Oracle® Solaris Studio 12.4: Code
Analyzer User's Guide

Part No: E37090
October 2014

ORACLE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered
to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As

such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Copyright © 2014, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui I’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis a des restrictions d’utilisation et
de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter, transmettre, distribuer, exposer,
exécuter, publier ou afficher le logiciel, méme partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder a toute ingénierie inverse
du logiciel, de le désassembler ou de le décompiler, excepté a des fins d’interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes d’erreurs et vous
invite, le cas échéant, a lui en faire part par écrit.

Si ce logiciel, ou la documentation qui I’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou a toute entité qui délivre la licence de ce logiciel ou I'utilise pour
le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered
to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As

such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S.Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas congu ni n’est destiné

a étre utilisé dans des applications a risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre
d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires a son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par 1’utilisation de ce logiciel ou matériel pour ce
type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre a des marques appartenant a d’autres propriétaires
qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’ Advanced Micro Devices. UNIX est une
marque déposée d’The Open Group.

Ce logiciel ou matériel et la documentation qui I’accompagne peuvent fournir des informations ou des liens donnant accés a des contenus, des produits et des services émanant

de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En aucun cas, Oracle
Corporation et ses affiliés ne sauraient étre tenus pour responsables des pertes subies, des cofits occasionnés ou des dommages causés par 1’accés a des contenus, produits ou services
tiers, ou a leur utilisation.

Contents

Using This DOCUMENTALIONooiiiiiiiiiiiiiieee e e e e e e e e eaenaes 5
1 INrodUCHIONoeiiiiiiiii ettt eeeeens 7
Data Analyzed by The Code ANALYZErocuuviiniiiniiiiiiireieee e, 7
Static Code CheCKINGovuuiiuiiireieeie et e et e e e e e e e ee e e e eaneanneennaes 8

Dynamic Memory Access Checkingc.oeeuiiiiiiiiiiiieiiieeiieeeeee e e, 8

Code Coverage ChecKingcc.viuuiiiniiiniiieineiie ettt eans 8
Requirements for Using Code ANALYZETceveuviiiiiniiieineiieeieeieeieeieeieeneenns 9
Code ANALYZET GUIcuniiiiiieii et e e e et e et e et e e e s e e eaneaanns 9
Code Analyzer Command-Line INterfacecoceuveiiiiiiiiriiiiniiiineeie e e 10
Remote Desktop DiStribUtioncc.vvieviiniiiriinriireiieei et e e e eaneeanaens 10

(@ TN ol L - 1 N 11

Vo QUICK SEATT ooenitinitie ettt 11

2 Collecting Data And Starting the Code Analyzercccoviiiiiiiiinn. 13
Collecting Static EITOr Dataccuuvieuuiiiiiiiiiiiiii ittt 13
Collecting Dynamic Memory AcCeSS Datavveeeieneeunrereiireineeeeineeieeenernneeens 14

Vv How to Collect Dynamic Memory Access Data From the Binary: 15

Collecting Code CoVerage Dataccuuieruniiiiieiineiieeiie ettt eeeieeene e 15

Vv How to Collect Code Coverage Data From the Binaryccoccvveennene. 15

Using the Code Analyzer GUIcc.iiiniiiiiiiiii e 16
Using the Code Analyzer Command-Line Tool (codean)ceevvevvueeineeineenneennnnnn. 17
€OAEAN OPLIOMS ..eueniiniinitnetn ettt ettt et et et et e e et et et et eaaeanenaeaneans 18

codean Work Flow EXampleccoviiiiiiiiiiiiiiiiiiiiiiiiiciic e 20

A Errors Analyzed by Code Analyzercooiiiiiiiiiiiiiiieiieei e, 23
Code COVETABE ISSUES ...uvvuniiniiintiieiieeieete et e et et et et e teetae et e et eeaneeaeaneanenns 23
Static COdE ISSUBS ...eeuuneeiineeii ettt ettt ettt et e e e et et e et e eeba e eeaneeeannees 23
Beyond Array Bounds Read (ABR)ocouiiiniiiiiiiiiinee e 24

Beyond Array Bounds Write (ABW)iiiiiiiiiiiiiiiiic e 24

Contents

Double Freeing Memory (DFM)cc.oiiiiiiiiiiiiiiiiiiiiiiiie e 24
Freed Memory Read (FIMR)oivniiiniiiiiiieiieeie et e e e e e e e e eeneeeneenneennnas 25
Freed Memory Write (FIMW)iuniiiiiiiie e 25
Infinite EmMpty Loop (INF) ...iuniiiiiiiie et eans 25
1A (0 00) A =YY N 25
Missing Function Return (MFR)oouiiiiiiiiii e 25
Missing Malloc Return Value Check (MRC)cccviiiiiiiiiiiiiiiiiiiiiiiiiccceee, 26
Leaky Pointer Checker: Null Pointer Dereference (NUL)c.ccvvvevivneinnnnnnns 26
Return Freed Memory (REFM) ...ccouiiiiiiiiiiiiiiiie e 27
Uninitialized Memory Read (UMR)cccoviiiiiiiiiiiiiiii e 27
Unused Return Value (URV)iviiiiiiiiiieciie et e e e e e e e e 28
Out-of-Scope Local Variable Usage (VES) ...cccuiiiiiiiiiiiiiiiieiiieeeiieeeieeeie 28
Dynamic Memory AcCesS EITOIScc.viiuiiiiiiiiiiiiiiiiiiiiicinei e 28
Beyond Array Bounds Read (ABR)ocvviiiniiiiiiieiieeieeieeieei e e e e e eeenas 29
Beyond Array Bounds Write (ABW) ...c.iiiiiiiiiiii e 29
Bad Free Memory (BFM)ccuiiiniiiiiiieiee ettt e e 29
Bad Realloc Address Parameter (BRP)c.ovvuiiiiiiieiieiiieiieeeeceeeeeaneen, 30
Corrupted Guard Block (CGB) ..c.uveuniiiiiiiiiiiiiece e 30
Double Freeing Memory (DFM)cc.ciiiiiiiiiiiiiiiiiiiiiiiie et 30
Freed Memory Read (FIMR)oivniiiniiiiiineieeiie et e e e e e e e e eeneeeneeaneennnas 31
Freed Memory Write (FIMW)imiiiiiiiiei e 31
Freed Realloc Parameter (FRP)c.oeiuiiiiiiiniiiiiein e 31
Invalid Memory Read (IMR)ccoivuiiniiiiieieei e e eeeie e e eeee e eeneeanenns 31
Invalid Memory Write (IMW) ...couniiiiiiiiie e 32
MemOTy Leakovuniiiiiiiii it 32
Overlapping Source and Destination (OLP)ccccvvvvevinriiiiireieineeienennns 32
Partially Initialized Read (PIR) ...c..couiiniiiiiiiiiiiii e 33
Beyond Stack Bounds Read (SBR)c.coeuiiiiiiiiiiiiiiieiiei e 33
Beyond Stack Bounds Write (SBW)vvuiiiiiiiiiiiiiieeie e e e 33
Unallocated Memory Read (UAR) ...couiiiiiiiiiiiiiiicee e 34
Unallocated Memory Write (UAW) ...cuuiiiiiiiiiiiie e e 34
Uninitialized Memory Read (UMR)c.oviiiiiiiiiiiiiiie e e e e e 34
Dynamic Memory AcCess WAITIIESeeuteuieniiniiniiniiniieeeieeeeeeneeneeeeneeneeneennen 35
Allocating Zer0 Siz@ (AZS) ..eeueeuieieiieie et et ei e 35
Memory Leak (IMLK) ...uuiiuiiniiineiieeneieeie et e et e et e e eeneeeneeaneeaneenaenaasnnees 35
Speculative Memory Read (SMR)ccuiiuiiiiiiiiiiiiiiiiecie e 35
INAEX ...t e e ettt e e e et e ettt e e e et e eanebaaaas 37

4 Oracle Solaris Studio 12.4: Code Analyzer User's Guide * October 2014

Using This Documentation

= Overview — Describes how to use the Code Analyzer tool, to analyze and display data
= Audience — Application developers, system developers, architects, support engineers

m Required knowledge — Programming experience, software development testing, experience
in building and compiling software products

Product Documentation Library

Late-breaking information and known issues for this product are included in the documentation
library at http://docs.oracle.com/cd/E37069 01.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

Using This Documentation

http://docs.oracle.com/cd/E37069_01
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/goto/docfeedback

Oracle Solaris Studio 12.4: Code Analyzer User's Guide * October 2014

LKA CHAPTER 1

Introduction

Oracle Solaris Studio Code Analyzer is an integrated set of tools that can help developers of C
and C++ applications for Oracle Solaris produce secure, robust, and quality software.

This chapter includes information about the following:

= “Data Analyzed by The Code Analyzer” on page 7

m “Requirements for Using Code Analyzer” on page 9

= “Code Analyzer GUI” on page 9

m “Code Analyzer Command-Line Interface” on page 10
= “Remote Desktop Distribution” on page 10

= “Quick Start” on page 11

Data Analyzed by The Code Analyzer

Code Analyzer analyzes three types of data:

m Static code errors detected during compilation

® Dynamic memory access errors and warnings detected by the discover utility, the memory
error discovery tool

® Code coverage data measured by the uncover utility, the code coverage tool

In addition to providing you access to each individual type of analysis, Code Analyzer
integrates static code checking with dynamic memory access analysis and code coverage
analysis, to enable you to find many important errors in your applications that cannot be found
by other error detection tools working separately.

The Code Analyzer also pinpoints the core issues in your code, that, when fixed, are likely
to eliminate the other issues. A core issue usually combines several other issues because, for
example, the issues have a common allocation point, or occur at the same data address in the
same function.

Chapter 1 « Introduction

Data Analyzed by The Code Analyzer

Static Code Checking

Static code checking detects common programming errors in your code during compilation. The
-xprevise=yes option for the C and C++ compilers leverages the compilers' control and data
flow analysis frameworks to analyze your application for potential programming and security
flaws.

Note - You can optionally use the -xanalyze=code option to collect static code errors, but this
option is EOL. Using the -xprevise=yes option is recommended.

For information on collecting static error data, see “Collecting Static Error
Data” on page 13.

For a list of the static code errors the Code Analyzer analyzes, see “Static Code
Issues” on page 23.

Dynamic Memory Access Checking

Memory-related errors in your code are often difficult to find. When you instrument your
program with discover before running it, discover catches and reports memory access errors
dynamically during program execution. For example, if your program allocates an array and
does not initialize it and then tries to read from a location in the array, the program is likely to
behave erratically. If you instrument the program with Discover and then run it, discover will
catch the error.

For information about collecting dynamic memory access error data, see “Collecting Dynamic
Memory Access Data” on page 14.

For a list of the dynamic memory access issues that Code Analyzer analyzes, see “Dynamic
Memory Access Errors” on page 28.

Code Coverage Checking

Code coverage provides information on which areas of your code are exercised in testing
and which are not, enabling you to improve your test suites to test more of your code. Code
Analyzer uses data collected by uncover to determine which functions in your program are
uncovered and the percentage of coverage that will be added to the total coverage for the
application if a test covering the relevant function is added.

For information about collecting code coverage data, see “Collecting Code Coverage
Data” on page 15.

8 Oracle Solaris Studio 12.4: Code Analyzer User's Guide * October 2014

Requirements for Using Code Analyzer

Requirements for Using Code Analyzer

Code Analyzer works with static error data, dynamic memory access error data, and code
coverage data collected from binaries compiled with the Oracle Solaris Studio 12.3 or 12.4 C or
C++ compiler.

Code Analyzer runs on a SPARC-based or x86-based system running at least Solaris 10 10/08
operating system at least Oracle Solaris 11, Oracle Enterprise Linux 5.x, or Oracle Enterprise
Linux 6.x.

Code Analyzer GUI

After collecting data with the compiler, Discover, or Uncover, you can start Code Analyzer GUI
to display and analyze the issues by issuing the code-analyzer command.

For each issue, Code Analyzer displays the issue description, the path name of the source file
in which the issue was found, and a code snippet from that file with the relevant source line
highlighted.

Code Analyzer enables you to do the following:

m Display more details for an issue. For a static issue, the details include the Error Path. For a
dynamic memory access issue, the details include a Call Stack and if the data is available,
include an Allocation Stack and a Free Stack.

m Open the source file in which an issue was found.

= Move from a function call in the Error Path or stack to the associated source code line.
m Find all of the usages of a function in your program.

= Move to the declaration of a function.

= Move to the declaration of an overridden or overriding function.

= Display the call graph for a function.

m Display more information about each issue type, including a code example and possible
causes.

m Filter the displayed issues by analysis type, issue type, and source file.

m Hide issues you have already reviewed, and close issues that you are not interested in.

For detailed information about using the GUI, see the online help in the GUTI and “Oracle
Solaris Studio 12.4: Code Analyzer Tutorial ”.

Chapter 1 « Introduction 9

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSCT
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSCT

Code Analyzer Command-Line Interface

Code Analyzer Command-Line Interface

The command-line interface version of Code Analyzer, codean, reads the analytics file as input
and generates output in text and HTML formats, using static code checking, Discover, and
Uncover. It also provides a mechanism to store data in an history archive for later comparison
of newer data with historic data. codean enables you to do the following:

m Read in the report in API format and transform the information into text and HTML format.
codean saves text output to a .type.html file, where type can be either static, dynamic, or
coverage.

® For the .analyze/type/latest report, calculate a checksum for each issue and store the
original issue information in the .analyze/history//type file, where type can be either
static, dynamic, or coverage.

= Show only the new or fixed issues in the latest report and compare it to previously saved
reports.

® Specify what type of data to collect: dynamic, static, coverage, or all.
= Display the full path name.

m Display issues in specific source files.

m Display a certain number of lines from the source code.

= Save the latest reports.

m Overwrite the last saved report with the same tag name.

= Show only new or fixed issues in the report.

m Specify the directory in which to save your reports.

= Filter the types of errors and warnings to display.

For more information, see the codean(1) man page.

Remote Desktop Distribution

10

You can create a remote desktop distribution of Code Analyzer that will run on almost any
operating system and use the Oracle Solaris Studio compilers and tools on a remote server.
When you generate a remote desktop distribution during installation and check the Export User
Settings From Default Directory option, Code Analyzer will recognize the server on which you
generated the distribution as a remote host and access the tool collection in your Oracle Solaris
Studio installation. This option is not checked by default.

To start the Code Analyzer on a remote operating system, run the appropriate executable:
./codeanalyzer/bin/codeanalyzer.exe

For information about how to install a Remote Desktop Distribution, see “Oracle Solaris Studio
12.4: Installation Guide .

Oracle Solaris Studio 12.4: Code Analyzer User's Guide * October 2014

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSIG
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSIG

Quick Start

For information about remote desktop distribution, see the Code Analyzer GUI online help.

Quick Start

The following is an example of the steps required to gather information about your code and
how to view the results with Code Analyzer, using a sample C program.

¥ Quick Start

1. Compile a program to collect static data.

o

% CC -Xprevise=yes *.c

Note - Previously, you could compile with the -xanalyze=code option. This option is still valid
for Oracle Solaris Studio 12.4 but is EOL.

2. Recompile program with debug information.

% cC -g *.c

3. Instrument program with discover and run program to collect dynamic memory
access data.

% cp a.out a.out.save
discover -a a.out
a.out

o°

%
©

4. Instrument program with uncover to collect code coverage data.

o°

a.out

cp a.out.save a.out
a.out

uncover a.out

o o°

20

5. After the information has been gathered, you can choose to use Code Analyzer
with the GUI or the codean command-line tool to display the collected data.

m For accessing Code Analyzer with the GUI, use the following command:

% code-analyzer a.out

m For accessing Code Analyzer with the command-line tool, use the following
command:

Chapter 1 « Introduction 11

Quick Start

%

s codean a.out

12 Oracle Solaris Studio 12.4: Code Analyzer User's Guide * October 2014

LKA CHAPTER 2

Collecting Data And Starting the Code Analyzer

The data you collect for analysis by the Code Analyzer is stored in the binary-name.analyze
directory in the directory that contains your source code files. The binary-name.analyze
directory is created by the compiler, discover, or uncover.

This chapter includes information about the following topics:

m “Collecting Static Error Data” on page 13

= “Collecting Dynamic Memory Access Data” on page 14
m “Collecting Code Coverage Data” on page 15

m “Using the Code Analyzer GUI” on page 16

Collecting Static Error Data

To collect static error data on your C or C++ program, compile the program using Oracle
Solaris Studio 12.3 or 12.4 C or C++ compiler with the -xprevise=yes option. Previously,

you used the -xanalyze=code option, but this option is EOL and it is recommended to

use the -xprevise=yes option instead. The -xprevise=yes option is not available in the
compilers in previous releases of Oracle Solaris Studio. When you use this option, the compiler
automatically extracts static errors and writes the data to the static subdirectory in the binary-
name.analyze directory.

If you compile your program with the -xprevise=yes option and then link it in a separate step,
you also need to include the -xanalyze=code option on the link step.

On Linux, you must specify the -xannotate option with -xprevise=yes in order to collect static
error data. For example:

% CC -xprevise=yes -xannotate -g t.c
Note that the compilers cannot detect all of the static errors in your code.

= Some errors depend on data that is available only at runtime. For example, given the
following code, the compiler would not detect an ABW (beyond array bounds write) error
because it could not detect that the value of ix, read from a file, lies outside the range [0,9]:

Chapter 2 « Collecting Data And Starting the Code Analyzer 13

Collecting Dynamic Memory Access Data

void f(int fd, int array[10])
{
int ix;
read(fd, &ix, sizeof(ix));
array[ix] = 0;
}
m Some errors are ambiguous,and also might not be actual errors. The compiler does not
report these errors.

= Some complex errors are not detected by the compilers in this release.

After collecting static error data, you can start Code Analyzer's GUI or the command-line
tool (codean) to analyze and display the data or recompile the program so that you can collect
dynamic memory access or code coverage data.

Collecting Dynamic Memory Access Data

14

Collecting dynamic memory access data on your C or C++ program is a two-step process:
instrumenting the binary with discover and then running the instrumented binary.

To instrument your program with discover to collect data for Code Analyzer, you must have
compiled the program with Oracle Solaris Studio version 12.3 or 12.4 C or C++ compiler.
Compiling with the -g option generates debug information that enables Code Analyzer to
display source code and line number information for dynamic memory access errors and
warnings.

discover provides the most complete detection of memory errors at the source code level if you
compile your program without optimization. If you compile with optimization, some memory
errors will not be detected.

For information about specific types of binaries that Discover can or cannot instrument, see
“Prepare Binaries Correctly” in “Oracle Solaris Studio 12.4: Discover and Uncover User’s
Guide ” and “Binaries That Use Preloading or Auditing Are Incompatible” in “Oracle Solaris
Studio 12.4: Discover and Uncover User’s Guide ”.

Note - You can build your program once for use with both discover and uncover. However,
because you cannot instrument a binary that is already instrumented, if you are also planning
to use uncover to collect coverage data, save a copy of the binary for this purpose before
instrumenting it with discover. For example:

o

% cp a.out a.out.save

Oracle Solaris Studio 12.4: Code Analyzer User's Guide * October 2014

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSDUgjxpl
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSDUgjxpl
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSDUgjxqj
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSDUgjxqj

How to Collect Dynamic Memory Access Data From the Binary:

v

How to Collect Dynamic Memory Access Data
From the Binary:

Instrument the binary with Discover using the -a option:

% discover -a binary_name

Note - You must use the version of Discover in Oracle Solaris Studio version 12.3 or 12.4. The
-a option is not available in earlier versions of discover.

Run the instrumented binary.

The dynamic memory access data is written to the dynamic subdirectory in the
binary_name.analyze directory.

Note - For additional instrumentation options you can specify when instrumenting the binary
with discover, see “Instrumentation Options” in “Oracle Solaris Studio 12.4: Discover and
Uncover User’s Guide ” or the discover man page.

(Optional) Start Code Analyzer's GUI or the command-line tool (codean) to analyze
and display the data, along with any static code data you might have previously
collected. Or, you can use an uninstrumented copy of the binary to collect code
coverage data.

Collecting Code Coverage Data

v

Before You Begin

Collecting code coverage data on your C or C++ program is a three-step process:

1. Instrumenting the binary with uncover
2. Running the instrumented binary

3. Running uncover again to generate a coverage report for use by Code Analyzer.

You can run the instrumented binary multiple times after instrumenting it, and accumulate data
over all of the runs before generating the coverage report.

How to Collect Code Coverage Data From the
Binary

To instrument your program with uncover to collect data for use by Code Analyzer, you must
have compiled the program with Oracle Solaris Studio version 12.3 or 12.4 C or C++ compiler.

Chapter 2 « Collecting Data And Starting the Code Analyzer 15

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSDUgjygd
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSDUgjygd

Using the Code Analyzer GUI

Compiling with the -g option generates debug information that allows Code Analyzer to use
source code level coverage information.

Note - If you saved a copy of the binary when you compiled your program for instrumenting
with discover, you can rename the copy to the original binary name and use it for
instrumenting with uncover. For example:

cp a.out.save a.out

Instrument the binary with Uncover:

% uncover binary-name

Run the instrumented binary one or more times.

The code coverage data is written to a binary-name. uc directory.

Generate the code coverage report from the accumulated data using Uncover
with the -a option:

% uncover -a binary-name.uc

The coverage report is written to the coverage subdirectory in the binary-name.analyze
directory.

Note - You must use the version of uncover in Oracle Solaris Studio version 12.3 or 12.4. The
-a option is not available in earlier versions of uncover.

Using the Code Analyzer GUI

16

You can use the Code Analyzer GUI to analyze up to three types of data. To start the GUI, type
the code-analyzer command and the path to the binary for which you want to analyze error
data you have collected:

% code-analyzer binary-name

The Code Analyzer GUI opens and displays the data in the binary-name.analyze directory, as
shown in the following figure.

Oracle Solaris Studio 12.4: Code Analyzer User's Guide * October 2014

Using the Code Analyzer Command-Line Tool (codean)

File wiew Tools wWindow Help

[Dynarmic (3

[] Coverageilz)
¢ @ Severity

[] @ ERROR (3]

[] Ay WARNING (12)
7 ¥ Bug type

[uncovered Function (12]
¢ 2 Binaries

[]a.out (15}
¢ U[E Files

[& previse_all.c im)

[samplez.c (3)

[sampled.c (2)

[]& samplel.c (1)

[] UMR [Uninitialized Memary Read] (3]

Issues Sources . \% &) previse_all.c x| B samplel.c x| @] sample2.c x[: Results x 4 HE@
lssues: @ Core (0 All -
? @Analysis Showing 15 Issues

Show: | Snippet:

jgnored HMew || Fixed
-

0 UMR Uninitialized Memory Read: at address 40628 (4 bytes) on the heap
| /demol/SolarisStudios 1 deAnalyzer/ 1 lel.c:1

7: #include <stdlib.h>
9: void add 8 1_put_in 2{(int *p)
1a: {
11: pl21 = plal + pI1l;
¥

@ UMR Uninitialized Memory Read: at address ffbffo38 (4 bytes) on the stack
fdemol/SolarisStudios les/CodeAnalyzer;: ley le3.c:1

8: #include =stdlib.h>
18: int uninitialized_local_l{int *p}
11: {

12: return *p;

13 3

© uMR Uninitialized Memory Read: at address ffbffo38 (4 bytes) on the stack

d 1/SolarisStudios 1 odeAnalyzer/s lefsample3.c:l’
13:
15: int uninitialized local_2(int *p)
16:
17: return *p;
18: ¥
4 Uncovered Function: Potential Coverage 12.1%
“ test_for_memoryleak
/demol/SolarisStudios I deAnalyzer/ le/previse_all.c
ar: memory leak errork*#esssststshsies
38: gdefine N 20
40: void test_for_nemoryleak(void)
a1: {
42 int *ptra, sum = 0;
4. Uncovered Function: Potential Coverage 9.7% =
(=1} Li{l Motifications Running Analyses | @l | s

When the Code Analyzer GUI is running, you can switch to displaying the data you have
collected for a different binary by choosing Open - File and navigating to the binary.

The online help in the GUI describes how to use all of features to filter the displayed results,
show or hide issues, and show more information about specific issues. The “Oracle Solaris
Studio 12.4: Code Analyzer Tutorial ” guides you through a complete scenario of data
collection and analysis using a sample program.

Using the Code Analyzer Command-Line Tool (codean)

You can also use the Code Analyzer command-line tool codean to analyze up to three types of
data. To start codean, type the codean command, any options, and the path of the executable or

directory.

codean options executable-path |directory

The codean tool displays text output on the screen. You can also view the results in a
.type.html file in the same place the executable resides. This section describes the command

options

Chapter 2 « Collecting Data And Starting the Code Analyzer

17

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSCT
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSCT

Using the Code Analyzer Command-Line Tool (codean)

18

codean Options
The following sections explain the different options you can use for codean..

Data Type Options

The following options determine which type of data to collect.

-s Process and display static data.
-d Process and display dynamic data.
-c Process and display coverage data.

You can specify multiple options or none. If none are selected, than the default is to process all
possible options, depending on whether the .analyze/type/latest file exists, where type can
be static, dynamic, or coverage.

Displaying Options

The following options determine the content of the text output of your results.

--fullpath Display the full file's path name.
-f source-file Display only the issues in the specified source file.
-n number Display the specified number of lines of the source code.

Filtering Options

The following options determine the types of errors and warnings that are reported in the
results.

The error or warning type can be one of the following:

m A three-letter error code or a three-letter warning code. For a list of possible errors and
warnings, see Appendix A, “Errors Analyzed by Code Analyzer”.

B MLK or mlk, for memory leaks.

Oracle Solaris Studio 12.4: Code Analyzer User's Guide * October 2014

Using the Code Analyzer Command-Line Tool (codean)

B ALL or all, for all warnings or errors.
If the error or warning is not specified, the default is all.

The filtering options are:

--showerrors Show only errors of the specified error type.
error-type
--showwarnings Show only warnings of the specified warning type.

warning-type

--hideerrors Do not show errors of the specified error type.
error-type
--hidewarnings Do not show warnings of the specified warning type.

warning-type

Saving Results Options

You can save your latest results in a file, placed in a specific directory with specific tag names.

--save Save the latest reports.

--tag tag-name When paired with --save, names the saved copy with the tag name tag-
name. If a saved copy has the same tag name, codean issues a warning
message and then exits without overwriting the file. If no tag name is
specified, codean checks the last modified time of the latest report of the
executable and uses the time stamp as the tag name.

-t Overwrite the saved report with the same tag name.

-D directory Save the report to the directory directory.

Comparing Results Options

The following options enable you to compare your results to a previously generated report.
--whatisnew Show only new issues. This option cannot be used with --whatisfixed.

--whatisfixed Show only fixed issues. This option cannot be used with --whatisnew.

Chapter 2 « Collecting Data And Starting the Code Analyzer 19

Using the Code Analyzer Command-Line Tool (codean)

20

--tag tag-name When paired with --whatisnew or --whatisfixed, uses the historic copy

of the report with tag name tag-name to compare against newly generated
report. If no tag name is specified, the latest report is compared against
the last saved copy.

--ref file|directory Must be paired with --whatisnew or --whatisfixed and must have a

path name following it. This option specifies which file or directory to
compare the new report against.

codean Work Flow Example

This section provides an example of monitoring the effect of a bug fix.

1.

10.

Compile the target source before the fix.

% €Cc =g *.c

Instrument the binary using Discover and make sure it generates Analytics output.

% discover -a a.out
Run the instrumented binary.

Use codean to store the analytics output. The history archive is created at a.out.analyze/
history/before bugfix and a history file called dynamic is created in this directory.

% codean --save --tag before_bugfix -d a.out
Fix the bug.
Compile the target source again.

% cc -g *.c

Instrument the binary again using discover.

% discover -a a.out

Run the instrumented binary.

% a.out
Show comparison results and ensure that the invalid memory access caused by the bug is
fixed.

% codean --whatisfixed --tag before_bugfix -d a.out

This produces a new Analytics output file at a.out.analyze/dynamic/
fixed before bugfix and that contains only fixed dynamic issues. You can use codean or
the Code Analyzer GUI to view these fixed issues.

(Optional) Run codean to ensure you did not introduce any new bugs.

% codean --whatisnew --tag before_bugfix -d a.out

Oracle Solaris Studio 12.4: Code Analyzer User's Guide * October 2014

Using the Code Analyzer Command-Line Tool (codean)

This command produces a new analytics file at a.out.analyze/dynamic/
new_before bugfix that contains only new dynamic issues.

Chapter 2 « Collecting Data And Starting the Code Analyzer 21

22 Oracle Solaris Studio 12.4: Code Analyzer User's Guide * October 2014

LKA APPENDIX A

Errors Analyzed by Code Analyzer

The compilers, discover, and uncover find static code issues, dynamic memory access issues,
and coverage issues in your code. This appendix describes the specific error types that are found
by these tools and analyzed by Code Analyzer.

m “Code Coverage Issues” on page 23

m “Static Code Issues” on page 23

= “Dynamic Memory Access Errors” on page 28

m “Dynamic Memory Access Warnings” on page 35

Code Coverage Issues

Code coverage checking determines which functions are uncovered. In the results, code
coverage issues found are labeled as Uncovered Function, with a potential coverage percentage,
indicating the percentage of coverage that will be added to the total coverage for the application
if a test covering the relevant function is added.

Possible Causes: No test might execute your function or you might have forgotten to delete
dead or old code.

Static Code Issues

Static code checking finds the following types of errors:

= ABR: beyond array bounds read
= ABW: beyond array bounds write
= DFM: double freeing memory

m ECV: explicit type cast violation
= FMR: freed memory read

= FMW: freed memory write

= INF: infinite empty loop

= MLK: memory leak

Appendix A ¢ Errors Analyzed by Code Analyzer 23

Static Code Issues

= MFR: missing function return

® MRC: missing malloc return value check

m NFR: uninitialized function return

= NUL: null pointer dereference, leaky pointer check

= RFM: return freed memory

= UMR: uninitialized memory read, uninitialized memory read bit operation
= URV: unused return value

m VES: out-of-scope local variable usage

This section describes possible causes of the error and a code example of when the error might
occur.

Beyond Array Bounds Read (ABR)

Possible causes: Attempting to read memory beyond the array bounds.

Example:
int a[5];

printf("a[5] = %d\n",a[5]); // Reading memory beyond array bounds

Beyond Array Bounds Write (ABW)

Possible causes: Attempting to write memory beyond the array bounds.
Example:
int a [5];

a[5] = 5; // Writing to memory beyond array bounds

Double Freeing Memory (DFM)

Possible Causes: Calling free() () more than once with the same pointer. In C++, using the
delete operator more than once on the same pointer.

Example:

int *p = (int*) malloc(sizeof(int));

free(p);

. // p was not signed a new value between the free statements
free(p); // Double freeing memory

24 Oracle Solaris Studio 12.4: Code Analyzer User's Guide * October 2014

Static Code Issues

Freed Memory Read (FMR)

Example:

int *p = (int*) malloc(sizeof(int));

free(p);
// Nothing assigned to p in between
printf("p = @0x%h\n",p); // Reading from freed memory

Freed Memory Write (FMW)

Example:

int *p = (int*) malloc(sizeof(int));

free(p);
// Nothing assigned to p in between

*p = 1; // Writing to freed memory

Infinite Empty Loop (INF)

Example:

int x=0;
int i=0;
while (i200) {
x++; } // Infinite loop

Memory Leak

Possible causes: Memory is allocated but not freed before exit or escaping from the function.

Example:

int foo()

{

int *p = (int*) malloc(sizeof(int));

if (x) {
// will cause a leak of the 1st malloc

p = (int *) malloc(5*sizeof(int));

}
// The 2nd malloc leaked here

}

Missing Function Return (MFR)

Possible causes: Missing return values along some paths to exit.

Appendix A ¢ Errors Analyzed by Code Analyzer

25

Static Code Issues

Example:

#include <stdio.h>
int foo (int a, int b)

{
if (a)
{
return b;

}
} // If foo returns here, the return is uninitialized
int main ()
{

printf("sd\n", foo(0,30));
}

Missing Malloc Return Value Check (MRC)

Possible causes: Accessing a return value from malloc in C or a new operator in C++ without
checking against null.

Example:

#include <stdlib.h>

int main()

{
int *p3 = (int*) malloc(sizeof(int)); // Missing null-pointer check after malloc.
*p3 = 0;

}

Leaky Pointer Checker: Null Pointer Dereference
(NUL)

Possible causes: Accessing a pointer that might equal to null, or redundant checking against
null in case the pointer is never null.

Example:

#include <stdio.h>
#include <stdlib.h>
int gp, ctl;
int main()
{
int *p = gp;
if (ctl)
p=20;
printf ("%c\n", *p); // May be null pointer dereference
if (!p)

26 Oracle Solaris Studio 12.4: Code Analyzer User's Guide * October 2014

Static Code Issues

*p = @; // Surely null pointer dereference

int *p2 = gp;
*p2 = 0; // Access before checking against NULL.
assert (p2!=0);

int *p3 = gp;
if (p3) {
printf ("p3 is not zero.\n");
}
*p3 = @; // Access is not protected by previous check against NULL.
}

Return Freed Memory (RFM)

Example:

#include <stdlib.h>
int *foo ()

{
int *p = (int*) malloc(sizeof(int));
free(p);
return p; // Return freed memory is dangerous
}
int main()
{
int *p = foo();
*p = 0;
}

Uninitialized Memory Read (UMR)

Possible causes: Reading local or heap data that has not been initialized.
Example:

#include <stdio.h>
#include <stdlib.h>
struct ttt {
int a: 1;
int b: 1;
+;
int main()
{
int *p = (int*) malloc(sizeof(int));

printf("*p = %d\n",*p); // Accessing uninitialized data

struct ttt t;

Appendix A ¢ Errors Analyzed by Code Analyzer 27

Dynamic Memory Access Errors

extern void foo (struct ttt *);

t.a=1;
foo (&t); // Access uninitialized bitfield data "t.b"
}

Unused Return Value (URV)

Possible causes: Reading local or heap data that has not been initialized.

Example:

int foo();
int main()
{

foo(); // Return value is not used.

}

Out-of-Scope Local Variable Usage (VES)

Possible causes: Reading local or heap data that has not been initialized.

Example:

int main()
{
int *p = (int *)0;
void bar (int *);
{
int a[10];
p = a;
} // local variable 'a' leaked out
bar(p);

Dynamic Memory Access Errors

Dynamic memory access checking finds the following types of errors:

= ABR: beyond array bounds read

= ABW: beyond array bounds write

= BFM: bad free memory

= BRP: bad realloc address parameter
m CGB: corrupted guard block

28 Oracle Solaris Studio 12.4: Code Analyzer User's Guide * October 2014

Dynamic Memory Access Errors

m DFM: double freeing memory

= FMR: freed memory read

= FMW: freed memory write

m FRP: freed realloc parameter

= [MR: invalid memory read

= IMW: invalid memory write

= MLK: memory leak

m OLP: overlapping source and destination
= PIR: partially initialized read

= SBR: beyond stack bounds read
= SBW: beyond stack bounds write
= UAR: unallocated memory read
= UAW: unallocated memory write
= UMR: uninitialized memory read

This sections describes the possible causes of the error and a code example of when the error

would occur.

Beyond Array Bounds Read (ABR)

Possible causes: Attempting to read memory beyond the array bounds.

Example:
int a[5];

printf("a[5] = %d\n",a[5]); // Reading memory beyond array bounds

Beyond Array Bounds Write (ABW)

Possible causes: Attempting to write memory beyond the array bounds.

Example:
int a [5];

a[5] = 5; // Writing to memory beyond array bounds

Bad Free Memory (BFM)

Possible Causes: Passing a non-heap data pointer to free() () or realloc() ().

Appendix A ¢ Errors Analyzed by Code Analyzer

29

Dynamic Memory Access Errors

Example:

#include <stdlib.h>

int main()

{
int *p = (int*) malloc(sizeof(int));
free(p+l); // Freeing wrong memory block

}

Bad Realloc Address Parameter (BRP)

Example:

#include <stdlib.h>
int main()
{
int *p = (int*) realloc(0,sizeof(int));
int *q = (int*) realloc(p+20,sizeof(int[2])); // Bad address parameter for realloc

}

Corrupted Guard Block (CGB)

Possible Causes: Writing past the end of a dynamically allocated array, or being in the "red
zone".

Example:

#include <stdio.h>
#include <stdlib.h>

int main() {

int *p = (int *) malloc(sizeof(int)*4);

*(p+5) = 10; // Corrupted array guard block detected (only when the code is not
annotated)

free(p);

return 0;

}

Double Freeing Memory (DFM)

Possible Causes: Calling free() () more than once with the same pointer. In C++, using the
delete operator more than once on the same pointer.

Example:

30 Oracle Solaris Studio 12.4: Code Analyzer User's Guide * October 2014

Dynamic Memory Access Errors

int *p = (int*) malloc(sizeof(int));

free(p);

. // p was not assigned a new value between the free statements
free(p); // Double freeing memory

Freed Memory Read (FMR)

Example:

int *p = (int*) malloc(sizeof(int));
free(p);
// Nothing assigned to p in between
printf("p = 0x%h\n",p); // Reading from freed memory

Freed Memory Write (FMW)

Example:

int *p = (int*) malloc(sizeof(int));

free(p);

. // Nothing assigned to p in between
*p = 1; // Writing to freed memory

Freed Realloc Parameter (FRP)

Example:
#include <stdlib.h>

int main() {
int *p = (
free(0);
int *q = (int*) realloc(p,sizeof(it[2])); //Freed pointer passed to realloc

int *) malloc(sizeof(int));

}

Invalid Memory Read (IMR)

Possible causes: Reading 2, 4, or 8 bytes from an address that is not half-word aligned, word
aligned, or double-word aligned, respectively.

Example:

#include <stdlib.h>

Appendix A ¢ Errors Analyzed by Code Analyzer 31

Dynamic Memory Access Errors

int main()
{
int *p = 0;
int i = *p; // Read from invalid memory address

}

Invalid Memory Write (IMW)

Possible causes: Writing 2, 4, or 8 bytes from an address that is not half-word aligned, word
aligned, or double-word aligned, respectively. Writing to a text address, writing to a read-only
data section (. rodata), or writing to a page that mmap has made read-only.

Example:
int main()
{
int *p = 0;
*p = 1; // Write to invalid memory address
}

Memory Leak

Possible causes: Memory is allocated but not freed before exit or escaping from the function.

Example:
int foo()
{
int *p = (int*) malloc(sizeof(int));
if (x) {
p = (int *) malloc(5*sizeof(int)); // will cause a leak of the 1st malloc
}
} // The 2nd malloc leaked here

Overlapping Source and Destination (OLP)

Possible causes: Incorrect source, destination, or length is specified. When the source and
destination overlap, the behavior of the program is undefined.

Example:

#include <stlib.h>
#include <string.h>
int main() {
char *s=(char *) malloc(15);

32 Oracle Solaris Studio 12.4: Code Analyzer User's Guide * October 2014

Dynamic Memory Access Errors

memset(s, 'x', 15);
memcpy (s, s+5, 10);
return 0;

Partially Initialized Read (PIR)

Example:
#include <stdio.h>
#include <stdlib.h>

int main()
{

int *p = (int*) malloc(sizeof(int));

*((char¥)p) = 'c';

printf("*(p = %d\n",*(p+1)); // Accessing partially initialized data
}

Beyond Stack Bounds Read (SBR)

Possible causes: Reading a local array past the end or before the start.

Example:
#include <stdio.h>

int a[

int main() {
prlntf(" al-

{0, 1};
10]1=%d\n",a[-10]); // Read is beyond stack frame bounds

return 0;

Beyond Stack Bounds Write (SBW)

Possible causes: Writing to a local array past the end or before the start.

Example:

#include <stdio.h>

int main() {
int a[2] = {0, 1};
al[-10] = 2; // Write is beyond stack frame bounds

return 0;

Appendix A ¢ Errors Analyzed by Code Analyzer 33

Dynamic Memory Access Errors

Unallocated Memory Read (UAR)

Possible causes: A stray pointer, overflowing the bounds of a heap block, or accessing a heap
block that has already been freed.

Example:

#include <stdio.h>
#include <stdlib>
int main()

{
int *p = (int*) malloc(sizeof(int));
printf("*(p+1l) = %d\n",*(p+1)); // Reading from unallocated memory

}

Unallocated Memory Write (UAW)

Possible causes: A stray pointer, overflowing the bounds of a heap block, or accessing a heap
block that has already been freed.

Example:

#include <stdio.h>
#include <stdlib>
int main()

{
int *p = (int*) malloc(sizeof(int));
*(p+l) = 1; // Writing to unallocated memory

Uninitialized Memory Read (UMR)

Possible causes: Reading local or heap data that has not been initialized.

Example:

#include <stdio.h>
#include <stdlib>
int main()

{
int *p = (int*) malloc(sizeof(int));
printf("*p = %d\n",*p); // Accessing uninitialized data

}

34 Oracle Solaris Studio 12.4: Code Analyzer User's Guide * October 2014

Dynamic Memory Access Warnings

Dynamic Memory Access Warnhings

Dynamic memory access checking finds the following types of warnings:

m AZS: allocating zero size
= Memory leak
m SMR: speculative uninitialized memory read

This section describes the possible causes of the warning and a code example of when the
warning might occur.

Allocating Zero Size (AZS)

Example:

#include <stdlib>
int main()

{

int *p = malloc(); // Allocating zero size memory block

}

Memory Leak (MLK)

Possible causes: Memory is allocated but not freed before exit or escaping from the function.

Example:
int foo()
{
int *p = (int*) malloc(sizeof(int));
if (x) {
p = (int *) malloc(5*sizeof(int)); // will cause a leak of the 1st malloc
}
} // The 2nd malloc leaked here

Speculative Memory Read (SMR)

Example:
int 1i;
if (foo(&i) != @) /* foo returns nonzero if it has initialized i */

printf("5d\n", 1i);

The compiler might generate the following equivalent code for the above source:

Appendix A ¢ Errors Analyzed by Code Analyzer 35

Dynamic Memory Access Warnings

int 1i;
int t1, t2'
tl = foo(&i);

t2 = i; /* value in i is loaded. So even if tl is @, we have uninitialized read due to
speculative load */

if (t1 '= 0)

printf("sd\n", t2);

36 Oracle Solaris Studio 12.4: Code Analyzer User's Guide * October 2014

Index

B

binary-name.analyze directory, 13, 16
coverage subdirectory, 16
static subdirectory, 13

binary_name.analyze directory
dynamic subdirectory, 15

C
Code Analyzer
requirements for using, 9
Code Analyzer command-line interface
features, 10
Code Analyzer GUI
features, 9
quick start, 11
starting, 16
code coverage checking, 8
code coverage issues, 23
codean
features, 10
codean command, 10
collecting data

binary-name.analyze directory, 13

code coverage, 15
dynamic memory access errors, 14
static errors, 13
limitations, 13
core issues, 7

D

dynamic memory access checking, 8

dynamic memory access issues
errors, 28

warnings, 35

G
-g compiler option, 14, 16

|

instrumenting your program
with Discover, 14
with discover, 15
with Uncover, 15, 16

(o)
optimization, effect on memory errors, 14
options, 18

comparing results, 19

data type, 18

displaying, 18

filtering, 18

saving results, 19

R

requirements

for instrumenting your program with Discover, 14
for instrumenting your program with uncover, 15

for using the Code Analyzer, 9

S
static code checking, 8
static code issues, 23

37

Index

X

-xanalyze=code compiler option, 8, 13, 13
Linux, 13

-xprevise=yes compiler option, 8,13, 13
Linux, 13

38 Oracle Solaris Studio 12.4: Code Analyzer User's Guide * October 2014

	Oracle® Solaris Studio 12.4: Code Analyzer User's Guide
	Contents
	Using This Documentation
	Product Documentation Library
	Access to Oracle Support
	Feedback

	Chapter 1 • Introduction
	Data Analyzed by The Code Analyzer
	Static Code Checking
	Dynamic Memory Access Checking
	Code Coverage Checking

	Requirements for Using Code Analyzer
	Code Analyzer GUI
	Code Analyzer Command-Line Interface
	Remote Desktop Distribution
	Quick Start
	Quick Start

	Chapter 2 • Collecting Data And Starting the Code Analyzer
	Collecting Static Error Data
	Collecting Dynamic Memory Access Data
	How to Collect Dynamic Memory Access Data From the Binary:

	Collecting Code Coverage Data
	How to Collect Code Coverage Data From the Binary

	Using the Code Analyzer GUI
	Using the Code Analyzer Command-Line Tool (codean)
	codean Options
	Data Type Options
	Displaying Options
	Filtering Options
	Saving Results Options
	Comparing Results Options

	codean Work Flow Example

	Appendix A • Errors Analyzed by Code Analyzer
	Code Coverage Issues
	Static Code Issues
	Beyond Array Bounds Read (ABR)
	Beyond Array Bounds Write (ABW)
	Double Freeing Memory (DFM)
	Freed Memory Read (FMR)
	Freed Memory Write (FMW)
	Infinite Empty Loop (INF)
	Memory Leak
	Missing Function Return (MFR)
	Missing Malloc Return Value Check (MRC)
	Leaky Pointer Checker: Null Pointer Dereference (NUL)
	Return Freed Memory (RFM)
	Uninitialized Memory Read (UMR)
	Unused Return Value (URV)
	Out-of-Scope Local Variable Usage (VES)

	Dynamic Memory Access Errors
	Beyond Array Bounds Read (ABR)
	Beyond Array Bounds Write (ABW)
	Bad Free Memory (BFM)
	Bad Realloc Address Parameter (BRP)
	Corrupted Guard Block (CGB)
	Double Freeing Memory (DFM)
	Freed Memory Read (FMR)
	Freed Memory Write (FMW)
	Freed Realloc Parameter (FRP)
	Invalid Memory Read (IMR)
	Invalid Memory Write (IMW)
	Memory Leak
	Overlapping Source and Destination (OLP)
	Partially Initialized Read (PIR)
	Beyond Stack Bounds Read (SBR)
	Beyond Stack Bounds Write (SBW)
	Unallocated Memory Read (UAR)
	Unallocated Memory Write (UAW)
	Uninitialized Memory Read (UMR)

	Dynamic Memory Access Warnings
	Allocating Zero Size (AZS)
	Memory Leak (MLK)
	Speculative Memory Read (SMR)

	Index

