Oracle® Solaris Studio 12.4: Performance
Analyzer Tutorials

Part No: E37087
December 2014

ORACLE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered
to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As

such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Copyright © 2014, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui I’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis a des restrictions d’utilisation et
de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter, transmettre, distribuer, exposer,
exécuter, publier ou afficher le logiciel, méme partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder a toute ingénierie inverse
du logiciel, de le désassembler ou de le décompiler, excepté a des fins d’interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes d’erreurs et vous
invite, le cas échéant, a lui en faire part par écrit.

Si ce logiciel, ou la documentation qui I’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou a toute entité qui délivre la licence de ce logiciel ou I'utilise pour
le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered
to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As

such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas congu ni n’est destiné

a étre utilisé dans des applications a risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre
d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires a son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par 1’utilisation de ce logiciel ou matériel pour ce
type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre a des marques appartenant a d’autres propriétaires
qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’ Advanced Micro Devices. UNIX est une
marque déposée d’The Open Group.

Ce logiciel ou matériel et la documentation qui I’accompagne peuvent fournir des informations ou des liens donnant accés a des contenus, des produits et des services émanant

de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En aucun cas, Oracle
Corporation et ses affiliés ne sauraient étre tenus pour responsables des pertes subies, des cofits occasionnés ou des dommages causés par 1’accés a des contenus, produits ou services
tiers, ou a leur utilisation.

Contents

Using This DOCUMENTAtiONuiiiiiiiiiiiiiiiiiiiiiiiiieee e 5
Introduction to the Performance Analyzer Tutorialsccoooieiiiiiiiiiiinnns 7
About the Performance Analyzer TUtorialsceceuuiviiiiieiiniiiiineiiiee e eeieeeins 7
Getting the Sample Code for the Tutorialsceevvieiviineiinriireiieei e, 8
Setting Up Your Environment for the TUtorialsc.ceoviiiiiniiiiiiniiieeieeeieeeieeenas 9
Introduction to C Profilingcoooiiiiiiiii e, 11
About the C Profiling Tutorialcciiiiiiiiiiiiiii e 11
Setting Up the lowfruit Sample Codeccceuvivniiiiiiiieieiiieii e e e 12
Using Performance Analyzer to Collect Datac..oveeunieiinieiiineiiieeiieeeieeeines 12
Using the Performance Analyzer to Examine the lowfruit Dataccccveeeuneeennnnen. 17
Using the Remote Performance ANAlYZercveeuuviiineeiineeiiieeeiineeiieeeeieeninnen 24
Introduction to Java Profilingccoooiiiiii i 27
About the Java Profiling Tutorialcccuuiviiiiiiiiiiiiiniiiiie e 27
Setting Up the jlowfruit Sample Codec.veuuiiiiiiiiiiiiiiiiiiiiiee e 28
Using Performance Analyzer to Collect Data from jlowfruitc...ccooeeeiiiiiiiieennnees 28
Using Performance Analyzer to Examine the jlowfruit Datacccoeceuveeinniennnneen. 32
Using the Remote Performance ANalyZerc.oeeeuuiiiiiieiiiiiiiiieeiie e eeeieeeieees 41
Java and Mixed Java-C++ Profilingcccccooiiiiiiiie 43
About the Java-C++ Profiling Tutorialccoviiiiiiiiiiiiiiiiii e 43
Setting Up the jsynprog Sample Codeccevivniiiiiiiiiniiieii e e e 44
Collecting the Data FrOmM jSYNPIrog «.euueeuneinriinriinreineiieetieeineeineeineeineeneeeneennaenneens 45
Examining the jsynprog Dataccoviiiiiiiiiiiiiiie e 46
Examining Mixed Java and C++ COdevvvniiiniiniiiniiiieir e e eieeie e e eeneeenas 48
Understanding the JVM Behaviorc.ocoiiiiiiiiiiiiiicece e 52
Understanding the Java Garbage Collector Behaviorccceeviiiiiiiiiiiiiiiiniiienn., 56

Contents

Understanding the Java HotSpot Compiler Behaviorcccooeeiiiiiiiiiiiiiiniinnne 61
Hardware Counter Profiling on a Multithreaded Program 63
About the Hardware Counter Profiling Tutorialcccovvviiiiiiiiiiiiniiinieiieeann 63
Setting Up the mttest Sample Codecouviiuiiiiiiiniiiiiireiirei e 64
Collecting Data From mttest for Hardware Counter Profiling Tutorial 65
Examining the Hardware Counter Profiling Experiment for mttestcccccuueeenn. 65
Exploring Clock-Profiling Dataeeeuueiiuiiiieiiieeiie e e et e e e e 67
Understanding Hardware Counter Instruction Profiling Metricsccccocevueeennneene. 69
Understanding Hardware Counter CPU Cycles Profiling Metricsccoccovvvnnennnen. 71
Understanding Cache Contention and Cache Profiling Metricscccovviiuueeennnnes 73
Detecting False Sharingcoouieiuiiiiiiiiiii e 77
Synchronization Tracing on a Multithreaded Programc....cooeee. 81
About the Synchronization Tracing Tutorialccccoviviviiiiiiiiiiniireie e, 81
About the mttest Programc.cceeeuiviiiiiiiiniiiiiiiieeiie e e 82

About Synchronization Tracingceveveueiereierieeiireree e e eeeeaneennns 82

Setting Up the mttest Sample Codeccouuiiiiiiiiiiiiiiiiiii e 82
Collecting Data from mttest for Synchronization Tracing Tutorialc...cc.u.... 83
Examining the Synchronization Tracing Experiment for mttestc....ccoeeeiuniienn.. 84
Understanding Synchronization Tracingccoeeeuviiiviiiiiniiiniineineiinennnes 85
Comparing Two Experiments with Synchronization Tracingcc......... 89

4 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Using This Documentation

= Overview —This manual provides step-by-step instructions for using the Oracle Solaris
Studio 12.4 Performance Analyzer on sample programs.

= Audience — Application developers, developer, architect, support engineer

= Required knowledge — Programming experience, Program/Software development testing,
Aptitude to build and compile software products

Product Documentation Library

The product documentation library is located at http://docs.oracle.com/cd/E37069 01.

System requirements and known problems are included in the “Oracle Solaris Studio 12.4:
Release Notes .

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

Using This Documentation

http://docs.oracle.com/cd/E37069_01
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSRN
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSRN
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/goto/docfeedback

Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Introduction to the Performance Analyzer
Tutorials

Performance Analyzer is the Oracle Solaris Studio tool for examining performance of your
Java, C, C++, and Fortran applications. You can use it to understand how well your application
is performing and find problem areas. This document provides tutorials that show how to use
Performance Analyzer on sample programs using step-by-step instructions.

About the Performance Analyzer Tutorials

This document features several tutorials that show how you can use Performance Analyzer to
profile various types of programs. Each tutorial provides steps for using Performance Analyzer
with the source files including screen shots at most steps in the tutorial.

The source code for all the tutorials in included in a single distribution. See “Getting the Sample
Code for the Tutorials” on page 8 for information about obtaining the sample source code.

The tutorials include the following:

= “Introduction to C Profiling”

This introductory tutorial uses a target code named lowfruit, written in C. The lowfruit
program is very simple and includes code for two programming tasks which are each
implemented in an efficient way and an inefficient way. The tutorial shows how to collect
a performance experiment on the C target program and how to use the various data views
in Performance Analyzer. You examine the two implementations of each task, and see how
Performance Analyzer shows which task is efficient and which is not.

= “Introduction to Java Profiling”

This introductory tutorial uses a target code named jlowfruit, written in Java. Similar to
the code used in the C profiling tutorial, the jlowfruit program is very simple and includes
code for two programming tasks which are each implemented in an efficient way and an
inefficient way. The tutorial shows how to collect a performance experiment on the Java
target and how to use the various data views in Performance Analyzer. You examine the
two implementations of each task, and see how Performance Analyzer shows which task is
efficient and which is not.

= “Java and Mixed Java-C++ Profiling”

Introduction to the Performance Analyzer Tutorials 7

Getting the Sample Code for the Tutorials

This tutorial is based on a Java code named jsynprog that performs a number of
programming operations one after another. Some operations do arithmetic, one triggers
garbage collection, and several use a dynamically loaded C++ shared object, and call from
Java to native code and back again. In this tutorial you see how the various operations are
implemented, and how Performance Analyzer shows you the performance data about the
program.

m “Hardware Counter Profiling on a Multithreaded Program”

This tutorial is based on a multithreaded program named mttest that runs a number of
tasks, spawning threads for each one, and uses different synchronization techniques for
each task. In this tutorial, you see the performance differences between the computations
in the tasks, and use hardware counter profiling to examine and understand an unexpected
performance difference between two functions.

m “Synchronization Tracing on a Multithreaded Program”

This tutorial is also based on the multithreaded program named mttest that runs a number
of tasks, spawning threads for each one, and uses different synchronization techniques

for each task. In this tutorial, you examine the performance differences between the
synchronization techniques.

Getting the Sample Code for the Tutorials

The programs used in the Performance Analyzer tutorials are included in a distribution that
includes code used for all the Oracle Solaris Studio tools. Use the following instructions to
obtain the sample code if you have not previously downloaded it.

1. Go to the Oracle Solaris Studio 12.4 Sample Applications page at http://
www.oracle.com/technetwork/server-storage/solarisstudio/downloads/solaris-
studio-12-4-samples-2333090.html.

Read the license from the link on the page and accept by selecting Accept.
Download the zip file by clicking its link and unzip using instructions on the download
page.

After you download and unpack the sample files, you can find the samples in the
SolarisStudioSampleApplications/PerformanceAnalyzer directory.

Note that the directory includes some additional samples that are not described in this

document: cachetest, ksynprog, omptest, and synprog. Each sample directory includes
a Makefile and a README file with instructions that you can use for some additional
demonstrations of Performance Analyzer.

8 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

http://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/solaris-studio-12-4-samples-2333090.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/solaris-studio-12-4-samples-2333090.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/solaris-studio-12-4-samples-2333090.html

Setting Up Your Environment for the Tutorials

Setting Up Your Environment for the Tutorials

Before you try the tutorials, make sure that you have the Oracle Solaris Studio bin directory on
your path and have an appropriate Java version in your path as described in Chapter 5, “After
Installing Oracle Solaris Studio 12.4,” in “Oracle Solaris Studio 12.4: Installation Guide .

The make or gmake command must also be on your path so you can build the programs.

Introduction to the Performance Analyzer Tutorials 9

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSIGgozoj
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSIGgozoj

10 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Introduction to C Profiling

This chapter covers the following topics.

“About the C Profiling Tutorial” on page 11

m “Setting Up the lowfruit Sample Code” on page 12

m “Using Performance Analyzer to Collect Data” on page 12

® “Using the Performance Analyzer to Examine the lowfruit Data” on page 17
m “Using the Remote Performance Analyzer” on page 24

About the C Profiling Tutorial

This tutorial shows the simplest example of profiling with Oracle Solaris Studio Performance
Analyzer and demonstrates how to use Performance Analyzer to collect and examine a
performance experiment. You use the Overview, Functions view, Source view, and Timeline in
this tutorial.

The program lowfruit is a simple program that executes two different tasks, one for initializing
in a loop and one for inserting numbers into an ordered list. Each task is performed twice, in an
inefficient way and in a more efficient way.

Tip - The “Introduction to Java Profiling” tutorial uses an equivalent Java program and shows
similar activities with Performance Analyzer.

The data you see in the experiment that you record will be different from that shown here.

The experiment used for the screen-shots in the tutorial was recorded on a SPARC T5 system
running Oracle Solaris 11.2. The data from an x86 system running Oracle Solaris or Linux will
be different. Furthermore, data collection is statistical in nature and varies from experiment to
experiment, even when run on the same system and OS.

The Performance Analyzer window configuration that you see might not precisely match the
screen shots. Performance Analyzer enables you to drag separator bars between components
of the window, collapse components, and resize the window. Performance Analyzer records
its configuration and uses the same configuration the next time it runs. Many configuration
changes were made in the course of capturing the screen shots shown in the tutorial.

Introduction to C Profiling 11

Setting Up the lowfruit Sample Code

This tutorial is run locally on a system where Oracle Solaris Studio is installed. You can also
run remotely as described in “Using the Remote Performance Analyzer” on page 24.

Setting Up the lowfruit Sample Code

Before You Begin

See the following for information about obtaining the code and setting up your environment.

m “Getting the Sample Code for the Tutorials” on page 8
m “Setting Up Your Environment for the Tutorials” on page 9

1. Copy the contents of the lowfruit directory to your own private working area with the
following command:

o

% cp -r SolarisStudioSampleApplications/PerformanceAnalyzer/lowfruit mydirectory

where mydirectory is the working directory you are using.
2. Change to that working directory.

o

% cd mydirectory/lowfruit
3. Build the target executable.

% make clobber (needed only if you ran make in the directory before, but safe in any case)

o

% make

After you run make the directory contains the target program to be used in the tutorial, an
executable named lowfruit.

The next section shows how to use Performance Analyzer to collect data from the lowfruit
program and create an experiment.

Tip - If you prefer, you can edit the Makefile to do the following: use the GNU compilers rather
than the default of the Studio compilers; build in 32-bits rather than the default of 64-bits; and
add different compiler flags.

Using Performance Analyzer to Collect Data

This section describes how to use the Profile Application feature of Performance Analyzer to
collect data in an experiment.

12 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Using Performance Analyzer to Collect Data

Tip - If you prefer not to follow these steps to see how to profile applications, you can record an
experiment with a make target included in the Makefile for lowfruit:

make collect

The collect target launches a collect command and records an experiment just like the one
that you create using Performance Analyzer in this section. You could then skip to “Using the
Performance Analyzer to Examine the lowfruit Data” on page 17.

1. While still in the lowfruit directory start Performance Analyzer:
% analyzer

Performance Analyzer starts and displays the Welcome page.

Oracle Solaris Studio Performance Analyzer

File Views Tools Help

BSED | d = [Match ¢
ORACLE Solaris Studio Performance Analyzer
Welcome

Create Experiments Remote
Profile Application Connect to Remote Host
Profile Running Process esrnIMare

View Experiments Introduction
Open Experiment What's New
Compare Experiments Information Map

If this is the first time you have used Performance Analyzer, no recent experiments are
shown below the Open Experiment item. If you have used it before, you see a list of

Introduction to C Profiling 13

Using Performance Analyzer to Collect Data

the experiments you recently opened from the system where you are currently running
Performance Analyzer.

2. Click the Profile Application link under Create Experiments in the Welcome page.
The Profile Application dialog box opens with the General tab selected.
3. Inthe Target Program field, type the program name lowfruit.

(«Nale] X! Profile Application [lowfruit]

[General | Datato Collect | Output |
Specify Application to Profile

Target Program: * |Lomfruit | |@ Browse

Arguments: | |

Warking Directory: |f’tmIJfHYTLTI'DRIALSflowfruit | (3 Browse

Environment variables: | |

Target InputiQutput: 0 Use External Terminal @ Use Built-in Output Wind ow

Specify Experiment

Experiment Mame: |test.l.er |

Experiment Directory: | | %Browse
Experiment Group: | | [Browse

Advanced Expetiment Settings

Data Lirmit (MEY: | Unlimited -

Time_Limit {Secands). |Lnlimited -

Archive_ Modea:

Follow Descendant Processes:

Signalto PauseResume Collection:

Start state: @ Paused O Resumed

Fresigw Comrmand: I

Pause || Sample | | Run || Terminate || Clase || ﬂelpL
i

Tip - You could start Performance Analyzer and open this dialog box directly with the program
name already entered by specifying the target name when starting Performance Analyzer

with the command analyzer lowfruit. This method only works when running Performance
Analyzer locally.

4. For the Target Input/Output option, select Use Built-in Output Window.

14 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Using Performance Analyzer to Collect Data

Target Input/Output option specifies the window to which the target program stdout and
stderr will be redirected. The default value is Use External Terminal, but in this tutorial
the Target Input/Output option was changed to Use Built-in Output Window to keep all
the activity in the Performance Analyzer window. With this option the stdout and stderr is
shown in the Output tab in the Profile Application dialog box.

If you are running remotely, the Target Input/Output option is absent because only the built-
in output window is supported.

For the Experiment Name option, the default experiment name is test.1.er but you can
change it to a different name as long as the name ends in .er, and is not already in use.
Click the Data to Collect tab.

The Data to Collect enables you to select the type of data to collect, and shows the defaults
already selected.

ame X/ Profile Application [lowfruit]

[General | DatatoCallect | Output |

Specify the type of data to callect. As you select data types, ather incompatible data types are disabled.

Claek Profiling Frofiling Interval (ms.:
Java Profiling

[] Harthware Counter Profiling

Add Counters || Delete || Available Counters

Selected Hardware Counters:

Periadic Samples Sample Interval {sec): |Marmal
[] Manual Samples Sample Signal:
[] 140 Tracing

[] Heap Tracing

[[] synchronization Wait Tracing Minimurm Delay (ms)
[] MPI Tracing for specified MPI MF] version:
[] Data Race Detection

[] Deadiock Detection

[_] Functioniinstruction Counts Instrumentation:

Iniinl

Fresigw Comrmand: I

(=]
=
=

Pause || Sample |

|| Terrminate || Close || Help |
4

Introduction to C Profiling 15

Using Performance Analyzer to Collect Data

Java profiling is enabled by default as you can see in the screen shot, but it is ignored for a
non-Java target such as lowfruit.

You can optionally click the Preview Command button and see the collect command that
will be run when you start profiling.
7. Click the Run button.

The Profile Application dialog box displays the Output tab and shows the program output as
it runs in the Process Output panel.

After the program completes, a dialog box asks if you want to open the experiment just
recorded.

000 X/ Profile Application [lowfruit]

r Genearal r Diata to Collect r Cutput |

Collectar output

Sun Aug 31 12:36:32 2014 -
Sun Aug 31 12:36:32 2014

Sun Aug 31 12:36:32 2014

Sun Aug 31 12:36:32 2014

SunAug 31 12:36:32 2014

Creating experiment database test 1 .er (Pracess |D; 28851 .

Process output lalale) N\ Information —
Running init_good(=
Running init_bad - :

| . o
RUNNINg INSer_goodo test.1.er: Data collection is caomplete. Da vou want to apen it?
Running insert_bad(

Open Experiment | | Cancel

[« [»]

Preview Command: |ibf 7. £ Jbinfcollect-0 Ampfcollect_1 408513792668 _pid tt-0 test 1 er-p on -5 on -j on lowfruit

| Fause || Sample | | Run || Terminate || Close || HElpL
%

8. Click Open Experiment in the dialog box.

The experiment opens. The next section shows how to examine the data.

16 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Using the Performance Analyzer to Examine the lowfruit Data

Using the Performance Analyzer to Examine the lowfruit
Data

This section shows how to explore the data in the experiment created from the lowfruit sample
code.

1. If the experiment you created in the previous section is not already open, you can start
Performance Analyzer from the lowfruit directory and load the experiment as follows:

% analyzer test.l.er

When the experiment opens, Performance Analyzer shows the Overview screen.

test.l.er - Oracle Solaris Studio Performance Analyzer

File Views Tools Help
EEE0 ves m]
Views +

Experiment(s)
Welcome

b test.ler
Overview
Functions Metrics
Timeline Select the metrics to display in the data views, then click a data view in the navigation panel on the left.
Soume Available Metrics
Callers-Callees Experiment Duration: 67.042 Seconds [Exclusive EhInclusive

= Clock Profiling Show in views Time Value % Time Yalue %

Experiments < Total Thread Time - 67.037 Seconds

Threads ¢ Total Thread Time m}
Processes ¢ Total CPUTime * [m] m]

Moreicn e User CPUTime m]

System CPU Time . . o []

Trap CPU Time . . . o []

M Data Page Fault Time I [

B TextPage Fault Time I 5%]

M Kernel Page Fault Time I w1

Stopped Time 5% O

W Wwait CPU Time A 5% O

WSleep Time I 0% [m]

M User Lock Time [o []

No Active Filters Metrics Preview
¥ [Excl. Total | & Incl. Total | Name

CPU
(sec.) (sec.)
£7.057 £7.037 <Total>

In this experiment the Overview shows essentially 100% User CPU time. The program
is single-threaded and that one thread is CPU-bound. The experiment was recorded on a
Oracle Solaris system, and the Overview shows twelve metrics recorded but only Total
CPU Time is enabled by default.

The metrics with colored indicators are the times spent in the ten microstates defined by
Oracle Solaris. These metrics include User CPU Time, System CPU Time, and Trap CPU

Introduction to C Profiling 17

Using the Performance Analyzer to Examine the lowfruit Data

Time which together are equal to Total CPU Time, as well as various wait times. Total
Thread Time is the sum over all of the microstates.

On a Linux machine, only Total CPU Time is recorded because Linux does not support
microstate accounting.

By default, both Inclusive and Exclusive Total CPU Time are selected. Inclusive for any
metric refers to the metric value in that function or method, including metrics accumulated
in all the functions or methods that it calls. Exclusive refers only to the metric accumulated
within that function or method.

Click on the Functions view in the Views navigation bar on the left side, or select it using
Views > Functions from the menu bar.

test.l.er - Oracle Solaris Studio Performance Analyzer
File Views Tools Help

EEED | vea@ |

o — [Y AN

Views +)| [H Excl. Total @ Incl. Total Name @: Selection Details
Welcome 7 (sec.) (sec.) Name: init_static_routine
. 67.037 67.037 <Totals [=] PC Address: 2:0x00000FC8
OeerEw 39.788 39.788 init_static_routine ul Size: 180
Functions 16.812 16.812 insert_number Source File: lowfruit.c
- 3 623 39.768 init bad Object File: LOWEFULE (f0HNd % test.l.er/archives/L
Timeline 3613 2235 init_good Load Object: lowfruit (found as test.l.er/archives/l
— Mangled Name:
Call Tree 3.172 11.668 insert bad Aliases:
0,020 8.356 insert good _
Source 0.010 0.010 zamd ¢ i Exclusive & Inclusive
. Total Thread Time: 39.788 { 59.35%) 39.788 { 59.35%)
Ll 0 67.057 _stare Total CPU Time: 39.788 (59.35%) 39.788 (59.35%)
Experiments o e 03 masn User CPU Time: 39.788 (59.35%) 39.788 (59.35%)
System CPU Time: 0. (0. %) 0. (0. %)
Threads Trap CPU Time: 0. %)] 0. %)
Data Page Fault Time: L] (o.) LE (o.)
Processes Text Page Fault Time: o (0. %) 0. (0. %)
Maore Views... Kernel Page Fault Time: 0. (0. %) 0. (0. %)
Stopped Time: o 0. %) o 0. %)
Wait CPU Time: [(0. %) 0. (0. %)
Sleep Time: o (0. %) 0. (0. %)
User Lock Time: [(0. %) 0. (0. %)

No Active Filters

?®

aw
Called-by / Calls

init_static_routine

48 Aur. Total | init_static_routine

CPl is called by cPU

V (sec) WV (sec)

36.165 init bad -]
3.623 1init_good

i D)

8 Aur. Total | init_static_routine
calls

[a]

|

[41

The Functions view shows the list of functions in the application, with performance metrics
for each function. The list is initially sorted by the Exclusive Total CPU Time spent in each
function. The list includes all functions from the target application and any shared objects
the program uses. The top-most function, the most expensive one, is selected by default.

The Selection Details window on the right shows all the recorded metrics for the selected
function.

The Called-by/Calls panel below the functions list provides more information about

the selected function and is split into two lists. The Called-by list shows the callers of

the selected function and the metric values show the attribution of the total metric for

the function to its callers. The Calls list shows the callees of the selected function and
shows how the Inclusive metric of its callees contributed to the total metric of the selected

Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Using the Performance Analyzer to Examine the lowfruit Data

function. If you double-click a function in either list in the Called-by/Calls panel, the
function becomes the selected function in the main Functions view.

Experiment with selecting the various functions to see how the windows in the Functions
view update with the changing selection.

The Selection Details window shows you that most of the functions come from the
lowfruit executable as indicated in the Load Object field.

You can also experiment with clicking on the column headers to change the sort from
Exclusive Total CPU Time to Inclusive Total CPU Time, or by Name.

In the Functions view compare the two versions of the initialization task, init bad() and
init good().

You can see that the two functions have roughly the same Exclusive Total CPU Time but
very different Inclusive times. The init bad() function is slower due to time it spends in a
callee. Both functions call the same callee, but they spend very different amounts of time in
that routine. You can see why by examining the source of the two routines.

Select the function init good() and then click the Source view or choose Views > Source
from the menu bar.

Adjust the window to allow more space for the code: Collapse the Called-by/Calls panel by
clicking the down arrow in the upper margin, and collapse the Selection Details panel by
clicking the right-arrow in the side margin.

You should scroll up a little to see the source for both init bad() and init good(). The
Source view should look similar to the following screen shot.

test.1.er - Oracle Solaris Studio Performance Analyzer
File Views Iools Help

BEE PeE | i <JAQ L mamcse
Views +)| | & Incl. Toral ggn_m:n File: lowfruit.c i o) Ead
cPU ject File: lowfruit (found as test.l.er/archives/lowfruit 2TeV90TldnS) >
SO (sec) Load object: lowfruit (found as test.l.er/archives/lowfruit zTev90Tldn5) <7
. { -
Overview <Function: init bad> H
Functions int 1130k
volatile double x;
Timeline
Call Tree] for(i = 0; 1 < imax; 1 ++) {
36165 s1. init _static routine():
Source o for(3j= 0; 3 < 507 J++) {
a x = 0.0; m
Elltetellizs 0,680 for(k=0; k<1000000; k++) {
Experiments 2.932 X = x+ 1.0; L
Threads) !
Processes * i
o }
Mare Views...
void
init_good(int imax)
o {
<Function: init_good>
int 1,3,k;
volatile double x;
3623 67. init_staric_routine():
a for(i = 0; i < imax; i +4+) {
a for(j= 0; 3 < 50; 3++) {
No Active Filters 0 X = 0.0}
AT 0801 for(k=0; k<1000000; k++) {
Z 81z o= x o+ 1.0;
}
}
+
a } =

Introduction to C Profiling 19

Using the Performance Analyzer to Examine the lowfruit Data

20

Notice that the call to init static routine() is outside of the loop in init good(), while
init bad() has the call to init static routine() inside the loop. The bad version takes
about ten times longer (corresponding to the loop count) than in the good version.

This example is not as silly as it might appear. It is based on a real code that produces a
table with an icon for each table row. While it is easy to see that the initialization should
not be inside the loop in this example, in the real code the initialization was embedded in a
library routine and was not obvious.

The toolkit that was used to implement that code had two library calls (APIs) available. The
first API added an icon to a table row, and second API added a vector of icons to the entire
table. While it is easier to code using the first API, each time an icon was added, the toolkit
recomputed the height of all rows in order to set the correct value for the whole table. When
the code used the alternative API to add all icons at once, the recomputation of height was
done only once.

Now go back to the Functions view and look at the two versions of the insert task,

insert _bad() and insert_good().

Note that the Exclusive Total CPU time is significant for insert_bad (), but negligible for
insert_good(). The difference between Inclusive and Exclusive time for each version,

representing the time in the function insert number() called to insert each entry into the
list, is the same. You can see why by examining the source.

Select insert_bad() and switch to the Source view:

test.l.er - Oracle Solaris Studio Performance Analyzer
File ¥iews Tools Help

BEED | 2ee (3 e <G s
Views +)| | & Incl. Total | Source File: lowfruit.c Al

cPuU Object File: lowfruit (found as test.l.er/archives/lowfruit ZTeV90TldnS) »
Welcome Load Object: lowfruit (found as test.l.er/archives/lowfruit_zTeV0Tldns) 7

(sec) =
Overview void]
Enetians insert bad(int insert count)

o {
Timeline <Function: insert bad>
Call Tree int i, done, new;

] count = 0;
Source [insert_table = insert_init(insert_count);
Callers-Callees 0 for(i = 0; i < insert_count; i ++} {
Experiments

a new = rand();
Threads o done = 0; —
e 1.011 for (int j = 0; J < count; j ++) { -

z.152 if(new < insert_table[i]) {
More Views... . 486 111. insert number(new,i);

] done = 1;
No Active Filters a break;

P ¥
}
0.010 if (done == 0) {
] insert_number(new, count);
¥
' =

Notice that the time, excluding the call to insert number(), is spent in a loop looking with
a linear search for the right place to insert the new number.

Now scroll down to look at insert good().

Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Using the Performance Analyzer to Examine the lowfruit Data

10.

11.

test.l.er - Oracle Solaris Studio Performance Analyzer
File Views Tools Help

VEED | ved 3 —l Y YA
Views +) | @& Incl. Total | Source File: lowfruit.c @A‘
] cPU object File: lowfruit (found as test.l.er/archives/lowfruit zTev90Tldns) >
Welcome (sec) Load Object: lowfruit (found as test.l.er/archives/lowfruit ZTev30Tldns) ~7
B insert_good(int insert_count) [a
Overview 0 —
{
Tt e <Function: insert_good>
int i, x, done, new, left, right, curval;
Timeline
Call Tree a count = 0;
] insert _table = insert init(insert_count};
Source
o for(i = 0; i < insert_count; i ++) {
Callers-Callees -
Experiments 0,010 141 new = rand():
Threads
Processes o lett = 0;
a right = count-1;
Mare Views...
] while (left <= right) {
] x = (left + right) / 2;
0,020 curval = insert_table[x];
] if (curval > new) {
a right = x - 1; -
] } else if (curval < new) {
a left =x +1;
} else { =
No Active Filters
P a left = x; L
] right = x -1;
¥
b
& 326 162. insert number(new, left);
) -

av

Note that the code is more complicated because it is doing a binary search to find the right
place to insert, but the total time spent, excluding the call to insert number (), is much less

than in insert bad(). This example illustrates that binary search can be more efficient than
linear search.

You can also see the differences in the routines graphically in the Timeline view.

Click on the Timeline view or choose Views > Timeline from the menu bar.

The profiling data is recorded as a series of events, one for every tick of the profiling

clock for every thread. The Timeline view shows each individual event with the callstack
recorded in that event. The callstack is shown as a list of the frames in the callstack, with
the leaf PC (the instruction next to execute at the instant of the event) at the top, and the call
site calling it next, and so forth. For the main thread of the program, the top of the callstack
is always _start.

In the Timeline tool bar, click the Call Stack Function Colors icon for coloring functions or
choose Tools > Function Colors from the menu bar and see the dialog box as shown below.

Introduction to C Profiling 21

Using the Performance Analyzer to Examine the lowfruit Data

test.l.er - Oracle Solaris Studio Performance Analyzer

File Views Tools Help
BED | re®

Views

©)

Timegzec) ?

)

10
|

| &

Welcome 2‘0

AW | & @ | crouw paaby

30 40
I |

50
|

i Thread [v
80
1

Overview 1
Functions
Timeline
Call Tree

000 Function Colors

g HSB

Swatches

RGB

Legend

=~}

k)

Recent
EE

M start
[inft_bad
[inft_good

[int_static_routine

[insert_number

B main

[Set Selected Functions H [Sset All Functions

|| Reset Default Colors

_Ml I Set Functions: [Starts with

j Set CPU Idle Events Color: ® Normal O Jnvisible O Selected Color l
T
vi
cl

4]

: Selection Details

[March Case

;

Process: i/lowfruit/test.l.er [lowfruit
Event Type: Clock Profiling
Leaf Function: init_static_routine
Timestamp (sec.): 33.523459
Lwp: 1

av
Call Stack - Timeline

init_static_routine + 0x0000004C, line 88 in "low
init bad + 0x00000020, line 51 in "lowfruit.c”
main + 0x00000044, line 31 in "lowfruit.c"
_start + 0x00000108

The function colors were changed to distinguish the good and bad versions of the functions
more clearly for the screen shot. The init bad() and insert bad() functions are both now
red and the init good() and insert_good() are both bright green.

12.
box:

n

Selected Functions button.
n

Selected Functions button.
]

Selected Functions button.
|

Set Selected Functions button.

13. Look at the top bar of the Timeline.

To make your Timeline view look similar, do the following in the Function Colors dialog

Scroll down the list of java methods in the Legend to find the init bad() method.

Select the init bad() method, click on a red color square in Swatches, and click Set

Select the insert bad() method, click on a red color square in Swatches, and click Set

Select the init good() method, click on a green color square in Swatches, and click Set

Select the insert_good() method, click on a green color square in Swatches, and click

The top bar of the Timeline is the CPU Utilization Samples bar as you can see in the tool tip
if you move your mouse cursor over the first column. Each segment of the CPU Ultilization
Samples bar represents a one-second interval showing the resource usage of the target

during that second of execution.

22

Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Using the Performance Analyzer to Examine the lowfruit Data

14.

15.

16.

17.

In this example, all the segments are green because all the intervals were spent
accumulating User CPU Time. The Selection Details window shows the mapping of colors
to microstate although it is not visible in the screenshot.

Look at the second bar of the Timeline.

The second bar is the Clock Profiling Call Stacks bar, labeled "1 T:1" which means Process
1 and Thread 1, the only thread in the example. The Clock Profiling Call Stacks bar shows
two bars of data for events occurring during program execution. The upper bar shows color-
coded representations of the callstack and the lower bar shows the state of the thread at
each event. The state in this example was always User CPU Time so it appears to be a solid
green line.

If you click anywhere within that Clock Profiling Call Stacks bar you select the nearest
event and the details for that event are shown in the Selection Details window. From the
pattern of the call stacks, you can see that the time in the init good() and insert good()
routines shown in bright green in the screenshot is considerably shorter than the
corresponding time in the init_bad() and insert_bad() routines shown in red.

Select events in the regions corresponding to the good and bad routines in the timeline and
look at the call stacks in the Call Stack - Timeline window below the Selection Details
window.

You can select any frame in the Call Stack window, and then select the Source view on the
Views navigation bar, and go to the source for that source line. You can also double-click a
frame in a call stack to go to the Source view or right-click the frame in the call stack and
select from a popup menu.

Zoom in on the events by using the slider at the top of the Timeline, or using the + key, or
by double-clicking with the mouse.

If you zoom in enough you can see that the data shown is not continuous but consists of
discrete events, one for each profile tick, which is about 10 ms in this example.

test.l.er - Oracle Solaris Studio Performance Analyzer
File Views Tools Help

BEED (ve@ O
Views + Sl==p!) ‘ A am ‘ o) ‘ Group Data by:| Thread |, ': Selection Details
Welcome Timetsec) 233 324 335 226 = Process: i/lowfruit/test.l.er [lowfruit
i L 1 1 L Event Type: Clock Frofiling
Overview 1 B - Leaf Function: init_static_routine
Timestamp (sec.): 33-523459 :‘
Lwp: 1 <

Functions 171
© av
Call Stack - Timeline
init _static_routine + 0x0000004C, line 88 in "low
.an:ad + 0x00000020, line 51 in "lowfruit.c"
Source main + 0x00000044, line 31 in "lowfruit.c
_start + 0x00000108

Timeline

Call Tree

Callers-Callees
Experiments
Threads

Processes

More Views...

Press the F1 key to see the Help for more information about the Timeline view.

Click on the Call Tree view or choose Views > Call Tree to see the structure of your
program.

Introduction to C Profiling 23

Using the Remote Performance Analyzer

The Call Tree view shows a dynamic call graph of the program, annotated with
performance information.

test.l.er - Oracle Solaris Studio Performance Analyzer
Eile Views Iools Help

BEED | ved L — Y YR
Views +)| Call Tree: FUNCTIONS. Complete view. Threshold: 1% Sort by: metric. Metric: Auributed Total CPU Time N
¢ 67.037 (100%) <Total> 4
Welcome ? 67.037 (100%) _strt
. [3 67.037 (100%) main
Overview [39.788 (59% init_bad
- 11.658 (17% insert_bad
Functions b3 8.356 (12%) insert_good
Timeline 8.326 (12%) insert_number
0.010 (0% rand_r
Call Tree oM 7.235 (11%) init_good

Source
Callers-Callees
Experiments
Threads
Processes

More Views...

Performance Analyzer has many additional views of the data, such as the Caller-Callees view
which enables you to navigate through the program structure, and the Experiments view
which shows you details of the recorded experiment. For this simple example the Threads and
Processes views are not very interesting.

By clicking on the + button on the Views list you can add other views to the navigation bar. If
you are an assembly-language programmer, you might want to look at the Disassembly. Try
exploring the other views.

Performance Analyzer also has a very powerful filtering capability. You can filter by time,
thread, function, source line, instruction, call stack-fragment, and any combination of them.
The use of filtering is outside the scope of this tutorial, since the sample code is so simple that
filtering is not needed.

Using the Remote Performance Analyzer

You can use the Remote Performance Analyzer either from a supported system, or from systems
where Oracle Solaris Studio cannot be installed, such as Mac OS or Windows. See “Using
Performance Analyzer Remotely” in “Oracle Solaris Studio 12.4: Performance Analyzer ” for
information about installing and using this special version of Performance Analyzer.

When you invoke Performance Analyzer remotely, you see the same Welcome page, but the
options for creating and viewing experiments are disabled and grayed-out.

Click Connect to Remote Host and Performance Analyzer opens a connection dialog:

24 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSPAgotcr
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSPAgotcr

Using the Remote Performance Analyzer

Connect to Remote Host

Host Name:

User Name:

Password:

Installation Path:

‘vou rhost

‘v|

|vc-ur USEr name

|Path to bin directory where Studio is installed on “yourhost”

Connection Status: not connected

Type the name of the system to which you want to connect, your user name and password for
that system, and the installation path to the Oracle Solaris Studio installation on that system.
Click Connect and Performance Analyzer logs in to the remote system using your name and

Connect || Cance || Close || Help ‘

password, and verifies the connection.

From that point on, the Welcome page will look just as it does with the local Performance
Analyzer, except the status area at the bottom shows the name of the remote host to which you

connected. Proceed from there in step 2 above.

Introduction to C Profiling

25

26 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Introduction to Java Profiling

This chapter covers the following topics.

“About the Java Profiling Tutorial” on page 27

®m “Setting Up the jlowfruit Sample Code” on page 28

® “Using Performance Analyzer to Collect Data from jlowfruit” on page 28
® “Using Performance Analyzer to Examine the jlowfruit Data” on page 32

= “Using the Remote Performance Analyzer” on page 41

About the Java Profiling Tutorial

This tutorial shows the simplest example of profiling with Oracle Solaris Studio Performance
Analyzer and demonstrates how to use Performance Analyzer to collect and examine a
performance experiment. You use the Overview, Functions view, Source view, Timeline view,
and Call Tree view in this tutorial.

The program jlowfruit is a simple program that executes two different tasks, one for
initializing in a loop and one for inserting numbers into an ordered list. Each task is performed
twice, in an inefficient way and in a more efficient way.

Tip - The “Introduction to C Profiling” tutorial uses an equivalent C program and shows similar
activities with Performance Analyzer.

The data you see in the experiment that you record will be different from that shown here.

The experiment used for the screen-shots in the tutorial was recorded on a SPARC T5 system
running Oracle Solaris 11.2. The data from an x86 system running Oracle Solaris or Linux will
be different. Furthermore, data collection is statistical in nature and varies from experiment to
experiment, even when run on the same system and OS.

The Performance Analyzer window configuration that you see might not precisely match the
screen shots. Performance Analyzer enables you to drag separator bars between components
of the window, collapse components, and resize the window. Performance Analyzer records
its configuration and uses the same configuration the next time it runs. Many configuration
changes were made in the course of capturing the screen shots shown in the tutorial.

Introduction to Java Profiling 27

Setting Up the jlowfruit Sample Code

This tutorial is run locally on a system where Oracle Solaris Studio is installed. You can also
run remotely as described in “Using the Remote Performance Analyzer” on page 24.

Setting Up the jlowfruit Sample Code

Before You Begin

See the following for information about obtaining the code and setting up your environment.

m “Getting the Sample Code for the Tutorials” on page 8

m “Setting Up Your Environment for the Tutorials” on page 9

1. Copy the contents of the jlowfruit directory to your own private working area with the
following command:

% cp -r SolarisStudioSampleApplications/PerformanceAnalyzer/jlowfruit mydirectory

where mydirectory is the working directory you are using.
2. Change to that working directory copy.

% cd mydirectory/jlowfruit
3. Build the target executable.

% make clobber (needed only if you ran make in the directory before, but safe in any case)
% make

After you run make the directory contains the target application to be used in the tutorial, a
Java class file named jlowfruit.class.

The next section shows how to use Performance Analyzer to collect data from the
jlowfruit program and create an experiment.

Using Performance Analyzer to Collect Data from jlowfruit

This section describes how to use the Profile Application feature of Performance Analyzer to
collect data in an experiment on a Java application.

28 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Using Performance Analyzer to Collect Data from jlowfruit

Tip - If you prefer not to follow these steps to see how to profile applications from Performance
Analyzer, you can record an experiment with a make target included in the Makefile for
jlowfruit:

% make collect

The collect target launches a collect command and records an experiment just like the one
that you create using Performance Analyzer in this section. You could then skip to “Using
Performance Analyzer to Examine the jlowfruit Data” on page 32.

1. While still in the jlowfruit directory start Performance Analyzer with the target java and
its arguments:

% analyzer java -Xmx1@0m -XX:ParallelGCThreads=10 jlowfruit

The Profile Application dialog box opens with the General tab selected and several options
already filled out using information you provided with the analyzer command.

Target Program is set to java and Arguments is set to

-Xmx100m -XX:ParallelGCThreads=10 jlowfruit

Introduction to Java Profiling 29

Using Performance Analyzer to Collect Data from jlowfruit

000 N Profile Application [java]

[General | Datato Collect | Output |
Specify Application to Profile

Target Program: * |java | (3 Browse

Arguments: |—melIJDm - ParallelzCThreads=10 jlowfruit |

Working Directory: |z’tmpf1‘TYTUTDRIALSIjlowfruit | % Erowse

Enyironment Variables: | |

Target InputOutput. @ Use External Terminal O Use Built-in Output Window

Specify Experiment

Egperiment Name: |test.l.er |

Experiment Directary: | | %Browse
Experiment Group: | | %Browse

Advanced Experiment Setlings
Drata Lirnit (MBY: | Unlimited -

Time_Limit (Seconds): [Unlimited v

Archive Mode:

Follow Descendant Processes:

Signal to PauseiResume Collection: |Off

Start state: @ Paused O Resumed

Freview Cammand: I

| FPause || Samnple | | Run || Terminate || Close || ﬂelpl
&=

2. For the Target Input/Output option, select Use Built-in Output Window.

Target Input/Output option specifies the window to which the target program stdout and
stderr will be redirected. The default value is Use External Terminal, but in this tutorial
you should change the Target Input/Output option to Use Built-in Output Window to keep
all the activity in the Performance Analyzer window. With this option the stdout and stderr
is shown in the Output tab in the Profile Application dialog box.

If you are running remotely, the Target Input/Output option is absent because only the built-
in output window is supported.

3. For the Experiment Name option, the default experiment name is test.1.er but you can
change it to a different name as long as the name ends in .er, and is not already in use.

4. Click the Data to Collect tab.

30 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Using Performance Analyzer to Collect Data from jlowfruit

The Data to Collect tab enables you to select the type of data to collect, and shows the
defaults already selected.

afe % Profile Application [java]

[General [TData to Collect | Output |

Specify the type of data to callect. As you select data types, ather incompatible data types are disabled.

Claek Profiling Frofiling Interval (ms.J:
Java Profiling

[_] Hardware Counter Profiling

Add Counters | | Delete | | Available Counters
Selected Hardware Counters:
Periadic Samples Sample Interval {sec.):
[] Manual Samples Sample Signal:
[] 110 Tracing

[] Heap Tracing

[[] synchronization Wait Tracing Minimurm Delay (ms)
[] MPI Tracing for specified MPI MPI version:
[] Data Race Detection

[] Deadlock Detection

[] Functioniinstruction Counts Instrurmentation:

Iniinl

Fresigw Comrmand: I

Pause || Sample | | Run || Terminate || Clase || ﬂelpL
i

Java profiling is enabled by default as you can see in the screen shot.

You can optionally click the Preview Command button and see the collect command that
will be run when you start profiling.

Click the Run button.

The Profile Application dialog box displays the Output tab and shows the program output in
the Process Output panel as the program runs.

After the program completes, a dialog box asks if you want to open the experiment just
recorded.

Introduction to Java Profiling 31

Using Performance Analyzer to Examine the jlowfruit Data

000 N Profile Application [java]

(‘General | Datato Gollect | Output |

Collector output

SunAug 31132235 2014

SunAug 31132235 2014

SunAug 31132235 2014

SunAug 31132235 2014

SunAug 31132235 2014

Creating experiment database test 1 er (Process [D: 29537) .

Process output Y Y . Information
Picked up JAVA_TOOL_OF
Running init_good)
Running init_had)
Running insert_goodd
Running insert_badd Open Experiment | | Cancel

test1.er; Data collection is complete. Do vou want to apen it?

-

[4]

[v]

Previesw Comrmand: I55441_pid.m-o test1.er-p on-S on-j onjava -xmyl 00m -CCParallel GCThreads=10 jlowfruit

| Pause || Sample | [Run || Tarminate || Close || Heip |

6. Click Open Experiment in the dialog box.

The experiment opens. The next section shows how to examine the data.

Using Performance Analyzer to Examine the jlowfruit Data

32

This section shows how to explore the data in the experiment created from the jlowfruit
sample code.

1. If the experiment you created in the previous section is not already open, you can start

Performance Analyzer from the jlowfruit directory and load the experiment as follows:

o

% analyzer test.l.er

Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

]

Using Performance Analyzer to Examine the jlowfruit Data

When the experiment opens, Performance Analyzer shows the Overview page.

Notice the Overview page shows a summary of the metric values and enables you to select
metrics.

test.l.er - Oracle Solaris Studio Performance Analyzer
File Views Tools Help

BEE0 [e & | uservode || o
Views +
)

Welcome

b test.l.er
‘Overview
Functions Metrics
Timeline Select the metrics to display in the data views, then click a data view in the navigation panel on the left.
Soume Available Metrics
Callers-Callees Experiment Duration: 78.764 Seconds [Exclusive 5 Inclusive

< Clock Profiling show inwviews Time Value % Time value %

Experiments < Total Thread Time - 549.264 Seconds

Threads ¢ Total Thread Time PR . [m]
Processes ¢-Total CPUTIme 14% [m} [}
Mo e s User CPU Time L 14% [m}
System CPUTIme 0% [m}
Trap CPU Time L 0% [m}
N Data Page Fault Time | W []
l Text Page Fault Time P | 0% [m}
N Kernel Page Fault Time | 0% [m]
Stopped Time e 0% [m}
BwatCPUTIme | 0% [m}
l Sleep Time R | 19% =[]
W User Lock Time e I % %[
No Active Filters . N
Metrics Preview
A5 B Excl. Total | & Incl. Total | Name
CPU
(sec.) (sec.)
78.826 76,826 <Total>

In this experiment the Overview shows about 14% Total CPU Time which was all User
CPU Time, plus about 14% Sleep Time and 71% User Lock Time. The user Java code
jlowfruit is single-threaded and that one thread is CPU-bound, but all Java programs

use multiple threads including a number of system threads. The number of those threads
depends on the choice of JVM options, including the Garbage Collector parameters and the
size of the machine on which the program was run.

The experiment was recorded on a Oracle Solaris system, and the Overview shows twelve
metrics recorded but only Total CPU Time is enabled by default.

The metrics with colored indicators are the times spent in the ten microstates defined by
Oracle Solaris. These metrics include User CPU Time, System CPU Time, and Trap CPU
Time which together are equal to Total CPU Time, as well as various wait times. Total
Thread Time is the sum over all of the microstates.

On a Linux machine, only Total CPU Time is recorded because Linux does not support
microstate accounting.

By default, both Inclusive and Exclusive Total CPU Time are selected. Inclusive for any
metric refers to the metric value in that function or method, including metrics accumulated

Introduction to Java Profiling 33

Using Performance Analyzer to Examine the jlowfruit Data

34

in all the functions or methods that it calls. Exclusive refers only to the metric accumulated
within that function or method.

Click the Hot button to select metrics with high values to show them in the data views.
The check boxes next to Sleep Time and User Lock Time are now selected.

The Metrics Preview panel at the bottom is updated to show you how the metrics will be
displayed in the data views that present table-formatted data. You will next look to see
which threads are responsible for which metrics.

Now switch to the Threads view by clicking its name in the Views navigation panel or
choosing Views > Threads from the menu bar.

test.l.er - Oracle Solaris Studio Performance Analyzer
File Views Tools Help

|)| e e — YR
Views +)| [@ Excl. Total [Excl. @ Excl. User Name [Z{ selection Details
»y CPU Sleep Lock e
Welcome = v (sec) (sec.) (sec.) Index Object: Process 1, Thread 2, JThread 3 ‘main’, ¢
—— 78.825 76.745 391.684 <Totalr B & Excl
verview » 1 Xclusive
78.745 0,010 0 Process 1, Thread 2, JThread 3 'main B B A p— IR
Functions 0. 040 o 76.585 Process 1, Thread 20 Total CPU Time: 78.715 (99.863)
. 0.020 78,735 0. Process 1, Thread 1 User CPU Time: 78.655 (99.91%)
UnElh = 0. 020 0 78.666 Process 1, Thread 13 System CPU Time: 0.060 (66.67%)
Call Tree 0.0z0 o 51,916 Process 1, Thread 18 Trap CPU Time: 0. (0. %)
0.010 0 E1.916 Process 1, Thread 17 Data Page Fault Time: 0- 0.
Source 0 i 0.040 Frocess 1, Thread 15, JThread 1 ', Text Page Fault Time: g {8 1
Callers—Callees 0 0 78.626 Process 1, Thread 16, JThread 2 'Si Kernel Paﬁ%e Faugpme. 3 1 z ;
| . opped Time: . .
o s 0 0 §1.936 Process 1, Thread 19 Wait CPU Time: 5610 (106.06%)
Sleep Time: 0.010 (0.01%)
Threads E User Lock Time: 0. (0. %)
No Active Filters
w

[« 1] [»

The thread with almost all of the Total CPU Time is Thread 2, which is the only user Java
thread in this simple application.

Thread 15 is most likely a user thread even though it is actually created internally by
the JVM. It is only active during startup and has very little time accumulated. In your
experiment, a second thread similar to thread 15 might be created.

Thread 1 spends its entire time sleeping.

The remaining threads spend their time waiting for a lock, which is how the JVM
synchronizes itself internally. Those threads include those used for HotSpot compilation and
for Garbage Collection. This tutorial does not explore the behavior of the JVM system, but
that is explored in another tutorial, “Java and Mixed Java-C++ Profiling”.

Return to the Overview screen and deselect the check boxes for Sleep Time and User Lock
Time.

Click on the Functions view in the Views navigation panel, or choose Views > Functions
from the menu bar.

Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Using Performance Analyzer to Examine the jlowfruit Data

test.l.er - Oracle Solaris Studio Performance Analyzer
File Views Tools Help

BEED (7 e8|)13 . — Y

Views +) | B Excl. Total | & Incl. Total | Name [selection Details
Welcome vc(l;:lc_, (sec.) Name: jlowfruit.init static routine()
i 75.825 78.825 <Tocals [s] PCAddress: 366:0%00000576
ETLILET 33.774 33,774 jlowfruit.init_static_routine() B Size: 57
Functions 29. 861 29,861 jlowfruit.insert number(int, int) Source File: test.l.er/archives/jlowfruit.java dbrs100000¢
— s 6 695 Jlowerust. insert bad(int) Object File: test.l.er/archives/jlowfruit.class dbrs100000(
Timeline © st o a4 st intt bad(int) Load Object: TLovtruit class (found as test.l.er/archives/
= X Mangled Name: jlowfruit.init_static_routine
Call Tree 1541 4615 jlowfruit.init good(int) = Alaees:
0.210 0210 <ovm-system> -
Soume 0.070 16,021 jlowfruit.insert_good(int) - HE i"tl“‘zeu - nﬁh ';‘[““5“’: =5
3 - otal real ime: 17 -15% =17 -15%
v DE e RS St b e
sl o 010 0010 <no Java callstack recordeds M Mser CPUTme: | 20778 4 8790 2%.7m (a2 00M
System CPUTime: | 0. (0. %) 0. (0. %)
Threads 0.010 0.010 classrilerarser::parse method(Handle,constan Trap CPU Time: (0. (0.)
0.010 0.040 java.util.Formatter.<clinit>() Data Page Fault Time: | 0. (0. %) 0. (0. %)
Erocessey 0.010 0,030 java.util.Random.nextInt{) Text Page Fault Time: [(0. % o (0. %)
More Views... 0 0 lwp_cond wait Kernel Page Fault Time: Q 0. %) o 0. %)
0 o _lwp_cond_wait Stopped Time: [H 0. %) [] Lo %
0 o _lwp_start Wa\;‘CPU :me: 5 1 g :: g : z ::
eep Time: : Lt
o 0 call_stub User Lock Time: |80 0 or (8 n
0. 0.040 classrilerarser::parse_methods(Handle,consta
0 0.010 ClassTileParser::parseClassFile(Symbol*,Handl
0 D Interpreter
0 0.010 Java java lang ClassLoader defineclassl
0 0.010 Java_java_security_AccessController_doPrivile |
[« Il I [»]

av
Called-by / Calls
jlowfruit.init_static_routine()

No Active Filters $8 Attr. Total jlowfruit.init_static_routine() 8 Aur. Total | jlowfruit.init_static_|
= C is called by CPU calls
T v (sec) v (sec)
300701 jlowfruit.init_bad(int) [a] A
3.072 jlowfruit.init_good(int)
[T I Tl [T] Il

The Functions view shows the list of functions in the application, with performance metrics
for each function. The list is initially sorted by the Exclusive Total CPU Time spent in each
function. There are also a number of functions from the JVM in the Functions view, but
they have relatively low metrics. The list includes all functions from the target application
and any shared objects the program uses. The top-most function, the most expensive one, is
selected by default.

The Selection Details window on the right shows all the recorded metrics for the selected
function.

The Called-by/Calls panel below the functions list provides more information about

the selected function and is split into two lists. The Called-by list shows the callers of

the selected function and the metric values show the attribution of the total metric for

the function to its callers. The Calls list shows the callees of the selected function and
shows how the Inclusive metric of its callees contributed to the total metric of the selected
function. If you double-click a function in either list in the Called-by/Calls panel, the
function becomes the selected function in the main Functions view.

Experiment with selecting the various functions to see how the windows in the Functions
view update with the changing selection.

The Selection Details window shows you that most of the functions come from the
jlowfruit executable as indicated in the Load Object field.

You can also experiment with clicking on the column headers to change the sort from
Exclusive Total CPU Time to Inclusive Total CPU Time, or by Name.

Introduction to Java Profiling 35

Using Performance Analyzer to Examine the jlowfruit Data

10.

36

In the Functions view compare the two versions of the initialization task,
jlowfruit.init bad() and jlowfruit.init good().

You can see that the two functions have roughly the same Exclusive Total CPU Time but
very different Inclusive times. The jlowfruit.init bad() function is slower due to time
it spends in a callee. Both functions call the same callee, but they spend very different
amounts of time in that routine. You can see why by examining the source of the two
routines.

Select the function jlowfruit.init good() and then click the Source view or choose
Views > Source from the menu bar.

Adjust the window to allow more space for the code: Collapse the Called-by/Calls panel by

clicking the down arrow in the upper margin, and collapse the Selection Details panel by
clicking the right arrow in the side margin.

You should scroll up a little to see the source for both jlowfruit.init bad() and
jlowfruit.init good(). The Source view should look similar to the following screen
shot.

test.l.er - Oracle Solaris Studio Performance Analyzer
File Views Tools Help

DG e e o[- I e R @ Mencase
Views +)| | @& Incl. Total | Source File: jlowfruit.java (found as test.l.er/archives/jlowfruit.java dbrs1000000) Eal
cPu object Fi owfruit.class (found as test.l.er/archives/jlowfruit.elass dbrsi000000) »
Welcome Load object: jlowfruit.class (found as test.l.er/archives/jlowfruit.class dbrsi000000) 7
(sec.) -
<Function: jlowfruit.init bad(int)> [a|
Overview =
Fantons o for(i = 0; 1 < imax; 1 ++} {
30,701 43 init_static_routine():
Timeline il for(i= 0; 9 < 50; 1++) {
a x = 0.0;
Ew 0260 for(k=0; k<1000000; k++) {
Source 1,281 x = x+ 1.0; M
}
Callers-Callees '
Experiments F
] return x;
Threads) L
Processes
double
More Views... init_good(int imax)
{
int 1,9,%;
a double x = 0;
<Function: jlowfruit.init good(int)>
3072 60. init_seatic_routine():
a for(i = 0; i < imax; i ++) {
o for(j= 0; 3 < 50; 1H+) {
a x = 0.0;
0200 for(k=0; k<1000000; k++) {
1,341 x=x+ 1.0;
}
No Active Filters }
¥
w o return x;
}
double
init_static_routine()
{ B

Notice that the call to jlowfruit.init static_routine() is outside of the

loop in jlowfruit.init good(), while jlowfruit.init bad() has the call to
jlowfruit.init static routine() inside the loop. The bad version takes about ten times
longer (corresponding to the loop count) than in the good version.

Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Using Performance Analyzer to Examine the jlowfruit Data

11.

12.

13.

This example is not as silly as it might appear. It is based on a real code that produces a
table with an icon for each table row. While it is easy to see that the initialization should
not be inside the loop in this example, in the real code the initialization was embedded in a
library routine and was not obvious.

The toolkit that was used to implement that code had two library calls (APIs) available. The
first API added an icon to a table row, and second API added a vector of icons to the entire
table. While it is easier to code using the first API, each time an icon was added, the toolkit
recomputed the height of all rows in order to set the correct value for the whole table. When
the code used the alternative API to add all icons at once, the recomputation of height was
done only once.

Now go back to the Functions view and look at the two versions of the insert task,
jlowfruit.insert bad() and jlowfruit.insert good().

Note that the Exclusive Total CPU time is significant for jlowfruit.insert bad(), but
negligible for jlowfruit.insert good(). The difference between Inclusive and Exclusive
time for each version, representing the time in the function jlowfruit.insert number()
called to insert each entry into the list, is the same. You can see why by examining the
source.

Select jlowfruit.insert bad() and switch to the Source view:

test.l.er - Oracle Solaris Studio Performance Analyzer
File Views Tools Help
D& B0 D e~ L — YN
Views +) | & incl. Total | Source File: jlowfruit.java (found as test.l.er/archives/jlowfruit.java_dbrsi000000) Bad
P Object File: jlowfruit.class (found as test.l.er/archives/jlowfruit.class dbrs1000000) 3
Welcome P Load Object: jlowfruit.class (found as test.l.er/archives/jlowfruit.class dbrs1000000) <7
. void [a]
Overview insert_bad(int insert_count)
Functions {
int i, done, newm;
Timeline o ESTEITE
Call Tree <Function: jlowfruit.insert badfint)>
[insert_table = insert_init(insert_count);
Source
call call o for{i = 0; i < insert count; i ++) {
allers-Callees
Experiments 0,020 102 newR = rand():
o done = 0}
Threads 1851 for (int § = 0; § < count; § ++) { m
Processes 10,087 if(newR < insert table[j]) { L
14, 940 106 insert number(news,i):
More Views... o done = 1; I
o break;
¥
¥
o if (done == 0) {
o insert number(newR, count);
No Active Filt - (e ”
lo ive Filters
= '
s ¥
o 1

v

Notice that the time, excluding the call to jlowfruit.insert number(), is spent in a loop
looking with a linear search for the right place to insert the new number.

Now scroll down to look at jlowfruit.insert good().

Introduction to Java Profiling 37

Using Performance Analyzer to Examine the jlowfruit Data

14.

15.

test.1.er - Oracle Solaris Studio Performance Analyzer
File Wiews Tools Help

B ED [P @@ e S — Y
Views +) & Incl. Total R GO (Nl (T D Gt O Y N T G =P
V] BU bject File: jlowfruit.class (found as test.l.er/archives/jlowfruit.class_dbrsi000000) »
T o) Load object: jlowfruit.class (found as test.l.er/archives/jlowfruit.class dbrs1000000)
insert_good(int insert _count) [a]
Overview { =
G ims int i, x, done, newr, left, right, curval;
Timeline 0. count = 0;
CallTres <Function: jlowfruit.insert_good(int)>
0 insert_table = insert_init(insert _count);
Source
0 for(i = 0; i < insert _count; i ++) {
Callers-Callees .
Experiments 0.030 130. newR = rand();
Threads
Processes o lefe = 0;
0 right = count-1;
More Views...
0. while (left <= right) {
0,020 x = (left + right) / 2; ,
0,020 curval = insert table[x];
0 if (curval > newr) { r
0 right = x - 1;
0. } else if (curval < newR) { m
0.010 lert =x + 1;
} else {
No Active Filters
P 0 lefr = x;
0.010 right = x -1;
¥
¥
14.930 151. insert pumber{ newr, left):
¥ -
o i d
av

Note that the code is more complicated because it is doing a binary search to find the right
place to insert, but the total time spent, excluding the call to jlowfruit.insert number(),
is much less than in jlowfruit.insert_bad(). This example illustrates that binary search
can be more efficient than linear search.

You can also see the differences in the routines graphically in the Timeline view.
Click on the Timeline view or choose Views > Timeline from the menu bar.

The profiling data is recorded as a series of events, one for every tick of the profiling

clock for every thread. The Timeline view shows each individual event with the call stack
recorded in that event. The call stack is shown as a list of the frames in the callstack, with
the leaf PC (the instruction next to execute at the instant of the event) at the top, and the call
site calling it next, and so forth. For the main thread of the program, the top of the callstack
is always start.

In the Timeline tool bar, click the Call Stack Function Colors icon for coloring functions or
choose Tools > Function Colors from the menu bar and see the dialog box as shown below.

38 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Using Performance Analyzer to Examine the jlowfruit Data

16.

17.

test.l.er - Oracle Solaris Studio Performance Analyzer

File views Tools Help

BEED [vee | 1 I | #9115 [
Mes == @ S A N e B theas [~ I 5c'cction Details
70 Process: /tmp/MYTUTORIALS/jlow | =

Welcome Timefsec) 0 10 20 BF 4|0 50 60

1 | I 1 | h Event Type: CLock Profiling

Qenen toon * N o e —
Timestamp (sec.): 39-377558
Functions 172 1 LWP: 2 ﬁ
i @H (I -
fLmeling Call Stack - Timeline
Call Tree 1ms jlowfruit.insert number(int, int) + 0x00C
[RR . jlowfruit.insert_good(int) + 0X0000006B,
Source 1 jlowfruit.mainEntrance(java.lang.string(]
Callers-Callees jlowfruit.run(java.lang.String[]) + 0x00(
— jlowfruit.main(java.lang.string(]) + 0x0C
o Function Colors
1 [Swatches | HsE [RGB Legend
P [javaThread::run0 =
[JavaThread::thread_main_inner()
N [)ava_java_lang_ClassLoader_defineCl
[Java_java_security_AccessController_d|—
[B objectmonitor::waitdong long,bool, Thi
[Objectsynchronizer:wait(Handle, long
[T svstembictionary::resolve_from_strea
[__twp_cond_wait
[_twe_cond_wait
[_twp_start
N I Set Selected Functions H I Set All Functions H Reset Default Colors
|| B setFunctions: [starts with |v| |
1
| Set CPU Idle Events Color: ® Normal O Invisible © Selected Color Il L
Close AN B
L K ¥ o] [[1 [+

The function colors were changed to distinguish the good and bad versions of

the functions more clearly for the screen shot. The jlowfruit.init_bad() and
jlowfruit.insert bad() functions are both now red and the jlowfruit.init good() and
jlowfruit.insert good() are both bright green.

To make your Timeline view look similar, do the following in the Function Colors dialog
box:

® Scroll down the list of java methods in the Legend to find the jlowfruit.init bad()
method.

® Select the jlowfruit.init bad() method, click on a red color square in Swatches, and
click Set Selected Functions button.

® Select the jlowfruit.insert bad() method, click on a red color square in Swatches,
and click Set Selected Functions button.

® Select the jlowfruit.init good() method, click on a green color square in Swatches,
and click Set Selected Functions button.

® Select the jlowfruit.insert good() method, click on a green color square in
Swatches, and click Set Selected Functions button.

Look at the top bar of the Timeline.

The top bar of the Timeline is the CPU Utilization Samples bar as you can see in the tool tip
if you move your mouse cursor over the first column. Each segment of the CPU Utilization

Introduction to Java Profiling 39

Using Performance Analyzer to Examine the jlowfruit Data

18.

19.

20.

Samples bar represents a one-second interval showing the resource usage of the target
during that second of execution.

In this example, the segments are mostly gray with some green, reflecting the fact that only
a small fraction of the Total Time was spent accumulating User CPU Time. The Selection
Details window shows the mapping of colors to microstate although it is not visible in the
screenshot.

Look at the second bar of the Timeline.

The second bar is the Clock Profiling Call Stacks bar, labeled "1 T:2" which means Process
1 and Thread 2, the main user thread in the example. The Clock Profiling Call Stacks bar
shows two bars of data for events occurring during program execution. The upper bar
shows color-coded representations of the callstack and the lower bar shows the state of the
thread at each event. The state in this example was always User CPU Time so it appears to
be a solid green line.

You should see one or two additional bars labeled with different thread numbers but they
will only have a few events at the beginning of the run.

If you click anywhere within that Clock Profiling Call Stacks bar you select the nearest
event and the details for that event are shown in the Selection Details window. From

the pattern of the call stacks, you can see that the time in the jlowfruit.init good()

and jlowfruit.insert good() routines shown in bright green in the screenshot is
considerably shorter than the corresponding time in the jlowfruit.init bad() and
jlowfruit.insert bad() routines shown in red.

Select events in the regions corresponding to the good and bad routines in the timeline and
look at the call stacks in the Call Stack - Timeline window below the Selection Details
window.

You can select any frame in the Call Stack window, and then select the Source view on the
Views navigation bar, and go to the source for that source line. You can also double-click a
frame in a call stack to go to the Source view or right-click the frame in the call stack and
select from a popup menu.

Zoom in on the events by using the slider at the top of the Timeline, or using the + key, or
by double-clicking with the mouse.

If you zoom in enough you can see that the data shown is not continuous but consists of
discrete events, one for each profile tick, which is about 10 ms in this example.

40 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Using the Remote Performance Analyzer

test.1.er - Oracle Solaris Studio Performance Analyzer

File Views Tools Help

EED [Red | NP P sl

Views *) AH—H B[S S P [& € || Groupbatby[thread [v]) Selection Details _
Welcome Time(sec) ggl 1 ggl 2 ggl) 3% 4 3% 5 3% & Process: /tmp/MYTUTORIALS/jlow

Event Type: Clock Frofiling

Overview 1 i Leaf Function: jlowfruit.insert numb

o Timestamp (sec.): 39.377558
Functions 172 . e 2 =
" av
Jlineiine Call Stack - Timeline
Call Tree 1T:15 jlowfruit.insert_number(int, int) + 0x00C
jlowfruit.insert good(int) + 0x00000068,
Source

jlowfruit.mainEntrance(java.lang.string[]
jlowfruit.run(java.lang.String[]) + 0x00C
jlowfruit.main(java.lang.String(]) + 0x0(

Callers-Callees
Experiments
Threads
Processes

More Views...

Press the F1 key to see the Help for more information about the Timeline view.

21. Click on the Call Tree view or choose Views > Call Tree to see the structure of your
program.

The Call Tree view shows a dynamic call graph of the program, annotated with
performance information.

test.l.er - Oracle Solaris Studio Performance Analyzer

File Views Tools Help

RBEET [0 G v -] T — AR

Views ":i-‘ Call Tree: FUNCTIONS. Complete view. Threshold: 1% Sort by: metric. Metric: Attributed Total CPU Time \

¢ Paammmms 78825 (100%) <Total> 4
Welcome ¢ EESS—— 78.595 (100%) jlowfruitmain(java.lang.String[l)
" ¢ I 78.595 (100%) jlowfruitrun(java.lang.string[])
Gz ¢ M 78.595 (100%) Jlowfruit. mainEntrance java.lang.stringl])
Functions ¢ BN 32.243 (41% jlowfruit.init_bad(int
W 30.701 (39%) jlowfruit.init_static_routine()
Timeline ¢ EEEE 26.699 (34%) jlowfruit.insert_bad(int)
BN 14.940 (19%) jlowfruit.insert_number(int, int)
Call Tree o 0.020 (0% jlowfruit.rand(
¢ BE 15.021 (19%) jlowfruitinsert_good(ing
Source BN 14.920 (19%) jlowfruitinsert_number(int, int)

o 0.030 (0% jlowfruit.rand()
o0 4613 (6% jlowfruit.init_good(int)
1 3.072 (4% jlowfruit.init_static_routine()
& 0.010 (0% java.io.PrintStream.printf(java.lang.Siring, java.lang.Object[})

Callers-Callees

Experiments

Threads 0.010 (0% java.util.Random.next(int)
0.210 (0%) <JVM-System>
Processes 0.010 (0% <noJava callstack recorded>
N ¢ 0.010 (0% sun.launcher.LauncherHelper.checkAndLoadMain(boolean, int, java.lang.string)
More Views... o 0. (0% _lwp_start

Using the Remote Performance Analyzer

You can use the Remote Performance Analyzer either from a supported system, or from systems
where Oracle Solaris Studio cannot be installed, such as Mac OS or Windows. See “Using
Performance Analyzer Remotely” in “Oracle Solaris Studio 12.4: Performance Analyzer ” for
information about installing and using this special version of Performance Analyzer.

Introduction to Java Profiling 41

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSPAgotcr
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSPAgotcr

Using the Remote Performance Analyzer

When you invoke Performance Analyzer remotely, you see the same Welcome page, but the
options for creating and viewing experiments are disabled and grayed-out.

Click Connect to Remote Host and Performance Analyzer opens a connection dialog:

ool Connect to Remote Host

Host Name: ‘vourhost ‘v|

User Name: |vc-ur USer name |
Password: [sasasans |

Installation Path: |F‘ath to bin directory where Studio is installed on "yourhost” |

Connection 5tatus: not connected

Connect || Cance || Close || Help ‘

Type the name of the system to which you want to connect, your user name and password for
that system, and the installation path to the Oracle Solaris Studio installation on that system.
Click Connect and Performance Analyzer logs in to the remote system using your name and
password, and verifies the connection.

From that point on, the Welcome page will look just as it does with the local Performance
Analyzer, except the status area at the bottom shows the name of the remote host to which you
connected. Proceed from there in step 2 above.

42 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Java and Mixed Java-C++ Profiling

This chapter covers the following topics.

= “About the Java-C++ Profiling Tutorial” on page 43

m “Setting Up the jsynprog Sample Code” on page 44

® “Collecting the Data From jsynprog” on page 45

® “Examining the jsynprog Data” on page 46

= “Examining Mixed Java and C++ Code” on page 48

m “Understanding the JVM Behavior” on page 52

m “Understanding the Java Garbage Collector Behavior” on page 56
m “Understanding the Java HotSpot Compiler Behavior” on page 61

About the Java-C++ Profiling Tutorial

This tutorial demonstrates the features of the Oracle Solaris Studio Performance Analyzer
for Java profiling. It shows you how to use a sample code to do the following in Performance
Analyzer:

= Examine the performance data in various data views including the Overview page, and the
Threads, Functions, and Timeline views.

m Look at the Source and Disassembly for both Java code and C++ code.

m Learn the difference between User Mode, Expert Mode, and Machine Mode.

m Drill down into the behavior of the JVM executing the program and see the generated native
code for any HotSpot-compiled methods.

m See how the garbage collector can be invoked by user code and how the HotSpot compiler
is triggered.

jsynprog is a Java program that has a number of subtasks typical of Java programs. The
program also loads a C++ shared object and calls various routines from it to show the seamless
transition from Java code to native code from a dynamically loaded C++ library, and back
again.

jsynprog.main is the main method that calls functions from different classes. It uses gethrtime
and gethrvtime through Java Native Interface (JNI) calls to time its own behavior, and writes
an accounting file with its own timings, as well as writing messages to stdout.

Java and Mixed Java-C++ Profiling 43

Setting Up the jsynprog Sample Code

jsynprog.main has many methods:

® Routine.memalloc does memory allocation, and triggers garbage collection
® Routine.add int does integer addition

B Routine.add double does double (floating point) additions

® Sub Routine.add int is a derived calls that overrides Routine.add_int

® Routine.has_inner class defines an inner class and uses it

B Routine.recurse shows direct recursion

® Routine.recursedeep does a deep recursion, to show how the tools deal with a truncated
stack

B Routine.bounce shows indirect recursion, where bounce calls bounce b which in turn calls
back into bounce

B Routine.array op does array operations

B Routine.vector op does vector operations

B Routine.sys op uses methods from the System class

B jsynprog.jni_JavaJavaC: Java method calls another Java method that calls a C function
® jsynprog.JavaCJava: Java method calls a C function which in turn calls a Java method

® jsynprog.JavaCC: Java calls a C function that calls another C function
Some of those methods are called from others, so they do not all represent the top-level tasks.

The data you see in the experiment that you record will be different from that shown here.

The experiment used for the screen-shots in the tutorial was recorded on a SPARC T5 system
running Oracle Solaris 11.2. The data from an x86 system running Oracle Solaris or Linux will
be different. Furthermore, data collection is statistical in nature and varies from experiment to
experiment, even when run on the same system and OS.

The Performance Analyzer window configuration that you see might not precisely match the
screen shots. Performance Analyzer enables you to drag separator bars between components
of the window, collapse components, and resize the window. Performance Analyzer records

its configuration and uses the same configuration the next time it runs. Many configuration
changes were made in the course of capturing the screen shots shown in the tutorial.

Setting Up the jsynprog Sample Code

Before You Begin

See the following for information about obtaining the code and setting up your environment.

m “Getting the Sample Code for the Tutorials” on page 8

44 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Collecting the Data From jsynprog

m “Setting Up Your Environment for the Tutorials” on page 9

You might want to go through the introductory tutorial in “Introduction to Java Profiling” first
to become familiar with Performance Analyzer.

1. Copy the contents of the jsynprog directory to your own private working area with the
following command:

% cp -r SolarisStudioSampleApplications/PerformanceAnalyzer/jsynprog mydirectory

where mydirectory is the working directory you are using.
2. Change to that working directory copy.

% cd mydirectory/jsynprog
3. Build the target executable.

% make clobber (needed only if you ran make in the directory before, but safe in any case)

% make

After you run make the directory contains the target application to be used in the tutorial,
a Java class file named jsynprog.class and a shared object named libcloop.so which
contains C++ code that will be dynamically loaded and invoked from the Java program.

Tip - If you prefer, you can edit the Makefile to do the following: use the GNU compilers rather
than the default of the Studio compilers; build in 32-bits rather than the default of 64-bits; and
add different compiler flags.

Collecting the Data From jsynprog

The easiest way to collect the data is to run the following command in the jsynprog directory:

% make collect

The collect target of the Makefile launches a collect command and records an experiment.
By default, the experiment is named test.1.er.

The collect target specifies options -J "-Xmx100m -XX:ParallelGCThreads=10" for the JVM
and collects clock-profiling data by default.

Alternatively, you can use the Performance Analyzer's Profile Application dialog to
record the data. Follow the procedure “Using Performance Analyzer to Collect Data from
jlowfruit” on page 28 in the introductory Java tutorial and specify jsynprog instead of
jlowfruit in the Arguments field.

Java and Mixed Java-C++ Profiling 45

Examining the jsynprog Data

Examining the jsynprog Data

This procedure assumes you have already created an experiment as described in the previous
section.

1. Start Performance Analyzer from the jsynprog directory and load the experiment as
follows, specifying your experiment name if it is not called test.1.er.

% analyzer test.l.er

When the experiment opens, Performance Analyzer shows the Overview page.

test.l.er - Oracle Solaris Studio Performance Analyzer
Eile Views Tools Help

B & [\ @ E | [usermode [~ O
Views +
i)

Welcome

b test.ler
Overview
Functions Metrics
Timeline Select the metrics to display in the data views, then click a darta view in the navigation panel on the left.
SoURs Available Metrics
Callers-Callees Experiment Duration: 81.263 Seconds & Exclusive & Inclusive

= Clock Profiling Showe in views Time Yalue % Time Value %

Experiments = Total Thread Time - 1623.686 Seconds

Threads ¢ Total Thread Time [m]
Processes ¢ Total CPUTime S = %[[m] [m]

M e User CPU Time . . . 5% [m]

System CPU Time w [

Trap CPUTime 0%]

M Data Page Fault Time . . . - 5% O

M Text Page Fault Time [% [m]

M Kernel Page Fault Time | 0% [m]

Stopped Time 0%]

B Wait CPUTime B %]

W Sleep Time B | % %[

W User Lock Time o]

No Active Filters N
Metrics Preview

s [Excl. Total g Incl. Tota| Name
CcPU
(sec.) (sec.)
&1.967 #1.967 <Total-

Notice that the tool bar of Performance Analyzer now has a view mode selector that is
initially set to User Mode, showing the user model of the program.

The Overview shows that the experiment ran about 81 seconds but used more than 1600
seconds of total time, implying that on average there were 20 threads in the process.

2. Select the check boxes for the Sleep Time and User Lock Time metrics to add them to the
data views.

46 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Examining the jsynprog Data

BsleepTime 1 S # [
BuserLock Time [0| [v]

Notice that the Metrics Preview updates to show you how the data views will look with
these metrics added.

Select the Threads view in the navigation panel and you will see the data for the threads:

test.l.er - Oracle Solaris Studio Performance Analyzer

File Views Tools Help

Tk | v o) | T |)
Views +)| | @ Excl. Total | @ Excl. | @ Excl. User | Name [Z4 selection Details
> cPU Sleep Lock ¥
Welcome = (sec) (sec.) (sec.) Index Object: Frocess 1, Thread 2, JThread 3 'main’, €
i 81,957 81,317 1460.101 <Total» =)
B 61,037 0.070 0.430 erocess 1, Thread 2, Jrhread 3 'main’, Group | | R S = Eﬁ‘f;';f sa00n
Functions 0,090 [81,097 Frocess 1, Thread 3 eIt T 1,057 (98.86%)
) 0,090 0 80.987 Process 1, Thread 18 User CPU Time: 80.997 (99.02%)
Timeline 0. 080 0 81,057 Process 1, Thread 20 System CPU Time: 0.030 (20.00%)
Call Tree 0.070 0 81,117 Frocess 1, Thread 5 Trap CPU Time: 0.010 (50.00%)
L 0.070 0 81,107 Frocess 1, Thread 8 Data Page Fault Time: [H 0. %)
S 0 070 0 81.107 Process 1, Thread 9 Text Page Fault Time: 0- (0. %)
Callers-Callees 0. 060 0 81.107 Process 1, Thread 4 Kerne| Page Fault Time: 0. 0. %™
0,080 0.010 51,417 Process 1, Thread § Sioppedilines L (e n
P e 0,080 0 81,117 Process 1, Thread 10 L ge il o L 2t
. Sleep Time: 6.070 (0.09%)
Threads 0. 060 D B1.117 Process 1, Thread 11 UerToeERimes 0.130 (0.013)
0.080 0 81,117 Process 1, Thread 12
RECREEsS L 0.050 a0 81,117 Frocess 1, Thread 7
More Views... I~ 0,040 i} 81.147 Process 1, Thread 13
No Active Filters 0.040 o 81. 087 Process 1, Thread 17
0.020 81,237 0 Process 1, Thread 1
v 0.010 0 81,117 Frocess 1, Thread 19
D D 81.177 Process 1, Thread 14, JThread 0 '', Group '’
D D 81.177 Process 1, Thread 15, JThread 1 '', Group
0 0 81,127 Process 1, Thread 16, JThread 2 'Signal Dispa
[4] 1L I Dol

Only Thread 2 accumulated significant Total CPU time. The other threads each had only a
few profile events for Total CPU time.

Select any thread in the Threads view and see all the information for that thread in the
Selection Details window on the right.

You should see that almost all of the threads except Thread 1 and Thread 2 spend all their
time in User Lock state. This shows how the JVM synchronizes itself internally. Thread 1
launches the user Java code and then sleeps until it finishes.

Go back to the Overview and deselect Sleep Time and User Lock Time.

Select the Functions view in the navigation panel, then click on the column headers to sort
by Exclusive Total CPU Time, Inclusive Total CPU Time, or Name.

You can sort by descending or ascending order.

Leave the list sorted by Inclusive Total CPU Time in descending order and select the top-

most function jsynprog.main(). That routine is the initial routine that the JVM calls to
start execution.

Java and Mixed Java-C++ Profiling a7

Examining Mixed Java and C++ Code

File Views Tools Help

BHEED | 2@ e | [uservode [v[1

test.l.er - Oracle Solaris Studio Performance Analyzer

el R @ e

Views +)| | B Exd. Total | &, Indl. Total | Name @: Selection Details
Welcome (sec.) v (sec) Name
N B1.967 B81.9a7 <Total> - PC Address: 366:0x00000BD2
(G 2.272 65.466 jsynprog.main(java.lang.String[]) Tl
Functions o 15. 431 <Truncated-stack> Source File: jsynprog.java
! 15,431 15.431 Routine.recursedeep(int, int, int) D?E“;,F““
Ul 15361 15.361 Routine.recurse(int, int, int)) it o]
Mangled Name: 3synprog.rain
Call Tree 15 341 15. 341 Routine.bounce(int, int, int) Aliases:
] 15.3¢1 Routine.bounce_b(int, int, int)
Source) .
0010 6.154 jsynprog.JavadavaC(int, int)
Callers—Callees o 6.15¢ jsynprog.ini_JavaJavaC(int, int) = TO‘;‘QE:';: Im::
Experiments [«] i | I»] User CPU Time:
av System CPU Time:
Threads Called-by / Calls o T
3synprog.main(java.lang.string[]) Data Page Fault Time:
Processes {8 Attr. Total | jsynprog.main(java.lang.Strir 18 Attr. Total | jsynprog.main(java.lang.String[]) Text Page Fault Time:
e e CPl tsicslediby calks Kernel Page Fault Time:
v (sec) ||| @ sec) | Stopped Time:
65. 466 <Totals = 15 361 Routine.recurse(int, int, int/a o T
15,341 Routine.bounce(int, int, int) Sleep Time:
6.154 jsynprog.jni_dJavaJavac(int, i User Lock Time:
3.673 jsynprog.JavaCcC(int)
3.192 Routine.sys_op(int)
3.062 Routine.vector op{int)

No Active Filters

3.022 Routine.add_double(int)

3.022 jsynprog.JavacJava(int)
3.002 Routine.add int(int)

3.002 Routine.has_inner_class(int)
3.002 Sub_Routine.add int(int)
0.761 Routine.array_op(int)

0.520 Routine.memalloc(int, int)
0.040 jsynprog.printvalue(java.lan
0.010 Launcher.main(java.lang.stri
0.010 jsynprog.LeadJNILibrary(java
[java.lang.System.gc()

Al
4

jsynprog.main(java.lang.String[])

st.1.er/archives/jsynprog.class_dbrs1o(
jsynprog.class (found as test.l.er/arc

Ex
2

l
(
«
«
€
{
(
«
«
«
[
(
«

lusive

& Inclusi

65.656
65.466
65.436
0.020
0.010

(

(
(
(
{
(
1
(
(
(
(
(

[«] 1

D[4 I I IR

Notice that the Called-by/Calls panel at the bottom of the Functions view show that the
jsynprog.main() function is called by <Total>, meaning it was at the top of the stack.

The Calls side of the panel shows that jsynprog.main() calls a variety of different
routines, one for each of the subtasks shown in “About the Java-C++ Profiling
Tutorial” on page 43 that are directly called from the main routine. The list also

includes a few other routines.

Examining Mixed Java and C++ Code

48

This section features the Call Tree view and Source view, and shows you how to see the
relationships between calls from Java and C++ and back again. It also shows how to add the
Disassembly view to the navigation panel.

1. Select each of the functions at the top of the list in the Function view in turn, and examine
the detailed information in the Selection Details window.

Note that for some functions the Source File is reported as jsynprog. java, while for some

others it is reported as cloop. cc. That is because the jsynprog program has loaded a C+
+ shared object named libcloop.so, which was built from the cloop.cc C++ source file.

Performance Analyzer reports calls from Java to C++ and vice-versa seamlessly.

2. Select the Call Tree in the navigation panel.

Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Examining Mixed Java and C++ Code

The Call Tree view shows graphically how these calls between Java and C++ are made.

test.l.er - Oracle Solaris Studio Performance Analyzer

File Views Tools Help

BEES R @G [urvon |- 7Y

Views (+) Call Tree: FUNCTIONS. Complete view. Threshold: 1% Sort by: metric. Metric: Attributed Total CF{ Selection Details
_ 81.967 (100%) <Total> 4 i §
Welcome ¢ MENNNNNNNN 65466 (80%) jsynprog.mainijava.lang.String[)) Name: jsynprog.Javaciava(iat)
: oMM 15361 (19%) Routine.recurse(int, int, it PC Address: 366:0%00000000
G oMM 15341 (19% Routine.bouncefint, int, int Size: 4294967295
Functions ¢ B 6.154 (7% jsynprog.jni_JavajavaC(int, int) Source File: jsynprog.java
¢ B 6.154 (7% jsynprog.avajavaClint, int) Object File: st.1.er/archives/jsynprog.class_dbrsiol
Timeline B 6.144 (7% Java jsynprog JavajavaC Load Object: jsynprog.class (found as test.l.er/arc
¢ 1 3673 (4% jsynprogJavaCC(int Mangled Name: 1synprog.Javacdava
Call Tree ¢ 1 3.673 (4%) Java jsynprog JavaCC Aliases:
1 3673 (4% cfuncing
Source I 3.192 (4% Routine.sys_opiint) H Exclusive & Inclusi
&1 3.062 (4% Routine.vector_op(int) Total Thread Time: 0. 0. %)| 3.022 (¢
EENer=EAles I 3.022 (4%) Routine.add_double(int) Total CPUTIme: 0. (0. %) 5.022 (
N 7 1 3.022 (4% jsynprog.JavaClava(int User CPUTime: 0. (0. %) 5.022 (
Experiments # 1 3.022 (4% Javajsynprog JavaClava _ _ System CPUTime: 0. (0.) 0.
Threads (3] 3IO§202(24%24%J]N\5_M Caus_mun'lnmtg‘godudassf,Jmemumo' . Trap CPUTime: 0. (0. %) 0. (|
K Jsynprog.javafuncin o N
Processes 1 3.002 (4% Routine.add_int(ing Do Page Falt Tine: | 2. { 2. & L. (]
&1 3.002 (4% Routine.has_inner_dlass(int Gl AT A e
i i B Kernel Page Fault Time: 0. (0. sy 0. C
More Views... ¢1 3.002 (4% Sub_Routine.add_int(int) 2 o 0 s o
o| 0.781 (1% Routine.array_op(iny Stopped Time: - (0 A B
| 0.520 (1% Routine.memalloc(int, int) WamCEthipesy - (0) 0 (|
o 0.040 (0%) jsynprog.printValue(java.lang.String, boolean) Sleep Time: 0. (0. %) 0. (S
o 0.010 (0%) Launcher.main(java.lang.String(}) User Lock Time: 0. 0. %) 0. 4
& 0.010 (0%) jsynprog.Load)NILibrary(java.lang.String[})
o~ 0. (0% java.lang.System.gc()
o MM 15431 (19%) <Truncated-stack>
—— | L031 (1% <JVM-System>
LRGeS & 0.020 (0% sun.launcher.LauncherHelper.checkAndLoadMain(boolean, int, Java.lang.string
P 0.010 (0% <no Java callstack recorded>
0.010 (03) java.lang.System.arraycopyijava.lang.Object, int, java.lang.Object, int, int)
e 0. (0% _wp_start
e 0. (0% java.lang.ref.FinalizersFinalizerThread.run0)
& 0. (0% javalang.ref.ReferencesReferenceHandler.run()
[I I Dl [« I D

In the Call Tree view, do the following to see the calls from Java to C++ and back to Java:
= Expand the lines referring to the various functions with "C" in their name.

® Select the line for jsynprog.JavaCC(). This function comes from the Java code, but it
calls into Java_jsynprog JavaCC() which comes from the C++ code.

® Select the line for jsynprog.JavaCJlava(). This function also comes from the Java code
but calls Java_jsynprog_JavaCJava() which is C++ code. That function calls into a C
++ method of the JNIEnv_::CallStaticIntMethod() which calls back into Java to the
method jsynprog.javafunc().

Select a method from either Java or C++ and switch to the Source view to see the source

shown in the appropriate language along with performance metrics.

An example of the Source view after selecting a Java method is shown below.

Java and Mixed Java-C++ Profiling 49

Examining Mixed Java and C++ Code

000 test.l.er - Oracle Solaris Studio Performance Analyzer

File Views Tools Help

@
Views (#)| [&) Incl. Total | Source File: Routine.java [&. 1 Selection Detai
CPU object File: Routine.class (found as test.l.er/archives/Routine » =
T [«] (sec) Load Object: Routine.class (found as test.l.er/archives/Routine] |37 Name: line 13 in "Routine.java” el
: T PC Address: 371:0x00000470
Qu=gew 2. = 2012, oracle and/or its affiliat : [0
Functions 5. 0« the Routine.java
C 4. * increments value of integer and floats ast_1. ar/nrchives/Routine.clasy dury
Timeline 5. o ct: Routine.class (found as test.l.er/a:
. Mangled Name: Routine.add_int
Call Tree o Aliases:
. import java.uril.s; B
Source > LB — [Exclusive & Incll
Callers—Callees 0. 9. public class Routine implements Intface { = Total Thread Time: | 0. (0. =] 0.
<Function: Routine.<init>()> = Total CPU Time: 0. (0. %) 0. [{
- 1o. - User CPU Time: 0. C 0. ®| o. [l
j* add integers %/ - System CPU Time: 0. (0. %) 0. [
No Active Filt 5
Active Flters 12. public int add int (int scale) { Trap CPUTime: 0. (0. %) 0. {
3 X ATl 0. 13. int x=0; Data Page Fault Time: 0. (0. %) 0. [
To add a filter, select a row from <Function: Routine.add int(int)> Text Page Fault T!mef :- « :) :- [{
a view (such as Functions) and 0 int kmax = loo0+scale; Kernel Page Fault Time: g « 5 :1 o [{
then click on the toolbar Filters 0 double tEnd = jsynprog.Timer() + jsynprog.testtimg g U 5. { 5 ; o i
ican. o o do { x = 0 = Wait CPU Time: - L0 S
i | o Sleep Time: 0. (0. %) 0. {5
1 Il] =
v [4] Il] D

An example of the Source view after selecting a C++ method is shown below.

test.l.er - Oracle Solaris Studio Performance Analyzer

Views & Incl. Total Source File: cloop.cc [& .. ¢ Selection Details
Pl oObject File: 1ibcloop.so (found as test.l.er/archives/libcloop. » =
T (sec) | Toad Object: libcloop.so (found as test.l.er/archives/libcloop.f |7 Name: [Line 95 in "cloop.cc” =
N 0 92. } PC Address: 486:0%00001EAS
Overview o size: 0
Functions 94. JNIEXPORT void JNICALL Source File: cloop.ce
= 1 95. Java_jsynprog_JavaClava (JNIEnv *env, jclass obj, int sca ‘Object File: | test.1.er/archives/libcloop.so_zopy
Timeline <Function: Java_jsynprog_JavaClava> Load Object: 1ibcloop.so (found as test.l.er/arc
(Mangled Name:
Call Tree e
0 fprintf(stderr, "Entering Java_jsynprog Javaciava, sc 8
Source > o int pnum = 0; [Exclus| & Incl |
call Call 0 jmethodID mid = (env)->GetStaticMethodID(obj, "jav Total Thread Time: Q. (0. 0. 1
allers-Laflees 0 if (mid == 0) { Total CPU Tim: 6. (0.)| 0.
B 0 fprintf(stderr, "Can't get jmethodID for \"javafu User CPU Time 0. (0. % o. |
0 return; System CPU Time: 0. (0. %) 0.
No Active Filters) } — Trap CPU Time: 0. (0. %) 0. [
.9 W 0 104 fprinef(stderr, "calling CallstaticIntMetnod, scale =| | Data Page Fault Time: Q. € 0. %= 0. q
To add afilter, select a row from 3.022 105. poum = (env)->callstaticT hod(obi, mid, scalej: Text Page Fault Time: 0. (0. %) 0. [
aview (such as Functions) and 0 106. } r Kernel Page Fault Time: | 0. 0. %1 0.
then click on the toolbar Filters 07. Stopped Time: 0. (0. m| . |
icon. L Wait CPU Time: 0. (0. %) 0. {
108. JNIEXPORT jint JWICALL |
o 8 jin : ‘: Sleep Time: 0. (0. %1 0. (+
] Il » m
v [« Il I D

At the top of the navigation panel, click the + button next to the Views label and select the
checkbox for Disassembly.

The Disassembly view for the function that you last selected is displayed. For a Java
function, the Disassembly view shows Java byte code, as shown in the following
screenshot.

50 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Examining Mixed Java and C++ Code

test.1.er - Oracle Solaris Studio Performance Analyzer

Welcome (sec.)
Overview 0.
Functions 0
Timeline

Call Tree

Source
Disassembly

Callers-Callees

Experiments
Threads

Processes

More Views...

340
010

a11

170
660

011
No Active Filters

BH e X T
To add a filter, select a row from
aview (such as Functions) and
then click on the toolbar Filters
icon 0

Sol
)| [& InCclla.uTomaI e

urce File: Routine.java
File: Routine.class (hives/Routi:
Load Object: Routine.class (found as test.l.er/archives/Routine. |7

<Function: Routine.add int(int}>

nd as t ne.

"

133
13

00000000 iconst_0

00000001 istore 2
int kmax = 100+scale; M

14] 00000002: bipush 100

147 00000004: iload 1

14] 00000005: imul

14] 00000006: istore 3

double tEnd = jsynprog.Timer() + jsynprog.testtime

15] 00000007: invokestatic Timer() =
getstatic #3 -

15] 0000000a:
15] 0000000d: dadd [
15] 0000000e: dstore 4

do { x = 0;
16] 00000010: iconst O
16] 00000011 istore 2

for (int k=0; k<kmaxik++) {

00000012: iconst_0
00000013: istore 6
00000015 iload 6
00000017: iload 3
00000018: if_icmpge 0x36

for (int j=0; §<10000;j++) {
18] 0000001b: iconst 0
18] 0000001c: istore 7
18] 0000001le: iload 7
18] 00000020: sipush 10000
18] 00000023: if icmpge 0230
x=x+1;
iload z
iconst_1
iadd
istore_2
iine 7 1
goto (xle
iine 6 1
goto

19] 00000026¢
19] 00000027:
19] 00000028:
13] 00000029:
18] 0000002a:
18] 0000002d:
17] 00000030:
17] 00000033z
}

1
} while (jsynprog.Timer() < tEnd);
00000036: invokestatic Timer()
00000039: dload 4
0000003k: dempg
0000003c: iflt
return x;
23] 0000003f: iload 2
23] 00000040: ireturn
)

223
22
221
223

0x

[B selection Details |

Routine.add int(int) + 0x00000000, lin
371:0x00000470
1

Name:
PC Address:
Size:

Source File: Routine.java

Object 2st.1.er/archives/Routine.class_dbrs1i0(

Load Object: Routine.class (found as test.l.er/arch
Mangled Name: Routine.add_int

Aliases:

B Exclusive & Inclusi

Total Thread Time: 0. (0. 0. !

Total CPU Time: 0. (0. %) 0. |

User CPU Time: 0. (0. %) 0. [

System CPU Time: 0. (0. %) 0. !

Trap CPUTime: 0. {(0. &) 0. (|

Data Page Fault Time: 0. (0. %) 0. [

Text Page Fault Time: 0. (0. %) 0. { |

Kernel Page Fault Time: 0. (0. ®| 0. (|

Stopped Time: 0. (0. %) 0. [

Wait CPU Time: 0. (0. %) 0. [

Sleep Time: 0. (0. %) 0. [

User Lock Time: 0. (0. %) 0. O

For a C++ function, the Disassembly view shows native machine code, as shown in the

following screenshot.

Java and Mixed Java-C++ Profiling

51

Understanding the JVM Behavior

File Views Toals Help

test.l.er - Oracle Solaris Studio Performance Analyzer

BEED | @@ | [uermd [~[I3

e —

Views +) | & Incl. Total | Source File: cloop.cc — [E2.4 selection Details
cPU object rile: libcloop.so (found as test.l.er/archives, >
Welcome (e 1 Load Object: libcloop.so (found as test.l.er/archives| |7 Name: cfunc(int) + 0x00000000, line 87 in "c
N <Function: cfunc(inc)> [a PC Address: 486:0x00001E40
Cer/ien) 0 [82 ledo: save ssp, -104, tsp Size: 4
Functions o [81] led4d: st 10, [3fp + 68] Source File: cloop.cc
for (int j =0; j<100000;j++) { Object File: test.l.er/archives/libcloop.so_zophJot
Timeline o [28] led8: eclr [:fp - 8] Load Object: libcloop.so (found as test.l.er/archiv
Call Tree 0. z90 [88] ledc: 1d [3fp - 8], sl Mangled Name: _ 1cFofuncéFi i
2 262 [88] 1es0: sethi ni(0x18400), 10 Aliases:
Source 0.190 [88] les4: bset | 0x186a0 | Bt & Inclusi
Dl i 0 [88) less: cmp Total Thread Time: 0. (0. %) 0. ot
L 0,130 [88] lesc: bge Total CPU Time: 0. (0. %) 0. (S|
Callers-Callees o [88] le60: nop User CPU Time: 0. (0. %) 0. [
n=n+1; System CPU Time: 9. 0. %) 0. [
Experiments 0,180 [89] le64: 1d [%fp + 68], 3l Trap CPU Time: 0. (0. %) 0. L
B] Data Page Fault Time: 0. (0. %) 0. [
Threads o [8] le€8: inc 10 ime: .
0. 160 [89] leée: st 10, [sfp + 68] Text Page Fault Time: 0. (0. %) 0. (
ime: T |
Processes o [28] [sfp - 8], 510 Kernel Page Fault Time: 0. (0. %) 0. (
0. 280 [88] 10 Stopped Time: 0. (0. %) 0. [
More Views... a [;] Wait CPU Time: 0. (9. %) 9. L
0.250 ; 10 . 8 — Sleep Time: 0. (0. %) 0. [
[—: RO User Lock Time: | 0. (0. %) 0. (&
return n; =
ive Fil o [21 leso: ld [:fp + 68], 310
No Active Filters o [el lesd: s 10, [fp - 4]
s }
o [92] less: 1d [3fp - 4], 5L
o [92] lesc: or 10, 3g0, %10
o [22] le90: ret
o [92] le94: restore =
‘ I v
L L+] e I [D

The next section uses the Disassembly view further.

Understanding the JVM Behavior

This section shows how to examine what is occurring in the JVM by using filters, Expert Mode,
and Machine Mode.

1. Select the Functions view and find the routine named <JVM-System>.

You can find it very quickly using the Find tool in the tool bar if you type <vM and press
Enter.

In this experiment, <JVM-System> consumed about four seconds of Total CPU time. Time in
the <JVM-System> function represents the workings of the JVM rather than the user code.

2. Right-click on <JVM-System> and select "Add Filter: Include only stacks containing the
selected functions".

Notice that the filters panel below the navigation panel previously displayed No Active
Filters and now shows 1 Active Filter with the name of the filter that you added. The
Functions view refreshes so that only <JVM-System> is remaining.

3. In the Performance Analyzer tool bar, change the view mode selector from User Mode to
Expert Mode.

52 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Understanding the JVM Behavior

The Functions view refreshes to show many functions that had been represented by <JvM-
System> time. The function <JVM-System> itself is no longer visible.

Remove the filter by clicking the X in the Active Filters panel.

The Functions view refreshes to show the user functions again, but the functions
represented by <JVM-System> are also still visible while the <JVM-System> function is not
visible.

test.l.er - Oracle Solaris Studio Performance Analyzer
File Views Tools Help

HEED [RS8 |[orervse (][4 I)y

Views (+)| | © Excl. Total | @ Incl. Total Name @:
| U
Welcome V (sec.) (sec.) (=l
i 81967 81.967 <Total» B
eEr e 15, 431 15.431 Routine.recursedeep(int, int, int) L
Functions 15,361 15.361 Routine.recurse(int, int, int) =
- 15. 341 16.341 Routine.bounce(int, int, int)
Timeline
6 144 6.144¢ Java jsynprog JavaJavaC
Call Tree 3763 3.763 java.lang.System.arraycopy(java.lang.object, int, java.lang.object, int, int)
3,673 3.673 cfunc(int)
it 3192 3.192 Routine.sys op(int)
Disassembly 3022 3.022 Routine.add double(int)
" 7 3 022 3.022 jsynprog.javafunc(int)
el 3002 3.002 Routine.add_int{int)
Experiments z, 992 3.002 Routine$liInner.bulldlist(int)
2,892 2.692 Sub_Routine.addcall{int}
Threads
z.272 66.466 JSYnprog.main(java.lang.String[])
Processes 0,520 0.520 Routine.memalloc(int, int)
X 0,410 3.002 Sub_Routine.add_int{int}
More Views...
0. 260 0.340 ParallelTaskTerminator::offer termination(TerminatorTerminator)
0,120 0,120 lup_cond wait
0,090 0.090 <statie»@0xabdOcd (<libjvm.so)
0,070 0.640 StealTask::do_it(GCTaskManager*,unsigned)
o B Gl 0,050 0.050 PSPromotionManager::process array chunk{oopDesct)
0,040 0.080 PSPromotionManager::copy_to_survivor_space<falses(oopDesct)
i 0,040 0.060 Routine.allocate vector(}
0,030 0.030 Taskgueuesetsuper::randomParkAndMiller(int®)
. 0z0 0.0z0 copy::pd_disjoint_words(HeapWord~,HeapWord®,unsigned)
0,020 0.020 Monitor::Iunlock(bool) L
0,020 0.070 PsPromoti ::drain stacks depth(bool =]
[4] Il Iv]
v

Note that you do not need to perform filtering to expand the <JVM-System>. This procedure
includes filtering to more easily show the differences between User Mode and Expert
Mode.

To summarize: User Mode shows all the user functions but aggregates all the time spent in
the JVM into <JVM-System> while Expert Mode expands that <JVM-System> aggregation.

Next you can explore Machine Mode.
Select Machine Mode in the view mode list.

Java and Mixed Java-C++ Profiling 53

Understanding the JVM Behavior

test.l.er - Oracle Solaris Studio Performance Analyzer

File Views Tools Help

6 & 0 [\ @ @ [racre woce = | el - Q@ Cweencase

Views (+) | H Excl. Total (&, Incl. Total Name el
. »
CPU
Welcome W (sec.) (sec.) (&
~ B81.967 B81.967 <Total> A
OX=E e 15,431 16,431 Routine.recursedeep(int, int, int) L
Functions 15 351 15351 Routine.recurse{int, int, int) i
L 16341 16.341 Routine.bounce(int, int, int)
Timeline ;
6144 6,144 Java jsynprog Javalavac
Call Tree 3.603 3,693 Copy::pd_conjoint_oops_atomic(oopbesc**,copDesct+,unsigned)
3.673 3.673 cfunc(int)
rithe 3,002 3.002 jsynprog.javafunc(int)
Disassembly 2,902 2,992 Routine.add_int(int)
" 7 2.982 2992 Routine§lJInner.buildlist(int)
el =il 2,982 2,982 Routine.add double(int)
Experiments 2.982 2,982 Sub_Routine.add_int(int)
2.432 2.432 gettimeofday
Threads ;
2.272 2,272 arrayot_oop disjoint_arraycopy
Processes 0.650 3.082 os::javaTimeMillis()
) 0 520 D 620 zero aligned words
[z Vit 0. 250 0.340 parallelTaskTerminator::offer termination(TerminatorTerminator®)
0.180 B80.997 Interpreter
0120 0 120 1wp_cond_wait
0,110 2.942 Routine.sys op(int)
No Active Filters 0.080 D 090 <staticr@0xab40ed (<libjvm.so>)
0.070 D 54D StealTask::do_it(GCTaskManager*,unsigned)
v 0,050 0,050 PsPromotionManager::process array chunk(oopDesct)
0 040 0,080 PSPromotionManager::copy_te_surviver_spacesfalses{oopDesct)
0.030 D 030 CardTableModRefBS::dirty MemRegion(MeTRegion)
0,030 3,753 vk arraycopy L
0.030 0.030 Routine.add double(int) |
[a] I o]

v

In Machine Mode, any user methods that are interpreted are not shown by name in the
Functions view. The time spent in interpreted methods is aggregated into the Interpreter
entry, which represents that part of the JVM that interpretively executes Java byte code.

However, in Machine Mode the Functions view displays any user methods that were

HotSpot-compiled. If you select a compiled method such as Routine.add int(), the
Selection Details window shows the method's Java source file as the Source File, but the

Object File and Load Object are shown as JAVA COMPILED METHODS.

54 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Understanding the JVM Behavior

Eile Views Tools Help

G & || [Machine Mode [~ /'

BRT |
Views
Welcome
Overview
Functions
Timeline

Call Tree
Source
Disassembly
Callers-Callees
Experiments
Threads
Processes

More Views...

No Active Filters

L) ¥

B Excl. Total @& Incl. Total Name
CcPU

¥ (sec.)

a1,

957

(sec)

gl.
431
351

o
&

957

341
144
863
873
[clcr)
992
jlor)
982
982
432
272
a8z
520
340

Be=r)

120
942
090
540
[esTe]
080
030
753
030
350
020
020
020
o7e
020
020
a1e
920
a1e

<Total>
Routine.recursedeep(int, int,

Routine.recurse(int, int, int)|_|

Routine.bounce(int, int, int)
Java_]synprog_JavalavaC
Copy::pd_conjoint_oops_atomic(
cfunc(int)

jsynprog. javafunc(int)

Routine.add int(int)

Routine$llInner.buildlist(int)
Routine.add_double(int)
Sub_Routine.add_int(int)
gettimeofday
arrayof_oop_disjoint_arraycopy
o0s::javaTimeMillis()
zero_aligned_words
ParallelTaskTerninator: offer_|
Interpreter

_ lwp_cond_wait
Routine.sys_op(int)
<static=@xabdfcd (<libjvm. 50>
StealTask: :do_it(GCTaskManager|
PSPromotionManager: :process_ar
PSPromotionManager: :copy_to_su
CardTableModRefBS: :dirty_MemRe
JVM_ArrayCopy
Routine.add_double(int)
Routine.allocate_vector()
TaskQueueSetSuper: : randomParkX)
Copy::pd_disjoint_words (HeapWo
Moniter::IUnlock (bool)
PSPromotionManager: :drain_stac
memcpy¥sundv-hweap3
take_deferred_direct
AdaptiveWeightedAverage: :sampl
ClassFileParser::parse_constan
CodeHeap: : find_start (void*)con|

050 Compile::Optimize()

R s

[¥]

Lol

Name:

PC Address:
Size:

Source File:
Object File:

Load Object:

Mangled Name:

Aliases:

g [«] R maencase

: Selection Details

Routine.add_int(int)

0: 0xF9C52430
238
Routine. java

JAVA_COMPILED METHODS (not found)
JAVA_COMPILED_METHODS (not found)

Routine. add_int

Total Thread Time:
Total CPU Time:

User CPU Time:
System CPU Time:
Trap CPU Time:

Data Page Fault Time:
Text Page Fault Time:
Kernel Page Fault Time:
Stopped Time:
Wait CPU Time:

@ Exclusive

2,992 ([0.15%)
2.992 (3.65%)
2,992 [3.66%)
0. %)
%)
%)
%)
%)
%)
%)

cle|e|e|e|=

& Inclusive
2,992 (0.1
2,992 (3.9
2,992 (3.4
0. (o
a. (o
0. (o
a. (o
0. (o
0. (o
Q. (o
1

[«]
7

Interpreter
Interpreter
Interpreter
Interpreter
Interpreter
Interpreter
Interpreter
Interpreter
Interpreter
Interpreter
Interpreter
Interpreter
Interpreter
Interpreter
Interpreter
Interpreter

-
Call stack - Timeline
Routine.recursedeep(int, int, int) + OxODOPOZE4. line

+ Ox000016FE
+ 0x000016F8
+ Ox000016F8
+ 0x000016F8
+ Ox000016F8
+ 0x000016F8
+ 0x000016F8
+ Ox000016F8
+ 0x000016F8
+ Ox000016F8
+ 0x000016F8
+ Ox000016F8
+ Ox000016F8
+ 0x000016F8
+ Ox000016F8
+ 0x000016F8

[«

[»

6. While still in Machine Mode, switch to the Disassembly view while a compiled method is
selected in the Functions view.

The Disassembly view shows the machine code generated by the HotSpot Compiler. You
can see the Source File, Object File and Load Object names in the column header above the

code.

Java and Mixed Java-C++ Profiling

[a]

55

Understanding the Java Garbage Collector Behavior

test.l.er - Oracle Solaris Studio Performance Analyzer
File Views Tools Help

BB ED |1 ® | [ecnne vose]| L] Y R

Views +) & Incl. Total Source File: Routine.java [& .. ¢ Selection Details
A, P Object File: JAVA COMPILED METHODS (not found) »
e e Load Objact: JAVA COMPTLED METHODS (not found) < Name: Routine.add_int(int) + 0x00000000, line
) public int add int (int scale) { =] PC Address: 0:0xF9c52480
QEeitics int x = 0; Size: &
Functions int kmax = 100+scale; m Source File: Routine. java
double tEnd = jsynprog.Timer() + jsynprog.testtimd_ Object File: JAVA_COMPILED METHODS (not found)
Timeline do { x = 0; T Load Object: JAVA_COMFILED METHODS (not found)
Call Tree for (int k=0; kekmax;k++) { [== | Mangled Name: Routine.add int
for (int j=0; J<10000;3++) { Aliases:
Source <Function: Routine.add int(int)> & Exclusive & Inclusiv
Disassembl o U8 ty i Totl Thread Time: 0. (0. %) 0. o
4 0 [18) 4: setni g3 Total CPUTIMe: 0. (0. %) 0. (0
Callers-Callees o [18) 8: clr User CPU Time: 0. (0. %) 0. {9
0. [18) c: save System CPU Time: 0. (0. %) 0. [
Experiments o [1) 10: 1d Trap CPUTime: 0. (0. %) 0. (0
0 [18] 14: 1d Data Page Fault Time: 0. (0. %) 0. [
hreads) [18] 18: 1d Text Page Fault Time: 9. (0. %) 0. 0
Processes 0 [18] le: 1d Kernel Page Fault Time: g» [g. ':y g» [} g
0. [18) 200 1d 10+ 121, 3t9 Stopped Time: = (0 %4 0.
More Views... . Wait CPU Time: 0. (0. %) 0. {9
0 [18] 24: mov 10, %00
o " bee 14 ey 201, ai0 Sleep Time: 0. (0. %) 0. (0
Ll . e et User Lock Time: 0. (0.)| 0. 9
o [18] 2e: std 8, [asp + 96]
0. [18] 30: call ox2ed5ddc | (Unable to deten
0 [18] o g2, 17
o [18] 17, g2
o [18] 11, 1, %13
0. [18] 40: sethi hi(0x2400), 12
0 [18] 44: inc 785, 12
No Active Filters 0 [18] 48: sethi ni(0%2400), 314
7 o [18] de: inc 784, 14
0. [18] 50: sethi hi(0x£e81c000), 10
0. [18] 54: cube 90, %90, QxS
0.430 [18] 58: lda [3sp + 96],
0.580 [18] 5c: cube g0, g0, 0x88 -
o 193 an 2 Bt
L] I »
LT ' YRR i I I

The Total CPU Time shown on most of the visible lines is zero, because most of the work in
that function is performed further down in the code.

Continue to the next section.

Understanding the Java Garbage Collector Behavior

This procedure shows you how to use the Timeline view and the affect of the view mode setting
on the Timeline, while examining the activities that trigger Java garbage collection.

1. Set the view mode to User Mode and select the Timeline view in the navigation panel to
reveal the execution detail of this hybrid Java/native application, jsynprog.

56 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Understanding the Java Garbage Collector Behavior

Eile Views Tools Help

B | A 8 @ [User Mode [~ - [l Match Case
Views (+] 4 Selection Details
Y Bl ——] lagdp|aee |
Welcome Process: serf/jsynprog/test.1l.er [java, PID 11294]
. i=Eoe) 9 2\0 4|O 6\0 SP Event Type: Clock Profiling
Overview L = Leaf Function: Routine.recursedeep(int. int, int)
Functions T Timestamp (sec.): 40,528432
Timeline . < B
Thread: 2

Call Tree 1T:14 CPU: 8
Source © ' ' Duration (msec.): 10,007

1715 Thread State: . User CPU

Disassembly

Callers-Callees

Experiments
Threads
Processes

More Views...

You should see the CPU Utilization Samples bar at the top and profile data for three
threads. In the screenshot you can see data for Process 1, Threads 2, 14, 15. The numbering
and the number of threads you see might depend on the OS, the system, and the version of
Java you are using.

Only the first thread, Thread 2 labeled as T:2 in the example, shows its microstate as User
CPU. The other two threads spend all their time waiting for a User Lock, part of the JVM
synchronization.

2. Set the view mode to Expert Mode.

The Timeline view should now show more threads although the user thread T:2 appears
almost unchanged.

3. Use the vertical zoom control at the top of the timeline to adjust the zoom so that you can
see all the threads.

The vertical zoom control is highlighted in red in the following screenshot. Click the minus
button to reduce the height of the thread rows until you can see all twenty threads.

File Wiews Tools Help

K S E D [\ © @ | [Exert Mode || Find: [

Views (+) +

e T ® [&FGAD | & ® | croupoatabylinvesa I~]

Welcome Tim&tERel 0 1n 2n an a0 50 80 70 80
. Adjust the Veritcal Zoom (Ctrl-Plus, Ctrl-Minus) |1 1 | L | 1 | L |

Overview 1 |:||:|

Ciinctinne

4. Click the Call Stack Function Colors button in the Timeline tool bar to set the color of the
function Routine.memalloc() to red.

Java and Mixed Java-C++ Profiling 57

Understanding the Java Garbage Collector Behavior

In the Function Colors dialog, select the Routine.memalloc() function in the Legend, click
a red box in Swatches and click Set Selected Functions.

test.1l.er - Oracle Solaris Studio Performance Analyzer

Eile Views Tools Help

BEED [\ @@ | [mxwerMode [~

[Match Case

Find:

Views + = N i i
= © PEsE BH [EFAD S8 [cowdmbpiea -]) ectonoeis i
e — Process: brog/test.l.er [java, PID
Time(zec) a 10 20 30 40 50 60 70 80 _| Event Type: Clock Frofiling
Overview 1 [iT] | Leaf Function: __1vp_cond_wait
i (sec.): 2.095990
Functions 1Tl G We: 12
Timeline) Thread: 12
1T:3 CPU: 45
Call Tree ® Duration (msec.): 30.021
so 14 @ Thread state: [JJi] user Lock El
urce
i 175§ Call Stack - Timeline |
Disassembly 1TE @ _ 1vp cond wait + 0X00000008
Callers-Callees 7o _lb:'?_cond_wau + ?imuuooom
os::PlatformEvent::park() + 0x00000100
Experiments 1ms @ Monitor::Iwait(Thread~,long long) + 0x000000CO
Monitor: :wait(bool,long,bool) + 0x00000360
1T:8
Uib:ZE ® GCTaskManager: :get_task(unsigned) + 0x00000094
Processes 1710 @ Function Colors
More Views... 1T @ [Legend
T2] [l Routine aliocate_array(in) -
1T12 G [Routine.allocate_vector()
1T 14 @ = . Routine.array_op(int)
T G | O Rum!ne.huuncenm? int, int)
[[Routine.bounce_biint, int, int)
1T1e ® = . Routine.has_inner_class(int)
1717 @ [l Routine. memalloc(int, int)
1718 @ . Routine.recurse(int, int, int)
1718 . Routine.recursedeeplint, int, int)
© [routine.sys_op(int)
| [+]
: B set Selected Functions H M Set All Functions H Reset Default Colors |
No Active Filters
| M Set Functions: |Starts with ‘vl ‘
e Set CPU Idle Events Color: @ Normal O Invisible ©3 Selected Color ll
Relative(sec) 10 20

«l Flocn

Note that Thread 2 now has a bar of red across the top of its stack. That area represents the
portion of time where the Routine.memalloc () routine was running.

You might need to zoom out vertically to see more frames of the callstack, and zoom in
horizontally to the region of time that is of interest.

Use the horizontal slider in the Timeline tool bar to zoom in close enough to see individual
events in thread T:2.

You can also zoom by double-clicking or pressing the + key on your keyboard.

58 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Understanding the Java Garbage Collector Behavior

® |[&FAD & @ | croupoataby/mreas [+]

Time{msec) 200 400 500 500
1T1
[

1T:2 @H--------I W B B B B B B BB EEEEEEEEEEEECBE

s ROl enEEERERRRRRRREREOEOROEROETN

1 T3 ® EEEEEE IR I I I IRl I

IR R NN EREN EjEN EE N EREN BN DOREN EEN ERE RE D B HO

Each row of the timeline actually includes three data bars. The top bar is a representation of
the callstack for that event. The middle bar shows black tick marks wherever events occur
too closely together to show them all. In other words, when you see a tick mark, you know
that there are multiple events in that space.

The lower bar is an indicator of the event state. For T:2 the lower bar is green, which

indicates User CPU Time was being used. For threads 3 through 12 the lower bar is gray,
which indicates User Lock Time.

Notice however that all of those threads 3 through 12 have many events clustered together

arriving at the same time as the user thread T:2 is in Routine.memalloc, the routine shown
in red.

Zoom in to the Routine.memalloc region and filter to include only that region by doing the
following:

® (Click on the T:2 bar close to the beginning of the Routine.memalloc region with the red
function call on top.

m Click and drag the mouse to close to the end of that region where the red at the top of
the call stack ends.

m Right-click and select Zoom > To Selected Time Range.

= With the range still selected, right-click and select Add Filter: Include only events from
selected time range.

After zooming you can see that there are some event states in threads 3-12 that are green to
indicate User CPU time, and even a few that are red to indicate Wait CPU Time.

Click on any of the events on threads 3-12 and you see in the Call Stack panel that each
thread's events include GCTaskThread: : run() in the stack.

Those threads represent the threads that the JVM uses to run garbage collection. While they
do not take a great amount of User CPU Time, the GC threads do run while the user thread
is in Routine.memalloc, but not otherwise.

Java and Mixed Java-C++ Profiling 59

Understanding the Java Garbage Collector Behavior

60

File Views Tools Help

Welcome
Overview
Functions
Timeline

Call Tree
Source
Disassembly
Callers-Callees
Experiments
Threads
Processes

More Views...

HEE | 7@
Views (+)

Time{msec)
il
1Tl ®
1Tz @
1T3 ®
1T4 ®H
175 @
1ms8 @
1T7 ®
1m8 ®
1Te @
1710 ®
1T11 ®
1ml2 ®
1T13 ®
1T14 ®

@ [[Exer ose |~

[Thread ||

400 500 800 700

reReey
iannnn

===
|
==
m =
|
=
|
e
|
| -

[|

: Selection Details |
Process:
Event Type:

ta, PID 11294]
.ock Profiling
Leaf Function: ParallelTaskTe
Timestamp (sec.): 0.290221
LWP: |4
Thread: 4
CPU: |31
Duration (msec.): 10,007
Thread State: . User CPU

-

call Stack - Timeline |
ParallelTaskTerninator: :offer_ter
StealTask::do_it(GCTaskManager,
GCTaskThread: :run() + Gx00000223
java_start + OxG0QG0330
_lwp_start + 0x00000000

8. Go back to the Functions view and click on the Incl. Total CPU column header to sort by

inclusive Total CPU Time.

You should see that one of the top functions is the GCTaskThread: : run() function. This
leads you to the conclusion that the user task Routine.memalloc is somehow triggering
garbage collection.

9. Select the Routine.memalloc function and switch to the Source view.

Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Understanding the Java HotSpot Compiler Behavior

test.1.er - Oracle Solaris Studio Performance Analyzer
Eile Views Tools Help

B |\ @ @ [[erer wooe [~ | [~]Gh Gl waehase
Views +)| & Incl. Total Source File: Routine.java @&4 Selection Details
=] cPU Object File: Routine class (found as test.l.er/archives/Routi » =
Welcome |2 (sec) Load Object: Routine.class (found as test.l.er/archives/Routi| (%7 Name: [1ine 78 in "Routine.java =
. public void memalloc (int nsize, int scale) { [a] PC Address: 371:0x0000061%
Overview class myobj { B Size: 0
Functions int nitem; Source File: Routine. java
L string shape; Object File: 2st.1.er/archives/Routine.class_dbrs
Timeline r String color; Load Object: Routine.class (found as test.l.er/ar
Mangled Name: Routine.memalloc
Call Tree myobs () ¢ H Aliases:
Souze nitem = &; I i Exclusive & Incl
Disassembly B shape = 'square”; Total Thread Time: | 0. (0. %) 0. (|=
color = bl H Total CPU Time: o (0. 0. (
Callers-Callees } User CPU Time: 0. (0. 0. [
<l } System CPU Time: 0. (0. 0. [
Experiments v 0 for (int §=0; 3<60; j++) { Trap CPU Time: 0 (o 0.
No Active Filters <Function: Routine.memalloc(int, inmt)> Data Page Fault Time: 0. (0. 0. [
T 0 for (int i=0; i<20; i++) { Text Page Fault Time: o. (0. 0. (
0.520 myob3j[] blueobj = new myob3[1000000]; Kernel Page Fault Time:] (o. a. (
' Stopped Time: 0. 0. 0. (
Wait CPU Time: 0. (0. %) 0. (
0) ! Sleep Time: o (0. %) 0. —
= User Lock Time: 0. (0. %) 0. (153
»

[l
av

From this fragment of source code it is easy to see why garbage collection is being
triggered. The code allocates an array of one million objects and stores the pointers to those
objects in the same place with each pass through the loop. This renders the old objects
unused, and thus they become garbage.

Continue to the next section.

Understanding the Java HotSpot Compiler Behavior

This procedure continues from the previous section, and shows you how to use the Timeline
and Threads views to filter and find the threads responsible for HotSpot compiling.

1.

Select the Timeline view and remove the filter by clicking the X in the Active Filters panel,
then reset the horizontal zoom to the default by pressing 0 on your keyboard.

You can also click the |[< button in front of the horizontal slider in the Timeline tool bar, or
right-click in the Timeline and select Reset.

Open the Function Colors dialog again, and pick different colors for each of the Routine.*
functions.

In the Timeline view, the color changes appear in call stacks of thread 2.

Look at all the threads of the Timeline in the period of time where you see the color changes
in thread 2.

You should see that there are some threads with patterns of events occurring at just about
the same time as the color changes in thread 2. In this example, they are threads 17, 18, and
19.

Go to the Threads view and select thread 2 and the threads in your experiment that show
activity during the time period where thread 2 shows calls to Routine.* functions.

Java and Mixed Java-C++ Profiling 61

Understanding the Java HotSpot Compiler Behavior

You might find it easier to first sort by name by clicking the Name column header. Then
select the multiple threads by pressing Ctrl as you click the threads.

In this example, threads 2, 17, 18, 19 are selected.

Click the filter button ?’in the toolbar and select Add Filter: Include only events with
selected items.

This sets a filter to include only events on those threads. You could also right-click in the
Threads view and select the filter.

Return to the Timeline View and reset the horizontal zoom to make the pattern easier to see.
7. Click on events in threads 17 and 18.

Note that the Call Stack panel shows CompileBroker::compiler thread loop(). Those
threads are the threads used for the HotSpot compiler.

Thread 19 shows call stacks with ServiceThread: :service thread entry() in them.

test.l.er - Oracle Solaris Studio Performance Analyzer

File Views Tools Help

(=5 B3 T ||\ G & | |ExpertMode [v] Find: [~] [Match Case
Views (+) o) A i i
= * Baar—a®n 1[a 1GE [S eepnambrea -] et |
Welcome (= T rocess: rog/test.l.er [java,
WD QL f e B S e S e Rt ae el Event Type: Clock erofiling
Overview 1 0 E Leaf Function: __lvp_cond wait
q Timestamp (sec.): 3.867436
Functions 1732 T LWP: 19
Thread: 19
Timel
—— ® ead o

Call Tree 1717 Duration (msec.): 30.021
Thread State: [l User Lock

Source © .. : -

Disassembly s L. -

Callers-Callees © - - . .Call stack - Timeline |

1lup_cond wait + 0x00000008

Experiments 1719 _lup_cond walt + 0x00000010
Threads [os::PlatformEvent::park() + 0x00000100
- ajf § Monitor::IWalt{Thread+,long long) + 0X000000C0

Monitor::wait(bool,long,bool) + 0x00000360
1 Active Filter ServiceThread: :service_thread entry(JavaThread+,T

=) % ? IJavarnread:1(hread7mam7mner(, + 0x00000094

. JavaThread::run() + 0%0000048C
2: Threads: With Selected... java_start + 0x00000330
_lup_start + 0x00000000

Lol

Relative(sec) -3 -2 -1 Q 1 2 3 4 5 3
[«] IRRAET) i 1»]

The reason the multiple events occur on those threads is that whenever the user code
invokes a new method and spends a fair amount of time in it, the HotSpot compiler is
triggered to generate machine code for that method. The HotSpot compiler is fast enough
that the threads that run it do not consume very much User CPU Time.

The details of exactly how the HotSpot compiler is triggered is beyond the scope of this
tutorial.

62 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Hardware Counter Profiling on a Multithreaded
Program

This chapter covers the following topics.

= “About the Hardware Counter Profiling Tutorial” on page 63

m “Setting Up the mttest Sample Code” on page 64

® “Collecting Data From mttest for Hardware Counter Profiling Tutorial” on page 65
® “Examining the Hardware Counter Profiling Experiment for mttest” on page 65

m “Exploring Clock-Profiling Data” on page 67

m “Understanding Hardware Counter Instruction Profiling Metrics” on page 69

m “Understanding Hardware Counter CPU Cycles Profiling Metrics” on page 71

= “Understanding Cache Contention and Cache Profiling Metrics” on page 73

m “Detecting False Sharing” on page 77

About the Hardware Counter Profiling Tutorial

This tutorial shows how to use Performance Analyzer on a multithreaded program named
mttest to collect and understand clock profiling and hardware counter profiling data.

You explore the Overview page and change which metrics are shown, examine the Functions
view, Callers-Callees view, and Source and Disassembly views, and apply filters.

You first explore the clock profile data, then the HW-counter profile data with Instructions
Executed which is a counter available on all supported systems. Then you explore Instructions
Executed and CPU Cycles (available on most, but not all, supported systems) and with D-cache
Misses (available on some supported systems).

If run on a system with a precise hardware counter for D-cache Misses (dcm), you will also learn
how to use the IndexObject and MemoryObject views, and how to detect false sharing of a
cache line.

The program mttest is a simple program that exercises various synchronization options on
dummy data. The program implements a number of different tasks and each task uses a basic
algorithm:

Hardware Counter Profiling on a Multithreaded Program 63

Setting Up the mttest Sample Code

®= Queue up a number of work blocks, four by default. Each one is an instance of a structure
Workblk.

m Spawn a number of threads to process the work, also four by default. Each thread is passed
its private work block.

m In each task, use a particular synchronization primitive to control access to the work blocks.
m Process the work for the block, after the synchronization.

The data you see in the experiment that you record will be different from that shown here.

The experiment used for the screen shots in the tutorial was recorded on a SPARC T5 system
running Oracle Solaris 11.2. The data from an x86 system running Oracle Solaris or Linux will
be different. Furthermore, data collection is statistical in nature and varies from experiment to
experiment, even when run on the same system and OS.

The Performance Analyzer window configuration that you see might not precisely match the
screen shots. Performance Analyzer enables you to drag separator bars between components
of the window, collapse components, and resize the window. Performance Analyzer records
its configuration and uses the same configuration the next time it runs. Many configuration
changes were made in the course of capturing the screen shots shown in the tutorial.

Setting Up the mttest Sample Code

Before You Begin

See the following for information about obtaining the code and setting up your environment.

= “Getting the Sample Code for the Tutorials” on page 8
m “Setting Up Your Environment for the Tutorials” on page 9

You might want to go through the introductory tutorial in “Introduction to C Profiling” first to
become familiar with Performance Analyzer.

1. Copy the contents of the mttest directory to your own private working area with the
following command:

% cp -r SolarisStudioSampleApplications/PerformanceAnalyzer/mttest mydirectory

where mydirectory is the working directory you are using.
2. Change to that working directory copy.

o

% cd mydirectory/mttest
3. Build the target executable.

o

% make clobber (needed only if you ran make in the directory before, but safe in any case)

% make

64 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Collecting Data From mttest for Hardware Counter Profiling Tutorial

After you run make the directory contains the target application to be used in the tutorial, a
C program called mttest.

Tip - If you prefer, you can edit the Makefile to do the following: use the GNU compilers rather
than the default of the Studio compilers; build in 32-bits rather than the default of 64-bits; and
add different compiler flags.

Collecting Data From mttest for Hardware Counter Profiling
Tutorial

The easiest way to collect the data is to run the following command in the mttest directory:

% make hwcperf
The hwcperf target of the Makefile launches a collect command and records an experiment.

The experiment is named test.1.er by default and contains clock-profiling data and hardware

counter profiling data for three counters: inst (instructions), cycles (cycles), and dcm (data-
cache-misses).

If your system does not support a cycles counter or a dcm counter, the collect command
will fail. In that case, edit the Makefile to move the # sign to the appropriate line to enable

the HWC_OPT variable that specifies only those counters that are supported on your system. The
experiment will not have the data from those counters that were omitted.

Tip - You can use the command collect -h to determine which counters your system does
support. For information about the hardware counters, see “Hardware Counter Lists” in “Oracle
Solaris Studio 12.4: Performance Analyzer ”.

Examining the Hardware Counter Profiling Experiment for
mttest
This section shows how to explore the data in the experiment you created from the mttest
sample code in the previous section.
1. Start Performance Analyzer from the mttest directory and load the experiment as follows:
% analyzer test.l.er

When the experiment opens, Performance Analyzer shows the Overview page.

Hardware Counter Profiling on a Multithreaded Program 65

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSPAafabp
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSPAafabp

Examining the Hardware Counter Profiling Experiment for mttest

test.l.er - Oracle Solaris Studio Performance Analyzer
File Views Tools Help

BEED [ved [
Views +
)

Welcome

b test.Ler
Overview
Functions Metrics
Timeline Select the metrics to display in the data views, then click a data view in the navigation panel on the left.

Source Available Metrics

Callers-Callees Experiment Duration: 97.261 Seconds H Exclusive & Inclusive
< Clock Profiling Show inviews Time Value % Time value %
= Total Thread Time - 327.539 Seconds

Threads ¢ Total Thread Time
Processes ¢ Total CPUTIme 57%

Experiments

*

F
DO ODOODDOoDOoDOoDOooDoEO

vpage size User CPUTImMe 56%

System CPU Time 0%
More Views... ¥
Trap CPUTime 0%
M Data Page Fault Time [
M Text Page Fault Time I
M Kernel Page Fault Time I
Stopped Time
BWait CPUTIme [
N Sleep Time . . oo . I W% *
W User Lock Time _—
~ Derived and Other Metrics
Instructions Per Cycle: 0.220
Cycles Per INSTruction: 4.554 oo b i i i e e
~ HW Counter Profiling
~ Dataspace Hardware Counters
L1 D-cache Misses: 789997750
= General Hardware Counters
Instructions Executed: 145423149378
CPU Cycles: 183.947 Seconds

=
=

OE

oo o
oo o
oo o

3]

No Active Filters . .
Metrics Preview

v [Excl. Total g Incl. Total & Excl. [Excl. L1 D-cache [@ Excl. Instructions [Excl. CPU WName
CPU CPU CPI Misses Executed Cycles
(sec.) (sec.) (sec.)
135,300 135,300 4,554 789 997 760 145 423 148 378 183,947 <Total>

The Clock Profiling metrics are shown first and include colored bars. Most of the thread
time is spent in User CPU Time. Some time is spent in Sleep Time or User Lock Time.

The Derived and Other Metrics group is present if you have recorded both cycles and
insts counters. The derived metrics represent the ratios of the metrics from those two
counters. A high value of Instructions Per Cycle or a low value of Cycles Per Instruction
indicates relatively efficient code. Conversely, a low value of Instructions Per Cycle or a
high value of Cycles Per Instruction indicates relatively inefficient code.

The HW Counter Profiling group shows two subgroups in this experiment, Dataspace
Hardware Counters and General Hardware Counters. The Instructions Executed counter
(insts) is listed under General Hardware Counters. If the data you collected included

the cycles counter, CPU Cycles is also listed under General Hardware Counters. If the
data was collected on a machine with a precise dcm counter, L.1 D-cache Misses is listed
under Dataspace Hardware Counters. If the dcm counter was available but is not a precise
counter, L.1 D-cache Misses is listed under General Hardware Counters. A precise counter
is one whose overflow interrupt is delivered at the execution of the instruction causing
the overflow. Non-precise counters are delivered with a variable amount of "skid" past

66 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Exploring Clock-Profiling Data

the instruction causing the overflow. Even if a non-precise counter is memory-related, it
cannot be used for dataspace profiling. For more information about dataspace profiling,
see “Dataspace Profiling and Memoryspace Profiling” in “Oracle Solaris Studio 12.4:
Performance Analyzer ”.

If your system does not support dcm, and you edited the Makefile to remove the -h dcm,
you will see the Instructions Executed and CPU Cycles counter. If you edited the Makefile
to remove both the -h dcm and -h cycles, you will only see the Instructions Executed
counter.

You will explore these metrics and their interpretation in the following sections of the tutorial.

Exploring Clock-Profiling Data

This section explores the clock profiling data using the Overview page and the Functions view
with the Called-by/Calls panel.

1.

In the Overview page, deselect the check boxes for three HW counter metrics, leaving only
the Total CPU Time check boxes selected.

Go to the Functions view and click the column heading once for Incl. Total CPU to sort
according to inclusive total CPU time.

The function do_work() should now be at the top of the list.

Hardware Counter Profiling on a Multithreaded Program 67

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSPAafamt
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSPAafamt

Exploring Clock-Profiling Data

68

File Views Tools Help

BEED ([ves <3

Views +

Welcome
Overview
Functions
Timeline
Call Tree
Source
Callers-Callees
Experiments
Threads
Processes
Vpage_size

More Views...

No Active Filters

3. Select the do_work() function and look at the Called-by/Calls panel at the bottom of the

B Excl. Total @& Incl. Total
cp

(sec)
185,300

0.510

12,018
12.018

12.008
12.008

12.008
12.008

11.998
0

V (sec.)
185. 300

185. 300
173,271
58 741
56. 741
44,091
30,011
17.352
14. 650
13. 950
13. 950
12.028
1z.028
12.028
12,018
12,018
12,018
12,008
12,008
12,008
12,008
12,008
12,008
12,008
12. 008
1z.008
12.008
11,998
11.998

avw
Called-by / Calls

38 Aur. Total
CPU

V (sec.)
173,271

12028

Functions view.

Note that do_work() is called from two places, and it calls ten functions.

do_work
is called by
_lwp_start
locktest

test.l.er - Oracle Solaris Studio Performance Analyzer

Name

<Total>
do_vork

_lup_start
cache_trash
computes.
cache_trash_even
trylock_global
mutex_tryleck
cache_trash_odd
do_exit_critical
take_deferred_direct
_start

locktest

main

compute

computen

nothreads

computen

computec

computeE

computeG

computer
cond_global
lock_global
lock_local
lock_none
sema_global
computel
cond_timeout_global

do_work

£E Aur. Total do_work
Is

CPU
V (sec.)
= 58. 741

30,011
12.018
12.008
12.008
12.008
12.008
12.008
11.998
11.978

cache_trash
trylock _global
nothreads
cond_global
lock_global
lock_local
lock_none
sema_global
cond_timeout_global
calladd

S ——

@: Selection Details

Lol

]

Lol

Name: do_work

PC Address: 2:0x00004028
Size: 352

Source File: mttest.c

Object File: mttest (found as test.l.er/archives/mttest_WGJjvmidifoc
Load Object mttest (found as test.l.er/archives/mitest_WGjvmndifoc

Mangled Name
Aliases

Total Thread Time:
Total CPU Time:

User CPU Time:
System CPU Time:
Trap CPU Time:

Data Page Fault Time:
Text Page Fault Time:
Kernel Page Fault Time:
Stopped Time:

Wait CPU Time:

Sleep Time:

User Lock Time:

L1 D-cache Misses:
Instructions Executed:
CPU Cycles:

“ count:

Instructions Per Cycle:
Cycles Per Instruction:

i Exclusive & Inclusive
0.510 (0.16%) 242.309 (73.98
0.510 (0.28%) 185.300 (100.00
0.510 (0.28%) 185.029 (100.00
0. (0. 3) 0.120 (100.00
0. (0. %) 0.150 (100.00
0. (0. %) 0. (0.
0. (0. %) 0. (0.
0. (0. %) 0. (0.
0. { 0. %) 0. { 0.
0. (0. %) 0. (0.
0. (0. %) 0. (0.
0. (0. %) 57.010 (100.00

0(0. %) 789997750 (100.00

0 (0. %) 145323149378 (100.00

0.009 (0.00%) 183.947 (100.00
31600040 662210550587

0. (0. %) 0.220 (100.00

0. (0. %) 4.554 (100.00

[]

1ol

The ten functions that do_work() calls represent ten different tasks, each with a different
synchronization method that the program executed. In some experiments created from
mttest you might see an eleventh function which uses relatively little time to fetch the
work blocks for the other tasks. This function is not shown in the screen shot.

Most often, do_work() is called when a thread to process the data is created, and is shown
as called from 1lwp start(). In one case, do work() calls one single-threaded task called
nothreads () after being called from locktest().

In the Calls side of the panel, note that except for the first two of the callees, all callees
show about the same amount of time (~12 seconds) of Attributed Total CPU.

Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Understanding Hardware Counter Instruction Profiling Metrics

Understanding Hardware Counter Instruction Profiling
Metrics

This section shows how to use general hardware counters to see how many instructions are
executed for functions.

1. Select the Overview page and enable the HW Counter Profiling metric named Instructions
Executed, which is under General Hardware Counters.

Return to the Functions view, and click on the Name column header to sort alphabetically.

Scroll down to find the functions compute(), computeA(), computeB(), etc.

test.l.er - Oracle Solaris Studio Performance Analyzer
File Views Tools Help

BEED [red |9 Bod [~]GhCh Cvahcasd

Views +) | [Excl Total & Incl. Total [Excl. Instructions Name L[4 selection Details
e Executed v P
Welcome (sec.) (sec.) Name: do_work
) 9,186 9,186 13682796237 addone B PC Address: 2:0x00004028
Oxen ey 0 58,741 0 cache_trash u Size: 352
Functions o 44,091 0 cache trash _even Source File: mttest.c
: o 14,650 0 cache trash odd Object File: FECeSt (ound as test.1.st/archives/mEtest NGIvNA3fgc
Timeline) 1 ors . Load Object: Mttest (found as test.l.er/archives/mttest WGIvmNd3£oc
I~ Mangled Name:
Call Tree 12.048 12.018 11666696974 compute (s
12.008 12.008 11502395996 computen ~
o 56,741 58,741 11628795952 computeB UG & Inclusive
s zme e e T [G C T e (R
S o2l S9N compte \rer G T T N —EREE
puteE System CPU Time: 0. (0. % 0.120 (100.00
Threads 2.822 11.978 9445396 711 computer Trap CPU Time: 0. (6. %) 0.150 (100.00
12.008 12.008 11602396996 computeG _| Data Page Fault Time: 0. (0. % 0. (o
BIEEESERS 11,998 11998 11602395996 computen | Text Page Fault Time: 0. (0. %) 0. o
Vpage_size 12,008 12,008 11502396986 computer Kernel Page Fault Time: o (0. % 0. (o
-~ 0 12.008 0 cond_global Stopped Time:] € 0. %) 0. c o
More Views... o o 0 cond sleep queue Wait CPU Time: [(0. % o. (o
0 o 0 cond_timedwait Sleep Time: o Lo e
- User Lock Time: o (0. % 57.010 (100.00
o 11,5998 0 cond timeout global L1 D-cache Misses: T 0. %) 789997750 (10006
o o L Instructions Executed: 0 (0. %)| 145423149378 (100.00
0 0 0 cond wait_common CPU Cycles: 0.009 (0.00%) 183.947 (100.00
[0 0 cond wait_gueue * count: 51600040 662210550587
0 13.950 0 do_exit_critical Instructions Per Cycle: 0. € 0. %) 0.220 (100.00
0,510 185,300 OISR Cycles Per Instruction: 0. (0. %) 4.554 (100.00

Note that all of the functions except computeB() and computeF () have approximately the
same amount of Exclusive Total CPU time and of Exclusive Instructions Executed.

4. Select computeF () and switch to the Source view. You can do this in one step by double-
clicking computeF ().

Hardware Counter Profiling on a Multithreaded Program 69

Understanding Hardware Counter Instruction Profiling Metrics

test.l.er - Oracle Solaris Studio Performance Analyzer

File Views Tools Help

BEED (Y@@ |

Views (+)| & Incl. Total &, Incl. Instructions
m (sCeP(.l Executed
Overview
Functions 0 0
Timeline
Call Tree 12.008 11 602 395 996
0 i
Source
Callers-Callees
Experiments
Threads
Processes o o
Vpage_size
More Views... 0 0
11.978 23131191 948
0
0 0
No Active Filters
v 0 0
12,008 14 B02 385 996
0 0

. — | oY

Source File: mttest.c [

Object File: mttest (found as test.l.er/archives/mttest WGjvmNd3fQc) »

Load Object: mttest (found as test.l.er/archives/mttest WGjvmNd3£Qc) 7
<Functien: computeE> [=]

long long i;
X->Sum_ctr = 0;

Source loop below
o

ag L16

= 0; 1 < loop_count; i++) { X->SUm Ctr = X->sum ctr + 1.0; }

¥

wvoid

computer (workstruct t +x)

{

<Function: computeF>
long long i;
X->Sum_ctr = 0;

Source loop below has tag L17
1468. for (i =0: 1 < loop count: i++) { addone{sx->sum Ctr:
¥

void

computeG(worksStruct_t *x)

{

<Function: computeG>
long long i;
x-rsum_ctr = 0;

Source loop below has tag L18
for (i = 0; i < loop_count; i++) { X->sum_ctr = x->sum_ctr + 1.0; }

}

[

i]

The computation kernel in computeF () is different because it calls a function addone() to
add one, while the other compute* () functions do the addition directly. This explains why
its performance is different from the others.

5. Scroll up and down in the Source view to look at all the compute* () functions.

Note that all of the compute* () functions, including computeB(), show approximately the
same number of instructions executed. Yet computeB() shows a very different CPU Time

cost.

70 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Understanding Hardware Counter CPU Cycles Profiling Metrics

test.1.er - Oracle Solaris Studio Performance Analyzer
Eile Views Tools Help

BEET | ves | — YN
Views +)| & Incl. Total | @& Incl, Instructions | Source rile: mttest.c i Bad
-V U Executed Object File: mttest (found as test.l.er/archives/mttest WGjvmNd3fQc) >
Welcome (e Load Object: mttest (found as test.l.er/archives/mttest WGjvmud3fQc) 7
_ void =]
Overview I

computeA(workStruct_t +x)

Functions 0. 0 {
<Function: computenz

Timeline long long i;
Call Tree 0. 0 X->Sum_ctr = 0;
Source source loop be g L1z
12.008 11 602 395 996 0; i < loop_count; i++) { X-»sum Ctr = x->sum ctr + 1.0; }
Callers-Callees - - -
0. 0 }
Experiments
void
Threads computeB(workstruct t +x)
Processes o ° 1
<Functien: computes>
Vpage_size long long i;
, 0. 0 X->sum_ctr = 0;
More Views... -
source loop below has tag Li3
68. 741 11 628 795 962 for (i = 0; i < loop_count; i++) { X->sum ctr = x->sum ctr + 1.0; }
0. 0 }

void

computeC(workStruct_t +x)
0. o {

<Function: computec>

No Active Filters
long long i;

W i 0 ¥->sum_ctr = 0;
source 1loop belos g Lia
12.008 11 502 395 996 for (i = 0; i < loop _count; i++) { x-»sum ctr = x-»sum_ctr + 1.0; }
0. 0 } =
[Il Ts]
=

The next section helps show why the Total CPU time is so much higher for computeB().

Understanding Hardware Counter CPU Cycles Profiling
Metrics

This part of the tutorial requires an experiment with data from the cycles counter. If your
system does not support this counter, your experiment cannot be used in this section. Skip to the
next section “Understanding Cache Contention and Cache Profiling Metrics” on page 73.

1. Select the Overview page and enable the derived metric Cycles Per Instruction and the
General Hardware Counter metric, CPU Cycles.

You should keep Inclusive Total CPU and Instructions Executed selected.

Hardware Counter Profiling on a Multithreaded Program 71

Understanding Hardware Counter CPU Cycles Profiling Metrics

= Derived and Other Metrics
Instructions Per Cycle: 0.220o O
Cycles Per Instruction: 4.554 o 0 e
= HW Counter Profiling
= Dataspace Hardware Counters
L1 D-cache Misses: 78997730 e
= General Hardware Counters
Instructions Executed: 145423149378 0. |
CPU Cycles: 183.947 Seconds v oo e O d
2. Return to the Source view at computeB().
000 test 1er - Oracle Solaris Studio Performance Analyzer
File Views Tools Help
HEED [(ved pa [v]Q & [Iachcase
Views (+) i Source File: mttest.c 4
. - “| él"élP'Jm‘ éln;l,.m\:a((r;udmans &]CI;"C" %ICM(“'EEPU object File: mttest (found as test.l.er/archives/mttest WGjvmNd3fgc) @Ab
Wwelcome (sec) (!e() Load Object: mttest (found as test.l.er/archives/mttest WGjvmHd3fQc) 7
N computen (werkstruct_t *x) []
Overview o o a o {
Functions <Function: COmMputeA>
N long long i;
Timeline i 0 o 0 x->sum_ctr = 0;
Call Tree
Source loop below tag L1z
Source 1z.008 11 502 395 996 3742 11. 955 for (i = 0; i < loop_count; it++) { X=»Sum Ctr = X-rsum_ctr + 1.
Callers-Callees 0 oo 0 }
Experiments void
computeB (workstruct_t *x)
Threads 0 0 0 0 {
. <Function: computes>
long long i;
Vpage_size [1} [1} 1] i} x->sum_ctr = 07
More Views...
source loop below tag L13
B8 741 11 628795 082 1& 120 B8 B30 for (i = 0; i < loop_count; it+) { X-»SuUm_Ctr = X-»sum_ctr + 1.
0 0 [i] 0 }
void
computec (workstruct_t *x)
i} i} i} i} {
<Function: computecs
No Active Filters long long i; =
i} i} o i} x-rsum_ctr = 0F
W
source loop belo ag L14
12,008 11502 395 996 3742 11,356 for (i = 0; i < loop_count; i++) { X->Sum Ctr = X->Sum Ctr + l.
i} 0 i} i} }
[4]]] Dl
v

Note that the Incl. CPU Cycles time and the Incl. Total CPU Time are roughly equivalent in
each of the compute* () functions. This indicates that the clock-profiling and CPU Cycles
hardware counter profiling are getting similar data.

In the screen shots, the Incl. CPU Cycles and the Incl. Total CPU Time are about 12
seconds for each of the compute* () functions except computeB(). You should also see in
your experiment that the Incl. Cycles Per Instruction (CPI) is much higher for computeB ()
than it is for the other compute* () functions. This indicates that more CPU cycles are
needed to execute the same number of instructions, and computeB() is therefore less
efficient than the others.

72 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Understanding Cache Contention and Cache Profiling Metrics

The data you have seen so far shows the difference between that computeB() function and the
others, but does not show why they might be different. The next part of this tutorial explores
why computeB() is different.

Understanding Cache Contention and Cache Profiling
Metrics

This section and the rest of the tutorial requires an experiment with data from the precise dcm
hardware counter. If your system does not support the precise dcm counter, the remainder of the
tutorial is not applicable to the experiment you recorded on the system.

The dcm counter is counting cache misses, which are loads and stores that reference a memory
address that is not in the cache.

An address might not be in cache for any of the following reasons:

m Because the current instruction is the first reference to that memory location from that CPU.
More accurately, it is the first reference to any of the memory locations that share the cache
line.

m Because the thread has referenced so many other memory addresses that the current address
has been flushed from the cache. This is a capacity miss.

= Because the thread has referenced other memory addresses that map to the same cache line
which causes the current address to be flushed. This is a conflict miss.

m Because another thread has written to an address within the cache line which causes the
current thread's cache line to be flushed. This is a sharing miss, and could be one of two
types of sharing misses:

m True sharing, where the other thread has written to the same address that the current
thread is referencing. Cache misses due to true sharing are unavoidable.

m False sharing, where the other thread has written to a different address from the one that
the current thread is referencing. Cache misses due to false sharing occur because the
cache hardware operates at a cache-line granularity, not a data-word granularity. False
sharing can be avoided by changing the relevant data structures so that the different
addresses referenced in each thread are on different cache lines.

This procedure examines a case of false sharing that has an impact on the function computeB().

1. Return to the Overview, and enable the metric for L.1 D-cache Misses, and disable the
metrics for Cycles Per Instruction and Inclusive Total CPU Time.

Hardware Counter Profiling on a Multithreaded Program 73

Understanding Cache Contention and Cache Profiling Metrics

Available Metrics
Experiment Duration: 97.261 Seconds H Exclusive & Inclusive
< Clock Profiling Show inviews Time Value % Time Yalue %
+~ Total Thread Time - 327.539 Seconds
¢ Total Thread Time |
¢ Total CPUTime — ETLONE S o O O
B UserCPUTime] = [}
Systemn CPU Time 0% (]
Trap CPUTime 0% (]
M Dats Page Fault Time I 0% O
M Text Pege Fault Time | 0% O
M Kernel Page Fault Time | 0% O
W stopped Time [0% O
Mwat CFUTIme [oal [
BsSleepTime | zev| # [
B UserlockTime | 17w # [
~ Derived and Other Metrics
Instructions Per Cycle: 0.220 L (]
Cycles Per Instruction: 4.554 000 O
< HW Counter Profiling
- Dataspace Hardware Counters
Ll D-cache Misses: 789997750 . . v . . v v v v e O O
+ General Hardware Counters
Instructions Executed: 145423149378o
CPU Cycles: 183.947 Secands (]

2. Switch back to the Functions view and look at the compute* () routines.

74 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Understanding Cache Contention and Cache Profiling Metrics

File Views Tools Help

test.1l.er - Oracle Solaris Studio Performance Analyzer

BEED [ved

Views ()

Welcome
Overview
Functions
Timeline
Call Tree
Source
Callers-Callees
Experiments
Threads
Processes
Vpage_size

More Views...

No Active Filters

T

Recall that all compute* () functions show approximately the same instruction count,
but computeB() shows higher Exclusive Total CPU Time and is the only function with

B Excl. Total @&, Incl. Total [Excl. L1 D-cache

cPU

(sec.) (sec.)
[11. 973
12. 018 12018
12. 008 12. 008
56, 741 56, 741
12. 008 12. 008
12,048 12,048
12. 008 12. 008
2,822 11. 973
12. 008 12. 008
11. 998 11. 998
12, 008 12, 008
0 12. 008
o o

0 0

o 11. 993
0 0

0 0

o o

0 13. 950
0,540 185, 300
0 12. 008
] 12. 003

av
Called-by / Calls

88 Ater. Total | computeB
CPU is called by
(sec.)
44.091 cache_trash_even
14.650 cache_trash_odd

Misses

0
0
0
789 997 760
0

cococoocoeococoococaocoooo

—al YA

Name
v

calladd
compute
computen
computen
computeC
computen
computeE
computer
computeG
computeH
computel
cond_global
cond_sleep_gueue
cond_timedwait
cond_timeout_global
cond wait

cond_w.

| wait_common
cond wait_queue
do_exit_critical
do_work
lock_global

lock local

computeB
88 Ater. Total | computeB
cPu calls
(sec.) v

significant counts for Exclusive L1 D-cache Misses.

[2

[«1

[v]

[«]

3. Go back to the Source view and note that in computeB() the cache misses are in the single

line loop.

4. In the Views navigation panel, click More Views or the + button and select Disassembly.

Scroll the Disassembly view until you see the line with the high number of L1 D-Cache

Misses. It will be a load instruction.

Tip - The right margin of views such as Disassembly include shortcuts you can click to jump to
the lines with high metrics, or hot lines. Try clicking the Next Hot Line down-arrow at the top
of the margin or the Non-Zero Metrics marker to jump quickly to the lines with notable metric

values.

Hardware Counter Profiling on a Multithreaded Program

75

Understanding Cache Contention and Cache Profiling Metrics

test.l.er - Oracle Solaris Studio Performance Analyzer
File Views Tools Help

BEED [ved < | I D =) (= W
Viewsi | &; incl. Total @& Incl. L1 D-cache | Source File: mttest.c . . Bt
— CPU Missas Object File: mttest (found as test.l.er/archives/mttest WGjvmNd3fQc) »
Welcol e) Load Object: mttest (found as test.l.er/archives/mttest WGjvmnd3fgc) 7
| <runction: computes> [a]
Overvi 0. 0 [1430] 100004c20% <branch target> cmmme e
Functi 0 0 [1430] 100004c20: sethi ni(0X100000), %0
long long i;
Timeli x->sum_ctr = 0;
call 0 0 [1432] 100004c24: elrx [300] {structure:workstruct_t -}.{double sum_ctr}
a. a [1430] 100004c28: or 05, 263, 04
Source a. a [1430] 100004c2c: sllx o4, 12, g4
CUE) Source loop below has tag L13
Callert for (i = 0; i < loop_count; it+) { x-»sum_ctr = x-»sum_ctr + 1.0; }
] 0. [[1433] 100004c30: 1ldx (394 + 576], 303 <scalars>.{long_leng loop_count}
Experi 0.] [1433] 100004c34: brlez,pn 03, 0x100004c74
e 0. [[1430] 100004c38: sethi hi(0x100000), 02
[i} [i} [1433] 100004c3c: clr g3
Proces o o [1430] 100004c40: or
Vpage [i} [i} [1433] 100004c4d: 1ldd {structure:vorkstruct_t -}.{double sum ctr}
pag 0. [[1430] 100004c4s: add
More \ a. a [1430] 100004cdc: sllx 0l, 12, g
a. a [1430] 100004c50: add g5, 3056, gl
0 0 [1433] 100004c54: 1ldd [5g1 + 8], 3f4
0 0 [1433] 100004c58* <branch target> — <<
28.130 3159991 [1433] 100004e58: faddd 0, %f4, 3£2
10.73% [[1433] 100004csc: std £z 00] {structure:workstruct_t -}.{double sum ctr}
3,803 [[1433] 100004c60: inc g3
1,281 0 [1433] 100004c64: ldx [592], %o <scalars>.{long_long loop_count} =
No... 0.080 0 [1433] 100004c68: cmp g3, %o i
1,391 0 [1433] 100004c6c: bl,a,pt xee,
13.259 786 837 759 [1433] 100004c70: ldd [300], £0 {structure:workStruct_t -}.{double sum_ctr}
}
0. [[1434] 100004c74~ <branch target> e e
i} [1434] 100004c74: retl =
[4] Il]

On SPARC systems, if you compiled with -xhwcprof, loads and stores are annotated with
structure information showing that the instruction is referencing a double word, sum ctr

in the workStruct_t data structure. You also see lines with the same address as the next
line, with <branch target> as its instruction. Such lines indicate that the next address is the
target of a branch, which means the code might have reached an instruction that is indicated
as hot without ever executing the instructions above the <branch target>.

On x86 systems, the loads and stores are not annotated and <branch target> lines are not
displayed because the -xhwcprof is not supported on x86.

5. Go back and forth between the Functions and Disassembly views, selecting various
compute* () functions.

Note that for all compute* () functions, the instructions with high counts for Instructions
Executed reference the same structure field.

You have now seen that computeB() takes much longer than the other functions even though

it executes the same number of instructions, and is the only function that gets cache misses.
The cache misses are responsible for the increased number of cycles to execute the instructions
because a load with a cache miss takes many more cycles to complete than a load with a cache
hit.

For all the compute* () functions except computeB(), the double word field sum_ctr in the
structure workStruct t which is pointed to by the argument from each thread, is contained

76 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Detecting False Sharing

within the Workblk for that thread. Although the Workblk structures are allocated contiguously,
they are large enough so that the double words in each structure are too far apart to share a
cache line.

For computeB(), the workStruct t arguments from the threads are consecutive instances of

that structure, which is only one double-word long. As a result the double-words used by the
different threads will share a cache line, which causes any store from one thread to invalidate
the cache line in the other threads. That is why the cache miss count is so high, and the delay
refilling the cache line is why the Total CPU Time and CPU Cycles Metric is so high.

In this example, the data words being stored by the threads do not overlap although they share
a cache line. This performance problem is referred to as "false sharing". If the threads were
referring to the same data words, that would be true sharing. The data you have looked at so far
do not distinguish between false and true sharing.

The difference between false and true sharing is explored in the last section of this tutorial.

Detecting False Sharing

This part of the tutorial is applicable only to systems where the L1 D-Cache Miss dcm counter
is precise. Such systems include SPARC-T4, SPARC-T5, SPARC-M5 and SPARC-M6, among
others. If your experiment was recorded on a system without a precise dcm counter, this section
does not apply.

This procedure shows how to use Index Object views and Memory Object views along with
filtering.

When you create an experiment on a system with precise memory-related counters, a machine
model is recorded in the experiment. The machine model represents the mappings of addresses
to the various components in the memory subsystem of that machine. When you load the

experiment in Performance Analyzer or er_print, the machine model is automatically loaded.

The experiment used for the screen shots in this tutorial was recorded on a SPARC T5 system
and the t5 machine model for that machine is automatically loaded with the experiment. The
machine model adds data views of index objects and memory objects.

1. Go to the Functions view and select computeB(), then right-click and select Add Filter:
Include only stacks containing the selected functions.

By filtering, you can focus on the performance of the computeB() function and the profile
events occurring in that function.

2. Click the Settings button in the tool bar or choose Tools > Settings to open the Settings
dialog, and select the Views tab in that dialog.

Hardware Counter Profiling on a Multithreaded Program 77

Detecting False Sharing

78

el

Settings
f Views | Metrics | Timeline | Source/Disassembly | Call Tree | Formats | Search Path | Pathmaps |
Standard Views Index Objects Views Memory Objects Views =
Functions [v] Threads Vpage_size [v]
Timeline [v] CPUs [] In_Home_LGroup []
Call Tree [¥] Samples [] LGroup [
Source /Disassembly [] Seconds [| Vaddress []
Source [v] Processes Viine_328 [
Lines [] Experiment IDs [] Viine_648 [
Disassembly [¥] Data Size [] Vpage 8K [] |—
PCs [Duration [| Vpage_64K []
DataObjects [] T5_Chip [Vpage_4M []
Datalayout [T5_Core [] Vpage_256M []
Callers-Callees [v] Vpage_2G []
Statistics [|Add Custom Index Objects View| Paddress [|
Experiments Pline_32B []
Pline_64B []
Ppage_8K []
Ppage_64K [| |
Ppage_4M [|
Ppage_256M [|
Ppage_2G []
T5_LlICacheSet [|
T5_L1iCacheTag [|
T5_L1DCacheSet []
T5_L1DCacheTag [| |
TS 1 2ICacheSer [¥

| 0K || Apply || Close || Help |

The panel on the right is labeled Memory Objects Views and shows a long list of data views
that represent the SPARC T5 machine's memory subsystem structure.

3. Select the check boxes for Vaddress and Vline_32B and click OK.

Select the Vaddress view in the Views navigation panel.

Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Detecting False Sharing

File ‘iews Tools Help

EED | e E
Views (+) Data.L1D-cache Name &
o Misses 7
Vaddress o A— ||
_ = 789937 750 <Totals -
Vine_328 ~ 3159991 <Unknowns>
1 Active Fifter 350759001 Vaddress 0x0000000100143210
379198 920 Vaddress 0x0000000100143218
D 3 X 7 28433919 Vaddress 0x0000000100143220
1: Functions: Sel... 28439919 Vaddress 0x0000000100143228
|

In this experiment you can see that there are four different addresses getting the cache
misses.

5. Select one of the addresses and then right-click and choose Add Filter: Include only events
with the selected item.

6. Select the Threads view.

File VWiews Tools Help

Views (+) [@ Excl.L1D-cache Mame &
- Misses v

Experiments — ||
= 350 759001 <Totalx -

Threads > 350 759 001 Process 1, Thread 10

2 Active Filters I Process 1, Thread 11

ﬁ @j x ? 0 FProcess 1, Thread 12

8: Vaddress: Wit... 0 Process 1, Thread 13

1: Functions: Sel...

-

As you can see in the preceding screen shot, only one thread has cache misses for that
address.

b

Hardware Counter Profiling on a Multithreaded Program 79

Detecting False Sharing

7. Remove the address filter by right-clicking in the view and selecting Undo Filter Action
from the context menu.

You can alternatively use the Undo Filter Action button in the Active Filters panel to
remove the filter.

8. Return to the Vaddress view, and select and filter on other addresses and check the
associated thread in the Threads view.

By filtering and unfiltering and by switching between the Vaddress and Threads views
in this manner, you can confirm that there is a one-to-one relationship between the four
threads and the four addresses. That is, the four threads do not share addresses.

9. Select the Vline_32B view in the Views navigation panel.

File “iews Tools Help

HEED | Ve E i

Views 4+ Data L1 D-cache Name Py
Misses v, b

Vaddress =
759 937 750 <Total>

[»]

Jneaan E 3159991 <Unknowms

i am .
1 Active Fiter 729957921 Vline 32B 0x0000000100143200
D@ X 56379838 Vline 32B 0x0000000100143220

1: Functions: Sel...

[4]

Confirm in the Active Filters panel that there is only the filter active on the function
computerB(). The filter is shown as Functions: Selected Functions. None of the filters on
addresses should be active now.

You should see that there are two 32-byte cache lines getting the cache misses of the four
threads and their four respective addresses. This confirms that although you saw earlier that
the four threads do not share addresses, you see here that they do share cache lines.

False sharing is a very difficult problem to diagnose, and the SPARC T5 chip, along with Oracle
Solaris Studio Performance Analyzer enables you to do so.

80 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Synchronization Tracing on a Multithreaded
Program

This tutorial includes the following topics.

= “About the Synchronization Tracing Tutorial” on page 81
® “Setting Up the mttest Sample Code” on page 82
® “Collecting Data from mttest for Synchronization Tracing Tutorial” on page 83

® “Examining the Synchronization Tracing Experiment for mttest” on page 84

About the Synchronization Tracing Tutorial

This tutorial shows how to use Performance Analyzer on a multithreaded program to examine
clock profiling and synchronization tracing data.

You use the Overview page to quickly see which performance metrics are highlighted and
change which metrics are shown in data views. You use the Functions view, Callers-Callees
view, and the Source view to explore the data. The tutorial also shows you how to compare two
experiments.

The tutorial helps you understand synchronization tracing data, and explains how to relate it to
clock-profiling data.

The data you see in the experiment that you record will be different from that shown here.

The experiment used for the screen shots in the tutorial was recorded on a SPARC T5 system
running Oracle Solaris 11.2. The data from an x86 system running Oracle Solaris or Linux will
be different. Furthermore, data collection is statistical in nature and varies from experiment to
experiment, even when run on the same system and OS.

The Performance Analyzer window configuration that you see might not precisely match the
screen shots. Performance Analyzer enables you to drag separator bars between components
of the window, collapse components, and resize the window. Performance Analyzer records
its configuration and uses the same configuration the next time it runs. Many configuration
changes were made in the course of capturing the screen shots shown in the tutorial.

Synchronization Tracing on a Multithreaded Program 81

Setting Up the mttest Sample Code

About the mttest Program

The program mttest is a simple program that exercises various synchronization options on
dummy data. The program implements a number of different tasks and each task uses the same
basic algorithm:

= Queue up a number of work blocks (4, by default).

= Spawn a number of threads to process them (also, 4, by default).

m In each task, use a particular synchronization primitive to control access to the work blocks.
= Process the work for the block, after the synchronization.

Each task uses a different synchronization method. The mttest code executes each task in
sequence.

About Synchronization Tracing

Synchronization tracing is implemented by interposing on the various library functions for
synchronization, such as mutex_lock(), pthread mutex_lock(), sem wait(), and so on. Both
the pthread and Oracle Solaris synchronization calls are traced.

When the target program calls one of these functions, the call is intercepted by the data
collector. The current time, the address of the lock, and some other data is captured, and then
the interposition routine calls the real library routine. When the real library routine returns, the
data collector reads the time again and computes the difference between the end-time and the
start-time. If that difference exceeds a user-specified threshold, the event is recorded. If the time
does not exceed the threshold, the event is not recorded. In either case, the return value from the
real library routine is returned to the caller.

You can set the threshold used to determine whether to record the event by using the collect
command's -s option. If you use Performance Analyzer to collect the experiment, you can
specify the threshold as the Minimum Delay for Synchronization Wait Tracing in the Profile
Application dialog. You can set the threshold to a number of microseconds or to the keyword
calibrate or on. When you use calibrate or on the data collector determines the time it takes
to acquire an uncontested mutex lock and sets the threshold to five times that value. A specified
threshold of @ or all causes all events to be recorded.

In this tutorial, you record synchronization wait tracing in two experiments, with one
experiment having a calibrated threshold and one experiment with a zero threshold. Both
experiments also include clock profiling.

Setting Up the mttest Sample Code

Before You Begin

82 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Collecting Data from mttest for Synchronization Tracing Tutorial

See the following for information about obtaining the code and setting up your environment.

m “Getting the Sample Code for the Tutorials” on page 8
m “Setting Up Your Environment for the Tutorials” on page 9

You might want to go through the introductory tutorial in “Introduction to C Profiling” first to
become familiar with Performance Analyzer.

This tutorial uses the same mttest code as the tutorial “Hardware Counter Profiling on a
Multithreaded Program”. You should make a separate copy for this tutorial.

1. Copy the contents of the mttest directory to your own private working area with the
following command:

% cp -r SolarisStudioSampleApplications/PerformanceAnalyzer/mttest mydirectory

where mydirectory is the working directory you are using.
2. Change to that working directory copy.

% cd mydirectory/mttest
3. Build the target executable.

% make clobber (needed only if you ran make in the directory before, but safe in any case)

% make

After you run make the directory contains the target application to be used in the tutorial, a
C program called mttest.

Tip - If you prefer, you can edit the Makefile to do the following: use the GNU compilers rather
than the default of the Studio compilers; build in 32-bits rather than the default of 64-bits; and
add different compiler flags.

Collecting Data from mttest for Synchronization Tracing
Tutorial

The easiest way to collect the data is to run the following command in the mttest directory:
% make syncperf

The syncperf target of the Makefile launches the collect command twice and creates two
experiments.

The two experiments are named test.1.er and test.2.er and each contains synchronization
tracing data and clock profile data. For the first experiment, collect uses a calibrated threshold

Synchronization Tracing on a Multithreaded Program 83

Examining the Synchronization Tracing Experiment for mttest

for recording events by specifying the -s on option. For the second experiment, collect sets
the threshold to zero to record all events by specifying the -s all option. In both experiments,
clock-profiling is enabled through the -p on option.

Examining the Synchronization Tracing Experiment for
mttest

This section shows how to explore the data in the experiments you created from the mttest
sample code in the previous section.

Start Performance Analyzer from the mttest directory and load the first experiment as follows:
% analyzer test.l.er

When the experiment opens, Performance Analyzer shows the Overview page.

test.l.er - Oracle Solaris Studio Performance Analyzer
Eile Views Tools Help

BEED [ve®] 0
Views +
Experiment(s)
Welcome
b test.ler
Overview
Functions Metrics
Timeline Select the metrics to display in the data views, then click a data view in the navigation panel on the left.
Call Tree
Source

Available Metrics
Callers-Callees Experiment Duration: 83.104 Seconds 5 Exrlusive B Inclusive

~ Clock Profiling Show in views Time Value % Time Value %

Experiments < Total Thread Time - 299.710 Seconds

Threads ¢ Total Thread Time O
Processes ¢ Total CPUTIME so #] =]
Mok User CPU Time 0% [m}
System CPU Time 0% [m]
Trap CPUTime 0% [}
M Data Page Fault Time | 0% (]
M Text Page Fault Time | 0% [}
B Kernel Page Fault Time | 0% O
Stopped Time 0% [}
EwWaitCPU Time | 0% O
Wsleep Time N 2% =[]
M User Lock Time || 7% #*[]
< Synchronization Tracing
SyncWait Time: 122,921 SECONdS . . . o o v\ v e e e - [m} [m} |
SYNCWRIECOUNE 78 . o o vt vt e e e e e e oo =]
No Active Filters N
Metrics Preview
v B Excl. Total | @ Incl. Total | & Incl. Sync | & Incl. Sync | Name
CPU CPU Wait Wait Count
(sec.) (sec.) (sec.)
176.774 176.774 122,924 7 <rotal>

Clock Profiling metrics are shown first and include colored bars. Most of the thread time is
spent in User CPU Time. Some time is spent in Sleep Time or User Lock Time.

84 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Examining the Synchronization Tracing Experiment for mttest

Synchronization Tracing metrics are shown in a second group that includes two metrics, Sync
Wait Time and Sync Wait Count.

You can explore these metrics and their interpretation in the following sections of the tutorial.

Understanding Synchronization Tracing

This section explores the synchronization tracing data and explains how to relate it to clock-
profiling data.

1. Go to the Functions view and sort according to inclusive Total CPU Time by clicking the
column header Inclusive Total CPU.

2. Select the do_work() function at the top of the list.

test.l.er - Oracle Solaris Studio Performance Analyzer
File Views Tools Help

BEED [vea | Bt |~]oV N IMehcae

Views +)| @ Excl. Total & Incl. Total & Incl. Sync | & Incl. Sync Name [Z1 Selection Details
e cPU CPU Wait Wait Count {
Welcome (sec.) v (sec.) (sec.) Name: do_work
i 176,774 176,774 122,921 8 <Total> [~] PCAddress: 2:0x00004028
G 0,610 176,774 50, 493 41 do_work Size: 352
[— i 166126 50. 493 40 Tup_start Source File: /tmp/MYTUTORTALS/mttest /mttest.c
0 64 E6S 0 o cache trash Object File: ttest/test.l.er/archives/mttest_WGjvmid3
imeli - ject: mttest (found as /tmp/MYTUTORIALS/mLtest
Timeline 64, 565 64,565 0 o computes Load Object: attest (found as /tmp meres
_| Mangled Name:
Call Tree i 32.783 i o cache_trash_even Alason:
0 31782 0 o cache_trash_odd ; _ ~ |
Sohe 0,430 26,569 0 0 trylock_global 8 Exclusive. & Inclusive
Callers-Callees z.402 16,521 0 0 matex_trylock Total Thread Time: 0.610 (0.20%)] 227.279 (75.
iy , Total CPU Time: | 0.610 (0. 75 (100.
0 13.118 0 0 do_exit_critical
Experiments et User CPU Time: | 0.610 (d. (100.
13.119 13.118 0 0 take_deferred_direct system CPU Time: 0. (0. o
Threads [10,647 72. 428 38 _start Trap CPU Time: 0. (o (100.
0 10,647 0 0 calladd Data Page Fault Time: 0. (. 0.
Processes .
z.472 10,647 0 0 computeF TextPage Fault Time: 0. (0. (o.
More Views... [10,647 72. 428 a7 locktest Kernel Page Fault Time: 0. (0. (o.
0 10,647 72. 428 38 nain Stopped Time 2. ¢ 0 L9
10. 637 10637 0 0 compute walxslcPu 1‘”“' & t & E'“E'
eep Time - - - -
0637 10.697 ° e computel User Lock Time: 0. (0. %) 50.485 (100.
0 10637 0 0 nothreads Syncwait Tme: 0. (6. %) 50493 (41
0 10637 2. 658 z sema_global Sync Wait Count: 0 0. % 41 (s2.
10. 627 10,627 o o computeC
10. 627 10,627 o o —
I in enn - - =]
Called-by / Calls
do_work
I8 Aur. Total do_work $E Aur. Total do_work
cPu is called by cPU calls
V (sec) V (sec) L]
166.126 lup start =] 4.565 cache trash = |
10647 locktest 26.569 trylock global |
10.647 calladd
10637 thread:
No Active Filters nothreads
10.637 sema global
W 10.627 cond_global
10.627 cond_timeout_global
10.627 lock_global
10.617 lock_none
10.607 lock_local
<] 0 fetch_work = [i Tl

3. Look at the Called-by/Calls panel at the bottom of the Functions view and note that
do work() is called from two places, and it calls ten functions.

Most often, do_work() is called when a thread to process the data is created, and is shown
as called from 1lwp start().In one case, do work() calls one single-threaded task called
nothreads () after being called from locktest ().

Synchronization Tracing on a Multithreaded Program 85

Examining the Synchronization Tracing Experiment for mttest

86

The ten functions that do_work() calls represent ten different tasks, and each task uses a
different synchronization method that the program executed. In some experiments created
from mttest you might see an eleventh function which uses relatively little time to fetch the
work blocks for the other tasks. This function fetch_work() is displayed in the Calls panel
in the preceding screen shot.

Note that except for the first two of the callees in the Calls panel, all callees show
approximately the same amount of time (~10.6 seconds) of Attributed Total CPU.

Switch to the Callers-Callees view.

test.l.er - Oracle Solaris Studio Performance Analyzer
File Views Tools Help

Wees | ves| el GG M
Views + $8 Attr. Total | §8 Anr. Sync | §B Atr. Sync | Name @:
" [a] CPU Wait Wait Count
e T (sec) (sec.) L
. 166126 50,493 40 lwp_start -
Overview - - —
42 10. 647 0.000 1 locktest
Functions =
Timeline
5 Set Center
el =] 0.610 0 0 do_work -
Source
Callers—Callees 4. 566 i i cache trash =
Experiments — 26569 0 0 trylock_global
10,647 0 0 calladd
Threads = 10,637 i i nothreads
— = 10,637 2,658 z sema_global
No Active Filters 10,627 15 946 4 cond_global
T 8 10627 16943 11 cond_timeout_global
10,627 15,946 3 lock_glebal
100617 0 0 lock_none
10,607 0 0 lock_local
0 0,000 21 fetch_work

[«

Callers-Callees view shows the same callers and callees as the Called-by/Calls panel, but it
also shows the other metrics that were selected in the Overview page, including Attributed
Sync Wait Time.

Look for the two functions lock global() and lock local(), and note that they show
about the same amount of Attributed Total CPU time, but very different amounts of
Attributed Sync Wait Time.

Select the lock global() function and switch to Source view.

Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Examining the Synchronization Tracing Experiment for mttest

test.l.er - Oracle Solaris Studio Performance Analyzer

File Views Tools Help

BEED | ved | fnd [[+ 6L & CIMaxhcas

Views (+)| [& incl. Total | & Incl. Sync | & Incl. Sync | Source File: /tmp/MYTUTORIALS/MEtest/mttest.c T
—__________ P Wait Wait Coun | OPject File: mttest (found as /tmp/MYTUTORIALS/mttest/test.l.er/archives/mttest WGjvmid3fgc)
Load Object: mrrest (found as /tmp/MYTUTORIALS/MEtest/test.l.er/archives/mttest WGIvmmdsfpe) (%7

Welcome (sec.) (sec.) = =
Overview void —
Fiimctians lock_global {Workblk *array, struct scripttab *k)

a. 0. [{
Timeline <Function: lock_global>
Call Tree
Source #ifdef SOLARIS

mutex_lock(sglobal lock);
Callers-Callees £
#endif

Experiments #ifdef POSIX

o 15946 3 965. pthread mutex_lock (sglobal lock):
Threads Fendif
Processes

0 0] array->ready = gethrtime();
More Views... 0 0 a array->vready = gethrvtime();

0. 0. a array->compute_ready = array->ready;

0. 0. a array->compute_vready = array->vready;

10.627 0. a 976. {k->called_func)(&array->1isti0l): =

0 0 o array-compute_done = gethrrime();

0 0 o array-compute_vdone = gethrvtime();

#ifdef SOLARIS
mutex_unlock(sglobal lock);

#endif
#ifdef POSIX
0 0] pthread matex unlock(&global lock);
| #endif
No Active Filters
T 0. 0. a (void) gethrtime();
[0. a '

Note that all the Sync Wait time is on the line with the call to

pthread mutex lock(&global lock) which has 0 Total CPU Time. As you might guess
from the function names, the four threads executing this task all do their work when they
acquire a global lock, which they acquire one by one.

Go back to the Functions view and select Tock _global(), then click the Filter icon and
select Add Filter: Include only stacks containing the selected functions.

Select the Timeline view and you should see the four threads.

Synchronization Tracing on a Multithreaded Program 87

Examining the Synchronization Tracing Experiment for mttest

Eile Wiews Tools Help

BEEs [ved 00 O wietch case

Vi 4 i f

Mews NG B[S0 S8 | s sstabnliread [-]) Soection eeits

Welcome Process: [mttest, PID 9117]
Timelsec) 40 50

|) Event Type: Clock Profiling

Functions Timestamp (sec.): 40.558380

1T:14 LWP: 17
Thread: 17
CPU: 1
Duration (msec.): 10,007
Thread State: [l User cPU

Timeline
call Tree &)

Source

Callers-Callees
Experiments @
Threads

1T15
Processes

@

More Views...

B
1T18
av
- Call Stack - Timeline
= |5 computeC + OxGOG00038, line 1441 in "
| — . lock_global + 0xQ0000044, line 976 in
e
do_work + Ox000000D4, line 843 in "mt
_lwp_start + 0x00000000
88
1717 i
8

The first thread to get the lock (T:17 in the screen shot) works for 2.65 seconds, then gives
up the lock. You can see that the thread state bar is green for that thread which means all
its time was spent in User CPU Time, with none in User Lock Time. Notice also that the

second bar for Synchronization Tracing Call Stacks marked with the % show no call
stacks for this thread.

The second thread (T:16 in the screen shot) has waited 2.6 seconds in User Lock Time, and
then it computes for 2.65 seconds and gives up the lock. The Synchronization Tracing Call
Stacks coincide with the User Lock Time.

The third thread (T:15) has waited 5.3 seconds in User Lock Time and it then computes for
2.65 seconds, and gives up the lock.

The last thread (T:14) has waited 7.9 seconds in User Lock Time, and it computes for 2.65
seconds. The total computation was 2.65 x 4 or ~10.6 seconds.

The total synchronization wait was 2.6 + 5.3 + 7.9 or ~15.9 seconds, which you can confirm
in the Functions view.

8. Remove the filter by clicking the X in the Active Filters panel.

88 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Examining the Synchronization Tracing Experiment for mttest

9. Go back to the Functions view, select the function lock_local(), and switch to the Source
view.

test.l.er - Oracle Solaris Studio Performance Analyzer
File Views Tools Help

BEED [P | fng| [~]6h 6 [watncase

Views +) | @& Incl. Total | & Incl. Sync | & Inel. Sync Source File: /tmp/MYTUTORIALS/mttest/mttest.c Eal
. - “| CPU Wait Wait Coung | OBJect File: mttest (found as /tmp/MYTUTORIALS/mttest/test.l.er/archives/mttest WGjvmNd3zoc) >
Welcome e o Load Object: mttest (found as /tmp/MYTUTORIALS/mttest/test.l.er/archives/mttest_WGjvmid3f0c) |37
Overview void =
Rinetions lock_local(workblk *array, struct scripttab *k)
0 0. a {
Timeline <Function: lock local>
Call Tree
#ifdef SOLARIS
Source mutex_leck(&(array->lock));
Callers-call fenait
allers-Callees f POSIX
Experiments 0 0. 0 pthread mutex_lock(&(array->lock));
Fendis
Threads o 0 o array->ready = gethrtime();
s 0 0. 0 array->vready = gethrvtime();
Mare Views... o 0 o array->compute_ready = array->ready;
0 0. 0 array->compute_vready = array->vready;
10,607 0 o 1052. (k->called func)(sarray->1istiol):
0 0 0 array-rcompute_done = gethrtime();
o 0 o array-compute_vdone = gethrvtime(); L
#ifdef SOLARIS
mutex_unlock(&array->lock);
Fendis
#ifdet POSIX
o 0 o pthread mutex unlock(sarray->lock);
#endif
S o 0 o (void) gethreime();
No Active Filters
0 0. a)
void
cond_global (Workblk *array, struct scripttab *k)
[0 [{ =
[« Il J D]
a~

Note that the Sync Wait Time is 0 on the line with the call to

pthread mutex_ lock(&array->lock), line 1043 in the screen shot. This is because the
lock is local to the workblock, so there is no contention and all four threads compute
simultaneously.

The experiment you looked at was recorded with a calibrated threshold. In the next section, you
compare to a second experiment which was recorded with zero threshold when you ran the make
command.

Comparing Two Experiments with Synchronization
Tracing

In this section you compare the two experiments. The test.1.er experiment was recorded
with a calibrated threshold for recording events, and the test.2.er experiment was recorded

with zero threshold to include all synchronization events that occurred in the mttest program
execution.

Synchronization Tracing on a Multithreaded Program 89

Examining the Synchronization Tracing Experiment for mttest

90

Click the Compare Experiments button E on the tool bar or choose File > Compare
Experiments.

The Compare Experiments dialog box opens.

Compare Experiments

Baseline: —

test.l.er

Ih
o
=

Comparison Group:

Add

i

L1

[¥] Show warning

4 Tocompare sources in experiments, first archive the sources in each experiment using the command “er_archive -s all
== <experiment-name>". See er_archive man page for details.

(o] [] []

The test.1.er experiment that you already have open is listed in the Baseline group. You
must create a list of experiments to compare to the baseline experiment in the Comparison
Group panel.

In this tutorial, each group contains only one experiment.

Click the Add button next to the Comparison Group, and open the test.2.er experiment in
the Select Experiment dialog.

Click OK in the Compare Experiments dialog to load the second experiment.

The Overview page reopens with the data of both experiments included.

Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Examining the Synchronization Tracing Experiment for mttest

test.Ler, ... - Oracle Solaris Studio Performance Analyzer
Fila Views Tools Help
e[vea Fing: [-] [Match Case
Views @)
+)
Welcome
b test.ler, test2.er
Overview
Functions Metrics
Timeline Select the metrics to display in the data views, then click a data view in the navigation panel on the left.
ROlEE Available Metrics
Callers-Callees Experiment Duration: 83.104 Seconds Bl Exclusive @ inclusive
Show inwiews Time Value % Time value %
e < Clock Profiling
= Total Thread Time - 299.710 Seconds
Threads
- Total Thread Time - o
R E— S5
4 Total CPU Time . * m} m]
More Views... s
—
BuserCPUTIme - [}
System CPUTime L m|
Trap CPU Time . U o
W Data Page Fault Time - | L. =]
H Text Page Fault Time ! L o
M Kernel Page Fault Time i 0]
Stopped Time 4 m}
EVaitCPUTIme . ..ot | L m|
N Sleep Time . 2K *O
W User Lock Time [* 178 *O
< Synchronization Tracing
Syne War Time: 122,921 Seconds . - . - - =M g G
Sync Wait Count: 78 . 0 . oo =]
No Active Filters N .
Metrics Preview
? test.l.er test.2.er test.l.er test.2.er test.l.er test.2.er test.l.er test.2.er Name
i Excl. Total B Excl. Total @, Incl. Total & Incl. Total @& Incl. Sync & Incl. Sync & Incl. Sync &, Incl. Sync
crPU CcPuU CPU Pl Wait Wait ‘Wait Count Wait Count
(sec.) (sec) sec) (sec) sec) sec.)
176.77¢ 186,530 176.774¢ 186.530 1zz.921 135,559 78 189 <Total>

The Clock Profiling metrics display two colored bars for each metric, one bar for each
experiment. The data from the test.1.er Baseline experiment is on top.

If you move the mouse cursor over the data bars, popup text shows the data from the
Baseline and Comparison groups and difference between them in numbers and percentage.

Note that the Total CPU Time recorded is a little larger in the second experiment, but there
are more than twice as many Sync Wait Counts, and about 10% more Sync Wait Time.

Switch to the Functions view, and click the column header labeled "test.1.er Incl. Sync Wait
Count" to sort the functions by the number of events in the first experiment.

Synchronization Tracing on a Multithreaded Program 91

Examining the Synchronization Tracing Experiment for mttest

92

File Views Tools Help
BEED [ves |
Views o
Welcome

Overview

Functions

Timeline

Call Tree

Source

Callers-Callees

Experiments

Threads

Processes

More Views...

test.l.er, ... - Oracle Solaris Studio Performance Analyzer
test.l.er test.2.er test.l.er Test.2.er test.l.er test.2.er
[Excl. Toal [Excl. Total @ Incl. Total @& Incl. Total &4 Incl. Sync & Incl. Sync @& Incl. Syne @& Incl. Sync
CcPu CcPU CcPU CcPu Wait Wait
(sec.) (sec.) (sec.) (sec.) (sec.) (sec.)
176. 774 186. 530 176,774 186.830 1zz.921 135. 559
0.610 0.490 176,774 186.620 50.493 56.810
o o 166,126 174 6542 50.493 B6. 810
o o 10. 647 11.988 72,428 78. 749
0 0 10,847 11,938 72,428 78,749
o o 10. 647 11.988 72428 78749
0 0 0 0,010 72,428 78,749
o o o 0.010 72428 78749
0 0 0 0010 15,946 17,942
o o o 0.010 0.000 0.008
0 0 10,827 11,988 15.943 17,939
o o o o 15.943 17.939
0. 0 10,627 11,988 18,946 17,939
o o 10,627 11.958 15.946 17.938
0. 0 0 o 18,946 17,939
o o o o 2.658 2.989
0. 0 10,637 11,968 z.658 2.989
o o o o 0.000 0.000
0. 0.010 0 0,040 o 0
o o o 0.010 o o
0. 0 0 o o 0
o o o o o o
0. 0 0 o o 0
o o o o o o

test.ler

Wait Count Wait Count
v

78

_test.2.er

169
131

Name

<Total>

do_werk

_lup_start

_start

main

locktest
pthread_join

thread work
pthread_mutex_lock
fetch work
cond_timeout_global
pthread_cond_timedwait
cond_global
1ock_global
pthread_cond wait

resolve_symsols
collector_getUserctx
collector write packet
cond_timedvait
1up_park

lup_wait

_thrp_join

The function pthread mutex lock() shows the second largest discrepancy between
testl.er and test.2.er in the number of events. The largest discrepancy is in do_work(),
which includes the discrepancies from all the functions it calls, directly or indirectly,
including pthread mutex lock().

— Y

&

Tip - You can compare the discrepancies even more easily if you change the comparison
format. Click the Settings button in the tool bar, select the Formats tab, and choose Deltas

for the Comparison Style. After you apply the change, the metrics for test.2.er display as
the + or - difference from the metrics in test.1.er. In the preceding screenshot, the selected

pthread mutex lock() function would show +88 in the test.2.er Incl Sync Wait Count

column

5. Select Callers-Callees view.

Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

Examining the Synchronization Tracing Experiment for mttest

test.l.er, ... - Oracle Solaris Studio Performance Analyzer
File Views Tools Help
CEED e T
Views + test.Ler test.2.er test.L.er test.2.er test.Ler testZ.er | Name @:
T &8 Awr. Total 8 Atr. Total - §8 At Sync £ Autr. Sync &8 Attr. Sync §8 Attr. Sync
cPu cPU Wait Wait Wait Count Wait Count
i (sec.) (sec.) (sec.) (sec.) v
@iy il 0,010 0,000 0. 005 a1 77 ferch_work =
Functions o 0 15,945 17,938 3 4 Lock _global
" o 0 0.000 0.000 1 1z cond_global
UL 48 il il 0 000 0000 1 18 cond_timeout_global
Call Tree o 0 o 0 o 4 Lock_local
[0 0 0. 0 1 resolve_symbols
Source L
Callers-Callees —
Experiments |
] 0 18,948 17,042 26 114 pthread_mutex_lock N
Threads Lot T
Processes L
More Views... il 0,010 il i i il __collector_write packet =
o. 0. o 0. 0 o mutex_lock_queue

Look at two of the callers, lock_global() and lock local().

The lock global() function shows 3 events for Attributed Sync Wait Count in test.1.er,
but 4 events in test.2.er. The reason is that the first thread to acquire the lock in the
test.1.er was not stalled, so the event was not recorded. In the test.2.er experiment

the threshold was set to record all events, so even the first thread's lock acquisition was
recorded.

Similarly, in the first experiment there were no recorded events for lock_local() because
there was no contention for the lock. There were 4 events in the second experiment, even
though in aggregate they had negligible delays.

Synchronization Tracing on a Multithreaded Program 93

94 Oracle Solaris Studio 12.4: Performance Analyzer Tutorials « December 2014

	Oracle® Solaris Studio 12.4: Performance Analyzer Tutorials
	Contents
	Using This Documentation
	Product Documentation Library
	Access to Oracle Support
	Feedback

	Introduction to the Performance Analyzer Tutorials
	About the Performance Analyzer Tutorials
	Getting the Sample Code for the Tutorials
	Setting Up Your Environment for the Tutorials

	Introduction to C Profiling
	About the C Profiling Tutorial
	Setting Up the lowfruit Sample Code
	Using Performance Analyzer to Collect Data
	Using the Performance Analyzer to Examine the lowfruit Data
	Using the Remote Performance Analyzer

	Introduction to Java Profiling
	About the Java Profiling Tutorial
	Setting Up the jlowfruit Sample Code
	Using Performance Analyzer to Collect Data from jlowfruit
	Using Performance Analyzer to Examine the jlowfruit Data
	Using the Remote Performance Analyzer

	Java and Mixed Java-C++ Profiling
	About the Java-C++ Profiling Tutorial
	Setting Up the jsynprog Sample Code
	Collecting the Data From jsynprog
	Examining the jsynprog Data
	Examining Mixed Java and C++ Code
	Understanding the JVM Behavior
	Understanding the Java Garbage Collector Behavior
	Understanding the Java HotSpot Compiler Behavior

	Hardware Counter Profiling on a Multithreaded Program
	About the Hardware Counter Profiling Tutorial
	Setting Up the mttest Sample Code
	Collecting Data From mttest for Hardware Counter Profiling Tutorial
	Examining the Hardware Counter Profiling Experiment for mttest
	Exploring Clock-Profiling Data
	Understanding Hardware Counter Instruction Profiling Metrics
	Understanding Hardware Counter CPU Cycles Profiling Metrics
	Understanding Cache Contention and Cache Profiling Metrics
	Detecting False Sharing

	Synchronization Tracing on a Multithreaded Program
	About the Synchronization Tracing Tutorial
	About the mttest Program
	About Synchronization Tracing

	Setting Up the mttest Sample Code
	Collecting Data from mttest for Synchronization Tracing Tutorial
	Examining the Synchronization Tracing Experiment for mttest
	Understanding Synchronization Tracing
	Comparing Two Experiments with Synchronization Tracing

