String data type) and the contents are not encrypted in the Identity System
Administration or database.

■ The generic technology connector framework does not provide some of the
functionality that the Design Console offers for creating reconciliation rules. Only
reconciliation rules of the following pattern can be created:

A equals B

"and"

Configuration Issues for Generic Technology Connectors

Troubleshooting Generic Technology Connectors 20-7

C equals D

"and"

E equals F

■ While creating a generic technology connector, you cannot specify that the target
system requires a remote manager to communicate with the target system.
Therefore, a generic technology connector cannot use a remote manager.

■ You use the Target Date Format parameter to specify the format in which date
values must be sent to the target system during provisioning. Date validation for
this parameter does not take place if you enter a date in numeric format. For
information about the date formats that you can specify, see the following Web
page:

http://java.sun.com/docs/books/tutorial/i18n/format/simpleDateFormat.ht
ml#datepattern

■ Scheduled tasks that are not currently running have the INACTIVE status. These
tasks run at the next specified date and time. Under certain conditions, a
scheduled task is automatically assigned the NONE status. However, this status
change does not affect the functionality of the task, which continues to run at the
specified date and time.

■ During a Manage Generic Technology Connector operation, if you change the data
type of a field in the OIM - Account data set, then an error is thrown when you
click Create on the Step 5: Verify Connector Information page.

20.2 Configuration Issues for Generic Technology Connectors
This section contains these topics:

■ Names of Generic Technology Connectors and Connector Objects

■ Step 3: Modify Connector Configuration Page

■ Errors During Connector Creation

■ Errors During Reconciliation

■ Errors During Provisioning

20.2.1 Names of Generic Technology Connectors and Connector Objects
This section describes the following known issues related to the names that you
specify for generic technology connectors and connector objects:

Summary:

■ No warning is displayed if the name that you specify for a generic technology
connector is the same as the name of an existing connector object.

■ No warning is displayed if an existing connector object is overwritten by a new
connector object when you import a connector XML file.

Description:

During the creation or modification of a generic technology connector, various objects
are automatically created or modified by the generic technology connector framework.
You are prompted to specify names for the generic technology connector and process
forms. The framework automatically generates names for the remaining objects. These

Configuration Issues for Generic Technology Connectors

20-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

autogenerated names are based on the name that you specify for the generic
technology connector.

When you specify a name for the generic technology connector, you must ensure that
the name is unique across all object categories (such as resource objects and IT
resources) for that Oracle Identity Manager installation. Similarly, you must also
ensure that the process form names are unique. This guideline must be followed even
while importing a generic technology connector XML file to a different Oracle Identity
Manager installation. You must ensure that the names of objects defined in the XML
file are not the same as the names of objects belonging to the same category on the
destination Oracle Identity Manager installation. For example, the name of the
scheduled task defined in the XML file must not be the same as the name of any other
scheduled task on the destination Oracle Identity Manager installation.

The scope of this guideline covers all connector objects, regardless of whether the
object is used by a predefined connector or a generic technology connector on the
destination Oracle Identity Manager installation.

If you do not follow this guideline, then existing objects that have the same name as
imported objects are overwritten during the XML file import operation. No message is
displayed during the overwrite process, and the process leads to eventual failure of the
affected connectors.

This point has also been discussed in the "Connection Objects" section .

20.2.2 Step 3: Modify Connector Configuration Page
This section describes the following known issues related to the input that you specify
on the Step 3: Modify Connector Configuration page:

■ Summary:

While modifying an existing generic technology connector, if you modify the fields
or child data sets of the OIM - Account data set, then corresponding changes are
not made in the Oracle Identity Manager database entries for the forms that are
based on these data sets. At the same time, no error message is displayed.

Description:

The Step 3: Modify Connector Configuration page provides features to add,
modify, and delete fields and field mappings. You can use these features to modify
the length or data type of fields in the OIM - Account data set or its child data sets.
However, this action would not translate into corresponding changes in the Oracle
Identity Manager database entries for these data sets. At the same time, no error
message is displayed.

Therefore, you must not make changes in the fields or child data sets of the OIM -
Account data set.

■ Summary:

Suppose you create a generic technology connector, use it for provisioning or
reconciliation, and then delete fields or child data sets of the OIM - Account data
set. An error occurs the next time you perform provisioning or reconciliation by
using the same generic technology connector.

Description:

Suppose you create a generic technology connector and then use it for
provisioning or reconciliation. You then delete some fields or child data sets of the

Configuration Issues for Generic Technology Connectors

Troubleshooting Generic Technology Connectors 20-9

OIM - Account data set of this generic technology connector. The next time you
perform provisioning or reconciliation by using the same generic technology
connector, an exception is thrown.

After you use the generic technology connector for provisioning or reconciliation
even once, deleting the fields or child data sets of the OIM - Account data set is an
invalid operation. This is because data linked to the fields or child data sets that
you delete has already been stored in the Oracle Identity Manager database.

Therefore, you must not delete fields or child data sets of the OIM - Account data
set if the generic technology connector has already been used to perform
provisioning or reconciliation.

■ Summary:

If the name of a reconciliation staging field used in a matching-only mapping were
to be reused as the name of a field in a reconciliation staging child data set, then
reconciliation would fail.

Description:

You create a reconciliation rule by creating matching-only mappings between
fields of the reconciliation staging data set and OIM - User data set. If there are
child data sets, then you must ensure that the names of fields of the reconciliation
staging data set that are input fields for the matching-only mappings are not used
in any of the reconciliation staging child data sets. If the name of a reconciliation
staging field used in a matching-only mapping were to be reused as the name of a
field in a reconciliation staging child data set, then reconciliation would fail.

The following example illustrates this scenario:

The AD_User data set is the reconciliation staging parent data set. The following are
the fields of this data set:

– User ID

– Name

– Designation

– Location

The Admin_Groups data set is a child data set of the AD_User data set. If you use the
User ID field of the AD_User data set to create a matching-only mapping with the
OIM - User data set, then you cannot have a field with the name User ID in the
Admin_Groups data set. If this child data set were to contain a field with the name
User ID, then reconciliation would fail.

■ Summary:

The Password field is displayed in the OIM – User data set, even though this field
is not reconciled by the reconciliation engine.

Description:

If you select the Trusted Source Reconciliation option on the Step 1: Provide Basic
Information page, then the Password field is displayed in the OIM – User data set
on the Step 3: Modify Connector Configuration page, even though this field is not
reconciled by the reconciliation engine. If you create a mapping between this field
and the corresponding target system field in the reconciliation staging data set,
then the reconciliation field mapping that is automatically generated would try to
map the field to the Password field. This, in turn, would cause the reconciliation
event to fail.

Configuration Issues for Generic Technology Connectors

20-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ There are limitations related to creating transformation mappings across the
following data sets:

– Source and reconciliation staging

– Oracle Identity Manager and Provisioning Staging

These limitations are as follows:

– You cannot create a transformation mapping between a child data set of the
Source or Oracle Identity Manager data set and a different (that is, not
corresponding) child data set of the reconciliation staging or provisioning
staging data sets. This also means that you cannot create a many-to-one
mapping from multiple child data sets of one parent data set to a single child
data set of another parent data set.

The following example illustrates this limitation:

Suppose the Source parent data set has the following child data sets:

MyGTC:Group data set

* Field 1: Group Name

* Field 2: Group Type

MyGTC:Role data set

* Field 1: Role Name

* Field 2: Role Type

Suppose the reconciliation staging parent data set has the following child data
sets:

MyGTC:Group data set

* Field 1: Group Name

* Field 2: Group Type

MyGTC:Role data set

* Field 1: Role Definition

According to this limitation, you cannot create a transformation mapping
between, for example, the Group Name field of the Source data set and the
Role Definition field of the reconciliation staging data set.

However, you can create a many-to-one transformation mapping between, for
example, the Role Name and Role Type fields of the Source data set and the
Role Definition field of the reconciliation staging data set.

– You cannot create a transformation mapping between a Source or Oracle
Identity Manager parent data set and a reconciliation staging or provisioning
staging child data set.

The following example illustrates this limitation:

Suppose the following are Oracle Identity Manager data sets and their fields:

OIM - Account data set

* Field 1: Name

* Field 2: Address

* Field 3: User ID

Configuration Issues for Generic Technology Connectors

Troubleshooting Generic Technology Connectors 20-11

* .. .

Suppose the following are provisioning staging child data sets and their fields:

Group data set

* Field 1: Group Name

* Field 2: Group Type

According to this limitation, you cannot create a transformation mapping
between, for example, the Name field of the OIM - Account data set and the
Group Name field of the Group data set.

■ To create a reconciliation rule, you create matching-only mappings between fields
of the reconciliation staging data set and the OIM - User data set. If there are child
data sets, then ensure that the names of fields of the reconciliation staging data set
that are input fields for the matching-only mappings are not used in any of the
reconciliation staging child data sets.

If this guideline is not followed, then reconciliation would fail.

■ Suppose you set the Date data type for a field on a child form. A Delete Child
Record provisioning operation would fail if there is a date value in this field
during the operation.

20.2.3 Errors During Connector Creation
The following are error messages that may be displayed at the end of the generic
technology connector creation process. Each message explains the event that causes or
during which the error message is displayed.

■ An error was encountered while generating the import XML file for generic
technology connector connector_name.

■ An error was encountered while updating the IT resource parameters with the
values provided for the run-time provider parameters of generic technology
connector connector_name.

■ An error was encountered while either generating the XML file for generic
technology connector connector_name or saving it in the Oracle Identity Manager
database.

■ An error was encountered while importing the XML file for generic technology
connector connector_name. The required lock on the import operation could not
be acquired.

■ An error was encountered while saving the information for generic technology
connector connector_name. Check the application logs for more details.

■ An error was encountered while creating a resource object for the generic
technology connector connector_name. An existing resource object has the same
name as the one being assigned to this resource object.

20.2.4 Errors During Reconciliation
Table 20–1 provides solutions to some commonly encountered problems associated
with the reconciliation process.

Configuration Issues for Generic Technology Connectors

20-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Note: These errors are logged only if you are using the shared drive
reconciliation transport provider and the CSV Reconciliation format
provider.

If any of these errors occurs, then the error message is written to the
application server log file.

Table 20–1 Common Errors Encountered During Reconciliation

Problem Description (Error
Message) Solution

No run time provider parameters
available

Use the Manage Generic Technology Connector feature to check the values
specified for the run-time parameters. Then, retry reconciliation.

No design time provider parameters
available

Use the Manage Generic Technology Connector feature to check the values
specified for the design parameters. Then, retry reconciliation.

Staging directory location is not
defined

Use the Manage Generic Technology Connector feature to check the value
specified for the Staging Directory (Parent Identity Data) parameter. Then,
retry reconciliation.

File encoding is not defined Use the Manage Generic Technology Connector feature to check the value
specified for the File Encoding (Parent Data) parameter. Then, retry
reconciliation.

Archive directory location is not
defined

Use the Manage Generic Technology Connector feature to check the value
specified for the Archiving Directory parameter. Then, retry reconciliation.

Cannot process files as not even
fixed-width delimiter has been
defined

Use the Manage Generic Technology Connector feature to check if a value
has been specified for one of the following parameters:

■ Specified Delimiter

■ Tab Delimiter

■ Fixed Column Width

Then, retry reconciliation.

No Parent files in staging directory

No files available for reading

Ensure that data files are present in the directory specified as the value of
the Staging Directory (Parent Identity Data) parameter. Then, retry
reconciliation.

No child data present in staging
directory

No files available for reading

Ensure that data files are present in the directory specified as the value of
the Staging Directory (Multivalued Identity Data) parameter. Then, retry
reconciliation.

The staging directory cannot be
accessed. Either the directory path
does not exist or necessary access
permissions are missing

Ensure that the directories specified as parameter values have the required
permissions. See Section 17.1, "Shared Drive Reconciliation Transport
Provider" for information about the required permissions. Then, retry
reconciliation.

Data files could not be read as its File
encoding is not supported.

Use the Manage Generic Technology Connector feature to check the value
specified for the File Encoding parameter. Then, retry reconciliation.

Configuration Issues for Generic Technology Connectors

Troubleshooting Generic Technology Connectors 20-13

20.2.5 Errors During Provisioning
Table 20–2 provides solutions to some commonly encountered problems associated
with the provisioning process.

Not able to parse metadata Check the metadata (contents of the second row) present in the parent and
child data files. There may be a problem with the delimiter used in the
files. Fix the problem, and then retry reconciliation.

Not able to parse header Check the header (contents of the first row) of the data files. There may be
a problem in the format of the header. See Section 17.1, "Shared Drive
Reconciliation Transport Provider" for information about the header
format.

Fix the problem, and then retry reconciliation.

Current Record is erratic and cannot
be parsed

Check the entry that is written to the application server log file. It may
contain errors that cannot be parsed. Fix the problem, and then retry
reconciliation.

Note: Most of these errors are logged only if you are using the Web
Services provisioning transport provider and the SPML provisioning
format provider.

If any of these errors occurs, then the error message is displayed on
the UI and written to the application log file.

Table 20–2 Common Errors Encountered During Provisioning

Problem Description Solution

Response code:

SPML Velocity Properties Not Read

Response Description:

The SPML template properties could
not be read.

There is a problem with the Oracle Identity Manager installation. Contact
Oracle Support, and send them information about this problem and the
response code and description displayed. In addition, send the relevant
logs generated after running Oracle Identity Manager with logging set to
the DEBUG level.

Response code:

SPML Template Not Read

Response Description:

The SPML template file was not
found.

There is a problem with the Oracle Identity Manager installation. Contact
Oracle Support, and send them information about this problem and the
response code and description displayed. In addition, send the relevant
logs generated after running Oracle Identity Manager with logging set to
the DEBUG level.

Response code:

SPML Unknown Operation

Response Description:

This provisioning operation is not one
of the permitted operations: Create,
Delete, Enable, Disable, Modify, and
Child Table Operations.

There is a problem with the Oracle Identity Manager installation. Contact
Oracle Support, and send them information about this problem and the
response code and description displayed. In addition, send the relevant
logs generated after running Oracle Identity Manager with logging set to
the DEBUG level.

Table 20–1 (Cont.) Common Errors Encountered During Reconciliation

Problem Description (Error
Message) Solution

Configuration Issues for Generic Technology Connectors

20-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Response code:

SPML Provisioning Input Null

Response Description:

SPML provisioning input data is null.

Check if the provider parameters have been correctly specified.

Check if provisioning was initiated by direct provisioning or request
provisioning. Retry the procedure by using the direct provisioning option.

Response Code:

SPML Template Context Processing
Error

Response Description:

An error was encountered while
processing the template context for
generation of SPML request.

There is a problem with the Oracle Identity Manager installation. Contact
Oracle Support, and send them information about this problem and the
response code and description displayed. In addition, send the relevant
logs generated after running Oracle Identity Manager with logging set to
the DEBUG level.

Response code:

SPML Provisioning Operation Name
Missing

Response Description:

The operation name for provisioning
is missing.

The generic technology connector may not have been created correctly. Try
creating another connector by using the same set of configurations
(providers) but with fewer attributes. Try direct provisioning.

Response code:

SPML Provisioning Child Name
Missing

Response Description:

The child name is missing.

You may have been trying to perform provisioning for one particular type
(for example, role or membership) of multivalued attribute when this error
occurred.

The connector may not have been created correctly. Try creating another
connector by using the same set of configurations (providers) but only one
multivalued attribute, which is the one that failed the first time. Try direct
provisioning.

Response code:

SPML Provisioning Child Meta-Data
Null

Response Description:

The child metadata list is null.

You may have been trying to perform provisioning for one particular type
(for example, role or membership) of multivalued attribute when this error
occurred.

The connector may not have been created correctly. Try creating another
connector by using the same set of configurations (providers) but only one
multivalued attribute, which is the one that failed the first time. Try direct
provisioning.

Response code:

SPML Provisioning Child Metadata
Problem

Response Description:

An error was encountered while
sorting the child metadata list.

You may have been trying to perform provisioning for one particular type
(for example, role or membership) of multivalued attribute when this error
occurred.

The connector may not have been created correctly. There is a problem in
the order that has been set for the provisioning fields. Try creating another
connector with fewer attributes for the relevant multivalued field. Try
direct provisioning. After each successful round of provisioning, try
adding fields one by one by performing the Manage Generic Technology
Connector procedure. The point at which you start facing this issue again
identifies the field that is not in the correct order.

Response code:

SPML Provisioning ID Missing

Response Description:

The unique ID is missing.

You are trying to run an operation on a created user. However, the Create
User operation itself may not have run successfully and the unique ID
(psoID) that was expected as the response was not received. Therefore, the
provisioned instance data was not updated in Oracle Identity Manager.
Check why this operation failed.

Response code:

SPML Provisioning Target ID Missing

Response Description:

The unique Target ID is missing.

Check the provider parameters that have been entered. TargetID may be
missing.

Table 20–2 (Cont.) Common Errors Encountered During Provisioning

Problem Description Solution

Configuration Issues for Generic Technology Connectors

Troubleshooting Generic Technology Connectors 20-15

Response code:

OIM API Error

Response Description:

An error was encountered in the
Oracle Identity Manager API layer.

Check if Oracle Identity Manager is operating correctly for other
operations. Check the connectivity between the Oracle Identity Manager
front end and the database.

Note: This error is not related to the providers that you use.

Response code:

OIM Process Form Not Found

Response Description:

The process form was not found in
Oracle Identity Manager.

The generic technology connector may not have been created correctly. Try
creating another connector by using the same set of configurations. Try
direct provisioning.

Note: This error is not related to the providers that you use.

Response code:

OIM Process Form Instance Not
Found

Response Description:

The process form instance was not
found for the specified form during
update.

The provisioned instance information in the Oracle Identity Manager
database may have become corrupted. Try direct provisioning.

If the problem persists, then there may be an issue with the generic
technology connector. Create another generic technology connector by
using the same set of configurations.

Note: This error is not related to the providers that you use.

Response code:

OIM Atomic Process Instance Not
Found

Response Description:

The process instance found is not an
atomic process.

The provisioned instance information in the Oracle Identity Manager
database may have become corrupted. Try direct provisioning.

If the problem persists, then there may be an issue with the generic
technology connector. Create another generic technology connector by
using the same set of configurations.

Note: This error is not related to the providers that you use.

Response code:

Column Not Found

Response Description:

An expected column was not found in
the result set.

The generic technology connector may not have been created correctly. Try
creating another connector by using the same set of configurations. Try
direct provisioning.

Note: This error is not related to the providers that you use.

Response code:

Invalid Provider

Response Description:

The provider name specified is
invalid.

The Provisioning Format, Transformation, or provisioning transport
provider in use may not have been registered correctly. Check if you have
correctly followed the steps to register the providers. If this error is
displayed when a predefined provider is used, then check the directory on
the Oracle Identity Manager server for the XML files of these providers.
These XML files are in MDS. The locations for schema and provider
definition XML files are as follows:

PROVIDER_DEF_XSD_LOCATION = "/db/GTC/Schema";

PROVIDER_DEF_XML_LOCATION = "/db/GTC/ProviderDefinitions";

Response code:

IT Resource Instance Not Found

Response Description:

The IT resource instance was not
found in Oracle Identity Manager.

The generic technology connector may not have been created correctly. Try
creating another generic technology connector by using the same set of
configurations. Try direct provisioning.

Note: This error is not related to the providers that you use.

Table 20–2 (Cont.) Common Errors Encountered During Provisioning

Problem Description Solution

Configuration Issues for Generic Technology Connectors

20-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Response code:

Version Not Found

Response Description:

The required process form version
was not found in Oracle Identity
Manager.

The generic technology connector may not have been created correctly. Try
creating another connector by using the same set of configurations. If you
have edited an existing connector by adding a new field to an existing data
set, then that operation may have failed. Try making the same change
again in the connector.

Note: This error is not related to the providers that you use.

Response code:

Version Not Defined

Response Description:

The required process form version
was not defined in Oracle Identity
Manager.

The generic technology connector may not have been created correctly. Try
creating another connector by using the same set of configurations. If you
have edited an existing connector by adding a new field to an existing data
set, then that operation may have failed. Try making the same change
again in the connector.

Note: This error is not related to the providers that you use.

Response code:

Web Service Not Found

Response Description:

The Web service was not found on the
target server. Check the service name
and IP address.

Check the service name and IP address provided in the Web service URL.
If these are correct, then check if the Web service is running.

Response code:

Web Service Connection Refused

Response Description:

The Web service connection could not
be established. Check that the server
is running and the specified port is
correct.

Check if the Web service is running.

Response code:

Web Service No Such Method

Response Description:

The Web service method could not be
started. Check the operation name
and parameters.

Check the operation name and parameters.

Response code:

Web Service Null Parameter Value

Response Description:

The parameter value passed to the
Web service is null.

Check if the provisioning process ran correctly. The provisioning format
provider may not have run correctly and, therefore, may have generated
NULL output.

Response code:

Web Service HTTP Library Missing

Response Description:

The Web service HTTP library is not
included in the classpath.

There is a problem with the Oracle Identity Manager installation. Contact
Oracle Support and send them information about this problem and the
response code and description displayed. In addition, send the relevant
logs generated after running Oracle Identity Manager with logging set to
the DEBUG level.

Response code:

Web Service Null Result Value

Response Description:

The Web service result value is null.

Check if the Web service is running correctly. At present, it is generating
NULL output as the response to the Oracle Identity Manager provisioning
request.

Table 20–2 (Cont.) Common Errors Encountered During Provisioning

Problem Description Solution

Configuration Issues for Generic Technology Connectors

Troubleshooting Generic Technology Connectors 20-17

Response code:

Web Service Invocation Issue

Response Description:

An error was encountered while
invoking the Web service.

Check the credentials of the Web service.

Response code:

Web Service Target URL Missing

Response Description:

The Web service target URL required
to invoke the Web service is missing.

Check the values of the provider parameters. The Web service URL may be
missing. Modify the generic technology connector and provide this value
again.

Response code:

Web Service Target Method Name
Missing

Response Description:

The Web service target method name
required to invoke the Web service is
missing.

Check the values of the provider parameters. The Web service operation
name may be missing. Modify the generic technology connector and
provide this value again.

Response code:

Web Service Response XML Parsing
Error

Response Description:

An error was encountered during
XML parsing of the Web service
response.

Check if the Web service is running correctly. It is generating an SPML
response that does not conform to the format specified for the Web service
provider.

Response code:

Web Service Response ID Error

Response Description:

Either a unique ID is not getting
generated from the Web service, or its
value could not be parsed because of
an incorrect attribute name in the
response XML file.

Check if the Web service is running correctly. For the Create User
operation, it is generating an SPML response that does not conform to the
specified format. In addition, it is not returning the psoID created in the
target system. The provider specification for the Web Service provider
expects the return of the psoID field.

Response code:

Web Service Protocol Connection
Error

Response Description:

An error was encountered in the
Oracle-SOAP HTTP connection.

Check the service name and IP address provided in the Web service URL.
If these are correct, then check if the Web service is running. Check the
operation name and parameters.

Response code:

Web Service Protocol Processing Error

Response Description:

An error was encountered while
calling the Oracle-SOAP API.

Check the service name and IP address provided in the Web service URL.
If these are correct, then check if the Web service is running. Check the
operation name and parameters.

Table 20–2 (Cont.) Common Errors Encountered During Provisioning

Problem Description Solution

Configuration Issues for Generic Technology Connectors

20-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Response Code:

Unable to parse the date

Response Description:

Error encountered while parsing the
date.

The value specified for the Target Date Format parameter is not correct.
For information about the date formats that you can specify, see the
following Web page:

http://java.sun.com/docs/books/tutorial/i18n/format/simpleDateFo
rmat.html#datepattern

Response Code:

Data Access Error

Response Description:

A data access error occurred while
executing the query or loading the
result set.

Check if Oracle Identity Manager is operating correctly for other
operations. Check the connectivity between the Oracle Identity Manager
front end and the database.

Note: This error is not related to the providers that you use.

Response Code:

SSL Handshake Did Not Happen

Response Description:

An SSL handshake did not happen
during the secure communication
with the target Web service.

Check if the SEcure Sockets Layer (SSL) configuration between Oracle
Identity Manager and the target system has been correctly completed. If
required, perform the procedure again.

Response Code:

Error in Initialization of SSL-Related
Properties

Response Description:

An error was encountered during the
initialization of SSL-related
properties. The relevant values are
read from the "RMSecurity" element
in the oim-config.xml file in the MDS.

Check the configuration entries corresponding to the RMSecurity element
of the oim-config.xml file.

Response Code:

Invalid Web Service Keystore or
password

Response Description:

An invalid keystore name or
password was encountered in the
oim-config.xml file in the MDS. Check
the configuration entries
corresponding to the "RMSecurity"
element.

Check the configuration entries corresponding to the RMSecurity element
of the oim-config.xml file.

Response Code:

Error Encountered During Web
Service Keystore Initialization

Response Description:

Keystore initialization failed.
Credentials of the keystore are
mentioned in the oim-config.xml file
under the "RMSecurity" element.

Check the configuration entries corresponding to the RMSecurity element
of the oim-config.xml file.

Table 20–2 (Cont.) Common Errors Encountered During Provisioning

Problem Description Solution

Configuration Issues for Generic Technology Connectors

Troubleshooting Generic Technology Connectors 20-19

Response Code:

Invalid ID

Response Description:

An invalid ID is present in the input
SPML request.

Check the value specified for the Target ID parameter.

Response Code:

Object already exists

Response Description:

This object already exists in the target
system.

Check if the object that you are trying to create already exists on the target
system.

Response Code:

Operation Not Supported

Response Description:

The requested provisioning operation
is not supported.

Check if the target system supports the requested provisioning operation.
For information about the types of SPML provisioning operations that can
be performed by using the SPML provisioning format provider, see the
"SPML provisioning format provider" section.

Response Code:

Invalid ID Type in Input SPML
Request

Response Description:

An invalid ID type is present in the
input SPML request.

Check the sample SPML request corresponding to the type of request that
was sent, and determine if the target system supports all the ID values that
were included in the request.

Response Code:

ID in Input SPML Request Does Not
Exist in the Target System

Response Description:

The ID in the input SPML request
does not exist in the target system.

Ensure that the psoID value that was sent in the request exists in the target
system.

Response Code:

Requested Execution Mode Not
Supported

Response Description:

The requested execution mode is not
supported.

Ensure that the target system supports the execution of requests in
synchronous mode.

Response Code:

Invalid Container

Response Description:

The object cannot be added to the
specified container. Refer to the log
file for more information. Check the
value of the "errorMessage" element
in the SPML response.

Check if a container corresponding to the container ID specified in the
request exists on the target system.

Table 20–2 (Cont.) Common Errors Encountered During Provisioning

Problem Description Solution

Configuration Issues for Generic Technology Connectors

20-20 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Response Code:

Nonstandard SPML Error

Response Description:

A target-specific error was
encountered. Refer to the log file for
more information. Check the value of
the "errorMessage" element in the
SPML response.

Check the value of the errorMessage element in the SPML response. This
element contains the target system error message that was generated when
the error was encountered.

Response Code:

SPML Response Is for Asynchronous
Mode

Response Description:

The SPML response is for
asynchronous mode, which is not
supported.

Ensure that the target system sends responses corresponding to the
synchronous mode of request execution.

Response Code:

Error Encountered While Parsing
Constituent Elements of Web Service
URL

Response Description:

An error was encountered while
parsing the constituent elements of
the Web service URL. Check if the
specified URL contains the protocol,
host name, port, and the endpoint.
Oracle recommends copying the URL
from the relevant WSDL file while
specifying provider parameter values
during connector creation.

Check if the specified URL contains the protocol, host name, port, and
endpoint. Oracle recommends copying the URL from the relevant WSDL
file while specifying provider parameter values during connector creation.

Response Code:

SPML Response failed V2 schema
validation

Response Description:

SPML Response received is not
compliant with the SPML V2
standard specifications.

Ensure that the SPML response returned by the target system conforms to
the SPML V2 standard specification.

Table 20–2 (Cont.) Common Errors Encountered During Provisioning

Problem Description Solution

Part IV
Part IV Requests and Approval Processes

This part contains chapters describing how to configure requests and SOA composites.

It contains the following chapters:

■ Chapter 21, "Developing Workflows for Approval and Manual Provisioning"

■ Chapter 22, "Using Segregation of Duties (SoD)"

21

Developing Workflows for Approval and Manual Provisioning 21-1

21Developing Workflows for Approval and
Manual Provisioning

[22]

This chapter describes the concepts, features, and architecture of workflows in Oracle
Identity Manager. It provides use cases for workflow, and instructions for designing,
implementing, and deploying your first workflow. In addition, this chapter describes
how to extend the request management operations by using plug-in points.

This chapter contains the following sections:

■ Introducing Workflows

■ Predefined SOA Composites

■ Creating New SOA Composites

■ Developing Workflows: Vision Request Tutorial

■ Configuring Default Request-Level and Operation-Level Approval Composites

■ Creating and Deploying Custom Task Details Taskflow

■ Understanding Request Datasets

■ Extending Request Management Operations

■ Enabling Auto-Approval for Self Registration Requests

21.1 Introducing Workflows
This section describes the key workflow concepts in the following sections:

■ Overview of Workflows

■ Workflow Concepts

■ Workflow Architecture

21.1.1 Overview of Workflows
Managing user access and orchestrating the business process so that users get the
correct access is a key identity governance function. The process of changing users'
access can be initiated by the users through events in HR that trigger policies, or by
administrators. Irrespective of how the change in access is initiated, organizations
require the following:

■ The business process that is initiated must be flexible, and must be able to meet
changing business rules of the organization.

Introducing Workflows

21-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ The business process must be able to decide between granting access immediately
versus introducing manual intervention steps and seeking approval prior to
granting access.

■ The business process must be able to perform validations, including Segregation of
Duties (SoD) checks on what is being requested, by who, for whom, and in what
context.

■ If manual intervention is required, then the business process must have the ability
to assign to users or groups of users and escalate, reassign, or expire if no response
is received in a timely manner.

■ For manual intervention, the business process must have the ability to gather
information from the approvers, including comments and attachments.

■ The business process must be able to interact with external systems, such as
ticketing systems, when automated access grants are not possible, or the
organization's rules require that access is granted manually.

■ All decisions and actions must be audited and available in a reportable manner to
allow the organization to measure performance of the process and also for
auditors to fulfill compliance requirements

Oracle Identity Manager provides flexible and powerful access request capabilities
that allow organizations to meet these requirements.

21.1.2 Workflow Concepts
The key concept of workflows in Oracle Identity Manager involves the following
terminologies:

■ Request

In Oracle Identity Manager, a request refers to the business process that is invoked
when an operation on an identity or an account has to be performed. Examples of
these operations include creating a user, provisioning an account, and granting a
role to a user. A request can either be fulfilled immediately (also known as direct
operation) or can require manual intervention in the form of approvals (also
known as request-based operation). When a user tries to perform an operation,
Oracle Identity Manager determines whether the operation would be direct or
request-based on the authorization policies of the logged-in user.

■ Request-level approval

A request has to go through two independent approval processes before it can
proceed for fulfillment. These are request-level approvals and operational-level
approvals. Request-level approvals are invoked first and are followed by
operational-level approvals. Request-level approvals are primarily used for bulk
requests, which involve multiple target users or multiple requested entities or any
combination of both.

For bulk approvals, when the request-level approval has been received, the
request engine splits the request into individual target user and requested
operation or entity combination, and invokes the operational approval for each
combination.

■ Operation-level approval

Operation-level approval is the second approval process that is invoked as part of
approving a request. Operational approvals are always for a single target user and
a single operation or requested entity.

Introducing Workflows

Developing Workflows for Approval and Manual Provisioning 21-3

■ Approval policy

An approval policy is a rule that allows the request engine to pick a SOA
composite to invoke. Approval policies can be configured at request level or
operation level. They can use all the data available at the request and operational
levels to construct a rule. The rule helps the request engine determine if the
request should be auto-approved or a SOA composite should be invoked.

■ SOA composite

A SOA composite is an assembly of services, service components, and references
designed and deployed together in a single application. Wiring between the
service, service component, and reference enables message communication. The
composite processes the information described in the messages.

■ Partner Link

A partner link enables you to define the external services with which the BPEL
process service component is to interact. You can define partner links as services or
references (for example, through a JCA adapter) in the SOA Composite Editor or
within a BPEL process service component in Oracle BPEL Designer.

■ BPEL process

BPEL processes provide process orchestration and storage of synchronous or
asynchronous processes. You design a business process that integrates a series of
business activities and services into an end-to-end process flow.

■ IT provisioner

The IT provisioner, also known as fulfillment user or Help Desk user, is the
persona responsible for fulfilling manual provisioning requests.

■ Request web service

The request web service is a web service that is shipped with Oracle Identity
Manager. It allows customers to expose request, user, role, organization, account,
entitlement, application instance, and catalog information so that approval
workflows can make data-driven routing decisions.

■ Request callback

The request callback is a web service that is invoked by the SOA composite when
an approval outcome (approve/ reject) has been received. When the request
engine invokes a SOA composite for the purpose of approval, it suspends the
request until the composite invokes the request callback and provides an approve
or reject decision. This decision allows the request engine to proceed with fulfilling
the request (if approved) or rejecting the request (if rejected).

■ Provisioning callback

The provisioning callback is a web service that is invoked as part of disconnected
provisioning. When the IT provisioner or fulfillment user fulfills a disconnected
provisioning request and marks the task as completed, the SOA composite invokes
the provisioning callback and sends the provisioning status allowing the
provisioning workflow to complete.

■ Request payload

The request engine invokes the SOA composite and passes it some basic
information about the request, requester, and target user. This information is called
the request payload.

■ Human Task

Introducing Workflows

21-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Human tasks provide workflow modeling that describes the tasks for users or
groups to perform as part of an end-to-end business process flow.

21.1.3 Workflow Architecture
Workflows are used in Oracle Identity Manager to:

■ Route requests to approvers for approval

■ Route manual provisioning tasks to IT provisioners or Help Desk for fulfillment

Figure 21–1 provides an overview of workflows in Oracle Identity Manager:

Figure 21–1 Workflow Architecture

In Figure 21–1, the following actions occur:

1. User initiates an operation that results in a request. Examples of such operations
include:

■ Self-registration

■ User profile modification, excluding lock, unlock, and password management
operations

■ Role grant operations

■ Application instance operations, including disconnected provisioning

■ Entitlement operations

■ Bulk operations

2. A request is created. After appropriate validation, the request engine evaluates
approval policies and selects a SOA composite to be invoked.

3. If approval policies are not configured, then the default request-level SOA
composite is selected for request-level approval, and default operational-level
SOA composite is selected for operational-level approval.

4. The SOA composite involves the Business Process Execution Language (BPEL)
process.

Predefined SOA Composites

Developing Workflows for Approval and Manual Provisioning 21-5

5. The BPEL process invokes a web service to get additional details about the request
including:

■ Item details from the catalog

■ Target user information

■ Requester information

6. The BPEL process invokes additional logic to calculate properties such as priority,
approvers, and notification.

7. When manual intervention is required, such as during approval and manual
fulfillment, the process invokes a Human Task.

A Human Task contains the logic to assign, expire, or escalate the approval task to
users or roles. The Human Task can assign the users and roles statically or
dynamically. For static assignments, the approvers can be determined in the BPEL
process and passed as parameters to the Human Task. For dynamic assignments,
rules created using Oracle Business Rules (OBR) are used to dynamically
determine the approvers.

Typically, the BPEL process contains one Human Task. In some instances, the
BPEL process might invoke a decision point to pick one of multiple Human Tasks.

8. When the human task completes, a response of approve or reject (for approval) or
complete (for manual fulfillment), is returned via a callback service to Oracle
Identity Manager, which resumes the operation.

21.2 Predefined SOA Composites
Table 21–1 lists the predefined SOA composites in Oracle Identity Manager that can be
used as approval processes.

Note: This step is optional. This is required only if additional
information related to various entities is required in BPEL Process.

Table 21–1 Predined SOA Composites

Workflow Composite Description

DefaultRequestApproval This is the default request-level approval. By default, the
request-level approval goes to the SYSTEM ADMINISTRATORS
role for request-level approval.

In addition, this composite is also invoked by certification
usecases, and the tasks are any one of the following:

Note: For information about certification use cases, see
"Managing Identity Certification" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Manager.

■ Assigned to the beneficiary. Later, the task may be assigned
to the beneficiary's manager based on the decision of the
beneficiary.

■ Auto-approved if the certification requester is beneficiary's
manager.

Creating New SOA Composites

21-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

21.3 Creating New SOA Composites
To create a new SOA composite that can be used as an approval process, perform the
following steps:

1. Creating a New SOA Composite

2. Deploying a SOA Composite in Oracle SOA Server

3. Prerequisites for Communication to Oracle Identity Manager Through SSL Mode

21.3.1 Creating a New SOA Composite
To use a SOA composite as an approval process, it must adhere to certain standards.
These standards ensure that the request service is able to instantiate and manage such
composites correctly. These standards are:

DefaultOperationalApprova
l

This is the default operation-level approval. By default, the
approval task is assigned to the SYSTEM ADMINISTRATORS
role for operation-level approval.

In addition, this composite is also invoked by certification
usecases, and the task will be auto-approved.

BeneficiaryManagerApprov
al

This requires approval from the beneficiary's manager. This can
be associated with the following:

■ The request models that have a beneficiary. Examples of
such request models are Provision Application Instance and
Assign Roles.

■ All user models except Create User and Self-Register User.

This composite must be associated at the operational level of
approval because a request can have multiple beneficiaries at
the request level.

DefaultRoleApproval This SOA composite creates a single approval task that is
assigned to the SYSTEM ADMINISTRATORS role for approval.

RequesterManagerApproval This SOA composite creates a single approval task that is
assigned to the requester's manager for approval.

Note: This composite cannot be associated with unauthenticated
request models, such as Self-Register User.

DefaultSODApproval This SOA composite creates an approval task that is assigned to
the System Administrator, starts SoD check, and after the SoD
result is available, it creates another approval task assigned to
the SOD Administrators role. This must be associated with
request models to provision or modify resources at the
operational level if SoD check is required.

DisconnectedProvisioning This SOA composite assigns the task to System Administrator to
fulfil the disconnected provisioning.

CertificationProcess This is the default Certification composite. This composite takes
care of assigning the certification task to the certifer (user). This
composite also manages the following certification task events

■ Expiry

■ Proxy

■ Escalation

■ Re-assignment

Table 21–1 (Cont.) Predined SOA Composites

Workflow Composite Description

Creating New SOA Composites

Developing Workflows for Approval and Manual Provisioning 21-7

■ The following attributes are mandatory for BPEL process:

– RequestID of type String

– RequestModel of type String

– RequestTarget of type String

– URL of type String

– RequesterDetails of XML Element

– BeneficiaryDetails of XML Element

– ObjectDetails of XML Element

– OtherDetails of XML Element

The RequestID, RequestModel, RequestTarget, and URL attributes are always set
with valid values for all types of requests.

RequesterDetails is an XML element. This element is filled up with valid values for
all requests that requires authentication. Requester details is empty for the
requests of type Self-Register User because the requester is anonymous user.

BeneficiaryDetails is an XML element. This element is filled up with valid values
for all requests that have a beneficiary, for example, Provision Resource and
Assign Roles. This is filled up only if the request is associated with single
beneficiary. If the request is associated with multiple beneficiaries, then
BeneficiaryDetails is empty. BeneficiaryDetails element always has valid value for
simple requests and child requests that have a beneficiary. Therefore, it is
recommended to use this XML element in SOA composites that are used as
approval processes at the operational level of approval. This is because at the
operational level of approval, the request is associated with only one beneficiary.

ObjectDetails is an XML element. This element is filled up with valid values for all
requests that are associated with the Resource entity. This is filled up only if the
request is associated with single resource. If the request is associated with multiple
resources, then ObjectDetails is empty. The ObjectDetails element always has valid
value for simple and child requests that are associated with resource. Therefore, it
is recommended to use this XML element in SOA composites that are used as
approval processes at the operational level of approval. This is because at the
operational level of approval, the request is associated with only one resource.

■ All the attributes that are mandatory for the BPEL process are referred from
RequestDetails.xsd and ApprovalProcess.xsd. These files are present in the
template SOA composite, which must not de modified or deleted.

Oracle Identity Manager provides a helper utility for creating custom SOA composites.
This utility creates a template SOA project that adheres to all the necessary standards.
This utility is located in the OIM_HOME/workflows/new-workflow directory.

To create a custom SOA composite by running the helper utility:

1. Run the following commands:

Note:

■ JAVA_HOME environment variable must be set before running
this utility.

■ This utility requires Apache Ant version 1.7 or later.

Creating New SOA Composites

21-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

cd OIM_HOME/workflows/new-workflow
ant -f new_project.xml

2. Enter the JDeveloper application name when the following prompt is displayed:

Please enter application name

3. Enter the JDeveloper project name when the following prompt is displayed:

Please enter project name

4. Enter the name of the ADF binding service for the composite when the following
prompt is displayed:

Please enter the service name for the composite. This needs to be
unique across applications

The new application is created in the
OIM_HOME/workflows/new-workflow/process-template/ directory. You can open
the new application in JDeveloper for modification.

Human task in the template SOA composite is configured to send notifications to the
assignee of the human task. In the custom composite that is created, the notification
message can be modified based on the requirement. All the notifications to be sent to
the approver must be configured in the SOA composite. For configuring Oracle SOA
server to send notifications, refer to "Configuring Oracle User Messaging Service" in
the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle
Business Process Management Suite.

Human task in the template SOA composite is configured to be assigned to the
SYSTEM ADMINISTRATORS role.

21.3.2 Deploying a SOA Composite in Oracle SOA Server
For information about deploying the workflow composite in BPEL, see Oracle Fusion
Middleware Developer's Guide for Oracle SOA Suite.

21.3.3 Prerequisites for Communication to Oracle Identity Manager Through SSL Mode
If the communication to Oracle Identity Manager is through the SSL mode, then you
must:

■ Set the TRUSTSTORE_LOCATION environment variable, where
TRUSTSTORE_LOCATION is the trusted key store file location.

■ Use t3s protocol instead of t3. For example, the URL for Oracle Identity Manager
is:

Note: The composite should be redeployed with a new version. If a
composite is redeployed with the same version in SOA, then all the
pending approvals in Oracle Identity Manager initiated by the
composite becomes stale and are removed from the user's TaskList.
See "Deploying an Existing SOA Archive in Oracle JDeveloper" in the
Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite for
information about deploying existing SOA composites.

Note: For a non-SSL connection, skip this section.

Developing Workflows: Vision Request Tutorial

Developing Workflows for Approval and Manual Provisioning 21-9

t3s://HOST_NAME:PORT

21.4 Developing Workflows: Vision Request Tutorial
This section describes how to design your first workflow in the following sections:

■ Introducing the Tutorial

■ Prerequisites

■ Creating the Application Instance

■ Configuring FinApp in the Catalog

■ Creating and Configuring the SOA Composite for Approval

21.4.1 Introducing the Tutorial
This tutorial is based on the following use case:

■ Vision Corp uses FinApp, a mainframe-based application. The application does
not have APIs that can be remotely invoked. Therefore, accounts are managed
manually by the Help Desk.

■ Vision Corp employees use the Access Request Catalog to request accounts and
entitlements in the application.

■ Approvals are based on the risk level of the access being requested. If the risk level
is Low Risk, approval is required only from the beneficiary's manager. If the risk
level is Medium Risk, approval is required from either the beneficiary's manager
or certifier. If the risk level is High Risk, approval is required from the beneficiary's
manager and the Audit Review team.

■ After approval, the request has to be fulfilled by members of the Asset
Management team.

This tutorial describes how to create the application and the workflow, and how to
configure the approval and fulfillment for the application.

The result of the tutorial is:

■ An application instance

■ A SOA composite for approval consisting of:

– A BPEL process

– Multiple Human Tasks

21.4.2 Prerequisites
The following assumptions are made for this tutorial:

■ Oracle SOA Suite is installed on a host on which the SOA infrastructure is
configured.

■ JDeveloper 11.1.1.6 with SOA Design Time 11.1.1.6 is available.

■ You are familiar with basic BPEL constructs, including BPEL activities and partner
links, and basic XPath functions.

■ You are familiar with the SOA Composite Editor and Oracle BPEL Designer, the
environment for designing and deploying BPEL processes.

Developing Workflows: Vision Request Tutorial

21-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Two roles, Audit Review Team and Asset Management Team, have been created
and members have been assigned.

■ The request web service has been deployed and configured. For information about
deploying the request web service, see "Deploying the Request Web Service" on
page 21-10.

■ An organization with name Vision is created.

■ A role with name Audit Review Team has been created.

21.4.2.1 Deploying the Request Web Service
To deploy the Request web service:

1. Login to Oracle Enterprise Manager.

2. On the left pane, expand WebLogic Domain.

3. Click the domain, for example iam_domain.

4. Click WebLogic Domain under the domain name, and then select Application
Deployment, Deploy.

5. Select the Archive or exploded directory is on the server where Enterprise
Manager is running option.

6. Click Browse to open a file browser popup, and select the following web service:

OIM_HOME/server/apps/reqsvc.ear.

7. Select oim_server1 as the target server, and then follow the prompts to deploy the
web service.

21.4.2.2 Securing the Web Service
The Request web service is protected with the wss_username_token_service_policy
security policy. Therefore, the composite that acts as a client to the web service must
validate and pass the username and password for authentication. As a result, you
must store the credential of the System Administrator in the CSF.

To store credentials in CSF:

1. Login to Oracle Enterprise Manager.

2. On the left pane, expand the WebLogic domain.

3. Right-click WLS_DOMAIN. Select Security, Credentials.

4. Select oracle.wsm.security, and click Create Key. The Create Key dialog box is
displayed.

5. Enter following details:

■ Select Map: oracle.wsm.security

■ Key: requestwskey

■ Type: Password

■ Username: Oracle Identity Manager system administrator login ID

■ Password: Oracle Identity Manager system administrator password

6. Click OK.

Developing Workflows: Vision Request Tutorial

Developing Workflows for Approval and Manual Provisioning 21-11

21.4.3 Creating the Application Instance
This section contains the following topics:

■ Creating the FinApp Application Instance

■ Defining Application Instance Attributes and Creating a Form

■ Publishing the Application Instance to One or More Organizations

■ Linking Entitlements to the Application Instance

■ Publishing the Application Instance With Entitlements to the Catalog

21.4.3.1 Creating the FinApp Application Instance
To create the FinApp application instance:

1. Login to Oracle Identity System Administration.

2. Click Sandboxes to access sandbox management, create a sandbox, and activate it.
See "Managing Sandboxes" on page 30-4 for information about sandboxes and
how to create, activate, and publish sandboxes.

3. Under Configuration, click Application Instances. Click Create on the toolbar to
open the Create Application Instance page.

4. Enter Name and Display Name as FinApp.

5. Select the Disconnected option to specify a disconnected application instance.

6. Click Save, and then click OK to confirm creation of the FinApp application
instance.

21.4.3.2 Defining Application Instance Attributes and Creating a Form
To define the attributes of the application instance and create a form:

1. Under Configuration, click Form Designer.

2. Search and select the FinApp form. This form is automatically created when the
disconnected application instance is saved.

3. Click the Fields tab, and then click the Edit icon on the toolbar.

By default, the following fields are created and are available for use:

Note: You must be in an active sandbox to create and edit a form.

Field Description

IT Resource The IT resource instance where the account is being created

Account Login The login for the application

Password The password that is used while logging in to the application

Account ID The unique identifier generated by the application when the
account is created

Service Account A flag that is used during access request only

Developing Workflows: Vision Request Tutorial

21-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

4. Add additional attributes. In this example, add the following attributes:

Account Description: Data type is Text.

Default Profile: Data type is Lookup.

5. After adding the attributes, verify that the configuration is similar to Figure 21–2:

Figure 21–2 Attributes

6. To allow users to request entitlements, you must add a child object and add an
attribute that is tagged as an Entitlement. To do so:

a. Click the Child Objects tab, and then click Add on the toolbar.

b. Enter Profile and the child object name, and click OK to create the child object.

c. Click the child object to add attributes to it. Add an attribute called Profile
Name of type Lookup.

d. Select Use in Bulk to allow requesters to specify a value when requesting
access for multiple users.

e. When creating the Default Profile attribute as a lookup type, create a new
lookup type called Lookup.FinApp.Profiles.

f. Create the new Lookup and specify the values, as shown:

Meaning: Lookup.FinApp.Profile

Description: Lookup.FinApp.Profile

g. Create three lookup codes by using the value given in the following table:

Note: Attributes such as Account ID and IT Resource are typically
not displayed in the access request user interface. Depending upon the
use case, for example a mobile phone request, the attributes might not
be relevant. To hide these attributes, you can customize the form. See
"Configuring Custom Attributes" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Manager for more information
on how to customize the form.

Developing Workflows: Vision Request Tutorial

Developing Workflows for Approval and Manual Provisioning 21-13

h. Select the Searchable, Entitlement, and Searchable Picklist options. Ensure
that the attribute configuration looks similar to Figure 21–3:

Figure 21–3 Attribute Configuration

7. Click Back to Parent Object.

8. Click Regenerate View to re-create the UI form with the new attributes.

9. Close all tabs.

10. Publish the sandbox.

21.4.3.3 Publishing the Application Instance to One or More Organizations
To publish the application instance to one or more organizations:

Meaning Code

FinApp User FinAppUser

FinApp Administrator FinAppAdministrator

FinApp Operator FinAppOperator

Note: You can also populate the lookup definition by using a
scheduled task and the lookup APIs.

Developing Workflows: Vision Request Tutorial

21-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

1. Open the FinApp application instance details page, and click the Organizations
tab.

2. Click Assign. In the Select Organizations dialog box, select one or more
organizations to publish the application instance to.

3. Select the Hierarchy option if you want the application instance to be published to
the organization and its child organizations.

4. Click OK.

21.4.3.4 Linking Entitlements to the Application Instance
To link entitlements to the application instance:

1. Under System Management, click Scheduler.

2. Search for the Entitlement List scheduled job, and click Run Now.

3. Under Configuration, click Application Instances, and navigate to the FinApp
application instance.

4. Click the Entitlements tab, and verify that the entitlements are displayed, as
shown in Figure 21–4:

Figure 21–4 Entitlements List

5. Select an entitlement, and verify that it is published to the same organizations as
the application instance, as shown in Figure 21–5:

Developing Workflows: Vision Request Tutorial

Developing Workflows for Approval and Manual Provisioning 21-15

Figure 21–5 Entitlement Availability to Organizations

6. Edit one or more entitlements, and enter a business friendly description. If
required, modify the display name as well.

21.4.3.5 Publishing the Application Instance With Entitlements to the Catalog
To publish the application instance and its entitlements to the catalog:

1. Under System Management, click Scheduler.

2. Search for the Catalog Synchronization scheduled job, and click Run Now.

21.4.4 Configuring FinApp in the Catalog
To configure the application instance and its entitlements in the catalog:

1. Login to Oracle Identity Self Service as the Catalog Administrator.

2. Under Requests, click Catalog.

3. In the Catalog page, search for the application instance.

4. Select the application instance, and edit the catalog item details.

5. Provide values for the default attributes. Because this tutorial involves workflow
routing based on risk level and manual fulfillment, you must provide a value for
the Risk Level and Fulfillment Role attributes. However, it is recommended that
you provide values for other attributes, especially User Defined Tags.

Figure 21–6 shows the attributes of the catalog item.

Developing Workflows: Vision Request Tutorial

21-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 21–6 Catalog Item Attributes

21.4.5 Creating and Configuring the SOA Composite for Approval
This section contains the following topics:

■ Creating the Approval Workflow

■ Copying the WSDL and XSD Files

■ Configuring Partner Links

■ Making Request and Catalog Data Available to the BPEL Process

■ Configuring Workflow Selection

■ Configuring Human Tasks

■ Configuring the Human Task and BPEL Mappings

■ Deploying the SOA Composite

■ Creating the Approval Policies

21.4.5.1 Creating the Approval Workflow
To create a new approval workflow:

1. Set the JAVA_HOME environment variable by running the setWLSEnv.sh script in
the /server/bin/ subdirectory in the WebLogic Server installation directory.

2. Set the ANT_HOME environment variable to
MIDDLEWARE_HOME/modules/org.apache.ant_1.7.1.

3. Set the PATH environment variable to
$JAVA_HOME/bin:$ANT_HOME/bin:$PATH.

4. Navigate to OIM_HOME/server/workflows/new_workflow.

5. Run the following:

comment ant-f new_project.xml

Developing Workflows: Vision Request Tutorial

Developing Workflows for Approval and Manual Provisioning 21-17

6. Provide the Application Name as AddAccessApprovalApplication.

7. Provide the Project Name as AddAccessApproval.

8. Provide the Service Name as AddAccess.

9. Wait for the utility to finish generating the new JDeveloper Workspace containing
the Composite. The workspace is generated in
/server/workflows/new-workflow/process-template.

10. Copy the directory to a location accessible to JDeveloper.

21.4.5.2 Copying the WSDL and XSD Files
To copy the WSDL and XSD files:

1. Copy the request web service EAR, reqsvc.ear, from
OIM_HOME/webapp/optional/ to the location where you copied the SOA
composite.

2. Rename the reqsvc.war file to reqsvc.zip and extract it.

3. In the extracted reqsvc.war, navigate to /reqsvc/reqsvc/WEB-INF/wsdl/.

4. Copy the xsd directory and the wsdl file to the
/JDeveloper/mywork/AddAccessApprovalApp/AddAccessApproval/
directory.

5. In the xsd directory, create a new file by using a text editor, and name it
BusinessRule.xsd. Copy the following in the BusinessRule.xsd file:

<?xml version="1.0" encoding="UTF-8" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://oracle.businessrule"
 targetNamespace="http://oracle.businessrule"
 elementFormDefault="qualified">
 <xsd:complexType name="stage">
 <xsd:sequence>
 <xsd:element name="stageType" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="StageOutput" type="stage"/>
</xsd:schema>

6. Save and close BusinessRule.xsd.

21.4.5.3 Configuring Partner Links
To configure the partner links:

1. Open the AddAccessApproval JDeveloper project.

2. Double-click and open the SOA composite.

3. Double-click the ApprovalProcess BPEL process.

4. To create a partner link, right-click the Partner Link swim lane, and select Create
Partner Link, as shown in Figure 21–7.

Developing Workflows: Vision Request Tutorial

21-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 21–7 Partner Link Swim Lane

5. In the Create Partner Link dialog box, enter RequestWSPartnerLink as the name.

6. To specify the WSDL URL, click the SOA Resource Browser icon, as shown in
Figure 21–8, to select the requestdataservice.wsdl.

Figure 21–8 The Create Partner Link Dialog Box

7. Enter the following values to create the partner link, and then click Apply and
OK.

■ WSDL URL: requestdataservice.wsdl

■ Partner Role: RequestDataServiceProvider

Developing Workflows: Vision Request Tutorial

Developing Workflows for Approval and Manual Provisioning 21-19

8. Switch to the Composite view. Right-click the newly created partner link, and
select Configure WS Policies, as shown in Figure 21–9. The Configure SOA WS
Policies dialog box is displayed.

Figure 21–9 Configure WS Policies

9. In the Security section, click the Add icon. The Select Client Security Policies
dialog box is displayed.

10. Select oracle/wss_username_token_client_policy, and click OK.

11. Select the policy that you added to the Security section.

12. Click the Edit icon. The Configure Override Properties dialog box is displayed.

13. Select the CSF Key parameter, enter requestwskey as the value, and then click OK.

The request web service is configured.

21.4.5.4 Making Request and Catalog Data Available to the BPEL Process
To make request and catalog data available to the BPEL process:

1. Add an assign activity, and name it AssignRequestWSURL, as shown in
Figure 21–10.

Figure 21–10 AssignRequestWSURL

Developing Workflows: Vision Request Tutorial

21-20 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

2. Select the activity, and open the BPEL process in the Source view.

3. Replace the line <assign name="AssignRequestWSURL"/> with the following:

<assign name="AssignRequestWSURL">
 <copy>
 <from><EndpointReference
xmlns="http://www.w3.org/2005/08/addressing"><Address/>
 </EndpointReference>
 </from>
 <to variable="partnerLink"/>
 </copy>
 <copy>
 <from
expression="concat(substring-before(bpws:getVariableData('inputVariable','paylo
ad','/ns3:process/ns4:url'),'workflowservice'),'reqsvc/reqsvc')"/>
 <to variable="partnerLink" query="/ns14:EndpointReference/ns14:Address"/>
 </copy>
 <copy>
 <from variable="partnerLink"/>
 <to partnerLink="RequestWSPartnerLink"/>
 </copy>
</assign>

4. Switch back to Design view.

5. Drag the Invoke activity from the Component Palette and drop it below the
AssignRequestWSURL activity. Rename it to InvokeRequestDetailsOperation.

6. Right-click InvokeRequestDetailsOperation, and select Edit.

7. Select partner link from the Partner Link Chooser as RequestWSPartnerLink, and
operation as getRequestDetails, as shown in Figure 21–11.

Figure 21–11 Partner Link and Operation

8. Under the Variables section, click the plus (+) icon for the Input and Output fields
to create the input and output variables. Name the input and output variables as
requestDetails_InputVariable and requestDetails_OutputVariable
respectively. Then click Apply and OK.

Developing Workflows: Vision Request Tutorial

Developing Workflows for Approval and Manual Provisioning 21-21

9. Drag and drop an assign activity, rename it to AssignRequestInput, and place it
above the InvokeRequestDetailsOperation invoke activity, as shown in
Figure 21–12.

Figure 21–12 AssignRequestInput

10. Right-click AssignRequestInput to map the input of the
InvokeRequestDetailsOperation, as shown in Figure 21–13.

Figure 21–13 Input Mapping

11. Add an Invoke activity after the InvokeRequestDetailsOperation, as shown in
Figure 21–14. Name the activity InvokeCatalogOperation.

Developing Workflows: Vision Request Tutorial

21-22 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 21–14 InvokeCatalogOperation

12. Edit the InvokeCatalogOperation, and configure it as shown in Figure 21–15.

Figure 21–15 InvokeCatalogOperation Configuration

13. Add an Assign activity above InvokeCatalogOperation, as shown in Figure 21–16.
Name the activity as AssignCatalogInput.

Figure 21–16 AssignCatalogInput

Developing Workflows: Vision Request Tutorial

Developing Workflows for Approval and Manual Provisioning 21-23

14. Right-click and edit the assign activity to map the input to the
InvokeCatalogOperation, as shown in Figure 21–17.

Figure 21–17 InvokeCatalogOperation Input Mapping

21.4.5.5 Configuring Workflow Selection
To define the workflow selection rules:

1. Define a variable called catalogData. To do so, click the Variables icon, and then
click the Create icon on the Variable dialog box.

This variable will contain the catalog details returned as an output of the
InvokeCatalogDetails step.

2. Define a variable workflowtype. This variable will contain the type of workflow to
be invoked.

3. Navigate to the SOA Composite view, and add a Business Rule component, as
shown in Figure 21–18.

Figure 21–18 Adding Business Rule Component

4. In the Create Business Rules dialog box, specify the name of the Rule Dictionary as
WorkflowSelection.

Developing Workflows: Vision Request Tutorial

21-24 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

5. Specify the Input as CatalogData, which is available in the CatalogData.xsd. Also,
specify the Output as StageOutput, which is available in the BusinessRule.xsd.

6. Switch to the BPEL process.

7. Expand SOA Components and add a Business Rule component.

8. Edit the rule and rename it to WorkflowSelection.

9. In the Rule dialog box, click the Dictionary tab, and select the WorkflowSelection
dictionary that you defined in step 4.

10. Map the catalogData variable to the input to the Rule, as shown in Figure 21–19.

Figure 21–19 catalogData Variable Input Mapping

11. Map the workflowtype variable to the output to the Rule, as shown in
Figure 21–20.

Developing Workflows: Vision Request Tutorial

Developing Workflows for Approval and Manual Provisioning 21-25

Figure 21–20 workflowtype Variable Output Mapping

12. Add an Assign activity before the WorkflowSelection rule and rename it as
AssignRuleInput, as shown in Figure 21–21.

Figure 21–21 AssignRuleInput

13. Map the output of the InvokeCatalogOperation to the catalogData variable, as
shown in Figure 21–22.

Developing Workflows: Vision Request Tutorial

21-26 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 21–22 catalogData Variable Output Mapping

14. Switch to the SOA Composite view.

15. Right-click the Business Rule component, and select Edit.

16. Click Create Rule.

17. Rename the rule from Rule1 to Auto Approval.

18. Edit the rule, and specify the stageType property in the Properties dialog box, as
shown in Figure 21–23.

Figure 21–23 The stageType Property

Developing Workflows: Vision Request Tutorial

Developing Workflows for Approval and Manual Provisioning 21-27

19. Similarly, create the Manager, Serial, and Parallel approval rules, as shown in
Figure 21–24.

Figure 21–24 Approval Rules

20. Switch to the BPEL process.

21. Add a switch activity after the WorkflowSelection rule, as shown in Figure 21–25.

Figure 21–25 Switch Activity

22. Select the Switch activity and add two Switch Case steps, as shown in
Figure 21–26.

Developing Workflows: Vision Request Tutorial

21-28 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 21–26 Switch Case Steps

23. Rename the conditions as Serial Approval, Parallel Approval, and Manager
Approval, as shown in Figure 21–27.

Figure 21–27 Renamed Conditions

24. Drag the default Human Task into the Manager Switch Case, as shown in
Figure 21–28.

Developing Workflows: Vision Request Tutorial

Developing Workflows for Approval and Manual Provisioning 21-29

Figure 21–28 Dragging Default Human Task

25. Switch to the SOA Composite view.

26. Add two Human Tasks, SerialApproval and ParallelApproval, as shown in
Figure 21–29.

Figure 21–29 Adding Human Tasks

27. Switch to the BPEL Process.

28. Edit the Manager Approval Switch case, and add the following expression:

bpws:getVariableData('workflowtype','/ns18:StageOutput/ns18:stageType')='Manage
r'

Developing Workflows: Vision Request Tutorial

21-30 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

You must first configure the newly added Tasks and then wire them to the BPEL
Process.

21.4.5.6 Configuring Human Tasks
Configuring the Human Task consists of the following:

■ Configuring the Parallel Human Task

■ Configuring the Serial Approval Task

■ Configuring the Default Approval Task

21.4.5.6.1 Configuring the Parallel Human Task

To configure the parallel Human Task:

1. Edit the Parallel Approval Task.

2. Click the Data tab, and add the attributes listed in the following table:

3. Verify the task parameters in the Data tab.

4. Click the General tab.

5. Set the Task Title to
<%/task:task/task:payload/ns2:BeneficiaryDetails/ns2:DisplayName%> has
submitted a request for approval.

6. Set the Task Owner to Group and SYSTEM ADMINISTRATORS.

7. Click the Notification tab, and then click Advanced.

8. Select the Make notification actionable option.

9. Click the Assignment tab.

10. Add a Parallel stage. To do so, click the plus (+) icon, and select Parallel stage.

Patameter Data Type

RequestID {http://www.w3.org/2001/XMLSchema}string

RequestModel {http://www.w3.org/2001/XMLSchema}string

RequestTarget {http://www.w3.org/2001/XMLSchema}string

RequesterDetails {http://xmlns.oracle.com/request/RequestDetails}RequesterDe
tails

BeneficiaryDetails {http://xmlns.oracle.com/request/RequestDetails}BeneficiaryD
etails

ObjectDetails {http://xmlns.oracle.com/request/RequestDetails}ObjectDetails

OtherDetails {http://xmlns.oracle.com/request/RequestDetails}OtherDetails

url {http://xmlns.oracle.com/request/RequestDetails}url

Catalogdata {http://xmlns.oracle.com/RequestServiceApp/RequestDataSer
vice/CatalogData}CatalogData

RequesterDisplayName {http://www.w3.org/2001/XMLSchema}string

BeneficiaryDisplayName {http://www.w3.org/2001/XMLSchema}string

Requester {http://www.w3.org/2001/XMLSchema}string

Developing Workflows: Vision Request Tutorial

Developing Workflows for Approval and Manual Provisioning 21-31

11. Select a stage and click Edit. Provide the name as Manager.

12. Select the other stage, and provide the name as Review Team, as shown in
Figure 21–30.

Figure 21–30 Manager and Review Team Stages

13. Click the pencil icon after the two stages.

14. In the Vote Outcome dialog box, set the voted outcome to APPROVE. Set the
default outcome to REJECT. This is because when both the approver reject the
task, the request moves to completed state based on the default outcome.

15. Select the Share attachments and comments option.

16. Ensure that the Immediately trigger voted outcome when minimum percentage
is met option is selected.

17. Edit the Manager stage.

18. In the Add Participant Type dialog box, set the Participant type to Single. From the
Build a list of participants using list, select Rule-based to build the participant list
using Rules.

19. Create a rule as shown in Figure 21–31.

Figure 21–31 Manager Participant Rule

20. Similarly, configure the Review Team stage, as shown in Figure 21–32.

Developing Workflows: Vision Request Tutorial

21-32 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 21–32 Review Team Stage

21. Create a participant rule, as shown in Figure 21–33.

Figure 21–33 Review Team Participant Rule

21.4.5.6.2 Configuring the Serial Approval Task

To configure the serial approval task:

1. Click the Data tab.

2. Add the parameters listed in the following table:

Parameter Data Type

RequestID {http://www.w3.org/2001/XMLSchema}string

RequestModel {http://www.w3.org/2001/XMLSchema}string

RequestTarget {http://www.w3.org/2001/XMLSchema}string

RequesterDetails {http://xmlns.oracle.com/request/RequestDetails}Requester
Details

BeneficiaryDetails {http://xmlns.oracle.com/request/RequestDetails}Beneficiar
yDetails

Developing Workflows: Vision Request Tutorial

Developing Workflows for Approval and Manual Provisioning 21-33

3. Verify the task parameters in the Data tab.

4. Click the General tab.

5. Set the Task Title to
<%/task:task/task:payload/ns2:BeneficiaryDetails/ns2:DisplayName%> has
submitted a request for approval.

6. Set the Task Owner to Group and SYSTEM ADMINISTRATORS.

7. Click the Notification tab, and then click Advanced.

8. Select the Make notification actionable option.

9. Click the Assignment tab.

10. Add a Serial stage and rename the stages as Manager and Review Team, as shown
in Figure 21–34.

Figure 21–34 Serial Stages

11. Edit the Manager stage.

12. In the Add Participant Type dialog box, set the Participant type to Single and build
the participant list using Rules.

13. Create the participant list rule as shown in Figure 21–35.

ObjectDetails {http://xmlns.oracle.com/request/RequestDetails}ObjectDet
ails

OtherDetails {http://xmlns.oracle.com/request/RequestDetails}OtherDeta
ils

url {http://xmlns.oracle.com/request/RequestDetails}url

Catalogdata {http://xmlns.oracle.com/RequestServiceApp/RequestDataS
ervice/CatalogData}CatalogData

RequesterDisplayName {http://www.w3.org/2001/XMLSchema}string

BeneficiaryDisplayName {http://www.w3.org/2001/XMLSchema}string

Requester {http://www.w3.org/2001/XMLSchema}string

Parameter Data Type

Developing Workflows: Vision Request Tutorial

21-34 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 21–35 Rule for Manager Stage

14. Similarly, configure the Review Team stage.

15. Create the participant list rule as shown in Figure 21–36.

Figure 21–36 Rule for Review Team Stage

21.4.5.6.3 Configuring the Default Approval Task

To configure the default approval task:

1. Set the task title, as shown in Figure 21–37.

Figure 21–37 Default Approval Task

2. Click Assignment.

3. Create a Participant list rule, as shown in Figure 21–38.

Developing Workflows: Vision Request Tutorial

Developing Workflows for Approval and Manual Provisioning 21-35

Figure 21–38 Participant List Rule

21.4.5.7 Configuring the Human Task and BPEL Mappings
Configuring the Human Task and BPEL mappings involves:

■ Configuring the Serial Approval Human Task

■ Configuring the Parallel Human Task

■ Configuring Auto Approval

21.4.5.7.1 Configuring the Serial Approval Human Task

To configure the serial approval Human Task:

1. Add the following condition to the Serial Approval switch:

bpws:getVariableData('workflowtype','/ns18:StageOutput/ns18:stageType') =
'Serial'

2. Drag and drop a Human Task activity from the SOA Components into the Serial
Approval switch, as shown in Figure 21–39.

Figure 21–39 Human Task Activity

3. Edit the Human Task, and in the Human Task dialog box, select the Serial
Approval Human Task definition.

4. Map the task parameters to the BPEL variable as shown in Figure 21–40.

Developing Workflows: Vision Request Tutorial

21-36 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 21–40 Task Parameters and BPEL Variable Mapping

5. Click the Advanced tab.

6. Map the Identification Key to the Request ID as shown in Figure 21–41.

Developing Workflows: Vision Request Tutorial

Developing Workflows for Approval and Manual Provisioning 21-37

Figure 21–41 Identification Key and Requester ID Mapping

7. Map Initator to requester login, and then click Apply and OK.

8. Select the Switch case for Task outcome is REJECT.

9. Replace the existing condition script with the following:

bpws:getVariableData('SerialApproval1_globalVariable','payload','/task:task/tas
k:systemAttributes/task:outcome') = 'REJECT'

10. Select the Assign activity under Task outcome is REJECT.

11. Delete all the copy rules except one. The copy rule that you retain can be any one
so that you can replace it in the Source view.

12. Save and click the Source tab.

13. Select the copy activity.

14. Replace the activity with the following:

<sequence>
 <assign>
 <copy>
 <from expression="string('rejected')"/>
 <to variable="outputVariable"
 part="payload"
 query="/ns3:processResponse/ns3:result"/>
 </copy>
 <copy>
 <from expression="ora:getConversationId()"/>
 <to variable="Invoke_1_callback_InputVariable_1"
 part="parameters"
 query="/ns1:callback/arg0"/>
 </copy>
 <copy>

Developing Workflows: Vision Request Tutorial

21-38 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 <from expression="string('rejected')"/>
 <to variable="Invoke_1_callback_InputVariable_1"
 part="parameters"
 query="/ns1:callback/arg1"/>
 </copy>
 </assign>
</sequence>

15. Repeat the steps for the Task outcome is APPROVE. Select the Switch Case and
copy the following in the Condition field:

bpws:getVariableData('SerialApproval1_globalVariable','payload','/task:task/tas
k:systemAttributes/task:outcome') = 'APPROVE'

16. Select the Assign activity under the Approve outcome, and replace the copy rules
with the following:

<sequence>
 <assign>
 <copy>
 <from expression="string('approved')"/>
 <to variable="outputVariable"
 part="payload"
 query="/ns3:processResponse/ns3:result"/>
 </copy>
 <copy>
 <from expression="ora:getConversationId()"/>
 <to variable="Invoke_1_callback_InputVariable_1"
 part="parameters"
 query="/ns1:callback/arg0"/>
 </copy>
 <copy>
 <from expression="string('approved')"/>
 <to variable="Invoke_1_callback_InputVariable_1"
 part="parameters"
 query="/ns1:callback/arg1"/>
 </copy>
 </assign>
</sequence>

17. Select the Assign activity under the Otherwise outcome, and replace the copy rules
with the following:

<sequence>
 <assign>
 <copy>
 <from
expression="bpws:getVariableData('SerialApproval1_globalVariable','payload','/t
ask:task/task:systemAttributes/task:state')"/>
 <to variable="outputVariable" part="payload"
 query="/ns3:processResponse/ns3:result"/>
 </copy>
 <copy>
 <from expression="ora:getConversationId()"/>
 <to variable="Invoke_1_callback_InputVariable_1"
 part="parameters"
 query="/ns1:callback/arg0"/>
 </copy>
 <copy>
 <from
expression="bpws:getVariableData('SerialApproval1_globalVariable','payload','/t

Developing Workflows: Vision Request Tutorial

Developing Workflows for Approval and Manual Provisioning 21-39

ask:task/task:systemAttributes/task:state')"/>
 <to variable="Invoke_1_callback_InputVariable_1"
 part="parameters"
 query="/ns1:callback/arg1"/>
 </copy>
 </assign>
</sequence>

21.4.5.7.2 Configuring the Parallel Human Task

To configure the parallel Human Task:

1. Add the following condition to the Parallel Approval switch activity:

bpws:getVariableData('workflowtype','/ns18:StageOutput/ns18:stageType') =
'Parallel'

2. Drag and drop a Human Task activity from the SOA Components into the Parallel
Approval switch.

3. Select the Parallel Approval Human Task.

4. Map the Human Task parameters in the same way as the Serial Human Task.

5. Map the Assign activity for the APPROVE outcome in the same way as the
equivalent in the Serial Human Task.

6. Map the Assign activity for the REJECT outcome in the same way as the
equivalent in the Serial Human Task.

7. Map the Assign activity for the Otherwise outcome in the same way as the
equivalent in the Serial Human Task.

21.4.5.7.3 Configuring Auto Approval

To configure auto approval:

1. Drag and drop an Assign activity in the Otherwise switch case.

2. Select the Assign activity, and switch to Source view.

3. Add the following to the Assign activity:

<sequence>
 <assign>
 <copy>
 <from expression="string('approved')"/>
 <to variable="outputVariable"
 part="payload"
 query="/ns3:processResponse/ns3:result"/>
 </copy>
 <copy>
 <from expression="ora:getConversationId()"/>
 <to variable="Invoke_1_callback_InputVariable_1"
 part="parameters"
 query="/ns1:callback/arg0"/>
 </copy>
 <copy>
 <from expression="string('approved')"/>

Note: You must specify appropriate global variable
(ParallelApproval1_globalVariable) in the copy activity.

Developing Workflows: Vision Request Tutorial

21-40 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 <to variable="Invoke_1_callback_InputVariable_1"
 part="parameters"
 query="/ns1:callback/arg1"/>
 </copy>
 </assign>
</sequence>

21.4.5.8 Deploying the SOA Composite
To deploy the SOA composite:

1. Select File, Save All to save your work.

2. Right-click the project, and select Deploy, COMPOSITE_NAME, Deploy to
Application server.

21.4.5.9 Creating the Approval Policies
The SOA composite that you have created can be used for all requests other than user
operations, such as self-registration, create, modify, disable, enable, and delete. To
ensure that all requests other than user operations invoke this composite, you must
create an approval policy in Oracle Identity Manager. To create the approval policies in
Oracle Identity Manager:

1. Login to Oracle Identity System Administration.

2. Under Policies, select Approval Policies.

3. Create a request-level approval policy for Provision Application Instance, and set
it to auto approve.

4. Create an operational-level approval policy for Provision Application Instance,
and click Approval Process.

5. Select the SOA composite that you deployed.

6. Specify scope type to be All.

7. Create a default approval rule:

Request.Request Type = Provision Application Instance

8. Save the approval policy.

9. Repeat steps 5 through 8 for the following request types to ensure ensuring that all
non-user operation requests will invoke your SOA composite:

■ Modify Account - Provision Entitlement

■ Enable Account - Revoke Entitlement

■ Disable Account - Grant Role

■ Revoke Account - Revoke Role

Note:

■ The default version is 1.0. You can also change the version, if you
have existing composite instances running.

■ If you are redeploying the composite and you have added or
removed one or more human tasks, then it is recommended to
deploy with a different version.

Configuring Default Request-Level and Operation-Level Approval Composites

Developing Workflows for Approval and Manual Provisioning 21-41

21.5 Configuring Default Request-Level and Operation-Level Approval
Composites

You can configure the default request-level and operation-level composites by setting
the DefaultRequestLevelComposite and DefaultOperationLevelComposite properties
in the oim-config.xml file. You can edit these properties by using System MBean
Browser in Oracle Enterprise Manager. The default values for these properties are
default/DefaultRequestApproval!2.0 and
default/DefaultOperationalApproval!2.0 respectively.

The values for these properties are in the following format:

NAMESPACE/COMPOSITE_NAME!VERSION

For example:

default/AddAccessApproval!2.0

If you change the default values of the DefaultRequestLevelComposite and
DefaultOperationLevelComposite properties, then you must restart Oracle Identity
Manager.

Note: While it is possible to create multiple SOA composites for each
type of request, it is recommended that you use a single SOA
composite (as demonstrated in this tutorial) and create multiple
Human Tasks. You can use rules created by using Oracle Business
Rules to pick a Human Task (as demonstrated in this tutorial).

Tip: You can access custom attribute's value of entities, such as
catalog, user, role, or organization, supported by the request web
service is SOA composite BPEL process. The custom attributes or
UDFs are part of the CustomAttribute element. An instance of catalog
entity containing UDF is:

<ns12:CustomAttribute Name="ApproverRolePhoneNumber">
 <ns5:Value>1234</ns5:Value>
</ns12:CustomAttribute>
<ns12:CustomAttribute Name="ApproverRoleEmailId">
 <ns5:Value>approver@oracle.com</ns5:Value>
</ns12:CustomAttribute>

For example, to access the ApproverRolePhoneNumber catalog UDF
value in BPEL process, specify the following:

bpws:getVariableData('catalogDetails','CatalogData','/ns22:CatalogD
ata/ns22:CustomAttribute[@Name =
string("ApproverRolePhoneNumber")]/ns24:Value')

Note: The composites configured as default request-level and
operation-level composites would be applicable for all request types.
Therefore, these composites must be designed to work with all the
request types.

Creating and Deploying Custom Task Details Taskflow

21-42 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

21.6 Creating and Deploying Custom Task Details Taskflow
By default, all tasks are configured to use the default task details page in pending
approvals. This taskflow is not customizable. However, you might want to customize
the UI or show some other information in the task details page. This section describes
how to build your own taskflow, and configure the human task in the
DefaultRequestApproval composite to invoke your custom taskflow.

This section contains the following topics:

■ Prerequisites for Developing Custom Task Details Taskflow

■ Developing Custom Task Details Taskflow

■ Developing Custom Task Details for Email Notification (Optional)

■ Deploying the Task Details Taskflow

■ Configuring Human Task and Taskflow Permissions

■ Testing the Custom Taskflow

21.6.1 Prerequisites for Developing Custom Task Details Taskflow
Before developing a custom task details taskflow, you must have the following
software installed on your computer:

■ Oracle Identity Manager 11g Release 2 (11.1.2.1.0)

■ Oracle SOA 11g (11.1.1.6.0)

■ JDeveloper 11g (11.1.1.6.0) with Oracle SOA Composite Editor extension

21.6.2 Developing Custom Task Details Taskflow
To build a custom taskflow for the human task in the DefaultRequestApproval
composite:

1. Open Jdeveloper and create a new Generic Application. To do so:

a. Enter Application Name as RequestApprovalTaskDetailsApp, and then click
Next.

b. Enter Project Name as RequestApprovalTaskDetails. Do not select any project
technologies.

c. Click Finish.

2. Add Oracle Identity Manager shared library. To do so:

a. Right-click RequestApprovalTaskDetails project, and select Project
Properties, Libraries and Classpath.

b. Click Add Library.

c. Click Load Dir.

d. Navigate to the IAM_HOME/server/jdev.lib/ directory, and click Select.

Note: IAM_HOME is the path to the Oracle Identity Manager home
directory, for example, BEA_HOME/Oracle_IDM1/. Here,
BEA_HOME is the path to the middleware directory in Oracle Identity
Manager installation.

Creating and Deploying Custom Task Details Taskflow

Developing Workflows for Approval and Manual Provisioning 21-43

e. Select OIM View Shared library, OIM Model Shared library, and then click
OK.

f. Click OK.

3. Create task details taskflow. To do so:

a. Navigate to the following directory in shiphome:

IAM_HOME/server/workflows/composites/

b. Unzip the DefaultRequestApproval.zip file.

c. Go back to Jdeveloper, right-click RequestApprovalTaskDetails, and select
New.

d. Select Web Tier, JSF, ADF task flow based on human task.

e. In the file browser, navigate to the directory in which you unzipped
DefaultRequestApproval.zip. Select the
DefaultRequestApproval/ApprovalTask.task file

f. In the Create Task flow dialog box, provide the following values:

File Name: request-approval-details-tf.xml

Task Flow ID: request-approval-details-tf

g. Click OK.

4. Delete hwtaskflow.xml. To do so, go to Application Sources under
RequestApprovalTaskDetails project, and then delete hwtaskflow.xml.

5. Create the task details page. To do so:

a. Open request-approval-details-tf.xml. Switch to designer mode.

b. Rename taskdetails1_jspx view activity to request-approval-details.

c. Right-click the request-approval-details view activity, and select Create Page.
Provide the following values:

File name: request-approval-details.jspx

Initial Page layout and content: Blank Page

d. Click OK.

6. Add managed bean for this page. To do so:

a. Right-click the RequestApprovalTaskDetails project, and select New, Java
Class. Provide the following values:

Name: RequestApprovalDetailsStateBean

Package: oracle.iam.ui.custom.view.backing

b. Click OK.

c. Add the following code to the managed bean:

package oracle.iam.ui.custom.view.backing;

import javax.el.ELContext;
import javax.el.ExpressionFactory;
import javax.el.ValueExpression;

import javax.faces.application.Application;
import javax.faces.context.FacesContext;

Creating and Deploying Custom Task Details Taskflow

21-44 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

import oracle.iam.ui.platform.model.config.ConstantsDefinition;

public class RequestApprovalDetailsStateBean implements
java.io.Serializable{
 public RequestApprovalDetailsStateBean() {
 super();
 }

 private String requestAction =
ConstantsDefinition.REQUEST_ACTION_APPROVAL_UPDATE;
 private String requestType =
ConstantsDefinition.REQUEST_TYPE_VIEW_DETAIL;

 public void setRequestAction(String requestAction) {
 this.requestAction = requestAction;
 }

 public String getRequestAction() {
 return requestAction;
 }

 public void setRequestType(String requestType) {
 this.requestType = requestType;
 }

 public String getRequestType() {
 return requestType;
 }

 public String getUserIds() {
 Object benefDisplayName =
getValueFromELExpression("#{bindings.DisplayName.inputValue}");
 //benefDisplayName would be "None" if beneficiary does not exist
 if (benefDisplayName != null &&
!ConstantsDefinition.NONE_BENEF_DISPLAY_NAME.equalsIgnoreCase(benefDisplayN
ame.toString()))
 return benefDisplayName.toString();

 Object requestTarget =
getValueFromELExpression("#{bindings.RequestTarget.inputValue}");
 if (requestTarget != null)
 return requestTarget.toString();

 return "";
 }

 private Object getValueFromELExpression(String expression) {
 FacesContext facesContext = FacesContext.getCurrentInstance();
 Application app = facesContext.getApplication();
 ExpressionFactory elFactory = app.getExpressionFactory();
 ELContext elContext = facesContext.getELContext();
 ValueExpression valueExp =
 elFactory.createValueExpression(elContext, expression,
 Object.class);
 return valueExp.getValue(elContext);
 }

Creating and Deploying Custom Task Details Taskflow

Developing Workflows for Approval and Manual Provisioning 21-45

}

d. Open request-approval-details-tf.xml in Overview mode. Select Managed
Beans sections and register the managed bean with the following details:

Name: requestApprovalDetailsStateBean

Class: oracle.iam.ui.custom.view.backing.RequestApprovalDetailsStateBean

Scope: pageFlow

7. Create the details page structure. To do so:

a. Open request-approval-details.jspx.

b. From the Component Palette, add a panelStretchLayout to the page. In the
Property Inspector, set TopHeght==auto for panelStretchLayout.

c. Go to Data controls in Application Navigator. Expand
RequestApprovalTaskDetails_ApprovalTask, getTaskDetails, Return. Drag
and drop Task from Data Controls on to the top facet of panelStretchLayout.
From the context menu, select Human Task, Task Action. The Human task
actions are added to the top facet.

d. From the Component Palette, add a panelTabbed layout to the center facet of
panelStretchLayout.

e. From the Component Palette, add two showdetailItem components to the
panelTabbed. From property inspector, set the text name for these components
as Request Information and Task Information.

f. Click the Request Information tab. From the property inspector, set attribute
stretchChildren=first.

g. Add another panelStretchLayout in Request Information tab. Set attribute
topHeight==auto for this panelStretchLayout, and select Create, Region.
Figure 21–42 shows the Request Information and Task Information tabs.

Figure 21–42 The panelTabbed Layout

Creating and Deploying Custom Task Details Taskflow

21-46 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

8. Populate the Request Information tab. To do so:

a. Go to Navigator Display Options, and select Show Libraries, shown in
Figure 21–43. This will show OIM View Shared Library in the Application
Navigator.

Figure 21–43 OIM View Shared Library

b. In the Application Navigator, expand OIM View Shared Library,
WEB-INF/oracle/iam/ui/catalog/tfs. Drag and drop
request-summary-information-tf.xml to the top facet of PanelStretchLayout
added in step 7g. The Edit Task Flow Binding dialog box is displayed. You can
provide parameters to the taskflow later. Therefore, click OK.

c. Similarly, drag and drop catalog-tf.xml to the center facet of
PanelStretchLayout added in step 7g. The Edit Task Flow Binding dialog box
is displayed. Click OK.

d. Click the Bindings tab at the bottom of the page to view the bindings. Click
the plus (+) sign to add a binding in the following way:

i) Enter the following and click OK:

Category: Generic Bindings

Item to be created: attributeValues

ii) Click Add Datasource. Select RequestApprovalDetails_ApprovalTask,
getTaskDetails, Return, Task, Payload. Click OK.

Creating and Deploying Custom Task Details Taskflow

Developing Workflows for Approval and Manual Provisioning 21-47

iii) Specify Attribue as RequestID, and click OK.

e. Under executables, select taskflow-requestsummaryinformationtf1. In the
Property Inspector, add a taskflow parameter by clicking the plus (+) sign.
Specify requestId as the following:

requested, Value= #{bindings.RequestID.inputValue}

f. Click the plus (+) sign to add another binding. This binding will be referenced
in RequestApprovalDetailsStateBean.

i) Enter the following and click OK:

Category: Generic Bindings

Item to be created: attributeValues

ii) Click Add Datasource. Select RequestApprovalDetails_ApprovalTask,
getTaskDetails, Return, Task, Payload, BeneficiaryDetails. Click OK.

iii) Specify Attribute as DisplayName, and click OK.

g. Click the plus (+) sign to add another binding. This binding will be referenced
in RequestApprovalDetailsStateBean.

i) Enter the following and click OK:

Category: Generic Bindings

Item to be created: attributeValues

ii) From the list, select datasource RequestApprovalDetails_ApprovalTask,
getTaskDetails, Return, Task, Payload.

iii) Specifiy Attribute as RequestTarget, and click OK.

h. Select taskflow-catalogtf1 and add the following taskflow parameters by using
the Property Inspector:

– Id=requestId, Value= #{bindings.RequestID.inputValue}

– Id=requestType,
Value=#{pageFlowScope.requestApprovalDetailsStateBean.requestType}

– Id=requestAction,
Value=#{pageFlowScope.requestApprovalDetailsStateBean.requestAction}

– Id=userIds,
Value=#{pageFlowScope.requestApprovalDetailsStateBean.userIds}

9. Populate the Task Information tab. To do so:

a. Switch to Design mode. Click the Task Information tab.

b. In the Application Navigator, go to Data Controls. Expand
RequestApprovalTaskDetails_ApprovalTask, getTaskDetails, Return. Drag
and drop Task in the Task Information tab. The Create context menu is
displayed. Select Human Task, Complete Task without Payload, as shown in
Figure 21–44.

Creating and Deploying Custom Task Details Taskflow

21-48 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 21–44 Task Details DataControl

c. A panelHeader wrapped insdide panelGroupLayout is added to the Task
Information tab. Navigate to the panelHeader and delete the toolbar facet of
the panelHeader. The task actions have already been in step 7c). In addition,
task details, task history, comments, and attachments are also added to the
Task Information tab.

d. Save your work.

21.6.3 Developing Custom Task Details for Email Notification (Optional)
By default, for sending email notification, if there is no separate page for email, then
the same task details page developed in "Developing Custom Task Details for Email
Notification (Optional)" on page 21-48 is sent in email notification.

Sometimes, limited information needs to be sent in email notification. In such
scenarios, separate page for email notification can be developed. The email page will
also be part of the same task details taskflow.

For more information on building custom taskflow for email, refer to "Creating an
Email Notification" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA
Suite.

21.6.4 Deploying the Task Details Taskflow
To deploy the task details taskflow:

1. Deploy the Task Details as an ADF library jar. To do so:

a. Right-click RequestApprovalTaskDetails, Project Properties, Deployment.

b. Click New. The Create deployment profile dialog box is displayed.

c. Provide following values, and click OK.

Archive Type: ADF Library Jar File

Name: adflibRequestApprovalTaskDetails

Creating and Deploying Custom Task Details Taskflow

Developing Workflows for Approval and Manual Provisioning 21-49

d. Right-click RequestApprovalTaskDetails, and select Deploy,
adflibRequestApprovalTaskDetails.

e. In the deployment action popup, click Finish.

2. Package the adflibRequestApprovalTaskDetails.jar in custom shared library. To do
so:

a. Navigate to the IAM_HOME/server/apps/ directory.

b. Create following directory structure:

 WEB-INF/lib/

c. Copy adflibRequestApprovalTaskDetails.jar to the WEB-INF/lib/ directory.

d. Update IAM_HOME/server/apps/
oracle.iam.ui.custom-dev-starter-pack.war to add
adflibRequestApprovalTaskDetails.jar. For example:

jar uvf oracle.iam.ui.custom-dev-starter-pack.war WEB-INF/*

3. Restart Oracle Identity Manager managed server for the changes to custom shared
library to take effect.

21.6.5 Configuring Human Task and Taskflow Permissions
To configure Human Task and taskflow permissions:

1. Add view permission for custom taskflow by using Authorization Policy Manager
(APM). To do so:

a. Login to APM application as WebLogic user.

b. Navigate to Applications, OracleIdentityManager, Resource Types. Click
Open.

c. Click New to create a new resource type. Provide following details:

Display Name: ADF Taskflows

Name: ADFTaskflows

Actions: personalize, customize, grant, view (click New to add each action)

Supports Resource Hierarchy: No

Resource Delimiter: Slash(/)

Evaluation Logic: Permission Class

Permission Class: oracle.adf.controller.security.TaskFlowPermission

Action Name Delimiter: Comma(,)

d. Click Save.

e. Navigate to Applications, OracleIdentityManager, Default Policy Domain,
Resource Catalog, Resources. Click Open.

f. Select Policy for OIM System Admin, and click Open.

g. Click Add Targets. The Search Targets popup is displayed.

h. Click the Resources tab. Provide resource type as ADF TaskFlows, and click
Search.

i. Select Request Approval Details Taskflow. Click Add Selected.

Understanding Request Datasets

21-50 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

j. Click Add Targets. The resource is added to the Targets table.

k. Expand Request Approval Details Task Flow. Select view. Click Apply.

2. Configure human task to use the custom taskflow. To do so:

a. Login to Oracle Enterprise Manager as WebLogic user.

b. Navigate to Farm_IAM_DOMAIN, SOA, soa_infra (SOA_SERVER), default,
DefaultRequestApproval [1.0].

c. Click Component Metrics, Approval Task.

d. Click the Administration tab.

e. Modify the URI in the existing entry to point to the custom taskflow, as
shown:

/identity/faces/adf.task-flow?_id=request-approval-details-tf&_document=
WEB-INF/request-approval-details-tf.xml

21.6.6 Testing the Custom Taskflow
To test custom taskflow:

1. Login to Oracle Identity Self Service as an end user.

2. Go to My Information, and modify the value of the Telephone attribute. A request
is created and the task is assigned to the System Administrator.

3. Login to Oracle Identity Self Service as System Administrator.

4. Go to Pending Approvals.

5. Click the Task Details link of the corresponding request. The custom task details
page is displayed.

21.7 Understanding Request Datasets
Request datasets are XML files that store the data that can be associated with requests
of given types.

Table 21–2 lists the request types and the associated default request dataset file names
that are shipped with Oracle Identity Manager.

Note: The information in this section is for reference. Oracle
recommends that you do not modify, export, or import request
datasets. To extend the user and application instance definition, use
the Form Designer in Oracle Identity System Administration. See
"Managing Forms" in Oracle Fusion Middleware Administrator's Guide
for Oracle Identity Manager for information about the Form Designer.

Table 21–2 Default Request Datasets Shipped with Oracle Identity Manager

Request Type Default Dataset File Name Entity

Create User CreateUserDataSet.xml User

Delete User DeleteUserDataset.xml User

Enable User EnableUserDataset.xml User

Disable User DisableUserDataset.xml User

Extending Request Management Operations

Developing Workflows for Approval and Manual Provisioning 21-51

21.8 Extending Request Management Operations
You can customize certain aspects of request management operations to allow greater
flexibility and implement customized logic for additional functionality. To achieve this,
you can use request management plug-ins. There are plug-in points that you can use
to implement customization.

This section discusses the plug-in points in the following topics:

■ Running Custom Code Based on Request Status Change

■ Validating Request Data

■ Prepopulation of an Attribute Value During Request Creation

21.8.1 Running Custom Code Based on Request Status Change
In Oracle Identity Manager, a request undergoes change in status at each stage of its
lifecycle. The request engine exposes a plug-in point that allows running of custom
code during request status change. A plug-in with custom code that extends this
plug-in point can be implemented and registered for running the code. The plug-in
point is the oracle.iam.request.plugins.StatusChangeEvent interface with the public
void followUpActions(String reqId) method. This method consists of the request id
parameter, using which the request details can be obtained with the help of request
management APIs.

Any code that is to be run during the status change must be implemented in the
followUpActions() method in a plug-in class that implements the
oracle.iam.request.plugins.StatusChangeEvent interface. You must specify at which
request status change this plug-in is to be run in the plugin.xml file.

For example, when a request in Oracle Identity Manager moves to the Request Failed
status, you want to run a custom code that sends a notification to an administrator. To
do so:

1. Create a new plug-in class with name RequestFailedChangeEvent that implements
the oracle.iam.request.plugins.StatusChangeEvent interface. This class must have
the logic of sending a notification to the administrator in the
followUpActions(String reqId) method.

2. Define plugin.xml in following standard format, as specified by the plug-in
framework:

Modify User Profile ModifyUserDataset.xml User

Modify Self Profile ModifyUserDataset.xml User

Create Role CreateRoleDataSet.xml Role

Modify Role ModifyRoleDataSet.xml Role

Delete Role DeleteRoleDataSet.xml. Role

Assign Roles AssignRolesDataset.xml Role

Remove from Roles RemoveRolesDataset.xml Role

See Also: Chapter 27, "Developing Plug-ins" for detailed
information about plug-ins and plug-in points

Table 21–2 (Cont.) Default Request Datasets Shipped with Oracle Identity Manager

Request Type Default Dataset File Name Entity

Extending Request Management Operations

21-52 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

<oimplugins xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <plugins pluginpoint="oracle.iam.request.plugins.StatusChangeEvent">
 <plugin pluginclass="com.mycompany.RequestFailedChangeEvent"
version="1.0" name="RequestFailedChangeEvent">
 <metadata name="status">
 <value>Request Failed</value>
 </metadata>
 </plugin>
</oimplugins>

In this XML definition, the metadata part specifies at which stage the plug-in must
be run. This is done by specifying the metadata value as Request Failed, which
means that the com.mycompany.RequestFailedChangeEvent plug-in will run
when a request moves to the Request Failed status.

3. Register the plug-in with Oracle Identity Manager. See "Registering Plug-ins" on
page 27-7 for information about registering plug-ins in Oracle Identity Manager.

21.8.2 Validating Request Data
You can use the RequestDataValidator plug-in to add custom validation of request
data after submission. The plug-in point for this is the
oracle.iam.request.plugins.RequestDataValidator interface with public void
validate(RequestData requesterData) method.

You can define the dataset validators and prepopulation adatpers associated with the
given plug-in. The request datasets associated with the plug-ins can be defined at the
time of plug-in registration. The plugin.xml file is used to define the association
between plug-ins and dataset validator or prepopulation adapters. The <metadata>
node attached with the <plugins> element is used to define the association between
data validators and prepopulation adapters.

Example 21–1 shows how the plug-ins can be associated with data validators and
prepopulation adapters.

Example 21–1 Associating plug-ins With Data Validators and Prepopulate Adapters

<?xml version="1.0" encoding="UTF-8"?>
<oimplugins xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <plugins pluginpoint="oracle.iam.request.plugins.RequestDataValidator">
 <plugin pluginclass=
"oracle.iam.plugin.appinst.ApplicationInstanceDataValidator" version="1.0"
name="AppInstDataValidator">
 <metadata name="DataValidator">
 <value>AppInstanceDataSet|ADAppDataSet|EBSDataSet</value>
 </metadata>
 </plugin>
 </plugins>
</oimplugins>

Note: DataSetValidator plug-in specified for a dataset cannot be
overridden by the plug-in enhancement of specifying the validators
metadata in the plugin.xml itself. For instance, the predefined dataset
'ModifyUserDataset' shipped with default validator does not get
overridden by the custom implementation class. Therefore, the
validator in dataset will be given precedence, currently there is no
option to override it.

Extending Request Management Operations

Developing Workflows for Approval and Manual Provisioning 21-53

In this example, the following line of code indicates defining metadata xml element to
indicate that the plug-in is associated with request data validator datasets:

<metadata name="DataValidator">

Note that Attribute name="DataValidator" in the metadata element indicates
plug-in associated with request data validators.

Defining the names of the datasets to be associated with the current plug-in is
indicated by the following line:

<value>AppInstanceDataSet|ADAppDataSet|EBSDataSet</value>

Consider the following scenario:

Suppose Oracle Identity Manager is configured for provisioning users to the AD User
APAC target. A RequestDataValidator specifies ADUserDataValidator is configured
for the corresponding request dataset, as shown:

<plugin pluginclass= "oracle.iam.plugin.appinst.ADUserDataValidator" version="1.0"
name="ADUserDataValidator">
<metadata name="DataValidator">
<value>ADUserAPACDataSet</value>
</metadata>
</plugin>

Later, if the System Configurator wants to configure Oracle Identity Manager for
provisioning users to the AD User EMEA target, then the System Configurator would
create a new application instance, and associate a UI form with it. Request dataset
would be auto-generated in the process. If the data-validator is to be re-used for this
request dataset, then perform the following:

1. Edit plugin.xml of the ADUserDataValidator.

2. In the <metadata> <value> subtag, add the name of the new request dataset
separated by a delimiter. For example:

<value>ADUserAPACDataSet|ADUserEMEADataSet</value>

3. Re-register the data-validator plug-in.

21.8.3 Prepopulation of an Attribute Value During Request Creation
Prepopulation plug-in is associated with an attribute reference or attribute in request
dataset. This can be used to prepopulate an attribute value by running custom code
during request creation. Requester can modify the value that is prepopulated if
required.

The plug-in point for this is oracle.iam.request.plugins.PrePopulationAdapter with
public Serializable prepopulate(RequestData requestData) method. Use this plug-in
only for the following request types:

Provision Resource, Self-Request Resource, Create User, Self-Register User.

Defining metadata element to indicate that the plug-in is mapped to request data set
attributes for filling up prepopulated data is indicated by the following line:

Note: Request dataset names must be delimited by the single pipe
character (|).

Enabling Auto-Approval for Self Registration Requests

21-54 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

<metadata name="PrePopulationAdapater">

The association is defined by combining dataset name with attribute name in the
following format:

<DATASET_NAME>::<ATTRIBUTE_NAME>

For example:

AppInstanceDataSet::First Name

Multiple attributes can be associated with the same prepopulation plug-in, where each
association is separated by the single pipe character (|). For example:

<datasetname1>::<attribute1> |
<datasetname2>::<attributename2>|<datasetname3>::<attribute3>

The following is an example of prepopulation plug-in:

<plugins pluginpoint="oracle.iam.request.plugins.PrePopulationAdapter">
 <plugin pluginclass=
"oracle.iam.plugin.appinst.ApplicationInstancePrePopulateAdapter" version="1.0"
name="AppInstPrepopAdapter">
 <metadata name="PrePopulationAdapater">
 <value>
AppInstanceDataSet::First Name|ADAppDataSet::Last Name
 </value>
 </metadata>
 </plugin>
 </plugins>

21.9 Enabling Auto-Approval for Self Registration Requests
Approval policies can be configured at request level or operation level. They can use
all the data available at the request and operational levels to construct a rule. The rule

Note: In addition to creating request datasets by using the catalog
Form Designer, you can manually upload request datasets to MDS.
You can also define DataSetValidator or PrepopulationAdapter
elements within the request dataset. These dataset validators or
prepoulation adapters configured in the dataset have the highest
priority over other configuration.

For example, a plug-in EBSUserDataValidator is registered to associate
it with a request dataset EBSUSerDataSet, but the dataset has not been
created or uploaded. Another plug-in ADUserDataValidator is
registered but not associated with any request dataset. When you later
create the request dataset EBSUSerDataSet and use it for creating
requests, the plug-in EBSUserDataValidator is called for validating the
request data. Then, you add the DataSetValidator element to the
request dataset EBSUSerDataSet that you manually created, and
specify another plug-in ADUserDataValidator. When you use
EBSUSerDataSet to create requests, the plug-in ADUserDataValidator
is called. This is because ADUserDataValidator is configured as a part
of the request dataset. If the DataSetValidator entry is removed from
EBSUSerDataSet, then the plug-in EBSUserDataValidator is invoked to
validate the request data.

Enabling Auto-Approval for Self Registration Requests

Developing Workflows for Approval and Manual Provisioning 21-55

helps determine whether the request should be auto-approved or a SOA composite
should be invoked. For information about enabling auto-approval for request and
operation levels, see "Creating Approval Policies" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Manager.

After the approval policies are updated, perform the following steps to enable
auto-approval for self registration requests:

1. To assign the organization automatically, add a preprocess handler that sets the
organization value in the orchestration. The order should be set such that it is
executed before the approval-related handlers. Set this to be executed soon after
the CreateUserPreProcessHandler. See Chapter 28, "Developing Event Handlers"
for information about orchestration and event handlers.

2. By default, the Role/User Type set for the self registration requests is Part-Time
Employee. If you want to overwrite this value, then change the plug-in configured
in the SelfCreateUserDataset.xml dataset.

3. You can create a new plug-in implementation for the value/logic required and
change the plug-in configured in the dataset to bring the new one in affect. The
new plug-in must implement oracle.iam.request.plugins.PrePopulationAdapter.

4. Register the plug-in that you created by using the Plugin Registration Utility. For
details, see "Registering and Unregistering Plug-ins By Using the Plugin
Registration Utility" on page 27-8.

5. To update the request dataset:

a. Export the
/metadata/iam-features-requestactions/model-data/SelfCreateUserDataset.x
ml request dataset from the MDS, as described in "Exporting Metadata Files to
MDS" on page 37-1.

b. Update the name of the plug-in configured for Role attribute, as shown:

<AttributeReference name="Role" attr-ref="Role" available-in-bulk="false"
type="String" length="255" widget="dropdown"
lookup-code="Lookup.Users.Role"
required="true">
<PrePopulationAdapter
classname="oracle.iam.selfservice.uself.uselfmgmt.plugins.RolePrepopulateAd
apter"
name="RolePrepopulateAdapter"/>
</AttributeReference>

c. Import the updated request dataset to MDS, as described in "Importing
Metadata Files from MDS" on page 37-2.

Enabling Auto-Approval for Self Registration Requests

21-56 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

22

Using Segregation of Duties (SoD) 22-1

22Using Segregation of Duties (SoD)

[23]

The concept of Segregation of Duties (SoD) is aimed at applying checks and balances
on business processes. Each stage of a business process may require the involvement
of more than one individual. An organization can convert this possibility into a
requirement for all IT-enabled business processes by implementing SoD as part of its
user provisioning solution. The overall benefit of SoD is the mitigation of risk arising
from intentional or accidental misuse of an organization's resources.

This chapter describes SoD in the following sections:

■ Understanding the SoD Validation Process

■ Introducing the SoD Invocation Library

■ Installing the SoD-enabled Connectors

■ Deploying the SIL and SIL Providers

■ Configuring the SoD Engine

■ Enabling and Disabling SoD

■ Enabling SSL Communication

■ Configuring Workflows on Non SoD-enabled Connectors

■ Marking Child Process Form Tables That Hold Entitlement Data

■ Custom Combination of Target Systems and SoD Engines

■ Performing Role SoD Check with Oracle Identity Analytics

■ Using SoD in Provisioning Workflow

■ Enabling Logging for SoD-Related Events

■ Troubleshooting SoD Check

22.1 Understanding the SoD Validation Process
Oracle Identity Manager is a user provisioning solution with which entitlement
requests can also be validated and managed. In the Oracle Identity Manager
implementation of SoD, user requests for IT privileges (entitlements) are checked and
approved by an SoD engine and other users. Multiple levels of system and human
checks ensure that even changes to the original request are vetted before the request is
cleared. This preventive approach helps identify and correct potentially conflicting
entitlement assignments before the requested entitlements are assigned.

Introducing the SoD Invocation Library

22-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

The SoD validation process in Oracle Identity Manager occurs when a user creates a
request for an entitlement on a particular target system. The request is funneled
through a resource approval workflow and, if it passes that initial workflow, a
resource provisioning workflow.

■ The resource approval workflow is configured to validate requests in real time using
an SoD engine. The SoD engine has predefined rules that are used to determine if
the entitlement assignment would lead to SoD violations. The determination, once
made, is returned to Oracle Identity Manager.

■ The resource provisioning workflow provisions an entitlement request that has passed
the resource approval workflow on the target system.

If the user's request passes SoD validation (and an approver approves the request), the
resource provisioning workflow is initiated. If the request fails SoD validation, the
resource approval workflow can be configured to take remediation steps.

Oracle Identity Manager communicates with both the SoD engine and the target
system. In addition, the target system and SoD engine communicate with each other to
enable the synchronization of entitlement data. Figure 22–1 shows the flow of data
during the SoD validation process.

Figure 22–1 SoD Validation Process in Oracle Identity Manager

22.2 Introducing the SoD Invocation Library
The SoD Invocation Library (SIL) forms the basis of the SoD implementation in Oracle
Identity Manager. The SIL is a collection of Java-based adapters that enable integration
with predefined Oracle Identity Manager connectors. The connectors, in turn, link
Oracle Identity Manager with the target systems. The following Oracle Identity
Manager connectors are preconfigured with adapters for SoD validation:

Note: The resource provisioning workflow can be configured to
perform the SoD validation again - immediately before the entitlement
assignment is provisioned to the target system - to ensure SoD
compliance.

Introducing the SoD Invocation Library

Using Segregation of Duties (SoD) 22-3

■ Oracle e-Business User Management release 9.1.0 and later

■ SAP User Management release 9.1.2.5 and later

The SIL also acts as the base for specialized adapters that integrate the SIL with SoD
engines. These adapters are called SIL providers. A SIL provider acts as the interface
between the SIL and a specific SoD engine. There are predefined SIL providers for the
following SoD engines:

■ SIL Provider for SAP GRC

This provider is also known as the SAP GRC SIL Provider. The certified versions
of SAP GRC are versions 5.2 SP4 or later and 5.3 SP5 or later.

■ SIL Provider for Oracle Application Access Controls Governor (OAACG) release
8.6.3

This provider is also known as the OAACG SIL Provider.

■ SIL Provider for Oracle Identity Analytics (OIA) 11g Release 1 Patch Set 1 Bundle
Patch 2 (11.1.1.5.2)

This provider is also known as the OIA SIL Provider.

Figure 22–2 shows the architecture of SoD implementation in Oracle Identity Manager.

Note: With SAP UM 9.1.2.5, request entitlement does not work in
Oracle Identity Manager 11g Release 2 (11.1.2.1.0).

Note: Install the latest patch set for OAACG before implementing
and using SoD in Oracle Identity Manager. Contact Oracle Support for
more information.

Note: You can download the current version of OIA from the My
Oracle Support web site by navigating to the following URL and
searching for Patch 13641335.

https://support.oracle.com

Installing the SoD-enabled Connectors

22-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 22–2 Architecture of SoD Implementation in Oracle Identity Manager

If required, you can configure any Oracle Identity Manager connector with either the
SAP GRC SIL Provider, the OAACG SIL Provider or the OIA SIL Provider. For
example, you can use the PeopleSoft User Management connector and the OAACG
SIL Provider to automate SoD validation of requests for entitlements on PeopleSoft
Enterprise Applications.

You can also create and use a SIL provider for a custom SoD engine, along with either
one of the preconfigured Oracle Identity Manager connectors or an Oracle Identity
Manager connector that you configure for SoD validation.

22.3 Installing the SoD-enabled Connectors
Instructions to install the SoD-enabled connectors listed below can be found in the
specific connector documentation. The Oracle Identity Manager Connectors
Documentation page is located at the following URL:

http://download.oracle.com/docs/cd/E11223_01/index.htm

■ Oracle e-Business User Management release 9.1.0 and later

■ SAP User Management release 9.1.2.5 and later

22.4 Deploying the SIL and SIL Providers
SIL registration is provided by default for the some target systems and SoD engines.
No deployment steps are required for these default combinations of target systems
and SoD engines. Target systems for which SIL registration is provided include:

■ EBS and OAACG

■ PSFT and OAACG

■ SAP and SAP-GRC

Configuring the SoD Engine

Using Segregation of Duties (SoD) 22-5

■ OIA

OIA SoD Engine synchronizes data with Oracle Identity Manager rather than any
target system so the topology registered for OIA can be used with any connector
configured with Oracle Identity Manager. OIA imports all data from Oracle
Identity Manager. Therefore, from OIA perspective, Oracle Identity Manager is the
target system.

You must perform the SIL registration process if you want to use any other
combination of target systems or SoD engines. For more information, see Section 22.10,
"Custom Combination of Target Systems and SoD Engines."

22.5 Configuring the SoD Engine
You must import entitlement data from the target system to the SoD engine. If
required, you must also configure SoD validation rules on the SoD engine. The
following sections provide these instructions for the preconfigured SoD engines.

■ Configuring Oracle Application Access Controls Governor

■ Configuring SAP GRC

■ Configuring Oracle Identity Analytics

22.5.1 Configuring Oracle Application Access Controls Governor
Configuring Oracle Application Access Controls Governor (OAACG) involves the
following procedures:

■ Installing Oracle Application Access Controls Governor

■ Creating an Oracle Application Access Controls Governor Account for SoD
Operations

■ Synchronizing Role and Responsibility Data from Oracle e-Business Suite to
Oracle Application Access Controls Governor

■ Defining Access Policies in Oracle Application Access Controls Governor

Installing Oracle Application Access Controls Governor
OAACG 8.6.3.x is supported with Oracle Identity Manager 11g Release 2 (11.1.2.1.0)
onward. First OAACG 8.6.3 GA must be installed. Further, this must be upgraded to
OAACG to 8.6.3.6012 because Oracle Identity Manager SoD has been certified against
OAACG 8.6.3.6012.

To install OAACG 8.6.3 GA:

1. Logon to My Oracle Support.

2. Click the Patches & Updates tab.

3. Click Advanced Search.

4. Select Product Family as Oracle Application Access Controls Governor and
release as AACG 8.6.3. Select the appropriate platform, and click Search. The
following patches and other latest ones are displayed:

■ 8.6.3 GA - 12724066 - ORACLE APPLICATION ACCESS CONTROLS
GOVERNOR 8.6.3

■ 8.6.3.2000 - 12945100 - ORACLE APPLICATION ACCESS CONTROLS
GOVERNOR 8.6.3.2000 - Password protected and requires password from
Support

Configuring the SoD Engine

22-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ 8.6.3.3000 - 12963883 - ORACLE APPLICATION ACCESS CONTROLS
GOVERNOR 8.6.3.3000 - Password protected and requires password from
Support

■ 8.6.3.3500 - 12993066 - ORACLE APPLICATION ACCESS CONTROLS
GOVERNOR 8.6.3.3500 - Password protected and requires password from
Support

■ 8.6.3.4000 - 13015405 ORACLE APPLICATION ACCESS CONTROLS
GOVERNOR 8.6.3.4000

■ 8.6.3.5000 - 13507234 ORACLE APPLICATION ACCESS CONTROLS
GOVERNOR 8.6.3.5000

■ 8.6.3.6000 - 13699560 - ORACLE APPLICATION ACCESS CONTROLS
GOVERNOR 8.6.3.6000

■ 8.6.3.6001 - 13872240 - ORACLE ENTERPRISE TRANSACTIONS CONTROLS
GOVERNOR 8.6.3.6001

■ 8.6.3.6012 - 13931550 - ORACLE APPLICATION ACCESS CONTROLS
GOVERNOR 8.6.3.6012

5. Download patch 12724066.

6. Perform the OAACG upgrade or install by referring to the OAACG install guide.

Similarly, download patches for other required versions and apply in sequence.
For each deployment, Access ETL must be re-run against the active data sources.

OAACG 8.6.3GA must be upgraded to OAACG 8.6.3.6012. The sequence for
upgrading is as follows:

8.6.3GA to 8.6.3.4000 to 8.6.3.5000 to 8.6.3.6000 to 8.6.3.6001, and finally to
8.6.3.6012

The patch IDs for downloading from Oracle Support for all these patches are
mentioned in step 4.

Creating an Oracle Application Access Controls Governor Account for SoD
Operations
Create an account of the Basic type for SoD validation operations. While performing
the procedure described in "Creating an IT Resource to Hold Information about the
SoD Engine" on page 22-40, provide the user name and password of this account.

See Oracle Application Access Controls Governor documentation for information
about creating the account.

Synchronizing Role and Responsibility Data from Oracle e-Business Suite to
Oracle Application Access Controls Governor
You must import (synchronize) role and responsibility data from Oracle e-Business
Suite into Oracle Application Access Controls Governor. After first-time
synchronization, you must schedule periodic synchronization of data.

See Oracle Application Access Controls Governor documentation for more
information.

Defining Access Policies in Oracle Application Access Controls Governor
After you import role and responsibility data, set up access policies in Oracle
Application Access Controls Governor. These access policies are based on various
combinations of roles and responsibilities.

Configuring the SoD Engine

Using Segregation of Duties (SoD) 22-7

See Oracle Application Access Controls Governor documentation for more
information.

22.5.2 Configuring SAP GRC
SAP GRC uses user, role, and profile data from SAP R/3 to validate requests for
accounts, roles, and responsibilities. Configuring SAP GRC involves the following
procedures:

■ Creating an SAP GRC Account for SoD Operations

■ Generating the Keystore

■ Configuring the Risk Terminator

■ Synchronizing User, Role, and Profile Data from SAP ERP to SAP GRC

■ Defining Risk Policies in SAP GRC

Creating an SAP GRC Account for SoD Operations
You must create an SAP GRC account for SoD operations. During SoD operations, this
account is used to call the SAP GRC Web service.

When you create this user account, you must assign it to the following groups:

■ Everyone

■ Authenticated Users

You must not assign any roles to this account.

Generating the Keystore
To generate the keystore:

1. In a Web browser, open the Web Services Navigator page of SAP GRC Access
Control. The URL is similar to the following:

https://SAP_GRC_HOST:PORT_NUMBER/VirsaCCRiskAnalysisService/Config1?wsdl

2. Export the certificate.

3. Copy the certificate into the bin directory inside the JDK installation directory of
SAP GRC.

4. Run the following command to create the keystore from the certificate file that you
download:

keytool -import -v -trustcacerts -alias sapgrc -file CERTIFICATE_FILENAME
-keystore sgil.keystore -keypass changeit -storepass changeit

5. When prompted for the keystore password, specify changeit. This is the default
keystore password.

6. When prompted to specify whether you want to trust the certificate, enter yes.

7. The sgil.keystore file is created in the bin directory. Copy the file to the
OIM_HOME/config directory.

Note: In this sample command, the keystore file name is
sgil.keystore.

Configuring the SoD Engine

22-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Configuring the Risk Terminator
The Risk Terminator is a feature of GRC Access Control. It is the main component of
the SoD validation functionality of SAP GRC. Whenever a role is created in the profile
generator or assigned to a user, the Risk Terminator verifies if this role creation or
assignment would result in an SoD violation.

See the Risk Terminator Configuration document for detailed information.

Synchronizing User, Role, and Profile Data from SAP ERP to SAP GRC
User, role, and profile data must be imported (synchronized) from SAP ERP into SAP
GRC. After first-time synchronization, you must schedule periodic synchronization of
data.

Defining Risk Policies in SAP GRC
After you import role and responsibility data, use the Risk Analysis and Remediation
feature of SAP GRC to define risk policies of type Segregation of Duty.

See SAP GRC documentation for more information.

22.5.3 Configuring Oracle Identity Analytics
Configuring Oracle Identity Analytics involves the following procedures:

■ Creating an Oracle Identity Analytics Account for SoD Operations

■ Synchronizing Oracle Identity Manager Metadata With Oracle Identity Analytics

■ Defining Identity Audit Policies in Oracle Identity Analytics

Creating an Oracle Identity Analytics Account for SoD Operations
Create an account on Oracle Identity Analytics and assign to it the SRM Admin role
for SoD validation operations. When performing the procedure described in "Creating
an IT Resource to Hold Information about the SoD Engine" on page 22-40, provide the
user name and password of this account.

See the Oracle Identity Analytics documentation for information about creating the
account.

Oracle Identity Analytics 11.1.1.5.2 provides information on the entitlements that
caused a conflict. This information is visible under SoD Details. The entitlements
under SoD Details will be displayed in an encoded form (for example, 4~695~24123)
because this is how policies are created on OIA.

Synchronizing Oracle Identity Manager Metadata With Oracle Identity Analytics
Import the resource metadata and resources from Oracle Identity Manager to Oracle
Identity Analytics.

See the Oracle Identity Analytics documentation for more information.

Note: Oracle Identity Analytics 11.1.1.5.0 Patch Set 2 is certified for
Oracle Identity Manager 11g Release 2 (11.1.2.1.0).

Note: The Oracle Identity Analytics Admin account with username
rbacxadmin can also used.

Enabling and Disabling SoD

Using Segregation of Duties (SoD) 22-9

Defining Identity Audit Policies in Oracle Identity Analytics
Set up identity audit rules and policies using Oracle Identity Analytics. Rules are
created on the resource attributes. For entitlement SoD Check, give encoded values for
roles and responsibilities as in Oracle Identity Manager.

See the Oracle Identity Analytics documentation for more information.

22.6 Enabling and Disabling SoD
The following sections contain information on enabling and disabling SoD.

■ Enabling SoD

■ Disabling SoD

22.6.1 Enabling SoD
To enable the SoD feature:

1. Set the Segregation of Duties (SOD) Check Required system property to true. See
"Managing System Properties" in the Oracle Fusion Middleware Administrator's
Guide for Oracle Identity Manager for information about system properties.

2. Set the topologyName parameter in the Connector IT Resource instance to the
value present in SILConfig.xml. If you are using default SIL registration, set the
topologyName parameter in connector IT Resource to one of the following:

■ sodoaacg if you are using the EBS connector and OAACG as the SoD engine

■ oaacgpsft if you are using the PSFT connector and OAACG as the SoD engine

■ sodgrc if you are using GRC as the SoD engine

■ sodoia if you are using OIA as the SoD engine

3. Deploying SIL and SIL Providers

To deploy SIL and SIL providers for default combination of target systems and
SoD engines:

a. Create a new IT Resource for Sod Engine with the name (type) as follows:

– For EBS-OAACG: OAACG-ITRes (eBusiness Suite OAACG)

– For SAP-GRC: GRC-ITRes (SoD Provider)

– For OIA: IT resource with name OIA-ITRes (OIA) is predefined.

– For PSFT-OAACG: IT resource with name PSFT-OAACG-ITRes(OAACG)
is predefined.

b. Edit the created IT Resource as described in "Creating an IT Resource to Hold
Information about the SoD Engine" on page 22-40.

Note: Connector IT resource must have the ALL USERS role so that
any user is able to access the IT Resource information. This is required
for SOD requests raised by users.

Enabling and Disabling SoD

22-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

4. Enabling SoD in Direct Provisioning and Access Policy Based Provisioning:

SoD is enabled only if Holder and SODChecker tasks are present in the
provisioning workflow.

Enabling SoD in Request Provisioning:

Steps 1 and 2 enables default SoD check in approval. The default SoD check is
performed before the request goes for approval. If the SoD check is required after
one level of approval, then default SoD check approval workflow, which is
DefaultSODApproval, must be attached by creating an approval policy. SoD check
can also be performed in any approval workflow on demand. This can be done by
calling the SoD check Web service from BPEL. For more information, see
"Modifying the Approval Workflow for SoD" on page 22-14.

5. Adding CSF Credentials for SoD Check:

a. Login to the Enterprise Manager, and on the left tab, expand Weblogic
Domain.

b. Open base_domain.

c. On top of the right pane, from the WebLogic Domain list, select Security, and
then open Credentials.

d. Select the Create Key option, and then select Map 'oim'.

e. Provide the key as sodcheck.credentials, and select Type as Password.

f. Provide Username as oiminternal and password as not used. Click OK to
save the key.

22.6.2 Disabling SoD
You can disable SoD by performing any one of the following:

Note:

■ To configure with OAACG 8.5 or higher, add a new field to this IT
resource with name as sodServerURL and value
http(s)://HOST_NAME:PORT/URI, where URL is
grcc/services/GrccService. For OAACG8.2.1, the value of URL
is ags/services/AGService.

■ See "Managing System Properties" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Manager for information
about how to set system property values.

Note: If DefaultSODApproval workflow is attached to operational
level of approval, then the system administrator first needs to
approve, and then only SoD Check is performed. After SoD Check is
performed, approval is required by System Administrators. According
to this workflow, first approval task is generated that is assigned to
the system administrator, then SoD Check is performed, and then an
approval task is generated. Any user who is a member of the System
Administrators role can approve the second approval task after
viewing the SoD Check results.

Enabling SSL Communication

Using Segregation of Duties (SoD) 22-11

■ Set the Segregation of Duties (SOD) Check Required system property to false.

■ Remove the value of the topologyName parameter for the connector IT Resource
so that its value is set to blank. If the topologyName parameter in ITResource is set
to None, then SoD check is not performed.

Disabling SoD in Direct Provisioning and Access Policy Based Provisioning
Disable the Holder and SODChecker process tasks.

Disabling SoD in Request Provisioning
For disabling the default SoD check in approval, you can perform any one of the steps
to disable SoD. If you want to perform the default SoD check in approval and only
disable the SoD check in BPEL, then remove approval policy for SoD or remove call to
SoD Check Web service from the approval workflow.

22.7 Enabling SSL Communication
The following sections contain information on enabling Secure Sockets Layer (SSL)
communication for various SoD purposes.

■ Enabling SSL Between Oracle Application Access Controls Governor and Oracle
Identity Manager

■ Enabling SSL Between SAP GRC and Oracle Identity Manager

■ Calling SoD Check Web Service Over SSL

22.7.1 Enabling SSL Between Oracle Application Access Controls Governor and Oracle
Identity Manager

To enable SSL communication between Oracle Application Access Controls Governor
and Oracle Identity Manager:

1. Export the certificate on the Oracle Application Access Controls Governor host
computer as follows:

a. Run the following commands from the JAVA_HOME/bin directory:

keytool -genkey -alias tomcat -keyalg RSA -keystore
JAVA_HOME/lib/security/.keystore
keytool -certreq -alias tomcat -file JAVA_HOME/lib/security/xell.cvs
-keystore JAVA_HOME/lib/security/.keystore
keytool -export -alias tomcat -file JAVA_HOME/lib/security/server.cert
-keystore JAVA_HOME/lib/security/.keystore

See Also: The connector guide for detailed information about
disabling these process tasks.

Note: It is assumed that you have set sslEnable to true during the
registration process.

Note: In Step 1, JAVA_HOME refers to the directory on the Oracle
Application Access Controls Governor host computer.

Enabling SSL Communication

22-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

After you run these commands, the server certificate (server.cert) is created in
the JAVA_HOME/lib/security directory.

b. In the TOMCAT_HOME/conf/server.xml file, enter the details of the keystore
as attributes of the Connector element. See the following example:

<Connector port="8443" maxHttpHeaderSize="8192"
maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
enableLookups="false" disableUploadTimeout="true"
acceptCount="100" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS"
keystoreFile="JAVA_HOME/lib/security/.keystore">

c. Restart Oracle Application Access Controls Governor.

2. Import the certificate on the Oracle Identity Manager host computer as follows:

a. Copy the server certificate created on the Oracle Application Access Controls
Governor host computer to the JAVA_HOME/lib/security directory of the
Oracle Identity Manager host computer.

b. Run the following command from the JAVA_HOME/bin directory:

keytool -import -alias oaacg_trusted_cert -file
JAVA_HOME/lib/security/server.cert -trustcacerts -keystore
JAVA_HOME/lib/security/cacerts -storepass changeit

22.7.2 Enabling SSL Between SAP GRC and Oracle Identity Manager
To enable SSL communication between SAP GRC and Oracle Identity Manager export
the certificate on the SAP GRC host computer as follows:

1. In a Web browser, open the Web Services Navigator page of SAP GRC Access
Control. The URL is similar to the following:

https://mysapserver01:50001/VirsaCCRiskAnalysisService/Config1?wsdl

2. The next step depends on the browser that you are using:

– On Microsoft Internet Explorer: In the Security Alert dialog box, click View
Certificate. On the Details tab of the dialog box, use the Copy to file button to
export the certificate.

– On Mozilla Firefox: Export the certificate as a .pem file. To be able to perform
this step, you might need to download and install the Certificate Viewer
enhancement from the Mozilla Web site.

3. Copy the certificate into the JAVA_HOME/lib/security directory used by the
application server hosting Oracle Identity Manager.

4. In a terminal window, change to the JAVA_HOME/bin directory.

Note: In Step 2, JAVA_HOME refers to the directory on the Oracle
Identity Manager host computer.

Note: In this section, JAVA_HOME refers to the directory on the
Oracle Identity Manager host computer that is used to run the
application server.

Enabling SSL Communication

Using Segregation of Duties (SoD) 22-13

5. Run the following command to import the GRC certificate to cacerts:

keytool -import -alias sapgrc_trusted_cert -file
JAVA_HOME/lib/security/CERTIFICATE_FILENAME -trustcacerts -keystore
JAVA_HOME/lib/security/cacerts -storepass changeit

In this command:

– CERTIFICATE_FILENAME is the name of certificate that has been exported
from the SAP GRC host computer

– The -storepass changeit clause specifies the password for the cacerts
keystore.

6. When prompted to specify whether or not you want to trust the certificate, enter
yes.

The "Certificate was added to keystore" message is displayed.

22.7.3 Calling SoD Check Web Service Over SSL
SOA calls the Oracle Identity Manager Web service over the URL given as the
oimFrontEndURL, which is the URL used to access the Oracle Identity Manager UI, in
the oim-config.xml file. By default, this is a HTTP URL. You can change this to HTTPS
so that communication takes place over SSL. The SSL port for Oracle Identity Manager
can be viewed on the WebLogic Administrative Console.

To call SoD check Web service over SSL:

1. Locate the Oracle Identity Manager SSL port. To do so:

a. Login to the WebLogic Administrative Console.

b. Go to servers, oim_server1. You can see that SSL Listen Port is enabled.

2. Change the oimFrontEndURL through the MBeans browser in Enterprise
Manager. To do so:

a. Login to Enterprise Manager.

b. Go to oim_server1.

c. From the list on the top of the page, select System Mbeans Browser.

d. Go to Application Defined Mbeans, oracle.iam, Server: oim_server1,
Application: oim, XMLConfig, Config, XMLConfig.DiscoveryConfig, and
Discovery. The attributes are displayed to the right.

e. Click oimFrontEndURL, and change its value, as shown:

https://HOST_NAME:SSL_PORT

3. Restart Oracle Identity Manager.

4. Create a request for SoD-enabled resource. You can view the new workflow
instance in Enterprise Manager. The Web service will be called on SSL port.

Note: The value of oimFrontEndURL can also be set at the time of
installing Oracle Identity Manager.

Configuring Workflows on Non SoD-enabled Connectors

22-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

22.8 Configuring Workflows on Non SoD-enabled Connectors
Perform the procedures described in this section only if you are not using one of the
preconfigured SoD-compatible connectors (Oracle e-Business User Management and
SAP User Management). This section discusses the following procedures:

■ Modifying the Approval Workflow for SoD

■ Modifying the Provisioning Workflow for SoD

22.8.1 Modifying the Approval Workflow for SoD
To modify the approval workflow for SoD validation:

1. In the IT resource of the connector, create the TopologyName parameter if it does
not already exist. Figure 22–3 shows a sample IT resource in which this parameter
has been added:

Figure 22–3 The TopologyName Parameter

If SoD Check property is set to true and topologyName parameter is set to the
appropriate value in the connector IT Resource, then default SoD Check is
performed in the preprocess stage of the approval workflow. After the request is

Note: It is assumed that Oracle Identity Manager and SOA are
running on the same Java Runtime Environment (JRE). If SOA and
Oracle Identity Manager are running on different JREs, then WebLogic
certificate exchange is required for SSL communication. For details,
see Oracle WebLogic Server 10g Release 3 (10.3) documentation in the
Oracle Technology Network (OTN) Web site by using the following
URL:

http://www.oracle.com/technetwork/middleware/weblogic/docume
ntation/index.html

Note: Forms are created from the UI based on the connector process
form. Request dataset is no longer required in Oracle Identity
Manager.

Configuring Workflows on Non SoD-enabled Connectors

Using Segregation of Duties (SoD) 22-15

created, the request status is changed to SoD check result pending for
asynchronous SoD check and SoD check completed status for synchronous SoD
check. For asynchronous SoD check, the Get SOD Check Results Approval
scheduled job must be run to complete the SoD check.

Figure 22–4 shows the request history for asynchronous SOD check:

Figure 22–4 Request History for Asynchronous SoD Check

2. In addition to the SoD check being triggered by default before any level of
approval, it can be triggered by attaching the predefined DefaultSODApproval
workflow. The workflow can be attached to the operational level of approval by
creating an approval policy.

For using the default workflow, see "Appying the Workflow By Using Approval
Policy" on page 22-27. This workflow contains an approval task that is assigned to
the system administrator. After this approval task, a call is made to the SoDCheck
Web service to return the SoD check result. The workflow with SoDCheck Web
service call is shown in Figure 22–5.

Note: If there is an error while performing SoD check, then the SoD
Check Status attribute in the request dataset is set to SoD check
completed with error and the request moves for approval. Final
decision is on the approver whether or not to approve the request
although SoD check is not performed successfully.

Note: In Oracle Identity Manager 11g, patches were required on SOA
and WebLogic Server to allow the SoD workflow to work. Currently,
no patch is required for Oracle Identity Manager.

Configuring Workflows on Non SoD-enabled Connectors

22-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 22–5 Workflow with SoDCheck Web Service Call

After this, a switch case with approval tasks are assigned to the System
Administrators role. Any user that has this role can claim the task and approve it.
The switch is based on whether the SoD check result has passed or failed, as

Note: There are three levels of approval for any request:
template-level approval, request-level approval, and operational-level
approval. DefaultSODApproval workflow must only be attached at
the operational level. For bulk requests, the request-level approval is
common for all resources and users. After this level of approval,
separate requests are created for each combination of resource and
user. The workflow performs SoD check separately for each resource
and user at a time.

The workflow is useful when SoD Check is required after
request-level approval. One such instance is when the connector IT
resource information is entered by the approver. Here, the IT Resource
field in the request dataset is made approver-only, as shown below:

<AttributeReference name="EBS Server" attr-ref="EBS Server"
type="String" length="50" widget="itresource-lookup"
available-in-bulk="true" itresource-type="eBusiness Suite UM"
required="true" approver-only="true"/>

In this example, the IT resource information is not available when the
request is raised. It is available only after the approver enters it. If it is
entered during request-level approval, then the DefaultSODApproval
workflow can be used at operational level.

Approval-only field is not supported in Oracle Identity Manager 11g
Release 2 (11.1.2.1.0).

Configuring Workflows on Non SoD-enabled Connectors

Using Segregation of Duties (SoD) 22-17

shown in Figure 22–6:

Figure 22–6 Switch Case With Approval Tasks

Figure 22–7 shows the assignment of the approval task.

Figure 22–7 Assignment of the Approval Task

Approval workflow has migrated to BPEL in Oracle Identity Manager 11g Release
2 (11.1.2.1.0), and therefore, you must use JDeveloper to view or modify the

Configuring Workflows on Non SoD-enabled Connectors

22-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

default workflows. The default SoD workflow is available in the
OIM_HOME/workflows/composites/DefaultSODApproval.zip file. You can
unzip this file and open the DefaultSODApproval.jpr in JDeveloper. In addition,
you can create a new workflow by modifying any of the default approval
workflows to call the SoD Check Web service and start SoD check on demand. To
do so:

Creating and Deploying Workflows on SOA

a. Create a new workflow project by running
OIM_HOME/workflows/new-workflow/new_project.xml.

Here:

– WEBLOGIC_HOME is the directory on which Oracle WebLogic Server is
installed.

– NEW_PROJECT is the name of the new project that you want to create.

To create the new workflow project, run the following command:

ant -f new_project.xml

This prompts for Project Name, Application Name, and Service Name for the
new workflow name. Provide any name, such as SODWorkflow for all three.
This creates a new project with the provided name in the
workflows/new-workflow/process-template/ directory.

b. Navigate to process-template/APPLICATION_NAME/PROJECT_NAME/ and
open PROJECT_NAME.jpr from JDevepoler, where APPLICATION_NAME
and PROJECT_NAME are the names of the application and project
respectively.

The PROJECT_NAME.jpr workflow is same as the DefaultRequestApproval
workflow. You can modify this workflow to call the SoDCheck Web Service.
Figure 22–8 shows the default workflow modified to perform SoD Check after
human approval:

Configuring Workflows on Non SoD-enabled Connectors

Using Segregation of Duties (SoD) 22-19

Figure 22–8 Modified Workflow To Perform SoD Check

c. Extract OIM_HOME/workflows/composites/DefaultSODApproval.zip and
copy asyncsod.wsdl from the extracted directory to OIM_HOME/workflows/
process-template/APPLICATION_NAME/PROJECT_NAME/. Add a Web
service, such as SODCheckService1, in the composite.xml and provide the
asyncsod.wsdl as the WSDL file. The SoDCheck partner link is as shown in
Figure 22–9:

Note: BPEL connects to all external entities through a partner link.

Configuring Workflows on Non SoD-enabled Connectors

22-20 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 22–9 SoD Check Partner Link

d. In the ApprovalProcess.bpel design, include the following BPEL activities:

– ASSIGN: An assign activity must be added before calling the SoD Check
Web Service. This activity initializes the parameters required to call the
Web Service. To create an assign activity:

i) Drag and drop the activity in the BPEL process opened in JDeveloper.

ii) After the activity is created, double-click the activity, and click the Copy
Operation tab.

iii) Click Add, and then select Copy Operation. Provide the values for the
variables, as shown in Table 22–1:

Table 22–1 Variables to Assign

Copy From Copy To

XML Fragment

<EndpointReference
xmlns="http://www.w3.org/2005/08/addressing">
 <Address/>
</EndpointReference>

Variable

partnerlink

Expression

concat(substring-before(bpws:getVariableData('inpu
tVariable','payload','/client:process/ns1:url'),
"/workflowservice/CallbackService"),
'/sodcheck/SoDCheckInitiateService')

Partnerlink, EndpointReference,
Address

Variable

partnerlink

Partner Link

SODCheckService1

Variable

Payload, RequestId

Variable

SODInvoke_initiate_InputVariable,
where
SODInvoke_initiate_InputVariable is
the variable defined in Invoke BPEL
Activity

Configuring Workflows on Non SoD-enabled Connectors

Using Segregation of Duties (SoD) 22-21

The following figures show the values to be added:

Figure 22–10 shows the final assign activity:

Figure 22–10 Final Assign Activity

– INVOKE: The details for this activity are:

Interaction Type: Partnerlink

Partnerlink: SODCheckService

Operation: Initiate

Input Variable: SODInvoke_initiate_InputVariable

Figure 22–11 shows the Invoke dialog box with sample values in the fields:

Figure 22–11 The Invoke Dialog Box

– RECEIVE: The details for this activity are:

Interaction Type: Partnerlink

Configuring Workflows on Non SoD-enabled Connectors

22-22 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Partnerlink: SODCheckService

Operation: Result

Variable: SODResultReceive_result_InputVariable

Figure 22–12 shows the Receive dialog box with sample values in the
fields:

Figure 22–12 The Receive Dialog Box

– SWITCH: This activity is to switch between workflows based on
SODCheck Result. The switch case is as shown in Figure 22–13:

Configuring Workflows on Non SoD-enabled Connectors

Using Segregation of Duties (SoD) 22-23

Figure 22–13 Switch Case

– New Human Tasks: A new human task may be created and assigned to an
approver other then the system administrator. The new approval task is
same as the old one already present in the workflow, except that the
approver is different. This human task is used in the switch case. For
example, if the SoD check passes, then the approval task can be assigned
to a role. If the SoD check fails, then the approval task can be assigned to
the System Administrators role. DefaultSODApproval always assigns
approval task to the System Administrators role.

e. Applying SAML policy for request and callback for the AsyncSoD Web
service:

OWSM SAML token with Message Protection Policy, which is based on
Security Assertion Markup Language (SAML), is used as security policy for
message protection in asynchronous calls for SoD checks from the SOA
composite to Oracle Identity Manager. In asynchronous SoD check Web
service, it is mandatory to use SAML token with Message Protection Client
Policy for Request and SAML token with Message Protection Service Policy
for Callback, as described in this section.

To apply SAML token with Message Protection Client policy for request:

i) Right-click AsynchSoD Web service, and select Configure WS Policies, and
then select For Request, as shown in Figure 22–14:

Note: The SoDCheck Web service can be called multiple times.

Configuring Workflows on Non SoD-enabled Connectors

22-24 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 22–14 Configuring WS Policies for Request

ii) In the Configure SOA WS Policies dialog box, in the Security section, click
the plus (+) icon to add a security policy.

iii) In the Select Client Security Policies dialog box, select wss11_saml
_token_with_message_protection_client_policy as shown in Figure 22–15,
and then click OK.

Figure 22–15 Select Client Security Policies

To apply SAML or Username token with Message Protection Service Policy for
callback:

i) Right-click AsynchSoD Web service, and select Configure WS Policies, and
then select For Callback.

Configuring Workflows on Non SoD-enabled Connectors

Using Segregation of Duties (SoD) 22-25

ii) In the Configure SOA WS Policies dialog box, in the Security section, click
the plus (+) icon to add a security policy.

iii) In the Select Server Security Policies dialog box, select wss11_saml
_or_username_token_with_message_protection_service_policy as shown in
Figure 22–16, and then click OK.

Figure 22–16 Select Server Security Policies

f. Compile the project to see if there are any errors. If there are no errors, then
right-click the project, and select Deploy. In the dialog box that is displayed,
select any one of the following options:

– Deploy to Application Server: Select this option and then select the
appropriate server. The workflow is directly deployed to the application
server.

– Deploy to JAR: A JAR file is created under the JDeveloper deploy
directory with the name sca_PROJECT_NAME_rev1.0.jar, where
PROJECT_NAME is the name of the project.

g. From the SOA_HOME/bin/ directory, deploy the workflow on SOA server by
running the following command:

ant -f ant-sca-deploy.xml -DserverURL=http://SOA_SERVER_HOSTNAME:SOA_PORT
-DsarLocation=JDeveloper/deploy/sca_PROJECT_NAME_rev1.0.jar -Duser=SOA_USER
-Dpassword=SOA_PASSWORD

Note:

■ In this guide, SOA_HOME refers to the directory on which SOA
server is installed.

■ Before running this command, ensure that the SOA server is
running.

Configuring Workflows on Non SoD-enabled Connectors

22-26 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

This deploys a new composite on SOA server. You can check if the composite
is deployed by navigating to the following URL:

http://SOA_SERVER_HOSTNAME:SOA_PORT/soa-infra

In the URL, replace SOA_SERVER_HOSTNAME with the host name of the
SOA server, and SOA_PORT with the port on which the SOA server is
installed.

h. Restart the SOA server.

Registering the Workflow

a. In the OIM_HOME/workflows/registration/ directory, create a
NEW_PROJECT_NAME.props file by copying the
DefaultRequestApproval.props. Modify the NEW_PROJECT_NAME.props by
changing the name attribute.

Here, NEW_PROJECT_NAME is the name of the new project that you created.

The NEW_PROJECT_NAME.props file has the following contents:

#This is is the input file for registering the default workflow
<new project name>
name=NEW_PROJECT_NAME
category=Approval
providerType=BPEL
serviceName=RequestApprovalService
domainName=default
version=1.0
payLoadID=payload
operationID=process
listOfTasks=ApprovalTask

Here,

– The version parameter is the version of the workflow deployed on BPEL.

– The listOfTasks parameter is the colon-seperated list of approval tasks.
For example, if you add a new approval task as Approval_Task1, then you
must provide ApprovalTask:ApprovalTask1 as the value for this
parameter.

b. Run OIM_HOME/workflows/registration /registerworkflows-mp.xml as
shown:

ant -f registerworkflows-mp.xml register

Note: You must replace the following with valid values:

■ SOA_SERVER_HOSTNAME

■ SOA_PORT

■ PROJECT_NAME

■ SOA_USER

■ SOA_PASSWORD

See Also: "Developing Workflows for Approval and Manual
Provisioning" on page 21-1 for general procedure for creating a new
workflow

Configuring Workflows on Non SoD-enabled Connectors

Using Segregation of Duties (SoD) 22-27

This commands prompts for the following:

UserName: Enter Oracle Identity Manager administrator user name.

Password: Enter Oracle Identity Manager administrator Password

oim server t3 URL: Enter
t3://OIM_HOST_NAME/OIM_MANAGED_SERVER_PORT. Here, replace
OIM_HOST_NAME with the host name of the computer on which Oracle
Identity Manager is installed, and OIM_MANAGED_SERVER_PORT with the
port on which Oracle Identity Manager is installed.

inputpath (complete file name) of the property file:
OIM_HOME/workflows/registration/NEW_PROJECT_NAME.props. Here,
replace NEW_PROJECT_NAME with the name of the project that you created.

Appying the Workflow By Using Approval Policy

a. Create approval policy for the request model to which you want to apply the
SoD workflow. For example, if you want to perform SoD check while
provisioning a resource, then create a policy for the Provision Resource
request model. See "Creating Approval Policies" in the Oracle Fusion
Middleware User's Guide for Oracle Identity Manager for information about
creating approval policies.

22.8.2 Modifying the Provisioning Workflow for SoD
Each process definition has a process task attached to provision entitlements to a user.
The SoD validation process must be performed before triggering this task and
immediately after inserting all data in the child table that holds entitlements on the
target system. Therefore, you must hold this process task until the SoD validation
process is completed after inserting the data in child tables. To achieve this, you create
a Holder task that precedes the provisioning of an entitlement to a user.

The Holder task is added to prevent provisioning of a resource to a user before the
SoD validation process is completed. User entitlements are provisioned only if this
task is complete. The task is completed when the SoD engine validates that SoD
policies or rules are not violated by the assignment of the entitlements.

If an SoD validation process has been performed in approval workflow, then the SoD
validation process need not be performed again even if the SoD validation process is
enabled at the provisioning level. Whether the SoD validation process needs to be
performed or not can be assessed by checking the following before the SoD validation
process at the provisioning level:

■ Is the provisioning related to a request?

■ If yes, is the SoDCheckStatus field set to SoDCheckCompleted?

■ If yes, then do not perform the SoD validation process during entitlement
provisioning.

Note:

■ Always attach SoD workflow at the operational level of approval
because SoD is triggered separately for each resource.

■ Whether SoD Engine is asynchronous or synchronous, the SoD
Check Web Service is always asynchronous and workflow
modification remains the same for both.

Configuring Workflows on Non SoD-enabled Connectors

22-28 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

To modify the provisioning workflow for SoD validation:

1. Add a Holder task to the provisioning workflow. This task must be made
conditional and the Allow Multiple instances option must be selected.

The following figure shows this Holder task:

2. Make the connector insert, update, and revoke entitlement tasks dependent on the
Holder task.

The following figure shows all entitlement tasks of the Oracle e-Business User
Management connector dependent on the Holder task:

Note: The SoD validation process will be performed again only
when the process child form is edited to add, update, or remove
entitlements.

Configuring Workflows on Non SoD-enabled Connectors

Using Segregation of Duties (SoD) 22-29

The following figure shows the Holder task as a preceding task of the Add
Responsibility to User task:

3. Add the SODChecker task (any task whose name starts with SODChecker). This
task must be made conditional.

The following figure shows the SODChecker task:

Configuring Workflows on Non SoD-enabled Connectors

22-30 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

4. Attach the InitiateSODCheck process task adapter to the SoDChecker task.

Attach the following response codes to the SODChecker task:

The following figure shows these response codes:

Response Code Task Status Description

SODCheckResultPending P The SoD validation process is initiated and results are awaited.

Note: This response code is for an SoD engine that returns
responses asynchronously.

SODCheckCompleted C The SoD validation process results have been returned, and the
response shows that there is no SoD violation.

SODCheckViolation C The SoD validation process results have been returned, and the
response shows that there is an SoD violation.

Note: For request provisioning of the EBS 9.1.0.7.0 resource with
conflicting entitlements, the SodCheckViolation field in the
process form is not updated. The entitlement violation is mapped
to the field with the SoDCheckEntitlementViolation label, while
the EBS resource has the field with the SoDCheckViolation label.
Therefore, the mapping does not occur. Direct provisioning and
provisioning through access policy successfully takes place with
the SoDCheckViolation field label. To workaround this issue for
request provisioning, change the SoDCheckViolation field label to
SoDCheckEntitlementViolation in the EBS form by using the
Design Console.

Note: If the value is SoDCheckEntitlementViolation, then all types
of provisioning, such as request, direct, and access policy, works
fine. Therefore, you can keep the value as
SoDCheckEntitlementViolation instead of changing the values.

SODCheckNotInitiated C The SoD validation process has not been initiated because SoD has
not been enabled in Oracle Identity Manager.

Marking Child Process Form Tables That Hold Entitlement Data

Using Segregation of Duties (SoD) 22-31

22.9 Marking Child Process Form Tables That Hold Entitlement Data
Child process form tables can hold different types of multivalued data, for example,
role data, profile data, and address information. You must mark the child process form
tables holding entitlement data that you want to use for SoD operations. See "Marking
Entitlement Attributes on Child Process Forms" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Manager for more information.

This section contains the following topics:

■ Marking Request Dataset Attributes That Hold Entitlement Data

■ Marking Child Process Form Tables That Hold Entitlement Data

22.9.1 Marking Request Dataset Attributes That Hold Entitlement Data
The request dataset attribute that holds the entitlement shall be marked with
entitlement property set to true. Below is an example:

<AttributeReference name="Responsibility Name" attr-ref="Responsibility Name"
type="String" length="256" widget="lookup-query" available-in-bulk="true"
required="true" entitlement="true">
 <lookupQuery lookup-query="select lkv_encoded as
lkv_encoded,lkv_decoded as lkv_decoded from lkv lkv,lku lku where
lkv.lku_key=lku.lku_key and
lku_type_string_key='Lookup.EBS.Responsibility' and
instr(lkv_encoded,concat('$Form data.Application Name','~'))>0"
display-field="lkv_decoded" save-field="lkv_encoded"/>
 </AttributeReference>

22.9.2 Marking Child Process Form Tables That Hold Entitlement Data
Child process form tables can hold different types of multivalued data, for example,
role data, profile data, and address information. You must mark the child process form
tables holding entitlement data that you want to use for SoD operations. See "Marking
Entitlement Attributes on Child Process Forms" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Manager for more information.

Custom Combination of Target Systems and SoD Engines

22-32 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

22.10 Custom Combination of Target Systems and SoD Engines
This section contains the following topics:

■ Using a Custom Target System

■ Adding Custom SoD Engine

22.10.1 Using a Custom Target System

The following is a summary of the procedure to configure the SIL for a new target
system:

1. Follow instructions given in the section "Addressing Prerequisites" on page 22-40.

2. Create Java class implementations of the IdMvsSoDDataTransformationOper
interface for the connector. See "Creating the Transformation Layer" on page 22-32
for instructions.

3. Deploy the transformation service component. See "Deploying the Transformation
Layer" on page 22-33.

4. Add entries in the registration XML file for the new target system. See "Modifying
the Registration XML File" on page 22-33 for instructions.

5. Perform the procedure described in "Configuring Workflows on Non SoD-enabled
Connectors" on page 22-14.

6. Mark child process forms that hold entitlement data. See "Marking Child Process
Form Tables That Hold Entitlement Data" on page 22-31 for instructions.

7. Register the new target system. See "Registering the New Target System" on
page 22-35 for instructions.

22.10.1.1 Addressing Prerequisites
 Ensure that the following prerequisites are addressed:

1. Load entitlement data from the target system to the SoD engine.

For details, see vendor documentation for the SoD engine.

2. Deploy the Oracle Identity Manager connector for the target system. See the
connector documentation for more information.

22.10.1.2 Creating the Transformation Layer
The transformation layer is used to transform target system attribute values into
values that can be used by the SoD engine. The transformation layer is required to be
created for any new SoD engine or target system type.

Note:

Perform the procedure described in this section only if you want to
use a target system other than Oracle e-Business Suite and SAP R3.
You must also perform the procedures given in "Adding Custom SoD
Engine" on page 22-39 if you are using an SoD engine other than
Oracle Application Access Controls Governor and SAP GRC.

You can perform this procedure either before or at any time after
first-time implementation of SoD in Oracle Identity Manager.

Custom Combination of Target Systems and SoD Engines

Using Segregation of Duties (SoD) 22-33

You must create the transformation layer as an implementation of the
IdMvsSoDDataTransformationOper interface. Create implementations of the
transformInput and transformSoDAnalysisInput methods in the implementation class
of the IdMvsSoDDataTransformationOper interface.

In earlier releases of Oracle Identity Manager, the approval workflow data is read from
the object forms. In Oracle Identity Manager 11g Release 2 (11.1.2.1.0), object forms are
replaced by request datasets in the approval processes. As a result, the transformation
layer must be changed so that entitlement data is read from the request dataset instead
of object forms.

Transformation layer must also check the request model. If the request model is
Provision Resource, then data must be read only from the request dataset. But if the
request model is Modify Provisioned Resource, then data must be read both from the
request dataset and process form.

22.10.1.3 Deploying the Transformation Layer
Transformation Service component is deployed as follows:

1. Create a JAR file for the Java classes that you created for implementation of the
IdMvsSoDDataTransformationOper service component type.

2. Use the UploadJar utility to upload the JAR file as ThirdParty.

22.10.1.4 Modifying the Registration XML File
Enter the details of the transformation layer in the registration.xml file as follows:

1. Import the Registration.xml file from the MDS. The Registration.xml file is present
with namespace /metadata/iam-features-sil/db/Registration.xml in MDS.

2. Open the Registration.xml file in a text editor.

3. Add the SystemType and ServiceComponent elements as shown in this block of
XML lines:

 <SystemType name="SYSTEM_TYPE_NAME" type="Sod Source
DataStore"></SystemType>

 <ServiceComponent type="IdMvsSoDDataTransformationOper"
name="NAME_FOR_IMPLEMENTATION"
 <Impl-Class>NAME_OF_IPMLEMENTATION_CLASS</Impl-Class>
 <IdMSystemType>OIM</IdMSystemType>
 <SoDEngineType>SoD_ENGINE</SoDEngineType>
 <srcSystemType>SYSTEM_TYPE_NAME</srcSystemType>

 <DataTransformation>

See Also: Oracle Fusion Middleware Java API Reference for Oracle
Identity Manager for information about the implementation methods

Note: The UploadJar.sh or UploadJar.bat utility is in the
OIM_HOME/bin/ directory. Run the utility from this location to
upload the created JAR file to MDS.

Note: Values that you must set are highlighted in bold. Guidelines
and sample values are given after this block of XML.

Custom Combination of Target Systems and SoD Engines

22-34 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 <AttrSoD type="user"
name="NAME_OF_ATTRIBUTE_ON_TARGET_SYSTEM"
sourceIdMAttrName="NAME_OF_ATTRIBUTE_ON_SOD_ENGINE" isSourceKey="true"/>
 <AttrSoD type="user" name="firstname"
sourceIdMAttrName="firstname" isSourceKey="false"/>
 <AttrSoD type="user" name="lastname"
sourceIdMAttrName="lastname" isSourceKey="false"/>
 <AttrSoD type="duty" dutyType="ENTITLEMENT_TYPE"
name="accessorigid" sourceIdMAttrName="ENTITLEMENT_NAME" isSourceKey="true"/>
 </DataTransformation>

 <DataTransformation>
 . . .
 </DataTransformation>

 <DataTransformation>
 . . .
 </DataTransformation>
 </ServiceComponent>

Apply the following guidelines while adding the SystemType and
ServiceComponent elements in the registration.xml file:

■ Replace the placeholders with the following values:

– SYSTEM_TYPE_NAME: Specify a name for the system type.

– In the <SystemType> tag, type can have the SoD Source DataStore value
for a custom target system, or SoD Engine as value for a custom SoD
engine.

– NAME_FOR_IMPLEMENTATION: Specify a name for the service
component. For example: DBToOAACG

– NAME_OF_IPMLEMENTATION_CLASS: Specify the name that you have
set for the class that you create by performing the procedure described in
"Creating the Transformation Layer" on page 22-32. For example:
oracle.iam.grc.sod.scomp.impl.oaacg.transformation.IdMvsSoDDataT
ransformationOperDBvsOAACG

– SoD_ENGINE: Enter OAACG if you are using Oracle Application Access
Controls Governor as the SoD engine. Enter GRC if you are using SAP GRC
as the SoD engine. If you are using a custom SIL provider, then enter the
name that you set for that SoD engine.

– SYSTEM_TYPE_NAME: Specify the system type name that you entered
earlier.

– NAME_OF_ATTRIBUTE_ON_TARGET_SYSTEM: Specify the name of the
attribute on the target system.

– NAME_OF_ATTRIBUTE_ON_SOD_ENGINE: Specify the name of the
corresponding attribute on the SoD engine.

– ENTITLEMENT_TYPE: Enter the type of entitlement. For example: ROLE

– ENTITLEMENT_NAME: Enter the name of one instance of the entitlement.
For example: Resource Manager

See Also: "Adding Custom SoD Engine" on page 22-39

Custom Combination of Target Systems and SoD Engines

Using Segregation of Duties (SoD) 22-35

■ Add one DataTransformation element for each attribute mapping that you
want to create.

4. Save and close the Registration.xml file.

5. Export the Registration.xml file back to MDS.

22.10.1.5 Registering the New Target System
To register the new target system, perform the procedure described in the following
sections:

■ Running the Registration Script and Providing Registration Information

■ Recording the Names of the System Types

22.10.1.5.1 Running the Registration Script and Providing Registration Information The
registration script (registration.sh and registration.bat) drives the registration process.
When you run this script, it prompts you for the required information. The initial set of
prompts displayed by the script are read from the registration.xml file. The registration
script is in the OIM_HOME/bin directory. The registration.xml file is in the MDS.

To run the script and provide registration information for the Oracle Identity Manager
installation, SoD engine, and target system:

1. Export the SILConfig.xml file from MDS. The SILConfig.xml file is present in MDS
with namespace /metadata/iam-features-sil/db/SILConfig.xml.

2. Open the SILConfig.xml file in a text editor and provide values for the
DOMBuilderFactoryImpl element.

The value of the DOMBuilderFactoryImpl element depends on the JRE that you
are using:

■ If you are using the Sun JRE or Oracle JRockit JRE, then uncomment the
DOMBuilderFactoryImpl element containing the following value:

com.sun.org.apache.xerces.internal.jaxp.DocumentBuilderFactoryImpl

■ If you are using the IBM JRE, then uncomment the DOMBuilderFactoryImpl
element containing the following value:

org.apache.xerces.jaxp.DocumentBuilderFactoryImpl

Note:

■ Before running this utility, set APP_SERVER,
OIM_ORACLE_HOME, JAVA_HOME, MW_HOME, WL_HOME,
and DOMAIN_HOME.

■ You can run the registration script multiple times, at any time
during the lifecycle of the Oracle Identity Manager installation.
For example, you might want to register a new SoD engine. When
you run the script, use the prompts to guide you to the section (set
of prompts) in which you want provide input. You can skip the
remaining sections.

See Example 22–1 for a sample run of the registration script. In
that example, it is assumed that an IT resource has been created to
provide information about the SoD engine.

Custom Combination of Target Systems and SoD Engines

22-36 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

3. In a command window, switch to the OIM_HOME/bin directory and run the
registration script.

Enter login information for Oracle Identity Manager. You are prompted to provide
the values for Username, Password, and URL. The sample run segment is given
below:

[Enter the admin username:]OIM_ADMINISTRATOR_LOGIN
[Enter the admin password:]OIM_ADMINISTRATOR_PASSWORD
[Enter the service url:]t3://OIM_HOST_NAME:OIM_PORT_NO

Specify valid values for:

■ OIM_ADMINISTRATOR_LOGIN

■ OIM_ADMINISTRATOR_PASSWORD

■ OIM_HOST_NAME

■ OIM_PORT_NO

An example of the T3 URL is:

t3://localhost:14000

You are prompted to specify whether or not you want to proceed with registration:

Do you want to proceed with registration? (y/n)

4. Enter y to proceed with the registration. You are prompted to specify whether or
not you want to register an Oracle Identity Manager installation:

Register System Instance for type OIM?(y/n)

5. Enter n.

6. You are prompted to specify whether or not you want to register an Oracle
e-Business Suite installation:

Register System Instance for type EBS? (y/n)

7. Enter n if you want to use the existing Oracle e-Business Suite, which is registered
by default. Enter y if you want to register a new EBS instance with another IT
resource in Oracle Identity Manager.

8. If you enter y, then you are prompted to enter an instance name for the Oracle
e-Business Suite installation:

Provide instance name

Note: From this point onward, an explanation of each prompt
displayed by the script is followed by the actual message of the
prompt. The actual message is shown in monospace font in this
document.

Note: From this point onward, the flow is specific to the registration
of an Oracle e-Business Suite and Oracle Application Access Controls
Governor installation. The flow is almost the same for the SAP R/3
and SAP GRC installation.

Custom Combination of Target Systems and SoD Engines

Using Segregation of Duties (SoD) 22-37

Enter a name for the Oracle e-Business Suite installation. For example:

ebs2

9. You are prompted to specify whether or not you want to register an Oracle
Application Access Controls Governor installation:

Register System Instance for type OAACG? (y/n)

Enter n if you want to use the existing OAACG, which is registered by default.
Enter y if you want to register a new OAACG instance with another IT resource in
Oracle Identity Manager.

10. If you enter y, then you are prompted to enter an instance name for the Oracle
Application Access Controls Governor installation:

Provide instance name

Enter a name for the Oracle Application Access Controls Governor installation.
For example:

oaacg01

11. You are prompted to enter the name of the IT resource that you have created:

OIM ITResource Instance Name:

Enter the name of the IT resource that you created: OAACG ITR2

12. If there are no more SoD components (system instances) to register, then enter n in
response to the remaining prompts. Otherwise, similar steps to be followed for
SAP and GRC instances. After this, you are prompted for custom System Type that
you added in Registration.xml, say NEW.

Register System Instance for type NEW? (y/n)

13. Enter y. You are prompted to enter an instance name for the custom type, as
shown:

Provide instance name

14. Enter a name for the installation, for example, new1. If the added system type is
SoD Engine, then you are prompted to enter the name of the IT resource that you
have created:

OIM ITResource Instance Name:

15. Enter the name of the IT resource that you created: ITR_NEW.

16. Open the SILConfig.xml file in a text editor and provide values for the Topologies
element. For information about topology values, refer to "Recording the Names of
the System Types" on page 22-38.

The following block of XML shows the Topologies element and its child elements:

<Topologies>
 <Topology>
 <name>@topologyName</name>

Note: If you have multiple target system and SoD engine
combinations, then you can add multiple Topology elements inside
the Topologies element.

Custom Combination of Target Systems and SoD Engines

22-38 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 <IdmId>@Idm RegistrationId</IdmId>
 <SodId>@Sod RegistrationId</SodId>
 <SDSId>@Sds RegistrationId</SDSId>
 </Topology>
</Topologies>

Enter values for the following child elements of the Topologies element:

– @topologyName: Enter a name for the topology.

– @Idm RegistrationId: Enter the registration ID of the Oracle Identity
Manager installation.

– @Sod RegistrationId: Enter the registration ID of the SoD engine.

– @Sds RegistrationId: Enter the registration ID of the target system.

17. Export SILConfig.xml back to MDS.

Example 22–1 shows the output of a sample run of the registration script. Here, it is
assumed that an IT resource has been created to provide information about the SoD
engine.

Example 22–1 Sample Run of the Registration Script

sh registration.sh
Enter data related to login to OIM Server
[Enter the admin username:]OIM_ADMINISTRATOR_LOGIN
[Enter the admin password:]OIM_ADMINISTRATOR_PASSWORD
[Enter the service url:]t3://localhost:14000
Do you want to proceed with registration? (y/n)
y
Register System Instance for type OIM ?(y/n)
n
Register System Instance for type EBS ?(y/n)
n
Register System Instance for type OAACG ?(y/n)
n
Register System Instance for type SAP ?(y/n)
n
Register System Instance for type GRC ?(y/n)
n
Register System Instance for type NEW ?(y/n)
y
Provide instance name
new1
OIM ITResource Instance Name:
ITR_NEW

22.10.1.5.2 Recording the Names of the System Types At the end of the registration
process, the names of the system types are set in the Oracle Identity Manager database.

Note: Set the same name for the Topology element as the value of the
TopologyName IT resource parameter.

See Also: Step 2 in "Recording the Names of the System Types" on
page 22-38 for information about the child elements of the Topologies
element.

Custom Combination of Target Systems and SoD Engines

Using Segregation of Duties (SoD) 22-39

You can retrieve these names from the database by using the registration script. After
you retrieve these names, you must enter them in the SILConfig.xml file.

To retrieve and record the names of the service components:

1. In a command window, switch to the following directory:

OIM_HOME/bin/

2. Run one the following commands:

For Microsoft Windows:

registration.bat printRegistrationIDs

For UNIX:

registration.sh printRegistrationIDs

The following is sample output of this command:

System Type Instance Name Registration ID

OIM oim 1
EBS Ebs 2
OAACG oaacg 3

3. Copy these instance names for your reference.

22.10.2 Adding Custom SoD Engine

The following is a summary of the procedure to create a SIL provider:

1. Follow instructions given in the section "Addressing Prerequisites" on page 22-40.

2. Create an IT resource to hold information about the SoD engine. See "Creating an
IT Resource to Hold Information about the SoD Engine" on page 22-40.

3. Create Java class implementations of the interfaces for the SIL provider. See
"Implementing the Service Components for the Provider" on page 22-41 for
instructions.

4. Deploy the service components. See "Deploying the Service Components" on
page 22-41.

5. Add entries in the registration XML file for the new SoD engine. See "Modifying
the Registration XML File for the New SoD Engine" on page 22-41 for instructions.

Note:

Perform the procedure described in this section only if you want to
use an SoD engine other than Oracle Application Access Controls
Governor and SAP GRC. You must also perform the procedures given
in "Using a Custom Target System" on page 22-32 if you are using a
target system other than Oracle e-Business Suite and SAP R3.

You must install the SoD engine before you begin creating the SIL
provider.

You can perform this procedure either before or at any time after
first-time implementation of SoD in Oracle Identity Manager.

Custom Combination of Target Systems and SoD Engines

22-40 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

6. Register the new SoD engine. See "Registering the New SIL Provider" on
page 22-43 for instructions.

22.10.2.1 Addressing Prerequisites
 Ensure that the following prerequisites are addressed:

1. Load entitlement data from the target system to the SOD engine. You can use any
ETL utility to perform this step. For details, see vendor documentation for the SoD
engine.

2. On the SoD engine, create policy definitions or risk definitions by using the data
loaded from the target system.

3. Deploy the Oracle Identity Manager connector for the target system. See the
connector documentation for more information.

22.10.2.2 Creating an IT Resource to Hold Information about the SoD Engine
You must create an IT resource to hold information about the SoD engine.

See Chapter 4, "Developing Application Instances" for detailed information about
creating an IT resource type (if it does not already exist) and IT resource. You can
specify any name for the IT resource type and IT resource. The following table
specifies the names of the parameters that the IT resource must contain:

Parameter Description Sample Value

Source Datastore Name Enter the name of the source data store (the target
system) that you defined in the SoD engine.

You specify a source data store name while performing
the procedure described in the "Configuring Oracle
Application Access Controls Governor" on page 22-5
section.

EBS STMD122

dbuser Enter the user name of the schema owner on the
database used by the SoD engine.

This account is used to access the Application Access
Controls Governor database during SoD operations.

Note: This parameter is specific to Oracle Application
Access Controls Governor.

databaseusr1

dbpassword Enter the password of the schema owner on the
database used by the SoD engine.

Note: This parameter is specific to Oracle Application
Access Controls Governor.

Cryp100ne

jdbcURL Enter the JDBC URL for connecting to the database
used by the SoD engine.

Note: This parameter is specific to Oracle Application
Access Controls Governor.

jdbc:oracle:thin:@10.123.
123.123

password Enter the password of the account created on the SoD
engine for API calls.

K1rb1r0s

port Enter the number of the port at which the SoD engine is
listening.

8090

server Enter the IP address of the host computer on which the
SoD engine is running.

10.231.231.231

sslEnable Enter true if the SoD engine accepts only HTTPS
communication requests. Otherwise, enter false.

false

Custom Combination of Target Systems and SoD Engines

Using Segregation of Duties (SoD) 22-41

22.10.2.3 Implementing the Service Components for the Provider
Create Java implementations of the following service components:

■ SoDAnalysisExecutionOper: The SoD analysis layer must be implemented for
any custom SoD engine, which is not provided by default.

■ IdMvsSoDDataTransformationOper: Used to transform target system attribute
values into values that can be used by the SoD engine. The transformation layer is
required to be created for any new SoD engine or target system type.

■ CallBackIdMOper (optional): To be implemented if any callback is required from
SoD Analysis Layer to access Oracle Identity Manager.

■ SoDDataValidationOper (optional): To be implemented to provide any validation
on the attributes given in SoD Analysis layer.

22.10.2.4 Deploying the Service Components
Service components created in "Implementing the Service Components for the
Provider" on page 22-41 are deployed as follows:

1. Create a JAR file for the Java classes that you created for Service Component
implementation.

2. Use the UploadJar utility to upload the JAR file as ThirdParty.

22.10.2.5 Modifying the Registration XML File for the New SoD Engine
Enter the details of the transformation layer in the Registration.xml file as follows:

1. Import the Registration.xml file from the MDS. The Registration.xml file is present
with namespace \metadata\iam-features-sil\db\Registration.xml in MDS.

2. Open the Registration.xml file in a text editor.

3. Add the SystemType element for the SoD engine, as shown:

<SystemType name="SYSTEM_TYPE_NAME" type="SYSTEM_TYPE" isSynch="IS_SYNCH">

username Enter the user name of an account created on the SoD
engine. This account is used to call the SoD engine APIs
that are used during SoD validation.

jdoe

sodServerURL Enter the URL of the SoD server, in the following
format:

http(s)://HOST_NAME:PORT_NUMBER/URL

http://10.231.231.231:809
0/grcc/services/GrccServi
ce

Note: If you want to use multiple SoD engines, then create multiple
IT resources with the same IT resource type.

See Also: Oracle Fusion Middleware Java API Reference for Oracle
Identity Manager

Note: The UploadJar.sh or UploadJar.bat utility is in
OIM_HOME/bin. Run the utility from this location to upload the
created JAR file to MDS.

Parameter Description Sample Value

Custom Combination of Target Systems and SoD Engines

22-42 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

<!-- The Parameters which are required to connect the Sod Engine. -->
<Parameter name="PARAM_NAME1" required="true" />
<Parameter name="PARAM_NAME2" required="true" />
...
</SystemType>

Here, replace:

■ SYSTEM_TYPE_NAME with a name for the system type.

■ SYSTEM_TYPE with SoD Engine.

■ IS_SYNCH with true or false, depending on whether the SoD engine is
synchronous or asynchronous.

■ PARAM_NAME with the name of the parameter used to connect the SoD
engine. These parameter values must be provided while registering the SoD
engine. These are read in service component implementation classes to
connect to the SoD engine.

4. Add all implemented service components, as shown:

<ServiceComponent type="SERVICECOMPONENT_TYPE" name="NAME_FOR_IMPLEMENTATION"
 <Impl-Class>NAME_OF_IPMLEMENTATION_CLASS</Impl-Class>
 <IdMSystemType>SYSTEM_TYPE_NAME_FOR_IDM</IdMSystemType>
 <SoDEngineType>SYSTEM_TYPE_NAME_FOR_SOD_ENGINE</SoDEngineType>
 <srcSystemType>SYSTEM_TYPE_NAME_FOR_TARGET_SYSTEM</srcSystemType>

<!-- AttrSoD tag is only required for Sod Analysis Service Component-->
<AttrSoD type="user" isKey="true" name="NAME_OF_ATTRIBUTE_ON_SOD_ENGINE">
<!-- "name" attribute of the "Validation" element should be same as the "name"
of one of the registered "ServiceComponent" of type "SoDDataValidationOper" -->
<Validation name="NAME_FOR_VALIDATION_ON_ATTRIBUTE"/>
</AttrSoD>

<AttrSoD type="duty" isKey="true" dutyType="ENTITLEMENT_TYPE"
name="NAME_OF_ENTITLEMENT_ON_SOD_ENGINE"><Validation name="isNotNullOAACG"/>
</AttrSoD>

<AttrSoD...>
...
</AttrSoD>

<!-- DataTransformation tag is only required for transformation Service
component-->
 <DataTransformation>
 <AttrSoD type="user" name="NAME_OF_ATTRIBUTE_ON_TARGET_SYSTEM"
sourceIdMAttrName="NAME_OF_ATTRIBUTE_ON_SOD_ENGINE" isSourceKey="true"/>
 <AttrSoD type="user" name="firstname" sourceIdMAttrName="firstname"
isSourceKey="false"/>
 <AttrSoD type="user" name="lastname" sourceIdMAttrName="lastname"
isSourceKey="false"/>
 <AttrSoD type="duty" dutyType="ENTITLEMENT_TYPE" name="accessorigid"
sourceIdMAttrName="ENTITLEMENT_NAME" isSourceKey="true"/>
 </DataTransformation>

</ServiceComponent>

Here, replace:

■ SERVICECOMPONENT_TYPE: Can have values such as CallBackIdMOper,
SoDAnalysisExecutionOper, SoDDataValidationOper, or

Performing Role SoD Check with Oracle Identity Analytics

Using Segregation of Duties (SoD) 22-43

IdMvsSoDDataTransformationOper depending upon the type of service
component.

■ NAME_FOR_IMPLEMENTATION: Specify a name for the service component,
for example, DBToOAACG.

■ NAME_OF_IPMLEMENTATION_CLASS: Specify the name that you have set
for the class that you create by performing the procedure described in
"Creating the Transformation Layer" on page 22-32. For example:
oracle.iam.grc.sod.scomp.impl.oaacg.transformation.IdMvsSoDDataTran
sformationOperDBvsOAACG.

■ SOD_ENGINE: Enter OAACG if you are using Oracle Application Access
Controls Governor as the SoD engine. Enter GRC if you are using SAP GRC as
the SoD engine. If you are using a custom SIL provider, then enter the name
that you set for that SoD engine.

■ SYSTEM_TYPE_NAME: Specify the system type name that you entered
earlier.

■ NAME_OF_ATTRIBUTE_ON_TARGET_SYSTEM: Specify the name of the
attribute on the target system.

■ NAME_OF_ATTRIBUTE_ON_SOD_ENGINE: Specify the name of the
corresponding attribute on the SoD engine.

■ ENTITLEMENT_TYPE: Enter the type of entitlement, for example, ROLE.

■ ENTITLEMENT_NAME: Enter the name of one instance of the entitlement, for
example, Resource Manager.

5. Save and close the Registration.xml file.

6. Export the Registration.xml file back to MDS.

22.10.2.6 Registering the New SIL Provider
To register the new SIL provider, perform the procedure described in the following
sections:

1. See "Running the Registration Script and Providing Registration Information" on
page 22-35 for information on rerunning the registration script. In this run of the
script, do not enter values for service components that have already been
registered.

2. See "Recording the Names of the System Types" on page 22-38 for information on
entering data about the new target system in the SILConfig.xml file.

22.11 Performing Role SoD Check with Oracle Identity Analytics
Role SoD Check is performed when a request to assign roles to, or revoke roles from, a
user is raised. Role SoD Check with Oracle Identity Analytics is performed only when
the request is raised; when roles are directly assigned or revoked, an SoD Check is not
performed.

■ Enabling Role SoD Check

■ Using Role SoD Check

See Also: "Adding Custom SoD Engine" on page 22-39

Performing Role SoD Check with Oracle Identity Analytics

22-44 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

22.11.1 Enabling Role SoD Check
To enable Role SoD Check with Oracle Identity Analytics, you need to do the
following.

1. Set the value of the XL.SoDCheckSystemProperty system property to TRUE. See
"Managing System Properties" in the Oracle Fusion Middleware Administrator's
Guide for Oracle Identity Manager for information about system properties.

2. Set the value of the RoleSoDCheckTopologyName system property to sodoia. This
topology is predefined and registered.

3. Set OIA Connection Details in the 'OIA-ITRes' IT resource, as shown in the
following figure:

22.11.2 Using Role SoD Check
The following sections describe how to implement the Role SoD functionality:

■ SoD Check When A User Requests a Role

■ SoD Check When A User Revokes a Role

■ SoD Check When an Administrator Requests To Assign Roles

■ SoD Check When an Administrator Requests To Revoke Roles

22.11.2.1 SoD Check When A User Requests a Role
The following steps are performed when a user raises a request for roles. SoD Check
will be done if it has been enabled. This example procedure assumes that the user has
already been assigned Role3.

Perform the following steps:

1. Login to Oracle Identity Self Service as the user.

2. Under My Profile, click My Access. Click the Roles tab, and then click Request
Roles. The Catalog page is displayed where you can search for the role to be
requested.

3. Search for the specific role you want to assign to the user, for example ebsRole1.

4. Click Add to Cart. This shows one item in the cart. Then, click Checkout.

5. Click Submit to submit the request for the role. The request is created.

Note: Integration between Oracle Identity Manager and Oracle
Identity Analytics is a pre-requisite for performing an SoD Check with
Oracle Identity Analytics.

Performing Role SoD Check with Oracle Identity Analytics

Using Segregation of Duties (SoD) 22-45

6. Navigate to Requests, Track Requests.

7. Search for the request that you created. Open the request to see the SoD Check
results, as shown in the following figure:

8. Click on the SoD Status to see the SoD Check result, as shown in the following
figure:

SoD Check result is Failed because the ebsRole1 role, for which request is raised,
and Role3, which the user already had, are conflicting.

The SoD Check result is available before request-level approval. Here, SoD Check
has failed, but the administrator can approve the request to assign the conflicting
role to the user.

22.11.2.2 SoD Check When A User Revokes a Role
This procedure assumes that the user has already been assigned the role being
revoked.

Performing Role SoD Check with Oracle Identity Analytics

22-46 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Perform the following steps:

1. Login to Oracle Identity Self Service as the user.

2. Navigate to My Profile, My Access, and then click the Roles tab. The roles
assigned to the user are displayed.

3. Select the role to be removed, and then click Remove Roles. The Remove Roles
page is displayed with the selected role as the cart item.

4. Click Submit. The request is created.

You can open the request details to see the SoD Check result, as shown in the
following figure:

The SoD Check result is now Passed because a conflicting role has been removed.

22.11.2.3 SoD Check When an Administrator Requests To Assign Roles
This procedure allows the system administrator to assign a role to the user.

1. Login to Oracle Identity Self Service as the System Administrator.

2. Navigate to Administration, Users, search for users, and then open the details of
the selected user.

3. Click the Roles tab, and then click Request Roles. The Catalog page is displayed.

4. Search for the ebsRole1 and Role3 roles, and add them to the cart. Click Checkout.
The cart details is displayed, as shown in the following figure:

Performing Role SoD Check with Oracle Identity Analytics

Using Segregation of Duties (SoD) 22-47

5. Click Submit. A request is created. Because this is a bulk request, SoD Check is not
initiated for it.

6. Login to Oracle Identity Self Service as the system administrator, and navigate to
Requests, Pending Approvals, and then approve the request. Two child requests
are created and SoD Check is performed for each child request.

7. Navigate to Track Requests, and open each child request to see the SoD details.
The following figure shows the SoD details for the request created for ebsRole1
role:

The following figure shows the SoD details for the request created for the Role3
role:

Performing Role SoD Check with Oracle Identity Analytics

22-48 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

22.11.2.4 SoD Check When an Administrator Requests To Revoke Roles
This procedure allows the system administrator to revoke a role from the user:

1. Login to Oracle Identity Self Service as the system administrator.

2. Navigate to Administration, Users, search for users, and then open the details of
the selected user.

3. Click the Roles tab, select the roles to be removed, and then click Remove Role.

4. On the Remove Roles page, click Submit. A request is created.

5. Approve the request. Two requests are created and SoD Check is performed for
each request. The following figure shows the SoD Check result for the request
created for the ebsRole1 role:

The following figure shows the SoD Check result for the request created for the
Role3 role:

Note: A request is created to remove more then one role. For a single
role, no request is created, and therefore, no SoD Check is performed.

Using SoD in Provisioning Workflow

Using Segregation of Duties (SoD) 22-49

Because the request is raised by the System Administrator and there is no SoD
Conflict, both the child requests are approved by default.

22.12 Using SoD in Provisioning Workflow
This section describes various use cases related to SoD:

■ Provisioning Application Instance With Child Data

■ Modifying Application Instance to Add or Delete Child Data

■ Provisioning Entitlements to a User

■ Revoking Entitlements From a User

■ Requesting for Roles and Entitlements

■ Requesting for Roles and Application Instances With Child Data

■ Request Provisioning With the DefaultSODApproval Workflow

■ Requesting for Role With an Access Policy Attached

■ Provisioning Based on Access Policies Without Approval

■ Provisioning Based on Access Policies With Approval

■ Requesting for Entitlements From Two Application Instances

22.12.1 Provisioning Application Instance With Child Data
To provision an application instance as the system administrator:

1. Create a user whose account is to be created on the target system.

Note: By default, operational-level approval is triggered for requests
that are raised by the System Administrator only if the SoD Check
result is Failed because a conflict is detected.

Note: The procedures in this section are for Synchronous SoD
Engine, for example OAACG, for which you do not need to run the
scheduled job to complete the SoD check.

Using SoD in Provisioning Workflow

22-50 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

2. On the User Details page, click the Accounts tab, and click Request Accounts. The
Catalog page is displayed.

3. Search for the application instance, for example EBS.

4. Add the application instance to cart, and checkout.

The form that is added to the application instance is displayed on the Cart Details
page. This form contains the default SoD check fields, such as SoDCheckStatus,
SoDCheckTrackingID, SoDCheckResult, SoDCheckTimestamp, and
SoDCheckEntitlementViolation. These fields are populated with values for SoD
check.

5. Provide the required details in the form. Make sure that you provide entitlement
in the child forms. Otherwise, SoD check will not be performed because SoD is
required only to check for conflicting entitlements.

6. Click Ready to Submit, and then submit the request. Because this a request for a
single user for a single application instance, no request is created and the
application instance is directly assigned to the user.

Because synchronous SoD Check has happened, you can see the SoD Check result
on the Account Details page. If you select conflicting entitlements, then the SoD
Check will fail and the entitlements will not get provisioned on the target system.
Figure 22–17 shows the SoD Check Result.

Figure 22–17 Conflicting Entitlements

If you open the resource history, the Holder task is displayed in Canceled state
because SoD Check resulted in a conflict. In addition, the SoDChecker task is in
Completed state indicating that SoD Check has completed. Figure 22–18 shows the
resource provisioning details.

Using SoD in Provisioning Workflow

Using Segregation of Duties (SoD) 22-51

Figure 22–18 Resource Provisioning Details

If the steps to provision an application instance are performed by a user with viewer
admin role, a request is created. SoD Check result is visible in this request. Approver
has the authority to approve or reject the request after seeing the SoD Check result.
Figure 22–19 shows the SoD Check result in request details:

Figure 22–19 SoD Check Result in Request Details

22.12.2 Modifying Application Instance to Add or Delete Child Data
Whenever you open the user details, select an already provisioned account, and try to
modify it by adding, updating, or deleting an entitlement in the child form, SoD check
is triggered. If this operation is performed by the system administrator, new Holder
and SoDChecker tasks are generated. If the new entitlement conflicts with the old
ones, then the new entitlement is not provisioned. Otherwise, the new entitlement is
provisioned on the target system.

If the operation is performed by the user with view admin role, a new request for
modifying application instance is created. SoD Check result can be seen in this request.

Using SoD in Provisioning Workflow

22-52 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

22.12.3 Provisioning Entitlements to a User
Entitlements are first level entities in Oracle Identity Manager. Therefore, entitlements
can be directly requested, as follows:

■ System Administrator requests for a single entitlement for a user: The SoD
Check is done and entitlement is granted to the user if it does not conflict with any
of the existing entitlements. SoD Check results can be seen in the Account Details
page. The Holder and SoDChecker tasks are created for performing the SoD
Check.

■ System Administrator requests for multiple entitlements: For bulk operation,
requests are created. Therefore, if the system administrator requests for two
entitlements, then a request r1 is created. SoD Check is always done at the child
request level, and therefore, no SoD Check is done for r1. After the request-level
approval is obtained for r1, two child requests r2 and r3 are created. SoD Check is
done for both the child requests. Result can be seen in the Request Details.

■ User requests for single entitlement: This results in a request being created
because the user cannot directly get the entitlement. An approver must approve it.
SoD Check is done for the request. No Holder or SODChecker tasks are created.

22.12.4 Revoking Entitlements From a User
Revoke entitlement use cases are similar to provisioning entitlements, as described in
"Provisioning Entitlements to a User" on page 22-52. When the last entitlement is
revoked from the user, no SoD Check is done because the user does not have any
entitlements.

22.12.5 Requesting for Roles and Entitlements
Oracle Identity Manager supports heterogeneous requests that allow you to request
for roles along with entitlements. To do so, open the Catalog page, search for the
required entities, select the entities, and submit. This result in the creation of a request.
When this request is approved, child requests are created for the requested entities.
SoD Check is done for each of these child requests. Roles and entitlements are sent for
separate SoD Checks.

22.12.6 Requesting for Roles and Application Instances With Child Data
This is similar to requesting for roles and entitlements, as described in "Requesting for
Roles and Entitlements" on page 22-52. Separate SoD Check is done for application
instance and role.

22.12.7 Request Provisioning With the DefaultSODApproval Workflow
When the DefaultSODApproval workflow has been specified by using an approval
policy, perform the following steps to request for provisioning:

1. Specify the DefaultSODApproval workflow at the operational level. Therefore, the
steps before the operational level of approval remain the same.

Note: SoD Check conflict is not detected between roles and target
system entitlements. If request is raised for the two, they go through
separate SoD Checks.

Using SoD in Provisioning Workflow

Using Segregation of Duties (SoD) 22-53

2. When the request moves to operational level of approval, per the
DefaultSODApproval workflow, the approval task is assigned to the System
Administrators role. If the administrator approves this task, then the SoD check
Web service is loaded, and SoD check is initiated.

This can be confirmed by checking the request status, which must be SoD check
completed.

3. An approval task is generated that is again assigned to the System Administrator.

4. Before approving the task, verify the SoD check results in the request details. If the
task is approved, then the account and/or entitlement provisioning continues.

In this use case, SoD check is performed two times. First is the default SoD check
before any level of approval, and the second one is initiated by the
DefaultSODApproval workflow.

22.12.8 Requesting for Role With an Access Policy Attached
If the role is requested by a user and the request is for multiple roles, then SoD Check
is first be done for the roles. After the request is approved and the role is assigned to
the user, run the Evaluate User Policies schedule job to evaluate the access policy.
Then, account provisioning is triggered. This again results in SoD Check for the
account being provisioned if child data is requested for. SoD Check result can be seen
in the Account Details page. If account is provisioned without child data, then no SoD
Check is done.

22.12.9 Provisioning Based on Access Policies Without Approval
To perform provisioning based on access policies:

1. Create a new role.

2. Create an access policy (without approval) to provision SoD-enabled resource to
the new role. Make sure that you provide entitlements in the child form.

3. Assign this role to a newly created user. Run the Evaluate User Policies scheduled
job to trigger the access policy and provision the account on the target system. But
entitlement provisioning will wait for SoD check.

4. Check the Account Details to verify the SoDCheckStatus field value. If the SoD
check is successfully completed, then the value of the SoDCheckStatus field is SoD
Check Completed, and the SoDChecker task will be in Completed state.

The Holder task status depends on the SoD Check result. If the SoD check passes,
then the Holder task is completed and entitlements are provisioned. Otherwise,
the Holder task is canceled and no entitlement provisioning takes place.

22.12.10 Provisioning Based on Access Policies With Approval
When an access policy is created with approval, request is created for account
provisioning. After the role is assigned to the user and the Evaluate User Policies
schedule job is run, a request is created to provision account to the user. SoD Check is
done for this request.

Note: See "Predefined Scheduled Tasks" in Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Manager the for information
about the Evaluate User Policies schedule job.

Enabling Logging for SoD-Related Events

22-54 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

22.12.11 Requesting for Entitlements From Two Application Instances
A request can be raised for two entitlements from different application instances, one
for which Sod Check is enabled and other for which it is not enabled. Here, SoD Check
is performed for the entitlement for which SoD Check is enabled.

22.13 Enabling Logging for SoD-Related Events
If you want to enable logging for all SoD-related events

1. In a text editor, open the
DOMAIN_HOME/config/fmwconfig/servers/oim_server1/logging.xml file.

2. Search for the <loggers> element. The following is a sample <loggers> element:

<loggers>
<logger name="" level="WARNING:1">
<handler name="odl-handler"/>
<handler name="wls-domain"/>
<handler name="console-handler"/>
</logger>

You can change the logging level to INCIDENT_ERROR:1, ERROR:1,
NOTIFICATION:1, NOTIFICATION:16, TRACE:1, TRACE:16, or TRACE:32. The
default logging level prints the error and warning messages.

22.14 Troubleshooting SoD Check
Table 22–2 lists the troubleshooting steps that you can perform if you encounter errors
while performing SoD check.

Note: SoD Check is not supported between entitlements from
different application instances. For example, SoD Check is not
supported between an EBS and a PSFT entitlement.

Troubleshooting SoD Check

Using Segregation of Duties (SoD) 22-55

Table 22–2 Troubleshooting SoD Check

Problem Solution

The SoDCheckStatus field in the
process form displays no value
or default value. For the field in
EBS connector, SoD Check not
initiated is the default value .
Also, the SoDCheckResult field
is not populated.

This means that SoD configuration is incorrect. Check if the Segregation of
Duties (SOD) Check Required system property is set to true. If yes, then check
the value of topologyName in connector IT resource field.

If default registration is used, then the value of the topologyName parameter is
sodoaacg for OAACG SoD engine and sodgrc for SAP GRC. If registration is
done manually, then check if the corresponding topology is defined in the
SILConfig.xml file and this file is seeded into MDS after the change.

The SoDCheckStatus field in the
process form or request dataset
displays Sod check completed
with error.

The SoDCheckResult field
displays Error from SoD
Engine.

SoD configuration is correct but SoD engine connection information might be
incorrect, or there is an error from the SoD engine. Errors from the SoD engine
can occur because of the following reasons:

■ SoD engine or its corresponding database is down.

■ SoD engine is not completely synchronized with the target system.
Therefore, specific entitlements for which SoD check is initiated may not be
present on the SoD engine.

Check the SoD engine log for further errors. If no tracking ID is returned by the
SoD engine, then simulation is not started successfully.

The SoDCheckStatus field in the
process form is in the SoD
Result Pending status, and
does not move to the SoD Check
Completed status even on
running the scheduled job.

Make sure that you run the Get SoD Check Results Provisioning scheduled job
and not the scheduled job for approval. Make sure that the scheduled job is
triggered. You may enable logging at DEBUG level to confirm this.

If the scheduled job is run and the SoD check is still not completing, then there
must be an error from the SoD engine. Check the SoD engine log for details.

When requesting for
SoD-enabled resource, no SoD
fields are displayed in the
dataset after creating the
request, and the request directly
moves to the request-level
approval.

This error means that SoD configuration is incorrect. Check if the Segregation of
Duties (SOD) Check Required system property is set to true. If yes, then check
the value of topologyName in the connector IT resource field.

If default registration is used, then the value of the topologyName parameter
must be sodoaacg for the OAACG SoD engine and sodgrc for SAP GRC.

If registration is performed manually, then check if the corresponding topology
is defined in the SILConfig.xml file and this file is seeded into MDS after the
change.

The SoDCheckStatus field in the
request dataset stays in the SoD
Result Pending status and does
not move to the SoD Check
Completed status even on
running the scheduled job.

Make sure that you run the Get SoD Check Results Approval scheduled job and
not the scheduled job for approval. Make sure that the scheduled job is
triggered. You may enable logging at DEBUG level to confirm this.

If the scheduled job is run and the SoD check is still not completing, then there
must be an error from the SoD engine. Check the SoD engine log for details.

The SoD check is successfully
performed during request
provisioning, but the resource
state in the user profile does not
display as Provisioned.
Therefore, the request is in the
Operation Initiated status.

Check the process tasks in the resource history. If only the System Validation
task is displayed, then the required data might not have been saved in the form.
You can try saving the form manually by opening the form in edit mode and
clicking Save. Enable the Auto-save option in the process definition for future
requests.

If other tasks, such as the task to create an account on the target system, are
displayed in the resource history, then check the task details to verify if there is
an error from the target system. For example, the account being created already
exists on the target system.

Troubleshooting SoD Check

22-56 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

The SoD check is successfully
performed during direct
provisioning, but the resource
state in the user profile is not
Provisioned.

Check the process tasks in the resource history. If only the System Validation
task is displayed, then the required data might not have been saved in the form.
This can happen if the Auto-Save option is on in the process definition, and
therefore, the form is not displayed during direct provisioning. You can try
saving the form manually by opening the form in edit mode and clicking Save.
Disable the Auto-save option in the process definition for future requests.

If other tasks, such as the task to create an account on the target system, are
displayed in the resource history, then check the task details to verify if there is
an error from the target system. For example, the account being created already
exists on the target system.

Request provisioning has been
successfully done and
appropriate values are
displayed in the request dataset,
but the SoD status and result are
not reflected to the process
form.

Check the SoD field labels in the process form. They must be SoDCheckStatus,
SoDCheckTrackingID, SoDCheckResult, SoDCheckTimestamp, and
SoDCheckEntitlementViolation. If you change these field labels, then SoD field
will not be mapped from the request dataset to the process form.

A particular SoD request is
being tried several times and
generating error.

There may be a problem with the SoD configuration or error in data submitted
in a particular request. If you see that the traces of error for a request though
SoD configuration is correct and you want to ignore the particular request, then
you can prevent the JMS message related to the request from being tried
multiple times by changing the Redelivery Limit for the OIMSODQueue from
the WebLogic Administrative Console. To do so:

1. Login to the WebLogic Administrative Console.

2. Go to Services, Messaging, JMS Modules, and OIMJMSModule. The list
of all the queues are displayed.

3. Click oimSODQueue, and then click Delivery Failure.

4. Change the value of Redelivery Limit from -1 to a positive value. This
determines how many times a SoD JMS message will be retried.

Error in task assignment rules
evaluation. Error in task
assignment rules evaluation for
user null. The error is Error in
getting owners for "{0}" in
configuration "{1}". Error
occurred in getting owners for
"SOD ADMINISTRATORS" in
configuration "jazn.com".
Ensure that the group name is
valid and has associated
owners. Contact Oracle Support
if error is not fixable. Make sure
that the rules specified for user
null are valid.

Ignore this error. The reason for this error is that the OIMDBProvider does not
support getting owners for a role. Therefore, SOA logs this error.

Table 22–2 (Cont.) Troubleshooting SoD Check

Problem Solution

Troubleshooting SoD Check

Using Segregation of Duties (SoD) 22-57

When trying to perform SoD
check by using the
DefaultSODApproval
workflow, the following error
message is displayed:

Unknown Credential type to
find the password for the
given map : oim key :
sodcheck.credentials

Add sodcheck.credentials as described in step 5 of "Enabling SoD" on
page 22-9.

The following error is
displayed:

[exec] Caused By:
Thor.API.Exceptions.tcITRes
ourceNotFoundException
[exec] at
com.thortech.xl.ejb.beansim
pl.tcITResourceInstanceOper
ationsBean.getITResourceIns
tanceParametersData

The SoD Engine IT resource has not been created. Therefore, according to the
SoD Engine that is to be used, the corresponding IT resource must be created.
For example, for OAACG, create OAACG-ITRes.

If SoD is enabled for more than
one SoD Engine, for example
OAACG and OIA, and you try
to start SoD check with OIA,
then errors might be logged
from OAACG files.

This problem occurs if the topology entries in the SILConfig.xml file are
incorrect. To see these entries, export the SILConfig.xml file from MDS. For
default providers, the SILConfig.xml file has the SIL registeration IDs
corresponding to the topology names. The IDs in SILConfig.xml and the IDs
that SIL registration script returns must be same. For example, the IDs for
sodoia topology in SILConfig.xml are:

<IdmId>1</IdmId>
<SodId>7</SodId>
<SDSId>6</SDSId>

Then the IDs returned by the registration script are:

1 oimInstance
6 oimSDSInstance
7 oiaInstance

If these are different, then change the IDs in the SILConfig.xml file and reimport
it by using the MDS utility.

Table 22–2 (Cont.) Troubleshooting SoD Check

Problem Solution

Troubleshooting SoD Check

22-58 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Part V
Part V Data Synchronization

This part contains chapters that describe customizing reconciliation and developing
LDAP containers and scheduled tasks.

It contains the following chapters:

■ Chapter 23, "Customizing Reconciliation"

■ Chapter 24, "Using the Bulk Load Utility"

■ Chapter 25, "Configuring LDAP Container Rules"

■ Chapter 26, "Developing Scheduled Tasks"

23

Customizing Reconciliation 23-1

23Customizing Reconciliation

[24]

This chapter describes reconciliation features and architecture and the various aspects
of customizing reconciliation operations in the following sections:

■ Reconciliation Features

■ Reconciliation Architecture

■ Defining Reconciliation Rules

■ Developing Reconciliation Scheduled Tasks

■ Updating Reconciliation Profiles Manually

■ Understanding Reconciliation APIs

■ Postprocessing for Trusted Reconciliation

■ Troubleshooting Reconciliation

■ Populating Data in the RECON_EXCEPTIONS Table

■ Reconciliation Best Practices

■ Monitoring Reconciliation Performance Using DMS

23.1 Reconciliation Features
Reconciliation features can be divided into the following categories:

■ Performance Enhancement Features

■ Web-Based Event Management Interface

■ Other Features

23.1.1 Performance Enhancement Features
The following features help increase performance during reconciliation:

■ New Metadata Model - Profiles

■ Parameters to Control Flow and Processing of Events

■ Grouping of Events by Reconciliation Runs

■ Grouping of Events by Batches

■ Implementing Reconciliation Engine Logic in the Database

■ Improved Java Engine

Reconciliation Features

23-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Improved Database Schema

23.1.1.1 New Metadata Model - Profiles
If metadata is associated with a reconciliation target, then it limits the ability to run
multiple jobs performing different types of reconciliation against the same target.
Therefore, all configurations in various components of Oracle Identity Manager are
stored centrally in an XML store called MDS.

For backward compatibility, current deployments continue managing their
configurations through Oracle Identity Manager Design Console and the configuration
continues to be stored in the Oracle Identity Manager database. The configuration
APIs automatically read the configurations from the tables in Oracle Identity Manager
and convert them into XML profiles, called default profiles, and associate those
profiles with the existing reconciliation runs.

You manage all the metadata by using Oracle Identity Manager Design Console. Using
Oracle Identity Manager Design Console, you can generate the default reconciliation
profile. This can be used to regenerate the profile when reconciliation configurations
are changed from Oracle Identity Manager Design Console. When configurations are
imported from the Deployment Manager, the profile is generated by default.

All nondefault profiles can be completely managed by using any XML editor.

23.1.1.2 Parameters to Control Flow and Processing of Events
This section consists of the following topics:

■ Parameters to Control Event Processing

■ System Property to Control AutoRetry

Parameters to Control Event Processing
BatchSize is the parameter to control event processing. This dictates the size of the
batch. A batch size of 1 is equivalent to processing of events one at a time. Batch size is
available as a system property and can be managed from Oracle Identity Manager
Design Console. The property name is OIM.ReconBatchSize. The default value of the
system BatchSize parameter is 500. For information about system properties, see
"Managing System Properties" in the Oracle Fusion Middleware Administrator's Guide for
Oracle Identity Manager.

System Property to Control AutoRetry
The Retry Count for recon event system property controls auto retry by indicating how
many times an item needs to be retried before the reconciliation engine marks it as an
error or sends it to manual queue. The value 0 for this property means that the auto
retry option is not configured.

23.1.1.3 Grouping of Events by Reconciliation Runs
All the events created in the reconciliation database are grouped by reconciliation
runs. All events in a reconciliation run are grouped with a common reconciliation run
ID. Because each reconciliation run is associated with a profile, all events in a
reconciliation run are processed by using the same profile. This helps in optimizing the

See Also: "Reconciliation Profile" on page 23-8 for information about
reconciliation profiles

See Also: "Handling of Race Conditions" on page 23-5 for more
information about auto retry

Reconciliation Features

Customizing Reconciliation 23-3

performance because the configurations have to be retrieved only once per
reconciliation run.

Each profile can use a different batch size. This enhances system performance for each
target reconciliation by tuning the appropriate batch for it.

23.1.1.4 Grouping of Events by Batches
Batches are introduced to increase system performance during reconciliation. A batch
consists of a number of events. It is a unit of processing in the reconciliation engine.
The size of the batch is configurable. Reconciliation runs are broken into fixed size
batches. For example, if a reconciliation run consists of 9900 events and batch size is
1000, then that reconciliation run is divided into 10 batches each with size 1000, and
last batch with size 900.

Processing a batch as a unit optimizes system performance by eliminating the
overhead of processing one event at a time. This also allows performing bulk
operations wherever possible. Batches can also run in parallel to balance the use of
hardware resources.

23.1.1.5 Implementing Reconciliation Engine Logic in the Database
In earlier releases, all engine logic was implemented in Java and the processing
happened one event at a time. In 11g Release 2 (11.1.2.1.0), most of the logic to process
the events is implemented as stored procedures. A combination for processing at batch
level and the logic being implemented in PLSQL makes it possible to perform bulk
operations at the SQL layer. The following steps are performed in bulk (one batch at a
time):

■ Required data check

■ Applying matching rules

■ Applying action rules

23.1.1.6 Improved Java Engine
Processing that cannot be performed in stored procedures and must be performed in
Java layer also provides better performance than earlier releases of the engine for the
following reasons:

■ Java engine performs bulk operations by default:

– Submits events in batches to the database

– Submits bulk postprocess orchestration depending on the action

■ Performs bulk operations wherever possible.

23.1.1.7 Improved Database Schema
A notable performance enhancement from the new database schema in 11g Release 2
(11.1.2.1.0) is by using horizontal tables for storing event details for various targets
instead of using a single vertical table for storing the event details from various
targets. A horizontal table is used for each profile.

See Also: "Staging Tables" on page 23-4 for more information about
horizontal tables

Reconciliation Features

23-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

23.1.2 Web-Based Event Management Interface
Oracle Identity Manager provides a Web-based event management interface that
allows you to manage the events from the Web. Authorized users are able to search for
events, users, and handle exceptions by linking events with users and accounts. You
can also close events, force failed events to be re-evaluated, and perform ad-hoc
linking.

Ad-hoc linking refers to the ability provided to authorized users of the Event
Management section to link an event to any user in Oracle Identity Manager. Although
the reconciliation engine finds user matches for events, the user through this ad-hoc
link feature can ignore those matches and select a different user. This allows you to
handle exceptions resulting from error matches.

23.1.3 Other Features
Other reconciliation features are described in the following sections:

■ Staging Tables

■ Handling of Race Conditions

■ Ad Hoc Linking

23.1.3.1 Staging Tables
In earlier releases of Oracle Identity Manager, the reconciliation schema has one table
to store all the event details from various targets. The list of attributes and their names
and types that the various reconciliation events contain can vary from target to target.
This means that events from one target can contain a different set of data compared to
events from another target. The only way to store data from such events in a single
table is by storing one attribute per row. Therefore, in earlier releases, each row in the
event detail table represents a single attribute of reconciliation event data. For each
attribute, it stores the event to which it belongs, the attribute name, type, and value.
This is also referred to as vertical table in this document. Although vertical tables are
beneficial from the point of view of flexibility and extensibility, it is not an efficient
way to store event records from the performance prospective.

Storage in vertical tables is replaced by separate tables for each target, called
horizontal tables or staging tables. They are called horizontal tables because instead of
storing attributes of an event vertically in the table as rows (as many rows as there are
number of attributes), the attributes of an event are stored as columns. This means that
there are as many columns as there are number of attributes for a target. Each event is
stored as a row. Because different targets can have different sets of attributes, each
target has a separate table in the reconciliation schema to store event details. There can
be multiple tables per target because of requirements to handle multi-valued attributes
that are stored as rows in child tables.

Each row of the event detail table for a specific profile stores the list of reconciliation
fields for a single event. For example, for trusted user reconciliation in which
firstname, lastname, email attributes are being reconciled, there is the
RA_XELLERATE_USER staging table with the following columns:

RE_KEY, RECON_FIRSTNAME, RECON_LASTNAME, RECON_EMAI

See Also: "Managing Reconciliation" in Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Manager for information about
the tasks performed to manage reconciliation events

Reconciliation Features

Customizing Reconciliation 23-5

Creating and Maintaining Staging Tables
Staging tables can be created only when a target is being deployed against Oracle
Identity Manager. This is because, at the time of target deployment, the reconciliation
system knows the list of attributes and their types for the target, which needs to be
reconciled.

Staging tables are updated when configurations are imported from the Deployment
Manager or changes are made by using Oracle Identity Manager Design Console. To
generate a staging table from Oracle Identity Manager Design Console, in the Object
Reconciliation form, click Generate Reconciliation Profile.

23.1.3.2 Handling of Race Conditions
In earlier releases of Oracle Identity Manager, when an event is being reconciled, the
reconciliation engine may not be able to process it successfully because before this
event can be reconciled, another event needs to be reconciled. For example, before the
reconciliation engine can reconcile an event that is supposed to create an account, the
engine needs to reconcile an event that is supposed to create a user. This is called a
race condition.

In Oracle Identity Manager 11g Release 2 (11.1.2.1.0), the race conditions are handled
by setting the value of the 'Retry Count for recon event' system property. To configure
auto retry, specify a value greater than 0 for this property. If you do not want to
configure auto retry, then specify 0 as the value of the Retry Count for recon event
system property.

When auto retry is configured, the reconciliation engine checks for the race conditions.
If a race condition is found, then the reconciliation engine puts the reconciliation event
in a re-evaluate queue until the retry count is exhausted.

A Reconciliation Retry Scheduled Task periodically checks if there is any event waiting
for retry and is ready to be re-evaluated and if yes, it queues them up for reconciliation
engine processing. This scheduled task is configured by default.

Auto retry can handle the following race conditions:

■ An account event for creating an account in Oracle Identity Manager is processed
before the user is created for this event because the event for creating user is not
processed yet.

■ A user event for creating a Xellerate user in Oracle Identity Manager is processed
before the organization is created to which this user belongs.

All auto retry parameters are stored as part of the reconciliation profiles. This means
that while the events belonging to one reconciliation run may have auto retry
configured, the events belonging to another reconciliation run may not have auto retry
configured.

In Oracle Identity Manager, there is no UI to manage these parameters within a profile
and you must use an XML editor to manage them by directly editing the XML profile.
For information about editing an XML profile, see "Creating and Updating

Note: If the auto retry count is exhausted, the reconciliation engine
does not further process the event and sets the status per the matching
rules. However, you can manually retry by requesting for re-evaluate
from Event Management. For information about re-evaluating events,
see "Re-evaluating Events" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Manager.

Reconciliation Architecture

23-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Reconciliation Profiles" on page 23-23.

23.1.3.3 Ad Hoc Linking
If the reconciliation engine is not able to determine the owner based on the matching
rules, then you can manually link an account to a user by using Oracle Identity
Manager Advanced Administration. Subsequent modifications to the account is
automatically linked to that account.

Ad hoc linking is supported for user and account events. If the reconciliation engine is
not able to determine the owner based on the matching rules, then you can manually
link a user or account event to a user.

23.2 Reconciliation Architecture
Reconciliation is the process of pulling entity data from the target system into Oracle
Identity Manager to keep the entity data in a consistent state between the two systems.
The various components of Oracle Identity Manager involved in reconciliation and the
interaction between these components are shown in the Figure 23–1:

Figure 23–1 Reconciliation Architecture

The reconciliation architecture is described in the following steps:

1. Each connector has scheduled tasks associated with it. The scheduler triggers the
connector scheduled task, which invokes reconciliation APIs to generate events.
The event can be of type Regular, Changelog, or Delete.

For more information about the scheduler, see "Managing the Scheduler" in the
Oracle Fusion Middleware Administrator's Guide for Oracle Identity Manager. For more
information about scheduled tasks, see "Connector for Reconciliation" on

See Also: "Ad Hoc Linking" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Manager for information about
how to perform ad hoc linking

Reconciliation Connector

Scheduled Task

Reconciliation APIs

Other Oracle Identity Manager ComponentsReconciliation Process

Reconciliation
Event Repository

Oracle Identity
Manager

Repository

PL/SQL Stored
Procedure

Kernel

Reconciliation
Event Manager

Configuration
APIs

Action PL/SQL
Layer

Action JAVA
Layer

Create/
Modify/
Delete
in Bulk

Create/
Modify/
Delete

Action
Rules

Reconciliation
Field

Mappings

Matching
Rules

Reconciliation Architecture

Customizing Reconciliation 23-7

page 23-16.

2. The reconciliation events are stored in the reconciliation event repository, which is
Oracle Identity Manager database.

3. When batch size is met, an asynchronous message is submitted which processes
the batch of events in bulk. At the end of the schedule task another asynchronous
message is submitted for processing the events of the last batch.

4. The processing involves data validation, matching of the entities and action
(create, update, delete and so on). This is followed by post processing via kernel
orchestrations. For information about the action module, see "Action Module" on
page 23-15. For information about the reconciliation profile, see "New Metadata
Model - Profiles" on page 23-2.

5. By default the reconciliation event processing happens in bulk, and therefore all
the steps till post processing are performed by PL/SQL stored procedures. Event
can be processed one at a time in the following scenarios (in this case all the steps
till matching are done in PL/SQL and the action is performed in java layer):

■ When events are processed from the Event Management UI

■ When failed events are retried by the retry scheduled task that runs
periodically

For reconciliation single event processing, actions and post processing take place
through the kernel.

6. Reconciliation events are made available to the Event Management UI by another
API call in the reconciliation management service.

The functionality of various components of the reconciliation service are explained in
the following sections:

■ Reconciliation Profile

■ Reconciliation Metadata

■ Reconciliation Target

■ Reconciliation Run

■ Reconciliation APIs

■ Reconciliation Schema

■ Reconciliation Engine

■ Connector for Reconciliation

■ Archival

Note:

■ In Figure 23–1, the reconciliation engine encapsulates the Action
JAVA Layer as well as parts of the Reconciliation Event
Repository, and orchestrates all the arrows in that diagram.

■ In this release, trusted source reconciliation is supported for users
only. It is not supported for roles, role membership, and role
hierarchy reconciliation.

■ In this release, Oracle Identity Manager supports trusted source
reconciliation and account reconciliation for organizations.

Reconciliation Architecture

23-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Backward Compatibility

■ Reconciliation Event Management

23.2.1 Reconciliation Profile
A reconciliation profile is the configuration defined to govern how reconciliation is run
for a particular resource. A particular resource can have multiple reconciliation
profiles, each of which defines matching rules, action rules, and field mappings, which
can differ in each profile corresponding to the resource. For example, while one
reconciliation run can perform reconciliation of new and modified accounts, another
reconciliation run can reconcile deletion of accounts because you might want to run
the deletions only once a day. In this example, you define two reconciliation runs and
two profiles. Each profile is associated with respective reconciliation run and each
profile having its own rules of reconciliation.

The profile is an XML-based configuration file stored in Oracle Identity Manager
MetaData Store (MDS). Example 23–1 shows a sample reconciliation profile:

Example 23–1 Sample Reconciliation Profile

<?xml version='1.0' encoding='UTF-8'?>
<profile xmlns="http://www.oracle.com/oracle/iam/reconciliation/config" ownerType="User"
changeType="CHANGELOG" auditEnabled="true" batchSize="500" resourceType="Account" name="Modified AD
User" configure="true" active="true">

<matchingRule>((UPPER(USR.usr_udf_obguid)=UPPER(RA_ADUSERE469E5C8.RA_OBJECTGUID)))</matchingRule>
 <form oimTableName="UD_ADUSER" stagingTableName="RA_ADUSERE469E5C8" name="Modified AD User"
mlsOimTable="mlsOIMTableIfAny" mlsStagingTable="mlsStagingTableIfmlsOIMTable">
 <matchingRule>(UD_ADUSER.UD_ADUSER_OBJECTGUID=RA_ADUSERE469E5C8.RA_OBJECTGUID)</matchingRule>
 <targetAttributes>
 <targetAttribute type="String" name="Status">
 <stagingField type="String" length="256" name="RA_STATUS"/>
 </targetAttribute>
 <targetAttribute type="String" name="copyStatus" ref="Status" mls="true">
 <stagingField type="String" length="256" name="COPY_STATUS"/>
 <oimAttribute type="String" fieldName="OIM_OBJECT_STATUS" fieldType="String"
name="OIM_OBJECT_STATUS"/>
 </targetAttribute>
 <targetAttribute type="String" name="password" encrypted="true" keyField="false"
required="false">
 <stagingField type="String" length="256" name="PASSWORD"/>
 <oimAttribute type="String" fieldName="UD_ADUSER_PASSWORD" fieldType="String" name="AD
Password"/>
 </targetAttribute>
 <targetAttribute type="Date" name="accountExpires">
 <stagingField type="Date" name="RA_ACCOUNTEXPIRES"/>
 <oimAttribute type="Date" fieldName="UD_ADUSER_DATE" fieldType="Date" name="Account
Expiration Date"/>
 </targetAttribute>
 <targetAttribute type="ITResource" name="IT Resource" keyField="false">
 <stagingField type="ITResource" length="19" name="RA_ITRESOURCE15641F83"/>
 <oimAttribute type="Number" fieldName="UD_ADUSER_AD" fieldType="Number" name="AD
Server"/>
 </targetAttribute>
 <targetAttribute type="String" keyField="true" name="objectGUID">
 <stagingField type="String" length="32" name="RA_OBJECTGUID"/>
 <oimAttribute type="String" fieldName="UD_ADUSER_OBJECTGUID" fieldType="String"
name="Object GUID"/>
 </targetAttribute>

Reconciliation Architecture

Customizing Reconciliation 23-9

 </targetAttributes>
 <form oimTableName="UD_ADUSRC" stagingTableName="RA_ADUSERGROUPDETA902DB909" name="memberOf">

<matchingRule>(UD_ADUSRC.UD_ADUSRC_GROUPNAME=RA_ADUSERGROUPDETA902DB909.RA_MEMBEROF)</matchingRule>
 <targetAttributes>
 <targetAttribute type="String" keyField="true" name="memberOf">
 <stagingField type="String" length="256" name="RA_MEMBEROF"/>
 <oimAttribute type="String" fieldName="UD_ADUSRC_GROUPNAME" fieldType="String"
name="UD_ADUSRC_GROUPNAME"/>
 </targetAttribute>
 </targetAttributes>
 </form>
 </form>
 <actionRules>
 <actionRule condition="One Entity Match Found" action="Establish Link"/>
 </actionRules>
</profile>

Table 23–1 describes the elements and the structure of the reconciliation profile XML
file.

Table 23–1 Elements in the Reconciliation Profile XML

Element
Level 1

Sub-eleme
nt Level 2

Sub-elem
ent Level
3

Sub-eleme
nt Level 4

Sub-eleme
nt Level 5 Description

<profile> The root element or object of the reconciliation
configuration profile.

<ownerType
>

Populated only for role hierarchy, role
membership, and account with values Role,
Role, and User respectively.

<changeTyp
e>

By default, or if the element is not present, then
the value is CHANGELOG. Otherwise, the value
can be REGULAR, CHANGELOG, or DELETE.

<auditEnabl
ed>

Used with account type profile only. By default
or if the element does not exist, then value is
false, and audit for the resource object is
stopped.

<batchSize> Changes the size or number of reconciliation
events per batch. By default, or if the element is
not present, then batch size is 500.

<resourceTy
pe>

Value can be any one of Account, User, Role,
RoleRole, RoleUser, and Organization.

<name> This is the resource object name.

<configure> By default or if the element is not present, then
the value is false. If reconciliation configuration
is to be created or updated on a system, then this
must be marked as true. After all manual
corrections of a profile, this attribute must be
marked as true. For test to production, mark this
element as true before importing into target
system.

<active> By default or if the element is not present, then
the value is true. Value is false for corrupt or
invalid profiles and marks profile unusable.
Such profiles are never loaded into the system.
After all manual corrections of a profile, this
attribute must be removed or marked as true.

Reconciliation Architecture

23-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

<matchingR
ule>

Populated only for role hierarchy, role
membership, and account with owner matching
rule. Otherwise, the element is not present.

<form> This specifies one parent form per profile.

<oimTable
Name>

Oracle Identity Manager table into which data
will be reconciled.

<stagingT
ableName
>

Staging table into which data from the target
system is stored before processing.

<name> Same as profile name for the parent form and
same as multivalued attribute name for the child
forms.

<mlsOim
Table>

Multilanguage supported (MLS) Oracle Identity
Manager table into which data will be reconciled
if resource object is MLA-enabled.

<mlsStagi
ngTable>

MLS staging table into which data from target
system is stored before processing if resource
object is MLS-enabled.

<matchin
gRule>

Matching rule for the form (resource object
associated with the profile), and is always
required.

<targetAtt
ributes>

Groups all target attributes.

<targetAttr
ibute>

One for each attribute from the target system.

<type> Data type of the target attribute.

<keyfield> By default, the value is false. Used in matching
rule for account resource type.

<name> Name of the attribute from the target system
provided by the connector that starts
reconciliation.

<required> If the attribute is required, then this element
must be present.

<encrypted
>

If the value is true, then the attribute value will
be encrypted and stored in staging and Oracle
Identity Manager tables.

<ref> Name of the target attribute in the same form
whose value will be copied and stored in this
attribute.

<stagingFi
eld>

Specifies the column of the staging table
corresponding to the target attribute. This
contains the following elements:

<type>: data type of the staging table column.

<length>: length/size of the staging table
column/field.

<name>: name of the staging table column.

Table 23–1 (Cont.) Elements in the Reconciliation Profile XML

Element
Level 1

Sub-eleme
nt Level 2

Sub-elem
ent Level
3

Sub-eleme
nt Level 4

Sub-eleme
nt Level 5 Description

Reconciliation Architecture

Customizing Reconciliation 23-11

There is always a default profile associated with reconciliation configurations for any
resource object. The default profile can be explicitly generated from Oracle Identity
Manager Design Console in the developer's environment or implicitly generated
during import from the Deployment Manager. For details on how to create and update
profiles, see "Updating Reconciliation Profiles Manually" on page 23-23.

23.2.2 Reconciliation Metadata
The reconciliation metadata consists of various configurations used in creating and
processing the reconciliation events. The reconciliation metadata is stored in a logical
container called a profile. For information about reconciliation profile, see
"Reconciliation Profile" on page 23-8.

Examples of the reconciliation metadata are:

■ Mapping rules: Used to map the data received from the target system to the data
managed about that target system in Oracle Identity Manager.

<oimAttrib
ute>

Specifies the mapped Oracle Identity Manager
domain attribute name. The element is present
only if the target attribute is mapped. This
contains the following elements:

<name>: Oracle Identity Manager attribute
name

<type>: Oracle Identity Manager attribute type

<fieldName>: Column name of the Oracle
Identity Manager table corresponding to the
Oracle Identity Manager mapped attribute

<fieldType>: Column type of the Oracle Identity
Manager table corresponding to the Oracle
Identity Manager mapped attribute

<form> Specifies child form or forms for the parent or
root form. It corresponds to a multivalued
attribute.

<matching
Rule>

Matching rule for a child form.

<targetAttr
ibutes>

This is the same element as the parent
<targetAttributes> element. This element can be
nested several times, for example,
<form><targetAttributes><form><targetAttribu
tes>.

<actionRule
s>

Groups all action rules for the resource object.

<actionRu
le>

An actionRule element for each action rule.

<condition
>

The value can be any one of No Matches Found,
One Entity Match Found, Multiple Entity
Matches Found, One Process Match Found,
Multiple Process Matches Found.

<action> Can be anything based on the profile XSD.

Table 23–1 (Cont.) Elements in the Reconciliation Profile XML

Element
Level 1

Sub-eleme
nt Level 2

Sub-elem
ent Level
3

Sub-eleme
nt Level 4

Sub-eleme
nt Level 5 Description

Reconciliation Architecture

23-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Matching rules: Used during the processing of each reconciliation event to
correlate the event data to a particular account, user, or role in Oracle Identity
Manager.

■ Action Rules: Used to specify the actions taken by Oracle Identity Manager based
on the result of the processing of a reconciliation event.

■ List of target attributes: Used to define the data attributes received from the target
system via reconciliation. It is used in the mapping rules, and is configured by
using Oracle Identity Manager Design Console.

The various configurations used in creating and processing the reconciliation events
are managed by using Oracle Identity Manager Design Console, and for backward
compatibility, is stored in the same Oracle Identity Manager tables as in Oracle
Identity Manager release 9.1.0. In addition, the configurations are also stored in the
reconciliation profile.

23.2.3 Reconciliation Target
Reconciliation target refers to an instance of an application that acts as a source of
changes for Oracle Identity Manager. An example of reconciliation target is an HR
system, which acts as a source of identities for Oracle Identity Manager. A
reconciliation target can be a source of users or accounts.

23.2.4 Reconciliation Run
Reconciliation run refers to the combination of a reconciliation connector and
associated configurations which when run by the scheduled task, performs the
reconciliation based on the rules defined in the associated configurations. The
scheduler runs reconciliation periodically at fixed intervals. Reconciliation runs are
scheduled within Oracle Identity Manager scheduler to run at a specified frequency.
All events created during a reconciliation run are grouped together by a unique
reconciliation run ID.

23.2.5 Reconciliation APIs
These are a set of published APIs to provide reconciliation data to Oracle Identity
Manager in the form of reconciliation events. Connectors can use the APIs to push
data to the reconciliation event repository. Scheduled tasks can be setup to run the
APIs when reconciliation is to be run on a scheduled basis. The existing connectors do
not need to be changed because the existing APIs are supported.

23.2.6 Reconciliation Schema
The data that comes from the target system for reconciliation is stored in the
reconciliation schema. The data contains the changes to be reconciled with Oracle
Identity Manager.

Reconciliation schema refers to the set of schema tables to store the reconciliation data.
The reconciliation schema is redesigned for performance reasons and future
extensibility. See "Improved Database Schema" on page 23-3 for more information
about the reconciliation schema.

Note: For reconciliation in Oracle Identity Manager, a metadata
model is being used. See "Managing Reconciliation Events" in the
Oracle Fusion Middleware Administrator's Guide for Oracle Identity
Manager.

Reconciliation Architecture

Customizing Reconciliation 23-13

23.2.7 Reconciliation Engine
The reconciliation engine uses all configurable components and includes the data
processor and rule evaluator that use these components to convert input data into a
list of action items. It also includes the components that determine whether or not the
actions can be automated based on the rule context. When an action is performed,
either automatically or manually, the engine performs the appropriate updates and
provisioning actions.

The main task of the reconciliation engine is to perform the comparison, determine the
action to be taken, and apply the action in Oracle Identity Manager. It contains two
modules, which are described in the following sections:

■ Matching Module

■ Action Module

23.2.7.1 Matching Module
The matching rule specified in the profile is used to identify whether the record being
searched, exists in Oracle Identity Manager or not. Matching rules are rules to identify
whether the data is for an identity that Oracle Identity Manager already has a record
of, or to identify the owner of the account in Oracle Identity Manager.

For account entities, when no record is found, an owner match is then performed to
identify the owner of the account.

For role hierarchy events, matching is performed to identify the parent and child role.

At the end of the evaluation, the match table contains all the possible matches found
within Oracle Identity Manager that meet the criteria for the event, and the state of the
event is updated to one of the statuses listed in Table 23–2:

Note: While performing role hierarchy and role membership
reconciliation, the matching criteria must contain both Namespace
and Role Name in the matching criteria. The following is an example
of a matching rule:

((UGP.ugp_rolename=x) and (UGP.ugp_namespace=y))

Here, x is the name of the staging table name column that is mapped
to Role Name, and y is the name of the staging column that is mapped
to Namespace.

Table 23–2 Reconciliation Status Events

Status Events Description

Data Received Event data has been created in the database and is ready for
further processing.

Event Received A reconciliation event has been created and is ready for further
processing. The finishReconciliationEvent API has not yet been
called.

Data Validation Failed The reconciliation event record is invalid. For example, a role
event with an invalid role category will fail to validate. This
situation could indicate a race condition.

Data Validation Succeeded The event data was successfully validated and the event can
now safely be processed by the Engine.

Reconciliation Architecture

23-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Multiple Accounts Match
Found

Given the current matching rules, multiple matching account
records were found for the data.

No Account Match Found Given the current matching rules, no matching account records
were found for the data.

Single Account Match
Found

Given the current matching rules, one matching account record
was found for the data.

Multiple Org Matches
Found

Given the current matching rules, multiple matching
organization records were found for the data.

No Org Match Found Given the current matching rules, no matching organization
records were found for the data.

Single Org Match Found Given the current matching rules, one matching organization
record was found for the data.

Multiple Role Grants Match
Found

Multiple matching records for user membership within a role
were found.

No Role Grant Match Found No matching records for user membership within a role were
found.

Single Role Grant Match
Found

One matching record for user membership within a role was
found.

Multiple Roles Match Found Given the current matching rules, multiple matching role
records were found for the data.

No Role Match Found Given the current matching rules, no matching role records were
found for the data.

Single Role Match Found Given the current matching rules, one matching role record was
found for the data.

No Role Members Found The Reconciliation Engine did not find role members matching
the data, given the current matching rules.

No Role Parent Found The Reconciliation Engine did not find a role matching the data,
given the current matching rules.

Multiple Role Relationships
Match Found

Given the current matching rules, reconciliation has found
multiple role-to-role relationships that match data in the event.

No Role Relationship Match
Found

Given the current matching rules, reconciliation did not find any
role-to-role relationships that match data in the event.

Single Role Relationship
Match Found

Given the current matching rules, reconciliation has found one
role-to-role relationship that matches data in the event.

Multiple Users Match
Found

Given the current matching rules, multiple matching user
records were found for the data.

No User Match Found Given the current matching rules, no matching user records
were found for the data.

Single User Match Found Given the current matching rules, one matching user record was
found for the data.

Invalid Event Data Passed The event contains invalid data.

Being Re-evaluated The reconciliation event is being re-evaluated from the
reconciliation event management UI.

Being Re-tried The reconciliation event is being retried automatically. This
status event has been deprecated.

Creation Failed The user/account/role entity was not created successfully.

Table 23–2 (Cont.) Reconciliation Status Events

Status Events Description

Reconciliation Architecture

Customizing Reconciliation 23-15

23.2.7.2 Action Module
This module applies the action based on the event state, entity type, and the action
rules, as listed in Table 23–3:

Creation Succeeded The user/account/role entity was created successfully.

Delete Failed The user/account/role entity was not successfully deleted.

Delete Succeeded The user/account/role entity was deleted successfully.

Event Closed The reconciliation event was closed from the reconciliation event
management UI. The change is complete.

Update Failed The user/account/role entity was not updated successfully.

Update Succeeded The user/account/role entity was updated successfully.

Table 23–3 Action Rules

Event State Entity Type Action Description

No User Match
Found

User None Does not perform any action

Create User Creates a user in Oracle Identity Manager

No Account Match
Found

Account None Does not perform any action

User Matched User or Account None Does not perform any action

User Establish Link Modifies or deletes the matched user
based on the change type

Account Establish Link Owner identified - creates an account

Users Matched User or Account None Does not perform any action

Account Matched Account None Does not perform an action

Establish Link Modifies or revokes the account based on
the change type

Accounts Matched None Does not perform any action

No Role Match
Found

Role None Does not perform any action

Single Role Match
Found

Role None Does not perform an action

Establish Link Modify or delete a role

Role Membership Create role
membership

Grant a role member to Oracle Identity
Manager

Delete role
membership

Delete a role member from Oracle Identity
Manager

None Does not perform an action

Role Hierarchy Create role hierarchy Creates a role hierarchy in Oracle Identity
Manager

Delete role hierarchy Delete a role hierarchy in Oracle Identity
Manager

Table 23–2 (Cont.) Reconciliation Status Events

Status Events Description

Reconciliation Architecture

23-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

23.2.8 Connector for Reconciliation
The connector refers to the software that extracts the changes from the target system
and creates events in the reconciliation schema by calling the reconciliation APIs. If the
connector that you want to use is shipped with a predefined reconciliation module,
then a scheduled task definition is available. You use this component to control the
frequency at which the target system is polled for changes to track data and other
connector-specific parameters.

The connector for reconciliation is deployed by using the Deployment Manager. When
the connector is deployed, the corresponding reconciliation profile for that connector is
created in the metadata store (MDS), and horizontal tables that store the event data are
also created.

None Does not perform an action

Multiple Roles
Matched

Role, Role
membership and Role
Hierarchy

None Does not perform an action

No Role Grant
Match Found

Role Membership None Does not perform an action

Create Role Member Creates a role member in Oracle Identity
Manager

Single Role Grant
Match Found

Role Membership None Does not perform an action

Establish Link Delete role member

Multiple Role
Grant Match Found

Role Membership None Does not perform an action

Note: This state does not occur because the
role grant match is done by looking for the
primary key, which is a combination of the
usr key and the group key.

No Role Parent
Match Found

Role Hierarchy None Does not perform an action

Create role parent Create a role parent in Oracle Identity
Manager

Single Role Parent
Match Found

Role Hierarchy None Does not perform an action

Establish Link Delete role parent

Multiple Role
Parent Match
Found

Role Hierarchy None Does not perform an action

Data Validation
Failed

Role, Role Hierarchy,
Role Member

Race condition Does not perform an action. The event
needs to be re-evaluated.

Parent role not
found

Role Hierarchy Race condition Does not perform an action. The event
needs to be re-evaluated.

Role member not
found

Role membership Race condition Does not perform an action. The event
needs to be re-evaluated.

Table 23–3 (Cont.) Action Rules

Event State Entity Type Action Description

Reconciliation Architecture

Customizing Reconciliation 23-17

For information about configuring connectors, see Oracle Identity Manager Connector
documentation.

23.2.9 Archival
The Reconciliation Archival utility allows you to move processed events from the
active reconciliation tables to archive tables. The events to move can be selected based
on a time range. Only linked and closed events, which means successfully processed
or closed by an administrator, can be archived.

23.2.10 Backward Compatibility
You do not need to change the existing reconciliation configurations or scheduled
tasks to leverage the new reconciliation service.

The existing configurations for reconciliation setup in earlier Oracle Identity Manager
releases continues to function after upgrading to 11g Release 2 (11.1.2.1.0). As part of
the upgrade, corresponding reconciliation event tables are created for each of the
existing object types being reconciled.

23.2.11 Reconciliation Event Management
The reconciliation events are managed by using the Event Management section of
Oracle Identity System Administration. The Event Management section lets you view
and manage reconciliation events generated by Oracle Identity Manager reconciliation
engine. These events are generated through scheduled reconciliation runs. The Event
Management section provides search capabilities on reconciliation runs as well as
events. Users can use the Event Management section to perform reconciliation
manually on generated events.

Note: Do not manually update reconciliation profile or update any
reconciliation configurations from the Deployment Manager or Oracle
Identity Manager Design Console when a reconciliation run is still in
progress. This is because, if a reconciliation field is deleted or updated
when a reconciliation run is in progress, then the event data might not
be valid any more.

See Also:

■ "Reconciliation Metadata" on page 23-11 for information about
MDS

■ "Staging Tables" on page 23-4 for information about the staging
tables

See Also: "Using the Reconciliation Archival Utility" in the Oracle
Fusion Middleware Administrator's Guide for Oracle Identity Manager for
information about how to use the Reconciliation Archival utility

See Also: "Managing Reconciliation Events" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Identity Manager for more
information about the managing reconciliation events in the Oracle
Identity System Administration

Defining Reconciliation Rules

23-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

23.3 Defining Reconciliation Rules
 You can define reconciliation rules that are invoked at the following instances:

■ When Oracle Identity Manager tries to determine which user or organization
record is associated with a change on a trusted source. These rules are evaluated as
soon as all required fields in the reconciliation event are processed on the
Reconciliation Data tab of the Reconciliation Manager form.

■ When Oracle Identity Manager attempts to determine which user or organization
record is the owner of an account discovered on a target resource, for example, as
a result of a change detected on that system. These rules are evaluated only when
all required fields in the reconciliation event are processed on the Reconciliation
Data tab of the Reconciliation Manager form, and no processes were matched to
the event on the Processes Matched Tree tab of the same form.

The Reconciliation Rules form in the Design Console is used to create and manage
reconciliation rules in Oracle Identity Manager. This form is located in the
Development Tools folder. Figure 23–2 shows the Reconciliation Rules form.

Figure 23–2 Reconciliation Rules Form

As mentioned, rules defined by using this form are used to match either users or
organizations associated with a change on a trusted source or target resource. Rules of
these types are referred to as user-matching or organization-matching rules,
respectively. These rules are similar to the ones you can define by using the Rule
Designer form except that the rules created by using the Reconciliation Rules form are
specific to the resource object (because they relate to a single target resource) and only
affect reconciliation-related functions.

Topics in working with reconciliation rules include:

■ Defining a Reconciliation Rule

■ Adding a Rule Element

■ Nesting a Rule Within a Rule

■ Deleting a Rule Element or Rule

Defining Reconciliation Rules

Customizing Reconciliation 23-19

23.3.1 Defining a Reconciliation Rule
The following procedure describes how to define a reconciliation rule.

To define reconciliation rules for user or organization matching:

1. Go to the Reconciliation Rules form.

2. Enter a name for the rule in the Name field.

3. Select the target resource with which this rule is to be associated in the Object field

4. Enter a description for the rule in the Description field.

Select the And or Or operator for the rule. If And is selected, all elements (and
rules if they are nested) of the rule must be satisfied for the rule to be evaluated to
true. If Or is selected, the rule will be evaluated to true if any element (or rule if
one has been nested) of the rule is satisfied.

5. Click Save.

The rule definition will be saved. Rule elements must now be created for the rule.

23.3.2 Adding a Rule Element
To define individual elements in a reconciliation rule:

1. Go to the Rule definition to which you want to add elements.

2. Click Add Rule Element on the Rule Elements tab.

The Add Rule Element dialog box is displayed.

3. Click the Rule Element tab.

4. Select a user-related data item from the User Data menu.

This will be the user data element that Oracle Identity Manager examines when
evaluating the rule element. The menu will display all fields on the Oracle Users
form (including any user-defined fields you have created).

5. Select an operator from the Operator menu.

This will be the criteria that Oracle Identity Manager applies to the attribute for
data item you selected when evaluating the rule element. The following are valid
operators:

Note: In the following procedure, you must ensure that the Active
check box is selected. If this check box is not selected, the rule will not
be evaluated by Oracle Identity Manager's reconciliation engine when
processing reconciliation events related to the resource. However, you
can only select this check box after Oracle Identity Manager has
selected the Valid system check box. The Valid check box can only be
selected after you have created at least one rule element, and Oracle
Identity Manager has determined that the logic of this rule element is
valid.

Note: If the rule being defined is for organization matching, both the
data available and the name of the menus will be related to
organizations, rather than users.

Defining Reconciliation Rules

23-20 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Equals: If you select this option, the user or organization record's data element
must exactly match the attribute you select.

■ Contains: If you select this option, the user or organization record's data
element must only contain (not be an exact match with) the attribute you
select.

■ Start with: If you select this option, the user or organization record's data
element must begin with the attribute you select.

■ End with: If you select this option, the user or organization record's data
element must end with the attribute you select.

6. Select a value from the Attribute menu. The values in this menu are the fields that
were defined on the Reconciliation Fields tab for the resource associated with the
rule. If the reconciliation fields have not yet been designated for the resource, no
values will be available.

7. If you want Oracle Identity Manager to perform a particular transformation on the
data in the Attribute field (before applying the operator), select the desired
transformation from the Transform menu.

The possible transformations are described in Table 23–4.

8. Select the Case-Sensitive check box.

Note:

■ If you configure trusted source reconciliation of users, you must
ensure that the User ID field of the Oracle Identity Manager User
account is used in the reconciliation matching rule.

■ If you configure trusted source reconciliation of organizations,
you must ensure that the Organization Name field of the Oracle
Identity Manager User account is used in the reconciliation
matching rule.

Note: When defining a rule element for a target resource (as opposed
to a trusted source), only fields associated with parent tables of the
resource's custom process form are available for selection in the
Attribute field.

Note: If you select a value other than None from this menu, after you
click Save, you must also select the tab and set the appropriate
properties so that Oracle Identity Manager is able to perform the
transformation correctly.

Table 23–4 Transformation Properties

Transformation Properties to Be Set on the Rule Element Properties tab

Substring Start Point, End Point

Endstring Start Point

Tokenize Delimiters, Token Number, Space Delimiter

Developing Reconciliation Scheduled Tasks

Customizing Reconciliation 23-21

For the rule element to be met, if this check box is selected, the value selected in
the Attribute field must match the capitalization of the value being evaluated in
the reconciliation event record. If this check box is deselected, the value selected in
the Attribute field is not required to match the capitalization used in the value
being evaluated in the reconciliation event record.

9. Click Save.

10. If you select a value (other than None) in the Transform menu and have not yet set
the properties for the transformation, the Properties Set check box will not be
selected.

 You must select the Rule Element Properties tab, set the appropriate properties,
and click Save again.

 The rule element will be added to the rule.

11. Repeat this entire procedure for each rule element you wish to add to the rule.

23.3.3 Nesting a Rule Within a Rule
You can nest an existing rule within a rule. Oracle Identity Manager evaluates the
criteria of the nested rule in the same way as any other element of the rule.

To nest a rule within a rule:

1. Go to the rule to which you want to add another rule.

2. Click Add Rule on the Rule Elements tab.

3. The Rule Choice lookup dialog box is displayed.

Locate and select the desired rule.

4. Click OK.

The selected reconciliation rule is added to rule.

5. Repeat steps 2 through 4 for each rule you want to nest in the rule.

23.3.4 Deleting a Rule Element or Rule
To delete a rule element or a rule:

1. Go to the rule from which you want to delete an element.

2. Select the rule element or rule to be deleted on the Rule Elements tab.

3. Click Delete.

23.4 Developing Reconciliation Scheduled Tasks
Oracle Identity Manager provides connectors for reconciliation of users/accounts from
various target systems, such as Microsoft Active Directory, Sun Java System Directory,
Oracle Internet Directory, and Oracle E-Business Suite. For information about these

Note: Ensure that the Active check box is selected.

Note: Only reconciliation-related rules that are associated with the
same resource object are available for selection in the dialog box.

Developing Reconciliation Scheduled Tasks

23-22 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

connectors, see Oracle Identity Manager Connectors Documentation in the Oracle
Technology Network (OTN) Web site at the following URL:

http://www.oracle.com/technetwork/indexes/documentation/index.html

However, to create a custom connector, you must develop a new scheduled task that
performs the following:

1. Retrieve user/account information from the target system.

2. Use reconciliation APIs to create reconciliation events to submit event data.

3. Create events for creating, modifying, or deleting an entity.

To connect to a specific target system, you must:

■ Create a new IT resource type

■ Define a new IT resource

■ Use the IT resource as an input parameter for the scheduled task

In Oracle Identity Manager, a provisioning process and a process instance is associated
with activities related to users or accounts. This provides a hook or point to add
customizations upon various actions.

Changes to the user state or the account state can occur via direct APIs or
reconciliation. The changes can be of many types, such as:

■ Data change in the user or account profile

■ Status change, such as enable or disable

■ Changes to user based on attestation processes

■ Organization change

■ Attribute propagation

■ Password propagation

For each of these changes, the process definition provides a facility to add hooks to be
run upon any of these changes. For reconciliation, the process definition provides the
hooks in the form of the following conditional tasks:

■ Reconciliation Insert Received: This conditional task is inserted when an account is
created via reconciliation.

■ Reconciliation Update Received: This conditional task is inserted when an existing
account linked to a user is updated via reconciliation. Data in the process form or
status of the account are updated.

■ Reconciliation Delete Received: This conditional task is inserted when an existing
account is revoked via reconciliation.

See Also: Chapter 26, "Developing Scheduled Tasks" for information
about developing a scheduled task

See Also: Oracle Fusion Middleware Java API Reference for Oracle
Identity Manager for information about the APIs to lookup IT resource
definition

See Also: "Understanding Reconciliation APIs" on page 23-24 for
information about the reconciliation APIs

Updating Reconciliation Profiles Manually

Customizing Reconciliation 23-23

These tasks provide starting points for the workflows. You can create custom
workflows in the provisioning process, and create a dependency between the
reconciliation trigger tasks and the workflows. This causes the workflows to be run
upon the respective triggers.

Every reconciliation event that is successfully linked to a user or an account inserts a
single trigger from the conditional tasks. All the data in the user profile and the
account profile is available as context-sensitive data for any adapter that is attached to
one of these dependant tasks.

23.5 Updating Reconciliation Profiles Manually
This section describes updating reconciliation profiles manually in the following
sections:

■ Creating and Updating Reconciliation Profiles

■ Changing the Profile Mode

23.5.1 Creating and Updating Reconciliation Profiles
For reconciliation based on resource objects, the profile name is the same as that of the
resource object. For example, if resource object name is testresource, then the default
profile name is also testresource. The corresponding reconciliation staging table name
is available in the profile. If the resource has Multi-Language Support (MLS) data, then
the MLS staging and Oracle Identity Manager table names are also available in the
profile. See Table 23–1, " Elements in the Reconciliation Profile XML" for information
about the structure and the elements in the reconciliation profile.

If the resource object has child forms, then for each child form, the Oracle Identity
Manager table name and staging table name are available in the profile. Each staging
table has a corresponding entity definition XML file, the name is same as staging table
name with dot xml extension (.xml), which is stored in the MDS.

To change a anything in a reconciliation profile, for instance attribute batch size, either
the profile can be updated manually or by using the Design Console. To update a
reconciliation profile:

1. Export the /db/PROFILE_NAME profile document from MDS.

2. Make changes in the XML file, for example, change the batch size value.

3. Set the value of the configure attribute to true. For information about this attribute,
Table 23–1, " Elements in the Reconciliation Profile XML".

4. Import the updated profile into MDS. See "Migrating User Modifiable Metadata
Files" on page 37-1 for information about exporting and importing metadata to
and from MDS.

See Also: Part III, "Connectors" and Part IV, "Requests and Approval
Processes" for details about creating conditional tasks, adapters, and
dependencies

Note: If a reconciliation profile is changed by using the Design
Console, the reconciliation profile must be regenerated by clicking the
Create Reconciliation Profile button in the Object Reconciliation tab
of the Design Console.

Understanding Reconciliation APIs

23-24 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

This automatically updates the staging tables and the corresponding staging table
entity definitions.

23.5.2 Changing the Profile Mode
You can use one of the following methods to change the profile mode property from
CHANGELOG to REGULAR:

■ Change the value of the changeType attribute in the profile, for example:

<profile xmlns="http://www.oracle.com/oracle/iam/reconciliation/config"
changeType="REGULAR" batchSize="500" resourceType="Organization"
name="Xellerate Organization">

■ Change the attribute during event creation:

The event creation API, introduced in Oracle Identity Manager 11g Release 2
(11.1.2.1.0), contains three parameters. The first two parameters are same as those
used in previous create event APIs. The third parameter can have attributes such
as dateFormat, changeType, eventFinished, and actionDate.

You can use this API to set the changeType as follows:

public long createReconciliationEvent(String objName, Map<String, Object>
inputData, EventAttributes eventAttribs);

23.6 Understanding Reconciliation APIs
The reconciliation APIs are a set of published APIs that can be used to create
reconciliation events with single-valued and multi-valued attribute data and other
features.

Reconciliation connector developers must use these APIs to push data to the
reconciliation event repository.

Most of these APIs existed in earlier versions of Oracle Identity Manager. However, in
11g Release 2 (11.1.2.1.0), the implementation has changed and is based on the new
reconciliation architecture introduced in the release.

Existing standard connectors also use these APIs; since the earlier APIs continue to be
supported, no changes are necessary to those connectors.

callingEndOfJobAPI is the only new reconciliation API in 11g Release 2 (11.1.2.1.0).

Each run of a connector is known as a job. In 11g Release 2 (11.1.2.1.0), reconciliation
events are submitted to the reconciliation engine in batches. At the end of a job, the
scheduler (which executes the connector scheduled task) executes a listener, which in

See Also: "Mode of Reconciliation" in the Oracle Fusion Middleware
User's Guide for Oracle Identity Manager for information about
changelog and regular reconciliation modes

Note: Using the API to set the changeType attribute overrides the
value of the changeType attribute set in the profile.

See Also: Chapter 31, "Using APIs" for more information about
using APIs in Oracle Identity Manager

Understanding Reconciliation APIs

Customizing Reconciliation 23-25

turn invokes the callingEndOfJOBAPI. This API submits any open batch for processing
to the reconciliation engine.

The API calls are similar for Multilanguage Supported (MLS) and non-MLS data. The
connector passes in data to be reconciled as a HashMap. The difference is that if an
attribute is MLS-enabled, then the key is the attribute name, while the value is another
HashMap of MLS data. The keys of this MLS-specific HashMap are language codes,
and the values are the corresponding locale-specific data obtained from target system.
If there is any MLS data that does not have a locale defined with it in the target system,
that data is passed with key "base" in the MLS input data HashMap.

23.6.1 The ReconOperationsService API
The APIs in oracle.iam.reconciliation.api.ReconOperationsService are required for the
following tasks:

■ Ignore Event

■ Create Event (single/bulk)

■ Process Event

■ Deletion Detection

The preferred API and the order of invocation of these APIs is as follows:

1. Ignore Event: This is a way to prevent event creation and processing of target
system data that already exists in Oracle Identity Manager. The API invocation is
as follows:

boolean ignoreEvent(String resourceObjectName, Map inputData, String
dateFormat) throws tcObjectNotFoundException, tcAPIException

This API is used to validate whether or not the reconciliation create event needs to
be raised for the specified object. If this API returns true, then you can skip the
event creation, which saves extra event creation in the database.

Similar to the ignoreEvent API, the ignoreEventAttributeData method can be used
to validate whether or not the reconciliation create event flow needs to be raised
for single and multivalued data coming from the target system. In this release,
only the account entity type has such data. The API is as shown:

boolean ignoreEventAttributeData(String resourceObjectName, Map inputData,
String multiValueFieldName, Map[] childDataList, String dateFormat) throws
tcAPIException, tcObjectNotFoundException

2. Create Event: This can happen via single event creation or bulk event creation
APIs. This flow simply stores target system data in staging tables. The processing
of this data asynchronously takes place later on.

Create Event (Single): This consists of the following APIs:

See Also: Oracle Fusion Middleware Java API Reference for Oracle
Identity Manager for details about the APIs in
oracle.iam.reconciliation.api.ReconOperationsService

Note: Either ignoreEvent or ignoreEventAttributeData must be
invoked; both the APISs are not required to be invoked.

Understanding Reconciliation APIs

23-26 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Use the createReconciliationEvent method to provide the data for creating
reconciliation events. If there is child or multivalued data, then set the value of
the eventAttribs.eventFinished flag to false. Otherwise, set this value to true. It
returns the eventId of the created Event.

long createReconciliationEvent(String resourceObjectName, Map<String,
Object> inputData, EventAttributes eventAttribs)

■ The child data is provided using the addMultiAttributeData method. If there
is no child data or the eventAttribs.eventFinished flag is set to true, then this
API must not be invoked.

long addMultiAttributeData(long eventId, String resourceObjectName, Map
inputData) throws tcAPIException, tcEventNotFoundException,
tcEventDataReceivedException, tcAttributeNotFoundException

■ The providingAllMultiAttributeData method specifies whether the
multivalued data being provided is the entire list of data, or only changeset
that has been added/updated. By default, the value of the allDataFlag is false.
If there is no child data or the eventAttribs.eventFinished flag is set to true,
then this API must not be invoked.

void providingAllMultiAttributeData(long eventId, String
resourceObjectName, boolean allDataFlag) throws tcAPIException

■ The finishReconciliationEvent method is used to mark the end of event
creation flow. Particular event status is updated to Data Received, which
means that all the data for the particular event, including the child data if any,
has been provided. If the eventAttribs.eventFinished flag is set to true, then
this API must not be invoked.

void finishReconciliationEvent(long eventId) throws tcAPIException,
tcEventNotFoundException, tcEventDataReceivedException

■ The callingEndOfJobAPI method processes all the reconciliation batches in the
job. For a scheduled job, this API is automatically called when the job ends.
This API must be explicitly called for a nonscheduled job API invocation.

void callingEndOfJobAPI() throws tcAPIException

Create Event (Bulk): This consists of the following API:

ReconciliationResult createReconciliationEvents(BatchAttributes batchAttribs,
InputData... input)

This is the bulk create API. It creates bulk reconciliation events for the data passed
in input data. It accepts all the data including multivalued attributes, and submits

Note: For better performance with bulk multivalued attributes or the
data for multiple child records instead of a single child record, use the
following API:

void addDirectBulkMultiAttributeData(long reconciliationEventKey,
long reconciliationAttributeKey, String tableFieldName, List
dataList,String dateFormat) throws tcAPIException,
tcEventNotFoundException, tcAttributeNotFoundException,
tcEventDataReceivedException,tcInvalidAttributeException

Understanding Reconciliation APIs

Customizing Reconciliation 23-27

it for processing as one batch if the size of data is less then or equals to the batch
size. Otherwise, it submits the data in multiple batches. There is no need to call
any other API after this.

3. Process Event: This is a way to force the backend processing of an already created
event. The processReconciliationEvent(eventId) API is invoked after create event
flow has finished and an already created event needs to be processed as well. This
API processes only a particular event, it does not update the batch or job status. If
batch status needs to be updated as well, then invoke the callingEndOfJobAPI API
after this. Using this API is not recommended because it is synchronous and
processes data one at a time, rather than in batch.

4. Deletion Detection: This is a way to delete extra data in Oracle Identity Manager
that does not exist in the target system. This consists of the following APIs:

■ The provideDeletionDetectionData method takes the list of all the existing
target system data for a resource object as input, and then returns a list of
matching data found in Oracle Identity Manager.

Set provideDeletionDetectionData(String resourceObjectName, Map[]
inputData) throws tcAPIException, tcIDNotFoundException,
tcMultipleMatchesFoundException

■ The getMissingAccounts method takes the list keys of already found data in
Oracle Identity Manager, and returns a list of extra data that is in Oracle
Identity Manager but not in the target system. It retrieves all keys from Oracle
Identity Manager and compares them with the keys present in the set returned
by the provideDeletionDetectionData method.

Thor.API.tcResultSet getMissingAccounts(String objectName, Set
accountsFound) throws tcAPIException, tcIDNotFoundException,
tcDataNotProvidedException

■ The deleteDetectedAccounts method takes a list of data found only in Oracle
Identity Manager as input, and invokes a delete type create reconciliation
event API call, one at a time. The tcResultSet returned by the
getMissingAccounts method is passed as parameter to this API.

long[] deleteDetectedAccounts(Thor.API.tcResultSet poDetectedAccounts)
throws tcAPIException, tcAPIException

23.6.2 Invoking Non-scheduled Task-Based Reconciliation in a Multithreaded
Environment

Example 23–2 shows the sample code to invoke non-scheduled task-based
reconciliation in a multithreaded environment:

Example 23–2 Invoking Non-scheduled Task-based Reconciliation in a Multithreaded
Environment

public class UserNonSTBasedRecon{

 private AtomicInteger threadCount =new AtomicInteger(0);

 @Test
 public void testCreateUsersUsingNonScheduleTaskConnectorWithThreads() throws
Exception {

 Thread t = new CreateEvent();

Understanding Reconciliation APIs

23-28 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 t.start();
 Thread t2 = new CreateEvent();
 t2.start();

 while (true) {
 Thread.currentThread().sleep(5000);
 if (threadCount.get() == 2){
 ReconOperationsService reconServ =
getService(ReconOperationsService.class);
 reconServ.callingEndOfJobAPI();
 break;
 }
 }
 }

 public class CreateEvent extends Thread {

 Override
 public void run() {

 String ctxFactory = "weblogic.jndi.WLInitialContextFactory";
 OIMProfileReader reader = new OIMProfileReader();
 String appServerType = reader.getString("appserver.type");
 String hostName = reader.getString("weblogic.host");
 String port = reader.getString("weblogic.port");
 String serverURL = "t3://" + hostName + ":" + port;
 System.out.println("Server URL is : " + serverURL);
 System.out.println("Context Factory is : " + ctxFactory);
 Hashtable<String, String> env = new Hashtable<String, String>();
 env.put(OIMClient.JAVA_NAMING_PROVIDER_URL, serverURL);
 env.put(OIMClient.JAVA_NAMING_FACTORY_INITIAL, ctxFactory);

 OIMClient client = new OIMClient(env);
 String username = "xelsysadm";
 String password = "Welcome1";
 try {
 client.login(username , password.toCharArray());
 } catch (LoginException e1) {
 throw new SuperRuntimeException(e1.getMessage(), e1);
 }

 String uniq2 = getRandomLong(10000).toString();
 long jobId = getRandomLong(10000);
 ContextManager.setValue(Constants.JOB_HISTORY_ID, new
ContextAwareNumber(jobId));
 ContextManager.setValue(Constants.JOB_NAME_CONTEXT, new
ContextAwareString(jobId +""));
 ReconOperationsService recon;
 try {
 recon = getService(ReconOperationsService.class);
 int count = 50;
 HashMap<String, String> hm = new HashMap<String, String>();
 ArrayList<Long> eventKeys = new ArrayList<Long>();
 for (int i = 0; i < count; i++) {
 hm.put("UserLogin", uniq2 + "ThreadTest" + i);
 hm.put("FirstName", uniq2 + "Thread" + i);
 hm.put("lastname", "Test");
 hm.put("Type", "End-User");
 hm.put("OrganizationName", "Xellerate Users");
 hm.put("EmpType", "Full-Time");

Troubleshooting Reconciliation

Customizing Reconciliation 23-29

 hm.put("Middlename", "MID");
 System.out.println("Creating Recon event i ="+ i);
 long rceKey = recon.createReconciliationEvent("Xellerate
User", hm, true);
 eventKeys.add(rceKey);
 }
 assertEquals(count, eventKeys.size());
 } catch (Exception e) {
 throw new SuperRuntimeException(e.getMessage(), e);
 } finally {
 threadCount.set(threadCount.get()+1);
 ContextManager.popContext();
 }
 }
 }
 }

23.7 Postprocessing for Trusted Reconciliation
If the user login is not passed for trusted reconciliation, then the login handler
generates the user login. The password is generated in postprocessing event handler.
You can configure Oracle Identity Manager to send notification for the same.

Notification is sent only when the value of the Recon.SEND_NOTIFICATION system
property is set to true. See "System Properties in Oracle Identity Manager" in the Oracle
Fusion Middleware Administrator's Guide for Oracle Identity Manager for information
about the Recon.SEND_NOTIFICATION system property.

In SSO disabled environment, for user creation via reconciliation, both the user login
and password are generated in postprocess handlers and a single notification is sent
for both user login and password.

In SSO enabled environment, because the password is not to be generated, if login is
generated in postprocess handler, then notification is sent only for the user login.

23.8 Troubleshooting Reconciliation
Before troubleshooting issues related to reconciliation, change the reconciliation
logging level to INFO. To do so, add the following logger by using Oracle Enterprise
Manager:

■ Name: oracle.iam.reconciliation

■ Oracle Diagnostic Logging Level (Java Level): NOTIFICATION:1(INFO)

For detailed steps of adding a logger, see "Configuring Logging" in Oracle Fusion
Middleware Administrator's Guide for Oracle Identity Manager.

Note: To change the logging level, you can also modify the
/domains/DOMAIN_NAME/config/fmwconfig/servers/OIM_SERV
ER/logging.xml file. To do so:

1. In the logging.xml file, add a new logger, as shown:

<LOGGER NAME="oracle.iam.reconciliation" LEVEL="INFO"/>

2. Change the logging level of the 'console-handler' log_handler to INFO.

3. Restart Oracle Identity Manager.

Troubleshooting Reconciliation

23-30 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

This section describes troubleshooting reconciliation issues in the following sections:

■ Troubleshooting General Reconciliation Issues

■ Troubleshooting Database-Related Reconciliation Issues

■ Troubleshooting Reconciliation Profile Configuration Failures

23.8.1 Troubleshooting General Reconciliation Issues
Table 23–5 lists the troubleshooting steps that you can perform if you encounter
reconciliation errors:

Table 23–5 Troubleshooting Reconciliation

Problem Solution

Failure in processing events The error details can be obtained from the reconciliation tables,
such as:

■ For batch processing, the exception is stored in
RECON_BATCHES.RB_NOTE column

■ For single event processing, the exception is stored in
RECON_EVENTS.RE_NOTE column

Failure occurring in kernel
orchestration handler

The orchestration ID can be tracked from the reconciliation table,
which can further be used to check the status of related handlers,
such as:

■ For batch processing, the postprocess only orchestration ID
can be read from the RECON_BATCHES.RB_NOTE column

■ For single event processing, end-to-end orchestration ID can
be read from the RECON_EVENTS.RE_NOTE column

There is no UI that displays LDAP synchronization during
reconciliation. Therefore, you can only track LDAP success or
failure by checking the status of LDAP sync event handlers in
orchestration based on the ID available in RB_NOTE/RE_NOTE
columns.

After a job run, a lot of
events are in the Data
Received status.

Check if related batches are in Ready For Processing status by
using the following statement:

select rb_batch_status, rb_note from recon_batches
where rb_batch_status = 'Ready For Processing' and
rj_key = JOB_ID_ON_UI

In addition, in the RECON_BATCHES.RB_NOTE, there is some
generic exception, such as Connection issue. Fix the issue, and
then perform any one of the following:

■ If there is a lot of data, then rerun the reconciliation job.

■ There is a scheduled task provided for manual retry of such
failed batches Retry Reconciliation Batch. This can be used
for retrying specific batches only. Multiple
comma-separated batches are supported.

■ There is no predefined job associated with this schedule
task. A job can be created as required.

Troubleshooting Reconciliation

Customizing Reconciliation 23-31

23.8.2 Troubleshooting Database-Related Reconciliation Issues
This section the describes the following database-related issues for reconciliation:

Missing Critical Oracle Database 11g Release 1 Interim Patches
When the RDBMS interim patch# 7614692 is missing, the following error is logged:

ORA-02291: INTEGRITY CONSTRAINT (FK_RECON_EVENTS_USR) VIOLATED - PARENT KEY NOT
FOUND
[EXEC] ORA-06512: AT "OIM_SP_RECONBLKUSERCRUD"
[EXEC] ORA-06512: AT "OIM_SP_RECONBLKUSRMLSWRAPPER"
[EXEC] ORA-06512:

To resolve this issue, the following patches must be installed on Oracle Database 11g
Release 1 (11.1.0.7.0):

■ p7614692_111070

■ p7000281_111070

■ p8327137_111070

■ p8617824_111070

Missing Critical Oracle Database 11g Release 2 Interim Patches
Running some SQL scripts might generate incorrect or inconsistent results on Oracle
Database 11g Release 2 (11.2.0.2.0), which do not cause problems in earlier release of
Oracle Database.

To resolve this issue, patch# 10259620 for Oracle Database 11g Release 2 must be
installed.

Race Condition - Events are
in failed status because
some dependent attribute is
still not reconciled, for
example, user's
manager/organization
needs to be reconciled
before user.

■ If the size of the data is small, then retry reconciliation
automatically handles the race condition, but it is slow.

■ If the size of the data is large, then perform the
reconciliation two times. Remove the mapping for the
dependent field for the first full reconciliation, and then add
the dependent field mapping and perform the full
reconciliation second time.

The following error is
generated when performing
user update for trusted
source reconciliation:

ORA Error Code
=>ORA-00001: unique
constraint (.) violated

For of trusted source reconciliation, if the matching rule is based
on Usr_login, then the matching rule must not be case-sensitive.
Otherwise, updating users work as creating users, and the error
might be generated.

Note: You can download all interim patches from the following URL:

http://support.oracle.com

Table 23–5 (Cont.) Troubleshooting Reconciliation

Problem Solution

Troubleshooting Reconciliation

23-32 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Slow Reconciliation and Similar Traces in Error Log
When the SQL scripts having matching rules involving large volume, the entity tables
are slow probably because of FULL table scans or unoptimized SQL plans in the
database.

Reconciliation can be slow when the matching rule columns are not properly indexed
or schema statistics is outdated. The slowness results in error logs similar to the
following:

oracle.iam.platform.utils.SuperRuntimeException: java.sql.SQLException:
ORA-01013: user requested cancel of current operation
ORA-06512: at "XL_SP_RECONBLKROLEMATCH"
ORA-06512: at "OIM_SP_RECONBLKROLEMLSWRAPPER"
ORA-06512:

at weblogic.jms.client.JMSSession$UseForRunnable.run(JMSSession.java)
at weblogic.work.SelfTuningWorkManagerImpl$WorkAdapterImpl.run(SelfTuningWorkMana
gerImpl.java)
at weblogic.work.ExecuteThread.execute(ExecuteThread.java)
at weblogic.work.ExecuteThread.run(ExecuteThread.java)
Caused by: java.sql.SQLException: ORA-01013: user requested cancel of current
operation
ORA-06512: at "XL_SP_RECONBLKROLEMATCH"
ORA-06512: at "OIM_SP_RECONBLKROLEMLSWRAPPER"
ORA-06512:
.
at oracle.jdbc.driver.SQLStateMapping.newSQLException(SQLStateMapping.java)
at oracle.jdbc.driver.DatabaseError.newSQLException(DatabaseError.java)
at oracle.jdbc.driver.DatabaseError.throwSqlException(DatabaseError.java)
at oracle.jdbc.driver.T4CTTIoer.processError(T4CTTIoer.java)
at oracle.jdbc.driver.T4CTTIoer.processError(T4CTTIoer.java)

To resolve this issue:

1. Verify that all the appropriate indexes are created over matching rule columns.

2. Verify that the database schema statistics are collected according to the guidelines.

23.8.3 Troubleshooting Reconciliation Profile Configuration Failures
For any issues related to profile configuration failures, validate the profile by using the
validateProfile Mbean availble in Oracle Enterprise Manager. If the profile is invalid,
then the profile is displayed along with the cause of the invalid profile.

Table 23–6 lists the troubleshooting steps that you can perform if you encounter
reconciliation errors.

See Also: "Reconciliation Best Practices" on page 23-34 for
information about creating indexes for reconciliation and collecting
database statistics

Populating Data in the RECON_EXCEPTIONS Table

Customizing Reconciliation 23-33

23.9 Populating Data in the RECON_EXCEPTIONS Table
The RECON_EXCEPTIONS table in Oracle Identity Manager database is used to
capture error messages generated during account reconciliation. This data is collected
for the purpose of generating reports.

If a reconciliation match is found to a deleted user, then you must insert
USER_DELETED in the REX_EXCEPTION column and the key of the deleted user in
the USR_KEY column of the RECON_EXCEPTIONS table.

If no match is found, then insert USER_NOT_FOUND in the REX_EXCEPTION
column.

Table 23–6 Troubleshooting Reconciliation Profile Configuration Failures

Problem Solution

The profile is invalid, and it fails to load
with the following exceptions:

oracle.iam.reconciliation.exception.Confi
gNotFoundException OR

oracle.iam.reconciliation.exception.Confi
g with internal exception
org.xml.sax.SAXParseException

Perform any one of the following:

■ The exact problem can be diagnosed and fixed
by checking the schema validation message.

■ Validate the reconciliation profile XML by
using the MBean in Oracle Enterprise Manager
or the Validate Recon Profile test in the
Diagnostic Dashboard.

■ Validate the reconciliation profile by importing
the profile and the XSD into an XML
schema-aware editor and validate against that
schema in that editor, which can point to the
exact cause of the failure.

Importing a valid reconciliation profile
XML into a system fails to create the
necessary configurations.

Check the profile.configure attribute. The value of
this attribute must be true.

Check the profile.active attribute. The value of this
must be true. Or if the attribute is not present, then
it means that profile.active is true.

The following error is generated:

oracle.iam.reconciliation.exception
.ReconciliationException: Exception
occurred while inserting data into
table STAGING_TABLE_NAME due to
STAGING_TABLE_NAME

This means that a valid reconciliation
profile is loaded, but it has not created
any configuration in Oracle Identity
Manager.

Check the profile.configure and profile.active
attributes.

Note: The validateProfile Mbean is available for validating the
reconciliation profile. This MBean can be accessed by using Oracle
Enterprise Manager.

See Also: "Account Reconciliation" in the Oracle Fusion Middleware
User's Guide for Oracle Identity Manager for information about account
reconciliation

Reconciliation Best Practices

23-34 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

If account match is found, then check if the account is already deprovisioned. Then
insert into RECON_EXCEPTIONS table with the value RESOURCE_DEPROVISIONED in
the REX_EXCEPTION column for the user who is to be provisioned.

To populate the RECON_EXEPTIONS table with exception data:

1. Fetch all the events with the change type != ('Modify' , 'Delete') and event status as
('Single User Match Found', 'Single Org Match Found').

2. Provision the resource object for the entities by performing the following:

a. Collect the exception data from RECON_EXCEPTION DB table. To do so,
perform any one of the following:

– Check if the value of the XL.EnableExceptionReports property is TRUE. If
it is set to TRUE, then continue to the next step. Otherwise, do not collect
the exception data.

– Select the obj_initial_recon_date in the obj table for the resource object
being provisioned, and check if it is earlier than today's date. If an earlier
date is displayed, then continue to the next step. Otherwise, do not collect
the exception data.

b. While provisioning the resource object to the user, check if the resource object
has already been deprovisioned in Oracle Identity Manager:

– If the resource object is already deprovisioned, then insert into
RECON_EXCEPTIONS table the value RESOURCE_DEPROVISIONED in the
REX_EXCEPTION column for the user who is to be provisioned.

– If the resource object is not deprovisioned, then insert into
RECON_EXCEPTIONS table the value RESOURCE_NEVER_PROVISIONED in
the REX_EXCEPTION column for the user who is to be provisioned.

23.10 Reconciliation Best Practices
This section describes how to improve performance by identifying indexes that are
required for connector tables and reconciliation tables. It contains the following topics:

■ Additional Indexes Requirement for Matching Module

■ Collecting Database Schema Statistics for Reconciliation Performance

23.10.1 Additional Indexes Requirement for Matching Module
When Oracle Identity Manager is installed, the necessary indexes are created in the
Oracle Identity Manager database schema. However, there can be additional indexes
required because of dynamic nature of some of the features in Oracle Identity
Manager. This is especially true for reconciliation.

Reconciliation uses matching algorithm to find if the user/account/role/organization
for which the change is requested is already existing in Oracle Identity Manager or

Note: Oracle recommends configuring both the entitlement attribute
and the key attribute for the child data in reconciliation field
mappings to enable effective duplicate entitlement or child data
validation. See "Duplicate Validation for Entitlement or Child Data" in
the Oracle Fusion Middleware Administrator's Guide for Oracle Identity
Manager for information about duplicate validation for entitlements or
child data.

Reconciliation Best Practices

Customizing Reconciliation 23-35

not. The matching algorithm compares the data in set of columns in Oracle Identity
Manager with the data in target horizontal table columns. The columns that contains
the matching rules are defined in the reconciliation profile. To improve the
performance of the matching operation quickly, there must be correct indexes created
on the matching rule columns.

To illustrate the recommended method of identifying the appropriate indexes, a
sample Active Directory (ADUser) profile present in the Meta Data Store (MDS)
repository is taken as an example.

Selecting Indexes for Reconciliation
To select indexes based on the matching rule criteria:

1. Open the AD profile file in a text editor.

2. Search for all occurrences of <matchingRule> tag element in the AD profile, as
shown in Figure 23–3:

Figure 23–3 The <matchingRule> Tag Element

3. After identifying the columns constituting each matching rule, create the indexes
accordingly.

Note: The AD user profile must be imported from the MDS by using
the Oracle Enterprise Manager, as described in "Migrating User
Modifiable Metadata Files" on page 37-1.

Reconciliation Best Practices

23-36 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

23.10.2 Collecting Database Schema Statistics for Reconciliation Performance
Database statistics is essential for the Oracle optimizer to select an optimal plan in
running the SQL queries. Oracle recommends that the statistics are collected regularly
for Oracle Identity Manager schema. Because Oracle Identity Manager 11g Release 2
(11.1.2.1.0) uses lot of database SQL features for reconciliation process, make sure that
the schema statistics are updated before running the reconciliation.

Because Oracle Identity Manager reconciliation process is a data-intensive process and
quickly brings in large volume of data, database statistics must also be able to
represent the underlying data correctly. To achieve this, refer to the following
guidelines:

■ Make sure that statistics is collected for reconciliation on a fresh setup or with a
low volume with no or negligible existing data in the Oracle Identity Manager
schema. Maximum row count in relevant Oracle Identity Manager tables must be

Note:

■ If any key field is defined in Oracle Identity Manager as
case-insensitive, then a function-based index on that key field
must be created. For example, if the connector code internally
performs a search for the first name, assuming that FIRST_NAME
is a key, then appropriate indexing must be done.

■ If multiple or composite keys are used for looking up a user, then
choose between individual or composite indexes.

■ Pointers for required indexes can also be taken by monitoring the
real-time running of reconciliation process from the database side
by using a performance-monitoring tool, such as Oracle
Enterprise Manager, or through the Automatic Workload
Repository (AWR) Reports available in Oracle Database 11g.

■ To some extent, index creation is automated for profiles created or
updated via the Design Console or Deployment Manager import.
Validate the automatically created indexes per the rules defined in
this section. You must rectify the indexes manually if there are any
issues. For profiles created or updated manually, the indexes are
not automated and must be created manually. In addition, there is
no automation for dropping the indexes if the matching rule field
has changed. Dropping indexes must be done manually.

■ The list of existing indexes can be viewed on Oracle Enterprise
Manager by using the validateProfile Mbean.

Note:

■ Other options with DBMS_STATS.GATHER_SCHEMA_STATS
API can be used as required, such as
DEGREE,ESTIMATE_PERCENT based on the environment, data
profile, Oracle DB Edition and underlying hardware capabilities.

■ See "Database Performance Monitoring" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Identity Manager for
more information about collecting database schema statistics.

Monitoring Reconciliation Performance Using DMS

Customizing Reconciliation 23-37

between 100 and 1000 rows. Examples of tables are USR table for trusted source
reconciliation and parent account table for target resource reconciliation.

■ For the statistics to be a proper representative of data distribution after
reconciliation has started and is expected to bring in a large volume of data, such
as more than 20000 users or accounts, collect Oracle Identity Manager schema
statistics in the following manner:

a. Plan to gather statistics after the initial collection only after reconciliation has
started successfully and has been running for a while. To verify this, check the
counts of a few key tables from the Oracle Identity Manager schema, such as
USR table for trusted source reconciliation and parent account (UD_*) tables
for target resource reconciliation.

b. After reconciliation has brought in almost 20000 to 25000 rows in the USR
table or in the parent account tables, statistics can be collected.

■ After the statistics is collected, the performance might not improve immediately.
However, as older SQL Plans are cleared from the shared pool of the Oracle
Database, new and more efficient plans are created and performance improves.

23.11 Monitoring Reconciliation Performance Using DMS
Dynamic Monitoring Service (DMS) commands are used to view performance metrics
and configure event tracing. The following DMS matrices are relevant for monitoring
reconciliation performance:

■ OIM_ScheduledJob: The time taken by a particular scheduled job run.

■ Reconciliation Service (ReconOperationsService Or tcReconciliationOpIntf): The
time taken by each API on the reconciliation service for creating an event.
Connector throughput can be calculated as 'Total Scheduled Job time – Total time
for creating the events.

■ OIM_JMS: ActionTask provides information about actual reconciliation processing
(stored procedure) time. OrchestrationAsyncTask provides information about
overall orchestration postprocessing. XLAuditMessage provides information
about actual audit processing.

■ OIM_EventHandlers: Time taken by each eventhandler within an orchestration.

■ DMS Dump: If unable to resolve performance and functional issues, then DMS
dumps should be provided for analysis. The command is:

${mwhome}/oracle_common/common/bin/wlst>>dms.log
Connect('adminusername','adminpassword');
dumpMetrics(format='xml');
Exit();

For detailed information about the command, see the "dumpMetrics" section in
"DMS Custom WLST Commands" of the Oracle Fusion Middleware WebLogic
Scripting Tool Command Reference.

Note:

■ Statistics can be gathered concurrently with reconciliation
running.

■ The row counts specified in the guidelines are examples and you
can determine any other row count for collecting statistics.

Monitoring Reconciliation Performance Using DMS

23-38 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

24

Using the Bulk Load Utility 24-1

24Using the Bulk Load Utility

[25]

Oracle Identity Manager may be one among many repositories of entity data in your
organization. When you start using Oracle Identity Manager, you might want to load
data from the other repositories into Oracle Identity Manager. The Bulk Load utility
offers a solution to this requirement.

The Bulk Load utility is aimed at automating the process of loading a large amount of
data into Oracle Identity Manager. It helps reduce the downtime involved in loading
data. You can use this utility after you install Oracle Identity Manager or at any time
during the production lifetime of Oracle Identity Manager. The Bulk Load utility can
load users, accounts, roles, role hierarchy, role membership, and role category data.

This document is divided into the following sections:

■ Features of the Bulk Load Utility

■ Prerequisites for Running the Bulk Load Utility

■ Running the Utility

■ Loading OIM User Data

■ Loading Account Data

■ Loading Role, Role Hierarchy, Role Membership, and Role Category Data

■ Data Recorded During the Operation

■ Gathering Diagnostic Data from the Bulk Load Operation

■ Cleaning Up After a Bulk Load Operation

24.1 Features of the Bulk Load Utility
The following are features of the bulk load utility:

■ The utility is compatible with Oracle Identity Manager release 9.1.0 and later.

■ Data can be loaded into Oracle Identity Manager as OIM Users, accounts allocated
(provisioned) to OIM Users, roles, role hierarchies, role memberships, or role
categories.

■ Data can be loaded from a single or multiple CSV files or a database table. Data
imported into Oracle Identity Manager is automatically converted into OIM Users,
accounts provisioned to OIM Users, roles, role hierarchies, role memberships, or
role categories.

■ Data can be loaded from a single or multiple trusted sources.

Prerequisites for Running the Bulk Load Utility

24-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Data can be loaded into either an empty Oracle Identity Manager repository or an
Oracle Identity Manager repository that already contains data about OIM Users
and resources. In other words, user data can be loaded at any time, either
immediately after Oracle Identity Manager installation or when the system is
already in production.

■ Exceptions generated during user data loading are handled, and records that fail
the loading process can be retried.

■ Audit snapshots can be generated after a bulk load operation for users.

■ After bulk loading of OIM User data, password change at first login is enforced
because a dummy password is used during the operation.

24.2 Prerequisites for Running the Bulk Load Utility
Running the Bulk Load utility has the following prerequisites:

■ Installing the Bulk Load Utility

■ Preparing Your Database for a Bulk Load Operation

24.2.1 Installing the Bulk Load Utility
To install the utility:

1. Zip and copy the following directory from the installation package into a directory
on the Oracle Identity Manager database host computer:

MIDDLEWARE_HOME/Oracle_IDM1/server/db/oim/oracle/Utilities/oimbulkl
oad

2. Extract the contents of the ZIP file.

The oimbulkload directory is created when you extract the contents of the ZIP file.
The following directories are created inside this directory:

■ sqls: This directory contains SQL scripts used during bulk load operations.

■ scripts: This directory contains the .sh and .bat scripts used during bulk load
operations.

■ csv_files: If you are going to use a single or multiple CSV files as the input
source, then the CSV files must be stored in this directory.

■ lib: The directory contains the oimBulkLoad.jar file.

■ sample_data: This directory contains the following sample CSV files:

Note: You cannot use the utility to encrypt user attributes. In other
words, if a user field in Oracle Identity Manager is encrypted, then the
utility cannot be used to encrypt data that is loaded into that field.

Note: You can run the utility from a remote host. It is not mandatory
to run the utility from a directory in the Oracle Identity Manager
database host.

The utility can also be run directly from the
MIDDLEWARE_HOME/Oracle_IDM1/server/db/oim/oracle/Utiliti
es/oimbulkload/ directory.

Prerequisites for Running the Bulk Load Utility

Using the Bulk Load Utility 24-3

– For OIM User load operations:

master.txt

OIDusers.csv

HRusers.csv

– For account load operations:

parentAD.csv

childAD.csv

– For role-related load operations:

Role.csv (Role load)

Rolec.csv (Role category)

Roleh.csv (Role hierarchy)

Rolem.csv (Role membership)

■ Logs_ YYYYMMDD_hhmi: The log directory contains the log files that store
the summary of the bulk load operation. This directory is created at run time.

The following sections provide additional information about the utility and bulk load
operations:

■ Scripts That Constitute the Utility

■ Temporary Tables Used During a Bulk Load Operation

■ Options Offered by the Utility

24.2.1.1 Scripts That Constitute the Utility
The following are the main scripts that constitute the utility:

■ oim_blkld.bat and oim_blkld.sh

This script contains the code to perform bulk load operations. When it is run, this
script calls other scripts and stored procedures.

■ oim_blkld_setup.sql

This script is used to add a datafile in the Oracle Identity Manager tablespace. The
"Creating a Datafile in the Oracle Identity Manager Tablespace" section of this
document provides more information.

24.2.1.2 Temporary Tables Used During a Bulk Load Operation
The following temporary tables are used during a bulk load operation:

■ OIM_BLKLD_TMP_SUFFIX

If you are using a CSV file as the input source, then the utility automatically
creates the OIM_BLKLD_TMP_SUFFIX table and first loads data from the CSV file
into this table. The suffix for the table name is determined as follows:

■ The first 6 characters of the file name are taken into account.

■ Special characters in the file name and the file extension (.csv) are ignored
while determining the first 6 characters.

■ A unique number is appended to the first 6 characters.

Prerequisites for Running the Bulk Load Utility

24-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ For example, if the name of the file is acc_Data.csv, then the table that is
created during the bulk load operation is named oim_blkld_tmp_accDat1.

If there are multiple CSV files, then one table is created for each file. Because the
first six characters of each CSV file name are appended to the table name, you
must ensure that the first six characters of each file's name are unique. This
guideline is explained later in this document.

■ OIM_BLKLD_EX_SUFFIX

The OIM_BLKLD_EX_SUFFIX table is used to hold data records that fail (are not
loaded into Oracle Identity Manager) during a bulk load operation. One
OIM_BLKLD_EX_SUFFIX table is created for each OIM_BLKLD_TMP_SUFFIX
table. The EXCEPTION_MSG column of the table stores the reason for failure of
each record in the table.

If you are using CSV files as the input source, then the first six characters of the
CSV file name are added as a suffix to the table name. For example, if the name of
the CSV file is usrdt120508.csv, then the name of the table is OIM_BLKLD_EX_
usrdt1. If there are multiple CSV files, then one temporary table is created for each
CSV file.

■ OIM_BLKLD_LOG

During a bulk load operation, the utility inserts progress and error messages in the
OIM_BLKLD_LOG table. You can query this table to monitor the progress of a
bulk load operation. This procedure is described in detail later in this document.

24.2.1.3 Options Offered by the Utility
When you run the bulk load utility, it prompts you to select one of the following
options:

■ Load User Data

You select this option if you want the utility to load OIM User data. In other
words, data is imported into the USR table of Oracle Identity Manager. You can
select the input source, CSV files or database tables, for the data that you want to
load.

■ Load Account Data

You select this option if you want the utility to load account data. In other words,
data is imported into the relevant UD_ tables of Oracle Identity Manager. You can

Note: if you are using a database table as the input source, then you
can specify any name for the table. You provide the name of this table
as one of the input parameters of the utility.

Note: If there are multiple CSV files, then you must ensure that the
first six characters of each CSV file name are unique.

Note: The utility prompts for more input depending on the option
you select.

Prerequisites for Running the Bulk Load Utility

Using the Bulk Load Utility 24-5

select the input source, CSV files or database tables, for the data that you want to
load.

■ Load Role Data

You select this option if you want the utility to load role data. In other words, data
is imported into the UGP table of Oracle Identity Manager. You can select the
input source, CSV files, or database tables, for the data that you want to load.

■ Load Role Membership

You select this option if you want the utility to load role membership data. In other
words, data is imported into the USG table of Oracle Identity Manager. You can
select the input source, CSV files or database tables, for the data that you want to
load.

■ Load Role Hierarchy

You select this option if you want the utility to load role hierarchy data. In other
words, data is imported into the GPG table of Oracle Identity Manager. You can
select the input source, CSV files, or database tables, for the data that you want to
load.

■ Load Role Category

You select this option if you want the utility to load role data. In other words, data
is imported into the ROLE_CATEGORY tables of Oracle Identity Manager. You
can select the input source, CSV files, or database tables, for the data that you want
to load.

■ Generate Audit Snapshot

You select this option if you want the utility to generate an audit snapshot of users
that you have loaded.

24.2.2 Preparing Your Database for a Bulk Load Operation
Preparing your database for a bulk load operation involves the following:

■ Creating a Tablespace for Temporary Tables

■ Creating a Datafile in the Oracle Identity Manager Tablespace

24.2.2.1 Creating a Tablespace for Temporary Tables
As mentioned in "Temporary Tables Used During a Bulk Load Operation", temporary
database tables are used during the bulk load operation. It is recommended that you
create a tablespace to accommodate these temporary tables instead of using the default
tablespace of the Oracle Identity Manager database.

Follow the instructions in the database documentation to create a tablespace.

24.2.2.2 Creating a Datafile in the Oracle Identity Manager Tablespace
The default size of the datafile in the Oracle Identity Manager tablespace created
during Oracle Identity Manager installation is 500 MB. You may need to add space to
this datafile to accommodate the data that you are going to load. The alternative is to
create a datafile.

To create a datafile in the Oracle Identity Manager tablespace:

1. Start a SQL*Plus session.

2. Connect to the Oracle Identity Manager database as SYSDBA.

Running the Utility

24-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

3. Run the oim_blkld_setup.sql script. The script will prompt for the following:

■ Name of the Oracle Identity Manager tablespace

■ Full path and name for the datafile to be added in the Oracle Identity Manager
tablespace

■ Oracle Identity Manager database user name

24.3 Running the Utility

To run the utility:

1. Stop Oracle Identity Manager.

2. Run one of the following scripts:

■ On UNIX computers:

OIMBulkload/script/oim_blkld.sh

■ On Microsoft Windows computers:

OIMBulkload\script\oim_blkld.bat

3. From the main menu, select one of the options depending on the data you want to
load, such as user, account, or role-related data, as described in "Options Offered
by the Utility" on page 24-4.

4. From the second menu:

■ Select CSV File if you are using CSV files as the input source.

■ Select DB Table if you are using a database table as the input source.

5. When prompted, provide values for the input parameters described in
"Determining Values for the Input Parameters of the Utility" on page 24-11.

Note: If there are name conflicts with existing tables, then the utility
overwrites existing temporary tables at the start of each run. If
required, rename temporary database tables created during an earlier
run of the utility.

Note: To load CSV file with non-ASCII data, before running the
oim_blkld.sh or oim_blkld.bat script, set the NLS_LANG environment
parameter to the UTF8 characterset, in the following format:

NLS_LANG = LANGUAGE_TERRITORY.UTF8

For example:

NLS_LANG = American_America.UTF8

Note: See "Determining Values for the Input Parameters of the
Utility" on page 24-11 for information about the input parameters
required for loading OIM User data. See corresponding sections for
information about the input parameters required to load account, role,
role hierarchy, role membership, and role category data.

Loading OIM User Data

Using the Bulk Load Utility 24-7

6. Monitor the performance of the operation by following the steps given in
"Monitoring the Progress of the Operation".

24.4 Loading OIM User Data
The following is a summary of the steps involved in loading OIM User data:

1. Prepare your database for bulk load if not done already. See "Preparing Your
Database for a Bulk Load Operation" on page 24-5 for details.

2. Create the OIM User whose password will be used as the default password for all
OIM Users created during the bulk load operation.

3. Create the input source for the bulk load operation.

If you want to use a database table as the input source, then create the table and
copy user data into the table.

If you want to use CSV files as the input source, then create the CSV files and copy
user data into the files. In addition, create a master.txt file containing the names of
the files in the sequence in which you want to load data from them.

4. Determine values for the input parameters of the utility.

5. Stop Oracle Identity Manager.

6. Run the oim_blkld.sh or oim_blkld.bat script. See "Running the Utility" on
page 24-6 for information about running the oim_blkld.sh or oim_blkld.bat scripts.

7. Monitor the progress of the bulk load operation.

8. Determine the outcome of the bulk load operation.

9. If required, reload data that was not loaded during the first run.

10. Restart Oracle Identity Manager.

11. Verify the outcome of the bulk load operation.

12. Gather diagnostic data from the operation.

13. Remove temporary tables and files created during the operation.

14. Generate an audit snapshot.

The following sections provide detailed information about the steps involved in
loading OIM User data:

■ Setting a Default Password for OIM Users Added by the Utility

■ Creating the Input Source for the Bulk Load Operation

■ Determining Values for the Input Parameters of the Utility

■ Monitoring the Progress of the Operation

■ Handling Exceptions Recorded During the Operation

■ Fixing Exceptions and Reloading Data Records

■ Verifying the Outcome of the Bulk Load Operation

■ Generating an Audit Snapshot

Loading OIM User Data

24-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

24.4.1 Setting a Default Password for OIM Users Added by the Utility
The utility does not encrypt passwords that it assigns to OIM Users created during the
bulk load operation. Instead, it assigns the password of an existing OIM User to all
OIM Users that are created during the operation.

When you run the utility, it prompts for the login name of the existing OIM User
whose password you want to use as the default password for the new OIM Users.
Before you run the utility, create this OIM User as follows:

1. Log in to the Oracle Identity Self Service as a user with Create User privileges.

2. Click Administration.

3. On the Welcome page, click Create User.

4. Specify values for the following fields:

■ User Login

■ First Name (optional)

■ Last Name

■ Organization: Select Xellerate Users.

■ Password

■ Confirm Password

5. Click Save.

24.4.2 Creating the Input Source for the Bulk Load Operation
Depending on the input source that you want to use, apply the guidelines given in one
of the following sections:

■ Using CSV Files As the Input Source

■ Creating Database Tables As the Input Source

24.4.2.1 Using CSV Files As the Input Source
If you want to use CSV files as the input source for the bulk load operation, then apply
the following guidelines while creating the CSV files:

■ The CSV files must be placed in the oimbulkload/csv_files directory.

■ The first line in the CSV file is called the control line. This line must contain a
comma-separated list of column names of the USR table in the Oracle Identity
Manager database.

Note: Each OIM User is required to change the password at first
login.

Note: You can create a user in Oracle Identity Manager dedicated for
the bulk load operation, and later delete the user if it not required any
more. Otherwise, any existing OIM User can be used to perform bulk
load operations.

Loading OIM User Data

Using the Bulk Load Utility 24-9

■ From the second line onward, the file must contain values for the columns in the
control line. The order of columns in the first line and the values in the rest of the
lines must be the same.

The following are sample contents of a CSV file:

USR_LOGIN,USR_FIRST_NAME,USR_LAST_NAME,UD_ADUSER_OBJECTGUID
john_doe, John, Doe, jdoe
jane_doe, Jane, Doe, janedoe
richard_roe, Richard, Roe, rroe

■ If the value in any column contains a comma, then that value must be enclosed in
double quotation marks (").

■ The CSV file must contain values for all columns that are designated as mandatory
in the USR table. The following table lists the mandatory columns required to load
the USR table:

■ Each row in the CSV file must have a unique value for the USR_LOGIN column in
the USR table. If there are multiple files, you must ensure that USR_LOGIN values
are unique across the CSV files. This check for uniqueness of USR_LOGIN values
must also cover existing OIM Users in Oracle Identity Manager.

Ensuring that USR_LOGIN values are unique can be a time-consuming exercise.
As an alternative, you can first perform the bulk load operation, fix USR_LOGIN
values that are not unique, and then retry the loading operation for the modified
user records. This is possible because the utility checks for uniqueness of
USR_LOGIN values at run time and copies records that fail this check into the
OIM_BLKLD_EX table. Later in this document, there are instructions on retrying
the bulk load operation for records that are not loaded during the first run.

■ If you want to include an organization name in each user record, then add
ORG_NAME in the control line and enter the organization name for each user
from the second line onward. If ORG_NAME is not included, then the users must
be assigned to the Xellerate Users organization.

Note: Ensure that the Password column or any other encrypted
column is not included in the list of columns. As mentioned earlier in
this document, the utility assigns the password of an existing OIM
User that you specify to all OIM Users that it loads into Oracle
Identity Manager.

Mandatory Column Description

USR_FIRST_NAME The first name of the user

USR_LAST_NAME The last name of the user

Note:

■ USR_LOGIN is not a mandatory column in Oracle Identity
Manager 11g Release 2 (11.1.2.1.0).

■ There are some key mandatory columns that you can ignore. For
example, the ACT_KEY column in the USR table, which is
populated by ORG_NAME.

Loading OIM User Data

24-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ If you want to include a manager name in each user record, then add
MANAGER_NAME in the control line and enter the USR_LOGIN value of the
manager for each user from the second line onward.

The utility looks up the USR_LOGIN values for managers after all user data, from
all CSV files, is loaded into Oracle Identity Manager. If a USR_LOGIN value given
in the MANAGER_NAME column does not exist in Oracle Identity Manager, then
the lookup for that user record fails and the record is copied into the exception
table, OIM_BLKLD_EX. At the end of the bulk load operation, you can perform
the procedure described in "Fixing Exceptions and Reloading Data Records" to
reload user records that fail the first run.

■ Note that the following default values are inserted into Oracle Identity Manager if
the CSV file does not contain values for these columns:

ORG_NAME: Xellerate Users

USR_TYPE: End-User

USR_STATUS: Active

USR_EMP_TYPE: Full-Time

■ Create a master TXT file containing the names of the CSV files containing user
data to be loaded. You can specify any name for the file, for example, master.txt.
Save the master file in the oimbulkload/csv_files directory.

If you want to load multiple CSV files, then enter the name of each data CSV file
on a separate line in the master file. Order the list of CSV file names in the
sequence in which you want the utility to load data from the files. For example,
suppose you have created three data CSV files, London_Users.csv,
NewYork_Users.csv, and Tokyo_Users.csv. In the master file, you enter the names
of the data CSV files in the following order:

Tokyo_Users.csv
London_Users.csv
NewYork_Users.csv

When you run the utility, data is loaded in this order. This is because the user data
in London and New York may have a dependency on the Tokyo users. This is to
ensure the manager-user hierarchy.

■ If the CSV file is generated on Microsoft Windows and is to be loaded on Linux
environment, then remove the special characters, such as '\n\r', to avoid run-time
errors.

24.4.2.2 Creating Database Tables As the Input Source
If you want to use a database table as the input source for loading OIM User data, then
apply the following guidelines while creating the database table:

■ Create the table in the Oracle Identity Manager database.

■ The table must contain the following primary key column:

OIM_BLKLD_USRSEQ NUMBER(19)

Note: All organization names listed under the ORG_NAME column
in the CSV file must exist in Oracle Identity Manager.

Loading OIM User Data

Using the Bulk Load Utility 24-11

The utility uses this column as the primary key. If required, you can use a database
sequence to populate this column.

■ The rest of the columns must be the same as the ones in the USR table that you
want to use. In other words, ignore optional USR_ columns that you do not want
to include in the table that you create.

■ Note that the following default values are inserted into Oracle Identity Manager if
the table does not contain values for these columns:

ORG_NAME: Xellerate Users

USR_TYPE: End-User

USR_STATUS: Active

USR_EMP_TYPE: Full-Time

■ If you want to include an organization name in each user record, then add
ORG_NAME in the control line and enter the organization name for each user
from the second line onward. If ORG_NAME is not included, then the users must
be assigned to the Xellerate Users organization.

■ If you want to include a manager name in each user record, then add
MANAGER_NAME in the control line and enter the USR_LOGIN value of the
manager for each user from the second line onward.

Table 24–1 shows the structure of a sample database table.

24.4.3 Determining Values for the Input Parameters of the Utility
The following are input parameters of the utility:

■ Oracle Home

Value of the ORACLE_HOME environment variable on the host computer for the
Oracle Identity Manager database

■ Database Connection String

Connection string to connect to the database that must be entered in the following
format:

//HOST_IP_ADDRESS:PORT_NUMBER/SERVICE_NAME

■ OIM DB User

Database login ID of the Oracle Identity Manager database user

■ OIM DB Pwd

Password of the Oracle Identity Manager database user

The database user password is to be entered twice when prompted.

Table 24–1 Structure of a Sample Database Table

Name Null? Type

USR_LOGIN NOT NULL VARCHAR2(256)

USR_FIRST_NAME VARCHAR2(150)

USR_LAST_NAME NOT NULL VARCHAR2(150)

OIM_BLKLD_USRSEQ NOT NULL NUMBER(19)

Loading OIM User Data

24-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Master file name

Name of the file containing names of the CSV data files to be loaded

This parameter is used only if the input source is a single or multiple CSV files.
You place the master file and CSV data files in the oimbulkload/csv_files
directory. See "Using CSV Files As the Input Source" for more information.

■ Tmp table name

Name of the temporary table to be used as the input source

This parameter is used only if the input source for the bulk load operation is a
database table. See "Creating Database Tables As the Input Source" for more
information.

■ Control Line

Comma-separated list of names of columns to be loaded from the database table
into Oracle Identity Manager

This parameter is used only if the input source for the bulk load operation is a
database table.

■ Tablespace Name

Name of the tablespace in which temporary tables are to be created during the
bulk load operation. If the user does not provide the tablespace name, then it will
pick the default tablespace.

See "Preparing Your Database for a Bulk Load Operation" on page 24-5 for more
information.

■ Date format

Date format used by date columns in the CSV files

This parameter is used only if the input source is a single or multiple CSV files.

The date format must match the following:

– Oracle supported date formats, such as dd-mm-yyyy or MM-DD-YYYY

– The date format specified in the CSV file

■ Batch Size

Number of user records that must be processed by the utility as a single
transaction

The batch size can influence the performance of the bulk load operation. The
default value of this parameter is 10000.

■ Debug Flag

You can specify Y or N as the value of this parameter. If this parameter is set to Y,
then the utility records detailed information about events that occur during the
bulk load operation. See "Data Recorded During the Operation" on page 24-30 for
more information.

■ User ID for default password

Login name of the OIM User that you create by performing the procedure
described in "Setting a Default Password for OIM Users Added by the Utility" on
page 24-8.

Loading OIM User Data

Using the Bulk Load Utility 24-13

24.4.4 Monitoring the Progress of the Operation
During the bulk load operation, you can query the OIM_BLKLD_LOG table for
information about the progress of the operation. For example, you can run the
following query to see progress messages generated during the bulk load operation to
load OIM User data:

SELECT MSG FROM OIM_BLKLD_LOG
WHERE MODULE = 'USER' AND LOG_LEVEL = 'PROGRESS_MSG'
ORDER BY MSG_SEQ_NO;

Errors encountered during the bulk load operation can be viewed by querying the
OIM_BLKLD_LOG table. The following is an example of the query to retrieve error
messages:

SELECT MSG FROM OIM_BLKLD_LOG
WHERE MODULE = 'USER' AND LOG_LEVEL = 'ERROR'
ORDER BY MSG_SEQ_NO;

24.4.5 Handling Exceptions Recorded During the Operation
At the end of a bulk load operation, the utility records statistics related to the
operation in the following file:

oimbulkload/logs_YYYYMMDD_hhmm/oim_blkld_user_load_summary.log

To determine if there were exceptions during the operation, open this log file and look
for the number against the Number of Records Rejected label. If the number of rejected
records is greater than zero, then exceptions were thrown during the operation. User
records that are rejected by the utility are recorded in the exception table
(OIM_BLKLD_EX_SUFFIX). For each rejected record, the EXCEPTION_MSG column
in the OIM_BLKLD_EX_SUFFIX table stores information about the reason the record
could not be loaded.

Example 24–1 shows sample statistics recorded in the log file at the end of a bulk load
operation to store OIM User data.

Example 24–1 Sample Log File Generated After Loading OIM User Data

**

Processing File: u10.csv
==
U S E R L O A D S T A T I S T I C S F O R F I L E : u10.csv
==
Start Time: 08-AUG-08 11.44.12.228000 AM
End Time: 08-AUG-08 11.44.13.368000 AM
Number of Records Processed: 10
Number of Records Loaded: 8
Number of Records Rejected: 2
==
The name of the TMP table used during the load:
OIM_BLKLD_TMP_U101

The name of the Exception table used during the load:
OIM_BLKLD_EX_U101

**
Processing File: u10b.csv

==

Loading OIM User Data

24-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

U S E R L O A D S T A T I S T I C S F O R F I L E : u10b.csv
==
Start Time: 08-AUG-08 11.44.15.368000 AM
End Time: 08-AUG-08 11.44.15.540000 AM
Number of Records Processed: 16
Number of Records Loaded: 15
Number of Records Rejected: 1
==
The name of the TMP table used during the load:
OIM_BLKLD_TMP_U10B2

The name of the Exception table used during the load:
OIM_BLKLD_EX_U10B2
==

==
Time taken in re-building indexes and enabling FK constraints
==
Start time: 08-AUG-08 11.44.15.556000 AM
End Time: 08-AUG-08 11.46.50.586000 AM
==

In this sample, the number of rejected records is 2. If the log file shows that any records
were rejected by the utility, then see "Fixing Exceptions and Reloading Data Records"
for information about retrying the load operation for these records.

24.4.6 Fixing Exceptions and Reloading Data Records
As mentioned earlier, errors encountered during the bulk load operation can be
viewed by querying the OIM_BLKLD_LOG table. The following is an example of the
query to retrieve error messages:

SELECT MSG FROM OIM_BLKLD_LOG
WHERE MODULE = 'USER' AND LOG_LEVEL = 'ERROR'
ORDER BY MSG_SEQ_NO;

An exception table OIM_BLKLD_EX_SUFFIX is created for each data table used as the
input source during the bulk load operation. Records that do not meet the criteria for
the operation are copied into this exception table. The suffix appended to the name of
each exception table is the same as suffix appended to the name of the corresponding
data table.

To reload rejected records:

1. Create a backup of the exception table in which rejected records are stored.

2. Review each record in the exception table, and fix errors in the data based on the
message recorded in the EXCEPTION_MSG column.

Note: At the end of each bulk load operation, it is recommended that
you create a backup of the exception tables.

Note: Although this is an optional step, it is recommended that you
create a backup.

Loading OIM User Data

Using the Bulk Load Utility 24-15

3. After you fix errors in all the rejected records in an exception table, rename the
table to OIM_BLKLD_TMP_SUFFIX and then use it as the input source.

4. Load records from the OIM_BLKLD_TMP_SUFFIX table by running the utility.
See "Running the Utility" for more information.

5. Repeat Steps 1 through 4 until the Number of Records Rejected label in the
oim_blkld_user_load_summary.log file shows the value 0.

6. Restart Oracle Identity Manager.

24.4.7 Verifying the Outcome of the Bulk Load Operation
To verify the outcome of the bulk load operation, check if you are able to perform the
following steps for one of the OIM User added by the utility:

■ Log in as the OIM User. The system should prompt you to change the password.

■ Provision a resource for the OIM User.

■ Add the OIM User to a role.

■ Modify the account profile of the OIM User.

■ Revoked the resource provisioned to the OIM User.

■ Unassign the OIM User from the role to which the user was added earlier.

■ Modify the account profile again to restore the profile to its original state.

■ Check if the User Resource Access report (an operational report) and the User
Resource Access History report can be generated for the user.

■ Create an Attestation and check its status using the Diagnostic Dashboard.

24.4.8 Generating an Audit Snapshot
If required, you can generate an audit snapshot of Oracle Identity Manager data after a
bulk load operation, or at any time during the bulk load operation. You can also
generate audit snapshots by selecting option 7 in the Bulk Load utility. The utility uses
the audit engine shipped with Oracle Identity Manager. Internally, the
GenerateSnapshot script is called when you run the audit utility. Similarly, the
GenerateSnapshot script is called when you select the option to generate an audit
snapshot.

Before you generate an audit snapshot, for running the GenerateSnapshot script, you
must set the following environment variables:

■ OIM_ORACLE_HOME: c:\work1\Oracle_IDM1

Note: These steps leave footprints in the system, and therefore, the
bulk load verification must be performed by using a test user. If you
do not want to leave the footprints in the system, then revert the
changes. For example, if you have provisioned a resource to a OIM
User, then deprovision the resource after testing the outcome of the
bulk load operation.

Note: Oracle Identity Manager must be up and running when you
run the audit utility.

Loading Account Data

24-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ JAVA_HOME: C:\jdk160

■ MW_HOME: c:\work1

■ WL_HOME: c:\work1\wlserver_10.3

■ DOMAIN_HOME: C:\work1\user_projects\domains\base_domain

See "Configuring Auditing" in the Oracle Fusion Middleware Administrator's Guide for
Oracle Identity Manager for information about the procedure to generate audit
snapshots.

24.5 Loading Account Data
The following is a summary of the steps involved in loading account data:

1. Prepare your database for a bulk load operation, if not already done. See
"Preparing Your Database for a Bulk Load Operation" on page 24-5 for details.

2. Create the input source for the bulk load operation.

If you want to use a database table as the input source, then create the table and
copy account data into the table.

If you want to use CSV files as the input source, then create the CSV files and copy
account data into the files.

3. Determine values for the input parameters of the utility.

4. Stop Oracle Identity Manager.

5. Run the oim_blkld.sh or oim_blkld.bat script.

6. Monitor the progress of the bulk load operation.

7. Determine the outcome of the bulk load operation.

8. If required, reload data that was not loaded during the first run.

9. Restart Oracle Identity Manager.

10. Verify the outcome of the bulk load operation.

11. Gather diagnostic data from the operation.

12. Remove temporary tables and files created during the operation.

Requirements and Features of the Bulk Load Operation for Account Data
The following are requirements and features of the bulk load operation for account
data:

■ Reconciliation must be set up and you should be able to test reconciliation by
importing a few accounts from the target system.

■ Only accounts for which there are corresponding OIM Users can be loaded.

■ A target system that requires multiple IT resources is not supported.

■ Duplicate accounts cannot be detected during a bulk load operation. If there are
multiple entries for the same account in the input source, then multiple accounts
are created for the corresponding OIM User.

Note: C:\work1\ is a sample directory path of MW_HOME.

Loading Account Data

Using the Bulk Load Utility 24-17

■ For a particular target system, if there are multiple provisioning processes/process
forms in Oracle Identity Manager, then the utility uses the default provisioning
process for the resource object.

■ Information about the stage up to which earlier bulk load operations progressed is
not stored. In other words, the utility cannot resume a bulk load operation. You
must backup the Oracle Identity Manager database before a bulk load operation. If
you want to retry a bulk load operation, you must first restore the database and
then rerun the procedure.

■ Bulk Load utility takes the corresponding application instance name as input to
load account data. If the application instance name is not known to the user, then
Bulk Load utility prompts for the resource object name and IT resource name,
based on which account data is loaded.

The following sections provide detailed information about the steps involved in
loading account data:

■ Creating the Input Source for the Bulk Load Operation

■ Determining Values for the Input Parameters of the Utility

■ Monitoring the Progress of the Operation

■ Handling Exceptions Recorded During the Operation

■ Fixing Exceptions and Reloading Data Records

■ Verifying the Outcome of the Bulk Load Operation

24.5.1 Creating the Input Source for the Bulk Load Operation
Depending on the input source that you want to use, apply the guidelines given in one
of the following sections:

■ Using CSV Files As the Input Source

■ Creating Database Tables As the Input Source

24.5.1.1 Using CSV Files As the Input Source
If you want to use CSV files as the input source for the bulk load operation, then apply
the following guidelines while creating the CSV files:

■ The CSV files must be placed in the oimbulkload/csv_files directory.

■ The first line in the CSV file is called the control line. This line must contain a
comma-separated list of column names in the account (UD_*) table into which you
want to load the account data. To find out the UD_ table, go to the process form in
the Design Console. See Chapter 5, "Developing Provisioning Processes" for
information about process forms.

■ From the second line onward, the file must contain values for the columns in the
control line. The order of columns in the first line and the values in the rest of the
lines must be the same.

■ If the value in any column contains a comma, then that value must be enclosed in
double quotation marks (").

Note: Ensure that the Password column or any other encrypted
column is not included in the list of columns.

Loading Account Data

24-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ The CSV file must contain values for all columns that are designated as mandatory
in the account table. The key mandatory columns in the account table must be
ignored.

■ If you want to load account data into parent and child tables, then you must create
one parent CSV file and one child CSV file for each child table. For example if you
are loading data into one parent table and three child tables, then you must create
one parent CSV file and three child CSV files.

■ If you want to load account data into parent and child tables, then at least one
column must be the same in both tables. This column corresponds to the link
attribute between the parent and child CSV files. The following example illustrates
this:

The following are sample contents of a parent CSV file:

UD_ADUSER_UID,UD_ADUSER_ORGNAME,UD_ADUSER_FNAME,UD_ADUSER_LNAME,UD_ADUSER_MNAME
,UD_ADUSER_FULLNAME,UD_ADUSER_OBJECTGUID
ADTEST1,"7~CN=ForeignSecurityPrincipals,DC=vivek01,DC=com",adtest1,adtest1,,adt
est1,102

The following are sample contents of a child CSV file:

UD_ADUSER_UID,UD_ADUSER_ORGNAME,UD_ADUSRC_GROUPNAME
ADTEST1,"7~CN=ForeignSecurityPrincipals,DC=vivek01,DC=com",group2

The UD_ADUSER_UID column is common to both the parent file and the child
file.

■ If the CSV file is generated on Microsoft Windows and is to be loaded on Linux
environment, then remove the special characters, such as '\n\r', to avoid run-time
errors.

24.5.1.2 Creating Database Tables As the Input Source
If you want to use a database table as the input source for loading account data, then
apply the following guidelines while creating the database table:

■ Create the table in the Oracle Identity Manager database.

■ The table must contain the following primary key column:

OIM_BLKLD_USRSEQ NUMBER(19)

The utility uses this column as the primary key. If required, you can use a database
sequence to populate this column.

■ The rest of the columns must be the same as the ones in the account (UD_) table
that you want to use. In other words, ignore optional UD_ columns that you do
not want to include in the table that you create.

Table 24–2 shows the structure of a sample parent table.

Note: The UD_ADUSER_OBJECTGUID column is mandatory in the
parent CSV file for loading accounts by using the bulk load operation.
This column must be added to the parent CSV file in spite of nullable
column in the database.

Loading Account Data

Using the Bulk Load Utility 24-19

Table 24–3 shows the structure of a sample child table.

24.5.2 Determining Values for the Input Parameters of the Utility
The following are input parameters of the utility:

■ Oracle Home

Value of the ORACLE_HOME environment variable on the host computer for the
Oracle Identity Manager database

■ Database Connection String

Connection string to connect to the database that must be entered in the following
format:

//HOST_IP_ADDRESS:PORT_NUMBER/SERVICE_NAME

■ OIM DB User

Database login ID of the Oracle Identity Manager database user

■ OIM DB Pwd

Password of the Oracle Identity Manager database user

■ Application instance name (APP_INSTANCE)

Name of the application instance corresponding to the account data to be loaded.
If the user is not aware of the application instance name, then Account Bulkload
utility prompts for the resource object name and IT resource name. The prompt is
as shown:

Do you know the Application Instance name? (Y,y,N,n)

If you enter Y or y, then you are prompted for the application instance name. If
you enter N or n, then you are prompted for the following:

– Resource Object Name (OBJ_NAME)

Table 24–2 Structure of a Sample Database Table

Name Null? Type

UD_ADUSER_UID VARCHAR2(20)

UD_ADUSER_ORGNAME VARCHAR2(256)

UD_ADUSER_FNAME VARCHAR2(80)

UD_ADUSER_LNAME VARCHAR2(80)

UD_ADUSER_MNAME VARCHAR2(80)

UD_ADUSER_FULLNAME VARCHAR2(240)

OIM_BLKLD_SEQ NOT NULL NUMBER(19)

Table 24–3 Structure of a Sample Child Database Table

Name Null? Type

UD_ADUSER_UID VARCHAR2(20)

UD_ADUSER_ORGNAME VARCHAR2(256)

UD_ADUSRC_GROUPNAME VARCHAR2(32)

OIM_BLKLD_SEQ NOT NULL NUMBER(19)

Loading Account Data

24-20 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

If the user is not aware of the application instance name, then Bulk Load
utility prompts for the resource object name corresponding to the account data
to be loaded.

– IT Resource Name

Name of the IT resource created for the target system. This is required only
when the user is not aware of the application instance name. The account
bulkload utility first prompts for resource object name, and then prompts for
IT resource name.

■ CSV file names

Names of the CSV files to be used as the input source

This parameter is used only if the input source is CSV files. See "Using CSV Files
As the Input Source" on page 24-17 for more information. If you are loading data
from parent and child CSV file, then use a comma-delimited list to enter the names
of the files. The name of the parent CSV file must be provided first, and it must be
followed by the names of the child CSV files.

■ Tmp table name

Name of the temporary table to be used as the input source

This parameter is used only if the input source for the bulk load operation is a
database table. See "Creating Database Tables As the Input Source" on page 24-18
for more information.

■ Control Line

Comma-separated list of names of columns to be loaded from the database table
into Oracle Identity Manager

This parameter is used only if the input source for the bulk load operation is a
database table.

■ Tablespace Name

Name of the tablespace in which temporary tables are to be created during the
bulk load operation (if end user won't provide the tablespace name then it will
pick the default tablespace)

See "Preparing Your Database for a Bulk Load Operation" on page 24-5 for more
information.

■ Date format

Date format used by date columns in the CSV files

This parameter is used only if the input source is a single or multiple CSV files.

The date format must match the following:

– Oracle supported date formats, such as dd-mm-yyyy or MM-DD-YYYY

– The date format specified in the CSV file

■ Batch Size

Number of user records that must be processed by the utility as a single
transaction

The batch size can influence the performance of the bulk load operation. The
default value of this parameter is 10000.

■ Debug Flag

Loading Account Data

Using the Bulk Load Utility 24-21

You can specify Y or N as the value of this parameter. If this parameter is set to Y,
then the utility records detailed information about events that occur during the
bulk load operation. See "Data Recorded During the Operation" on page 24-30 for
more information.

■ Application Instance (APP_INSTANCE)

Name of the application instance corresponding to the account data to be loaded.

If the user is not aware of the application instance name, then account bulkload
utility prompts for the Object name (OBJ_NAME)

24.5.3 Monitoring the Progress of the Operation
During the bulk load operation, you can query the OIM_BLKLD_LOG table for
information about the progress of the operation. For example, you can run the
following query to see progress messages generated during the bulk load operation to
load account data:

SELECT MSG FROM OIM_BLKLD_LOG
WHERE MODULE = 'ACCOUNT' AND LOG_LEVEL = 'PROGRESS_MSG'
ORDER BY MSG_SEQ_NO;

For example, you can run the following query to see progress messages generated
during the bulk load operation to load account data:

SELECT MSG FROM OIM_BLKLD_LOG
WHERE MODULE = 'ACCOUNT' AND LOG_LEVEL = 'PROGRESS_MSG'
ORDER BY MSG_SEQ_NO;

Errors encountered during the bulk load operation can be viewed by querying the
OIM_BLKLD_LOG table. The following is an example of the query to retrieve error
messages:

SELECT MSG FROM OIM_BLKLD_LOG
WHERE MODULE = 'ACCOUNT' AND LOG_LEVEL = 'ERROR'
ORDER BY MSG_SEQ_NO;

24.5.4 Handling Exceptions Recorded During the Operation
At the end of a bulk load operation, the utility records statistics related to the
operation in the following file:

oimbulkload/logs_YYYYMMDD_hhmm/oim_blkld_account_load_summary.log

To determine if there were exceptions during the operation, open this log file and look
for the number against the Number of Records Rejected label. If the number of rejected
records is greater than zero, then exceptions were thrown during the operation. User
records that are rejected by the utility are recorded in the exception table
(OIM_BLKLD_EX_SUFFIX). For each rejected record, the EXCEPTION_MSG column
in the OIM_BLKLD_EX_SUFFIX table stores information about the reason the record
could not be loaded.

Example 24–2 shows sample statistics recorded in the log file at the end of a bulk load
operation to store account data.

Example 24–2 Sample Log File Generated After Loading Account Data

===
A C C O U N T L O A D S T A T I S T I C S
===

Loading Account Data

24-22 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Start Time: 22-JUL-08 03.59.30.206000 PM
End Time: 22-JUL-08 04.03.21.126000 PM
Number of Records Processed: 100026
Number of Records Loaded: 100000
Number of Records Rejected: 26
===

The names of the TMP tables used during the load:
OIM_BLKLD_TMP_P100001
OIM_BLKLD_TMP_C100002
The names of the Exception tables used during the load:
OIM_BLKLD_EX_P100001
OIM_BLKLD_EX_C100002

In this sample, the number of rejected records is 26. If the log file shows that any
records were rejected by the utility, then see "Fixing Exceptions and Reloading Data
Records" for information about retrying the load operation for these records.

24.5.5 Fixing Exceptions and Reloading Data Records

As mentioned earlier, errors encountered during the bulk load operation can be
viewed by querying the OIM_BLKLD_LOG table. The following is an example of the
query to retrieve error messages:

SELECT MSG FROM OIM_BLKLD_LOG
WHERE MODULE = 'ACCOUNT' AND LOG_LEVEL = 'ERROR'
ORDER BY MSG_SEQ_NO;

An exception table OIM_BLKLD_EX_SUFFIX is created for each data table used as the
input source during the bulk load operation. Records that do not meet the criteria for
the operation are copied into this exception table. The suffix appended to the name of
each exception table is the same as suffix appended to the name of the corresponding
data table.

To reload rejected records:

1. Create a backup of the exception table in which rejected records are stored.

Note: At the end of each bulk load operation, it is recommended that
you create a backup of the exception tables.

Note: If you want to load data from CSV files for multiple target
systems, then you can apply one of the following approaches:

■ Approach 1: Run the utility for all the sets of CSV files, and then
perform the procedure described in this section.

■ Approach 2: Run the utility for one set of CSV files, and perform
the procedure described in this section. Then, repeat this
procedure for the next set of CSV files.

Note: Although this is an optional step, it is recommended that you
create a backup.

Loading Role, Role Hierarchy, Role Membership, and Role Category Data

Using the Bulk Load Utility 24-23

2. Review each record in the exception table, and fix errors in the data based on the
message recorded in the EXCEPTION_MSG column.

3. After you fix errors in all the rejected records in an exception table, rename the
table to OIM_BLKLD_TMP_SUFFIX and then use it as the input source.

4. Load records from the OIM_BLKLD_TMP_SUFFIX table by running the utility.
See "Running the Utility" for more information.

5. Repeat Steps 1 through 4 until the Number of Records Rejected label in the
oim_blkld_account_load_summary.log file shows the value 0.

6. Restart Oracle Identity Manager.

24.5.6 Verifying the Outcome of the Bulk Load Operation
To verify the outcome of the bulk load operation, check if you are able to perform the
following steps for one of the OIM Users for whom an account has been added by the
utility:

■ Log in as the OIM User, and check if the newly created account is displayed in the
resource profile of the user.

■ Log in to the target system by using the credentials of the newly created account.

24.6 Loading Role, Role Hierarchy, Role Membership, and Role Category
Data

The following is a summary of the steps involved in loading role-related data:

1. Prepare your database for a bulk load operation, if not already done. See
"Preparing Your Database for a Bulk Load Operation" on page 24-5 for details.

2. Create the input source for the bulk load operation.

If you want to use a database table as the input source, then create the table and
copy role-related data into the table.

If you want to use CSV files as the input source, then create the CSV files and copy
role-related data into the files. In addition, create a master.txt file containing the
names of the files in the sequence in which you want to load data from them.

3. Determine values for the input parameters of the utility.

4. Stop Oracle Identity Manager.

5. Run the oim_blkld.sh or oim_blkld.bat script.

6. Monitor the progress of the bulk load operation.

7. Determine the outcome of the bulk load operation.

8. If required, reload data that is not loaded during the first run.

9. Restart Oracle Identity Manager.

10. Verify the outcome of the bulk load operation.

11. Gather diagnostic data from the operation.

12. Remove temporary tables and files created during the operation.

The following sections provide detailed information about the steps involved in
loading OIM User data:

Loading Role, Role Hierarchy, Role Membership, and Role Category Data

24-24 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Creating the Input Source for the Bulk Load Operation

■ Determining Values for the Input Parameters of the Utility

■ Monitoring the Progress of the Operation

■ Handling Exceptions Recorded During the Operation

■ Fixing Exceptions and Reloading Data Records

■ Verifying the Outcome of the Bulk Load Operation

24.6.1 Creating the Input Source for the Bulk Load Operation
Depending on the input source that you want to use, apply the guidelines given in one
of the following sections:

■ Using CSV Files As the Input Source

■ Creating Database Tables As the Input Source

■ Determining the UGP_NAME Generated After Role Load

24.6.1.1 Using CSV Files As the Input Source
If you want to use CSV files as the input source for the bulk load operation, then apply
the following guidelines while creating the CSV files:

■ The CSV files must be placed in the oimbulkload/csv_files directory.

■ The first line in the CSV file is called the control line.

■ This line must contain a comma-separated list of column names based on the
selected role upload (role, role hierarchy, role membership, and role category) in
the Oracle Identity Manager database.

■ From the second line onward, the file must contain values for the columns in the
control line. The order of columns in the first line and the values in the rest of the
lines must be the same. The following is a sample content of a role (UGP) CSV file:

UGP_ROLENAME,UGP_NAMESPACE,USR_LOGIN,ORG_NAME,INCLUDE_HIERARCHY
"Finance Controllers",Default,XELSYSADM,Finance,YES
"Finance Controllers",Default,XELSYSADM,Requests,YES

■ Role load is capable of publishing the roles to organizations to follow the security
model in Oracle Identity Manager, with an option to include hierarchy.

As a value of the ORG_NAME parameter, specify the organization name, such as
Finance or Requests, to which you want to publish the roles. Specify YES for
INCLUDE_HIERARCHY if you want to publish the roles to the specified
organization and its suborganizations. Specify NULL or NO for
INCLUDE_HIERARCHY if you want to publish the roles only to the specified
organization and not its suborganizations. If you do not specify values for the
ORG_NAME and INCLUDE_HIERARCHY parameters, then by default, the roles
are published to the Top organization with hierarchy.

■ If the value in any column contains a comma, then that value must be enclosed in
double quotation marks (").

■ The CSV file must contain values for all columns that are designated as mandatory
in the respective role tables.

■ The CSV file must contain values for all columns that are designated as mandatory
depending on the upload role data, role hierarchy data, role membership data, and
role category data.

Loading Role, Role Hierarchy, Role Membership, and Role Category Data

Using the Bulk Load Utility 24-25

– Role UGP):
UGP_ROLENAME,UGP_NAMESPACE,USR_LOGIN,ORG_NAME,INCLUDE
_HIERARCHY (UGP_NAMESPACE,ORG_NAME,INCLUDE_HIERARCHY

INCLUDE_HIERARCHY can be left as null when not required.

– Role Hierarchy (GPG): UGP_NAME, GPG_UGP_NAME

– Role Membership (USG): UGP_NAME, USR_LOGIN

– Role Category (ROLE_CATEGORY): ROLE_CATEGORY_NAME

Each row in the CSV file must have a unique value for the combinationation of
manadatory columns.

■ The following default values are inserted into Oracle Identity Manager if the CSV
file does not contain values for these columns:

– For Role (UGP)

ROLE_CATEGORY_NAME: Default

UGP_DISPLAY_NAME: Defaults to UGP_NAME

ORG_NAME: TOP

INCLUDE_HIERARCHY: YES

– For Role Hierarchy (GPG)

None

– For Role Membership (USG)

RUL_KEY: RUL_KEY from RUL table with RUL_NAME as 'Default'

USG_PRIORITY: group and rank based on UGP_KEY based on the rows given
for upload.

– Role Category (ROLE CATEGORY)

None

■ Create a master TXT file containing the names of the CSV files containing role data
to be loaded. You can specify any name for the file, for example, master.txt. Save
the master file in the oimbulkload/csv_files directory.

If you want to load multiple CSV files, then enter the name of each data CSV file
on a separate line in the master file. Order the list of CSV file names in the
sequence in which you want the utility to load data from the files. For example,
suppose you have created three data CSV files, Role1.csv, Role2.csv, and Role3.csv.
In the master file, enter the names of the data CSV files in the following order:

Role1.csv

Role2.csv

Role3.csv

When you run the utility, data is loaded in this order.

■ If the CSV file is generated on Microsoft Windows and is to be loaded on Linux
environment, then remove the special characters, such as '\n\r', to avoid run-time
errors.

Loading Role, Role Hierarchy, Role Membership, and Role Category Data

24-26 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

24.6.1.2 Creating Database Tables As the Input Source
If you want to use a database table as the input source for loading OIM User data, then
apply the following guidelines while creating the database table:

■ Create the table in the Oracle Identity Manager database.

■ The table must contain the following primary key column:

OIM_BLKLD_USRSEQ NUMBER(19)

The utility uses this column as the primary key. If required, you can use a database
sequence to populate this column.

■ The rest of the columns must be the same as the ones in the respective role tables
that you want to use.

Table 24–4 shows the structure of a sample database role table.

24.6.1.3 Determining the UGP_NAME Generated After Role Load
Bulkload utility generates UGP_NAME during role load in the following format:

UGP_NAMESPACE.UGP_ROLENAME

By default, the value of UGP_NAMESPACE is Default, when you do not provide any
specific value for UGP_NAMESPACE in the CSV file. To determine the generated
UGP_NAME:

1. If UGP_NAMESPACE is null in the CSV file, then the namespace value is Default,
and the generated UGP_NAME is equal to the value of UGP_ROLENAME.

2. If UGP_NAMESPACE is not null and has a defined value in the CSV file, then the
generated UGP_NAME is equal to the value of
UGP_NAMESPACE.UGP_ROLENAME.

On the basis of the UGP_NAME generation methodology, you can determine the
UGP_NAME values for the next loading of role hierarchy, role membership, and role
category, even if you do not have direct access to the database. Otherwise, you can
check the generated value of UGP_NAME in the UGP table.

24.6.2 Determining Values for the Input Parameters of the Utility
The following are input parameters of the utility:

Table 24–4 Structure of a Sample Database Table

Role NULL Type

UGP_ROLENAME NOT NULL VARCHAR2(2000)

UGP_NAMESPACE VARCHAR2(512)

ORG_NAME NOT NULL VARCHAR2(256)

INCLUDE_HIERARCHY NOT NULL VARCHAR2(256)

...

OIM_BLKLD_USRSEQ NOT NULL NUMBER(19)

Note: ORG_NAME and INCLUDE_HIERARCHY are required for
loading roles only, and not for role hierarchy, role membership, and
role category.

Loading Role, Role Hierarchy, Role Membership, and Role Category Data

Using the Bulk Load Utility 24-27

■ Oracle Home

Value of the ORACLE_HOME environment variable on the host computer for the
Oracle Identity Manager database

■ Database Connection String

Connection string to connect to the database that must be entered in the following
format:

//HOST_IP_ADDRESS:PORT_NUMBER/SERVICE_NAME

■ OIM DB User

Database login ID of the Oracle Identity Manager database user

■ OIM DB Pwd

Password of the Oracle Identity Manager database user

■ CSV file names

Names of the CSV files to be used as the input source

This parameter is used only if the input source is CSV files. See "Using CSV Files
As the Input Source" on page 24-24 for more information. If you are loading data
from parent and child CSV file, then use a comma-delimited list to enter the names
of the files. The name of the parent CSV file must be provided first, and it must be
followed by the names of the child CSV files.

■ Tmp table name

Name of the temporary table to be used as the input source

This parameter is used only if the input source for the bulk load operation is a
database table. See "Creating Database Tables As the Input Source" on page 24-26
for more information.

■ Control Line

Comma-separated list of names of columns to be loaded from the database table
into Oracle Identity Manager

This parameter is used only if the input source for the bulk load operation is a
database table.

■ Tablespace Name

Name of the tablespace in which temporary tables are to be created during the
bulk load operation (if end user won't provide the tablespace name then it will
pick the default tablespace)

See "Preparing Your Database for a Bulk Load Operation" on page 24-5 for more
information.

■ Date format

Date format used by date columns in the CSV files. This is prompted only for role
load, and not for role hierarchy, role membership, and role category.

This parameter is used only if the input source is a single or multiple CSV files.

The date format must match the following:

– Oracle supported date formats, such as dd-mm-yyyy or MM-DD-YYYY

– The date format specified in the CSV file

■ Batch Size

Loading Role, Role Hierarchy, Role Membership, and Role Category Data

24-28 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Number of user records that must be processed by the utility as a single
transaction

The batch size can influence the performance of the bulk load operation. The
default value of this parameter is 10000.

■ Debug Flag

You can specify Y or N as the value of this parameter. If this parameter is set to Y,
then the utility records detailed information about events that occur during the
bulk load operation. See "Data Recorded During the Operation" on page 24-30 for
more information.

24.6.3 Monitoring the Progress of the Operation
During the bulk load operation, you can query the OIM_BLKLD_LOG table for
information about the progress of the operation. For example, you can run the
following query to see progress messages generated during the bulk load operation to
load OIM Role data:

SELECT MSG FROM OIM_BLKLD_LOG
WHERE MODULE = 'ROLE' AND LOG_LEVEL = 'PROGRESS_MSG'
ORDER BY MSG_SEQ_NO;

Errors encountered during the bulk load operation can be viewed by querying the
OIM_BLKLD_LOG table. The following is an example of the query to retrieve error
messages:

SELECT MSG FROM OIM_BLKLD_LOG
WHERE MODULE = 'ROLE' AND LOG_LEVEL = 'ERROR'
ORDER BY MSG_SEQ_NO;

24.6.4 Handling Exceptions Recorded During the Operation
At the end of a bulk load operation, the utility records statistics related to the
operation in the following file:

oimbulkload/logs_YYYYMMDD_HHMM/oim_blkld_ENTITY_NAME_load_summar
y.log

In the log file name, ENTITY_NAME stands for the entity being loaded. For example:

■ For roles, the log file name is oim_blkld_role_load_summary.log.

■ For role memberships, the log file name is
oim_blkld_rolemem_load_summary.log.

To determine if there were exceptions during the operation, open this log file and look
for the number against the Number of Records Rejected label. If the number of rejected
records is greater than zero, then exceptions were thrown during the operation. User
records that are rejected by the utility are recorded in the exception table
(OIM_BLKLD_EX_SUFFIX). For each rejected record, the EXCEPTION_MSG column
in the OIM_BLKLD_EX_SUFFIX table stores information about the reason the record
could not be loaded.

Example 24–3 shows sample statistics recorded in the log file at the end of a bulk load
operation to store OIM Role data.

Example 24–3 Sample Log File Generated After Loading OIM Role Data

**

Loading Role, Role Hierarchy, Role Membership, and Role Category Data

Using the Bulk Load Utility 24-29

Processing File: Role.csv
==
========
R O L E L O A D S T A T I S T I C S F O R F I L E : Role.csv
==
========
Start Time: 17-NOV-09 02.48.18.447767 AM
End Time: 17-NOV-09 02.48.19.228710 AM
Number of Records Processed: 2
Number of Records Loaded: 2
Number of Records Rejected: 0
==
========

The name of the TMP table used during the load:
OIM_BLKLD_TMP_ROLE1

The name of the Exception table used during the load:
OIM_BLKLD_EX_ROLE1
==
========
===
Time taken in re-building indexes and enabling FK constraints
===

Start time: 17-NOV-09 02.48.19.243781 AM

In this sample, the number of rejected loaded is 2. If the log file shows that any records
have been rejected by the utility, then see "Fixing Exceptions and Reloading Data
Records" on page 24-29 for information about retrying the load operation for these
records.

24.6.5 Fixing Exceptions and Reloading Data Records
As mentioned earlier, errors encountered during the bulk load operation can be
viewed by querying the OIM_BLKLD_LOG table. The following is an example of the
query to retrieve error messages:

SELECT MSG FROM OIM_BLKLD_LOG
WHERE MODULE = 'ROLE' AND LOG_LEVEL = 'ERROR'
ORDER BY MSG_SEQ_NO;

An exception table OIM_BLKLD_EX_SUFFIX is created for each data table used as the
input source during the bulk load operation. Records that do not meet the criteria for
the operation are copied into this exception table. The suffix appended to the name of
each exception table is the same as suffix appended to the name of the corresponding
data table.

To reload rejected records:

1. Create a backup of the exception table in which rejected records are stored.

Note: You cannot use the utility to load data into a remote Oracle
Identity Manager database.

Note: Although this is an optional step, it is recommended that you
create a backup.

Data Recorded During the Operation

24-30 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

2. Review each record in the exception table, and fix errors in the data based on the
message recorded in the EXCEPTION_MSG column.

3. After you fix errors in all the rejected records in an exception table, rename the
table to OIM_BLKLD_TMP_SUFFIX and then use it as the input source.

4. Load records from the OIM_BLKLD_TMP_SUFFIX table by running the utility. See
"Running the Utility" on page 24-6 for more information.

5. Repeat Steps 1 through 4 until the Number of Records Rejected label shows the
value 0 in the oim_blkld_role_load_summary.log file or the corresponding log file
for role membership, role hierarchy, and role category.

6. Restart Oracle Identity Manager.

24.6.6 Verifying the Outcome of the Bulk Load Operation
To verify the outcome of the bulk load operation, check if you are able to perform the
following steps for one of the OIM Role added by the utility:

1. Log in to Oracle Identity Self Service, and verify that the newly created role is
displayed in the search result for roles.

2. For the newly created role hierarchy and role members, click the Hierarchy and
Members tabs respectively on the role details page.

3. To verify the newly created role category, in the Welcome page of Oracle Identity
Administration, click Advanced Search - Role Categories. Then, perform an
advanced search to find the newly created role.

24.7 Data Recorded During the Operation
During the bulk load operation, the utility inserts progress and error messages in the
OIM_BLKLD_LOG table. Data in this table is not deleted at the start of a new bulk
load operation. One of the columns in this table holds the time stamp at which
messages are recorded in the table.

Table 24–5 describes the structure of the OIM_BLKLD_LOG table.

Table 24–5 Structure of the OIM_BLKLD_LOG Table

Column NULL Type Description

MSG_SEQ_NO NULL NUMBER(19) This column stores the number
that denotes the order in which
messages are inserted in this
table. The column is populated
by using the
OIM_BLKLD_LOG_SEQ
sequence. You can use this
column to query for messages
in the order in which they are
recorded in the table.

Data Recorded During the Operation

Using the Bulk Load Utility 24-31

MODULE NOT NULL VARCHAR2(20) This column stores one of the
following values:

ROLE: This value indicates that
the message has been recorded
while loading OIM Role data.

ROLE HIERARCHY: This
value indicates that the
message has been recorded
while loading role hierarchy
data.

ROLE MEMBERSHIP: This
value indicates that the
message has been recorded
while loading OIM role
membership data.

ROLE CATEGORY: This value
indicates that the message has
been recorded while loading
OIM role category data.

LOG_LEVEL NOT NULL VARCHAR2(20) This column stores one of the
following values:

ERROR: Designates
fine-grained informational
events that are useful to debug.

DEBUG: Designates error
events that might allow the
application to continue
running. Error is used to log all
unhandled exceptions.

PROGRESS_MSG: Designates
intermediate progress
messages.

LOAD_SOURCE NOT NULL VARCHAR2(40) This column indicates the
source of data for the bulk load
operation during which the
row was inserted. The value
can be one of the following:

CSV File: FILE_NAME

DB Table

MSG NOT NULL VARCHAR2(4000) This column stores a message
corresponding to the value
stored in the LOG_LEVEL
column.

CREATE_DATE DATE This column holds the time
stamp at which the record was
created. The format for entries
in this column is as follows:

yyyy/mm/dd hh24:mi:ss

For example:

2008/06/23 21:49:16:32

Table 24–5 (Cont.) Structure of the OIM_BLKLD_LOG Table

Column NULL Type Description

Gathering Diagnostic Data from the Bulk Load Operation

24-32 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

24.8 Gathering Diagnostic Data from the Bulk Load Operation
As mentioned earlier in this document, the following log files are created during the
bulk load operation:

■ For OIM Users:

oimbulkload/logs_YYYYMMDD_HHMM/oim_blkld_user_load_summary.log

■ For accounts:

oimbulkload/logs_YYYYMMDD_HHMM/oim_blkld_account_load_summary.log

■ For roles, role hierarchies, memberships, and role categories:

oimbulkload/logs_YYYYMMDD_HHMM/oim_blkld_ENTITY_NAME_load_sum
mary.log

In the log file name, ENTITY_NAME stands for the entity being loaded. For
example:

– For roles, the log file name is oim_blkld_role_load_summary.log.

– For role memberships, the log file name is
oim_blkld_rolemem_load_summary.log.

Data recorded in this file can be used to collate performance-related information about
the bulk load operation. The following information can be collected after the bulk load
operation:

■ Start time

■ Input source

■ Number of records in the system before the load

■ Number of records successfully loaded

■ Number of records rejected

■ Total time taken

You can use this information during future runs of the utility.

24.9 Cleaning Up After a Bulk Load Operation
If you do not want to save the results of a bulk load operation, then:

■ Remove the OIM_BLKLD_TMP_SUFFIX, OIM_BLKLD_EX_SUFFIX, and
OIM_BLKLD_LOG tables.

■ Remove any files that you created or used during the operation.

■ If you created a tablespace for the operation, then remove the tablespace.

■ See "Gathering Diagnostic Data from the Bulk Load Operation" before you remove
log files created in the logs_timestamp directory.

See Also: Table 24–5, " Structure of the OIM_BLKLD_LOG Table" for
information about the log levels that stores error events

Note: At this point, you can restart Oracle Identity Manager if you
have not already done so.

25

Configuring LDAP Container Rules 25-1

25Configuring LDAP Container Rules

[26]

In earlier releases of Oracle Identity Manager, role name (UGP.UGP_NAME in the
database) is unique. This is a limitation because a lot of roles can exist in large
enterprises, and as a result, it is possible that administrators need to create two or
more roles in Oracle Identity Manager with the same name but for different purpose.

Oracle Identity Manager can be installed with LDAP synchronization enabled. When
roles are coming from LDAP via reconciliation, it is possible that two or more roles
have the same name. LDAP supports two roles with the same name if the roles are
located under two different Organization Units (OUs).

In Oracle Identity Manager 11g Release 2 (11.1.2.1.0), namespace is introduced to
handle two roles with the same name. Roles with the same name are supported if the
roles are in different namespaces. However, two or more roles with the same name in
the same namespace is not supported.

When LDAP is integrated with Oracle Identity Manager, the namespace maps to an
OU. By the default configuration, there is only one default namespace called Default,
and therefore, role names are unique. To configure multiple namespaces, you must
create an XML file called LDAPContainerRules.xml and load it in the metadata store
(MDS). The LDAPContainerRules.xml also specifies the namespace of a role based on
the role attributes.

When LDAP synchronization is enabled, and a user is to be created, then a plug-in
determines in which container the user is to be created. Similarly, if a role is to be
created, then this plug-in determines the container in which the role is to be created.
For this, Oracle Identity Manager calls a plug-in that implements the
oracle.iam.ldapsync.LDAPContainerMapper interface. All the attributes of the
user/role are passed to the plug-in, and it returns the Domain Name (DN) of the
LDAP container. You can write your own plug-in, register the plug-in to Oracle
Identity Manager, and then configure Oracle Identity Manager to use the plug-in by
setting the LDAPContainerMapperPlugin system property. See "System Properties in
Oracle Identity Manager" in the Oracle Fusion Middleware Administrator's Guide for
Oracle Identity Manager for information about this system property.

Oracle Identity Manager provides a default plug-in for determining the LDAP
container for user/role based on user or role attributes that are synchronized to LDAP.
The default plug-in reads the rules from a XML file to determine the LDAP container.
The XML file must deployed to MDS as /db/LDAPContainerRules.xml. When Oracle
Identity Manager is installed with LDAP synchronization enabled, the installer asks
for user and role container values. These values are stored in the
/db/LDAPContainerRules.xml file at containers for which the expression is Default.
The following is an example:

25-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

<container-rules>
 <user>
 <rule>
 <expression>Country=US, Locality Name=AMER</expression>
 <container>l=amer,dc=oracle,dc=com</container>
 </rule>
 <rule>
 <expression >Country=IN, Locality Name=APAC</expression>
 <container>l=apac,dc=oracle,dc=com</container>
 </rule>
 <rule>
 <expression>Default</expression>
 <container>l=users,dc=oracle,dc=com</container>
 </rule>
 </user>
 <role>
 <rule>
 <expression>Role Description=AMER</expression>
 <description>AMER</description>
 <container>l=amer,ou=role,dc=oracle,dc=com</container>
 </rule>
 <rule>
 <expression >Role Description=APAC</expression >
 <description>APAC</description>
 <container>l=apac,ou=role,dc=oracle,dc=com</container>
 </rule>
 <rule>
 <expression>Default</expression>
 <description>Default</description>
 <container>l=roles,dc=oracle,dc=com</container>
 </rule>
 </role>
</container-rules>

In the LDAPContainerRules.xml file, each rule contains the following sections:

■ Expression: This specifies the actual rule that you use to find the namespace and
the OU for LDAP.

The <expression> tag must be defined based on user/role attributes. Only the
equal to (=) operator is supported in the <expression> tag. The expression can be
based on multiple attributes, as shown in the example, and the LDAP container is
determined based on an AND operation of all the defined attributes. If none of the
rules satisfy, then the users or roles are put in the container for which expression is
Default.

■ Description: This is the namespace that is used for the Role Namespace attribute.

The description (namespace) associated to the default expression will always use
Default. By default, roles do not have many attributes for creating meaningful
expressions. Therefore, you need to add a new User Defined Field (UDF) attribute,
for instance, the Role Location attribute. In this example, the Role Description
attribute is used to define the rule.

■ Container: This is the OU that is used to figure out where to create the user or role
in LDAP.

Suppose a user is to be created with the attributes Country=US and Locality
Name=AMER. This user would be created in the container
l=amer,dc=oracle,dc=com. If a user is to be created in Country=France and
Locality Name=FR, then it would be created in the container

Configuring LDAP Container Rules 25-3

l=users,dc=oracle,dc=com because no expression matches these two attributes,
and therefore, the default container is selected.

25-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

26

Developing Scheduled Tasks 26-1

26Developing Scheduled Tasks

[27]

Oracle Identity Manager contains a set of predefined tasks that can be scheduled as job
runs. An example is a password warning task that sends email to users for password
expiration.

Oracle Identity Manager also provides the capability of creating your own scheduled
tasks. You can create scheduled tasks according to your requirements if none of the
predefined scheduled tasks fit your needs.

For example, you can configure a reconciliation run using a scheduled task that checks
for new information on target systems periodically and replicates the data in Oracle
Identity Manager.

This chapter explains how to create and implement your custom scheduled tasks. It
contains these topics:

■ Overview of Task Creation

■ Defining the Metadata for the Scheduled Task

■ Configuring the Scheduled Task XML File

■ Developing the Scheduled Task Class

■ Configuring the Plug-in XML File

■ Creating the Directory Structure for the Scheduled Task

■ Scheduled Task Configuration File

■ Best Practices for Creating Custom Scheduled Tasks

■ Using the isStop() Method

26.1 Overview of Task Creation
This section outlines the essential steps in creating scheduled tasks, and presents an
example to illustrate the process. Subsequent sections provide details on each step.

■ Steps in Task Creation

■ Example of Scheduled Task

26.1.1 Steps in Task Creation
The basic steps for configuring new scheduled tasks are as follows:

Defining the Metadata for the Scheduled Task

26-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

1. Review Oracle Identity Manager's predefined scheduled tasks to determine
whether a custom task is necessary.

For details about the predefined tasks, see "Managing Scheduled Tasks" in the
Oracle Fusion Middleware System Administrator's Guide for Oracle Identity Manager.

2. Determine key features of the scheduled task, such as the task name and the
parameters that control the actions performed by the task.

For details, see Section 26.2, "Defining the Metadata for the Scheduled Task".

3. Add the task metadata to the scheduled task XML file.

For details, see Section 26.3, "Configuring the Scheduled Task XML File".

4. Develop the scheduled task Java class.

For details, see Section 26.4, "Developing the Scheduled Task Class".

5. Declare the new scheduled task as a plug-in.

For details, see Section 26.5, "Configuring the Plug-in XML File".

6. Package the task files so that Oracle Identity Manager can locate the files and
make the task available for jobs.

For details, see Section 26.6, "Creating the Directory Structure for the Scheduled
Task".

26.1.2 Example of Scheduled Task
To illustrate the steps in developing a scheduled task, we use an example scheduled
task that retrieves employee records belonging to the given department from a given
IT resource.

In addition, our scheduled task should allow the user to specify the number of records
to be retrieved and whether to include disabled records in the retrieval.

26.2 Defining the Metadata for the Scheduled Task
Each scheduled task contains the following metadata information:

■ Name of the scheduled task

■ Name of the Java class that implements the scheduled task

■ Description

■ Retry Interval

■ (Optional) Parameters that the scheduled task accepts. Each parameter contains
the following additional information:

– Parameter Name

– Parameter Data Type

– Required/ Optional Parameter

– Help Text

Configuring the Scheduled Task XML File

Developing Scheduled Tasks 26-3

26.3 Configuring the Scheduled Task XML File
Configuring the scheduled task XML file involves updating the XML file that contains
the definitions of custom scheduled tasks. This section describes how to update the
task XML file with the details of the new custom scheduled task.

You can modify the task.xml file located in the /db namespace of Oracle Identity
Manager MDS schema, or you can create a custom scheduled task file. If you create a
custom file, then the file name must be the same as the scheduled task name, with the
.xml extension. You must import the custom scheduled task file to the /db namespace
of Oracle Identity Manager MDS schema.

The elements in the XML file reflect the task parameters that you described in
Section 26.2, "Defining the Metadata for the Scheduled Task".

Example 26–1 shows a sample XML code for the scheduled task described in the
preceding paragraph. Note that all the parameters are declared to be required
parameters in this example.

Example 26–1 Sample XML for a Scheduled Task

<scheduledTasks xmlns="http://xmlns.oracle.com/oim/scheduler">
 <task>
 <name>Test_scheduled_task</name>
 <class>oracle.iam.scheduler.TestScheduler</class>
 <description>Retrieve Employee Records For Given Department</description>
 <retry>5</retry>
 <parameters>
 <string-param required="true" helpText="Name of the
department">Department Name</string-param>
 <string-param required="true" encrypted="false" helpText="Name of the
department">Department Name</string-param>
 <number-param required="true" helpText="Number of Records to Be
Retrieved">Number of Records</number-param>
 <boolean-param required="false" helpText="Retrieve disabled employee
records?">Get Disabled Employees</boolean-param>
 </parameters>
 </task>
</scheduledTasks>

This is basically exporting the task.xml from MDS and then adding the required tags
to it and importing it back into MDS.

See Also: Chapter 27, "Developing Plug-ins" for examples of
plug-ins.

Note: The scheduled task XML file can be imported into MDS using
the Oracle Enterprise Manager. In a clustered environment, having the
file in MDS avoids the need to copy the file on each node of the
cluster.

For details about importing files into MDS, see "Migrating User
Modifiable Metadata Files" on page 37-1.

See Also: "Scheduled Task Configuration File" on page 26-6 for
details about the elements in the scheduled task configuration file.

Developing the Scheduled Task Class

26-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

You must export the task.xml file from MDS, add the required tags to the file, and then
import it back to MDS. See "Migrating User Modifiable Metadata Files" on page 37-1
for information about exporting and importing MDS files.

26.4 Developing the Scheduled Task Class
The next step is to create a Java class to execute the task whose metadata was defined
in the XML file. The Java class that implements a scheduled task is known as a
scheduled task class.

To develop a Java class for the scheduled task:

1. Create a Java class file that extends the oracle.iam.scheduler.vo.TaskSupport
class and overrides the execute() method with processing logic based on your
requirements.

2. Create a JAR file for the Java class that you created. Name the JAR such that you
can readily associate this JAR with your custom scheduled task.

The JAR file can contain the dependent classes of the Java class. You can also
create a separate JAR file for the dependent classes and place it in the
lib/directory.

3. Copy the JAR file into the lib/ directory.

4. Repeat Steps 1 through 3 for every Java class that you want to create.

26.5 Configuring the Plug-in XML File
You must configure the plugin.xml file in order to declare the scheduled task as a
plug-in. See Chapter 27, "Developing Plug-ins" for more information about plug-ins.

To configure the plugin.xml file:

1. Create the plugin.xml file by using any text editor.

2. Specify the plug-in point for the scheduled task by changing the value of the
pluginpoint attribute of the plugins element to
oracle.iam.scheduler.vo.TaskSupport.

The following XML code block from the plugin.xml file shows the value entered
within the plugins element:

Note: For a task defined in a plugin, the metadata XML is not
required to be seeded to MDS. This can be included in the META-INF
folder in the plugin ZIP file. For details, see "Creating the Directory
Structure for the Scheduled Task" on page 26-5.

Note: Oracle recommends creating one plugin.xml file for one
scheduled task. This is because when the plugin is unregistered, the
corresponding package is deleted.

Note: Create the plugin.xml file only if no such file exists. If there are
existing plugins, then add a new plugin element for the new plugin.

Creating the Directory Structure for the Scheduled Task

Developing Scheduled Tasks 26-5

<plugins pluginpoint="oracle.iam.scheduler.vo.TaskSupport">

3. Add a <plugin> element for each scheduled task that you are adding.

To specify the class that implements the plug-in (in this case, the scheduled task),
change the value of the pluginclass attribute of the plugin element to the name of
the Java class that implements the scheduled task. The following XML code block
from the plugin.xml file shows sample values entered within the plugin element:

<plugin pluginclass= "oracle.iam.scheduler.TestScheduler" version="1.0.1"
name="scheduler element"/>

After modification, the plugin.xml file looks similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
<oimplugins xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<plugins pluginpoint="oracle.iam.scheduler.vo.TaskSupport">
<plugin pluginclass= "oracle.iam.scheduler.TestScheduler"
version="1.0.1" name="scheduler element">
</plugin>
</plugins>
</oimplugins>

4. Save and close the plugin.xml file.

26.6 Creating the Directory Structure for the Scheduled Task
The final step in configuring the scheduled task is to create a plugin.zip file with the
directory structure specified in Example 26–2. In this example, a single plug-in is being
added, but there can be multiple plugins in the plugin.zip file. Scheduler requires that
files be zipped in a particular structure and named according to a particular naming
convention. This ensures that Oracle Identity Manager identifies the custom scheduled
tasks and makes it available in Oracle Identity System Administration while creating
jobs.

Example 26–2 Directory Structure for the Scheduled Task

plugin/
 lib/
 PLUGIN.JAR
 plugin.xml
 META-INF (optional)
 METADATA.xml

Note that:

■ The XML file for the plug-in must be named plugin.xml.

■ The lib/ directory must contain only .JAR files. The lib/ directory consists of JAR
files that contains the classes implementing the plug-in logic and the dependent
library JAR files. In most instances, this directory consists of a single JAR file with
the implementation of all the plug-ins that are specified in plugin.xml. See
"Developing Plug-ins" on page 27-6 for information about the directory structure.

■ The directory for the scheduled task must contain the following files:

Note: For scheduled tasks, the <plugins> element remains the same
for all scheduled tasks.

Scheduled Task Configuration File

26-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

– XML for the plug-in

– JAR files

■ There is one plugin.zip file for all the plug-ins that you create.

■ The META-INF folder is an optional folder, in which metadata (task definition) file
can be stored. If this file is placed in the META-INF folder, then it is not required to
be seeded in MDS.

■ If META-INF folder does not exist or if the metadata file is not placed in the
META-INF folder, then seed the file to MDS.

In the preceding example, CLASS_NAME.JAR is the JAR file that you create in
Section 26.4, "Developing the Scheduled Task Class".

After you create the plugin.zip file, if deploying in a clustered environment, register
the plug-in to the database by using appropriate APIs. See "Registering and
Unregistering Plug-ins By Using APIs" on page 27-7 for details about registering
plug-ins to Oracle Identity Manager by using APIs.

26.7 Scheduled Task Configuration File
This appendix describes the structure and details of the XML file containing scheduler
task definitions.

■ Structure of the Scheduler XML File

■ The scheduledTasks Element

■ The task Element

■ The name Element

■ The class Element

■ The description Element

■ The retry Element

■ The parameters Element

■ The string-param Element

■ The number-param Element

■ The boolean-param Element

26.7.1 Structure of the Scheduler XML File
The following is a list of elements in the configuration XML file:

<scheduledTasks xmlns="http://xmlns.oracle.com/oim/scheduler">
 <task>
 <name>
 <class>
 <description>
 <retry>
 <parameters>
 <string-param>

Note: The XML for the plug-in must be named plugin.xml. Ensure
that the lib directory contains only JAR files.

Scheduled Task Configuration File

Developing Scheduled Tasks 26-7

 </string-param>

 <number-param>

 </number-param>

 <boolean-param>

 </boolean-param>
 </parameters>
 </task>
</scheduledTasks>

26.7.2 The scheduledTasks Element
The scheduledTasks element is the root element in XML used to define scheduled
tasks.

Table 26–1 summarizes the properties of the scheduledTasks element.

26.7.3 The task Element
The task element is the child element of the scheduledTasks element.

You use the task element to define a scheduled task. The task element contains
information about the scheduled task, for example, the name, class, description, and
retry count of the scheduled task.

Table 26–2 summarizes the properties of the task element.

Table 26–1 Properties of the scheduledTasks Element

Property Value

Parent Element NA

Attributes The XML namespace is specified as an attribute of the
scheduledTasks element as follows:

<scheduledTasks
xmlns="http://xmlns.oracle.com/oim/scheduler">

Note: The xmlns parameter is mandatory.

Child Elements task

Number of Occurrences One for each scheduled task XML file to be created.

Element Value NA

Mandatory or Optional? Mandatory

Table 26–2 Properties of the task Element

Property Value

Parent Element scheduledTasks

Attributes None

Child Elements name, class, description, retry, and parameters

Number of Occurrences One for each task to be created.

NOTE: If you want to define more than one task in a single
scheduled task XML file, you must use one task element for
every scheduled task being defined.

Scheduled Task Configuration File

26-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

26.7.4 The name Element
The name element is the child element of the task element. The name element is used
to specify the name of the scheduled task being created.

Table 26–3 summarizes the properties of the name element.

26.7.5 The class Element
The class element is a mandatory element and is the child element of the task element.
You use the class element to specify the name of the Java class that runs the scheduled
task.

Table 26–4 summarizes the properties of the class element.

26.7.6 The description Element
The description element is a mandatory element and is the child element of the task
element. You can use the description element to provide a description of the task being
created.

Table 26–5 summarizes the properties of the description element.

Element Value NA

Mandatory or Optional? Mandatory

Table 26–3 Properties of the name Element

Property Value

Parent Element task

Attributes None

Child Elements None

Number of Occurrences One

Element Value Name of the scheduled task being created.

Note: The name of the scheduled task must be unique.

Mandatory or Optional? Mandatory

Table 26–4 Properties of the class Element

Property Value

Parent Element task

Attributes None

Child Elements None

Number of Occurrences One

Element Value Name of the Java class that runs the scheduled task. See
"Developing the Scheduled Task Class" on page 26-4 for
information on developing a class for the scheduled task.

Mandatory or Optional? Mandatory

Table 26–2 (Cont.) Properties of the task Element

Property Value

Scheduled Task Configuration File

Developing Scheduled Tasks 26-9

26.7.7 The retry Element
Table 26–6 summarizes the properties of the retry element.

26.7.8 The parameters Element
If you want to specify parameters at run time that the scheduled task requires for a
successful job run, you must use the parameters element. For example, you might
create a scheduled task that requires the user to specify the number of records to be
retrieved at run time.

The parameters specified within this element are displayed under the Parameters
section on the Create Job page.

Table 26–7 summarizes the properties of the parameters element.

Table 26–5 Properties of the description Element

Property Value

Parent Element task

Attributes None

Child Elements None

Number of Occurrences One

Element Value Description of the task being created

Mandatory or Optional? Mandatory

Table 26–6 Properties of the retry Element

Property Value

Parent Element task

Attributes None

Child Elements None

Number of Occurrences One

Element Value Number of seconds the scheduler must wait before it tries to
schedule the task again

Mandatory or Optional? Mandatory

Table 26–7 Properties of the parameters Element

Property Value

Parent Element task

Attributes None

Child Elements string-param, number-param, boolean-param

Number of Occurrences One

Element Value NA

Mandatory or Optional? Optional

Scheduled Task Configuration File

26-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

26.7.9 The string-param Element
You can use the string-param element to specify the name of the field that can take a
value of the string data type. In other words, the string-param element specifies a label
for the field that can hold a value of the string data type.

Table 26–8 summarizes the properties of the string-param element.

As listed in Table 26–8, the string-param element contains the following attributes:

■ required

This is a mandatory attribute and it can take a value of either true or false.

If the value of the required attribute is true, it is mandatory to enter a value for the
parameter at run time.

If the value of the required attribute is false, it is not mandatory to enter a value
for the parameter at run time.

■ helpText

Use this attribute to specify the text that must appear at run time to help users
know what to enter in the field. The text that is specified is usually the description
of the field that is being created by the parameter.

■ encrypted

By default, it has a value of false and this can take a value of either true or false.

If the value of the encrypted attribute is true, then the entered value for the
parameter at run time is stored in encrypted form.

If the value of the required attribute is false, then the entered value for the
parameter at run time is stored in plain text.

26.7.10 The number-param Element
You can use the number-param element to specify the name of the field that can take a
value of the long data type.

Table 26–9 summarizes the properties of the number-param element.

Table 26–8 Properties of the string-param Element

Property Value

Parent Element parameters

Attributes required, helpText, encrypted

Child Elements None

Number of Occurrences One for every parameter of the string data type

Element Value Name of the string parameter

Mandatory or Optional? Optional

Table 26–9 Properties of the number-param Element

Property Value

Parent Element parameters

Attributes required, helpText

Child Elements None

Best Practices for Creating Custom Scheduled Tasks

Developing Scheduled Tasks 26-11

The behavior and description of the require and helpText attributes for the
number-param and string-param elements is the same. See "The string-param
Element" on page 26-10 for information about the require and helpText attributes.

26.7.11 The boolean-param Element
You can use the boolean-param element to specify the name of the field that can take a
value of the boolean data type.

Table 26–10 summarizes the properties of the boolean-param element.

The behavior and description of the require and helpText attributes for the
boolean-param element and the string-param element is the same. See "The
string-param Element" on page 26-10 for information about the require and helpText
attributes.

26.8 Best Practices for Creating Custom Scheduled Tasks
Table 26–11 provides the guidelines for using variables/constants for creating custom
scheduled tasks:

Number of Occurrences One for every parameter of the long data type

Element Value Name of field that can hold a long data type

Mandatory or Optional? Optional

Table 26–10 Properties of the boolean-param Element

Property Value

Parent Element parameters

Attributes required, helpText

Child Elements None

Number of Occurrences One for every parameter of the boolean data type

Element Value Name of field that can hold a boolean data type

Mandatory or Optional? Optional

Table 26–11 Variables and Constants for Creating Custom Scheduled Tasks

Type Example Stor/Retrieve Value From

Target system connection details Hostname, port number, SSL IT Resource/application instance

Target system configurations Attribute mappings, Unique Attribute,
User Object Class

Lookup

Scheduled job-specific
variables/constants

Application Instance Name, IT
Resource Name, File Path, Search
Filter, Batch Size, Retries

Scheduled job

Table 26–9 (Cont.) Properties of the number-param Element

Property Value

Using the isStop() Method

26-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

26.9 Using the isStop() Method
When a job is stopped from the Scheduler section in Oracle Identity System
Administration, the job does not stop and keeps running. To stop the scheduled task,
you can perform the following:

If you have developed a custom scheduled task, then you can call the isStop() or
isStopped() method at various stages inside the execute method. If this method returns
true, then return from the execute method. If you have loops inside the execute
method, then make sure that the isStop() or isStopped() method is called for each loop
iteration.

In the execute method, add a check for getting the job status. This can be obtained by
calling the isStopped() method of the
com.thortech.xl.scheduler.tasks.SchedulerBaseTask class. If the isStopped() method
returns TRUE, then return from the execute method without performing any execution
for the scheduled task. The following is the code snippet for this:

if(isStopped())
 return;

If you develop a custom scheduled task by extending the TaskSupport class in Oracle
Identity Manager 11g Release 1 (11.1.1) or 11g Release 2 (11.1.2), then call the isStop()
method in the execute method.

If the custom scheduled task code is extending legacy
com.thortech.xl.scheduler.tasks.SchedulerBaseTask class of Oracle Identity Manager
Release 9.x, then call the isStopped() method in the execute method.

Scheduled job advanced
configuration variables/constants

Attribute Mappings, Target system
Date Format, Constants, Attribute
Transformation Classes

Lookup

Oracle Identity Manager-specific
system wide highly static
configuration
properties/constants/variables

Default Date Format, Default policy
for username generation

System properties

Email notifications Subject, Body, To, From Email templates

Table 26–11 (Cont.) Variables and Constants for Creating Custom Scheduled Tasks

Type Example Stor/Retrieve Value From

Part VI
Part VI Custom Operations

This part contains chapters that describe how to develop customized operations in the
Oracle Identity Manager.

It contains the following chapters:

■ Chapter 27, "Developing Plug-ins"

■ Chapter 28, "Developing Event Handlers"

■ Chapter 29, "Understanding Context"

27

Developing Plug-ins 27-1

27Developing Plug-ins

[28]

This chapter describes the concepts related to plug-in and how to develop and use a
plug-in in the following sections:

■ Plug-ins and Plug-in Points

■ Using Plug-ins in Deployments

■ Plug-in Points

■ Configuring Plug-ins

■ Developing Custom Plug-ins

■ Registering Plug-ins

■ Migrating Plug-ins

27.1 Plug-ins and Plug-in Points
A plug-in is a logical component that extends the functionality of features provided by
Oracle Identity Manager. The plug-in framework enables you to define, register, and
configure plug-ins, which extend the functionality provided by features. Plug-ins can
be predefined or custom-developed, and they are utilized at plug-in points. A plug-in
point is a specific point in the business logic where extensibility can be provided. An
interface definition called the plug-in interface accompanies such a point. You can
extend the plug-in interface based on the business requirements and register them as
plug-ins. To do this, you develop a Plugin Java class and compile it before archiving in
a JAR file, define plug-in metadata in an XML file, and ZIP these artifacts as a plug-in
package that is ready to deploy.

For example, user creation is a business operation in Oracle Identity Manager. But this
operation exposes a plug-in point for user name generation. If you want to model your
custom logic of user name generation, then you must identify the plug-in point
specifications and develop a plug-in accordingly.

The concepts related to plug-ins are described in the following sections:

■ Plug-ins and Event Handlers

■ Plug-in Stores

27.1.1 Plug-ins and Event Handlers
Most of the business operations in Oracle Identity Manager, such as user creation, role
assignment to user, and user activation, are executed as orchestrations. Therefore, if

Plug-ins and Plug-in Points

27-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

there is a requirement to induce any custom logic in these operations or orchestrations,
then you can model that logic as event handlers at stages, such as validation,
preprocess, and postprocess, in which customization is supported.

However, you can analyze if any such operation also exposes a plug-in point for
inducing the custom logic. If a plug-in point is available, then you can utilize the
plug-in point rather than operating the underlying orchestration. For example, you
can implement username generation by using the exposed plug-in without writing
that as an event handler in the create user orchestration.

Figure 27–1 shows a diagrammatic representation of plug-ins and event handlers.

Figure 27–1 Plug-ins and Event Handlers

27.1.2 Plug-in Stores
The plug-in framework can store plug-ins in two types of stores:

■ File system

■ The Oracle Identity Manager database

When looking for plug-ins, the framework first examines plug-ins registered in the
database, and looks in the file system.

27.1.2.1 File Store
The File Store consists of one or more directories on the Oracle Identity Manager host
and is primarily used in development environments. This type of store is not
appropriate for a production environment. File storage is convenient for the developer
since there is no need to explicitly register the developed plug-ins with a file store.

Plug-in Points

Developing Plug-ins 27-3

Users can just drop in the plug-in zips or exploded plug-in directory to the designated
location(s).

By default, Plug-in framework looks for the plug-ins under the OIM_HOME/plugins
directory. Additional plug-in directories can also be specified.

If a monitoring thread is enabled, then the plug-in framework monitors all the
additions, modification, and deletions of plug-in zip files under the registered plug-in
directories in the file system, and automatically reloads the plug-ins. Plug-in metadata
such as name, version, and ID is read from the plug-in zip and is maintained in
memory. This metadata is updated based on any file changes. The latest plug-in zip
file is considered to be the current version of the plug-in. For details about how to
configure the file store, see "Configuring Plug-ins" on page 27-5.

27.1.2.2 Database Store
Plug-ins can be stored in the Oracle Identity Manager database, so that they are
accessible from any node in a cluster. The Plug-in Framework uses Operation DB as
the database store. This type of store is appropriate for a production environment.

You must explicitly register any plug-ins that are stored in the database. You can use
the Plugin Registration Utility, which is a command-line tool, to register and deregister
plug-ins. You can also use the registerPlugin API for this purpose. See "Registering
and Unregistering Plug-ins By Using APIs" on page 27-7 for more information about
registering plug-ins.

27.2 Using Plug-ins in Deployments
As already mentioned in this document, plug-ins are used for customizing the default
functionality in an Oracle Identity Manager deployment. The number of supported
plug-in points is a defined and constrained set. Therefore, you can use the plug-in
points to extend the functionality only for the list of supported plug-in points. See
"Plug-in Points" on page 27-3 for a list of the supported plug-in points.

27.3 Plug-in Points
Table 27–1 lists the Java interfaces that act as plug-in points in Oracle Identity
Manager:

Note: Oracle recommends not to use the file store in production. File
store is more suitable during plug-in development because it is easy to
change the plug-in, and you are required to change only the file in the
file system. There is no need to register. However, in production,
plug-ins are not changed often, and therefore, avoid using the file
store because of certain disadvantages. It adds the overhead of file
store monitoring. In addition, the plug-ins are required to be
replicated in all nodes of a cluster for the clustered deployment of
Oracle Identity Manager.

Note: After registering a plug-in, the server must be restarted.
However, restarting the server might also depend on the feature that
defines the plug-in point.

Plug-in Points

27-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Table 27–1 Plug-in Points

Plug-in Point Description

oracle.iam.ldapsync.LDAPContainerMapper This is used by LDAP synchronization to determine which
user/role container should be used to create the user/role in
LDAP.

oracle.iam.platform.kernel.spi.EventHandler This is the kernel event handler. See Chapter 28, "Developing
Event Handlers" for information about kernel event handlers.

oracle.iam.platform.auth.api.LoginMapper This is an implementation of a LoginMapper maps the JAAS
user principal name to the corresponding Oracle Identity
Manager username. This plug-in point is used to override the
default mapping of JAAS user principal name to Oracle Identity
Manager username for SSO scenarios. The default
implementation returns the same value as the JAAS user
principal name.

This plug-in point is typically used in SSO scenarios where the
JAAS user principal name and the Oracle Identity Manager
username might be different. For example, the SSO system might
set the email as the JAAS username but no user with that
username exist in Oracle Identity Manager. For Oracle Identity
Manager to recognize that user, the JAAS user principal name
must be mapped to the Oracle Identity Manager username. This
can be done by implementing a plug-in for LoginMapper, as
shown:

public class CustomLoginMapper implements LoginMapper{
public String getOIMUserID(String jaasPrincipal) throws
MappingException {
 return getUserName(jassPrincipal);
 }

private String getUserName(String emailID){
 String userName = null;

 //Use usermgmt APIs to get the username
corresponding to this email id
 return userName;
 }
}

oracle.iam.identity.usermgmt.api.PasswordVeri
fier

This is used for verification of old password while changing the
user's password. The class that is to be used for this validation is
configured in the OIM.OldPasswordValidator system property.
By default, use the container based authentication for verifying
old password.

oracle.iam.request.plugins.StatusChangeEvent This allows running of custom code during request status
change.

oracle.iam.request.plugins.RequestDataValidat
or

This is used for custom validation of request data after
submission.

oracle.iam.request.plugins.PrePopulationAdapt
er

This is used to prepopulate an attribute value by running custom
code during request creation.

oracle.iam.scheduler.vo.TaskSupport This is used to run the job in context. Execute method of the task
is retrieved through the plug-in and is loaded.

oracle.iam.identity.usermgmt.api.UserNamePol
icy

This is an implementation of username policies that are used to
generate/validate username.

oracle.iam.identity.usermgmt.api.ReservationIn
LDAP

This is an implementation for reservation of user attributes in
LDAP.

Configuring Plug-ins

Developing Plug-ins 27-5

27.4 Configuring Plug-ins
You use the oim-config.xml file in the MDS to configure the following:

■ The directory or directories in which the files store will look for plug-ins.

■ Whether to activate a thread that monitors the file store for any changes; the
thread checks the zip files or exploded files in all the plug-in directories.

The monitoring thread is typically activated in a dynamic development
environment since plug-ins are being added or modified in such an environment;
it can be inactive in a production system which contains a set of plug-ins . This is
tracked by the reloadingEnabled attribute.

■ The time interval at which the monitoring thread wakes up and looks for any
changes.

The following is a code snippet from the oim-config.xml file:

<pluginConfig storeType="common">

 <storeConfig reloadingEnabled="true"

 reloadingInterval="20">

 <!--

 Plugins present in the OIM_HOME/plugins directory are added by default.

 For adding more plugins, specify the plugin directory as below:

 <registeredDirs>/scratch/oimplugins</registeredDirs>

 <registeredDirs>/scratch/custom</registeredDirs>

 -->

 </storeConfig>

 </pluginConfig>

In this example:

■ The common store designation tells the framework to monitor both database and
file stores

■ One directory is configured; additional directories can be configured by simply
adding more <registeredDirs> tags.

■ The monitoring thread is active and looks for plug-in changes every 20 seconds by
default.

See Also: "Configuring the oim-config.xml File" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Identity Manager for
information about configuring the oim-config.xml file

Note: Do not modify the Store value; common is appropriate in all
environments.

Developing Custom Plug-ins

27-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Monitoring is typically active in development environments only. If you switch
between active and inactive, you must restart the application server for the change
to take effect.

27.5 Developing Custom Plug-ins
This section describes how to develop custom plug-ins. It contains the following
sections:

■ Developing Plug-ins

■ Declaring Plug-ins

27.5.1 Developing Plug-ins
To develop a plug-in:

1. Identify the plug-in point to extend.

2. Identify the Java class that implements the plug-in point interface. Package the
Java class and other dependent classes into a JAR file. Put the JAR file in the lib/
directory.

3. Create the plugin.xml file. See "Declaring Plug-ins" on page 27-7 for details.

4. Identify the resource files required by the plug-in, such as property files, resource
bundles, and image files.

5. Zip the entire package.

An Oracle Identity Manager plug-in is distributed as a ZIP file with a specified
directory structure. The directory structure is as follows:

■ The plugin.xml file: The XML file contains the metadata associated with all
the plug-ins such as the plug-in point it extends, the class implementing the
plug-in, name, and the version number. All the fields in the XML are
mandatory except the name. If the name is not given, then plugin class name
is used as the name.

■ The lib/ directory: The lib/ directory consists of JAR files that contains the
classes implementing the plug-in logic and the dependent library JAR files. In
most instances, this directory consists of a single JAR file with the
implementation of all the plug-ins that are specified in plugin.xml.

■ The resources/ directory: Contains resource files required by the plug-in, such
as property files, resource bundles, and image files. These resources given in
the resources directory of the plug-in zip can be accessed as follows:

this.getClass().getClassLoader().getResourceAsStream(<resource_name>);

■ The META-INF/ directory: Contains XML files showing plug-in points for
event handlers. Some services, such as the notification service, read the XML
files from MDS or from the META-INF/ directory of the plug-in.

Multiple plug-ins implementing the same plug-in point can be part of the same
ZIP file.

Note: Restarting the application server is required for any changes
made to plug-in data in the oim-config.xml file.

Registering Plug-ins

Developing Plug-ins 27-7

A plug-in has a Java class that implements the plug-in point interface. The plug-in
library (JAR) can contain other dependent classes as well, but the class
implementing the plug-in is the only one that is exposed to the feature. This class
must be specified in plugin.xml.

6. Place the ZIP file in the file store (the OIM_HOME/plugins/ directory) or
database store.

7. If the ZIP is placed in the database store, then register the plug-in by using the
Plug-in Registration Utility, as described in "Registering Plug-ins" on page 27-7.

27.5.2 Declaring Plug-ins
To extend the functionality provided by Oracle Identity Manager, you can declare the
plug-ins for the application.

A plug-in has a Java class that implements the plug-in point interface. Be sure to
assign unique names to all the plug-ins associated with a specific plug-in point. If the
plug-in names are non-unique, an exception will be thrown during plug-in
registration.

Declare the plug-ins in the plugin.xml file. For example:

<?xml version="1.0" encoding="UTF-8"?>
<oimplugins>
....
<plugins pluginpoint="oracle.iam.sample.passwdmgmt.service.PasswordElement">
 <plugin pluginclass=
 "oracle.iam.sample.passwdmgmt.custom.NumCustomPasswordElement"
 version="1.0.1" name="num pwd element"/>
 <plugin pluginclass=
 "oracle.iam.sample.passwdmgmt.custom.DictionaryPasswordElement"
 version="1.0.1" name="Dictionary password element" />
</plugins>
....
</oimplugins>

The XML shows two plug-in declarations. Both the plug-ins extend from the same
plug-in point.

27.6 Registering Plug-ins
You can register the plug-ins by using APIs and Plugin Registration Utility.

■ Registering and Unregistering Plug-ins By Using APIs

■ Registering and Unregistering Plug-ins By Using the Plugin Registration Utility

27.6.1 Registering and Unregistering Plug-ins By Using APIs
You can use the following APIs for registration-related tasks:

■ PlatformService.registerPlugin

Note: You can have multiple versions of the plug-in stored and the
feature can request a specific version of the plug-in from the plug-in
framework. By default, all of the current plug-in points load the latest
version of the plug-ins.

Registering Plug-ins

27-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ PlatformService.unRegisterPlugin

Here is an example:

ClientPlatform platform = OIMClient.getInstance();
platform.login("username", "password");
PlatformService service = platform.getService(PlatformService.class);
File zipFile = new File(fileName);
FileInputStream fis = new FileInputStream(zipFile);
int size = (int) zipFile.length();
byte[] b = new byte[size];
int bytesRead = fis.read(b, 0, size);
while (bytesRead < size) {
bytesRead += fis.read(b, bytesRead, size - bytesRead);
}
fis.close();
service.registerPlugin(b);
service.unRegisterPlugin(pluginID, version);

27.6.2 Registering and Unregistering Plug-ins By Using the Plugin Registration Utility
You can use the Plugin Registration Utility for registering and unregistering plug-ins.
The utility uses the following files:

■ pluginregistration.xml

■ ant.properties

These files are located in the OIM_HOME/plugin_utility/ directory.

Before using the utility, perform the following:

1. Set the values for WLS_HOME and OIM_HOME in ant.properties.

For example:

WLS_HOME =.../middleware/wlserver_10.3
OIM_HOME =..../middleware/Oracle_IDM1/server

In addition, set the path for MW_HOME in the ant.properties file.

2. Build the wlfullclient.jar in Oracle WebLogic server:

a. Change directories to WLS_HOME/server/lib.

b. Run the following command:

java -jar ../../../modules/com.bea.core.jarbuilder_1.3.0.0.jar

Registering a Plug-in
To register a plug-in:

Note: Plug-in registration utilities require Apache Ant version 1.7 or
later.

Note: The exact JAR file version can be different based on the WLS.
Use the corresponding file with the name as
com.bea.core.jarbuilder at the WLS_HOME/../modules/ directory.

Migrating Plug-ins

Developing Plug-ins 27-9

1. Execute the ant target "register":

ant -f pluginregistration.xml register

2. This will prompt for the Oracle Identity Manager username and password along
with the server information and the location of the plugin zip file. Enter the
complete path of the zip file location.

Unregister a Plug-in
To unregister a plug-in:

1. Execute the ant target "unregister":

ant -f pluginregistration.xml unregister

2. This will prompt for the Oracle Identity Manager username and password along
with the server information and the classname of the plug-in class. Enter the
classname with the complete package.

27.7 Migrating Plug-ins
The Deployment Manager supports migrating plug-ins from one deployement of
Oracle Identity Manager to another. For example, the event handlers can be
implemented in a test environment, and then migrated to the production environment
by using the Deployment Manager. Figure 27–2 shows exporting plug-ins via the
Deployment Manager:

Figure 27–2 Exporting Plug-ins

See Also: "Migrating Configurations and Customizations" on
page 38-1 for information about the Deployment Manager

Migrating Plug-ins

27-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

28

Developing Event Handlers 28-1

28Developing Event Handlers

[29]

This chapter describes the concepts related to orchestration and how to write custom
event handlers to extend the functionalities of Oracle Identity Manager. It contains the
following topics:

■ Orchestration Concepts

■ Using Custom Event Handlers

■ Developing Custom Event Handlers

■ Sequencing the Execution of Event Handlers

■ Writing Custom Validation Event Handlers

■ Best Practices

■ Migrating Event Handlers

■ Troubleshooting Event Handlers

■ Managing Event Handlers Using the Design Console

28.1 Orchestration Concepts
In an Identity Management system, any action performed by a user or system is called
an operation. Examples of operations are creating users, modifying roles, and creating
password policies. The process of any Oracle Identity Manager operation that goes
through a predefined set of stages and executes some business logic in each stage is
called an orchestration. The type of object that is changed by the orchestration is called
an orchestration target. The data that is required to carry out the orchestration
operation is called orchestration parameter.

A bulk orchestration is the process of orchestrating same operation on multiple
entities. For example, if you want to update the organization of multiple users, then
you can submit a bulk orchestration. As a result, the operation on all the entities are
performed in a single call.

Note: If custom event handlers are required to be introduced for
lock/unlock operations, then you must implement bulk
orchestrations. From the UI, bulk orchestrations are triggered for a
single user lock/unlock operation.

Orchestration Concepts

28-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Orchestration is divided into predefined steps called stages. Every operation moves
through these stages until it reaches finalization. Orchestration has the following
stages:

■ Validation: Stage to perform validation on the orchestration, such as validity of
orchestration parameters. Orchestration parameter is the data that is required to
carry out the orchestration operation.

■ Preprocess: Stage to perform orchestration parameter manipulations or get
approvals or perform Segregation of Duties (SoD) checks.

■ Action: Stage in which the action takes place.

■ Audit: Stage in which the auditing of operation is performed.

■ Postprocess: Stage in which consequent operations related to the current operation
takes place. Examples of consequent operations are auto role membership and
policy evaluation on a user creation.

■ Finalization: Last stage in the process to perform any clean up.

Each operation performed can have consequences for users or other entities. For
example, creating a user might result in provisioning of resources to that user, and
creating a new password policy can make certain user passwords invalid and require
changes during next login. Each consequence is represented as an orchestration. A
differed consequence is executed before the finalization of the current orchestration.
An immediate consequence is executed immediately after the current event handler
returns, before proceeding to the next event handler on the current orchestration. You
can customize the consequences of some operations, such as create, modify, delete,
enable, disable, lock, and unlock users, by writing event handlers, as described in
subsequent sections.

There are orchestrations for which the starting point is the postprocess stage. If you are
reconciling users from a trusted source or bulk loading users and want to add this data
as is in Oracle Identity Manager. When the data is in Oracle Identity Manager, you can
perform postprocess operations on the users to compute autogroup membership or
evaluate policies. Therefore, reconciliation engine or bulk load utility submits
postprocess-only orchestrations.

An event handler is a piece of code that is registered with an orchestration on various
stages. These event handlers are invoked when the relevant orchestration stage is
performed. Event handlers can either be asynchronous or synchronous. A
synchronous event handler returns with a response right away, whereas an
asynchronous event handler completes at a later stage. An event handler can be
conditional, which means that the event handler is executed when certain conditions
are satisfied.

What happens at each stage of orchestration is determined by branching and by the
event handler, if any, that is deployed at that stage. If a stage has a branch, responses
from the event handlers decide which branch to take. If a stage has no event handlers,
or event handlers respond with no recommendation, then the operation follows the
default path and moves to the next stage. However, a process can move to some
out-of-the-band stages if the event handlers are invalid or canceled. These stages are:

■ Invalid: Process is moved to this stage if orchestration validation fails.

■ Veto: Process is moved to this stage if any of the preprocess event handlers are
vetoed. For example, if approvals are rejected by the approver, then orchestration
is vetoed.

■ Cancel: Process is moved to this stage if the operation is stopped by calling the
cancel method.

Using Custom Event Handlers

Developing Event Handlers 28-3

■ Compensation: Process is moved to this stage if the operation is rolled back by
calling the compensate method.

Figure 28–1 shows the various orchestration stages:

Figure 28–1 Orchestration Stages

28.2 Using Custom Event Handlers
Oracle Identity Manager allows you to implement Service Provider Interfaces (SPIs) to
customize the functionality of orchestration operations. Only customization of
preprocess, postprocess, validation, and finalization stages of an operation in an entity
orchestration is supported.

The following are examples of event handler implementation:

■ When a user is created, the account status (enabled or disabled) is to be set based
on some rules. A preprocess event handler can be implemented to achieve this.

■ Users of type Contractors must have an email address at the time of creation.
Other users can be created without email address. A validation event handler can
be used to validate if the user is a Contractor, and then allow or disallow the user
creation based on the validation result.

Developing Custom Event Handlers

28-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Users of type Agents are to be notified in the user's alternate email address after
the users are created. This can be achieved by implementing a postprocess event
handler.

Postprocess event handlers are most commonly implemented to meet business
requirements. The following example describes how a postprocess event handler
implementation can meet the given requirement:

Requirement
If the enterprise user is a Contractor, then after the user is created in Oracle Identity
Manager, the user must be registered in the Contractor Registration System, which is
an external application. This application is a database application. The database has a
structure that stores the User ID, Contractor ID, First Name, and Last Name attributes
of the users. After successful registration, the Contractor ID of the users must be
retrieved and updated in the user's profile in Oracle Identity Manager.

Solution
This use case can be developed as a plug-in and deployed on Oracle Identity Manager.
The plug-in can be used to retrieve the Contractor ID or any configured column name
from specified database table and update the user profile in Oracle Identity Manager.

A postprocess event handler can be implemented and registered for the create
operation of the user entity. It is a conditional event handler that executes for users
only with type as Contractor. If the user type is Contractor, then the event handler
connects to the external application to retrieve the Contractor ID based on the Oracle
Identity Manager user ID, and update the user profile in Oracle Identity Manager with
contractor ID.

The following is another common example of postprocess implementation of event
handlers:

Custom attribute generation if the data that is reconciled into Oracle Identity Manager
is not enough to implement all use cases and extra attributes need to be generated
based on the reconciled data. This is a common use case, especially when the custom
attributes are used in the role membership rules or access policies.

28.3 Developing Custom Event Handlers
An event handler consists of the following:

■ Java code: Implementation of the operations

■ XML definition: Association with the relevant orchestration at the right stage

■ Plug-in definition: Registration of the event handlers and any extension code with
Oracle Identity Manager plug-in framework

Developing a custom event handler comprises of implementing the operation through
Java code, writing the XML definition, and creating and registering a plug-in. These
are described in the following sections:

■ Implementing the SPI and Creating a JAR

■ Defining Custom Events Definition XML

■ Creating and Registering a Plug-in ZIP

Developing Custom Event Handlers

Developing Event Handlers 28-5

28.3.1 Implementing the SPI and Creating a JAR
This section describes how to write the JAVA code by implementing the SPI, and
thereafter, create a JAR file in the following sections:

■ Development Considerations

■ Methods and Arguments

■ Code Samples

■ Creating a JAR File With Custom Event Handler Code

28.3.1.1 Development Considerations
The following points must be considered for writing custom event handlers:

■ The supported orchestration stages in which a custom event handler can be
registered are validation, preprocess, and postprocess.

■ Validation, preprocess, and postprocess event handlers can be conditional. This
means that the event handler will execute only if a particular condition is met.

You can make the event handler conditional by implementing the
oracle.iam.platform.kernel.spi.ConditionalEventHandler interface and its
isApplicable method. Context data and orchestration parameters are available in
this method. For conditional event handlers, the applicability of event handlers is
computed when the operation is initiated. Therefore, if a context or orchestration
parameters are modified during the orchestration flow, then it might lead to
execution of event handlers that must not be executed.

■ The event handlers can handle single as well as bulk entities.

■ The event handlers can have associated failure handlers that callbacks certain
operations on the parent handlers.

■ Because retry of event handlers is supported, the event handlers can be re-entrant.

■ When reconciliation submits postprocess orchestrations, it submits bulk
orchestrations. The bulkExecute method on the event handlers is called for these
orchestrations. Therefore, make sure to implement this method.

■ If data is to be passed between custom event handlers, you can pass it by using
inter event data. Calling the getInterEventData() method on orchestration returns
a hashmap. In this map, you can put any object with key beginning with custom,
and you can access this data in subsequent custom handlers. Do not modify or
delete any predefined inter event data that is part of the same hashmap.

■ To make API calls inside event handlers for write or delete operations, get the API
services by using Platform.getServiceForEventHandlers method. API calls that are
made using the services obtained through this method are performed
synchronously including the postprocessing.

■ Return type of event handlers, except validation handlers, are shown in the
following table:

Event Handler Type On Success On Failure

Synchronous new EventResult() in the execute method
and new BulkEventResult() in bulk
version of the execute method

EventFailedException

Asynchronous Return null EventFailedException

Developing Custom Event Handlers

28-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ You must not define object-level variables at the event handler.

28.3.1.2 Methods and Arguments
Table 28–1 lists the methods that you can implement in the various orchestration
stages:

For methods, such as execute, the following argument values are available:

■ IDs that you can include in the code for troubleshooting purpose, which includes:

– Process ID: The ID of the orchestration instance

– Event ID: The ID of the event handler instance

■ Orchestration object that consists of details of the underlying entity instance. This
consists of:

– Maps (key value pairs) containing ENTITY_ATTRIBUTE, VALUE from which
the input attributes of the underlying entity is read.

– Entity ID: To update back the values for the same or a different entity, use
Entity Manager API and pass the Entity ID and data to it. For bulk
orchestration, you get multiple Entity IDs and Maps.

28.3.1.3 Code Samples
This section provides code samples that illustrate how to write various kinds of event
handlers.

Table 28–1 Methods to Implement Event Handlers

Method

Applicable
Orchestration
Stage Description

initialize preprocess,
postprocess

This method is used to open connections and pool
state or resources.

execute for
single entity

preprocess,
postprocess

This method is used to read the input attributes of the
underlying operation and update to different values, if
required.

execute for
bulk
orchestration

preprocess,
postprocess

This method is used to read the input attributes of
multiple underlying operations and update to different
values, if required.

isApplicable conditional This method is used in conditional handlers to
determine if the prerequisite condition for the event
handler execution is met.

validate validation This method is used for validation handlers to validate
input data.

cancel preprocess,
postprocess

This method is called when the orchestration operation
is canceled.

compensate preprocess,
postprocess

This method is called when the orchestration operation
is compensated.

Note: Use Platform.getServiceForEventHandlers to get the services
for calling create, update, and delete operations in event handlers.

Developing Custom Event Handlers

Developing Event Handlers 28-7

Example 1: Custom Email Validation
Example 28–1 shows a sample custom validation handler code fragment that checks to
ensure that the ampersand character (@) is used in the email id of the user.

Example 28–1 Custom Email Validation

public void validate(long processId, long eventId, Orchestration orchestration) throws
ValidationException, ValidationFailedException {
 HashMap<String, Serializable> parameters = orchestration.getParameters();
 String email = (parameters.get("Email") instanceof ContextAware) ? (String) ((ContextAware)
parameters
 .get("Email")).getObjectValue() : (String) parameters
 .get("Email");
 if (!(email.contains("@"))) {
 throw new ValidationFailedException("Email doesn't contain @");
 }
 }

Example 2: Custom Preprocess Event Handler to Set Middle Name
Example 28–2 shows a sample custom preprocess event handler code fragment that
sets the middle name to the first letter of the first name if the a value is not provided
for middle name.

Example 28–2 Custom Preprocess Event Handler to Set Middle Name

// the middle initial when the user doesn't have a middle name
 public EventResult execute(long processId, long eventId,
 Orchestration orchestration) {
 HashMap<String, Serializable> parameters = orchestration
 .getParameters();
 // If the middle name is empty set the first letter of the first name
 // as the middle initial
 String middleName = getParamaterValue(parameters, "Middle Name");
 if ((middleName == null) || middleName.equals("")) {
 String firstName = getParamaterValue(parameters, "First Name");
 middleName = firstName.substring(0, 1);
 orchestration.addParameter("Middle Name", middleName);
 }
 return new EventResult();
 }

 private String getParamaterValue(HashMap<String, Serializable> parameters,
 String key) {
 if(parameters.containsKey(key)){
 String value = (parameters.get(key) instanceof ContextAware) ? (String) ((ContextAware)
parameters
 .get(key)).getObjectValue() : (String) parameters.get(key);
 return value;
 }
 else{
 return null;
 }
 }

Example 3: Custom Post-process Event Handler to Provision Resource Object
Example 28–3 shows a sample custom post process event handler code fragment that
provisions a resource object OBJ005 to a user whose role is ROLE 005:

Developing Custom Event Handlers

28-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Example 28–3 Sample Custom Post Process Event Handler

// This custom post process event handler provisions resource object 'OBJ005'
// to a user who has role 'ROLE 005'
public EventResult execute(long processId, long eventId,
 Orchestration orchestration) {
 tcUserOperationsIntf userOperationsService =
 Platform.getService(tcUserOperationsIntf.class);
try {
 String userKey = getUserKey(processId, orchestration);
 if (hasRole(userKey, "ROLE 005")) {
 long objKey = findObject("OBJ001");
userOperationsService.provisionResource(Long.getLong(userKey), objKey);
}
} catch (Exception e) {
throw new EventFailedException("Error occurred ", e);
}

return new EventResult();
}

// This method retrieves the key of the user entity on which an operation
// is performed
// This method shows how to retrieve the operation being performed, entity type
// and the associated value objects
private String getUserKey (long processID, Orchestration orchestration) {
 String userKey;
 String entityType = orchestration.getTarget().getType();
 EventResult result = new EventResult();

if (!orchestration.getOperation().equals("CREATE")) {
userKey = orchestration.getTarget().getEntityId();
} else {
OrchestrationEngine orchEngine = Platform.getService(OrchestrationEngine.class);
userKey = (String) orchEngine.getActionResult(processID);
}
return userKey;
}

// This method checks if a given user has a given role.
// It demonstrates how to invoke a OIM 11g API from a custom event handler
private boolean hasRole(String userKey, String roleName)
 throws Exception {
 RoleManager roleManager = Platform.getService(RoleManager.class);
 List<Identity> roles = roleManager.getUserMemberships(userKey);

 for (Iterator iterator = roles.iterator(); iterator.hasNext();) {
Role role = (Role) iterator.next();
if (roleName.equals((String)role.getAttribute("Role Name"))) {
return true;
}

}
return false;
}

// This method finds details about a resource object with the given name.
// It demonstrates how to invoke a 9.1.x API from a custom event handler
private long findObject(String objName) throws Exception {
 long objKey = 0;
 tcObjectOperationsIntf objectOperationsService =

Developing Custom Event Handlers

Developing Event Handlers 28-9

 Platform.getService(tcObjectOperationsIntf.class);
HashMap params = new HashMap();
params.put("Objects.Name", objName);
tcResultSet objects = objectOperationsService.findObjects(params);
for (int i = 0; i < objects.getRowCount(); i++) {
 objects.goToRow(i);
 if (objects.getStringValue("Objects.Name").equals(objName)) {
 objKey = objects.getLongValue("Objects.Key");
}
}
 return objKey;
}

Example 4: Custom User Postprocess Event Handler With bulkExecute Method
Example 28–4 shows how to loop through users that are part of a bulk user create
orchestration.

Example 28–4 Custom User Postprocess Event Handler With bulkExecute Method

public BulkEventResult execute(long processId, long eventId, BulkOrchestration
orchestration){

HashMap<String, Serializable>[] orchParamArray =
orchestration.getBulkParameters();

 // Array of user keys
 String [] entityIds = orchestration.getTarget().getAllEntityId();
 for(int i=0; i< entityIds.length; i++){
 }

}

Example 5: Using Context in isApplicable method
Any operation in Oracle Identity Manager can take place in more than one context. For
example, creating a user can happen in four different contexts, which are administrator
creating a user as a direct operation, administrator creating a user by raising a request,
creating a user through self registration, and user creation through trusted source
reconciliation. In all these scenarios, Oracle Identity Manager submits the same user
creation orchestrations having the same parameter names and values with same data
types.

Example 28–5 shows how to find the context in which this operation is performed to
figure out the applicability of the event handler.

Example 28–5 Using Context in the isApplicable Method

public boolean isApplicable(AbstractGenericOrchestration orchestration) { //
Request Context
 if (ContextManager.getContextType() == ContextTypes.REQUEST) {
 }
 // Recon context
 if (ContextManager.getContextType() == ContextTypes.RECON) {
 }

}

Developing Custom Event Handlers

28-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

28.3.1.4 Creating a JAR File With Custom Event Handler Code
To create a JAR with custom event handler code:

1. Implement one of the SPIs mentioned in Table 28–2 to write a custom preprocess,
postprocess, or validation handler.

2. Include the following JAR files in the class path to compile a custom class:

From the OIM_ORACLE_HOME/server/platform/ directory:

■ iam-platform-kernel.jar

■ iam-platform-utils.jar

■ iam-platform-context.jar

■ iam-plaftorm-authz-service.jar

From the OIM_ORACLE_HOME/designconsole/lib/ directory:

■ oimclient.jar

■ xlAPI.jar

If some other Oracle Identity Manager JAR files are required for compilation, then
these can be found in the directories mentioned in this step.

3. Create a JAR file of the custom class.

28.3.1.5 Handling Exceptions
For event handler exception handling, you must use conventional JAVA exception
handling methods. The following guidelines can be used for dealing with failures:

■ In the event handler code, throw EventFailedException with the right arguments
to indicate failure.

■ Failures can be handled by registering failure handlers. As part of failure handler,
you can implement necessary logic to remediate the failure. The failure handlers
must return FailedEventResult with the following options as Response:

– CANCEL: Indicates that operation must get canceled. The Cancel method on
all event handlers that are executed and completed so far is called by Kernel in
reverse order of execution.

See Also: "Understanding Context" on page 29-1 for details about
the information that can retrieved from context

Table 28–2 SPIs to Write Custom Event Handlers

Stage SPI to implement

Preprocess oracle.iam.platform.kernel.spi.PreProcessHandler

Postprocess oracle.iam.platform.kernel.spi.PostProcessHandler

Validation oracle.iam.platform.kernel.spi.ValidationHandler

Finalization oracle.iam.platform.kernel.spi.FinalizationHandler

See Also: See Oracle Fusion Middleware Java API Reference for Oracle
Identity Manager for information about the SPIs listed in Table 28–2

Developing Custom Event Handlers

Developing Event Handlers 28-11

– COMPENSATE: Indicates that operation must get rolled back. The
Compensate method on all event handlers that are executed and completed so
far is called by Kernel in reverse order of execution.

– MANUAL_COMPLETE: Indicates that the handler that failed is manually
completed and will proceed with the rest of the event handlers.

– RETRY: Indicates to kernel that the event handler that failed must be retried.

– NULL: Indicates that there is no response or recommendation by the failed
handler.

28.3.1.6 Managing Transactions
In the event handler XML file, set the tx attribute to true. If any exception is thrown in
the event handler, then the transaction will be rolled back or committed.

28.3.2 Defining Custom Events Definition XML
The custom events definition XML is described in the following sections:

■ Elements in the Event Handler XML Files

■ Sample Event Definitions

28.3.2.1 Elements in the Event Handler XML Files
This section describes some of the elements and element attributes within Event
Handlers XML files. It also describes a mandatory namespace for the event handler
XML definitions.

Elements
The top-level (or parent) element in Event Handlers XML files is eventhandlers.
Table 28–3 lists and describes sub-elements that are typically defined within the
eventhandlers parent element.

Element Attributes
The elements within event handlers XML files contain attributes. Table 28–4 lists and
describes attributes that are typically defined within elements.

Table 28–3 Typical Sub-elements within the eventhandlers Element

Sub-element Description

validation-handler Identifies the validations that will be performed on the
orchestration.

action-handler Identifies the operations that will be performed at preprocess,
postprocess, and action stages.

failed-handler Identifies the event handlers that will be executed if an event
handler in the default flow fails.

finalization-handler Identifies the event handlers to execute at the end of the
orchestration. Finalization is the last stage of any orchestration.

change-failed Identifies event handlers to be executed in parent orchestration
upon consequence orchestration failures.

out-of-band-handler Defines the event handlers for out-of-band orchestration flows,
such as veto and cancel.

compensate-handler Identifies the event handlers that will be executed in the
compensation flow of the orchestration.

Developing Custom Event Handlers

28-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Table 28–4 Typical Attributes of Sub-elements within the eventhandlers Element

Element Attribute Description

Name The name of the event handler.

class Full package name of the Java class that implements the event handler.

entity-type Identifies the type of entity the event handler is executed on. A value of
ANY sets the event handler to execute on any entity. Most commonly
defined entity types are user, role, rolerole (role hierarchy), and roleuser
(user role membership).

operation Identifies the type of operation the event handler is executed on. A
value of ANY sets the event handler to execute on any operation. Typical
operations are create, modify, and delete.

order Identifies the order (or sequence) in which the event handler is
executed. Order value is in the scope of entity, operation, and stage.
Order value for each event handler in this scope must be unique. If there
is a conflict, then the order in which these conflicted event handlers are
executed is arbitrary.

Supported values are FIRST (same as Integer.MIN_VALUE), LAST (same
as Integer.MAX_VALUE), or a numeral.

orch-target Identifies the type of orchestration, such as entity orchestration, Toplink
orchestration, and so on. The following is a list of supported values:

■ oracle.iam.platform.kernel.vo.EntityOrchestration

■ oracle.iam.platform.kernel.vo.MDSOrchestration

■ oracle.iam.platform.kernel.vo.RelationOrchestration

■ oracle.iam.platform.kernel.vo.ToplinkOrchestration

The default value is
oracle.iam.platform.kernel.vo.EntityOrchestration. This is the
only supported type for writing custom event handlers.

sync This attribute is operational in only the action-handler and
change-failed elements. The sync attribute indicates whether the event
handler is synchronous or asynchronous. Supported values are TRUE or
FALSE. If set to TRUE (synchronous), then the kernel expects the event
handler to return an EventResult. If set to FALSE (asynchronous), then
you must return null as the event result and notify the kernel about the
event result later.

Note: The sync attribute must be set to TRUE for validation-handler
elements.

stage This attribute is operational in only the out-of-band-handler,
action-handler, and failed-handler elements. The stage attribute
indicates the stage at which the event handler is executed. The following
is a list of supported values:

■ preprocess

■ action

■ audit

■ postprocess

■ veto

■ canceled

tx This attribute is operational in only the out-of-band-handler,
action-handler, compensate-handler, and finalization-handler elements.
The tx attribute indicates whether or not the event handler should run
in its own transaction. Supported values are TRUE or FALSE. By
default, the value is FALSE.

Developing Custom Event Handlers

Developing Event Handlers 28-13

Namespace Requirement in <eventhandlers> Element
All the event handler definitions must have the following mandatory namespace
definition:

<eventhandlers xmlns="http://www.oracle.com/schema/oim/platform/kernel"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/schema/oim/platform/kernel
 orchestration-handlers.xsd">

28.3.2.2 Sample Event Definitions
Create a metadata XML file containing definitions of all the custom events, as shown
in Table 28–6:

Example 28–6 Sample Metadata XML File for Custom Event Definitions

<?xml version='1.0' encoding='utf-8'?>
 <eventhandlers xmlns="http://www.oracle.com/schema/oim/platform/kernel"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/schema/oim/platform/kernel
 orchestration-handlers.xsd">

 <!-- Custom preprocess event handlers -->
 <action-handler
 class="oracle.oim.extensions.preprocess.SamplePreprocessExtension"
 entity-type="User"
 operation="CREATE"
 name="SetUserMiddleName"
 stage="preprocess"
 order="1000"
 sync="TRUE"/>

 <!-- Custom postprocess event handlers -->
 <action-handler
 class="oracle.oim.extensions.postprocess.SamplePostprocessExtension"
 entity-type="User"
 operation="CREATE"
 name="SamplePostprocessExtension"
 stage="postprocess"
 order="1000"
 sync="TRUE"/>

 <action-handler
 class="oracle.oim.extensions.postprocess.SamplePostprocessExtension"
 entity-type="User"
 operation="MODIFY"
 name="CustomResourceProv"
 stage="postprocess"
 order="1000"
 sync="TRUE"/>

 <!-- Custom validation event handlers -->
 <validation-handler
 class="oracle.oim.extensions.validation.SampleValidationExtension"
 entity-type="User"
 operation="CREATE"
 name="ValidateUserEmail"
 order="1000"/>
</eventhandlers>

Sequencing the Execution of Event Handlers

28-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

28.3.3 Creating and Registering a Plug-in ZIP
To create plug-ins containing custom event handlers, you need to develop the
appropriate event handler classes. See "Developing Plug-ins" on page 27-1 for detailed
information about plug-ins and plug-in points.

To create a plug-in ZIP and register it:

1. Define the plug-in XML with the event handler plug-in point.

 The following is an example of a plug-in XML file:

<?xml version="1.0" encoding="UTF-8"?>
<oimplugins>
 <plugins pluginpoint="oracle.iam.platform.kernel.spi.EventHandler">
 <plugin pluginclass=
 "oracle.oim.extensions.preprocess.SamplePreprocessExtension"
 version="1.0"
 name="SamplePreprocessExtension">
 </plugin>
 <plugin pluginclass=
 "oracle.oim.extensions.postprocess.SamplePostprocessExtension"
 version="1.0"
 name="SamplePostprocessExtension">
 </plugin>
 <plugin pluginclass=
 "oracle.oim.extensions.validation.SampleValidationExtension"
 version="1.0"
 name="SampleValidationExtension">
 </plugin>
 </plugins>
</oimplugins>

2. Package the plug-in XML and the JAR file that contains the custom class or classes
into a plug-in ZIP file.

3. Package the event handler XML that is defined using the information described in
"Defining Custom Events Definition XML" on page 28-11 into the same zip in a
directory called META-INF.

4. Register the plug-in by using plug-in registration utilities. See "Registering
Plug-ins" on page 27-7 for additional information.

28.4 Sequencing the Execution of Event Handlers
The list of custom event handlers that you deployed and registered can be viewed by
using Oracle Enterprise Manager. The event handlers are displayed in the order of
invocation. Using this list of event handlers, you can sequence the order of execution
of the event handlers.

To specify the order for any custom event handler, you must know the list of existing
event handlers and their order for a given operation. To do so, you must invoke a
mbean from the Enterprise Manager by performing the following steps:

Note: Ensure that plug-in point used in the plug-in definition is set
to oracle.iam.platform.kernel.spi.EventHandler.

Writing Custom Validation Event Handlers

Developing Event Handlers 28-15

1. Login to the Enterprise Manager.

2. On the left navigation pane, expand Weblogic Domain, and select OIM DOMAIN.

3. Right-click the domain name, and select System Mbean Browser.

4. Under Application Defined Mbeans, expand oracle.iam.

5. Navigate to OIM_SERVER_NAME, oim, IAMAppDesignMBean,
ConfigQueryMBeanName.

6. Click the Operations tab.

7. Click the getEventHandlers method.

8. Provide entity name for the p1 parameter and operation name for the p2
parameter, and then click Invoke. The parameter values are not case-sensitive. The
possible parameter values are:

■ entity name: Values can be User, Role, or RoleUser

■ operation: Values can be CREATE, MODIFY, or DELETE

28.5 Writing Custom Validation Event Handlers
An approver can update the attribute values before approving a request. To ensure
sanitization of the data entered by the approver, Oracle Identity Manager invokes
validation handlers again when approver updates the request. This means that
validation handlers configured for a particular entity and operations are invoked
multiple times in a single request flow, when the request is submitted and when the
approver modifies the request during approval workflow.

For example, when a self-registration request is submitted, the set of validation
handlers configured for USER CREATE is run. Next, when the approver modifies the
request to populate Organization or other user attributes, these validation handlers are
re-run.

Therefore, custom validation handlers must be developed in such a way that the
validation logic is re-entrant because they are invoked multiple times in single request
flow.

Consider the following example use case:

There is a requirement of generating the HR Employee Number UDF by appending a
random number to the value of the Department Number field. When the create user
request or self-registration request is submitted, the HR Employee Number UDF will
be auto-generated based on custom logic. If the approver edits the request during
approval and modifies the Department Number value, then the HR Employee
Number UDF should be re-calculated by using the new value provided for
Department Number. But, if the approver does not change Department Number, then
the previous values generated at the time of request submission should be used.

For this, a new validation handler must be developed for generating the HR Employee
Number UDF by appending Department Number and a random number. This logic
cannot be written in preprocess handler because preprocess handlers are invoked only
once in the lifecycle of a request. The logic in this validation handler is as shown:

package custom.handlers;

import java.io.Serializable;
import java.util.HashMap;
import java.util.Random;

Writing Custom Validation Event Handlers

28-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

import oracle.iam.identity.usermgmt.api.UserManagerConstants;
import oracle.iam.identity.utils.Utils;
import oracle.iam.platform.kernel.ValidationException;
import oracle.iam.platform.kernel.ValidationFailedException;
import oracle.iam.platform.kernel.spi.ValidationHandler;
import oracle.iam.platform.kernel.vo.BulkOrchestration;
import oracle.iam.platform.kernel.vo.Orchestration;

public class EmployeeNumberGenerationHandler implements ValidationHandler {

@Override
public void initialize(HashMap<String, String> parameters) {

}

@Override
public void validate(long processId, long eventId, Orchestration orchestration)
throws ValidationException, ValidationFailedException {

HashMap<String, Serializable> contextParams = orchestration.getParameters();
//1. Generate UDF Employee number during request submission as Department Number
and a random number
//2. If request is in approval stage, then control has come here since approver
has modified the request
//2a: Check if approver has modified Department Number. If yes, then re-generate
if(!Utils.isRequestInApprovalStage()) //Utility method to find if request is in
approval stage or not? If it returns true, it means that approver is attempting to
update the request during approval
{

//Step 1:
String dept =
contextParams.get(UserManagerConstants.AttributeName.DEPARTMENT_NUMBER.getId()).to
String();
String en = dept+"_"+random();
contextParams.put("SSN", en);

}
else
{
String dept =
contextParams.get(UserManagerConstants.AttributeName.DEPARTMENT_NUMBER.getId()).to
String();
//compare with department number with which request was submitted, if modified by
approver; the regenerate SSN
if(Utils.isAttributeModifiedByApprover(orchestration ,
UserManagerConstants.AttributeName.DEPARTMENT_NUMBER.getId()))

// //Utility method to find if approver has edited the particular attribute or not
, during approval?
{
String en = dept+"_"+random();
contextParams.put("SSN", en);
}

}

}

private String random() {

Migrating Event Handlers

Developing Event Handlers 28-17

Random random = new Random();
String randomStr = "" + random.nextLong();
randomStr = randomStr.replaceAll("-", "");
return randomStr;
}

@Override
public void validate(long processId, long eventId,
BulkOrchestration orchestration) throws ValidationException,
ValidationFailedException {

}

}

28.6 Best Practices
As a best practice, analyze the operation before developing and implementing an
event handler. If plug-in is supported for the operation, then use the plug-in for
customization rather than developing an event handler. For example, username
generation must be implemented by using the available plug-in, and do not attempt
writing that as an event handler in the create user orchestration.

For information about points to consider for developing event handlers, see
"Development Considerations" on page 28-5.

28.7 Migrating Event Handlers
The Deployment Manager supports migrating plug-ins, and the registered event
handlers with the plug-ins, from one deployment of Oracle Identity Manager to
another. For example, the event handlers can be implemented in a test environment,
and then migrated to the production environment by using the Deployment Manager.
Figure 28–2 shows exporting plug-ins via the Deployment Manager:

Troubleshooting Event Handlers

28-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 28–2 Exporting Plug-ins

28.8 Troubleshooting Event Handlers
Table 28–5 lists common problems and causes or solutions to help troubleshoot your
event handler if it is not triggered when the operation is executed.

See Also: "Migrating Configurations and Customizations" on
page 38-1 for information about the Deployment Manager

Table 28–5 Troubleshooting Event Handlers

Problem Cause/Solution

When a user is created through
reconciliation, the custom preprocess
event handlers are not triggered.

Reconciliation submits postprocess only orchestration
where starting stage is postprocess.

When a user is created through
reconciliation, the custom postprocess
event handler is triggered but the
logic inside the execute method is not
triggered.

Reconciliation submits bulk orchestrations. Therefore,
make sure to implement the bulkExecute method.

The orchestration operation taking too
long to complete.

To determine the time spent on each event handler:

1. Connect to
http://OIM_HOST:OIM_PORT/dms/Spy as the
WebLogic administrator.

2. In the Metric Tables, click OIM_EventHandler.
How long each event handler is taking is
displayed in the processTime column.

Managing Event Handlers Using the Design Console

Developing Event Handlers 28-19

28.9 Managing Event Handlers Using the Design Console

The Development Tools/Business Rule Definition folder in the Design Console
provides system administrators and developers with tools to manage the event
handlers and data objects of Oracle Identity Manager.

This folder contains the following forms:

■ Event Handler Manager: This form lets you create and manage the event handlers
that are used with Oracle Identity Manager. See Event Handler Manager Form for
more information.

■ Data Object Manager: This form lets you define a data object, assign event
handlers and adapters to it, and map any adapter variables associated with it. See
Data Object Manager Form for more information.

28.9.1 Event Handler Manager Form
This form is displayed in the Development Tools/Business Rule Definition folder. You
use this form to manage the Java classes that process user-defined or system-generated
actions (or events). These classes are known as event handlers. When you add a new
event handler to Oracle Identity Manager, you must first register it here so that Oracle
Identity Manager can recognize it.

There are two types of event handlers:

■ Event handlers that are created through the Adapter Factory form. These begin
with the letters adp. They are known as adapters.

■ Event handlers that are created internally in Oracle Identity Manager. These begin
with the letters tc. They are referred to as system event handlers.

By using the Event Handler Manager form, you can specify when you want Oracle
Identity Manager to trigger an event handler. An event handler can be scheduled to
run as follows:

■ Pre-Insert: Before information is added to the database

■ Pre-Update: Before information is modified in the database

■ Pre-Delete: Before information is removed from the database

■ Post-Insert: After information is added to the database

■ Post-Update: After information is modified in the database

■ Post-Delete: After information is removed from the database

Figure 28–3 shows the Event Handler Manager form.

Note: This section is relevant only for Oracle Identity Manager
Release 9.x event handlers. The event handlers that are based on
orchestration have been described in the earlier sections.

Managing Event Handlers Using the Design Console

28-20 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 28–3 Event Handler Manager Form

Table 28–6 describes the fields of the Event Handler Manager form.

Table 28–6 Fields of the Event Handler Manager Form

Field Name Descriptions

Event Handler Name The name of the event handler.

Package The Java package to which the event handler belongs.

Pre-Insert If you select this check box, Oracle Identity Manager will
trigger the event handler before information is added to the
database.

Pre-Update If you select this check box, Oracle Identity Manager will
trigger the event handler before information is modified in
the database.

Pre-Delete If you select this check box, Oracle Identity Manager will
trigger the event handler before information is removed from
the database.

Post-Insert If you select this check box, Oracle Identity Manager will
trigger the event handler after information is added to the
database.

Post-Update If you select this check box, Oracle Identity Manager can
trigger the event handler after information is modified in the
database.

Post-Delete If you select this check box, Oracle Identity Manager will
trigger the event handler after information is removed from
the database.

Notes Additional information about the event handler.

Managing Event Handlers Using the Design Console

Developing Event Handlers 28-21

The following sections describe how to create and modify event handlers.

Adding or Modifying an Event Handler
To add or modify an event handler:

1. Open the Event Handler Manager form.

2. To add an event handler to Oracle Identity Manager, enter the name of the event
handler into the Event Handler Name lookup field.

To modify an event handler, double-click the Event Handler Name lookup field.

From the Lookup dialog box that is displayed, select the event handler that you
want to edit.

3. In the Package field, add or edit the name of the Java package of which the event
handler is a member.

4. Select the check boxes that correspond to when you want Oracle Identity Manager
to trigger the event handler.

You can schedule an event handler to run on preinsert, preupdate, predelete,
postinsert, postupdate, and postdelete.

5. In the Notes area, add or edit explanatory information about the event handler.

6. Click Save.

The event handler is added or modified.

28.9.2 Data Object Manager Form
The Data Object Manager form is displayed in the Development Tools/Business Rule
Definition folder. You use this form to:

■ Assign a rule generator adapter, entity adapter, or an event handler to an object
that can add, modify, or delete data in the database. This type of object is known as
a data object.

■ Schedule the adapter or event handler to run according to a schedule (pre-insert,
pre-update, pre-delete, post-insert, post-update, or post-delete).

■ Organize the order in which Oracle Identity Manager triggers adapters or event
handlers that belong to the same execution schedule.

Note: To use an event handler, you must attach it to a data object by
using the Data Object Manager form. For more information about
assigning event handlers to data objects, see "Data Object Manager
Form" on page 28-21.

Caution: Any event handler that begins with the letters adp is
associated with adapters, and should not be modified. However, you
can modify system event handlers. These event handlers begin with
the letters tc.

Note: Selecting a check box does not mean that the event handler is
triggered at that time, for example, on preinsert. It signifies that the
event handler can run at that time.

Managing Event Handlers Using the Design Console

28-22 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ View the user groups that can add, modify, and delete the current data object.

■ Map the variables of an adapter to their proper source and target locations.

Figure 28–4 shows the Data Object Manager form.

Figure 28–4 Data Object Manager Form

Table 28–7 describes the fields of the Data Object Manager form.

The following section describes how to select the target data object to which a rule
generator adapter, entity adapter, or event handler will be assigned.

Selecting a Target Data Object
To select a target data object:

1. Open the Data Object Manager form.

2. Double-click the Form Description field.

From the Lookup dialog box displayed, select the name of the form that is
associated with the data object to which you want to assign an event handler, rule
generator adapter, or entity adapter.

See Also: Chapter 8, "Using the Adapter Factory" for more
information about adapter variables, rule generator adapters, and
entity adapters

Table 28–7 Fields of the Data Object Manager Form

Fields Description

Form Description The name of the form that is associated with the data object.

Data Object The name of the data object to which you are assigning event
handlers rule generator adapters, or entity adapters.

Managing Event Handlers Using the Design Console

Developing Event Handlers 28-23

After you select a form, the name of the corresponding data object is displayed in
the Data Object field.

3. Click Save.

The target data object is selected. You can now assign rule generator adapters,
entity adapters, and event handlers to it.

28.9.2.1 Tabs of the Data Object Manager Form
After you start the Data Object Manager form and select a target data object, the tabs
of this form become functional.

The Data Object Manager form contains the following tabs:

■ Attach Handlers

■ Map Adapters

Each of these tabs is described in the following sections:

■ Attach Handlers Tab

■ Map Adapters Tab

28.9.2.1.1 Attach Handlers Tab You use this tab to select the rule generator adapters,
entity adapters, or event handlers that will be assigned to or removed from a data
object. This includes the following:

■ Specifying when Oracle Identity Manager triggers the assigned event handlers or
adapters (on pre-insert, pre-update, pre-delete, post-insert, post-update, or
post-delete).

■ Setting the order in which Oracle Identity Manager triggers the adapters or event
handlers that belong to the same execution schedule.

When an event handler, rule generator adapter, or entity adapter must no longer be
triggered by Oracle Identity Manager, you must remove it from the data object.

For example, Oracle Identity Manager can trigger the adpCONVERTTOLOWERCASE,
adpSOLARISHMDSTRINGGEN, adpSETSOLARISASSET, and adpSETPASSWORDFROMMAIN
adapters on pre-insert. Based on the sequence numbers of these adapters, Oracle
Identity Manager triggers the adpCONVERTTOLOWERCASE adapter first, followed by the
adpSOLARISHMDSTRINGGEN, adpSETSOLARISASSET, and adpSETPASSWORDFROMMAIN
adapters, respectively.

The following sections discuss these procedures:

■ Assigning an event handler, rule generator adapter, or entity adapter to a data
object

■ Organizing the execution schedule of event handlers or adapters

■ Removing an event handler, rule generator adapter, or entity adapter from a data
object

28.9.2.1.2 Assigning an Event Handler or Adapter to a Data Object

Note: To see the user groups that can add, modify, and delete the
current data object, click the Insert Permissions, Update Permissions,
or Delete Permissions tabs, respectively.

Managing Event Handlers Using the Design Console

28-24 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

To assign an event handler or adapter:

1. Select the tab of the Data Object Manager form that represents when you want the
adapter or event handler to be triggered.

For example, if you want Oracle Identity Manager to activate an adapter on
pre-insert, select the Pre-Insert tab.

2. From the selected tab, click Assign.

The Assignment dialog box is displayed.

3. Select the event handler or adapter, and assign it to the data object.

4. Click OK.

The event handler or adapter is assigned to the data object.

28.9.2.1.3 Organizing the Execution Schedule of Event Handlers or Adapters

To organize the execution schedule:

1. Select the event handler or adapter whose execution schedule you want to change.

2. Click Assign.

The Assignment dialog box is displayed.

3. Select the event handler or adapter.

4. If you click Up, the selected event handler or adapter will switch places and
sequence numbers with the event handler or adapter that precedes it.

If you click Down, the selected event handler or adapter will switch places and
sequence numbers with the event handler or adapter that follows it.

5. Repeat Steps 3 and 4 until all event handlers and adapters have the appropriate
sequence numbers.

6. Click OK.

The event handlers and adapters will now be triggered in the correct order for the
execution schedule or schedules that you organized.

28.9.2.1.4 Removing an Event Handler or Adapter from a Data Object

To remove an event handler or adapter:

1. Select the desired event handler or adapter.

2. Click Delete.

The event handler or adapter is removed.

28.9.2.1.5 Map Adapters Tab The Map Adapters tab becomes operational only after you
assign a rule generator adapter or entity adapter to the data object.

You use this tab to map the variables of a rule generator or entity adapter to their
proper source and target locations. For example, suppose the
adpSOLARISUSERIDGENERATOR adapter has three variables: firstname, Adapter return
value, and lastname. If a Y is displayed in the Mapped column for each adapter
variable, this signifies that all three variables are mapped to the correct locations, and
the adapter's status will change to Ready.

Managing Event Handlers Using the Design Console

Developing Event Handlers 28-25

For more information about compiling adapters and mapping its variables, see
Chapter 8, "Using the Adapter Factory".

Note: An adapter can have any one of the following three statuses:

■ Ready: This adapter has successfully compiled, and all of its
variables are mapped correctly.

■ Mapping Incomplete: This adapter has successfully compiled, but
at least one of its variables has been not mapped correctly.

■ Mapping Incomplete: This adapter has successfully compiled, but
at least one of its variables has not been mapped correctly.

Note: If no adapters are assigned to a data object, the Map Adapters
tab is grayed out.

Managing Event Handlers Using the Design Console

28-26 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

29

Understanding Context 29-1

29Understanding Context

[30]

A context is the environment in which an Oracle Identity Manager operation is
performed. For example, a user creation operation performed on the Oracle Identity
Self Service is carried out in the Web context. The following information constitutes the
context or environment in which this operation is performed:

■ User performing the operation

■ Date and time at which the request is submitted

■ Proxy that is used to reach the application server

For example, if the user is created by running the bulk load utility, the context includes
the user who started the bulk load utility, the computer from which the operation is
being performed, and so on.

A context is maintained in main-memory. It consists of a set of context variables where
each context variable has both a name and value. Each functional component involved
in an operation, such as request management, reconciliation, or notification, can add
values to the context. Context values can only be set, they cannot be modified. The
context values act as a means of communication across components involved in an
operation.

Context variable values are loaded into memory only when they are required. This
enhances performance. A context also acts as a cache of the typical values required by
event handlers. This helps reduce the need to fetch values from the repository each
time the values are required.

■ Child Context

■ Context Types

29.1 Child Context
A child context is a subcontext that is initiated while an operation is in progress. For
example, if user creation operation involves provisioning of resource through access
policies, resource provisioning runs in the access policy context, which is the child
context of the one in which user is being created. This means that contexts can be
nested, and there can be a stack of contexts. New contexts can be created by functional
components, and further processing starts using the newly created context.

29.2 Context Types
Context Manager supports the following context types:

Context Types

29-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ SELF: Operation is initiated through Oracle Identity Self Service.

■ ADMIN: Operation is initiated through Oracle Identity System Administration.
This is the default context.

■ RECON: Operation is performed by reconciliation.

■ REQUEST: Operation is performed by a request.

■ POLICY: Operation is performed because of access policy.

Calling ContextManager.getContextType() should tell the type of context. Some of the
information that you can retrieve under various contexts are:

■ Scheduled tasks run in ADMIN context: Some of the information that can be
retrieved are:

– Job name: ContextManager.getValue("JOBNAME")

– Task name: ContextManager.getValue("TASKNAME")

■ Reconciliation context: The profile from which the reconciliation event has been
created can be retrieved by ContextManager.getValue("profileName") method call.

■ Request context: You can retrieve the request key by using the following code:

HashMap<String, ContextAware> requestContext = (HashMap<String, ContextAware>)
ContextManager.getValue("requestData", true);
requestContext.get("requestKey");

■ Policy context: ContextManager.getContextKey() provides the policy that is
evaluated. If multiple policies are applicable, then this returns the highest priority
policy key.

Part VII
Part VII Customization

This part describes how to customize the user interfaces available with Oracle Identity
Manager.

It contains the following chapter:

■ Chapter 30, "Customizing the Interface"

30

Customizing the Interface 30-1

30 Customizing the Interface

[31]

This chapter explains how to customize various aspects of the user interfaces available
in Oracle Identity Manager.

The Identity Self Service user interface (UI) in Oracle Identity Manager is based on
Application Development Framework (ADF), which ensures consistent customization.
ADF allows UI customization that is safe from patches and upgrades. This means that
after you apply patches to Oracle Identity Manager or upgrade Oracle Identity
Manager, the UI customizations are preserved.

This chapter describes customizing various aspects of the UI in the following sections:

■ Customization Concepts

■ Managing Sandboxes

■ Skin Customization in Oracle Identity Manager

■ Customizing Pages at Runtime

■ Securing UI Components

■ Customizing Oracle Identity Manager Help

■ Customizing the Home Page

■ Customizing Challenge Questions

■ Customizing the Transitional UI

■ Developing Managed Beans and Task Flows

■ Migrating UI Customizations

■ UI Customization Best Practice

■ Rolling Back UI Customization

Note: Oracle Identity Manager 11g Release 2 (11.1.2.1.0) includes a
number of UI pages based on earlier UI technologies known as
transitional UIs. Due to technical differences, the transitional UIs are
displayed in popup windows and have a different look and feel. These
UIs are discussed in the relevant sections in this chapter.

Customization Concepts

30-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

30.1 Customization Concepts
This section describes the concepts related to UI customization in the following
sections:

■ Deployment of UI Libraries and Applications

■ Overview of MDS Customization

■ Overview of the Web Composer

30.1.1 Deployment of UI Libraries and Applications
ADF supports inbuilt customization and MDS customization. The customization is
achieved by developing new UI artifacts or skins, and packaging them in custom
library WAR files. Skins and stylesheets are mechanisms to allow customization of the
look and feel of the UI. The advantage of using stylesheet changes and custom skins is
that they are centralized changes and easier to manage.

Figure 30–1 shows the various Oracle Identity Manager UI libraries and their
dependency structure.

Figure 30–1 Oracle Identity Manager UI Libraries

The custom library is a placeholder library that you can use to add new taskflows built
by using the default libraries. The Self Service EAR declares weblogic.xml dependency
on the library-ref name oracle.iam.ui.custom. This library is provided by
oracle.iam.ui.custom-dev-starter-pack.war. You can change the WAR file name for the
custom library per naming conventions in your organization. However, the
deployment name (library extension name in MANIFEST.MF) must be retained as
oracle.iam.ui.custom. Otherwise, Self Service ear will not be deployed.

Customization Concepts

Customizing the Interface 30-3

The Oracle Identity Analytics (OIA) deployment name is oracle.iam.ui.oia-view.

30.1.2 Overview of MDS Customization
Using the customization features provided by MDS, you can create applications that
fall into the following customization patterns:

■ Seeded customization: Seeded customization of an application is the process of
taking a generalized application and making modifications to suit the
requirements of a particular group, such as a specific industry or site. Seeded
customizations exist as part of the deployed application, and endure for the life of
a given deployment.

■ User customization: User customization allows an end user to change the content
of the application at runtime to suit individual preferences (for example, which
columns are visible in a table), and have those changes retained the next time the
user opens the application.

■ Runtime customization: Using the features of Oracle WebCenter, you can create
applications that are customizable at runtime. This allows business analysts or
administrators to customize the application for their end users by using a Web
browser interface.

For detailed information about customizing applications with MDS, see "Customizing
Applications with MDS" in the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework.

30.1.3 Overview of the Web Composer
Oracle Web Composer is an innovative component that enables any application or
portal to be customized or personalized after it has been deployed and is in use. Oracle
Web Composer runs in all modern Web browsers and enables editing JSF applications
and portal pages by selecting information and components from the Business
Dictionary or Resource Catalog.

The customization capabilities of the Web Composer include inserting a logo or
altering the colors to match those of your company, and complex customizations,
adding items to a page, changing the layout of a page, altering a supplied process, and
specifically tailoring the delivered application or portal to meet any business
requirement. These customizations can be stored in the Oracle Identity Manager
database by using Oracle Metadata Services (MDS). For example, to store
customizations in the database, the Web Composer creates a copy or sandbox for the
pages as they are being edited. The sandbox is a temporary storage area to save a
group of runtime page customizations before they are either saved and pushed to
other users, or discarded. In this way, customizations can be previewed by others and
approved for use before they are visible to all users. See "Managing Sandboxes" on
page 30-4 for more information about sandboxes.

Personalization changes your view of the interface or application page. Other users are
not affected by the changes you make to a page. The pages can be personalized by
individual users to add any combination of components to their page whenever they
want them without affecting the view of the page for other users.

Oracle Web Composer is integrated with Oracle WebCenter Framework and
WebCenter Services. You can add Oracle Web Composer components to your JSF
application pages to enable users to edit those pages at runtime. You can add the
components at any time during the development lifecycle, when the requirements of
the application demand it. In addition, you can use the page service to enable users to
create pages at runtime. Oracle Web Composer has been leveraged inside Oracle

Managing Sandboxes

30-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

WebCenter Spaces to allow users to customize and personalize personal and group
spaces. The Oracle WebCenter Spaces application provides a working example of how
users can take an active role in managing and altering their work environment to
match their specific requirements. Figure 30–2 shows the Oracle Web Composer
architecture.

Figure 30–2 Oracle Web Composer Architecture

30.2 Managing Sandboxes
All customizations and form management are performed in a sandbox. A sandbox
allows you to isolate and experiment with customizations without affecting the
environment of other users. Any user-interface changes made to a sandbox are visible
only in the sandbox. You must create and activate a sandbox to begin using the
customization and form management features. After customizations and extending
forms are complete, you can publish the sandbox to make the customizations available
to other users.

Some of the sandbox operations are:

■ Activate: You must activate a sandbox to use it. After you activate the sandbox,
any changes to UI metadata objects, for example pages and forms, are stored only
in the sandbox. There can be only one active sandbox at a time. The information
about the active sandbox is stored in the session. Therefore, a sandbox must be
activated to continue with customization after every login to Oracle Identity
Manager.

Caution: After creating a sandbox, you must activate it. If you do not
activate a sandbox, then you will not be allowed to perform
operations on the sandbox later, or might not get the desired result.
For example, if you create a sandbox but do not activate it, create a
disconnected application instance, run catalog synchronization
scheduled job, login to Identity System Administration, and try to
checkout the disconnected application instance on the Catalog page,
an error will be generated. You can perform this operation without
any error, if you activate the sandbox after creating it and after every
login to Identity Self Service or Identity System Administration.

Composite
Applications

Portals WebCenter
Spaces

WebCenter Portal
Framework

WebCenter
Services

Application Development Framework

MetaData
Services

C
o
m
p
o
s
e
r

Page
Personalization

Page
Customization

Managing Sandboxes

Customizing the Interface 30-5

■ Deactivate: Reverse operation to activating a sandbox. If no sandbox is active,
then changes to metadata objects are not allowed, and therefore, no UI
customization is allowed.

■ Publish: You must publish a sandbox to merge the changes stored in the sandbox
to the mainline and make it available to other users. After you publish the
sandbox, the changes are merged to the mainline and cannot be reverted. The
sandbox can no longer be activated, deactivated, exported, or deleted.

■ Export: You can export all changes stored in the sandbox including sandbox
metadata to a ZIP file. Then, you can import these changes to the same or another
environment.

■ Import: You can import the sandbox archive (ZIP file) to an environment.
Imported sandbox can be used normally as it would have been created in the
environment. Beware when importing sandboxes that any available sandbox with
the same name will be overwritten by the imported sandbox.

Sandbox management and sandbox operations resemble operations with concurrent
versioning system. You can think of a sandbox as a branch in the versioning system.
Creating a sandbox is similar to creating a branch. Activating a sandbox is similar to
performing changes on top of the branch, and publishing a sandbox is similar to
merging the content of the branch to the main branch, sometimes referred to as trunk.

This section describes how to manage sandboxes in the following sections:

■ Handling Concurrency Conflicts

■ Creating a Sandbox

■ Activating and Deactivating a Sandbox

■ Viewing and Modifying Sandbox Details

Note: Before publishing a sandbox, close all tabs and pages of the
Identity Self Service or Identity System Administration, and export
the sandbox to a ZIP file to have a backup of UI customizations done.

Oracle recommends creating a backup of the MDS before publishing
any sandbox. MDS backup can be created by using tools, such as
Oracle Enterprise Manager. See "Creating MDS Backup" on page 37-3
for information about creating a backup of the MDS by using Oracle
Enterprise Manager.

Caution: Any available sandbox with the same name is overwritten
by the imported sandbox.

Note: When you create a sandbox, a new branch is created. You can
modify MDS content within that branch. Note that you will not be
able to view the changes made in other sandboxes that are created
later and published to the main branch. Similarly, when you try to
merge this sandbox, a concurrent modification exception is generated.
It is recommended that you edit the contents of the sandbox manually
to remove the conflicting files. However, if manual editing is not
possible, then create a new sandbox again and redo the change.

Managing Sandboxes

30-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Exporting and Importing a Sandbox

■ Publishing a Sandbox

■ Checking Out an Item from Cart

■ Deleting a Sandbox

■ Reverting Changes to Default Settings

30.2.1 Handling Concurrency Conflicts
Multiple users can customize an application by using sandboxes. While doing so, the
following types of concurrency conflicts might take place:

■ Conflicts within a sandbox: Users overwriting changes created by other users,
either directly by changing the same artifact, or indirectly by affecting files that are
shared between the artifacts.

Conflicts within a sandbox can arise when multiple users are customizing an
application by using the same sandboxes at the same time, because more than one
user may be attempting to customize the same artifact, or performing a
customization task that indirectly affects other shared files. An example of a direct
conflict is when different users attempt to customize the same page, the same
fragment, or the same metadata file in the same layer. An example of an indirect
conflict is when two users, each creating their own object, cause a conflict in the
metadata file that tracks which new objects have been created by both saving their
changes around the same time. Conflicts may also arise when users are editing a
shared artifact, such as when a user performs an operation that adds or edits a
translatable string. For example, a user edits a field's display label or help text, or a
validation rule's error message, while another user performs an operation around
the same time that similarly affects translatable strings. Another example of a
shared artifact conflict is when two or more users are working in navigator menus
which are shared across applications.

■ Conflicts between sandboxes intended for publishing: Multiple sandboxes with
the same customized artifact publishing to the mainline.

Conflicts between sandboxes can arise when there is more than one sandbox
intended for publishing in use. If two sandboxes contain conflicting customization
changes to the same artifact and both are being published, then the sandbox that is
being published last will not be allowed to be published, and an error describing
the conflict will be displayed. To avoid such conflicts, it is recommended to create
and use only one sandbox at a time. These types of conflicts can also occur with
shared metadata files such as resource bundles that store translatable strings.

When multiple users are working in a single sandbox, these guidelines must be
followed:

■ Multiple concurrent users in the same sandbox must operate only on different and
unrelated objects. For example, if user1 updates object1, then user2 can update
object2 but should not update object1. Be aware that if both modifications involve
changes to translatable strings, then saving changes to separate objects around the
same time may still cause a conflict in the resource bundle that stores the
translatable strings.

■ Users in the same sandbox can see the changes created by one another. The latest
version of each object gets loaded on-demand the first time it is viewed. If there
are ADF Business Components customizations, then users must log out and log in
again to see those changes reflected in the UI.

Managing Sandboxes

Customizing the Interface 30-7

When multiple users are working in multiple sandboxes, in addition to all guidelines
applicable to multiple users working in a single sandbox, these guidelines must be
followed:

■ There can be any number of test-only sandboxes operating concurrently. Multiple
users can use multiple sandboxes concurrently for testing even if these sandboxes
are never published. Sandboxes that are used for testing only, and that are not
published, cause no conflicts with each other, but all guidelines for multiple users
working in a single sandbox must be followed. However, all modifications are lost
when the sandboxes are deleted.

■ For sandboxes that will be published, you can have multiple concurrent sandboxes
only if they operate on mutually exclusive artifacts. For example, you can have
one sandbox that contains a page that is being customized to add a task flow, and
another sandbox that contains a different page from a different application.

■ If an artifact is updated in both the mainline and in the sandbox (or two different
sandboxes), when the sandbox is published, such conflicts are detected and an
error is generated.

30.2.1.1 Troubleshooting Concurrency Issues
Table 30–1 lists the issues that you might encounter if there are concurrency conflicts in
the sandbox usage and the possible solutions.

Table 30–1 Toubleshooting Concurrency Issues

Example Scenario Problem Solution

Working on multiple sandboxes
intended for publishing
concurrently:

Create sandbox S1, create sandbox
S2, make changes to S2, publish S2,
make changes to S1, and publish S1.

When you try to publish S1, an error
is thrown.

Create a new sandbox and redo the
changes.

Managing Sandboxes

30-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

30.2.2 Creating a Sandbox
To create a sandbox:

1. Log in to Oracle Identity Self Service or Oracle Identity System Administration.

2. On the upper navigation bar, click Sandboxes. The Manage Sandboxes page is
displayed. This page has the following sections:

■ Available Sandboxes: Displays all the sandboxes that are available for testing
the UI customizations, which are not yet published.

■ Published Sandboxes: Displays all the published sandboxes.

3. On the toolbar, click Create Sandbox. The Create Sandbox dialog box is displayed.

4. In the Sandbox Name field, enter a name for the sandbox. This is a mandatory
field.

Migrating sandboxes out-of-order:

In environment 1, create sandbox S1,
make changes to S1, export and
publish S1. Repeat the same for S2.

In environment 2, import S2, publish
S2. Then, import S1,and publish S1.

Sandboxes S1 and S2 are published
in different order.

If there is any overlap between S1
and S2, for example both sandboxes
updated the same MDS document),
then changes made as part of S2 are
overwritten by S1.

For example, if AD connector form is
created as part of S1 and EBS
connector form is created as part of
S2, then there will be overlap in
CatalogAM.xml.xml and BizEditor
resource bundle file. After the
migration, both CatalogAM.xml.xml
and BizEditor resource bundle only
contain changes for AD Connector
developed as part of S1.

Publish the sandboxes in correct
order. You will be able to republish
them.

Skipping sandbox during migration:

In environment 1, create sandbox S1,
make changes to S1, export and
publish S1. Repeat the same for S2.

In environment 2, import S2, publish
S2. Do not migrate S1 at all.

S1, which is published in
environment 1, is not migrated to
environment 2.

If S2 depends on changes made as
part of S1, then those changes will be
missing in environment 2.

Publish both sandboxes. You will be
able to re-publish them.

Migrating sandboxes from multiple
source environments:

In environment 1, create sandbox S1,
make changes to S1, export and
publish S1.

In environment 2, create sandbox S2,
makes changes to S2, export and
publish S2.

In environment 3, import S1, publish
S1. Import S2, and publish S2.

If there is any overlap between S1
and S2, for example both sandboxes
updated the same MDS document,
then changes made as part of S1 will
be lost.

For example, if AD connector form is
created as part of S1 and EBS
connector form is created as part of
S2, then there will be overlap in
CatalogAM.xml.xml and BizEditor
resource bundle file. After the
migration, both CatalogAM.xml.xml
and BizEditor resource bundle only
contain changes for EBS Connector
developed as part of S2.

Manually merge the sandboxes into
one.

Table 30–1 (Cont.) Toubleshooting Concurrency Issues

Example Scenario Problem Solution

Managing Sandboxes

Customizing the Interface 30-9

5. In the Sandbox Description field, enter a description of the sandbox. This is an
optional field.

6. Click Save and Close. A message is displayed with the sandbox name and
creation label.

7. Click OK. The sandbox is displayed in the Available Sandboxes section of the
Manage Sandboxes page.

30.2.3 Activating and Deactivating a Sandbox
To activate a sandbox:

1. From the table showing the available sandboxes in the Manage Sandboxes page,
select the sandbox that you want to activate.

2. On the toolbar, click Activate Sandbox.

The table refreshes and a marker in the Active column is displayed. In addition,
the Sandboxes link on the upper navigation bar also displays the active sandbox
name in parentheses.

To deactivate a sandbox:

1. From the table showing the available sandboxes in the Manage Sandboxes page,
select the active sandbox that you want to deactivate.

2. On the toolbar, click Deactivate Sandbox. The page refreshes and the marker in
the Active table disappears.

30.2.4 Viewing and Modifying Sandbox Details
To view the details of a sandbox and modify the details:

1. In the table showing the available sandboxes in the Manage Sandboxes page, click
the sandbox name link. A dialog box with the sandbox details is displayed.

2. Make the following changes:

■ In the Description field, you can enter a description for the sandbox.

Caution: Selecting the Activate Sandbox option closes all the open
tabs except the Manage Sandboxes tab and activates the created
sandbox.

Note: You must close all tabs in the Self Service or System
Administration interfaces before activating or deactivating a sandbox.

Caution: If any other tabs are open except the Manage Sandboxes tab
before activating the sandbox, then Oracle Identity Manager prompts
that all the tabs will be closed before the sandbox can be activated.

Caution: If any other tabs are open except the Manage Sandboxes tab
before activating the sandbox, then Oracle Identity Manager prompts
that all the tabs will be closed before the sandbox can be activated.

Managing Sandboxes

30-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ View all the changes to the sandbox in the Change Details table.

■ Filter sandbox changes by using the Layer Names, Layer Values, and Change
Types lists, and the Filter toolbar icon.

■ Delete any changes made in the sandbox by selecting the change in the table,
and clicking Delete Customization.

■ Export the sandbox, if it contains any changes, by clicking Export Sandbox.

30.2.5 Exporting and Importing a Sandbox
To export a sandbox from an Oracle Identity Manager deployment to another:

1. From the table showing the available sandboxes in the Manage Sandboxes page,
select the sandbox that you want to export.

2. On the toolbar, click Export Sandbox.

If the sandbox contains any changes, then the sandbox content ZIP file starts
downloading. You can now take the ZIP file and import it to the same or another
environment.

To import a sandbox from an Oracle Identity Manager deployment to another:

1. On the toolbar, click Import Sandbox. The Import Sandbox dialog box is
displayed.

2. In the Sandbox Archive field, enter a path to the sandbox archive that you
exported.

3. Click Import.

The sandbox is imported to the target deployment and is displayed in the
Available Sandboxes tab.

30.2.6 Publishing a Sandbox
To publish a sandbox:

1. Before publishing the sandbox, close all the open tabs and pages.

Note: The name of the sandbox ZIP file is not the sandbox name. The
sandbox name usually starts with IdM_ and it is specified in the XML
file located inside the ZIP in the /mdssys/sandbox/ directory.

Caution: If the deployment on which the sandbox content ZIP file is
being imported already contains a sandbox with the same name, then
that sandbox will get overwritten.

Note: Oracle recommends creating a backup of MDS before
publishing the sandbox. A backup of MDS can be created by using
Oracle Enterprise Manager. See "Creating MDS Backup" on page 37-3
for information about creating a backup of the MDS by using Oracle
Enterprise Manager.

Managing Sandboxes

Customizing the Interface 30-11

2. From the table showing the available sandboxes in the Manage Sandboxes page,
select the sandbox that you want to publish.

3. On the toolbar, click Publish Sandbox. A message is displayed asking for
confirmation.

4. Click Yes to confirm. The sandbox is published and the customizations it
contained are merged with the main line.

5. You can click the Published Sandboxes tab to view a list of the published
sandboxes.

30.2.7 Checking Out an Item from Cart
To check out an item from cart:

1. Log in to Oracle Identity Self Service.

2. Create a sandbox. See "Creating a Sandbox" on page 30-8 for information about
creating a sandbox.

3. Activate the Sandbox that you created. See "Activating and Deactivating a
Sandbox" on page 30-9 for information about activating sandbox.

4. Create a disconnected application instance "disc1". By default it will be published
to top. See "Creating a Disconnected Application Instance" section in the Oracle
Fusion Middleware Developer's Guide for Oracle Identity Manager for information
about creating a disconnected application instance.

5. Publish the Sandbox. See "Publishing a Sandbox" on page 30-10 for information
about publishing a sandbox.

6. Run Catalog Synchronization Job.

7. Log in to Oracle Identity System Administration.

8. Click on Catalog and search for "disc1".

9. Click Add to add the item to the cart.

10. Click Checkout from Cart.

30.2.8 Deleting a Sandbox
To delete a sandbox:

1. From the table showing the available sandboxes in the Manage Sandboxes page,
select the sandbox that you want to delete.

2. On the toolbar, click Delete Sandbox. A message is displayed asking for
confirmation.

3. Click Yes to confirm. The sandbox is deleted and is no longer displayed in the
Manage Sandboxes page.

Note: If you don't activate the sandbox and try to add the
application instance to catalog, you will encounter an error.

Managing Sandboxes

30-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

30.2.9 Reverting Changes to Default Settings
You must perform all customizations within a sandbox. Until the sandbox is
published, the changes are visible to you only and can be easily reverted by
deactivating or deleting the sandbox. After the sandbox is published, the changes done
cannot be reverted.

You can remove specific changes from the sandbox in any one of the following ways:

■ Export the sandbox and modify it manually.

■ Navigate to the Manage Sandboxes page, open the details of your sandbox, select
a change, and delete it by clicking Delete Customization.

When an MDS sandbox is published, the documents are committed to the MAIN line.
Your application starts using these documents immediately, and the application user
views the effect of publishing the sandbox. Sometimes, you might inadvertently
publish an incomplete or a wrong sandbox. In such instances, it is possible to recover
your MAIN line to the state just before you created the wrong sandbox.

For example, if you create a sandbox called ShowAdminFeature at time T1, and in that
you customized a JSFF fragment published at time T2. You realize later that the
sandbox you published is wrong, and you want to recover your state to time T1. To do
so:

1. Login to Oracle Enterprise Manager.

2. On the left pane, expand Application Deployments, Resource Adapters, and
select the oracle.iam.ui.console.self-service application.

3. On the top of the right pane, click Application Deployment, and select MDS
Configuration.

4. At the lower part of the right pane, click the Runtime MBean Browser link. The
screen refreshes.

5. Click the Operations tab.

6. Scroll down and select the listMetadataLabels MBean operation, and then click
Invoke. All the sandboxes precreation labels and postpublish labels are displayed.
Select the sandbox precreate to which you want to restore and copy it to clipboard.

7. Click Return to go back to the operations.

8. Select the promoteMetadataLabel MBean operation and invoke it by provisioning
the value that you copied in step 6.

9. Restart oim_server1.

Your MDS main line is reverted to the state that was at the time of creation of the
sandbox.

Note: Deleting a sandbox does not delete the forms created while the
sandbox is active. Deleting forms is not supported in this release of
Oracle Identity Manager.

Note: You can also restore to the last successful sandbox that was
published by restoring to the post label of that sandbox.

Skin Customization in Oracle Identity Manager

Customizing the Interface 30-13

30.3 Skin Customization in Oracle Identity Manager
Oracle ADF uses skins along with styles to customize the appearance of an
application. These concepts apply to all the Oracle Identity Manager interfaces, with
the exception of the Transitional UI popups.

You configure new skins in trinidad-config.xml. The default skin for Oracle Identity
Manager is "fusion":

<?xml version="1.0" encoding='utf-8'?>
<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
 <skin-family>fusion</skin-family>
</trinidad-config>

There are two console-specific trinidad-config.xml files. The files are in the following
directory paths:

■ oracle.iam.console.identity.self-service.ear/oracle.iam.console.identity.self-service.wa
r/WEB-INF/

■ oracle.iam.console.identity.sysadmin.ear/oracle.iam.console.identity.sysadmin.war/
WEB-INF/

■ oim.ear/iam-consoles-faces.war/WEB-INF/

30.3.1 Configuring a New Skin
To create a new skin:

1. In each WEB-INF directory, create the trinidad-skins.xml file, as shown:

<?xml version="1.0" encoding='utf-8'?>
<skins xmlns="http://myfaces.apache.org/trinidad/skin">
 <skin>
 <id>myskin.desktop</id>
 <family>myskin</family>
 <extends>fusionFx-v1.desktop</extends>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name>skins/myskin/myskin.css</style-sheet-name>
 </skin>
</skins>

2. Configure the following system properties:

■ Skin Family for OIM UI: The ADF skin family for Oracle Identity Manager UI
that the application uses at runtime.

■ Skin Version for OIM UI: The skin version, if any, for the skin family being
used for Oracle Identity Manager UI.

See Also: Before customizing style sheets, see Customizing the
Appearance Using Styles and Skins in the Fusion Middleware Web User
Interface Developer's Guide in the following URL:

http://download.oracle.com/docs/cd/E15523_01/web.1111/b31973
/toc.htm

Following URL gives a list of all the CSS style selectors that can be
used to customize the style sheets:

http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e1
5862/toc.htm

Skin Customization in Oracle Identity Manager

30-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Change the values of these properties to your custom skin. Before setting the
values of these properties, the custom ADF skin must be developed and then
deployed into Oracle Identity manager.

Oracle ADF faces provide simplified default skins, such as
fusionFx-simple-v2.desktop, which are designed to be extended by custom skins.
The ADF skin that you create must extend either one of the ADF skins that Oracle
ADF provides or from an existing ADF skin that you created. Skins are reusable
components and must be created in their own JDeveloper project or workspace.
You can create an ADF skin file in the ADF Skin Editor that defines how ADF faces
components render at runtime.

3. If required, adjust the height of the top branding bar to fit the new logo image in
the following:

oracle.iam.console.identity.self-service.ear/oracle.iam.console.identity.self-s
ervice.war/oracle/iam/ui/main

For the login page (signin.jspx):

<f:attribute name="globalBrandingSize" value="64"/>

For the page displaying challenge questions (firstlogin.jspx):

<f:attribute name="globalHeaderSize" value="64"/>

For the pages in Identity Self Service (identity.jspx):

<f:attribute name="globalHeaderSize" value="64"/>

4. In the
oracle.iam.console.identity.self-service.ear/oracle.iam.console.identity.self-service.
war/WEB-INF/web.xml file, include the following settings:

<context-param>

See Also: "System Properties in Oracle Identity Manager" in the
Oracle Fusion Middleware Administrator's Guide for Oracle Identity
Manager for information about the Skin Family for OIM UI and Skin
Version for OIM UI system properties

See Also:

■ "Inheritance Relationship of the ADF Skins Provided by Oracle
ADF" in the Oracle Fusion Middleware Skin Editor User's Guide
for Oracle Application Development Framework for information
about the inheritance relationship between the ADF skins that
Oracle ADF provides

■ "ADF Skins Provided by Oracle ADF" in the Oracle Fusion
Middleware Skin Editor User's Guide for Oracle Application
Development Framework for information about the levels of
customization in the ADF skins provided by Oracle ADF and for a
recommendation about the ADF skin to extend

■ Oracle Fusion Middleware Skin Editor User's Guide for Oracle
Application Development Framework and Oracle Fusion Middleware
Web User Interface Developer's Guide for Oracle Application
Development Framework for detailed information about ADF
custom skin development and deployment

Skin Customization in Oracle Identity Manager

Customizing the Interface 30-15

 <description>No obfuscation of CSS.</description>

<param-name>org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION</param-name
>
 <param-value>true</param-value>
</context-param>
<context-param>
 <description>If this parameter is true, there will be an automatic check of
the modification date of your JSPs, and saved state will be discarded when
JSP's change. It will also automatically check if your skinning css files have
changed without you having to restart the server. This makes development
easier, but adds overhead. For this reason this parameter should be set to
false when your application is deployed.</description>
 <param-name>org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION</param-name>
 <param-value>true</param-value>
</context-param>

30.3.2 Configuring Skin for Legacy Advance Console
To keep the defaults coming from the "fusion" skin and override certain style sheet
elements:

1. Create the skin in the trinidad-skins.xml file. Declare the skin in a new file
oim.ear/iam-consoles-faces.war/WEB-INF/trinidad-skins.xml, as shown:

<?xml version="1.0" encoding='utf-8'?>
<skins xmlns="http://myfaces.apache.org/trinidad/skin">
 <skin>
 <id>myskin.desktop</id>
 <family>myskin</family>
 <extends>fusion.desktop</extends>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name>skins/myskin/myskin.css</style-sheet-name>

<bundle-name>oracle.iam.consoles.faces.resources.AdfComponentsMessageBundle</bu
ndle-name>
 </skin>
</skins>

2. Register the new "myskin" in both the /WEB-INF/trinidad-config.xml file and the
iam-consoles-faces.war/WEB-INF/trinidad-config.xml file, as shown:

<?xml version="1.0" encoding='utf-8'?>
<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
 <skin-family>myskin</skin-family>
</trinidad-config>

3. Create new skin CSS file
oim.ear/iam-consoles-faces.war/skins/myskin/myskin.css.

4. In myskin.css, put stylesheet elements that are required to be overridden from the
defaults. For example, to change the branding text color, add the following:

.AFBrandingBarTitle, .xdj
{
 color:#800080;
}

5. Redeploy (or update) the Oracle Identity Manager deployment through the Oracle
WebLogic Server Administration Console.

Skin Customization in Oracle Identity Manager

30-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

30.3.3 Changing Branding and Logo
Customizing or changing UI artifacts, such as logo, buttons, and menu items, can be
done at runtime by using Oracle WebCenter Composer.

To change the logo image:

1. Log in to Oracle Identity Self Service as the system administrator.

2. Create and activate a sandbox.

3. Click Customize. The Oracle WebCenter Composer opens. The top of the page
shows 'Editing Page'.

4. From the View list, select Source. The object tree is displayed in the top pane. The
object tree shows all the ADF components of the page.

5. Click the logo. The logo object is selected in the object tree, as shown in
Figure 30–3:

Note: To change the branding information as an alternative to the
method in "Changing Branding and Logo" on page 30-16, create a
custom skin and use the appropriate style classes given in the URL in
this section.

Note: The procedure documented in this section is for changing the
branding and logo by customizing Oracle Identity Self Service. If you
want to customize UI artifacts of the window that opens from the
Oracle Identity System Administration, for example, the window that
opens when you click System Configuration under System
Management, then see "Branding Customization" at the following
URL:

http://docs.oracle.com/cd/E21764_01/doc.1111/e14309/uicust.h
tm#BABFCFID

Note: Creating and activating a sandbox is mandatory for
customizing the UI by using the Web Composer. Without an active
sandbox, Oracle Identity Manager does not allow to open any page in
customization mode.

Skin Customization in Oracle Identity Manager

Customizing the Interface 30-17

Figure 30–3 The Object Library in WebCenter Composer

The ADF components displayed in the object tree is similar to the structure pane in
JDeveloper, as shown in Figure 30–4:

Skin Customization in Oracle Identity Manager

30-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 30–4 The Structure Pane

6. Click Edit. The Component Properties dialog box is displayed.

7. Click the Style tab.

8. In the Background Image field, enter the path to the logo image that you want to
set, for example, url(/identity/faces/images/mylogo.jpg).

Figure 30–5 shows the Style tab of the Component Properties dialog box:

Note: For a complete list of UI components, see Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

Tip:

■ Customizing the default EAR and WAR files, such as Self Service
EAR, System Administration EAR, and xlWebApp.war, is not
supported.

■ By default, the Oracle logo is 119x25 pixels. Therefore, you can use
a custom logo of the same dimensions. If you want a bigger logo,
then it requires CSS changes.

Skin Customization in Oracle Identity Manager

Customizing the Interface 30-19

Figure 30–5 The Component Properties Dialog Box

9. To change the Identity Self Service global banner, click the Identity Self Service
text, and repeat steps 5 to 7.

10. Click Save to save the logo and global banner changes.

11. Click Close to close WebCenter Composer.

12. Publish the sandbox.

Tip: If you want to specify a font for any ADF component by using
the Style tab of the Component Properties dialog box, then ensure that
your target browsers and platforms support that specific font name.
To look at the supported list for Mozilla Firefox, select Tools, Options,
Content, Fonts and Colors. For Microsoft Internet Explorer, select
Tools, Internet Options, General, Fonts.

Tip: To change the banner in the Oracle Identity Manager login page,
you must open the login page in the customization mode. However,
the Customize link is not available in the login page. Therefore, to
open the login page in customization mode:

1. Login to Oracle Identity Self Service as an administrator with privileges
to customize the UI.

2. In an active sandbox, click the Customize link. The Oracle Identity Self
Service is in customization mode.

3. Perform the steps described in "Customizing the User Registration and
Other Unauthenticated Pages" on page 30-30.

Customizing Pages at Runtime

30-20 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

30.4 Customizing Pages at Runtime
Customizing Oracle Identity Manager can be broadly categorized into customizing the
UI and extending the object definitions of the user, role, catalog, and provisioning
target resource entities.

Table 30–2 lists the artifacts that can be customized for each entity.

Note: Runtime UI customization changes the banner text. However,
it does not allow you change the browser title, for instance, the title
that appears in the browser window, HTML>HEAD>TITLE text or the
browser tab title if using tabs.

If you want to change the browser text title, then you have to
manually edit the value in the resource bundle file
OIMUIBundle_*.properties, and redeploy as follows:

oracle.iam.ui.view.war/WEB-INF/lib/adflibCommonUI.jar/oracle/ia
m/ui/OIMUIBundle_en.properties:

IDENTITY_SELF_SERVICE_TITLE=Identity Self Service

See "Internationalization for Resource Strings" on page 30-23 for
information about creating and using the custom resource bundles.

Table 30–2 Entity Artifacts for Customization

Entity Artifacts

User Create Page

Modify Page

User Attribute Details

Advanced Search Interface

My Information

Self Registration

Role Create Page

Modify Page

Advanced Search Interface, which includes:

- Query Criteria

- Results Table columns

Catalog Catalog Search Page that includes:

- Results Table columns

- Catalog Item Details

Provisioning target resource Provisioning Target Resource Create Form

Provisioning Target Resource Modify Form

Provisioning Target Resource Bulk Form

See Also: "Managing Forms" and "Configuring Custom Attributes"
in the Oracle Fusion Middleware Administrator's Guide for Oracle Identity
Manager for information about creating and managing forms by using
the Form Designer

Customizing Pages at Runtime

Customizing the Interface 30-21

This section contains the following topics:

■ Using Expression Language in UI Customization

■ Showing or Hiding UI Components Conditionally

■ Showing Request Profiles Conditionally

■ Validating Input Data Using ADF Validators

■ Marking Input Attribute as Required

The Web Composer enables you to customize the UI at runtime. This section describes
the following UI customizations:

■ Adding a Link or Button

■ Hiding and Deleting an ADF Component

■ Showing and Hiding Attributes

■ Customizing the User Registration and Other Unauthenticated Pages

■ Customizing Certification Pages

30.4.1 Using Expression Language in UI Customization
Expression Language (EL) allows you to access application data stored in JavaBeans
components. For an introduction to EL and EL expression syntax, refer to the
following URL:

http://developers.sun.com/docs/jscreator/help/2update1/jsp-jsfel/jsf_expre
ssion_language_intro.html

30.4.1.1 Avaliable EL Expressions in the User Context
The OIMContext bean is defined as an ADF session scope bean in adfc-config.xml in
your project. Table 30–3 lists the available EL expressions in the Oracle Identity
Manager user context.

Table 30–3 EL Expressions in User Context

EL Description

#{oimcontext.currentUser['ATT
RIBUTE_NAME']}

Access value of the ATTRIBUTE_NAME attribute of the
logged-in user.

For the list of default attributes defined for the user entity,
see "Attribute Definitions" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Manager.

#{oimcontext.currentUser['UDF
_NAME']}

Access value of the UDF_NAME attribute of the logged-in
user. UDF attributes can be defined by using the Form
Designer.

#{oimcontext.currentUser.role
s}

Access the ROLE_NAME and RoleEntity mapping that
contains the roles assigned to the logged-in user.
RoleEntity is Java Bean having name, description, key, and
displayName properties.

#{oimcontext.currentUser.role
s['SYSTEM ADMINISTRATORS'] !=
null}

Boolean EL that evaluates to true if the logged-in user has
the System Administrator admin role. Similarly, you can
modify the EL to check for any other role.

Customizing Pages at Runtime

30-22 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

You can use EL expression to retrieve all available user attribute values from the
oimcontext bean, as shown in the following examples:

■ To get the user key of the currently logged-in user:

#{oimcontext.currentUser.usr_key}

OR:

#{oimcontext.currentUser['usr_key']}

■ To get the list of role names of the currently logged-in user:

#{oimcontext.currentUser.roles}

■ To get the list of admin role names of the currently logged-in user:

#{oimcontext.currentUser.adminRoles}

As an example, if you want to display a message with the user login name when a user
logs in to Oracle Identity Self Service, then you can use EL expression to retrieve the
login name of the currently logged-in user, and display it on the page. The expression
to retrieve the user login name is the following:

#{oimcontext.currentUser['User Login']}

30.4.1.2 Available EL Expressions in the RequestFormContext
RequestFormContext is a bean available in the pageFlowScope of entity form details
task flow. The entity forms include user form, application instance form, role form,
and entitlement form. RequestFormContext provides various context information.
Using this context information, you can customize the forms based on specific
business requirements.

Table 30–4 lists the EL expressions involving RequestFormContext.

#{oimcontext.currentUser.admi
nRoles['OrclOIMSystemAdminist
rator'] != null}

Boolean EL that evaluates to true if the logged-in user has
the OrclOIMSystemAdministrator admin role. Similarly,
you can modify the EL to check for any other admin role.

Table 30–4 EL Expressions in RequestFormContext

EL Description

#{pageFlowScope.requestFormConte
xt}

Access current instance of RequestFormContext.

#{pageFlowScope.requestFormConte
xt.operation}

Access operation type that is being performed on the
entity. The possible values are CREATE and MODIFY.

#{pageFlowScope.requestFormConte
xt.operation == 'MODIFY'}

Boolean EL that evaluates to true if current operation
being performed on the entity is MODIFY.

#{pageFlowScope.requestFormConte
xt.actionType}

Access action that is being performed by the user when
the entity form is displayed. The possible values are
APPROVAL, FULFILL, REQUEST, VIEW, and
SUMMARY.

Table 30–3 (Cont.) EL Expressions in User Context

EL Description

Customizing Pages at Runtime

Customizing the Interface 30-23

30.4.1.3 Internationalization for Resource Strings
In Oracle Identity Manager, you can create custom resource bundles and reference
them in the UI. If you want to modify some of the predefined UI elements such as
labels, headers, and so on, or the values displayed on a certain page (for example,
values displayed in the Status field of the Request Summary page), then perform the
procedure described in this section.

To create custom resource bundles:

1. Open the custom project WAR file, which is
oracle.iam.ui.custom-dev-starter-pack.war.

2. Create a new CustomResourceBundle.properties file in the
WEB-INF/classes/oracle/iam/ui/custom/ directory.

3. In the new file, enter the key value pairs, for example:

CUSTOMRB_BANNER_TEXT=My Identity and Access

4. Create all localized files, for example CustomResourceBundle_it.properties and
CustomResourceBundle_es.properties, in the same directory.

#{pageFlowScope.requestFormConte
xt.actionType == 'REQUEST'}

Boolean EL that evaluates to true if the action that is
being performed by the user when the entity form is
displayed is REQUEST, for example, requesting role or
application instance.

#{pageFlowScope.requestFormConte
xt.bulk}

Boolean EL that evaluates to true if the operation being
performed is a bulk operation, for example, requesting
multiple application instances at a time.

#{pageFlowScope.requestFormConte
xt.beneficiaryIds}

Access the list of beneficiary or target user IDs. For
example, if you are requesting an application instance
for user John Doe, then the list contains the user ID of
John Doe.

Note: Oracle recommends accessing the list and
performing operations on it by using Java code. For
more information please refer to

#{pageFlowScope.requestFormConte
xt.cartItemIds}

Access the list of cart item IDs. For example, if you are
requesting an application instance for a user, then the
list contains the application instance ID that is being
requested.

Note: Oracle recommended accessing the list and
performing operations on it by using Java code. For
more information please refer to

#{pageFlowScope.requestFormConte
xt.requestEntityType}

Get entity type being requested. The possible values
are ROLE, ENTITLEMENT, APP_INSTANCE, and
USER.

#{pageFlowScope.requestFormConte
xt.requestEntityType ==
'APP_INSTANCE'}

Boolean EL that evaluates to true if the entity type
being requested is APP_INSTANCE.

#{pageFlowScope.requestFormConte
xt.requestEntitySubType}

Access subtype of entity being requested. For example,
when requesting APP_INSTANCE,
requestEntitySubType is the application instance key.

#{pageFlowScope.requestFormConte
xt.instanceKey}

Access the key of the instance being modified.

Table 30–4 (Cont.) EL Expressions in RequestFormContext

EL Description

Customizing Pages at Runtime

30-24 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

5. Repackage the custom WAR, and update the custom WAR deployment in the
server.

To use the resource bundles:

1. In Oracle Identity Self Service, create a sandbox, and click Customize.

2. On the Component Properties dialog box, open the Expression Editor for the
specific property, and specify the expression, for example:

#{adfBundle['oracle.iam.ui.custom.CustomResourceBundle'].CUSTOMRB_BANNER_TEXT}

3. Click Test to test the expression. Click OK, then click Apply.

4. Click OK to close the Component Properties dialog box.

5. Export the sandbox, and then publish the sandbox.

30.4.2 Showing or Hiding UI Components Conditionally
To conditionally show or hide UI components, use the rendered property of the
component and assign EL expression to it that evaluates to Boolean. If the EL
expression evaluates to true, then the component is shown. Consider the following
examples:

■ To show a UI component if the logged-in user has the System Administrators
admin role:

#{oimcontext.currentUser.roles['SYSTEM ADMINISTRATORS'] != null}

Similarly, the EL expression can be modified to check if the logged-in user has any
other role.

■ To show a UI component if signed-in user has the System Administrator admin
role:

#{oimcontext.currentUser.adminRoles['OrclOIMSystemAdministrator'] != null}

Similarly, the EL expression can be modified to check if the logged-in user has any
other admin role.

■ To show a UI component if the usr_key attribute of the logged-in user is 1:

#{oimcontext.currentUser['usr_key'] == 1}

■ To show a UI component if the logged-in user's last name is Doe:

#{oimcontext.currentUser['Last Name'] == 'Doe'}

■ To show a UI component if the logged-in user belongs to the Xellerate Users
organization:

#{oimcontext.currentUser['Organization Name'] == 'Xellerate Users'}

Note: Exporting the sandbox is optional, but it is a recommended
step.

Note: The rendered property of the component corresponds to the
Show Component option in Oracle Web Composer.

Customizing Pages at Runtime

Customizing the Interface 30-25

■ To show a UI component if the user's UDF attribute called UDF_NAME equals to
UDF_VALUE:

#{oimcontext.currentUser['UDF_NAME'] == 'UDF_VALUE'}

30.4.3 Showing Request Profiles Conditionally
To show a catalog request profile conditionally:

1. Login to Oracle Identity Self Service.

2. Activate a sandbox.

3. Navigate to the Catalog page.

4. Click Customize. From the View list, select Source.

5. Using the source tree, navigate to the iterator component within Request Profiles.
The iterator component has panelGroupLayout subcomponent, which represents
single request profile.

6. Assign a Boolean EL expression to the rendered property. This is the Show
Component in Web Composer.

For example, if you want to display a resource profile called Profile to users of the
Suppliers organization only, and display any other profile to other users, then use
the following expression:

#{(row.profileName == 'Profile' && oimcontext.currentUser['Organization Name']
== 'Suppliers') || row.profileName != 'Profile'}

The EL expression is evaluated for every profile which is available. Similarly, you
can modify/extend the EL expression to conditionally display any other profile.

30.4.4 Validating Input Data Using ADF Validators
To validate input component data using predefined ADF validators, you must modify
the JSFF page fragment and include one of the ADF validators as a child element of
input component. Table 30–5 lists the ADF validators:

Note: "Showing Components Conditionally" on page 30-46 describes
showing components based on certain conditions by implementing
custom Managed Bean.

Table 30–5 ADF Validators

Validator Description

<af:validateByteLength> Validates the byte length of strings when encoded

<af:validateDateRestriction> Validates that the date entered is within a given restriction

<af:validateDateTimeRange> Validates that the date entered is within a given range

<af:validateDoubleRange> Validates that the date entered is within a given range

<af:validateLength> Validates that the value entered is within a given length

<af:validateLongRange> Validates that the value entered is within a given range

<af:validateRegExp> Validates an expression by using Java regular expression
syntax

Customizing Pages at Runtime

30-26 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

For example, to validate that the only allowed characters for the User Login attribute
are alphanumeric ASCII characters, you can include the following RegExp validator as
a child element of the User Login input component:

<af:validateRegExp pattern="[a-zA-Z0-9]*"/>

ADF validators cannot be added directly by using the Web Composer. Instead, you can
add another component as a child component of the User Login component, for
example, another input text. After that you can export the sandbox containing this
change. Finally, update the JSFF page fragment for the form in the exported sandbox,
and then import the sandbox.

30.4.5 Marking Input Attribute as Required
To conditionally make an input field required, you can use the required property of the
component, and assign it a Boolean EL expression. If the EL expression evaluates to
true, then the component is marked as required, and the required validation is
triggered.

For example EL expressions, see "Showing or Hiding UI Components Conditionally"
on page 30-24.

For more information about making field conditionally mandatory based on the value
of another field, see "Setting a Conditional Mandatory Field" on page 30-48.

30.4.6 Adding a Link or Button
To add a link to Oracle Identity Self Service:

1. From any page in Oracle Identity Self Service, open WebCenter Composer.

2. Select the top panel on which you want to include the link. The ADF component is
selected in the object tree.

Figure 30–6 shows the selected top panel and corresponding ADF component in
the object tree.

Note: "Implementing Custom Field Validation" on page 30-50
describes implementing the custom field validator by using custom
Managed Bean.

Customizing Pages at Runtime

Customizing the Interface 30-27

Figure 30–6 Panel Selection for Adding Link

3. Click Add Content. The Add Content dialog box is displayed, as shown in
Figure 30–7:

Figure 30–7 The Add Content Dialog Box

Customizing Pages at Runtime

30-28 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

4. Search for the link component that you want to add, and click Add in the same
row. The link is added to the selected panel.

5. Click Save to save your changes, and close WebCenter Composer.

Oracle Identity Manager allows you to add your own UI or taskflows, such as goLink,
commandLink, commandButton, or launch a taskflow.

Perform the following steps to add your custom UI or taskflow:

1. Write a managed bean and register using adfc-config.xml in
oracle.iam.ui.custom-dev-starter-pack.war.

2. Add a new commandLink or commandButton on the page where you want to
display the link or button by using Web Composer.

3. Set the actionListener property of the link or button component that you added to
point to the actionListener method.

4. Raise the contextual event using the managed bean, which will be handled by
Oracle Identity Manager.

Shell launches the taskflow.

30.4.7 Hiding and Deleting an ADF Component
Hiding an ADF component results in the UI artifact being hidden from the user. To
hide an ADF component:

1. In Oracle Identity Self Service, go to the page on which you want to hide a
component.

2. Click Customize to open WebCenter Composer.

3. From the View menu, select Source. The object tree is displayed.

4. Click the component on the page that you want to hide. The corresponding ADF
component in the object tree is selected.

5. Right-click the selected ADF component in the object tree, and select Hide.

To delete an ADF component:

1. From the Oracle Identity Self Service page on which you want to delete any UI
component, open Web Composer.

2. From the View menu, select Source. The object tree is displayed.

3. Click the component on the page that you want to delete. The corresponding ADF
component in the object tree is selected.

4. Right-click the selected ADF component in the object tree, and select Delete.

Note: For more details, see the following sections:

■ "Launching Taskflows" on page 30-57

■ "Creating an External Link" on page 30-58

Note: Embedding a tab in the My Access page or the User Profile
page is not supported. However, for this purpose, you can create your
own taskflows.

Customizing Pages at Runtime

Customizing the Interface 30-29

30.4.8 Showing and Hiding Attributes
To show or hide attributes in a page:

1. Go to the page on which you want to show or hide the attribute. For example,
navigate to the My Information page in the Oracle Identity Self Service if you want
to show or hide the Telephone field.

2. Click Customize to open Web Composer.

3. From the View menu, select Source. The object tree is displayed.

4. Click the region or section that contains the attribute you want to hide, or you
want the attribute to be shown.

The Confirm Task Flow Edit message box is displayed.

5. Click Edit. The ADF component for the selected region is selected in the object
tree.

6. On the toolbar, click Edit. The Component Properties dialog box is displayed.

7. Click the Child Components tab. All the UI components of the selected region are
displayed. Figure 30–8 shows a sample Child Components tab in the Component
Properties dialog box.

Figure 30–8 The Child Components Tab

8. Select or deselect the checkbox corresponding to the attributes to show or hide the
attributes respectively.

9. Click Apply. The selected attributes are hidden or shown based on your selection.

10. Click OK, and then click Save on the toolbar.

Note: If you do not see an attribute listed here, then you must add
the attribute into the form. See "Adding a Custom Attribute" in the
Oracle Fusion Middleware Administrator's Guide for Oracle Identity
Manager for details.

Customizing Pages at Runtime

30-30 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

30.4.9 Customizing the User Registration and Other Unauthenticated Pages
To customize the User Registration and other unauthenticated pages of the Identity
Self Service:

1. Login to Oracle Identity Self Service as the system administrator.

2. Create and activate a sandbox, and click Customize.

3. Select View, Source. Click the last visible link in the left navigation pane, for
example, Open Tasks.

4. Confirm to edit task flow. Using the source tree pane, scroll down to find the
grayed-out item 'Unauthenticated Pages'.

5. Right-click Unauthenticated Pages, and select Show Component. The links to go
to unauthenticated pages are displayed on the left navigation pane, as shown in
Figure 30–9.

Figure 30–9 Unauthenticated Page Links

6. Select View, Design. Click the New User Registration link in the left navigation
pane. You are redirected to the User Registration screen.

7. After filling required fields, select View, Source. Click Add Content and use the
Data Component - User Registration, UserVO1 to add new fields.

8. Click Cancel to come back to the home page. After you are done, remember to
hide the unauthenticated links in the left navigation pane, then right-click
Unauthenticated Pages, and select Hide Component.

30.4.10 Customizing Certification Pages
The information from the row selected in the certification table in the Inbox can be
used for customizing the detail pane found below the table. The procedure in this

Note: Do not open any tab. You need to customize the left navigation
pane itself.

Securing UI Components

Customizing the Interface 30-31

section can be used to customize the user certification detail pane. The same procedure
can be followed for any certfication type.

After you have entered the customization mode, perform the following steps:

1. Edit the panelFormLayout containing the User Detail Information.

2. Click Add Content.

3. Select Data Component - Certification.

4. Select UserCertificationUserVO1.

5. Search for the attribute you want to add, for example Title, and click Add.

6. Select ADF Readonly Input Text with Label component.

The input component is added to the page, but a value for it is not displayed. A
label is added that shows the name of the attribute.

7. Select the inputText component in the page source panel, and click Edit. The
Component Properties dialog box is displayed.

8. Scroll down and find the Value attribute, and open the Expression Builder.

9. Edit the expression value and set it to the following:

#{pageFlowScope.p1_row_idcTitle}

10. Save the changes and close Web Composer. Select a row in the table.

When a row is selected from the table, the information is stored in the
pageFlowScope. To display this information in the detail pane, steps 1 through 10
must be followed to extract the correct data. The format of the EL to follow is:

#{pageFlowScope.p1_row_ATTRIBUTE_NAME}

30.5 Securing UI Components
This section contains the following topics:

■ Securing a Custom Taskflow Using APM

■ Securing a Task Flow Region Using EL Expressions

30.5.1 Securing a Custom Taskflow Using APM
You can add permissions to custom taskflows by using the Authorization Policy
Manager (APM) UI to secure the taskflow. To do so:

1. Login to Authorization Policy Manager as WebLogic user by navigating to the
following URL:

http://ADMIN_HOST:ADMIN_PORT/apm

2. Navigate to Applications, OracleIdentityManager, Resource Types. Click Open.

3. Click New to create a new resource type. Provide following details, and then click
Save.

Display Name: A display name for this resource, for example, ADF Taskflows

Name: A name for this resource, for example, ADFTaskflows

Actions: personalize, customize, grant, or view. Click New to add each action.

Securing UI Components

30-32 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Supports Resource Hierarchy: No

Resource Delimiter: Slash(/)

Evaluation Logic: Permission Class

Permission Class: oracle.adf.controller.security.TaskFlowPermission

Action Name Delimiter: Comma(,)

4. Navigate to Applications, OracleIdentityManager, Default Policy Domain,
Resource Catalog, Resources. Click Open.

5. Click New to create a new resource. Provide following values, and then click Save.

Resource Type: Select the resource type created in step 3.

Display Name: Provide a display name for your custom taskflow.

Name: Provide the name of the custom taskflow in the following format:

TASKFLOW_DOCUMENT#TASKFLOW_ID

For example:

/WEB-INF/request-approval-details-tf.xml#request-approval-details-tf

Description: Provide a description for the custom taskflow.

6. Navigate to Applications, OracleIdentityManager, Default Policy Domain,
Authorization Policies. Click Open.

7. Select where you want to add the policy for your custom taskflow, for example,
Policy for OIM System Admin. Click Open.

8. Click Add Targets. The Search Targets dialog box is displayed.

9. Click the Resources tab. Provide the resource type as defined in step 3, and then
click Search.

10. Select the resource created in step 5. Click Add Selected.

11. Click Add Targets. The resource is added to the Targets table.

12. Expand the resource that you added to the table. Select the permissions you want
to apply to the taskflow.

13. Click Apply.

30.5.2 Securing a Task Flow Region Using EL Expressions
For each new task flow, there is an entry in the jazn-data.xml file, as shown in the
following example:

<permission>
<class>oracle.adf.controller.security.TaskFlowPermission</class>
<name>/WEB-INF/oracle/iam/ui/catalog/tfs/request-summary-details-tf.xml#request-su
mmary-details-tf</name>
<actions>view</actions>
</permission>

Note: For each custom taskflow, you must create a resource as
mentioned in step 5. You can use the same resource type that you
created in step 3 for all your custom taskflows.

Customizing Oracle Identity Manager Help

Customizing the Interface 30-33

This is the basic level of permission required for any task flow to be visible on the
Identity Self Service UI. For advanced permissions dependent on admin roles, you can
use EL expressions to enforce functional security.

For securing task flows, the task flow must be used as a region in the parent JSFF file.
You can define EL expression for the region so that the task flow can be shown or
hidden to the logged-in user based on the user's permissions.

For securing a region, consider the following example:

On the my-access-accounts.jsff page, the details-information-tf task flow is rendered
selectively to the users by using the following EL expression:

rendered="# {oimappinstanceAuth.view [bindings.appInstanceKey].allowed}"

Here:

■ oimappinstanceAuth is the mapped name of the ApplicationInstanceAuthz.java
authorization bean in the adfc-config.xml file.

■ view is the name of the UIPermission that needs to be checked. The following
permission is defined in ApplicationInstanceAuthz.java, which is the actual bean
file for reference of oimappinstanceAuth:

Private UIPermission view = new UIPermission
(PolicyConstants.Resources.APPLICATION_INSTANCE.getId(),
PolicyConstants.ApplicationInstanceActions.VIEW_SEARCH.getId());

■ appInstanceKey is the ID of the application instance that the user is trying to view,
which is passed as a parameter.

30.6 Customizing Oracle Identity Manager Help
Oracle Identity Manager lets you develop and use the following online Help systems
in the Oracle Identity Self Service and Oracle Identity System Administration:

■ Adding Custom Help Topics

■ Adding Inline Help

30.6.1 Adding Custom Help Topics
In addition to the Oracle Identity Manager help topics, you can also create and use
custom help topics.

To view the custom help topics:

1. Login to Oracle Identity Self Service.

2. On the navigation bar at the top, click Help. The Oracle Help for the Web window
is displayed.

3. From the Book list, select Custom Help Topics for Oracle Identity Manager.

4. Expand the contents to view the help topics.

The custom help book is provided as a separate JAR file. This is the
OIM_HOME/help/CUSTOMOHW.jar file. You can create your own help topics and
custom help book JAR, and then replace the CUSTOMOHW.jar file to display your
custom help topics in the UI.

Customizing Oracle Identity Manager Help

30-34 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

You create the custom help topics by using Oracle Help for the Web (OHW). For
detailed information about creating custom OHW help topics, see Oracle Fusion
Middleware Developer's Guide for Oracle Help.

After creating the new custom help books, modify the following configuration files in
the OIM_HOME/help/ directory to reference the new help books:

■ ohwconfig_identity.xml: Configuration file for custom help topics in Oracle
Identity Self Service

■ ohwconfig_sysadmin.xml: Configuration file for custom help topics in Oracle
Identity System Administration

After creating the custom help topics, create the custom help JAR file, and replace the
CUSTOMOHW.jar file with the new JAR file. You can now add your custom help
topics on the UI pages. The following procedure shows how to add a custom help
topic to the Getting Started with Help container of the Home page in the Oracle
Identity Self Service:

1. In the Home page of the Oracle Identity Self Service, click Customize.

2. Click the Getting Started Help Topics container.

3. From the View menu, select Source. The object tree is displayed.

4. Click Add Content. The Add Content dialog box is displayed.

5. Select Command Image Link, and then click Add in the same row. The selected
component is added to the Getting Started Help Topics section.

6. Click Edit. The Component Properties dialog box is displayed.

7. Click the Display Options tab.

8. In the Text field, enter the text for the help topic that will be displayed in the page.

9. In the Image field, enter the path and file name for the help icon image.

10. In the Action Listener field, enter the URL with the HelpTopicID of the custom
help topic.

11. Click Apply, and then click OK.

12. Save and close customization mode. The help topic is added to the Getting Started
with Help container of the Home page. Clicking the help topic displays the help
topic in the custom help book JAR file.

30.6.2 Adding Inline Help
Oracle Identity Manager does not provide inline help by default. However, you can
add your inline help for the various UI components, such as add tooltip text for fields
and buttons.

The content for the inline help is picked up from the files in the custom WAR library
(oracle.iam.ui.custom-dev-starter-pack.war), such as the
/oracle/iam/ui/custom/help/CustomHelpResourceBundle.properties file.

Note: The configuration files are overwritten when you upgrade
Oracle Identity Manager, and you must modify the configuration files
again to reference the custom help books.

Customizing the Home Page

Customizing the Interface 30-35

You can change the custom WAR library name. If you do so, then specify the same
library name in the entry for the WAR file in Manifest.MF.

You can specify the inline help content through the entries in the
CustomHelpResourceBundle.properties file. The entries have a CUSTOMRB prefix,
and have any one of the following suffixes:

■ _DEFINITION: This specifies inline help for a field or UI component. For example:

CUSTOMRB_EMAIL_DEFINITION=Enter your official e-mail ID if available.

EMAIL is the field name, and the value of the entry is the inline help text
displayed on placing your mouse pointer on the field.

■ _INSTRUCTIONS: This specified inline help for a page layout. For example:

CUSTOMRB_MY_INFO_INSTRUCTIONS=Profile update will get reflected post
approvals.

MY_INFO is the page, and the value of the entry is the inline help text displayed
on the top of the page.

As an example, the following procedure shows how to add inline help to the
Telephone field in the My Information page of Oracle Identity Self Service:

1. In the Oracle Identity Self Service, navigate to the My Information page, and
expand the Basic User Information section.

2. Click Customize.

3. From the View menu, select Source. The object tree is displayed.

4. Click the Telephone field.

5. Click Edit. The Component Properties dialog box for the Telephone field is
displayed.

6. In the Help Topic ID field, enter the help topic ID of the inline help that you want
to associate with the Telephone field, such as CUSTOMRB_TELEPHONE.

Note that specifying the _DEFINITION suffix is not required.

7. Click Apply, and then click OK.

8. Save and close customization mode. When you place the mouse pointer on the
Telephone field, the inline help text is displayed.

30.7 Customizing the Home Page
The Home page provides you a snapshot of the various functions in the Oracle
Identity Self Service. You can personalize the Home page by adding and removing
containers, and rearranging containers. See "Personalizing the Home Page" in the
Oracle Fusion Middleware User's Guide for Oracle Identity Manager for details.

When you add a container, you must add UI components to the container to use it. To
add containers in the Home page and then add UI components:

See Also: "Displaying Tips, Messages, and Help" on the Oracle
Fusion Middleware Web User Interface Developer's Guide for Oracle
Application Development Framework for information about defining tips
and messages and providing help information for ADF components

Customizing the Home Page

30-36 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

1. Login to Oracle Identity Self Service, and navigate to the Home page.

2. Click Personalize. The Home is displayed in customization mode with toolbars
that consist of icons.

3. Click the Add Box Above icon on the toolbar. Figure 30–10 shows the Add Box
Above icon on the toolbar.

Figure 30–10 The Add Box Above Icon on the Toolbar

You can click the respective icons to add a box below, right, or left of the container
in which you are clicking the icon.

After clicking the icon, a container is added to the Home page, as shown in
Figure 30–11:

Note: The personalization capabilities, such as adding and removing
containers and changing layouts, are not governed by authorization
policies. However, the contents available to each user for adding is
governed by authorization policies.

Customizing Challenge Questions

Customizing the Interface 30-37

Figure 30–11 A New Container

4. Click Add Content. The Add Content dialog box is displayed with the list of
homepage task flows that you can add to the container. Figure 30–12 shows the
Add Content dialog box.

Figure 30–12 The Add Content Dialog Box

5. Select the homepage task flow, and click Add. Then, close the Add Content dialog
box.

6. Click Close on the navigation bar at the top to quit customization mode.

30.8 Customizing Challenge Questions
You can customize the number of challenge questions in multiple pages of the UI. To
do so, change the value of the PCQ.NO_OF_QUES system property to specify the
number of challenge questions that you want to display to the user. In addition, you

Customizing Challenge Questions

30-38 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

customize the pages to show or hide the challenge questions that you add or remove
respectively.

To set the number of challenge questions:

1. Login to Oracle Identity System Administration.

2. On the left pane, under System Management, click System Configuration. The
System Configuration tab is displayed in a new window.

3. Search and open the Number of Questions system property that has the
PCQ.NO_OF_QUES keyword.

4. Change the value from 3 to 5, and click Save.

5. Close the new window.

6. In the Oracle Identity System Administration, under Configuration, click
Lookups, and search for the Lookup.WebClient.Questions code, as shown in .

Figure 30–13 The Lookup.Weblciient.Questions Lookup Code

7. Add additional questions by editing the lookup type.

To set challenge questions for the user who is logging in to Oracle Identity Self Service
or Oracle Identity System Administration:

1. Login to Oracle Identity Self Service as the System Administrator, and on home
page click on Sandboxes.

Note: You can localize the questions for en_US bundle, as described
in "Localizing Challenge Questions and Responses" in the Oracle
Fusion Middleware Administrator's Guide for Oracle Identity Manager.

Customizing Challenge Questions

Customizing the Interface 30-39

2. On the Home page, click Sandboxes on the upper navigation bar. The Manage
Sandboxes page is displayed.

3. On the toolbar, click Create Sandbox. In the Create Sandbox dialog box, enter a
sandbox name, for example ChallengeQ, and click Save and Close.

Leave the Activate Sandbox check box selected.

4. On the confirmation dialog box, click OK. The active sandbox is displayed in the
table in the Manage Sandboxes page. Close the Manage Sandboxes page.

5. Open the My Information page. Collapse the Basic Information section, and
expand the Challenge Questions section.

6. Click Customize. Then the toolbar, select View, Source.

7. Click the third question, and click OK to confirm editing the taskflow.

8. In the source tree, select the greyed-out panelGroupLayout just after the third
question. This contains the fourth question. Right-click this panelGroupLayout,
and then select Show Component.

9. Similarly, show the fifth question.

10. Click Close on the toolbar.

11. Repeat steps 4 through 9 for the other three pages on which challenge questions
are displayed by pointing the browser to the following URLs:

■ The User Registration page: /identity/faces/register

■ The Forgot Password page: /identity/faces/forgotpassword

■ The Login page when the user logs in for the first time:
/identity/faces/firstlogin?action=setchallenges

Note that there is some variation by design, for example, the question on the
Forgot Password page is rendered as outputText rather than a list, as shown in
Figure 30–14:

Customizing the Transitional UI

30-40 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 30–14 Challenge Question on the Forgot Password Page

12. Publish the sandbox and logout.

30.9 Customizing the Transitional UI
In the transitional UI pages of the Identity Self Service, when you click a menu item to
perform tasks, such as managing access policies, a search page is displayed. For
example, when you click the Manage link under the Access Policies menu item, the
Manage Access Policies page is displayed with two drop-down menus for searching
access policies. You can customize the number of drop-down menus, and what the
items in the drop-down menus are.

When the search results display, you can determine the maximum number of rows in
the results table displayed on each page. After a user selects an item from the results
table, a detail page is displayed such as the Resource Detail page. The detail page
contains an additional details menu. You can customize the items in these menus.

This section contains the following topics:

■ Customizing Search Drop-Down Item

■ Customizing Number of Search Drop-Down Items and Search Results

Customizing the Transitional UI

Customizing the Interface 30-41

30.9.1 Customizing Search Drop-Down Item
Use the Design Console to change the lookup codes for search pages and additional
details. To customize drop-downs:

1. Log in to the Design Console.

2. Open the Lookup Definition form by navigating to Administration, then to
Lookup Definition.

3. Search to locate the desired lookup definition.

4. Make the desired changes to the lookup codes to set the options displayed in the
drop-down menu for each search page.

■ The Code Key is the metadata for each column.

■ The Decode value is what is displayed in the Identity Self Service or Identity
System Administration.

■ The order in which the items appear in the Code Key list are the order they
appear in the drop-down list in the Identity Self Service. If you delete an entry
and add it back, it is displayed last in the list.

5. Save your changes.

30.9.2 Customizing Number of Search Drop-Down Items and Search Results
To change the number of drop-down menus, and the maximum number of search
results on each page, edit the xlDefaultAdmin.properties file.

To set the number of drop-down menus:

1. Open the xlDefaultAdmin.properties file.

2. Locate the property from Table 30–6, and edit it as required.

3. To change the maximum number of search results on each page, change the value
of the property global.displayrecordNum.value to the desired value. The default
value is 10.

4. Save the file.

5. Restart Oracle Identity Manager.

Tip: For your search criteria, use lookup.webclient* search to find
the search pages, or *additional_details to find the additional
details.

Table 30–6 Properties that Determine the Number of Menus on a Search Page

Property Name Default Page

global.property.numsearchaccesspolicyfields 2 Access Policies

global.property.numsearchresourcefields 2 Search Resources

global.property.numsearchattestationprocessfields 3 Attestation Process

Developing Managed Beans and Task Flows

30-42 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

30.10 Developing Managed Beans and Task Flows
To implement advanced customization in Oracle Identity Manager, you can develop
new task flows and managed beans by using JDeveloper IDE and then package them
in the custom WAR file.

The beans are of the following types:

■ Request beans: New instance of the bean is created for every request.jsff
component bindings, and listeners are usually bound to request beans.

■ State beans: Beans holding the state of the application, user session, or a particular
flow. Values of components, such as af:inputText, can be bound to state beans.
State beans must be serializable (implement java.io.Serializable) as ADF
serializes/deserializes these beans between requests.

This section describes how to develop managed beans in the following topics:

■ Setting Up the ViewController Project

■ Setting Up a Model Project

■ Adding Custom Managed Bean

■ Deploying Custom Code to Oracle Identity Manager

■ Using Managed Beans

■ Using Managed Beans to Populate Request Attributes

30.10.1 Setting Up the ViewController Project
Managed beans are created in a ViewController project. All your custom taskflows,
pages, and managed beans must be present in the ViewController project.

To setup the ViewController project:

1. Create a new JDeveloper application. To do so:

a. Start JDeveloper.

b. Select File, New.

c. Select Generic Application, and then click OK.

d. Provide the application name and directory, and then click Finish. The
application is created using a sample project.

e. To delete the sample project, right-click the project, and select Delete.

2. Setup the ViewController project. To do so:

a. Select File, New.

b. Find and select ADF ViewController Project, and then click OK.

c. Provide the project name, for example CustomUI, and project directory, and
then click Next.

d. Enter the default package name as oracle.iam.ui.custom, and then click
Finish. The new project is created.

See Also: Figure 30–1, "Oracle Identity Manager UI Libraries" for
information about the various Oracle Identity Manager UI libraries
and their dependency structure

Developing Managed Beans and Task Flows

Customizing the Interface 30-43

3. Add Oracle Identity Manager libraries to the project classpath. To do so:

a. Right-click the new project, and select Project Properties.

b. On the left navigation bar, select Libraries and Classpath.

c. Click Add Library.

d. Click Load Dir, provide the path as IDM_HOME/server/jdev.lib, and then
click OK.

e. From the list of libraries, select the following:

– OIM View Shared Library

– OIM Model Shared Library

– OIM Client Library

f. Click OK.

4. Define the deployment profile for the newly created ViewController project. To do
so:

a. Right-click the project, and select Project Properties.

b. On the left navigation bar, select Deployment.

c. Delete any existing deployment profiles.

d. Click New, and select ADF Library JAR File as the archive type.

e. Provide and confirm the archive name, such as adflibCustomUI, and then click
OK.

Your ViewController project setup is complete. You can now start adding custom
taskflows, pages, and managed beans.

30.10.2 Setting Up a Model Project
All your custom EOs/VOs and classes interacting directly with Oracle Identity
Manager APIs must be present in a model project. To setup the model project:

1. Click File, New.

2. Find and select ADF Model Project, and then click OK.

3. Provide the Project Name, for example CustomModel, and Project Directory, and
then click Next.

4. Enter Default Package name as oracle.iam.ui.custom, and then click Finish. The
new project is created.

5. Add Oracle Identity Manager libraries to the project classpath:

a. Right-click the project, and select Project Properties.

b. On the left navigation bar, select Libraries and Classpath.

c. Click Add Library.

Note: The ADF Library JAR File and JAR File archive types are
different. Make sure that you select the ADF Library JAR File archive
type.

Developing Managed Beans and Task Flows

30-44 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

d. Click Load Dir, provide the path as IDM_HOME/server/jdev.lib, and then
click OK.

e. From the list of libraries select the following:

– OIM Model Shared Library

– OIM Client Library

f. Click OK.

6. Define the deployment profile for the newly created model project. To do so:

a. Right-click the project, and select Project Properties.

b. On the left navigation bar, select Deployment.

c. Delete any existing deployment profiles.

d. Click New, and select ADF Library JAR File as the archive type.

e. Provide and confirm the archive name, such as adflibCustomModel, and then
click OK.

Your model project setup is complete. You can now start adding custom EOs, VOs, and
classes for interacting with Oracle Identity Manager APIs.

30.10.3 Adding Custom Managed Bean
To add your custom managed bean:

1. Right-click the ViewController project, and select New.

2. Select the Java Class category.

3. Provide the class name, for example CustomReqBean or CustomStateBean, and the
package name.

4. After creating the class, to register it with a taskflow:

a. If you are developing your own bounded task flow, then navigate to your task
flow definition file, and open it. Otherwise, locate the adfc-config.xml file in
your ViewController project, and open it.

b. Click the Overview tab, and select Managed Beans.

c. Add a new managed bean entry. To do so:

i) Provide managed bean name, for example customReqBean or
customStateBean. This is the name that you will later use to refer to an
instance of your bean.

 ii) Provide the managed bean class name.

 iii) Provide the scope. For request beans use backingBean scope. For state
beans, use pageFlow scope.

Note: The ADF Library JAR File and JAR File archive types are
different. Make sure that you select the ADF Library JAR File archive
type.

Developing Managed Beans and Task Flows

Customizing the Interface 30-45

30.10.4 Deploying Custom Code to Oracle Identity Manager
To deploy an ADF library JAR file produced by your custom model or ViewController
projects:

1. Locate the oracle.iam.ui.custom shared library, which is
oracle.iam.ui.custom-dev-starter-pack.war. The shared library is in the
IDM_HOME/server/apps/ directory.

2. Repackage the WAR and include your ADF libraries in WEB-INF/lib/.

3. Redeploy the shared library.

30.10.5 Using Managed Beans
This section provides the following use cases for developing managed beans to
customize Oracle Identity Manager interface:

■ Showing Components Conditionally

■ Prepopulating Fields Conditionally

■ Setting a Conditional Mandatory Field

■ Implementing Custom Field Validation

■ Implementing Custom Cascading LOVs

■ Customizing Forms By Using RequestFormContext

■ Overriding the Submit Button in Request Catalog

■ Developing Home Page Portlets

■ Launching Taskflows

■ Creating an External Link

Note:

■ The pageFlow scope beans are visible only in the taskflow for
which they are defined.

■ To refer to your managed bean from JSFF/taskflow definition or
other places, you can use EL expression. For example, if you
register your bean under the name customReqBean and put the
bean to backingBean scope, then you can reference your bean by
using the following EL expression:

#{backingBeanScope.customReqBean}

If you put the bean to pageFlow scope, you can reference your
bean by using the following EL expression:

#{pageFlowScope.customStateBean}

Note: The examples in this section use the FacesUtils class. For
information about this class, see "The FacesUtils Class" on page B-1.

Developing Managed Beans and Task Flows

30-46 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

30.10.5.1 Showing Components Conditionally
You can show or hide certain fields conditionally based on the values of other fields.
For example, to show the Contact Information panel on the Create User page only
when the User Type is Full-Time Employee, perform the following steps:

1. In your custom request bean, define properties for component bindings of the
User Type field and any parent component of the Contact Information panel, for
example, the form root panel. To do so, use the following code:

private UIComponent rootPanelPGL;
 private UIComponent userTypeSOC;

 public void setRootPanelPGL(UIComponent rootPanelPGL) {
 this.rootPanelPGL = rootPanelPGL;
 }

 public UIComponent getRootPanelPGL() {
 return rootPanelPGL;
 }

 public void setUserTypeSOC(UIComponent userTypeSOC) {
 this.userTypeSOC = userTypeSOC;
 }

 public UIComponent getUserTypeSOC() {
 return userTypeSOC;
 }

2. Create or extend existing valueChangeListener that will be invoked when user
selects the new value in the User Type list. To do so, use the following code:

public void valueChangeListener(ValueChangeEvent valueChangeEvent) {
 if (valueChangeEvent.getSource().equals(userTypeSOC)) {
 // refresh form
 FacesUtils.partialRender(rootPanelPGL);
 }
 }

3. Create a method that returns boolean value. The method will determine if the
Contact Information panel is to be displayed when the page is rendered. In this
example, the Contact Information panel will be shown if the User Type is
Full-Time Employee.

The method is as follows:

private static final String USER_TYPE_ATTRIBUTE = "usr_emp_type__c";

 public boolean isFullTimeEmployeeUserTypeSelected() {
 // return true if value of "usr_emp_type__c" binding attribute equals
to "Full-Time"
 // "usr_emp_type__c" binding attribute is used to display value of User
Type in the User Type drop-down
 return
"Full-Time".equals(FacesUtils.getListBindingValue(USER_TYPE_ATTRIBUTE,
String.class));
 }

Note: The listener will refresh the form.

Developing Managed Beans and Task Flows

Customizing the Interface 30-47

4. To bind the code with JSFF:

a. Set component bindings for the User Type list and root panel components to
point to the properties that you defined.

b. Define the valueChangeListener for the User Type list.

c. Set EL expression for the rendered property, which is Show Component in
Web Composer, on the Contact Information panel to point to the
isFullTimeEmployeeUserTypeSelected() method defined in step 3.

30.10.5.2 Prepopulating Fields Conditionally
You prepopulate certain fields based on the values of other fields. For example, to
prepopulate values in the User Login and E-mail fields on the Create User page based
on the values of the First Name and Last Name fields, perform the following steps:

1. In your custom request bean, define properties for component bindings of First
Name and Last Name fields and any parent component of the User Login and
E-mail fields, for example, form root panel. To do so, use the following code:

private UIComponent firstNameIT;
 private UIComponent lastNameIT;
 private UIComponent rootPanelPGL;

 public void setFirstNameIT(UIComponent firstNameIT) {
 this.firstNameIT = firstNameIT;
 }

 public UIComponent getFirstNameIT() {
 return firstNameIT;
 }

 public void setLastNameIT(UIComponent lastNameIT) {
 this.lastNameIT = lastNameIT;
 }

 public UIComponent getLastNameIT() {
 return lastNameIT;
 }

 public void setRootPanelPGL(UIComponent rootPanelPGL) {
 this.rootPanelPGL = rootPanelPGL;
 }

 public UIComponent getRootPanelPGL() {
 return rootPanelPGL;
 }

2. Create or extend existing valueChangeListener that will be invoked when the user
updates the First Name or Last Name fields. To do so, use the following code:

Note: Make sure that the autosubmit property is set to true for the
User Type list.

Note: The listener will update User Login and E-mail accordingly
and refresh the form.

Developing Managed Beans and Task Flows

30-48 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

private static final String USER_LOGIN_ATTRIBUTE = "usr_login__c";
 private static final String EMAIL_ATTRIBUTE = "usr_email__c";
 private static final String LAST_NAME_ATTRIBUTE = "usr_last_name__c";
 private static final String FIRST_NAME_ATTRIBUTE = "usr_first_name__c";

 public void valueChangeListener(ValueChangeEvent valueChangeEvent) {
 if (valueChangeEvent.getSource().equals(firstNameIT)) {
 // get new value of first name from the event
 String firstName = (String)valueChangeEvent.getNewValue();
 // get existing value of last name through binding
 String lastName =
FacesUtils.getAttributeBindingValue(LAST_NAME_ATTRIBUTE, String.class);
 setUserLoginAndEmail(firstName, lastName);
 } else if (valueChangeEvent.getSource().equals(lastNameIT)) {
 // get existing value of first name through binding
 String firstName =
FacesUtils.getAttributeBindingValue(FIRST_NAME_ATTRIBUTE, String.class);
 // get new value of last name from the event
 String lastName = (String)valueChangeEvent.getNewValue();
 setUserLoginAndEmail(firstName, lastName);
 }
 // refresh form
 FacesUtils.partialRender(rootPanelPGL);
 }

 private void setUserLoginAndEmail(String firstName, String lastName) {
 StringBuilder sb = new StringBuilder();
 if (firstName != null) {
 sb.append(firstName);
 }
 if (firstName != null && !firstName.isEmpty() && lastName != null &&
!lastName.isEmpty()) {
 sb.append(".");
 }
 if (lastName != null) {
 sb.append(lastName);
 }
 String userLogin = sb.toString();
 // set new value for User Login and E-mail through binding
 FacesUtils.setAttributeBindingValue(USER_LOGIN_ATTRIBUTE, userLogin);
 FacesUtils.setAttributeBindingValue(EMAIL_ATTRIBUTE, userLogin +
"@acme.com");
}

3. Add the code to the JSFF. To do so:

a. Set the component bindings for First Name, Last Name, and root panel to
point to the properties that you defined.

b. Define valueChangeListener for First Name and Last Name input texts, and
make sure that the autosubmit property is set to true on both input texts.

30.10.5.3 Setting a Conditional Mandatory Field
You can make a field conditionally mandatory based on the value of another field. For
example, to make the Manager field on the Create User page mandatory only if the
User Type is Intern, perform the following steps:

Developing Managed Beans and Task Flows

Customizing the Interface 30-49

1. In your custom request bean, define properties for component bindings of the
User Type field and any parent component of Manager field, for example, form
root panel. To do so, use the following code:

private UIComponent rootPanelPGL;
 private UIComponent userTypeSOC;

 public void setRootPanelPGL(UIComponent rootPanelPGL) {
 this.rootPanelPGL = rootPanelPGL;
 }

 public UIComponent getRootPanelPGL() {
 return rootPanelPGL;
 }

 public void setUserTypeSOC(UIComponent userTypeSOC) {
 this.userTypeSOC = userTypeSOC;
 }

 public UIComponent getUserTypeSOC() {
 return userTypeSOC;
 }

2. Create or extend existing valueChangeListener that will be invoked when user
selects new value in the User Type list. To do so, use the following code:

public void valueChangeListener(ValueChangeEvent valueChangeEvent) {
 if (valueChangeEvent.getSource().equals(userTypeSOC)) {
 // refresh form
 FacesUtils.partialRender(rootPanelPGL);
 }
 }

3. Create a method that returns boolean value. The method determines whether or
not the field is mandatory. In this example, the Manager field will be marked as
mandatory if User Type is Intern.

The method is as follows:

 public boolean isInternUserTypeSelected() {
 // return true if value of "usr_emp_type__c" binding attribute equals
to "Intern"
 // "usr_emp_type__c" binding attribute is used to display value of User
Type in the User Type drop-down
return
"Intern".equals(FacesUtils.getValueFromELExpression("#{bindings.usr_emp_type__c
.attributeValue}"));
 }

4. Add the code to the JSFF. To do so:

Note: Enforcing field validation cannot be performed by setting the
required property in Web Composer. You must develop a managed
bean to perform field validation, as described in this section.

Note: The listener will refresh the form.

Developing Managed Beans and Task Flows

30-50 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

a. Set component bindings for the User Type list and root panel components to
point to the properties you defined.

b. Define valueChangeListener for the User Type list. Make sure that the
autosubmit property is set to true for the User Type list.

c. Set EL expression for the required property on the Manager field to point to
the isInternUserTypeSelected() method defined is step 3.

30.10.5.4 Implementing Custom Field Validation
You can introduce a custom field validator. For example, you can implement the
following validations for the Start Date and End Date fields on the Account Effective
Dates panel of the Create User page:

■ Start Date cannot be after End Date.

■ The interval between Start Date and End Date cannot exceed 180 days for
Contractors.

To implement custom validators:

1. In your custom request bean, define properties for component bindings of the
Start Date and End Date fields, as shown:

private UIComponent startDateID;
private UIComponent endDateID;

public void setStartDateID(UIComponent startDateID) {
 this.startDateID = startDateID;
}

public UIComponent getStartDateID() {
 return startDateID;
}

public void setEndDateID(UIComponent endDateID) {
 this.endDateID = endDateID;
}

public UIComponent getEndDateID() {
 return endDateID;
}

2. Create or extend existing validator that will be invoked when the user selects new
value for the Start Date or End Date field. The validator generates an error
message when validation fails and attaches it to the field being updated. To do so,
use the following code:

private static final String START_DATE_END_DATE_VALIDATION_MSG = "Start Date -
End Date interval cannot exceed 180 days for Contractors.";
 private static final String START_DATE_AFTER_END_DATE_VALIDATION_MSG =
"Start Date cannot be after End Date.";

 private static final String USER_TYPE_ATTRIBUTE = "usr_emp_type__c";
 private static final String START_DATE_ATTRIBUTE = "usr_start_date__c";
 private static final String END_DATE_ATTRIBUTE = "usr_end_date__c";

 public void validator(FacesContext facesContext, UIComponent uiComponent,
Object object) {
 if (uiComponent.equals(startDateID)) {
 // get value of End Date through binding

Developing Managed Beans and Task Flows

Customizing the Interface 30-51

 oracle.jbo.domain.Date jboEndDate =
FacesUtils.getAttributeBindingValue(END_DATE_ATTRIBUTE,
oracle.jbo.domain.Date.class);
 // only validate if both Start Date and End Date are set
 if (jboEndDate != null) {
 // value of Start Date is passed to validator
 Date startDate = ((oracle.jbo.domain.Date)object).getValue();
 Date endDate = jboEndDate.getValue();
 validateStartDateEndDate(facesContext, uiComponent, startDate,
endDate);
 }
 } else if (uiComponent.equals(endDateID)) {
 // get value of Start Date through binding
 oracle.jbo.domain.Date jboStartDate =
FacesUtils.getAttributeBindingValue(START_DATE_ATTRIBUTE,
oracle.jbo.domain.Date.class);
 // only validate if both Start Date and End Date are set
 if (jboStartDate != null) {
 Date startDate = jboStartDate.getValue();
 // value of End Date is passed to validator
 Date endDate = ((oracle.jbo.domain.Date)object).getValue();
 validateStartDateEndDate(facesContext, uiComponent, startDate,
endDate);
 }
 }
 }

 private void validateStartDateEndDate(FacesContext facesContext,
UIComponent uiComponent, Date startDate, Date endDate) {
 Date startDatePlus180Days = new Date(startDate.getTime() + 180L * 24 *
60 * 60 * 1000);
 if (startDate.after(endDate)) {
 // queue error message for the component which is being validated
(either Start Date or End Date)
 facesContext.addMessage(uiComponent.getClientId(facesContext),
 new
FacesMessage(FacesMessage.SEVERITY_ERROR,
START_DATE_AFTER_END_DATE_VALIDATION_MSG, null));
 } else if (isContractorUserTypeSelected() &&
startDatePlus180Days.before(endDate)) {
 // queue error message for the component which is being validated
(either Start Date or End Date)
 facesContext.addMessage(uiComponent.getClientId(facesContext),
 new
FacesMessage(FacesMessage.SEVERITY_ERROR, START_DATE_END_DATE_VALIDATION_MSG,
null));
 } else {
 // re-render -- in case there was an error message in queue for any
of the two components it will be released
 FacesUtils.partialRender(startDateID);
 FacesUtils.partialRender(endDateID);
 }
 }

 public boolean isContractorUserTypeSelected() {
 // return true if value of "usr_emp_type__c" binding attribute equals
to "Contractor"
 // "usr_emp_type__c" binding attribute is used to display value of User
Type in the User Type drop-down
 return

Developing Managed Beans and Task Flows

30-52 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

"Contractor".equals(FacesUtils.getListBindingValue(USER_TYPE_ATTRIBUTE,
String.class));
 }

3. Bind the code to the JSFF. To do so:

a. Set component bindings for the Start Date and End Date fields to point to the
properties that you defined.

b. Define EL expression for validator property on Start Date and End Date fields
to point to the validator method that you defined in step 2.

30.10.5.5 Implementing Custom Cascading LOVs
Cascading LOVs are LOV components for which the list of values in one component is
dependent on the currently selected value in another component. For example, based
on the selected value in the User Type list on the Create User page, you might want to
display the Job Code list or another LOV component whose list of values is dependent
on the currently selected value in the User Type list.

The following are the high-level guidelines to implement custom cascading LOVs:

1. Define component binding for the User Type field and any parent component of
Job Code, for example, form root panel.

2. Implement the model for Job Code LOV component by ensuring the following:

■ The model must take into account the current value of the User Type field.

■ For af:selectOneChoice, you must implement a method that returns
List<javax.faces.model.SelectItem>.

■ For af:inputListOfValues, you must implement a method that returns an
instance of oracle.adf.view.rich.model.ListOfValuesMode.

3. Implement valueChangeListener for the User Type field. Set the autosubmit
property to true for the User Type field.

valueChangeListener must update model of Job Code LOV component with the
current value of the User Type field. In addition, valueChangeListener must
re-render the form so that Job Code LOV component is updated with the current
list of values.

30.10.5.6 Customizing Forms By Using RequestFormContext
RequestFormContext is a bean available in the pageFlowScope of entity form details
taskflow. The entity forms include user form, application instance form, role form, and
entitlement form. The instance provides various context information. Using this
context information, you can customize various forms based on specific business
requirements.

You can get an instance of the class by using Java code, as shown:

RequestFormContext.getCurrentInstance();

You can also get an instance of the class by using EL, as shown:

See Also: "Using List-of-Values Components" in the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework for information about using a LOV component
to display a model-driven list of objects from which a user can select a
value

Developing Managed Beans and Task Flows

Customizing the Interface 30-53

#{pageFlowScope.requestFormContext}

RequestFormContext provides the following context information:

■ operation: The operation that is being performed on the entity. The possible values
are CREATE and MODIFY.

■ actionType: The action that is being performed by the user when the entity form is
displayed. The possible values are: APPROVAL, FULFILL, REQUEST, VIEW,
SUMMARY.

■ bulk: Whether or not it is a bulk operation.

■ beneficiaryIds: The list of beneficiary or target user IDs. For example, if you are
requesting an application instance for the user John Doe, then the list contains the
user ID of John Doe.

■ cartItemIds: The list of cart item IDs. For example, if you are requesting an
application instance for a user, then the list contains the application instance ID
that is being requested.

■ requestEntityType: The entity type being requested, which is any one of ROLE,
ENTITLEMENT, APP_INSTANCE, USER.

■ requestEntitySubType: The subtype of entity being requested. For example, when
requesting for an application instance, the requestEntitySubType is the application
instance key.

■ instanceKey: The key of the instance being modified.

The following is an example usage of the RequestFormContext:

You might want to add new Prepopulate button to the Create Application Instance
form, and make the button visible only when there is only one target user. When the
button is clicked, some of the application instance fields, such as User Login, First
Name, and Last Name) will be prepopulated based on the current target user. To
achieve this, perform the following steps:

1. In your custom request bean, define properties for component bindings of the
Prepopulate button and the form root panel, as shown:

private UIComponent rootPanel;
 private UIComponent prepopulateButton;

 public void setRootPanel(UIComponent rootPanel) {
 this.rootPanel = rootPanel;
 }

 public UIComponent getRootPanel() {
 return rootPanel;
 }

 public void setPrepopulateButton(UIComponent prepopulateButton) {
 this.prepopulateButton = prepopulateButton;
 }

 public UIComponent getPrepopulateButton() {
 return prepopulateButton;
 }

2. Implement an actionListener that will be invoked when the Prepopulate button is
clicked. The actionListener uses the target user ID and fetches user data, such as
First Name and Last Name, by using Oracle Identity Manager API. Use the

Developing Managed Beans and Task Flows

30-54 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

fetched data, and set certain application instance attributes through attribute
binding, and finally refresh the form so that new values are displayed. The
actionListener is as shown:

public void actionListener(ActionEvent e) {
 if (e.getSource().equals(prepopulateButton)) {
 RequestFormContext requestFormContext =
RequestFormContext.getCurrentInstance();
 List<String> beneficiaryIds =
requestFormContext.getBeneficiaryIds();
 if (beneficiaryIds.size() == 1) {
 // prepopulate fields based on selected beneficiary
 User user = getUser(beneficiaryIds.get(0));
 FacesUtils.setAttributeBindingValue(ACCOUNT_LOGIN_ATTRIBUTE,
user.getLogin());
 FacesUtils.setAttributeBindingValue(ACCOUNT_ID_ATTRIBUTE,
user.getId());
 FacesUtils.setAttributeBindingValue(FIRST_NAME_ATTRIBUTE,
user.getFirstName());
 FacesUtils.setAttributeBindingValue(LAST_NAME_ATTRIBUTE,
user.getLastName());
 }
 }
 FacesUtils.partialRender(rootPanel);
 }

 private User getUser(String userId) {
 UserManager userManager = OIMClientFactory.getUserManager();
 try {
 return userManager.getDetails(userId, null, false);
 } catch (NoSuchUserException e) {
 throw new RuntimeException(e);
 } catch (UserLookupException e) {
 throw new RuntimeException(e);
 }
 }

3. Create a method that returns Boolean value. The method determines if the
Prepopulate button is to be displayed when the form is rendered. In this example,
the Prepopulate button will be displayed when the number of target users is equal
to 1. The method is as follows:

public boolean isPrepopulateButtonRendered() {
 RequestFormContext requestFormContext =
RequestFormContext.getCurrentInstance();
 return requestFormContext.getActionType() ==
RequestFormContext.ActionType.REQUEST &&
requestFormContext.getBeneficiaryIds().size() == 1;
 }

4. Bind the code with JSFF. To do so:

a. Add a Prepopulate button to the Create Application Instance form.

b. Set bindings for the Prepopulate button and the root panel.

c. Set the Prepopulate button actionListener property to point to the
actionListener method implemented in step 2.

d. Set the rendered property to point to the isPrepopulateButtonRendered()
method implemented in step 3.

Developing Managed Beans and Task Flows

Customizing the Interface 30-55

30.10.5.7 Overriding the Submit Button in Request Catalog
Can override the Submit button in the request catalog and execute additional logic
based on your requirements. For example, to add additional check for number of
target users or beneficiaries when submitting a request, and allow submitting the
request when the number of beneficiaries is not more than five, perform the following
steps:

1. Implement actionListener that will override the original Submit button.

The actionListener will be invoked when the user clicks the Submit button. The
actionListener performs the extra check and either display error messages or
executes the original actionListener bound to the Submit button. Original Submit
button actionListener can be executed using the following EL expression:

#{backingBeanScope.cartReqBean.submitActionListener}

The actionListener code is as shown:

public void submitButtonActionListener(ActionEvent e) {
 // only submit request if there is no more than 5 beneficiaries
 Boolean moreThanFiveTargetUsers =
FacesUtils.getValueFromELExpression("#{backingBeanScope.cartReqBean.targetUserS
ize > 5}", Boolean.class);
 if (moreThanFiveTargetUsers) {
 // display error message
 FacesMessage fm = new FacesMessage();
 fm.setSeverity(FacesMessage.SEVERITY_ERROR);
 fm.setSummary(MORE_THAN_FIVE_TARGET_USERS_MSG);
 FacesUtils.showFacesMessage(fm);
 } else {
 // execute original submit button action listener
 MethodExpression originalActionListener =

FacesUtils.getMethodExpressionFromEL("#{backingBeanScope.cartReqBean.submitActi
onListener}", null, new Class[] { ActionEvent.class });
 originalActionListener.invoke(FacesUtils.getELContext(), new
Object[] { e });
 }
 }

2. Update the Submit button actionListener property to point to the new
actionListener implementation.

30.10.5.8 Developing Home Page Portlets
Hompage portlet is a regular bounded taskflow that can be added to the user's Home
page in Oracle Identity Self Service. Home page portlets must be created in
ViewController projects. ViewController projects must have the deployment profile of
type ADF Library JAR File. For information about setting up the ViewController
project, see "Setting Up the ViewController Project" on page 30-42. For information
about adding a custom managed bean, see "Adding Custom Managed Bean" on
page 30-44.

After developing the bounded taskflow, you must deploy it. For information about
deploying the bounded taskflow, see "Deploying Custom Code to Oracle Identity

See Also: "Creating ADF Task Flows" in the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework
for information about developing ADF taskflows

Developing Managed Beans and Task Flows

30-56 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Manager" on page 30-45.

Every new taskflow must be granted a permission to make it visible in the Identity Self
Service. See "Securing a Custom Taskflow Using APM" on page 30-31 for details.

The final step in developing Home page portlets is updating the resource catalog for
the Home page. This allows the users to add the portlet to the homepage.

To update the Home page resource catalog:

1. Locate the oracle.iam.ui.custom shared library, which is
oracle.iam.ui.custom-dev-starter-pack.war. This is available in the
DM_HOME/server/apps/ directory.

2. Unpack the WAR and locate the oracle/adf/rc/metadata/custom-catalog.xml file.

3. Update the file and include reference to your newly added bounded taskflow. The
entry looks similar to the following:

<resource id="helloWorld" name="Hello World"
description="Hello World Taskflow Reference"
repository="application.classpath"
path="adflibHomepagePortletsUI.jar/ADF_TaskFlow/WEB-INF+oracle+iam+ui+sample+ho
mepage+tfs+hello-world-tf.xml#hello-world-tf">
<attributes>
<attribute value="coreDefault" attributeId="attr.background" isKey="false"/>
</attributes>
</resource>

4. Redeploy the shared library.

Note: Make sure that the format of the path property is correct. The
format must follow the same pattern as shown in step 3. In addition,
ensure that the value of the repository property is
application.classpath. For more information about the format of this
file, see "resource" of the "Catalog Definition Attributes" section in the
Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Portal.

Note: Verify the following if you have performed the steps to update
the Home page resource catalog, but the custom task flow is not
displayed in the resource catalog after clicking the Add Content
button:

■ Ensure that the task flow permission is defined properly. See
"Securing a Custom Taskflow Using APM" on page 30-31 for
details.

■ Ensure that the ADF library JAR file containing your task flow
contains the META-INF/task-flow-registry.xml file and that the
file contains a reference to your custom task flow. If the file is
missing, then rebuild just the particular JDeveloper project
containing your custom task flow, and check if it resolves the
issue. To rebuild just the particular JDeveloper project, go to
JDeveloper, right-click the ViewController project containing the
custom task flow, select Deployment, and then select the
deployment profile. The deployment profile must be of type ADF
Library JAR File.

Developing Managed Beans and Task Flows

Customizing the Interface 30-57

30.10.5.9 Launching Taskflows
You can launch a taskflow in the Self Service interface. For example, if you want to
launch a tab with a bounded taskflow running in it, then perform the following steps:

1. Develop a custom managed bean with the following method:

public void launchMyTaskFlow(ActionEvent evt){

 User user =
OIMClientFactory.getAuthenticatedService().getProfileDetails(null);
 String taskFlowId =
"/WEB-INF/oracle/iam/ui/manageusers/tfs/user-details-tf.xml#user-details-tf";
 // This id uniquely identifies the taskflow after launch. Add a suffix,
for example entityPrimaryKey, to make it unique.
 String id = "user-detail-tf;
 String name = user.getDisplayName() ; // this is shown as the tab title
 String description = ""; // Add any suitable description
 String icon = "/images/user.png";
 String helpTopicId = ConstantsDefinition.DEFAULT_HELP_TOPIC_ID; // Or
your custom OHW integrated help topic id
 boolean inDialog = false;
 Map params = new HashMap(); // These are your taskflow's input
parameters being passed from this launcher method
 params.put("userLogin", user.getLogin());
 param.put("usr_key", user.getId());

 String jsonPayLoad = TaskFlowUtils.createContextualEventPayLoad(id,
taskFlowId, name, icon, description, helpTopicId, inDialog, params);

TaskFlowUtils.raiseContextualEvent(TaskFlowUtils.RAISE_TASK_FLOW_LAUNCH_EVENT,
jsonPayLoad);
 }

Package and deploy the managed bean, as described in "Developing Managed
Beans and Task Flows" on page 30-42.

2. Using sandbox and Web Composer customization, add an ADF CommandLink to
the correct page (JSFF file), and then export the sandbox. Open the sandbox zip,
and edit the jsff.xml to bind actionListener for that link to the managed bean
method.

3. Ensure that the page definition of the jsff has the raiseTaskFlowLaunchEvent
binding. To find the name of the page definition file, you first need to know the
name of the jsff page on which you have the launch link.

If the jsff page is the existing left navigation page, then the name is left-nav.jsff.
The page definition file for this jsff page is left-nav_pageDef.xml. This page
definition XML file already contains the eventBinding, and therefore, nothing is
required to be changed.

If your launch link is on a custom jsff page, for example, your page name is
my-custom.jsff, then look for a file named my-custom_pageDef.xml within the
same JDev project. JDev automatically creates this file for each jsff. You must add
the following eventBinding into this pageDef xml file:

<eventBinding id="raiseTaskFlowLaunchEvent">
 <events xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="oracle.idm.shell.event.TaskFlowLaunchEvent"/>
 </events>
 </eventBinding>

Developing Managed Beans and Task Flows

30-58 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

30.10.5.10 Creating an External Link
To add a link or button that redirects the user to a certain URL:

1. In your custom request bean, create the following actionListener that will be
invoked when the user clicks a link or button:

public void actionListener(ActionEvent e) {
 FacesUtils.redirect("http://www.oracle.com");
 }

2. Add a new commandLink or commandButton to the page on which you want to
display the link or button by using Web Composer. See "Adding a Link or Button"
on page 30-26 for details.

3. Set the actionListener property of the link or button component that you added to
point to the actionListener method.

30.10.6 Using Managed Beans to Populate Request Attributes
This section describes the following approaches for populating request attributes:

■ Populating Request Attributes Using Managed Beans

■ Populating Request Attributes by Using the Prepopulate Plug-in

30.10.6.1 Populating Request Attributes Using Managed Beans
This approach involves creating a managed bean that gets invoked when the user
clicks a custom button. The managed bean must be deployed to the Oracle Identity
Manager customization placeholder library, which is
oracle.iam.ui.custom-dev-starter-pack.war. The button, referred to as the Prepopulate
button, is part of the UI customization and must be manually added to the page by
using Web Composer.

The managed bean code is responsible for fetching the information to be populated in
the request form. It uses Oracle Identity Manager APIs to get the beneficiary
information from the request and from the user management layer, and uses JSF/ADF
APIs to update the request form UI components.

To populate request attributes by using managed beans and UI customization:

1. Create the JDev application workspace and project. See "Setting Up the
ViewController Project" on page 30-42 for details.

2. Create a Java class. In this example, the complete class name is
com.oracle.demo.iam.prepop.view.PrePopulateMBean. This class contains:

■ Two member variables that hold references to the UI components, the custom
Prepopulate button and its parent container.

■ Accessor methods (get and set) for the variables member variables.

■ An action listener type method to be invoked when the user clicks the custom
Prepopulate button.

■ A method that returns a boolean value determines when the custom
Prepopulate button must be disabled

Note: Existing Oracle Identity Manager pages already contain the
eventBinding. You must define the eventBinding for JSFF pages that
you build.

Developing Managed Beans and Task Flows

Customizing the Interface 30-59

 The custom code for this example is:

public class PrePopulateMBean {

 private UIComponent rootPanel;
 private UIComponent prepopulateButton;

 public PrePopulateMBean() {
 super();
 }

 public void setRootPanel(UIComponent rootPanel) {
 this.rootPanel = rootPanel;
 }

 public UIComponent getRootPanel() {
 return rootPanel;
 }

 public void setPrepopulateButton(UIComponent prepopulateButton) {
 this.prepopulateButton = prepopulateButton;
 }

 public UIComponent getPrepopulateButton() {
 return prepopulateButton;
 }

 public boolean isPrepopulateButtonRendered() {

 boolean ret = false;
 RequestFormContext requestFormContext =
RequestFormContext.getCurrentInstance();
 if (requestFormContext != null) {

 boolean isActionRequest = (requestFormContext.getActionType() ==
RequestFormContext.ActionType.REQUEST);
 boolean singleUserRequest = false;

 if (requestFormContext.getBeneficiaryIds()!=null) {
 singleUserRequest =
(requestFormContext.getBeneficiaryIds().size() == 1);
 }
 ret = isActionRequest && singleUserRequest;
 }
 return (ret);
 }

 public void actionListener(ActionEvent e) {

 if (e.getSource().equals(prepopulateButton)) {

 RequestFormContext requestFormContext =
RequestFormContext.getCurrentInstance();
 List<String> beneficiaryIds =
requestFormContext.getBeneficiaryIds();

 if (beneficiaryIds.size() == 1) {

 try {
 User user = getUser(beneficiaryIds.get(0));
 FacesUtils.setAttributeBindingValue("UD_OID_USR_FNAME__c",

Developing Managed Beans and Task Flows

30-60 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

user.getFirstName());
 FacesUtils.setAttributeBindingValue("UD_OID_USR_LNAME__c",
user.getLastName());

 } catch (NoSuchUserException f) {
 f.printStackTrace();
 } catch (UserLookupException f) {
 f.printStackTrace();
 }
 }
 }
 FacesUtils.partialRender(rootPanel);
 }

 private User getUser(String userKey) throws NoSuchUserException,
UserLookupException {

 UserManager userMgr = OIMClientFactory.getUserManager();

 HashSet<String> searchAttrs = new java.util.HashSet<String>();
 searchAttrs.add(AttributeName.USER_LOGIN.getId());
 searchAttrs.add(AttributeName.LASTNAME.getId());
 searchAttrs.add(AttributeName.FIRSTNAME.getId());

 return userMgr.getDetails(userKey,searchAttrs, false);
 }
}

In the code for the Java class:

■ The isPrepopulateButtonRendered method returns true if a RequestContext
is available, and if there is only one request beneficiary. The check on the
RequestContext availability is required to avoid issues at the time of
customization. This method is invoked when the custom Prepopulate button
is loaded, or its container is refreshed.

■ The actionListener method executes a user search in Oracle Identity
Manager by invoking the getUser method, which uses the request beneficiary
information. Then, it directly sets values on the UD_OID_USR_FNAME__c
and UD_OID_USR_LNAME__c UI components with the information returned
from the user search, and invokes a partial rendering on the rootPanel. This is
the panel that holds the custom button and the request form. The partial
rendering will display the values in the respective fields. It is important to
mention here that this custom code contains a direct reference to the UI
components, and that these direct references can be found by exporting the
sandbox. This method is invoked when the custom Prepopulate button is
loaded or its container refreshed.

■ The FacesUtil class is responsible for rendering the UI changes. See
Appendix B, "The FacesUtils Class" for the code for this class.

3. Declare the PrePopulateMBean class as a managed bean in the JDev project. This
makes the MBean available in the UI so that it can be invoked by using EL
expressions. To configure this, specify the following values in the Managed Beans
section of the View Controller project:

■ Name: prepopMBean

■ Class: com.oracle.demo.iam.prepop.view.PrePopulateMBean

■ Scope: backingBean

Developing Managed Beans and Task Flows

Customizing the Interface 30-61

4. Deploy the View Controller project as an ADF library JAR file. This type of
deployment can be created in JDeveloper through the deployment profiles option.
The deployment generates a JAR file. Copy this file into
oracle.iam.ui.custom-dev-starter-pack.war, which is Oracle Identity Manager
placeholder library. This file is available along with the other Oracle Identity
Manager application packages, such as EAR and WAR files, at the
$OIM_ORACLE_HOME/server/apps/ directory. Create a backup of this file
before modifying it.

5. To deploy the custom code:

a. Copy the oracle.iam.ui.custom-dev-starter-pack.war to a temporary location.

b. Open the oracle.iam.ui.custom-dev-starter-pack.war.

c. Add the custom jar file to the WEB-INF/lib directory. If the lib directory does
not exist, then create it.

d. Save the oracle.iam.ui.custom-dev-starter-pack.war file.

e. Copy the oracle.iam.ui.custom-dev-starter-pack.war file back to its original
location in the $OIM_ORACLE_HOME/server/apps/ directory.

f. Stop Oracle Identity Manager Managed Server.

g. In WebLogic Administration Console, update the oracle.iam.ui.custom library
deployment, and activate the changes.

h. Start Oracle Identity Manager Managed Server.

6. Customize the UI. To do so:

a. Create and activate a sandbox. In this example, the sandbox name is
RequestPrePop.

b. Login to Oracle Identity Self Service, and navigate to the Catalog page.

c. Search for the specific application instance to be customized. In this example,
the application instance is called Local OID. Add the application instance to
the shopping cart, and Checkout.

d. Click Customize.

e. Select View, Source.

f. In the Cart Items and Details sections of the page, click close to the Details
label. Make sure that the showDetailHeader:Details component is selected.

g. On the top-left, click Edit. In the dialog box that opens, edit the Binding
property, and configure the following EL using the Expression Builder:

#{backingBeanScope.prepopMBean.rootPanel}

This expression bind will make the UI invoke the setRootPanel method in the
custom managed bean. Click OK.

h. Make sure that the showDetailHeader:Details component selected. Click Add
Content.

i. Scroll down, and open the Web Components section.

j. Click Add on the right of the Command Toolbar Button component. A button
is added on the Details section.

k. Click the button, and then click Edit.

l. Edit the Text property, and set PrePopulate as the label.

Developing Managed Beans and Task Flows

30-62 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

m. Edit the Binding property and configure the following EL using the
Expression Builder:

#{backingBeanScope.prepopMBean.prepopulateButton}

This bind is for invoking the setPprepopulateButton method in the custom
managed bean. Click OK.

n. Edit the Disabled property, and configure the following EL by using the
Expression Builder:

#{!backingBeanScope.prepopMBean.prepopulateButtonRendered}

This is to invoke the isPrepopulateButtonRendered method in the managed
bean. Click Ok.

o. Click the Style tab. Set the Width property to 100, and the Margin - Left
property to 100. Click OK. This configuration will properly place the
PrePopulate button in the UI.

p. Exit the customization mode by clicking Close.

7. To manually configure the properties of the Prepopulate button:

a. Navigate to the Sandbox page. De-activate and export the sandbox.

b. Save the sandbox ZIP file in the local file system.

c. Extract the ZIP file. In a text editor, open the XML file corresponding to the
customization. In this example, the file is
oracle/iam/ui/runtime/form/view/pages/mdssys/cust/site/site/OIDUser
FormCreateForm.jsff.xml.

d. Search for the section defining the custom Prepopulate button, which can be
similar to the following:

<af:commandToolbarButton xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
id="e8829502064"
binding="#{backingBeanScope.prepopMBean.prepopulateButton}"
text="PrePopulate"

e. Add the actionListener property to the custom Prepopulate button, as shown:

actionListener="#{backingBeanScope.prepopMBean.actionListener}

f. Save the file and repackage the ZIP. Make sure that the path is preserved when
repacking the contents.

g. Import the sandbox, and import the ZIP file. Make sure that the sandbox is not
active when importing it.

h. Activate the sandbox.

8. Test the customization. To do so:

a. Navigate to the Catalog, find the application instance and add it do the
shopping cart.

b. In the cart summary page, the custom Prepopulate button is displayed.when
clicking on it, the First Name and Last Name fields will be updated with the
beneficiary's information

c. Ckick the Prepopulate button. The First Name and Last Name fields are
updated with the beneficiary's information.

9. Sublish the sandbox.

Developing Managed Beans and Task Flows

Customizing the Interface 30-63

30.10.6.2 Populating Request Attributes by Using the Prepopulate Plug-in
Prepopulate plug-ins can be used when the same logic is to be executed for both UI
and API request creation, and can also be used when a UI interaction is not required.
In this approach, a plug-in is present for each attribute that must be prepopulated in
the request. The same plug-in can be used across different resources and different
attributes.

The plug-in code implements the oracle.iam.request.plugins.PrePopulationAdapter
interface. The following is an example code:

package com.oracle.demo.iam.prepop.plugin;

import java.io.Serializable;

import java.util.HashSet;
import java.util.List;

import oracle.iam.identity.usermgmt.api.UserManager;
import oracle.iam.identity.usermgmt.api.UserManagerConstants.AttributeName;
import oracle.iam.identity.usermgmt.vo.User;
import oracle.iam.platform.Platform;
import oracle.iam.request.vo.Beneficiary;
import oracle.iam.request.vo.RequestData;

public class UserLoginPrePop implements
oracle.iam.request.plugins.PrePopulationAdapter {

 public UserLoginPrePop() {
 super();
 }

 public Serializable prepopulate(RequestData requestData) {

 String prePopUserId = null;

 List<Beneficiary> benList = requestData.getBeneficiaries();

 if(benList.size()==1){

 UserManager usersvc = Platform.getService(UserManager.class);

 for(Beneficiary benf: benList){

 HashSet<string> searchAttrs = new java.util.HashSet<String>();
 searchAttrs.add(AttributeName.USER_LOGIN.getId());

 try {
 User userBenef =
usersvc.getDetails(benf.getBeneficiaryKey(),searchAttrs, false);
 if (userBenef!= null) {
 prePopUserId = userBenef.getLogin();
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
 return prePopUserId;
 }
}

Migrating UI Customizations

30-64 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

A prepopulate plug-in is similar to any other plug-in in Oracle Identity Manager. The
plug-in class is compiled and deployed to a JAR file. The JAR file must be added to a
ZIP file in the lib directory. The ZIP file must contain in the root path a XML file
declaring the plug-in. The XML used in this example is as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<oimplugins xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <plugins pluginpoint="oracle.iam.request.plugins.PrePopulationAdapter">
 <plugin pluginclass= "com.oracle.demo.iam.prepop.plugin.UserLoginPrePop"
version="1.0" name="UserLoginPrePop">
 <metadata name="PrePopulationAdapater">
 <value>OracleDBUMForm::Username|OIDUserForm::User ID</value>
 </metadata>
 </plugin>
</plugins>
</oimplugins>

In the XML code:

■ The xmlns tag attribute must be present in the XML. Otherwise, the plug-in is not
invoked by Oracle Identity Manager.

■ The value in the pluginpoint element must be
oracle.iam.request.plugins.PrePopulationAdapter.

■ The metadata tag contains a value child node. This value child node must contain
the pairs of FormName::AttributeName. Each pair indicates a form attribute that
will be populated by the prepopulate plug-in. In this example, such attributes are
Username in the OracleDBUMForm form and User ID in the OIDUserForm form.
The form names are configured when the ApplicationInstances and their forms
were created, and not the process form created when the connector is imported
into Oracle Identity Manager.

The prepopulate plug-in can be deployed to the $OIM_HOME/server/plugins/
directory, or it can be registered using the plug-in registration script. In production
environments, it is always recommended to deploy the plug-in by using the command
line so that the plug-in Zip file is uploaded to the database.

30.11 Migrating UI Customizations
Migrating UI customizations from one Oracle Identity Manager environment to
another environment or test to production (T2P) is described with the help of the
following scenarios:

Scenario I: Incremental T2P
During the development cycle, you want to incrementally build configuration and
keep moving the configuration from one Oracle Identity Manager setup to another. To
do this, you use the Deployment Manager, as described in Chapter 38, "Migrating
Configurations and Customizations". But exporting and importing data using the
Deployment Manager does not include the UI customization, except migrating the
resource bundles. For this reason, Oracle Identity Manager provides sandboxes, using
which you can create customizations bound by sandboxes, test them, and eventually
export/import them on an incremental basis.

However, incremental migration of customizations has a problem. You have to keep
your sandboxes exported in advance, and then only publish the changes. You can test
your changes only after publishing them. But if you have already published the
changes, then you cannot export. This is a known issue.

Rolling Back UI Customization

Customizing the Interface 30-65

Scenario II: Fusion Middleware Framework-Based Full T2P
After completion of the development and testing cycles, you want to setup the
production environment on the first day of the real deployment. You want to move all
configurations and customizations from the test to the production environment.

Full T2P of Oracle Identity Manager via Fusion Middleware framework-based utility
also supports the movement of UI customizations. Fusion Middleware
Framework-Based Full T2P is performed by using Fusion Middleware T2P utilities,
such as copyBinary, pasteBinary, copyconfig, extractMoveplan, and pasteconfig, and
does not use the Deployment Manager. See "Moving from a Test to a Production
Environment" in the Oracle Fusion Middleware Administrator's Guide for detailed
information about Full T2P.

If in the T2P, the list of published sandboxes are not showing up, then it is not an issue
because you are expected to track published/unpublished changes in your test
environment (T2P source), not in the destination or production environment.

Any unpublished sandboxes in the source or test environment means:

■ You want to move the unpublished sandboxes later as incremental work after
increasing the scope of those sandboxes, but currently those have not been
included in the production environment.

■ The unpublished sandboxes have not been tested, and you do not want to include
those in the production environment.

30.12 UI Customization Best Practice
When creating a sandbox, create it with a detailed description and list all the entities
for which you are creating the sandbox. For example, if you are creating an application
instance, note that this sandbox is created for application instance creation. When the
application instance is created, publish the sandbox, and then go to Identity Self
Service to create another sandbox to perform the UI customization. This is to avoid
issues when two or more users create different sandboxes to create the same entity
(application instance in this example) and try to publish it at different times.

30.13 Rolling Back UI Customization
If you are unable to login to Oracle Identity System Administration after customizing
the interface and publishing the sandbox, then perform the following steps:

1. Login to Oracle Enterprise Manager.

2. In Application Deployments, select oracle.iam.ui.console.self-service.ear.

3. On the top-right of the page, select Application Deployment, and then select
MDS Configuration from the list.

4. At the bottom of the screen, select Runtime MBean Browser under the Advanced
Configuration section. The right side of the screen refreshes.

5. Click the Operations tab.

6. Scroll down and identify the listMetadataLabels MBean operation and invoke it.
Select the MBean operation that does not take any parameters. Select the sandbox
precreate that you want to restore, and copy it to the clipboard.

For example, the value you copy can be similar to: Creation_IdM_test_09:25:00.

7. Click Return to go back to the Operation tab.

Rolling Back UI Customization

30-66 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

8. Find the promoteMetadataLabel MBean operation.

9. Invoke the promoteMetadataLabel MBean operation, and enter the value that you
copied in step 6.

10. Restart Oracle Identity Manager.

11. Login to Oracle Identity System Administration.

Part VIII
Part VIII Interfaces to Integrate With Other

Applications

This part describes the APIS and Web services that Oracle Identity Manager supports.

It contains the following chapters:

■ Chapter 31, "Using APIs"

■ Chapter 32, "Using SPML Services"

■ Chapter 33, "Using URLs"

31

Using APIs 31-1

31Using APIs

[32]

Oracle provides a network-aware, Java-based application programming interface
(API) that exposes Services, called Utility in earlier releases, available in Oracle
Identity Manager. This API is based on Plain Old Java Objects (POJO) and takes care of
all the plumbing required to interact with Oracle Identity Manager. This API can be
used for building clients for Oracle Identity Manager and for integrating third-party
products with the Oracle Identity Manager platform.

This chapter contains these sections:

■ Accessing Oracle Identity Manager Services

■ Oracle Identity Manager Services

■ Commonly Used Services

■ Developing Clients for Oracle Identity Manager

■ Working With Legacy Oracle Identity Manager APIs

■ Code Sample

31.1 Accessing Oracle Identity Manager Services
The entry point to Oracle Identity Manager Services is through
oracle.iam.platform.OIMClient class. Thor.API.tcUtilityFactory used in earlier releases
is also supported. Oracle recommends using the oracle.iam.platform.OIMClient for
developing clients to integrate with Oracle Identity Manager.

This section describes the following topics:

■ Using OIMClient

■ Using the tcUtilityFactory

31.1.1 Using OIMClient
OIMClient is the entry point for accessing the services available in Oracle Identity
Manager. You use the following sequence of steps when using OIMClient:

1. Create an instance of OIMClient with the environment information required to
connect to Oracle Identity Manager application, as shown:

Hashtable env = new Hashtable();

env.put(OIMClient.JAVA_NAMING_FACTORY_INITIAL,
"weblogic.jndi.WLInitialContextFactory");

Oracle Identity Manager Services

31-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

env.put(OIMClient.JAVA_NAMING_PROVIDER_URL, http://OIM_HOSTNAME:OIM_PORT);
OIMClient oimClient = new OIMClient(env);

Here, replace OIM_HOSTNAME with the host name on which Oracle Identity
Manager is deployed and OIM_PORT with the port number.

2. Login to the Oracle Identity Manager with the appropriate credentials, as shown:

oimClient.login(OIM_USERNAME, OIM_PASSWORD);

3. Lookup a service, as shown:

UserManager usermgr = oimClient.getService(UserManager.class);
OR
tcLookupOperationsIntf lookupIntf =
oimClient.getService(tcLookupOperationsIntf.class);

4. Call method on a service, as shown:

HashMap userAttributes = new HashMap();
……………..
UserManagerResult result = userMgr.create(new User(null, userAttributes));

31.1.2 Using the tcUtilityFactory
Earlier releases of Oracle Identity Manager supports tcUtilityFactory for accessing
Oracle Identity Manager Services (or Utilities, as they are called in legacy releases).
tcUtilityFactory continues to be supported. However, as mentioned earlier, Oracle
recommends using OIMClient for building all client applications for Oracle Identity
Manager.

You use the following sequence of steps when using tcUtilityFactory:

1. Create an instance of tcUtilityFactory with the environment information, such as
username and password, as shown:

tcUtilityFactory ioUtilityFactory = new tcUtilityFactory(env, "OIM_USERNAME",
"OIM_PASSWORD");

2. Look up utility or service by providing the fully qualified name of the utility, as
shown:

tcUserOperationsIntf moUserUtility =
(tcUserOperationsIntf)ioUtilityFactory.getUtility("Thor.API.Operations.tcUserOp
erationsIntf");

3. Run operations on the utility, as shown:

Hashtable mhSearchCriteria = new Hashtable();
mhSearchCriteria.put("Users.First Name", psFirstName);
tcResultSet moResultSet = moUserUtility.findUsers(mhSearchCriteria);

31.2 Oracle Identity Manager Services
The Oracle Identity Manager API provides access to services available in Oracle
Identity Manager. Because the APIs in Oracle Identity Manager 11g Release 1(11.1.1)
onwards and the legacy APIs use different conventions, this section discusses them
separately in the following topics:

■ Services in Oracle Identity Manager 11g

Commonly Used Services

Using APIs 31-3

■ Legacy Services or Utilities

31.2.1 Services in Oracle Identity Manager 11g
Services in Oracle Identity Manager 11g onwards are based on the following
conventions:

■ Package Names: Services are in packages whose names end with "api", for
example:

oracle.iam.request.api
oracle.iam.identity.usermgmt.api

■ Service Interface Names: Services introduced in 11g typically use the naming
convention of "*Service", for example:

oracle.iam.request.api.RequestService
oracle.iam.selfservice.self.selfmgmt.api.AuthenticatedSelfService

Some Identity Administration APIs use the "*Manager" naming convention for
their APIs, for example:

oracle.iam.identity.usermgmt.api.UserManager

Some new services introduced in Oracle Identity Manager 11g Release 2 (11.1.2.1.0) are:

oracle.iam.api.OIMService
oracle.iam.platform.authopss.api.AuthorizationService
oracle.iam.provisioning.api.ProvisioningService
oracle.iam.provisioning.api.ApplicationInstanceService

31.2.2 Legacy Services or Utilities
Legacy services, also called utilities, follow the following naming conventions

■ Package Names: All legacy APIs are in Thor.API.Operations package.

■ Service Interface Names: Service names are of the form "*Intf", for example,
Thor.API.Operations.tcImportOperationsIntf.

31.3 Commonly Used Services
Table 31–1 lists some commonly used services in Oracle Identity Manager.

See Also: Oracle Fusion Middleware Java API Reference for Oracle
Identity Manager for a full list of services available in Oracle Identity
Manager. You can use the naming conventions above to find the APIs.

Table 31–1 Commonly Used Services

Service Name Description

UserManager Provides operations for user management, such as
create, search, modify, and delete users

RequestService Provides operations to submit, withdraw, close,
and search requests.

Developing Clients for Oracle Identity Manager

31-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

31.3.1 Mapping Between Legacy and New Services
In Oracle Identity Manager, some of the legacy APIs have been rewritten by using new
architecture and the corresponding utility services or interface classes have been
changed. Table 31–2 provides a high-level correspondence between the legacy and
new interfaces.

31.4 Developing Clients for Oracle Identity Manager
This section includes the following topics:

■ Prerequisites for Developing Clients

■ Setup and Configuration

31.4.1 Prerequisites for Developing Clients
The following prerequisites must be met for developing clients for Oracle Identity
Manager:

■ Java Development Kit (JDK) 1.6 installed and set in the path

■ ANT 1.7 installed and set in the path

RoleManager Provides operations for role management such as
create, search, modify, and delete roles. In
addition, this service provides operations for
management of role members and relationships
between roles.

OrganizationManager Provides operations for organization management
such as create, search, modify, delete, enable, and
disable organizations.

oracle.iam.api.OIMService Provides method to perform an operation in
Oracle Identity Manager. You can pass an intent
while calling API of this service. Intent here can be
request or direct.

Table 31–2 Mapping Between Legacy and New Services

Legacy Service New Service

Thor.API.Operations.tcUserOperationsIntf oracle.iam.identity.usermgmt.api.UserManager

Thor.API.Operations.tcGroupOperationsIntf

Note: The Group Manager APIs related all
delegated admin APIs for adding and
removing admins have been deprecated.

oracle.iam.identity.rolemgmt.api.RoleManager

Thor.API.Operations.tcOrganizationOperati
onsIntf

oracle.iam.identity.orgmgmt.api.OrganizationM
anager

Thor.API.Operations.tcRequestOperationsIn
tf

oracle.iam.request.api.RequestService

Thor.API.Operations.tcSchedulerOperations
Intf

oracle.iam.scheduler.api.SchedulerService

Thor.API.Operations.tcEmailOperationsIntf oracle.iam.notification.api.NotificationService

Table 31–1 (Cont.) Commonly Used Services

Service Name Description

Working With Legacy Oracle Identity Manager APIs

Using APIs 31-5

31.4.2 Setup and Configuration
Oracle Identity Manager package contains a ZIP file that contains the required libraries
and configuration files for developing clients.

To run an application client for Oracle Identity Manager:

1. Copy OIM_ORACLE_HOME/server/client/oimclient.zip to the computer on
which you want to develop the client, for example the oimclient/ directory. This
directory is referred to as OIM_CLIENT_HOME in this document. Extract the ZIP
file. Note that the oimclient.zip file consists of the conf, lib, and oimclient.jar.

2. Copy the application server-specific client library to the
OIM_CLIENT_HOME/lib/ directory. For Oracle WebLogic Server, wlfullclient.jar
is the client library. It is created in
MIDDLEWARE_HOME/WL_HOME/server/lib/ directory, for example,
/scratch/beahome/wlserver_10.3/server/lib/. Check if wlfullclient.jar is present.
If not, then you must generate one by using the jarbuilder tool. See Oracle
WebLogic Server documentation on how to generate wlfullclient.jar.

3. Pass the following system properties for running API clients:

■ java.security.auth.login.config=OIM_CLIENT_HOME/conf/authwl.conf

■ APPSERVER_TYPE=wls

4. Make sure following jars are in the class path:

■ commons-logging.jar

■ spring.jar

■ oimclient.jar

■ wlfullclient.jar

■ jrf-api.jar

31.5 Working With Legacy Oracle Identity Manager APIs
This section describes the following topics:

■ Using a Result Set Object

■ Handling Oracle Identity Manager Exceptions

■ Cleaning Up

31.5.1 Using a Result Set Object
Legacy Oracle Identity Manager APIs extensively use the tcResultSet interface. The
Thor.API.tcResultSet interface is a data structure that stores records retrieved from
the database. Methods in the Oracle Identity Manager API that must return a set of
data use a result set. This is a two-dimensional data structure in which the columns
correspond to the attributes and rows correspond to the entities. For example, a result
set that is returned by the method that searches for users, each row would represent
data pertaining to one user, and each column in the row would be an attribute for that
user.

You can scroll through the result set and retrieve individual entries corresponding to
particular attributes by using the various methods provided. To locate a particular row
in the result set, use the goToRow() method with the row number as a parameter. To
retrieve the values for the columns from a row, use appropriate accessor methods, such

Working With Legacy Oracle Identity Manager APIs

31-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

as getStringValue(). To obtain the value from a specific column, pass the column
name as a parameter to the accessor method. The column name is the descriptive code
defined in the Oracle Identity Manager Meta-Data system.

The following table shows some sample metadata values. This mapping is based on
lookup codes and can be looked up in the Design Console by using the Lookup
Definition Form.

The following is an example of how to use a result set. This example obtains a result
set by calling the findAllUsers() method. This method searches for all users
matching certain criteria:

tcResultSet moResultSet = moUserUtility.findAllUsers(mhAttribs);

To check if the findAllUsers() method returned any records, use the isEmpty()
method, for example:

boolean mbEmpty = moResultSet.isEmpty();

To retrieve the number of records found, use the getRowCount() method. If no records
are found, then the method returns 0. The following is an example:

int mnNumRec = moResultSet.getRowCount();

To select a particular record in the system, use the goToRow() method:

moResultSet.goToRow(5);

To retrieve the values of attributes from the current row, use the appropriate accessor
method, for example:

String msUserLastName = moResultSet.getStringValue("Users.Last Name");

31.5.2 Handling Oracle Identity Manager Exceptions
The API methods throw Oracle-defined Java exceptions. Instead of using the
getMessage() method on the exception object received, you can access the isMessage
internal variable to retrieve the exception message.

31.5.3 Cleaning Up
The tcUtilityFactory class manages all resources used by a utility or factory instance
and provides a means to release these resources after they are used.

If you instantiate and use tcUtilityFactory to obtain utility class instances, to release
the resources that are associated with the utility class, call the close(utility Object)
method on the factory class. If the session has ended, then call the close() method on
the factory instance to release all the utility classes, the session objects, and the
database objects.

Column Code Explanation

IT Resources.Name The name of an IT resource

Process Definition.Name The name of a provisioning process

Note: Keep track of the result set objects that are retrieved, because
they will be required when updating an existing record.

Code Sample

Using APIs 31-7

If you obtain a utility class directly by using static calls, after the utility object is no
longer needed, call the close(object) method on the utility object.

31.6 Code Sample
Example 31–1 illustrates how to retrieve Oracle Identity Manager information. This
example creates an instance of the factory class. The instance is then called several
times to retrieve individual utility classes and use them to retrieve Oracle Identity
Manager information.

Example 31–1 Retrieving Oracle Identity Manager Information

/*
 This class is intented to showcase some of OIM API's. These API's are
 specific to OIM 11g release. As an example, Legacy API's usage for
 Organization is also shown.
*/

package oracle.iam.samples;

// Role related API's
import oracle.iam.identity.rolemgmt.api.RoleManager;
import oracle.iam.identity.rolemgmt.vo.Role;
import oracle.iam.identity.exception.RoleSearchException;
import oracle.iam.identity.rolemgmt.api.RoleManagerConstants.RoleAttributeName;
import oracle.iam.identity.rolemgmt.api.RoleManagerConstants.RoleCategoryAttributeName;

// User related API's
import oracle.iam.identity.usermgmt.api.UserManager;
import oracle.iam.identity.usermgmt.vo.User;
import oracle.iam.identity.exception.UserSearchException;
import oracle.iam.identity.usermgmt.api.UserManagerConstants.AttributeName;

// Organization Legacy API's
import Thor.API.Operations.tcOrganizationOperationsIntf;
import Thor.API.tcResultSet;
import Thor.API.Exceptions.tcAPIException;
import Thor.API.Exceptions.tcColumnNotFoundException;
import Thor.API.Exceptions.tcOrganizationNotFoundException;

import oracle.iam.platform.OIMClient;
import oracle.iam.platform.authz.exception.AccessDeniedException;
import oracle.iam.platform.entitymgr.vo.SearchCriteria;

import java.util.*;

import javax.naming.NamingException;
import javax.security.auth.login.LoginException;

public class Sample {

 private static OIMClient oimClient;

 /*
 * Initialize the context and login with client supplied environment
 */

Code Sample

31-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 public void init() throws LoginException {
 System.out.println("Creating client....");
 String ctxFactory = "weblogic.jndi.WLInitialContextFactory";
 String serverURL = "t3://OIM_HOSTNAME:OIM_PORT";
 String username = "xelsysadm";
 String password = "xelsysadm";
 Hashtable env = new Hashtable();
 env.put(OIMClient.JAVA_NAMING_FACTORY_INITIAL,ctxFactory);
 env.put(OIMClient.JAVA_NAMING_PROVIDER_URL, serverURL);

 oimClient = new OIMClient(env);
 System.out.println("Logging in");
 oimClient.login(username, password);
 System.out.println("Log in successful");
 }

 /**
 * Retrieves User login based on the first name using OIM 11g
 * UserManager service API.
 */
 public List getUserLogin(String psFirstName) {
 Vector mvUsers = new Vector();
 UserManager userService = oimClient.getService(UserManager.class);
 Set<String> retAttrs = new HashSet<String>();

 // Attributes that should be returned as part of the search.
 // Retrieve "User Login" attribute of the User.
 // Note: Additional attributes can be specified in a
 // similar fashion.
 retAttrs.add(AttributeName.USER_LOGIN.getId());

 // Construct a search criteria. This search criteria states
 // "Find User(s) whose 'First Name' equals 'psFirstName'".
 SearchCriteria criteria;
 criteria = new SearchCriteria(AttributeName.FIRSTNAME.getId(), psFirstName,
SearchCriteria.Operator.EQUAL);
 try {
 // Use 'search' method of UserManager API to retrieve
 // records that match the search criteria. The return
 // object is of type User.
 List<User> users = userService.search(criteria, retAttrs, null);

 for (int i = 0; i < users.size(); i++) {
 //Print User First Name and Login ID
 System.out.println("First Name : " + psFirstName + " -- Login ID : " +
users.get(i).getLogin());
 mvUsers.add(users.get(i).getLogin());
 }
 } catch (AccessDeniedException ade) {
 // handle exception
 } catch (UserSearchException use) {
 // handle exception
 }
 return mvUsers;
 }

 /**
 * Retrieves the administrators of an Organization based on the
 * Organization name. This is Legacy service API usage.
 */

Code Sample

Using APIs 31-9

 public List getAdministratorsOfOrganization(String psOrganizationName) {
 Vector mvOrganizations = new Vector();
 tcOrganizationOperationsIntf moOrganizationUtility =
oimClient.getService(tcOrganizationOperationsIntf.class);
 Hashtable mhSearchCriteria = new Hashtable();
 mhSearchCriteria.put("Organizations.Organization Name", psOrganizationName);
 try {
 tcResultSet moResultSet = moOrganizationUtility.findOrganizations(mhSearchCriteria);
 tcResultSet moAdmins;
 for (int i = 0; i < moResultSet.getRowCount(); i++) {
 moResultSet.goToRow(i);
 moAdmins =
moOrganizationUtility.getAdministrators(moResultSet.getLongValue("Organizations.Key"));
 mvOrganizations.add(moAdmins.getStringValue("Groups.Group Name"));
 System.out.println("Organization Admin Name : " +
moAdmins.getStringValue("Groups.Group Name"));
 }
 } catch (tcAPIException tce) {
 // handle exception
 } catch (tcColumnNotFoundException cnfe) {
 // handle exception
 } catch (tcOrganizationNotFoundException onfe) {
 // handle exception
 }
 return mvOrganizations;
 }

 /**
 * Retrieves Role Display Name based on Role name and Role Category
 * using OIM 11g RoleManager service API. This example shows how
 * to construct compound search criteria.
 */
 public List getRoleDisplayName(String roleName, String roleCategory) {
 Vector mvRoles = new Vector();
 RoleManager roleService = oimClient.getService(RoleManager.class);
 Set<String> retAttrs = new HashSet<String>();

 // Attributes that should be returned as part of the search.
 // Retrieve the "Role Display Name" attribute of a Role.
 // Note: Additional attributes can be specified in a
 // similar fashion.
 retAttrs.add(RoleAttributeName.DISPLAY_NAME.getId());

 // Construct the first search criteria. This search criteria
 // states "Find Role(s) whose 'Name' equals 'roleName'".
 SearchCriteria criteria1;
 criteria1 = new SearchCriteria(RoleAttributeName.NAME.getId(), roleName,
SearchCriteria.Operator.EQUAL);

 // Construct the second search criteria. This search criteria
 // states "Find Role(s) whose 'category' equals 'roleCategory'".
 SearchCriteria criteria2;
 criteria2 = new SearchCriteria(RoleCategoryAttributeName.NAME.getId(), roleCategory,
SearchCriteria.Operator.EQUAL);

 // Construct the compound search criteria using 'criteria1' and
 // 'criteria2' as arguments. This showcases how to construct
 // compound search criterias.
 SearchCriteria criteria = new SearchCriteria(criteria1, criteria2,
SearchCriteria.Operator.AND);

Code Sample

31-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 try {
 // Use 'search' method of RoleManager API to retrieve
 // records that match the search criteria. The return
 // object is of type Role.
 List<Role> roles = roleService.search(criteria, retAttrs, null);

 for (int i = 0; i < roles.size(); i++) {
 //Print Role Display Name
 System.out.println("Role Display Name : " +
 roles.get(i).getDisplayName());
 mvRoles.add(roles.get(i).getDisplayName());
 }
 } catch (AccessDeniedException ade) {
 // handle exception
 } catch (RoleSearchException use) {
 // handle exception
 }
 return mvRoles;
 }

 // Main method invocation
 // Following assumptions are made
 //1. A User "Joe Doe" already exists in OIM
 //2. An Organization "Example Organization" already exists in OIM
 //3. A Role "Foobar" already exists in OIM
 public static void main(String args[]) {
 List moList = null;

 try {
 Sample oimSample = new Sample();

 // initialize resources
 oimSample.init();
 // retrieve User logins with first name 'Joe'
 moList=oimSample.getUserLogin("Joe");
 // retrieve User logins with first names starting with 'J'
 moList=oimSample.getUserLogin("J*");
 // retrieve the administrators of an Organization with name
 // 'Example Organization'
 moList=oimSample.getAdministratorsOfOrganization(
 "Example Organization");
 // retrieve Role display name with role name 'FooBar'
 // and role category as 'Defaut'
 moList=oimSample.getRoleDisplayName("foobar", "Default");
 // release resources
 oimClient.logout();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

The following is the sample output:

[java] Creating client....
[java] Logging in
[java] Log in successful
[java] First Name : Joe -- Login ID : JDOE
[java] First Name : J* -- Login ID : JHOND
[java] First Name : J* -- Login ID : JDOE
[java] Organization Admin Name : SYSTEM ADMINISTRATORS

Code Sample

Using APIs 31-11

[java] Role Display Name : foobar

Code Sample

31-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

32

Using SPML Services 32-1

32Using SPML Services

[33]

Oracle Identity Manager provides client applications with the Identity Management
service, which makes use of the Service Provisioning Markup Language (SPML).

This chapter describes the SPML XSD Web service interfaces supported by Oracle
Identity Manager. It contains the following topics:

■ Introduction

■ General Considerations

■ Create Identity (SPML Core Service: addRequest)

■ Modify Users, Roles, Change Attributes and Role Memberships (SPML Core
Service: modifyRequest)

■ Delete an Identity or Role (SPML Core Service: deleteRequest)

■ Check Request Status (SPML Core Service: statusRequest)

■ List Available Targets (SPML Core Service: listTargets)

■ Disable a User (SPML Suspend Service: suspendRequest)

■ Enable a User (SPML Suspend Service: resumeRequest)

■ Check if User is Active (SPML Suspend Service: activeRequest)

■ Validate a Username (SPML Username Service: validateUsername)

■ Obtain a Username (SPML Username: suggestUsername)

■ Lookup an Identity or Role (SPML Core Service: lookupRequest)

■ Reset Password (SPML Core Service: resetPasswordRequest)

■ Lookup Username Policy (SPML Username Service: lookupUsernamePolicy)

■ Cancel/Withdraw Request (SPML Async Service: cancelRequest)

■ Batch Request (SPML Batch Request Service: batchRequest)

■ Securing SPML Web Services

Note: Oracle Identity Manager does not support the SPML DSML
service. However, you can manually deploy the spml-dsml.ear archive
file for Search User and Change Password operations for Microsoft
Active Directory password synchronization usecase only.

Introduction

32-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Operations Not Supported

■ SPML Attributes and LDAP Mappings, and Oracle Identity Manager Attributes

■ SPML Examples

32.1 Introduction
This section introduces the use of SPML services using XSD profile in Oracle Identity
Manager.

32.1.1 About SPML Interactions
Oracle Identity Manager provides the identity management service to enable client
applications to manage identities (users and roles). The service makes use of the
Service Provisioning Markup Language (SPML), which is an XML framework based
on specifications from the OASIS committee that provides for exchanging user,
resource and service provisioning information.

This document lists and describes the SPML interactions that Oracle Identity Manager
supports.

Profile Support
SPML has two profiles: the XSD profile and the DSML profile. This release of Oracle
Identity Manager makes use of the XSD profile.

Types of Interactions
The SPML specification allows interactions to be synchronous or asynchronous.

Oracle Identity Manager supports only asynchronous interactions for add, modify,
delete, lookup, suspend, and resume request. For username services, all services are
synchronous. Lookup is supported for user and role, which happens in synchronous
manner and it can be performed using entity key, unique user/role name , LDAP
GUID, and LDAP DN. Out of these, LDAP GUID and LDAP DN are applicable when
LDAP synchronization is enabled. Oracle Identity Manager responds immediately
with a pending status, and it is up to the requestor to get the current state by issuing a
statusRequest.

Search APIs
For search APIs in the Identity Management realm, refer to Oracle Identity
Management APIs in the Oracle Fusion Middleware Java API Reference for Oracle Identity
Manager.

32.1.2 Integration Interface
The integration interface is defined in terms of the Service Provisioning Markup
Language (SPML). In Oracle Identity Manager, implementation of SPML supports
managing identities and roles, and username reservation capabilities.

Both the asynchronous and synchronous execution modes are supported, although not
all services support both modes. If an invalid mode is specified in a request, the
service returns an unsupportedExecutionMode SPML error code.

To use the SPML services, the application must create a Web service client. The WSDL
for this client is available at the following URL:

http://OIM_HOST:OIM_PORT/spml-xsd/SPMLService?WSDL

General Considerations

Using SPML Services 32-3

As an alternative, you can also navigate to the WSDL and XML schema definitions
using a hosted SPML Web service end-point URL.

The XSD (oracle_common_pso.xsd) is available at:

$OIM_HOME/features/spml-xsd.jar

32.2 General Considerations
Perform the following to ensure that SPML works with Oracle Identity Manager:

■ Assigning SPML Admin Role to the User

■ Creating Autoapproval Policies

32.2.1 Assigning SPML Admin Role to the User
Oracle Identity Manager provides an admin role for SPML. The user with this admin
role is able to perform SPML requests for all usecases. The name of the SPML admin
role is SPML Admin.

The SPML Admin admin role has the following permissions:

■ Create, modify, and delete users via request

■ Search users on all the attributes

■ Enable user status via request

■ Disable user status via request

■ Add role memberships via request

■ Delete role memberships via request

■ Search roles on all the attributes

■ Create, modify, and delete roles via request

The SPML Admin admin role is a global admin role published to the TOP
organization. Therefore, only System Administrator or Organization Administrator of
the TOP organization can assign this admin role to any user, in scope of the TOP
organization.

In a new deployment of Oracle Identity Manager, the SPML Admin admin role is not
assigned to any users by default. As a result, System Administrator or Organization
Administrator of the TOP organization must manually assign this role to relevant
users. In addition, the SPML Admin admin role can be assigned in scope of the TOP
organization with include hierarchy or include sub-orgs option enabled. As a result, all
permissions of the SPML Admin admin role are assigned to the user for all
organizations in Oracle Identity Manager.

To assign SPML Admin admin role to a user:

1. Login to Oracle Identity Self Service. If you want to assign the SPML Admin
admin role to a new user, then create the user.

2. Open the TOP organization, and click the Admin Roles tab.

Note: In an upgraded deployment of Oracle Identity Manager, the
existing SPML users are upgraded to assign SPML Admin admin role
so that they can continue to perform SPML requests.

General Considerations

32-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

3. Select the SPML Admin admin role, and assign the user with this role.

4. Modify the newly added membership to select the include-suborgs option, and
then click Apply.

32.2.2 Creating Autoapproval Policies
Autoapproval policy rules are required so that SPML requests are auto-approved. In
Oracle Identity Manager 11g Release 2 (11.1.2.1.0), there are no request templates.
Therefore, the autoapproval policy rules must be manually created by System
Administrators for each SPML user.

The autoapproval policies created can be based on user login, and the approval
process configuration for each policy must be selected as Auto Approval. You must
create autoapproval policies for each SPML operation, such as create user, modify user,
create role, and so on, so that all the SPML requests raised by SPML user for these
operations are approved at both request level and operational level.

To create the autoapproval policy rules:

1. Create new auto approval policy rules for the following:

■ Create user request level

■ Create user operation level

■ Modify user request level

■ Modify user operation level

■ Delete user request level

■ Delete user operation level

■ Enable user request level

■ Enable user operation level

■ Disable user request level

■ Disable user operation level

■ Assign roles request level

■ Assign roles operation level

■ Remove roles request level

■ Remove roles operation level

■ Create role request level

■ Modify role request level

■ Delete role request level

2. Create rules in each policy based on the user login. Ensure that user login
evaluation is case-sensitive. Figure 32–1 shows a sample rule.

Note: Only request-level approval policies are required for role
create, role modify, and role delete operations.

Create Identity (SPML Core Service: addRequest)

Using SPML Services 32-5

Figure 32–1 Sample Approval Policy Rule

32.3 Create Identity (SPML Core Service: addRequest)
To create an identity with user or role attributes, you implement the addRequest
operation which supports asynchronous execution mode. Successful request
submission returns a request submission tracking identifier and the request status is
listed as pending.

When creating a user, you can also assign role memberships to that user by using the
addRequest operation. To do this, you must use the SPML reference capability with
typeOfReference set to memberOf and include the role GUID as PSO reference ID.

Table 32–1 lists the features of identity creation with addRequest operation.

Note: The autoapproval policies created for a SPML user based on
the user login cause all requests raised by the user to be
auto-approved irrespective of the request being raised via SPML, UI,
or any other flow.

Note:

■ If the username or password attributes are not provided, those
attributes can be autogenerated in Oracle Identity Manager if the
appropriate plug-ins are installed.

■ For creating a user with a given password, provide the user
password in Base64 encoded format within SPML create user
payload. For example:

<pso:password>
<pso:value>V2VsY29tZTc=</pso:value>
</pso:password>

You can use any standard Java library to obtain the Base64
encoded value for a string. An example of such a library is Apache
commons library - org.apache.commons.codec.binary.Base64.
encodeBase64("PASSWORD".getBytes()).

■ Role created by user with SPML Admin role are autopublished to
the TOP organization including its suborganizations.

Modify Users, Roles, Change Attributes and Role Memberships (SPML Core Service: modifyRequest)

32-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

32.4 Modify Users, Roles, Change Attributes and Role Memberships
(SPML Core Service: modifyRequest)

You implement the SPML modifyRequest service for these tasks:

■ to assign or revoke role memberships from an existing user (identity)

■ to modify an existing role

■ to modify user attributes

Table 32–2 lists the features of role membership management with modifyRequest
operation.

Table 32–1 Identity Creation with addRequest

Item/Feature Description

SPML Execution Mode Asynchronous only

Input addRequest element as defined by [SPMLv2].

Optional, reference capability for role memberships.

Output addResponse element as defined by [SPMLv2].

Processing The add operation allows adding identity. Optionally, existing
roles may be assigned to the identity.

The runtime errors are reported by using the customError SPML
custom error code. Only validation errors are returned in the
Response. No request ID is returned.

Examples See the Appendix for these examples:

■ "SPML Example - Add User" on page 32-28

■ "SPML Example – Add User with Role Assignment" on
page 32-36

Table 32–2 Role Membership Management with modifyRequest

Item/Feature Description

SPML Execution Mode Asynchronous

Input modifyRequest element as defined by [SPMLv2].

Use modificationMode="delete" for deleting role membership
and modificationMode="add" for adding role membership.

Role memberships declared using Reference capability, with
typeOfReference="inheritsFrom" and Role GUID as PSO ID.

Output modifyResponse element as defined by [SPMLv2].

Processing The modifyRequest operation allows modifying an existing
identity or existing role.

This operation checks for SPML execution mode for both
identity and role. Invalid execution mode returns an
unsupportedExecutionMode SPML error code.

If the modify request does not contain identity PSO object, or
contains invalid GUIDs the operation returns malformedRequest
or invalidIdentifier SPML malformed request error
respectively.

Other runtime errors are reported using customError SPML
custom error code.

Check Request Status (SPML Core Service: statusRequest)

Using SPML Services 32-7

32.5 Delete an Identity or Role (SPML Core Service: deleteRequest)
You implement the SPML deleteRequest service to delete an existing role or user, as
described in Table 32–3.

32.6 Check Request Status (SPML Core Service: statusRequest)
The status operation enables a requestor to determine whether an asynchronous
operation has:

■ failed

■ pending

■ completed successfully

For any async operation, after the request is submitted, any errors after validation
errors cannot be returned in the response. The errors, if any, are returned in the status
response. If the statusRequest returns request status as failed, then the statusResponse
might have some error message as well.

Table 32–4 lists the features of the statusRequest operation.

Examples See the Appendix for these examples:

■ "SPML Example - Assign Role Membership" on page 32-38

■ "SPML Example – Revoke Role Membership" on page 32-38

Table 32–3 Role Membership Deletion with deleteRequest

Item/Feature Description

SPML Execution Mode Asynchronous

Input deleteRequest element as defined by [SPMLv2].

Output deleteResponse element as defined by [SPMLv2].

Processing The deleteRequest operation allows deletion of an existing
identity or existing role.

This operation checks for SPML execution mode for both
identity and role. Invalid execution mode returns an
unsupportedExecutionMode SPML error code.

If the delete request does not contain identity PSO object, or
contains invalid GUIDs the operation returns malformedRequest
or invalidIdentifier SPML malformed request error
respectively.

Other runtime errors are reported using customError SPML
custom error code.

Examples See the example "SPML Example - Delete Role" on page 32-43.

Table 32–4 Check Request Status

Item/Feature Description

SPML Execution Mode Synchronous

Table 32–2 (Cont.) Role Membership Management with modifyRequest

Item/Feature Description

List Available Targets (SPML Core Service: listTargets)

32-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

32.7 List Available Targets (SPML Core Service: listTargets)
The SPML listTargets service enables a requestor to obtain the set of targets that a
provider makes available for provisioning. The service also returns:

■ the object types that each target supports

■ the set of capabilities that the provider supports for each object in each target

The only target currently supported is Oracle Identity Manager; the object types that
we support are all Oracle Identity Manager object types.

Table 32–5 lists the features of obtaining targets with listTargets.

32.8 Disable a User (SPML Suspend Service: suspendRequest)
The suspend operation enables the requestor to suspend a user.

Table 32–6 lists the features of the suspendRequest operation.

Input statusRequest element as defined by [SPMLv2].

Output statusResponse element as defined by [SPMLv2].

Processing The status operation accepts attribute asyncRequestID which
contains the asynchronous operation identifier.

If the operation identifier is invalid the noSuchIdentifier error
code will be returned.

Result of the status operation is provided in the status attribute
of statusResponse element.

Example See the example "SPML Example - Status Request" on page 32-43

Table 32–5 Obtaining Targets with listTargets

Item/Feature Description

SPML Execution Mode Synchronous

Input listTargetsRequest element as defined by [SPMLv2].

Output listTargetsResponse element as defined by [SPMLv2].

Processing Only the XML Schema profile is supported. Any another profile
request results in a failure with the unsupportedProfile error
code.

A single, static provisioning target named Oracle Identity
Manager is supported.

The response is generated by inserting the PSO object schemas,
the list of supported capabilities for each PSO, and the schema
for the operation data capability into a listTargetsResponse
element.

Table 32–6 Suspending a User with suspendRequest

Item/Feature Description

SPML Execution Mode Asynchronous

Input suspendRequest element as defined by [SPMLv2].

Output suspendResponse element as defined by [SPMLv2].

Table 32–4 (Cont.) Check Request Status

Item/Feature Description

Check if User is Active (SPML Suspend Service: activeRequest)

Using SPML Services 32-9

32.9 Enable a User (SPML Suspend Service: resumeRequest)
The resumeRequest operation enables the requestor to resume/enable a suspended
user.

Table 32–7 lists the features of the resumeRequest operation.

32.10 Check if User is Active (SPML Suspend Service: activeRequest)
The activeRequest operation enables a requestor to determine whether a specified user
is active or has been suspended.

Table 32–8 lists the features of the activeRequest operation.

Processing This operation requires a valid user PSO ID and optionally an
effective suspension date.

If the PSO identifier is invalid, the noSuchIdentifier error code
is returned.

The suspend operation is applicable for users only. It returns
unsupportedOperation error if the PSO object is not an identity.

Examples See the example "SPML Example - Suspend User" on page 32-34.

Table 32–7 Re-enabling a User with resumeRequest

Item/Feature Description

SPML Execution Mode Asynchronous

Input resumeRequest element as defined by [SPMLv2].

Output resumeResponse element as defined by [SPMLv2].

Processing This operation requires a valid user PSO ID and optionally an
effective resumption date.

If the PSO identifier is invalid, the noSuchIdentifier error code
is returned.

The resume operation is applicable for users only. It returns
unsupportedOperation error if the PSO object is not an identity.

Examples See the example "SPML Example - Resume User" on page 32-33.

Table 32–8 Checking if User Has Been Suspended with activeRequest

Item/Feature Description

SPML Execution Mode Synchronous

Input activeRequest element as defined by [SPMLv2].

Output activeResponse element as defined by [SPMLv2].

Processing This operation requires a valid user PSO ID.

If the PSO identifier is invalid, the noSuchIdentifier error code is
returned.

If the request is valid and if the specified user exists, the
provider must get the user status.

The activeRequest operation is applicable for users only. It
returns unsupportedOperation error if the PSO object is not an
identity.

Table 32–6 (Cont.) Suspending a User with suspendRequest

Item/Feature Description

Validate a Username (SPML Username Service: validateUsername)

32-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

32.11 Validate a Username (SPML Username Service: validateUsername)
The validateUsername operation enables a requestor to determine whether a
username already exists or it is reserved.

Table 32–9 lists the features of the resumeRequest operation.

32.12 Obtain a Username (SPML Username: suggestUsername)
The suggestUsername operation enables a requestor to obtain a valid username for a
given policy.

Table 32–10 lists the features of the suggestUsername operation.

32.13 Lookup an Identity or Role (SPML Core Service: lookupRequest)
The lookupRequest operation enables a requestor to lookup for a user or role in the
system by using any one of entity key, user/role name, LDAP GUID, LDAP DN. Out
of these, LDAP GUID and LDAP DN are applicable only in an environment for which
LDAP synchronization is enabled. Lookup is supported only in synchronous mode.

Examples See the example "SPML Example - Check If User is Active" on
page 32-35.

Table 32–9 Checking Username Validity with resumeRequest

Item/Feature Description

SPML Execution Mode Synchronous

Input validateUsernameRequest element as defined by [SPMLv2].

userName is the only input parameter accepted.

Output validateUsernameResponse element as defined by [SPMLv2].

Processing This operation takes a username and checks if the username
exists.

Processing errors are reported with SPML customError code.

Examples See the example "SPML Example - Validate User Name" on
page 32-35.

Table 32–10 Obtaining a Username with suggestUsername

Item/Feature Description

SPML Execution Mode Synchronous

Input suggestUsernameRequest element as defined by [SPMLv2].

Output suggestUsernameResponse element as defined by [SPMLv2].

Processing This operation takes user information and uses it to construct a
username based on the applicable username policy.

Processing errors are reported with SPML customError code.

Examples See the example "SPML Example - Suggest User Name" on
page 32-34.

Table 32–8 (Cont.) Checking if User Has Been Suspended with activeRequest

Item/Feature Description

Lookup an Identity or Role (SPML Core Service: lookupRequest)

Using SPML Services 32-11

Requestor can also choose to filter the response by using the returnData attribute,
whose default value is everything. The returnData attribute can have the following
values:

■ returnData='identifier': The provider returns only the identifier of a requested
object.

■ returnData='data': The provider returns the identifier of a requested object and
all the attributes associated with that object.

■ returnData='everything': The provider returns the identifier of a requested
object, all the attributes associated with that object, and any capability data
associated with the request object. For identity lookup, capability data contains the
direct or indirect roles the user has. For role lookup, capability data contains the
parent roles and the direct or indirect children roles.

Any user can perform the lookup by using the SPML interface. Based on
authorization, the requestor can lookup user or role. If there is no appropriate
authorization privilege, then error code is returned in the SPML response. Only
authorized attributes on which requestor has permission to view is returned in the
response.

Table 32–11 lists the features of the lookupRequest operation.

Table 32–11 Identity/Role Lookup using lookupRequest

Item/Feature Description

SPML Execution Mode Synchronous

Input lookupRequest element as defined by [SPMLv2].

Output lookupResponse element as defined by [SPMLv2].

Reset Password (SPML Core Service: resetPasswordRequest)

32-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

32.14 Reset Password (SPML Core Service: resetPasswordRequest)
The resetPasswordRequest operation enables a requestor to reset the password for a
user.

Table 32–12 lists the features of the resetPasswordRequest operation.

Prcessing This operation requires a valid user PSO ID in the following
format:

psoID ID="ENTITY_TYPE:PSO_ID_TYPE:LOOKUP_VALUE"

Here:

ENTITY_TYPE is identity or role. This value is mandatory.

PSO_ID_TYPE is key, DN, GUID, or name. This value is
optional.

LOOKUP_VALUE is valid value for lookup. This value is
mandatory.

The following are example values:

psoID ID="identity:key:6"
psoID ID="identity:6"
psoID ID="identity:name:JohnSmith"
psoID ID="identity:dn:
cn=john,cn=Users,dc=us,dc=oracle,dc=com"
psoID ID="identity:guid:
CEF2C4F20E5BF04DE040F20A9681408D"
psoID ID="role:key:6"
psoID ID="role:6"
psoID ID="role:name:ManagerRole"
psoID ID="role:dn: cn=
ManagerRole,cn=Groups,dc=us,dc=oracle,dc=com"
psoID ID="role:guid: CEF2C4F20E5BF04DE040F20A9681408D"

If the PSO identifier does not exist, then an error code is
returned. If the request is valid and if the specified user/role
exists, then depending upon the returnData attribute, the result
is returned in the lookupResponse.

Examples See the example "SPML Example - Identity/Role Lookup" on
page 32-46.

Table 32–12 Reseting the user password with resetPasswordRequest

Item/Feature Description

SPML Execution Mode Synchronous

Input resetPasswordRequest element as defined by [SPMLv2].

Optional notification data for controlling end user email
notification.

Output resetPasswordRequest element as defined by [SPMLv2].

Table 32–11 (Cont.) Identity/Role Lookup using lookupRequest

Item/Feature Description

Cancel/Withdraw Request (SPML Async Service: cancelRequest)

Using SPML Services 32-13

32.15 Lookup Username Policy (SPML Username Service:
lookupUsernamePolicy)

The lookupUsernamePolicy operation enables a requestor to obtain details about the
configured username policy in Oracle Identity Manager. You can also provide locale in
the request to obtain details in the provided locale.

Table 32–13 lists the features of the lookupUsernamePolicy operation.

32.16 Cancel/Withdraw Request (SPML Async Service: cancelRequest)
The cancel request operation enables the requestor to withdraw the specified request
ID. If the request is withdrawn successfully, then all the pending approvals are also
withdrawn. Only the requester of the submitted request can withdraw it.

Table 32–14 lists the features of the cancelRequest operation.

Processing This operation takes user key or user GUID as an input to reset
the password with random generated password.

Optionally, notification data can be sent as input as:

■ SentNotification: Boolean flag to determine whether or not
to send notification.

■ SendNotificationTo: Comma separated email address.

Processing errors are reported with SPML customError code.

Examples See the following examples:

■ "SPML Example - Reset Password" on page 32-49

■ "SPML Example - Reset Password with Notification" on
page 32-50

Table 32–13 Lookup Username policy details with lookupUsernamePolicy

Item/Feature Description

SPML Execution Mode Synchronous

Input lookupUsernamePolicyRequest element as defined by
[SPMLv2].

Output lookupUsernamePolicyResponse element as defined by
[SPMLv2].

Processing This operation returns the information about configured user
name policy in Oracle Identity Manager.

Examples See the example "SPML Example - Lookup User Name Policy"
on page 32-50.

Table 32–14 Cancel a Request with cancelRequest

Item/Feature Description

SPML Execution Mode Synchronous

Input cancelRequest element as defined by [SPMLv2].

Output cancelResponse element as defined by [SPMLv2].

Table 32–12 (Cont.) Reseting the user password with resetPasswordRequest

Item/Feature Description

Batch Request (SPML Batch Request Service: batchRequest)

32-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

32.17 Batch Request (SPML Batch Request Service: batchRequest)
The batch operation combines any number of individual requests into a single request
as defined by SPML v2. Examples of individual requests that can be combined into a
single request are creating a user Robert Klein, updating a user Terrence Hill, deleting
a user John Doe, and reset password for a user Jane Doe in a single request.

Batch request does not support transactional semantics, which means that the failure
of a nested request does not undo a nested request that has already been completed.
Each individual response occupies the same position within the <batchResponse> that
the corresponding individual request occupies within the <batchRequest>.

This operation supports parallel processing only ("processing='parallel'") and runs the
nested requests within the <batchRequest> in any order. When error condition occurs,
it continues processing the subsequent subrequests, specified by "onError='resume'". If
a request fails to be processed, then the next request is processed. If one or more of the
nested requests in that batch fails, then operation returns a <batchResponse> with
"status='failure'", even if some of the requests in that batch succeed.

Table 32–15 lists the features of the batchRequest operation.

32.18 Securing SPML Web Services
This section explains how to secure SPML Web services. It contains these topics:

■ About Web Services Security

■ A Request Example

■ Applying Policies

32.18.1 About Web Services Security
SPML XSD Web service uses Oracle Web Services Security Manager to provide
security. SPML Web services is protected by using the following policies:

Processing This operation cancels/withdraws the specified request. The
runtime errors are reported by using the customError SPML
custom error code.

Examples See the example "SPML Example - Cancel Request" on
page 32-51.

Table 32–15 Executing Batch Request with batchRequest

Item/Feature Description

SPML Execution Mode Synchronous

Input batchRequest element as defined by [SPMLv2].

Output batchResponse element as defined by [SPMLv2].

Processing This operation supports only four types of sub requests:
addRequest for identity, modifyRequest for identity,
deleteRequest for identity, resetPasswordRequest.

Examples See the example "SPML Example - Batch Request" on page 32-52.

Table 32–14 (Cont.) Cancel a Request with cancelRequest

Item/Feature Description

Operations Not Supported

Using SPML Services 32-15

■ SAML or username token service policy with message protection:

oracle/wss11_username_token_with_message_protection_client_policy

■ In the Fusion Applications environment, with the username token and message
protection security:

oracle/wss11_username_token_with_message_protection_client_policy

The default policy can be changed using Oracle Enterprise Manager Fusion
Middleware Control.

32.18.2 A Request Example
A sample Request looks like this:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ns1="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sece
xt-1.0.xsd" >
 <soap:Header>
 <ns1:Security>
 <ns1:UsernameToken>
 <ns1:Username>weblogic</ns1:Username>
 <ns1:Password>weblogic1</ns1:******>
 </ns1:UsernameToken>
 </ns1:Security>
 </soap:Header>
 <soap:Body xmlns:ns1="urn:oasis:names:tc:SPML:2:0">
 <ns1:listTargetsRequest />
 </soap:Body>
</soap:Envelope>

32.18.3 Applying Policies
At deployment time, the administrator can use the Oracle Enterprise Manager Fusion
Middleware Control Console to apply correct security policy to protect the service.
Refer to the following documentation for details about using Fusion Middleware
Control:

"Accessing the Security and Administration Tools" in the Oracle Fusion Middleware
Security and Administrator's Guide for Web Services.

32.19 Operations Not Supported
Oracle Identity Manager 11g Release 2 (11.1.2.1.0) does not support the following
SPML operations as part of the XSD profile:

■ Search user

Note: The SPML XSD profile Web services can be loaded only by
users that are a member of the SPML_App_Role. This is done for
added security.

See Oracle Fusion Middleware Security and Administrator's Guide for Web
Services for information about configuring the MBeans for the Web
service.

SPML Attributes and LDAP Mappings, and Oracle Identity Manager Attributes

32-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Search role

■ Any operation, such as create, modify, delete, or search, on organizations

32.20 SPML Attributes and LDAP Mappings, and Oracle Identity Manager
Attributes

The SPML XSD Web Service uses Oracle Identity Manager as a back-end service to
provide provisioning functionality to Fusion applications. A key building block of the
SPML Web Service is the SPML Provisioning Service Object (PSO), which defines the
object to be provisioned. Examples of PSO are identity and role.

This appendix shows the supported PSO attributes and their LDAP mappings, and
explains the character restrictions on Oracle Identity Manager attributes. Finally, it
describes additional operational data that the application can pass to the SPML Web
Service. It contains the following sections:

■ Identity PSO Attributes

■ Role PSO Attributes

■ Preference Attributes

■ Special Character Restrictions in Oracle Identity Manager Attributes

■ Operation Data

32.20.1 Identity PSO Attributes
Table 32–16 shows identity attributes supported by the SPML implementation in
Oracle Identity Manager and how these attributes map to LDAP objects/attributes.

Note: The syntax column lists relevant attribute properties such as
the type, required, and so on.

Table 32–16 Identity PSO Attributes

SPML Attribute
Name Syntax Description

LDAP Mapping (Oracle
Internet Directory)

ID String, Read-Only,
Required, Single

The identifier used to identify a user
for modify request.

orclUserV2: orclguid

activeEndDate Timestamp, Single Termination time and date for the
user

orclUserV2:
orclActiveEndDate

activeStartDate Timestamp,

Single

Activation time and date for the user orclUserV2:
orclActiveStartDate

commonName String,

Required

The common names of the person,
typically the person's full name and
any variations of the same.

person: cn

countryName String, Single The business country of the person,
expressed as a two-letter [ISO3166]
country code.

orclUserV2: c

departmentNumber String, Single Codes for the departments within an
organization to which this person
belongs. This can be strictly numeric
or alphanumeric.

inetOrgPerson:
departmentNumber

SPML Attributes and LDAP Mappings, and Oracle Identity Manager Attributes

Using SPML Services 32-17

description String, Single Human-readable descriptive phrases
about the person.

person: description

displayName String, Single, MLS The preferred name to use when
displaying an entry for the person.

Provides MultiLingual Support
(MLS) and also accepts language
values for locale, for example "en"
and "fr".

inetOrgPerson:
displayName

employeeNumber String, Single Numeric or alphanumeric identifier
assigned to a person, typically based
on order of hire or association with
an organization.

inetOrgPerson:
employeeNumber

employeeType String, Single Identifies the type of employee. For
the list of valid values see
Table 32–17.

inetOrgPerson:
employeeType

facsimileTelephoneNu
mber

String, Single Telephone numbers for the person's
business facsimile (FAX) terminals.

organizationalPerson:
facsimileTelephoneNumber

generationQualifier String, Single Name strings that are typically the
suffix part of the person's name (e.g.
"III", "3rd", "Jr.").

N/A

givenName String, Single Name strings that are part of a
person's name that is not their
surname (for example, first name).

inetOrgPerson: givenName

hireDate Timestamp, Single Date of hire. orclUserV2: orclHireDate

homePhone Single, String Home telephone numbers associated
with the person.

inetOrgPerson:homePhone

homePostalAddress Single, String The home postal addresses of the
person.

inetOrgPerson:
homePostalAddress

initials String, Single Some or all of an individual's names,
except the surname(s)

inetOrgPerson: initials

localityName Single, String Names of a business locality or place,
such as a city, county, or other
geographic region.

N/A

mail Single, String Business Internet mail addresses of
the person in Mailbox [RFC2821]
form.

inetOrgPerson: mail

manager Single, String The manager of the person. N/A

middleName String, Single The middle names of the person. orclUserV2: middleName

mobile Single, String Mobile telephone numbers associated
with the person.

inetOrgPerson: mobile

organization String, Single Name of an organization—for
example, my_company.

organization

organizationUnit String, Single Name of a unit within an
organization, for example, IT
Support.

organizationalUnitName

pager Single, String The business pager telephone
numbers of the person.

inetOrgPerson: pager

password String, Single Password of the user. person: userPassword

Table 32–16 (Cont.) Identity PSO Attributes

SPML Attribute
Name Syntax Description

LDAP Mapping (Oracle
Internet Directory)

SPML Attributes and LDAP Mappings, and Oracle Identity Manager Attributes

32-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Table 32–17 shows the valid values for the employeeType attribute:

postalAddress String, Single Business addresses used by a Postal
Service to perform services for the
person.

organizationalPerson:
postalAddress

postalCode String, Single Codes used by a Postal Service to
identify postal service zones of the
person's business.

organizationalPerson:
postalCode

postOfficeBox String, Single Postal box identifiers that a Postal
Service uses when a customer
arranges to receive mail at a box on
the premises of the Postal Service.

organizationalPerson:
postOfficeBox

preferredLanguage String, Single The preferred written or spoken
language for the person. This is
useful for international
correspondence or human-computer
interaction. Values for this attribute
type MUST conform to the definition
of the Accept-Language header field
defined in [RFC2068] with one
exception: the sequence
"Accept-Language" ":" should be
omitted.

inetOrgPerson:
preferredLanguage

state String, Single Full names of business states or
provinces of the person.

organizationalPerson: st

street String, Single Site information from a business
postal address (that is, the street
name, place, avenue, and the house
number) of the person.

organizationalPerson: street

surname String, Single Name strings for the family names
(last name) of the person.

person: sn

telephoneNumber String, Single Business telephone number of the
person

organizationalPerson:
telephoneNumber

title String, Single Title of the person in their
organizational context.

organizationalPerson: title

username String, Single Computer system login names
associated with the person.

uid

userType String, Single The type of user. This attribute is
used to provide Design Console
access to the end-users. The allowed
values are true and false.

Table 32–17 Valid Values of employeeType

Value Meaning

Full-Time Full-Time Employee

Part-Time Part-Time Employee

Temp Temp

Intern Intern

Consultant Consultant

Table 32–16 (Cont.) Identity PSO Attributes

SPML Attribute
Name Syntax Description

LDAP Mapping (Oracle
Internet Directory)

SPML Attributes and LDAP Mappings, and Oracle Identity Manager Attributes

Using SPML Services 32-19

32.20.1.1 Custom Identity Attributes
Custom attributes are provided to support Oracle Identity Manager functionality;
these attributes are present in Oracle Identity Manager (such as when a user-defined
field is added) but not in the PSO.

The custom attribute name must match the attribute name specified in the
corresponding request dataset for the mapping to work end-to-end.

Here are some examples of custom attributes:

...
<data>
<pso:identity>
 <pso:attributes>
 <pso:attr name="Number Format">
 <pso:value>#,##0.##[.,]</pso:value>
</pso:attr>
 <pso:attr name="Currency">
 <pso:value>USD</pso:value>
</pso:attr>
</attributes>
...

32.20.2 Role PSO Attributes
Table 32–18 lists the role attributes supported by the SPML implementation in Oracle
Identity Manager and how these attributes map to LDAP objects/attributes.

Contractor Contractor

EMP Employee

CWK Contingent Worker

NONW Non Worker

OTHER Other Employee Type

Note: Oracle Identity Manager passes only the codes shown in the
Value column; the meaning of each code is shown for reference.

Table 32–18 PSO Role Attributes

Attribute Name Syntax Description

ID String, Read-Only, Required, Single The PSO identifier that uniquely
identifies a role. Usually directory
GUID.

commonName String, Required, MLS The common name of the role.

description Single Human readable role description

displayName String, Single, MLS The preferred name to use when
displaying an entry for the role.

Table 32–17 (Cont.) Valid Values of employeeType

Value Meaning

SPML Attributes and LDAP Mappings, and Oracle Identity Manager Attributes

32-20 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

32.20.2.1 Custom Role Attributes
Custom attributes are provided to support Oracle Identity Manager functionality;
these attributes are present in Oracle Identity Manager but not in the PSO.

The custom attribute name must match the attribute name specified in the
corresponding request dataset for the mapping to work end-to-end.

Here is an example of a custom role attribute:

...
<pso:attributes>
<pso:attr name="Role Category Name">
<pso:value>Cat1</pso:value>
</pso:attr>
...

Role Category Name is a special custom role attribute. It is the namespace for the roles.
Each role belongs to a role category. This can be specified while creating a new role. If
not specified, then the Default role category is selected. Each role category and role
name uniquely identifies a role.

32.20.3 Preference Attributes
Table 32–19 lists the preference attributes supported by the SPML implementation in
Oracle Identity Manager:

SPML Attributes and LDAP Mappings, and Oracle Identity Manager Attributes

Using SPML Services 32-21

SPML Attributes and LDAP Mappings, and Oracle Identity Manager Attributes

32-22 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Table 32–19 Preference Attributes

Attribute Name Syntax Description LDAP Mapping

Number Format String The format to display numbers orclNumberFormat

Values are:

#,##0.##[.,]

#,##0.###[\u00A0,]

#,##0.###

#,##0.###;#,##0.###-

#,##0.###[.,]

#,##0.###;(#,##0.###)[.,]

#,##0.##[\u00A0,]

#,##0.###['.]

#,##0.###[',]

Currency String The symbol that must be used for
currency

orclCurrency

Sample values are:

USD

YUN

NZD

INR

SPML Attributes and LDAP Mappings, and Oracle Identity Manager Attributes

Using SPML Services 32-23

Date Format String The format to display the date orclDateFormat

Values are:

MM-dd-yyyy

MM-dd-yy

MM.dd.yyyy

MM.dd.yy

MM/dd/yyyy

MM/dd/yy

M-d-yyyy

M-d-yy

M.d.yyyy

M.d.yy

M/d/yyyy

M/d/yy

dd-MM-yyyydd-MM-yy

d-M-yyyy

d-M-yy

dd.MM.yyyy

dd.MM.yy

d.M.yyyy

d.M.yy

dd/MM/yyyy

dd/MM/yy

d/M/yyyy

d/M/yy

yyyy-MM-dd

yy-MM-dd

yyyy-M-d

yy-M-d

yyyy.MM.dd

yy.MM.dd

yyyy.M.d

yy.M.d

yy. M. d

yyyy/MM/dd

yy/MM/dd

yyyy/M/d

yy/M/d

Table 32–19 (Cont.) Preference Attributes

Attribute Name Syntax Description LDAP Mapping

SPML Attributes and LDAP Mappings, and Oracle Identity Manager Attributes

32-24 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Time Format String The format to display the time orclTimeFormat

Values are:

HH.mm

HH.mm.ss

HH:mm

HH:mm:ss

H:mm

H:mm:ss

H.mm

H.mm.ss

a hh.mm

a hh.mm.ss

a hh:mm

a hh:mm:ss

ah:mm

ah:mm:ss

hh.mm a

hh.mm.ss a

hh:mm a

hh:mm:ss a

Embedded Help String Whether or not to show
embedded help

orclEmbeddedHelp

Values are:

true

false

Font Size String The size of the font orclFontSize

Values are:

LARGE

MEDIUM

Color Constrast String Constrast of the color orclColorContrast

Values are:

STANDARD

HIGH

Table 32–19 (Cont.) Preference Attributes

Attribute Name Syntax Description LDAP Mapping

SPML Attributes and LDAP Mappings, and Oracle Identity Manager Attributes

Using SPML Services 32-25

32.20.4 Special Character Restrictions in Oracle Identity Manager Attributes
This section lists character restrictions applicable to Oracle Identity Manager
attributes. Failure to observe these restrictions will cause errors when performing
operations with attributes.

■ Characters Available in All Attributes

■ Special Characters in the Password Field

■ Usage of Single Quotation Mark

■ Usage of Semicolon

■ Unsupported Special Characters

32.20.4.1 Characters Available in All Attributes
Alphanumeric characters (a through z, A through Z, and 0 through 9) and the
underscore character (_) can be used in all Oracle Identity Manager attributes.

32.20.4.2 Special Characters in the Password Field
The following special characters can be used in the Password field:

■ Percent sign (%)

■ Plus sign (+)

■ Equal sign (=)

■ Comma (,)

■ Backslash (\)

■ Single quotation mark (')

■ Slash (/)

■ Vertical bar (|)

32.20.4.3 Usage of Single Quotation Mark
The single quotation mark (') can be used only in the following attributes:

Accessibility
Mode

String Accessibility mode for the user orclAccessibilityMode

Values are:

screenReader

inaccessible

default

FA Language String The default preference language orclFALanguage

User Name
Preferred
Language

String The preference language of the
user used to only show the
display name of the user in that
language

Note: The value set for this
attribute is not used in Oracle
Identity Manager.

orclDisplayNameLanguagePreferen
ce

Table 32–19 (Cont.) Preference Attributes

Attribute Name Syntax Description LDAP Mapping

SPML Attributes and LDAP Mappings, and Oracle Identity Manager Attributes

32-26 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Login

■ Manager ID

■ First Name

■ Last Name

■ Middle Name

■ Group Name

■ Organization Name

■ Resource Name

32.20.4.4 Usage of Semicolon
The semicolon (;) can be used only in access policy names.

32.20.4.5 Unsupported Special Characters
The following special characters are not supported in any Oracle Identity Manager
attribute:

■ Period (.)

■ Number sign (#)

■ Slash (/)

■ Percent sign (%)

■ Equal sign (=)

■ Vertical bar (|)

■ Plus sign (+)

■ Comma (,)

■ Backslash (\)

■ Double quotation mark (")

■ Less than symbol (<)

■ Greater than symbol (>)

32.20.5 Operation Data
Requesting application such as HCM Fusion Application will act as a SPML requestor.
In addition to PSO data, the application can also pass some operational data to the
SPML Web Service. This section describes how applications can pass the operation
data.

■ Passing Operation Data

■ Passing Reference Data

32.20.5.1 Passing Operation Data
It is possible to pass a requestor ID for each operation. When the Fusion application
supplies credentials in a request, that is an application ID. For auditing purposes, it is
also possible to pass a requestor ID. Oracle Identity Manager audits this ID, instead of
the application ID, as the actual requestor of the operation.

Along with the requestorID, a justification for the request can also be specified.

SPML Examples

Using SPML Services 32-27

The following is an example of the operation data:

...
</pso:identity>
</data>
<capabilityData
capabilityURI="http://xmlns.oracle.com/idm/identity/OperationData"
mustUnderstand="true">
<operationData
xmlns="http://xmlns.oracle.com/idm/identity/OperationData" requestorGUID="1"
justification="i need this account">
</capabilityData>
</addRequest>

32.20.5.2 Passing Reference Data
The application is also required to pass some reference data to SPML so that when a
callback is received, it can be identified with the reference data for the callback in
context. This is pass-through data, which is ignored by Oracle Identity Manager, but
will be returned in the callback.

The following is an example that contains the <LdapRequestId>:

...

...
</pso:identity>
</data>
<capabilityData
capabilityURI="http://xmlns.oracle.com/idm/identity/OperationData"
mustUnderstand="true">
<operationData
xmlns="http://xmlns.oracle.com/idm/identity/OperationData" requestorGUID="1"
justification="i need this account">
<LdapRequestId
xmlns="http://xmlns.oracle.com/apps/hcm/users/ldapRequestService/">102329090340
</operationData>
</capabilityData>
</addRequest>

32.21 SPML Examples
This appendix provides the following SPML XSD examples:

■ SPML Example - Add User

■ SPML Example - Delete User

■ SPML Example - Modify User

■ SPML Example - Resume User

■ SPML Example - Suggest User Name

■ SPML Example - Suspend User

■ SPML Example - Validate User Name

■ SPML Example - Check If User is Active

■ SPML Example - Lookup Username Policy

■ SPML Example – Add User with Role Assignment

SPML Examples

32-28 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ SPML Example - Assign Role Membership

■ SPML Example – Revoke Role Membership

■ SPML Example - Add Role

■ SPML Example - Add Role with Parent

■ SPML Example - Modify Role

■ SPML Example - Add Parent to a Role

■ SPML Example - Role Grant

■ SPML Example - Delete Role

■ SPML Example - Status Request

■ SPML Example - Identity/Role Lookup

■ SPML Example - Reset Password

■ SPML Example - Reset Password with Notification

■ SPML Example - Lookup User Name Policy

■ SPML Example - Cancel Request

■ SPML Example - Batch Request

32.21.1 SPML Example - Add User
The Request is as follows:

<addRequest xmlns="urn:oasis:names:tc:SPML:2:0"
xmlns:pso="http://xmlns.oracle.com/idm/identity/PSO" executionMode="asynchronous"
locale="en" policyURI="http://www.sample.com/string/string" requestID="string"
returnData="identifier" targetID="string">
<!--Zero or more repetitions:-->
<data>
<!--You have a CHOICE of the next 3 items at this level-->
<pso:identity>
<!--Optional:-->
<pso:attributes>
<!--Here, My Attribute is a UDF, with 'My Attribute' also added in
CreateUserDataset.xml -->
<pso:attr name="My Attribute">
<pso:value>New Value</pso:value>
</pso:attr>
</pso:attributes>
<!--Optional:-->
<pso:activeEndDate>2009-06-12T16:00:00</pso:activeEndDate>
<!--Optional:-->
<pso:activeStartDate>2009-06-11T18:00:00</pso:activeStartDate>
<pso:commonName>
<pso:value>All Optional Values</pso:value>
</pso:commonName>
<!--Optional:-->
<pso:countryName>India</pso:countryName>
<!--Optional:-->
<pso:departmentNumber>
<!--1 or more repetitions:-->
<pso:value>123456</pso:value>
</pso:departmentNumber>
<!--Optional:-->

SPML Examples

Using SPML Services 32-29

<pso:description>
<!--1 or more repetitions:-->
<pso:values>
<!--1 or more repetitions:-->
<pso:value>All Optional Fields Profile</pso:value>
</pso:values>
</pso:description>
<!--Optional:-->
<pso:displayName>
<!--1 or more repetitions:-->
<pso:value locale="en">All Optional Values</pso:value>
</pso:displayName>
<!--Optional:-->
<pso:employeeNumber>24073</pso:employeeNumber>
<!--Optional:-->
<pso:employeeType>
<!--1 or more repetitions:-->
<pso:values>
<!--1 or more repetitions:-->
<pso:value>Part-Time</pso:value>
</pso:values>
</pso:employeeType>
<!--Optional:-->
<pso:facsimileTelephoneNumber>
<!--1 or more repetitions:-->
<pso:number>08041085304</pso:number>
</pso:facsimileTelephoneNumber>
<!--Optional:-->
<pso:generationQualifier>
<!--1 or more repetitions:-->
<pso:value>II</pso:value>
</pso:generationQualifier>
<!--Optional:-->
<pso:givenName>
<!--1 or more repetitions:-->
<pso:value>OptionalGivenName</pso:value>
</pso:givenName>
<!--Optional:-->
<pso:hireDate>2009-06-11T16:00:00</pso:hireDate>
<!--Optional:-->
<pso:homePhone>
<!--1 or more repetitions:-->
<pso:number>9999999999</pso:number>
</pso:homePhone>
<!--Optional:-->
<pso:homePostalAddress>
<!--1 or more repetitions:-->
<pso:value>marathahalli</pso:value>
</pso:homePostalAddress>
<!--Optional:-->
<pso:initials>
<!--1 or more repetitions:-->
<pso:value>SJ</pso:value>
</pso:initials>
<!--Optional:-->
<pso:localityName>
<!--1 or more repetitions:-->
<pso:value>Munekolala</pso:value>
</pso:localityName>
<!--Optional:-->

SPML Examples

32-30 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

<!--pso:mail>
<pso:value>jdong12@mycompany.com</pso:value>
</pso:mail-->
<!--Optional:-->
<pso:middleName>MiddleName</pso:middleName>
<!--Optional:-->
<pso:mobile>
<!--1 or more repetitions:-->
<pso:number>9886078373</pso:number>
</pso:mobile>
<!--Optional:-->
<pso:organization>
<pso:value>2</pso:value>
</pso:organization>
<!--Optional:-->
<pso:organizationUnit>
<pso:value>Marketing</pso:value>
</pso:organizationUnit>
<!--Optional:-->
<pso:pager>
<!--1 or more repetitions:-->
<pso:number>7777</pso:number>
</pso:pager>
<!--Optional:-->
<pso:password>
<!--1 or more repetitions:-->
<pso:value>saijha</pso:value>
</pso:password>
<!--Optional:-->
<pso:postalAddress>
<!--1 or more repetitions:-->
<pso:value>Marathahalli</pso:value>
</pso:postalAddress>
<!--Optional:-->
<pso:postalCode>
<!--1 or more repetitions:-->
<pso:value>560037</pso:value>
</pso:postalCode>
<!--Optional:-->
<pso:postOfficeBox>
<!--1 or more repetitions:-->
<pso:value>999</pso:value>
</pso:postOfficeBox>
<!--Optional:-->
<pso:preferredLanguage>en</pso:preferredLanguage>
<!--Optional:-->
<pso:state>
<!--1 or more repetitions:-->
<pso:value>Karnataka</pso:value>
</pso:state>
<!--Optional:-->
<pso:street>
<!--1 or more repetitions:-->
<pso:value>Satyam Street</pso:value>
</pso:street>
<!--Optional:-->
<pso:surname>
<pso:values>
 <!--1 or more repetitions:-->
<pso:value>Jha</pso:value>

SPML Examples

Using SPML Services 32-31

</pso:values>
</pso:surname>
<!--Optional:-->
<pso:telephoneNumber>
<!--1 or more repetitions:-->
<pso:number>08041085304</pso:number>
</pso:telephoneNumber>
<!--Optional:-->
<pso:title>
<pso:value>Mr</pso:value>
</pso:title>
<!--Optional:-->
<pso:username>
<!--1 or more repetitions:-->
<pso:value>jsmith</pso:value>
</pso:username>
<pso:manager>5</pso:manager>
</pso:identity>
</data>
</addRequest>

The Add User Response sample if user login already exists is as follows:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"><env:Header/>
<env:Body>
<ns3:addResponse xmlns:ns2="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns3="urn:oasis:names:tc:SPML:2:0"
xmlns:ns4="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns5="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns6="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns7="urn:oasis:names:tc:SPML:2:0:reference"
xmlns:ns8="urn:oasis:names:tc:SPML:2:0:async" xmlns:ns9="urn:names:spml:ws:header"
status="failure" error="malformedRequest" extendedError="IAM-3076048">
<ns3:errorMessage>username jsmith already exists.</ns3:errorMessage>
</ns3:addResponse>
</env:Body>
</env:Envelope>

The Add User Response sample if multiple values are passed for attributes that accept
only single value:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header/>
<env:Body>
<ns3:addResponse xmlns:ns2="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns3="urn:oasis:names:tc:SPML:2:0"
xmlns:ns4="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns5="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns6="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns7="urn:oasis:names:tc:SPML:2:0:reference"
xmlns:ns8="urn:oasis:names:tc:SPML:2:0:async" xmlns:ns9="urn:names:spml:ws:header"
status="pending" requestID="5" error="malformedRequest"
extendedError="IAM-3071022"><ns3:errorMessage>The attribute commonName is not
multi-language enabled in OIM. Only the value John Smith will be
saved.</ns3:errorMessage>
<ns3:errorMessage>The attribute organization is not multi-language enabled in OIM.
Only the value 1 will be saved.
</ns3:errorMessage>
</ns3:addResponse>
</env:Body>
</env:Envelope>

SPML Examples

32-32 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

32.21.2 SPML Example - Delete User
The Request is as follows:

<deleteRequest xmlns="urn:oasis:names:tc:SPML:2:0"
xmlns:pso="http://xmlns.oracle.com/idm/identity/PSO" executionMode="asynchronous"
locale="en" policyURI="http://www.sample.com/string/string"
requestID="string" returnData="identifier" targetID="string">
<psoID ID="identity:6C9B96E99FC8DC32E040E50A3D5252F5" />
</deleteRequest>

The Response is as follows:

<ns9:ResponseType xmlns="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns2="urn:oasis:names:tc:SPML:2:0"
xmlns:ns3="urn:oasis:names:tc:SPML:2:0:reference"
xmlns:ns4="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns5="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns6="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns7="urn:names:spml:ws:header" xmlns:ns8="urn:oasis:names:tc:SPML:2:0:async"
xmlns:ns9="oasis:names:tc:SPML:2:0" requestID="19" status="pending"/>

32.21.3 SPML Example - Modify User
The Request is as follows:

<modifyRequest xmlns="urn:oasis:names:tc:SPML:2:0"
xmlns:pso="http://xmlns.oracle.com/idm/identity/PSO" executionMode="asynchronous"
locale="string" policyURI="http://www.sample.com/string/string"
requestID="string" returnData="identifier">
<capabilityData capabilityURI="urn:oasis:names:tc:SPML:2:0:reference"
mustUnderstand="true" />
<psoID ID="identity:6C9B96E99FC8DC32E040E50A3D5252F5" />
<modification modificationMode="add">
<component path="/identity" namespaceURI="http://www.w3.org/TR/xpath20" />
<data>
<pso:identity>
<pso:initials>
<!--1 or more repetitions:-->
<pso:value>J S</pso:value>
</pso:initials>
</pso:identity>
</data>
</modification>
<modification modificationMode="replace">
<component path="/identity" namespaceURI="http://www.w3.org/TR/xpath20" />
<data>
<pso:identity>

Note:

■ To find the status of the add user request, see "SPML Example -
Status Request" on page 32-43.

■ The displayName attribute has Multiple Language Support
(MLS), and language values can be specified as "en", "fr", and so
on.

SPML Examples

Using SPML Services 32-33

<pso:localityName>
<!--1 or more repetitions:-->
<pso:value>new_locality</pso:value>
</pso:localityName>
<pso:homePhone>
<!--1 or more repetitions:-->
<pso:number>0123456789</pso:number>
</pso:homePhone>
<pso:commonName>
<!--1 or more repetitions:-->
<pso:values>
<!--1 or more repetitions:-->
<pso:value>FR Alice Krug1</pso:value>
</pso:values>
</pso:commonName>
</pso:identity>
</data>
</modification>
<modification modificationMode="delete">
<component path="/identity" namespaceURI="http://www.w3.org/TR/xpath20" />
<data>
<pso:identity>
<pso:pager>
<!--1 or more repetitions:-->
<pso:number>333</pso:number>
</pso:pager>
</pso:identity>
</data>
</modification>
</modifyRequest>

The Response is as follows:

<ns9:ModifyResponseType xmlns="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns2="urn:oasis:names:tc:SPML:2:0"
xmlns:ns3="urn:oasis:names:tc:SPML:2:0:reference"
xmlns:ns4="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns5="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns6="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns7="urn:names:spml:ws:header" xmlns:ns8="urn:oasis:names:tc:SPML:2:0:async"
xmlns:ns9="oasis:names:tc:SPML:2:0" requestID="15" status="pending"/>

32.21.4 SPML Example - Resume User
The Request is as follows:

<resumeRequest xmlns="urn:oasis:names:tc:SPML:2:0:suspend"
requestID="120">
<psoID ID="6C9B96E99FC8DC32E040E50A3D5252F5" />
</resumeRequest>

The Response is as follows:

<ns9:ResponseType xmlns="urn:oasis:names:tc:SPML:2:0"
xmlns:ns2="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns3="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns4="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns5="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns6="urn:names:spml:ws:header" xmlns:ns7="urn:oasis:names:tc:SPML:2:0:async"
xmlns:ns8="urn:oasis:names:tc:SPML:2:0:reference"

SPML Examples

32-34 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

xmlns:ns9="oasis:names:tc:SPML:2:0" requestID="120" status="pending"/>

32.21.5 SPML Example - Suggest User Name
The Request is as follows:

<ns4:suggestUsernameRequest
xmlns:ns4="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns2="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns3="http://xmlns.oracle.com/idm/identity/PSO">
<ns2:identity>
<ns3:givenName>
<ns3:value>testfn</ns3:value>
</ns3:givenName>
<ns3:surname>
<ns3:values>
<ns3:value>testln</ns3:value>
</ns3:values>
</ns3:surname>
</ns2:identity>
</ns4:suggestUsernameRequest>

The Response is as follows:

<ns9:SuggestUsernameResponseType xmlns="urn:oasis:names:tc:SPML:2:0"
xmlns:ns2="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns3="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns4="urn:oasis:names:tc:SPML:2:0:reference"
xmlns:ns5="urn:oasis:names:tc:SPML:2:0:async"
xmlns:ns6="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns7="urn:names:spml:ws:header"
xmlns:ns8="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns9="oasis:names:tc:SPML:2:0" status="success">
<ns3:username>testfn.testln@mycompany.com</ns3:username>
</ns9:SuggestUsernameResponseType>

32.21.6 SPML Example - Suspend User
The Request is as follows:

<suspendRequest xmlns="urn:oasis:names:tc:SPML:2:0:suspend"
requestID="139">
<psoID ID="6C9B96E99FC8DC32E040E50A3D5252F5"/>
</suspendRequest>

The Response is as follows:

<ns9:ResponseType xmlns="urn:oasis:names:tc:SPML:2:0"
xmlns:ns2="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns3="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns4="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns5="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns6="urn:names:spml:ws:header" xmlns:ns7="urn:oasis:names:tc:SPML:2:0:async"
xmlns:ns8="urn:oasis:names:tc:SPML:2:0:reference"
xmlns:ns9="oasis:names:tc:SPML:2:0" requestID="28"
status="pending"/><ns9:ResponseType xmlns="urn:oasis:names:tc:SPML:2:0"
xmlns:ns2="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns3="urn:oasis:names:tc:SPML:2:0:password"

SPML Examples

Using SPML Services 32-35

xmlns:ns4="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns5="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns6="urn:names:spml:ws:header" xmlns:ns7="urn:oasis:names:tc:SPML:2:0:async"
xmlns:ns8="urn:oasis:names:tc:SPML:2:0:reference"
xmlns:ns9="oasis:names:tc:SPML:2:0" requestID="139" status="pending"/>

32.21.7 SPML Example - Validate User Name
The Request is as follows:

<validateUsernameRequest
xmlns="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username">
<username>testfn.testln</username>
</validateUsernameRequest>

The Response is as follows:

<ns9:ValidateUsernameResponseType xmlns="urn:oasis:names:tc:SPML:2:0"
xmlns:ns2="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns3="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns4="urn:oasis:names:tc:SPML:2:0:reference"
xmlns:ns5="urn:oasis:names:tc:SPML:2:0:async"
xmlns:ns6="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns7="urn:names:spml:ws:header"
xmlns:ns8="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns9="oasis:names:tc:SPML:2:0" valid="true" status="success"/>

32.21.8 SPML Example - Check If User is Active
The request is as follows:

<activeRequest xmlns="urn:oasis:names:tc:SPML:2:0:suspend" requestID="143">
<psoID ID="5" targetID="string"/>
</activeRequest>

The Response is as follows:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns4:ResponseType xmlns="urn:oasis:names:tc:SPML:2:0"
xmlns:ns2="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns3="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns4="oasis:names:tc:SPML:2:0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="ns2:ActiveResponseType" active="true" requestID="143"
status="success" />

32.21.9 SPML Example - Lookup Username Policy
The Request is as follows:

<lookupUsernamePolicyRequest
xmlns="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username">
</lookupUsernamePolicyRequest>

The Response is as follows:

<ns9:LookupUsernamePolicyResponseType
xmlns="urn:oasis:names:tc:SPML:2:0"

SPML Examples

32-36 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

xmlns:ns2="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns3="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns4="urn:oasis:names:tc:SPML:2:0:reference"
xmlns:ns5="urn:oasis:names:tc:SPML:2:0:async"
xmlns:ns6="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns7="urn:names:spml:ws:header"
xmlns:ns8="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns9="oasis:names:tc:SPML:2:0" status="success"
<ns3:description>Generates user name based on email id if it is available, else
generate based on first name and last name appended with domain
name.</ns3:description>
>

32.21.10 SPML Example – Add User with Role Assignment
The Request to create user (identity) is as follows:

<addRequest
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:oasis:names:tc:SPML:2:0"
 xmlns:spml="urn:oasis:names:tc:SPML:2:0"
 executionMode="asynchronous"
 policyURI="create_identity_policy_prc02.xml">
 <spml:data xsi:type="spml:PSOType">
 <identity
 xmlns="http://xmlns.oracle.com/idm/identity/PSO"
 xmlns:pso="http://xmlns.oracle.com/idm/identity/PSO">
 <pso:commonName>
 <pso:values>
 <pso:value>John Doe</pso:value>
 </pso:values>
 </pso:commonName>
 <pso:displayName>
 <pso:value>John Doe</pso:value>
 </pso:displayName>
 <pso:givenName>
 <pso:value>John</pso:value>
 </pso:givenName>
 <pso:mail>
 <pso:value>john.doe@acme.com</pso:value>

Note: To view policy description in a specific locale, you can set
locale attribute in the payload. If this locale is not supported, then by
is displayed in the server locale by default, as shown:

<lookupUsernamePolicyRequest locale="th"
xmlns="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username">
</lookupUsernamePolicyRequest>

Note:

■ There can only be one toPsoID element under a reference
element. For multiple roles, individual reference element must be
used.

■ The GUID must be of 32 characters for all requests.

SPML Examples

Using SPML Services 32-37

 </pso:mail>
 <pso:middleName/>
 <pso:organization>
 <pso:values>
 <pso:value>ACME, Inc.</pso:value>
 </pso:values>
 </pso:organization>
 <pso:password>
 <pso:value>qwert</pso:value>
 </pso:password>
 <pso:surname>
 <pso:values>
 <pso:value>Doe</pso:value>
 </pso:values>
 </pso:surname>
 <pso:username>
 <pso:value>jdoe</pso:value>
 </pso:username>
 </identity>
 </spml:data>
 <spml:capabilityData
 capabilityURI="urn:oasis:names:tc:SPML:2:0:reference"
 mustUnderstand="true" >
 <reference xmlns="urn:oasis:names:tc:SPML:2:0:reference"
 typeOfReference="memberOf">
 <toPsoID ID="15"/>
 <!--To make the user a member of a default role-->
 </reference>

 <reference xmlns="urn:oasis:names:tc:SPML:2:0:reference"
 typeOfReference="memberOf">
 <toPsoID ID="6C9B96E99FC8DC32E040E50A3D5252F5"/>
 </reference>
 </spml:capabilityData>
</addRequest>

The Response is as follows:

<spml:addResponse
 xmlns:spml="urn:oasis:names:tc:SPML:2:0"
 status="pending"
 requestID="10821"/>

The Add User with Role Assignment response sample containing partial invalid roles
is as follows:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header/>
<env:Body>
<ns3:addResponse xmlns:ns2="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns3="urn:oasis:names:tc:SPML:2:0"
xmlns:ns4="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns5="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns6="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns7="urn:oasis:names:tc:SPML:2:0:reference"
xmlns:ns8="urn:oasis:names:tc:SPML:2:0:async" xmlns:ns9="urn:names:spml:ws:header"
status="pending" requestID="5" error="malformedRequest"
extendedError="IAM-3071022">
<ns3:errorMessage>Request contains an invalid Id/Guid identifier -
xyzxyzxyz.</ns3:errorMessage>

SPML Examples

32-38 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

</ns3:addResponse>
</env:Body>
</env:Envelope>

32.21.11 SPML Example - Assign Role Membership
The Request example is as follows:

<modifyRequest
xmlns="urn:oasis:names:tc:SPML:2:0"
xmlns:pso="http://xmlns.oracle.com/idm/identity/PSO"
executionMode="asynchronous"
locale="en"
policyURI="gant_role_01">
<psoID ID="identity:6C9B96E99FC8DC32E040E50A3D5252F5" />
<modification modificationMode="add">
<capabilityData
 capabilityURI="urn:oasis:names:tc:SPML:2:0:reference"
mustUnderstand="true">
<reference
 xmlns="urn:oasis:names:tc:SPML:2:0:reference"
typeOfReference="memberOf">
<toPsoID ID="6C9B96E99FC8DC32E040E50A3D5252F5" />
</reference>
</capabilityData>
</modification>
</modifyRequest>

The Response example is as follows:

<spml:modifyResponse
 xmlns:spml="urn:oasis:names:tc:SPML:2:0"
 status="pending"
 requestID="10822"/>

32.21.12 SPML Example – Revoke Role Membership
The Request is as follows:

<modifyRequest
xmlns="urn:oasis:names:tc:SPML:2:0"
xmlns:pso="http://xmlns.oracle.com/idm/identity/PSO"
executionMode="asynchronous"
locale="en"
policyURI="revoke_role_01">
<psoID ID="identity:6C9B96E99FC8DC32E040E50A3D5252F5" />

Note: only those roles can be granted to users via SPML Add Role
Membership that are:

■ Either published to the TOP organization with hierarchy, OR

■ Published to at least one member organization of the user to
whom the role is to be granted via SPML

All other role grant attempts via SPML will fail authorization checks.
These roles must be explicitly published to relevant organizations by
using the UI or APIs to let SPML Role grant work.

SPML Examples

Using SPML Services 32-39

<modification modificationMode="delete">
<capabilityData
 capabilityURI="urn:oasis:names:tc:SPML:2:0:reference"
mustUnderstand="true">
<reference
 xmlns="urn:oasis:names:tc:SPML:2:0:reference"
typeOfReference="memberOf">
<toPsoID ID="6C9B96E99FC8DC32E040E50A3D5252F5" />
</reference>
</capabilityData>
</modification>
</modifyRequest>

The Response is as follows:

<spml:modifyResponse
 xmlns:spml="urn:oasis:names:tc:SPML:2:0"
 status="pending"
 requestID="10826"/>

32.21.13 SPML Example - Add Role
The Request is as follows:

<addRequest xmlns="urn:oasis:names:tc:SPML:2:0"
xmlns:pso="http://xmlns.oracle.com/idm/identity/PSO" executionMode="asynchronous"
locale="en_us" policyURI="Role Creation" requestID="string"
returnData="identifier" targetID="string">
 <!--Zero or more repetitions:-->
 <capabilityData capabilityURI="urn:oasis:names:tc:SPML:2:0:reference"
mustUnderstand="true" />
 <data>
 <!--You have a CHOICE of the next 3 items at this level-->
 <pso:role>
 <pso:attributes>
 <pso:attr name="Role Category Name">
 <!-- pso:value>OIM Roles</pso:value-->
 <pso:value>Default</pso:value>
 </pso:attr>
 </pso:attributes>
 <pso:commonName>
 <!--1 or more repetitions:-->
 <pso:values>
 <!--1 or more repetitions:-->
 <pso:value>TempAdmin</pso:value>
 </pso:values>
 </pso:commonName>
 <pso:description>
 <!--1 or more repetitions:-->
 <pso:values>
 <!--1 or more repetitions:-->
 <pso:value>Temporary Administrator</pso:value>
 </pso:values>
 </pso:description>
 <pso:displayName>
 <!--pso:value locale="en">Alice Krug_en_US</pso:value-->
 <!--pso:value locale="fr">Alice Kru_fr</pso:value-->
 <pso:value locale="base">Alice Kru_base</pso:value>
 </pso:displayName>
 </pso:role>

SPML Examples

32-40 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 </data>
</addRequest>

The Response is as follows:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header/>
<env:Body>
<ns3:addResponse xmlns:ns2="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns3="urn:oasis:names:tc:SPML:2:0"
xmlns:ns4="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns5="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns6="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns7="urn:oasis:names:tc:SPML:2:0:reference"
xmlns:ns8="urn:oasis:names:tc:SPML:2:0:async" xmlns:ns9="urn:names:spml:ws:header"
status="pending" requestID="21792"/>
</env:Body>
</env:Envelope>

32.21.14 SPML Example - Add Role with Parent
The Request is as follows:

<addRequest xmlns="urn:oasis:names:tc:SPML:2:0"
xmlns:pso="http://xmlns.oracle.com/idm/identity/PSO" executionMode="asynchronous"
locale="en" policyURI="http://www.sample.com/string/string"
requestID="string" returnData="identifier" targetID="string">
 <data>
 <!--You have a CHOICE of the next 3 items at this level-->
 <pso:role>
 <pso:commonName>
 <!--1 or more repetitions:-->
 <pso:values>
 <!--1 or more repetitions:-->
 <pso:value>TempAdmin</pso:value>
 </pso:values>
 </pso:commonName>
 <pso:description>
 <!--1 or more repetitions:-->
 <pso:values>
 <!--1 or more repetitions:-->
 <pso:value>Temporary Administrator</pso:value>
 </pso:values>
 </pso:description>
 </pso:role>
 </data>
 <capabilityData capabilityURI="urn:oasis:names:tc:SPML:2:0:reference"
mustUnderstand="true">
 <reference typeOfReference="inheritsFrom"
xmlns="urn:oasis:names:tc:SPML:2:0:reference">
 <toPsoID ID="6C9B96E99F77DC32E040E50A3D5252F5" />
 </reference>
 </capabilityData>
</addRequest>

The Response is as follows:

<ns9:AddResponseType xmlns="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns2="urn:oasis:names:tc:SPML:2:0"
xmlns:ns3="urn:oasis:names:tc:SPML:2:0:reference"

SPML Examples

Using SPML Services 32-41

xmlns:ns4="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns5="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns6="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns7="urn:names:spml:ws:header" xmlns:ns8="urn:oasis:names:tc:SPML:2:0:async"
xmlns:ns9="oasis:names:tc:SPML:2:0" requestID="22" status="pending"/>

32.21.15 SPML Example - Modify Role
The Request is as follows:

<modifyRequest xmlns="urn:oasis:names:tc:SPML:2:0"
xmlns:pso="http://xmlns.oracle.com/idm/identity/PSO" executionMode="asynchronous"
locale="string" policyURI="http://www.sample.com/string/string"
requestID="string" returnData="identifier">
<capabilityData capabilityURI="urn:oasis:names:tc:SPML:2:0:reference"
mustUnderstand="true" />
<psoID ID="role:6C9B96E99FC8DC32E040E50A3D5252F5" />
<modification modificationMode="replace">
<component path="/role" namespaceURI="http://www.w3.org/TR/xpath20" />
<data>
<pso:role>
<pso:description>
<!--1 or more repetitions:-->
<pso:values>
<pso:value>UK Updated Administrator</pso:value>
</pso:values>
</pso:description>
</pso:role>
</data>
</modification>
</modifyRequest>

The Response is as follows:

<ns9:ModifyResponseType xmlns="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns2="urn:oasis:names:tc:SPML:2:0"
xmlns:ns3="urn:oasis:names:tc:SPML:2:0:reference"
xmlns:ns4="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns5="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns6="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns7="urn:names:spml:ws:header" xmlns:ns8="urn:oasis:names:tc:SPML:2:0:async"
xmlns:ns9="oasis:names:tc:SPML:2:0" requestID="24" status="pending"/>

32.21.16 SPML Example - Add Parent to a Role
The Request is as follows:

<modifyRequest xmlns="urn:oasis:names:tc:SPML:2:0"
xmlns:pso="http://xmlns.oracle.com/idm/identity/PSO" executionMode="asynchronous"
locale="string" policyURI="http://www.sample.com/string/string"
requestID="string" returnData="identifier">

<psoID ID="role:26" targetID="target" />
<modification modificationMode="modify">
<component path="/role" namespaceURI="http://www.w3.org/TR/xpath20" />
<data>
<pso:role>
<pso:description>
<!--1 or more repetitions:-->

SPML Examples

32-42 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

<pso:values>
<!--1 or more repetitions:-->
<pso:value>UK Updated Administrator</pso:value>
</pso:values>
</pso:description>
</pso:role>
</data>

<capabilityData capabilityURI="urn:oasis:names:tc:SPML:2:0:reference"
mustUnderstand="true">
<reference typeOfReference="inheritsFrom"
xmlns="urn:oasis:names:tc:SPML:2:0:reference">
<toPsoID ID="25" />
</reference>
</capabilityData>
</modification>
</modifyRequest>

The Response is as follows:

<ns9:ModifyResponseType xmlns="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns2="urn:oasis:names:tc:SPML:2:0"
xmlns:ns3="urn:oasis:names:tc:SPML:2:0:reference"
xmlns:ns4="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns5="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns6="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns7="urn:names:spml:ws:header" xmlns:ns8="urn:oasis:names:tc:SPML:2:0:async"
xmlns:ns9="oasis:names:tc:SPML:2:0" requestID="25" status="pending"/>

32.21.17 SPML Example - Role Grant
You cannot assign a role to multiple identities by using a SPML payload. If multiple
identities are given, then the latest identity only is assigned with the role. You remove
either of the identity from the payload.

The Request is as follows:

<modifyRequest xmlns="urn:oasis:names:tc:SPML:2:0"
xmlns:pso="http://xmlns.oracle.com/idm/identity/PSO" executionMode="asynchronous"
locale="string" policyURI="http://www.sample.com/string/string"
requestID="string" returnData="identifier">
<!--Zero or more repetitions:-->
<capabilityData capabilityURI="urn:oasis:names:tc:SPML:2:0:reference"
mustUnderstand="true" />
<psoID ID="identity:6C9B96E99FC8DC32E040E50A3D5252F5" />
<psoID ID="identity:6C9B96E99FC8DC32E040E50A3D5252F5" />
<!--1 or more repetitions:-->
<modification modificationMode="add">
<capabilityData capabilityURI="urn:oasis:names:tc:SPML:2:0:reference"
mustUnderstand="true">
<reference xmlns="urn:oasis:names:tc:SPML:2:0:reference"
typeOfReference="memberOf">
<toPsoID ID="6C9B96E99FC8DC32E040E50A3D5252F5" />
</reference>
</capabilityData>
</modification>
</modifyRequest>

The Response is as follows:

SPML Examples

Using SPML Services 32-43

<ns9:ResponseType xmlns="urn:oasis:names:tc:SPML:2:0"
xmlns:ns2="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns3="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns4="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns5="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns6="urn:names:spml:ws:header"
xmlns:ns7="urn:oasis:names:tc:SPML:2:0:async"
xmlns:ns8="urn:oasis:names:tc:SPML:2:0:reference"
xmlns:ns9="oasis:names:tc:SPML:2:0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="ns4:ActiveResponseType" requestID="143" status="failure"/>

32.21.18 SPML Example - Delete Role
The Request is as follows:

<deleteRequest xmlns="urn:oasis:names:tc:SPML:2:0"
xmlns:pso="http://xmlns.oracle.com/idm/identity/PSO" executionMode="asynchronous"
locale="en" policyURI="http://www.sample.com/string/string"
requestID="string" returnData="identifier" targetID="string">
<psoID ID="role:6C9B96E99FC8DC32E040E50A3D5252F5" />
</deleteRequest>

The Response is as follows:

<ns9:ResponseType xmlns="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns2="urn:oasis:names:tc:SPML:2:0"
xmlns:ns3="urn:oasis:names:tc:SPML:2:0:reference"
xmlns:ns4="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns5="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns6="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns7="urn:names:spml:ws:header" xmlns:ns8="urn:oasis:names:tc:SPML:2:0:async"
xmlns:ns9="oasis:names:tc:SPML:2:0" requestID="18" status="pending"/>

32.21.19 SPML Example - Status Request
The Request is as follows:

<statusRequest xmlns="urn:oasis:names:tc:SPML:2:0:async"
 requestID="3456563"
 asyncRequestID="75779"/>

The Response is as follows:

<statusResponse xmlns="urn:oasis:names:tc:SPML:2:0:async"
 requestID="3456563" status="success">
 <addResponse requestID="75779" status="pending"/>
</statusResponse>

Another Request is as follows:

<statusRequest xmlns="urn:oasis:names:tc:SPML:2:0:async"
 requestID="12" asyncRequestID="1" returnResults="true" />

Here. returnResults=true. Therefore, the response will have all the attributes of the
request.

The Response is as follows:

<ns9:StatusResponseType xmlns="urn:oasis:names:tc:SPML:2:0"

SPML Examples

32-44 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

xmlns:ns2="urn:oasis:names:tc:SPML:2:0:async"
xmlns:ns3="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns4="urn:oasis:names:tc:SPML:2:0:reference"
xmlns:ns5="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns6="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns7="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns8="urn:names:spml:ws:header" xmlns:ns9="oasis:names:tc:SPML:2:0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="ns2:StatusResponseType" requestID="12" status="success">
 <ns2:addResponse requestID="14" status="success">
 <pso>
 <psoID targetID="Identity"/>
 <data>
 <ns4:Identity xmlns:ns4="oasis:names:tc:SPML:2:0"
xmlns:ns2="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns3="urn:oasis:names:tc:SPML:2:0:async"
xmlns:ns5="urn:oasis:names:tc:SPML:2:0:async"
xmlns:ns6="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns7="urn:oasis:names:tc:SPML:2:0:suspend">
 <ns2:attributes>
 <ns2:attr xmlns=""
xmlns:ns11="urn:oasis:names:tc:SPML:2:0" name="Organization">
 <ns2:value>1</ns2:value>
 </ns2:attr>
 </ns2:attributes>

<ns2:activeEndDate>2009-12-25T16:00:00.000Z</ns2:activeEndDate>

<ns2:activeStartDate>2009-12-24T18:00:00.000Z</ns2:activeStartDate>
 <ns2:commonName>
 <ns2:values>
 <ns2:value>Alice Krug</ns2:value>
 </ns2:values>
 </ns2:commonName>
 <ns2:countryName>Canada</ns2:countryName>
 <ns2:departmentNumber>
 <ns2:value>123</ns2:value>
 </ns2:departmentNumber>
 <ns2:description>
 <ns2:values>
 <ns2:value>Alice Krugs profile</ns2:value>
 </ns2:values>
 </ns2:description>
 <ns2:displayName>
 <ns2:value>Alice Krug</ns2:value>
 </ns2:displayName>
 <ns2:employeeNumber>333</ns2:employeeNumber>
 <ns2:employeeType>
 <ns2:values>
 <ns2:value>Full-Time</ns2:value>
 </ns2:values>
 </ns2:employeeType>
 <ns2:facsimileTelephoneNumber>
 <ns2:number>6506072253</ns2:number>
 </ns2:facsimileTelephoneNumber>
 <ns2:generationQualifier>
 <ns2:value>II</ns2:value>
 </ns2:generationQualifier>
 <ns2:givenName>
 <ns2:value>Alice</ns2:value>

SPML Examples

Using SPML Services 32-45

 </ns2:givenName>
 <ns2:hireDate>1999-12-24T16:00:00.000Z</ns2:hireDate>
 <ns2:homePhone>
 <ns2:number>8888888888</ns2:number>
 </ns2:homePhone>
 <ns2:homePostalAddress>
 <ns2:value>Baker street</ns2:value>
 </ns2:homePostalAddress>
 <ns2:initials>
 <ns2:value>J S</ns2:value>
 </ns2:initials>
 <ns2:localityName>
 <ns2:value>SFO</ns2:value>
 </ns2:localityName>
 <ns2:middleName>A</ns2:middleName>
 <ns2:mobile>
 <ns2:number>4083485309</ns2:number>
 </ns2:mobile>
 <ns2:organization>
 <ns2:values>
 <ns2:value>1</ns2:value>
 </ns2:values>
 </ns2:organization>
 <ns2:organizationUnit>
 <ns2:values>
 <ns2:value>Sales</ns2:value>
 </ns2:values>
 </ns2:organizationUnit>
 <ns2:pager>
 <ns2:number>333</ns2:number>
 </ns2:pager>
 <ns2:postalAddress>
 <ns2:value>Baker street 222</ns2:value>
 </ns2:postalAddress>
 <ns2:postalCode>
 <ns2:value>4081</ns2:value>
 </ns2:postalCode>
 <ns2:postOfficeBox>
 <ns2:value>333n</ns2:value>
 </ns2:postOfficeBox>
 <ns2:preferredLanguage>en</ns2:preferredLanguage>
 <ns2:state>
 <ns2:value>CA</ns2:value>
 </ns2:state>
 <ns2:street>
 <ns2:value>Baker</ns2:value>
 </ns2:street>
 <ns2:surname>
 <ns2:values>
 <ns2:value>Krug</ns2:value>
 </ns2:values>
 </ns2:surname>
 <ns2:telephoneNumber>
 <ns2:number>6506072253</ns2:number>
 </ns2:telephoneNumber>
 <ns2:title>
 <ns2:values>
 <ns2:value>Mr</ns2:value>
 </ns2:values>
 </ns2:title>

SPML Examples

32-46 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 <ns2:username>
 <ns2:value>akrug3478</ns2:value>
 </ns2:username>
 <ns2:userType>End-User</ns2:userType>
 </ns4:Identity>
 </data>
 </pso>
 </ns2:addResponse>
</ns9:StatusResponseType>

32.21.20 SPML Example - Identity/Role Lookup
The request is as follows:

<ns1:lookupRequest xmlns:ns1="urn:oasis:names:tc:SPML:2:0"
returnData="everything">
 <ns1:psoID ID="identity:key:1" />
</ns1:lookupRequest>

The response is as follows:

<ns3:lookupResponse xmlns:ns2="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns3="urn:oasis:names:tc:SPML:2:0"
xmlns:ns4="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns5="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns6="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns7="urn:oasis:names:tc:SPML:2:0:reference"
xmlns:ns8="urn:oasis:names:tc:SPML:2:0:async"
xmlns:ns9="urn:oasis:names:tc:SPML:2:0:batch"
xmlns:ns10="urn:names:spml:ws:header">
<ns3:capabilityData capabilityURI="urn:oasis:names:tc:SPML:2:0:reference"
mustUnderstand="true">
<ns7:reference typeOfReference="memberOf"><ns7:toPsoID ID="1"/>
</ns7:reference>
</ns3:capabilityData><ns3:pso>
<ns3:data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="ns2:ProvisioningObjectType">
<ns2:identity><ns2:attributes><ns2:attr name="usr_disabled">
<ns2:value>0</ns2:value></ns2:attr><ns2:attr name="Display Name">
<ns2:value>zh-TW=System Administrator</ns2:value><ns2:value>pt-BR=System
Administrator</ns2:value>
<ns2:value>base=System Administrator</ns2:value><ns2:value>fr=System
Administrator</ns2:value>
<ns2:value>en=System Administrator</ns2:value>
<ns2:value>zh-CN=System Administrator</ns2:value>
</ns2:attr><ns2:attr name="usr_locked">
<ns2:value>0</ns2:value>
</ns2:attr><ns2:attr name="usr_created">
<ns2:value>Mon Dec 03 03:42:21 PST 2012</ns2:value>
</ns2:attr><ns2:attr name="Full Name">
<ns2:value>base=null</ns2:value>
</ns2:attr><ns2:attr name="usr_pwd_expire_date">
<ns2:value>Tue Apr 02 03:42:21 PDT 2013</ns2:value>
</ns2:attr><ns2:attr name="Email">
<ns2:value>donotreply@oracle.com</ns2:value>
</ns2:attr><ns2:attr name="usr_data_level">
<ns2:value>2</ns2:value></ns2:attr>
<ns2:attr name="usr_login_attempts_ctr">
<ns2:value>0</ns2:value></ns2:attr>
<ns2:attr name="Last Name">

SPML Examples

Using SPML Services 32-47

<ns2:value>Administrator</ns2:value>
</ns2:attr><ns2:attr name="First Name">
<ns2:value>System</ns2:value>
</ns2:attr><ns2:attr name="usr_createby">
<ns2:value>1</ns2:value></ns2:attr>
<ns2:attr name="usr_updateby">
<ns2:value>1</ns2:value>
</ns2:attr><ns2:attr name="User Login">
<ns2:value>XELSYSADM</ns2:value>
</ns2:attr><ns2:attr name="Role">
<ns2:value>Full-Time</ns2:value>
</ns2:attr><ns2:attr name="usr_pwd_warn_date">
<ns2:value>Tue Mar 26 03:42:21 PDT 2013</ns2:value>
</ns2:attr><ns2:attr name="Organization Name">
<ns2:value>Xellerate Users</ns2:value></ns2:attr>
<ns2:attr name="usr_update"><ns2:value>Mon Dec 03 03:42:21 PST 2012</ns2:value>
</ns2:attr><ns2:attr name="usr_pwd_reset_attempts_ctr">
<ns2:value>0</ns2:value></ns2:attr><ns2:attr name="usr_create">
<ns2:value>Mon Dec 03 03:42:21 PST 2012</ns2:value>
</ns2:attr><ns2:attr name="Xellerate Type">
<ns2:value>End-User Administrator</ns2:value>
</ns2:attr><ns2:attr name="Common Name">
<ns2:value>System Administrator</ns2:value></ns2:attr>
<ns2:attr name="act_key">
<ns2:value>1</ns2:value>
</ns2:attr><ns2:attr name="usr_key">
<ns2:value>1</ns2:value></ns2:attr>
<ns2:attr name="Common Name Generated">
<ns2:value>0</ns2:value>
</ns2:attr><ns2:attr name="Status">
<ns2:value>Active</ns2:value>
</ns2:attr></ns2:attributes>
<ns2:commonName>
<ns2:values><ns2:value>System Administrator</ns2:value>
</ns2:values></ns2:commonName>
<ns2:displayName>
<ns2:value locale="zh-TW">System Administrator</ns2:value><ns2:value
locale="pt-BR">System Administrator</ns2:value><ns2:value locale="base">System
Administrator</ns2:value>
<ns2:value locale="fr">System Administrator</ns2:value><ns2:value
locale="en">System Administrator</ns2:value><ns2:value locale="zh-CN">System
Administrator</ns2:value>
</ns2:displayName><ns2:employeeType>
<ns2:values>
<ns2:value>Full-Time</ns2:value></ns2:values>
</ns2:employeeType>
<ns2:givenName>
<ns2:value>System</ns2:value></ns2:givenName>
<ns2:mail>
<ns2:value>donotreply@oracle.com</ns2:value>
</ns2:mail><ns2:surname><ns2:values>
<ns2:value>Administrator</ns2:value></ns2:values>
</ns2:surname>
<ns2:userId><ns2:value>XELSYSADM</ns2:value>
</ns2:userId><ns2:userType>End-User Administrator</ns2:userType>
</ns2:identity>
</ns3:data>
</ns3:pso>
</ns3:lookupResponse>

SPML Examples

32-48 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Another request is as follows:

<ns1:lookupRequest xmlns:ns1="urn:oasis:names:tc:SPML:2:0"
returnData="everything">
 <ns1:psoID ID="role:name: FinanceRole " />
</ns1:lookupRequest>

The response is as follows:

<ns3:lookupResponse xmlns:ns2="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns3="urn:oasis:names:tc:SPML:2:0"
xmlns:ns4="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns5="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns6="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns7="urn:oasis:names:tc:SPML:2:0:reference"
xmlns:ns8="urn:oasis:names:tc:SPML:2:0:async"
xmlns:ns9="urn:oasis:names:tc:SPML:2:0:batch"
xmlns:ns10="urn:names:spml:ws:header">
<ns3:capabilityData capabilityURI="urn:oasis:names:tc:SPML:2:0:reference"
mustUnderstand="true">
<ns7:reference typeOfReference="inheritsFrom">
<ns7:toPsoID ID="10"/>
</ns7:reference>
<ns7:reference typeOfReference="inheritsFrom">
<ns7:toPsoID ID="7"/>
</ns7:reference><ns7:reference typeOfReference="memberOf">
<ns7:toPsoID ID="8"/></ns7:reference>
</ns3:capabilityData><ns3:pso>
<ns3:data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="ns2:ProvisioningObjectType">
<ns2:role><ns2:attributes>
<ns2:attr name="Role Display Name">
<ns2:value>FinanceRole</ns2:value>
</ns2:attr><ns2:attr name="Role Unique Name">
<ns2:value>FinanceRole</ns2:value>
</ns2:attr><ns2:attr name="Owner Login">
<ns2:value>XELSYSADM</ns2:value>
</ns2:attr><ns2:attr name="ugp_createby">
<ns2:value>1</ns2:value></ns2:attr>
<ns2:attr name="ugp_create">
<ns2:value>Wed Nov 21 23:28:42 PST 2012</ns2:value>
</ns2:attr><ns2:attr name="Role Owner Key">
<ns2:value>1</ns2:value></ns2:attr>
<ns2:attr name="Role Description">
<ns2:value>desc</ns2:value>
</ns2:attr><ns2:attr name="Role Name">
<ns2:value>FinanceRole</ns2:value>
</ns2:attr><ns2:attr name="ugp_update">
<ns2:value>Wed Nov 21 23:28:42 PST 2012</ns2:value></ns2:attr>
<ns2:attr name="Owner Email">
<ns2:value>donotreply@oracle.com</ns2:value></ns2:attr>
<ns2:attr name="Role Namespace"><ns2:value>Default</ns2:value></ns2:attr>
<ns2:attr name="Owner Display Name">
<ns2:value>System Administrator</ns2:value>
</ns2:attr><ns2:attr name="Role Key">
<ns2:value>6</ns2:value>
</ns2:attr>
<ns2:attr name="ugp_updateby">
<ns2:value>1</ns2:value>
</ns2:attr>
<ns2:attr name="Role Category Key">

SPML Examples

Using SPML Services 32-49

<ns2:value>2</ns2:value>
</ns2:attr><ns2:attr name="Owner Last Name">
<ns2:value>Administrator</ns2:value>
</ns2:attr><ns2:attr name="Role Email">
<ns2:value>email@email.com</ns2:value>
</ns2:attr><ns2:attr name="Owner First Name">
<ns2:value>System</ns2:value></ns2:attr>
<ns2:attr name="Role Category Name">
<ns2:value>OIM Roles</ns2:value>
</ns2:attr>
</ns2:attributes>
<ns2:commonName>
<ns2:values>
<ns2:value>FinanceRole</ns2:value>
</ns2:values></ns2:commonName>
<ns2:description>
<ns2:values>
<ns2:value>desc</ns2:value></ns2:values>
</ns2:description>
<ns2:displayName><ns2:value>FinanceRole</ns2:value>
</ns2:displayName></ns2:role>
</ns3:data>
</ns3:pso>
</ns3:lookupResponse>

32.21.21 SPML Example - Reset Password
The request is:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns1="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sece
xt-1.0.xsd">
<soap:Header>
 <ns1:Security>
 <ns1:UsernameToken>
 <ns1:Username>SYSTEM_ADMINISTRATOR_LOGIN</ns1:Username>
 <ns1:Password>SYSTEM_ADMINISTRATOR_PASSWORD</ns1:Password>
 </ns1:UsernameToken>
 </ns1:Security>
 </soap:Header>
<soap:Body xmlns="urn:oasis:names:tc:SPML:2:0">
<resetPasswordRequest xmlns="urn:oasis:names:tc:SPML:2:0:password">

 executionMode="asynchronous"
 locale="en_US">
<psoID ID="BD7A621E8C7147D2E040E50AFC801934"></psoID>
</resetPasswordRequest>
 </soap:Body>
</soap:Envelope>

The response is as follows:

<env:Envelope
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"><env:Header/><env:Body><ns6:
resetPasswordResponse xmlns:ns2="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns3="urn:oasis:names:tc:SPML:2:0"
xmlns:ns4="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns5="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns6="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns7="urn:oasis:names:tc:SPML:2:0:reference"

SPML Examples

32-50 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

xmlns:ns8="urn:oasis:names:tc:SPML:2:0:async"
xmlns:ns9="urn:oasis:names:tc:SPML:2:0:batch"
xmlns:ns10="urn:names:spml:ws:header"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="ns6:ResetPasswordResponseType"
status="success"/></env:Body></env:Envelope>

32.21.22 SPML Example - Reset Password with Notification
The request is:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns1="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sece
xt-1.0.xsd">
<soap:Header>
 <ns1:Security>
 <ns1:UsernameToken>
 <ns1:Username>SYSTEM_ADMINISTRATOR_LOGIN</ns1:Username>
 <ns1:Password>SYSTEM_ADMINISTRATOR_PASSWORD</ns1:Password>
 </ns1:UsernameToken>
 </ns1:Security>
 </soap:Header>
<soap:Body xmlns="urn:oasis:names:tc:SPML:2:0">
<resetPasswordRequest xmlns="urn:oasis:names:tc:SPML:2:0:password">

 executionMode="asynchronous"
 locale="en_US">
<psoID ID="BD7A621E8C7147D2E040E50AFC801934"></psoID>
<notificationData>
 <sendNotification>true</sendNotification>

<sendNotificationTo><emailAddress>john.doe@mycompany.com,jane.doe@mycompany.com,te
rrence.hill@mycompany.com</emailAddress></sendNotificationTo>
</notificationData>
 </resetPasswordRequest>
 </soap:Body>
</soap:Envelope>

The response is as follows:

<env:Envelope
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"><env:Header/><env:Body><ns6:
resetPasswordResponse xmlns:ns2="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns3="urn:oasis:names:tc:SPML:2:0"
xmlns:ns4="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns5="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns6="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns7="urn:oasis:names:tc:SPML:2:0:reference"
xmlns:ns8="urn:oasis:names:tc:SPML:2:0:async"
xmlns:ns9="urn:oasis:names:tc:SPML:2:0:batch"
xmlns:ns10="urn:names:spml:ws:header"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="ns6:ResetPasswordResponseType"
status="success"/></env:Body></env:Envelope>

32.21.23 SPML Example - Lookup User Name Policy
The request is:

SPML Examples

Using SPML Services 32-51

<ns2:lookupUsernamePolicyRequest
xmlns:ns2="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
requestID=""
 executionMode="synchronous" locale="en" policyURI=""
xmlns:ns3="urn:oasis:names:tc:SPML:2:0">
</ns2:lookupUsernamePolicyRequest>

The response is as follows:

<ns5:lookupUsernamePolicyResponse
xmlns:ns2="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns3="urn:oasis:names:tc:SPML:2:0"
xmlns:ns4="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns5="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns6="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns7="urn:oasis:names:tc:SPML:2:0:reference"
xmlns:ns8="urn:oasis:names:tc:SPML:2:0:async"
xmlns:ns9="urn:oasis:names:tc:SPML:2:0:batch"
xmlns:ns10="urn:names:spml:ws:header" status="success"><ns5:description>Generates
user name based on email id if it is available, else if first name is present then
<first name>.<last name>@<domain>, else <last
name>@<domain></ns5:description></ns5:lookupUsernamePolicyResponse>

32.21.24 SPML Example - Cancel Request
The request is:

<ns1:cancelRequest xmlns:ns1="urn:oasis:names:tc:SPML:2:0:async"
asyncRequestID="162"/>

The response is as follows:

A request that could be successfully withdrawn:

<ns8:cancelResponse xmlns:ns2="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns3="urn:oasis:names:tc:SPML:2:0"
xmlns:ns4="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns5="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns6="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns7="urn:oasis:names:tc:SPML:2:0:reference"
xmlns:ns8="urn:oasis:names:tc:SPML:2:0:async"
xmlns:ns9="urn:oasis:names:tc:SPML:2:0:batch"
xmlns:ns10="urn:names:spml:ws:header" asyncRequestID="162" status="success"/>

A request that could not successfully withdrawn:

<ns8:cancelResponse xmlns:ns2="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:ns3="urn:oasis:names:tc:SPML:2:0"
xmlns:ns4="urn:oasis:names:tc:SPML:2:0:suspend"
xmlns:ns5="http://xmlns.oracle.com/idm/identity/spmlv2custom/Username"
xmlns:ns6="urn:oasis:names:tc:SPML:2:0:password"
xmlns:ns7="urn:oasis:names:tc:SPML:2:0:reference"
xmlns:ns8="urn:oasis:names:tc:SPML:2:0:async"
xmlns:ns9="urn:oasis:names:tc:SPML:2:0:batch"
xmlns:ns10="urn:names:spml:ws:header" asyncRequestID="161" status="failure"
error="malformedRequest" extendedError="IAM-3076087"><ns3:errorMessage>User cannot
withdraw specified request.</ns3:errorMessage></ns8:cancelResponse>

SPML Examples

32-52 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

32.21.25 SPML Example - Batch Request
The request is as follows:

<urn1:batchRequest processing="parallel" onError="resume"
xmlns:urn1="urn:oasis:names:tc:SPML:2:0:batch"
xmlns:urn2="urn:oasis:names:tc:SPML:2:0"
xmlns:pso="http://xmlns.oracle.com/idm/identity/PSO"
xmlns:urn3="urn:oasis:names:tc:SPML:2:0:password" >
 <!--Zero or more repetitions:-->
 <urn1:addRequest requestID="?" executionMode="asynchronous"
locale="en" policyURI="User Creation" targetID="?" returnData="identifier">
 <urn2:data>
 <!--You may enter ANY elements at this point-->
 <!--You have a CHOICE of the next 3 items at this level-->
 <pso:identity>
 <pso:commonName>
 <pso:values locale="en">
 <pso:value>John Smith</pso:value>
 </pso:values>
 </pso:commonName>
 <pso:countryName>Canada</pso:countryName>
 <pso:departmentNumber>
 <pso:value>123</pso:value>
 </pso:departmentNumber>
 <pso:description>
 <pso:values>
 <pso:value>John Smiths profile</pso:value>
 </pso:values>
 </pso:description>
 <pso:displayName>
 <pso:value>John Smith</pso:value>
 </pso:displayName>
 <pso:employeeNumber>333</pso:employeeNumber>
 <pso:employeeType>
 <pso:values>
 <pso:value>Full-Time</pso:value>
 </pso:values>
 </pso:employeeType>
 <pso:facsimileTelephoneNumber>
 <pso:number>6506072253</pso:number>
 </pso:facsimileTelephoneNumber>
 <pso:generationQualifier>
 <pso:value>II</pso:value>
 </pso:generationQualifier>
 <pso:givenName>
 <pso:value>John</pso:value>
 </pso:givenName>
 <pso:hireDate>1999-12-24T16:00:00</pso:hireDate>
 <pso:homePhone>
 <pso:number>8888888888</pso:number>
 </pso:homePhone>
 <pso:homePostalAddress>
 <pso:value>Baker street</pso:value>
 </pso:homePostalAddress>
 <pso:initials>
 <pso:value>J S</pso:value>
 </pso:initials>
 <pso:jpegPhoto>
 <pso:value>c3RyaW5n</pso:value>
 </pso:jpegPhoto>

SPML Examples

Using SPML Services 32-53

 <pso:localityName>
 <pso:value>SFO</pso:value>
 </pso:localityName>
 <pso:mail>
 <pso:value>jsmith@oracle.com</pso:value>
 </pso:mail>
 <pso:middleName>Park</pso:middleName>
 <pso:mobile>
 <pso:number>4083485309</pso:number>
 </pso:mobile>
 <pso:organization>
 <pso:values locale="en">
 <pso:value>1</pso:value>
 </pso:values>
 </pso:organization>
 <pso:organizationUnit>
 <pso:values locale="en">
 <pso:value>Sales</pso:value>
 </pso:values>
 </pso:organizationUnit>
 <pso:pager>
 <pso:number>333</pso:number>
 </pso:pager>
 <pso:password>
 <pso:value>V2VsY29tZTE=</pso:value>
 </pso:password>
 <pso:postalAddress>
 <pso:value>Baker street 222</pso:value>
 </pso:postalAddress>
 <pso:postalCode>
 <pso:value>4081</pso:value>
 </pso:postalCode>
 <pso:postOfficeBox>
 <pso:value>333n</pso:value>
 </pso:postOfficeBox>
 <pso:preferredLanguage>en-US</pso:preferredLanguage>
 <pso:state>
 <pso:value>CA</pso:value>
 </pso:state>
 <pso:street>
 <pso:value>Baker</pso:value>
 </pso:street>
 <pso:surname>
 <pso:values locale="en">
 <pso:value>Smith</pso:value>
 </pso:values>
 </pso:surname>
 <pso:telephoneNumber>
 <pso:number>6506072253</pso:number>
 </pso:telephoneNumber>
 <pso:title>
 <pso:values locale="en">
 <pso:value>Mr</pso:value>
 </pso:values>
 </pso:title>
 <pso:username>
 <pso:value>jsmith</pso:value>
 </pso:username>
 </pso:identity>
 </urn2:data>

SPML Examples

32-54 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 </urn1:addRequest>
 <urn1:modifyRequest executionMode="asynchronous">
 <urn2:psoID ID="9924000" />
 <urn2:modification modificationMode="add">
 <urn2:component path="/identity"
namespaceURI="http://www.w3.org/TR/xpath20" />
 <urn2:data>
 <pso:identity>
 <pso:initials>
 <pso:value>X Y</pso:value>
 </pso:initials>
 </pso:identity>
 </urn2:data>
 </urn2:modification>
 <urn2:modification modificationMode="replace">
 <urn2:component path="/identity"
namespaceURI="http://www.w3.org/TR/xpath20" />
 <urn2:data>
 <pso:identity>
 <pso:localityName>
 <!--1 or more repetitions:-->
 <pso:value>new_locality</pso:value>
 </pso:localityName>
 <pso:homePhone>
 <!--1 or more repetitions:-->
 <pso:number>0123456789</pso:number>
 </pso:homePhone>
 </pso:identity>
 </urn2:data>
 </urn2:modification>
 <urn2:modification modificationMode="delete">
 <urn2:component path="/identity"
namespaceURI="http://www.w3.org/TR/xpath20" />
 <urn2:data>
 <pso:identity>
 <pso:pager>
 <pso:number>333</pso:number>
 </pso:pager>
 </pso:identity>
 </urn2:data>
 </urn2:modification>
 </urn1:modifyRequest>
 <urn1:deleteRequest executionMode="asynchronous" locale="en"
policyURI="http://www.sample.com/string/string" requestID="string"
returnData="identifier" targetID="string">
 <urn2:psoID ID="9924000" />
 </urn1:deleteRequest>
 <urn1:resetPasswordRequest executionMode="asynchronous">
 <urn3:psoID ID="924000" />
 <urn3:notificationData>
 <urn2:sendNotification>true</urn2:sendNotification>
 <urn2:sendNotificationTo>
 <urn2:emailAddress>john@oracle.com</urn2:emailAddress>
 </urn2:sendNotificationTo>
 </urn3:notificationData>
 </urn1:resetPasswordRequest>
 </urn1:batchRequest>

The response is as follows:

<urn:batchResponse xmlns:urn="urn:oasis:names:tc:SPML:2:0:batch"

SPML Examples

Using SPML Services 32-55

xmlns:urn1="urn:oasis:names:tc:SPML:2:0">
 <!--Zero or more repetitions:-->
 <urn:addResponse status="pending" requestID="1234"/>
 <urn:modifyResponse status="pending" requested="2345"/>
 <urn:deleteResponse status="pending" requestID="3456"/>
 <urn:resetPasswordResponse status="success" />
 </urn:batchResponse>

SPML Examples

32-56 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

33

Using URLs 33-1

33Using URLs

[34]

Other web applications may need to redirect end users and administrators to the
Oracle Identity Self Service task flows for their Identity Self Service and Identity
Administration requirements.

For the task flows listed in Table 33–1, Oracle Identity Self Service exposes direct URLs
that can be embedded as links into other web application pages.

Table 33–1 Task Flows and Direct URLs

Task Flow Title
Direct URL (relative to
https://OIMHOST:PORT) Description

Home /identity/faces/home?tf=home Displays Home page task flows.

My Information /identity/faces/home?tf=my_informati
on

Displays User Profile, Change Password,
Challenge Questions, Proxies, and Direct
Reports.

My Access Roles /identity/faces/home?tf=my_access_ro
les

Displays enterprise role memberships
with Request Roles action.

My Access Admin Roles /identity/faces/home?tf=my_access_ad
min_roles

Displays admin role memberships.

My Access Accounts /identity/faces/home?tf=my_access_ac
counts

Displays assigned accounts with Request
Accounts action.

My Access Entitlements /identity/faces/home?tf=my_access_en
titlements

Displays assigned entitlements with
Request Entitlements action.

Approval Details /identity/faces/home?tf=approval_det
ails

Displays pending approval tasks.

Request Details /identity/faces/home?tf=request_detail
s&requestId=<Request Id>

Request ID is mandatory. This is the ID
generated on submission of a request.

Organizations /identity/faces/home?tf=organizations Displays Organization search page

Roles /identity/faces/home?tf=roles Displays Role search page

Role Categories /identity/faces/home?tf=role_categorie
s

Displays Role Categories search page

33-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Part IX
Part IX Notification Service

This part contains chapters that describe the notification service and callback service.

It contains the following chapters:

■ Chapter 34, "Developing Notification Events"

■ Chapter 35, "Using the Callback Service"

34

Developing Notification Events 34-1

34Developing Notification Events

[35]

This chapter describes how to develop notification events. It contains the following
sections:

■ Notification Concepts

■ Developing Custom Notification

■ Troubleshooting Notification

34.1 Notification Concepts
For developing custom notification for various operations in Oracle Identity Manager,
the notification engine supports creation of notification events and notification
templates.

An event is an operation that occurs in Oracle Identity Manager, such as user creation,
request initiation, or any custom event created by the user. The events are generated as
part of business operations or via generation of errors. Event definition is the metadata
that describes the event. To define metadata for events, it is important to identify all
event types supported by a functional component. For example, as a part of the
scheduler component, metadata can be defined for scheduled job execution failed and
shutting down of the scheduler. Every time a job fails or the scheduler is shut down,
the events are raised and notifications associated with that event are sent.

Notification templates are associated to specific events. The templates are used for
defining the format of the notification. Oracle Identity Manager provides predefined
or default notification templates. In addition, you can create new notification
templates.

For some events, Oracle Identity Manager sends notification by default. For example,
when a user is created without username and password through UI or reconciliation,
the login credentials are notified to the user and user's manager.

You can create new notification templates and link them to the existing events. In
addition, you can define new notification events by using notification APIs and
resolver class, as described in the subsequent sections. The following are examples of
custom notification requirements:

■ A user is assigned to a role. The user and role owner are to be notified.

■ A user is assigned with a new application instance, which is financially significant,
as part of reconciliation. The application instance owner and compliance officer is
to be notified for prospective rogue attempts.

Developing Custom Notification

34-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

34.2 Developing Custom Notification
Developing custom notification is described in the following sections:

■ Building the Notification Logic

■ Creating Plug-in Pack Containing the Resolver Class

■ Building the Invocation Logic

■ Configuring the Notification Service

34.2.1 Building the Notification Logic
Building the notification login involves defining the event metadata XML and creating
the Resolver class, as described in the following sections:

■ Defining Event Metadata

■ Creating the Resolver Class

34.2.1.1 Defining Event Metadata
Corresponding to each event, you must create an XML file that has the specific schema
defined by the notification engine. Compliant to that schema (.xsd file), an XML file is
created that defines how an event looks like. When the event is defined, you can
configure a notification template for that event.

An event file must be compliant with the schema defined by the notification engine,
which is NotificationEvent.xsd. The event file contains basic information about the
event.

The following is a sample event XML file:

<?xml version="1.0" encoding="UTF-8"?>
<Events xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../../../metadata/NotificationEvent.xsd">
 <EventType name="User Created">
 <StaticData>
 <Attribute DataType="X2-Entity" EntityName="User" Name="Granted User"/>
 <Attribute DataType="X2-Entity" EntityName="User" Name="Grantee User"/>
 <Attribute DataType="91-Entity" EntityName="User Group" Name="User Grp"/>
 </StaticData>
 <Resolver class="oracle.iam.notification.DemoResolver">
 <Param DataType="91-Entity" EntityName="Resource" Name="ResourceInfo"/>
 </Resolver>
 </EventType>
</Events>

The event XML file has the following elements:

■ EventType name: The name of the event that will be available while creating
notification templates for the event.

■ StaticData: The list of static parameters. This set of parameters specifically let the
user add parameters that are not data dependent. In other words, this element
defines the static data to be displayed when notification template is to be

Note: The NotificationEvent.xsd file is in the
iam\iam-product\features\notification\metadata directory in the
MDS.

Developing Custom Notification

Developing Notification Events 34-3

configured. For instance, the user entity is not data dependent, and when resolved,
has the same set of attributes for all the event instances and notification templates.

■ Param DataType: The list of dynamic parameters. This set of parameters
specifically let the user add parameters that are data dependent. For instance, the
Resource entity is data dependent. Corresponding to this field, a lookup is
displayed on the UI. When the user selects the resource object, the call goes to the
Resolver class provided to get the fields that are shown in the tree from which user
can select the attribute to be used on the template.

The dynamic entities supported for lookup are user, resource, and organization.
These entity names must be specified in the Param DataType element.

■ Resolver class: The Resolver class must be defined for each notification. It defines
what parameters are available in the notification creation screen and how those
parameters are replaced when the notification is to be sent. In other words, the
resolver class resolves the data dynamically at run time and displays the attributes
in the UI. See "Creating the Resolver Class" on page 34-4 for information about
implementing the resolver class.

Notification service reads the XML files from MDS or from the META-INF folder of a
plug-in. The event XML file can be uploaded into MDS by using Oracle Enterprise
Manager. See "Deploying the Notification Event" on page 34-4 for details.

The recommended way to use the event XML is by placing it in a plugin's META-INF
directory. The structure of the plug-in is:

■ The lib/ directory

– PLUG_IN.jar

■ The META-INF directory

– metadata.xml

■ plugin.xml

See "Developing Plug-ins" on page 27-1 for detailed information about creating the
plug-in JAR and deploying it by using the Plugin Registration Utility.

Note: Available data is the list of attributes that can be embedded as
a token in the template. These tokens are replaced by the value passed
by the resolver class at run time. See step 7 of "Creating a Notification
Template" in the Oracle Fusion Middleware Administrator's Guide for
Oracle Identity Manager for an example of a token.

Available data is displayed in a drop-down list while creating a
notification template, as described in "Creating a Notification
Template" in the Oracle Fusion Middleware Administrator's Guide for
Oracle Identity Manager.

Selected data is a single attribute that helps user to copy and paste the
attribute name in a notification template. Selected data is the same
attribute name as selected in the Available Data list.

Note: The <Param DataType> element is not a mandatory element.
However, when it is used, the entity names must be specified as User,
Resource, or Organization.

Developing Custom Notification

34-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

34.2.1.1.1 Deploying the Notification Event To deploy the notification event:

1. Upload the event metadata XML file to the Meta Data Store (MDS) by using
Oracle Enterprise Manager.

See "Migrating User Modifiable Metadata Files" on page 37-1 for information
about exporting and importing data to and from MDS repository.

2. Upload the JAR file containing the resolver class to Oracle Identity Manager
database. Utilities are available in the OIM_HOME/bin/ directory for uploading
resource bundles and JAR files to Oracle Identity Manager database.

See "Migrating JARs and Resource Bundle" on page 37-3 for information about the
upload resource bundles and JAR utilities.

34.2.1.2 Creating the Resolver Class
All classes have to implement the NotificationEventResolver interface. This interface
provides the following methods:

The getAvailableData Method
public List<NotificationAttribute> getAvailableData(String eventType, Map<String,
Object> params);

This API returns the list of available data variables. These variables are available on
the UI while creating or modifying the templates and allows the user to select the
variables so that they can be the part of the messages on the template.

The eventType parameter specifies the event name for which the template is to be
read.

The params parameter is the map that has the entity name and the corresponding
value for which available data is to be fetched. For instance:

map.put("Resource", "laptop");

This helps you fetch the fields associated with the laptop resource or other data
according to the code that you have provided in the resolver class.

Sample code:

/**
* this is a dummy implementation and uses hardcoded values
* Implementors need to iterate the XML as found through the event type
* params : will have all the specific values that your resolver needs
* for instance resource name = "laptop" that you may want here to be resolved
through your custon implementation
*/

List<NotificationAttribute> list = new ArrayList<NotificationAttribute>();
NotificationAttribute subatr = new NotificationAttribute();
subatr.setName("Dynamic1"); subatr.setType("91-Entity");
subatr.setEntityName("Resource"); subatr.setRequired(false);
subatr.setSearchable(true); subatr.setSubtree(lookup91EntityMetaData("resource"),
params.get(0)); list.add(subatr);

The main tree contains the entity information and the subtree contains all the nodes
that are available on the UI. The name field from each node in the subtree is available
on the UI for selection.

Developing Custom Notification

Developing Notification Events 34-5

The getReplacedData Method
HashMap<String, String> getReplacedData(String eventType, Map<String, Object>
params);

This API returns the resolved value of the variables present on the template at run
time when notification is being sent.

The eventType parameter specifies the event name for which the template is to be
read.

The params parameter is the map that has the base values, such as usr_key and
obj_key, required by the resolver implementation to resolve the rest of the variables in
the template.

Sample code:

HashMap<String, Object> resolvedData = new HashMap<String, Object>();
resolvedData.put("shortDate", new Date()); resolvedData.put("longDate", new
Date());
String firstName = getUserFirstname(params.get("usr_key"));
resolvedData.put("fname", firstName); resolvedData.put("lname", "lastname");
resolvedData.put("count", "1 million");
return resolvedData;

Example: Creating a Custom Resolver Class
Consider the example of Oracle Identity Manager sending email notification to the
user who has been added as a proxy. If the requirement is to change the date format in
the notification email, then perform the following:

1. Create a new resolver class file, such as AddProxyResolverModified, for
notification while adding a proxy. The following is the code for the
AddProxyResolverModified resolver class:

package oracle.iam.selfservice.notification;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Date;
import java.util.logging.Level;
import java.text.ParseException;
import java.text.SimpleDateFormat;

import static oracle.iam.identity.utils.Constants.PROXY_START_DATE;
import static oracle.iam.identity.utils.Constants.PROXY_END_DATE;
import static oracle.iam.identity.utils.Constants.PROXY_ORIGINAL_USR_NAME;
import static oracle.iam.identity.utils.Constants.PROXY_ORIG_USER_LOGIN;
import static oracle.iam.identity.utils.Constants.FIRSTNAME;
import static oracle.iam.identity.utils.Constants.LASTNAME;
import oracle.iam.notification.impl.NotificationEventResolver;
import oracle.iam.notification.vo.NotificationAttribute;

/* $Header:
iam/iam-product/features/selfservice/src/main/oracle/iam/selfservice/notificati
on/AddProxyResolver.java /main/2 2012/02/13 20:46:50 shaimish Exp $ */

/* Copyright (c) 2010, 2012, Oracle and/or its affiliates.
All rights reserved. */

/*

Developing Custom Notification

34-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 DESCRIPTION
 <short description of component this file declares/defines>

 PRIVATE CLASSES
 <list of private classes defined - with one-line descriptions>

 NOTES
 <other useful comments, qualifications, etc.>

 MODIFIED (MM/DD/YY)
 supandit 04/19/10 - Creation
 */

/**
 * @version $Header:
iam/iam-product/features/selfservice/src/main/oracle/iam/selfservice/notificati
on/AddProxyResolver.java /main/2 2012/02/13 20:46:50 shaimish Exp $
 * @author supandit
 * @since release specific (what release of product did this appear in)
 */

public class AddProxyResolverModified implements NotificationEventResolver {
public List<NotificationAttribute> getAvailableData(String eventType,
Map<String, Object> params) throws Exception {
return null;
}

 public HashMap<String, Object> getReplacedData(String eventType,
Map<String, Object> params)throws Exception {

 SimpleDateFormat sdfSource = new SimpleDateFormat("MMMMMMMM DD,yyyy
HH:mm:ss a z");
 SimpleDateFormat sdfDestination = new SimpleDateFormat("EEE, d MMM yyyy
HH:mm:ss Z");
 Date sdate = null;
 Date edate = null;

 HashMap<String, Object> resolvedData = new HashMap<String, Object>();
 resolvedData.put("firstName",params.get(FIRSTNAME));
 resolvedData.put("lastName",params.get(LASTNAME));
 resolvedData.put("originalusername",params.get(PROXY_ORIG_USER_LOGIN));

 String proxy_startDate = (String)params.get(PROXY_START_DATE);
 System.out.println("proxy_startDate : " + proxy_startDate);
 String proxy_endDate = (String) params.get(PROXY_END_DATE);
 System.out.println("proxy_endDate : " + proxy_endDate);

 sdate = sdfSource.parse(proxy_startDate);
 edate = sdfSource.parse(proxy_endDate);

 proxy_startDate = sdfDestination.format(sdate);
 System.out.println("proxy_startDate : " + proxy_startDate);
 proxy_endDate = sdfDestination.format(edate);
 System.out.println("proxy_endDate : " + proxy_endDate);

 resolvedData.put("proxystartdate", proxy_startDate);
 resolvedData.put("proxyenddate", proxy_endDate);

Developing Custom Notification

Developing Notification Events 34-7

 return resolvedData;
 }
}

This changes the format of the notification email from:

You have been made the proxy for testuser1 testuser1 [TESTUSER1] from
September 13, 2012 7:00:00 AM GMT to September 14, 2012 7:00:00 AM GMT.

To:

You have been made the proxy for testuser1 testuser1 [TESTUSER1] from Fri, 13
Jan 2012 23:00:00 -0800 to Sat, 14 Jan 2012 23:00:00 -0800.

2. Copy the plugin ZIP file to OIM_HOME/server/plugins/.

3. Create the AddProxyUser.xml with the following code:

<?xml version='1.0' encoding='UTF-8'?>
<Events xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../../../notification/metadata/NotificationEvent
.xsd" xmlns="http://xmlns.oracle.com/oim/notificationevent">
<EventType name="AddProxy">
<Resolver class="oracle.iam.selfservice.notification.AddProxyResolverModified">
<Param Name="AddProxy" DataType="X2-Entity" EntityName="AddProxy"/>
</Resolver>
</EventType>
</Events>

4. The original resolver declared in MDS gets the precedence. Therefore, import the
AddProxyUser.xml file to MDS at
/metadata/iam-features-selfservice/notification/.

34.2.2 Creating Plug-in Pack Containing the Resolver Class
After creating the Resolver class, you must package it into a plug-in JAR file, and
deploy the JAR file by using the Plug-in Registration Utility. See "Developing Plug-ins"
on page 27-1 for detailed information about creating the plug-in JAR and deploying it
by using the Plugin Registration Utility.

34.2.3 Building the Invocation Logic
After building the notification logic by defining event metadata XML and creating the
Resolver class, you can call the notification logic at a specific operation in Oracle
Identity Manager. This is achieved by using event handlers.

The invocation logic for the notification is built as a custom event handler. The custom
event handler is then configured at the right stage in the relevant operation. The
custom event handler is then deployed by using the Plugin Registration Utility. See
"Developing Event Handlers" on page 28-1 for details about developing event
handlers.

34.2.4 Configuring the Notification Service
You have the following options for creating the infrastructure-level configuration for
notification:

■ Create infrastructure-level configuration in Oracle Identity Manager: Email
server is supported as the default mode of notification in Oracle Identity Manager.

Troubleshooting Notification

34-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Create infrastructure-level configuration in SOA: All modes of notification are
suppoted by SOA. Therefore, you can configure the notification service to use User
Messaging Service (UMS) in SOA.

See "Managing Notification Providers" in Oracle Fusion Middleware Administrator's
Guide for Oracle Identity Manager for information about configuring the notification
service.

34.3 Troubleshooting Notification
After you configure notification, you can test the configuration by using the
Notification Configuration Test available in the Diagnostic Dashboard. To do so,
provide a valid user login as parameter for this test from the Diagnostic Dashboard
console.

A dummy user creation mail is sent if a valid e-mail id exists for the login provided,
and the result of the test will be similar to Figure 34–1:

Figure 34–1 Notification Configuration Test

This section describes the following issues that you might encounter with UMS
configuration and the corresponding solutions:

■ Issues Related to Incorrect URL

■ Incorrect Outgoing Server EMail Driver Properties

Note: You can configure e-mail definitions for using in provisioning
processes by using the Email Definition Form in the Design Console.
See "Email Definition Form" on page 5-1 for details.

Troubleshooting Notification

Developing Notification Events 34-9

■ Error Generated at the SOA Server

■ Authentication Failure

■ Issues Related to Failed Email Delivery Not Reported Through EM

34.3.1 Issues Related to Incorrect URL

Problem
Oracle Identity Manager log shows the following error:

<Jun 13, 2012 12:53:25 AM PDT> <Warning>
<oracle.adfinternal.view.faces.renderkit.rich.SelectItemUtils> <ADF_FACES-30118>
<No help provider found for helpTopicId=create_user.>
java.net.MalformedURLException: For input string: "SOA_PORT"
at java.net.URL.<init>(URL.java:601)
at java.net.URL.<init>(URL.java:464)
at java.net.URL.<init>(URL.java:413)
at java.net.URI.toURL(URI.java:1081)
at oracle.j2ee.ws.common.transport.HttpTransport.transmit(HttpTransport.java:61)
at oracle.j2ee.ws.common.async.MessageSender.call(MessageSender.java:64)
at oracle.j2ee.ws.common.async.Transmitter.transmitSync(Transmitter.java:134)
at oracle.j2ee.ws.common.async.Transmitter.transmit(Transmitter.java:90)
at oracle.j2ee.ws.common.async.RequestorImpl.transmit(RequestorImpl.java:273)
at oracle.j2ee.ws.common.async.RequestorImpl.invoke(RequestorImpl.java:94)
at oracle.j2ee.ws.client.jaxws.DispatchImpl.invoke(DispatchImpl.java:811)
at
oracle.j2ee.ws.client.jaxws.OracleDispatchImpl.synchronousInvocationWithRetry(Orac
leDispatchImpl.java:235)
at
oracle.j2ee.ws.client.jaxws.OracleDispatchImpl.invoke(OracleDispatchImpl.java:106)
at
oracle.j2ee.ws.client.jaxws.WsClientProxyInvocationHandler.invoke(WsClientProxyInv
ocationHandler.java:254)
at $Proxy422.send(Unknown Source)
at oracle.ucs.messaging.ws.MessagingClient.send(MessagingClient.java:299)
at
oracle.iam.notification.provider.UMSEmailServiceProvider.sendMessage(UMSEmailServi
ceProvider.java:188)
at
oracle.iam.notification.provider.UMSEmailServiceProvider.sendNotification(UMSEmail
ServiceProvider.java:173)
at
oracle.iam.notification.impl.NotificationServiceImpl.sendEmailNotification(Notific
ationServiceImpl.java:601)
at
oracle.iam.notification.impl.NotificationServiceImpl.notify(NotificationServiceImp
l.java:540)
at
oracle.iam.notification.impl.NotificationServiceImpl.notify(NotificationServiceImp
l.java:271)
<Jun 13, 2012 12:53:31 AM PDT> <Error> <oracle.iam.notification.impl> <BEA-000000>
<Provider UMSEmailServiceProvider has encountered exception : null>
<Jun 13, 2012 12:53:31 AM PDT> <Error> <oracle.iam.notification.impl> <BEA-000000>
<Sending notification with Provider UMSEmailServiceProvider has encountered
exception : Error occured while Sending Notification through Provider
UMSEmailServiceProvider : null>
<Jun 13, 2012 12:53:31 AM PDT> <Error> <oracle.iam.notification.impl> <BEA-000000>
<Sending notification with Provider UMSEmailServiceProvider detailed exception :
null>

Troubleshooting Notification

34-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Solution
The cause of this error is malformed URL. To resolve the issue, provide the correct
values for SOA_PORT and SOA_HOST in Enterprise Manager (EM).

Problem
Oracle Identity Manager log shows the following error:

<Jun 13, 2012 3:14:14 AM PDT> <Error> <oracle.iam.notification.impl> <BEA-000000>
<Provider UMSEmailServiceProvider has encountered exception :
javax.xml.soap.SOAPException: javax.xml.soap.SOAPException: Bad response: 404 Not
Found from url http://myhost.mycompany.com:8003/ucs/messaging/webservice>
<Jun 13, 2012 3:14:14 AM PDT> <Error> <oracle.iam.notification.impl> <BEA-000000>
<Sending notification with Provider UMSEmailServiceProvider has encountered
exception : Error occured while Sending Notification through Provider
UMSEmailServiceProvider : javax.xml.soap.SOAPException:
javax.xml.soap.SOAPException: Bad response: 404 Not Found from url
http://myhost.mycompany.com:8003/ucs/messaging/webservice>
<Jun 13, 2012 3:14:14 AM PDT> <Error> <oracle.iam.notification.impl> <BEA-000000>
<Sending notification with Provider UMSEmailServiceProvider detailed exception :
javax.xml.soap.SOAPException: javax.xml.soap.SOAPException: Bad response: 404 Not
Found from url http://myhost.mycompany.com:8003/ucs/messaging/webservice>

Solution
The cause of this problem in incorrect URL. To resolve the issue, provide the correct
URL in EM.

34.3.2 Incorrect Outgoing Server EMail Driver Properties

Problem
The following error is generated:

<Jun 13, 2012 3:39:14 AM PDT> <Error> <oracle.sdp.messaging.driver.email>
<SDP-25700> <An unexpected exception was caught.
javax.mail.MessagingException: Unknown SMTP host: abc.oracle.com;
nested exception is:
java.net.UnknownHostException: abc.oracle.com
at com.sun.mail.smtp.SMTPTransport.openServer(SMTPTransport.java:1389)
at com.sun.mail.smtp.SMTPTransport.protocolConnect(SMTPTransport.java:412)
at javax.mail.Service.connect(Service.java:310)
at javax.mail.Service.connect(Service.java:169)
at javax.mail.Service.connect(Service.java:118)
at
oracle.sdpinternal.messaging.driver.email.EmailDriver.send(EmailDriver.java:780)
at
oracle.sdpinternal.messaging.driver.email.EmailManagedConnection.send(EmailManaged
Connection.java:50)
at
oracle.sdpinternal.messaging.driver.DriverConnectionImpl.send(DriverConnectionImpl
.java:41)
at
oracle.sdpinternal.messaging.dispatcher.DriverDispatcherBean.onMessage(DriverDispa
tcherBean.java:296)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)

Troubleshooting Notification

Developing Notification Events 34-11

at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:
25)
at java.lang.reflect.Method.invoke(Method.java:597)
at
com.bea.core.repackaged.springframework.aop.support.AopUtils.invokeJoinpointUsingR
eflection(AopUtils.java:310)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.i
nvokeJoinpoint(ReflectiveMethodInvocation.java:182)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:149)
at
com.bea.core.repackaged.springframework.aop.interceptor.ExposeInvocationIntercepto
r.invoke(ExposeInvocationInterceptor.java:89)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:171)
at
com.bea.core.repackaged.springframework.aop.support.DelegatingIntroductionIntercep
tor.doProceed(DelegatingIntroductionInterceptor.java:131)
at
com.bea.core.repackaged.springframework.aop.support.DelegatingIntroductionIntercep
tor.invoke(DelegatingIntroductionInterceptor.java:119)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:171)
at
com.bea.core.repackaged.springframework.aop.framework.JdkDynamicAopProxy.invoke(Jd
kDynamicAopProxy.java:204)
at $Proxy349.onMessage(Unknown Source)
at weblogic.ejb.container.internal.MDListener.execute(MDListener.java:583)
at
weblogic.ejb.container.internal.MDListener.transactionalOnMessage(MDListener.java:
486)
at weblogic.ejb.container.internal.MDListener.onMessage(MDListener.java:388)
at weblogic.jms.client.JMSSession.onMessage(JMSSession.java:4659)
at weblogic.jms.client.JMSSession.execute(JMSSession.java:4345)
at weblogic.jms.client.JMSSession.executeMessage(JMSSession.java:3821)
at weblogic.jms.client.JMSSession.access$000(JMSSession.java:115)
at weblogic.jms.client.JMSSession$UseForRunnable.run(JMSSession.java:5170)
at
weblogic.work.SelfTuningWorkManagerImpl$WorkAdapterImpl.run(SelfTuningWorkManagerI
mpl.java:545)
at weblogic.work.ExecuteThread.execute(ExecuteThread.java:256)
at weblogic.work.ExecuteThread.run(ExecuteThread.java:221)
Caused By: java.net.UnknownHostException: abc.oracle.com
at java.net.PlainSocketImpl.connect(PlainSocketImpl.java:195)
at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:366)
at java.net.Socket.connect(Socket.java:529)
at com.sun.net.ssl.internal.ssl.SSLSocketImpl.connect(SSLSocketImpl.java:564)
at
com.sun.net.ssl.internal.ssl.BaseSSLSocketImpl.connect(BaseSSLSocketImpl.java:141)
at com.sun.mail.util.SocketFetcher.createSocket(SocketFetcher.java:233)
at com.sun.mail.util.SocketFetcher.getSocket(SocketFetcher.java:163)
at com.sun.mail.smtp.SMTPTransport.openServer(SMTPTransport.java:1359)
at com.sun.mail.smtp.SMTPTransport.protocolConnect(SMTPTransport.java:412)
at javax.mail.Service.connect(Service.java:310)
at javax.mail.Service.connect(Service.java:169)

Troubleshooting Notification

34-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

at javax.mail.Service.connect(Service.java:118)
at
oracle.sdpinternal.messaging.driver.email.EmailDriver.send(EmailDriver.java:780)
at
oracle.sdpinternal.messaging.driver.email.EmailManagedConnection.send(EmailManaged
Connection.java:50)
at
oracle.sdpinternal.messaging.driver.DriverConnectionImpl.send(DriverConnectionImpl
.java:41)
at
oracle.sdpinternal.messaging.dispatcher.DriverDispatcherBean.onMessage(DriverDispa
tcherBean.java:296)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:
25)
at java.lang.reflect.Method.invoke(Method.java:597)
at
com.bea.core.repackaged.springframework.aop.support.AopUtils.invokeJoinpointUsingR
eflection(AopUtils.java:310)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.i
nvokeJoinpoint(ReflectiveMethodInvocation.java:182)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:149)
at
com.bea.core.repackaged.springframework.aop.interceptor.ExposeInvocationIntercepto
r.invoke(ExposeInvocationInterceptor.java:89)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:171)
at
com.bea.core.repackaged.springframework.aop.support.DelegatingIntroductionIntercep
tor.doProceed(DelegatingIntroductionInterceptor.java:131)
at
com.bea.core.repackaged.springframework.aop.support.DelegatingIntroductionIntercep
tor.invoke(DelegatingIntroductionInterceptor.java:119)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:171)
at
com.bea.core.repackaged.springframework.aop.framework.JdkDynamicAopProxy.invoke(Jd
kDynamicAopProxy.java:204)
at $Proxy349.onMessage(Unknown Source)
at weblogic.ejb.container.internal.MDListener.execute(MDListener.java:583)
at
weblogic.ejb.container.internal.MDListener.transactionalOnMessage(MDListener.java:
486)
at weblogic.ejb.container.internal.MDListener.onMessage(MDListener.java:388)
at weblogic.jms.client.JMSSession.onMessage(JMSSession.java:4659)
at weblogic.jms.client.JMSSession.execute(JMSSession.java:4345)
at weblogic.jms.client.JMSSession.executeMessage(JMSSession.java:3821)
at weblogic.jms.client.JMSSession.access$000(JMSSession.java:115)
at weblogic.jms.client.JMSSession$UseForRunnable.run(JMSSession.java:5170)
at
weblogic.work.SelfTuningWorkManagerImpl$WorkAdapterImpl.run(SelfTuningWorkManagerI
mpl.java:545)
at weblogic.work.ExecuteThread.execute(ExecuteThread.java:256)

Troubleshooting Notification

Developing Notification Events 34-13

at weblogic.work.ExecuteThread.run(ExecuteThread.java:221)
>

Solution
The cause of this problem is incorrect Outgoing Server EMail Driver properties. To
rectify the issue, provide the correct server address, and ensure that the server is
running.

34.3.3 Error Generated at the SOA Server

Problem
The following error is generated:

<Jun 13, 2012 3:53:20 AM PDT> <Error> <oracle.sdp.messaging.driver.email>
<SDP-25700> <An unexpected exception was caught.
javax.mail.MessagingException: Could not connect to SMTP host:
stbeehive.oracle.com, port: 25;
nested exception is:
java.net.ConnectException: Connection refused
at com.sun.mail.smtp.SMTPTransport.openServer(SMTPTransport.java:1391)
at com.sun.mail.smtp.SMTPTransport.protocolConnect(SMTPTransport.java:412)
at javax.mail.Service.connect(Service.java:310)
at javax.mail.Service.connect(Service.java:169)
at javax.mail.Service.connect(Service.java:118)
at
oracle.sdpinternal.messaging.driver.email.EmailDriver.send(EmailDriver.java:780)
at
oracle.sdpinternal.messaging.driver.email.EmailManagedConnection.send(EmailManaged
Connection.java:50)
at
oracle.sdpinternal.messaging.driver.DriverConnectionImpl.send(DriverConnectionImpl
.java:41)
at
oracle.sdpinternal.messaging.dispatcher.DriverDispatcherBean.onMessage(DriverDispa
tcherBean.java:296)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:
25)
at java.lang.reflect.Method.invoke(Method.java:597)
at
com.bea.core.repackaged.springframework.aop.support.AopUtils.invokeJoinpointUsingR
eflection(AopUtils.java:310)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.i
nvokeJoinpoint(ReflectiveMethodInvocation.java:182)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:149)
at
com.bea.core.repackaged.springframework.aop.interceptor.ExposeInvocationIntercepto
r.invoke(ExposeInvocationInterceptor.java:89)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:171)
at
com.bea.core.repackaged.springframework.aop.support.DelegatingIntroductionIntercep

Troubleshooting Notification

34-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

tor.doProceed(DelegatingIntroductionInterceptor.java:131)
at
com.bea.core.repackaged.springframework.aop.support.DelegatingIntroductionIntercep
tor.invoke(DelegatingIntroductionInterceptor.java:119)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:171)
at
com.bea.core.repackaged.springframework.aop.framework.JdkDynamicAopProxy.invoke(Jd
kDynamicAopProxy.java:204)
at $Proxy345.onMessage(Unknown Source)
at weblogic.ejb.container.internal.MDListener.execute(MDListener.java:583)
at
weblogic.ejb.container.internal.MDListener.transactionalOnMessage(MDListener.java:
486)
at weblogic.ejb.container.internal.MDListener.onMessage(MDListener.java:388)
at weblogic.jms.client.JMSSession.onMessage(JMSSession.java:4659)
at weblogic.jms.client.JMSSession.execute(JMSSession.java:4345)
at weblogic.jms.client.JMSSession.executeMessage(JMSSession.java:3821)
at weblogic.jms.client.JMSSession.access$000(JMSSession.java:115)
at weblogic.jms.client.JMSSession$UseForRunnable.run(JMSSession.java:5170)
at
weblogic.work.SelfTuningWorkManagerImpl$WorkAdapterImpl.run(SelfTuningWorkManagerI
mpl.java:545)
at weblogic.work.ExecuteThread.execute(ExecuteThread.java:256)
at weblogic.work.ExecuteThread.run(ExecuteThread.java:221)
Caused By: java.net.ConnectException: Connection refused
at java.net.PlainSocketImpl.socketConnect(Native Method)
at java.net.PlainSocketImpl.doConnect(PlainSocketImpl.java:351)
at java.net.PlainSocketImpl.connectToAddress(PlainSocketImpl.java:213)
at java.net.PlainSocketImpl.connect(PlainSocketImpl.java:200)
at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:366)
at java.net.Socket.connect(Socket.java:529)
at com.sun.net.ssl.internal.ssl.SSLSocketImpl.connect(SSLSocketImpl.java:564)
at
com.sun.net.ssl.internal.ssl.BaseSSLSocketImpl.connect(BaseSSLSocketImpl.java:141)
at com.sun.mail.util.SocketFetcher.createSocket(SocketFetcher.java:233)
at com.sun.mail.util.SocketFetcher.getSocket(SocketFetcher.java:163)
at com.sun.mail.smtp.SMTPTransport.openServer(SMTPTransport.java:1359)
at com.sun.mail.smtp.SMTPTransport.protocolConnect(SMTPTransport.java:412)
at javax.mail.Service.connect(Service.java:310)
at javax.mail.Service.connect(Service.java:169)
at javax.mail.Service.connect(Service.java:118)
at
oracle.sdpinternal.messaging.driver.email.EmailDriver.send(EmailDriver.java:780)
at
oracle.sdpinternal.messaging.driver.email.EmailManagedConnection.send(EmailManaged
Connection.java:50)
at
oracle.sdpinternal.messaging.driver.DriverConnectionImpl.send(DriverConnectionImpl
.java:41)
at
oracle.sdpinternal.messaging.dispatcher.DriverDispatcherBean.onMessage(DriverDispa
tcherBean.java:296)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:
25)
at java.lang.reflect.Method.invoke(Method.java:597)

Troubleshooting Notification

Developing Notification Events 34-15

at
com.bea.core.repackaged.springframework.aop.support.AopUtils.invokeJoinpointUsingR
eflection(AopUtils.java:310)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.i
nvokeJoinpoint(ReflectiveMethodInvocation.java:182)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:149)
at
com.bea.core.repackaged.springframework.aop.interceptor.ExposeInvocationIntercepto
r.invoke(ExposeInvocationInterceptor.java:89)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:171)
at
com.bea.core.repackaged.springframework.aop.support.DelegatingIntroductionIntercep
tor.doProceed(DelegatingIntroductionInterceptor.java:131)
at
com.bea.core.repackaged.springframework.aop.support.DelegatingIntroductionIntercep
tor.invoke(DelegatingIntroductionInterceptor.java:119)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:171)
at
com.bea.core.repackaged.springframework.aop.framework.JdkDynamicAopProxy.invoke(Jd
kDynamicAopProxy.java:204)
at $Proxy345.onMessage(Unknown Source)
at weblogic.ejb.container.internal.MDListener.execute(MDListener.java:583)
at
weblogic.ejb.container.internal.MDListener.transactionalOnMessage(MDListener.java:
486)
at weblogic.ejb.container.internal.MDListener.onMessage(MDListener.java:388)
at weblogic.jms.client.JMSSession.onMessage(JMSSession.java:4659)
at weblogic.jms.client.JMSSession.execute(JMSSession.java:4345)
at weblogic.jms.client.JMSSession.executeMessage(JMSSession.java:3821)
at weblogic.jms.client.JMSSession.access$000(JMSSession.java:115)
at weblogic.jms.client.JMSSession$UseForRunnable.run(JMSSession.java:5170)
at
weblogic.work.SelfTuningWorkManagerImpl$WorkAdapterImpl.run(SelfTuningWorkManagerI
mpl.java:545)
at weblogic.work.ExecuteThread.execute(ExecuteThread.java:256)
at weblogic.work.ExecuteThread.run(ExecuteThread.java:221)
>

Solution
This is an error in SOA server. To rectify the issue, ensure that outgoing server port
and outgoing server security are correct.

34.3.4 Authentication Failure

Problem
The following errors are generated:

javax.mail.AuthenticationFailedException

OR

Troubleshooting Notification

34-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

<Jun 13, 2012 4:30:41 AM PDT> <Error> <oracle.sdp.messaging.driver.email>
<SDP-25700> <An unexpected exception was caught.
javax.mail.MessagingException: Exception reading response;
nested exception is:
javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException:
PKIX path building failed:
sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid
certification path to requested target
at com.sun.mail.smtp.SMTPTransport.readServerResponse(SMTPTransport.java:1611)
at com.sun.mail.smtp.SMTPTransport.openServer(SMTPTransport.java:1369)
at com.sun.mail.smtp.SMTPTransport.protocolConnect(SMTPTransport.java:412)
at javax.mail.Service.connect(Service.java:310)
at javax.mail.Service.connect(Service.java:169)
at javax.mail.Service.connect(Service.java:118)
at
oracle.sdpinternal.messaging.driver.email.EmailDriver.send(EmailDriver.java:780)
at
oracle.sdpinternal.messaging.driver.email.EmailManagedConnection.send(EmailManaged
Connection.java:50)
at
oracle.sdpinternal.messaging.driver.DriverConnectionImpl.send(DriverConnectionImpl
.java:41)
at
oracle.sdpinternal.messaging.dispatcher.DriverDispatcherBean.onMessage(DriverDispa
tcherBean.java:296)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:
25)
at java.lang.reflect.Method.invoke(Method.java:597)
at
com.bea.core.repackaged.springframework.aop.support.AopUtils.invokeJoinpointUsingR
eflection(AopUtils.java:310)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.i
nvokeJoinpoint(ReflectiveMethodInvocation.java:182)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:149)
at
com.bea.core.repackaged.springframework.aop.interceptor.ExposeInvocationIntercepto
r.invoke(ExposeInvocationInterceptor.java:89)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:171)
at
com.bea.core.repackaged.springframework.aop.support.DelegatingIntroductionIntercep
tor.doProceed(DelegatingIntroductionInterceptor.java:131)
at
com.bea.core.repackaged.springframework.aop.support.DelegatingIntroductionIntercep
tor.invoke(DelegatingIntroductionInterceptor.java:119)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:171)
at
com.bea.core.repackaged.springframework.aop.framework.JdkDynamicAopProxy.invoke(Jd
kDynamicAopProxy.java:204)
at $Proxy349.onMessage(Unknown Source)
at weblogic.ejb.container.internal.MDListener.execute(MDListener.java:583)

Troubleshooting Notification

Developing Notification Events 34-17

at
weblogic.ejb.container.internal.MDListener.transactionalOnMessage(MDListener.java:
486)
at weblogic.ejb.container.internal.MDListener.onMessage(MDListener.java:388)
at weblogic.jms.client.JMSSession.onMessage(JMSSession.java:4659)
at weblogic.jms.client.JMSSession.execute(JMSSession.java:4345)
at weblogic.jms.client.JMSSession.executeMessage(JMSSession.java:3821)
at weblogic.jms.client.JMSSession.access$000(JMSSession.java:115)
at weblogic.jms.client.JMSSession$UseForRunnable.run(JMSSession.java:5170)
at
weblogic.work.SelfTuningWorkManagerImpl$WorkAdapterImpl.run(SelfTuningWorkManagerI
mpl.java:545)
at weblogic.work.ExecuteThread.execute(ExecuteThread.java:256)
at weblogic.work.ExecuteThread.run(ExecuteThread.java:221)
Caused By: javax.net.ssl.SSLHandshakeException:
sun.security.validator.ValidatorException: PKIX path building failed:
sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid
certification path to requested target
at com.sun.net.ssl.internal.ssl.Alerts.getSSLException(Alerts.java:174)
at com.sun.net.ssl.internal.ssl.SSLSocketImpl.fatal(SSLSocketImpl.java:1731)
at com.sun.net.ssl.internal.ssl.Handshaker.fatalSE(Handshaker.java:241)
at com.sun.net.ssl.internal.ssl.Handshaker.fatalSE(Handshaker.java:235)
at
com.sun.net.ssl.internal.ssl.ClientHandshaker.serverCertificate(ClientHandshaker.j
ava:1206)
at
com.sun.net.ssl.internal.ssl.ClientHandshaker.processMessage(ClientHandshaker.java
:136)
at com.sun.net.ssl.internal.ssl.Handshaker.processLoop(Handshaker.java:593)
at com.sun.net.ssl.internal.ssl.Handshaker.process_record(Handshaker.java:529)
at com.sun.net.ssl.internal.ssl.SSLSocketImpl.readRecord(SSLSocketImpl.java:925)
at
com.sun.net.ssl.internal.ssl.SSLSocketImpl.performInitialHandshake(SSLSocketImpl.j
ava:1170)
at
com.sun.net.ssl.internal.ssl.SSLSocketImpl.readDataRecord(SSLSocketImpl.java:785)
at com.sun.net.ssl.internal.ssl.AppInputStream.read(AppInputStream.java:75)
at com.sun.mail.util.TraceInputStream.read(TraceInputStream.java:110)
at java.io.BufferedInputStream.fill(BufferedInputStream.java:218)
at java.io.BufferedInputStream.read(BufferedInputStream.java:237)
at com.sun.mail.util.LineInputStream.readLine(LineInputStream.java:88)
at com.sun.mail.smtp.SMTPTransport.readServerResponse(SMTPTransport.java:1589)
at com.sun.mail.smtp.SMTPTransport.openServer(SMTPTransport.java:1369)
at com.sun.mail.smtp.SMTPTransport.protocolConnect(SMTPTransport.java:412)
at javax.mail.Service.connect(Service.java:310)
at javax.mail.Service.connect(Service.java:169)
at javax.mail.Service.connect(Service.java:118)
at
oracle.sdpinternal.messaging.driver.email.EmailDriver.send(EmailDriver.java:780)
at
oracle.sdpinternal.messaging.driver.email.EmailManagedConnection.send(EmailManaged
Connection.java:50)
at
oracle.sdpinternal.messaging.driver.DriverConnectionImpl.send(DriverConnectionImpl
.java:41)
at
oracle.sdpinternal.messaging.dispatcher.DriverDispatcherBean.onMessage(DriverDispa
tcherBean.java:296)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)

Troubleshooting Notification

34-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:
25)
at java.lang.reflect.Method.invoke(Method.java:597)
at
com.bea.core.repackaged.springframework.aop.support.AopUtils.invokeJoinpointUsingR
eflection(AopUtils.java:310)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.i
nvokeJoinpoint(ReflectiveMethodInvocation.java:182)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:149)
at
com.bea.core.repackaged.springframework.aop.interceptor.ExposeInvocationIntercepto
r.invoke(ExposeInvocationInterceptor.java:89)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:171)
at
com.bea.core.repackaged.springframework.aop.support.DelegatingIntroductionIntercep
tor.doProceed(DelegatingIntroductionInterceptor.java:131)
at
com.bea.core.repackaged.springframework.aop.support.DelegatingIntroductionIntercep
tor.invoke(DelegatingIntroductionInterceptor.java:119)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:171)
at
com.bea.core.repackaged.springframework.aop.framework.JdkDynamicAopProxy.invoke(Jd
kDynamicAopProxy.java:204)
at $Proxy349.onMessage(Unknown Source)
at weblogic.ejb.container.internal.MDListener.execute(MDListener.java:583)
at
weblogic.ejb.container.internal.MDListener.transactionalOnMessage(MDListener.java:
486)
at weblogic.ejb.container.internal.MDListener.onMessage(MDListener.java:388)
at weblogic.jms.client.JMSSession.onMessage(JMSSession.java:4659)
at weblogic.jms.client.JMSSession.execute(JMSSession.java:4345)
at weblogic.jms.client.JMSSession.executeMessage(JMSSession.java:3821)
at weblogic.jms.client.JMSSession.access$000(JMSSession.java:115)
at weblogic.jms.client.JMSSession$UseForRunnable.run(JMSSession.java:5170)
at
weblogic.work.SelfTuningWorkManagerImpl$WorkAdapterImpl.run(SelfTuningWorkManagerI
mpl.java:545)
at weblogic.work.ExecuteThread.execute(ExecuteThread.java:256)
at weblogic.work.ExecuteThread.run(ExecuteThread.java:221)
Caused By: sun.security.validator.ValidatorException: PKIX path building failed:
sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid
certification path to requested target
at sun.security.validator.PKIXValidator.doBuild(PKIXValidator.java:323)
at sun.security.validator.PKIXValidator.engineValidate(PKIXValidator.java:217)
at sun.security.validator.Validator.validate(Validator.java:218)
at
com.sun.net.ssl.internal.ssl.X509TrustManagerImpl.validate(X509TrustManagerImpl.ja
va:126)
at
com.sun.net.ssl.internal.ssl.X509TrustManagerImpl.checkServerTrusted(X509TrustMana
gerImpl.java:209)
at

Troubleshooting Notification

Developing Notification Events 34-19

com.sun.net.ssl.internal.ssl.X509TrustManagerImpl.checkServerTrusted(X509TrustMana
gerImpl.java:249)
at
com.sun.net.ssl.internal.ssl.ClientHandshaker.serverCertificate(ClientHandshaker.j
ava:1185)
at
com.sun.net.ssl.internal.ssl.ClientHandshaker.processMessage(ClientHandshaker.java
:136)
at com.sun.net.ssl.internal.ssl.Handshaker.processLoop(Handshaker.java:593)
at com.sun.net.ssl.internal.ssl.Handshaker.process_record(Handshaker.java:529)
at com.sun.net.ssl.internal.ssl.SSLSocketImpl.readRecord(SSLSocketImpl.java:925)
at
com.sun.net.ssl.internal.ssl.SSLSocketImpl.performInitialHandshake(SSLSocketImpl.j
ava:1170)
at
com.sun.net.ssl.internal.ssl.SSLSocketImpl.readDataRecord(SSLSocketImpl.java:785)
at com.sun.net.ssl.internal.ssl.AppInputStream.read(AppInputStream.java:75)
at com.sun.mail.util.TraceInputStream.read(TraceInputStream.java:110)
at java.io.BufferedInputStream.fill(BufferedInputStream.java:218)
at java.io.BufferedInputStream.read(BufferedInputStream.java:237)
at com.sun.mail.util.LineInputStream.readLine(LineInputStream.java:88)
at com.sun.mail.smtp.SMTPTransport.readServerResponse(SMTPTransport.java:1589)
at com.sun.mail.smtp.SMTPTransport.openServer(SMTPTransport.java:1369)
at com.sun.mail.smtp.SMTPTransport.protocolConnect(SMTPTransport.java:412)
at javax.mail.Service.connect(Service.java:310)
at javax.mail.Service.connect(Service.java:169)
at javax.mail.Service.connect(Service.java:118)
at
oracle.sdpinternal.messaging.driver.email.EmailDriver.send(EmailDriver.java:780)
at
oracle.sdpinternal.messaging.driver.email.EmailManagedConnection.send(EmailManaged
Connection.java:50)
at
oracle.sdpinternal.messaging.driver.DriverConnectionImpl.send(DriverConnectionImpl
.java:41)
at
oracle.sdpinternal.messaging.dispatcher.DriverDispatcherBean.onMessage(DriverDispa
tcherBean.java:296)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:
25)
at java.lang.reflect.Method.invoke(Method.java:597)
at
com.bea.core.repackaged.springframework.aop.support.AopUtils.invokeJoinpointUsingR
eflection(AopUtils.java:310)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.i
nvokeJoinpoint(ReflectiveMethodInvocation.java:182)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:149)
at
com.bea.core.repackaged.springframework.aop.interceptor.ExposeInvocationIntercepto
r.invoke(ExposeInvocationInterceptor.java:89)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:171)
at

Troubleshooting Notification

34-20 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

com.bea.core.repackaged.springframework.aop.support.DelegatingIntroductionIntercep
tor.doProceed(DelegatingIntroductionInterceptor.java:131)
at
com.bea.core.repackaged.springframework.aop.support.DelegatingIntroductionIntercep
tor.invoke(DelegatingIntroductionInterceptor.java:119)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:171)
at
com.bea.core.repackaged.springframework.aop.framework.JdkDynamicAopProxy.invoke(Jd
kDynamicAopProxy.java:204)
at $Proxy349.onMessage(Unknown Source)
at weblogic.ejb.container.internal.MDListener.execute(MDListener.java:583)
at
weblogic.ejb.container.internal.MDListener.transactionalOnMessage(MDListener.java:
486)
at weblogic.ejb.container.internal.MDListener.onMessage(MDListener.java:388)
at weblogic.jms.client.JMSSession.onMessage(JMSSession.java:4659)
at weblogic.jms.client.JMSSession.execute(JMSSession.java:4345)
at weblogic.jms.client.JMSSession.executeMessage(JMSSession.java:3821)
at weblogic.jms.client.JMSSession.access$000(JMSSession.java:115)
at weblogic.jms.client.JMSSession$UseForRunnable.run(JMSSession.java:5170)
at
weblogic.work.SelfTuningWorkManagerImpl$WorkAdapterImpl.run(SelfTuningWorkManagerI
mpl.java:545)
at weblogic.work.ExecuteThread.execute(ExecuteThread.java:256)
at weblogic.work.ExecuteThread.run(ExecuteThread.java:221)
Caused By: sun.security.provider.certpath.SunCertPathBuilderException: unable to
find valid certification path to requested target
at
sun.security.provider.certpath.SunCertPathBuilder.engineBuild(SunCertPathBuilder.j
ava:174)
at java.security.cert.CertPathBuilder.build(CertPathBuilder.java:238)
at sun.security.validator.PKIXValidator.doBuild(PKIXValidator.java:318)
at sun.security.validator.PKIXValidator.engineValidate(PKIXValidator.java:217)
at sun.security.validator.Validator.validate(Validator.java:218)
at
com.sun.net.ssl.internal.ssl.X509TrustManagerImpl.validate(X509TrustManagerImpl.ja
va:126)
at
com.sun.net.ssl.internal.ssl.X509TrustManagerImpl.checkServerTrusted(X509TrustMana
gerImpl.java:209)
at
com.sun.net.ssl.internal.ssl.X509TrustManagerImpl.checkServerTrusted(X509TrustMana
gerImpl.java:249)
at
com.sun.net.ssl.internal.ssl.ClientHandshaker.serverCertificate(ClientHandshaker.j
ava:1185)
at
com.sun.net.ssl.internal.ssl.ClientHandshaker.processMessage(ClientHandshaker.java
:136)
at com.sun.net.ssl.internal.ssl.Handshaker.processLoop(Handshaker.java:593)
at com.sun.net.ssl.internal.ssl.Handshaker.process_record(Handshaker.java:529)
at com.sun.net.ssl.internal.ssl.SSLSocketImpl.readRecord(SSLSocketImpl.java:925)
at
com.sun.net.ssl.internal.ssl.SSLSocketImpl.performInitialHandshake(SSLSocketImpl.j
ava:1170)
at
com.sun.net.ssl.internal.ssl.SSLSocketImpl.readDataRecord(SSLSocketImpl.java:785)
at com.sun.net.ssl.internal.ssl.AppInputStream.read(AppInputStream.java:75)

Troubleshooting Notification

Developing Notification Events 34-21

at com.sun.mail.util.TraceInputStream.read(TraceInputStream.java:110)
at java.io.BufferedInputStream.fill(BufferedInputStream.java:218)
at java.io.BufferedInputStream.read(BufferedInputStream.java:237)
at com.sun.mail.util.LineInputStream.readLine(LineInputStream.java:88)
at com.sun.mail.smtp.SMTPTransport.readServerResponse(SMTPTransport.java:1589)
at com.sun.mail.smtp.SMTPTransport.openServer(SMTPTransport.java:1369)
at com.sun.mail.smtp.SMTPTransport.protocolConnect(SMTPTransport.java:412)
at javax.mail.Service.connect(Service.java:310)
at javax.mail.Service.connect(Service.java:169)
at javax.mail.Service.connect(Service.java:118)
at
oracle.sdpinternal.messaging.driver.email.EmailDriver.send(EmailDriver.java:780)
at
oracle.sdpinternal.messaging.driver.email.EmailManagedConnection.send(EmailManaged
Connection.java:50)
at
oracle.sdpinternal.messaging.driver.DriverConnectionImpl.send(DriverConnectionImpl
.java:41)
at
oracle.sdpinternal.messaging.dispatcher.DriverDispatcherBean.onMessage(DriverDispa
tcherBean.java:296)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:
25)
at java.lang.reflect.Method.invoke(Method.java:597)
at
com.bea.core.repackaged.springframework.aop.support.AopUtils.invokeJoinpointUsingR
eflection(AopUtils.java:310)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.i
nvokeJoinpoint(ReflectiveMethodInvocation.java:182)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:149)
at
com.bea.core.repackaged.springframework.aop.interceptor.ExposeInvocationIntercepto
r.invoke(ExposeInvocationInterceptor.java:89)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:171)
at
com.bea.core.repackaged.springframework.aop.support.DelegatingIntroductionIntercep
tor.doProceed(DelegatingIntroductionInterceptor.java:131)
at
com.bea.core.repackaged.springframework.aop.support.DelegatingIntroductionIntercep
tor.invoke(DelegatingIntroductionInterceptor.java:119)
at
com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.p
roceed(ReflectiveMethodInvocation.java:171)
at
com.bea.core.repackaged.springframework.aop.framework.JdkDynamicAopProxy.invoke(Jd
kDynamicAopProxy.java:204)
at $Proxy349.onMessage(Unknown Source)
at weblogic.ejb.container.internal.MDListener.execute(MDListener.java:583)
at
weblogic.ejb.container.internal.MDListener.transactionalOnMessage(MDListener.java:
486)
at weblogic.ejb.container.internal.MDListener.onMessage(MDListener.java:388)

Troubleshooting Notification

34-22 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

at weblogic.jms.client.JMSSession.onMessage(JMSSession.java:4659)
at weblogic.jms.client.JMSSession.execute(JMSSession.java:4345)
at weblogic.jms.client.JMSSession.executeMessage(JMSSession.java:3821)
at weblogic.jms.client.JMSSession.access$000(JMSSession.java:115)
at weblogic.jms.client.JMSSession$UseForRunnable.run(JMSSession.java:5170)
at
weblogic.work.SelfTuningWorkManagerImpl$WorkAdapterImpl.run(SelfTuningWorkManagerI
mpl.java:545)
at weblogic.work.ExecuteThread.execute(ExecuteThread.java:256)
at weblogic.work.ExecuteThread.run(ExecuteThread.java:221)
>

Solution
Ensure the following:

■ Username and password provided are correct.

■ Entry for DemoTrust.jks is removed from setDomainEnv script.

■ Application server has been configured correctly.

■ Certificate exchange is done.

34.3.5 Issues Related to Failed Email Delivery Not Reported Through EM

Problem
Status Code is always DELIVERY_TO_GATEWAY_SUCCESS in Enterprise Manager
(EM) Usermessagingserver Message Status, although the email is invalid. The status
code does not update to failure even if the user does not receive any email.

Solution
Ensure that the following Incoming settings in the Driver configuration are properly
configured:

■ MailAccessProtocol

■ ReceiveFolder

■ IncomingMailServer

■ IncomingMailServerPort

■ IncomingMailServerSSL

■ IncomingMailIDs

■ IncomingUserIDs

■ IncomingUserPasswords

■ ImapAuthPlainDisable

For additional information on , see "Configuring Oracle User Messaging Service" in
the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle
Business Process Management Suite.

35

Using the Callback Service 35-1

35Using the Callback Service

[36]

The callback service invokes deployment-specific logic at predetermined points during
Oracle Identity Manager event processing. Callback service is described in the
following sections:

■ Introducing the Callback Service

■ Mapping Oracle Identity Manager Attributes

■ Sending Event Callbacks

■ Configuring the Callback Service

■ Troubleshooting the Callback Service

35.1 Introducing the Callback Service
The callback service triggers notifications and callbacks that allow external
applications to perform some action as a part of Oracle Identity Manager event
processing. For example, if a user is created by using Oracle Identity Manager, an
external application that is registered to be apprised of that type of provisioning event
will be notified, and therefore, the application can add the same user information to
their own local data store. This is a notification. Notifications allow applications to sync
changes and data.

When an external application initiates the user provisioning event with Oracle Identity
Manager, other external applications that are registered to be apprised of that type of
provisioning event are contacted by Oracle Identity Manager. If Oracle Identity
Manager itself is invoked by the external application as part of the provisioning
process, then the notification is referred to as a callback. Therefore, a callback is simply
notification of an external application followed by a callback to Oracle Identity
Manager. Callbacks sync up information about an event between all registered parties
and Oracle Identity Manager. A callback can also indicate success or failure status for
the event.

Note: A Web service endpoint for the external application must be
registered in the Callback Service configuration. See "Configuring the
Callback Service" on page 35-8 for more information.

Note: The callback service infrastructure handles both callbacks and
notifications. In this document, callbacks is used to refer to both.

Introducing the Callback Service

35-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

There are a number of callback types handled by the callback service. They include:

■ Post-processing callbacks that are returned to external applications. For example, a
request to provision a user profile in the configured Oracle Identity Manager data
store is sent from an external application to Oracle Identity Manager as a Web
service call. The profile is created and a post-processing callback is returned to the
application to confirm the profile creation. These callbacks can be synchronous or
asynchronous depending on the Oracle Identity Manager configuration.

■ Status change callbacks are sent to interested parties when there is any change in
the request status. For example, if the status of a user provisioning request is
changed to completed or failed, or a request status change is recognized because of
a Segregation of Duties (SoD) check, then a status change callback is sent.

■ Callback responses are generated by third parties and communicate to Oracle
Identity Manager that a response to a post-processing callback will be returned.
This Callback Response Service is manually configured as documented in
"Configuring the Callback Service" on page 35-8

The callback service is built to invoke callbacks for events from any source including a
user interface, Oracle Identity Manager request API or Service Provisioning Markup
Language (SPML) client. It is a listener service that receives responses to asynchronous
client callbacks. When a client Web service is invoked, Oracle Identity Manager
generates a unique identifier and sends it along with the call. When the client responds
back, it must use this identifier to correlate the response with the original Web service
request. The callback service takes appropriate action based on the client response. The
following sections contain additional information regarding the components of the
Callback Service:

■ Using Callbacks

■ Understanding Event Processing

■ Retrying Callbacks

35.1.1 Using Callbacks
This section describes a use case for Oracle Identity Manager callbacks. This use case is
specific to Segregation of Duties (SoD) status change notifications. The use case
concerns James North, an existing user and member of the POApprover role. James is
requesting two additional roles: the POCreator and Buyer. The request goes through
the following process:

1. Oracle Identity Manager receives the request and creates an Assign Roles request
with an ID of 21.

A Request ID is a unique identifier generated by Oracle Identity Manager and used
to correlate the request with future responses and communications.

2. Oracle Identity Manager initiates an SoD validation with Oracle Applications
Access Control Governor (OAACG).

3. The Oracle Identity Manager request status changes and a callback is returned to
the callbacks-registered Web services indicating SoD Check in Progress. The
callback contains the request ID, the requested operation (MODIFY), the target
type (IDENTITY), the targetGUID (JNORTH) and the locale (en_US).

Note: This functionality was previously referred to as a completion
callback.

Introducing the Callback Service

Using the Callback Service 35-3

4. OAACG returns an Approved with Conditions response indicating the Buyer role
is acceptable but the POCreater role is in violation due to James' existing
POApprover role.

5. The Oracle Identity Manager request status changes and a second callback is sent
to the callbacks-registered Web services indicating an SoD Remediation In
Progress. It contains the same identification information as the previous callback.

6. A TAG named CFOOVERRIDE is placed in the rejection notes, indicating the
Chief Financial Office (CFO) can approve this violation in selective cases.

You must configure OBR rules to invoke an exception approval if any tag is placed
with the rejection notes that uses 'OVERRIDE' at the end.

7. AMX Rules decipher the tag and determine that CFO approval is required so that
the task is assigned to the person with title 'CFO'.

8. The CFO either approves the request, or rejects it.

a. If the request is rejected, then the Oracle Identity Manager request status
changes and a third callback is returned as SoD Remediation Rejected. The
Oracle Identity Manager request is then closed with the SoD Remediation
Rejected status.

b. If the request is approved, then the Oracle Identity Manager request status
changes and a third callback is returned as SOD Remediation Approved. The
Oracle Identity Manager request is updated with the SOD Remediation
Approved status. OAACG and requesting application is notified of the
approval, and the roles are provisioned.

9. When the Oracle Identity Manager request status changes to Request Completed,
then a final callback is sent to all the callbacks-registered Web services indicating
that the request is completed with the Request Completed status.

35.1.2 Understanding Event Processing
Figure 35–1 illustrates how an event is processed. Oracle Identity Manager uses
asynchronous invocation, giving the calling applications flexibility to process the event
as needed, such as starting a human approval workflow.

Note: If one portion of the request is rejected, then the entire request
is rejected. Therefore, in this example, although the Buyer role does
not have an SoD violation, it is not provisioned to the user.

Mapping Oracle Identity Manager Attributes

35-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 35–1 Callback Service Process

For this release, the callback service supports a handler and a plugin event. They are:

■ Post-processing Handler: Invoked after the provisioning event is processed but
before the request is marked as complete. The default post-processing handler will
invoke multiple callbacks based on the callback service configuration.

■ Status Change Plugin: Invoked when there is any change in the request status; for
example, if the status of a user provisioning request is changed to completed or
failed, or a request status change is recognized due to a Segregation of Duties
(SoD) check, then a status change callback will be sent. The default Status Change
Plugin may invoke multiple callbacks based on the callback service configuration.

35.1.3 Retrying Callbacks
The callback service retries callbacks if there are network errors when invoking a
service. Oracle Identity Manager retries the callback a fixed three times after a fixed
five second interval. These values are not configurable.

35.2 Mapping Oracle Identity Manager Attributes
The names of attributes used by Oracle Identity Manager are proprietary. For example,
a third-party application may refer to a user's last name as surname while Oracle
Identity Manager uses Last Name. Because of this, attribute mapping is essential.

Mapped attribute names are used in messages sent as well as in callback configuration
(particularly, in the ConstraintAttribute parameter). Table 35–1 defines how Oracle
Identity Manager user type attributes are represented in callbacks using SPML PSOs.

Note: The callback service uses the same attributes defined by the
Service Provisioning Markup Language (SPML) layer of Oracle
Identity Manager. These are referred to (singularly) as a SPML
Provisioning Service Object (PSO). See "SPML Attributes and LDAP
Mappings, and Oracle Identity Manager Attributes" on page 32-16 for
details.

Mapping Oracle Identity Manager Attributes

Using the Callback Service 35-5

Table 35–2 defines how Oracle Identity Manager role type attributes are represented in
callbacks using SPML PSOs.

Table 35–1 Oracle Identity Manager / Callback Service User Attribute Mapping

Callback Service Attribute (PSO)
Oracle Identity Manager User
Attribute

activeEndDate End Date

activeStartDate Start Date

commonName Common Name

countryName Country

departmentNumber Department Number

description Description

displayName Full Name

employeeNumber Employee Number

employeeType Role

facsimileTelephoneNumber Fax

generationQualifier Generation Qualifier

hireDate Hire Date

homePhone Home Phone

homePostalAddress Home Postal Address

initials Initials

localityName Locality Name

mail Email

middleName Middle Name

mobile Mobile

organization LDAP Organization

organizationUnit LDAP Organization Unit

pager Pager

password Password

postalAddress Postal Address

postalCode Postal Code

postOfficeBox PO Box

preferredLangauage Language

state State

street Street

surname Last Name

telephoneNumber Telephone Number

title Title

userId usr_key

userName User Login

Sending Event Callbacks

35-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

If the attribute name is not in either of these tables, it is referenced by its Oracle
Identity Manager attribute.

35.3 Sending Event Callbacks
By default, callbacks are enabled (sent) for all Oracle Identity Manager events listed in
EventHandlers.xml, the handler invoked by the Orchestration Engine during the
post-processing stage of the provisioning process. Each event specifies the applicable
entity type and operation. Specific callbacks may be disabled by changing the
configuration. Table 35–3 summarize the user and role events for which Oracle
Identity Manager makes callbacks and the information returned with the callback.

Table 35–2 Oracle Identity Manager / Callback Service Role Attribute Mapping

Callback Service Attribute (PSO)
Oracle Identity Manager Role
Attribute

commonName Role Name

description Role Description

displayName Display Name

Table 35–3 Callback Initiated Events

Entity /
Operation Event Initiator

Returned in
Post-Processing Handler

Returned in Status
Change Plugin Callback

User Create Third party requests
only. No callbacks
when a user is created
using the console or
through a
reconciliation event.

■ Target Type

■ Target GUID

■ Operation

■ Request ID

■ Provisioning Service
Object (PSO) with
created attributes and
values (except
password and
challenge questions)

Note: PSO is used for
create operations.
Modification objects
are used for modify
operations.

■ Roles assigned to the
user

■ OIM Request Status

■ Target Type

■ Target GUID

■ Operation

■ Request ID

User Modify All sources: third
party requests, the
console and through a
reconciliation event.

■ Target Type

■ Target GUID

■ Operation

■ Request ID

■ Modification object*
with modified
attributes and values
(except password and
challenge questions)

■ OIM Request Status

■ Target Type

■ Target GUID

■ Operation

■ Request ID

Sending Event Callbacks

Using the Callback Service 35-7

User Delete All sources: third
party requests, the
console and through a
reconciliation event.

■ Target Type

■ Target GUID

■ Operation

■ Request ID

■ OIM Request Status

■ Target Type

■ Target GUID

■ Operation

■ Request ID

User Suspend
(disable)

All sources: third
party requests, the
console and through a
reconciliation event.

■ Target Type

■ Target GUID

■ Operation

■ Request ID

■ OIM Request Status

■ Target Type

■ Target GUID

■ Operation

■ Request ID

User Resume
(enable)

All sources: third
party requests, the
console and through a
reconciliation event.

■ Target Type

■ Target GUID

■ Operation

■ Request ID

■ OIM Request Status

■ Target Type

■ Target GUID

■ Operation

■ Request ID

User Assign
Role - add
memberOf

All sources: third
party requests, the
console and through a
reconciliation event.

■ Target Type

■ Target GUID

■ Operation

■ Request ID

■ Modification object*
with GUIDs of
assigned roles

■ OIM Request Status

■ Target Type

■ Target GUID

■ Operation

■ Request ID

User Revoke
Role - delete
memberOf

All sources: third
party requests, the
console and through a
reconciliation event.

■ Target Type

■ Target GUID

■ Operation

■ Request ID

■ Modification object*
with GUIDs of
assigned roles

■ OIM Request Status

■ Target Type

■ Target GUID

■ Operation

■ Request ID

Role Add Third party requests
only. No callbacks
when a role is created
using the console and
through a
reconciliation event.

■ Target Type

■ Target GUID

■ Operation

■ Request ID

■ PSO* with created
attributes and values

■ OIM Request Status

■ Target Type

■ Target GUID

■ Operation

■ Request ID

Role Modify All sources: third
party requests, the
console and through a
reconciliation event.

■ Target Type

■ Target GUID

■ Operation

■ Request ID

■ Modification object*
with modified
attributes and values

■ OIM Request Status

■ Target Type

■ Target GUID

■ Operation

■ Request ID

Table 35–3 (Cont.) Callback Initiated Events

Entity /
Operation Event Initiator

Returned in
Post-Processing Handler

Returned in Status
Change Plugin Callback

Configuring the Callback Service

35-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

35.4 Configuring the Callback Service
Configuration of the callback service specifies how and when one or more callbacks
are invoked. The following sections contain information on the configuration file and
the procedure to import this file to the Metadata Services repository.

■ Understanding CallbackConfiguration.xml

■ Importing CallbackConfiguration.xml

■ Adding the OIM.DefaultTenantGUID System Property

35.4.1 Understanding CallbackConfiguration.xml
The configuration is stored in a single file called CallbackConfiguration.xml. This
configuration file is located in the Oracle Identity Manager meta directory repository.
It is used by the default event handlers and validation plug-in. The following
parameters are configurable:

■ Policy name: Defines the name of the callback policy. The value comes from the
provisioning request. This is unique to Oracle Identity Manager and takes a string
value.

■ Entity type: Refers to the entity type for which the callback policy is applicable. It
is a required, single value. Possible values are User, Role, and RoleUser.

■ Operation: Refers to the database operations for which the callback policy is
applicable. The required value may be either Create or Delete.

■ Description: Takes a localized string that is a description of the policy.

■ ConstraintAttribute and ConstraintAttributeValue: Fields specify a simple
constraint that allows handlers and plug-in code to decide whether to invoke the
particular callback for the given object. The attribute will be searched for in the
entity data available to the handler, either in the form of orchestration data or
RequestData. If the data does not exist, the constraint will not apply.

– ConstraintAttribute: Takes as a value the name of an attribute on which the
constraint is specified. The name must be the attribute name as defined on the
application side as opposed to the name defined on the Oracle Identity
Manager side. See "Mapping Oracle Identity Manager Attributes" on page 35-4
for more information.

– ConstraintAttributeValue: Takes a value equal to the value the
ConstraintAttribute must have. The value here must be the same as the value
of the ConstraintAttribute present in the orchestration or request data. If the
data has multiple values, at least one must match. This parameter is relevant
only when ConstraintAttribute itself has a value.

Role Delete All sources: third
party requests, the
console and through a
reconciliation event.

■ Target Type

■ Target GUID

■ Operation

■ Request ID

■ OIM Request Status

■ Target Type

■ Target GUID

■ Operation

■ Request ID

Table 35–3 (Cont.) Callback Initiated Events

Entity /
Operation Event Initiator

Returned in
Post-Processing Handler

Returned in Status
Change Plugin Callback

Configuring the Callback Service

Using the Callback Service 35-9

■ Tenant GUID: Indicates the tenant GUID to which a callback policy is applicable
in the multi-tenant (MT) mode of Oracle Identity Manager. The callback URLs for
different policies in the MT mode are different, and therefore, the tenant GUID
must be specified to uniquely identify the tenant to which the callback is to be
sent. An example of the usage of this tag is <tenantGUID>202</tenantGUID>.
This tag is not used in the non-MT mode.

■ Provisioning Steps: Specifies the orchestration step for which this callback policy
should be used. Possible values are:

– validation

– preProcessing

– approval

– postProcessing

– completion

■ stepName: Refers to a Web service endpoint for the external application.

■ description: Takes a localized string that is a description of the Web service
endpoint.

■ InvokeOnChange: Takes as a value one or more attribute names and is applicable
only to modify operations. The callback will be invoked only when one of the
attributes listed as a value of this parameter has changed. The value must be the
attribute name as defined on the application side as opposed to the name defined
on the Oracle Identity Manager side. See "Mapping Oracle Identity Manager
Attributes" on page 35-4 for more information.

■ CallbackOnly: Specifies whether Oracle Identity Manager should wait for a
response from the external application. Possible values are true or false. If true,
then Oracle Identity Manager will wait for a response from the application and,
until a response is received, the orchestration process will be waiting. If false, then
Oracle Identity Manager will not wait for a callback response and the
orchestration process will continue.

■ targetIDAttribute: Takes as a value an attribute that should be used as the target
GUID in the message. The value must be the attribute name as defined on the
application side as opposed to the name defined on the Oracle Identity Manager
side. See "Mapping Oracle Identity Manager Attributes" on page 35-4 for more
information. The default value is LDAP GUID.

■ roleIDAttribute: Takes as a value the role attribute that should be used as role
GUID in the message. The value must be the attribute name as defined on the
application side as opposed to the name defined on the Oracle Identity Manager
side. See "Mapping Oracle Identity Manager Attributes" on page 35-4 for more
information. The default value is LDAP GUID.

Example 35–1 is a sample configuration file.

Note: ConstraintAttribute and ConstraintAttributeValue are not
multi-valued attributes in the callback policies. Therefore, you can
provide only one constraintAttribute and constraintAttributeValue
attribute for each callback policy. If you specify multiple
constraintAttribute and constraintAttributeValue in a single callback
policy, then the callback will be triggered even if all the constraints do
not match.

Configuring the Callback Service

35-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Example 35–1 Sample CallbackConfiguration.xml

<?xml version='1.0' encoding='UTF-8'?>
<callbackConfiguration xmlns="http://www.oracle.com/schema/oim/callback_config"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/schema/oim/callback_config">
<policy>
<policyName>User Creation1</policyName>
<entityType>User</entityType>
<operation>Create</operation>
<description>Policy to create a user in the store</description>
<provisioningSteps>
<postProcessing>
<asyncSteps>
<stepName>http://myhost.mycompany.com:7001/testCallbackService/
 PostProcessingPluginRequestPortImplTest</stepName>
<description>Webservice url for this policy</description>
</asyncSteps>
</postProcessing>
</provisioningSteps>
</policy>
<policy>
<policyName>User Enable1</policyName>
<entityType>User</entityType>
<operation>Enable</operation>
<description>Policy to enable a user in the store</description>
<provisioningSteps>
<postProcessing>
<asyncSteps>
<stepName>http://myhost.mycompany.com:7001/testCallbackService/
 PostProcessingPluginRequestPortImplTest</stepName>
<description>Webservice url for this policy</description>
</asyncSteps>
</postProcessing>
</provisioningSteps>
</policy>
<policy>
<policyName>User Delete1</policyName>
<entityType>User</entityType>
<operation>Delete</operation>
<description>Policy to delete a user in the store</description>
<provisioningSteps>
<postProcessing>
<asyncSteps>
<stepName>http://myhost.mycompany.com:7001/testCallbackService/
 PostProcessingPluginRequestPortImplTest</stepName>
<description>Webservice url for this policy</description>
</asyncSteps>
</postProcessing>
</provisioningSteps>
</policy>
<policy>
<policyName>User Disable1</policyName>
<entityType>User</entityType>
<operation>Disable</operation>
<description>Policy to disable a user in the store</description>
<provisioningSteps>
<postProcessing>
<asyncSteps>
<stepName>http://myhost.mycompany.com:7001/testCallbackService/
 PostProcessingPluginRequestPortImplTest</stepName>

Configuring the Callback Service

Using the Callback Service 35-11

<description>Webservice url for this policy</description>
</asyncSteps>
</postProcessing>
</provisioningSteps>
</policy>
<policy>
<policyName>User Modify1</policyName>
<entityType>User</entityType>
<operation>Modify</operation>
<description>First Policy to modify a user in the store</description>
<provisioningSteps>
<postProcessing>
<asyncSteps>
<stepName>http://myhost.mycompany.com:7001/testCallbackService/
 PostProcessingPluginRequestPortImplTest</stepName>
<description>Webservice url for this policy</description>
</asyncSteps>
</postProcessing>
</provisioningSteps>
</policy>
<policy>
<policyName>Role Assign1</policyName>
<entityType>RoleUser</entityType>
<operation>CREATE</operation>
<description>Policy to assign roles to the user</description>
<provisioningSteps>
<postProcessing>
<asyncSteps>
<stepName>http://myhost.mycompany.com:7001/testCallbackService/
 PostProcessingPluginRequestPortImplTest</stepName>
<description>Webservice url for this policy</description>
</asyncSteps>
</postProcessing>
</provisioningSteps>
</policy>
<policy>
<policyName>Role Revoke1</policyName>
<entityType>RoleUser</entityType>
<operation>Delete</operation>
<description>Policy to revoke role from the user</description>
<provisioningSteps>
<postProcessing>
<asyncSteps>
<stepName>http://myhost.mycompany.com:7001/testCallbackService/
 PostProcessingPluginRequestPortImplTest</stepName>
<description>Webservice url for this policy</description>
</asyncSteps>
</postProcessing>
</provisioningSteps>
</policy>
<policy>
<policyName>Role Creation1</policyName>
<entityType>Role</entityType>
<operation>Create</operation>
<description>Policy to create a role in the store</description>
<provisioningSteps>
<postProcessing>
<asyncSteps>
<stepName>http://myhost.mycompany.com:7001/testCallbackService/
 PostProcessingPluginRequestPortImplTest</stepName>

Configuring the Callback Service

35-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

<description>Webservice url for this policy</description>
</asyncSteps>
</postProcessing>
</provisioningSteps>
</policy>
<policy>
<policyName>Role Delete1</policyName>
<entityType>Role</entityType>
<operation>Delete</operation>
<description>Policy to delete a role in the store</description>
<provisioningSteps>
<postProcessing>
<asyncSteps>
<stepName>http://myhost.mycompany.com:7001/testCallbackService/
 PostProcessingPluginRequestPortImplTest</stepName>
<description>Webservice url for this policy</description>
</asyncSteps>
</postProcessing>
</provisioningSteps>
</policy>
<policy>
<policyName>Role Modify1</policyName>
<entityType>Role</entityType>
<operation>Modify</operation>
<description>Policy to modify a role in the store</description>
<provisioningSteps>
<postProcessing>
<asyncSteps>
<stepName>http://myhost.mycompany.com:7001/testCallbackService/
 PostProcessingPluginRequestPortImplTest</stepName>
<description>Webservice url for this policy</description>
</asyncSteps>
</postProcessing>
</provisioningSteps>
</policy>
</callbackConfiguration>

35.4.2 Importing CallbackConfiguration.xml
Following is the procedure to configure the callback service. It entails importing the
CallbackConfiguration.xml file. This file contains list of callback policies for a given
entity type or operation.

1. Create a credential entry in the Credential Store Framework (CSF) with the map
name oim and key appid.keycredentials.

This entry stores the user name and password that Oracle Identity Manager will
use to identify itself for callbacks. The CSF is available as part of domain creation
when Oracle Identity Manager is installed.

2. Import CallbackConfiguration.xml to the Metadata Services (MDS) repository
using the Oracle Enterprise Manager.

It should be loaded under the /metadata/iam-features-callbacks/sample_data/
namespace.

See Also: Oracle Fusion Middleware Security Guide for information
about the Credential Store Framework

Troubleshooting the Callback Service

Using the Callback Service 35-13

The following should be considered when importing CallbackConfiguration.xml:

■ Ensure that the CallbackConfiguration.xml file is imported to the MDS repository
under the exact metadata namespace:
/metadata/iam-features-callbacks/sample_data/

■ Remove old CallbackConfiguration.xml files in other metadata namespaces. For
example,
/metadata/iam-features-callbacks/old_config/CallbackConfiguration_st3b16.xml
and /metadata/iam-features-callbacks/old_config/CallbackConfiguration.xml
are not valid. Remove any invalid entries found in the MDS repository using
weblogicDeleteMetadata.sh.

■ If modifications are made to CallbackConfiguration.xml after it has been imported,
then reimport the modified file as documented and purge the Oracle Identity
Manager cache by using the PurgeCache.sh utility located in the
OIM_HOME/server/bin/ directory.

35.4.3 Adding the OIM.DefaultTenantGUID System Property
In non-MT mode of Oracle Identity Manager, the OIM.DefaultTenantGUID system
property must be set with a value that works as a tenant GUID for applications that
expect a value for the tenant GUID. A sample value for this is 201. Oracle Identity
Manager will not send any callback if this property is not set. If the application
receiving the callbacks does not expect any specific tenant GUID, then provide any
random value.

See Table 5-2: Nondefault System Properties in the Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Manager for information about this system
property.

35.5 Troubleshooting the Callback Service
Table 35–4 lists the troubleshooting steps that you can perform if you encounter
callback service errors:

Troubleshooting the Callback Service

35-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Table 35–4 Trobleshooting Callback Service

Problem Solution

Not able to submit SPML request (Failed
Authentication).

Make sure that the SPML request is submitted with a valid SPML user
(member of SPML_App_Role group) with its correct credentials.

If the request is submitted from client APIs, then note that compatible
client policy must be applied.

The following is the sample eror response displayed when a SPML
request is submitted with incorrect credentials:

<env:Envelope
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"><env:H
eader/><env:Body><env:Fault
xmlns:ns0="http://docs.oasis-open.org/wss/2004/01/oasis-2004
01-wss-wssecurity-secext-1.0.xsd"><faultcode>ns0:FailedAuthe
ntication</faultcode><faultstring>FailedAuthentication : The
security token cannot be
authenticated.</faultstring><faultactor/></env:Fault></env:B
ody></env:Envelope>

Troubleshooting the Callback Service

Using the Callback Service 35-15

For a given request type, for example
Assign Role, Oracle Identity Manager is
making callbacks to more than one
callback Web service although the
policyName matches with one callback
service.

This is because when callbackOnly is set to false for all the eligible
entity type and operation, for example Assign Role request types, the
callbacks are triggered for all matching entity types and operations.

PolicyName matching is ignored when callbackOnly attribute is set to
false.

If callbackOnly Attribute is set to true, then it checks for the policy
name. All the callback Web service URLs present in that policy are
triggered when the entity type and operation condition is also met.

All the callback Web service URLs present in that policy are triggered
when the entity type and operation condition is also met.

The policy reference URI
'oracle/wss_saml_or_username_token_se
rvice_policy' is not valid.

Make sure that WSM Policy Manager is deployed and targeted to the
interacting servers such as Oracle Identity Manager and SPML
request starting server.

In addition, make sure that WSM Policy Manager is in active mode
and is ready for serving the requests.

Not sure what is SPML APPID and Oracle
Identity Manager APPID, and where
these APPIDs are to be created.

SPML APPID is used for submitting SPML requests to Oracle Identity
Manager. Any client that seeks user provisioning service with Oracle
Identity Manager must contain SPML APPID in their repository. For
example, when Fusion Applications is the client to Oracle Identity
Manager, Fusion Applications typically use LDAP directory as their
repository.

Oracle Identity Manager APPID is used for sending callbacks to all
the Web services registered in the CallbackConfiguration.xml file for a
given SPML request type.

Oracle Identity Manager repository or database contains only SPML
APPID. Oracle Identity Manager APPID is not present in Oracle
Identity Manager repository but is present in the Credentials Store
Framework (CSF) under map name oim and with key
appid.credentials.

SPML repository or LDAP contains both SPML APPID and Oracle
Identity Manager APPID.

When Fusion Applications sends a SPML request to Oracle Identity
Manager, it uses SPML APPID to communicate to Oracle Identity
Manager. This SPML APPID is present in the SPML repository or
LDAP. This user is authenticated at Oracle Identity Manager side
against the database. Therefore, Oracle Identity Manager database
contains SPML APPID in it.

When Oracle Identity Manager communicates with Fusion
Applications, it uses Oracle Identity Manager APPID to communicate
to Fusion Applications. This Oracle Identity Manager APPID is
present in the CSF. This user is authenticated at Fusion Applications
side again LDAP by checking the Oracle Identity Manager APPID in
LDAP repository. Therefore, LDAP contains Oracle Identity Manager
APPID in it.

Table 35–4 (Cont.) Trobleshooting Callback Service

Problem Solution

Troubleshooting the Callback Service

35-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Part X
Part X Customization Lifecycle

This part describes how to use the customization utilities provided by Oracle Identity
Manager and migrate the customization from one deployment to another.

It contains the following chapters:

■ Chapter 36, "Understanding Customization Types"

■ Chapter 37, "Deploying and Undeploying Customizations"

■ Chapter 38, "Migrating Configurations and Customizations"

36

Understanding Customization Types 36-1

36Understanding Customization Types

[37]

All customizations in Oracle Identity Manager are managed by using the following
types of utilities:

■ Deployment and undeployment utilities: The following types of utilities can be
used for deployment and undeployment purposes:

– Database-specific utilities: These are utilities in Oracle Identity Manager that
have the capability to take the input customization and insert it in the relevant
database table. For example, the Plug-in Registration Utility takes the plugin
pack and inserts it into the Plugin table in Oracle Identity Manager database.
See "Developing Plug-ins" on page 27-1 for information about the Plug-in
Registration Utility.

– SOA ANT- based utilities: There are some ANT-based utilities from SOA
suite for deploying or undeploying a SOA composite or approval workflow.
Refer to SOA documentation for information about SOA ANT- based utilities.

– OPSS policy migration tool: This tool is used for migrating Oracle Identity
Manager authorization OES policies that you have changed based on some
advanced authorization customizations.

– Oracle Enterprise manager: The Enterprise Manager (EM) is the Fusion
Middleware diagnostic and monitoring application. Using EM, you can
deploy or undeploy customizations in Meta Data Store (MDS) and SOA
composites or approval workflows.

You can use EM to insert data in to the MDS. For example, you can use the EM
to insert the LDAP synchronization user attribute mapping XML into MDS.
See "Deploying and Undeploying Customizations" on page 37-1 for
information about exporting and importing metadata files to and from MDS.

– IDE: Integrated Development Environment (IDE), such as Jdeveloper,
provides ways to deploy SOA composites or approval workflows.

■ Test to Production utilities: This refer to the utilities used to migrate the
customizations from an Oracle Identity Manager deployment to another. For
example, you can customize Oracle Identity Manager in a test environment, and
then migrate the customizations to the production environment. This is done by
using the Deployment Manager utility, as described in "Migrating Configurations
and Customizations" on page 38-1.

Another example of Test to Production utility is the Sandbox, which is used to
migrate UI customizations from one deployment to another. See "Managing
Sandboxes" on page 30-4 for information about the Sandbox.

36-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Table 36–1 lists the Oracle Identity Manager artifacts that can be migrated via the
deployment/undeployment and Test to Production utilities:

Table 36–1 Oracle Identity Manager Artifacts and Type of Utilities

Component
Artifacts for
Deployment/Undeployment

Artifacts for Test to Production
and Deployment/Undeployment

Identity Administration Enterprise roles Entitlements

Role category Catalog items

Organizations Scheduled tasks (as Oracle
Identity Manager plug-ins)

Access policies SOA composites (workflows)

Request profiles Generic Technology Connector
(GTC) providers

Lookup code Event handlers (as Oracle Identity
Manager plug-in)

Attestation processes Resource bundle

OES policies Oracle Identity Manager plug-ins

User defined fields (UDFs) for
user, role, organization,
catalog, and resource

Provisioning customizations (JAR
files)

Scheduled jobs Notification events (as Oracle
Identity Manager plug-in)

IT resource types Callback policy

IT resources UI customizations

Application instances Third-party JAR files

Resource objects Custom JAAS login modules

Process forms

Reconciliation profile

Provisioning workflows and
process task adapters

Data object definitions

Rules

OBR rules

Notification templates

Error codes

System properties

E-mail definitions

UMS-based notification
(Oracle Identity Manager
artifact)

UMS-based notification (EM
artifact)

Password policies

GTC

Understanding Customization Types 36-3

Approval policies

Adapters

Web Services Security
Configurations

Artifacts from connector on
Oracle Identity Manager
server

Artifacts in Remote Manager

Scripts/executables associated
with connectors

Changes to OIMConfig.xml

Custom diagnostic tests added
to diagnostic framework

Reports

HTTPS configurations in
Oracle Identity Manager

Entries in CSF files

SSL configuration between
Oracle Identity Manager and
Remote Manager

Secure cookies

LDAP Synchronization OVD adapters LDAP Container rules

Configurations in Oracle
Identity Manager, OVD, and
LDAP by idmConfigTool.sh

LDAP reconciliation profiles

LDAP attribute mappings

Web Access Management All artifacts for LDAP
synchronization

Configurations done by
idmConfigTool.sh

Oracle Identity Manager
WLS/WAS tier - IA Provider
and other configurations

Identity
Analytics/Compliance

Oracle Identity Manager
stored procedure changes

OIA configurations - Oracle
Identity Manager JAR files,
XML file changes,
provisioning server
connection

Segregation of Duties
(SoD)

Catalog items SIL configuration

SIL registration artifacts

SIL provider - JAR

SIL provider - XML

Table 36–1 (Cont.) Oracle Identity Manager Artifacts and Type of Utilities

Component
Artifacts for
Deployment/Undeployment

Artifacts for Test to Production
and Deployment/Undeployment

36-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

37

Deploying and Undeploying Customizations 37-1

37Deploying and Undeploying Customizations

[38]

This chapter contains the following topics:

■ Migrating User Modifiable Metadata Files

■ Migrating JARs and Resource Bundle

37.1 Migrating User Modifiable Metadata Files
The user modifiable metadata XML files can be exported to MDS, imported from MDS,
and deleted from MDS by using Oracle Enterprise Manager.

This section contains the following topics:

■ Exporting Metadata Files to MDS

■ Importing Metadata Files from MDS

■ Deleting Metadata Files from MDS

■ User Modifiable Metadata Files

■ Creating MDS Backup

37.1.1 Exporting Metadata Files to MDS
To export metadata XML files to MDS:

1. Navigate to MDS runtime mbeans. To do so:

a. Login to Oracle Enterprise Manager as the admin user.

b. On the landing page, click oracle.iam.console.identity.self-service.ear(V2.0).

c. From the Application Deployment menu at the top, select MDS
configuration.

d. Click Runtime MBean Browser, and then click the Operations tab.

2. Export metadata by using the operations. To do so:

a. Select the first exportMetadata operation in the list.

b. For toLocation, provide the path to a temporary directory, in which this file is
to be exported. This file will be exported to the computer on which Oracle
Identity Manager is running. Therefore, make sure that the directory path you
specify exist on that computer.

Migrating User Modifiable Metadata Files

37-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

c. For docs, click the pencil icon, click Add, and in the Element box, provide the
full path of the file to be exported. By clicking Add, you can provide the path
to multiple docs.

d. Invoke the operation.

37.1.2 Importing Metadata Files from MDS
To import metadata XML files from MDS:

1. Login to Oracle Enterprise Manager as the admin user.

2. Go to WebSphere Cell, Application Defined MBeans, oracle.mds.lcm,
Server:OIM_SERVER_NAME, Application: oim, MDSAppRuntime.

3. Click the Operations tab.

4. Export metadata by using the operations. To do so:

a. In the Operations tab, select the first importMetadata operation in the list.

b. For fromLocation, provide the directory path of the Oracle Identity Manager
host from where documents are to be imported.

c. For docs, click the pencil icon, click Add, and in the Element box, provide the
full path of the file to be imported. By clicking Add, you can provide the path
to multiple docs. If no value is provided, then it imports everything under the
fromLocation directory recursively.

37.1.3 Deleting Metadata Files from MDS
To delete metadata XML files from MDS.

1. Navigate to MDS runtime mbeans, as described in step 1 of "Exporting Metadata
Files to MDS" on page 37-1.

2. Export metadata by using the operations. To do so:

a. In the Operations tab, select the first importMetadata operation in the list.

b. For docs, click the pencil icon, click Add, and in the Element box, provide the
full path of the file to be deleted. By clicking Add, you can provide the path to
multiple docs to be deleted.

37.1.4 User Modifiable Metadata Files
The following metadata is used for configuring LDAP Container Rules to determine in
which container user and roles should be created in LDAP.

/db/LDAPContainerRules.xml

The following metadata contains the predefined event handler definitions for Oracle
Identity Manager operations:

Note: Oracle Identity Manager looks into MDS with file paths
starting with /metadata, /db, or /custom. Make sure that starting
path or directory name for any XML document is /custom.

Migrating JARs and Resource Bundle

Deploying and Undeploying Customizations 37-3

/db/ldapMetadata/EventHandlers.xml
/metadata/iam-features-OIMMigration/EventHandlers.xml
/metadata/iam-features-Scheduler/EventHandlers.xml
/metadata/iam-features-accesspolicy/event-definition/EventHandlers.xml
/metadata/iam-features-asyncwsclient/EventHandlers.xml
/metadata/iam-features-autoroles/event-definition/EventHandlers.xml
/metadata/iam-features-callbacks/event_configuration/EventHandlers.xml
/metadata/iam-features-configservice/event-definition/EventHandlers.xml
/metadata/iam-features-identity/event-definition/EventHandlers.xml
/metadata/iam-features-notification/EventHandlers.xml
/metadata/iam-features-passwordmgmt/event-definition/EventHandlers.xml
/metadata/iam-features-reconciliation/event-definition/EventHandlers.xml
/metadata/iam-features-request/event-definition/EventHandlers.xml
/metadata/iam-features-requestactions/event-definition/EventHandlers.xml
/metadata/iam-features-selfservice/event-definition/EventHandlers.xml
/metadata/iam-features-sod/EventHandlers.xml
/metadata/iam-features-system-configuration/EventHandlers.xml
/metadata/iam-features-tasklist/EventHandlers.xml
/metadata/iam-features-templatefeature/EventHandlers.xml
/metadata/iam-features-transUI/EventHandlers.xml
/metadata/iam-features-spmlws/EventHandlers.xml
/db/ssointg/EventHandlers.xml
/metadata/iam-features-catalog/EventHandlers.xml
/metadata/iam-features-provisioning/event-definition/EventHandlers.xml
/metadata/iam-features-requestprofile/event-definition/EventHandlers.xml
/metadata/iam-features-rolesod/EventHandlers.xml

37.1.5 Creating MDS Backup
You might need to create a backup of the MDS before performing customizations. To
create a backup of the MDS by using Oracle Enterprise Manager:

1. Login to Oracle Enterprise Manager as the administrator.

2. On the landing page, click oracle.iam.console.identity.self-service.ear(V2.0).

3. From the Application Deployment menu at the top, select MDS configuration.

4. Under Export, select the Export metadata documents to an archive on the
machine where this web browser is running option, and then click Export.

All the metadata is exported in a ZIP file.

37.2 Migrating JARs and Resource Bundle
When migrating from test to production environment, all the connector artifacts must
be migrated to the respective database tables, which can be done using the following
utilities to migrate JAR files and resource bundle:

■ Upload JAR Utility

■ Download JAR Utility

■ Delete JAR Utility

Note: These are read only documents. Contact Oracle support if
there is a need to modify and delete any of the event handlers that are
defined in these metadata file.

Migrating JARs and Resource Bundle

37-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Upload Resource Bundle Utility

■ Download Resource Bundle Utility

■ Delete Resource Bundle Utility

Note:

■ All the Upload JAR and Resource Bundle utilities must be run
from the OIM_HOME/bin/ directory.

■ Make sure that wlfullclient.jar is generated before running these
utilities.

■ Set APP_SERVER, OIM_ORACLE_HOME, JAVA_HOME,
MW_HOME, WL_HOME, and DOMAIN_HOME before running
the scripts.

■ All the scripts for the JAR files and resource bundles support both
interactive mode and command-line mode usage. But it is
recommended to use interactive mode because this is secure and
the passwords are not echoed on the console.

■ For running the scripts in command-line mode, run it with the
-help argument. For example:

sh UploadJars.sh -help

To upload a JAR file in the silent mode:

UploadJars.sh [-username USERNAME] [-password PASSWORD]
[-serverURL <t3://OIM_HOSTNAME:OIM_PORT>] [-ctxFactory
<weblogic.jndi.WLInitialContextFactory>] [-JavaTasks
LOCATION_OF_JAVA_TASK_JAR]

For information about configuring the utilities to
upload/download JAR files and resource bundle over SSL, see
"Configuring SSL for Oracle Identity Manager Utilities" in the
Oracle Fusion Middleware Administrator's Guide for Oracle Identity
Manager.

To upload multiple JAR files in the silent mode:

UploadJars.sh [-username USERNAME] [-password PASSWORD]
[-serverURL <t3://OIM_HOSTNAME:OIM_PORT>] [-ctxFactory
<weblogic.jndi.WLInitialContextFactory>] [-JavaTasks
LOCATION_OF_JAVA_TASK_JAR] [-ScheduleTask
LOCATION_OF_SCHEDULED_TASK_JAR] [-ThirdParty
LOCATION_OF_THIRD_PARTY_JAR] [-ICFBundle
LOCATION_OF_ICF_BUNDLE_JAR]

■ In this document, interactive mode usage of the JAR and Resource
Bundle utilities are explained because it is a secure way of
running the utilities and is recommended.

To run the JAR or Resource Bundle utilities in interactive mode,
run the scripts without specifying any arguments. For example:

sh UploadJars.sh

Migrating JARs and Resource Bundle

Deploying and Undeploying Customizations 37-5

37.2.1 Upload JAR Utility
The UploadJars.sh and UploadJars.bat scripts are available in the OIM_HOME/bin/
directory. Running these scripts upload the JAR files in to the database.

A sample invocation of this utility is as shown:

[Enter Xellerate admin username :]ADMISTRATOR_LOGIN
[Enter the admin password :]ADMINISTRATOR_PASSWORD
[[Enter serverURL (Ex. t3://oimhostname:oimportno for weblogic or
corbaloc:iiop:localhost:2801 for websphere)]:]t3://xyz.com:14000
[[Enter context (Ex. weblogic.jndi.WLInitialContextFactory for weblogic or
com.ibm.websphere.naming.WsnInitialContextFactory for
websphere)]:]weblogic.jndi.WLInitialContextFactory
Enter the jar type
 1.JavaTasks
 2.ScheduleTask
 3.ThirdParty
 4.ICFBundle
1
Enter the path/location of jar file :
/tmp/example.jar
Do u want to load more jars [y/n] :n

37.2.2 Download JAR Utility
The DownloadJars.sh and DownloadJars.bat scripts are available in the
OIM_HOME/bin/ directory. Running these scripts download the JAR files from the
database.

A sample invocation of this utility is as shown:

[Enter Xellerate admin username :]ADMINISTRATOR_LOGIN
[Enter the admin password :]ADMINISTRATOR_PASSWORD
[[Enter serverURL (Ex. t3://oimhostname:oimport for weblogic or
corbaloc:iiop:localhost:2801 for websphere)]:]t3://localhost:14000
[[Enter context (i.e.: weblogic.jndi.WLInitialContextFactory for weblogic or
com.ibm.websphere.naming.WsnInitialContextFactory for
websphere)]:]weblogic.jndi.WLInitialContextFactory
Enter the jar type
1.JavaTasks
2.ScheduleTask
3.ThirdParty
4.ICFBundle
1
Enter the full path of the download directory :
/home/joe/tmp
Enter the name of jar file to be downloaded from DB :
example.jar
Do u want to download more jars [y/n] :n

Note: 14000 is Oracle Identity Manager port.

Note: 14000 is Oracle Identity Manager port.

Migrating JARs and Resource Bundle

37-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

37.2.3 Delete JAR Utility
The DeleteJars.sh and DeleteJars.bat scripts are available at the OIM_HOME/bin/
directory. Running these scripts delete the JAR files from the database.

A sample invocation of this utility is as shown:

[Enter Xellerate admin username :]ADMINISTRATOR_LOGIN
[Enter the admin password :]ADMINISTRATOR_PASSWORD
[[Enter serverURL (Ex. t3://oimhostname:oimport for weblogic or
corbaloc:iiop:localhost:2801 for websphere)]:]t3://localhost:14000
[[Enter context (i.e.: weblogic.jndi.WLInitialContextFactory for weblogic or
com.ibm.websphere.naming.WsnInitialContextFactory for
websphere)]:]weblogic.jndi.WLInitialContextFactory
Enter the jar type
1.JavaTasks
2.ScheduleTask
3.ThirdParty
4.ICFBundle
1
Enter the name of jar to be deleted from DB :
example.jar
Do u want to delete more jars [y/n] :n

37.2.4 Upload Resource Bundle Utility
The UploadResourceBundles.sh and UploadResourceBundles.bat scripts are available
in the OIM_HOME/server/bin/ directory. Running these scripts upload the connector
or custom resources to the database.

A sample invocation of this utility is as shown:

Enter Xellerate admin username :]ADMINISTRATOR_LOGIN
[Enter the admin password :]ADMINISTRATOR_PASSWORD
[[Enter serverURL (Ex. t3://oimhostname:oimportno for weblogic or
corbaloc:iiop:localhost:2801 for websphere)]:]t3://localhost:14000
[[Enter context (i.e.: weblogic.jndi.WLInitialContextFactory for weblogic or
com.ibm.websphere.naming.WsnInitialContextFactory for
websphere)]:]weblogic.jndi.WLInitialContextFactory
Enter the resource bundle type
 1.Custom Resource
 2.Connector Resource
 2
Enter the path/location of resource bundle file :
/tmp/example.properties
Do u want to load more resource bundles [y/n] :n

37.2.5 Download Resource Bundle Utility
The DownloadResourceBundles.sh and DownloadResourceBundles.bat scripts are
available in the OIM_HOME/bin/ directory. Running these scripts download the
resource bundles from the database.

A sample invocation of this utility is as shown:

[Enter Xellerate admin username :]ADMINISTRATOR_LOGIN
[Enter the admin password :]ADMINISTRATOR_PASSWORD
[[Enter serverURL (Ex. t3://oimhostname:oimportno for weblogic or
corbaloc:iiop:localhost:2801 for websphere)]:]t3://localhost:14000
[[Enter context (i.e.: weblogic.jndi.WLInitialContextFactory for weblogic or
com.ibm.websphere.naming.WsnInitialContextFactory for

Migrating JARs and Resource Bundle

Deploying and Undeploying Customizations 37-7

websphere)]:]weblogic.jndi.WLInitialContextFactory
Enter the resource bundle type
1.Custom Resource
2.Connector Resource
2
Enter the full path of the download directory :
/home/joe/tmp
Enter the name of resource bundle file :
example.properties
Do u want to download more resource bundles [y/n] :n

37.2.6 Delete Resource Bundle Utility
The DeleteResourceBundles.sh and DeleteResourceBundles.bat are available in the
OIM_HOME/bin/ directory. Running these utilities delete the resource bundles from
the database.

A sample invocation of this utility is as shown:

[Enter Xellerate admin username :]ADMINISTRATOR_LOGIN
[Enter the admin password :]ADMINISTRATOR_PASSWORD
[[Enter serverURL (Ex. t3://oimhostname:oimportno for weblogic or
corbaloc:iiop:localhost:2801 for websphere)]:]t3://localhost:14000
[[Enter context (i.e.: weblogic.jndi.WLInitialContextFactory for weblogic or
com.ibm.websphere.naming.WsnInitialContextFactory for
websphere)]:]weblogic.jndi.WLInitialContextFactory
Enter the resource bundle type
1.Custom Resource
2.Connector Resource
2
Enter the name of resource bundle file to be deleted from DB:
example.properties
Do u want to delete more resource bundles [y/n] :n

Migrating JARs and Resource Bundle

37-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

38

Migrating Configurations and Customizations 38-1

38Migrating Configurations and Customizations

[39]

Configurations and customizations in Oracle Identity Manager can be migrated from
one deployment to another deployment. For example, you might want to migrate the
configurations and customizations from a test environment to a production
environment. This is referred to as Test to Production (T2P).

T2P can be performed in the following ways:

■ Incremental T2P: In this type of T2P, you use the Deployment Manager tool for
exporting and importing Oracle Identity Manager configurations and
customizations. The Deployment Manager lets you export the objects that
constitute the Oracle Identity Manager configuration. See "Using the Deployment
Manager" on page 38-1 for more information.

■ Full T2P: Fusion Middleware Framework-based movement scripts are used for
this type of T2P. These scripts are used to move all the properties of an
environment to another environment without the environment-specific attributes,
which can be reconfigured. See "Moving from a Test to a New Production
Environment Using Movement Scripts" on page 38-16 for more information.

■ Policy migration: You can migrate the policies from one Oracle Identity Manager
deployment to another, for example, from a test environment to production
environment, by using a command-line utility provided by Oracle Platform
Security. See "Migrating the Policies" on page 38-19 for more information.

This chapter contains the following topics:

■ Using the Deployment Manager

■ Moving from a Test to a New Production Environment Using Movement Scripts

■ Migrating the Policies

38.1 Using the Deployment Manager
The Deployment Manager is a tool for exporting and importing Oracle Identity
Manager configurations and customizations. The Deployment Manager lets you
export the objects that constitute the Oracle Identity Manager configuration. Usually,
you use the Deployment Manager to migrate a configuration from one deployment to
another, for example, from a test to a production deployment, or to create a backup of
your system.

Using the Deployment Manager

38-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

You can save some or all of the objects in your configuration. This lets you develop
and test your configurations in a test environment, and then import the tested objects
into your production environment. You can export and import an object and all of its
dependent and related objects at the same time. Alternatively, you can export and
import each object individually.

The Deployment Manager allows you to retrieve configuration information and binary
data from the source system, store the information in an XML file, and then import the
information from the XML file to the target system. The binary data includes plug-ins,
JARs, and custom resource bundles. The Deployment Manager allows you to import
data from the Oracle Identity Manager database, Meta Data Store (MDS) repository, or
API repository. As a result, you can import all types of objects from these repositories,
such as system properties, jobs, and scheduled tasks, which are not in the same
repository. For example, you can import the scheduled tasks that are in the MDS
repository instead of the database.

An object exported from one type of repository is imported to the same type of
repository. For example, if a scheduled task is exported from the MDS repository, then
the scheduled task is imported to the same repository, which is MDS, in the target
system.

This section includes the following topics:

■ Features of the Deployment Manager

■ Exporting Deployments

■ Importing Deployments

■ Best Practices Related to Using the Deployment Manager

38.1.1 Features of the Deployment Manager
The Deployment Manager helps you to migrate Oracle Identity Manager deployments
from one server environment to another, such as from a testing environment to a
staging environment, or from a staging environment to a production environment.

The Deployment Manager enables you to:

■ Update individual components of a deployment in different test environments

■ Identify objects associated with components to be exported, so that those resources
can be included

■ Provide information about exported files

■ Add comments

The Deployment Manager handles the following types of information:

Important: To use Deployment Manager, JRE 1.4.2 or a higher
version must be installed on any computer that is running the Oracle
Identity System Administration.

Note: In addition to the Deployment Manager, you can use the
sandbox feature to migrate configurations and customizations from
one deployment to another. See "Managing Sandboxes" on page 30-4
for information about working with sandbox.

Using the Deployment Manager

Migrating Configurations and Customizations 38-3

■ Application instances

■ Catalog definitions

■ Plug-ins

■ JAR files

■ Custom resource bundles

■ Roles

■ Organizations

■ Access policies

■ Attestation processes

■ User metadata

■ Role metadata

■ Organization metadata

■ Scheduled tasks

■ Scheduled jobs

■ IT resources

■ Resource objects

■ Lookup definitions

■ Process forms

■ Provisioning workflows and process task adapters

■ Data object definitions

■ Rules

■ Notification templates

■ Generic Technology Connectors (GTC)

■ GTC providers

■ Error codes

■ System properties

■ E-mail definitions

■ Password policies

■ IT resource definition

■ Request datasets

■ Approval policies

■ Event handlers

■ Prepopulation adapters

■ Process definitions

The following are limitations of the Deployment Manager:

■ Merge Utility: The Deployment Manager is not a merge utility.

Using the Deployment Manager

38-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

It cannot handle modifications done in both production and test environments. It
replaces the object in the target system with that in the XML file.

■ Version Control Utility: The Deployment Manager does not track versions of
imported files, and does not provide rollback functionality.

You can only use it as a means to move data between environments.

38.1.2 Exporting Deployments
You can export objects from your Oracle Identity Manager system and save them in an
XML file. The Deployment Manager has an Export Wizard that lets you create your
export file. Add objects by type, one type at a time, for example, roles, then forms, then
processes, and so on.

If you select an object that has child objects or dependencies, you have the option to
add them or not. After adding objects of one type, you can go back and add other
objects to your XML files. When you have all the objects you want, the Deployment
Manager saves them all at once in a single XML file.

To export a deployment:

1. Login to Oracle Identity System Administration.

2. In the left pane, under System Management, click Export. The Deployment
Manager opens and the Search Objects page of the Export Wizard is displayed.

Note: Application instances are exported and imported without the
datasets. Datasets are migrated as a part of UI customization.

Note: When user-defined fields are associated with a specific
resource object, during the export process one of the following events
can occur:

■ If the user-defined fields contain values (entered information),
then the Deployment Manager will consider them to be
dependencies.

■ If the user-defined fields contain no values (the fields are blank),
then the Deployment Manager will not consider them to be
dependencies.

Using the Deployment Manager

Migrating Configurations and Customizations 38-5

3. On the Search Objects page, select an object type from the menu, and enter search
criteria. If you leave the criteria field blank, an asterisk (*) is displayed
automatically to find all the objects of the selected type.

All the objects supported by Deployment Manager for migration are available for
exporting. See "Features of the Deployment Manager" on page 38-2 for the list of
objects supported by Deployment Manager for migration.

4. Click Search to find objects of the selected type.

To select an object, select the option of the object.

5. Click Select Children.

The Select Children page is displayed with the selected objects and all of their
child objects.

6. Select the child objects that you want to export.

To select or remove an item, select the appropriate option.

Click Back to go to the Search Objects page.

7. Click Select Dependencies.

The Select Dependencies page is displayed with any objects required by the
selected objects.

8. Select the dependent objects that you want to export.

To select or remove an item, select the option of the item.

Click Back to go to the Select Children page.

9. Click Confirmation.

The Confirmation page is displayed.

10. Ensure that all the required items are selected, then click Add for Export.

After you click Add for Export, you can still add more items to this export file.

Select Add More and click OK to go to Search Objects Page to add more objects for
export.

11. Use the wizard to add more items, or finish and exit the wizard. Select the
appropriate option and click OK.

Note: To open the Deployment Manager by using Mozilla Firefox
Web browser, an additional authentication dialog box might be
displayed. Providing authentication in this dialog box allows access to
the Deployment Manager. To avoid this additional authentication:

1. In Mozilla Firefox Web browser, from the Tools menu, select Options. The
Options dialog box is displayed.

2. Click Privacy.

3. Select the Accept third-party cookies option.

4. Click OK.

The additional authentication is not required when the Deployment
Manager is opened by using Microsoft Internet Explorer, Google
Chrome, and Apple Safari Web browsers.

Using the Deployment Manager

38-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

If you select Add more, repeat Steps 2 through 7. Otherwise, the Export page is
displayed.

The Export page displays your current selections for export. Your selections have
icons next to them that indicate what types of objects are selected. The Summary
information pane shows the objects you are exporting. The Unselected
Dependencies pane displays the list of dependent or child objects that you did not
select for export.

12. Make any adjustments to your export file as follows:

■ Click Reset to clear the form.

■ Click Legend to see icon definitions.

■ Click Add Objects to restart the wizard and add more items to your export
file.

To remove an object from the Current Selections list:

■ Right-click the object to remove and select Remove from the shortcut menu. If
the object has child objects, then select Remove including children from the
shortcut menu to remove the child objects all at the same time.

■ Click Remove to confirm. If the object is a child or dependency of a selected
item, then it is added to the Unselected Children or Unselected Dependencies
list.

To add an object back to the Current Selections list from the Unselected Children
or Unselected Dependencies list,

a. Right-click the object, and select Add.

b. Click Confirmation.

The Confirmation page is displayed.

c. Click Add for Export.

13. Click Export.

The Add Description dialog box is displayed.

14. Enter a description for the file.

This description is displayed when the file is imported.

15. Click Export.

The Save As dialog box is displayed.

16. Enter a file name.

You can browse to find a location.

17. Click Save.

The Export Success dialog box is displayed.

18. Click Close.

38.1.3 Importing Deployments
Objects that were exported into an XML file by using the Deployment Manager can be
imported into Oracle Identity Manager by using the Deployment Manager. You can
import all or part of the XML file, and you can import multiple XML files at once. The
Deployment Manager ensures that the dependencies for any objects you are importing

Using the Deployment Manager

Migrating Configurations and Customizations 38-7

are available, either in the import or in your system. During an import, you can
substitute an object you are importing for one in your system. For example, you can
substitute a group specified in the XML file for a group in your system.

To import an XML file:

1. Login to Oracle Identity System Administration.

2. In the left pane, under System Management, click Import. The Deployment
Manager opens and the Search Objects page of the Export Wizard is displayed.

3. Select a file.

The Import dialog box is displayed.

4. Click Open.

The File Preview page is displayed.

5. Click Add File.

The Substitutions page is displayed

Note:

■ If a user belongs to a group to which the Import menu item has
been assigned, then that user must also have the necessary
permissions for the objects that the user wants to import. Without
these object-specific permissions, the Import operation fails. The
user must be a Deployment Manager Administrator to be able to
see Deployment Manager menu items on the UI based on menu
permissioning model.

■ When more than 1000 resources, process definitions, parent forms,
child forms, access policies, roles, and rules are imported by using
the Deployment Manager, the size of the EIF table increases. The
data can be truncated from this table by running a simple SQL
query such as Delete from EIF.

Note: Before importing data that contains references to menu items,
you must first create the menu items in the target system.

Note: To open the Deployment Manager by using Mozilla Firefox
Web browser, an additional authentication dialog box might be
displayed. Providing authentication in this dialog box allows access to
the Deployment Manager. To avoid this additional authentication:

1. In Mozilla Firefox, from the Tools menu, select Options. The Options
dialog box is displayed.

2. Click Privacy.

3. Select the Accept third-party cookies option.

4. Click OK.

The additional authentication is not required when the Deployment
Manager is opened by using Microsoft Internet Explorer, Google
Chrome, and Apple Safari Web browsers.

Using the Deployment Manager

38-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

6. To substitute a name, click the New Name field adjacent to the item you want to
replace, and enter the name.

You can substitute only items that exist in the target system.

7. Click Next. If you are exporting an IT resource instance, then the Provide IT
Resource Instance Data page is displayed. Otherwise, you are redirected to the
Confirmation page.

8. Modify the values in the current resource instance and click Next, or click Skip to
skip the current resource instance, or click New Instance to create a new resource
instance.

The Confirmation page is displayed.

9. Confirm that the information displayed on the Confirmation page is correct.

To go back and make changes, click Back, or click View Selections.

The Deployment Manager Import page displays your current selections.

The Import page also displays icons next to your current selections. The icons
indicate what types of objects are selected. The icons on the right indicate the
status of your selections. The file names of any selected files, summary
information about the objects you are importing, and substitution information are
displayed on the left side of the page. On the right, the Objects Removed from
Import list displays any objects in the XML file that will not be imported.

10. Make any of the following adjustments:

■ Click Reset to clear the form.

■ Click Legend to see icon definitions.

■ To remove an object from the Current Selections list, right-click the object,
select Remove from the shortcut menu, and then click Remove to confirm that
you want to remove the object.

If the object has child objects, then select Remove including children from the
shortcut menu to remove all the child objects at the same time. The item is
added to the Objects Removed From Import list.

■ To add an item back to the Current Selections list, right-click the list, and click
Add.

If the object has child objects, then select Add including children from the
shortcut menu to add all the child objects at the same time.

■ To make substitutions, click Add Substitutions.

■ To add objects from another XML file, click Add File and repeat Steps 2
through 7.

■ Click Show Information to see information about your imported information.

The Information page is displayed.

To see more information, select the Show Info Level Messages option, and
then click Show Messages. Click Close to close the Information page.

11. To import the current selections, click Import.

A confirmation dialog box is displayed.

12. Click Import.

The Import Success dialog box is displayed.

Using the Deployment Manager

Migrating Configurations and Customizations 38-9

13. Click OK.

The objects are imported into Oracle Identity Manager.

38.1.4 Best Practices Related to Using the Deployment Manager
The following are some of the suggested practices and pitfalls to avoid while by using
Deployment Manager:

■ Export System Objects Only When Necessary

■ Export Related Groups of Objects

■ Group Definition Data and Operational Data Separately

■ Use Logical Naming Conventions for Versions of a Form

■ Export Root to Preserve a Complete Organizational Hierarchy

■ Provide Clear Export Descriptions

■ Check All Warnings Before Importing

■ Check Dependencies Before Exporting Data

■ Match Scheduled Task Parameters

■ Deployment Manager Actions on Reimported Scheduled Tasks

■ Compile Adapters and Enable Scheduled Tasks

■ Export Entity Adapters Separately

■ Check Permissions for Roles

■ Back Up the Database

■ Import Data When the System Is Quiet

■ Migrating Custom Data Objects

■ Remove Data Object Fields Before Importing Event Handlers as Dependencies

38.1.4.1 Export System Objects Only When Necessary
You should export or import system objects, for example, Request, Xellerate User, and
System Administrator, only when it is absolutely necessary. Exporting system objects
from the testing and staging environments into production can cause problems. If
possible, exclude system objects when exporting or importing data.

You may want to export or import system objects when, for example, you define
trusted source reconciliation on Xellerate User resource objects.

38.1.4.2 Export Related Groups of Objects
Oracle recommends that you use the Deployment Manager to export sets of related
objects. A unit of export should be a collection of logical items that you want to group
together.

Caution: The Deployment Manager keeps track of imported
components and structures, but not of completed imports. After an
import is completed, you cannot roll it back to a previous version. A
new import is required.

Using the Deployment Manager

38-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Avoid exporting everything in the database in one operation, or exporting items one at
a time. For example, suppose that you manage an integration between Oracle Identity
Manager and a target system that includes processes, resource objects, adapters, IT
resource type definitions, IT resource definitions, scheduled tasks, and so on. For this
environment, you should create groups of related objects before exporting.

For example, if you use the same e-mail definitions in multiple integrations, you
should export the e-mail definitions as one unit, and the integrations as a different
unit. This enables you to import changes to e-mail definitions independently of target
system integration changes. Or, if multiple resources use the same IT resource type
definition, you can export and import the type definition separately from other data.

You can import one or more sets of exported data at a time. For example, you can
import a resource object definition, an e-mail definition, and an IT resource type
definition in a single operation.

38.1.4.3 Group Definition Data and Operational Data Separately
You must group and export definition data and operational data separately.

You configure definition data in the testing and staging environment. Definition data
includes resource objects, processes, and rules.

You typically configure operational data in the production environment. Operational
data includes groups and group permissions. The testing and staging servers usually
do not include this data.

By grouping data according to where it is changed, you know what data goes to
testing and staging, and what goes to production. For example, if approval processes
are changed in production, you should group approval processes and export them
with other operational data.

38.1.4.4 Use Logical Naming Conventions for Versions of a Form
You often revise forms multiple times before exporting them. Avoid generic names, for
example, "v23," to differentiate among versions of a form. Create meaningful names,
for example, "Before Production" or "After Production Verification." Do not use special
characters, including double quotation marks, in version names.

38.1.4.5 Export Root to Preserve a Complete Organizational Hierarchy
When you export a leaf or an organization in an organizational hierarchy, only one
dependency level is exported. To export a complete organizational hierarchy, you must
export the root of the hierarchy.

38.1.4.6 Provide Clear Export Descriptions
The Deployment Manager records some information automatically, for example, the
date of the export, who performed the export, and the source database. You must also
provide a meaningful description of the content of the export, for example, "resource
definition after xxx attributes added in reconciliation." This informs the importer of the
file of the contents of the data being imported.

38.1.4.7 Check All Warnings Before Importing
When importing information to the production environment, check all the warnings
before completing the import operation. Treat each warning seriously.

Using the Deployment Manager

Migrating Configurations and Customizations 38-11

38.1.4.8 Check Dependencies Before Exporting Data
The wizard in the top right pane shows resources that must be available in the target
system.

Consider the following types of dependencies:

■ If the resources are already available in the target system, they do not need to be
exported.

■ If the resources are new (not in the target system), they must be exported.

■ If the target system does not include the resources, such as lookups, IT resource
definitions, or others that are reused, then record the data and export it in a
separate file so it can be imported if necessary.

38.1.4.9 Match Scheduled Task Parameters
Scheduled tasks depend on certain parameters to run properly. You can import
scheduled task parameters to the production server. Table 38–1 shows the rules for
determining how to import scheduled tasks. Note that parameters may be available
for tasks that no longer reside on the target system.

38.1.4.10 Deployment Manager Actions on Reimported Scheduled Tasks
A scheduled task is one of the objects that you can import by using the Deployment
Manager. Typically, you import a scheduled task into your Oracle Identity Manager
environment and later change the values of the scheduled attributes to meet your
production requirements. However, if you import the same scheduled task a second
time into the same Oracle Identity Manager server, the Deployment Manager does not
overwrite the attribute values in the database. Instead, the Deployment Manager
compares the attribute value of the reimported XML file to any corresponding
attribute values in the database.

The following table summarizes the actions performed by the Deployment Manager
during a scheduled task reimport:

Note: When you export a resource, groups with Data Object
permissions on that form are not exported with the resource.

Table 38–1 Parameter Import Rules

Parameter
Exists in
Target System

Parameter Exists
in the XML File Action Taken

Yes No Remove the parameter from the target system.

No Yes Add the parameter and current value from the XML
file.

Yes Yes Use the more recent value of the parameter.

Does the Scheduled Task
have attribute values in the
XML file being imported?

Are there any
corresponding attribute
values in the database?

Deployment Manager
Action

Yes No Store attribute values in the
database

No Yes Delete existing attribute
values in the database

Using the Deployment Manager

38-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

38.1.4.11 Compile Adapters and Enable Scheduled Tasks
After an import operation, the adapters are set to recompile and the scheduled tasks
are disabled. After importing the classes and adjusting the task attributes, manually
recompile the adapters and enable the scheduled tasks.

38.1.4.12 Export Entity Adapters Separately
Entity adapters are modified to bring just the entity adapter, not its usage. If you want
to export the usage of an entity adapter, you must separately export each use with a
data object by exporting the data object. If you export a data object, all the adapters
and event handlers attached to the object along with the permissions on the object are
exported. You must pay special attention when exporting data objects. For example, to
export a form, you should also add the data object corresponding to the form. This
ensures that the associated entity adapters can use the form.

38.1.4.13 Check Permissions for Roles
When you export roles, the role permissions on different data objects are also
exported. However, when you import data, any permissions for missing data objects
are ignored. If the role is exported as a way of exporting role permission setup, then
check the warnings carefully to ensure that permission requirements are met. For
example, if a role has permissions for objects A, B, and C, but the target system only
has objects A and B, the permissions for object C are ignored. If object C is added later,
the role permissions for C must be added manually, or the role must be imported
again.

When you export role that have permissions for viewing certain reports, ensure that
the reports exist in the target environment. If the reports are missing, then consider
removing the permissions before exporting the role.

38.1.4.14 Back Up the Database
Before you import data into a production environment, back up the database. This
enables you to restore the data if anything goes wrong with the import. Backing up the
database is always a good precaution before making significant changes.

38.1.4.15 Import Data When the System Is Quiet
You cannot complete an import operation in a single transaction because it includes
schema changes. These changes affect currently running transactions on the system. To
limit the effect of an import operation, temporarily disable the Web application for

Yes Yes (Newer attribute values
indicated by time stamp)

No change in the database

Yes (New attribute values
indicated by time stamp)

Yes Update the database with
the new attribute values

Note: When you import forms and user-defined fields, you add
entries to the database. These database entries cannot be rolled back or
deleted. Before each import operation, ensure that the correct form
version is active.

Does the Scheduled Task
have attribute values in the
XML file being imported?

Are there any
corresponding attribute
values in the database?

Deployment Manager
Action

Using the Deployment Manager

Migrating Configurations and Customizations 38-13

general use and perform the operation when the system has the least activity, for
example, overnight.

38.1.4.16 Migrating Custom Data Objects
The SDK table contains metadata definitions for user-defined data objects. When you
import data from an XML file into the SDK table, the values in the SDK_SCHEMA
column might be modified with the schema name of the source system where the XML
file was created. For this reason, after you import data from an XML file into the SDK
table, you must check the schema name in the SDK_SCHEMA column, and if
necessary, manually change it to the schema name on the target system where the
Oracle Identity Manager database is running. To update the schema name in the
SDK_SCHEMA column, run a SQL query similar to the following with SQL*Plus on
Oracle Database installations or with SQL Query Analyzer on Microsoft SQL Server
installations:

UPDATE SDK SET SDK_SCHEMA='target system schema name'

If you do not update the schema name in the SDK_SCHEMA column, an error similar
to the following might be generated when you import other XML files that modify
user-defined field (UDF) definitions:

CREATE SEQUENCE UGP_SEQ
java.sql.SQLException: ORA-00955: name is already used by an existing object

38.1.4.17 Remove Data Object Fields Before Importing Event Handlers as
Dependencies
The Deployment Manager does not import event handlers that include data object
fields if the event handlers are imported as dependencies. For this reason, you must
remove the data object fields from any event handlers that you want to import as
dependencies with the Deployment Manager.

38.1.5 Troubleshooting the Deployment Manager
This section contains the following topics:

■ Troubleshooting Deployment Manager Issues

■ Enabling Logging for the Deployment Manager

38.1.5.1 Troubleshooting Deployment Manager Issues
While importing data by using the Deployment Manager, the following information is
displayed on the UI for an import failure:

■ The entity for which the import failed

■ The type of the entity for which the import failed

■ The specific error message from the exception object

This information is also printed in logs along with the exception trace.

Figure 38–1 shows a sample error message that is displayed when Deployment
Manager import fails.

Using the Deployment Manager

38-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 38–1 Deployment Manager Import Failure

This helps the user in identifying which entity is causing the failure and why, and the
user can try removing that particular entity and importing again if it is not necessary
to be imported on the target system. This also helps the support team and developers
in identifying the issue if it happens.

Table 38–2 lists the troubleshooting steps that you can perform if you encounter a
failure:

Using the Deployment Manager

Migrating Configurations and Customizations 38-15

38.1.5.2 Enabling Logging for the Deployment Manager
To enable logging for the Deployment Manager:

1. Add a new logger for the Deployment Manager by editing the logging.xml file,
which is located in the following directory path:

DOMAIN_NAME/config/fmwconfig/servers/SERVER_NAME/

Table 38–2 Troubleshooting Deployment Manager

Problem Solution

In Oracle Identity Manager 11g Release 2 (11.1.2.1.0),
scheduled job has a dependency on scheduled task.
Therefore, scheduled task must be imported prior to
scheduled job.

As a result, if a XML file has scheduled job entries prior
to scheduled task entries, then importing the XML file
using Deployment Manager fails with the following
error message:

[exec] Caused By:
oracle.iam.scheduler.exception.SchedulerExceptio
n: Invalid
ScheduleTask definition
[exec]
com.thortech.xl.ddm.exception.DDMException

Open the XML file and move all scheduled task entries
above the scheduled job entries.

Deployment Manager export fails for any object. User is
prompted with Export Failed dialog box, and no
exception is found in the server log.

When you look at the JRE console, you can see the
following:

java.security.AccessControlException: access denied
(java.io.FilePermission
PATH_AND_NAME_OF_THE_FILE)

Perform the following steps:

1. Modify your java.policy in the
JRE_HOME/lib/security/ directory.

2. Replace the existing policy file content with the
following:

grant{
permission java.security.AllPermission;
};

3. Restart the browser to load the policy again. You
can now export the data.

The following error occurs while importing an XML file:

Caused by:
oracle.iam.reconciliation.exception.ConfigExcept
ion: Profile :Xellerate User InvalidAttributes :

Perform any one of the following:

■ Remove the attribute on which the error is
generated from the XML, and then try importing.

■ Create the missing UDF or other attributes by using
configuration service, and then retry the import.

■ Export the UDF shown as missing dependency.
Import this UDF first before importing the current
XML.

Importing approval policy might result in the following
error:

weblogic.kernel.Default (self-tuning)'] [userId:
xelsysadm] [ecid:
f9e72ab2a292a346:-188377b2:12f96ae9676:-8000-000
0000000000047,0] [APP:
oim#11.1.1.3.0] Exception thrown {0}[[
oracle.iam.platform.entitymgr.ProviderException:
USER_NOT_FOUND

An approval policy rule is invalid if it points to an
entity (user or organization) that does not exist in
Oracle Identity Manager. These invalid approval rules
must be corrected to point to a valid entity (user or
organization) before the import.

Moving from a Test to a New Production Environment Using Movement Scripts

38-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

For instance, to enable Notification-level logging for Deployment Manager, add
the following logger inside the <loggers> section:

<logger name='XELLERATE.DDM' level='NOTIFICATION:1' />

2. Change the log level defined in the relevent <log_handler>.

38.2 Moving from a Test to a New Production Environment Using
Movement Scripts

Oracle Identity Manager is a part of the Fusion Middleware environment. To move
Oracle Identity Manager from test to production, you use the movement scripts. These
scripts copy the Oracle Identity Manager binaries, artifacts, and configurations, and
configures production Oracle Identity Manager with new end-points. The movement
scripts interact with Oracle Identity Manager artifacts at the test and production
environments and updates the production environment to make Oracle Identity
Manager functional on the production environment. For detailed information about
using the movement scripts, see "Moving from a Test to a Production Environment" in
the Oracle Fusion Middleware Administrator's Guide. For the complete procedure for
moving Oracle Identity Manager components, see "Moving Identity Management
Components to a New Target Environment" in the Oracle Fusion Middleware
Administrator's Guide.

As a prerequisite to using the movement scripts, download and apply SOA patch
14501468 from My Oracle Support web site at the following URL:

https://support.oracle.com

See "Limitations in Moving from Test to Production" in the Oracle Fusion Middleware
Release Notes for details.

To migrate a source Oracle Identity Manager setup to a target setup:

1. Migrate Oracle Identity Manager database schema data from source to target DB
host by using the expdp/impdp (Data Pump Utility), as described in "Task 4
Perform Prerequisite Task for Oracle Identity Manager" under section "Moving
Identity Management to a New Target Environment" in the Oracle Fusion
Middleware Administrator's Guide.

2. Create the target setup by using the FMW T2P utilities. To do so:

a. Run the following commands from the ORACLE_COMMON_HOME/bin/
directory.

See Also: "Configuring Logging" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Manager for information about
logging level and log handlers in Oracle Identity Manager

Note: You must migrate Oracle Platform Security Services (OPSS)
schema, which is a prerequisite for running the FMW T2P utility. See
"Moving Oracle Platform Security Services Data" in the Oracle Fusion
Middleware Administrator's Guide for information about migrating
OPSS data.

Moving from a Test to a New Production Environment Using Movement Scripts

Migrating Configurations and Customizations 38-17

./copyBinary.sh -javaHome PATH_TO_JDK -al ARCHIVE_LOCATION -smw
SOURCE_MW_HOME -silent false -idw true -ipl
PATH_TO_ORACLE_INVENTORY_POINTER -silent true -ldl PATH_TO_LOG_DIRECTORY

./copyConfig.sh -javaHome PATH_TO_JDK -archiveLoc ARCHIVE_LOCATION
-sourceDomainLoc SOURCE_DOMAIN_LOCATION -sourceMWHomeLoc
MIDDLEWARE_HOME_LOCATION -domainHostName DOMAIN_HOST_NAME -domainPortNum
DOMAIN_PORT_NUMBER -domainAdminUserName DOMAIN_ADMIN_USERNAME
-domainAdminPassword DOMAIN_ADMIN_PASSWORD_FILE -silent true -ldl
PATH_TO_LOG_DIRECTORY

./extractMovePlan.sh -javaHome PATH_TO_JDK -archiveLoc ARCHIVE_LOCATION
-planDirLoc MOVE_PLAN_DIRECTORY

./pasteBinary.sh -javaHome PATH_TO_JDK -al ARCHIVE_LOCATION -tmw
TARGET_MW_HOME -silent false -idw true -esp true -ipl
PATH_TO_ORACLE_INVENTORY_POINTER -ldl PATH_TO_LOG_DIRECTORY -silent true

In between running the extractMovePlan and pasteConfig scripts, update the
moveplan with the new values for configuring the target. See "Modifying
Move Plans" in the Oracle Fusion Middleware Administrator's Guide for
information about common moveplan modifications. See the moveplan
property descriptions in "Table 20-22 Move Plan Properties for Oracle Identity
Manager" in the Oracle Fusion Middleware Administrator's Guide.

b. Go to the TARGET_MIDDLEWARE_HOME/bin/ directory, and run the
following commands:

./pasteConfig.sh -javaHome PATH_TO_JDK -archiveLoc ARCHIVE_LOCATION
-targetDomainLoc TARGET_DOMAIN_PATH -targetMWHomeLoc
TARGET_MIDDLEWARE_HOME_PATH -movePlanLoc MOVE_PLAN_PATH
-domainAdminPassword DOMAIN_ADMIN_PASSWORD_FILE -silent true -ldl
PATH_TO_LOG_DIRECTORY

Note:

■ On Microsoft Windows, run the commands with .cmd extension,
such as copyBinary.cmd and pasteBinary.cmd. For example, the
copyBinary script is
ORACLE_COMMON_HOME/bin/copyBinary.sh for UNIX and
ORACLE_COMMON_HOME/bin/copyBinary.cmd for Microsoft
Windows.

■ Some arguments might be invalid for Windows operating system.
For example, the -ipl
PATH_TO_ORACLE_INVENTORY_POINTER argument does not
work in Windows.

■ This document provides the syntax for running the copyBinary,
copyConfig, extractMovePlan, and pasteBinary scripts. For
detailed information about these scripts, parameters, and example
usages, see "Using the Movement Scripts" in the Oracle Fusion
Middleware Administrator's Guide.

Note: While editing the moveplan, provide the listen address of the
target in the Oracle Identity Manager Managed Server details.

Moving from a Test to a New Production Environment Using Movement Scripts

38-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

3. Verify or modify the following configurations after full T2P migration:

■ In the xlclient.cmd file, update the JDK path if the JDK library that was
configured with the Design Console on the source is no longer accessible on
the target.

In the config/xlconfig.xml file, update the Application JNDI URL to point to
the target application URL instead of source application URL.

■ The IT Resource configurations are not part of the moveplan in the T2P
procedure. After completing the T2P steps and starting the servers on the
target setup, you can configure the IT Resource parameters as per the
production setup. In Oracle Identity System Administration, under
Configuration, click IT Resource. On the Manage IT Resource page, click the
edit icon for the IT resource that you want to modify.

■ Some entities, such as users and provisioned accounts, are not migrated from
source to target during the T2P procedure, as they are considered transactional
data. Therefore, user personalization settings such as sort order, saved
searches, and layout changes will not be found on the target setup.

■ Some users, such as role owners, are referenced in many places in Oracle
Identity Manager. After full T2P migration, references to such users are
replaced with reference to SYSTEM_ADMINISTRATOR_USERNAME, the
Oracle Identity Manager system administrator.

■ Add ADF tuning parameters, as follows:

a. Login to Oracle WebLogic Administrative Console.

b. Go to Servers, OIM Server, Server Start, Arguments, and enter the
following:

-Djbo.ampool.doampooling=true -Djbo.ampool.minavailablesize=1
 -Djbo.ampool.maxavailablesize=120 -Djbo.recyclethreshold=60
 -Djbo.ampool.timetolive=-1 -Djbo.load.components.lazily=true
 -Djbo.doconnectionpooling=true -Djbo.txn.disconnect_level=1
 -Djbo.connectfailover=false -Djbo.max.cursors=5
 -Doracle.jdbc.implicitStatementCacheSize=5
 -Doracle.jdbc.maxCachedBufferSize=19

c. Save the changes, and restart the Oracle Identity Manager Managed
Server for the ADF framework.

Note:

■ You might need to change the permissions on the
TARGET_MIDDLEWARE_HOME and the target directory on
which the JAR has been placed.

■ Provide consistent directory paths for each of the parameters. For
example, if you are using absolute path for
MIDDLEWARE_HOME, then specify this path in the same way at
all places.

Migrating the Policies

Migrating Configurations and Customizations 38-19

38.3 Migrating the Policies
You can migrate the policies from one Oracle Identity Manager deployment to another,
for example, from a test environment to production environment, using the
migrateSecurityStore WLST command utility provided by Oracle Platform Security.
For example, to migrate all Oracle Identity Manager approval policies from the source
to target, run the following migration command in overwrite mode from the WLST
prompt:

migrateSecurityStore(type="appPolicies",configFile="<configuration file path>",
src="DBsourceContext", dst="DBdestinationContext", srcApp="OIM", dstApp="OIM",
overWrite="true")

For information about the various parameters used with the migrateSecurityStore
command and the usage options for the utility, see the 'migrateSecurityStore' section in
"Infrastructure Security Custom WLST Commands" in the Oracle Fusion Middleware
WebLogic Scripting Tool Command Reference for 11g Release 2 (11.1.2).

For information about constructing the configuration file, see "Migrating Policies
Manually" in the Oracle Fusion Middleware Application Security Guide for 11g Release 1
(11.1.1).

38.3.1 Troubleshooting Migration of Policies
Table 38–3 lists the troubleshooting step that you can perform if you encounter issues
related to migration of policies.

Note: While creating the configuration file for migration of Oracle
Identity Manager policies, make sure that the following properties are
set for the source system as well as the target system, as shown:

<property value="cn=mySourceDomain"
name="oracle.security.jps.farm.name"/>
<property value="cn=mySourceRootName"
name="oracle.security.jps.ldap.root.name"/>

You can take these values from the jps-config.xml file in your domain
at the following directory path:

DOMAIN_HOME/config/fmwconfig/

Search for the property names in the jps-config.xml in your domain
home and copy the value to this configuration file.

For the source system values, search in the domain home of the source
system, and similarly for the target system.

Table 38–3 Troubleshooting Migration of Policies

Problem Solution

The following error is displayed:

oracle.security.jps.service.policystore.Pol
icyStoreIncompatibleVersionException:
JPS-06100: Policy Store version 11.0 and
Oracle Platform Security Services Version
11.1.1.6.0 are not compatible

Not being able to connect or find the policy store can be the
possible causes of this error message. To troubleshoot the
problem, check the configuration file for the database
connectivity details, root name, and farm name for both
source and target.

Migrating the Policies

38-20 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Part XI
Part XI Reports and Audit

This part describes about audit engine and how to configure reports in Oracle Identity
Manager.

It contains the following chapters:

■ Chapter 39, "Configuring Reports"

■ Chapter 40, "Understanding Auditing"

39

Configuring Reports 39-1

39Configuring Reports

[40]

This chapter describes Oracle Identity Manager Reports and contains the following
topics:

■ What is Oracle Identity Manager Reports?

■ What is Oracle BI Publisher?

■ Licensing

■ Deploying Oracle Identity Manager Reports

■ Configuring Oracle Identity Manager Reports

■ Generating Oracle Identity Manager Reports

39.1 What is Oracle Identity Manager Reports?
Oracle Identity Manager Reports enables you to use Oracle BI Publisher as the
reporting solution for Oracle Identity Management products.

Oracle Identity Manager Reports provides a restricted-use license for Oracle BI
Publisher and easy-to-use reporting packages for multiple Oracle Identity
Management products.

As shown in Figure 39–1, Oracle Identity Manager Reports uses Oracle BI Publisher to
query and report on information in Oracle Identity Management product databases.
With minimal setup, Oracle Identity Manager Reports provides a common method to
create, manage, and deliver Oracle Identity Manager Reports.

Note: Oracle Identity Manager Reports are classified based on the
functional areas. For instance, Access Policy Reports, Attestation,
Request and Approval Reports, Password Policy Reports and so on. It
is no longer named Operational and Historical.

What is Oracle BI Publisher?

39-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Figure 39–1 Oracle Identity Manager Reports Architecture

The report templates included in Oracle Identity Manager Reports are standard Oracle
BI Publisher templates. However, you can customize each template to change its look
and feel. If schema definitions for an Oracle Identity Management product are
available, you can use that information to create your own custom reports.

39.2 What is Oracle BI Publisher?
Oracle BI Publisher is an Oracle's enterprise reporting solution and provides a single
reporting environment to author, manage, and deliver all of your reports and business
documents. Utilizing a set of familiar desktop tools, such as Microsoft Word, Microsoft
Excel, or Adobe Acrobat, you can create and maintain report layouts based on data
from diverse sources, including Oracle Identity Management products.

39.3 Licensing
Oracle Identity Manager can be separately licensed, independent of any Oracle
Application Server or WebLogic edition. BI Publisher is included when you separately
license Oracle Identity Manager:

■ Shipped BI Publisher reports. Layout changes are allowed, AND

■ Shipped or newly created BI Publisher reports that are modified to access data
from the existing Identity Management schema that has not been customized.

39.4 Deploying Oracle Identity Manager Reports
This section explains how to deploy Oracle Identity Manager Reports 11g Release 2
(11.1.2.1.0) and contains the following topics:

■ Creating the Metadata Repository

■ Installing BI Publisher 11g (11.1.1.6)

Note: Oracle strongly recommends creating back-up copies of the
original default report templates before customizing them.

See Also: Oracle Business Intelligence Publisher Documentation to learn
more about Oracle BI Publisher functionality.

Deploying Oracle Identity Manager Reports

Configuring Reports 39-3

39.4.1 Creating the Metadata Repository
Each Oracle Business Intelligence system (BI domain) requires its own set of database
schemas. Two or more systems cannot share the same set of schemas or repositories.

You must create a repository in your database by using the Repository Configuration
Utility (RCU) before installing BI Publisher 11g (11.1.1.6). For this, you need the RCU
utility, which you can download from the Oracle Web site by using the following URL:

http://www.oracle.com/technetwork/middleware/bi-enterprise-edition/downloa
ds/bi-downloads-1525270.html

For installing BI Publisher 11g (11.1.1.6), the following metadata repositories are
required:

■ Matadata Store (MDS)

■ Business Intelligence Platform (BI Platform)

To create the repository in your database by using the RCU utility:

1. Log in to the database as SYSDBA.

To run RCU, you must have the DBA privilege. Therefore, you must log in as
SYSDBA, for example, as user SYS.

2. Navigate to the RCU_HOME/bin/ directory.

3. To start RCU:

■ For UNIX, run:

./rcu

■ For Microsoft Windows, run:

rcu.bat

4. In the Welcome screen that is displayed, click Next. The Repository Creation
Utility wizard is displayed.

5. In step 1 of the wizard, select Create, and then click Next. Step 2 of 7: Database
Connection Details page is displayed.

6. Specify the connection details, as listed in the following table:

Field Data to Enter

Database Type Oracle Database

Host Name Name of the host on which the database is deployed.

Port Port number to connect to the host identified in the Host Name field.

Service Name A string that is the global database name, a name comprised of the
database name and domain name, entered during installation or
database creation. If you are not sure what the global database name
is, then you can obtain it from the combined values of the
SERVICE_NAMES parameter in the database initialization file, which
is INITSID.ORA. For example, a service name can be SALES.COM,
where SALES is the database name and COM is the domain.

Username Username for a database schema user that has access to Oracle
Identity Manager, such as SYS.

Password Password for the user identified in the Username field.

Role The role with DBA privilege, such as SYSDBA.

Deploying Oracle Identity Manager Reports

39-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

7. Click Next. Step 3 of 7: Component Detail page is displayed.

8. Select the Oracle Business Intelligence component. This action automatically
selects the MDS schema under the AS Common Schemas group, which is also
required by Oracle Business Intelligence.

9. Click Next. Step 4 of 7: Schema Passwords page is displayed.

10. Specify the same password for schemas.

11. Click Next. Step 5 of 7: Map TableSpaces page is displayed.

12. Click Next. A message is displayed after the validation is complete.

13. Click OK. Step 6 of 7: Summary page is displayed with the details about the
component, schema owner, tablespace type, and tablespace name.

14. Click Next. Step 7 of 7: Completion Summary page is displayed.

15. Click Close. The metadata repository is created in your database.

39.4.2 Installing BI Publisher 11g (11.1.1.6)
All Oracle Business Intelligence products run on Oracle WebLogic Server domains.
Therefore, Oracle WebLogic Server must be installed and configured before you install
BI Publisher 11g (11.1.1.6).

If you do not have Oracle WebLogic Server installed, then OBIEE 11g installs the
WebLogic Server by default, and creates the bi domain named bifoundation_domain
under the user_projects/domains directory.

Installing BI Publisher 11g (11.1.1.6) is described in the following sections:

■ Starting the Oracle Business Intelligence Wizard

■ Installing BI Publisher 11g (11.1.1.6) When Oracle WebLogic Server is Not Installed

■ Installing BI Publisher 11g (11.1.1.6) When Oracle WebLogic Server is Installed

Starting the Oracle Business Intelligence Wizard
To start the Oracle Business Intelligence wizard, go to the bishiphome/Disk1/
directory, and run the following:

For UNIX:

./runInstaller

For Microsoft Windows:

setup.exe

Installing BI Publisher 11g (11.1.1.6) When Oracle WebLogic Server is Not
Installed
After starting the Oracle Business Intelligence wizard, perform the following steps:

1. In Step 1 of 15: Welcome page of the wizard that is displayed, click Next. Step 2 of
15: Type Install page is displayed.

2. Select the Install Software Updates option, and click Next. Step 3 of 15: Select
Installatation Type page is displayed.

3. Select the Enterprise Install option, and click Next. Step 4 of 15: Pre-requisite
Check page is displayed.

Tip: The log files are saved in the RCU_HOME\log\ directory.

Configuring Oracle Identity Manager Reports

Configuring Reports 39-5

4. Click Next. Step 5 of 15: Create or Scale BI System page is displayed.

5. Select the Create New BI System option. Then, enter values in the following
fields:

User Name: Enter the WebLogic user name.

Password: Enter a password for the WebLogic user.

Confirm Password: Re-enter the password for the WebLogic user.

Doman Name: Name of the WebLogic domain, which is bifoundation_domain by
default.

6. Click Next. Step 6 of 15: Specify Install Location page is displayed.

7. Enter the directory paths for the installation, and click Next.

8. Click Next. Step 7 of 12: Configure Components page is displayed.

9. Click Next. Step 8 of 12: Database Details page is displayed.

10. Enter the details of your database with the credentials that you have specified in
the Step 5 of "Creating the Metadata Repository" on page 39-3.

11. Complete the remaining steps of the wizard by clicking Next.

Installing BI Publisher 11g (11.1.1.6) When Oracle WebLogic Server is Installed
When BI Publisher 11g (11.1.1.6) is already installed, perform the following steps in the
Oracle Business Intelligence wizard:

1. In Step 2 of 15: Type Install page, select the Simple Install option, and click Next.
Step 3 of 15: Prerequisite Check page is displayed.

2. Click Next. Step 4 of 12: Middleware Home page is displayed.

3. Enter the Middleware home directory path without trailing space, for example,
/u01/app/ Oracle_IDM1/Middelware/.

4. Click Next. Step 5 of 12: Administrator Details page is displayed.

5. Enter the administrator user name and password. This account is used for the
administration of the WebLogic Server and Enterprise Manager.

6. Click Next. Step 6 of 12: Configure Components page is displayed.

7. Click Next. Step 7 of 12: Database Details page is displayed.

8. Enter the details of your database with the credentials that you have specified in
the Step 5 of "Creating the Metadata Repository" on page 39-3.

9. Complete the remaining steps of the wizard by clicking Next.

39.5 Configuring Oracle Identity Manager Reports
This section describes configuring BI Publisher 11g (11.1.1.6) in the following topics:

■ Configuring Security on BI Publisher 11g (11.1.1.6)

■ Configuring Data Sources for Running Oracle Identity Manager Reports

39.5.1 Configuring Security on BI Publisher 11g (11.1.1.6)
To configure security in BI Publisher 11g (11.1.1.6):

Configuring Oracle Identity Manager Reports

39-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

1. In the
Oracle_IDM1/Middleware/user_projects/domains/bifoundation_domain/config
/bipublisher/repository/Reports/ directory, create a new directory and name it as
Oracle Identity Manager.

2. Extract the contents of the oim_product_BIP11gReports_11_1_2_1_0.zip file in the
newly created Oracle Identity Manager directory.

3. Login to BI Publisher. To do so:

a. In a Web browser, enter the URL in the following format:

http://HOST_NAME:PORT_NUMBER/xmlpserver/

For example, http://localhost:7001/xmlpserver/

b. In the Oracle BI Publisher login page, enter the username and password with
WebLogic privileges.

4. Select Administration, Security Centre. Then, click Security Configuration.

5. Go to the Security Model page and select the security model according to the
implementation. In OBIEE, the default security model is Oracle Fusion
Middleware Security Model. For information about configuring Oracle Fusion
Middleware security model, refer to the following URL:

http://docs.oracle.com/cd/E21764_01/bi.1111/e13880/T526682T559093.htm#o
fm1

6. According to the selected security model, login to BI Publisher as the
Administrator or OIM User. The Home page is displayed.

7. Upload Oracle Identity Manager reports to BI Publisher. To do so:

a. Select Administration, System Maintenance, and then click Server
Configuration.

b. Scroll down to the Catalog section and verify that the path to the repository
folder is correct in the BI Publisher repository field.

c. Click Upload to BI Presentation Catalog to upload the Oracle Identity
Manager reports to BI Publisher.

d. If required, restart both the BI Publisher managed server and admin server for
the changes to take affect.

e. Login to BI Publisher again and click Catalog. Expand the Shared Folders tree
in the left pane to verify that the reports are present.

39.5.2 Configuring Data Sources for Running Oracle Identity Manager Reports
For Oracle Identity Manager reports, JDBC connections described in the following
sections are required:

■ Configuring Oracle Identity Manager JDBC Connection

■ Configuring BPEL-Based JDBC Connection

Note: After installing BI Publisher 11g (11.1.1.6), the
Oracle_IDM1/Middleware/user_projects/domains/bifoundation_do
main/config/bipublisher/repository/Reports/ directory is created in
the WebLogic domain.

Configuring Oracle Identity Manager Reports

Configuring Reports 39-7

39.5.2.1 Configuring Oracle Identity Manager JDBC Connection
To configure Oracle Identity Manager JDBC connection:

1. Click the Administration link on the top of the Home page. The BI Publisher
Administration page is displayed.

2. Under Data Sources, click the JDBC Connection link. The Data Sources page is
displayed.

3. In the JDBC tab, click Add Data Source to create a JDBC connection to your
database. The Add Data Source page is displayed.

4. Enter values in the following fields:

■ Data Source Name: Specify the Oracle Identity Manager JDBC connection
name, for example, OIM JDBC.

■ Driver Type: Select a driver type to suit your database. For example, you can
select Oracle 10g or Oracle 11g to suit your database.

■ Database Driver Class: Specify a driver class to suit your database, such as
oracle.jdbc.driver.OracleDriver.

■ Connection String: Specify the database connection details in the format
jdbc:oracle:thin:@HOST_NAME:PORT_NUMBER:SID. For example,
jdbc:oracle:thin:@localhost:7003:orcl.

■ User name: Specify the Oracle Identity Manager database user name.

■ Password: Specify the Oracle Identity Manager database user password.

5. Click Test to verify the connection, and then click Apply to establish the
connection.

6. If the connection to the database is established, a confirmation message is
displayed indicating the success. Click Apply.

In the JDBC page, you can see the newly defined Oracle Identity Manager JDBC
connection in the list of JDBC data sources.

39.5.2.2 Configuring BPEL-Based JDBC Connection
In BI Publisher, only one data source can be assigned to a report. The first data source
is the Oracle Identity Manager data source. The following reports have a secondary
data source, which connects to the BPEL database to retrieve BPEL data:

■ Task Assignment History

■ Request Details

■ Request Summary

■ Approval Activity

To configure a secondary data source for BPEL-based reports:

1. In the BI Publisher Home page, click Administration. The BI Publisher
Administration page is displayed.

2. Under Data Sources, click the JDBC Connection link. The Data Sources page is
displayed.

3. In the JDBC tab, click Add Data Source to create a JDBC connection to your
database. The Add Data Source page is displayed.

4. Enter values in the following fields:

Generating Oracle Identity Manager Reports

39-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Data Source Name: Specify the BPEL JDBC connection name, for example,
BPEL JDBC.

■ Driver Type: Select a driver type to suit your database. For example, you can
select Oracle 10g or Oracle 11g to suit your database.

■ Database Driver Class: Specify a driver class to suit your database, such as
oracle.jdbc.driver.OracleDriver.

■ Connection String: Specify the database connection details in the format
jdbc:oracle:thin:@HOST_NAME:PORT_NUMBER:SID. For example,
jdbc:oracle:thin:@localhost:7003:orcl.

■ User name: Specify the SOA database user name.

■ Password: Specify the SOA database user password.

5. Click Test to verify the connection, and then click Apply to establish the
connection.

6. If the connection to the database is established, a confirmation message is
displayed indicating the success. Click Apply.

In the JDBC page, you can see the newly defined BPEL JDBC connection in the list
of JDBC data sources.

39.6 Generating Oracle Identity Manager Reports
This section explains how to generate Oracle Identity Manager Reports and contains
the following topics:

■ Generating Sample Reports Against the Sample Data Source

■ Generating Reports Against the Oracle Identity Manager JDBC Data Source

■ Generating Reports Against the BPEL-Based JDBC Data Source

39.6.1 Generating Sample Reports Against the Sample Data Source
If you want to see an example of what report data will look like without running a
report against the production JDBC Data Source, you can generate a sample report
against the Sample Data Source. You must create the Sample Data Source before you
can generate sample reports. Refer to appropriate section for your Oracle Identity
Management product in "Configuring Oracle Identity Manager Reports" on page 39-5
for information on creating the Sample Data Source.

After you create the Sample Data Source you can generate sample reports against it by
performing the following steps:

1. Login to Oracle BI Publisher. See step 3 in Configuring Security on BI Publisher
11g (11.1.1.6) for more information about logging in to Oracle BI Publisher.

2. Click Shared Folders, Oracle Identity Manager Reports, and then select Sample
Reports.

3. Click View for the sample report you want to generate.

Note: BI Publisher cannot be accessed through the Oracle Identity
Self Service or Oracle Identity System Administration. You must open
BI publisher explicitly to access the Oracle Identity Manager 11g
reports.

Generating Oracle Identity Manager Reports

Configuring Reports 39-9

4. Select an output format for the sample report and click View.

The sample report is generated.

39.6.2 Generating Reports Against the Oracle Identity Manager JDBC Data Source
To generate reports against the Oracle Identity Manager JDBC data source:

1. Log in to Oracle BI Publisher. See step 3 in Configuring Security on BI Publisher
11g (11.1.1.6) for more information about logging in to Oracle BI Publisher.

2. Navigate to Oracle Identity Manager reports. To do so:

a. In the BI Publisher Home page, under Browse/Manage, click Catalog Folders.
Alternatively, you can click Catalog at the top of the page.

The Catalog page is displayed with a tree structure on the left side of the page
and the details on the right.

b. On the left pane, expand Shared Folders, and navigate to Oracle Identity
Manager. All the objects in the Oracle Identity Manager folder are displayed.

You are ready to navigate to BI Publisher 11g and use the Oracle Identity
Manager BI Publisher reports.

3. Click View for the report you want to generate.

4. Select an output format for the report and click View.

The report is generated.

39.6.3 Generating Reports Against the BPEL-Based JDBC Data Source
The following four reports have a secondary data source, which connects to the BPEL
database to retrieve BPEL data:

■ Task Assignment History

■ Request Details

■ Request Summary

■ Approval Activity

These reports have a secondary data source, which is the BPEL-based JDBC Data
Source, and is called BPEL JDBC.

To generate reports against the BPEL-based JDBC data source:

1. Ensure that a BPEL data source exists in BI Publisher. This BPEL Data Source must
point to the BPEL database. See "Configuring BPEL-Based JDBC Connection" on
page 39-7 for more information about creating a BPEL data source.

2. Log in to Oracle BI Publisher. See step 3 in Configuring Security on BI Publisher
11g (11.1.1.6) for more information about logging in to Oracle BI Publisher.

3. Navigate to Oracle Identity Manager reports. To do so:

a. In the BI Publisher Home page, under Browse/Manage, click Catalog Folders.
Alternatively, you can click Catalog at the top of the page.

See Also: Oracle Business Intelligence Publisher Documentation to learn
more about Oracle BI Publisher.

Generating Oracle Identity Manager Reports

39-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

The Catalog page is displayed with a tree structure on the left side of the page
and the details on the right.

b. On the left pane, expand Shared Folders, and navigate to Oracle Identity
Manager. All the objects in the Oracle Identity Manager folder are displayed.

You are ready to navigate to BI Publisher 11g and use the Oracle Identity
Manager BI Publisher reports.

4. Click View for the report you want to generate.

5. Select an output format for the report, and click View.

The report is generated based on the BPEL-based JDBC data source.

40

Understanding Auditing 40-1

40Understanding Auditing

[41]

User profile audits cover changes to user profile attributes, user membership, resource
provisioning, access policies, and resource forms.

The audit engine collects auditing information in Oracle Identity Manager. Whenever
a profile is modified, the audit engine captures the changes (the delta) and updates (or
generates, if missing) the snapshots of the user and role profiles and stores these
snapshots and deltas in XML format. The audit engine also contains post-processors,
which, based on the generated XML, populate the reporting tables with relevant data.
To maintain high performance, by default the audit engine performs these tasks in an
asynchronous and offline manner by using the underlying Java Messaging Service
(JMS) provided by the application server.

This chapter discusses the following topics:

■ Audit Levels

■ Tables Used for Storing Information About Auditors

■ Issuing Audit Messages

40.1 Audit Levels
As mentioned earlier in this chapter, when you install Oracle Identity Manager user
profile auditing is enabled by default and the auditing level is set to Resource Form. If
you change the auditing level, then you must run the GenerateSnapshot.sh script (on
UNIX) or the GenerateSnapshot.bat script (on Microsoft Windows). This script is in the
IDM_HOME/server/bin directory. The script examines all users in Oracle Identity
Manager database and generates new snapshots based on the new auditing level.

You can configure the "level of detail for auditing" aspect of the auditing engine and
specify the audit level as the value of the XL.UserProfileAuditDataCollection system
property in the Advanced Administration.

The supported audit levels are:

Note: If you change the auditing level, then you must run the
GenerateSnapshot script before allowing users to access the system.

See Also: "System Properties in Oracle Identity Manager" in the
Oracle Fusion Middleware Administrator's Guide for Oracle Identity
Manager for information about this system property

Tables Used for Storing Information About Auditors

40-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

■ Process Task: Audits the entire user profile snapshot together with the resource
lifecycle process.

■ Resource Form: Audits user record, role membership, resource provisioned, and
any form data associated to the resource.

■ Resource: Audits the user record, role membership, and resource provisioning.

■ Membership: Only audits the user record and role membership.

■ Core: Only audits the user record.

■ None: No audit is stored.

40.2 Tables Used for Storing Information About Auditors
Information about auditors is stored in the following tables of the database:

■ AUD: This table stores metadata about all the auditors defined in Oracle Identity
Manager.

■ aud_jms: This table stores data to be consumed by the audit engine and eventually
by the auditors. It is an operational and intermediate staging table.

The key in this table is sent to the JMS. Oracle Identity Manager uses this table to
control the order of the changes when multiple changes are made to the same user.
You can use the Issue Audit Messages Task scheduled task to automate the reissue
of messages that are not processed. For more information about this scheduled
task, see "Managing the Scheduler" in Oracle Fusion Middleware Administrator's
Guide for Oracle Identity Manager.

40.3 Issuing Audit Messages
Oracle Identity Manager provides a scheduled task named Issue Audit Messages Task.
This scheduled task retrieves audit message details from the aud_jms table and sends
a single JMS message for a particular identifier and auditor entry in the aud_jms table.
An MDB processes the corresponding audit message.

The following is the attribute of this task:

Max Records

Use the Max Records attribute to specify the maximum number of audit messages to
be processed for a specified scheduled task run. The default value of this attribute is
400.

If there is a backlog of audit messages in the aud_jms table, then you can increase the
value of the Max Records attribute. The value that you set depends on how many
messages the JMS engine can process during the default scheduled task execution
interval. This, in turn, depends on the performance of the application server and
database. Before increasing the Max Records value, you must determine how much

Note: When you specify a particular audit level, all audit levels that
are at a lower priority level are automatically enabled. For example, if
you specify the Membership audit level, then the Core audit level is
automatically enabled.

Audit level specifications are case-sensitive. When you specify an
audit level, ensure that you do not change the case (uppercase and
lowercase) of the audit level.

Issuing Audit Messages

Understanding Auditing 40-3

time is taken to process the number of audit messages in the JMS destination
(oimAuditQueue) by, for example, using the administrative console of the application
server. If the time taken is less than the scheduled task interval, then you can make a
corresponding increase in the value of the Max Records attribute.

Issuing Audit Messages

40-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Part XII
Part XII Appendixes

This part contains the following appendixes:

■ Appendix A, "General Customization Concepts"

■ Appendix B, "The FacesUtils Class"

A

General Customization Concepts A-1

AGeneral Customization Concepts

[42]

Oracle Identity Manager customization is enabled by the Design Console that lets you
deal with configuration and design functions, such as designing forms and workflows
and creating and managing adapters. Using the Design Console, you can grant user
privileges to work on particular areas of the application configuration.

This appendix describes the following topics:

■ Rule Elements, Variables, Data Types, and System Properties

■ Service Accounts

■ Design Console Actions

A.1 Rule Elements, Variables, Data Types, and System Properties
The Design Console lets you perform Oracle Identity Manager customization tasks
such as adding and modifying rule elements for a rule, creating or editing e-mail
definitions, and creating forms. For these customization tasks, you must set
parameters, variables, and data types. This section describes these parameters,
variables, and data types.

In the Rule Elements tab of the Rule Designer form, you can create and manage
elements and nested rules for a rule. Table A–1 lists the rule elements that can be used
to create Oracle Identity Manager rules, by using the Rule Designer form.

Table A–1 Rule Elements to Create Oracle Identity Manager Rules

Type Sub-Type Attribute Source Variable

General NA User Profile Data Email

End Date

First Name

Identity

Last Name

Display Name

Manager

Middle Name

Organization Name

User Role Name

Rule Elements, Variables, Data Types, and System Properties

A-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Start Date

General NA User Profile Data User Type

Identity Status

User Login

Design Console Access

Any fields that are
displayed in the User
Defined Fields region of
the User Profile tab of the
Users form.

Process Determination Organization
Provisioning

Requester Information Display Name

Email

End Date

First Name

Identity

Last Name

Manager Full Name

Manager

Middle Name

Organization Name

Start Date

Identity Status

User Role Name

User Login

Design Console Access

Any fields that are
displayed in the User
Defined Fields region of
the User Profile tab of the
Users form.

Process Determination Organization
Provisioning

Object Information Object Name

Object Type

Request Target
Information

Organization Customer
Type

Organization Name

Organization Status

Parent Organization

Any fields that are
displayed in the User
Defined Fields tab of the
Organizations form.

Table A–1 (Cont.) Rule Elements to Create Oracle Identity Manager Rules

Type Sub-Type Attribute Source Variable

Rule Elements, Variables, Data Types, and System Properties

General Customization Concepts A-3

Object Data Information Any fields that are
displayed in the
Additional Columns tab
of the Form Designer form
for the custom form
associated with the
resource object.

Process Data Information Any fields that are
displayed in the
Additional Columns tab
of the Form Designer
form for the custom form
associated with the
process.

User Provisioning Requester Information Display Name

Email

End Date

First Name

Identity

Last Name

Manager Full Name

Manager

Middle Name

Organization Name

User Type

Start Date

Identity Status

User Role Name

User Login

Design Console Access

Any field defined on the
FormMetadata.xml user
self-registration and user
profile modification
section with property
useInRule set to true

Object Information Object Name

Object Type

Request Target
Information

Display Name

Email

End Date

First Name

Identity

Table A–1 (Cont.) Rule Elements to Create Oracle Identity Manager Rules

Type Sub-Type Attribute Source Variable

Rule Elements, Variables, Data Types, and System Properties

A-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Last Name

Manager Full Name

Manager

Middle Name

Organization Name

User Type

Start Date

Identity Status

User Role Name

User Login

Design Console Access

Any field defined on the
FormMetadata.xml user
self-registration and user
profile modification
section with property
useInRule set to true

Process Determination User Provisioning Requester Information;
Request Target
Information

Any fields that are
displayed in the User
Defined Fields region of
the User Profile tab of the
Users form.

Object Information Object Name

Object Type

Object Data Information Any fields that are
displayed in the
Additional Columns tab
of the Form Designer
form for the custom form
associated with the
resource object.

Process Data Information Any fields that are
displayed in the
Additional Columns tab
of the Form Designer
form for the custom form
associated with the
process.

Task Assignment Organization
Provisioning; User
Provisioning

Task Information Allow Cancellation while
Pending

Allow Multiple Instances

Assign Task to Manager

Disable Manual Insert

Task Conditional

Task Data Label

Table A–1 (Cont.) Rule Elements to Create Oracle Identity Manager Rules

Type Sub-Type Attribute Source Variable

Rule Elements, Variables, Data Types, and System Properties

General Customization Concepts A-5

Task Default Assignee

Task Name

Task Required for
Completion

Task Sequence

Process Information Object Name

Process Name

Process Type

Object Information Object Name

Object Type

Requester Information Email

End Date

First Name

Identity

Task Assignment Organization
Provisioning; User
Provisioning

Requester Information Display Name

Email

End Date

First Name

Identity

Last Name

Manager Full Name

Manager

Middle Name

Organization Name

User Type

Start Date

Identity Status

User Role Name

User Login

Design Console Access

Any field that is displayed
in the User Defined
Fields region of the User
Profile tab of the Users
form

Table A–1 (Cont.) Rule Elements to Create Oracle Identity Manager Rules

Type Sub-Type Attribute Source Variable

Rule Elements, Variables, Data Types, and System Properties

A-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Object Data Information Any field that is displayed
in the Additional
Columns tab of the Form
Designer form for the
custom form associated
with the resource object

Process Data Information Any field that is displayed
in the Additional
Columns tab of the Form
Designer form for the
custom form associated
with the process

Pre-Populate Organization
Provisioning; User
Provisioning

Requester Information Display Name

Email

End Date

First Name

Identity

Last Name

Manager Full Name

Manager

Middle Name

Organization Name

User Type

Start Date

Identity Status

User Role Name

User Login

Design Console Access

Any field that is displayed
in the User Defined
Fields region of the User
Profile tab of the Users
form

Request Information Request Creation Date

Request ID

Request Object Action

Request Priority

Requestor

Object Information Object Name

Object Type

Table A–1 (Cont.) Rule Elements to Create Oracle Identity Manager Rules

Type Sub-Type Attribute Source Variable

Rule Elements, Variables, Data Types, and System Properties

General Customization Concepts A-7

Object Data Information Any field that is displayed
in the Additional
Columns tab of the Form
Designer form for the
custom form associated
with the resource object

Process Data Information Any field that is displayed
in the Additional
Columns tab of the Form
Designer form for the
custom form associated
with the process

Organization
Provisioning

Request Target
Information

Organization Customer
Type

Organization Name

Organization Status

Parent Organization

Any field that is displayed
in the User Defined
Fields tab of the
Organizations form

User Provisioning Request Target
Information

Email

End Date

First Name

Identity

Last Name

Manager Full Name

Manager Login

Pre-Populate User Provisioning Request Target
Information

Display Name

Email

End Date

First Name

Identity

Last Name

Manager Full Name

Manager

Middle Name

Organization Name

User Type

Start Date

Identity Status

User Role Name

Table A–1 (Cont.) Rule Elements to Create Oracle Identity Manager Rules

Type Sub-Type Attribute Source Variable

Rule Elements, Variables, Data Types, and System Properties

A-8 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

You can use the Email Definition form to create templates for e-mail notifications to be
sent to the users. Table A–2 lists the variables that can be used to create e-mail
templates by using the Email Definition form.

User Login

Design Console Access

Any field that is displayed
in the User Defined
Fields region of the User
Profile tab of the Users
form

Table A–2 Variables to Create Templates

Type Target Location Type Contact Type Variable

Provisioning
Related

User Profile
Information;
Assignee Profile
Information

NA NA First Name

Identity

Last Name

Manager Login

Middle Name

Role

Status

End Date

User Group Name

User Login

User Manager

Start Date

Oracle Identity
Manager Type

Manager Full Name

Organization Name

Email

Provisioning
Related

User Profile
Information;
Assignee Profile
Information

NA NA Any field that is
displayed in the User
Defined Fields
region of the User
Profile tab of the
Users form

Object
Information

NA NA Object Name

Object Target Type

Object Type

Table A–1 (Cont.) Rule Elements to Create Oracle Identity Manager Rules

Type Sub-Type Attribute Source Variable

Rule Elements, Variables, Data Types, and System Properties

General Customization Concepts A-9

Table A–3 describes the properties that can be associated with different data types
used to create Oracle Identity Manager forms, by using the Form Designer form.

Process
Information

NA NA Object Name

Process Name

Process Type

Object Data
Information

NA NA Any field that is
displayed in the
Additional Columns
tab of the Form
Designer form for
the custom form
associated with the
resource object

Process Data
Information

NA NA Any field that is
displayed in the
Additional Columns
tab of the Form
Designer form for
the custom form
associated with the
process

General User Profile
Information

NA NA First Name

Identity

Last Name

Email Address

Manager Login

Middle Name

Role

Status

User End Date

User Group Name

User Login

User Manager

User Start Date

Oracle Identity
Manager Type

Any field that is
displayed in the User
Defined Fields
region of the User
Profile tab of the
Users form

Table A–2 (Cont.) Variables to Create Templates

Type Target Location Type Contact Type Variable

Rule Elements, Variables, Data Types, and System Properties

A-10 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Table A–3 Properties Associated with Data Types for Creating Oracle Identity Manager
Forms

Data Type Data Property Description

Text Field Required If this text field must be populated for the form to be saved, then enter "true"
into the corresponding Property Value field. Otherwise, type "false" into this
field.

Note: The default value for this data property is false.

Is Visible If you want this text field to be displayed when Oracle Identity Manager
generates the form, then enter "true" into the corresponding Property Value
field. Otherwise, type "false" into this field.

Note: The default value for this data property is true.

Lookup Field Auto Complete By entering "true" in the corresponding Property Value field, Oracle Identity
Manager filters the lookup field. A user can then add characters to the lookup
field before double-clicking it. By doing so, only those Lookup values which
match these characters are displayed in the Lookup window.

As an example, for a State lookup field, a user can enter "new" into the field.
Then, once the user double-clicks the lookup field, only those states that
begins with the letters "new" (for example, New Hampshire, New Jersey, New
Mexico, and New York) are displayed in the Lookup window. If you do not
want Oracle Identity Manager to filter the lookup field, then enter "false" into
the associated Property Value field.

The default property value for the Auto Complete property is false.

Column
Captions

In the corresponding Property Value field, enter the name of the column
heading that is displayed in the Lookup window when a user double-clicks
the lookup field. If the Lookup window has multiple columns, then enter each
column heading into the Property Value field, separating them with commas,
for example, Organization Name, Organization Status.

Lookup Field Column Names In the corresponding Property Value field, enter the name of the database
column that represents the column caption that you want to be displayed in
the Lookup window.

If the Lookup window has multiple columns, then enter each database
column into the Property Value field, separating them with commas.

Column Widths In the corresponding Property Value field, enter the width of the column that
is displayed in the Lookup window.

If the Lookup window has multiple columns, then enter each column width
into the Property Value field, separating them with commas, for example,
20,20.

Lookup Column
Name

In the corresponding Property Value field, enter the name of the Lookup
column as it is displayed in the database, which must be saved to the
database.

Rule Elements, Variables, Data Types, and System Properties

General Customization Concepts A-11

Lookup Query In the corresponding Property Value field, enter the name of the SQL query
that runs when a user double-clicks the lookup field. As a result, the
appropriate Lookup columns are displayed in the Lookup window.

To correctly display the data returned from a query, you must add a
lookupfield.header property to the xlWebAdmin_locale.properties file. Fo
example, consider the following SQL query: select usr_status from usr. To
view the data returned from the query, you must add the following entry to
the xlWebAdmin_ locale.properties files:

lookupfield.header.users.status=User Status

If the xlWebAdmin_locale.properties file does not contain a
lookupfield.header property for your specified query, then the Identity
System Administration displays a lookup window after you click the
corresponding lookup icon.

The syntax for a lookupfield.header property is as follows:

lookupfield.header.column_code=display value

The column_code portion of the entry must be lowercase and any space must
be replaced by the underscore character (_).

By default, the following entries for lookup field column headers are alread
available in the system resource bundle:

lookupfield.header.lookup_definition.lookup_ code_information
 .code_key=Value
lookupfield.header.lookup_definition.lookup_code_information
 .decode=Description
lookupfield.header.users.manager_login=User ID
lookupfield.header.organizations.organization_ name=Name
lookupfield.header.it_resources.key=Key
lookupfield.header.it_resources.name=Instance Name
lookupfield.header.users.user_id=User ID
lookupfield.header.users.last_name=Last Name
lookupfield.header.users.first_name=First Name
lookupfield.header.groups.group_name=Group Name
lookupfield.header.objects.name=Resource Name
lookupfield.header.access_policies.name=Access Policy Name

Lookup Field Lookup Code In the corresponding Property Value field, enter the lookup definition code
This code contains all information pertaining to the lookup field, including
lookup values and the text that are displayed with the lookup field once a
lookup value is selected.

Important: The Lookup Code data property can be used in lieu of the Colum
Captions, Column Names, Column Widths, Lookup Column Name, and
Lookup Query properties. In addition, the information contained in the
Lookup Code property supersedes any values set in these five data properti

Tip: An easy way to enter a lookup code is by starting the Lookup Definitio
form, querying for the desired code, copying this code to the Clipboard, and
pasting it into the Lookup Code field.

Note: The classification type of the lookup definition code must be of Looku
Type (the Lookup Type radio button on the Lookup Definition form must be
selected).

Required If this Lookup field must be populated for the form to be saved, then enter
"true" into the corresponding Property Value field. Otherwise, type "false"
into this field.

Note: The default value for this data property is false.

Table A–3 (Cont.) Properties Associated with Data Types for Creating Oracle Identity
Manager Forms

Data Type Data Property Description

Rule Elements, Variables, Data Types, and System Properties

A-12 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Visible Field If you want this lookup field to be displayed when Oracle Identity Manager
generates the form, then enter "true" into the corresponding Property Value
field. Otherwise, type "false" into this field.

Note: The default value for this data property is true.

Text Area Number of
Rows

In the corresponding Property Value field, enter the row length of the text
area. So, if you want the text area to be five rows in length, then type "5" into
the Property Value field.

Required If this text area must be populated for the form to be saved, then enter "true"
into the corresponding Property Value field. Otherwise, type "false" into this
field.

Note: The default value for this data property is false.

Visible Field If you want this text area to be displayed when Oracle Identity Manager
generates the form, then enter "true" into the corresponding Property Value
field. Otherwise, type "false" in this field.

Note: The default value for this data property is true.

IT Resource
Lookup Field

Type If you select this data property, then a box is displayed in the Property Value
field. From this box, select the type of Server for the IT Resource.

Important: This property is required.

Required If this lookup field must be populated for the form to be saved, then enter
"true" into the corresponding Property Value field. Otherwise, type "false" in
this field.

Note: The default value for this data property is false.

Visible Field If you want this lookup field to be displayed when Oracle Identity Manager
generates the form, then enter "true" into the corresponding Property Value
field. Otherwise, type "false" into this field.

Note: The default value for this data property is true.

Date and Time
Window

Required If this text field must be populated for the form to be saved, enter "true" into
the corresponding Property Value field. Otherwise, type "false" into this field.

Note: To populate this text field, double-click it, and select a date and time
from the Date & Time window that is displayed.

Note: The default value for this data property is false.

Visible Field If you want this text field to be displayed when Oracle Identity Manager
generates the form, then enter "true" into the corresponding Property Value
field. Otherwise, type "false" in this field.

Note: The default value for this data property is true.

Password Field Required If this text field must be populated for the form to be saved, enter "true" into
the corresponding Property Value field. Otherwise, type "false" in this field.

Note: The default value for this data property is false.

Visible Field If you want this text field to be displayed when Oracle Identity Manager
generates the form, then enter "true" into the corresponding Property Value
field. Otherwise, type "false" in this field.

Note: The default value for this data property is true.

Lookup Field Lookup Code In the corresponding Property Value field, enter the lookup definition code.
This code contains all information pertaining to the lookup field, including
lookup values and the text that are displayed with the lookup field once a
lookup value is selected.

Table A–3 (Cont.) Properties Associated with Data Types for Creating Oracle Identity
Manager Forms

Data Type Data Property Description

Rule Elements, Variables, Data Types, and System Properties

General Customization Concepts A-13

Lookup Query In the corresponding Property Value field, enter the name of the SQL query
that runs when a user double-clicks the lookup field. As a result, the
appropriate Lookup columns are displayed in the Lookup window.

To correctly display the data returned from a query, you must add a
lookupfield.header property to the xlWebAdmin_locale.properties file. Fo
example, consider the following SQL query: select usr_status from usr. To
view the data returned from the query, you must add the following entry to
the xlWebAdmin_ locale.properties files:

lookupfield.header.users.status=User Status

If the xlWebAdmin_locale.properties file does not contain a
lookupfield.header property for your specified query, then the Identity
System Administration displays a lookup window after you click the
corresponding lookup icon.

The syntax for a lookupfield.header property is as follows:

lookupfield.header.column_code=display value

The column_code portion of the entry must be lowercase and any space must
be replaced by the underscore character (_).

By default, the following entries for lookup field column headers are alread
available in the system resource bundle:

lookupfield.header.lookup_definition.lookup_ code_information
 .code_key=Value
lookupfield.header.lookup_definition.lookup_code_information
 .decode=Description
lookupfield.header.users.manager_login=User ID
lookupfield.header.organizations.organization_ name=Name
lookupfield.header.it_resources.key=Key
lookupfield.header.it_resources.name=Instance Name
lookupfield.header.users.user_id=User ID
lookupfield.header.users.last_name=Last Name
lookupfield.header.users.first_name=First Name
lookupfield.header.groups.group_name=Group Name
lookupfield.header.objects.name=Resource Name
lookupfield.header.access_policies.name=Access Policy Name

Column Names In the corresponding Property Value field, enter the name of the database
column that represents the column caption that you want to be displayed in
the Lookup window.

If the Lookup window has multiple columns, then enter each database
column into the Property Value field, separating them with commas.

Radio Button Required If a radio button must be selected for the form to be saved, then enter "true"
into the corresponding Property Value field. Otherwise, type "false" in this
field.

Note: The default value for this data property is false.

Visible Field If you want this radio button (or group of radio buttons) to be displayed
when Oracle Identity Manager generates the form, then enter "true" into the
corresponding Property Value field. Otherwise, type "false" in this field.

Note: The default value for this data property is true.

Check Box Required If this check box must be selected for the form to be saved, then enter "true"
into the corresponding Property Value field. Otherwise, type "false" in this
field.

Note: The default value for this data property is false.

Table A–3 (Cont.) Properties Associated with Data Types for Creating Oracle Identity
Manager Forms

Data Type Data Property Description

Service Accounts

A-14 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

A.2 Service Accounts
Service accounts are general administrator accounts that are used for maintenance
purpose. They are typically shared by a set of users. Service accounts are requested,
provisioned, and managed in the same manner as regular accounts. A service account
is distinguished from a regular account by an internal flag.

When a user is provisioned with a service account, Oracle Identity Manager manages a
mapping from the user's identity to the service account. This user is considered the
owner of the Service Account. When the user is deleted or the resource is revoked, the
provisioning process for the service account does not get canceled, which would cause
the undo tasks to fire. Instead, a task is inserted into the provisioning process in the
same way Oracle Identity Manager handles Disable and Enable actions. This task
removes the mapping from the user to the service account, and returns the service
account to the pool of available accounts. This management capability is exposed
through APIs.

Table A–4 describes the service account management tasks and their corresponding
APIs.

Visible Field If you want this check box to be displayed when Oracle Identity Manager
generates the form, then enter "true" into the corresponding Property Value
field. Otherwise, type "false" in this field.

Note: The default value for this data property is true.

Combo Box Lookup Code In the corresponding Property Value field, enter the Lookup definition code.
This code contains all information pertaining to the box, including box items
and the text that is displayed with the box once a lookup value is selected.

Important: The Lookup Code data property can be used in lieu of the
Column Captions, Column Names, Column Widths, Lookup Column
Name, and Lookup Query properties. In addition, the information contained
in the Lookup Code property supersedes any values set in these five data
properties.

Tip: An easy way to enter a lookup code is by starting the Lookup Definition
form, querying for the desired code, copying this code to the Clipboard, and
pasting it into the Lookup Code field.

Note: The classification type of the lookup definition code must be of Lookup
Type (the Lookup Type option on the Lookup Definition form must be
selected).

Required If an item from this box field must be selected for the form to be saved, then
enter "true" into the corresponding Property Value field. Otherwise, type
"false" in this field.

Note: The default value for this data property is false.

Visible Field If you want this box to be displayed when Oracle Identity Manager generates
the form, then enter "true" into the corresponding Property Value field.
Otherwise, type "false" in this field.

Note: The default value for this data property is true.

Text Field
(Display Only)

Visible Field If you want this text field to be displayed when Oracle Identity Manager
generates the form, then enter "true" into the corresponding Property Value
field. Otherwise, type "false" in this field.

Note: The default value for this data property is true.

Table A–3 (Cont.) Properties Associated with Data Types for Creating Oracle Identity
Manager Forms

Data Type Data Property Description

Service Accounts

General Customization Concepts A-15

A.2.1 Service Account Customization: Scenario One
The following scenario describes how to allow a user to request a service account on
Active Directory. To create a service account, you first create a regular account, and
then use the changeToServiceAccount API to change the regular account to a service
account. The following is the process to achieve this:

1. The user logs in and requests a service account.

2. The system prompts the Active Directory supervisor for approval.

3. The Active Directory supervisor approves the request.

4. The service account is created.

5. Notification is sent to the employee that the request has been approved.

6. Later, when the service account owner is off-boarded, the owner's supervisor
should be assigned as the new owner of the service account and a notification is
sent to the owner.

To implement this scenario, perform the following steps:

1. On the Active Directory object form, add a check box field so that the user can
select whether the requested account is a service account or a regular account.

Table A–4 Service Account Management Tasks and Corresponding APIs

Tasks Description API Methods

Service Account
Change

You can change an existing regular
account to be a service account or
change an existing service account to
be a regular account. Either way, the
Service Account Change task is
inserted into the provisioning process,
becoming active in the Tasks tab of the
Process Definition. Any adapter that is
associated with this provisioning
process runs. If there is no adapter,
then a predefined response code is
attached.

tcUserOperationsIntf.changeFr
omServiceAccount

tcUserOperationsIntf.changeTo
ServiceAccount

Service Account
Alert

When a user with a linked service
account is deleted or disabled, the
Service Account Alert task is inserted
into the provisioning process of the
service account instance. You can use
this task to start the appropriate
actions in response to the event that
occurred for the user.

NA

Service Account
Moved

You can transfer ownership of a
service account from one user to
another. This translates into the
provisioning instance showing up in
the resource profile of the new owner,
and no longer in the resource profile of
the old user. The Service Account
Moved task is inserted into the
provisioning process of the resource
instance after the account is moved.
Any adapter associated with this
provisioning process runs. If there is
no adapter, then a predefined response
code is attached.

tcUserOperationsIntf.moveServ
iceAccount

Design Console Actions

A-16 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

2. Modify the Active Directory process form to incorporate the check box field and
establish data-flow.

3. Grant the user permissions to update the object form.

The service account request process is the same as the user self-request process.
The request is created and approved in the usual manner.

4. Add a conditional task to the provisioning process that will get inserted after the
creation of the account and that will check the "is service account" flag on the
process form and invoke the changeToServiceAccount() API by using the current
account's oiu_key .

When provisioning starts, the provisioning process checks the flag and loads the
changeToServiceAccount() API .

Note that tasks can send out e-mail notifications when the tasks are completed.

5. When the user is off-boarded, attach an adapter to the "Service Account Alert" task
so that the system can identify the current user, look up that user's manager or
supervisor, and load the tcUserOperationsIntf.moveServiceAccount() API to
reassign ownership of the service account appropriately.

A.2.2 Service Account Customization: Scenario Two
This section describes at a high level how to allow a user to request that service
account ownership be transferred away from another user and to the requesting user.
The following is the process to achieve this:

1. The user logs in to Oracle Identity Manager and requests a transfer of ownership
for a particular Active Directory service account away from the current user and to
the requesting user.

2. The request is forwarded to the current service account owner for approval.

3. The service account is transferred to the requesting user upon approval of the
current owner.

To implement this scenario, perform the following steps:

1. Because the Oracle Identity Manager user interface does not support account
ownership transfer requests, create a dummy resource with custom logic that will
query the service accounts present in the system for particular resource objects.

2. The approver in this scenario is the service account owner. Therefore, use a task
assignment adapter to first retrieve the service account owner, and then assign the
task to that owner.

As noted in the previous scenario, tasks can send out e-mail notifications when
tasks are completed.

3. After the approval goes through, load the moveServiceAccount() API to transfer
ownership of the service account to the requester.

A.3 Design Console Actions
Table A–5 lists the Oracle Identity Manager actions, and the conditions and results of
these actions.

Note: This use case requires heavy customization.

Design Console Actions

General Customization Concepts A-17

Table A–5 Oracle identity Manager Actions, Conditions, and Results

Action Condition Result

A user is deleted. Oracle Identity Manager
cancels all the existing
tasks in process instance
and inserts undo tasks
for these tasks, if they are
defined.

If so, then the condition for this task has
been met (the user has been revoked), and
Oracle Identity Manager inserts the task
into the existing process. If the task has an
adapter attached to it, then it will run.

A user is disabled. Oracle Identity Manager
checks each process for
any tasks that display the
Disable selection in the
Task Effect combo box.

If so, then the condition for this task has
been met (the user has been disabled), and
Oracle Identity Manager inserts the task
into the existing process. If the task has an
adapter attached to it, then it will run.

A user is enabled. Oracle Identity Manager
checks each process for
any tasks that display the
Enable selection in the
Task Effect combo box.

If so, then the condition for this task has
been met (the user has been enabled), and
Oracle Identity Manager inserts the task
into the existing process. If the task has an
adapter attached to it, then it will run.

A user's password has
been modified on the
Users form

Oracle Identity Manager
checks each process to
see if it has a Change
User Password task.

If so, then the condition for this task has
been met (the user's password has been
modified), and Oracle Identity Manager
inserts the task into all existing processes,
which have that task defined. If the task
has an adapter attached to it, then it will
run.

The data fields of an
application process
form have been
modified.

Oracle Identity Manager
checks each process to
see if it has a task that
starts with the field
label Updated naming
convention (for example,
HomeDirectory
Updated).

The condition for this task is met (the
process task begins with the field label
Updated naming convention). Oracle
Identity Manager inserts the task into all
existing processes, which have that task
defined. If the task has an adapter attached
to it, then it will run.

A user's profile
information has been
moved to a different
organization.

Oracle Identity Manager
checks each process to
see if it has a task that
begins with the words
Move User.

The condition for this task is met (the user's
profile information has been moved to a
different organization). Oracle Identity
Manager inserts the task into the existing
process. If the task has an adapter attached
to it, then it will run.

Design Console Actions

A-18 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

B

The FacesUtils Class B-1

BThe FacesUtils Class

[43]

The FacesUtils class is used in the customization use cases shown in "Using Managed
Beans" on page 30-45. This class contains various helper methods for re-rendering
components, evaluating EL expressions, and accessing attributes through binding.

Example B–1 provides the code snippet of the FacesUtils class with implementation of
some of the methods:

Example B–1 Sample FacesUtils Class

package oracle.iam.ui.sample.common.view.utils;

import java.io.IOException;

import java.util.Map;
import java.util.ResourceBundle;

import javax.el.ELContext;
import javax.el.ExpressionFactory;
import javax.el.MethodExpression;
import javax.el.ValueExpression;

import javax.faces.application.Application;
import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;

import oracle.adf.model.BindingContext;
import oracle.adf.model.binding.DCBindingContainer;
import oracle.adf.model.binding.DCControlBinding;
import oracle.adf.view.rich.context.AdfFacesContext;

import oracle.binding.AttributeBinding;
import oracle.binding.ControlBinding;

import oracle.iam.ui.platform.utils.TaskFlowUtils;

import oracle.javatools.resourcebundle.BundleFactory;

import oracle.jbo.uicli.binding.JUCtrlActionBinding;
import oracle.jbo.uicli.binding.JUCtrlListBinding;
import oracle.jbo.uicli.binding.JUEventBinding;

public class FacesUtils {

B-2 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 private FacesUtils() {
 // do not instantiate
 throw new AssertionError();
 }

 /*
 * Re-render the component.
 */
 public static void partialRender(UIComponent component) {
 if (component != null) {
 AdfFacesContext.getCurrentInstance().addPartialTarget(component);
 }
 }

 /*
 * Sets attribute value through attribute binding.
 */
 public static void setAttributeBindingValue(String attributeName,
 Object value) {
 AttributeBinding binding = getAttributeBinding(attributeName);
 if (binding != null) {
 binding.setInputValue(value);
 } else {
 throw new IllegalArgumentException("Binding " + attributeName +
 " does not exist.");
 }
 }

 /*
 * Gets attribute value using attribute binding.
 */
 public static <T> T getAttributeBindingValue(String attributeName,
 Class<T> clazz) {
 AttributeBinding binding = getAttributeBinding(attributeName);
 if (binding != null) {
 return (T)binding.getInputValue();
 } else {
 throw new IllegalArgumentException("Binding " + attributeName +
 " does not exist.");
 }
 }

 /*
 * Gets attribute value using list binding.
 */
 public static <T> T getListBindingValue(String attributeName,
 Class<T> clazz) {
 ControlBinding ctrlBinding = getControlBinding(attributeName);
 if (ctrlBinding instanceof JUCtrlListBinding) {
 JUCtrlListBinding listBinding = (JUCtrlListBinding)ctrlBinding;
 return (T)listBinding.getAttributeValue();
 } else {
 throw new IllegalArgumentException("Binding " + attributeName +
 " is not list binding.");
 }
 }

 public static ControlBinding getControlBinding(String name) {
 ControlBinding crtlBinding = getBindings().getControlBinding(name);

The FacesUtils Class B-3

 if (crtlBinding == null) {
 throw new IllegalArgumentException("Control Binding '" + name +
 "' not found");
 }
 return crtlBinding;
 }

 public static AttributeBinding getAttributeBinding(String name) {
 ControlBinding ctrlBinding = getControlBinding(name);
 AttributeBinding attributeBinding = null;
 if (ctrlBinding != null) {
 if (ctrlBinding instanceof AttributeBinding) {
 attributeBinding = (AttributeBinding)ctrlBinding;
 }
 }
 return attributeBinding;
 }

 public static DCBindingContainer getBindings() {
 FacesContext fc = FacesContext.getCurrentInstance();
 ExpressionFactory exprfactory =
 fc.getApplication().getExpressionFactory();
 ELContext elctx = fc.getELContext();

 ValueExpression valueExpression =
 exprfactory.createValueExpression(elctx, "#{bindings}",
 Object.class);

 DCBindingContainer dcbinding =
 (DCBindingContainer)valueExpression.getValue(elctx);

 return dcbinding;
 }

 /*
 * Evaluates EL expression and returns value.
 */
 public static <T> T getValueFromELExpression(String expression,
 Class<T> clazz) {
 FacesContext facesContext = FacesContext.getCurrentInstance();
 Application app = facesContext.getApplication();
 ExpressionFactory elFactory = app.getExpressionFactory();
 ELContext elContext = facesContext.getELContext();
 ValueExpression valueExp =
 elFactory.createValueExpression(elContext, expression, clazz);
 return (T)valueExp.getValue(elContext);
 }

 /*
 * Gets MethodExpression based on the EL expression. MethodExpression can then
be used to invoke the method.
 */
 public static MethodExpression getMethodExpressionFromEL(String expression,
 Class<?> returnType,
 Class[] paramTypes) {
 FacesContext facesContext = FacesContext.getCurrentInstance();
 Application app = facesContext.getApplication();
 ExpressionFactory elFactory = app.getExpressionFactory();
 ELContext elContext = facesContext.getELContext();
 MethodExpression methodExp =

B-4 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

 elFactory.createMethodExpression(elContext, expression, returnType,
 paramTypes);
 return methodExp;
 }

 public static ELContext getELContext() {
 return FacesContext.getCurrentInstance().getELContext();
 }

 /*
 * Shows FacesMessage. The message will not be bound to any component.
 */
 public static void showFacesMessage(FacesMessage fm) {
 FacesContext.getCurrentInstance().addMessage(null, fm);
 }

 /*
 * Launch bounded taskFlow based on provided parameters.
 */
 public static void launchTaskFlow(String id, String taskFlowId,
 String name, String icon,
 String description, String helpTopicId,
 boolean inDialog,
 Map<String, Object> params) {
 // create JSON payload for the contextual event
 String jsonPayLoad =
 TaskFlowUtils.createContextualEventPayLoad(id, taskFlowId,
 name, icon, description,
 helpTopicId, inDialog,
 params);

 // create and enqueue contextual event
 DCBindingContainer bc =

(DCBindingContainer)BindingContext.getCurrent().getCurrentBindingsEntry();
 DCControlBinding ctrlBinding =
bc.findCtrlBinding(TaskFlowUtils.RAISE_TASK_FLOW_LAUNCH_EVENT);
 // support both bindings - using eventBinding as well as methodAction
 if (ctrlBinding instanceof JUEventBinding) {
 JUEventBinding eventProducer = (JUEventBinding) ctrlBinding;
 bc.getEventDispatcher().queueEvent(eventProducer, jsonPayLoad);
 } else if (ctrlBinding instanceof JUCtrlActionBinding) {
 JUCtrlActionBinding actionBinding = (JUCtrlActionBinding) ctrlBinding;
 bc.getEventDispatcher().queueEvent(actionBinding.getEventProducer(),
jsonPayLoad);
 } else {
 throw new IllegalArgumentException("Incorrect binding for " +
TaskFlowUtils.RAISE_TASK_FLOW_LAUNCH_EVENT);
 }
 bc.getEventDispatcher().processContextualEvents();
 }

 /*
 * Redirect to a provided url.
 */
 public static void redirect(String url) {
 try {
 FacesContext fctx = FacesContext.getCurrentInstance();
 fctx.getExternalContext().redirect(url);
 fctx.responseComplete();

The FacesUtils Class B-5

 } catch (IOException ex) {
 throw new RuntimeException(ex);
 }
 }

 /**
 * Retrieve value in ressource bundle
 * @param key
 * @return
 */
 public static String getBundleValue(String bundleName, String key) {
 FacesContext ctx = FacesContext.getCurrentInstance();
 try {
 ResourceBundle bundle =
 BundleFactory.getBundle(bundleName,
ctx.getViewRoot().getLocale());
 return bundle.getString(key);
 } catch (Exception e) {
 return "";
 }
 }
}

B-6 Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager

Index-1

Index

A
account status reconciliation, 16-6
action field, 8-68
actions, 3-57
activeRequest, 32-9
adapter, 8-56

mapping, 8-56
Adapter Factory, 1-8, 2-6
adapter mapping information, 8-56
Adapter Variables, 8-13
Adapters, 8-9
adapters

compilation, 38-12
entity adapter variable mappings, 8-65
literals, 8-57
organization definition, 8-58
prepopulate adapter variable mappings, 8-66
process definition, 8-58
process task adapter variable mappings, 8-61
references, 8-57
rule generator adapter variable mappings, 8-65
task, 8-56
task assignment adapter variable mappings, 8-63
task mapping, 8-56
tasks, 8-57
user definition, 8-58
variable, 8-59
variable mapping, 8-59
variables, 8-56

add
custom SoD engine, 22-39

addRequest, 32-5
ADF component

hiding and deleting, 30-28
admin role, 3-2
API services, 2-3
APIs, 31-1

commonly used services, 31-3
developing clients for Oracle Identity

Manager, 31-4
legacy APIs, 31-5
OIMclient, 31-1
Oracle Identity Manager services, 31-1, 31-2
reconciliation, 23-24
tcUtilityFactory, 31-2

application instance, 4-1
connected, 4-1
disconnected, 4-1

approval
operation level, 21-2
request level, 21-2

approval policy, 21-3
approval workflow, 2-12
architecture, 2-1

Business Services Tier, 2-2
Data Tier, 2-17
Platform Services, 2-10
Presentation Tier, 2-2
reconciliation, 23-6
tiers, 2-1

Archiving Directory parameter, 17-4
archiving directory, permissions on, 17-6
assigning and event handler or adapter, 4-19
asynchronous SoD validation process, 22-30
Attaching Pre-Populate Adapters, 8-47
Attaching Process Task Adapters to Process

Tasks, 8-51
Attaching Task Assignment Adapters to Process

Tasks, 8-43
attestation

definition, 1-7
attribute-level security, 3-17

denied attributes, 3-18
attributes, adding new, 14-13
audit and compliance management

attestation automation, 1-7
comprehensive reporting, 1-6
identity reconciliation, 1-6
rogue and orphan account, 1-6

audit and reports, 2-27
audit engine, 40-1
audit levels, 40-1
audit management, 1-6
auditing

audit levels, 40-1
audit messages, 40-2

authorization policies, 2-14

B
backend security, 3-56

Index-2

Batch Size parameter, 19-6
batched reconciliation, 16-7, 19-6
batchRequest, 32-14
batchsize parameter, 23-2
best practices

Deployment Manager, 38-9
event handler, 28-17
reconciliation, 23-34

BPEL process, 21-3
Bulk Load, 2-27
Bulk Load utility, 24-1

cleaning up, 24-32
creating a datafile, 24-5
creating a tablespace, 24-5
creating input source, 24-8
features, 24-1
fixing exceptions, 24-14
gathering performance data, 24-32
generating audit snapshot, 24-15
handling exceptions, 24-13
input parameters, 24-11
installing, 24-2
loading account data, 24-16
loading OIM User data, 24-7
loading role, role hierarchy, role membership, and

role category data, 24-23
monitoring progress, 24-13
options, 24-4
preparing your database, 24-5
running, 24-6
scripts, 24-3
setting default password, 24-8
temporary tables, 24-3
verifying the outcome, 24-15

bulk orchestration, 28-1
bulk reconciliation, 23-3

C
callback

definition, 35-1
callback service, 35-1

configuring, 35-8
event processing, 35-3
mapping attributes, 35-4
overview, 35-1
retries, 35-4
sending callbacks, 35-6
troubleshooting, 35-13

CallbackConfiguration.xml, 35-8
callbacks, 35-1

callback service, 35-1
event processing, 35-3

cancelRequest, 32-13
challenge questions

customization, 30-37
child data sets, 16-4, 16-5, 19-22, 19-26, 19-42, 20-10
Code, 8-68
common services, 2-27
components, 2-26

Concatenation Transformation Provider, 17-15
configuration

callbacks, 35-8
configure

integration with LDAP, 2-20
plug-in, 27-5
reports, 39-5
scheduled task plugin.xml, 26-4
scheduled task XML file, 26-3
SoD engine, 22-5

configuring LDAP container rules, 25-1
connected application instance, 4-1
Connector Framework, 2-4
connector load balancer, 14-1
connector objects, 16-9, 19-28, 19-33, 19-45
connector performance

indexes, 23-34
connector server, 14-1
connectors, 2-4
containerID field, 19-16
context, 29-1
converting disconnected application instance to

connected, 4-36
create, 5-7

process definition, 5-7
scheduled task, 26-1
transformation layer, 22-32

Create a Remote Task, 8-21
Create a Response, 8-35
Create a Stored Procedure Task, 8-22
Create a Utility Task, 8-25
Create an Oracle Identity Manager API Task, 8-26
create directory structure

scheduled task, 26-5
Creating Adapter Tasks, 8-15
creating IT resources, 4-1
creating SOA composite, 21-6
CSV files, 20-3
CSV Reconciliation Format Provider, 17-7, 18-3,

18-16
Custom Authentication Credentials Namespace

parameter, 17-9
Custom Authentication Header Element

parameter, 17-10
Custom Element to Store Password parameter, 17-10
Custom Element to Store User Name

parameter, 17-10
custom event handler, 28-3
custom events definition XML, 28-11
custom help topics

adding, 30-33
custom post-process event handler, 28-7
custom providers, 16-8, 18-1, 19-45
custom SoD engine, 22-4
customize

interface, 30-1
reconciliation operations, 23-22
UI, 30-1

customizing
interface, 30-1

Index-3

customizing challenge questions, 30-37
customizing Help, 30-33

D
Data Object Manager, 28-19
data sets, 19-15

child, 16-4, 16-5, 19-22, 19-26, 19-42, 20-10
fields, adding or editing, 19-19
OIM, 19-15, 19-27, 19-44
OIM - Account, 20-8, 20-10
OIM - Account data set, 16-5
OIM - User, 20-9
OIM - User data set, 16-5
OIM Data Sets, 16-5
Provisioning Staging, 19-17
Provisioning Staging data sets, 16-5
Reconciliation Staging, 16-4, 19-15, 20-9
Source, 19-15
Source data set, 16-4

data types, A-1, A-9
database, 2-18
database back up, 38-12
date formats, 16-8
declare

plug-ins, 27-7
implicit declaration, 27-7

define metadata
scheduled task, 26-2

defining event metadata, 34-2
defining IT resources, 4-7
definition data, 38-10
delegated administration, 1-3
Delete a Response, 8-36
deleteRequest, 32-7
Deleting Adapter Tasks, 8-34
deleting IT resources, 4-5
denied attributes, 3-18
deploy

reports, 39-2
service components, 22-41
SOA composites, 21-8
transformation layer, 22-33

deploying SOA composite, 21-40
Deploying the Request web service, 21-10
Deployment Manager, 1-2, 38-1

best practices, 38-9
exporting deployments, 38-4
exporting system objects, 38-9
features, 38-2
importing deployments, 38-6
limitations, 38-3
troubleshooting, 38-13

Description field, 8-68
Design Console, A-1
design parameters, 19-5
develop

clients for Oracle Identity Manager, 31-4
event handler, 28-1

LDAP synchronization operations, 25-1

plug-ins, 27-1
scheduled task, 26-1
scheduled task class, 26-4

developing
identity connectors using .NET, 11-1

developing flat file .NET connector, 11-1
developing notification events, 34-1
disable

SoD, 22-10
Disabling Adapters, 8-13
disconnected application instance, 4-1

converting to connected application
instance, 4-36

E
EL, 30-21
EL expression, 30-21
Email Definition form, 5-1
E-Mail Notification, 5-27

assign, 5-27
enable

SoD, 22-9
enable logging

SoD-related events, 22-54
entitlements

marking fields, 22-31
Entity Adapters, 8-37
entity adapters, 38-12
event callbacks

sending, 35-6
event handler, 28-2

best practices, 28-17
custom event handler, 28-3
developing, 28-1
developing LDAP synchronization

operations, 25-1
migrating, 28-17
post-process, 28-7
squencing the execution, 28-14
troubleshooting, 28-18
XML definition, 28-11

Event Handler Manager Form, 28-19
event handlers, 4-19
event metadata

defining, 34-2
exception handling, 18-10
exclusion lists, 14-7
Execution Schedule, 8-11
export descriptions, 38-10
exporting data

dependencies, 38-11
extending

request management operations
prepopulating an attribute, 21-53
running custom code, 21-51
validating request data, 21-52

Index-4

F
FacesUtils class, B-1
failure threshold for stopping reconciliation, 16-8
features, 1-1
field-level security, 3-58
File Encoding parameter, 17-6
File Prefix parameter, 17-4
Fixed Column Width parameter, 17-5
flat file .NET connector, 11-1
form names, 17-4, 19-27, 20-8
full reconciliation, 16-7
functional and data security mapping, 3-21

G
General tab, 5-15
generate

Oracle Identity Management reports, 39-8
generating reports

against sample data source, 39-8
against the BPEL-based JDBC data source, 39-9
against the production JDBC data source, 39-9

Generic Technology Connector, 2-7
generic technology connector

connector objects, 16-9, 19-28, 19-33
generic technology connector framework

features, 16-5
generic technology connectors

account status reconciliation, 16-6
architecture, 16-3
batched reconciliation, 16-7
creating, 19-1
data sets

 See data sets
date formats, 16-8
exporting, 19-32
features, 16-5
full reconciliation, 16-7
functional architecture, 16-2
importing, 19-33, 20-8
incremental reconciliation, 16-7
managing, 19-31
mappings, purpose, 16-2
modifying, 19-31, 19-46
need for, 16-1
providers

 See providers
provisioning module, 16-4
reconciliation of multivalued attribute data

deletion, 16-7
troubleshooting, 20-1

configuration issues, 20-7
general issues, 20-1

trusted source reconciliation, 16-6
GTC, 2-7

H
handling race conditions, 23-5
Help, 30-33

adding inline help, 30-34
custom help topics, 30-33

Help URL, 8-68
high availability, 2-18
Home page customization, 30-35
horizontal tables, 23-3, 23-4
How a Process Task Adapter Works, 8-50
Human task, 21-4

I
ICF, 2-4

best practices and FAQs, 15-1
filter syntax, 12-19
GroovyFilterBuilder, 12-19
integration with Oracle Identity Manager, 12-1

architecture, 12-1
Java APIs, 13-1
predefined scheduled tasks, 12-17

ID Attribute for Child Dataset Holding Group
Membership Information parameter, 17-11

ID field, 19-16, 19-19, 19-30
Identity Administration, 2-27
identity certification, 1-7
identity connector, 2-5

common customizations, 14-1
connector load balancer, 14-1
connector server, 14-1
developing identity connectors using .NET, 11-1
ICF Provisioning Manager, 12-9
Oracle Identity Manager lookups, 12-2
resource exclusion list, 14-7
SSL for connector server and Oracle Identity

Manager, 14-9
target system attributes, 14-10
transformation of data during user

reconciliation, 14-5
validation of data during reconciliation and

provisioning, 14-3
Identity Connector Framework, 2-4

identity connector, 2-5
identity connector framework

bundle JAR, 9-23
Java Connector Server, 9-26
.NET Connector Server, 9-29
server, 9-24
SSL, 9-29

identity store, 2-19
implementing taskflow region, 3-57
importing data, 38-12
incremental reconciliation, 16-7
inline help

adding, 30-34
integrated solutions

Adapter Factory, 1-8
predefined connectors, 1-8

Integration, 5-20
integration

Oracle Identity Manager and LDAP, 2-20
integration services, 2-4

Index-5

integration solutions, 1-8
Issue Audit Messages Task, 40-2
IT Resources Type Definition Form, 4-6
IT resources, creating, 4-1
IT resources, deleting, 4-5
IT resources, managing, 4-3
IT resources, modifying, 4-4
IT resources, viewing, 4-4

J
Java Connector Server, 9-26

K
Key field, 8-68

L
LDAP, 2-19, 2-20

container rules, 25-1
LDAP container rules

configuring, 25-1
LDAP identity store, 2-20

provisioning, 2-21
reconciliation, 2-22

LDAP integration
configuring, 2-20

LDAP synchronization operations
developing event handlers, 25-1

listTargets, 32-8
logging, 18-10
Lookup Definition form, 7-1
lookup fields, 19-22
Lookup Query, A-11
lookupRequest, 32-10
lookupUsernamePolicy, 32-13

M
managed beans, 30-42
managing IT resources, 4-3
managing sandboxes, 30-4
mapping

Identity Manager and SPML attributes, 35-4
Mapping Rule Generator Adapter Variables, 8-38
mappings, 16-8, 19-18, 19-20, 19-43

examples of, 19-18
limitations, 20-10
transformation mappings, 20-10

mark fields as entitlements, 22-31
MDS, 2-18
MDS backup, 37-3
menu items, for creating generic technology

connectors, 19-3
metadata, 19-12

deleting from MDS, 37-2
exporting to MDS, 37-1
importing from MDS, 37-2

metadata definition
 See metadata detection

metadata detection, 18-2, 19-11, 19-13, 19-32, 19-41,
20-13

Metadata Store, 2-18
modify

approval workflow for SoD, 22-14
provisioning workflow for SoD, 22-27
registration XML file, 22-33
registration XML file for SoD engine, 22-41

Modify a Response, 8-36
Modify an Adapter Variable, 8-15
Modifying Adapter Tasks, 8-33
modifying IT resources, 4-4
modifying process tasks, 5-15
modifyRequest, 32-6
multilanguage support, 16-8, 18-13, 20-4
Multiple server instances, 1-2
multiple trusted source reconciliation, 4-28

N
naming conventions, 38-10
.NET Connector Server, 9-29
.NET connector server

deploying the connector bundle, 11-11
Note field, 8-68
notification

custom notification, 34-2
definition, 35-1
event metadata XML, 34-2
troubleshooting, 34-8

notification event, 34-1
developing, 34-1

Notification tab, 5-27
notification template, 34-1

O
OAACG SIL Provider, 22-3, 22-4
objectClass field, 19-16
OES, 3-1
OES policies, 3-47
OIA SIL Provider, 22-4
OIM - Account data set, 16-5, 20-8, 20-10
OIM - User data set, 16-5, 20-9
OIM Data Sets, 16-5
OIM data sets, 19-15, 19-27, 19-44
OIM User, 16-9
open architecture, 1-3
operational data, 38-10
operation-level approval, 21-2
Oracle Application Access Controls Governor, 22-3,

22-5, 22-11, 22-32, 22-34, 22-36, 22-39, 22-40, 22-43
Oracle e-Business Suite, 22-6, 22-32, 22-36, 22-39
Oracle e-Business User Management, 22-3, 22-14,

22-28
Oracle Entitlements Server, 3-1
Oracle Identity Analytics, 22-8
Oracle Identity Management reports, 39-1
Oracle Identity Manager

architecture, 2-1

Index-6

components, 2-26
connectors, 2-4
features, 1-1
LDAP integration, 2-20
security architecture, 3-1
security model, 3-2
system requirements, 1-9
tiers of architecture, 2-1

Oracle Identity Manager APIs, 31-1
Oracle Identity Manager reports, 2-17
orchestration, 28-1
Organization Provisioning, A-2
organizational hierarchy

exporting, 38-10

P
partner link, 21-3
password fields, 19-42, 20-6
password-like fields, 19-43, 20-6
permissions, for creating generic technology

connectors, 19-3
plug-in

configuring, 27-5
Plug-in store

database store, 27-3
file store, 27-2

Plug-in stores, 27-2
Plug-in Framework, 2-11
plug-ins

declaring, 27-7
implicit declaration, 27-7

developing, 27-1
directory structure, 27-6
registering, 27-7

using APIs, 27-7
using registration utility, 27-8

policy migration, 38-19
policy obligations, 3-20
preconfigured SoD connectors

Oracle e-Business User Management, 22-3, 22-14,
22-28

SAP User Management connector, 22-3, 22-14
predefined providers

CSV Reconciliation Format Provider, 17-7, 18-3,
18-16

Shared Drive Reconciliation Transport
Provider, 17-1, 18-16, 19-41, 19-44

SPML Provisioning Format Provider, 17-7, 18-3,
18-9, 18-17

Transformation Provider, 17-15
Validation Provider, 17-21
Web Services Provisioning Transport

Provider, 17-12, 18-9, 18-17
predefined request datasets, 21-50
Process Definition form, 5-5
process engine, 1-4
process forms, 17-4, 19-27, 20-3, 20-8
providers

definition, 16-2

parameters, design, 19-5
parameters, run-time, 19-5
Provisioning Format Providers, 16-5, 18-3, 19-5
Provisioning Transport Providers, 16-5, 18-3, 19-5
Reconciliation Format Providers, 16-4, 18-2, 18-8,

19-4
Reconciliation Transport Providers, 16-4, 18-2,

18-8, 19-4
resource bundles, 18-13
reusing, 18-15
role, 18-1
selecting, 19-3
Transformation Provider, 16-4
Transformation Providers, 16-4, 19-20
Validation Providers, 16-4, 19-26
XML files, 18-10
 See also predefined providers

provisioning, 1-8, 2-27
application instance, 4-1
Oracle Identity Manager to LDAP, 2-21

provisioning callback, 21-3
Provisioning Format Providers, 16-5, 18-3, 19-5
Provisioning Staging, 16-5
Provisioning Staging data sets, 19-17
Provisioning Transport Providers, 16-5, 18-3, 19-5
PSO

regarding mapping, 35-4
publishing entities, 3-46

R
Reconcile Deletion of Multivalued Attribute Data

parameter, 19-8
reconciliation

action module, 23-15
action rules, 23-12, 23-15
adding new attributes, 14-13
ad-hoc linking, 23-4, 23-6
APIs, 23-12
architecture, 23-6
archival, 23-17
auto retry, 23-2, 23-5
backward compatibility, 23-17
batches, 23-3
best practices, 23-34
bulk, 23-3
connector, 23-16
engine, 23-13
error messages, 23-33
features, 23-1
horizontal tables, 23-3, 23-4
interface, 23-17
Java engine, 23-3
LDAP to Oracle Identity Manager, 2-22
mapping rules, 23-11
matching module, 23-13
matching rules, 23-12
metadata, 23-11
parameters, 23-2

batchsize, 23-2

Index-7

performance enhancements, 23-1
profile, 23-8
race conditions, 23-5
RECON_EXCEPTIONS table, 23-33
run, 23-12
schema, 23-12
target, 23-12
target attributes, 23-12
troubleshooting, 23-29

Reconciliation Engine, 2-27
reconciliation engine, 23-13

action module, 23-15
matching module, 23-13

Reconciliation Format Providers, 16-4, 18-2, 18-8,
19-4

reconciliation of multivalued attribute data
deletion, 16-7

reconciliation operations
customizing, 23-22

reconciliation profile, 23-23
changing profile mode, 23-24
updating, 23-23

Reconciliation Staging data sets, 16-4, 19-15, 20-9
Reconciliation Transport Providers, 16-4, 18-2, 18-8,

19-4
Reconciliation Type parameter, 19-7
register

new target system, 22-35
plug-ins, 27-7

using APIs, 27-7
using registration utility, 27-8

SIL provider, 22-43
registration XML file

modifying, 22-33
related groups of objects

exporting, 38-9
Remedy field, 8-68
Remote Manager, 2-10
Remote Manager form, 7-1, 7-5
removing an e-mail notification, 5-28
Removing Process Task Adapters from Process

Tasks, 8-55
Removing Rule Generators from Form Fields, 8-42
Removing Task Assignment Adapters from Process

Tasks, 8-46
renaming the JDBC-based JDBC data source, 39-9
report permissions, 38-12
reporting, 2-17
reports, 39-1

configuring, 39-5
deploying, 39-2
generating, 39-8
Oracle BI Publisher, 39-2

repository, 2-18
request, 21-2
request callback, 21-3
request dataset, 21-50

predefined, 21-50
request management operations, 21-51

extending, 21-51

prepopulating an attribute, 21-53
running custom code, 21-51
validating request data, 21-52

request payload, 21-3
request service, 2-12, 2-13
request web service, 21-3
request-level approval, 21-2
Reset Count field, 8-68
resetPasswordRequest, 32-12
resource bundles, 18-13
Resource Objects form, 4-5
Resources, 8-11
Responses, 8-12
resumeRequest, 32-9
reusing providers, 18-15
role permissions, 38-12
Rule Designer form, 4-5
rule elements, A-1
run-time parameters, 19-5

S
sample XML

scheduled task, 26-3
sandbox, 30-4
sandboxes

activate, 30-4
activating, 30-9
concurrency conflicts, 30-6
creating, 30-8
deactivate, 30-5
deactivating, 30-9
deleting, 30-11
export, 30-5
exporting, 30-10
import, 30-5
importing, 30-10
managing, 30-4
publish, 30-5
publishing, 30-10
reverting changes, 30-12
viewing and modifying, 30-9

SAP CUA, 22-36
SAP GRC, 22-3, 22-7, 22-12, 22-32, 22-39
SAP GRC SIL Provider, 22-3, 22-4
SAP R/3, 22-7, 22-36
SAP User Management connector, 22-3, 22-14
scheduled task

configuring XML file, 26-3
creating, 26-1
creating directory structure, 26-5
defining metadata, 26-2
developing, 26-1
developing scheduled task class, 26-4
Issue Audit Messages Task, 40-2
sample XML file, 26-3

scheduled task plugin.xml
configuring, 26-4

scheduled tasks, 38-12
parameter matching, 38-11

Index-8

scheduler service, 2-16
Scheduling Rule Generators, 8-37
SDK table

updates, 38-13
security

actions, 3-57
attribute-level security, 3-17
backend security, 3-56
field-level security, 3-58
functional and data security mapping, 3-21
implementing taskflow region, 3-57
OES policies, 3-47
policy obligations, 3-20
publishing entities, 3-46
UI-level security, 3-56

security architecture, 3-1
security model, 3-2
Segregation of Duties, 2-11
service account

management tasks, A-14
service accounts, A-14
service components

deploying, 22-41
Severity field, 8-68
Shared Drive Reconciliation Transport

Provider, 17-1, 18-16, 19-41, 19-44
SIL, 22-2
SIL provider, 22-4

registering, 22-43
SIL providers, 22-3, 22-4, 22-34, 22-43

OAACG, 22-3, 22-4
OIA, 22-4
SAP, 22-3, 22-4

SILConfig.xml, 22-35, 22-37, 22-39, 22-43
SOA composite, 21-3

creating, 21-6
deploying, 21-40

SOA composites
deploying, 21-8

SoD, 2-11, 22-1
custom target system, 22-32
disabling, 22-10
enabling, 22-9
enabling logging, 22-54
modifying approval workflow, 22-14
modifying provisioning workflow, 22-27
provisioning workflow, 22-49

request provisioning with
DefaultSoDApproval, 22-52

SoD Invocation Library, 22-2
troubleshooting, 22-54
validation process, 22-1

SoD check Web service, 22-13
SoD engine

configuring, 22-5
custom, 22-39
modifying registration XML file, 22-41

SoD engines
Oracle Application Access Controls

Governor, 22-3, 22-5, 22-11, 22-32, 22-34,

22-36, 22-39, 22-40, 22-43
Oracle Identity Analytics, 22-8
SAP GRC, 22-3, 22-7, 22-12, 22-32, 22-39

SoD target systems
Oracle e-Business Suite, 22-6, 22-32, 22-36, 22-39
SAP CUA, 22-36
SAP R/3, 22-7, 22-36

Source, 16-4
Source data sets, 19-15
Source Date Format parameter, 19-9
Specified Delimiter parameter, 17-5
SPML, 32-1

activeRequest, 32-9
addRequest, 32-5
attributes and LDAP mappings, 32-16
batchRequest, 32-14
cancelRequest, 32-13
deleteRequest, 32-7
examples, 32-27
general considerations, 32-3
listTargets, 32-8
lookupRequest, 32-10
lookupUsernamePolicy, 32-13
modifyRequest, 32-6
resetPasswordRequest, 32-12
resumeRequest, 32-9
securing Web services, 32-14
statusRequest, 32-7
suggestUsername, 32-10
suspendRequest, 32-8
validateUsername, 32-10
XSD, 32-1

SPML attributes, 35-4
SPML operations, supported, 17-8
SPML Provisioning Format Provider, 17-7, 18-3,

18-9, 18-17
SPML Web Service Binding Style (DOCUMENT or

RPC) parameter, 17-10
SPML Web Service Complex Data Type

parameter, 17-10
SPML Web Service Operation Name

parameter, 17-10
SPML Web Service Soap Message Body Prefix

parameter, 17-10
SPML Web Service Target Namespace

parameter, 17-10
SSL

and identity connector framework, 9-29
communication between connector server and

Oracle Identity Manager, 14-9
SSL, configuring for SoD validation, 22-40
SSL, configuring for Web services, 17-12
Staging Directory (Multivalued identity data)

parameter, 17-3
Staging Directory (Parent identity data)

parameter, 17-1
staging directory, permissions on, 17-6
standard target system attributes, 14-10
statusRequest, 32-7
Step 1 Provide Basic Information page, 16-9, 17-7,

Index-9

19-3, 19-28, 19-40
Step 2 Specify Parameter Values page, 19-5, 19-28,

19-41
Step 3 Modify Connector Configuration page, 17-4,

19-12, 19-28, 19-42, 20-4
Step 4 Verify Connector Form Names page, 17-4,

19-27, 19-28, 20-1
Step 5 Verify Connector Information page, 19-28,

20-1
Stop Reconciliation Threshold parameter, 19-6
Stop Threshold Minimum Records parameter, 19-7
suggestUsername, 32-10
suspendRequest, 32-8
system objects

exporting, 38-9
system requirements, 1-9

T
Tab Delimiter parameter, 17-5
Tabs of the Adapter Factory Form, 8-11
Target Date Format parameter, 19-10
Target ID parameter, 17-9
target system

registering, 22-35
Task Dependency tab, 5-22
task flow

securing, 30-32
taskflow region, 3-57
taskflows, 30-42
transformation, 14-5
transformation layer

creating, 22-32
deploying, 22-33

Transformation Providers, 16-4, 17-15
Concatenation Transformation Provider, 17-15
Translation Transformation Provider, 17-16

Transformation providers, 19-20
Translation Transformation Provider, 17-16
troubleshooting

callbacks, 35-13
Deployment Manager, 38-13
event handlers, 28-18
notification, 34-8
reconciliation, 23-29

trusted source reconciliation, 16-6, 19-4

U
UDF, 20-6
UI customization, 30-1

adding a link, 30-26
branding and logo, 30-16
concepts, 30-2
customizing Home page, 30-35
customizing skins, 30-13
developing managed beans, 30-42
EL expression, 30-21
hiding and deleting ADF component, 30-28
pages, 30-20

securing task flow, 30-32
showing and hiding attributes, 30-29
showing and hiding components, 30-24
showing request profiles conditionally, 30-25
taskflows, 30-42
transitional UI, 30-40
Web Composer, 30-3

UI-level security, 3-56
Unique Attribute (Parent Data) parameter, 17-5
update

reconciliation profile, 23-23
Usage Lookup, 8-12
user account menu items, 19-3
user account permissions, 19-3
user account status reconciliation, 17-18, 19-20, 19-26
user modifiable metadata files, 37-2
User Name (authentication) parameter, 17-9
User Password (authentication) parameter, 17-9
utilities, 36-1

Bulk Load, 24-1
Delete JAR, 37-6
Delete Resource Bundle, 37-7
deployment and undeployment, 36-1
Download JAR, 37-5
Download Resource Bundle, 37-6
test to production, 36-1
Upload JAR, 37-5
Upload Resource Bundle, 37-6

V
validateUsername, 32-10
Validation Providers, 16-4, 19-26
Validation Providers, predefined, 17-21
value objects, 18-9
Variable List, 8-12
variables, A-1, A-8
viewing IT resources, 4-4

W
warnings, 38-10
Web Composer, 30-3
Web Service SOAP Action parameter, 17-9
Web Service URL parameter, 17-12
Web Services Provisioning Transport

Provider, 17-12, 18-9, 18-17
Web services, configuring SSL for, 17-12
Web-based user self-service, 1-3
workflow

architecture, 21-4
BPEL process, 21-3
concepts, 21-2
deploying SOA composite, 21-40
deploying the Request web service, 21-10
developing workflow, 21-9
Human task, 21-4
overview, 21-1
partner link, 21-3
provisioning callback, 21-3

Index-10

request callback, 21-3
request payload, 21-3
request web service, 21-3
SOA composite, 21-3

workflow and policy
deprovisioning, 1-9
dynamic error handling, 1-5
policy management, 1-5
provisioning, 1-8
request tracking, 1-6
transaction integrity, 1-6
workflow management, 1-5

workflow and request service, 2-28
workflow architecture, 21-4
workflows, 21-1
Working with Responses, 8-35
WSSE Configured for SPML Web Service?

parameter, 17-9

X
XML files

generic technology connectors, 19-28
providers, 18-10

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Concepts
	1 Product Overview
	1.1 Key Features and Benefits
	1.1.1 Ease of Deployment
	1.1.2 Simplified UI Customization
	1.1.3 Simplified Configuration
	1.1.4 Flexibility and Resilience
	1.1.5 Maximum Reuse of Existing Infrastructure
	1.1.6 Extensive User Management
	1.1.7 Web-Based User Self-Service
	1.1.8 Modular and Scalable Architecture
	1.1.9 Based on Leading Software Development Standards
	1.1.10 Powerful and Flexible Process Engine
	1.1.11 Built-In Change Management
	1.1.12 Workflow and Policy
	1.1.13 Audit and Compliance Management
	1.1.14 Integration Solutions
	1.1.15 User Provisioning

	1.2 System Requirements and Certification

	2 Product Architecture
	2.1 How Oracle Identity Manager Works: The Tiers of Oracle Identity Manager
	2.1.1 Presentation Tier
	2.1.2 Business Services Tier
	2.1.2.1 The API Services
	2.1.2.2 Integration Services
	2.1.2.3 Platform Services

	2.1.3 Middleware Tier
	2.1.3.1 Request Service and Approval Workflow
	2.1.3.2 Authorization Service
	2.1.3.3 UI Customization Framework
	2.1.3.4 Scheduler Service
	2.1.3.5 Reporting

	2.1.4 The Data Tier
	2.1.4.1 Oracle Identity Manager Database
	2.1.4.2 The Metadata Store
	2.1.4.3 The Identity Store
	2.1.4.4 Integration Between LDAP Identity Store and Oracle Identity Manager

	2.2 System Components

	3 Security Architecture
	3.1 Security Model
	3.1.1 Admin Role Assignment
	3.1.2 Attribute-Level Security for the User Attributes
	3.1.2.1 Using Plug-ins to Pass Attributes for Policy Evaluation

	3.1.3 Policy Obligations

	3.2 Functional and Data Security Mapping
	3.3 Publishing Entities to Organizations
	3.4 Managing OES Policies
	3.4.1 Customizing the Authorization Policies
	3.4.1.1 Controlling Who can View Which Users
	3.4.1.2 Controlling Who can Modify Which Users
	3.4.1.3 Controlling Who can View Which Links
	3.4.1.4 Controlling Who can Request an Account in an Application Instance
	3.4.1.5 Controlling Who can Modify an Account
	3.4.1.6 Controlling Who can Manage an Application Instance
	3.4.1.7 Controlling Who can Change User Password
	3.4.1.8 Controlling Who can Change Account Password
	3.4.1.9 Controlling Which Operations Are Direct or Request-Based
	3.4.1.10 Controlling the Denied Attributes for Self

	3.5 Enforcing Functional Security
	3.5.1 Implementing Task Flow or Region
	3.5.2 Defining Actions
	3.5.3 Implementing Field-Level Security

	Part II Application Provisioning
	4 Developing Application Instances
	4.1 Creating IT Resources
	4.2 Managing IT Resources
	4.2.1 Viewing IT Resources
	4.2.2 Modifying IT Resources
	4.2.3 Deleting IT Resources

	4.3 Managing Resources By Using the Design Console
	4.3.1 Overview of Resource Management
	4.3.2 IT Resources Type Definition Form
	4.3.2.1 Defining a Template (a Resource Type) for IT Resources
	4.3.2.2 Tabs on the IT Resource Type Definition Form
	4.3.2.3 IT Resource Type Definition Table

	4.3.3 Rule Designer Form
	4.3.3.1 Creating a Rule
	4.3.3.2 Tabs on the Rule Designer Form
	4.3.3.3 Rule Designer Table

	4.3.4 Resource Objects Form
	4.3.4.1 Creating a Resource Object
	4.3.4.2 Tabs on the Resource Objects Form
	4.3.4.3 Multiple Trusted Source Reconciliation

	4.3.5 Service Account Management

	4.4 Converting a Disconnected Application Instance to Connected Application Instance
	4.4.1 Creating a Disconnected Application Instance in the Production Environment
	4.4.2 Exporting Disconnected Application Instance From Production Environment
	4.4.3 Importing the Disconnected Application Instance in Test Environment
	4.4.4 Modifying the Application Instance from Disconnected to Connected
	4.4.5 Testing the Connected Application Instance

	5 Developing Provisioning Processes
	5.1 Overview of Process Management
	5.2 Email Definition Form
	5.2.1 Specifying the E-Mail Server
	5.2.2 Email Definition Form
	5.2.3 Creating an E-Mail Definition

	5.3 Process Definition Form
	5.3.1 Creating a Process Definition
	5.3.2 Tabs on the Process Definition Form
	5.3.2.1 Tasks Tab
	5.3.2.2 Reconciliation Field Mappings Tab
	5.3.2.3 Administrators Tab

	5.3.3 Modifying Process Tasks
	5.3.3.1 General Tab
	5.3.3.2 Integration Tab
	5.3.3.3 Task Dependency Tab
	5.3.3.4 Responses Tab
	5.3.3.5 Undo/Recovery Tab
	5.3.3.6 Notification Tab
	5.3.3.7 Task to Object Status Mapping Tab
	5.3.3.8 Assignment Tab of the Editing Task Window

	6 Developing Process Forms
	6.1 Creating a Form
	6.2 Tabs of the Form Designer Form
	6.2.1 Additional Columns Tab
	6.2.1.1 Adding a Data Field to a Form
	6.2.1.2 Removing a Data Field From a Form
	6.2.1.3 Setting the Value of the AccountPassword Property

	6.2.2 Child Table(s) Tab
	6.2.2.1 Assigning a Child Table to a Form
	6.2.2.2 Removing a Child Table from a Form

	6.2.3 Object Permissions Tab
	6.2.3.1 Assigning a User Group to a User-Created Form
	6.2.3.2 Removing a User Group From a User-Created Form

	6.2.4 Properties Tab
	6.2.4.1 Adding a Property and Property Value to a Data Field
	6.2.4.2 Adding a Property and Property Value for Customized Look up Query
	6.2.4.3 Removing a Property and Property Value From a Data Field

	6.2.5 Administrators Tab
	6.2.5.1 Assigning Privileges to a User Group for a Record of a User-Created Form
	6.2.5.2 Removing User Group Privileges for a Record of a User-Created Form

	6.2.6 Usage Tab
	6.2.7 Pre-Populate Tab
	6.2.8 Default Columns Tab
	6.2.9 User Defined Fields Tab

	6.3 Creating an Additional Version of a Form

	7 Managing Lookup Definitions and Remote Manager
	7.1 Overview
	7.2 Lookup Definition Form
	7.2.1 Creating a Lookup Definition
	7.2.2 Lookup Code Information Tab
	7.2.2.1 Creating and Modifying a Lookup Value
	7.2.2.2 Deleting a Lookup Value

	7.2.3 Configuring Challenge Questions for the User

	7.3 Remote Manager Form

	Part III Connectors
	8 Using the Adapter Factory
	8.1 Introduction to Adapters
	8.2 Types of Adapters
	8.3 Adapter Environment and Tools
	8.3.1 Configuring the Adapter Environment
	8.3.2 Remote Manager
	8.3.3 The Adapter Factory
	8.3.4 Compiling Adapters
	8.3.4.1 Automatic Compilation of Adapters
	8.3.4.2 Compiling Adapters Manually

	8.4 Defining Adapters
	8.5 Tabs of the Adapter Factory Form
	8.5.1 Adapter Tasks
	8.5.2 Execution Schedule
	8.5.3 Resources
	8.5.4 Variable List
	8.5.5 Usage Lookup
	8.5.6 Responses

	8.6 Disabling and Re-enabling Adapters
	8.7 About Adapter Variables
	8.7.1 Creating an Adapter Variable
	8.7.2 Modifying an Adapter Variable
	8.7.3 Deleting an Adapter Variable

	8.8 Creating Adapter Tasks
	8.8.1 Types of Adapter Tasks
	8.8.2 Creating a Java Task
	8.8.3 Creating a Remote Task
	8.8.4 Creating a Stored Procedure Task
	8.8.5 Creating a Utility Task
	8.8.6 To Create an Oracle Identity Manager API Task
	8.8.7 Reassigning the Value of an Adapter Variable
	8.8.8 Adding an Error Handler Task
	8.8.9 Creating a Logic Task

	8.9 Modifying Adapter Tasks
	8.10 Changing the Order and Nesting of Tasks
	8.11 Deleting Adapter Tasks
	8.12 Working with Responses
	8.12.1 To Create a Response
	8.12.2 To Modify a Response
	8.12.3 To Delete a Response

	8.13 Scheduling Rule Generators and Entity Adapters
	8.13.1 Scheduling Rule Generators and Entity Adapters

	8.14 Working with Rule Generator Adapters
	8.14.1 Mapping Rule Generator Adapter Variables
	8.14.2 Associating Rule Generators with Processes
	8.14.3 Removing Rule Generators from Form Fields

	8.15 Working with Entity Adapters
	8.16 Working with Task Assignment Adapters
	8.16.1 Attaching Task Assignment Adapters to Process Tasks
	8.16.2 Removing Task Assignment Adapters from Process Tasks
	8.16.2.1 To Remove a Task Assignment Adapter from a Process Task

	8.17 Working with Prepopulate Adapters
	8.17.1 Attaching Prepopulate Adapters to Form Fields
	8.17.2 Removing Prepopulate Adapters from Form Fields

	8.18 Working with Process Task Adapters
	8.18.1 Guidelines for Working with a Process Task Adapter
	8.18.2 Attaching Process Task Adapters to Process Tasks
	8.18.3 Removing Process Task Adapters from Process Tasks
	8.18.3.1 To Remove a Process Task Adapter from a Process Task

	8.19 Adapter Mapping Information
	8.19.1 Adapter Task Mapping Information
	8.19.1.1 Adapter Variables
	8.19.1.2 Adapter Task
	8.19.1.3 Literal
	8.19.1.4 Adapter References
	8.19.1.5 Organization Definition
	8.19.1.6 Process Definition
	8.19.1.7 User Definition

	8.19.2 Adapter Variable Mapping Information
	8.19.2.1 From the Variable List Tab
	8.19.2.2 Process Task Adapter Variable Mappings
	8.19.2.3 Task Assignment Adapter Variable Mappings
	8.19.2.4 Rule Generator and Entity Adapter Variable Mappings
	8.19.2.5 Prepopulate Adapter Variable Mappings

	8.20 Defining Error Messages

	9 Understanding the Identity Connector Framework
	9.1 Advantages of ICF
	9.2 Introducing the ICF Architecture
	9.3 Using the ICF API
	9.3.1 The ConnectorInfoManagerFactory Class
	9.3.2 The ConnectorInfoManager Interface
	9.3.3 The ConnectorKey Class
	9.3.4 The ConnectorInfo Interface
	9.3.5 The APIConfiguration Interface
	9.3.6 The ConfigurationProperties Interface
	9.3.7 The ConnectorFacadeFactory Class
	9.3.8 The ConnectorFacade Interface

	9.4 Introducing the ICF SPI
	9.4.1 Implementing the Required Interfaces
	9.4.1.1 org.identityconnectors.framework.spi.Connector
	9.4.1.2 org.identityconnectors.framework.spi.Configuration

	9.4.2 Implementing the Feature-based Interfaces
	9.4.2.1 org.identityconnectors.framework.spi.PoolableConnector
	9.4.2.2 org.identityconnectors.framework.spi.AttributeNormalizer

	9.4.3 Implementing the Operation Interfaces
	9.4.3.1 Implementing the SchemaOp Interface
	9.4.3.2 Implementing the CreateOp Interface
	9.4.3.3 Implementing the DeleteOp Interface
	9.4.3.4 Implementing the SearchOp Interface
	9.4.3.5 Implementing the UpdateOp Interface

	9.4.4 Common Classes

	9.5 Extending an Identity Connector Bundle
	9.6 Using an Identity Connector Server
	9.6.1 Using the Java Connector Server
	9.6.1.1 Installing and Configuring a Java Connector Server
	9.6.1.2 Running the Java Connector Server on Microsoft Windows
	9.6.1.3 Running the Java Connector Server on Solaris and Linux
	9.6.1.4 Installing an Identity Connector in a Java Connector Server
	9.6.1.5 Using SSL to Communicate with a Connector Server

	9.6.2 Using the Microsoft .NET Framework Connector Server
	9.6.2.1 Installing the .NET Connector Server
	9.6.2.2 Configuring the .NET Connector Server
	9.6.2.3 Configuring Trace Settings
	9.6.2.4 Running the .NET Connector Server
	9.6.2.5 Installing Multiple Connectors on a .NET Connector Server

	10 Developing Identity Connectors Using Java
	10.1 Developing a Flat File Connector
	10.1.1 Supporting Classes for File Input and Output Handling

	10.2 Uploading the Identity Connector Bundle to Oracle Identity Manager Database
	10.2.1 Registering the Connector Bundle with Oracle Identity Manager
	10.2.2 Creating Basic Identity Connector Metadata
	10.2.2.1 Creating the IT Resource Type Definition
	10.2.2.2 Creating the Resource Object
	10.2.2.3 Creating Lookups

	10.2.3 Creating Provisioning Metadata
	10.2.3.1 Creating a Process Form
	10.2.3.2 Creating Adapters
	10.2.3.3 Creating A Process Definition
	10.2.3.4 Creating a Provisioning Attribute Mapping Lookup

	10.2.4 Creating Reconciliation Metadata
	10.2.4.1 Creating a Reconciliation Schedule Task
	10.2.4.2 Creating a Reconciliation Profile
	10.2.4.3 Setting a Reconciliation Action Rule
	10.2.4.4 Creating Reconciliation Mapping
	10.2.4.5 Defining a Reconciliation Matching Rule

	10.3 Provisioning a Flat File Account
	10.4 Configuring SSL for Java Connector Server

	11 Developing Identity Connectors Using .NET
	11.1 Developing a Flat File .NET Connector
	11.2 Deploying the Identity Connector Bundle on .NET Connector Server
	11.2.1 Registering the Connector Bundle with .NET Connector Server
	11.2.2 Creating Basic Identity Connector Metadata
	11.2.2.1 Creating the IT Resource Type Definition
	11.2.2.2 Creating the Resource Object
	11.2.2.3 Creating Lookups

	11.2.3 Creating Provisioning Metadata
	11.2.3.1 Creating a Process Form
	11.2.3.2 Creating Adapters
	11.2.3.3 Creating A Process Definition
	11.2.3.4 Creating a Provisioning Attribute Mapping Lookup

	11.2.4 Creating Reconciliation Metadata
	11.2.4.1 Creating a Reconciliation Schedule Task
	11.2.4.2 Creating a Reconciliation Profile
	11.2.4.3 Setting a Reconciliation Action Rule
	11.2.4.4 Creating Reconciliation Mapping
	11.2.4.5 Defining a Reconciliation Matching Rule

	11.3 Provisioning a Flat File Account

	12 Integrating ICF with Oracle Identity Manager
	12.1 ICF Common
	12.2 Integration Architecture
	12.3 Global Oracle Identity Manager Lookups
	12.3.1 Main Lookup Configuration
	12.3.2 User Management Configuration
	12.3.3 Recon Transformation Lookup (Lookup.CONNECTOR_NAME.UM.ReconTransformation)
	12.3.4 Recon Validation Lookup (Lookup.CONNECTOR_NAME.UM.ReconValidation)
	12.3.5 Optional Defaults Lookup

	12.4 IT Resource
	12.5 Provisioning
	12.5.1 ICF Provisioning Manager
	12.5.1.1 APIs for Provisioning
	12.5.1.2 Account Related Operations
	12.5.1.3 Multivalued Operations
	12.5.1.4 Other operations

	12.5.2 Provisioning Lookup
	12.5.3 Non-User Object Types
	12.5.4 Optional Lookups for Provisioning
	12.5.4.1 Provisioning Validation Lookup

	12.5.5 Optional Flags in Lookups for Provisioning Attribute Map
	12.5.6 Compound attributes in Provisioning Attribute Map

	12.6 Concepts of Reconciliation in ICF Common
	12.6.1 Types of Reconciliation
	12.6.1.1 Target and Trusted Reconciliation
	12.6.1.2 Full, Incremental Reconciliation
	12.6.1.3 Advanced Incremental Reconciliation
	12.6.1.4 Delete Reconciliation
	12.6.1.5 Group Lookup Reconciliation

	12.6.2 List of Reconciliation Artifacts in Oracle Identity Manager
	12.6.2.1 Lookups for Reconciliation

	12.7 Predefined Scheduled Tasks
	12.7.1 LookupReconTask
	12.7.2 SearchReconTask
	12.7.3 SearchReconDeleteTask
	12.7.4 SyncReconTask

	12.8 ICF Filter Syntax

	13 Using Java APIs for ICF Integration
	14 Configuring ICF Connectors
	14.1 Configuring Connector Load Balancer
	14.2 Configuring Validation of Data During Reconciliation and Provisioning
	14.3 Configuring Transformation of Data During User Reconciliation
	14.4 Configuring Resource Exclusion Lists
	14.5 Setting SSL for Connector Server and OIM
	14.5.1 Troubleshooting SSL

	14.6 Adding Target System Attributes
	14.6.1 Adding Target System Attributes for Provisioning
	14.6.2 Adding Target System Attributes for Target Reconciliation
	14.6.3 Adding Target System Attributes for Trusted Reconciliation

	15 Understanding ICF Best Practices and FAQs
	15.1 Best Practices for ICF
	15.2 FAQs on ICF

	16 Understanding Generic Technology Connectors
	16.1 Requirement for Generic Technology Connectors
	16.2 Functional Architecture of Generic Technology Connectors
	16.2.1 Providers and Data Sets of the Reconciliation Module
	16.2.2 Providers and Data Sets of the Provisioning Module
	16.2.3 Oracle Identity Manager Data Sets

	16.3 Features of Generic Technology Connectors
	16.3.1 Features Specific to the Reconciliation Module
	16.3.1.1 Trusted Source Reconciliation
	16.3.1.2 Account Status Reconciliation
	16.3.1.3 Full and Incremental Reconciliation
	16.3.1.4 Batched Reconciliation
	16.3.1.5 Reconciliation of Multivalued Attribute Data (Child Data) Deletion
	16.3.1.6 Failure Threshold for Stopping Reconciliation

	16.3.2 Other Features
	16.3.2.1 Custom Data Fields and Field Mappings
	16.3.2.2 Custom Providers
	16.3.2.3 Multilanguage Support
	16.3.2.4 Custom Date Formats
	16.3.2.5 Propagation of Changes in Oracle Identity Manager User Attributes to Target Systems

	16.4 Connector Objects Created by the Generic Technology Connector Framework
	16.4.1 Both Reconciliation and Provisioning Are Selected
	16.4.2 Only Reconciliation Is Selected
	16.4.3 Only Provisioning Is Selected

	16.5 Roadmap for Information on Generic Technology Connectors in This Guide

	17 Predefined Providers for Generic Technology Connectors
	17.1 Shared Drive Reconciliation Transport Provider
	17.2 CSV Reconciliation Format Provider
	17.3 SPML Provisioning Format Provider
	17.3.1 Run-Time Parameters
	17.3.2 Design Parameters
	17.3.3 Nonmandatory Parameters
	17.3.4 Parameters with Predetermined Values

	17.4 Web Services Provisioning Transport Provider
	17.4.1 Configuring SSL Communication Between Oracle Identity Manager and the Target System Web Service

	17.5 Transformation Providers
	17.5.1 Concatenation Transformation Provider
	17.5.2 Translation Transformation Provider
	17.5.2.1 Configuring Account Status Reconciliation

	17.6 Validation Providers

	18 Creating Custom Providers for Generic Technology Connectors
	18.1 Role of Providers
	18.1.1 Role of Providers During Generic Technology Connector Creation
	18.1.2 Role of Providers During Reconciliation
	18.1.3 Role of Providers During Provisioning

	18.2 Creating Custom Providers
	18.2.1 Determining Provider Requirements
	18.2.1.1 Determining the Reconciliation Provider Requirements
	18.2.1.2 Determining the Provisioning Provider Requirements

	18.2.2 Identifying the Provider Parameters
	18.2.3 Developing Java Code Implementations of the Value Objects
	18.2.4 Developing Java Code Implementations of the Provider SPI Methods
	18.2.5 Developing Java Code for Logging and Exception Handling
	18.2.6 Creating the Provider XML File
	18.2.7 Creating Resource Bundle Entries for the Provider
	18.2.8 Deploying the Provider

	18.3 Reusing Providers
	18.3.1 Reusing Reconciliation Providers
	18.3.2 Reusing Provisioning Providers

	18.4 Deploying the Custom Providers

	19 Creating and Managing Generic Technology Connectors
	19.1 Overview
	19.2 Creating Generic Technology Connectors
	19.2.1 Determining Provider Requirements
	19.2.2 Selecting the Providers to Include
	19.2.3 Addressing the Prerequisites
	19.2.4 Using Identity System Administration to Create the Connector
	19.2.4.1 Step 1: Provide Basic Information Page
	19.2.4.2 Step 2: Specify Parameter Values Page
	19.2.4.3 Step 3: Modify Connector Configuration Page
	19.2.4.4 Step 4: Verify Connector Form Names Page
	19.2.4.5 Step 5: Verify Connector Information Page

	19.2.5 Configuring Reconciliation
	19.2.6 Configuring Provisioning
	19.2.7 Creating the Form and Publishing the Application Instance
	19.2.8 Enabling Logging

	19.3 Managing Generic Technology Connectors
	19.3.1 Modifying Generic Technology Connectors
	19.3.2 Exporting Generic Technology Connectors
	19.3.3 Importing Generic Technology Connectors

	19.4 Using the Generic Connection Pool Framework in Custom Connectors
	19.4.1 Providing concrete implementation for ResourceConnection interface
	19.4.2 Defining Additional ITResource Parameters
	19.4.3 Getting and Releasing Connections from the Pool
	19.4.4 Using a Third-party Pool
	19.4.5 Example: Implementation of ResourceConnection

	19.5 Best Practices
	19.5.1 Working with the Provide Basic Information Page
	19.5.2 Working with the Specify Parameter Values Page
	19.5.3 Working with the Modify Connector Configuration Page
	19.5.3.1 Names of Fields
	19.5.3.2 Password Fields
	19.5.3.3 Password-Like Fields
	19.5.3.4 Mappings
	19.5.3.5 Oracle Identity Manager Data Sets

	19.5.4 Working with Shared Drive Reconciliation Transport Provider
	19.5.5 Working with Custom Providers
	19.5.6 Working with Connector Objects
	19.5.7 Modifying Generic Technology Connectors

	20 Troubleshooting Generic Technology Connectors
	20.1 General Issues for Generic Technology Connectors
	20.1.1 Creation Issues
	20.1.2 Multi-language Support
	20.1.3 Other General Issues

	20.2 Configuration Issues for Generic Technology Connectors
	20.2.1 Names of Generic Technology Connectors and Connector Objects
	20.2.2 Step 3: Modify Connector Configuration Page
	20.2.3 Errors During Connector Creation
	20.2.4 Errors During Reconciliation
	20.2.5 Errors During Provisioning

	Part IV Requests and Approval Processes
	21 Developing Workflows for Approval and Manual Provisioning
	21.1 Introducing Workflows
	21.1.1 Overview of Workflows
	21.1.2 Workflow Concepts
	21.1.3 Workflow Architecture

	21.2 Predefined SOA Composites
	21.3 Creating New SOA Composites
	21.3.1 Creating a New SOA Composite
	21.3.2 Deploying a SOA Composite in Oracle SOA Server
	21.3.3 Prerequisites for Communication to Oracle Identity Manager Through SSL Mode

	21.4 Developing Workflows: Vision Request Tutorial
	21.4.1 Introducing the Tutorial
	21.4.2 Prerequisites
	21.4.2.1 Deploying the Request Web Service
	21.4.2.2 Securing the Web Service

	21.4.3 Creating the Application Instance
	21.4.3.1 Creating the FinApp Application Instance
	21.4.3.2 Defining Application Instance Attributes and Creating a Form
	21.4.3.3 Publishing the Application Instance to One or More Organizations
	21.4.3.4 Linking Entitlements to the Application Instance
	21.4.3.5 Publishing the Application Instance With Entitlements to the Catalog

	21.4.4 Configuring FinApp in the Catalog
	21.4.5 Creating and Configuring the SOA Composite for Approval
	21.4.5.1 Creating the Approval Workflow
	21.4.5.2 Copying the WSDL and XSD Files
	21.4.5.3 Configuring Partner Links
	21.4.5.4 Making Request and Catalog Data Available to the BPEL Process
	21.4.5.5 Configuring Workflow Selection
	21.4.5.6 Configuring Human Tasks
	21.4.5.7 Configuring the Human Task and BPEL Mappings
	21.4.5.8 Deploying the SOA Composite
	21.4.5.9 Creating the Approval Policies

	21.5 Configuring Default Request-Level and Operation-Level Approval Composites
	21.6 Creating and Deploying Custom Task Details Taskflow
	21.6.1 Prerequisites for Developing Custom Task Details Taskflow
	21.6.2 Developing Custom Task Details Taskflow
	21.6.3 Developing Custom Task Details for Email Notification (Optional)
	21.6.4 Deploying the Task Details Taskflow
	21.6.5 Configuring Human Task and Taskflow Permissions
	21.6.6 Testing the Custom Taskflow

	21.7 Understanding Request Datasets
	21.8 Extending Request Management Operations
	21.8.1 Running Custom Code Based on Request Status Change
	21.8.2 Validating Request Data
	21.8.3 Prepopulation of an Attribute Value During Request Creation

	21.9 Enabling Auto-Approval for Self Registration Requests

	22 Using Segregation of Duties (SoD)
	22.1 Understanding the SoD Validation Process
	22.2 Introducing the SoD Invocation Library
	22.3 Installing the SoD-enabled Connectors
	22.4 Deploying the SIL and SIL Providers
	22.5 Configuring the SoD Engine
	22.5.1 Configuring Oracle Application Access Controls Governor
	22.5.2 Configuring SAP GRC
	22.5.3 Configuring Oracle Identity Analytics

	22.6 Enabling and Disabling SoD
	22.6.1 Enabling SoD
	22.6.2 Disabling SoD

	22.7 Enabling SSL Communication
	22.7.1 Enabling SSL Between Oracle Application Access Controls Governor and Oracle Identity Manager
	22.7.2 Enabling SSL Between SAP GRC and Oracle Identity Manager
	22.7.3 Calling SoD Check Web Service Over SSL

	22.8 Configuring Workflows on Non SoD-enabled Connectors
	22.8.1 Modifying the Approval Workflow for SoD
	22.8.2 Modifying the Provisioning Workflow for SoD

	22.9 Marking Child Process Form Tables That Hold Entitlement Data
	22.9.1 Marking Request Dataset Attributes That Hold Entitlement Data
	22.9.2 Marking Child Process Form Tables That Hold Entitlement Data

	22.10 Custom Combination of Target Systems and SoD Engines
	22.10.1 Using a Custom Target System
	22.10.1.1 Addressing Prerequisites
	22.10.1.2 Creating the Transformation Layer
	22.10.1.3 Deploying the Transformation Layer
	22.10.1.4 Modifying the Registration XML File
	22.10.1.5 Registering the New Target System

	22.10.2 Adding Custom SoD Engine
	22.10.2.1 Addressing Prerequisites
	22.10.2.2 Creating an IT Resource to Hold Information about the SoD Engine
	22.10.2.3 Implementing the Service Components for the Provider
	22.10.2.4 Deploying the Service Components
	22.10.2.5 Modifying the Registration XML File for the New SoD Engine
	22.10.2.6 Registering the New SIL Provider

	22.11 Performing Role SoD Check with Oracle Identity Analytics
	22.11.1 Enabling Role SoD Check
	22.11.2 Using Role SoD Check
	22.11.2.1 SoD Check When A User Requests a Role
	22.11.2.2 SoD Check When A User Revokes a Role
	22.11.2.3 SoD Check When an Administrator Requests To Assign Roles
	22.11.2.4 SoD Check When an Administrator Requests To Revoke Roles

	22.12 Using SoD in Provisioning Workflow
	22.12.1 Provisioning Application Instance With Child Data
	22.12.2 Modifying Application Instance to Add or Delete Child Data
	22.12.3 Provisioning Entitlements to a User
	22.12.4 Revoking Entitlements From a User
	22.12.5 Requesting for Roles and Entitlements
	22.12.6 Requesting for Roles and Application Instances With Child Data
	22.12.7 Request Provisioning With the DefaultSODApproval Workflow
	22.12.8 Requesting for Role With an Access Policy Attached
	22.12.9 Provisioning Based on Access Policies Without Approval
	22.12.10 Provisioning Based on Access Policies With Approval
	22.12.11 Requesting for Entitlements From Two Application Instances

	22.13 Enabling Logging for SoD-Related Events
	22.14 Troubleshooting SoD Check

	Part V Data Synchronization
	23 Customizing Reconciliation
	23.1 Reconciliation Features
	23.1.1 Performance Enhancement Features
	23.1.1.1 New Metadata Model - Profiles
	23.1.1.2 Parameters to Control Flow and Processing of Events
	23.1.1.3 Grouping of Events by Reconciliation Runs
	23.1.1.4 Grouping of Events by Batches
	23.1.1.5 Implementing Reconciliation Engine Logic in the Database
	23.1.1.6 Improved Java Engine
	23.1.1.7 Improved Database Schema

	23.1.2 Web-Based Event Management Interface
	23.1.3 Other Features
	23.1.3.1 Staging Tables
	23.1.3.2 Handling of Race Conditions
	23.1.3.3 Ad Hoc Linking

	23.2 Reconciliation Architecture
	23.2.1 Reconciliation Profile
	23.2.2 Reconciliation Metadata
	23.2.3 Reconciliation Target
	23.2.4 Reconciliation Run
	23.2.5 Reconciliation APIs
	23.2.6 Reconciliation Schema
	23.2.7 Reconciliation Engine
	23.2.7.1 Matching Module
	23.2.7.2 Action Module

	23.2.8 Connector for Reconciliation
	23.2.9 Archival
	23.2.10 Backward Compatibility
	23.2.11 Reconciliation Event Management

	23.3 Defining Reconciliation Rules
	23.3.1 Defining a Reconciliation Rule
	23.3.2 Adding a Rule Element
	23.3.3 Nesting a Rule Within a Rule
	23.3.4 Deleting a Rule Element or Rule

	23.4 Developing Reconciliation Scheduled Tasks
	23.5 Updating Reconciliation Profiles Manually
	23.5.1 Creating and Updating Reconciliation Profiles
	23.5.2 Changing the Profile Mode

	23.6 Understanding Reconciliation APIs
	23.6.1 The ReconOperationsService API
	23.6.2 Invoking Non-scheduled Task-Based Reconciliation in a Multithreaded Environment

	23.7 Postprocessing for Trusted Reconciliation
	23.8 Troubleshooting Reconciliation
	23.8.1 Troubleshooting General Reconciliation Issues
	23.8.2 Troubleshooting Database-Related Reconciliation Issues
	23.8.3 Troubleshooting Reconciliation Profile Configuration Failures

	23.9 Populating Data in the RECON_EXCEPTIONS Table
	23.10 Reconciliation Best Practices
	23.10.1 Additional Indexes Requirement for Matching Module
	23.10.2 Collecting Database Schema Statistics for Reconciliation Performance

	23.11 Monitoring Reconciliation Performance Using DMS

	24 Using the Bulk Load Utility
	24.1 Features of the Bulk Load Utility
	24.2 Prerequisites for Running the Bulk Load Utility
	24.2.1 Installing the Bulk Load Utility
	24.2.1.1 Scripts That Constitute the Utility
	24.2.1.2 Temporary Tables Used During a Bulk Load Operation
	24.2.1.3 Options Offered by the Utility

	24.2.2 Preparing Your Database for a Bulk Load Operation
	24.2.2.1 Creating a Tablespace for Temporary Tables
	24.2.2.2 Creating a Datafile in the Oracle Identity Manager Tablespace

	24.3 Running the Utility
	24.4 Loading OIM User Data
	24.4.1 Setting a Default Password for OIM Users Added by the Utility
	24.4.2 Creating the Input Source for the Bulk Load Operation
	24.4.2.1 Using CSV Files As the Input Source
	24.4.2.2 Creating Database Tables As the Input Source

	24.4.3 Determining Values for the Input Parameters of the Utility
	24.4.4 Monitoring the Progress of the Operation
	24.4.5 Handling Exceptions Recorded During the Operation
	24.4.6 Fixing Exceptions and Reloading Data Records
	24.4.7 Verifying the Outcome of the Bulk Load Operation
	24.4.8 Generating an Audit Snapshot

	24.5 Loading Account Data
	24.5.1 Creating the Input Source for the Bulk Load Operation
	24.5.1.1 Using CSV Files As the Input Source
	24.5.1.2 Creating Database Tables As the Input Source

	24.5.2 Determining Values for the Input Parameters of the Utility
	24.5.3 Monitoring the Progress of the Operation
	24.5.4 Handling Exceptions Recorded During the Operation
	24.5.5 Fixing Exceptions and Reloading Data Records
	24.5.6 Verifying the Outcome of the Bulk Load Operation

	24.6 Loading Role, Role Hierarchy, Role Membership, and Role Category Data
	24.6.1 Creating the Input Source for the Bulk Load Operation
	24.6.1.1 Using CSV Files As the Input Source
	24.6.1.2 Creating Database Tables As the Input Source
	24.6.1.3 Determining the UGP_NAME Generated After Role Load

	24.6.2 Determining Values for the Input Parameters of the Utility
	24.6.3 Monitoring the Progress of the Operation
	24.6.4 Handling Exceptions Recorded During the Operation
	24.6.5 Fixing Exceptions and Reloading Data Records
	24.6.6 Verifying the Outcome of the Bulk Load Operation

	24.7 Data Recorded During the Operation
	24.8 Gathering Diagnostic Data from the Bulk Load Operation
	24.9 Cleaning Up After a Bulk Load Operation

	25 Configuring LDAP Container Rules
	26 Developing Scheduled Tasks
	26.1 Overview of Task Creation
	26.1.1 Steps in Task Creation
	26.1.2 Example of Scheduled Task

	26.2 Defining the Metadata for the Scheduled Task
	26.3 Configuring the Scheduled Task XML File
	26.4 Developing the Scheduled Task Class
	26.5 Configuring the Plug-in XML File
	26.6 Creating the Directory Structure for the Scheduled Task
	26.7 Scheduled Task Configuration File
	26.7.1 Structure of the Scheduler XML File
	26.7.2 The scheduledTasks Element
	26.7.3 The task Element
	26.7.4 The name Element
	26.7.5 The class Element
	26.7.6 The description Element
	26.7.7 The retry Element
	26.7.8 The parameters Element
	26.7.9 The string-param Element
	26.7.10 The number-param Element
	26.7.11 The boolean-param Element

	26.8 Best Practices for Creating Custom Scheduled Tasks
	26.9 Using the isStop() Method

	Part VI Custom Operations
	27 Developing Plug-ins
	27.1 Plug-ins and Plug-in Points
	27.1.1 Plug-ins and Event Handlers
	27.1.2 Plug-in Stores
	27.1.2.1 File Store
	27.1.2.2 Database Store

	27.2 Using Plug-ins in Deployments
	27.3 Plug-in Points
	27.4 Configuring Plug-ins
	27.5 Developing Custom Plug-ins
	27.5.1 Developing Plug-ins
	27.5.2 Declaring Plug-ins

	27.6 Registering Plug-ins
	27.6.1 Registering and Unregistering Plug-ins By Using APIs
	27.6.2 Registering and Unregistering Plug-ins By Using the Plugin Registration Utility

	27.7 Migrating Plug-ins

	28 Developing Event Handlers
	28.1 Orchestration Concepts
	28.2 Using Custom Event Handlers
	28.3 Developing Custom Event Handlers
	28.3.1 Implementing the SPI and Creating a JAR
	28.3.1.1 Development Considerations
	28.3.1.2 Methods and Arguments
	28.3.1.3 Code Samples
	28.3.1.4 Creating a JAR File With Custom Event Handler Code
	28.3.1.5 Handling Exceptions
	28.3.1.6 Managing Transactions

	28.3.2 Defining Custom Events Definition XML
	28.3.2.1 Elements in the Event Handler XML Files
	28.3.2.2 Sample Event Definitions

	28.3.3 Creating and Registering a Plug-in ZIP

	28.4 Sequencing the Execution of Event Handlers
	28.5 Writing Custom Validation Event Handlers
	28.6 Best Practices
	28.7 Migrating Event Handlers
	28.8 Troubleshooting Event Handlers
	28.9 Managing Event Handlers Using the Design Console
	28.9.1 Event Handler Manager Form
	28.9.2 Data Object Manager Form
	28.9.2.1 Tabs of the Data Object Manager Form

	29 Understanding Context
	29.1 Child Context
	29.2 Context Types

	Part VII Customization
	30 Customizing the Interface
	30.1 Customization Concepts
	30.1.1 Deployment of UI Libraries and Applications
	30.1.2 Overview of MDS Customization
	30.1.3 Overview of the Web Composer

	30.2 Managing Sandboxes
	30.2.1 Handling Concurrency Conflicts
	30.2.1.1 Troubleshooting Concurrency Issues

	30.2.2 Creating a Sandbox
	30.2.3 Activating and Deactivating a Sandbox
	30.2.4 Viewing and Modifying Sandbox Details
	30.2.5 Exporting and Importing a Sandbox
	30.2.6 Publishing a Sandbox
	30.2.7 Checking Out an Item from Cart
	30.2.8 Deleting a Sandbox
	30.2.9 Reverting Changes to Default Settings

	30.3 Skin Customization in Oracle Identity Manager
	30.3.1 Configuring a New Skin
	30.3.2 Configuring Skin for Legacy Advance Console
	30.3.3 Changing Branding and Logo

	30.4 Customizing Pages at Runtime
	30.4.1 Using Expression Language in UI Customization
	30.4.1.1 Avaliable EL Expressions in the User Context
	30.4.1.2 Available EL Expressions in the RequestFormContext
	30.4.1.3 Internationalization for Resource Strings

	30.4.2 Showing or Hiding UI Components Conditionally
	30.4.3 Showing Request Profiles Conditionally
	30.4.4 Validating Input Data Using ADF Validators
	30.4.5 Marking Input Attribute as Required
	30.4.6 Adding a Link or Button
	30.4.7 Hiding and Deleting an ADF Component
	30.4.8 Showing and Hiding Attributes
	30.4.9 Customizing the User Registration and Other Unauthenticated Pages
	30.4.10 Customizing Certification Pages

	30.5 Securing UI Components
	30.5.1 Securing a Custom Taskflow Using APM
	30.5.2 Securing a Task Flow Region Using EL Expressions

	30.6 Customizing Oracle Identity Manager Help
	30.6.1 Adding Custom Help Topics
	30.6.2 Adding Inline Help

	30.7 Customizing the Home Page
	30.8 Customizing Challenge Questions
	30.9 Customizing the Transitional UI
	30.9.1 Customizing Search Drop-Down Item
	30.9.2 Customizing Number of Search Drop-Down Items and Search Results

	30.10 Developing Managed Beans and Task Flows
	30.10.1 Setting Up the ViewController Project
	30.10.2 Setting Up a Model Project
	30.10.3 Adding Custom Managed Bean
	30.10.4 Deploying Custom Code to Oracle Identity Manager
	30.10.5 Using Managed Beans
	30.10.5.1 Showing Components Conditionally
	30.10.5.2 Prepopulating Fields Conditionally
	30.10.5.3 Setting a Conditional Mandatory Field
	30.10.5.4 Implementing Custom Field Validation
	30.10.5.5 Implementing Custom Cascading LOVs
	30.10.5.6 Customizing Forms By Using RequestFormContext
	30.10.5.7 Overriding the Submit Button in Request Catalog
	30.10.5.8 Developing Home Page Portlets
	30.10.5.9 Launching Taskflows
	30.10.5.10 Creating an External Link

	30.10.6 Using Managed Beans to Populate Request Attributes
	30.10.6.1 Populating Request Attributes Using Managed Beans
	30.10.6.2 Populating Request Attributes by Using the Prepopulate Plug-in

	30.11 Migrating UI Customizations
	30.12 UI Customization Best Practice
	30.13 Rolling Back UI Customization

	Part VIII Interfaces to Integrate With Other Applications
	31 Using APIs
	31.1 Accessing Oracle Identity Manager Services
	31.1.1 Using OIMClient
	31.1.2 Using the tcUtilityFactory

	31.2 Oracle Identity Manager Services
	31.2.1 Services in Oracle Identity Manager 11g
	31.2.2 Legacy Services or Utilities

	31.3 Commonly Used Services
	31.3.1 Mapping Between Legacy and New Services

	31.4 Developing Clients for Oracle Identity Manager
	31.4.1 Prerequisites for Developing Clients
	31.4.2 Setup and Configuration

	31.5 Working With Legacy Oracle Identity Manager APIs
	31.5.1 Using a Result Set Object
	31.5.2 Handling Oracle Identity Manager Exceptions
	31.5.3 Cleaning Up

	31.6 Code Sample

	32 Using SPML Services
	32.1 Introduction
	32.1.1 About SPML Interactions
	32.1.2 Integration Interface

	32.2 General Considerations
	32.2.1 Assigning SPML Admin Role to the User
	32.2.2 Creating Autoapproval Policies

	32.3 Create Identity (SPML Core Service: addRequest)
	32.4 Modify Users, Roles, Change Attributes and Role Memberships (SPML Core Service: modifyRequest)
	32.5 Delete an Identity or Role (SPML Core Service: deleteRequest)
	32.6 Check Request Status (SPML Core Service: statusRequest)
	32.7 List Available Targets (SPML Core Service: listTargets)
	32.8 Disable a User (SPML Suspend Service: suspendRequest)
	32.9 Enable a User (SPML Suspend Service: resumeRequest)
	32.10 Check if User is Active (SPML Suspend Service: activeRequest)
	32.11 Validate a Username (SPML Username Service: validateUsername)
	32.12 Obtain a Username (SPML Username: suggestUsername)
	32.13 Lookup an Identity or Role (SPML Core Service: lookupRequest)
	32.14 Reset Password (SPML Core Service: resetPasswordRequest)
	32.15 Lookup Username Policy (SPML Username Service: lookupUsernamePolicy)
	32.16 Cancel/Withdraw Request (SPML Async Service: cancelRequest)
	32.17 Batch Request (SPML Batch Request Service: batchRequest)
	32.18 Securing SPML Web Services
	32.18.1 About Web Services Security
	32.18.2 A Request Example
	32.18.3 Applying Policies

	32.19 Operations Not Supported
	32.20 SPML Attributes and LDAP Mappings, and Oracle Identity Manager Attributes
	32.20.1 Identity PSO Attributes
	32.20.1.1 Custom Identity Attributes

	32.20.2 Role PSO Attributes
	32.20.2.1 Custom Role Attributes

	32.20.3 Preference Attributes
	32.20.4 Special Character Restrictions in Oracle Identity Manager Attributes
	32.20.4.1 Characters Available in All Attributes
	32.20.4.2 Special Characters in the Password Field
	32.20.4.3 Usage of Single Quotation Mark
	32.20.4.4 Usage of Semicolon
	32.20.4.5 Unsupported Special Characters

	32.20.5 Operation Data
	32.20.5.1 Passing Operation Data
	32.20.5.2 Passing Reference Data

	32.21 SPML Examples
	32.21.1 SPML Example - Add User
	32.21.2 SPML Example - Delete User
	32.21.3 SPML Example - Modify User
	32.21.4 SPML Example - Resume User
	32.21.5 SPML Example - Suggest User Name
	32.21.6 SPML Example - Suspend User
	32.21.7 SPML Example - Validate User Name
	32.21.8 SPML Example - Check If User is Active
	32.21.9 SPML Example - Lookup Username Policy
	32.21.10 SPML Example – Add User with Role Assignment
	32.21.11 SPML Example - Assign Role Membership
	32.21.12 SPML Example – Revoke Role Membership
	32.21.13 SPML Example - Add Role
	32.21.14 SPML Example - Add Role with Parent
	32.21.15 SPML Example - Modify Role
	32.21.16 SPML Example - Add Parent to a Role
	32.21.17 SPML Example - Role Grant
	32.21.18 SPML Example - Delete Role
	32.21.19 SPML Example - Status Request
	32.21.20 SPML Example - Identity/Role Lookup
	32.21.21 SPML Example - Reset Password
	32.21.22 SPML Example - Reset Password with Notification
	32.21.23 SPML Example - Lookup User Name Policy
	32.21.24 SPML Example - Cancel Request
	32.21.25 SPML Example - Batch Request

	33 Using URLs

	Part IX Notification Service
	34 Developing Notification Events
	34.1 Notification Concepts
	34.2 Developing Custom Notification
	34.2.1 Building the Notification Logic
	34.2.1.1 Defining Event Metadata
	34.2.1.2 Creating the Resolver Class

	34.2.2 Creating Plug-in Pack Containing the Resolver Class
	34.2.3 Building the Invocation Logic
	34.2.4 Configuring the Notification Service

	34.3 Troubleshooting Notification
	34.3.1 Issues Related to Incorrect URL
	34.3.2 Incorrect Outgoing Server EMail Driver Properties
	34.3.3 Error Generated at the SOA Server
	34.3.4 Authentication Failure
	34.3.5 Issues Related to Failed Email Delivery Not Reported Through EM

	35 Using the Callback Service
	35.1 Introducing the Callback Service
	35.1.1 Using Callbacks
	35.1.2 Understanding Event Processing
	35.1.3 Retrying Callbacks

	35.2 Mapping Oracle Identity Manager Attributes
	35.3 Sending Event Callbacks
	35.4 Configuring the Callback Service
	35.4.1 Understanding CallbackConfiguration.xml
	35.4.2 Importing CallbackConfiguration.xml
	35.4.3 Adding the OIM.DefaultTenantGUID System Property

	35.5 Troubleshooting the Callback Service

	Part X Customization Lifecycle
	36 Understanding Customization Types
	37 Deploying and Undeploying Customizations
	37.1 Migrating User Modifiable Metadata Files
	37.1.1 Exporting Metadata Files to MDS
	37.1.2 Importing Metadata Files from MDS
	37.1.3 Deleting Metadata Files from MDS
	37.1.4 User Modifiable Metadata Files
	37.1.5 Creating MDS Backup

	37.2 Migrating JARs and Resource Bundle
	37.2.1 Upload JAR Utility
	37.2.2 Download JAR Utility
	37.2.3 Delete JAR Utility
	37.2.4 Upload Resource Bundle Utility
	37.2.5 Download Resource Bundle Utility
	37.2.6 Delete Resource Bundle Utility

	38 Migrating Configurations and Customizations
	38.1 Using the Deployment Manager
	38.1.1 Features of the Deployment Manager
	38.1.2 Exporting Deployments
	38.1.3 Importing Deployments
	38.1.4 Best Practices Related to Using the Deployment Manager
	38.1.4.1 Export System Objects Only When Necessary
	38.1.4.2 Export Related Groups of Objects
	38.1.4.3 Group Definition Data and Operational Data Separately
	38.1.4.4 Use Logical Naming Conventions for Versions of a Form
	38.1.4.5 Export Root to Preserve a Complete Organizational Hierarchy
	38.1.4.6 Provide Clear Export Descriptions
	38.1.4.7 Check All Warnings Before Importing
	38.1.4.8 Check Dependencies Before Exporting Data
	38.1.4.9 Match Scheduled Task Parameters
	38.1.4.10 Deployment Manager Actions on Reimported Scheduled Tasks
	38.1.4.11 Compile Adapters and Enable Scheduled Tasks
	38.1.4.12 Export Entity Adapters Separately
	38.1.4.13 Check Permissions for Roles
	38.1.4.14 Back Up the Database
	38.1.4.15 Import Data When the System Is Quiet
	38.1.4.16 Migrating Custom Data Objects
	38.1.4.17 Remove Data Object Fields Before Importing Event Handlers as Dependencies

	38.1.5 Troubleshooting the Deployment Manager
	38.1.5.1 Troubleshooting Deployment Manager Issues
	38.1.5.2 Enabling Logging for the Deployment Manager

	38.2 Moving from a Test to a New Production Environment Using Movement Scripts
	38.3 Migrating the Policies
	38.3.1 Troubleshooting Migration of Policies

	Part XI Reports and Audit
	39 Configuring Reports
	39.1 What is Oracle Identity Manager Reports?
	39.2 What is Oracle BI Publisher?
	39.3 Licensing
	39.4 Deploying Oracle Identity Manager Reports
	39.4.1 Creating the Metadata Repository
	39.4.2 Installing BI Publisher 11g (11.1.1.6)

	39.5 Configuring Oracle Identity Manager Reports
	39.5.1 Configuring Security on BI Publisher 11g (11.1.1.6)
	39.5.2 Configuring Data Sources for Running Oracle Identity Manager Reports
	39.5.2.1 Configuring Oracle Identity Manager JDBC Connection
	39.5.2.2 Configuring BPEL-Based JDBC Connection

	39.6 Generating Oracle Identity Manager Reports
	39.6.1 Generating Sample Reports Against the Sample Data Source
	39.6.2 Generating Reports Against the Oracle Identity Manager JDBC Data Source
	39.6.3 Generating Reports Against the BPEL-Based JDBC Data Source

	40 Understanding Auditing
	40.1 Audit Levels
	40.2 Tables Used for Storing Information About Auditors
	40.3 Issuing Audit Messages

	Part XII Appendixes
	A General Customization Concepts
	A.1 Rule Elements, Variables, Data Types, and System Properties
	A.2 Service Accounts
	A.2.1 Service Account Customization: Scenario One
	A.2.2 Service Account Customization: Scenario Two

	A.3 Design Console Actions

	B The FacesUtils Class

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

