
Part No: E37071
December 2014

What's New in Oracle® Solaris Studio 12.4

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered
to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not
responsible or and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Copyright © 2014, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d’utilisation et
de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter, transmettre, distribuer, exposer,
exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse
du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes d’erreurs et vous
invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel ou l’utilise pour
le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered
to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S.Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est destiné
à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre
d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l’utilisation de ce logiciel ou matériel pour ce
type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d’autres propriétaires
qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. UNIX est une
marque déposée d’The Open Group.

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant
de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En aucun cas, Oracle
Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l’accès à des contenus, produits ou services
tiers, ou à leur utilisation.

3

Contents

Using This Documentation .. 7

1 Introducing the Oracle Solaris Studio 12.4 Release .. 9
Overview of Oracle Solaris Studio .. 9
Key Features in this Release .. 10

2 C++ Compiler ... 13
About the C++ Compiler ... 13
Support for the C++11 Standard ... 13

Using C++11 Features .. 14
Additional C++ Compiler Changes ... 16

Stricter C++ Rules Enforced By Compiler .. 18

3 Performance Analysis Tools .. 19
About Performance Analyzer ... 19

Documentation for Performance Analyzer .. 19
Performance Analyzer New Features ... 20

User Interface Redesign .. 20
Timeline Improvements ... 23
Source and Disassembly Improvements ... 25
Call Tree Improvements .. 26
Java Profiling Improvements .. 27
Simplified Hardware Counter Profiling .. 28
Memoryspace Profiling Improvements ... 28
New Derived Metrics: CPI and IPC .. 29
Cross-Platform Analysis .. 30
Remote Use of Performance Analyzer ... 30
New I/O Data View ... 32
New Heap Data View ... 33
Other Changes to Performance Analyzer .. 34

Contents

4 What's New in Oracle Solaris Studio 12.4 • December 2014

Changes to Command-Line Tools ... 34
Changes to Data Collection Tools ... 35
er_print Utility Changes .. 37
Changes to Other Commands ... 38

Changes to Experiments .. 38

4 Code Analysis Tools .. 39
About the Code Analysis Tools .. 39
New Command-Line Code Analyzer Tool codean .. 40

Using the --whatisnew Option ... 40
Using the --whatisfixed Option .. 41
Using codean to Generate a Summary HTML Page 41

Code Analyzer Changes .. 42
New Previse Static Analysis Features .. 43
New Discover Features ... 44

New Discover APIs .. 45
New Uncover Features .. 47

5 Debugging Tools .. 49
About the dbx Debugger ... 49
New and Changed dbx Features .. 49

New Compiler and Linker Options to Support Debugging 50
Pretty-Printing With Python ... 52

dbxtool Changes .. 54

6 Oracle Solaris Studio IDE .. 57
About Oracle Solaris Studio IDE .. 57
New and Changed IDE Features ... 57

New Launchers Feature in IDE .. 59
IDE Code Editor Improvements .. 60
Code Assistance Improvements .. 61
Using Breadcrumbs Navigation .. 63

7 OpenMP API and Thread Analyzer .. 65
OpenMP ... 65

OpenMP 4.0 Support .. 65
OpenMP Related Enhancements ... 66

Thread Analyzer .. 67

Contents

5

8 Other Changes ... 69
Changes to Compilers ... 69

New and Changed Features Common to the Compilers 69
C Compiler ... 72
Fortran Compiler ... 72

Performance Library Changes .. 74

Index .. 75

6 What's New in Oracle Solaris Studio 12.4 • December 2014

Using This Documentation 7

Using This Documentation

■ Overview – Describes the new and changed features in the compilers and tools with this
Oracle Solaris Studio 12.4 release

■ Audience – Application developers, system developers, architects, support engineers
■ Required knowledge – Programming experience, software development testing, aptitude to

build and compile software products

Product Documentation Library

For more information about compilers and tools, see the relevant man pages or Help and the
documentation library at http://docs.oracle.com/cd/E37069_01.

System requirements and known problems are included in the “Oracle Solaris Studio 12.4:
Release Notes ”.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

http://docs.oracle.com/cd/E37069_01
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSRN
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSRN
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/goto/docfeedback

8 What's New in Oracle Solaris Studio 12.4 • December 2014

Chapter 1 • Introducing the Oracle Solaris Studio 12.4 Release 9

 1 ♦ ♦ ♦ C H A P T E R 1

Introducing the Oracle Solaris Studio 12.4
Release

This chapter provides an overview of the key updates in this release.

■ “Overview of Oracle Solaris Studio” on page 9
■ “Key Features in this Release” on page 10

Overview of Oracle Solaris Studio

Oracle Solaris Studio includes a compiler suite, an analysis suite, and a graphical integrated
development environment (IDE) that is tailored for use with the compilers and tools from both
suites. Together they provide a development environment that is optimized for developing
applications with the best performance on Oracle Sun hardware.

Key Features in this Release

10 What's New in Oracle Solaris Studio 12.4 • December 2014

Key Features in this Release

Oracle Solaris Studio 12.4 includes enhancements to all its compilers and tools. The key
features are in the following areas:

C++ Compiler Support for the C++11 Standard. See Chapter 2, “C++
Compiler”.

Performance Analyzer Redesigned graphical interface to make it easier to navigate
and understand performance data and specify which portions
of your application to analyze.
Ability to run Performance Analyzer on a Linux, Windows,
or Mac client and remotely access performance data on an
Oracle Solaris or Linux system.
See Chapter 3, “Performance Analysis Tools”.

Code Analyzer Significant improvements in eliminating false-positives
during static analysis.
Reduced overhead time when collecting run-time data.
See Chapter 4, “Code Analysis Tools”.

Debugger Faster dbx start-up time when processing large binaries.

Key Features in this Release

Chapter 1 • Introducing the Oracle Solaris Studio 12.4 Release 11

Reduction in the size of debugging information.
See Chapter 5, “Debugging Tools”.

IDE Significant memory footprint reduction in the IDE, so large
projects can be opened, searched, and modified faster.
Project settings that make large projects easier to use in
version control systems.
See Chapter 6, “Oracle Solaris Studio IDE”.

Optimization for new servers Compiler and library optimizations for application
performance improvements for Oracle Sun hardware
servers: SPARC T5, SPARC M5, SPARC M6, SPARC M10,
SPARC M10+, Intel Haswell, and Intel Ivy Bridge. Note
that some of these improvements were already introduced in
Oracle Solaris Studio 12.3 Platform-Specific Enhancements
releases.
See “Application Performance on New
Hardware” on page 69.

OpenMP 4.0 Implementation of new features in the OpenMP API Version
4.0, a major upgrade to the OpenMP API standard language
specification.
See Chapter 7, “OpenMP API and Thread Analyzer”.

12 What's New in Oracle Solaris Studio 12.4 • December 2014

Chapter 2 • C++ Compiler 13

 2 ♦ ♦ ♦ C H A P T E R 2

C++ Compiler

This chapter describes the new and changed features in this release of the Oracle Solaris Studio
C++ compiler.

■ “About the C++ Compiler” on page 13
■ “Support for the C++11 Standard” on page 13
■ “Additional C++ Compiler Changes” on page 16

About the C++ Compiler

The Oracle Solaris Studio C++ compiler enables you to build high-performance parallel C++
applications for the newest SPARC processor-based systems from Oracle as well as Intel x86
processor-based systems.

The C++ compiler (CC) produces code that is targeted for specific operating systems,
processors, architectures, memory models (32-bit and 64-bit), floating-point arithmetic, and
more, according to command-line options you specify. The compiler automatically parallelizes
serial source code to produce binaries with better performance on multicore systems and can
also prepare binaries for enhanced debugging or analysis by other Oracle Solaris Studio tools.
The compiler also supports GNU C/C++ compatibility features.

Support for the C++11 Standard

The new C++11 standard strengthens C++, giving you additional tools to help you make your
code even cleaner and safer. The compiler retains accelerated SPARC and x86 performance on
Oracle hardware. New features like auto, smart pointers, nullptr, range for, nonmember begin
and end, lambda functions and algorithms, rvalue references, "move" constructors, uniform
initialization and initializer lists are expected to change the way C++ libraries are designed.

This is the first Oracle Solaris Studio release to include support for the C++11 standard. All
features of C++ 11 are supported in this release except as noted below:

Support for the C++11 Standard

14 What's New in Oracle Solaris Studio 12.4 • December 2014

No support for the following features:

■ C++ 11 concurrency and atomic operations
■ User-defined literals

Using C++11 Features
In Oracle Solaris Studio 12.4, the C++ compiler supports C++11, a new language and ABI
(Application Binary Interface).

In C++ 11 mode, the CC compiler uses the g++ ABI and a version of the g++ runtime library
that is supplied with Oracle Solaris Studio. For this release, version 4.8.2 of the g++ runtime
library is used.

An ABI describes the low-level details in the generated object code. Modules that use different
ABIs cannot successfully be linked together into a program. This means that you must use C+
+11 mode on all modules in your program, or none of them.

If you use Oracle Solaris Studio 12.4 C++ as an upgrade to Oracle Solaris Studio 12.3 (C++
5.12), no changes are needed in scripts or makefiles if you are not using C++11 features. An
exception is Rogue Wave Tools.h++ is not available. For more information about features no
longer supported, see “Features That Have Been Removed in This Release” in “Oracle Solaris
Studio 12.4: Release Notes ”

To compile in C++11 mode, add the option -std=c++11 to the CC command line. The location
on the command line is not important. The option causes the compiler to recognize language
features new in C++11, and to use the C++11 version of the standard library (g++ runtime
library that is supplied). Except for the options marked as incompatible with -std=c++11, all
other command-line options can be used along with C++11, and have their usual effects. The
-std=c++11 option must be used consistently on every CC command used in building a library or
executable program.

Note - No C++11 features are available by default. To use any C++11 features, you must use the
new -std=c++11 option with the CC compiler. This option uses g++ ABI, and there is no option
to pick a different ABI. The option must be used to compile all modules of a program.

Compatibility Information for C++11 in this Release

The C++ compiler in this release has the following updated version details.

Compiler version: C++ 5.13

Compiler version
macro:

__SUNPRO_CC = 0x5130

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSRNgnxba
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSRNgnxba

Support for the C++11 Standard

Chapter 2 • C++ Compiler 15

The compiler version macro is strictly greater than all earlier releases, so
version comparisons such as __SUNPRO_CC>=0x5100 continue to work.

Compiler default
mode:

C++03 with -compat=5.
This is the same default mode as C++ 5.12 in the Oracle Solaris Studio
12.3 release.

Oracle Solaris Studio 12.3 had the following compiler mode options:

-compat=5 This option selects C++03 with the Sun ABI. This is the default.

-compat=g This option selects C++03 with the g++ ABI, using the gcc headers and
libraries provided with the compiler. In Oracle Solaris Studio 12.3, the
gcc runtime libraries are installed in /usr/sfw/lib on Oracle Solaris if
present. In this release, gcc runtime libraries supplied with the compiler
are used instead.

The release adds the option -std=[c++11 | c++0x | c++03 | sun03] where the option
values are defined as follows:

-std=c++11 This option selects C++11 with the g++ ABI and uses the g++ 4.8.2
runtime libraries installed as part of Oracle Solaris Studio 12.4.

-std=c++0x This option is equivalent to the -std=c++11 option and is provided for
GCC compatibility. The C++11 standard was nicknamed C++0x initially.

-std=c++03 This option is equivalent to the -compat=g option.

-std=sun03 This option is equivalent to -compat=5

Note - You cannot mix -compat and -std options and will get an error if you use both. If more
than one -std option or more than one -compat option appears on a command line, the last one
specified overrides the ones specified earlier. For example:

 -compat=g -compat=5 // OK, -compat=5 is used

 -std=c++11 -std=c++03 // OK, -std=c++03 is used

 -std=c++11 -compat=g // always an error

 -compat=g -std=c++03 // always an error

Incompatibility of 16-bit Unicode with C++11

The option -xustr=ascii_utf16_ushort is not compatible with C++11, and is not allowed.

The option interprets U"ASCII_string" as 16-bit Unicode, but C++11 requires 32-bit Unicode
for that syntax.

Additional C++ Compiler Changes

16 What's New in Oracle Solaris Studio 12.4 • December 2014

Library Incompatibilities with C++11 in this Release

With -std=x or -compat=g, the following -library=v options are not allowed:

■ Cstd

■ stlport4

■ stdcxx4

■ Crun

■ iostream

When you need to list libraries to be linked, such as when you are creating a shared library, use
the following options in this order when using the -compat=g or -std=x options:

-lstdc++ -lgcc_s -lCrunG3

When creating an executable program using CC, you should not list these libraries, because the
CC driver will list them for you.

For information about libraries removed in this release, see “Features That Have Been Removed
in This Release” in “Oracle Solaris Studio 12.4: Release Notes ”.

Example Using C++11 Mode

The following commands could be used for building executable program myprogram from
modules main.cc, f1.cc, and f2.cc:

% CC -std=c++11 -m32 -O -c main.cc

% CC -std=c++11 -m32 -O -c f1.cc f2.cc

% CC -std=c++11 -m32 -O main.o f1.o f2.o -o myprogram

If you have a Makefile that builds a C++ program using older versions of Oracle Solaris Studio,
you can convert it to build a C++11 program by adding -std=c++11 to every CC command line
(typically in the CCFLAGS and LFLAGS macros), and by removing any incompatible options such
as -compat=5 or -library=stlport4. Valid C++ programs usually compile and run unchanged
when compiled in C++11 mode. Unfortunately, many real programs depend, sometimes
accidentally, on non-standard compiler behavior or extensions. Such code might not compile in
C++11 mode.

Additional C++ Compiler Changes

The following lists the new and changed features in this release of version 5.13 specific to the C
++ compiler. For more information, see the CC (1) man page.

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSRNgnxba
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSRNgnxba

Additional C++ Compiler Changes

Chapter 2 • C++ Compiler 17

The C++ compiler changes include the changes that are described in “New and Changed
Features Common to the Compilers” on page 69.

For details, see the “Oracle Solaris Studio 12.4: C++ User’s Guide ” and the CC man page.

■ Support for -compat=g on all platforms .
■ New compiler option: -std enables selection of either C++ 03 or C++ 11 dialect with g++

binary compatibility. When using -std=c++11, the following limitations apply:
■ Universal Character Names (escaped Unicode characters) are not currently supported.
■ The non-standard iostream headers ending in .h, such as <iostream.h>, <fstream.h>,

etc., are not available. These headers were intended to ease the transition from old-style
C++ to C++98.

■ New compiler option: -features=[no%]rtti disables runtime type identification (RTTI).
■ New compiler option: -xprevise produces a static analysis of the source code that can be

viewed in Code Analyzer.
■ The following options that have -xoption equivalents are now deprecated:

-help
-inline
-libmieee
-libmil
-nolib
-nolibmil
-pg
-time
-unroll

Instead you should use -xhelp, -xinline, -xlibmieee and so on.
■ Support for -xregs=float on x86.
■ Behavior for -errtags is now the same as for the C compiler, emitting tags only for warning

messages. In previous C++ compilers, the -errtags option caused a tag to be printed as part
of the message for both warnings and errors.

■ Default -template option changing from -template=extdef to -template=no%extdef.

This change is because no other compiler uses the definitions separate template model
that is assumed by -template=extdef. The -template=extdef option imposes strict
requirements on how source code is organized, which most code does not follow. Unless
you develop only with Oracle Solaris Studio C++, it is likely that the -template=no%extdef
option is needed.
For more information, see Chapter 6, “Creating and Using Templates,” in “Oracle
Solaris Studio 12.4: C++ User’s Guide ” and Understanding the Effects of the
Changed Default C++ Template Compilation Model (http://www.oracle.com/

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSCP
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSCPbkaew
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSCPbkaew
http://www.oracle.com/technetwork/articles/servers-storage-dev/changed-default-cpp-template-model-2292727.html
http://www.oracle.com/technetwork/articles/servers-storage-dev/changed-default-cpp-template-model-2292727.html

Additional C++ Compiler Changes

18 What's New in Oracle Solaris Studio 12.4 • December 2014

technetwork/articles/servers-storage-dev/changed-default-cpp-template-

model-2292727.html).

Note - The -library=stdcxx4 option does not currently work with -template=no%extdef.
Specify -template=extdef when compiling C++ code on the command line if using the
-library=stdcxx4 option, until a patch for the library is available.

Stricter C++ Rules Enforced By Compiler

The C++ compiler enforces some C++ rules more strictly than past compilers. For explanations
of the stricter enforcement, examples of offending code, and solutions to correct the offending
code, see “New Features and Functionality of the Oracle Solaris Studio 12.4 C++ 5.13
Compiler” in “Oracle Solaris Studio 12.4: C++ User’s Guide ”.

http://www.oracle.com/technetwork/articles/servers-storage-dev/changed-default-cpp-template-model-2292727.html
http://www.oracle.com/technetwork/articles/servers-storage-dev/changed-default-cpp-template-model-2292727.html
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSCPbkabe
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSCPbkabe

Chapter 3 • Performance Analysis Tools 19

 3 ♦ ♦ ♦ C H A P T E R 3

Performance Analysis Tools

The performance analysis tools work together to enable you to analyze your application's
behavior and find trouble spots that impact performance.

This chapter describes the new and changed features in the performance analysis tools in this
Oracle Solaris Studio release.

About Performance Analyzer

Performance Analyzer provides insight into the behavior of your application to enable you
to find problem areas in your code. Performance Analyzer identifies which functions, code
segments, and source lines are using the most system resources. Performance Analyzer can
profile single-threaded, multithreaded, and multi-process applications, then present the profiling
data to help you identify where you can improve your application's performance.

Performance Analyzer consists of a set of commands and tools including the collect utility
which gathers profiling data, the er_print utility which displays interpreted profiling
information in text form, and the Performance Analyzer GUI, which presents profiling
information graphically.

Thread Analyzer is a related tool that enables you to focus on multithreading problems. See
“Thread Analyzer” on page 67 for more information.

Documentation for Performance Analyzer

This release includes the new “Oracle Solaris Studio 12.4: Performance Analyzer Tutorials
” manual which includes step-by-step instructions for profiling sample applications and
examining data experiments in Performance Analyzer.

The “Oracle Solaris Studio 12.4: Performance Analyzer ” reference manual contains details
about Performance Analyzer, collect, er_print and other utilities.

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSPT
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSPT
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSPA

Performance Analyzer New Features

20 What's New in Oracle Solaris Studio 12.4 • December 2014

Performance Analyzer New Features

This section summarizes the new features in this release of the Performance Analyzer and
related tools. For more information, see the Help in Performance Analyzer and man pages for
each command-line tool.

■ The Performance Analyzer UI has been redesigned with new navigation features, new
Overview and Welcome screens. See “User Interface Redesign” on page 20.

■ The timeline features improved data display, navigation, and filtering. See “Timeline
Improvements” on page 23.

■ Source and Disassembly data views have syntax highlighting and hyperlinks for navigation.
See “Source and Disassembly Improvements” on page 25 for more information.

■ Call Tree view has new graphic indicators and navigation improvements. See “Call Tree
Improvements” on page 26 for more information.

■ Profiling of Java applications is easier to perform. See “Java Profiling
Improvements” on page 27.

■ Data collection and presentation for memoryspace profiling has been improved. See
“Memoryspace Profiling Improvements” on page 28.

■ New metrics can be calculated in hardware counter experiments. See “New Derived
Metrics: CPI and IPC” on page 29 for more information.

■ Experiments recorded on any platform can be read with the Performance
Analyzer or er_print utility running on any other platform. See “Cross-Platform
Analysis” on page 30.

■ Performance Analyzer can now be used remotely from Windows or Mac machines, or from
Oracle Solaris or Linux machines that do not have a full Oracle Solaris Studio installation.
See “Remote Use of Performance Analyzer” on page 30.

■ The tools now support I/O tracing of the target program. See “New I/O Data
View” on page 32.

■ A new Heap view provides improved display of heap tracing data to help find memory
leaks. See “New Heap Data View” on page 33.

■ “Other Changes to Performance Analyzer” on page 34

For details, see the Help in Performance Analyzer.

User Interface Redesign

Performance Analyzer user interface features improved data presentation and navigation. Some
highlights of the UI changes include:

■ Performance data is now shown in data views that you access through a navigation bar
on the left. This replaces the horizontal tab navigation that was used previously. See
“Performance Analyzer Navigation” on page 21 for more information.

Performance Analyzer New Features

Chapter 3 • Performance Analysis Tools 21

■ A new Welcome screen displays when you start Performance Analyzer without specifying
an experiment name. See “Welcome Screen of Performance Analyzer” on page 22 for
more information.

■ A new Overview screen displays as the first view of the data when you open an experiment.
See “Overview Screen of Performance Analyzer” on page 23 for more information.

Performance Analyzer Navigation

Performance Analyzer is now organized around data views that you access from a navigation
bar on the left side of the Performance Analyzer window. Each view shows a different
perspective of the performance metrics for your profiled application. As before, the Functions
view serves as a focal point; when you select a function the other data views are updated to also
focus on that selected function.

FIGURE 3-1 Vertical Navigation Area with Functions View Selected

The data views available in the navigation bar are determined by the data available in the
experiments you open. You can easily add and remove data views using the Views menu or the
"+" button above the navigation bar. Details about items you select in the data view are shown
on the right side, as you can see in the preceding figure.

Performance Analyzer New Features

22 What's New in Oracle Solaris Studio 12.4 • December 2014

Below the navigation bar, the Active Filters area shows the names of data filters that are
currently applied and enables you to remove and reapply filters or remove all filters. You can
apply filters by right-clicking an item in a data view and selecting a filter from the popup list or
by clicking the filter icon in the toolbar.

Welcome Screen of Performance Analyzer

Performance Analyzer displays a new Welcome screen when you do not specify the name
of an experiment when you start the tool. The Welcome screen provides links to make it
easier to profile your application, view recent experiments, browse experiments, and view
documentation.

FIGURE 3-2 Welcome Screen of Performance Analyzer

The Welcome screen is always available from the navigation bar so you can use it as a home
page for using the Performance Analyzer, where you can click a link to perform an activity or
open the Performance Analyzer Help viewer to read documentation.

Performance Analyzer New Features

Chapter 3 • Performance Analysis Tools 23

Overview Screen of Performance Analyzer

The Overview shows performance metrics for the loaded experiments. Use the Overview to
select the metrics you want to explore in other data views.

For each metric a value is displayed that represents the total for all loaded experiments. Colored
bars are displayed to show relative values of related metrics. A highlight marker for high
activity metrics indicates a metric that showed significant activity when compared to CPU time.
These metrics can help identify problem areas in your program.

FIGURE 3-3 Performance Analyzer Overview and New Navigation

See the Help in the Performance Analyzer for more information about the Overview screen.

Timeline Improvements

The Timeline view has the following enhancements to make it easier to examine your data.

■ Click and then drag the mouse to set markers that define a precise time period for zooming
and filtering.

Performance Analyzer New Features

24 What's New in Oracle Solaris Studio 12.4 • December 2014

■ Zoom to show the maximum number processes and threads using the new toolbar control
for vertical zoom.

■ Zoom in using Shift-drag with the mouse.

See the Timeline section of the Keyboard Shortcuts and Mnemonics in the Help menu for
more information about navigation in the timeline.

The following figure shows a Timeline view of heap tracing data. The timeline shows graphs of
heap allocations and leaks, as well as the callstacks for the allocations and frees. The right side
shows details about the current selection's memory allocation and callstack.

FIGURE 3-4 Timeline View

See “Oracle Solaris Studio 12.4: Performance Analyzer Tutorials ” for step-by-step instructions
for using the Timeline on sample experiments.

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSPT

Performance Analyzer New Features

Chapter 3 • Performance Analysis Tools 25

Source and Disassembly Improvements

The Source view is now shown with syntax highlighting based on the source language and
includes many navigation improvements including hyperlinks for caller and callee functions.

The following figure shows the Source view displaying hardware counter metrics attributed to
two lines of source code.

FIGURE 3-5 Syntax Highlighting and Navigation Improvements in Source Data View

Other changes to the Source and Disassembly views include the following:

■ Navigation controls in the right margin help you jump to lines with high metrics.
■ Right-click menus and hyperlinks let you navigate easily between Source and Disassembly

views of the callers and callees of functions.
■ Called-by/Calls tabs at the bottom of Source and Disassembly views enable you to navigate

call paths. Select a function in the view and then use these tabs to navigate to functions it
was called by, or to function calls it makes. When you click a function in Called-by/Calls
tabs, the function is selected in the data view.

Performance Analyzer New Features

26 What's New in Oracle Solaris Studio 12.4 • December 2014

■ Source view displays a warning if the source file is newer than the experiment.
■ Forward and back buttons to enable you to navigate the history of actions you perform in

the Source or Disassembly view.

See the Help in the Performance Analyzer for more information about the Source and
Disassembly views.

Call Tree Improvements

Call Tree view features the following enhancements:

■ Metric percentages are shown in color bars.
■ New Threshold setting enables you to specify when to expand branches with high metrics.
■ Show Next Reference and Show All References context menu items enable you to find

branches that include a selected function.
■ New actions are provided in the right-click menu for showing and hiding tooltips and color

bars.
■ A function you select in another data view is reflected in Call Tree by expanding the hottest

branch that contains the function, and a function you select in Call Tree is also selected in
other views.

■ You can sort by name or metric.

See the Help in the Performance Analyzer for more information about the Call Tree view.

Performance Analyzer New Features

Chapter 3 • Performance Analysis Tools 27

FIGURE 3-6 Call Tree View

Java Profiling Improvements
Profiling of Java application is improved in the following ways:

■ Java profiling is now enabled by default whenever the target application is a Java virtual
machine. Previously you needed to specify a -j on option with the collect command to
profile a Java application.

■ You can now profile a running Java application on Oracle Solaris using the Profile Running
Process dialog in the Performance Analyzer. The Collector attaches to the process and
records profiling data and call stacks for the JVM and the Java program.

■ Performance Analyzer and er_print can show Java thread names and thread groups and
allows you to use them for filtering.

■ Profiling of JDK 8 is now supported.

See the Java profiling tutorial Chapter 3, “Introduction to Java Profiling,” in “Oracle Solaris
Studio 12.4: Performance Analyzer Tutorials ”.

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSPTgpagw
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSPTgpagw

Performance Analyzer New Features

28 What's New in Oracle Solaris Studio 12.4 • December 2014

Simplified Hardware Counter Profiling

For Oracle hardware, default profiling can now be enabled with a new option, "-h on". This
option will select counters that measure CPI/IPC and high-latency memory accesses.

Specification of hardware counters has also been simplified. On Solaris, [on|high|low] now
selects profiling rates that approximate the rates used for clock profiling. The [on|high|low]
options take most of the guesswork out of choosing appropriate overflow periods, greatly
reducing the risk of extreme under- and over-sampling. On Linux, the [on|high|low] options
are supported for aliased hardware counters, but numeric specifications are required for raw
counters.

For detailed information about how to use hardware counter profiling see Chapter 5, “Hardware
Counter Profiling on a Multithreaded Program,” in “Oracle Solaris Studio 12.4: Performance
Analyzer Tutorials ”.

Memoryspace Profiling Improvements

Memoryspace profiling enables you to see which memory addresses are costing the most
performance. Memoryspace profiling is available on SPARC platforms running Oracle Solaris
10 and 11, and on x86 platforms running Oracle Solaris 11.2.

This type of profiling makes use of hardware counters known as precise load-store counters.

Use the command collect -h to see which precise load-store counters are available on your
system. See the collect(1) man page for more information about how to perform memoryspace
profiling using these counters.
Improvements in memoryspace profiling include:

■ Hardware counter profiling using the default -h on option typically includes at least one
memoryspace counter

■ You no longer need to use a + sign with a precise counter to trigger memoryspace profiling
■ Memoryspace profiling data views are available if data is present in the experiment

When you open a memoryspace profiling experiment in Performance Analyzer you must enable
the relevant hardware counter in the Overview page or Settings dialog to display the counter in
data views. Choose a memoryspace view from the Views menu.

A sample data view of cache misses by memory page is shown in the following figure.

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSPTgpaxp
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSPTgpaxp
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSPTgpaxp

Performance Analyzer New Features

Chapter 3 • Performance Analysis Tools 29

FIGURE 3-7 Memory Page View Showing Memoryspace Profiling Metrics

Performance costs can be attributed to cache lines and memory pages. When used with filtering,
this data can identify exactly which source code lines are making specific, high-latency memory
references.

New Derived Metrics: CPI and IPC

Performance Analyzer displays new derived metrics called CPI (Cycles Per Instruction) and
IPC (Instructions Per Cycle) which can help you identify where your application is running
efficiently or inefficiently. The CPI and IPC metrics are available when you perform hardware
counter profiling on your application and specify the counters for cycles and instructions. For
example, you could profile using the command collect -h cycles,on,insts,on to generate
the metrics.

Inefficient areas display with a high CPI or low IPC. Efficient areas of your program show low
CPI or high IPC.

The following figure shows the Source view with a high CPI metric on line 12, which indicates
it is running inefficiently.

Performance Analyzer New Features

30 What's New in Oracle Solaris Studio 12.4 • December 2014

FIGURE 3-8 CPI Metric in the Source View

Cross-Platform Analysis

Performance Analyzer can read experiments that were recorded on any supported OS and
architecture, independent of the OS and architecture of the system on which it is currently
running. When it runs on a remote client system, Performance Analyzer can read experiments
recorded on any supported OS and architecture, independent of the remote host.

For example, if you are running Performance Analyzer remotely on a Windows laptop, you can
connect to a remote x86 based system running Oracle Solaris and open an experiment that was
recorded on a SPARC based system running Oracle Solaris.

Remote Use of Performance Analyzer

You can connect to a remote host from the Performance Analyzer to examine experiments on
a remote system. When you use a remote connection you have the advantage of examining
experiments in the same environment where they were recorded.
Requirements of the client system:

Performance Analyzer New Features

Chapter 3 • Performance Analysis Tools 31

■ The client operating system must be Mac OS X, Windows, Linux, or Oracle Solaris.
■ Java 1.7 must be in your path on the client system.
■ The version of the Performance Analyzer installed on the client must match the version of

Oracle Solaris Studio tools installed on the remote system.

Requirements of the remote host:

■ The remote host operating system must be Oracle Solaris or Linux.
■ The remote host must run the Secure Shell (SSH) daemon, sshd.
■ Oracle Solaris Studio 12.4 software must be accessible on the remote host and you need to

know the path to the tools.
■ You must have a user account on the host.

On Linux and Oracle Solaris systems where Oracle Solaris Studio is installed, you can connect
to remote systems by choosing File > Connect To Remote Host to open the Connect to Remote
Host Dialog shown in the following figure.

FIGURE 3-9 Connect to Remote Host Dialog

For use on systems where this release of Oracle Solaris Studio is not installed, a client
distribution of Performance Analyzer is provided as a RemoteAnalyzer.tar file in the lib/
analyzer directory in the full Oracle Solaris Studio installation. To install the client distribution
of Performance Analyzer, copy the tar file to your system and unpack it. The directory
RemoteAnalyzer contains scripts for Windows, Mac OS, Linux, and Solaris, and a README.txt
file describing the functionality and usage, and a lib subdirectory containing the required
components for remote operation.

You start Performance Analyzer on the client system by executing the script that is appropriate
for your system. When Performance Analyzer starts, it shows the Welcome screen with only
those features that work remotely enabled. For more information, see the RemoteAnalyzer/
README.txt file and the Help menu in Performance Analyzer.

Performance Analyzer New Features

32 What's New in Oracle Solaris Studio 12.4 • December 2014

New I/O Data View

A new I/O view can help you identify the I/O patterns in your application and pinpoint the
I/O bottlenecks that impact its performance. The I/O view is available if you profiled your
application for I/O tracing data from Performance Analyzer, or using collect -i on command.

I/O view shows read and write data aggregated by file name, file descriptor, or call stack.
You can also use it to filter I/O events from your data. A new Duration view is available for
analyzing the time duration of I/O operations. A new Data Size view is available that shows the
distribution of I/O operations by byte size. See the Help in the Performance Analyzer for more
information about the I/O view.

FIGURE 3-10 I/O Data View

Performance Analyzer New Features

Chapter 3 • Performance Analysis Tools 33

New Heap Data View

A new Heap view shows possible memory leaks in your program. The view is available if
you profiled your application for heap tracing data from Performance Analyzer, or using the
collect -H on command.

The Heap view shows a list of call stacks that have memory allocation metrics which indicate
possible memory leaks. Timeline now shows the size of the allocated heap as a function of
time. A new Data Size view is available that shows the distribution of allocations and leaks by
number of bytes. A new Duration view is available for analyzing the duration of allocations.
See the Help in the Performance Analyzer for more information about the Heap view.

FIGURE 3-11 New Heap Data View

Changes to Command-Line Tools

34 What's New in Oracle Solaris Studio 12.4 • December 2014

Other Changes to Performance Analyzer

The Performance Analyzer tool features the following other enhancements.

■ You can now specify a path in which to store Performance Analyzer's user settings by using
the analyzer command's -u or --userdir argument.

■ Comparing and aggregating experiments is now easier to do. You can choose between
absolute values or deltas to show the change in metric values when comparing experiments.

■ Aggregation of performance metrics by shared library or Java class is greatly improved, and
the dialog supporting it has been renamed from "Show/Hide/API-only" to "Set Library and
Class Visibility

■ The Print option was replaced by Export to a file and supports more outputs. In some views,
you can now export to an ASCII text table, a delimiter-separated list, or an HTML table.
All exports are to the file system on the machine on which the Performance Analyzer is
running. If you are running in remote mode, you export the data to a file on the remote
machine.

■ The names of the metrics for clock profiling, MPI tracing, and heap tracing have changed.
For details, see the collect (1) man page.

■ Performance Analyzer shows Java thread names and thread groups, and you can use them
for filtering.

■ Performance Analyzer now supports attaching to a running process and profiling it. Choose
File > Profile Running Process or click Profile Running Process on the Welcome screen.
Previously you could only attach to a running process by using the collect command or
dbx collector command.

■ You can now profile the Oracle Solaris kernel from Performance Analyzer. Choose File >
Profile Kernel or click Profile Kernel on the Welcome screen. Previously you could only
profile the kernel by using the er_kernel command.

■ Performance Analyzer has a new way to save settings for persistence. When you exit
Performance Analyzer, most settings such as metrics and views are persistent, so that the
next time you open the same experiment it is displayed the same way as when you last
closed it. You can save selected settings in a configuration file and apply the configuration
to the same or different experiments when you open them from the Open Experiment dialog
box. Performance Analyzer can also save settings into a .er.rc file to be read by er_print.

Changes to Command-Line Tools

This section describes changes made to various command-line performance analysis tools.

Changes to Command-Line Tools

Chapter 3 • Performance Analysis Tools 35

Changes to Data Collection Tools

Data collection tools include the collect command, dbx collector command, and er_kernel
command. Each of these tools is used to profile programs to collect data and create experiments
that can be read by Performance Analyzer or er_print.
The following changes are common to these tools:

■ New processors are supported for hardware counters and stack unwind: SPARC T5, SPARC
M5, SPARC M6, SPARC 64 X, SPARC 64 X+, Intel Ivy Bridge and Haswell.

■ Clock profiling is enabled by default even if hardware counter profiling is not specified.
■ Setting archive on is the same as setting archive copy. For collect and er_kernel this

means -A on is now the same as -A copy . For dbx collector this means collector
archive on is the same as collector archive copy.

■ The maximum number of threads on Oracle Solaris that can be profiled is now 32768.

collect Utility Changes

The collect utility is a tool you use to profile your application as it runs to collect data and
create an experiment that can be read by Performance Analyzer or er_print.

The collect utility is changed in this release as follows:

■ I/O tracing is supported with a new -i flag.
■ Java profiling is enabled by default whenever the target is a JVM. You no longer need to

specify -j on.
■ -P option for collecting data from a running process is now supported on Linux systems.

Note that this only works for single-threaded applications.
■ The -c option for collecting count data is now supported on Linux.
■ Hardware counter processing now supports multiple -h arguments and a default counter

set. You can set the environment variable SP_COLLECTOR_HWC_DEFAULT to enable hardware
counter profiling by default.

■ Hardware counter-based memoryspace profiling is enabled by default for precise counters
on SPARC and x86 systems. The plus sign (+) is no longer required to capture memory
addresses. See “Memoryspace Profiling Improvements” on page 28 for more
information.

■ collect -F =expr will no longer match the expression against the process lineage.
■ When using -P to attach to a Java program, be sure to specify -j on.

Changes to Command-Line Tools

36 What's New in Oracle Solaris Studio 12.4 • December 2014

dbx collector Changes

The dbx collector is a subcommand of the dbx debugger that you can use for performance
data collection. See the collector(1) man page for more information.

In addition to the changes common to all data collection tools the dbx collector command is
changed in this release as follows:

■ Another experiment can be started after a detach or experiment termination.
■ Attach is supported on Linux system for single-threaded native applications. For more

information about limitations with attaching, see “dbx attach Profiling (collect -P)” in
“Oracle Solaris Studio 12.4: Release Notes ”.

■ dbx collector supports the following new commands:
■ collector iotrace on - Specifies to turn on I/O tracing.
■ collector duration - Specifies a time range for running an experiment.
■ collector java - Specifies whether to collect Java profile data. Default is off. You

should use the command whenever profiling Java, whether by attaching or launching the
JVM.

■ collector pausesig - Specifies a signal to be used for pausing or resuming data
collection.

■ collector samplesig - Specifies a signal to be used to record a sample.
■ collector hwprofile addcounter - Specifies additional counters for hardware counter

overflow profiling.

er_kernel Utility Changes

The er_kernel command profiles the Oracle Solaris kernel and generates an experiment that
you can examine in Performance Analyzer or er_print.

In addition to the changes common to all data collection tools, the er_kernel utility is changed
as follows:

■ Clock-profiling metrics in user sub-experiments are recorded as in collect experiments,
but only User CPU Time and System CPU Time are recorded; wait times are not recorded.

■ The names of hardware counter metrics reported in the kernel founder experiment are
prefaced by K_ . Metrics in user sub-experiments use the same names as metrics in collect
experiments.

■ Kernel dataspace profiling is supported on Solaris SPARC, for precise counters, and for
systems with version 1.8 of DTrace, or later.

■ Clock-profiling for the founder experiment is now recorded as in collect experiments,
except they have only a Kernel CPU Time metric. Hardware counter profiling is not enabled
by default.

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSRNgnbrm
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSRNgnbrm

Changes to Command-Line Tools

Chapter 3 • Performance Analysis Tools 37

■ Improved recording of kernel call stacks.

er_print Utility Changes

The er_print utility generates a plain-text version of the data views presented by the
Performance Analyzer. The output is displayed on the standard output.

The er_print utility is changed in this release as follows:

■ IO tracing data is available in three new reports: ioactivity, iodetail, and iocallstack.
In the ioactivity report, data is aggregated by file name. In the iodetail report, data is
separated by each file descriptor as it is opened. In the iocallstack, data is aggregated by
common call stack.

■ Heap tracing data is available in new reports: heap and heapstat. Use heap to print all
allocations and leaks aggregated by common callstack. Use heapstat to print a summary of
heap usage statistics including peak usage over the life of the process.

■ New derived metrics CPI (cycles per instruction) and IPC (instructions per cycle) are
available when you profile your application to collect cycles and insts hardware counters.
CPI and IPC can be specified as metrics.

■ A new report, overview , shows summary information from the experiments.
■ The presentation from object_list now includes the index (as shown in PCs in other data

views), the full path to the object, and its setting for visibility of shared-library functions.
■ er_print can now read experiments that were recorded on any architecture while it runs on

any other supported architecture.
■ A new printmode string command, supports printing either ASCII form, as in previous

releases (string = table), or in a delimiter-separated list (string = X , with X as any
single-character delimiter), or as a table in HTML format (string = html). A printmode
command can be in an er.rc file.

■ Memory Objects specific for a machine will be created if a machinemodel is specified
during user er.rc processing, or as an input command, or as a command in a script, or if an
experiment being loaded had recorded a machinemodel .

■ er_print shows Java thread names and thread groups, and enable filtering by them.
■ Comparison mode supports displaying compared data as absolute values or deltas to show

the change in metric values between experiments.
■ setpath directives are no longer permitted in .er_rc files. If you have setpath directives

in .er_rcfiles that you created in a previous release, you should change the setpath lines to
addpath.

Changes to Experiments

38 What's New in Oracle Solaris Studio 12.4 • December 2014

Changes to Other Commands

er_archive command is changed in this release as follows:

■ er_archive (and all other tools) can process executables whose symbolic information is
recorded in a side file.

■ er_archive now only copies shared objects, and does not generate an archive file; the -A
flag is silently ignored.

■ er_archive supports a -s type flag to specify archiving or source, object, and ancillary
files. if type is all, all source files that can be found are archived; if type is used only those
source files that are referenced in the experiments are archived.

■ er_archive examines an environment variable, SP_ARCHIVE_ARGS, which you can use to
specify -s and -m arguments. If the SP_ARCHIVE_ARGS variable is set when an experiment
is recorded, the er_archive that is run automatically can do source archiving. It will be
processed when er_archive is run manually.

Changes to Experiments

Performance data experiments have changed as follows:

■ The experiment format has changed and the version number is now 12.4.
■ This release of the performance analysis tools can read the following experiment versions:

10.2 created with a pre-release Oracle Solaris Studio 12.3

12.3 created with the released Oracle Solaris Studio 12.3

12.4 created with this Oracle Solaris Studio 12.4
If you try to use an experiment older than version 10.2, the tools display a message that the
experiment must be read with an earlier version of the tools.

■ Clock-profiling metrics have been reorganized to show more detail, some metrics have been
renamed, and different defaults have been set. For more detail, see the collect man page,
which now lists the metric abbreviations as well as the names.

Chapter 4 • Code Analysis Tools 39

 4 ♦ ♦ ♦ C H A P T E R 4

Code Analysis Tools

The code analysis tool suite ensures application reliability and stability by detecting common
coding errors, including memory leaks and access violations, enabling developers to write better
code with fewer errors faster.

This chapter describes the new and changed features in the code analysis tools in this Oracle
Solaris Studio release and contains the following sections:

■ “About the Code Analysis Tools” on page 39
■ “New Command-Line Code Analyzer Tool codean” on page 40
■ “Code Analyzer Changes” on page 42
■ “New Previse Static Analysis Features” on page 43
■ “New Discover Features” on page 44
■ “New Uncover Features” on page 47

About the Code Analysis Tools

The code analysis tools help you make your application more reliable by using static, dynamic,
and code coverage analysis to detect many common coding errors, including memory leaks
and memory access violations. Previse performs static analysis at compilation and Discover
performs dynamic analysis at application runtime to identify code quality issues. The Uncover
tool analyzes code coverage data to provide information about functions that are not covered by
your test suite and tells how you can benefit by covering those functions.

Use the Code Analyzer graphics tool or the new codean command-line utility to view the three
types of analysis to get a comprehensive view of your application's vulnerabilities so you can
improve its correctness and reliability.

New Command-Line Code Analyzer Tool codean

40 What's New in Oracle Solaris Studio 12.4 • December 2014

New Command-Line Code Analyzer Tool codean

A new utility called codean enables you to view the code analysis data generated by Previse,
Discover, and Uncover using the command line instead of using the Code Analyzer graphical
tool. The codean tool provides functionality similar to the Code Analyzer, but you can use it
on systems where a graphical environment is not available, or if you prefer the command line.
The codean tool can also be used in automated scripts and has some features that are not yet
available in the Code Analyzer tool.

The codean tool has the following unique capabilities:

■ See results in html and text formats.
■ Save tool reports for comparison with new versions of the binary being checked.
■ Compare the current report to saved reports to display only new errors. . See “Using the --

whatisnew Option” on page 40.
■ Compare the current report to saved reports to display only fixed errors. See “Using the --

whatisfixed Option” on page 41.
■ Show all errors from multiple dynamic error checking runs. For example, if a test suite is

run with a Discover instrumented binary, aggregate all the data in one text report.
■ Compile a summary html page for all reports under a directory. See “Using codean to

Generate a Summary HTML Page” on page 41.

For more information about codean , see the codean(1) man page.

Using the --whatisnew Option

Use the --whatisnew option to generate a report of only the new errors by comparing against a
previously saved tool report. For example, use the Code Analysis tools to create a frozen copy
of the state of the source base at the time of the tools adoption. You could then use --whatisnew
to ensure ongoing changes to the source base do not create any new security vulnerabilities.

The following is an example of using the --whatisnew to display only new errors:

%codean --whatisnew a.out
STATIC report of a.out showing new issues:

Compare the latest results against a.out.analyze/history/09:58:35May152013...

MEMORY LEAK 1 : 1 block left allocated on heap with a total size of 400 bytes

 sample1() <sample1.c : 20>

 17: {

 18: global = (int *)malloc(100);

 19: int *p = malloc(100*sizeof(int));

New Command-Line Code Analyzer Tool codean

Chapter 4 • Code Analysis Tools 41

 20:=> int *q = malloc(100*sizeof(int));

 22: add_0_1_put_in_2(p);-

PREVISE SUMMARY:

 0 new error(s), 0 new warning(s), 1 new leak(s) in total

Using the --whatisfixed Option

The --whatisfixed option complements the --whatisnew option by generating a report that
shows only the errors that occur in a previous cached tool report. Development or Quality
Assurance teams could use this option to track security bug fixes.

The following is an example of using --whatisfixed to display only fixed errors:

% codean --whatisfixed a.out
STATIC report of a.out showing fixed issues:

Compare the latest results against a.out.analyze/history/10:02:05May152013...

MEMORY LEAK 1 : 1 block left allocated on heap with a total size of 400 bytes

(Warning: Source files have changed. Source code shown below may not be accurate.)

 sample1() <sample1.c : 20>

 17: {

 18: global = (int *)malloc(100);

 19: int *p = malloc(100*sizeof(int));

 20:=> int *q = malloc(100*sizeof(int));

 21: free(q);

PREVISE SUMMARY:

 0 fixed error(s), 0 fixed warning(s), 1 fixed leak(s) in total

Using codean to Generate a Summary HTML Page

You can create a summary report of all information generated by the code analysis tools that
you previously ran on multiple binaries in a directory tree. The HTML page organizes all errors
from static, dynamic, and coverage reports for multiple binaries into a neat table.

For example, if you want to create an HTML page in your top directory ./tests, use
codean ./tests.

The following figure is an example of a generated summary.html page with all the reports under
a /tests directory.

Code Analyzer Changes

42 What's New in Oracle Solaris Studio 12.4 • December 2014

FIGURE 4-1 Summary HTML Report

Code Analyzer Changes

The following common features were added to all Code Analyzer component tools. For more
information, see the Help in the Code Analyzer and “Oracle Solaris Studio 12.4: Code Analyzer
User’s Guide ”.

■ Now available on Oracle Enterprise Linux..
■ Improved enterprise application support by using 64-bit technology in the Code Analyzer

components instrumentation engine.
■ Significant improvements to the instrumentation engine runtime.
■ Ability to instrument large applications on small machines due to big reductions in engine

memory footprint.
■ Support for SPARC T5 and M5 processors added.
■ Support for Intel Ivy Bridge processors added.
■ Added display variable name information in dynamic error reports.

The following figure shows the Code Analyzer GUI with a code example displaying variable
names.

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSCA
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSCA

New Previse Static Analysis Features

Chapter 4 • Code Analysis Tools 43

FIGURE 4-2 Code Analyzer GUI Screenshot with Variable Names

For more information about Code Analyzer in general, see the Help in Code Analyzer, the
“Oracle Solaris Studio 12.4: Code Analyzer User’s Guide ”,“Oracle Solaris Studio 12.4: Code
Analyzer Tutorial ”, and the code-analyzer (1) man page.

New Previse Static Analysis Features

The following features were added in this release to the Previse static analysis tool:

■ To collect static code errors, you can now use the -xprevise option when compiling your
code, instead of the -xanalyze=code option which is EOL.

■ Static analysis is now available on Oracle Enterprise Linux.
■ Significant improvement of accuracy by eliminating false positives.

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSCA
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSCT
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSCT

New Discover Features

44 What's New in Oracle Solaris Studio 12.4 • December 2014

New Discover Features

The following features were added in the Discover memory analysis tool in this release. For
more information, see the discover (1) man page and “Oracle Solaris Studio 12.4: Discover
and Uncover User’s Guide ”.

■ Discover can check parts of an executable or a library, by using the -c[- |
lib[:scope...] | file] option. For more information, see “Checking Parts of a Library
or an Executable” in “Oracle Solaris Studio 12.4: Discover and Uncover User’s Guide ”.

■ New Discover APIs display memory leaks and memory usage on demand. For more
information, see “New Discover APIs” on page 45.

■ Discover is now available on Oracle Enterprise Linux.
■ Discover can follow and collect memory access data from both the child and parent process

with the-F both option. This is the new default.
■ Discover error reports support multiple runs of the target binary as in a test suite. Error

reporting format works in conjunction with the new command line codean utility.
■ New functionality to check for memory errors on code allocated with mmap(2).
■ HTML reports improved to highlight variable names, line numbers, and addresses.
■ Name of variable is now shown in memory error where the memory corruption occurs.
■ Discover can now catch static-type array out-of bounds errors by default. For more

information, see “Memory Access Errors and Warnings” in “Oracle Solaris Studio 12.4:
Discover and Uncover User’s Guide ”.

■ Using the -i datarace option can now report dual stack traces for races detected with
binary instrumentation using Discover.

■ Support added for large files.

The following figure is an example of using Discover to generate a report with HTML
highlighting and variable name.

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSDU
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSDU
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSDUgnbxv
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSDUgnbxv
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSDUgkadt
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSDUgkadt

New Discover Features

Chapter 4 • Code Analysis Tools 45

FIGURE 4-3 Discover HTML Highlighting and Variable Name Example

New Discover APIs

Six new Discover APIs were added to the Code Analysis tools. When your application is using
too much memory, you can use these APIs to pinpoint where the memory leaks are happening
before the application ends. The APIs can also locate all the memory blocks in use.

These APIs can be inserted directly to the application source or called during a debugging
session to report the new and total memory usage, and the new and total memory leaks, at
any time, from any start point. They are especially useful for long-running or always-running
enterprise server applications.

The following APIs were added to the Code Analysis tools:

New Discover Features

46 What's New in Oracle Solaris Studio 12.4 • December 2014

■ discover_report_all_inuse()

■ discover_mark_all_inuse_as_reported()

■ discover_report_unreported_inuse()

■ discover_report_all_leaks()

■ discover_mark_all_leaks_as_reported()

■ discover_report_unreported_leaks()

EXAMPLE 4-1 Using the discover_report_unreported_leaks() API

The following is an example of using the discover_report_unreported_leaks() API, after
running the binary with Discover and using dbx to execute the API.

%discover -w - a.out

% dbx a.out

 (dbx) stop in foo2

 (dbx) run

 (dbx) call discover_report_unreported_leaks()
 ******** discover_report_unreported_leaks() Report ********

 1 allocation at 1 location left on the heap with a total size of 1 byte

 LEAK 1: 1 allocation with total size of 1 byte

 foo1() + 0x5e <api_example.c:7>

 4: #include <discoverAPI.h>

 5:

 6: void foo1() {

 7:=> char *x = (char *) malloc(sizeof(char));

 8: *x = 'a';

 9: printf("x = %c\n", *x);

 10: /*free(x);*/

 main() + 0x1a <api_example.c:21>

 18: }

 19:

 20: int main() {

 21:=> foo1();

 22: foo2();

 23: return 0;

 24: }

 _start() + 0x71

 **

For more information on each of the Discover APIs and how to use them, see the Discover
header file and “discover APIs” in “Oracle Solaris Studio 12.4: Discover and Uncover User’s
Guide ”.

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSDUgnbxg
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSDUgnbxg

New Uncover Features

Chapter 4 • Code Analysis Tools 47

New Uncover Features

The following features were added to the Uncover code coverage tool in this release.

■ Uncover is now available on Oracle Enterprise Linux.
■ Improved correctness in coverage reports for C++ applications.
■ Support for unusual process termination usually seen in long running server applications.
■ Reduced time and memory footprint overhead in Uncover instrumentation and runtime.
■ Uncover can now get coverage and profiling data while the program is running.
■ Support added for large files.

The following figure is an example of using Uncover with the Code Analyzer GUI:

FIGURE 4-4 Example of Uncover Results in Code Analyzer GUI

For more information, see the uncover (1) man page and the “Oracle Solaris Studio 12.4:
Discover and Uncover User’s Guide ”.

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSDU
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSDU

48 What's New in Oracle Solaris Studio 12.4 • December 2014

Chapter 5 • Debugging Tools 49

 5 ♦ ♦ ♦ C H A P T E R 5

Debugging Tools

Oracle Solaris Studio provides the command-line dbx debugger, and the dbxtool graphical
tool for using dbx. The debugger is also integrated into the IDE. For more information about
debugging with the IDE, see Chapter 6, “Oracle Solaris Studio IDE”.

This chapter contains the following topics about what's new in the debugging tools:

■ “About the dbx Debugger” on page 49
■ “New and Changed dbx Features” on page 49
■ “dbxtool Changes” on page 54

About the dbx Debugger

The dbx debugger is an interactive, source-level, postmortem and real-time debugging tool.
You can use it at the command line, through the dbxtool graphical interface, and in the Oracle
Solaris Studio IDE. The dbx debugger is scriptable and multithread-aware.

New and Changed dbx Features

The following features were added or changed in dbx . For more information, see “Oracle
Solaris Studio 12.4: Debugging a Program With dbx ”, the dbx (1) man page and the dbx help
file.

■ Start-up time for dbx reduced drastically, with an up to 7x improvement for enterprise
applications.

■ New compiler and linker options for dbx. See “New Compiler and Linker Options to
Support Debugging” on page 50 for more information.

■ New embedded Python interpreter, which enables you to write pretty-printing filters for C
and C++ expressions on Oracle Solaris. See “Pretty-Printing With Python” on page 52
for more information.

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSDP
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSDP

New and Changed dbx Features

50 What's New in Oracle Solaris Studio 12.4 • December 2014

■ New dbxenv variable output_pretty_print_mode that determines which pretty-printing
mechanism is used. If set to call. uses call-style pretty-printers. If set to filter, uses
Python-based pretty-printers. If set to filter_unless_call, uses call-style pretty-printers
first.

■ New dbxenv variable filter_max_length. Set this dbxenv variable to the maximum length
of sequences converted to arrays by pretty-printing filters.

■ Support for the C++11 standard added.
■ Support for the C11 standard added.
■ Support for the following compiler options added. For more information about these

options, see: “Changes to Compilers” on page 69.
■ -g1
■ -xdebuginfo
■ -xglobalize
■ -xpatchpadding

For more information, issue a help changes command under dbx, to access the dbx help file.

New Compiler and Linker Options to Support
Debugging

New compiler and linker options give users more freedom to generate and use debug
information. Compilers generate an Index for DWARF, similar to index stabs The index is
always present and results in faster dbx start-up time, as well as other improvements when
debugging with DWARF.

The following is a diagram of the different kinds and locations of debug information,
specifically highlighting where the debug data resides:

New and Changed dbx Features

Chapter 5 • Debugging Tools 51

FIGURE 5-1 Flow of Debug Information

Index DWARF (-xs[={yes|no}])

DWARF by default is loaded into the executable file. The new index makes it possible to leave
the DWARF in the object files with the -xs=no option. This results in a smaller executable size

New and Changed dbx Features

52 What's New in Oracle Solaris Studio 12.4 • December 2014

and a faster link. The object files must be retained in order to debug. This is similar to how
stabs works.

Separate Debug File (-z ancillary[=outfile])

The Oracle Solaris 11.1 linker can send debug information to a separate ancillary file while
building the executable. A separate debug file is useful for environments where all the debug
information must be moved, installed, or archived. An executable can be run independently, but
can also be debugged by people with a copy of its separate debug file.

dbx continues to support the use of the GNU utility objcopy to extract debug information into a
separate file, but using the Oracle Solaris linker has the following advantages over objcopy:

■ The separate debug file is produced as a by-product of the link
■ A program which was too large to be linked as one file links as two files

Note - Using both the Index DWARF and a separate debug file has the effect of copying just
the index, which carried only the information being linked, into the separate debug file. This is
typically not very useful, unless that small amount of space used by the index is critical.

Minimizing Debug Information

The -g1 compiler option is intended for minimal debuggability of deployed applications.
Compiling your application with this option produces the file and line number, as well as simple
parameter information that is considered crucial during postmortem debugging. For more
information, see the compiler man pages and the compiler user guides.

Pretty-Printing With Python

dbx now has a mechanism in which you can write pretty-printing filters in Python. The pretty-
printing filters transform a Value to a more readable form in dbx.

On the dbx command line, you can enable pretty-printing by using the -p option for the print,
display, and watch commands or by typing dbxenv output_pretty_print on. In the IDE and
dbxtool, you can enable pretty-printing by setting your dbxenv variable output_pretty_print
to on and you can use the Pretty Print checkbox in the context menu of the Watches and
Variables windows.

Filters are built in for select classes in 4 implementations of the C++ Standard Template
Library. The following table specifies the library name and the compiler option for that library:

New and Changed dbx Features

Chapter 5 • Debugging Tools 53

Compiler option for Library Library Name

-library=Cstd (default) libCstd.so.1

-library=stlport4 libstlport.so.1

-library=stdcxx4 libstdcxx4.so.4.**

-library=stdcpp (default when using the -std=c++11
option)

libstdc++.so.6.*

The following table specifies which classes filters can be used for in the C++ Standard
Template Library and if index and slice can be printed:

Classes Index and Slice Available

string N/A

pair N/A

vector yes

list yes

set yes

deque yes

bitset yes

map yes

stack yes

priority_queue yes

multimap yes

multiset yes

tuple (C++ only) N/A

unique_ptr (C++ only) N/A

EXAMPLE 5-1 Pretty-Printing with Filters

The following output is an example of printing a list using the print command in dbx:

(dbx) print list10
list10 = {

 __buffer_size = 32U

 __buffer_list = {

 __data_ = 0x654a8

 }

 __free_list = (nil)

 __next_avail = 0x67334

 __last = 0x67448

 __node = 0x48830

 __length = 10U

 }

dbxtool Changes

54 What's New in Oracle Solaris Studio 12.4 • December 2014

The following is the same list printed in dbx, but using pretty-printing filters:

(dbx) print -p list10
list10 = (200, 201, 202, 203, 204, 205, 206, 207, 208, 209)

(dbx) print -p list10[5]
list10[5] = 205

(dbx) print -p list10[1..100:2]
list10[1..100:2] =

[1] = 202

[3] = 204

[5] = 206

[7] = 208

For general information about pretty-printing and call-style pretty-printers see “Using Pretty-
Printing” in “Oracle Solaris Studio 12.4: Debugging a Program With dbx ” and the topic
prettyprint in the dbx helpfile.

dbxtool Changes

dbxtool is the stand-alone debugger GUI. All the functionalities of dbxtool provided in Oracle
Solaris Studio 12.3 remain, but there is a new look-and-feel to dbxtool that is similar to Oracle
Solaris Studio IDE.

The following features have been added to dbxtool:

■ Debug Recent Button - dbxtool now has a Debug Recent button with a drop-down debug
history list, enabling you to choose a different run of your code with different arguments.
Pressing the Debug Recent button without choosing a specific run will debug the most
recent target and arguments.

■ Code Assistance - dbxtool has code-assistance automatically enabled in the editor while
you are debugging your code. While you still cannot recompile your code directly in
dbxtool, you can fix your code with the help of code assistance in the editor. To disable code
assistance, right-click the debug target in the Projects tab and deselect the Code Assistance
option. Alternatively, you can launch dbxtool with code-assistance turned off. For more
information about code assistance, see “Code Assistance Improvements” on page 61.

■ --disable-code-assistance Option - When launching dbxtool, you can specify the
--disable-code-assistance option, if you do not want code assistance or if you have
problems with memory usage and do not need code assistance.

■ Remote Host Toolbar - You can now choose to manage and add remote hosts in dbxtool
using the Remote Host Toolbar, which is enabled by default.

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSDPgomcs
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSDPgomcs

dbxtool Changes

Chapter 5 • Debugging Tools 55

■ Debug Targets in Projects Tab - dbxtool now automatically displays all of your debug
targets in one place. Once you start a debugging session, the debug target is created and
displayed in the Projects tab. The target information is stored in your userdir directory and
persist between dbxtool runs. Expanding the debug target displays the folders and files from
the root source directory, which are taken from the binary that was built.

56 What's New in Oracle Solaris Studio 12.4 • December 2014

Chapter 6 • Oracle Solaris Studio IDE 57

 6 ♦ ♦ ♦ C H A P T E R 6

Oracle Solaris Studio IDE

Oracle Solaris Studio IDE integrates many of the components of Oracle Solaris Studio for users
who prefer a graphical programming environment.

The following topics are covered in this chapter:

■ “About Oracle Solaris Studio IDE” on page 57
■ “New and Changed IDE Features” on page 57
■ “New Launchers Feature in IDE” on page 59
■ “IDE Code Editor Improvements” on page 60
■ “Code Assistance Improvements” on page 61
■ “Using Breadcrumbs Navigation” on page 63

About Oracle Solaris Studio IDE
Oracle Solaris Studio offers a graphical integrated development environment (IDE) that is
built on the NetBeans platform and is configured to use the Oracle Solaris Studio C, C++, and
Fortran compilers, the dmake distributed make command, and dbx debugger. The IDE also
integrates with some of the Analyzer tools of the analysis suite so you can analyze your code
without leaving the IDE.

The command to start the IDE is solstudio . For details about this command, see the
solstudio (1) man page.

For complete documentation of the IDE, see the Help in the IDE. For step-by-step instructions
to use the basic features of the IDE, see the “Oracle Solaris Studio 12.4: IDE Quick Start
Tutorial ”.

New and Changed IDE Features

The following features were added or changed in Oracle Solaris Studio IDE:

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSQS
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSQS

New and Changed IDE Features

58 What's New in Oracle Solaris Studio 12.4 • December 2014

■ Debug executable binaries that are not in an IDE project (Projectless Debugging). You
can debug an executable by choosing Debug > Debug Executable and specifying the path to
the executable and any arguments or environment variables needed to run it. You can also
navigate to the executable file in the Favorites window, right-click the file and select Debug.
The executable does not need to be part of an IDE project, but it should be located with the
source code that was used to build it so the debugger can find debugging information.

■ C++11 support. If your code uses the C++11 standard and your C++ compiler has
implemented the C++11 standard, you can enable C++11 support in the IDE. This enables
you to use code assistance for features such as the "auto" specifier, for example. To enable C
++11 support for a project, right-click the project, select Properties and then select Build >
C++ Compiler > C++ Standard > C++11. To enable C++ support only on an individual file,
right-click it, select Properties and then select C++ Compiler > C++ Standard > C++11.

■ Memory usage improvements. The memory usage for big projects has been reduced by
50%.

■ Faster searching. Find Usages is much faster and has an improved interface. Find Usages
now runs in the background so you can do other tasks while it is searching a large number
of files. The results are displayed immediately in a separate Usages panel and continues to
display search results as they are incrementally found. The Usages panel provides a progress
indicator and an incrementing count of occurrences. You can stop the search at any point
and your search results up to that point are saved. You can navigate between the search hits,
change the view from logical to physical, and run Find Usages again with different settings.
Also, you can add filters to your searches and search in comments.

■ Lightweight partial reparse. Editing a source file with a large set of dependencies is now
much faster because of improvements in reparsing. Changes such as reformatting, editing
inside function bodies, and adding comments or spaces no longer cause the full project to be
reparsed. Certain changes cause the IDE to reparse the whole project.

■ Debugger breakpoint groups. You can group breakpoints using several different
categories, such as per file, per project, by type, by language, etc. In the Window >
Debugging > Breakpoints window, click the Select breakpoint groups icon, and select the
breakpoint group. The breakpoints are arranged according to your selection.

■ Window management and grouping. You can perform actions on groups of windows in
addition to individual windows. Each window belongs to a group that you can minimize/
restore, drag to a new location, float in a separate window, or dock back into the IDE
window. For example the Projects, Files, Classes, and Services windows in the top left
can be minimized by clicking the Minimize Window Group button on the right side of the
group. Right-click in the tab area of the group to select an option for the group, or choose
Window > Configure Windows. Options for controlling window behavior are in Tools >
Options > Appearance > Windows.

■ Copy file path to clipboard. You can hover the mouse cursor over any file in the IDE and
press Alt+Shift+L to copy the file's path to the clipboard.

■ Launchers feature. See “New Launchers Feature in IDE” on page 59.
■ Improvements in code editor. See “IDE Code Editor Improvements” on page 60.
■ Improvements in code assistance. See “Code Assistance Improvements” on page 61.
■ Breadcrumbs. See “Using Breadcrumbs Navigation” on page 63.

New and Changed IDE Features

Chapter 6 • Oracle Solaris Studio IDE 59

■ The IDE's Action Items window now works with C/C++ projects. The Action Items
window shows lines in your source files that you've marked with comments like TODO or
FIXME or Pending or <<<<<<<<.The strings detected are specified in Tools > Options > Team
> Action Items. For C/C++ projects the Action Items window also shows compile errors and
warnings that occurred when you last built the project.

■ Improved support for version control systems:
■ Git repository support.
■ Local history : revert deleted and new History tab.
■ Shelve changes: allows you to put your local changes aside (shelve) and start working

on a different feature. For Mercurial and Subversion, see Team > Shelve Changes menu
option.

■ Mercurial enhancements: basic support for branches and tags and queues.
■ New solstudio command line options.You can open and close project groups as the IDE

starts using the --open-group and --close-group. options.
■ Bookmarks update. Bookmarks view can be opened using Window > IDE Tools >

Bookmarks and you can create bookmarks using Ctrl-Shift-M in your files.
■ Auto-completion in Search bar by pressing Ctrl-Space. When you are searching in the

editor, you can auto-complete your search term, the same as you would in get in the editor.
■ The concept of the "main project" is no longer used for most tasks. You can still set a

main project using Run > Set Main Project.
■ Find options more easily. The Tools > Options dialog provides a search box to help you

find options more easily.
■ Toolbar interface improvements. The main toolbar indicates when some toolbar items

are not visible by showing drop-down lists that enable you to access the buttons that are
invisible. Previously, if you had too many toolbars enabled, you could not see them all.

■ Compile a single file from a project with existing code.
■ C/C++ Formatting style per project. When you are choosing a project specific formatting

style in project properties, you can specify the C formatting style, C++ formatting style, and
the C/C++ header formatting style.

New Launchers Feature in IDE

You can create "launchers" so you can easily run your project from the project context menu
with different arguments, for example, or launch it from a script. Normally when you run
your application from the IDE, the executable specified in the project properties as the Run
command is executed. If you create launchers, you can specify multiple commands to run, and
then select them from the context menu. You can use the launchers for debugging also.

To create launchers, go to your nbproject/private folder and customize the Launchers File
(launchers.properties).

New and Changed IDE Features

60 What's New in Oracle Solaris Studio 12.4 • December 2014

In the New Launchers File dialog, select the option File Privacy if you want to store the
definition of the launchers in the nbproject/private subfolder of the project. This option is
useful if the project is shared with other developers, especially in a version control system. You
can ignore the nbproject/private in the VCS so it is not included when you share the project.
If a private launchers file exists, the launchers in the private file will override launchers of the
same name in the public launcher file.

Click Finish, and a launchers.properties text file opens in the IDE editor. You can specify
commands to run and display names to show in the IDE for running those commands. As
an example, for the IDE's C/C++ sample application called Arguments, you could add the
following to your launchers.properties file:

launcher1.runCommand="${OUTPUT_PATH}" "arg 1" "arg 2" "arg 3" "arg 4"

launcher1.displayName=Four Args

launcher2.runCommand=../dist/Debug/OracleSolarisStudio-Solaris-x86/arguments_1 "arg 1"

launcher2.displayName=One Arg

launcher3.runCommand=/bin/sh runMyProgram.sh

The file runMyProgram.sh might be a script that sets environment variables for example, or
does anything you want.

If you want to debug your application using a launcher that runs a script, you must also specify
the option symbolFiles for that launcher so the debugger can debug the application instead of
the shell used to run the script. For the launcher3 example above, this option could be added as
follows:

launcher3.runCommand=/bin/sh runMyProgram.sh

launcher3.symbolFiles=${LINKER_OUTPUT}

When you are finished adding launcher options, save the launcher.properties file.

Then you can run these commands by right-clicking the project and selecting one of them. In
the example above, you would right-click, select the Run As command and select the name of
the command. For example, Run As > Four Args or Debug As > /bin/sh runMyProgram.sh.

IDE Code Editor Improvements

The code editor features many improvements including the following:

■ “Rectangular blocks selection” on page 61
■ “Clipboard History” on page 61
■ “Find/Replace Enhancements” on page 61

New and Changed IDE Features

Chapter 6 • Oracle Solaris Studio IDE 61

Rectangular blocks selection

In the Editor, you can enable a mode for selecting rectangular blocks of text by pressing Ctrl
+Shift+R or clicking the Toggle Rectangular Selection icon in the editor tool bar. This mode
enables you to select portions of multiple lines of text without including the beginning or end of
each line. For example, you can select a comment block without including the initial asterisks
and copy it, or you can select and remove all the asterisks from a portion of commented out
code in one action instead of deleting the asterisks line by line. You could also copy, move, or
delete a column from a text table for example. If you type characters into rectangular selected
text, the characters are replicated on each line replacing the selected text.

Clipboard History

You can view the last nine buffers of text that were copied to your desktop clipboard, and select
one to paste. With your cursor at the point where you want to insert text, press Ctrl+Shift+D
to open a popup of the clipboard entries. Use the arrow keys to navigate through the clipboard
buffers and see the full contents in the window below the list of buffers. To paste the contents of
a buffer, type the number of the buffer, or press Enter when the buffer is selected. Note that this
buffer contains content copied from any window on your desktop, not just the IDE.

Find/Replace Enhancements

The Find/Replace feature in the editor now works completely in the Find tool bar at the bottom
of the editor window, instead of a separate dialog box for replacing. The Replace field and
buttons are displayed in the tool bar under the Find field and buttons. Press Ctrl+F to activate
the Find tool bar and Ctrl+H to activate the Replace feature.

Code Assistance Improvements

The IDE provides many improvements in code assistance, including the following:

■ “Code Assistance Cache Sharing” on page 61
■ “New Project Properties Options for Code Assistance” on page 62
■ “Search file system for C/C++ header files” on page 63

Code Assistance Cache Sharing

When parsing C/C++ source code, the IDE stores parse results on disk in the Code Assistance
cache. When you open a project the IDE examines the cache to see if it is up to date. If the
cache is up to date the IDE does not parse your project and just loads the required data for code
navigation from the Code Assistance cache.

New and Changed IDE Features

62 What's New in Oracle Solaris Studio 12.4 • December 2014

By default the Code Assistance cache resides in the ${userdir}/var/cache folder, where
${userdir} stands for the IDE user directory. The user directory in Oracle Solaris is in the user's
$HOME/.solstudio/ide-<release> . The cache in the user directory cannot be shared or copied
to another location.

However, if the Code Assistance cache is placed inside a project, it can be copied to another
computer if that computer meets the following requirements:

■ The computer's operating system is identical to the operating system where the code was
parsed

■ The tool collection used by the project is available in the same location on the computer

To instruct the IDE to place the Code Assistance cache inside your project metadata:

1. Add a line "cache.location=nbproject/private/cache " to either:
■ The project properties file (nbproject/project.properties)
■ The private properties file (nbproject/private/private.properties)

The difference between the project properties and private properties files is that the public
one (nbproject/project.properties) is shared in the IDE via version control system by
default, while the private one (nbproject/private/private.properties) is not. So if you
modify private properties, you will need to synchronize the private properties file with the
identical file on another machine. If a project properties file is modified, a version control
system can automatically synchronize it with the one on another machine for you.

2. After the properties file is modified, close and reopen the project.
The IDE parses the project and the Code Assistance cache is placed into a private
subdirectory in the project metadata.

3. Close the project and archive your nbproject/private/cache or copy it to a shared location.
If you do not close a project before copying or zipping, some data will not be flushed to
cache.

The Code Assistance cache can be copied to other projects on other machines and be used
instead of waiting until the IDE parses the project. If there are some newer files on the machine
the cache is being copied to, only newer files are going to be parsed.

Note - If the Code Assistance cache needs to be shared between machines that run different
operating systems or different compilers, you must create a separate cache for each combination
of operating system and compiler collection.

New Project Properties Options for Code Assistance

For projects created from existing sources or from a binary, the IDE now provides the following
project properties to make it easier for you to use the projects in version control systems.

New and Changed IDE Features

Chapter 6 • Oracle Solaris Studio IDE 63

Transient macros You can provide a list of macros (-D options) that are volatile -- they
depend on time, date, or specific environment. These macros values will
not be stored with the project's public metadata.

User Environment
Variables

You can provide a list of environment variables that the project uses to
pass system-specific paths. These macros environment variable values
will not be stored with the project's public metadata. For projects from
existing code or from binary, you may specify the list of environment
variables to be used when storing project metadata. When the IDE stores
the compiler options and an option value coincides with a variable value,
a macros will be written instead.

Search file system for C/C++ header files

If you create a project from existing sources where the sources have not been built and does
not contain any debugging information, the IDE may have trouble configuring code assistance.
In this case, you can specify in the Configure Code Assistance wizard to use a special mode,
Search file system for C/C++ header files. In this mode, the IDE tries to resolve failed include
directives by searching the file system for headers. The wizard asks you to enter the path to
search for headers. By default, the path is the project source root.

Using Breadcrumbs Navigation

Breadcrumbs enables you to keep track of your location within the IDE. The breadcrumbs
navigation bar is located under the source editor window to show you nested elements relative
to the cursor location. Each element is marked with an icon to identify its type. For a full list of
icons and what they mean, see the Icons Used in the Classes and Navigator Windows help page
in the IDE.

To use breadcrumbs, do one of the following:

■ Click the arrows in the breadcrumbs bar to display a list of the nested statements or
members and select one to go there in the source editor.

■ Click the items in the breadcrumbs bar to go back through a history of the cursor position.
■ Press Alt+Left and Alt+Right to move backward and forward through the history of the

cursor position.

64 What's New in Oracle Solaris Studio 12.4 • December 2014

Chapter 7 • OpenMP API and Thread Analyzer 65

 7 ♦ ♦ ♦ C H A P T E R 7

OpenMP API and Thread Analyzer

This chapter describes the changes for OpenMP API support and Thread Analyzer in this
release of Oracle Solaris Studio.

■ “OpenMP” on page 65
■ “Thread Analyzer” on page 67

OpenMP

This section discusses new features and updates to the OpenMP API.

OpenMP 4.0 Support

This release supports new features introduced in the OpenMP API Version 4.0, which is a
major upgrade to the OpenMP API standard language specification. New OpenMP 4.0 features
supported by the C, C++, and Fortran compilers in this release include the following:

■ Error Handling - OpenMP 4.0 defines error handling capabilities to improve the
resiliency and stability of OpenMP applications in the presence of runtime errors. Parallel
OpenMP execution can be cleanly aborted using conditional cancellation and user-defined
cancellation points.

■ Thread Affinity - OpenMP 4.0 provides mechanisms to define where to execute OpenMP
threads, resulting in better locality, less false sharing, and more memory bandwidth.

■ Tasking Extensions - OpenMP 4.0 provides several extensions to task-based parallelism
support. Tasks can be grouped to support deep task synchronization. Task-to-task
synchronization is supported through the specification of task dependency.

■ Support for Fortran 2003 - The Fortran 2003 standard adds many modern computer
language features. Having these features in the OpenMP specification enables users to
parallelize Fortran 2003 compliant programs.

■ Sequentially Consistent Atomics - A clause has been added to enable you to enforce
sequential consistency when a specific storage location is accessed atomically.

OpenMP

66 What's New in Oracle Solaris Studio 12.4 • December 2014

■ User Defined Reduction - In addition to reductions with base language operators and
intrinsic procedures, OpenMP 4.0 supports user-defined reductions. Custom reductions can
be defined by the programmer using the declare reduction directive; these reductions can
then be specified in a reduction clause.

■ New Environment Variable OMP_DISPLAY_ENV - The OMP_DISPLAY_ENV environment
variable can be used to display the value of Internal Control Variables (ICVs) associated
with the OpenMP environment variables.

Note - In this release, OpenMP 4.0 device and SIMD constructs are accepted. However, all
code will be executed on the host device, and SIMD constructs might not result in the use of
SIMD instructions.

For details, see the “Oracle Solaris Studio 12.4: OpenMP API User’s Guide ”.

For more information about the OpenMP 4.0 features, see OpenMP Application Program
Interface Version 4.0, July 2013 (http://www.openmp.org/mp-documents/

OpenMP4.0.0.pdf) and OpenMP 4.0.1 Examples, February 2014 (http://openmp.org/mp-
documents/OpenMP_Examples_4.0.1.pdf).

OpenMP Related Enhancements

The following items are additional enhancements to the OpenMP API in Oracle Solaris Studio.

■ New Default Number of Threads. -The default number of threads used to execute a
parallel region has changed from two threads to the number of cores available on the
machine, capped at 32.

■ Stack Overflow Detection and Diagnosis - The existing C, C++, and Fortran compiler
option -xcheck=stkovf has been extended to optionally enable runtime error diagnosis.
The syntax is as follows:

-xcheck=stkovf [:detect | :diagnose]

If :detect is specified, a detected stack overflow error is handled by executing the signal
handler normally associated with the error.

If :diagnose is specified, a detected stack overflow error is handled by catching the
associated signal and calling stack_violation(3C) to diagnose the error. If a stack overflow
error is diagnosed, an error message is printed to stderr. This is the default behavior if
nothing is specified.

See the cc(1), CC(1), or f95(1) man page for more information about the -xcheck=stkovf
compiler option.

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSMP
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://openmp.org/mp-documents/OpenMP_Examples_4.0.1.pdf
http://openmp.org/mp-documents/OpenMP_Examples_4.0.1.pdf

Thread Analyzer

Chapter 7 • OpenMP API and Thread Analyzer 67

Thread Analyzer

Thread Analyzer is a powerful tool that analyzes the execution of multithreaded programs and
detects common threading errors, such as data races and deadlocks. With Thread Analyzer, you
can debug multithreaded applications easier, leading to higher productivity. You can use Thread
Analyzer with programs written using one or a combination of the following standards and
frameworks:

■ POSIX threads API
■ Oracle Solaris threads API
■ OpenMP directives

See the tha(1) man page and “Oracle Solaris Studio 12.4: Thread Analyzer User’s Guide ” for
more information about Thread Analyzer.

In this release of Oracle Solaris Studio the following features have been added:

■ When doing binary instrumentation for data race detection using Discover, full call stacks
are displayed for data race accesses.

■ Support for the atomic_ops API introduced in Oracle Solaris 10.
■ Support for collect -r terminate, which forces the termination of a process when

deadlock detection is on and an actual deadlock occurs.
■ Thread Analyzer's user interface has been redesigned for improved data presentation and

navigation along with the user interface for Performance Analyzer. For more information,
see “Performance Analyzer Navigation” on page 21.

The following figure shows how Thread Analyzer displays dual call stacks when the binary has
been instrumented using discover:

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSTA

Thread Analyzer

68 What's New in Oracle Solaris Studio 12.4 • December 2014

FIGURE 7-1 Thread Analyzer Window

Chapter 8 • Other Changes 69

 8 ♦ ♦ ♦ C H A P T E R 8

Other Changes

This chapter describes new and changed features for other components of the Oracle Solaris
Studio software.

■ “Changes to Compilers” on page 69
■ “Performance Library Changes” on page 74

Changes to Compilers

The following section describes changes made to the compilers and includes the following
topics:

■ “New and Changed Features Common to the Compilers” on page 69
■ “C Compiler” on page 72
■ “Fortran Compiler” on page 72

New and Changed Features Common to the
Compilers

The following changes were made to the C, C++, and Fortran compilers since the previous
release. Details can be found in the compiler man pages. The changes specific to the C++
compiler are detailed in Chapter 2, “C++ Compiler”.

Application Performance on New Hardware

Every Oracle Solaris Studio release includes performance improvements for Oracle Sun
hardware servers. This release includes expanded support for the SPARC T5, SPARC M5,
SPARC M6, SPARC M10, and Intel Ivy Bridge and Haswell compiler and library performance

Changes to Compilers

70 What's New in Oracle Solaris Studio 12.4 • December 2014

improvements which were first made available in the Oracle Solaris Studio 12.3 1/13 Platform-
Specific Enhancements release.

■ New -xarch, -xchip , and -xtarget values for Ivy Bridge and Haswell processors on x86.
■ New -xarch, -xchip , and -xtarget values for SPARC T5, M5, M6, and M10+ processors.
■ Support for Ivy Bridge and Haswell assembler instructions.
■ Support for Ivy Bridge and Haswell intrinsic functions, which can be found in solstudio-

install-dir/lib/compilers/include/cc/sys</immintrin.h.
■ Default value for -xarch=generic set to sse2 on x86 and x64 architectures. See “Change in

Default Floating-Point Behavior for x86” on page 70 for more information.

Change in Default Floating-Point Behavior for x86

The results of floating-point computations in programs compiled using default compiler values
on x86 systems might vary slightly with Oracle Solaris Studio 12.4 compared to previous
releases. You might get a different result even on the same hardware and operating system. This
is because the default instruction set architecture is now SSE2 for all address space models and
platforms.

In Oracle Solaris Studio 12.4 and previous releases, the default address space model is -m32
for 32-bits for Oracle Solaris. On Linux the default is -m64 for 64-bit hardware. You can
compile for the 32-bit address space model or 64 bit address space model using -m32 and -m64
respectively on all platforms.

The compiler optimizes code by using the -xarch option to determine which instructions are
implemented in hardware and thus suitable for code generation. In previous Oracle Solaris
Studio releases, the default was -xarch=386 for -m32 and -xarch=sse2 for -m64.

For x86 with 32-bit addressing, if no code generation option is specified or implied with
-xarch, -xnative, or -fast, the code generation option will be -xarch=sse2 instead of
-xarch=386. Thus programs using floating-point arithmetic and compiled with default -xarch
might produce different floating-point results.

The new x86 default -m32 -xarch=sse2 implements the same ABI as the previous default -m32
-xarch=386. Floating-point operands and results are passed in x87 floating-point registers.
However, the following single-precision and double-precision floating-point operations are
usually performed in sse2 registers.

+

-

*

/

sqrt

convert

Changes to Compilers

Chapter 8 • Other Changes 71

x87 registers are still used for long double operations and hardware elementary transcendental
function evaluations.

Other Compiler Changes

■ Support for -xlinkopt on x86. Inter-module, inter-procedural code ordering optimizations
for large enterprise applications tuned for modern Intel processors. An up to 5%
performance boost over a fully optimized binary can be seen for large applications.

■ New compiler option for x86: -preserve_argvalues saves copies of register-based function
arguments in the stack.

■ Enhanced -xs option to control the trade-off of executable size versus the need to retain
object files in order to debug.

■ Support for -xanalyze and -xannotate on Linux.
■ Support for -fopenmp as a synonym for -xopenmp=parallel.
■ Support for SPARC M10 values -xchip=sparc64x, -xtarget=sparc64x, -xarch=sparcace.
■ Support for SPARC M10+ values -xchip=sparcxplus,-xtarget=sparc64xplus, and

-xarch=sparcaceplus.
■ Support for -xarch=sparc4b and -xarch=sparc4c for SPARC instruction set extensions

common to SPARC M10+ processors.
■ Support for Ivy Bridge values -xchip=ivybridge, -xtarget=ivybridge, and -xarch=avx_i

on x86 platform.
■ Support for Haswell values -xchip=haswell, -xtarget=haswell, and -xarch=avx2 on x86

platform.
■ New options for compilers:

■ -g1 - Produce file and line number as well as simple parameter information that is
considered crucial during post-mortem debugging.

■ -xdebuginfo - Controls how much debugging and observability information is emitted.
■ -xglobalize - Controls globalization of file static variables but not functions.
■ -xinline_param - Enables changing the heuristics used by the compiler for deciding

when to inline a function call.
■ -xinline_report - Generates a report written to standard output on the inlining of

functions by the compiler.
■ -xipo_build - Reduces compile time by avoiding optimizations during the initial pass

through the compiler, optimizing only at link time.
■ -xkeep_unref - Keeps definitions of unreferenced functions and variables.
■ -xpatchpadding - Reserves an area of memory before the start of each function.
■ -xsegment_align - Causes the driver to include a special mapfile on the link line.
■ -xthroughput - Indicates that the application will be run in situations where many

processes are simultaneously running on the system.

Changes to Compilers

72 What's New in Oracle Solaris Studio 12.4 • December 2014

■ -xunboundsym - Specifies whether the program contains references to dynamically
bound symbols.

C Compiler

The C compiler changes include the changes that are described in “New and Changed Features
Common to the Compilers” on page 69, and the following additional changes.

■ Support for -xregs=float on x86.
■ New options for the C compiler:

■ -ansi - Equivalent to -std=c89.
■ -pedantic - Enforces strict conformance with errors/warnings for non-ANSI constructs.
■ -staticlib - When used with -library=sunperf, links statically with the Sun

performance libraries.
■ -std - Specifies the C language standard. -std=c11 is the default compiler mode.
■ -temp - Defines the directory for temporary files.
■ -xlang - Overrides the default libc behavior as specified by the -std flag.
■ -xprevise - Produces a static analysis of the source code that can be viewed using Code

Analyzer.
■ Support for C11 features:

■ _Static_assert

■ Anonymous structs/unions
■ _Noreturn function assert
■ _Thread_local storage specifier
■ _Alignof operator
■ _Alignas alignment specifier
■ C11 specified set of characters in UCNs

See the cc man page and the “Oracle Solaris Studio 12.4: C User’s Guide ” for more
information.

Fortran Compiler

The Fortran compiler supports technical and scientific application development with record-
setting runtime performance and compatibility options for the Fortran77, Fortran90, and
Fortran95 standards. The majority of Fortran 2003 features and OpenMP 4.0 support is

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSCG

Changes to Compilers

Chapter 8 • Other Changes 73

included. The Fortran compiler uses the same high-performance code generation technology
as the C and C++ compilers, ensuring that the resulting application generates the highest-
performance parallel code for the newest SPARC and x86-based Oracle systems.

The Fortran compiler changes include the changes that are described in “New and Changed
Features Common to the Compilers” on page 69.

The following lists the new and changed features in this release of version 8.7 of the Fortran
compiler. For more information, see the f95 (1) man page and the “Oracle Solaris Studio 12.4:
Fortran User’s Guide ”.

■ The -xM option can be used to generate makefile dependency automatically. In conjunction
with the new -keepmod=yes option, it allows the most optimal incremental build on Fortran
application using modules. The new -keepmod option is used to retain a module which is not
changed when compiled. The default is -xkeepmod=yes , which replaces the old behavior
when a new module file is created each time even without any changes from the previous
compilation.

■ Compile time for applications using modules is substantially improved and memory
overflows due to module processing are eliminated.

■ #pragma ident can be used in a source file to identify the source version of the compiled
object.

■ Support for a deferred type parameter (colon) as the LEN type parameter in a character type
used in a declaration. For example:

character(LEN=:), pointer :: str

■ Support for procedure pointers.
■ Support for the Fortran 2003 function C_F_PROCPOINTER() for the ISO_C_BINDING module.

The C_FUNLOC() function is extended to enable procedure pointer as an argument.
■ Full support for object-oriented Fortran. Typebound procedures with the following attributes

are now allowed:
■ GENERIC

■ DEFERRED

■ NON-OVERRIDABLE

■ PASS

■ NOPASS

■ Support for the Fortran 2003 feature to enable derived type and generic function to have the
same name.

■ Support for the Fortran 2008 feature passing TARGET objects to INTENT(IN) pointer
dummies.

■ Expanded support to allow all elemental intrinsic functions (where each argument is itself
an initialization expression) to be used in initialization expressions as specified in the
Fortran 2003 standard. Previously, the elemental intrinsic functions used in that context
were limited to those which returned type integer and character only.

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSFG
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSFG

Performance Library Changes

74 What's New in Oracle Solaris Studio 12.4 • December 2014

■ Support for -fserialio which specifies that the program does not perform I/O in more than
one thread at a time.

Performance Library Changes

Oracle Solaris Studio Performance Library is a set of optimized, high-speed mathematical
subroutines for solving linear algebra and other numerically intensive problems. Oracle Solaris
Studio Performance Library is based on a collection of public domain subroutines available
from Netlib at http://www.netlib.org. Oracle enhanced these public domain subroutines and
bundled them as the Oracle Solaris Studio Performance Library.

For this release, the following changes were made:

■ Tuning for performance on SPARC T5, M5, and M6 platforms and SPARC 64X+.
■ LAPACK in Oracle Solaris Studio Performance Library is upgraded to version 3.4.2. All of

the new features in LAPACK 3.4.2 are implemented in Oracle Solaris Studio Performance
Library, including the following:
■ Extra Precise Iterative Refinement linear solvers (3.2)
■ New fast and accurate Jacobi SVD. (3.2)
■ Routines for Rectangular Full Packed format (RFP). (3.2)
■ Pivoted Cholesky. (3.2)
■ Mixed precision iterative refinement subroutines for exploiting fast single precision

hardware. (3.2)
■ Computing the complete CS decomposition. (3.3)
■ Level-3 BLAS symmetric indefinite solve and symmetric indefinite inversion. (3.3)
■ xGEQRT: QR factorization (improved interface). (3.4)
■ xGEQRT3: Recursive QR factorization. (3.4)
■ xTPQRT: Communication-Avoiding QR sequential kernels (3.4)

The LAPACK version in which they were introduced is indicated in parentheses.

http://www.netlib.org

75

Index

C
code analysis tools, 39

Code Analyzer, 42
codean, 40
Discover, 44
Previse, 43
static analysis, 43
Uncover, 47

Code Analyzer changes, 42
codean, 40

--whatisfixed, 41
--whatisnew, 40
summary html report, 41

collect utility, 35
compilers, 13

C, 72
C++, 13, 16

C++11 standard, 13
common new features, 69
Fortran, 72

D
data collection, 35
dbx, 49

changes, 49
dbx collector command, 36
discover

APIs, 45
command changes, 44

E
er_archive command, 38
er_kernel utility, 36

er_print command, 37
experiments, 38

I
IDE (Integrated Development Environment), 57

changes, 57
code assistance, 61
code editor, 60
launchers, 59

K
key features, 10

L
libraries, 69

OpenMP, 65
performance, 74

P
Performance Analyzer, 19, 20

cross-platform support, 30
I/O activity data view, 32
Remote Performance Analyzer, 30
User Interface Redesign, 20

U
uncover command changes, 47

76 What's New in Oracle Solaris Studio 12.4 • December 2014

	What's New in Oracle® Solaris Studio 12.4
	Contents
	Using This Documentation
	Product Documentation Library
	Access to Oracle Support
	Feedback

	Chapter 1 • Introducing the Oracle Solaris Studio 12.4 Release
	Overview of Oracle Solaris Studio
	Key Features in this Release

	Chapter 2 • C++ Compiler
	About the C++ Compiler
	Support for the C++11 Standard
	Using C++11 Features
	Compatibility Information for C++11 in this Release
	Incompatibility of 16-bit Unicode with C++11

	Library Incompatibilities with C++11 in this Release
	Example Using C++11 Mode

	Additional C++ Compiler Changes
	Stricter C++ Rules Enforced By Compiler

	Chapter 3 • Performance Analysis Tools
	About Performance Analyzer
	Documentation for Performance Analyzer

	Performance Analyzer New Features
	User Interface Redesign
	Performance Analyzer Navigation
	Welcome Screen of Performance Analyzer
	Overview Screen of Performance Analyzer

	Timeline Improvements
	Source and Disassembly Improvements
	Call Tree Improvements
	Java Profiling Improvements
	Simplified Hardware Counter Profiling
	Memoryspace Profiling Improvements
	New Derived Metrics: CPI and IPC
	Cross-Platform Analysis
	Remote Use of Performance Analyzer
	New I/O Data View
	New Heap Data View
	Other Changes to Performance Analyzer

	Changes to Command-Line Tools
	Changes to Data Collection Tools
	collect Utility Changes
	dbx collector Changes
	er_kernel Utility Changes

	er_print Utility Changes
	Changes to Other Commands

	Changes to Experiments

	Chapter 4 • Code Analysis Tools
	About the Code Analysis Tools
	New Command-Line Code Analyzer Tool codean
	Using the --whatisnew Option
	Using the --whatisfixed Option
	Using codean to Generate a Summary HTML Page

	Code Analyzer Changes
	New Previse Static Analysis Features
	New Discover Features
	New Discover APIs

	New Uncover Features

	Chapter 5 • Debugging Tools
	About the dbx Debugger
	New and Changed dbx Features
	New Compiler and Linker Options to Support Debugging
	Index DWARF (-xs[={yes|no}])
	Separate Debug File (-z ancillary[=outfile])
	Minimizing Debug Information

	Pretty-Printing With Python

	dbxtool Changes

	Chapter 6 • Oracle Solaris Studio IDE
	About Oracle Solaris Studio IDE
	New and Changed IDE Features
	New Launchers Feature in IDE
	IDE Code Editor Improvements
	Rectangular blocks selection
	Clipboard History
	Find/Replace Enhancements

	Code Assistance Improvements
	Code Assistance Cache Sharing
	New Project Properties Options for Code Assistance
	Search file system for C/C++ header files

	Using Breadcrumbs Navigation

	Chapter 7 • OpenMP API and Thread Analyzer
	OpenMP
	OpenMP 4.0 Support
	OpenMP Related Enhancements

	Thread Analyzer

	Chapter 8 • Other Changes
	Changes to Compilers
	New and Changed Features Common to the Compilers
	Application Performance on New Hardware
	Change in Default Floating-Point Behavior for x86
	Other Compiler Changes

	C Compiler
	Fortran Compiler

	Performance Library Changes

	Index

