
Part No: E36869
July 2014

Remote Administration Daemon
Developer Guide

Copyright © 2012, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws.
Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute,
exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take
all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use
of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates
are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Copyright © 2012, 2014, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d’utilisation
et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter, transmettre, distribuer,
exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes d’erreurs et
vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel ou l’utilise
pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S.Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est destiné
à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre
d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation
dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l’utilisation de ce logiciel ou matériel
pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d’autres
propriétaires qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. UNIX
est une marque déposée d’The Open Group.

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant
de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En aucun cas, Oracle
Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l’accès à des contenus, produits ou
services tiers, ou à leur utilisation.

3

Contents

Using This Documentation .. 7

1 Introduction ... 9
Remote Administration Daemon ... 9
Features Overview ... 10

2 Concepts .. 13
API .. 13

Version ... 13
API Namespace and Restricted Names .. 13
Derived Types ... 14

Interface ... 14
Name ... 14
Features .. 14
Commitment ... 17
Versioning .. 17

rad Namespace .. 19
Naming .. 19

Data Typing .. 20
Base Types ... 20
Derived Types ... 20
Optional Data .. 21

3 Client Libraries .. 23
C Client ... 23

Connecting to RAD .. 23
Rad Namespace ... 25
Interface Components ... 29

Java Client .. 34
Connecting to RAD .. 34

Contents

4 Remote Administration Daemon Developer Guide • July 2014

Rad Namespace ... 35
Interface Components ... 40

Python Client .. 44
The public interfaces are exported in three modules 44
Connecting to RAD .. 45
Rad Namespace ... 46
Interface Components .. 49

4 Abstract Data Representation .. 55
ADR Interface Description Language .. 55

Overview .. 55
Version ... 56
Enumeration Definitions .. 56
Structure Definitions ... 57
Interface Definitions ... 58
Example ... 60

radadrgen .. 61

5 libadr .. 63
Data Management .. 63

adr_type_t Type ... 63
adr_data_t Type ... 64
Allocating adr_data_t Values .. 65
Accessing Simple adr_data_t Values .. 69
Manipulating Derived Type adr_data_t .. 69
Validating adr_data_t Values .. 71

ADR Object Name Operations ... 73
adr_name_t Type ... 73
Creating adr_name_t Type ... 73
Inspecting adr_name_t Type .. 74
String Representation .. 75

API Management ... 75
radadrgen-Generated Definitions .. 75

Running radadrgen .. 76
Example radadrgen Output ... 76

6 Module Development ... 79
API Definitions and Implementation ... 79

Contents

5

Entry Points .. 79
Global Variables .. 80
Module Registration ... 80
Instance Management ... 81
Container Interactions ... 81
Logging .. 82
Using Threads ... 82
Synchronization ... 83
Subprocesses ... 83
Utilities .. 84
Locales ... 85
Transactional Processing ... 85
Asynchronous Methods and Progress Reporting .. 85

rad Namespaces .. 86
Static Objects .. 86

rad Module Linkage ... 86

7 rad Best Practices ... 89
When To Use rad? ... 89
How To Use rad? .. 89

API Guidelines .. 89
Component Guidelines .. 91
Naming Guidelines ... 92

API Design Examples ... 94
User Management Example ... 95

A zonemgr ADR Interface Description Language .. 97

6 Remote Administration Daemon Developer Guide • July 2014

Using This Documentation 7

Using This Documentation

■ Overview – Provides information about the remote administration daemon for Oracle
Solaris. Applications that allow you to remotely administer or configure a system,
require programmatic access. This guide provides information on how to use the remote
administration daemon to provide programmatic access to the administration and
configuration functionality of the Oracle Solaris operating system.

■ Audience – This book is intended for developers who want to use rad to create
administrative interfaces and for developers looking to consume interfaces published using
rad by others.

■ Required knowledge – Readers of this guide should be experienced in developing JAVA
or Phython based application interfaces.

Product Documentation Library

Late-breaking information and known issues for this product are included in the documentation
library at http://www.oracle.com/pls/topic/lookup?ctx=E36784.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://
www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

http://www.oracle.com/pls/topic/lookup?ctx=E36784
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/goto/docfeedback

8 Remote Administration Daemon Developer Guide • July 2014

Chapter 1 • Introduction 9

 1 ♦ ♦ ♦ C H A P T E R 1

Introduction

The Remote Administration Daemon, commonly referred to by its acronym and command
name, rad, is a standard system service that offers secure, remote administrative access to an
Oracle Solaris system. This book is intended for developers who want to use rad to create
administrative interfaces and for developers looking to consume interfaces published using
rad by others. It introduces rad and its core concepts, explains the process of developing rad
extensions and consumers, and includes a reference for the rad module API and client libraries.

Remote Administration Daemon

The Oracle Solaris operating system is a set of cooperating components, and correspondingly
administering Oracle Solaris is the act of manipulating those components in a variety of ways.
The traditional solution consisted of locally applying $EDITOR to text files. More modern
approaches include manipulating system components locally using a CLI or an interactive
UI, remotely with a browser or client, en masse with an enterprise-scale provisioning tool, or
automatically by policy logic employed by any of these methods. All of these methods require
programmatic access to configuration. The Remote Administration Daemon is the central point
where system developers can expose their components for configuration or administration, and
where the various programmatic consumers can go to perform those activities.

To provide complete support to consumers written in a variety of languages, consumers running
without privilege, and consumers running remotely, rad employs a client/server design. rad
itself acts as a server that services remote procedure calls. rad consumers are the clients. The
protocol rad speaks is efficient and easy to implement, which makes it simple to bring support
for all administrative tasks exposed via rad to a new language.

By providing a procedure call interface, rad enables non-privileged local consumers to perform
actions on behalf of their users that require elevated privilege, without needing to resort to a
CLI-based implementation. Finally, by establishing a stream protocol, these same benefits can
be extended to consumers on any machine or device over a variety of secure transport options.

rad differs from traditional RPC in a number of ways:

Features Overview

10 Remote Administration Daemon Developer Guide • July 2014

■ Procedure calls are made against server objects in a browsable, structured namespace.
This process permits a more natural evolution of content than is afforded by the central
allocation of program numbers.

■ These procedure calls need not be synchronous. Subject to the protocol in use, a client may
have multiple simultaneous outstanding requests.

■ The interfaces exported by the server objects are fully inspectable. This facilitates
interactive use, rich debugging environments, and clients using dynamically-typed
languages such as Python.

■ In addition to defining procedure calls, rad interfaces can define properties and
asynchronous event sources. Though the former provides more of a semantic than a
functional improvement, the latter is a powerful tool for efficiently observing changes to
the system being managed.

■ rad supports alternate protocols without needing to update its content, which provides
even greater flexibility.

■ rad's native protocol fully supports asynchronous procedure calls once the client has
authenticated. An alternate protocol, e.g. one based on XML-RPC, might not support
asynchronous calls due to limitations of the underlying technology.

Features Overview

The main functionality offered by rad is as follows:

■ Essentials
■ Managed and configured by two SMF services, svc:/system/rad:local and svc:/

system/rad:remote

■ Structured, browsable namespace.
■ Inspectable, typed, versioned interfaces.
■ Asynchronous event sources.
■ XML-based IDL ADR supports formally defining APIs. The IDL compiler

radadrgen generates client language bindings.
■ Security

■ Full PAM conversation support including use of pam_setcred(3PAM) to set the
audit context.

■ Authentication via GSSAPI in deployments where kerberos(5) is configured.
■ Implicit authentication using getpeerucred(3C) when possible.
■ No non-local network connectivity by default. Preconfigured to use TLS.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN5kerberos-5

Features Overview

Chapter 1 • Introduction 11

■ Most operations automatically delegated to lesser-privileged processes.
■ Defines two authorizations (solaris.smf.manage.rad and solaris.smf.value.rad) and

two Rights Profiles (rad Management and rad Configuration) to provide fine-grained
separation of powers for managing and configuring the rad SMF services.
■ rad authorizations

■ solaris.smf.manage.rad — Grants the authorization to enable, disable, or
restart the rad SMF services.

■ solaris.smf.value.rad — Grants the authorization to change rad SMF
services' property values.

■ rad rights profiles
■ rad Management — Includes the solaris.smf.manage.rad authorization.
■ rad Configuration — Includes the solaris.smf.value.rad authorization.

■ Generates AUE_rad_login, AUE_logout, AUE_role_login, AUE_role_logout, and
AUE_passwd audit events.

■ Connectivity
■ Local access via AF_UNIX sockets.
■ Remote access via TCP sockets.
■ Secure remote access via TLS sockets.
■ Captive execution with access through a pipe.
■ Connection points are completely configurable at the command line or via SMF.

■ Client support
■ A Java language binding provides access to all defined server interfaces.
■ A Python language binding provides access to all defined server interfaces.
■ A C language binding provides access to all defined server interfaces.

■ Extension
■ A public native C module interface supports addition of third-party content.
■ radadrgen can generate server-side type definitions and stubs from IDL input.
■ A native execution system can automatically run modules with authenticated user's

privilege and audit context, simplifying authentication and auditing.
■ Private module interfaces permit defining new transports.

12 Remote Administration Daemon Developer Guide • July 2014

Chapter 2 • Concepts 13

 2 ♦ ♦ ♦ C H A P T E R 2

Concepts

The concepts that are fundamental to rad are interfaces, objects that implement those interfaces,
and the namespace in which those objects can be found and operated upon.

This chapter discusses the following concepts that are fundamental to rad.

■ “API” on page 13
■ “Interface” on page 14
■ “rad Namespace” on page 19
■ “Data Typing” on page 20

API

An API is the starting point for designing a new RAD component. An API consists of a
collection of other subsidiary components: derived types and interfaces. An API is versioned so
that a client can specify which version of an API to interact with.

The API acts as the name root for all components of the API, defining a namespace which
identifies objects to client. APIs are versioned and a single RAD instance is capable of offering
multiple major versions of APIs to different clients.

Version

A version element is required for all APIs. See “Versioning” on page 17 for more details on
API versions.

API Namespace and Restricted Names

An API defines a namespace in which all top-level elements are defined. Names of components
must be unique. Names must not begin with “_rad”, since this is reserved for toolchain
provided functionality.

Interface

14 Remote Administration Daemon Developer Guide • July 2014

Derived Types

Two classes of derived types may be defined for use within an API: structures and
enumerations. Structures are used to introduce new types specific to the API. Enumerations are
used to restrict numeric values to a legal specified range.

Interface

An interface defines how a rad client can interact with an object. An object implements an
interface, providing a concrete behavior to be invoked when a client makes a request.

The primary purpose of rad is to consistently expose the various pieces of the system for
administration. Not all subsystems are alike, however: each has a data and state model tuned
to the problems they are solving. Although there are major benefits to using a common model
across components when possible, uniformity comes with trade-offs. The increased inefficiency
and client complexity, and risk of decreased developer adoption, often warrant using an
interface designed for problem at hand.

An interface is a formal definition of how a client may interact with a rad server object. An
interface may be shared amongst several objects, for example, when maintaining a degree
of uniformity is possible and useful, or may be implemented by only one. A rad interface is
analogous to an interface or pure abstract class in an object oriented programming language.
In the case of rad, an interface consists of a name, the set of features a client may interact
with, optionally a set of derived types referenced by the features, and a version. The features
supported include:

■ Methods, which are procedure calls made in the context of a specific object
■ Properties, which are functionally equivalent to methods but bear different semantics
■ Asynchronous event sources

Name

Each interface has a name. This name is used by the toolchain to construct identifier names
when generating code.

Features

The common thing between the three feature types — methods, attributes, and events — is
that they are named. All three feature types name exist in the same Interface namespace and

Interface

Chapter 2 • Concepts 15

must therefore be unique. You can not have both a method and an attribute called “foo”. This
exclusion avoids the majority of conflicts that could arise when trying to naturally map these
interface features to a client environment. As in the API namespace, features must not begin
with “_rad”, since this is reserved for use by the RAD toolchain.

Note - Enforcing a common namespace for interface features isn't always enough. Some
language environments place additional constraints on naming. For instance, a Java client will
see an interface with synthetic methods of the form getfunction_name, setfunction_name, or
isfunction_name for accessing attribute function_name that must coexist with other method
names. Explicitly defining methods with those names may cause a conflict.

Methods

A method is a procedure call made in the context of the object it is called on. In addition to a
name, a method may define a return type, can define zero or more arguments, and may declare
that it returns an error, optionally with an error return type.

If a method does not define a return type, it returns no value. It is effectively of type void. If a
method defines a return type and that type is permitted to be nullable, the return value may be
defined to be nullable.

Each method argument has a name and a type. If any argument's type is permitted to be
nullable, that argument may be defined to be nullable.

If a method does not declare that it returns an error, it theoretically cannot fail. However,
because the connection to rad could be broken either due to a network problem or a
catastrophic failure in rad itself, all method calls can fail with an I/O error. If a method declares
that it returns an error but does not specify a type, the method may fail due to API-specific
reasons. Clients will be able to distinguish this failure type from I/O failures.

Finally, if a method also defines an error return type, data of that type may be provided to the
client in the case where the API-specific failure occurs. Error payloads are implicitly optional,
and must therefore be of a type that is permitted to be nullable.

Note - Methods names may not be overloaded.

Attributes

An attribute is metaphorically a property of the object. Attributes have the following
characteristics:

Interface

16 Remote Administration Daemon Developer Guide • July 2014

■ A name
■ A type
■ A definition as read-only, read-write, or write-only
■ Like a method may declare that accessing the attribute returns an error, optionally with an

a error return type

Reading a read-only or read-write attribute returns the value of that attribute. Writing a write-
only or read-write attribute sets the value of that attribute. Reading a write-only attribute
or writing a read-only attribute is invalid. Clients may treat attempts to write to a read-only
attribute as a write to an attribute that does not exist. Likewise, attempts to read from a write-
only attribute may be treated as an attempt to read from an attribute that does not exist.

If an attribute's type is permitted to be nullable, its value may be defined to be nullable.

An attribute may optionally declare that it returns an error, with the same semantics as declaring
(or not declaring) an error for a method. Unlike a method, an attribute may have different error
declarations for reading the attribute and writing the attribute.

Attribute names may not be overloaded. Defining a read-only attribute and a write-only
attribute with the same name is not valid.

Given methods, attributes are arguably a superfluous interface feature. Writing an attribute
of type X can be implemented with a method that takes one argument of type X and returns
nothing, and reading an attribute of type X can be implemented with a method that takes no
arguments and returns a value of type X. Attributes are included because they have slightly
different semantics.

In particular, an explicit attribute mechanism has the following characteristics:

■ Enforces symmetric access for reading and writing read-write attributes.
■ Can be easily and automatically translated to a form natural to the client language-

environment.
■ Communicates more about the nature of the interaction. Reading an attribute ideally

should not affect system state. The value written to a read-write attribute should be the
value returned on subsequent reads unless an intervening change to the system effectively
writes a new value.

Events

An event is an asynchronous notification generated by rad and consumed by clients. A client
may subscribe to events by name to register interest in them. The subscription is performed on
an object which implements an interface. In addition to a name, each event has a type.

Events have the following characteristics:

■ Sequential

Interface

Chapter 2 • Concepts 17

■ Volatile
■ Guaranteed

A client can rely on sequential delivery of events from a server as long as the connection to the
server is maintained. If the connection fails, then events will be lost. On reconnection, a client
must resubscribe to resume the flow of events.

Once a client has subscribed to an event, event notifications will be received until the client
unsubscribes from the event.

On receipt of a subscribed event, a client receives a payload of the defined type.

Commitment

To solve the problem of different features being intended for different consumers, rad
defines two commitment levels: private, and committed. All API components: derived types,
interfaces and the various interface sub-components (method, attribute, and event) define their
commitment level independently.

Commitment levels provide hints to API consumers about the anticipated use and expected
stability of a feature. A feature with a commitment of committed can be used reliably. The
private features, are likely to be subject to change and represent implementation details not
intended for public consumption.

Versioning

rad interfaces are versioned for the following reasons:

■ APIs change over time.
■ A change to an API might be incompatible with existing consumers.
■ A change might be compatible with existing consumers but new consumers might not be

able to use the API that was in place before the change occurred.
■ Some features represent committed interfaces whose compatibility is paramount, but

others are private interfaces that are changed only in lockstep with the software that uses
them.

Numbering

The first issue is measuring the compatibility of a change. rad uses a simple major.minor
versioning scheme. When a compatible change to an interface is made, its minor version

Interface

18 Remote Administration Daemon Developer Guide • July 2014

number is incremented. When an incompatible change is made, its major version number is
incremented and its minor version number is reset to 0.

In other words, an implementation of an interface that claims to be version X.Y (where X is the
major version and Y is the minor version) must support any client expecting version X.Z, where
Z <= Y.

The following interface changes are considered compatible:

■ Adding a new event
■ Adding a new method
■ Adding a new attribute
■ Expanding the access supported by an attribute, for example, from read-only to read-write
■ A change from nullable to non-nullable for a method return value or readable property, that

is, decreasing the range of a feature
■ A change from non-nullable to nullable for a method argument or writable property, that is,

increasing the domain of a feature

The following interface changes are considered incompatible:

■ Removing an event
■ Removing a method
■ Removing an attribute
■ Changing the type of an attribute, method, or event
■ Changing a type definition referenced by an attribute, method, or event
■ Decreasing the access supported by an attribute, for example, from read-write to read-only
■ Adding or removing method arguments
■ A change from non-nullable to nullable for a method return value or readable property, that

is, increasing the range of a feature
■ A change from nullable to non-nullable for a method argument or writable property, that is,

decreasing the domain of a feature

Note - An interface is more than just a set of methods, attributes, and events. Associated with
those features are well-defined behaviors. If those behaviors change, even if the structure of the
interface remains the same, a change to the version number might be required.

Clients and Versioning

A rad client can access version information from a client binding. The mechanism for accessing
the information depends on the client language like C, Java and, Python. For example in

rad Namespace

Chapter 2 • Concepts 19

Python, the rad.client module contains the rad_get_version function which may be used to
get the version of an API.

rad Namespace

The namespace acts as rad's gatekeeper, associating a name with each object, dispatching
requests to the proper object, and providing meta-operations that enable the client make queries
about what objects are available and what interfaces they implement.

A rad server may provide access to several objects that in turn expose a variety of different
components of the system or even third-party software. A client merely knowing that interfaces
exist, or even that a specific interface exists, is not sufficient. A simple, special-purpose
client needs some way to identify the object implementing the correct interface with the
correct behavior, and an adaptive or general-purpose client needs some way to determine what
functionality the rad server has made available to it.

rad organizes the server objects it exposes in a namespace. Much like files in a file system,
objects in the rad namespace have names that enable clients to identify them, can be acted upon
or inspected using that name, and can be discovered by browsing the namespace. Depending on
the point of view, the namespace either is the place one goes to find objects or the intermediary
that sits between the client and the objects it accesses. Either way, it is central to interactions
between a client and the rad server.

Naming

Unlike a file system, which is a hierarchical arrangement of simple filenames, rad adopts the
model used by JMX and maintains a flat namespace of structured names. An object's name
consists of a mandatory reverse-dotted domain combined with a non-empty set of key-value
pairs.

Equality

Two names are considered equal if they have the same domain and the same set of keys, and
each key has been assigned the same value.

Patterns

Some situations call for referring to groups of objects. In these contexts, a glob style
pattern, or a regex style pattern should be used. For more information, see “Sophisticated
Searching” on page 27.

Data Typing

20 Remote Administration Daemon Developer Guide • July 2014

Data Typing
All data returned submitted to or obtained from rad APIs adheres to a strong typing system
similar to that defined by XDR. For more information about XDR, see the XDR (http://
tools.ietf.org/rfc/rfc4506.txt) standard. This makes it simpler to define interfaces that have
precise semantics, and makes server extensions (which are written in C) easier to develop. Of
course, the rigidity of the typing exposed to an API's consumer is primarily a function of the
client language and implementation.

Base Types
rad supports the following base types:

boolean A boolean value (true or false).

integer A 32-bit signed integer value.

uinteger A 32-bit unsigned integer value.

long A 64-bit signed integer value.

ulong A 64-bit unsigned integer value.

float A 32-bit floating-point value.

double A 64-bit floating-point value.

string A UTF-8 string.

opaque Raw binary data.

secret An 8-bit clean “character” array. The encoding is defined by the interface using the
type. Client/server implementations may take additional steps, for example, zeroing
buffers after use, to protect the contents of secret data.

time An absolute UTC time value.

name The name of an object in the rad namespace.

reference A reference to an object.

Derived Types
In addition to the base types, rad supports several derived types.

An enumeration is a set of user-defined tokens. Like C enumerations, rad enumerations may
have specific integer values associated with them. Unlike C enumerations, rad enumerations

http://tools.ietf.org/rfc/rfc4506.txt
http://tools.ietf.org/rfc/rfc4506.txt

Data Typing

Chapter 2 • Concepts 21

and integers are not interchangeable. Among other things, this aspect means that an
enumeration data value may not take on values outside those defined by the enumeration, which
precludes the common but questionable practice of using enumerated types for bitfield values.

An array is an ordered list of data items of a fixed type. Arrays do not have a predefined size.

A structure is a record consisting of a fixed set of typed, uniquely named fields. A field's type
may be a base type or derived type, or even another structure type.

Derived types offer almost unlimited flexibility. However, one important constraint imposed on
derived types is that recursive type references are prohibited. Thus, complex self-referencing
data types, for example, linked lists or trees, must be communicated after being mapped into
simpler forms.

Optional Data

In some situations, data may be declared as nullable. Nullable data can take on a “non-value”,
for example, NULL in C, None in Python, or null in Java. Conversely, non-nullable data cannot
be NULL. Only data of type opaque, string, secret, array, or structure may be declared nullable.
Additionally, only structure fields and certain API types can be nullable. Specifically, array data
cannot be nullable because the array type is actually more like a list than an array.

22 Remote Administration Daemon Developer Guide • July 2014

Chapter 3 • Client Libraries 23

 3 ♦ ♦ ♦ C H A P T E R 3

Client Libraries

rad provides support for three client language environments: C, Java, and Python.

C Client

The general (non module specific) public interfaces are exported in the library /usr/lib/
libradclient.so and defined in the headers

■ /usr/include/rad/radclient.h – The client function and datatype definitions.
■ /usr/include/rad/radclient_basetypes.h – Helper routines for managing the built-in

rad types.

The examples shown below are just snippets of C code, but at the top of each example for
clarity, there is a list of #include statements showing the headers needed for that specific
functionality.

Note - A lot of these examples are based on the example zonemgr interface. Refer to the sample
in, Appendix A, “zonemgr ADR Interface Description Language” for this module to assist in
your understanding of the examples.

Connecting to RAD

Communication with a RAD instance is provided through the rc_connect_* family of
functions. There are various functions to get different types of connections to RAD. Each
function returns a rc_conn_t reference which acts as a handle for interactions with RAD over
that connection. Every connect function has two common arguments: a boolean to specify
whether the connection be multithreaded (TRUE is recommended) and the locale to use for the
connection. When locale is NULL, the locale of the local client is used. Each connection type also
has differing transport specific arguments.

To close the connection,rc_disconnect needs to be called with the connection handle.

C Client

24 Remote Administration Daemon Developer Guide • July 2014

Connecting to a Local Instance

Implicit authentication is performed against your user id and most RAD tasks you request with
this connection are performed with the privileges available to your user account. The function
rc_connect_unix takes three arguments: The path to the unix socket, a boolean to determine
if the connection is to be multithreaded, and the desired locale for the connection. If the socket
path is NULL, the default RAD unix socket path is used; it is recommended that the connection
be run in multithreaded mode; if the locale is NULL, the locale of the local client system is used.

EXAMPLE 3-1 Creating a Local Connection

#include <rad/radclient.h>

rc_conn_t conn = rc_connect_unix(NULL, B_TRUE, NULL);

// do something with conn

Connecting to a Remote Instance and Authenticating

When connecting to a remote instance, there is no implicit authentication, so the connection
is not useful until authentication is performed. To authenticate with PAM, a function
rc_pam_login is provided. However, the client application source must #include <rad/
client/1/pam_login.h> and link against the PAM C binding library, /usr/lib/rad/client/
c/libpam_client.so.

Authentication is done non-interactively and a username and password should be provided.
Optionally, a handle to the PAM Authentication object can be returned if a reference is provided
as the second argument to rc_pam_login.

EXAMPLE 3-2 Remote Connection over TCP IPv4 on port 7777

#include <rad/radclient.h>

#include <rad/client/1/pam_login.h>

rc_instance_t *pam_inst;

rc_conn_t conn = rc_connect_tcp("henry",7777, B_TRUE, NULL);

if (conn !=NULL) {

 rc_err_t status = rc_pam_login(conn, &pam_inst, "user", "password");

 if (status == RCE_OK){

 printf("Connected and authenticated!\n");

 }

}

C Client

Chapter 3 • Client Libraries 25

Rad Namespace
All RAD objects, which are represented in the ADR IDL as <interfaces>, are found by
searching the RAD namespace. The key point to note is that to access a RAD object, you
should use the list and lookup functions provided by a module's client binding library
(<module>_<interface>__rad_list, <module>_<interface>__rad_lookup. These functions
also provide the option to do either strict or relaxed versioning.

Using the functions specific to the interface automatically provides the base name and version
details for interface instances. Those names are structured as follows:

<domain name>:type=<interface name>[,optional additional key value pairs]

The <domain name> and the <interface name> are automatically derived from the ADR IDL
definition and are stored in the module binding.

Searching for Objects

As noted in the previous section, a module's client binding provides a search function for each
interface defined in the form: <module>_<interface>__rad_list where a pattern (glob or
regex) may be provided to narrow the search further within objects of a certain interface type.

In addition, libradclient does provide a function, rc_list, where the caller can provide the
entire name/pattern and version information to search for.

Obtaining a Reference to a Singleton

If a module developer creates a “singleton” to represent an interface, then this can be accessed
very simply. For instance, the zonemgr module defines a singleton interface: ZoneInfo. It
contains information about the zone which contains the RAD instance with which we are
communicating.

EXAMPLE 3-3 Obtaining a Reference to a Singleton

#include <rad/radclient.h>

#include<rad/client/1/zonemgr.h>

rc_instance_t *inst;

rc_err_t status;

char *name;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);

if (conn !=NULL) {

 status = zonemgr_ZoneInfo__rad_lookup(conn, B_TRUE, &inst, 0);

 if(status == RCE_OK) {

C Client

26 Remote Administration Daemon Developer Guide • July 2014

 status =zonemgr_ZoneInfo_get_name(inst, &name);

 if (status ==RCE_OK)

 printf("Zone name: %s\n", name);

 }

}

We have connected to the local RAD instance and obtained a remote object reference directly
using the lookup function provided by the zonemgr binding. Once we have the remote reference
we can access properties with a <module>_<interface>_get_<property> function.

Listing Instances of an Interface

Most interfaces contain more than one instance of the interface. For instance, the
zonemgr module defines a Zone interface and there is an instance for each zone on
the system. A module provides a list function for each of its interfaces in the form:
<module>_<interface>__rad_list.

EXAMPLE 3-4 Listing Interface Instances

#include<rad/radclient.h>

#include<rad/radclient_basetypes.h>

#include<rad/client/1/zonemgr.h>

rc_err_t status;

adr_name_t **name_list;

int name_count;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);

if (conn !=NULL) {

 status = zonemgr_Zone__rad_list(conn, B_TRUE, NS_GLOB, &name_list,

 &name_count, 0);

 if(status == RCE_OK) {

 for (int i =0; i < name_count; i++) {

 char*name =adr_name_tostr(name_list[i]);

 printf("%s\n", name);

 }

 name_array_free(name_list, name_count);

 }

 }

Obtaining a Remote Object Reference from a Name

Names (in the form of an adr_name_t reference) are returned when using the list mechanism
detailed above. Once we have a "name" we can obtain a remote object reference easily:

EXAMPLE 3-5 Obtaining a Remote Object Reference from a Name

C Client

Chapter 3 • Client Libraries 27

#include <rad/radclient.h>

#include <rad/radclient_basetypes.h>

#include<rad/client/1/zonemgr.h>

rc_err_t status;

adr_name_t **name_list;

rc_instance_t *zone_inst;

int name_count;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);

if (conn != NULL) {

 status = zonemgr_Zone__rad_list(conn, B_TRUE, NS_GLOB, &name_list,

 &name_count, 0);

 if (status == RCE_OK) {

 status = rc_lookup(conn, name_list[0],

 NULL, B_TRUE, &zone_inst);

 if (status == RCE_OK) {

 char *name;

 status = zonemgr_Zone_get_name(zone_inst, &name);

 if (status == RCE_OK)

 printf("Zone name: %s\n",

 name);

 free(name);

 }

 name_array_free(name_list, name_count);

 }

}

Sophisticated Searching

Clearly, the last example is not a very realistic use case. Rarely are we going to want to just pick
a (semi-random) zone from a list and interact with it. More often than not we'll be looking for
a zone which has a particular name or id or maybe a set of zones where the names all match
some kind of pattern. The key idea to bear in mind is that you can extend the use of the “list”
functionality to restrict the results. For instance, if zones are uniquely identified by a key:
“name”, then we can find a zone with name “test-0” as follows:

EXAMPLE 3-6 Using Glob Patterns

#include <rad/radclient.h>

#include <rad/radclient_basetypes.h>

#include <rad/client/1/zonemgr.h>

rc_err_t status;

adr_name_t **name_list;

int name_count;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);

if (conn != NULL) {

 status = zonemgr_Zone__rad_list(conn, B_TRUE, NS_GLOB, B_TRUE, &name_list,

 &name_count, 1, "name", "test-0");

 if (status == RCE_OK) {

C Client

28 Remote Administration Daemon Developer Guide • July 2014

 for (int i = 0; i < name_count; i++) {

 const char *name = adr_name_tostr(name_list[i]);

 printf("%s\n", name);

 }

 name_array_free(name_list, name_count);

 }

}

Glob Pattern Searching

We've already seen how we can use glob pattern searching to find a zone with a specific name.
We can also use a glob pattern to find zones with wildcard pattern matching. Keys or Values in
the pattern may contain "*" which is interpreted as expected. For instance ,if we wanted to find
all zones with a name which begins with "test":

EXAMPLE 3-7 Using Glob Patterns with Wildcards

#include <rad/radclient.h>

#include <rad/radclient_basetypes.h>

#include <rad/client/1/zonemgr.h>

rc_err_t status;

adr_name_t **name_list;

int name_count;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);

if (conn != NULL) {

 status = zonemgr_Zone__rad_list(conn, B_TRUE, NS_GLOB, &name_list,

 &name_count, 1, "name", "test*");

 if (status == RCE_OK) {

 for (int i = 0; i < name_count; i++) {

 const char *name = adr_name_tostr(name_list[i]);

 printf("%s\n", name);

 }

 name_array_free(name_list, name_count);

 }

}

Regex Pattern Searching

We can also take advantage of RAD's ERE (Extended Regular Expression) search capabilities.
If we wanted to find only zones with name "test-0" or "test-1", then:

EXAMPLE 3-8 Using Regex Patterns

#include <rad/radclient.h>

#include <rad/radclient_basetypes.h>

#include <rad/client/1/zonemgr.h>

C Client

Chapter 3 • Client Libraries 29

rc_err_t status;

adr_name_t **name_list;

int name_count;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);

if (conn != NULL) {

 status = zonemgr_Zone__rad_list(conn, B_TRUE, NS_REGEX,

 &name_list, &name_count, 1, "name", "test-0|test-1");

 if (status == RCE_OK) {

 for (int i = 0; i < name_count; i++) {

 const char *name = adr_name_tostr(name_list[i]);

 printf("%s\n", name);

 }

 name_array_free(name_list, name_count);

 }

}

The key and the value must be valid Extended Regular Expressions as determined by the
instance of RAD to which you are connected. This means that the expression is compiled and
executed in the server.

Interface Components

An API is defined by a module developer and contains a variety of components designed to
accomplish a task. These components are:

■ Enums
■ Values

■ Structs
■ Fields

■ Interfaces
■ Properties
■ Methods
■ Events

These components are all defined in an ADR Interface Description Language document. The
radadrgen utility is used to process the document to generate language specific components
which facilitate client/server interactions within RAD. More details in the role of ADR and
rad can be found in Chapter 4, “Abstract Data Representation”. Brief descriptions of each
component follows.

Enumerations

Enumerations are primarily used to offer a restricted range of choices for a property, an
interface method parameter, result, or error.

C Client

30 Remote Administration Daemon Developer Guide • July 2014

Using Enumeration Types

Enumerated types are defined in the binding header with the type prepended with the module
name. Values are prepended to follow (as closely as possible) the C coding standard naming
conventions.

EXAMPLE 3-9 zonemgr ErrorCode Enumeration

typedef enum zonemgr_ErrorCode {

 ZEC_NONE =0,

 ZEC_FRAMEWORK_ERROR = 1,

 ZEC_SNAPSHOT_ERROR = 2,

 ZEC_COMMAND_ERROR = 3,

 ZEC_RESOURCE_ALREADY_EXISTS = 4,

 ZEC_RESOURCE_NOT_FOUND = 5,

 ZEC_RESOURCE_TOO_MANY = 6,

 ZEC_RESOURCE_UNKNOWN = 7,

 ZEC_ALREADY_EDITING = 8,

 ZEC_PROPERTY_UNKNOWN = 9,

 ZEC_NOT_EDITING = 10,

 ZEC_SYSTEM_ERROR = 11,

 ZEC_INVALID_ARGUMENT = 12,

 ZEC_INVALID_ZONE_STATE = 13,

}zonemgr_ErrorCode_t;

Structs

Structs are used to define new types and are composed from existing built-in types and other
user defined types. In essence, they are simple forms of interfaces: no methods or events and
they are not present in the RAD namespace.

Using Struct Types

The zonemgr module defines a Property struct which represents an individual Zone
configuration property. The structure has the following members: name, type, value, listValue,
and complexValue. Like enumerations, structures are defined in the binding header and follow
similar naming conventions.

To free a structure, free functions (<module>_<structure>_free) are provided by the binding
to ensure proper cleanup of any memory held by nested data.

EXAMPLE 3-10 The zonemgr Property Struct Definition and its Free Function

typedef enum zonemgr_PropertyValueType {

 ZPVT_PROP_SIMPLE = 0,

 ZPVT_PROP_LIST = 1,

C Client

Chapter 3 • Client Libraries 31

 ZPVT_PROP_COMPLEX = 2,

} zonemgr_PropertyValueType_t;

typedef struct zonemgr_Property {

 char * zp_name;

 char * zp_value;

 zonemgr_PropertyValueType_t zp_type;

 char * * zp_listvalue;

 int zp_listvalue_count;

 char * * zp_complexvalue;

 int zp_complexvalue_count;

} zonemgr_Property_t;

void zonemgr_Property_free(zonemgr_Property_t *);

Interfaces/Objects

Interfaces (also known as objects) are the entities which populate the RAD namespace. They
must have a "name". An interface is composed of Events, Properties and Methods.

Obtaining an Object Reference

See the “Rad Namespace” on page 25 section.

Working with Object References

Once we have an object reference we can use this to interact with RAD in a very
straightforward fashion. All attributes and methods defined in the IDL are accessible by
invoking calling functions in the generated client binding.

Here is an example which gets a reference to a zone and then boots the zone.

EXAMPLE 3-11 Working with Object References

#include <rad/radclient.h>

#include <rad/radclient_basetypes.h>

#include <rad/client/1/zonemgr.h>

rc_err_t status;

rc_instance_t *zone_inst;

zonemgr_Result_t *result;

zonemgr_Result_t *error;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);

if (conn != NULL) {

 status = zonemgr_Zone__rad_lookup(conn, B_TRUE, &zone_inst, 1, "name", "test-0");

 if (status == RCE_OK) {

 status = zonemgr_Zone_boot(zone_inst, NULL, 0, &result, &error);

 rc_instance_rele(zone_inst);

C Client

32 Remote Administration Daemon Developer Guide • July 2014

 }

}

Accessing a Remote Property

Here is an example for accessing a remote property.

EXAMPLE 3-12 Accessing a Remote Property

#include <rad/radclient.h>

#include <rad/radclient_basetypes.h>

#include <rad/client/1/zonemgr.h>

rc_err_t status;

rc_instance_t *zone_inst;

char *name;

zonemgr_Property_t *result;

zonemgr_Result_t *error;

int result_count;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);

if (conn != NULL) {

 status = zonemgr_Zone__rad_lookup(conn, B_TRUE, &zone_inst, 1, "name", "test-0");

 if (status == RCE_OK) {

 zonemgr_Resource_t global = { .zr_type = "global"};

 status = zonemgr_Zone_getResourceProperties(zone_inst, &global, NULL, 0, &result,

 &result_count, &error);

 if (status == RCE_OK) {

 for (int i = 0; i < result_count; i++){

 if (result[i].zp_value != NULL && result[i].zp_value[0] != '\0')

 printf("%s=%s\n", result[i].zp_name, result[i].zp_value);

 }

 zonemgr_Property_array_free(result, result_count);

 }

 rc_instance_rele(zone_inst);

 }

}

In this example, we accessed the list of Zone global resource properties and printed out the
name and value of every Property that has a value.

RAD Event Handling

In this next example we are going to look at events. The ZoneManager instance defines a
"stateChange" event which clients can subscribe to for information about changes in the runtime
state of a zone.

EXAMPLE 3-13 Subscribing and Handling Events

#include <unistd.h>

C Client

Chapter 3 • Client Libraries 33

#include <time.h>

#include <rad/radclient.h>

#include <rad/radclient_basetypes.h>

#include <rad/client/1/zonemgr.h>

void stateChange_handler(rc_instance_t *inst, zonemgr_StateChange_t *payload, struct timespec

 timestamp, void *arg)

{

 printf("event: zone state change\n");

 printf("payload:\n zone: %s\n old state: %s\n new state: %s\n",

 payload->zsc_zone, payload->zsc_oldstate, payload->zsc_newstate);

 zonemgr_StateChange_free(payload);

}

rc_err_t status;

rc_instance_t *zm_inst;

int result_count;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);

if (conn != NULL) {

 status = zonemgr_ZoneManager__rad_lookup(conn, B_TRUE, &zm_inst, 0);

 if (status == RCE_OK) {

 status = zonemgr_ZoneManager_subscribe_stateChange(zm_inst, stateChange_handler, NULL);

 if (status == RCE_OK)

 printf("Successfully subscribed to statechange event!\n");

 rc_instance_rele(zm_inst);

 }

 }

 for (;;)

 sleep(1);

This is a simple example. We subscribe to the single event and pass in a handler and a handle
for our ZoneManager object. The handler will be invoked asynchronously by the framework
with the various event details and the supplied user data (the user data in this case being NULL).

RAD Error Handling

Finally, a quick look at error handling when manipulating remote references. The list of
possible errors is defined by the enum rc_err_t. There are a variety of errors which can be
delivered by RAD, but the one which potentially requires additional handling is the rc_err_t
value RCE_SERVER_OBJECT. The following snippet, shows how it can be used:

EXAMPLE 3-14 Handling RAD Errors

#include <rad/radclient.h>

#include <rad/radclient_basetypes.h>

#include <rad/client/1/zonemgr.h>

rc_err_t status;

rc_instance_t *zone_inst;

zonemgr_Result_t *result;

Java Client

34 Remote Administration Daemon Developer Guide • July 2014

zonemgr_Result_t *error;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);

if (conn != NULL) {

 status = zonemgr_Zone__rad_lookup(conn, B_TRUE, &zone_inst, 1, "name", "test-0");

 if (status == RCE_OK) {

 status = zonemgr_Zone_boot(zone_inst, NULL, 0, &result, &error);

 if (status == RCE_SERVER_OBJECT) {

 printf("Error Code %d\n", error->zr_code);

 if (error->zr_stdout != NULL)

 printf("stdout: %s\n", error->zr_stdout);

 if (error->zr_stderr != NULL)

 printf("stderr: %s\n", error->zr_stderr);

 zonemgr_Result_free(error);

 }

 rc_instance_rele(zone_inst);

 }

}

Note - With an rc_err_t value of RCE_SERVER_OBJECT you may get a payload. This is only
present if your interface method or property has defined an "error" element, in which case the
payload is the content of that error. If there is no "error" element for the interface method (or
property), then there is no payload and there will be no error reference argument for the method
or property get/set functions.

Java Client

The public Java interfaces are exported in two packages:

■ com.oracle.solaris.rad.client – The client implementation of the RAD protocol plus
associated functionality

■ com.oracle.solaris.rad.connect – Classes for connecting to a RAD instance

Note - A lot of these examples are based on the example zonemgr interface. Refer to the sample
in, Appendix A, “zonemgr ADR Interface Description Language” for this module to assist in
your understanding of the examples.

Connecting to RAD

Communication with a RAD instance is provided through the Connection class. There are
various factory interfaces to get different types of connections to a RAD instance. Each

Java Client

Chapter 3 • Client Libraries 35

mechanism returns a Connection instance which provides a standard interface to interact with
RAD. The connection can be closed with the close method.

Connecting to a Local Instance

Implicit authentication is performed against your user id and most RAD tasks you request with
this connection are performed with the privileges available to your user account.

EXAMPLE 3-15 Creating a Local Connection

import com.oracle.solaris.rad.connect.Connection;

Connection con = Connection.connectUnix();

//do something with con

Connecting to a Remote Instance and Authenticating

When connecting to a remote instance, there is no implicit authentication, so the connection is
not useful until authentication is performed. The com.oracle.solaris.rad.client package
provides a utility class (RadPamHandler) which may be used to perform a PAM login. If you
supply a locale, username and password, authentication proceeds in a non-interactive fashion. If
locale is null, then "C" is used.

Here is an example for Remote Connection to a TCP instance on port 7777

EXAMPLE 3-16 Remote Connection to a TCP instance on port 7777

import com.oracle.solaris.rad.client.RadPamHandler;

import com.oracle.solaris.rad.connect.Connection;

Connection con = Connection.connectTCP("henry", 7777);

System.out.println("Connected: " + con.toString());

RadPamHandler hdl = new RadPamHandler(con);

hdl.login("C", "user", "password"); // First argument is locale

con.close();

Rad Namespace

All RAD objects, which are represented in the ADR IDL as <interfaces>, are found by
searching the RAD namespace. The key point to note is that to access a RAD object, you need a
proxy, which is used to search the RAD namespace. This capability is provided by an interface
proxy class, which is defined in each interface's binding module.

Java Client

36 Remote Administration Daemon Developer Guide • July 2014

The proxy provides the base name (and version details) for interface instances and is structured
as follows:

<domain name>:type=<interface name>[,optional additional key value pairs]

The <domain name> and the <interface name> are automatically derived from the ADR IDL
definition and are stored in the module binding.

Searching for Objects

The Connection class provides mechanisms for listing objects by name and for obtaining a
remote object reference.

Obtaining Reference to a Singleton

If a module developer creates a "singleton" to represent an interface, then this can be accessed
very simply. For instance, the zonemgr module defines a singleton interface: ZoneInfo. It
contains information about the zone which contains the RAD instance with which we are
communicating.

In Java we need to compile our code with the language binding in our CLASSPATH. RAD Java
Language bindings are in the:

system/management/rad/client/rad-java package.

The JAR files for the various bindings are installed in /usr/lib/rad/java. Each major
interface version is accessible here in a JAR file which is named after the source ADR
document and it's major version number. For instance, to access major version 1 of the zonemgr
APIs, use /usr/lib/rad/java/zonemgr_1.jar. Symbolic links are provided as an indication of
the "default" version a client should use.

EXAMPLE 3-17 Obtaining Reference to a Singleton

import com.oracle.solaris.rad.connect.Connection;

import com.oracle.solaris.rad.zonemgr.ZoneInfo;

Connection con = Connection.connectUnix();

System.out.println("Connected: " + con.toString());

ZoneInfo zi = con.getObject(new ZoneInfo());

System.out.println("ZoneInfo: " + zi.getname());

We have imported ZoneInfo and Connection from our zonemgr binding and the rad.connect
package, connected to the local RAD instance and obtained a remote object reference directly
using a proxy instance. Once we have the remote reference we can access properties and
method directly. In the RAD Java implementation all properties are accessed using getter/setter
syntax. Thus to access the "name" property, we invoke getname.

Java Client

Chapter 3 • Client Libraries 37

Listing Instances of an Interface

Most interfaces contain more than one instance of the interface. For instance, the zonemgr
module defines a Zone interface and there is an instance for each zone on the system. The
Connection class provides the list_objects method to list interface instances. For instance:

EXAMPLE 3-18 Listing Interface Instances

import com.oracle.solaris.rad.client.ADRName;

import com.oracle.solaris.rad.connect.Connection;

import com.oracle.solaris.rad.zonemgr.Zone;

Connection con = Connection.connectUnix();

System.out.println("Connected: " + con.toString());

for (ADRName name: con.listObjects(new Zone())) {

 System.out.println("ADR Name: " + name.toString());

}

Obtaining a Remote Object Reference from a Name

A list of names (ADRName is the class name) are returned by the list_objects method from
the Connection class. Once we have a "name" we can obtain a remote object reference easily.

EXAMPLE 3-19 Obtaining a Remote Object Reference from a Name

import com.oracle.solaris.rad.client.ADRName;

import com.oracle.solaris.rad.connect.Connection;

import com.oracle.solaris.rad.zonemgr.Zone;

Connection con = Connection.connectUnix();

System.out.println("Connected: " + con.toString());

for (ADRName name: con.listObjects(new Zone())) {

 Zone zone = con.getObject(name);

 System.out.println("Name: " + zone.getname());

}

Sophisticated Searching

Clearly, the last example is not a very realistic use case. Rarely are we going to want to just pick
a (semi-random) zone from a list and interact with it. More often than not we'll be looking for
a zone which has a particular name or id or maybe a set of zones where the names all match
some kind of pattern. The key idea to bear in mind is that you can extend the basic definition

Java Client

38 Remote Administration Daemon Developer Guide • July 2014

of a name provided by a Proxy. For instance, if zones are uniquely identified by a key: "name",
then we can find a zone with name "test-0" as follows:

EXAMPLE 3-20 Using Glob Patterns

import com.oracle.solaris.rad.client.ADRName;

import com.oracle.solaris.rad.client.ADRGlobPattern;

import com.oracle.solaris.rad.connect.Connection;

import com.oracle.solaris.rad.zonemgr.Zone;

Connection con = Connection.connectUnix();

System.out.println("Connected: " + con.toString());

String keys[] = { "name" };

String values[] = { "test-0" };

ADRGlobPattern pat = new ADRGlobPattern(keys, values);

for (ADRName name: con.listObjects(new Zone(), pat)) {

 System.out.println("ADR Name: " + name.toString());

}

In this example, the ADRGlobPattern class (imported from the com.oracle.solaris.rad.client
package) is used to refine the search. The list_objects method from the Connection class is
used, but the search is refined by extending the name definition. ADRGlobPattern takes an array
of keys and an array of values and extends the name used in the search.

Glob Pattern Searching

We've already seen how we can use glob pattern searching to find a zone with a specific name.
We can also use a glob pattern to find zones with wildcard pattern matching. Keys or Values in
the pattern may contain "*" which is interpreted as expected. For instance if we wanted to find
all zones with a name which begins with "test":

EXAMPLE 3-21 Using Glob Patterns with Wildcards

import com.oracle.solaris.rad.client.ADRName;

import com.oracle.solaris.rad.client.ADRGlobPattern;

import com.oracle.solaris.rad.connect.Connection;

import com.oracle.solaris.rad.zonemgr.Zone;

Connection con = Connection.connectUnix();

System.out.println("Connected: " + con.toString());

String keys[] = { "name" };

String values[] = { "test*" };

ADRGlobPattern pat = new ADRGlobPattern(keys, values);

for (ADRName name: con.listObjects(new Zone(), pat)) {

 System.out.println("ADR Name: " + name.toString());

}

Java Client

Chapter 3 • Client Libraries 39

Using Maps when Pattern Searching

It can be more convenient to use Maps rather than arrays of keys/values. Here is the previous
example re-worked to use a Map of keys/values rather than arrays of keys/values.

EXAMPLE 3-22 Using Maps with Patterns

import com.oracle.solaris.rad.client.ADRName;

import com.oracle.solaris.rad.client.ADRGlobPattern;

import com.oracle.solaris.rad.connect.Connection;

import com.oracle.solaris.rad.zonemgr.Zone;

Connection con = Connection.connectUnix();

System.out.println("Connected: " + con.toString());

Map<String, String> kvpairs = new HashMap<String, String>();

kvpairs.put("name", "test*");

ADRGlobPattern pat = new ADRGlobPattern(kvpairs);

for (ADRName name: con.listObjects(new Zone(), pat)) {

 System.out.println("ADR Name: " + name.toString());

}

Regex Pattern Searching

We can also take advantage of RAD's ERE (Extended Regular Expression) search capabilities.
If we wanted to find only zones with name "test-0" or "test-1", then:

EXAMPLE 3-23 Using Regex Patterns

import com.oracle.solaris.rad.client.ADRName;

import com.oracle.solaris.rad.client.ADRRegexPattern;

import com.oracle.solaris.rad.connect.Connection;

import com.oracle.solaris.rad.zonemgr.Zone;

Connection con = Connection.connectUnix();

System.out.println("Connected: " + con.toString());

String keys[] = { "name" };

String values[] = { "test-0|test-1" };

ADRRegexPattern pat = new ADRRegexPattern(keys, values);

for (ADRName name: con.listObjects(new Zone(), pat)) {

 System.out.println("ADR Name: " + name.toString());

}

The key and the value must be valid Extended Regular Expressions as determined by the
instance of RAD to which you are connected. (i.e.: the expression is compiled and executed on
the server.)

Java Client

40 Remote Administration Daemon Developer Guide • July 2014

Interface Components
An API is defined by a module developer and contains a variety of components designed to
accomplish a task. These components are:

■ Enums
■ Values

■ Structs
■ Fields

■ Interfaces
■ Properties
■ Methods
■ Events

These components are all defined in an ADR Interface Description Language document. The
radadrgen utility is used to process the document to generate language specific components
which facilitate client/server interactions within RAD. More details in the role of ADR and
rad can be found in Chapter 4, “Abstract Data Representation”. Brief descriptions of each
component follows.

Enumerations

Enumerations are primarily used to offer a restricted range of choices for a property, an
interface method parameter, result, or error.

Using Enumeration Types

To access an enumerated type, simply import the generated class and interact with the
enumeration.

EXAMPLE 3-24 Using Enumerations

import com.oracle.solaris.rad.zonemgr.ErrorCode;

System.out.println(ErrorCode.NONE);

System.out.println(ErrorCode.COMMAND_ERROR);

Structs

Structs are used to define new types and are composed from existing built-in types and other
user defined types. In essence, they are simple forms of interfaces. They do not have methods or
events and are not present in the RAD namespace.

Java Client

Chapter 3 • Client Libraries 41

Using Struct Types

The zonemgr module defines a Property struct which represents an individual Zone
configuration property. The structure has the following members name, type, value, listValue,
and complexValue. Like enumerations, structures can be interacted with directly once the
binding is imported.

EXAMPLE 3-25 Using Structs

import com.oracle.solaris.rad.zonemgr.Property;

Property prop = new Property();

prop.setName("my name");

prop.setValue("a value");

System.out.println(prop.getName());

System.out.println(prop.getValue());

Interfaces/Objects

Interfaces (also known as objects) are the entities which populate the RAD namespace. They
must have a "name". An interface is composed of Events, Properties and Methods.

Obtaining an Object Reference

See the “Rad Namespace” on page 35 section.

Working with Object References

Once we have an object reference we can use this to interact with RAD in a very
straightforward fashion. All attributes and methods defined in the IDL are accessible directly
as attributes and methods of the Java objects which are returned by getObject. Attributes are
accessed using automatically generated getters/setters. For example, if the property is name,
then you would use getname/ setname(<value>). Here is an example which gets a reference to
a zone and then boots the zone.

EXAMPLE 3-26 Invoking a Remote Method

import com.oracle.solaris.rad.client.ADRName;

import com.oracle.solaris.rad.client.ADRGlobPattern;

import com.oracle.solaris.rad.connect.Connection;

import com.oracle.solaris.rad.zonemgr.Zone;

Connection con = Connection.connectUnix();

Java Client

42 Remote Administration Daemon Developer Guide • July 2014

System.out.println("Connected: " + con.toString());

String keys[] = { "name" };

String values[] = { "test-0" };

ADRGlobPattern pat = new ADRGlobPattern(keys, values);

for (ADRName name: con.listObjects(new Zone(), pat)) {

 Zone z = (Zone) con.getObject(name);

 z.boot(null);

}

In the above example we have connected to our RAD instance, created a search for a specific
object, retrieved a reference to the object and invoked a remote method on it.

Accessing a Remote Property

Accessing a remote property is just as simple as using a remote method.

EXAMPLE 3-27 Accessing a Remote Property

import com.oracle.solaris.rad.client.ADRName;

import com.oracle.solaris.rad.client.ADRGlobPattern;

import com.oracle.solaris.rad.connect.Connection;

import com.oracle.solaris.rad.zonemgr.*;

Connection con = Connection.connectUnix();

System.out.println("Connected: " + con.toString());

String keys[] = { "name" };

String values[] = { "test-0" };

ADRGlobPattern pat = new ADRGlobPattern(keys, values);

for (ADRName name: con.listObjects(new Zone(), pat)) {

 Zone z = (Zone) con.getObject(name);

 Resource filter = new Resource("global", null, null);

 List<Property> props = z.getResourceProperties(filter, null);

 System.out.println("Properties:");

 for (Property prop: props) {

 System.out.printf("\t%s = %s\n",prop.getName(), prop.getValue());

 }

}

In this example, we accessed the list of Zone global resource properties and printed out the
name and value of every Property.

RAD Event Handling

In this next example we are going to look at events. The ZoneManager instance defines a
"stateChange" event which clients can subscribe to for information about changes in the runtime
state of a zone.

Java Client

Chapter 3 • Client Libraries 43

EXAMPLE 3-28 Subscribing and Handling Events

import com.oracle.solaris.rad.client.ADRName;

import com.oracle.solaris.rad.client.RadEvent;

import com.oracle.solaris.rad.client.RadEventHandler;

import com.oracle.solaris.rad.connect.Connection;

import com.oracle.solaris.rad.zonemgr.*;

ZoneManager zmgr = con.getObject(new ZoneManager());

 con.subscribe(zmgr, "statechange", new StateChangeHandler());

 Thread.currentThread().sleep(100000000);

class StateChangeHandler extends RadEventHandler {

 public void handleEvent(RadEvent event, Object payload) {

 StateChange obj = (StateChange) payload;

 System.out.printf("Event: %s", event.toString());

 System.out.printf("\tcode: %s\n", obj.getZone());

 System.out.printf("\told: %s\n", obj.getOldstate());

 System.out.printf("\tnew: %s\n", obj.getNewstate());

 }

}

To handle an event, implement the RadEventInterface. The com.oracle.solaris.rad.client
package provides a default implementation (RadEventHandler) with limited functionality. This
class may be extended to provide additional event handling logic as in example above.

In this simple example we subscribe to the single event and pass in a handler and a reference to
our ZoneManager object. The handler will be invoked asynchronously by the framework with
the various event details and the supplied user data.

RAD Error Handling

Finally, a quick look at error handling when manipulating remote references. Python provides
a rich exception handling mechanism and RAD errors are propagated using this mechanism.
There are a variety of errors which can be delivered by RAD, but the main one which requires
handling is RadObjectException. The following snippet, shows how it can be used:

EXAMPLE 3-29 Handling RAD Errors

<imports..>

Connection con = Connection.connectUnix();

 for (ADRName name: con.listObjects(new Zone())) {

 Zone zone = con.getObject(name);

 try {

 zone.boot(null);

 }catch (RadObjectException oe) {

 Result res = (Result) oe.getPayload();

 System.out.println(res.getCode());

Python Client

44 Remote Administration Daemon Developer Guide • July 2014

 if (res.getStdout() != null)

 System.out.println(res.getStdout());

 if (res.getStderr() != null)

 System.out.println(res.getStderr());

 }

}

Note - With RadException exceptions you may get a payload. This is only present if your
interface method or property has defined an "error" element, in which case the payload is the
content of that error. If there is no "error" element for the interface method (or property), then
there is no payload and it will have a value of null.

Python Client

The public interfaces are exported in three
modules

■ rad.auth – Useful functions/classes for performing authentication
■ rad.client – The client implementation of the RAD protocol plus associated useful

functionality
■ rad.connect – Useful functions/classes for connecting to a RAD instance.

Note - A lot of these examples are based on the example zonemgr interface. Refer to the sample
in, Appendix A, “zonemgr ADR Interface Description Language” for this module to assist in
your understanding of the examples.

Alternatively, you can import the module and examine the module help

Accessing Help for a Binding Module

EXAMPLE 3-30 Accessing Help for a Binding Module

user@henry:/var/tmp# python

Python 2.6.8 (unknown, Feb 5 2013, 00:27:10) [C] on sunos5

Type "help", "copyright", "credits" or "license" for more information.

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr_1 as zonemgr

Python Client

Chapter 3 • Client Libraries 45

>>> help(zonemgr)

Connecting to RAD

Communication with a RAD instance is provided through the RADConnection class. There are
various mechanism to get different types of connections to RAD. Each mechanism returns a
RADConnection instance which provides a standard interface to interact with RAD.

The preferred approach for managing a connection is to use the "with" keyword. The
connection makes use of system resources and this style ensures that the resource is closed
correctly when the object goes out of scope. If this style isn't used, then the system resources
can be reclaimed explicitly with the close method.

Note - If you print the RadConnection object, it displays the state of the connection and will say
closed if the connection is closed.

Connecting to a Local Instance

Implicit authentication is performed against your user id and most RAD tasks you request with
this connection are performed with the privileges available to your user account.

EXAMPLE 3-31 Creating a Local Connection

>>> import rad.connect as radcon

>>> with radcon.connect_unix() as rc:

Connecting to a Remote Instance and Authenticating

When connecting to a remote instance, there is no implicit authentication, so the connection
is not useful until authentication is performed. The rad.auth module provides a utility
class (RadAuth) which may be used to perform a PAM login. If you supply a username and
password, authentication proceeds in a non-interactive fashion. If either is absent, you will
receive a console prompt for the missing information.

EXAMPLE 3-32 Remote Connection over TLS

>>> import rad.connect as radcon

>>> import rad.auth as rada

Python Client

46 Remote Administration Daemon Developer Guide • July 2014

>>> rc=radcon.connect_tls("henry")

>>> # Illustrate examining RadConnection state.

>>> print rc

<open RadConnection >

>>> auth = rada.RadAuth(rc)

>>> auth.pam_login("garypen", "xxxpasswordxxx")

>>> <now authenticated and can use this connection>

>>> rc.close()

>>> print rc

<closed RadConnection >

>>>

Rad Namespace

All RAD objects, which are represented in the ADR IDL as <interfaces>, are found by
searching the RAD namespace. The key point to note is that to access a RAD object, you need a
proxy, which is used to search the RAD namespace. This capability is provided by an interface
proxy class, which is defined in each interface's binding module.

The proxy provides the base name (and version details) for interface instances and is structured
as follows:

<domain name>:type=<interface name>[,optional additional key value pairs]

The <domain name> and the <interface name> are automatically derived from the ADR IDL
definition and are stored in the module binding.

Searching for Objects

The RADConnection class provides mechanisms for listing objects by name and for obtaining a
remote object reference.

Obtaining a Reference to a Singleton

If a module developer creates a "singleton" to represent an interface, then this can be accessed
very simply. For instance, the zonemgr module defines a singleton interface: ZoneInfo. It
contains information about the zone which contains the RAD instance with which we are
communicating.

EXAMPLE 3-33 Obtaining a Reference to a Singleton

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

>>> import rad.connect as radcon

Python Client

Chapter 3 • Client Libraries 47

>>> with radcon.connect_unix() as rc:

... zi = rc.get_object(zonemgr.ZoneInfo())

... print zi.name

...

global

>>>

We have imported our binding and the rad.connect module, connected to the local RAD
instance and obtained a remote object reference directly using a proxy instance. Once we
have the remote reference we can access properties and method directly as we would with any
Python object.

Listing Instances of an Interface

Most interfaces contain more than one instance of the interface. For instance, the zonemgr
module defines a Zone interface and there is an instance for each zone on the system. The
RADConnection class provides the list_objects method to list interface instances. For
instance:

EXAMPLE 3-34 Listing Interface Instances

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

>>> import rad.connect as radcon

>>> with radcon.connect_unix() as rc:

... zonelist = rc.list_objects(zonemgr.Zone())

... print zonelist

...

[Name: com.oracle.solaris.rad.zonemgr:type=Zone,name=test-0,id=-1 Version: (1.0), Name:

com.oracle.solaris.rad.zonemgr:type=Zone,name=test-1,id=-1 Version: (1.0), Name:

com.oracle.solaris.rad.zonemgr:type=Zone,name=NOT-TEST,id=-1 Version: (1.0)]

>>>

Obtaining a Remote Object Reference from a Name

Names (ADRName is the class name) are returned by the RADConnection list_objects method.
Once we have a "name" we can obtain a remote object reference easily:

EXAMPLE 3-35 Obtaining a remote object reference

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

>>> import rad.connect as radcon

>>> with radcon.connect_unix() as rc:

... zonelist = rc.list_objects(zonemgr.Zone())

... zone = rc.get_object(zonelist[0])

... print zone.name

...

Python Client

48 Remote Administration Daemon Developer Guide • July 2014

test-0

>>>

Sophisticated Searching

Clearly, the last example is not a very realistic use case. Rarely are we going to want to just pick
a (semi-random) zone from a list and interact with it. More often than not we'll be looking for
a zone which has a particular name or id or maybe a set of zones where the names all match
some kind of pattern. The key idea to bear in mind is that you can extend the basic definition
of a name provided by a Proxy. For instance, if zones are uniquely identified by a key: "name",
then we can find a zone with name "test-0" as follows:

EXAMPLE 3-36 Using Glob Patterns

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

>>> import rad.client as radc

>>> import rad.connect as radcon

>>> with radcon.connect_unix() as rc:

... zonelist = rc.list_objects(zonemgr.Zone(), radc.ADRGlobPattern({"name" : "test-0"}))

... print zonelist

...

[Name: com.oracle.solaris.rad.zonemgr:type=Zone,name=test-0,id=-1 Version: (1.0)]

>>>

The ADRGlobPattern class (imported from the rad.client module) to refine our search. We
are using the same RADConnection list_objects method, but we are refining the search by
extending the name definition. ADRGlobPattern takes a key:value dictionary and extends the
name used for the search.

Glob Pattern Searching

We have already seen how we can use glob pattern searching to find a zone with a specific
name. We can also use a glob pattern to find zones with wildcard pattern matching. Keys or
Values in the pattern may contain "*" which is interpreted as expected. For instance if we
wanted to find all zones with a name which begins with "test":

EXAMPLE 3-37 Using Glob Patterns with Wildcards

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

>>> import rad.client as radc

>>> import rad.connect as radcon

>>> with radcon.connect_unix() as rc:

... zonelist = rc.list_objects(zonemgr.Zone(), radc.ADRGlobPattern({"name" : "test*"}))

... print zonelist

...

Python Client

Chapter 3 • Client Libraries 49

[Name: com.oracle.solaris.rad.zonemgr:type=Zone,name=test-0,id=-1 Version: (1.0), Name:

com.oracle.solaris.rad.zonemgr:type=Zone,name=test-1,id=-1 Version: (1.0)]

>>>

Regex Pattern Searching

We can also take advantage of RAD's ERE (Extended Regular Expression) search capabilities.
If we wanted to find only zones with name "test-0" or "test-1", then:

EXAMPLE 3-38 Using Regex Patterns

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

>>> import rad.client as radc

>>> import rad.connect as radcon

>>> with radcon.connect_unix() as rc:

... zonelist = rc.list_objects(zonemgr.Zone(), radc.ADRRegexPattern({"name" : "test-0|test-1"}))

... print zonelist...

[Name: com.oracle.solaris.rad.zonemgr:type=Zone,name=test-0,id=-1 Version: (1.0), Name:

com.oracle.solaris.rad.zonemgr:type=Zone,name=test-1,id=-1 Version: (1.0)]

>>>

The key and the value must be valid Extended Regular Expressions as determined by the
instance of RAD to which you are connected. (i.e.: the expression is compiled and executed in
the server.)

Interface Components
An API is defined by a module developer and contains a variety of components designed to
accomplish a task. These components are:

■ Enums
■ Values

■ Structs
■ Fields

■ Interfaces
■ Properties
■ Methods
■ Events

These components are all defined in ADR Interface Description Language document. The
radadrgen utility is used to process the document to generate language specific components
which facilitate client/server interactions within RAD. More details in the role of ADR and
rad can be found in Chapter 4, “Abstract Data Representation”. Brief descriptions of each
component follows.

Python Client

50 Remote Administration Daemon Developer Guide • July 2014

Enumerations

Enumerations are primarily used to offer a restricted range of choices for a property, an
interface method parameter, result, or error.

Using Enumeration Types

To access an enumerated type, simply import the binding and interact with the enumeration.

EXAMPLE 3-39 Using Enumerations

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

>>> print zonemgr.ErrorCode.NONE

NONE

>>> print zonemgr.ErrorCode.COMMAND_ERROR

COMMAND_ERROR

>>>

Structs

Structs are used to define new types and are composed from existing built-in types and other
user defined types. In essence, they are simple forms of interfaces: no methods or events and
they are not present in the RAD namespace.

Using Struct Types

The zonemgr module defines a Property struct which represents an individual Zone
configuration property. The structure has the following members name, type, value, listValue,
and complexValue. Like enumerations, structures can be interacted with directly once the
binding is imported.

EXAMPLE 3-40 Using Structs

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

>>> prop = zonemgr.Property("autoboot", "false")

>>> print prop

Property(name = 'autoboot', value = 'false', type = None, listvalue = None, complexvalue = None)

>>> prop.name = "my name"

>>> prop.value = "a value"

>>> print prop.name

my name

>>> print prop.value

a value

>>>

Python Client

Chapter 3 • Client Libraries 51

Interfaces/Objects

Interfaces (also known as objects) are the entities which populate the RAD namespace. They
must have a "name". An interface is composed of Events, Properties and Methods.

Obtaining an Object Reference

See the “Rad Namespace” on page 46 section.

Working with Object References

Once we have an object reference we can use this to interact with RAD in a very
straightforward fashion. All attributes and methods defined in the IDL are accessible directly as
attributes of the python objects which are returned by get_object.

Here is an example which gets a reference to a zone and then boots the zone.

EXAMPLE 3-41 Working with Object References

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

>>> import rad.client as radc

>>> import rad.connect as radcon

>>> with radcon.connect_unix() as rc:

... patt = radc.ADRGlobPattern({"name" : "test-0"})

... zone = rc.get_object(zonemgr.Zone(), patt)

... print zone.name

... zone.boot(None)

>>>

In the above example we have connected to our RAD instance, created a search for a specific
object, retrieved a reference to the object and accessed a remote property on it. This does not
include error handling yet.

Accessing a Remote Property

Here is another example for accessing a remote property.

EXAMPLE 3-42 Accessing a Remote Property

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

>>> import rad.client as radc

>>> import rad.connect as radcon

>>> with radcon.connect_unix() as rc:

... name = rc.list_objects(zonemgr.Zone(), radc.ADRGlobPattern({"name" : "test-0"}))

Python Client

52 Remote Administration Daemon Developer Guide • July 2014

... zone = rc.get_object(name[0])

... for prop in zone.getResourceProperties(zonemgr.Resource("global")):

... if prop.name == "brand":

... print "Zone: %s, brand: %s" % (zone.name, prop.value)

... break

...

Zone: test-0, brand: solaris

>>>

In this example, we accessed the list of Zone global resource properties and search the list of
properties for a property with the name property of "brand". When we find it we print the value
of the "brand" property and then terminate the loop.

RAD Event Handling

In this next example we are going to look at events. The ZoneManager instance defines a
"stateChange" event which clients can subscribe to for information about changes in the runtime
state of a zone.

EXAMPLE 3-43 Subscribing and Handling Events

import rad.connect as radcon

import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

import signal

def handler(event, payload, user):

 print "event: %s" % str(event)

 print "payload: %s" % str(payload)

 print "zone: %s" % str(payload.zone)

 print "old: %s" % str(payload.oldstate)

 print "new: %s" % str(payload.newstate)

with radcon.connect_unix() as rc:

 zm = rc.get_object(zonemgr.ZoneManager())

 rc.subscribe(zm, "stateChange", handler, zm)

 signal.pause()

This is a simple example. We subscribe to the single event and pass in a handler and a reference
to our ZoneManager object. The handler will be invoked asynchronously by the framework
with the various event details and the supplied user data. The user data is an optional argument
at subscription and if not provided, the handler will receive None as the user parameter.

RAD Error Handling

Finally, a quick look at error handling when manipulating remote references. Python provides
a rich exception handling mechanism and RAD errors are propagated using this mechanism.
There are a variety of errors which can be delivered by RAD, but the main one which requires
handling is rad.client.ObjectError. The following snippet, shows how it can be used:

Python Client

Chapter 3 • Client Libraries 53

EXAMPLE 3-44 Handling RAD Errors

import rad.client as radc

import rad.conect as radcon

import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

import logging

import sys

logging.basicConfig(filename='/tmp/example.log', level=logging.DEBUG)

with radcon.connect_unix() as rc:

 patt = radc.ADRGlobPattern({"name" : "test-0"})

 test0 = rc.get_object(zonemgr.Zone(), patt)

 print test0.name

 try:

 test0.boot(None)

 except radc.ObjectError as ex:

 error = ex.get_payload()

 if not error:

 sys.exit(1)

 if error.stdout is not None:

 logging.info(error.stdout)

 if error.stderr is not None:

 logging.info(error.stderr)

 sys.exit(1)

Note - With ObjectError exceptions you may get a payload. This is only present if your
interface method or property has defined an "error" element, in which case the payload is the
content of that error. If there is no "error" element for the interface method (or property), then
there is no payload and it will have a value of None.

54 Remote Administration Daemon Developer Guide • July 2014

Chapter 4 • Abstract Data Representation 55

 4 ♦ ♦ ♦ C H A P T E R 4

Abstract Data Representation

The data model used by rad is known as the Abstract Data Representation (ADR). ADR defines
a formal IDL for describing types and interfaces supplies a toolchain for operating on that
IDLand provides libraries used by rad, its extension modules, and its clients.

ADR Interface Description Language

The APIs used by rad are defined using an XML-based IDL. The normative schema for this
language can be found in /usr/share/lib/xml/rng/adr.rng.1. The namespace name is
http://xmlns.oracle.com/radadr.

Overview

The top-level element in an ADR definition document is an api. The api element has one
mandatory attribute, name, which is used to name the output files. The element contains one or
more derived type or interface definitions. Because there is no requirement that an interface use
derived types, there is no requirement that any derived types be specified in an API document.
To enable consumers to use the data typing defined by ADR for non-interface purposes, there is
no requirement that an interface is defined either. However, note that either a derived type or an
interface must be defined.

Two derived types are available for definition and use by interfaces: a structured type that can
be defined with a struct element, and an enumeration type that can be defined with an enum
element. Interfaces are defined using interface elements. The derived types defined in an API
document are available for use by all interfaces defined in that document.

This is what an API looks like:

EXAMPLE 4-1 Skeleton API document

<api xmlns="http://xmlns.oracle.com/radadr" name="com.oracle.solaris.rad.example" register="true">

 <version/>

 <struct>...</struct>

ADR Interface Description Language

56 Remote Administration Daemon Developer Guide • July 2014

 <struct>...</struct>

 <enum>...</enum>

 <interface>...</interface>

 <interface>...</interface>

</api>

The xmlns is required to indicate the type of the XML document. The name attribute is
identifying the name of the API, the namespace within which all subsidiary interfaces are to be
found. There are additional attributes to assist in the generation of server module code.

The register attribute is a boolean which is optional and true by default. If true, then radadrgen
will automatically generates a _rad_reg function when generating server implementation code.
If false, the function is not generated and the module author will need to provide a _rad_reg
function. This option is primarily provided for the creation of special types of modules, such
as protocol or transport modules, in general it does not need to be specified, since the default
generated function is enough for most purposes.

Version

A version element is required for all APIs.

The initial version of an API should always be defined as follows:

<version major="1" minor="0"/>

This indicates that the module is starting at version 1.0.

Enumeration Definitions

The enum element has a single mandatory attribute, name. The name is used when referring to
the enumeration from other derived type or interface definitions. An enum contains one or more
value elements, one for each user-defined enumerated value. A value element has a mandatory
name attribute that gives the enumerated value a symbolic name. The symbolic name isn't used
elsewhere in the API definition, only in the server and various client environments. How the
symbolic name is exposed in those environments is environment-dependent. An environment
offering an explicit interface to rad should provide an interface that accepts the exact string
values defined by the value elements' name attributes.

Some language environments support associating scalar values with enumerated type values,
for example C. To provide richer support for these environments, ADR supports this concept
as well. By default, an enumerated value has an associated scalar value 1 greater than the
preceding enumerated value's associated scalar value. The first enumerated value is assigned a
scalar value of 0. Any enumerated value element may override this policy by defining a value
with the desired value. A value attribute must not specify a scalar value already assigned,

ADR Interface Description Language

Chapter 4 • Abstract Data Representation 57

implicitly or explicitly, to an earlier value in the enumeration and value elements contain no
other elements.

EXAMPLE 4-2 Enumeration Definition

<enum name="Colors">

<value name="RED" /> <!-- scalar value: 0 -->

<value name="ORANGE" /> <!-- scalar value: 1 -->

<value name="YELLOW" /> <!-- scalar value: 2 -->

<value name="GREEN" /> <!-- scalar value: 3 -->

<value name="BLUE" /> <!-- scalar value: 4 -->

<value name="VIOLET" value="6" /> <!-- indigo was EOLed -->

</enum>

Structure Definitions

Like the enum element, the struct element has a single mandatory attribute, name. The name is
used when referring to the structure from other derived type or interface definitions. A struct
contains one or more field elements, one for each field of the structure. A field element has
a mandatory name attribute that gives the field a symbolic name. The symbolic name isn't used
elsewhere in the API definition, only in the server and various client environments. In addition
to a name, each field must specify a type.

You can define the type of a field in multiple ways. If a field is a plain base type, that type
is defined with a type attribute. If a field is a derived type defined elsewhere in the API
document, that type is defined with a typeref attribute. If a field is an array of some type (base
or derived), that type is defined with a nested list element. The type of the array is defined
in the same fashion as the type of the field: either with a type attribute, a typeref attribute, or
another nested list element.

A field's value may be declared nullable by setting the field element's nullable attribute to
true.

Note - Structure fields, methods return values, method arguments, attributes, error return values,
and events all have types, and in the IDL, use identical mechanisms for defining those types.

EXAMPLE 4-3 struct Definition

<struct name="Name">

 <field name="familyName" type="string" />

 <field name="givenNames">

 <list type="string" />

 </field>

</struct>

ADR Interface Description Language

58 Remote Administration Daemon Developer Guide • July 2014

<struct name="Person">

 <field name="name" typeref="Name" />

 <field name="title" type="string" nullable="true" />

 <field name="shoeSize" type="int" />

</struct>

Interface Definitions

An interface definition has a name, and one or more attributes, methods, or events. An
interface's name is defined with the interface element's mandatory name attribute. This name
is used when referring to the inherited interface from other interface definitions, as well as in
the server and various client environments. The other characteristics of an interface are defined
using child elements of the interface element.

Methods

Each method in an interface is defined by a method element. The name of a method is defined
by this element's mandatory name attribute. The other properties of a method are defined by
child elements of the method.

If a method has a return value, it is defined using a single result element. The type of the
return value is specified in the same way the type is specified for a structure field. If no result
element is present, the method has no return value.

If a method can fail for an API-specific reason, it is defined using a single error element. The
type of an error is specified the same way the type is specified for a structure field. Unlike
a structure field, an error need not specify a type. Such a situation is indicated by an error
element with no attributes or child elements. If no error element is present, the method will
only fail if there is a connectivity problem between the client and the server.

A method's arguments are defined, in order, with zero or more argument elements. Each
argument element has a mandatory name attribute. The type of an argument is specified in the
same way the type is specified for a structure field.

EXAMPLE 4-4 Method Definition

<struct name="Meal">...</struct>

<struct name="Ingredient">...</struct>

<method name="cook">

 <result typeref="Meal" />

 <error />

 <argument type="string" name="name" nullable="true" />

 <argument name="ingredients">

ADR Interface Description Language

Chapter 4 • Abstract Data Representation 59

 <list typeref="Ingredient" />

 </argument>

</method>

Attributes

Each attribute in an interface is defined by a property element. The name of an attribute is
defined by this element's mandatory name attribute. The types of access permitted are defined
by the mandatory access attribute, which takes a value of ro, wo, or rw, corresponding to read-
only access, write-only access, or read-write access, respectively.

The type of an attribute is specified in the same way the type is specified for a structure field.

If access to an attribute can fail for an API-specific reason, it is defined using one or more
error elements. An error element in a property may specify a for attribute, which takes a
value of ro, wo, or rw, corresponding to the types of access the error return definition applies
to. An error element with no for attribute is equivalent to one with a for attribute set to the
access level defined on the property. Two error elements may not specify overlapping access
types. For example, on a read-write property it is invalid for one error to have no for attribute
(implying rw) and one to have a for attribute of wo they both specify an error for writing.

The type of an error is specified the same way the type is specified for a method. It is identical
to defining the type of a structure, with the exception that a type need not be defined.

EXAMPLE 4-5 Attribute Definition

<struct name="PrivilegeError">...</struct>

<property name="guestList" access="rw">

 <list type="string" />

 <error for="wo" typeref="PrivilegeError" />

 <!-- Reads cannot fail -->

</property>

Events

Each event in an interface is defined by a event element. The name of an event is defined by
this element's mandatory name attribute. The type of an event is specified in the same way the
type is specified for a structure field.

EXAMPLE 4-6 Event Definition

<struct name="TremorInfo">...</struct>

<event name="earthquakes" typeref="TremorInfo" />

ADR Interface Description Language

60 Remote Administration Daemon Developer Guide • July 2014

Example

EXAMPLE 4-7 Complete API Example

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<api xmlns="http://xmlns.oracle.com/radadr" name="com.oracle.solaris.rad.example">

 <version major="1" minor="0"/>

 <struct name="StringInfo">

 <field type="integer" name="length" />

 <field name="substrings">

 <list type="string" />

 </field>

 </struct>

 <struct name="SqrtError">

 <field type="float" name="real" />

 <field type="float" name="imaginary" />

 </struct>

 <enum name="Mood">

 <value name="IRREVERENT" />

 <value name="MAUDLIN" />

 </enum>

 <struct name="MoodStatus">

 <field typeref="Mood" name="mood" />

 <field type="boolean" name="changed" />

 </struct>

 <interface name="GrabBag" stability="private">

 <method name="sqrt">

 <result type="integer" />

 <error typeref="SqrtError" />

 <argument type="integer" name="x" />

 </method>

 <method name="parseString">

 <result typeref="StringInfo" nullable="true" />

 <argument type="string" name="str" nullable="true" />

 </method>

 <property typeref="Mood" name="mood" access="rw">

 <error for="wo" />

 </property>

 <event typeref="MoodStatus" name="moodswings" />

 </interface>

</api>

radadrgen

Chapter 4 • Abstract Data Representation 61

radadrgen

radadrgen is the ADR IDL processing tool. It is used to generate API-specific language
bindings for the rad server and various client environments. See the radadrgen(1) man page
for details on all its options.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1radadrgen-1

62 Remote Administration Daemon Developer Guide • July 2014

Chapter 5 • libadr 63

 5 ♦ ♦ ♦ C H A P T E R 5

libadr

The library libadr provides structure definitions and subroutines essential to C programs using
ADR. Code generated by radadrgen requires this library, and rad itself is based on it. libadr
contains three major areas of functionality: data management, API management, and object
name operations.

libadr is delivered in the system/management/rad package. C programs can link with it by
specifying -ladr on the compile or link line.

Data Management

Consumers of the ADR data management routines should include the rad/adr.h header file:

#include <rad/adr.h>

This file contains definitions for the two fundamental data management types, adr_type_t and
adr_data_t, as well as prototypes for data allocation, access, and validation routines.

adr_type_t Type

Each data type is represented by an adr_type_t type, whether it is just a base type or a complex
type of nested structures and arrays. The adr_type_t contains all the information necessary
to understand the structure of the type. libadr provides statically-allocated singletons of
adr_type_t type for the base types. These singleton types are more than a convenience: they
must be used when referencing the base types.

The base types and their corresponding array types are listed in the following table.

TABLE 5-1 Base and Array Types

ADR type C adr_type_t C array adr_type_t

string adr_t_string adr_t_array_string

Data Management

64 Remote Administration Daemon Developer Guide • July 2014

ADR type C adr_type_t C array adr_type_t

integer adr_t_integer adr_t_array_integer

uinteger adr_t_uinteger adr_t_array_uinteger

long adr_t_long adr_t_array_long

ulong adr_t_ulong adr_t_array_ulong

time adr_t_time adr_t_array_time

name adr_t_name adr_t_array_name

boolean adr_t_boolean adr_t_array_boolean

opaque adr_t_opaque adr_t_array_opaque

secret adr_t_secret adr_t_array_secret

float adr_t_float adr_t_array_float

double adr_t_double adr_t_array_double

reference adr_t_double adr_t_array_reference

The adr_type_t for a derived type should also be unique, but obviously they cannot be defined
by libadr. Although technically adr_type_t could be dynamically allocated, at the moment, the
only supported way of defining an adr_type_t is to generate a definition using the ADR IDL
and radadrgen.

adr_data_t Type

The most frequently used type defined by rad/adr.h is adr_data_t. An adr_data_t object
represents a unit of typed data. It could be of a base type, such as an integer (“1”) or string
(“banana”), or of a derived type like a structure or an array. Each adr_data_t maintains a
pointer to its adr_type_t.

A few common traits simplify access to adr_data_t objects. The first is that, except for the
structure and array derived types (not enumerations), all adr_data_t values are immutable.
They are assigned a value when they are created, and may not be changed thereafter.

Another is that all adr_data_t values are reference counted. Sometimes data structures need
to be used by multiple consumers simultaneously, or simply retained for subsequent use.
Reference counting is a cheap way to cut down on the cost of copying large data structures
and the complexity of handling allocation failures. Though the reference counting is thread-
safe, there is no other locking, which is not a problem for an immutable adr_data_t. Though
the value of a non-immutable adr_data_t may be modified post-creation, the convention
used throughout rad and its associated libraries is that once visibility of an adr_data_t has

Data Management

Chapter 5 • libadr 65

spread past its creator, it may no longer be modified. This eliminates the need for additional
synchronization.

adr_data_t *adr_data_ref(adr_data_t *data);

void adr_data_free(adr_data_t *data);

The reference count on the adr_data_t data is incremented with adr_data_ref. For
convenience, adr_data_ref returns data. Symmetrically, the reference count on the adr_data_t
data is decremented with adr_data_free. As the name implies, this may result in data
being freed; after calling adr_data_free the caller must not access data in any way. Neither
adr_data_ref nor adr_data_free can fail.

A third trait is that interfaces that accept adr_data_t values take ownership of the caller's
reference on the adr_data_t. If the caller needs to refer to the adr_data_t after passing
a pointer to it to a libadr interface, it must first secure an additional reference with
adr_data_ref. Interfaces that return adr_data_t that are referenced by other adr_data_t do
not increase the reference count on the returned adr_data_t. The returned value is guaranteed
to persist only as long as the caller retains a reference on the referring adr_data_t, or if the
caller uses adr_data_ref to acquire its own reference on the returned adr_data_t. The net
result is that in the common case where an adr_data_t does not have multiple simultaneous
consumers, libadr consumers need not perform any explicit reference counting at all. They can
naively allocate and free adr_data_t values as if they were any other data structure. Therefore
the adr_data_t implementation can optimize for the case where the reference count is 1.

Lastly, many adr_data_t management routines rely on dynamic memory allocation, which
means that proper error handling is essential. To increase the clarity and maintainability of
adr_data_t consumers, and reduce the likelihood of mishandling errors, libadr interfaces
explicitly accept NULL adr_data_t inputs and fail in sympathy. This means that a libadr
consumer can perform a large number of operations on the instances of adr_data_t, checking
only the final result for failure. Additionally, if a libadr routine is going to fail for any reason,
references to a non-NULL adr_data_t passed to the routine is released. In other words, no
special clean-up is needed when a libadr routine fails.

Allocating adr_data_t Values

The first phase in the lifecycle of an adr_data_t is allocation. For each ADR type, there is
at least one allocation routine. The arguments to an allocation routine depend on the type. In
the case of mandatorily immutable types, allocation implies initialization, and their allocation
routines take as arguments the value the adr_data_t is to have. Structures and arrays each have
a single generic allocation routine that takes an adr_type_t* specifying the type of the structure
or array. An adr_data_t is assigned values using a separate set of routines.

All allocation routines return a non-NULL adr_data_t * on success, or NULL on failure.

Data Management

66 Remote Administration Daemon Developer Guide • July 2014

Note - The allocation and initialization routines for immutable types may elect to return a
reference to a shared adr_data_t for a commonly used value, for example, boolean true or
false. This substitution should be undetectable by adr_data_t consumers who correctly manage
adr_data_t reference counts and respect the immutability of these types.

Allocating Strings

adr_data_t *adr_data_new_string(const char *s, lifetype_t lifetime);

Allocates a new string adr_data_t, initializing it to the NULL-terminated string pointed to by
s. If s is NULL, adr_data_new_string will fail.

The value of the lifetime determines how the string s is to be used.

LT_COPY adr_data_new_string must allocate and make a copy of the string pointed to by s. This
copy will be freed when the adr_data_t is freed.

LT_CONST The string pointed to by s is a constant that will never be changed or deallocated.
Therefore, adr_data_new_string need not copy the string; it can instead refer directly
to s indefinitely. This is the recommended lifetime value when passing a string literal to
adr_data_new_string.

LT_FREE The string pointed to by s was dynamically allocated using malloc and is no longer
needed by the caller. adr_data_new_string will ensure that the string is eventually freed.
It may choose to use the string directly instead of making a copy of it. Obviously, this
lifetime value should never be used with string literals.

If lifetime is LT_FREE and adr_data_new_string fails for any reason, s will automatically be
freed.

adr_data_t *adr_data_new_fstring (const char *format, ...);

Allocates a new string adr_data_t, initializing it to the string generated by calling sprintf on
format and any additional arguments provided.

adr_data_t *adr_data_new_nstring (const char *s, size_t count);

Allocates a new string adr_data_t, initializing it to the first count bytes of s.

Allocating boolean

adr_data_t *adr_data_new_boolean (boolean_t b);

Allocates a new boolean adr_data_t, initializing it to the boolean value specified by b.

Data Management

Chapter 5 • libadr 67

Allocating Numeric Types
adr_data_t *adr_data_new_integer (int i);

adr_data_t *adr_data_new_long (long long l);

adr_data_t *adr_data_new_uinteger (unsigned int ui);

adr_data_t *adr_data_new_ulong (unsigned long long ul);

adr_data_t *adr_data_new_float (float f);

adr_data_t *adr_data_new_double (double d);

Allocates a new integer, long, uinteger, ulong, float, or double adr_data_t, respectively,
initializing it to the value of the single argument provided.

Allocating Times
adr_data_t *adr_data_new_time (long long sec, int nano);

adr_data_t *adr_data_new_time_ts (timespec &t);

adr_data_t *adr_data_new_time_now (void);

Allocates a new time adr_data_t, initializing it to the argument, if any, provided.

Allocating Opaques
adr_data_t *adr_data_new_opaque (void *buffer, size_t length, adr_lifetime_t lifetime);

Allocates a new opaque adr_data_t, initializing it to the length bytes found at buffer. How
adr_data_new_opaque uses buffer depends on lifetime, which takes on the same meanings as it
does when used with adr_data_new_string.

Allocating Secrets
adr_data_t *data_new_secret (const char *p);

Allocates a new secret adr_data_t, initializing it to the contents of the NULL-terminated 8-bit
character array pointed to by p. The secret type is used to hold sensitive data such as passwords.
Client/server implementations may take additional steps to protect the content of the character
array data, for example, zeroing buffers after use.

Allocating Names
adr_data_t *adr_data_new_name (adr_name_t *name);

Data Management

68 Remote Administration Daemon Developer Guide • July 2014

Allocates a new name adr_data_t, initializing it to the value of name. adr_name_t types
are reference counted; the reference on name held by the caller is transferred to the resulting
adr_data_t by the call to adr_data_new_name. A caller that needs to continue using
name should secure an additional reference to it before calling adr_data_new_name. If
adr_data_new_name fails for any reason, the caller's reference to name will be released.

Allocating Enumerations

adr_data_t *adr_data_new_enum (adr_type_t *type, int value);

adr_data_t *adr_data_new_enum_byname (adr_type_t *type, const char * name);

The two ways to allocate an enumeration adr_data_t both require that the adr_type_t of
the enumeration be specified. The first form, adr_data_new_enum, takes a scalar value as an
argument and initializes the enumeration adr_data_t to the enumerated value that was assigned
(implicitly or explicitly) that scalar value. The second form, adr_data_new_enum_byname,
takes a pointer to a string as an argument and initializes the enumeration adr_data_t to the
enumerated value that has that name. If value does not correspond to an assigned scalar value or
name does not correspond to an enumerated value name, the respective allocation routine fails.

The nature of an enumeration is that all possible values are known. Enumerated types generated
by radadrgen have singleton adr_data_t values that will be returned by adr_data_new_enum
and adr_data_new_enum_byname. For efficiency and to reduce the error handling that needs to
be performed at runtime, these values have defined symbols that may be referenced directly.

The value of type must be an enumeration data-type.

Allocating Structures

adr_data_t *adr_data_new_struct (adr_type_t *type);

Allocates an uninitialized structure adr_data_t of type type. Any post-allocation initialization
that occurs must be consistent with type.

The value of type must be a structured type.

Allocating Arrays

adr_data_t *adr_data_new_array (adr_type_t *type, int size);

Allocates an empty array adr_data_t of type type. Arrays will automatically adjust their size
to fit the amount of data placed in them. The size argument can be used to initialize the size of
the array if it is known beforehand.

Data Management

Chapter 5 • libadr 69

The value of type must be an array type.

Accessing Simple adr_data_t Values

rad/adr.h defines macros that behave like the following prototypes:

const char *adr_data_to_string(adr_data_t *data);

int adr_data_to_integer(adr_data_t *data);

unsigned int adr_data_to_uinteger(adr_data_t *data);

long long adr_data_to_longint(adr_data_t *data);

unsigned long long adr_data_to_ulongint(adr_data_t *data);

boolean_t adr_data_to_boolean(adr_data_t *data);

adr_name_t *adr_data_to_name(adr_data_t *data);

const char *adr_data_to_secret(adr_data_t *data);

float adr_data_to_float(adr_data_t *data);

double adr_data_to_double(adr_data_t *data);

const char * adr_data_to_opaque(adr_data_t *data);

long long adr_data_to_time_secs(adr_data_t *data);

int adr_data_to_time_nsecs(adr_data_t *data);

In all cases, pointer return values will point to data that is guaranteed to exist only as long as the
caller retains their reference to the data parameter.

Additionally, the following functions are provided for interpreting enumeration values:

const char *adr_enum_tostring(adr_data_t *data);

int adr_enum_tovalue(adr_data_t *data);

adr_enum_tostring maps data to the value's string name. adr_enum_tovalue maps data to its
scalar value.

The behavior is undefined if a macro or function is called on an adr_data_t of the wrong type.

Manipulating Derived Type adr_data_t

Structure and array derived types are assigned no value when they are allocated. As a best
practice, you should assign some value to them before use; in the case of structured types with

Data Management

70 Remote Administration Daemon Developer Guide • July 2014

non-nullable fields, it is required. In either case, once a reference to a derived type is shared, it
may no longer be modified.

Manipulating Array adr_data_t Values

rad/adr.h defines array-access macros that behave like the following prototypes:

int adr_array_size(adr_data_t *array);

adr_data_t *adr_array_get(adr_data_t *array, int index);

adr_array_size returns the number of elements in array. adr_array_get returns the index
element of array. The adr_data_t returned by adr_array_get is valid as long as the caller
retains its reference to array; if it is needed longer, the caller should take a hold on the
adr_data_t (see “adr_data_t Type” on page 64). If the index element of array has not
been set, the behavior of adr_array_get is undefined.

The following functions modify arrays:

int adr_array_add(adr_data_t *array, adr_data_t * value);

adr_array_add adds value to the end of array. As described in “adr_data_t
Type” on page 64, the caller's reference to value is transferred to the array. adr_array_add
might need to allocate memory and can therefore fail. When adr_array_add succeeds, it returns
0. When adr_array_add fails, it will return 1 and array will be marked invalid. For more
information, see “Validating adr_data_t Values” on page 71.

void adr_array_remove(adr_data_t *array, int index);

adr_array_remove removes the index element from array. The array's reference count on the
element at index is released, possibly resulting in its deallocation. All elements following index
in array are shifted to the next lower position in the array, for example, element index+1 is
moved to index. The behavior of adr_array_remove is undefined if index is greater than or
equal to the size of array as returned by adr_array_size.

int adr_array_vset(adr_data_t *array, int index, adr_data_t * value);

adr_array_vset sets the index element of array to value. If an element was previously at
index, the reference on that element held by the array is released. adr_array_vset may need
to allocate memory and can therefore fail. When adr_array_vset succeeds, it returns 0. When
adr_array_vset fails, it will return 1 and array will be marked invalid. For more information,
see “Validating adr_data_t Values” on page 71.

Manipulating the Structure of an adr_data_t Type

The primary interface for accessing an adr_data_t structure is adr_struct_get:

Data Management

Chapter 5 • libadr 71

adr_data_t *adr_struct_get(adr_data_t *struct, const char *field);

adr_struct_get returns the value of the field named field. If the field is nullable and has no
value or if the field hasn't been given a value (that is the structure was incompletely initialized),
adr_struct_get returns NULL. The adr_data_t returned by adr_struct_get is valid as long as
the caller retains its reference to struct. If it is needed longer the caller should take a hold on
the adr_data_t. If struct does not have a field named field, the behavior of adr_struct_get
is undefined.

The primary interface for writing to an adr_data_t structure is adr_struct_set:

void adr_struct_set(adr_data_t *struct, const char *field, adr_data_t *value);

adr_struct_set writes value to the field named field. If field previously had a value, the
reference on that value held by the structure is released. If struct does not have a field
named field, or if the type of value does not match that of the specified field the behavior of
adr_struct_set is undefined.

Validating adr_data_t Values

libadr provides a rich environment for examining and manipulating typed data. However,
unlike C's native typing system, the compiler is unaware of libadr type relationships and is
therefore unable to perform static type-checking at compile time. All type checking must be
performed at runtime.

The most useful of the type-checking tools provided by libadr is adr_data_verify:

boolean_t adr_data_verify(adr_data_t *data, adr_type_t *type, boolean_t recursive);

adr_data_verify takes an adr_data_t to type-check and an adr_type_t to type-check against.
It can be instructed to check only the adr_data_t data or data and the transitive closure of every
adr_data_t it references. adr_data_verify returns B_TRUE if data matches type, and B_FALSE
if not. If type is NULL, data is tested against the type it claims to be. Although this method is not
a good idea for input validation, it can be useful for error handling.

In order for data to be verified as type type, the following must be true:

■ Data must not be NULL.
■ Data must claim to be of type type.
■ If type is an enumeration, data must be a value in that enumeration.
■ If data is an array, it must be not have been marked invalid by a failed adr_array_add or

adr_array_vset operation.
■ If data is an array, it must have no NULL elements.

Data Management

72 Remote Administration Daemon Developer Guide • July 2014

■ If data is an array and recursive is true, each element of the array must satisfy these
criteria given the array's element type.

■ If data is a structure, every non-nullable field must have a value, that is, be non-NULL.
■ If data is a structure and recursive is true, every non-NULL field value must satisfy these

criteria considering the field's type.

The adr_data_verify is useful when validating input from an untrusted source. A second, less
obvious application of adr_data_verify is as a powerful error-handling tool. Suppose you are
writing a function that needs to return a complex data value. A traditional way of implementing
it would be to check each call for failure individually, as shown in the following example.

EXAMPLE 5-1 Traditional Error Handling

adr_data_t *tmp, *name, *result;

if ((name = adr_data_new_struct(name_type)) == NULL) {

/* handle failure */

}

if ((tmp = adr_data_new_string("Jack")) == NULL) {

/* handle failure */

}

adr_struct_set(name, "first", tmp);

if ((tmp = adr_data_new_string("O'Neill")) == NULL) {

/* handle failure */

}

adr_struct_set(name, "last", tmp);

if ((record = adr_data_new_struct(record_type)) == NULL) {

/* handle failure */

}

adr_struct_set(record, "name", name);

/* ...and so on */

This approach is difficult to implement and difficult to maintain. It is more likely to have a flaw
in it than the allocations it is testing are to fail. Instead, using adr_data_verify and the error
handling behaviors described in “adr_data_t Type” on page 64, the entire non-truncated
function can be reduced to the method shown in the following example.

EXAMPLE 5-2 Error Handling With adr_data_verify

adr_data_t *name = adr_data_new_struct(name_type);

adr_struct_set(name, "first", adr_data_new_string("Jack"));

adr_struct_set(name, "last", adr_data_new_string("O'Neill"));

adr_data_t *record = adr_data_new_struct(record_type);

adr_struct_set(record, "name", name);

adr_struct_set(record, "rank", adr_data_new_enum_byname("COLONEL"));

adr_struct_set(record, "l_count", adr_data_new_integer(2));

if (!adr_data_verify(record, NULL, B_TRUE)) { /* Recursive type check */

 adr_data_free(record);

 return (NULL); /* NULL means something failed */

}

ADR Object Name Operations

Chapter 5 • libadr 73

return (record); /* Non-NULL means success */

An important limitation to this technique is the possibility for structure fields to be nullable, and
the NULL indicating that the field has no value is indistinguishable from the NULL that indicates
that the allocation of that field's value failed. In such cases, explicitly testing each nullable
value's allocation is necessary. Even with such explicit checks, however, the net savings in
complexity can be substantial.

ADR Object Name Operations

libadr supports ADR object names by providing an adr_name_t type and a suite of routines for
creating and inspecting them. Consumers needing to operate on object names should include the
rad/adr_name.h header file:

#include <rad/adr_name.h>

This file contains definitions for all the ADR-name related functionality provided by libadr.

adr_name_t Type

The adr_name_t type represents an object name. The internal structure of an adr_name_t is
private. All operations on an adr_name_t are performed using accessor functions provided by
libadr. Like adr_data_t values, adr_name_t values are immutable and reference counted. The
following functions are provided for handling adr_name_t reference counts:

adr_name_t *adr_name_hold(adr_data_t *name);

void adr_name_rele(adr_name_t *name);

The reference count on the adr_name_t name is incremented with adr_name_hold. For
convenience, adr_name_hold returns name. Symmetrically, the reference count on the
adr_name_t name is decremented with adr_name_rele. When then last reference on an
adr_name_t is released, the name is freed; after calling adr_name_rele the caller must not
access name in any way. Neither adr_name_hold nor adr_name_rele can fail.

Creating adr_name_t Type

ADR names are composed of a domain and a set of key/value pairs. Two functions are provided
that take exactly those arguments and return an adr_name_t:

adr_name_t *adr_name_create(const char *domain, int count,

 const char * const *keys, const char * const *values);

ADR Object Name Operations

74 Remote Administration Daemon Developer Guide • July 2014

adr_name_t *adr_name_vcreate(const char *domain, int count, ...);

Both forms take a domain argument, which should be a reverse-dotted domain name, and
the number of key/value pairs as count. The two differ in how the key/value values are
communicated. In the first form, adr_name_create, two char * arrays are provided, one for
keys and the other for values, as shown in the following example.

EXAMPLE 5-3 adr_name_create

const char *keys[] = { "key1", "key2" };

const char *values[] = { "value1", "value2" };

name = adr_name_create("com.example", 2, keys, values);

In the second form, adr_name_vcreate, keys and values are provided as alternating varargs.
The previous example written using adr_name_vcreate would look like the following example.

EXAMPLE 5-4 adr_name_vcreate

name = adr_name_vcreate("com.example", 2, "key1", "value1", "key2", "value2");

If either routine fails to create the adr_name_t, it will return NULL. All data provided to
adr_name_create is copied and can subsequently be modified or freed without affecting
existing adr_name_t types.

Inspecting adr_name_t Type

adr_name_t types are immutable, so all operations on them are read-only. The two most
common operations one needs to perform on an adr_name_t are obtaining the name's domain
and obtaining the value associated with a particular key.

const char *adr_name_domain(const adr_name_t *name);

const char *adr_name_key(const adr_name_t *name, const char *key);

adr_name_domain returns name's reverse-dotted domain as a string. The string returned is part
of name and therefore must not be modified or freed, and must not be accessed after the caller's
reference on name has been released. Likewise, adr_name_key returns the value associated with
key. The string returned by adr_name_key is subject to the same restrictions as the return value
of adr_name_domain.

The two functions for comparing adr_name_t types are:

int adr_name_cmp(const adr_name_t *name1, const adr_name_t *name2);

boolean_t adr_name_match(const adr_pattern_t *pattern, const adr_name_t *name);

API Management

Chapter 5 • libadr 75

adr_name_cmp compares two adr_name_t types, returning 0 if the name1 and name2 are equal
(that is, if the two names have the same domain, same names and the same keys, and each key
has the same value on both names). It returns an integer less than 0 if name1 is less than name2,
or and integer greater than 0 if name1 is greater than name2.

adr_name_match is a pattern-matching operation. The adr_name_t pattern is treated as a
collection of attributes against which name is compared. adr_name_match returns B_TRUE if and
only if the domains of name and pattern are equal, and every key present in pattern is present in
name and has the same value. While an adr_name_t must have a domain and at least one key/
value pair, pattern is permitted to have only a domain and no key/value pairs.

String Representation

It is sometimes necessary to represent, either in human-readable output or in persistent storage,
an ADR object name as a string. libadr provides routines for converting to a canonical string
form.

char *adr_name_tostr(const adr_name_t *name);

adr_name_tostr takes an adr_name_t and formats it in string form. The return value is
allocated using malloc and should be freed when the caller is done with it. adr_name_tostr
will return NULL if it is unable to allocate memory for its return value.

API Management

libadr provides support for defining APIs in rad/adr_object.h. Defining an API is a complex
task. The only supported way to define an API is to do so in the ADR IDL and to generate the
definition using radadrgen.

The important type defined in rad/adr_object.h is type adr_object_t. While the constituent
pieces of an API definition should be considered implementation details, the end product,
the API itself, is of prime interest to the developer. You will never need to create or define an
adr_object_t, but when you encounter routines that operate on them, understanding what the
type represents is important.

radadrgen-Generated Definitions

Whether you are using libadr in a C-based client or as part of writing a rad server module, you
will need to understand the data definitions generated by radadrgen. Fortunately, the definitions
are the same in both environments.

radadrgen-Generated Definitions

76 Remote Administration Daemon Developer Guide • July 2014

Running radadrgen

radadrgen is instructed to produce definitions for C/libadr consumers by using its -c option,
as shown in the following example.

EXAMPLE 5-5 Invoking radadrgen

$ radadrgen -l c -s server -d output_dir example.adr

The -c option produces two files, api_APINAME.h and api_APINAME_impl.c in the output_dir,
where APINAME is derived from the name attribute of the API document's api element.
api_APINAME_impl.c contains the implementation of the interfaces and data types defined by
the API. It should be compiled and linked with the software needing those definitions.

api_APINAME.h externs the specific symbols defined by api_APINAME_impl.c that consumers
will need to reference, and should be included by those consumers. api_APINAME.h contains no
data definitions itself and may be included in as many places as necessary. Neither file should
be modified.

For each derived type TYPE, whether enumeration or structure, defined in the API, an
adr_type_t named t__TYPE (two underscores) representing that type is generated and externed
by the header file. If an array of that type is used anywhere in the API, an adr_type_t named
t_array__TYPE (one underscore, two underscores) representing that array type is generated
and externed. For each interface INTERFACE defined in the file, an adr_object_t named
interface_INTERFACE is defined and externed.

For each value VALUE of an enumeration named TYPE , an adr_data_t named e__TYPE_VALUE is
defined and externed. These adr_data_t values are marked as constants and are not affected by
adr_data_ref or adr_data_free.

Example radadrgen Output

When radadrgen is run on the Example 4-7 given in the ADR chapter two files result. One,
api_example_impl.c, holds the implementation of the GrabBag interface and data types it
depends on, and should be simply be compiled and linked with the GrabBag consumer. The
other, api_example.h, exposes only the relevant symbols defined by api_example_impl.c and
should be included by consumers of the GrabBag interface and its related types as shown in the
following example.

EXAMPLE 5-6 Sample radadrgen-Generated C Header File

#include <rad/adr.h>

radadrgen-Generated Definitions

Chapter 5 • libadr 77

#include <rad/adr_object.h>

#include <rad/rad_modapi.h>

extern adr_type_t t__Mood;

extern adr_data_t e__Mood_IRREVERENT;

extern adr_data_t e__Mood_MAUDLIN;

extern adr_type_t t__SqrtError;

extern adr_type_t t__StringInfo;

extern adr_type_t t__MoodStatus;

extern adr_object_t interface_GrabBag;

A consumer who needs to create a MoodStatus structure indicating the mood is IRREVERENT and
has changed, would issue the instructions shown in the following example.

EXAMPLE 5-7 Consuming radadrgen-Generated Definitions

status = adr_data_new_struct(&t__MoodStatus);

adr_struct_set(status, "mood", e__Mood_IRREVERENT);

/* adr_struct_set(status, "mood", adr_data_new_enum_byname(&t__Mood, "IRREVERENT")); */

adr_struct_set(status, "changed", adr_data_new_boolean(B_TRUE));

if (!adr_data_verify(status, NULL, B_TRUE)) {

 ...

In addition to showing how to use the type definitions, this example also illustrates the multiple
ways of referencing an enumerated value. Using the defined symbols is faster and can be
checked by the compiler. The commented-out line uses adr_data_new_enum_byname which
offers flexibility that could be useful in some situations but necessarily defers error checking
until runtime. For example, if you mistype the value IRREVERENT, it would not be detected until
the code is run. It is preferable to use the enumerated value symbols when possible.

78 Remote Administration Daemon Developer Guide • July 2014

Chapter 6 • Module Development 79

 6 ♦ ♦ ♦ C H A P T E R 6

Module Development

rad is modular in a variety of ways. Modules may deliver new protocols, new transports, or
new API definitions and implementations. This section focuses on new API definitions and
implementations.

API Definitions and Implementation

Although an API can be constructed manually, using radadrgen to generate the necessary type
definitions is much simpler.

Entry Points
All entry points take a pointer to the object instance and a pointer to the internal structure for
the method or attribute. The object instance pointer is essential for distinguishing different
objects that implement the same interface. The internal structure pointer is theoretically useful
for sharing the same implementation across multiple methods or attributes, but isn't used and
may be removed.

Additionally, all entry reports return a conerr_t. If the access is successful, they should return
CE_OK. If the access fails due to a system error, they should return CE_SYSTEM. If the access
fails due to an expected error which should be noted in the API definition, they should return
CE_OBJECT. If an expected error occurs and an error payload is defined, it may be set in *error.
The caller will unref the error object when it is done with it.

■ A method entry point has the type meth_invoke_f:

typedef conerr_t (meth_invoke_f)(rad_instance_t *inst, adr_method_t *meth,

 adr_data_t **result, adr_data_t **args, int count, adr_data_t **error);

args is an array of count arguments.

Upon successful return, *result should contain the return value of the method, if any.

The entry point for a method named METHOD in interface INTERFACE is named
interface_INTERFACE_invoke_METHOD.

API Definitions and Implementation

80 Remote Administration Daemon Developer Guide • July 2014

■ An attribute read entry point has the type attr_read_f:

typedef conerr_t (attr_read_f)(rad_instance_t *inst, adr_attribute_t *attr,

adr_data_t **value, adr_data_t **error);

Upon successful return, *value should contain the value of the attribute, if any.

The read entry point for an attribute named ATTR in interface INTERFACE is named
interface_INTERFACE_read_ATTR.

■ An attribute write entry point has the type attr_write_f:

typedef conerr_t (attr_write_f)(rad_instance_t *inst, adr_attribute_t *attr,

 adr_data_t *newvalue, adr_data_t **error);

newvalue points to the new value. If the attribute is nullable, newvalue can be NULL.

The write entry point for an attribute named ATTR in interface INTERFACE is named
interface_INTERFACE_write_ATTR.

rad explicitly checks the types of all arguments passed to methods and all values written to
attributes. Stub implementations can assume that all data provided is of the correct type. Stub
implementations are responsible for returning valid data. Returning invalid data results in an
undefined behavior.

Global Variables

Variables Description

boolean_t rad_isproxy A flag to determine if code is executing in
the main or proxy rad daemon. Only special
system modules, which are integral to the
operation of RAD, may use this variable.

rad_container_t

*rad_container

The rad container that contains the object
instance.

Module Registration

Function Description

int _rad_init(void *handle); A module must provide a _rad_init. This is
called by the rad daemon when the module is
loaded and is a convenient point for module
initialization including registration. Return

API Definitions and Implementation

Chapter 6 • Module Development 81

Function Description

0 to indicate that the module successfully
initialized.

int rad_module_register(void *handle, int version, rad_

modinfo_t *modinfo);
rad_module_register provides a handle,
which is the handle provided to the module in
the call to _rad_init. This handle is used by
the rad daemon to maintain the private list of
loaded modules. The version indicates which
version of the rad module interface the module
is using. modinfo contains information used to
identify the module.

Instance Management

Function Description

rad_instance_t *rad_instance_create(rad_object_type

 *type, void *data, void (*)(void *)freef);
rad_instance_create uses the supplied
parameters to create a new instance of an object
of type. data is the user data to store with the
instance and the freef function is a callback
which will be called with the user data when
the instance is removed. If the function fails,
it returns NULL. Otherwise, a valid instance
reference is returned.

void * rad_instance_getdata(rad_instance_t *instance); rad_instance_getdata returns the user data
(supplied in rad_instance_create) of the
instance.

void rad_instance_notify (rad_instance_t *instance,

 const char *event, long sequence, adr_data_t *data);
rad_instance_notify generates an event
on the supplied instance. The sequence is
supplied in the event as the sequence number
and the payload of the event is provided in
data.

Container Interactions

Function Description

conerr_t rad_cont_insert(rad_container_t *container, adr_

name_t *name, rad_instance_t *instance);

conerr_t rad_cont_insert_singleton(rad_container_t

 *container, adr_name_t *name, rad_object_t *object);

Create an instance, rad_instance_t,
using the supplied name and object and
then insert into container. If the operation
succeeds, CE_OK is returned.

void rad_cont_remove(rad_container_t *container, adr_name_t

 *name);
Remove the instance from the container.

API Definitions and Implementation

82 Remote Administration Daemon Developer Guide • July 2014

Function Description

conerr_t rad_cont_register_dynamic(rad_container_t

 *container, adr_name_t *name, rad_modinfo_t *modinfo, rad_

dyn_list_t listf, rad_dyn_lookup_t lookupf, void *arg);

conerr_t (*rad_dyn_list_t)(adr_pattern_t *pattern, adr_data_

t **data, void *arg);

conerr_t (*rad_dyn_lookup_t)(adr_name_t **name, rad_

instance_t **inst, void *arg);

Register a dynamic container instance
manager. The container defines the
container in which the instances will be
managed. The name defines the name
filter for which this instance manager
is responsible. A typical name would
define the type of the instance which
are managed. For example, zname =
adr_name_vcreate (MOD_DOMAIN, 1,

"type", "Zone") would be responsible
for managing all instances with a type of
"Zone". listf is a user-supplied function
which is invoked when objects with the
matching pattern are listed. lookupf is a
user-supplied function which is invoked
when objects with the matching name are
looked up. arg is stored and provided in
the callback to the user functions.

Logging

Function Description

void rad_log(rad_logtype_t type,

const char * format, ...);
Log a message with type and format to the rad
log. If the type is a lower level than the rad
logging level, then the message is discarded.

void rad_log_alloc() Log a memory allocation failure with log level
RL_FATAL.

rad_logtype_t rad_get_loglevel() Return the logging level.

Using Threads

Function Description

void *rad_thread_arg(rad_thread_t *tp); Return the arg referenced by the thread
tp.

void rad_thread_ack(rad_thread_t *tp,

rad_moderr_t error);

This function is intended to be used from
a user function previously supplied as
an argument to rad_thread_create. It
should not be used in any other context.

Acknowledge the thread referenced by
tp. This process enables the controlling
thread, from which a new thread was

API Definitions and Implementation

Chapter 6 • Module Development 83

Function Description

created using rad_thread_create, to
make progress. The error is used to update
the return value from rad_thread_create
and is set to RM_OK for success.

rad_moderr_t rad_thread_create(rad_threadfp_t fp,

 void *arg);
Create a thread to run fp. This function
will not return until the user function (fp)
calls rad_thread_ack. arg is stored and
passed into fp as a member of the rad_
thread_t data. It can be accessed using
rad_thread_arg.

rad_moderr_t rad_thread_create_async(

rad_thread_asyncfp_t fp, void *arg);
Create a thread to run fp. arg is stored
and passed into fp.

Synchronization

Function Description

void rad_mutex_init(pthread_mutex_t *mutex); Initialize a mutex.abort on failure.

void rad_mutex_enter(pthread_mutex_t *mutex); Lock a mutex. abort on failure.

void rad_mutex_exit(pthread_mutex_t *mutex); Unlock a mutex. abort on failure.

void rad_cond_init(pthread_cond_t *cond); Initialize a condition variable, cond.
abort, on failure.

Subprocesses

Function Description

exec_params_t *rad_exec_params_alloc Allocate a control structure for executing
a subprocess.

void rad_exec_params_free(exec_params_t *params); Free a subprocess control structure,
params.

void rad_exec_params_set_cwd(exec_params_t *params,

const char *cwd);
Set the current working directory, cwd, in
a subprocess control structure, params.

void rad_exec_params_set_env(exec_params_t *params,

const char **envp);
Set the environment, envp, in a
subprocess control structure, params.

void rad_exec_params_set_loglevel(

exec_params_t *params, rad_logtype_t loglevel);
Set the rad log level, loglevel, in a
subprocess control structure, params.

API Definitions and Implementation

84 Remote Administration Daemon Developer Guide • July 2014

Function Description

int rad_exec_params_set_stdin(exec_params_t *params,

int fd);
Set the stdin file descriptor, fd, in a
subprocess control structure, params.

int rad_exec_params_set_stdout(exec_params_t *params,

int fd);
Set the stdout file descriptor, fd, in a
subprocess control structure, params.

int rad_exec_params_set_stderr(exec_params_t *params,

int fd);
Set the stderr file descriptor, fd, in a
subprocess control structure, params.

int rad_forkexec(exec_params_t *params,

 const char **argv, exec_result_t *result);

Use the supplied subprocess control
structure, params, to fork and execute
(execv) the supplied args, argv. If
result is not NULL, it is updated with the
subprocess pid and file descriptor details.

int rad_forkexec_wait(exec_params_t *params,

 const char **argv, int *status);

Use the supplied subprocess control
structure, params, to fork and execute
(execv) the supplied args, argv. If status
is not NULL, it is updated with the exit
status of the subprocess. This function
will wait for the subprocess to terminate
before returning.

int rad_wait(exec_params_t *params,

 exec_result_t *result, int *status);

Use the supplied subprocess control
structure, params, to wait for a previous
invocation of rad_forkexe to complete.
If result is not NULL, it is updated with the
subprocess pid and file descriptor details.
If status is not NULL, it is updated with
the exit status of the subprocess. This
function will wait for the subprocess to
terminate before returning.

Utilities

Function Description

void *rad_zalloc(size_t size); Return a pointer to a zero-allocated block
of size bytes.

char *rad_strndup(char *string, size_t length); Create and return a duplicate of string that
is of size, length bytes.

int rad_strccmp(const char * zstring, const char * cstring,

 size_t length);

Compare two strings, up to a maximum
size of length bytes.

int rad_openf(const char *format, int oflag, mode_tmode, ...

);

Open a file with access mode, oflag, and
mode, mode, whose path is specified by
calling sprintf on format.

API Definitions and Implementation

Chapter 6 • Module Development 85

Function Description

FILE *rad_fopenf(const char *format, const char *mode, ...); Open a file with mode, whose path is
specified by calling sprintf on format.

Locales

Function Description

int rad_locale_parse(const char *locale,

 rad_locale_t **rad_locale);
Update rad_locale with locale details
based on locale. If locale is NULL, then
attempt to retrieve a locale based on the
locale of the rad connection. Returns 0 on
success.

void rad_locale_free(rad_locale_t *rad_locale); Free a locale, rad_locale, previously
obtained with rad_locale_parse.

Transactional Processing

There is no direct support for transactional processing within a module. If a transactional model
is desirable, then it is the responsibility of the module creator to provide the required building
blocks, start_transaction, commit, rollback, and other related processes.

Asynchronous Methods and Progress Reporting

Asynchronous methods and progress reporting is achieved using threads and events. The pattern
is to return a token from a synchronous method invocation which spawns a thread to do work
asynchronously. This worker thread is then responsible for providing notifications to interested
parties events.

Example:

An interface has a method which returns a Task object. The method is called installpkg and
takes one argument, the name of the package to install.

Task installpkg(string pkgname);

The Task instance returned by the method, contains enough information to identify a task. Prior
to invoking installpkg, the client subscribes to a task-update event. The worker thread is
responsible for issuing events about the progress of the work. These events contain information
about the progress of the task.

rad Namespaces

86 Remote Administration Daemon Developer Guide • July 2014

In a minimal implementation, the worker thread would issue one event to notify the client that
the task was complete and what the outcome of the task was. A more complex implementation
would provide multiple events documenting progress and possibly also provide an additional
method that a client could invoke to interrogate the server for a progress report.

rad Namespaces
Objects in the rad namespace can be managed either as a set of statically installed objects or as
a dynamic set of objects that are listed or created on demand.

Static Objects
rad_modapi.h declares two interfaces for statically adding objects to a namespace.

rad_cont_insert adds an object to the namespace. In turn, objects are created by calling
rad_instance_create with a pointer to the interface the object implements, a pointer to object-
specific callback data and a pointer to a function to free the callback data. For example:

adr_name _t *uname = adr_name_vcreate("com.oracle.solaris.rad.user", 1, "type", "User");

rad_instance_t *inst = rad_instance_create(&interface_User_svr, kyle_data, NULL);

(void) rad_cont_insert(&rad_container, uname, inst);

adr_name_rele(uname);

rad_cont_insert_singleton is a convenience routine that creates an object instance for the
specified interface with the specified name and adds it to the namespace. The callback data is
set to NULL.

adr_name _t *uname = adr_name_vcreate("com.oracle.solaris.rad.user", 1, "type", "User");

(void) rad_cont_insert_singleton(&rad_container, uname, &interface_User_svr);

adr_name_rele(uname);

rad Module Linkage
Modules are registered with the RAD daemon in the _rad_reg. This is automatically generated
from the information contained within the IDL defining the module.

Each module is required to provide a function, _rad_init, for initializing the module. This
function is called before any other function in the module. Similarly, the _rad_fini in the
module is called by the RAD daemon just prior to unloading the module.

EXAMPLE 6-1 Module Initialization

#include <rad/rad_modapi.h>

rad Module Linkage

Chapter 6 • Module Development 87

int

_rad_init(void)

{

 adr_name _t *uname = adr_name_vcreate("com.oracle.solaris.rad.user", 1, "type", "User");

 conerr_t cerr = rad_cont_insert_singleton(&rad_container, uname, &interface_User_svr);

 adr_name_rele(uname);

 if (cerr != CE_OK)

 {

 rad_log(RL_ERROR, "failed to insert module in container");

 return(-1);

 }

 return (0);

}

88 Remote Administration Daemon Developer Guide • July 2014

Chapter 7 • rad Best Practices 89

 7 ♦ ♦ ♦ C H A P T E R 7

rad Best Practices

This chapter provides guidance when using rad. The guidance material is grouped around the
following topics.

■ When to use rad?
■ How to use rad?

When To Use rad?

rad is designed to provide remote administrative interfaces for operating system components/
sub-systems. Such interfaces support the distributed administration of systems and greatly
increase the abilities of system administrators to support large installations.

It is not intended to be a general purpose mechanism for building distributed applications, many
alternative facilities, for example, RPC, RMI, CORBA, and MPI exist for such applications.

How To Use rad?

This section contains specific guidance on how to use rad.

API Guidelines

Designing a rad API requires judgement and the application of domain knowledge.

Target Audience

The users of the API fall into two broad categories:

■ Administrators

How To Use rad?

90 Remote Administration Daemon Developer Guide • July 2014

■ Developers

Unfortunately, accommodating the desires of consumers in these two categories within one
interface is difficult. The first group desire task-based APIs which match directly onto well-
understood and defined administrative activities. The second group desire detailed, operation-
based interfaces which may be aggregated to better support unusual or niche administrative
activities.

For any given subsystem, you can view existing command-line utilities (CLIs) and libraries
(APIs) as expressions of the rad APIs which are required. The CLIs represent the task-based
administrative interfaces and the APIs represent the operation-based developer interfaces.

The goal in using rad is to provide interfaces that address the lowest-level objectives of the
target audience. If targeting administrators (task-based), this effort could translate to matching
existing CLIs. If targeting developers, this effort could mean significantly less aggregation of
the lower-level APIs.

Legacy Constraints

Many subsystems present incomplete interfaces to the world. Some CLIs contain processing
capabilities that are not accessible from an existing API. This situation is another motivation for
providing task-based administrative interfaces before introducing more detailed interfaces.

Such constraints must be considered in the rad API design. Consider migrating functionality
from the CLI into the API to facilitate the creation of the new interface. Also consider
presenting an interface which wraps the CLI and takes advantage of the existing functionality.
Do not simply duplicate the functionality in the new rad interface, which would introduce
redundancy and significantly increase maintenance complexity. One particular area where rad
interface developers need to be careful is to avoid duplication around parameter checking and
transformation. This duplication is likely to be a sign that existing CLI functionality should be
migrated to an API.

rad modules must be written in C. Some subsystems, for instance, those written in other
languages, have no mechanism for a C module to access API functionality. In these cases, rad
module creators must access whatever functionality is available in the CLI or make a potentially
significant engineering effort to access the existing functionality, for example, rewriting existing
code in C, embedding a language interpreter in their C module, and the like.

Conservative Design

Designing a rad interface is very similar to designing a library interface. The same general
principles of design apply: be conservative, start small, consider evolutionary paths and
carefully consider commitment levels.

How To Use rad?

Chapter 7 • rad Best Practices 91

Once an interface is established, the use of versioning and considered, incremental
improvements will expand the functionality.

Component Guidelines

This section presents specific design advice on the most significant components of a rad
module. Naming is addressed separately in “Naming Guidelines” on page 92

API Guidelines

APIs are the primary deliverable of a rad module. They are a grouping of interfaces, events,
methods and properties which enable a user to interact with a subsystem.

When exposing the elements of a subsystem consider carefully how existing functions can be
grouped together to form an interface. Imperative languages, such as C, tend to pass structures
as the first argument to functions, which provides a clear indicator as to how best to group
functions into APIs.

Method Guidelines

Methods provide mechanisms for examining and modifying administrative state.

Consider grouping together existing native APIs into aggregated rad functions which enable
higher order operations to be exposed.

Follow established good practice for RPC style development. rad is primarily for remote
administration, and avoiding excessive network load is good practice.

Property Guideline

Make sure to define an <error> element with properties which can be modified.

Event Guidelines

The module is responsible for providing a sequence number. Monotonically increasing
sequence numbers are recommended for use, since these will be of most potential use to any
clients.

Consider providing mechanisms for allowing a client to throttle event generation.

How To Use rad?

92 Remote Administration Daemon Developer Guide • July 2014

Carefully design event payloads to minimize network load.

Don't try to replicate the functionality of network monitoring protocols such as SNMP.

Synchronous and Asynchronous Invocation

All method invocations in rad are synchronous. Asynchronous behavior can be obtained by
adopting a design pattern that relies on the use of events to provide notifications. Refer to
“Synchronization” on page 83 for more details.

Duplication

Do not duplicate code from existing CLIs. Instead, consider moving common code into a lower
library layer that can be shared by rad and the CLI.

Client Library Support

rad modules are designed to have a language agnostic interface. However, you might want to
provide additional language support through the delivery of a language-specific extension. This
type of deliverables should be restricted in use. The main reason for their existence is to help
improve the fit of an interface into a language idiom.

Naming Guidelines
When naming an API, interface, or “object” on page 19, module developers have broad leeway
to choose names that make sense for their modules. However, some conventions can help avoid
pitfalls that might arise when retrieving objects from the rad server.

Object Names

The domain portion of rad object names follows a reverse-dotted naming convention that
prevents collisions in rad's flat object namespace. This convention typically resembles a Java
package naming scheme:

com.oracle.solaris.rad.zonemgr

com.oracle.solaris.rad.usermgr

org.opensolaris.os.rad.ips

...

To distinguish a rad API from a native API designed and implemented for a specific language,
include a "rad." component in the API name.

How To Use rad?

Chapter 7 • rad Best Practices 93

With the goal of storing objects with names consumers would expect, APIs, and the domains of
the objects defined within them, should share the same name. This practice makes the mapping
between the two easily identifiable by both the module consumer and module developer.

With the same goal of simplicity, identifying an interface object is made easier by adhering to a
"type=interface" convention within the object name.

Applying both conventions, a typical API will look like the following example.

 <api xmlns="http://xmlns.oracle.com/radadr"

 name="com.oracle.solaris.rad.zonemgr">

 <version major="1" minor="0"/>

 <interface name="ZoneInfo"> <!-- Information about the current zone -->

 <property name="name" access="ro" type="integer"/>

 ...

 </interface>

</api>

Within the module, the API appears as follows:

int

_rad_init(void)

 {

 ...

 adr_name _t *zname = adr_name_vcreate(MOD_DOMAIN, 1, "type", "ZoneInfo");

 conerr_t cerr = rad_cont_insert_singleton(&rad_container, zname, &interface_ZoneInfo_svr);

 adr_name_rele(zname);

 if (cerr != CE_OK) {

 rad_log(RL_ERROR, "failed to insert module in container");

 return(-1);

 }

 return (0);

}

On the consumer side (Python), the API appears as follows:

import rad.connect as radcon

import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

Create a connection and retrieve the ZoneInfo object

with radcon.connect_unix() as rc:

 zinfo = rc.get_object(zonemgr.ZoneInfo())

 print zinfo.name

Case

In an effort to normalize the appearance of like items across development boundaries, and to
minimize the awkwardness in generated language-specific interfaces, several case strategies
have been informally adopted.

API Design Examples

94 Remote Administration Daemon Developer Guide • July 2014

Module The base of the API/domain name. For a module describing an interface domain.prefix.
base.adr, module spec files should be named base.adr, and the resulting shared library
mod_base.so.

Examples:

■ /usr/lib/rad/interfaces/zonemgr/version/1/zonemgr.adr

■ /usr/lib/rad/module/mod_zonemgr.so

API Reverse-dotted domain, all lowercase.

Examples:

■ com.oracle.solaris.rad.usermgr

■ com.oracle.solaris.rad.zonemgr

Interface, struct, union,
enum

Non-qualified, camel case, starting with uppercase.

Examples:

■ Time

■ NameService

■ LDAPConfig

■ ErrorCode

Enum value and fallback Non-qualified, uppercase, underscores.

Examples:

■ CHAR

■ INVALID_TOKEN

■ REQUIRE_ALL

Interface property and
method, struct field, event

Non-qualified, camel case, starting with lowercase.

Examples:

■ count

■ addHostName

■ deleteUser

API Design Examples

Combining the tools described so far in this document to construct an API with a known design
can be a challenge. Several possible solutions for a particular problem are often available. The
examples in this section illustrate the best practices described in previous sections.

Note - This is only an example. This means it does not reflect the user management modules
that is in Oracle Solaris.

API Design Examples

Chapter 7 • rad Best Practices 95

User Management Example

Object/interface granularity is subjective. For example, imagine an interface for managing a
user. The user has a few modifiable properties:

TABLE 7-1 Example User Properties

Property Type

name string

shell string

admin boolean

The interface for managing this user might consist solely of a set of attributes corresponding
to the above properties. Alternatively, it could consist of a single attribute that is a structure
containing fields that correspond to the properties, possibly more efficient if all properties are
usually read or written together. The object implementing this might be named as follows:

com.example.users:type=TheOnlyUser

If instead of managing a single user you need to manage multiple users, you have a couple of
choices. One option would be to modify the interface to use methods instead of attributes, and
to add a "user" argument to the methods, for example:

setUserAttributes(username, attributes) throws UserError

attributes getUserAttributes(username) throws UserError

This example is sufficient for a single user, and provides support to other global operations such
as adding a user, deleting a user, getting a list of users and so on. You might want to give it a
more appropriate name, for example:

com.example.users:type=UserManagement

However, suppose there were many more properties associated with the user and many
more operations you would want to do with a user, for example, sending them email, giving
them a bonus and so on. As the server functionality grows, the UserManagement's API
grows increasingly cluttered. It would accumulate a mixture of global operation and per-user
operations, and the need for each per-user operation to specify a user to operate on, and specify
the errors associated with not finding that user, would start looking redundant.

username[] listUsers()

addUser(username, attributes)

giveRaise(username, dollars) throws UserError

fire(username) throws UserError

sendEmail(username, message) throws UserError

setUserAttributes(username, attributes) throws UserError

attributes getUserAttributes(username) throws UserError

API Design Examples

96 Remote Administration Daemon Developer Guide • July 2014

A cleaner alternative would be to separate the global operations from the user-specific
operations and create two interfaces. The UserManagement object would use the global
operations interface:

username[] listUsers()

addUser(username, attributes)

A separate object for each user would implement the user-specific interface:

setAttributes(attributes)

attributes getAttributes()

giveRaise(dollars)

fire()

sendEmail(message)

Note - If fire operates more on the namespace than the user, it should be present in
UserManagement where it would need to take a username argument.

Finally, the different objects would be named such that the different objects could be easily
differentiated and be directly accessed by the client:

com.example.users:type=UserManagement

com.example.users:type=User,name=ONeill

com.example.users:type=User,name=Sheppard

...

This example also highlights a situation where the rad server may not want to enumerate all
objects when a client issues a LIST request. Listing all users may not be particularly expensive,
but pulling down a list of potentially thousands of objects on every LIST call will not benefit the
majority of clients.

Appendix A • zonemgr ADR Interface Description Language 97

 A ♦ ♦ ♦ A P P E N D I X A

zonemgr ADR Interface Description Language

The following example describes the APIs used in zonemgr ADR Interface Description
Language. This is only an example.

Note - This is only an example and may not reflect the actual implementation of zonemgr APIs
in Oracle Solaris.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<api xmlns="http://xmlns.oracle.com/radadr" name="com.oracle.solaris.rad.zonemgr">

 <version major="1" minor="0"/>

 <enum name="ErrorCode">

 <value name="NONE" value="0"/>

 <value name="FRAMEWORK_ERROR"/>

 <value name="SNAPSHOT_ERROR"/>

 <value name="COMMAND_ERROR"/>

 <value name="RESOURCE_ALREADY_EXISTS"/>

 <value name="RESOURCE_NOT_FOUND"/>

 <value name="RESOURCE_TOO_MANY"/>

 <value name="RESOURCE_UNKNOWN"/>

 <value name="ALREADY_EDITING"/>

 <value name="PROPERTY_UNKNOWN"/>

 <value name="NOT_EDITING"/>

 <value name="SYSTEM_ERROR"/>

 <value name="INVALID_ARGUMENT"/>

 <value name="INVALID_ZONE_STATE"/>

 </enum>

 <struct name="Result" stability="private">

 <field typeref="ErrorCode" name="code" nullable="true"/>

 <field type="string" name="str" nullable="true"/>

 <field type="string" name="stdout" nullable="true"/>

 <field type="string" name="stderr" nullable="true"/>

 </struct>

 <struct name="ConfigChange">

 <field type="string" name="zone"/>

 </struct>

 <struct name="StateChange">

 <field type="string" name="zone"/>

 <field type="string" name="oldstate"/>

 <field type="string" name="newstate"/>

 </struct>

 <enum name="PropertyValueType">

98 Remote Administration Daemon Developer Guide • July 2014

 <value name="PROP_SIMPLE"/>

 <value name="PROP_LIST"/>

 <value name="PROP_COMPLEX"/>

 </enum>

 <struct name="Property">

 <field name="name" type="string"/>

 <field name="value" type="string" nullable="true"/>

 <field name="type" typeref="PropertyValueType" nullable="true"/>

 <field name="listvalue" nullable="true">

 <list type="string"/>

 </field>

 <field name="complexvalue" nullable="true">

 <list type="string"/>

 </field>

 </struct>

 <struct name="Resource">

 <field type="string" name="type"/>

 <field name="properties" nullable="true">

 <list typeref="Property"/>

 </field>

 <field name="parent" type="string" nullable="true"/>

 </struct>

 <interface name="ZoneManager">

 <method name="create">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="name" type="string"/>

 <argument name="path" type="string" nullable="true"/>

 <argument name="template" type="string" nullable="true"/>

 </method>

 <method name="delete">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="name" type="string"/>

 </method>

 <method name="importConfig">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="noexecute" type="boolean"/>

 <argument name="name" type="string"/>

 <argument name="configuration">

 <list type="string"/>

 </argument>

 </method>

 <event typeref="StateChange" name="stateChange"/>

 </interface>

 <interface name="ZoneInfo">

 <property name="brand" access="ro" type="string"/>

 <property name="id" access="ro" type="integer"/>

 <property name="uuid" access="ro" type="string" nullable="true">

 <error typeref="Result"/>

 </property>

 <property name="name" access="ro" type="string"/>

 <property name="isGlobal" access="ro" type="boolean"/>

 </interface>

 <interface name="Zone">

 <name key="name" primary="true"/>

 <name key="id"/>

Appendix A • zonemgr ADR Interface Description Language 99

 <property name="auxstate" access="ro" nullable="true">

 <list type="string"/>

 <error typeref="Result"/>

 </property>

 <property name="brand" access="ro" type="string"/>

 <property name="id" access="ro" type="integer"/>

 <property name="uuid" access="ro" type="string" nullable="true">

 <error typeref="Result"/>

 </property>

 <property name="name" access="ro" type="string"/>

 <property name="state" access="ro" type="string"/>

 <method name="cancelConfig">

 <error typeref="Result"/>

 </method>

 <method name="exportConfig">

 <result type="string"/>

 <error typeref="Result"/>

 <argument name="includeEdits" type="boolean" nullable="true"/>

 <argument type="boolean" name="liveMode" nullable="true"/>

 </method>

 <method name="update">

 <error typeref="Result"/>

 <argument name="noexecute" type="boolean"/>

 <argument name="commands">

 <list type="string"/>

 </argument>

 </method>

 <method name="editConfig">

 <error typeref="Result"/>

 <argument type="boolean" name="liveMode" nullable="true"/>

 </method>

 <method name="commitConfig">

 <error typeref="Result"/>

 </method>

 <method name="configIsLive">

 <result type="boolean"/>

 </method>

 <method name="configIsStale">

 <result type="boolean"/>

 <error typeref="Result"/>

 </method>

 <method name="addResource">

 <error typeref="Result"/>

 <argument name="resource" typeref="Resource"/>

 <argument name="scope" typeref="Resource" nullable="true"/>

 </method>

 <method name="reloadConfig">

 <error typeref="Result"/>

 <argument type="boolean" name="liveMode" nullable="true"/>

 </method>

 <method name="removeResources">

 <error typeref="Result"/>

 <argument name="filter" typeref="Resource" nullable="false"/>

 <argument name="scope" typeref="Resource" nullable="true"/>

 </method>

 <method name="getResources">

 <result>

 <list typeref="Resource"/>

100 Remote Administration Daemon Developer Guide • July 2014

 </result>

 <error typeref="Result"/>

 <argument name="filter" typeref="Resource" nullable="true"/>

 <argument name="scope" typeref="Resource" nullable="true"/>

 </method>

 <method name="getResourceProperties">

 <result>

 <list typeref="Property"/>

 </result>

 <error typeref="Result"/>

 <argument name="filter" typeref="Resource" nullable="false"/>

 <argument name="properties" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="setResourceProperties">

 <error typeref="Result"/>

 <argument name="filter" typeref="Resource" nullable="false"/>

 <argument name="properties" nullable="false">

 <list typeref="Property"/>

 </argument>

 </method>

 <method name="clearResourceProperties">

 <error typeref="Result"/>

 <argument name="filter" typeref="Resource" nullable="false"/>

 <argument name="properties" nullable="false">

 <list type="string"/>

 </argument>

 </method>

 <method name="apply">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="attach">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="boot">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="clone">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="detach">

Appendix A • zonemgr ADR Interface Description Language 101

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="halt">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="install">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="mark">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="move">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="rename">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="ready">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="reboot">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="savecore">

 <result typeref="Result"/>

 <error typeref="Result"/>

102 Remote Administration Daemon Developer Guide • July 2014

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="shutdown">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="suspend">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="uninstall">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="verify">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <event typeref="ConfigChange" name="configChange"/>

 </interface>

</api>

	Remote Administration Daemon Developer Guide
	Contents
	Using This Documentation
	Product Documentation Library
	Access to Oracle Support
	Feedback

	Chapter 1 • Introduction
	Remote Administration Daemon
	Features Overview

	Chapter 2 • Concepts
	API
	Version
	API Namespace and Restricted Names
	Derived Types

	Interface
	Name
	Features
	Methods
	Attributes
	Events

	Commitment
	Versioning
	Numbering
	Clients and Versioning

	rad Namespace
	Naming
	Equality
	Patterns

	Data Typing
	Base Types
	Derived Types
	Optional Data

	Chapter 3 • Client Libraries
	C Client
	Connecting to RAD
	Connecting to a Local Instance
	Connecting to a Remote Instance and Authenticating

	Rad Namespace
	Searching for Objects
	Obtaining a Reference to a Singleton
	Listing Instances of an Interface
	Obtaining a Remote Object Reference from a Name
	Sophisticated Searching
	Glob Pattern Searching
	Regex Pattern Searching

	Interface Components
	Enumerations
	Using Enumeration Types

	Structs
	Using Struct Types

	Interfaces/Objects
	Obtaining an Object Reference
	Working with Object References
	Accessing a Remote Property
	RAD Event Handling
	RAD Error Handling

	Java Client
	Connecting to RAD
	Connecting to a Local Instance
	Connecting to a Remote Instance and Authenticating

	Rad Namespace
	Searching for Objects
	Obtaining Reference to a Singleton
	Listing Instances of an Interface
	Obtaining a Remote Object Reference from a Name
	Sophisticated Searching
	Glob Pattern Searching
	Using Maps when Pattern Searching
	Regex Pattern Searching

	Interface Components
	Enumerations
	Using Enumeration Types

	Structs
	Using Struct Types

	Interfaces/Objects
	Obtaining an Object Reference
	Working with Object References
	Accessing a Remote Property
	RAD Event Handling
	RAD Error Handling

	Python Client
	The public interfaces are exported in three modules
	Connecting to RAD
	Connecting to a Local Instance
	Connecting to a Remote Instance and Authenticating

	Rad Namespace
	Searching for Objects
	Obtaining a Reference to a Singleton
	Listing Instances of an Interface
	Obtaining a Remote Object Reference from a Name
	Sophisticated Searching
	Glob Pattern Searching
	Regex Pattern Searching

	Interface Components
	Enumerations
	Using Enumeration Types

	Structs
	Using Struct Types

	Interfaces/Objects
	Obtaining an Object Reference
	Working with Object References
	Accessing a Remote Property
	RAD Event Handling
	RAD Error Handling

	Chapter 4 • Abstract Data Representation
	ADR Interface Description Language
	Overview
	Version
	Enumeration Definitions
	Structure Definitions
	Interface Definitions
	Methods
	Attributes
	Events

	Example

	radadrgen

	Chapter 5 • libadr
	Data Management
	adr_type_t Type
	adr_data_t Type
	Allocating adr_data_t Values
	Allocating Strings
	Allocating boolean
	Allocating Numeric Types
	Allocating Times
	Allocating Opaques
	Allocating Secrets
	Allocating Names
	Allocating Enumerations
	Allocating Structures
	Allocating Arrays

	Accessing Simple adr_data_t Values
	Manipulating Derived Type adr_data_t
	Manipulating Array adr_data_t Values
	Manipulating the Structure of an adr_data_t Type

	Validating adr_data_t Values

	ADR Object Name Operations
	adr_name_t Type
	Creating adr_name_t Type
	Inspecting adr_name_t Type
	String Representation

	API Management
	radadrgen-Generated Definitions
	Running radadrgen
	Example radadrgen Output

	Chapter 6 • Module Development
	API Definitions and Implementation
	Entry Points
	Global Variables
	Module Registration
	Instance Management
	Container Interactions
	Logging
	Using Threads
	Synchronization
	Subprocesses
	Utilities
	Locales
	Transactional Processing
	Asynchronous Methods and Progress Reporting

	rad Namespaces
	Static Objects

	rad Module Linkage

	Chapter 7 • rad Best Practices
	When To Use rad?
	How To Use rad?
	API Guidelines
	Target Audience
	Legacy Constraints
	Conservative Design

	Component Guidelines
	API Guidelines
	Method Guidelines
	Property Guideline
	Event Guidelines
	Synchronous and Asynchronous Invocation
	Duplication
	Client Library Support

	Naming Guidelines
	Object Names
	Case

	API Design Examples
	User Management Example

	Appendix A • zonemgr ADR Interface Description Language

