Device Driver Tutorial

Part No: E36866
July 2014

ORACLE

Copyright © 2012, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws.
Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute,
exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take
all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use
of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates
are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Copyright © 2012, 2014, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui I’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis a des restrictions d’utilisation
et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter, transmettre, distribuer,
exposer, exécuter, publier ou afficher le logiciel, méme partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder a toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté a des fins d’interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes d’erreurs et
vous invite, le cas échéant, a lui en faire part par écrit.

Si ce logiciel, ou la documentation qui I’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou a toute entité qui délivre la licence de ce logiciel ou I'utilise
pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S.Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas congu ni n’est destiné

a étre utilisé dans des applications a risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre
d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires a son utilisation
dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par I’utilisation de ce logiciel ou matériel
pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre a des marques appartenant a d’autres
propriétaires qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’ Advanced Micro Devices. UNIX
est une marque déposée d’The Open Group.

Ce logiciel ou matériel et la documentation qui I’accompagne peuvent fournir des informations ou des liens donnant acces a des contenus, des produits et des services émanant
de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En aucun cas, Oracle
Corporation et ses affiliés ne sauraient étre tenus pour responsables des pertes subies, des cofits occasionnés ou des dommages causés par 1’accés a des contenus, produits ou
services tiers, ou a leur utilisation.

Contents

Using This DOCUMENTALIONcoeiiiiiiiiiiiiiiie et e e e e e e e eeaanes 11
1 Introduction to DeVIiCe DIIVErSuuuuiuiiiiiiiiiiiiiiiiiiiiiiieiieieeeeeeeeeeeeeeeeeeees 13
Oracle Solaris Operating System Definitionccovviiiviiiniiiiiniiiieeineeieeenn. 13
Kernel OVEIVIEWcoouuiiiiiiiiiiiiiii et 13
Differences Between Kernel Modules and User Programscceccvuennenn. 13

User and Kernel Address Spaces on x86 and SPARC Machines 16

DevViCe DIIVELSccuiiiiiiiiiiiiiiiiii e 16

Driver Directory Organizationc..coveeveuienieniinieniiieneieeeieeenneneeneneen. 18

DeVICES @S FILBS ..cuuiiniiiiii et 19
Devices DITeCtOTIeSccuuiiiuniiiiniiiiiiiiiiii e 20

DEVICE TTEE ..ottt et e e e e e 20

Character and Block Devicescc.eeuuiiiiiiiiiiniiiiiie e 21

Device NAIMESuuiiiiiiiiiiiiiii e 21

DeVICe INUIMDETS ...ceuniiineiiee ettt ettt et e et et e e e een 22
Development Environment and TOOIScc.viuiiiiiiiiiiiiiiiiiiineie e 23
WIIING @ DIIVET euiiiiiiiiiiei ettt e e e e e e eaeenens 24

Building @ DIIVET ..c..uieiiiiiiiiiie et 25

InStalling @ DIIVET ...ccuiiniiiiiiiie et 27

Adding, Updating, and Removing a DIiVeTccceuvvinviiiiinniinrineenennennnes 28

Loading and Unloading a DIIVErccuuiiiuiiiiiiiiiieiiie et 29

TeStiNG @ DIIVET ..cuiniiiiiie e e 29

2 Template Driver EXamplecoooiiiiiiiiiiii e e s 31
Overview of the Template Driver EXamplecc.oceeeuiiiiiiiiiiiiiiiiiiiiiiiieceieeeen, 31
Writing the Template DIIVETcvvuiiiniiiriieeie e e e e e e ea e e e e eaneeanees 32
Writing the Loadable Module Configuration Entry Pointsc...cccceeeuuneeenn. 32

Writing the Autoconfiguration Entry Pointsccovvieiiiiiiniiiiiiineiinnenn. 37

Writing the User Context ENtry POINTSccuvvvniiiniiiniiiieiineieeieeieeieeeeeennes 44

Writing the Driver Data STIUCIUIESceueuuiiuiiiiiiiieiieeie e eanees 48

Contents

Writing the Device Configuration Fileccoeiiiiiiiiiiiiiiiiiiiiiiiir e, 54
Building and Installing the Template DIIVETccvvvnviriiiieireineieeie e eeeeeneeens 54
Testing the Template DITVETc..ceuiiniiiiiiii e 55
Adding the Template DIIVerccc.iiiiiiiiiiiiiiiiiiieeie e 55

Reading and Writing the DeVICeccuuvieiiiniiiiiiee e e e e eens 56

Removing the Template DIiverc.ooeuiiiuiiiiiiiiiiie e, 57

Complete Template DIiver SOUICEccuuveiiiiiiiiiiiiiieiiiie e 58

3 Reading and Writing Data in Kernel Memorycc.oooviiveiiiiiieeiviiee e, 63
Displaying Data Stored in Kernel MemOTYcceuvvinviiniiinriiniiineiieeieeieeineenneenns 63
Writing Quote Of The Day Version 1cccevviiiiiiiiiiiineiineieeieeieeieennnes 63

Building, Installing, and Using Quote Of The Day Version 1cccuuneee... 65

Displaying Data on Demandcoeuuviuiiiiiiinrieei e e eie e e eaeaanns 66
Writing Quote Of The Day Version 2cecueiiniiineiineiineenerieeieeieeineennnes 66

Building, Installing, and Using Quote Of The Day Version 2cc......... 75

Modifying Data Stored in Kernel MEMOTYcevuuviuiviineinriinieinreineieeneeneennnnns 77
Writing Quote Of The Day Version 3c.ceceuviiiiieiineiieenereeieeneeieennnas 77

Building and Installing Quote Of The Day Version 3cccccovveiiviiinneinnnnnn. 96

Using Quote Of The Day Version 3c.ceeuviinviineiineinniireieeineeneeeneennnns 97

4 Tips for Developing DeViCe DIiVErScoooeiiiiiiiiiiiiieeiiiiee et 103
Device Driver Coding TiPSuevvureiniiuneeineiineineeeneeteeneeneeeeeneernerenereeenneenneenns 103
Device Driver Testing TiPS «..cuueueuieuiiniiiiiiiiiiiieieiieeie et eneeneeneenenes 106
Device Driver Debugging and Tuning Tipsc..ceceuiveiiiiiiniiiiiiiiiirciiineeieennnees 108
INA@X .ot 111

4 Device Driver Tutorial July 2014

Figures

FIGURE 1-1
FIGURE 1-2
FIGURE 1-3
FIGURE 2-1

Typical Device Driver Entry POINtScccuvivivinriiniiiniieeieeneeneeieennns 17
Entry Points for Different Types of DIiVersc.cccveiiiniiiinieiineennnneen. 17
Typical Device Driver INteractionscceeeevueeeiiieiiinerinneriineenieennnnes 18
Entry Points for the dummy EXampleccccoeveiiiiiiniiiiiiineiiiineeeeninnne. 32

Device Driver Tutorial July 2014

Tables

TABLE 2-1

Get Driver Information Entry Point Arguments

Device Driver Tutorial July 2014

Examples

EXAMPLE 3-1
EXAMPLE 3-2
EXAMPLE 3-3
EXAMPLE 3-4
EXAMPLE 3-5
EXAMPLE 3-6
EXAMPLE 3-7

EXAMPLE 3-8

Quote Of The Day Version 1 Source Filecccccoviiviiiiiiniiniiineieennnne. 64
Quote Of The Day Version 1 Configuration Filec.ccccoiviiiiiiinnnn. 65
Quote Of The Day Version 2 Source Filecccoeeviiiiiiiiiiiiiiiiiiiennnn. 70
Quote Of The Day Version 2 Configuration Fileccoooeiiiinn. 75
Quote Of The Day Version 3 Source Filecccouuiiiiiiiiinniiiiiineeennnnn.. 87
Quote Of The Day Version 3 Header Filec.ccoevviiiiiiiniiiniiiiieennn, 96
Quote Of The Day Version 3 Configuration Filec.cccciviiiiniinnnn. 96
Quote Of The Day I/O Control Command Source Filecccccueennee. 99

10 Device Driver Tutorial July 2014

Using This Documentation

= Overview — This Device Driver Tutorial is a hands-on guide that shows you how to
develop a simple device driver for the Oracle Solaris™ Operating System (Oracle Solaris
0S). Device Driver Tutorial also explains how device drivers work in the Oracle Solaris
OS. This book is a companion to “Writing Device Drivers for Oracle Solaris 11.2 ”.
Writing Device Drivers is a thorough reference document that discusses many types
of devices and drivers. Device Driver Tutorial examines complete drivers but does not
provide a comprehensive treatment of all driver types. Device Driver Tutorial often points
to Writing Device Drivers and other books for further information.

® Audience — You should read this tutorial if you need to develop, install, and configure
device drivers for the Oracle Solaris OS. You also should read this book if you need to
maintain existing drivers or add new functionality to existing Oracle Solaris OS drivers.
Information about the kernel provided in this book also will help you troubleshoot any
problems you might encounter installing or configuring Oracle Solaris systems.

= Required knowledge —

To write device drivers for the Oracle Solaris OS, you should have the following
background:

= Be an experienced C programmer

= Have experience with data structures, especially with linked lists

m Understand bit operations

m Understand indirect function calls

m Understand caching

= Understand multithreading (see the “Multithreaded Programming Guide ”)
= Be familiar with a UNIX" shell

= Understand the basics of UNIX system and I/O architecture

The most important information you need to have to write a device driver are the
characteristics of the device. Get a detailed specification for the device you want to drive.

Experience with Oracle Solaris OS compilers, debuggers, and other tools will be very
helpful to you. You also need to understand where the file system fits with the kernel and
the application layer. These topics are discussed in this tutorial.

Using This Documentation 11

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVER
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=MTP

Product Documentation Library

Product Documentation Library

Late-breaking information and known issues for this product are included in the documentation
library at http://www.oracle.com/pls/topic/lookup?ctx=E36784.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://
www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

12 Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/goto/docfeedback

LKA CHAPTER 1

Introduction to Device Drivers

This chapter gives an overview of the Oracle Solaris Operating System and kernel. This chapter
also gives an overview of the driver development environment and the development tools
available to you.

Oracle Solaris Operating System Definition

The Oracle Solaris Operating System (Oracle Solaris OS) is implemented as an executable file
that runs at boot time. The Oracle Solaris OS is referred to as the kernel. The kernel contains all
of the routines that are necessary for the system to run. Because the kernel is essential for the
running of the machine, the kernel runs in a special, protected mode that is called kernel mode.
In contrast, user-level applications operate in a restricted mode called user mode that has no
access to kernel instructions or to the kernel address space. Device drivers run in kernel mode
and are prevented from directly accessing processes in user mode.

Kernel Overview

The kernel manages the system resources, including file systems, processes, and physical
devices. The kernel provides applications with system services such as /O management, virtual
memory, and scheduling. The kernel coordinates interactions of all user processes and system
resources. The kernel assigns priorities, services resource requests, and services hardware
interrupts and exceptions. The kernel schedules and switches threads, pages memory, and swaps
processes.

Differences Between Kernel Modules and User
Programs

This section discusses several important differences between kernel modules and user
programs.

Chapter 1 « Introduction to Device Drivers 13

Kernel Overview

Execution Differences Between Kernel Modules and User
Programs

The following characteristics of kernel modules highlight important differences between the
execution of kernel modules and the execution of user programs:

Kernel modules have separate address space. A module runs in kernel space. An
application runs in user space. System software is protected from user programs.
Kernel space and user space have their own memory address spaces. For important
information about address spaces, see “User and Kernel Address Spaces on x86 and
SPARC Machines” on page 16.

Kernel modules have higher execution privilege. Code that runs in kernel space has
greater privilege than code that runs in user space. Driver modules potentially have a much
greater impact on the system than user programs. Test and debug your driver modules
carefully and thoroughly to avoid adverse impact on the system. For more information, see
“Device Driver Testing Tips” on page 106.

Kernel modules do not execute sequentially. A user program typically executes
sequentially and performs a single task from beginning to end. A kernel module does not
execute sequentially. A kernel module registers itself in order to serve future requests.

Kernel modules can be interrupted. More than one process can request your driver at the
same time. An interrupt handler can request your driver at the same time that your driver is
serving a system call. In a symmetric multiprocessor (SMP) system, your driver could be
executing concurrently on more than one CPU.

Kernel modules must be preemptable. You cannot assume that your driver code is safe
just because your driver code does not block. Design your driver assuming your driver
might be preempted.

Kernel modules can share data. Different threads of an application program usually do
not share data. By contrast, the data structures and routines that constitute a driver are
shared by all threads that use the driver. Your driver must be able to handle contention
issues that result from multiple requests. Design your driver data structures carefully to
keep multiple threads of execution separate. Driver code must access shared data without
corrupting the data. For more information, see Chapter 3, “Multithreading,” in “Writing
Device Drivers for Oracle Solaris 11.2 ” and “Multithreaded Programming Guide .

Structural Differences Between Kernel Modules and User
Programs

The following characteristics of kernel modules highlight important differences between the
structure of kernel modules and the structure of user programs:

Kernel modules do not define a main program. Kernel modules, including device
drivers, have no main routine. Instead, a kernel module is a collection of subroutines and
data. A device driver is a kernel module that forms a software interface to an input/output

14 Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVERmt-17026
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVERmt-17026
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=MTP

Kernel Overview

(I/0) device. The subroutines in a device driver provide entry points to the device. The
kernel uses a device number attribute to locate the open routine and other routines of the
correct device driver. See “Device Drivers” on page 16 for more information on entry
points. See “Device Numbers” on page 22 for a description of device numbers.

= Kernel modules are linked only to the kernel. Kernel modules do not link in the same
libraries that user programs link in. The only functions a kernel module can call are
functions that are exported by the kernel. If your driver references symbols that are not
defined in the kernel, your driver will compile but will fail to load. Oracle Solaris OS
driver modules should use prescribed DDI/DKI (Device Driver Interface, Driver-Kernel
Interface) interfaces. When you use these standard interfaces you can upgrade to a new
Oracle Solaris release or migrate to a new platform without recompiling your driver. For
more information on the DDI, see“DDI/DKI Interfaces” in “Writing Device Drivers for
Oracle Solaris 11.2 ”. Kernel modules can depend on other kernel modules by using the -N

option during link editing. See the 1d(1) man page for more information.

s Kernel modules use different header files. Kernel modules require a different set of
header files than user programs require. The required header files are listed in the man
page for each function. See “man pages section 9: DDI and DKI Kernel Functions ” for
DDI/DKI functions, “man pages section 9: DDI and DKI Driver Entry Points ” for entry
points, and “man pages section 9: DDI and DKI Properties and Data Structures ” for
structures. Kernel modules can include header files that are shared by user programs if the
user and kernel interfaces within such shared header files are defined conditionally using
the KERNEL macro.

= Kernel modules should avoid global variables. Avoiding global variables in kernel
modules is even more important than avoiding global variables in user programs. As much
as possible, declare symbols as static. When you must use global symbols, give them
a prefix that is unique within the kernel. Using this prefix for private symbols within the
module also is a good practice.

= Kernel modules can be customized for hardware. Kernel modules can dedicate process
registers to specific roles. Kernel code can be optimized for a specific processor.

= Kernel modules can be dynamically loaded. The collection of subroutines and data that
constitute a device driver can be compiled into a single loadable module of object code.
This loadable module can then be statically or dynamically linked into the kernel and
unlinked from the kernel. You can add functionality to the kernel while the system is up
and running. You can test new versions of your driver without rebooting your system.

Data Transfer Differences Between Kernel Modules and User
Programs

Data transfer between a device and the system typically is slower than data transfer within
the CPU. Therefore, a driver typically suspends execution of the calling thread until the data
transfer is complete. While the thread that called the driver is suspended, the CPU is free to
execute other threads. When the data transfer is complete, the device sends an interrupt. The
driver handles the interrupt that the driver receives from the device. The driver then tells the

Chapter 1 « Introduction to Device Drivers 15

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVERkernelovr-40
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVERkernelovr-40
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9F
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9E
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9S

Kernel Overview

CPU to resume execution of the calling thread. See Chapter 8, “Interrupt Handlers,” in “Writing
Device Drivers for Oracle Solaris 11.2 .

Drivers must work with user process (virtual) addresses, system (kernel) addresses, and I/O bus
addresses. Drivers sometimes copy data from one address space to another address space and
sometimes just manipulate address-mapping tables. See “Bus Architectures” in “Writing Device
Drivers for Oracle Solaris 11.2 ”.

User and Kernel Address Spaces on x86 and
SPARC Machines

On SPARC machines, the system panics when a kernel module attempts to directly access user
address space. You must make sure your driver does not attempt to directly access user address
space on a SPARC machine.

On x86 machines, the system does not enter an error state when a kernel module attempts to
directly access user address space. You still should make sure your driver does not attempt
to directly access user address space on an x86 machine. Drivers should be written to be as
portable as possible. Any driver that directly accesses user address space is a poorly written
driver.

Caution - A driver that works on an x86 machine might not work on a SPARC machine because
the driver might access an invalid address.

Do not access user data directly. A driver that directly accesses user address space is using
poor programming practice. Such a driver is not portable and is not supportable. Use the

ddi copyin(9F) and ddi copyout(9F) routines to transfer data to and from user address
space. These two routines are the only supported interfaces for accessing user memory.
“Modifying Data Stored in Kernel Memory” on page 77 shows an example driver that uses

ddi_copyin(9F) and ddi_copyout(9F).

The mmap(2) system call maps pages of memory between a process's address space and a file or

shared memory object. In response to an mmap(2) system call, the system calls the devmap(9E)
entry point to map device memory into user space. This information is then available for direct
access by user applications.

Device Drivers

A device driver is a loadable kernel module that manages data transfers between a device and
the OS. Loadable modules are loaded at boot time or by request and are unloaded by request.

16 Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVERinterrupt-15678
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVERinterrupt-15678
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVERhwovr-18
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVERhwovr-18
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Edevmap-9e

Kernel Overview

A device driver is a collection of C routines and data structures that can be accessed by other
kernel modules. These routines must use standard interfaces called entry points. Through the
use of entry points, the calling modules are shielded from the internal details of the driver. See
“Device Driver Entry Points” in “Writing Device Drivers for Oracle Solaris 11.2 ” for more
information on entry points.

A device driver declares its general entry points in its dev_ops(9S) structure. A driver declares

entry points for routines that are related to character or block data in its cb_0ps(9S) structure.
Some entry points and structures that are common to most drivers are shown in the following
diagram.

FIGURE 1-1 Typical Device Driver Entry Points

cb_ops Structure

xcopen(9E)
xeclose(9E)

For property information—[| xxprop_op(9E)

dev_ops Structure

[xxattach(9E)
For autoconfiguration—{ | *X3etach(SE)

xgelinfo(9E)
| kxprobe(aE)

[ocinit(9E)
For operating on —| | xx_fini(9€)
loadable modules | | xx_info(9E)

+ kernel statistios—| | ¥XKS_Snapshot(9E)
For kemel slalsu:s{ 2 snapatot|
For power management—{ | power(oE)

Xxdump(9E)

For dumping memory during—{ |
Systom falure

The Oracle Solaris OS provides many driver entry points. Different types of devices require
different entry points in the driver. The following diagram shows some of the available entry
points, grouped by driver type. No single device driver would use all the entry points shown in
the diagram.

FIGURE 1-2 Entry Points for Different Types of Drivers

Block Driver Memory Mapped Device SCSI HBA Device
Enty Poinis Driver Entry Points Driver Entry Points
aread(9E) devmap9E) tran_abort(9E)
awrite(9E) «devmap_access(9E) tran_bus_reset(9E)
print(9E) devmap_conteximg(SE) tran_desiroy_pki(9E)
stategy(9E) devmap_dup(E) tran_dma reel(oE)
devmap_map(9E) tran_getcap(9E)
devmap_unmap(3E) ran_ it piU(9E)

Character Device
Driver Entry Points.

Generic LAN Device Ton—Syme PR(OE)
chralt) Driver Enty Paints e e
Teaee) ran gl ini(9E)
wite(9E) T tran_tgt_probe(oE)
SonapioE) ()) ran_unquiesce(9E)

gldm_intr(SE
gldm_ioctl(9E)
——————— | gdmreseiise
STREAMS Device gldm”send(9E) PG Card Device
Driver Entry Paints gldm”set mac addr(9E) Driver Entry Poinis
gldm”set_mulicast(9E)
gldm_set_promiscuous(9E)
putsE) gldm_stari(9E) Gox_event_handier(9E)
SV(9E) gldm”stop(9E)

In the Oracle Solaris OS, drivers can manage physical devices, such as disk drives, or software
(pseudo) devices, such as bus nexus devices or ramdisk devices. In the case of hardware

Chapter 1 « Introduction to Device Drivers 17

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVEReqbqy
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Sdev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Scb-ops-9s

Kernel Overview

devices, the device driver communicates with the hardware controller that manages the device.
The device driver shields the user application layer from the details of a specific device so that
application level or system calls can be generic or device independent.

Drivers are accessed in the following situations:

System initialization. The kernel calls device drivers during system initialization to
determine which devices are available and to initialize those devices.

System calls from user processes. The kernel calls a device driver to perform I/O
operations on the device such as open(2), read(2), and ioct1(2).

User-level requests. The kernel calls device drivers to service requests from commands
such as prtconf(1M).

Device interrupts. The kernel calls a device driver to handle interrupts generated by a
device.

Bus reset. The kernel calls a device driver to re-initialize the driver, the device, or both
when the bus is reset. The bus is the path from the CPU to the device.

The following diagram illustrates how a device driver interacts with the rest of the system.

FIGURE 1-3 Typical Device Driver Interactions

Driver Directory Organization

Device drivers and other kernel modules are organized into the following directories in the

Oracle Solaris OS. See the kernel(1M) and system(4) man pages for more information
about kernel organization and how to add directories to your kernel module search path.

/kernel These modules are common across most platforms. Modules that are

required for booting or for system initialization belong in this directory.

/platform/" uname These modules are specific to the platform identified by the command
-i*/kernel uname -1i.

18 Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mkernel-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN4system-4

Devices as Files

/platform/" uname These modules are specific to the platform identified by the command
-m* /kernel uname -m. These modules are specific to a hardware class but more
generic than modules in the uname -1i kernel directory.

These are user modules. Modules that are not essential to booting belong
/usr/kernel in this directory. This tutorial instructs you to put all your drivers in the /
usr/kernel directory.

One benefit of organizing drivers into different directories is that you can selectively load
different groups of drivers on startup when you boot interactively at the boot prompt as shown

in the following example. See the boot(1M) man page for more information.

Type b [file-name] [boot-flags] <ENTER> to boot with options
or i <ENTER> to enter boot interpreter
or <ENTER> to boot with defaults

<<< timeout in 5 seconds >>>

Select (b)oot or (i)nterpreter: b -a

bootpath: /pci@0,0/pci8086,2545@3/pci8086,

Enter default directory for modules [/platform/i86pc/kernel /kernel
/usr/kernel]: /platform/i86pc/kernel /kernel

In this example, the /usr/kernel location is omitted from the list of directories to search

for modules to load. You might want to do this if you have a driver in /usr/kernel that
causes the kernel to panic during startup or on attach. Instead of omitting all /usr/kernel
modules, a better method for testing drivers is to put them in their own directory. Use the
moddir kernel variable to add this test directory to your kernel modules search path. The
moddir kernel variable is described in kernel(1M) and system(4). Another method for
working with drivers that might have startup problems is described in “Device Driver Testing
Tips” on page 106.

Devices as Files

In UNIX, almost everything can be treated as a file. UNIX user applications access devices as
if the devices were files. Files that represent devices are called special files or device nodes.
Device special files are divided into two classes: block devices and character devices. See
“Character and Block Devices” on page 21 for more information.

Every 1/O service request initially refers to a named file. Most I/O operations that read or write

data perform equally well on ordinary or special files. For example, the same read(2) system
call reads bytes from a file created with a text editor and reads bytes from a terminal device.

Control signals also are handled as files. Use the 10ct1(9E) function to manipulate control
signals.

Chapter 1 « Introduction to Device Drivers 19

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mboot-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eioctl-9e

Devices as Files

Devices Directories

The Oracle Solaris OS includes both /dev and /devices directories for device drivers. Almost
all the drivers in the /dev directory are links to the /devices directory. The /dev directory is
UNIX standard. The /devices directory is specific to the Oracle Solaris OS.

By convention, file names in the /dev directory are more readable. For example, the /dev
directory might contain files with names such as kdb and mouse that are links to files such as /
devices/pseudo/conskbd@@:kbd and /devices/pseudo/consms@@:mouse. The prtconf(1M)

command shows device names that are very similar to the file names in the /devices directory.
In the following example, only selected output of the command is shown.

% prtconf -P
conskbd, instance #0
consms, instance #0

Entries in the /dev directory that are not links to the /devices directory are device nodes or

special files created by mknod(1M) or mknod(2). These are zero-length files that just have a
major number and minor number attached to them. Linking to the physical name of the device

in the /devices directory is preferred to using mknod(1M).

Prior to the Oracle Solaris 10 OS, /devices was an on-disk filesystem composed of
subdirectories and files. Beginning with the Oracle Solaris 10 OS, /devices is a virtual
filesystem that creates these subdirectories and special files on demand.

For more information about the devices file system, see the devfs(7FS) man page.

Device Tree

The device files in the /devices directory are also called the device tree.

The device tree shows relationships among devices. In the device tree, a directory represents
a nexus device. A nexus is a device that can be a parent of other devices. In the following
example, pci@lf, 0 is a nexus device. Only selected output from the command is shown.

1s -1 /devices
drwxr-xr-x 4 root sys 512 date time pci@lf,0/
Crw------- 1 root sys 111,255 date time pci@lf,0:devctl

You can use prtconf(1M) or prtpicl(1M) to see a graphic representation of the device tree.
See “Overview of the Device Tree” in “Writing Device Drivers for Oracle Solaris 11.2 ” for
more information about the device tree.

20 Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mprtconf-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mmknod-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN2mknod-2
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN7devfs-7fs
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mprtconf-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mprtpicl-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVERkernelovr-64300

Devices as Files

Character and Block Devices

A file in the device tree that is not a directory represents either a character device or a block
device.

A block device can contain addressable, reusable data. An example of a block device is a

file system. Any device can be a character device. Most block devices also have character
interfaces. Disks have both block and character interfaces. In your /devices/pseudo directory,
you might find devices such as the following:

brw-r----- 1 root sys 85, 0 Nov 3 09:43 md@0:0,0,blk
Crw-r----- 1 root sys 85, 0 Nov 3 09:43 md@0:0,0, raw
brw-r----- 1 root sys 85, 1 Nov 3 09:43 md@0:0,1,blk
Crw-r----- 1 root sys 85, 1 Nov 3 09:43 md@0:0,1, raw
brw-r----- 1 root sys 85, 2 Nov 3 09:43 md@0:0,2,blk
Crw-r----- 1 root sys 85, 2 Nov 3 09:43 md@0:0,2, raw

Block devices have a b as the first character of their file mode. Character devices have a c as the
first character of their file mode. In this example, the block devices have blk in their names and
the character devices have raw in their names.

The md(7D) device is a metadevice that provides disk services. The block devices access the
disk using the system's normal buffering mechanism. The character devices provide for direct
transmission between the disk and the user's read or write buffer.

Device Names

This section shows a complex device name and explains the meaning of each part of the name
in /dev and also in /devices. The following example is the name of a disk slice:

/dev/dsk/c@t@d0s7 -> ../../devices/pci@lc,600000/scsi@2/sd@@,0:h

First, examine the name of the file in the /dev directory. These names are managed by the
devfsadmd(1M) daemon.

co Controller 0
t0 Target 0. On SCSI controllers, this value is the disk number.
do SCSI LUN. This value indicates a virtual partitioning of a target or single

physical device.

s7 Slice 7 on the target O disk.

Chapter 1 « Introduction to Device Drivers 21

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN7md-7d
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mdevfsadmd-1m

Devices as Files

For the same device, compare the name of the file in the /devices directory. These names show
the physical structure and real device names. Note that some of the components of the device
name in the /devices directory are subdirectories.

pci@lc, 600000 PCI bus at address 1c,600000. These addresses are meaningful only to
the parent device.

scsi@2 SCSI controller at address 2 on the PCI bus at address 1c,600000. This
name corresponds to the c@ in /dev/dsk/c0t0d0os7.

sd@o, 0 SCSI disk at address 0,0 on the SCSI controller at address 2. This name
represents target 0, LUN 0 and corresponds to the t0d@ in /dev/dsk/

€0t0d0os7. The sd name and driver can also apply to IDE CD-ROM
devices.

sd@e,0:h Minor node h on the SCSI disk at address @, @. This name corresponds to
the s7 in /dev/dsk/c0t0d0s7.

Device Numbers

A device number identifies a particular device and minor node in the device tree. The dev t
parameter that is required in many DDI/DKI routines is this device number.

Each device has a major number and a minor number. A device number is a major,minor pair.
A long file listing shows the device number in the column where file sizes are usually listed. In
the following example, the device number is 86,255. The device major number is 86, and the
device minor number is 255.

% 1ls -1 /devices/pci@0,0:devctl
Crw------- 1 root sys 86,255 date time /devices/pci@@,0:devctl

In the Oracle Solaris OS, the major number is chosen for you when you install the driver so that
it will not conflict with any other major number. The kernel uses the major number to associate
the I/O request with the correct driver code. The kernel uses this association to decide which
driver to execute when the user reads or writes the device file. All devices and their major
numbers are listed in the file /etc/name to major.

% grep 86 /etc/name_to_major
pci 86

The minor number is assigned in the driver. The minor number must map each driver to a
specific device instance. Minor numbers usually refer to sub-devices. For example, a disk driver
might communicate with a hardware controller device that has several disk drives attached.
Minor nodes do not necessarily have a physical representation.

22 Device Driver Tutorial July 2014

Development Environment and Tools

The following example shows instances 0, 1, and 2 of the md device. The numbers 0, 1, and 2
are the minor numbers.

brw-r----- 1 root sys 85, 0 Nov 3 09:43 md@0:0,0,blk
Crw-r----- 1 root sys 85, 0 Nov 3 09:43 md@0:0,0, raw
brw-r----- 1 root sys 85, 1 Nov 3 09:43 md@0:0,1,blk
Crw-r----- 1 root sys 85, 1 Nov 3 09:43 md@0:0,1,raw
brw-r----- 1 root sys 85, 2 Nov 3 09:43 md@0:0,2,blk
Crw-r----- 1 root sys 85, 2 Nov 3 09:43 md@0:0,2, raw

In the name sd@@, 0:h,, h represents a minor node. When the driver receives a request for minor
node h, the driver actually receives a corresponding minor number. The driver for the sd node
interprets that minor number to be a particular section of disk, such as slice 7 mounted on /
export.

Chapter 2, “Template Driver Example” shows how to use the ddi get instance(9F)
routine in your driver to get an instance number for the device you are driving.

Development Environment and Tools

This section summarizes the driver development process and provides some pointers to
resources. For more information on the development process, see “Driver Development
Summary” in “Writing Device Drivers for Oracle Solaris 11.2 .

Oracle offers training courses in Oracle Solaris OS internals, crash dump analysis, writing
device drivers, DTrace, Oracle Solaris Studio, and other topics useful to Oracle Solaris
developers. See http://education.oracle.com/ for more information.

The general steps in writing a device driver are as follows:

1. Write a . ¢ source file using the interfaces and structures defined in man page sections 9E,
9F, and 9S. Most of the include files you need are in /usr/include/sys. The function and
structure man pages show which include files you need.

Write a . conf hardware configuration file to define property values for your driver.

3. Compile and link your driver. Always use the -D_KERNEL option when you compile a
driver for the Oracle Solaris OS. The default compile result is 32-bit. To get a 64-bit result
on a 64-bit platform, specify the appropriate 64-bit option as described in “Building a
Driver” on page 25.

4. Copy your driver binary file and your driver configuration file to the appropriate
[platform]/kernel directories. See “Driver Directory Organization” on page 18 for
descriptions of driver directories.

5. Use the add_drv(1M) command to load your driver. When your driver is loaded, you can
see your driver in /dev and /devices. You can also see an entry for your driver in the /etc/
name_to major file.

Chapter 1 « Introduction to Device Drivers 23

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-get-instance-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVERfcaqh
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVERfcaqh
http://education.oracle.com/

Development Environment and Tools

24

Writing a Driver

A driver consists of a C source file and a hardware configuration file.

Writing a Driver Module

The C code for a driver is a collection of data and functions that define a kernel module. As
noted in “Structural Differences Between Kernel Modules and User Programs” on page 14,
a driver has no main routine. Many of the subroutines of a driver are special functions called
entry points. See “Device Drivers” on page 16 for information about entry points.

The function man pages provide both the function declaration that you need in your driver and
the list of header files you need to include. Make sure you consult the correct man page. For
example, the following command displays the ioct1(2) man page. The ioct1(2) system call
cannot be used in a device driver.

% man ioctl

Use one of the following commands to display the ioct1(9E) man page. The ioct1(9E)
subroutine is a device driver entry point.

% man ioctl.9e
% man -s 9e ioctl

By convention, the names of functions and data that are unique to this driver begin with a
common prefix. The prefix is the name of this driver or an abbreviation of the name of this
driver. Use the same prefix for all names that are specific to this driver. This practice makes
debugging much easier. Instead of seeing an error related to an ambiguous attach function, you
see an error message about mydriver attach or newdriver attach.

A 64-bit system can run both 32-bit user programs and 64-bit user programs. A 64-bit system
runs 32-bit programs by converting all data needed between the two data models. A 64-bit
kernel supports both 64-bit and 32-bit user data. Whenever a 64-bit driver copies data between
kernel space and user space, the driver must use the ddi_model convert_ from(9F)
function to determine whether the data must be converted between 32-bit and 64-bit

models. For an example, see “Reporting and Setting Device Size and Re-initializing the
Device” on page 85.

The Oracle Solaris Studio IDE includes the following three source editors: GVIM, XEmacs,
and the built-in Source Editor provided by NetBeans. The IDE provides online help for these
tools. You can also run GVIM and XEmacs from the command line. See vim(1) and xemacs(1).

For more information, see the following resources:

= For more information about writing device drivers, see “Device Driver Coding
Tips” on page 103 and “Writing Device Drivers for Oracle Solaris 11.2 ”.

Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-model-convert-from-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVER

Development Environment and Tools

= For simple example source files, see Chapter 2, “Template Driver Example” and
Chapter 3, “Reading and Writing Data in Kernel Memory”.

Writing a Configuration File

A driver that is not self-identifying might need a configuration file named node_name. conf,
where node_name is the prefix for the device. A self-identifying driver is a driver that

can obtain all the property information it needs from the DDI property interfaces such as

ddi prop get int(9F)and ddi prop lookup(9F). The minimum information that

a configuration file must contain is the name of the device node and the name or type of the
device's parent.

On the x86 platform, device information is supplied by the booting system. Hardware
configuration files should no longer be needed, even for non-self-identifying devices.

For more information about device driver configuration files, see the driver.conf(4)
man page. For an example configuration file, see “Writing the Device Configuration
File” on page 54.

Building a Driver

This section tells you how to compile and link a driver for different architectures.
Make sure you have installed the Oracle Solaris OS at the Developer level or above.

A 64-bit kernel cannot use a 32-bit driver. A 64-bit kernel can use only 64-bit drivers. All parts
of any particular program must use the same data model. A device driver is not a complete
program. The kernel is a complete program. A driver is a part of the kernel program. If you
want your device to work with the Oracle Solaris OS in 32-bit mode and in 64-bit mode, then
you must provide both a 32-bit driver and a 64-bit driver.

By default, compilation on the operating system yields a 32-bit result on every architecture.
To obtain a 64-bit result, use the compilation options specified in this section for 64-bit
architectures.

Use the prtconf(1M) command with the -x option to determine whether the firmware on this
system is 64-bit ready.

Compiling with Oracle Solaris Studio

Use the -D_KERNEL option to indicate that this code defines a kernel module.

Chapter 1 « Introduction to Device Drivers 25

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-prop-get-int-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-prop-lookup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN4driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mprtconf-1m

Development Environment and Tools

26

If you are compiling for a 64-bit SPARC architecture using Sun Studio 9, Sun Studio 10,
or Sun Studio 11, use the -xarch=v9 option:

% cc -D_KERNEL -xarch=v9 -c mydriver.c

% 1d -r -o mydriver mydriver.o

If you are compiling for a 64-bit SPARC architecture using Oracle Solaris Studio 12, use
the -m64 option:

% cc -D_KERNEL -m64 -c mydriver.c

% 1d -r -o mydriver mydriver.o

If you are compiling for a 64-bit x86 architecture using Sun Studio 10 or Sun Studio 11,
use both the -xarch=amd64 option and the -xmodel=kernel option:

% cc -D_KERNEL -xarch=amd64 -xmodel=kernel -c mydriver.c

% 1d -r -o mydriver mydriver.o

If you are compiling for a 64-bit x86 architecture using Oracle Solaris Studio 12, use the
-m64 option, the -xarch=sse2a option, and the -xmodel=kernel option:

% cc -D_KERNEL -m64 -xarch=sse2a -xmodel=kernel -c mydriver.c

% 1d -r -o mydriver mydriver.o

If you are compiling for a 32-bit architecture, use the following build commands:

% cc -D_KERNEL -c mydriver.c

% 1d -r -o mydriver mydriver.o

Note - Sun Studio 9 does not support 64-bit x86 architectures. Use Sun Studio 10, Sun Studio
11, or Oracle Solaris Studio 12 to compile and debug drivers for 64-bit x86 architectures.

For more information on compile and link options, see the Oracle Solaris Studio 12.3
Command-line Reference and the Oracle Solaris Studio 12.2: C User's Guide . To learn
more about Oracle Solaris Studio, go to http://www.oracle.com/technetwork/server-storage/
solarisstudio/overview/index.html.

Compiling with the GNU C Compiler

Use the -D_KERNEL option to indicate that this code defines a kernel module. These examples
show options that are required for correct functionality of the result.

If you are compiling for a 64-bit SPARC architecture, use the following build commands:

% gcc -D_KERNEL -m64 -mcpu=v9 -mcmodel=medlow -fno-pic -mno-fpu

-ffreestanding -nodefaultlibs -c mydriver.c

Device Driver Tutorial July 2014

http://docs.oracle.com/cd/E24457_01/html/E22003/index.html
http://docs.oracle.com/cd/E24457_01/html/E22003/index.html
http://docs.oracle.com/cd/E18659_01/html/821-1384/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html

Development Environment and Tools

% 1d -r -o mydriver mydriver.o

You might also want to use the -mtune=ultrasparc option and the -02 option.
m If you are compiling for a 64-bit x86 architecture, use the following build commands:

% gcc -D_KERNEL -m64 -mcmodel=kernel -mno-red-zone -ffreestanding
-nodefaultlibs -c mydriver.c

% 1d -r -o mydriver mydriver.o

You might also want to use the -mtune=opteron option and the -02 option.
m If you are compiling for a 32-bit architecture, use the following build commands:

% gcc -D_KERNEL -ffreestanding -nodefaultlibs -c mydriver.c

% 1d -r -o mydriver mydriver.o

For more information on these and other options, see the gcc(1) man page. See also the GCC
web site at http://gcc.gnu.org/.

Installing a Driver

After you write and build your driver, you must install the driver binary. To install a driver,
copy the driver binary and the configuration file to the appropriate /kernel/drv directory.

Make sure you are user root when you install a driver.
Copy the configuration file to the kernel driver area of the system.
cp mydriver.conf /usr/kernel/drv

Install drivers in the /tmp directory until you are finished modifying and testing the info,
_init, and attach routines. See “Device Driver Testing Tips” on page 106 for more
information.

Copy the driver binary to the /tmp directory.

cp mydriver /tmp

Link to the driver from the kernel driver directory.

B On a 64-bit SPARC architecture, link to the sparcv9 directory:

ln -s /tmp/mydriver /usr/kernel/drv/sparcv9/mydriver

® On a 64-bit x86 architecture, link to the amd64 directory:

1ln -s /tmp/mydriver /usr/kernel/drv/amd64/mydriver
m On a 32-bit architecture, create the link as follows:

Chapter 1 « Introduction to Device Drivers 27

http://gcc.gnu.org/

Development Environment and Tools

1ln -s /tmp/mydriver /usr/kernel/drv/mydriver

When the driver is well tested, copy the driver directly to the appropriate kernel driver area of
the system.

® On a 64-bit SPARC architecture, copy the driver to the sparcv9 directory:

cp mydriver /usr/kernel/drv/sparcv9/mydriver

® On a 64-bit x86 architecture, copy the driver to the amd64 directory:

cp mydriver /usr/kernel/drv/amd64/mydriver

= On a 32-bit architecture, copy the driver to the kernel driver area of the system:

cp mydriver /usr/kernel/drv/mydriver
Adding, Updating, and Removing a Driver

Use the add_drv(1M) command to make the installed driver usable. Be sure you are user root
when you use the add _drv(1M) command.

add_drv mydriver

The following events take place when you add a driver:

® The info(9E), init(9E), and attach(9E) entry points are called in that order.
® The driver is added to the /devices directory.
® The driver is the most recent module listed by modinfo(1M).

® The driver is the most recent module listed in the file /etc/name_to_major.

The file /etc/driver aliases might be updated. The /etc/driver aliases file shows
which devices are bound to which drivers. If a driver is not listed in the /etc/driver aliases
file, then the OS does not load that driver or attach to that driver. Each line of the /etc/

driver aliases file shows a driver name followed by a device name. You can search this file
to determine which driver is managing your device.

Note - Do not edit the /etc/driver_aliases file manually. Use the add_drv(1M) command
to establish a device binding. Use the update drv(1M) command to change a device binding.

The example drivers shown in this book manage pseudo devices. If your driver manages
real hardware, then you need to use the -c and -i options on the add_drv(1M) command or

28 Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Madd-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mmodinfo-1m

Development Environment and Tools

the -i option on the update_ drv(1M) command. To specify a device class or device ID,
you might find the following sites useful. This information also is useful to search the /etc/
driver_aliases file to find out whether a device already is supported.

m List of devices currently supported by the OS: http://www.oracle.com/webfolder/
technetwork/hcl/index.html

m Searchable PCI vendor and device lists: http://www.pcidatabase.com/

= Repository of vendor IDs, device IDs, subsystems, and device classes used in PCI devices:
http://pciids.sourceforge.net/

Use the update drv(1M) command to notify the system about attribute changes to an
installed device driver. By default, the update drv(1M) command reloads the hardware

configuration file for the specified driver. Use the prtconf(1M) command to review the
current configuration information for a device and driver. For example, the -D option shows
which driver manages a particular device. The -P option shows information about pseudo
devices.

Use the rem_drv(1M) command to update the system driver configuration files so that the
driver is no longer usable. The rem_drv(1M) command does not physically delete driver files.
If possible, the rem_drv(1M) command unloads the driver from memory.

Loading and Unloading a Driver

A driver is loaded into memory when a device that the driver manages is accessed. A driver
might be unloaded from memory when the driver is not being used. Normally, you do not need
to load a driver into memory manually or unload a driver from memory manually.

To manually load a loadable module into memory, use the modload(1M) command.

While you are developing your driver, you might want to manually unload the driver
and then update the driver. To manually unload a loadable module from memory, use the

modunload(1M) command.

Testing a Driver

Drivers should be thoroughly tested in the following areas:

s Configuration
= Functionality
= Error handling

Chapter 1 « Introduction to Device Drivers 29

http://www.oracle.com/webfolder/technetwork/hcl/index.html
http://www.oracle.com/webfolder/technetwork/hcl/index.html
http://www.pcidatabase.com/
http://pciids.sourceforge.net/
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mupdate-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mprtconf-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mrem-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mmodload-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mmodunload-1m

Development Environment and Tools

m Loading, unloading, and removing

All drivers will need to be removed eventually. Make sure that your driver can be
successfully removed.

m Stress, performance, and interoperability
= DDI/DKI compliance
m Installation and packaging

For detailed information on how to test your driver and how to avoid problems during testing,
see the following references:

= “Device Driver Testing Tips” on page 106
m “Criteria for Testing Drivers” in “Writing Device Drivers for Oracle Solaris 11.2

m Chapter 23, “Debugging, Testing, and Tuning Device Drivers,” in “Writing Device Drivers
for Oracle Solaris 11.2 ”

Additional testing is specific to the type of driver.

30 Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVERloading-17
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVERdebug-60
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVERdebug-60

LKA CHAPTER 2

Template Driver Example

This chapter shows you how to develop a very simple, working driver. This chapter explains
how to write the driver and configuration file, compile the driver, load the driver, and test the
driver.

The driver that is shown in this chapter is a pseudo device driver that merely writes a message
to a system log every time an entry point is entered. This driver demonstrates the minimum
functionality that any character driver must implement. You can use this driver as a template for
building a complex driver.

This chapter discusses the following driver development steps:

“Overview of the Template Driver Example” on page 31
“Writing the Template Driver” on page 32

“Writing the Device Configuration File” on page 54
“Building and Installing the Template Driver” on page 54
“Testing the Template Driver” on page 55

“Complete Template Driver Source” on page 58

Overview of the Template Driver Example

This example guides you through the following steps:

1.

Create a directory where you can develop your driver and open a new text file named
dummy.c.

Write the entry points for loadable module configuration: init(9E), info(9E), and
~fini(9E).

Wrrite the entry points for autoconfiguration: attach(9E), detach(9E), getinfo(9E),
and prop_op(9E).

Write the entry points for user context: open(9E), close(9E), read(9E), and write(9E).

Define the data structures: the character and block operations structure cb_ops(9S), the
device operations structure dev_ops(9S), and the module linkage structures mod1ldrv(9S)
and modlinkage(9S).

Chapter 2 « Template Driver Example 31

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eu-info-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eu-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Egetinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eprop-op-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Sdev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Smodldrv-9s
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Smodlinkage-9s

Writing the Template Driver

6. Create the driver configuration file dummy . conf.
Build and install the driver.

Test the driver by loading the driver, reading from and writing to the device node, and
unloading the driver.

The entry points that are to be created in this example are shown in the following diagram.

FIGURE 2-1 Entry Points for the dummy Example

Writing the Template Driver

This section describes the entry points and data structures that are included in this driver and
shows you how to define them. All of these data structures and almost all of these entry points
are required for any character device driver.

This section describes the following entry points and data structures:

m Loadable module configuration entry points
= Autoconfiguration entry points

m User context entry points

m Character and block operations structure

= Device operations structure

= Module linkage structures

First, create a directory where you can develop your driver. This driver is named dummy because
this driver does not do any real work. Next, open a new text file named dummy . c.

Writing the Loadable Module Configuration Entry
Points

Every kernel module of any type must define at least the following three loadable module
configuration entry points:

32 Device Driver Tutorial July 2014

Writing the Template Driver

® The 1init(9E) routine initializes a loadable module. The _init(9E) routine must at
least call the mod_install(9F) function and return the success or failure value that is
returned by mod_install(9F).

® The info(9E) routine returns information about a loadable module. The _info(9E)
routine must at least call the mod_info(9F) function and return the value that is returned
by mod_info(9F).

® The fini(9E) routine prepares a loadable module for unloading. The fini(9E)
routine must at least call the mod _remove(9F) function and return the success or failure
value that is returned by mod remove(9F). When mod _remove(9F) is successful, the
_fini(9E) routine must undo everything that the _init(9E) routine did.

The mod_install(9F), mod info(9F), and mod_remove(9F) functions are used in exactly
the same way in every driver, regardless of the functionality of the driver. You do not need to
investigate what the values of the arguments of these functions should be. You can copy these
function calls from this example and paste them into every driver you write.

In this section, the following code is added to the dummy . c source file:

/* Loadable module configuration entry points */
int
_init(void)
{
cmn_err(CE_NOTE, "Inside _init");
return(mod_install(&ml));

}

int

_info(struct modinfo *modinfop)

{
cmn_err(CE_NOTE, "Inside _info");
return(mod_info(&ml, modinfop));

}

int

_fini(void)

{
cmn_err(CE_NOTE, "Inside _fini");
return(mod_remove(&ml));

Declaring the Loadable Module Configuration Entry Points

The init(9E), info(9E), and fini(9E) routine names are not unique to any particular
kernel module. You customize the behavior of these routines when you define them in your
module, but the names of these routines are not unique. These three routines are declared in the
modctl.h header file. You need to include the modct1l.h header file in your dummy. c file. Do not
declare these three routines in dummy . c.

Chapter 2 « Template Driver Example 33

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fmod-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eu-info-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fmod-info-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eu-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fmod-remove-9f

Writing the Template Driver

34

Defining the Module Initialization Entry Point

The 1init(9E) routine returns type int and takes no arguments. The _init(9E) routine must
call the mod_install(9F) function and return the success or failure value that is returned by
mod_install(9F).

The mod _install(9F) function takes an argument that is a mod1linkage(9S) structure.
See “Defining the Module Linkage Structures” on page 52 for information about the

modlinkage(9S) structure.

This driver is supposed to write a message each time an entry point is entered. Use the
cmn_err(9F) function to write a message to a system log. The cmn_err(9F) function usually

is used to report an error condition. The cmn_err(9F) function also is useful for debugging in
the same way that you might use print statements in a user program. Be sure to remove cmn_err
calls that are used for development or debugging before you compile your production version
driver. You might want to use cmn_err calls in a production driver to write error messages that
would be useful to a system administrator.

The cmn_err(9F) function requires you to include the cmn_err.h header file, the ddi.h header

file, and the sunddi.h header file. The cmn_err(9F) function takes two arguments. The first
argument is a constant that indicates the severity of the error message. The message written
by this driver is not an error message but is simply a test message. Use CE_NOTE for the value

of this severity constant. The second argument the cmn_err(9F) function takes is a string
message.

The following code is the _init(9E) routine that you should enter into your dummy. c file.

The mt structure is the modlinkage(9S) structure that is discussed in “Defining the Module
Linkage Structures” on page 52.

int

_init(void)

{
cmn_err(CE_NOTE, "Inside init");
return(mod_install(&ml));

Defining the Module Information Entry Point

The 1info(9E) routine returns type int and takes an argument that is a pointer to an opaque
modinfo structure. The info(9E) routine must return the value that is returned by the
mod_info(9F) function.

Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fmod-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fcmn-err-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eu-info-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fmod-info-9f

Writing the Template Driver

The mod_info(9F) function takes two arguments. The first argument to mod_info(9F) is a
modlinkage(9S) structure. See “Defining the Module Linkage Structures” on page 52 for
information about the modlinkage(9S) structure. The second argument to mod_info(9F)
is the same modinfo structure pointer that is the argument to the _info(9E) routine. The

mod_info(9F) function returns the module information or returns zero if an error occurs.

Use the cmn_err(9F) function to write a message to the system log in the same way that you
used the cmn_err(9F) function in your _init(9E) entry point.

The following code is the _info(9E) routine that you should enter into your dummy. ¢ file.
The m1 structure is discussed in “Defining the Module Linkage Structures” on page 52.

The modinfop argument is a pointer to an opaque structure that the system uses to pass module
information.

int
_info(struct modinfo *modinfop)

{
cmn_err(CE_NOTE, "Inside info");
return(mod _info(&ml, modinfop));

Defining the Module Unload Entry Point

The fini(9E) routine returns type int and takes no arguments. The fini(9E) routine must
call the mod_remove(9F) function and return the success or failure value that is returned by
mod_remove(9F).

When mod_remove(9F) is successful, the fini(9E) routine must undo everything that
the init(9E) routine did. The fini(9E) routine must call mod remove(9F) because

the init(9E) routine called mod install(9F). The fini(9E) routine must deallocate
anything that was allocated, close anything that was opened, and destroy anything that was

created in the _init(9E) routine.

The fini(9E) routine can be called at any time when a module is loaded. In normal
operation, the fini(9E) routine often fails. This behavior is normal because the kernel

allows the module to determine whether the module can be unloaded. If mod remove(9F) is
successful, the module determines that devices were detached, and the module can be unloaded.

If mod_remove(9F) fails, the module determines that devices were not detached, and the
module cannot be unloaded.

The following actions take place when mod _remove(9F) is called:

Chapter 2 « Template Driver Example 35

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fcmn-err-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eu-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fmod-remove-9f

Writing the Template Driver

36

m The kernel checks whether this driver is busy. This driver is busy if one of the following
conditions is true:

= A device node that is managed by this driver is open.

= Another module that depends on this driver is open. A module depends on this driver
if the module was linked using the -N option with this driver named as the argument to
that -N option. See the 1d(1) man page for more information.

® If the driver is busy, then mod_remove(9F) fails and _fini(9E) fails.
" If the driver is not busy, then the kernel calls the detach(9E) entry point of the driver.
® If detach(9E) fails, then mod remove(9F) fails and fini(9E) fails.

® If detach(9E) succeeds, then mod remove(9F) succeeds, and fini(9E)
continues its cleanup work.

The mod_ remove(9F) function takes an argument that is a modlinkage(9S) structure.
See “Defining the Module Linkage Structures” on page 52 for information about the

modlinkage(9S) structure.

Use the cmn_err(9F) function to write a message to the system log in the same way that you
used the cmn_err(9F) function in your _init(9E) entry point.

The following code is the fini(9E) routine that you should enter into your dummy. ¢ file. The
ml structure is discussed in “Defining the Module Linkage Structures” on page 52.

int

_fini(void)

{

cmn_err(CE_NOTE, "Inside fini");
return(mod_remove(&ml));

Including Loadable Module Configuration Header Files

The init(9E), info(9E), fini(9E), and mod install(9F) functions require you
to include the modctl.h header file. The cmn_err(9F) function requires you to include the
cmn_err. h header file, the ddi.h header file, and the sunddi.h header file.

The following header files are required by the three loadable module configuration routines that
you have written in this section. Include this code near the top of your dummy. c file.

#include <sys/modctl.h> /* used by _init, _info, _fini */

#include <sys/cmn_err.h> /* used by all entry points for this driver */
#include <sys/ddi.h> /* used by all entry points for this driver */
#include <sys/sunddi.h> /* used by all entry points for this driver */

Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fcmn-err-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fmod-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fcmn-err-9f

Writing the Template Driver

Writing the Autoconfiguration Entry Points

Every character driver must define at least the following autoconfiguration entry points. The
kernel calls these routines when the device driver is loaded.

® The attach(9E) routine must call ddi _create minor node(9F). The

ddi create minor_node(9F) function provides the information the system needs to
create the device files.

® The detach(9E) routine must call ddi remove minor node(9F) to deallocate
everything that was allocated by ddi_create _minor node(9F). The detach(9E)
routine must undo everything that the attach(9E) routine did.

The getinfo(9E) routine returns requested device driver information through one of its
arguments.

The prop_op(9E) routine returns requested device driver property information through

a pointer. You can call the ddi_prop_op(9F) function instead of writing your own
prop_op(9E) entry point. Use the prop_op(9E) entry point to customize the behavior of
the ddi_prop_ op(9F) function.

In this section, the following code is added:

/* Device autoconfiguration entry points */
static int
dummy attach(dev_info t *dip, ddi_attach cmd t cmd)
{
cmn_err(CE_NOTE, "Inside dummy attach");
switch(cmd) {
case DDI_ATTACH:
dummy dip = dip;
if (ddi_create minor node(dip, "0", S IFCHR,
ddi get instance(dip), DDI PSEUDO, Q)
!= DDI SUCCESS) {
cmn_err(CE_NOTE,
"%s%d: attach: could not add character node.",
"dummy", 0);
return(DDI_FAILURE);
} else
return DDI_SUCCESS;
default:
return DDI_FAILURE;
}
}

static int
dummy detach(dev_info t *dip, ddi detach cmd t cmd)
{
cmn_err(CE_NOTE, "Inside dummy detach");
switch(cmd) {
case DDI DETACH:

Chapter 2 « Template Driver Example 37

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-remove-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Egetinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eprop-op-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-prop-op-9f

Writing the Template Driver

38

dummy dip = 0;
ddi remove minor _node(dip, NULL);
return DDI_SUCCESS;
default:
return DDI_FAILURE;

static int
dummy getinfo(dev_info t *dip, ddi_info cmd _t cmd, void *arg,
void **resultp)
{
cmn_err(CE_NOTE, "Inside dummy getinfo");
switch(cmd) {
case DDI_INFO DEVT2DEVINFO:
*resultp = dummy dip;
return DDI_ SUCCESS;
case DDI_INFO DEVT2INSTANCE:
*resultp = 0;
return DDI_SUCCESS;
default:
return DDI_FAILURE;

static int
dummy prop op(dev_t dev, dev_info t *dip, ddi prop op t prop_op,
int flags, char *name, caddr t valuep, int *lengthp)

{
cmn_err(CE_NOTE, "Inside dummy prop op");
return(ddi prop op(dev,dip,prop_op,flags,name,valuep,lengthp));

Declaring the Autoconfiguration Entry Points

The attach(9E), detach(9E), getinfo(9E), and prop_op(9E) entry point routines need to
be uniquely named for this driver. Choose a prefix to use with each entry point routine.

Note - By convention, the prefix used for function and data names that are unique to this driver
is either the name of this driver or an abbreviation of the name of this driver. Use the same
prefix throughout the driver. This practice makes debugging much easier.

In the example shown in this chapter, dummy_ is used for the prefix to each function and data
name that is unique to this example.

The following declarations are the autoconfiguration entry point declarations you should have
in your dummy . c file. Note that each of these functions is declared static.

static int dummy attach(dev_info t *dip, ddi attach cmd t cmd);
static int dummy detach(dev_info t *dip, ddi detach cmd t cmd);

Device Driver Tutorial July 2014

Writing the Template Driver

static int dummy getinfo(dev_info t *dip, ddi info cmd t cmd, void *arg,
void **resultp);

static int dummy prop op(dev_t dev, dev_info t *dip, ddi prop op t prop op,
int flags, char *name, caddr t valuep, int *lengthp);

Defining the Device Attach Entry Point

The attach(9E) routine returns type int. The attach(9E) routine must return either
DDI SUCCESS or DDI FAILURE. These two constants are defined in sunddi.h. All of the

autoconfiguration entry point routines except for prop_op(9E) return either DDI_SUCCESS or
DDI_FAILURE.

The attach(9E) routine takes two arguments. The first argument is a pointer to the dev_info
structure for this driver. All of the autoconfiguration entry point routines take a dev_info
argument. The second argument is a constant that specifies the attach type. The value that is
passed through this second argument is either DDI_ATTACH or DDI_RESUME. Every attach(9E)
routine must define behavior for at least DDI_ATTACH.

The DDI_ATTACH code must initialize a device instance. In a realistic driver, you
define and manage multiple instances of the driver by using a state structure and the

ddi soft state(9F) functions. Each instance of the driver has its own copy of the state
structure that holds data specific to that instance. One of the pieces of data that is specific to
each instance is the device instance pointer. Each instance of the device driver is represented
by a separate device file in /devices. Each device instance file is pointed to by a separate
device instance pointer. See “Managing Device State” on page 67 for information about

state structures and ddi_soft_ state(9F) functions. See “Devices as Files” on page 19 for
information about device files and instances.

This dummy driver allows only one instance. Because this driver allows only one instance, this
driver does not use a state structure. This driver still must declare a device instance pointer

and initialize the pointer value in the attach(9E) routine. Enter the following code near the
beginning of dummy . c to declare a device instance pointer for this driver:

dev_info_t *dummy dip; /* keep track of one instance */

The following code is the dummy attach routine that you should enter into your dummy . c file.
You can copy the name portion of this function definition directly from the declaration you
entered in “Declaring the Autoconfiguration Entry Points” on page 38.

static int
dummy attach(dev_info t *dip, ddi_attach cmd t cmd)
{
cmn_err(CE_NOTE, "Inside dummy attach");
switch(cmd) {
case DDI_ATTACH:

Chapter 2 « Template Driver Example 39

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-soft-state-9f

Writing the Template Driver

40

dummy dip = dip;
if (ddi_create minor node(dip, "0", S IFCHR,
ddi get instance(dip), DDI PSEUDO, Q)
!= DDI SUCCESS) {
cmn_err(CE_NOTE,
"%s%d: attach: could not add character node.",
"dummy", 0);
return(DDI_FAILURE);
} else
return DDI_ SUCCESS;
default:
return DDI_FAILURE;
}
}

First, use cmn_err(9F) to write a message to the system log, as you did in your _init(9E)
entry point. Then provide DDI_ATTACH behavior. Within the DDI_ATTACH code, first assign the
device instance pointer from the dummy attach argument to the dummy dip variable that you
declared above. You need to save this pointer value in the global variable so that you can use
this pointer to get information about this instance from dummy_getinfo and detach this instance
in dummy_detach. In this dummy attach routine, the device instance pointer is used by the

ddi get instance(9F) function to return the instance number. The device instance pointer

and the instance number both are used by ddi create minor_ node(9F) to create a new
device node.

A realistic driver probably would use the ddi soft state(9F) functions to create and
manage a device node. This dummy driver uses the ddi_create minor_ node(9F) function
to create a device node. The ddi_create _minor node(9F) function takes six arguments.

The first argument to the ddi_create_minor_node(9F) function is the device instance
pointer that points to the dev_info structure of this device. The second argument is the name of
this minor node. The third argument is S_IFCHR if this device is a character minor device or is
S_IFBLK if this device is a block minor device. This dummy driver is a character driver.

The fourth argument to the ddi_create minor node(9F) function is the
minor number of this minor device. This number is also called the instance number.

The ddi_get instance(9F) function returns this instance number. The fifth
argument to the ddi_create _minor node(9F) function is the node type. The
ddi create minor node(9F) man page lists the possible node types. The DDI PSEUDO

node type is for pseudo devices. The sixth argument to the ddi_create _minor node(9F)
function specifies whether this is a clone device. This is not a clone device, so set this argument
value to 0.

If the ddi_create minor_node(9F) call is not successful, write a message to the system
log and return DDI_FAILURE. If the ddi create_minor_ node(9F) call is successful, return
DDI SUCCESS. If this dummy attach routine receives any cmd other than DDI_ATTACH, return
DDI FAILURE.

Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-get-instance-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-create-minor-node-9f

Writing the Template Driver

Defining the Device Detach Entry Point

The detach(9E) routine takes two arguments. The first argument is a pointer to the dev_info
structure for this driver. The second argument is a constant that specifies the detach type. The
value that is passed through this second argument is either DDI_DETACH or DDI_SUSPEND. Every

detach(9E) routine must define behavior for at least DDI_DETACH.

The DDI_DETACH code must undo everything that the DDI_ATTACH code did. In the DDI_ATTACH
code in your attach(9E) routine, you saved the address of a new dev_info structure and you
called the ddi_create minor_ node(9F) function to create a new node. In the DDI DETACH
code in this detach(9E) routine, you need to reset the variable that pointed to the dev_info
structure for this node. You also need to call the ddi remove _minor node(9F) function to
remove this node. The detach(9E) routine must deallocate anything that was allocated, close

anything that was opened, and destroy anything that was created in the attach(9E) routine.

The following code is the dummy detach routine that you should enter into your dummy . c file.
You can copy the name portion of this function definition directly from the declaration you
entered in “Declaring the Autoconfiguration Entry Points” on page 38.

static int
dummy_detach(dev_info t *dip, ddi_detach cmd t cmd)
{
cmn_err(CE_NOTE, "Inside dummy detach");
switch(cmd) {
case DDI_DETACH:
dummy dip = 0;
ddi remove minor node(dip, NULL);
return DDI_SUCCESS;
default:
return DDI_FAILURE;
}
}

First, use cmn_err(9F) to write a message to the system log, as you did in your _init(9E)
entry point. Then provide DDI_DETACH behavior. Within the DDI_DETACH code, first reset the
dummy dip variable that you set in dummy_attach above. You cannot reset this device instance

pointer unless you remove all instances of the device. This dummy driver supports only one
instance.

Next, call the ddi remove minor node(9F) function to remove this device node. The

ddi_remove minor_node(9F) function takes two arguments. The first argument is

the device instance pointer that points to the dev_info structure of this device. The second
argument is the name of the minor node you want to remove. If the value of the minor node
argument is NULL, then ddi_remove_minor_ node(9F) removes all instances of this device.

Because the DDI_DETACH code of this driver always removes all instances, this dummy driver
supports only one instance.

Chapter 2 « Template Driver Example 41

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-remove-minor-node-9f

Writing the Template Driver

If the value of the cmd argument to this dummy detach routine is DDI_DETACH, remove all
instances of this device and return DDI SUCCESS. If this dummy detach routine receives any cmd
other than DDI DETACH, return DDI FAILURE.

Defining the Get Driver Information Entry Point

The getinfo(9E) routine takes a pointer to a device number and returns a pointer to a
device information structure or returns a device instance number. The return value of the

getinfo(9E) routine is DDI SUCCESS or DDI FAILURE. The pointer or instance number
requested from the getinfo(9E) routine is returned through a pointer argument.

The getinfo(9E) routine takes four arguments. The first argument is a pointer to the dev_info
structure for this driver. This dev_info structure argument is obsolete and is no longer used by
the getinfo(9E) routine.

The second argument to the getinfo(9E) routine is a constant that specifies what
information the getinfo(9E) routine must return. The value of this second argument is
either DDI_INFO DEVT2DEVINFO or DDI_INFO DEVT2INSTANCE. The third argument to the
getinfo(9E) routine is a pointer to a device number. The fourth argument is a pointer

to the place where the getinfo(9E) routine must store the requested information. The
information stored at this location depends on the value you passed in the second argument to

the getinfo(9E) routine.

The following table describes the relationship between the second and fourth arguments to the
getinfo(9E) routine.

TABLE 2-1 Get Driver Information Entry Point Arguments

cmd arg resultp
DDI INFO DEVT2DEVINFO Device number Device information structure pointer
DDI_INFO DEVT2INSTANCE Device number Device instance number

The following code is the dummy_getinfo routine that you should enter into your dummy. c file.
You can copy the name portion of this function definition directly from the declaration you
entered in “Declaring the Autoconfiguration Entry Points” on page 38.

static int

dummy getinfo(dev_info t *dip, ddi_info cmd _t cmd, void *arg,
void **resultp)

{
cmn_err(CE_NOTE, "Inside dummy getinfo");

42 Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Egetinfo-9e

Writing the Template Driver

switch(cmd) {

case DDI INFO DEVT2DEVINFO:
*resultp = dummy dip;
return DDI_SUCCESS;

case DDI INFO DEVT2INSTANCE:

*resultp = 0;
return DDI_SUCCESS;
default:

return DDI_FAILURE;
}
}

First, use cmn_err(9F) to write a message to the system log, as you did in your _init(9E)
entry point. Then provide DDI_INFO DEVT2DEVINFO behavior. A realistic driver would use
arg to get the instance number of this device node. A realistic driver would then call the

ddi get soft state(9F) function and return the device information structure pointer

from that state structure. This dummy driver supports only one instance and does not use a state
structure. In the DDI_INFO DEVT2DEVINFO code of this dummy getinfo routine, simply return the
one device information structure pointer that the dummy attach routine saved.

Next, provide DDI INFO DEVT2INSTANCE behavior. Within the DDI INFO DEVT2INSTANCE code,
simply return 0. This dummy driver supports only one instance. The instance number of that one
instance is 0.

Defining the Report Driver Property Information Entry Point

The prop_op(9E) entry point is required for every driver. If your driver does not need

to customize the behavior of the prop_op(9E) entry point, then your driver can use the
ddi_prop_op(9F) function for the prop_op(9E) entry point. Drivers that create and
manage their own properties need a custom prop_op(9E) routine. This dummy driver uses a
prop_op(9E) routine to call cmn_err(9F) before calling the ddi_prop_op(9F) function.

The prop_op(9E) entry point and the ddi_prop_op(9F) function both require that you

include the types.h header file. The prop_op(9E) entry point and the ddi_prop_op(9F)
function both take the same seven arguments. These arguments are not discussed here because

this dummy driver does not create and manage its own properties. See the prop_op(9E) man
page to learn about the prop_op(9E) arguments.

The following code is the dummy prop_op routine that you should enter into your dummy . c file.
You can copy the name portion of this function definition directly from the declaration you
entered in “Declaring the Autoconfiguration Entry Points” on page 38.

static int

dummy_prop op(dev_t dev, dev_info t *dip, ddi prop op t prop_op,
int flags, char *name, caddr t valuep, int *1lengthp)

Chapter 2 « Template Driver Example 43

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eprop-op-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-prop-op-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fcmn-err-9f

Writing the Template Driver

44

cmn_err(CE_NOTE, "Inside dummy prop op");
return(ddi prop op(dev,dip,prop_op,flags,name,valuep,lengthp));

First, use cmn_err(9F) to write a message to the system log, as you did in your init(9E)

entry point. Then call the ddi_prop_op(9F) function with exactly the same arguments as the
dummy prop_op function.

Including Autoconfiguration Header Files

All of the autoconfiguration entry point routines and all of the user context entry point routines
require that you include the ddi.h and sunddi.h header files. You already included these two

header files for the cmn_err(9F) function.

The ddi create minor node(9F) function requires the stat.h header file. The
dummy_attach routine calls the ddi_create minor_ node(9F) function. The prop_ op(9E)
and the ddi_prop_op(9F) functions require the types.h header file.

The following code is the list of header files that you now should have included in your
dummy . c file for the four autoconfiguration routines you have written in this section and the
three loadable module configuration routines you wrote in the previous section.

#include <sys/modctl.h> /* used by _init, _info, _fini */
#include <sys/types.h> /* used by prop op, ddi_prop op */
#include <sys/stat.h> /* defines S _IFCHR used by ddi create minor_node */
#include <sys/cmn_err.h> /* used by all entry points for this driver */
#include <sys/ddi.h> /* used by all entry points for this driver */

/* also used by ddi_get instance, ddi_prop op */
#include <sys/sunddi.h> /* used by all entry points for this driver */

/* also used by ddi_create_minor_node, */

/* ddi_get_instance, and ddi_prop op */

Writing the User Context Entry Points

User context entry points correspond closely to system calls. When a system call opens a device
file, then the open(9E) routine in the driver for that device is called.

All character and block drivers must define the open(9E) user context entry point. However,

the open(9E) routine can be nulldev(9F). The close(9E), read(9E), and write(9E) user
context routines are optional.

® The open(9E) routine gains access to the device.

Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eprop-op-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-prop-op-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fnulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eopen-9e

Writing the Template Driver

undo everything that the open(9E) routine did.
® The read(9E) routine reads data from the device node.

® The write(9E) routine writes data to the device node.

In this section, the following code is added:

/* Use context entry points */
static int
dummy_open(dev_t *devp, int flag, int otyp, cred_t *cred)
{
cmn_err(CE_NOTE, "Inside dummy_open");
return DDI_SUCCESS;

static int
dummy_close(dev_t dev, int flag, int otyp, cred_t *cred)
{

cmn_err(CE_NOTE, "Inside dummy_close");

return DDI_SUCCESS;

static int
dummy_read(dev_t dev, struct uio *uiop, cred t *credp)
{

cmn_err(CE_NOTE, "Inside dummy_read");

return DDI_SUCCESS;

static int
dummy_write(dev_t dev, struct uio *uiop, cred_t *credp)
{

cmn_err(CE_NOTE, "Inside dummy write");

return DDI_SUCCESS;

Declaring the User Context Entry Points

The close(9E) routine relinquishes access to the device. The close(9E) routine must

The user context entry point routines need to be uniquely named for this driver. Use the same
prefix for each of the user context entry points that you used for each of the autoconfiguration
entry point routines. The following declarations are the entry point declarations you should have

in your dummy . c file:

static int dummy attach(dev_info t *dip, ddi attach cmd t cmd);
static int dummy detach(dev_info t *dip, ddi detach cmd t cmd);

static int dummy getinfo(dev_info t *dip, ddi info cmd t cmd, void *arg,

void **resultp);

static int dummy prop op(dev_t dev, dev_info t *dip, ddi prop op t prop op,

int flags, char *name, caddr t valuep, int *lengthp);

static int dummy open(dev_t *devp, int flag, int otyp, cred t *cred);
static int dummy close(dev_t dev, int flag, int otyp, cred t *cred);

static int dummy read(dev_t dev, struct uio *uiop, cred t *credp);

Chapter 2 « Template Driver Example 45

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Ewrite-9e

Writing the Template Driver

46

static int dummy write(dev_t dev, struct uio *uiop, cred t *credp);

Defining the Open Device Entry Point

The open(9E) routine returns type int. The open(9E) routine should return either
DDI SUCCESS or the appropriate error number.

The open(9E) routine takes four arguments. This dummy driver is so simple that this
dummy open routine does not use any of the open(9E) arguments. The examples in Chapter 3,
“Reading and Writing Data in Kernel Memory” show the open(9E) routine in more detail.

The following code is the dummy open routine that you should enter into your dummy . c file. You
can copy the name portion of this function definition directly from the declaration you entered
in “Declaring the User Context Entry Points” on page 45. Write a message to the system log
and return success.

static int
dummy_open(dev_t *devp, int flag, int otyp, cred_t *cred)

{
cmn_err(CE_NOTE, "Inside dummy_open");
return DDI_SUCCESS;

Defining the Close Device Entry Point

The close(9E) routine returns type int. The close(9E) routine should return either
DDI_SUCCESS or the appropriate error number.

The close(9E) routine takes four arguments. This dummy driver is so simple that this
dummy close routine does not use any of the close(9E) arguments. The examples in

Chapter 3, “Reading and Writing Data in Kernel Memory” show the close(9E) routine in
more detail.

The close(9E) routine must undo everything that the open(9E) routine did. The close(9E)
routine must deallocate anything that was allocated, close anything that was opened, and
destroy anything that was created in the open(9E) routine. In this dummy driver, the open(9E)

routine is so simple that nothing needs to be reclaimed or undone in the close(9E) routine.

The following code is the dummy_close routine that you should enter into your dummy . c file.
You can copy the name portion of this function definition directly from the declaration you
entered in “Declaring the User Context Entry Points” on page 45. Write a message to the
system log and return success.

Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eclose-9e

Writing the Template Driver

static int
dummy close(dev_t dev, int flag, int otyp, cred t *cred)

{
cmn_err(CE_NOTE, "Inside dummy close");
return DDI_SUCCESS;

Defining the Read Device Entry Point

The read(9E) routine returns type int. The read(9E) routine should return either
DDI SUCCESS or the appropriate error number.

The read(9E) routine takes three arguments. This dummy driver is so simple that this
dummy read routine does not use any of the read(9E) arguments. The examples in Chapter 3,
“Reading and Writing Data in Kernel Memory” show the read(9E) routine in more detail.

The following code is the dummy read routine that you should enter into your dummy. c file. You
can copy the name portion of this function definition directly from the declaration you entered
in “Declaring the User Context Entry Points” on page 45. Write a message to the system log
and return success.

static int
dummy_read(dev_t dev, struct uio *uiop, cred t *credp)

{
cmn_err(CE_NOTE, "Inside dummy_read");
return DDI_SUCCESS;

Defining the Write Device Entry Point

The write(9E) routine returns type int. The write(9E) routine should return either
DDI SUCCESS or the appropriate error number.

The write(9E) routine takes three arguments. This dummy driver is so simple that this
dummy write routine does not use any of the write(9E) arguments. The examples in

Chapter 3, “Reading and Writing Data in Kernel Memory” show the write(9E) routine in
more detail.

The following code is the dummy write routine that you should enter into your dummy . c file.
You can copy the name portion of this function definition directly from the declaration you
entered in “Declaring the User Context Entry Points” on page 45. Write a message to the
system log and return success.

static int
dummy write(dev_t dev, struct uio *uiop, cred t *credp)

Chapter 2 « Template Driver Example a7

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Ewrite-9e

Writing the Template Driver

cmn_err(CE_NOTE, "Inside dummy write");
return DDI_SUCCESS;

Including User Context Header Files

The four user context entry point routines require your module to include several header files.
You already have included the types.h header file, the ddi.h header file, and the sunddi.h
header file. You need to include the file.h, errno.h, open.h, cred.h, and uio.h header files.

The following code is the list of header files that you now should have included in your
dummy . c file for all the entry points you have written in this section and the previous two
sections:

#include <sys/modctl.h> /* used by modlinkage, modldrv, _init, info, */
/* and _fini */

#include <sys/types.h> /* used by open, close, read, write, prop op, */
/* and ddi_prop op */

#include <sys/file.h> /* used by open, close */

#include <sys/errno.h> /* used by open, close, read, write */
#include <sys/open.h> /* used by open, close, read, write */
#include <sys/cred.h> /* used by open, close, read */
#include <sys/uio.h> /* used by read */

#include <sys/stat.h> /* defines S _IFCHR used by ddi create minor_node */
#include <sys/cmn_err.h> /* used by all entry points for this driver */
#include <sys/ddi.h> /* used by all entry points for this driver */

/* also used by ddi_get_instance and */

/* ddi_prop op */
#include <sys/sunddi.h> /* used by all entry points for this driver */

/* also used by ddi_create_minor_node, */

/* ddi_get instance, and ddi prop op */

Writing the Driver Data Structures

All of the data structures described in this section are required for every device driver. All
drivers must define a dev_ops(9S) device operations structure. Because the dev_ops(9S)
structure includes a pointer to the cb_ops(9S) character and block operations structure, you
must define the cb_ops(9S) structure first. The mod1d rv(9S) linkage structure for loadable
drivers includes a pointer to the dev_ops(9S) structure. The mod1inkage(9S) module
linkage structure includes a pointer to the mod1drv(9S) structure.

Except for the loadable module configuration entry points, all of the required entry points

for a driver are initialized in the character and block operations structure or in the device
operations structure. Some optional entry points and other related data also are initialized in
these data structures. Initializing the entry points in these data structures enables the driver to be
dynamically loaded.

48 Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Sdev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Smodldrv-9s
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Smodlinkage-9s

Writing the Template Driver

The loadable module configuration entry points are not initialized in driver data structures. The

_init(9E), info(9E), and fini(9E) entry points are required for all kernel modules and
are not specific to device driver modules.

In this section, the following code is added:

/* cb_ops structure */
static struct cb _ops dummy cb ops = {

dummy_open,

dummy close,

nodev, /* no strategy - nodev returns ENXIO */

nodev, /* no print */

nodev, /* no dump */

dummy_read,

dummy write,

nodev, /* no ioctl */

nodev, /* no devmap */

nodev, /* no mmap */

nodev, /* no segmap */

nochpoll, /* returns ENXIO for non-pollable devices */

dummy_prop _op,

NULL, /* streamtab struct; if not NULL, all above */
/* fields are ignored */

D NEW | D _MP, /* compatibility flags: see conf.h */

CB_REV, /* cb_ops revision number */

nodev, /* no aread */

nodev /* no awrite */

+

/* dev_ops structure */
static struct dev _ops dummy dev ops = {

DEVO REV,

0, /* reference count */

dummy getinfo, /* no getinfo(9E) */

nulldev, /* no identify(9E) - nulldev returns 0 */
nulldev, /* no probe(9E) */

dummy_attach,
dummy_detach,
nodev, /* no reset - nodev returns ENXIO */
&dummy cb _ops,
(struct bus ops *)NULL,
nodev, /* no power(9E) */
ddi quiesce not needed, /* no quiesce(9E) */
};

/* modldrv structure */

static struct modldrv md = {
&mod_driverops, /* Type of module. This is a driver. */
"dummy driver", /* Name of the module. */
&dummy_dev_ops

};

/* modlinkage structure */
static struct modlinkage ml = {
MODREV 1,
&md,
NULL

Chapter 2 « Template Driver Example

49

Writing the Template Driver

50

+

/* dev_info structure */
dev_info_t *dummy dip; /* keep track of one instance */

Defining the Character and Block Operations Structure

The cb_ops(9S) structure initializes standard character and block interfaces. See the
cb_ops(9S) man page to learn what each element is and what the value of each element should

be. This dummy driver does not use all of the elements in the cb_ops(9S) structure. See the
description that follows the code sample.

When you name this structure, use the same dummy prefix that you used for the names of the
autoconfiguration routines and the names of the user context routines. Prepend the static type
modifier to the declaration.

The following code is the cb_0ps(9S) structure that you should enter into your dummy . c file:

static struct cb_ops dummy cb ops = {

dummy_open,

dummy_close,

nodev, /* no strategy - nodev returns ENXIO */

nodev, /* no print */

nodev, /* no dump */

dummy_read,

dummy_write,

nodev, /* no ioctl */

nodev, /* no devmap */

nodev, /* no mmap */

nodev, /* no segmap */

nochpoll, /* returns ENXIO for non-pollable devices */

dummy_prop_op,

NULL, /* streamtab struct; if not NULL, all above */
/* fields are ignored */

D NEW | D _MP, /* compatibility flags: see conf.h */

CB_REV, /* cb_ops revision number */

nodev, /* no aread */

nodev /* no awrite */

+i

Enter the names of the open(9E) and close(9E) entry points for this driver as the values of

the first two elements of this structure. Enter the names of the read(9E) and write(9E) entry
points for this driver as the values of the sixth and seventh elements of this structure. Enter the

name of the prop_op(9E) entry point for this driver as the value of the thirteenth element in
this structure.

The strategy(9E), print(9E), and dump(9E) routines are for block drivers only. This
dummy driver does not define these three routines because this driver is a character driver. This
driver does not define an 10ct1(9E) entry point because this driver does not use I/O control

Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Scb-ops-9s

Writing the Template Driver

commands. This driver does not define devmap(9E), mmap(9E), or segmap(9E) entry points
because this driver does not support memory mapping. This driver does not does not define

aread(9E) or awrite(9E) entry points because this driver does not perform any asynchronous

reads or writes. Initialize all of these unused function elements to nodev(9F). The nodev(9F)
function returns the ENXIO error code.

Specify the nochpol1(9F) function for the chpol1(9E) element of the cb_ops(9S)

structure because this driver is not for a pollable device. Specify NULL for the st reamtab(9S)
STREAMS entity declaration structure because this driver is not a STREAMS driver.

The compatibility flags are defined in the conf.h header file. The D NEW flag means this

driver is a new-style driver. The D_MP flag means this driver safely allows multiple threads of
execution. All drivers must be multithreaded-safe, and must specify this D MP flag. The D 64BIT
flag means this driver supports 64-bit offsets and block numbers. See the conf.h header file for
more compatibility flags.

The CB_REV element of the cb_ops(9S) structure is the cb_0ps(9S) revision number. CB_REV
is defined in the devops. h header file.

Defining the Device Operations Structure

The dev_ops(9S) structure initializes interfaces that are used for operations such as attaching

and detaching the driver. See the dev_ops(9S) man page to learn what each element is and
what the value of each element should be. This dummy driver does not use all of the elements in

the dev_ops(9S) structure. See the description that follows the code sample.

When you name this structure, use the same dummy prefix that you used for the names of the
autoconfiguration routines and the names of the user context routines. Prepend the static type
modifier to the declaration.

The following code is the dev_ops(9S) structure that you should enter into your dummy . c file:

static struct dev _ops dummy dev ops = {

DEVO REV,

0, /* reference count */

dummy getinfo, /* no getinfo(9E) */

nulldev, /* no identify(9E) - nulldev returns 0 */
nulldev, /* no probe(9E) */

dummy_attach,

dummy_detach,

nodev, /* no reset - nodev returns ENXIO */
&dummy cb_ops,

(struct bus ops *)NULL,

nodev, /* no power(9E) */

ddi quiesce not needed, /* no quiesce(9E) */

>

+

Chapter 2 « Template Driver Example 51

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fnodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fnochpoll-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Sdev-ops-9s

Writing the Template Driver

52

The DEVO_REV element of the dev_ops(9S) structure is the driver build version. DEVO_REV is

defined in the devops.h header file. The second element in this structure is the driver reference
count. Initialize this value to zero. The driver reference count is the number of instances of this
driver that are currently open. The driver cannot be unloaded if any instances of the driver are
still open.

The next six elements of the dev_ops(9S) structure are the names of the getinfo(9E),
identify(9E), probe(9E), attach(9E), detach(9E), and reset functions for this
particular driver. The identify(9E) function is obsolete. Initialize this structure element

to nulldev(9F). The probe(9E) function determines whether the corresponding device
exists and is valid. This dummy driver does not define a probe(9E) function. Initialize this
structure element to nulldev. The nulldev(9F) function returns success. The reset function
is obsolete. Initialize the reset function to nodev(9F).

The next element of the dev_ops(9S) structure is a pointer to the cb_0ps(9S) structure for

this driver. You initialized the cb_ops(9S) structure for this driver in “Defining the Character
and Block Operations Structure” on page 50. Enter &dummy_cb_ops for the value of the

pointer to the cb_ops(9S) structure.

The next element of the dev_ops(9S) structure is a pointer to the bus operations structure.
Only nexus drivers have bus operations structures. This dummy driver is not a nexus driver. Set
this value to NULL because this driver is a leaf driver.

The next element of the dev_ops(9S) structure is the name of the powe r(9E) routine for this

driver. The power(9E) routine operates on a hardware device. This driver does not drive a
hardware device. Set the value of this structure element to nodev.

The last element of the dev_ops(9S) structure is the name of the quiesce(9E) routine for this

driver. The quiesce(9E) routine operates on a hardware device. This driver does not drive a
hardware device. Set the value of this structure element to ddi_quiesce not_needed(9F).

Defining the Module Linkage Structures

Two other module loading structures are required for every driver. The modlinkage(9S)
module linkage structure is used by the _init(9E), info(9E), and fini(9E) routines to

install, remove, and retrieve information from a module. The mod1ldrv(9S) linkage structure
for loadable drivers exports driver-specific information to the kernel. See the man pages for
each structure to learn what each element is and what the value of each element should be.

The following code defines the mod1d rv(9S) and modlinkage(9S) structures for the driver
shown in this chapter:

Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fnulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fnodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Equiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Smodlinkage-9s
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Smodldrv-9s

Writing the Template Driver

static struct modldrv md = {
&mod

driverops,

"dummy driver",
&dummy_dev_ops

/* Type of module. This is a driver. */
/* Name of the module. */

};

static struct modlinkage ml = {
MODREV 1,
&md,
NULL

+

The first element in the mod1d rv(9S) structure is a pointer to a structure that tells the kernel
what kind of module this is. Set this value to the address of the mod_driverops structure. The
mod_driverops structure tells the kernel that the dummy . c module is a loadable driver module.

The mod_driverops structure is declared in the modctl.h header file. You already included the

modctl.h header file in your dummy. c file, so do not declare the mod driverops structure in

dummy . c. The mod_driverops structure is defined in the modct1. c source file.

The second element in the mod1d rv(9S) structure is a string that describes this module.

Usually this string contains the name of this module and the version number of this module.
The last element of the mod1drv(9S) structure is a pointer to the dev_ops(9S) structure for
this driver. You initialized the dev_ops(9S) structure for this driver in “Defining the Device

Operations Structure” on page 51.

The first element in the modlinkage(9S) structure is the revision number of the loadable

modules system. Set this value to MODREV_1. The next element of the modlinkage(9S)

structure is the address of a null-terminated array of pointers to linkage structures. Driver
modules have only one linkage structure. Enter the address of the md structure for the value of

this element of the modlinkage(9S) structure. Enter the value NULL to terminate this list of

linkage structures.

Including Data Structures Header Files

The cb_ops(9S) and dev_ops(9S) structures require you to include the conf.h and devops.h

header files. The mod1inkage(9S) and mod1d rv(9S) structures require you to include the
modctl.h header file. You already included the modctl.h header file for the loadable module
configuration entry points.

The following code is the complete list of header files that you now should have included in

your dummy . c file:

#include
#include
#include

#include

<sys/devops.h>
<sys/conf.h>
<sys/modctl.h>

<sys/types.h>

/*
/*
/*
/*
/*

used by dev_ops */

used by dev_ops and cb _ops */

used by modlinkage, modldrv, _init, info, */
and fini */

used by open, close, read, write, prop op, */

Chapter 2 « Template Driver Example

53

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Sdev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Smodlinkage-9s
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Smodldrv-9s

Writing the Device Configuration File

/* and ddi_prop op */

#include <sys/file.h> /* used by open, close */

#include <sys/errno.h> /* used by open, close, read, write */
#include <sys/open.h> /* used by open, close, read, write */
#include <sys/cred.h> /* used by open, close, read */
#include <sys/uio.h> /* used by read */

#include <sys/stat.h> /* defines S IFCHR used by ddi create minor node */
#include <sys/cmn_err.h> /* used by all entry points for this driver */
#include <sys/ddi.h> /* used by all entry points for this driver */
/* also used by cb ops, ddi get instance, and */
/* ddi_prop op */
#include <sys/sunddi.h> /* used by all entry points for this driver */
/* also used by cb ops, ddi create minor node, */
/* ddi_get instance, and ddi prop op */

Writing the Device Configuration File

This driver requires a configuration file. The minimum information that a configuration file
must contain is the name of the device node and the name or type of the device's parent. In this
simple example, the node name of the device is the same as the file name of the driver. Create a
file named dummy . conf in your working directory. Put the following single line of information
into dummy . conf:

name="dummy" parent="pseudo";

Building and Installing the Template Driver

54

This section shows you how to build and install the driver for a 32-bit platform. See “Building
a Driver” on page 25 and “Installing a Driver” on page 27 for build and install instructions for
SPARC architectures and for 64-bit x86 architectures.

Compile and link the driver. Use the -D_KERNEL option to indicate that this code defines a kernel
module. The following example shows compiling and linking for a 32-bit architecture using the
Oracle Solaris Studio C compiler:

% cc -D_KERNEL -c dummy.c
% ld -r -o dummy dummy.o

Make sure you are user root when you install the driver.

Install drivers in the /tmp directory until you are finished modifying and testing the info,
_init, and attach routines. Copy the driver binary to the /tmp directory. Link to the driver
from the kernel driver directory. See “Device Driver Testing Tips” on page 106 for more
information.

cp dummy /tmp

Device Driver Tutorial July 2014

Testing the Template Driver

Link to the following directory for a 32-bit architecture:
ln -s /tmp/dummy /usr/kernel/drv/dummy
Copy the configuration file to the kernel driver area of the system.

cp dummy.conf /usr/kernel/drv

Testing the Template Driver

This dummy driver merely writes a message to a system log each time an entry point routine is
entered. To test this driver, watch for these messages to confirm that each entry point routine is
successfully entered.

The cmn_err(9F) function writes low priority messages such as the messages defined in this

dummy driver to /dev/1log. The syslogd(1M) daemon reads messages from /dev/log and
writes low priority messages to /var/adm/messages.

In a separate window, enter the following command and monitor the output as you perform the
tests described in the remainder of this section:

% tail -f /var/adm/messages
Adding the Template Driver

Make sure you are user root when you add the driver. Use the add drv(1M) command to add
the driver:

add_drv dummy

You should see the following messages in the window where you are viewing /var/adm/
messages:
date time machine dummy: [ID 513080 kern.notice] NOTICE: Inside _info

date time machine dummy: [ID 874762 kern.notice] NOTICE: Inside init
date time machine dummy: [ID 678704 kern.notice] NOTICE: Inside dummy attach

The info(9E), init(9E), and attach(9E) entry points are called in that order when you
add a driver.

The dummy driver has been added to the /devices directory:
% 1ls -1 /devices/pseudo | grep dummy

drwxr-xr-x 2 root sys 512 date time dummy@@
Crw------- 1 root sys 92, 0 date time dummy@0:0

Chapter 2 « Template Driver Example 55

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fcmn-err-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Msyslogd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Madd-drv-1m

Testing the Template Driver

56

The dummy driver also is the most recent module listed by modinfo(1M):

% modinfo
Id Loadaddr Size Info Rev Module Name
180 ed192b70 544 92 1 dummy (dummy driver)

The module name, dummy driver, is the value you entered for the second member of the
mod1drv(9S) structure. The value 92 is the major number of this module.

% grep dummy /etc/name_to_major
dummy 92

The Loadaddr address of ed192b70 is the address of the first instruction in the dummy driver.
This address might be useful, for example, in debugging.

% mdb -k

> dummy” _init $m

BASE LIMIT SIZE NAME
ed192b70 ed192ff0 480 dummy

> $q

The dummy driver also is the most recent module listed by prtconf(1M) in the pseudo device
section:

% prtconf -P
pseudo, instance #0
dummy, instance #0 (driver not attached)

A driver is automatically loaded when a device that the driver manages is accessed. A driver
might be automatically unloaded when the driver is not in use.

If your driver is in the /devices directory but modinfo(1M) does not list your driver, you can
use either of the following methods to load your driver:

® Use the modload(1M) command.

m Access the device. The driver is loaded automatically when a device that the driver
manages is accessed. The following section describes how to access the dummy device.

Reading and Writing the Device

Make sure you are user root when you perform the tests described in this section. If you are not
user root, you will receive “Permission denied” error messages when you try to access the /
devices/pseudo/dummy@®: @ special file. Notice the permissions that are shown for /devices/
pseudo/dummy@®: 0 in “Adding the Template Driver” on page 55.

Test reading from the device. Your dummy device probably is named /devices/pseudo/
dummy@0: 0. The following command reads from your dummy device even if it has a slightly
different name:

Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mmodinfo-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mprtconf-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mmodload-1m

Testing the Template Driver

cat /devices/pseudo/dummy*

You should see the following messages in the window where you are viewing /var/adm/
messages:

date time machine dummy: [ID 136952 kern.notice] NOTICE: Inside dummy open

date time machine dummy: [ID 623947 kern.notice] NOTICE: Inside dummy getinfo

date time machine dummy: [ID 891851 kern.notice] NOTICE: Inside dummy prop op

date time machine dummy: [ID 623947 kern.notice] NOTICE: Inside dummy getinfo

date time machine dummy: [ID 891851 kern.notice] NOTICE: Inside dummy prop op

date time machine dummy: [ID 623947 kern.notice] NOTICE: Inside dummy getinfo

date time machine dummy: [ID 709590 kern.notice] NOTICE: Inside dummy read
date time machine dummy: [ID 550206 kern.notice] NOTICE: Inside dummy close

Test writing to the device:

echo hello > “ls /devices/pseudo/dummy*”

You should see the following messages in the window where you are viewing /var/adm/
messages:

date time machine dummy: [ID 136952 kern.notice] NOTICE: Inside dummy open

date time machine dummy: [ID 623947 kern.notice] NOTICE: Inside dummy getinfo

date time machine dummy: [ID 891851 kern.notice] NOTICE: Inside dummy prop op

date time machine dummy: [ID 623947 kern.notice] NOTICE: Inside dummy getinfo

date time machine dummy: [ID 891851 kern.notice] NOTICE: Inside dummy prop op

date time machine dummy: [ID 623947 kern.notice] NOTICE: Inside dummy getinfo

date time machine dummy: [ID 672780 kern.notice] NOTICE: Inside dummy write

date time machine dummy: [ID 550206 kern.notice] NOTICE: Inside dummy close

As you can see, this output from the write test is almost identical to the output you saw from the
read test. The only difference is in the seventh line of the output. Using the cat(1) command
causes the kernel to access the read(9E) entry point of the driver. Using the echo(1) command
causes the kernel to access the write(9E) entry point of the driver. The text argument that you

give to echo(1) is ignored because this driver does not do anything with that data.
Removing the Template Driver

Make sure you are user root when you unload the driver. Use the rem_drv(1M) command to
unload the driver and remove the device from the /devices directory:

rem_drv dummy

You should see the following messages in the window where you are viewing /var/adm/
messages:
date time machine dummy: [ID 513080 kern.notice] NOTICE: Inside info

date time machine dummy: [ID 617648 kern.notice] NOTICE: Inside dummy detach
date time machine dummy: [ID 812373 kern.notice] NOTICE: Inside fini

Chapter 2 « Template Driver Example 57

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1cat-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1echo-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1echo-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mrem-drv-1m

Complete Template Driver Source

The dummy device is no longer in the /devices directory:

1s /devices/pseudo/dummy*
/devices/pseudo/dummy*: No such file or directory

The next time you want to read from or write to the dummy device, you must load the driver
again using add_drv(1M).

You can use the modunload(1M) command to unload the driver but not remove the device

from /devices. Then the next time you read from or write to the dummy device, the driver is
automatically loaded.

Press Control-C to stop tailing the /var/adm/messages messages.

Complete Template Driver Source

The following code is the complete source for the dummy driver described in this chapter:

~
*

Minimalist pseudo-device.
Writes a message whenever a routine is entered.

Build the driver:
cc -D_KERNEL -c dummy.c
1d -r -o dummy dummy.o
Copy the driver and the configuration file to /usr/kernel/drv:
cp dummy.conf /usr/kernel/drv
cp dummy /tmp
1n -s /tmp/dummy /usr/kernel/drv/dummy
Add the driver:
add_drv dummy
Test (1) read from driver (2) write to driver:
cat /devices/pseudo/dummy@*
echo hello > “ls /devices/pseudo/dummy@*’
Verify the tests in another window:
tail -f /var/adm/messages
Remove the driver:
rem _drv dummy

¥R OK KK X K XK X X X X X X K X X K

*
~

#include <sys/devops.h> /* used by dev ops */

#include <sys/conf.h> /* used by dev ops and cb _ops */

#include <sys/modctl.h> /* used by modlinkage, modldrv, init, info, */
/* and _fini */

#include <sys/types.h> /* used by open, close, read, write, prop op, */
/* and ddi_prop op */

#include <sys/file.h> /* used by open, close */

#include <sys/errno.h> /* used by open, close, read, write */
#include <sys/open.h> /* used by open, close, read, write */
#include <sys/cred.h> /* used by open, close, read */
#include <sys/uio.h> /* used by read */

#include <sys/stat.h> /* defines S IFCHR used by ddi create minor node */

58 Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mmodunload-1m

Complete Template Driver Source

#include <sys/cmn_err.h> /* used by all entry points for this driver */
#include <sys/ddi.h> /* used by all entry points for this driver */
/* also used by cb ops, ddi get instance, and */
/* ddi_prop op */
#include <sys/sunddi.h> /* used by all entry points for this driver */
/* also used by cb ops, ddi create minor node, */
/* ddi_get instance, and ddi prop op */

static int dummy attach(dev_info t *dip, ddi attach cmd t cmd);

static int dummy detach(dev_info t *dip, ddi detach cmd t cmd);

static int dummy getinfo(dev_info t *dip, ddi info cmd t cmd, void *arg,
void **resultp);

static int dummy prop op(dev_t dev, dev_info t *dip, ddi prop op t prop op,
int flags, char *name, caddr t valuep, int *lengthp);

static int dummy open(dev_t *devp, int flag, int otyp, cred t *cred);

static int dummy close(dev_t dev, int flag, int otyp, cred t *cred);

static int dummy read(dev_t dev, struct uio *uiop, cred t *credp);

static int dummy write(dev_t dev, struct uio *uiop, cred t *credp);

/* cb_ops structure */
static struct cb _ops dummy cb ops = {

dummy_open,

dummy close,

nodev, /* no strategy - nodev returns ENXIO */

nodev, /* no print */

nodev, /* no dump */

dummy_read,

dummy write,

nodev, /* no ioctl */

nodev, /* no devmap */

nodev, /* no mmap */

nodev, /* no segmap */

nochpoll, /* returns ENXIO for non-pollable devices */

dummy_prop _op,

NULL, /* streamtab struct; if not NULL, all above */
/* fields are ignored */

D NEW | D _MP, /* compatibility flags: see conf.h */

CB_REV, /* cb_ops revision number */

nodev, /* no aread */

nodev /* no awrite */

+

/* dev_ops structure */
static struct dev _ops dummy dev ops = {

DEVO REV,

0, /* reference count */

dummy getinfo, /* no getinfo(9E) */

nulldev, /* no identify(9E) - nulldev returns 0 */
nulldev, /* no probe(9E) */

dummy_attach,

dummy_detach,

nodev, /* no reset - nodev returns ENXIO */
&dummy cb_ops,

(struct bus ops *)NULL,

nodev, /* no power(9E) */

ddi quiesce not needed, /* no quiesce(9E) */

>

+

Chapter 2 « Template Driver Example

59

Complete Template Driver Source

/* modldrv structure */

static struct modldrv md = {
&mod_driverops, /* Type of module. This is a driver. */
"dummy driver", /* Name of the module. */
&dummy_dev_ops

};

/* modlinkage structure */
static struct modlinkage ml = {
MODREV 1,
&md,
NULL
};

/* dev_info structure */
dev_info_t *dummy dip; /* keep track of one instance */

/* Loadable module configuration entry points */

int

_init(void)

{
cmn_err(CE_NOTE, "Inside _init");
return(mod_install(&ml));

}

int

_info(struct modinfo *modinfop)

{
cmn_err(CE_NOTE, "Inside info");
return(mod_info(&ml, modinfop));

}

int

_fini(void)

{
cmn_err(CE_NOTE, "Inside fini");
return(mod_remove(&ml));

}

/* Device configuration entry points */

static int

dummy attach(dev_info t *dip, ddi_attach cmd t cmd)

{

cmn_err(CE_NOTE, "Inside dummy attach");
switch(cmd) {
case DDI_ATTACH:
dummy dip = dip;
if (ddi_create minor node(dip, "0", S IFCHR,
ddi get instance(dip), DDI PSEUDO, Q)
!= DDI SUCCESS) {
cmn_err(CE_NOTE,
"%s%d: attach: could not add character node.",
"dummy", 0);
return(DDI_FAILURE);
} else
return DDI_ SUCCESS;
default:

60 Device Driver Tutorial July 2014

Complete Template Driver Source

return DDI_FAILURE;

static int
dummy detach(dev_info t *dip, ddi detach cmd t cmd)
{
cmn_err(CE_NOTE, "Inside dummy detach");
switch(cmd) {
case DDI DETACH:
dummy dip = 0;
ddi remove minor _node(dip, NULL);
return DDI_ SUCCESS;
default:
return DDI_FAILURE;

static int
dummy getinfo(dev_info t *dip, ddi_info cmd _t cmd, void *arg,
void **resultp)

cmn_err(CE_NOTE, "Inside dummy getinfo");
switch(cmd) {
case DDI INFO DEVT2DEVINFO:
*resultp = dummy dip;
return DDI_ SUCCESS;
case DDI INFO DEVT2INSTANCE:
*resultp = 0;
return DDI_SUCCESS;
default:
return DDI_FAILURE;

/* Main entry points */

static int

dummy _prop op(dev_t dev, dev_info t *dip, ddi prop op t prop_op,
int flags, char *name, caddr t valuep, int *lengthp)

{

cmn_err(CE_NOTE, "Inside dummy prop op");

return(ddi_prop op(dev,dip,prop_op,flags,name,valuep,lengthp));
}
static int

dummy open(dev_t *devp, int flag, int otyp, cred t *cred)
{

cmn_err(CE_NOTE, "Inside dummy open");

return DDI_SUCCESS;

static int
dummy close(dev_t dev, int flag, int otyp, cred t *cred)
{

cmn_err(CE_NOTE, "Inside dummy close");

return DDI_SUCCESS;

Chapter 2 « Template Driver Example 61

Complete Template Driver Source

static int
dummy read(dev_t dev, struct uio *uiop, cred t *credp)
{

cmn_err(CE_NOTE, "Inside dummy read");

return DDI_SUCCESS;

}
static int
dummy write(dev_t dev, struct uio *uiop, cred t *credp)
{
cmn_err(CE_NOTE, "Inside dummy write");
return DDI_SUCCESS;
}

62 Device Driver Tutorial July 2014

LKA CHAPTER 3

Reading and Writing Data in Kernel Memory

In this chapter, you will extend the very simple prototype driver you developed in the previous
chapter. The driver you will develop in this chapter displays data read from kernel memory.
The first version of this driver writes data to a system log every time the driver is loaded. The
second version of this driver displays data at user request. In the third version of this driver, the
user can write new data to the device.

Displaying Data Stored in Kernel Memory

The pseudo device driver presented in this section writes a constant string to a system log when
the driver is loaded.

This first version of the Quote Of The Day driver (qotd 1) is even more simple than the dummy
driver from the previous chapter. The dummy driver includes all functions that are required to
drive hardware. This qotd 1 driver includes only the bare minimum functions it needs to make

a string available to a user command. For example, this gotd_1 driver has no cb_ops(9S)
structure. Therefore, this driver defines no open(9E), close(9E), read(9E), or write(9E)
function. If you examine the dev_ops(9S) structure for this qotd 1 driver, you see that no

getinfo(9E), attach(9E), or detach(9E) function is defined. This driver contains no
function declarations because all the functions that are defined in this driver are declared in the
modctl.h header file. You must include the modct1l.h header file in your qotd_1.c file.

This qotd_1 driver defines a global variable to hold its text data. The init(9E) entry point for
this driver uses the cmn_err(9F) function to write the string to a system log. The dummy driver
also uses the cmn_err(9F) function to display messages. The qotd_1 driver is different from
the dummy driver because the qotd 1 driver stores its string in kernel memory.

Writing Quote Of The Day Version 1

Enter the source code shown in the following example into a text file named qotd 1.c.

Chapter 3 « Reading and Writing Data in Kernel Memory 63

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Sdev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fcmn-err-9f

Displaying Data Stored in Kernel Memory

EXAMPLE 3-1 Quote Of The Day Version 1 Source File

#include <sys/modctl.h>
#include <sys/conf.h>
#include <sys/devops.h>
#include <sys/cmn_err.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

#define QOTD_MAXLEN 128
static const char qotd[QOTD MAXLEN]
= "Be careful about reading health books. \

You may die of a misprint. - Mark Twain\n";

static struct dev ops qotd dev ops = {

DEVO REV, /* devo_rev */

0, /* devo_refcnt */
ddi no_info, /* devo_getinfo */
nulldev, /* devo_identify */
nulldev, /* devo _probe */
nulldev, /* devo_attach */
nulldev, /* devo _detach */
nodev, /* devo_reset */

(struct cb_ops *)NULL, /* devo cb ops */

(struct bus ops *)NULL, /* devo bus ops */

nulldev, /* devo_power */

ddi quiesce not needed, /* devo quiesce */
}

static struct modldrv modldrv = {
&mod_driverops,
"Quote of the Day 1.0",
&gotd dev_ops};

static struct modlinkage modlinkage = {

MODREV 1,
(void *)&modldrv,
NULL
};
int
_init(void)
{
cmn_err(CE_CONT, "QOTD: %s\n", qotd);
return (mod_install(&modlinkage));
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
int
_fini(void)
{

return (mod_remove(&modlinkage));

64 Device Driver Tutorial July 2014

Displaying Data Stored in Kernel Memory

}

Enter the configuration information shown in the following example into a text file named
gotd 1.conf.

EXAMPLE 3-2 Quote Of The Day Version 1 Configuration File

name="qotd 1" parent="pseudo" instance=0;

Building, Installing, and Using Quote Of The Day
Version 1

Compile and link the driver. Use the -D_KERNEL option to indicate that this code defines a kernel
module. The following example shows compiling and linking for a 32-bit architecture using the
Oracle Solaris Studio C compiler:

% cc -D_KERNEL -c qotd_1l.c
% 1d -r -o qotd_1 qotd_1l.0

Note that the name of the driver, qotd_1, must match the name property in the configuration file.
Make sure you are user root when you install the driver.

Copy the driver binary to the /tmp directory as discussed in “Device Driver Testing
Tips” on page 106.

cp qotd_1 /tmp
1n -s /tmp/qotd_1 /usr/kernel/drv/qotd_1

Copy the configuration file to the kernel driver area of the system.

cp qotd_1.conf /usr/kernel/drv

This qotd_1 driver writes a message to a system log each time the driver is loaded. The
cmn_err(9F) function writes low priority messages such as the message defined in this qotd 1
driver to /dev/log. The syslogd(1M) daemon reads messages from /dev/log and writes low
priority messages to /var/adm/messages.

To test this driver, watch for the message in /var/adm/messages. In a separate window, enter
the following command:

% tail -f /var/adm/messages

Make sure you are user root when you load the driver. Use the add drv(1M) command to
load the driver:

add_drv qotd_1

Chapter 3 « Reading and Writing Data in Kernel Memory 65

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fcmn-err-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Msyslogd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Madd-drv-1m

Displaying Data on Demand

You should see the following messages in the window where you are viewing /var/adm/
messages:

date time machine pseudo: [ID 129642 kern.info] pseudo-device: devinfo®

date time machine genunix: [ID 936769 kern.info] devinfo® is /pseudo/devinfo@®

date time machine qotd: [ID 197678 kern.notice] QOTD 1: Be careful about
reading health books. You may die of a misprint. - Mark Twain

This last line is the content of the variable output by the cmn_err(9F) function in the
_1nit(9E) entry point. The init(9E) entry point is called when the driver is loaded.

Displaying Data on Demand

66

The sample code in this section creates a pseudo device that is controlled by the driver. The
driver stores data in the device and makes the data available when the user accesses the device
for reading.

This section first discusses the important code differences between these two versions of the
Quote Of The Day driver. This section then shows you how you can access the device to cause
the quotation to display.

Writing Quote Of The Day Version 2

The driver that controls the pseudo device is more complex than the driver shown in the
previous section. This section first explains some important features of this version of the
driver. This section then shows all the source for this driver.

The following list summarizes the differences between the two versions of the Quote Of The
Day driver:

m Version 2 of the driver defines a state structure that holds information about each instance
of the device.

Version 2 defines a cb_ops(9S) structure and a more complete dev_ops(9S) structure.

® Version 2 defines open(9E), close(9E), read(9E), getinfo(9E), attach(9E), and
detach(9E) entry points.

Version 1 uses the cmn_err(9F) function to write a constant string to a system log in the
_1nit(9E) entry point of the driver. The init(9E) entry point is called when the driver
is loaded. Version 2 uses the uiomove(9F) function to copy the quotation from kernel
memory. The copied data is returned by the read(9E) entry point. The read(9E) entry
point is called when the driver is accessed for reading.

" Version 2 of the driver uses ASSERT(9F) statements to check the validity of data.

Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fcmn-err-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fassert-9f

Displaying Data on Demand

The following sections provide more detail about the additions and changes in Version 2 of the
Quote Of The Day driver.

Managing Device State

The init(9E)and fini(9E) entry points and all six new entry points defined in this

driver maintain a soft state for the device. Most device drivers maintain state information with
each instance of the device they control. An instance usually is a sub-device. For example, a
disk driver might communicate with a hardware controller device that has several disk drives
attached. See “Retrieving Driver Soft State Information” in “Writing Device Drivers for Oracle
Solaris 11.2 ” for more information about soft states.

This sample driver allows only one instance. The instance number is assigned in the
configuration file. See Example 3-4. Most device drivers allow any number of instances of a
device to be created. The system manages the device instance numbers, and the DDI soft state
functions manage the instances.

The following flow gives an overview of how DDI soft state functions manage a state pointer
and the state of a device instance:

L. Theddi soft state init(9F) function initializes the state pointer. The state pointer
is an opaque handle that enables allocation, deallocation, and tracking of a state structure
for each instance of a device. The state structure is a user-defined type that maintains data
specific to this instance of the device. In this example, the state pointer and state structure
are declared after the entry point declarations. See qotd state head and qotd state in
Example 3-3.

2. Theddi soft state zalloc(9F) function uses the state pointer and the device
instance to create the state structure for this instance.

3. Theddi get soft state(9F) function uses the state pointer and the device instance to
retrieve the state structure for this instance of the device.

4. Theddi soft state free(9F) function uses the state pointer and the device instance
to free the state structure for this instance.

5. Theddi soft state fini(9F) function uses the state pointer to destroy the state
pointer and the state structures for all instances of this device.

The ddi_soft state zalloc(9F),ddi get soft state(9F), and

ddi soft state free(9F) functions coordinate access to the underlying data structures in
a way that is safe for multithreading. No additional locks should be necessary.

Chapter 3 « Reading and Writing Data in Kernel Memory 67

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVERfappe
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVERfappe
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-soft-state-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-soft-state-zalloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-get-soft-state-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-soft-state-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-soft-state-fini-9f

Displaying Data on Demand

68

Initializing and Unloading

The 1init(9E) entry point first calls the ddi soft state init(9F) function to
initialize the soft state. If the soft state initialization fails, that error code is returned. If the

soft state initialization succeeds, the init(9E) entry point calls the mod install(9F)
function to load a new module. If the module install fails, the init(9E) entry point calls the

ddi soft state fini(9F) function and returns the error code from the failed module
install.

Your code must undo everything that it does. You must call ddi_soft state fini(9F)if
the module install fails because the _init(9E) call succeeded and created a state pointer.

The fini(9E) entry point must undo everything the init(9E) entry point did. The
_ fini(9E) entry point first calls the mod remove(9F) function to remove the module that the
_1nit(9E) entry point installed. If the module remove fails, that error code is returned. If the

module remove succeeds, the fini(9E) entry point calls the ddi soft state fini(9F)
function to destroy the state pointer and the state structures for all instances of this device.

Attaching and Detaching

The attach(9E) entry point first calls the ddi get instance(9F) function to retrieve

the instance number of the device information node. The attach(9E) entry point uses this
instance number to call the ddi_soft state zalloc(9F),ddi get soft state(9F),
and ddi_create minor_node(9F) functions.

The attach(9E) entry point calls the ddi_soft_state_zalloc(9F) function to
create a state structure for this device instance. If creation of the soft state structure fails,

attach(9E) writes an error message to a system log and returns failure. This device
instance is not attached. If creation of the soft state structure succeeds, attach(9E) calls the
ddi get soft state(9F) function to retrieve the state structure for this device instance.

If retrieval of the state structure fails, attach(9E) writes an error message to a system
log, calls the ddi_soft state free(9F) function to destroy the state structure

that was created by ddi_soft state zalloc(9F), and returns failure. This device
instance is not attached. If retrieval of the state structure succeeds, attach(9E) calls the
ddi create minor_ node(9F) function to create the device node.

At the top of this driver source file, a constant named QOTD_NAME is defined that holds
the string name of the device. This constant is one of the arguments that is passed to

Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-soft-state-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fmod-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-soft-state-fini-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eu-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fmod-remove-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-soft-state-fini-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-get-instance-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-soft-state-zalloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-get-soft-state-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-soft-state-free-9f

Displaying Data on Demand

ddi create minor_node(9F). If creation of the device node fails, attach(9E) writes
an error message to a system log, calls the ddi_soft_state_ free(9F) function to
destroy the state structure that was created by ddi_soft state zalloc(9F), calls the

ddi remove minor node(9F) function, and returns failure. This device instance is not
attached.

If creation of the device node succeeds, this device instance is attached. The attach(9E)
entry point assigns the instance number that was retrieved with ddi_get instance(9F)
to the instance member of the state structure for this instance. Then attach(9E) assigns the
dev_info structure pointer that was passed in the attach(9E) call to the dev_info structure

pointer member of the state structure for this instance. The ddi_report_dev(9F) function
writes a message in the system log file when the device is added or when the system is booted.
The message announces this device as shown in the following example:

% dmesg
date time machine pseudo: [ID 129642 kern.info] pseudo-device: qotd 20
date time machine genunix: [ID 936769 kern.info] qotd 20 is /pseudo/qotd 2@@

The detach(9E) entry point first calls the ddi get instance(9F) function to retrieve the
instance number of the device information node. The detach(9E) entry point uses this instance
number to call the ddi_soft state free(9F) function to destroy the state structure

that was created by ddi_soft state zalloc(9F) in the attach(9E) entry point. The
detach(9E) entry point then calls the ddi remove _minor_node(9F) function to remove

the device that was created by ddi_create_minor_node(9F) in the attach(9E) entry
point.

Opening the Device, Closing the Device, and Getting Module
Information

The open(9E) and close(9E) entry points are identical in this sample driver. In each case, the
entry point first calls the getminor(9F) function to retrieve the minor number of the device.

Then each entry point uses this instance number to call the ddi_get soft state(9F)
function to retrieve the state structure for this device instance. If no state structure is retrieved,
an error code is returned. If a state structure is retrieved, the open(9E) and close(9E) entry

points both verify the type of this device. If this device is not a character device, the EINVAL
(invalid) error code is returned.

If the user wants device information for this device instance, the getinfo(9E) entry point
returns the device information from the state structure. If the user wants the instance number of

this device instance, the getinfo(9E) entry point uses the getminor(9F) function to return
the minor number.

Chapter 3 « Reading and Writing Data in Kernel Memory 69

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-remove-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-report-dev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fgetminor-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-get-soft-state-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Egetinfo-9e

Displaying Data on Demand

70

Reading the Data

The read(9E) entry point first calls the getminor(9F) function to retrieve the minor

number of the device. The read(9E) entry point uses this instance number to call the

ddi get soft state(9F) function to retrieve the state structure for this device instance. If
no state structure is retrieved, read(9E) returns an error code. If a state structure is retrieved,

read(9E) calls the uiomove(9F) function to copy the quotation from the driver to the uio(9S)
I/O request structure.

Checking Data Validity

Version 2 of the driver uses ASSERT(9F) statements to check the validity of data. If the asserted
expression is true, the ASSERT(9F) statement does nothing. If the asserted expression is false,

the ASSERT(9F) statement writes an error message to the console and causes the system to
panic.

To use ASSERT(9F) statements, include the sys/debug.h header file in your source and define
the DEBUG preprocessor symbol. If you do not define the DEBUG preprocessor symbol, then the

ASSERT(9F) statements do nothing. Simply recompile to activate or inactivate ASSERT(9F)
statements.

Quote Of The Day Version 2 Source

Enter the source code shown in the following example into a text file named qotd_2.c.

EXAMPLE 3-3 Quote Of The Day Version 2 Source File

#include <sys/types.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/uio.h>
#include <sys/stat.h>
#include <sys/modctl.h>
#include <sys/conf.h>
#include <sys/devops.h>
#include <sys/debug.h>
#include <sys/cmn_err.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

#define QOTD_NAME "qotd"

Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fgetminor-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-get-soft-state-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fuiomove-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fassert-9f

Displaying Data on Demand

#define QOTD_MAXLEN 128

static const char qotd[QOTD MAXLEN]
= "You can't have everything. \
Where would you put it? - Steven Wright\n";

static void *qotd state head;

struct gqotd state {
int instance;
dev_info_ t *devi;

}

static int qotd getinfo(dev_info t

*, ddi_info_cmd_t, void *, void **);

static int qotd attach(dev _info t *, ddi attach cmd t);
static int qotd detach(dev_info t *, ddi detach cmd t);

static int qotd open(dev_t *, int,

int, cred t *);

static int qotd close(dev_t, int, int, cred t *);

static int qotd read(dev_t, struct

uio *, cred t *);

static struct cb ops qotd cb ops = {

gotd open, /* cb_open */
gotd close, /* cb_close */
nodev, /* cb_strategy */
nodev, /* cb_print */
nodev, /* cb_dump */
gotd read, /* cb_read */
nodev, /* cb write */
nodev, /* cb_ioctl */
nodev, /* cb_devmap */
nodev, /* cb_mmap */
nodev, /* cb_segmap */

nochpoll, /* cb_chpoll */

ddi prop_op, /* cb_prop _op */
(struct streamtab *)NULL, /* cb_str */
D_MP | D_64BIT, /* cb_flag */
CB_REV, /* cb_rev */

nodev, /* cb_aread */

nodev /*
};

static struct dev_ops qotd dev_ops

cb_awrite */

=4

DEVO REV, /* devo_rev */
0, /* devo_refcnt */
gotd getinfo, /* devo_getinfo */

nulldev, /*
nulldev, /*

devo identify */
devo probe */

gotd attach, /* devo_attach */
gotd detach, /* devo _detach */
nodev, /* devo_reset */
&gotd cb ops, /* devo _cb ops */
(struct bus ops *)NULL, /* devo bus ops */
nulldev, /* devo_power */

ddi quiesce not needed, /*
}

static struct modldrv modldrv = {
&mod_driverops,

devo quiesce */

Chapter 3 « Reading and Writing Data in Kernel Memory

71

Displaying Data on Demand

"Quote of the Day 2.0",
&gotd dev_ops};

static struct modlinkage modlinkage = {

MODREV 1,
(void *)&modldrv,
NULL
};
int
_init(void)
{
int retval;
if ((retval = ddi_soft state init(&qotd state head,
sizeof (struct qotd state), 1)) != 0)
return retval;
if ((retval = mod install(&modlinkage)) != 0) {
ddi soft state fini(&gotd state head);
return (retval);
}
return (retval);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
int
_fini(void)
{
int retval;
if ((retval = mod remove(&modlinkage)) != 0)
return (retval);
ddi soft state fini(&qotd state head);
return (retval);
}
/*ARGSUSED*/
static int
gotd getinfo(dev_info t *dip, ddi_info cmd t cmd, void *arg, void **resultp)
{

struct qotd state *qsp;
int retval = DDI FAILURE;

ASSERT (resultp != NULL);

switch (cmd) {
case DDI_INFO_DEVT2DEVINFO:
if ((gsp = ddi_get_soft_state(qotd_state_head,
getminor((dev_t)arg))) != NULL) {
*resultp = gqsp->devi;
retval = DDI_SUCCESS;

72 Device Driver Tutorial July 2014

Displaying Data on Demand

} else
*resultp = NULL;
break;
case DDI INFO DEVT2INSTANCE:
*resultp = (void *)getminor((dev_t)arg);
retval = DDI SUCCESS;

break;
}
return (retval);
}
static int
gotd attach(dev_info t *dip, ddi attach cmd t cmd)
{
int instance = ddi get instance(dip);
struct qotd state *qsp;
switch (cmd) {
case DDI_ATTACH:
if (ddi_soft state zalloc(qotd state head, instance)
!= DDI SUCCESS) {
cmn_err(CE_WARN, "Unable to allocate state for %d",
instance);
return (DDI_FAILURE);
}
if ((gsp = ddi_get_soft_state(qotd_state_head, instance))
== NULL) {
cmn_err(CE_WARN, "Unable to obtain state for %d",
instance);
ddi soft state free(dip, instance);
return (DDI_FAILURE);
}
if (ddi_create minor node(dip, QOTD NAME, S IFCHR, instance,
DDI PSEUDO, @) != DDI SUCCESS) {
cmn_err(CE_WARN, "Cannot create minor node for %d",
instance);
ddi soft state free(dip, instance);
ddi_remove minor node(dip, NULL);
return (DDI_FAILURE);
}
gsp->instance = instance;
qsp->devi = dip;
ddi report dev(dip);
return (DDI_SUCCESS);
case DDI_RESUME:
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
}
static int

gotd detach(dev_info t *dip, ddi detach cmd t cmd)

{

int instance = ddi get instance(dip);

Chapter 3 « Reading and Writing Data in Kernel Memory

73

Displaying Data on Demand

switch (cmd) {
case DDI DETACH:
ddi soft state free(qotd state head, instance);
ddi remove minor node(dip, NULL);
return (DDI_SUCCESS);
case DDI_SUSPEND:
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);

}
}
/*ARGSUSED*/
static int
qgotd open(dev_t *devp, int flag, int otyp, cred t *credp)
{
int instance = getminor(*devp);
struct qotd state *qsp;
if ((gsp = ddi_get soft_state(qotd_state_head, instance)) == NULL)
return (ENXIO);
ASSERT (gsp->instance == instance);
if (otyp != OTYP_CHR)
return (EINVAL);
return (0);
}
/*ARGSUSED*/
static int
gotd close(dev_t dev, int flag, int otyp, cred t *credp)
{
struct qotd state *qsp;
int instance = getminor(dev);
if ((gsp = ddi_get soft_state(qotd_state_head, instance)) == NULL)
return (ENXIO);
ASSERT (gsp->instance == instance);
if (otyp != OTYP_CHR)
return (EINVAL);
return (0);
}
/*ARGSUSED*/
static int

gotd read(dev_t dev, struct uio *uiop, cred t *credp)

{

struct qotd state *qsp;
int instance = getminor(dev);

if ((gsp = ddi_get soft_state(qotd_state_head, instance)) == NULL)
return (ENXIO);

74 Device Driver Tutorial July 2014

Displaying Data on Demand

ASSERT (gsp->instance == instance);

return (uiomove((void *)qotd, min(uiop->uio resid, strlen(qotd)),
UIO READ, uiop));
}
Enter the configuration information shown in the following example into a text file named
gotd 2.conf.

EXAMPLE 3-4 Quote Of The Day Version 2 Configuration File

name="qotd 2" parent="pseudo" instance=0;

Building, Installing, and Using Quote Of The Day
Version 2

Version 2 of the driver uses ASSERT(9F) statements to check the validity of data. To use

ASSERT(9F) statements, include the sys/debug.h header file in your source and define the
DEBUG preprocessor symbol.

Compile and link the driver. If you use ASSERT(9F) statements to check the validity of data,
you must define the DEBUG preprocessor symbol:

% cc -D_KERNEL -DDEBUG -c qotd_2.c
% 1d -r -o qotd_2 qotd_2.0

The following example shows compiling and linking for a 32-bit architecture if you are not
using ASSERT(9F) statements:

% cc -D_KERNEL -c qotd_2.c
% 1d -r -o qotd_2 qotd_2.0

Make sure you are user root when you install the driver.

Copy the driver binary to the /tmp directory as discussed in “Building and Installing the
Template Driver” on page 54.

cp qotd_2 /tmp
1ln -s /tmp/qotd_2 /usr/kernel/drv/qotd_2

Copy the configuration file to the kernel driver area of the system.
cp qotd_2.conf /usr/kernel/drv

In a separate window, enter the following command:

Chapter 3 « Reading and Writing Data in Kernel Memory 75

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fassert-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fassert-9f

Displaying Data on Demand

76

% tail -f /var/adm/messages

Make sure you are user root when you load the driver. Use the add _d rv(1M) command to
load the driver:

add_drv qotd_2

You should see the following messages in the window where you are viewing /var/adm/
messages:

date time machine pseudo: [ID 129642 kern.info] pseudo-device: devinfo®

date time machine genunix: [ID 936769 kern.infol devinfo® is /pseudo/devinfo@®
date time machine pseudo: [ID 129642 kern.info] pseudo-device: qotd 20

date time machine genunix: [ID 936769 kern.info] qotd 20 is /pseudo/qotd 2@@

When this version of the Quote Of The Day driver loads, it does not display its quotation. The
gotd_1 driver wrote a message to a system log through its init(9E) entry point. This qotd_2
driver stores its data and makes the data available through its read(9E) entry point.

You can use the modinfo(1M) command to display the module information for this version of
the Quote Of The Day driver. The module name is the value you entered for the second member
of the modldrv structure. The value 96 is the major number of this module.

% modinfo | grep qotd

182 ed115948 754 96 1 qotd 2 (Quote of the Day 2.0)
% grep qotd /etc/name_to_major

qotd 1 94

qgotd 2 96

This driver also is the most recent module listed by prtconf(1M) in the pseudo device
section:

% prtconf -P | grep qotd
gotd 1, instance #0@ (driver not attached)
gotd 2, instance #0

When you access this gotd 2 device for reading, the command you use to access the device
retrieves the data from the device node. The command then displays the data in the same way
that the command displays any other input. To get the name of the device special file, look in
the /devices directory:

% 1ls -1 /devices/pseudo/qotd*
Crw------- 1 root sys 96, 0 date time /devices/pseudo/qotd 2@0:qotd

This output shows that qotd 2@®:qotd is a character device. This listing also shows that only
the root user has permission to read or write this device. Make sure you are user root when

you test this driver. To test the qotd 2 driver, you can use the more(1) command to access the
device file for reading:

more /devices/pseudo/qotd_2@0:qotd

Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Madd-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mmodinfo-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1more-1

Modifying Data Stored in Kernel Memory

You can't have everything. Where would you put it? - Steven Wright
You can't have everything. Where would you put it? - Steven Wright

Modifying Data Stored in Kernel Memory

In this third version of the Quote Of The Day driver, the user can write to the data that is stored
in kernel memory. The pseudo device that is created in this section is a pseudo-disk device or
ramdisk device. A ramdisk device simulates a disk device by allocating kernel memory that

is subsequently used as data storage. See ramdisk(7D) for more information about ramdisk
devices.

As in Version 2 of the Quote Of The Day driver, this Version 3 driver stores its data and makes

the data available through its read(9E) entry point. This Version 3 driver overwrites characters
from the beginning of the data when the user writes to the device.

This section first discusses the important code differences between this version and the previous
version of the Quote Of The Day driver. This section then shows you how you can modify and
display the quotation.

In addition to changes in the driver, Quote Of The Day Version 3 introduces a header file and an
auxiliary program. The header file is discussed in the following section. The utility program is
discussed in “Using Quote Of The Day Version 3” on page 97.

Writing Quote Of The Day Version 3

This third version of the Quote Of The Day driver is more complex than the second version
because this third version enables a user to change the text that is stored in the device.

This section first explains some important features of this version of the driver. This section
then shows all the source for this driver, including the header file and the configuration file.

The following list summarizes the new features in Version 3 of the Quote Of The Day driver:

m Version 3 of the driver allocates and frees kernel memory.
= Version 3 uses condition variables and mutexes to manage thread synchronization.

= Version 3 copies data from user space to kernel space to enable the user to change the
quotation.

® Version 3 adds two new entry points: write(9E) and ioct1(9E).

Version 3 adds a third new routine. The qotd_rw routine is called by both the read(9E)
entry point and the write(9E) entry point.

Chapter 3 « Reading and Writing Data in Kernel Memory 77

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN7ramdisk-7d
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eioctl-9e

Modifying Data Stored in Kernel Memory

78

® Asin Version 2, Version 3 of the driver uses the uiomove(9F) function to make the
quotation available to the user. Version 3 uses the ddi_copyin(9F) function to copy the
new quotation and the new device size from user space to kernel space. Version 3 uses the
ddi_copyout(9F) function to report the current device size back to the user.

= Because the driver copies data between kernel space and user space, Version 3 of the driver

uses the ddi_model convert from(9F) function to determine whether the data must
be converted between 32-bit and 64-bit models. The 64-bit kernel supports both 64-bit and
32-bit user data.

= Version 3 defines one new constant to tell the driver whether the device is busy. Another
new constant tells the driver whether the quotation has been modified. Version 3 defines
four new constants to help the driver undo everything it has done.

= Version 3 includes a separate utility program to test the driver's I/O controls.

The following sections provide more detail about the additions and changes in Version 3 of the
Quote Of The Day driver. The dev_ops(9S) structure and the mod1inkage(9S) structure

are the same as they were in Version 2 of the driver. The mod1ldrv(9S) structure has not
changed except for the version number of the driver. The init(9E), info(9E), fini(9E),
getinfo(9E), open(9E), and close(9E) functions are the same as in Version 2 of the driver.

Attaching, Allocating Memory, and Initializing a Mutex and a
Condition Variable

The qotd_attach entry point first allocates and gets the device soft state. The qotd_attach
routine then creates a minor node. All of this code is the same as in Version 2 of the Quote Of
The Day driver. If the call to ddi create minor node(9F) is successful, the qotd attach

routine sets the QOTD DIDMINOR flag in the new flags member of the qotd state state
structure.

Version 3 of the Quote Of The Day driver defines four new constants that keep track of four
different events. A routine can test these flags to determine whether to deallocate, close, or
remove resources. All four of these flags are set in the qotd_attach entry point. All four of
these conditions are checked in the qotd_detach entry point, and the appropriate action is taken
for each condition.

Note that operations are undone in the qotd_detach entry point in the opposite order in which
they were done in the qotd_attach entry point. The qotd_attach routine creates a minor node,
allocates memory for the quotation, initializes a mutex, and initializes a condition variable. The
gotd detach routine destroys the condition variable, destroys the mutex, frees the memory, and
removes the minor node.

After the minor node is created, the qotd_attach routine allocates memory for the quotation.
For information on allocating and freeing memory in this driver, see “Allocating and Freeing

Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-model-convert-from-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-create-minor-node-9f

Modifying Data Stored in Kernel Memory

Kernel Memory” on page 80. If memory is allocated, the qotd_attach routine sets the
QOTD DIDALLOC flag in the flags member of the state structure.

The gqotd attach routine then calls the mutex_ init(9F) function to initialize a mutex. If this
operation is successful, the gotd attach routine sets the QOTD DIDMUTEX flag. The qotd attach
routine then calls the cv_init(9F) function to initialize a condition variable. If this operation
is successful, the gotd attach routine sets the QOTD DIDCV flag.

The qotd attach routine then calls the st rlcpy(9F) function to copy the initial quotation
string to the new quotation member of the device state structure. Note that the strlcpy(9F)
function is used instead of the strncpy(9F) function. The strncpy(9F) function can

be wasteful because it always copies n characters, even if the destination is smaller than n

characters. Try using st rncpy(9F) instead of st rlcpy(9F) and note the difference in the
behavior of the driver.

Finally, the initial quotation length is copied to the new quotation length member of the state
structure. The remainder of the qotd_attach routine is the same as in Version 2.

Checking for Changes, Cleaning Up, and Detaching

The gqotd detach routine is almost all new. The qotd detach routine must first get the soft
state because the qotd detach routine needs to check the flags member of the state structure.

The first flag the qotd detach routine checks is the QOTD CHANGED flag. The QOTD CHANGED flag
indicates whether the device is in the initial state. The QOTD CHANGED flag is set in the qotd rw
routine and in the qotd ioctl entry point. The QOTD CHANGED flag is set any time the user does
anything to the device other than simply inspect the device. If the QOTD CHANGED flag is set, the
size or content of the storage buffer has been modified. See “Writing New Data” on page 84

for more information on the QOTD_CHANGED flag. When the QOTD_CHANGED flag is set, the detach
operation fails because the device might contain data that is valuable to the user and the device
should not be removed. If the QOTD CHANGED flag is set, the qotd detach routine returns an
error that the device is busy.

Once the quotation has been modified, the device cannot be detached until the user runs the
gotdctl command with the -r option. The -r option reinitializes the quotation and indicates that
the user is no longer interested in the contents of the device. See “Exercising the Driver's I/O
Controls” on page 98 for more information about the qotdctl command.

The qotd detach routine then checks the four flags that were set in the qotd_attach routine. If
the QOTD DIDCV flag is set, the qotd detach routine calls the cv_destroy(9F) function. If the
QOTD DIDMUTEX flag is set, the qotd detach routine calls the mutex destroy(9F) function.
If the QOTD DIDALLOC flag is set, the qotd detach routine calls the ddi umem_free(9F)

Chapter 3 « Reading and Writing Data in Kernel Memory 79

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fmutex-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fcv-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fstrlcpy-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fstrncpy-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fcv-destroy-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fmutex-destroy-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-umem-free-9f

Modifying Data Stored in Kernel Memory

function. Finally, if the QOTD DIDMINOR flag is set, the qotd detach routine calls the
ddi remove minor_node(9F) function.

Allocating and Freeing Kernel Memory

One of the new members of the device state structure supports memory allocation and
deallocation. The qotd_cookie member receives a value from the ddi_umem_alloc(9F)
function. The qotd_cookie value is then used by the ddi_umem_f ree(9F) function to free the
memory.

Version 3 of the Quote Of The Day driver allocates kernel memory in three places:

m After the minor node is created
® In the QOTDIOCSSZ case of the qotd ioctl entry point
® In the QOTDIOCDISCARD case of the qotd ioctl entry point

The qotd attach routine allocates memory after the minor node is created. Memory
must be allocated to enable the user to modify the quotation. The qotd attach routine

calls the ddi_umem_alloc(9F) function with the DDI_UMEM NOSLEEP flag so that the
ddi_umem_alloc(9F) function will return immediately. If the requested amount of memory

is not available, ddi_umem_alloc(9F) returns NULL immediately and does not wait for
memory to become available. If no memory is allocated, gqotd attach calls gqotd detach and
returns an error. If memory is allocated, qotd attach sets the QOTD DIDALLOC flag so that this
memory will be freed by qotd detach later.

The second place the driver allocates memory is in the QOTDIOCSSZ case of the qotd ioctl
entry point. The QOTDIOCSSZ case sets a new size for the device. A new size is set when
the user runs the qotdctl command with the -s option. See “Exercising the Driver's I/

O Controls” on page 98 for more information about the qotdctl command. This

time, the ddi_umem_alloc(9F) function is called with the DDI_UMEM_SLEEP flag so that
ddi umem_ alloc(9F) will wait for the requested amount of memory to be available. When
the ddi_umem_alloc(9F) function returns, the requested memory has been allocated.

Note that you cannot always use the DDI_UMEM SLEEP flag. See the CONTEXT sections of the

ddi umem_alloc(9F), kmem alloc(9F), and kmem zalloc(9F) man pages. Also note

the behavioral differences among these three functions. The kmem_zalloc(9F) function is
more efficient for small amounts of memory. The ddi_umem_alloc(9F) function is faster and
better for large allocations. The ddi_umem_alloc(9F) function is used in this qotd 3 driver

because ddi_umem_alloc(9F) allocates whole pages of memory. The kmem_zalloc(9F)
function might save memory because it might allocate smaller chunks of memory. This

80 Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-remove-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-umem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-umem-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-umem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fkmem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fkmem-zalloc-9f

Modifying Data Stored in Kernel Memory

gotd 3 driver demonstrates a ramdisk device. In a production ramdisk device, you would use
ddi umem_alloc(9F) to allocate page-aligned memory.

After the current quotation is copied to the new space, the qotd ioctl routine calls the
ddi _umem_free(9F) function to free the memory that was previously allocated.

The third place the driver allocates memory is in the QQTDIOCDISCARD case of the qotd ioctl
entry point. The QOTDIOCDISCARD case is called from the gotdctl command. The qotdctl
command with the -r option sets the quotation back to its initial value. If the number of bytes
allocated for the current quotation is different from the initial number of bytes, then new
memory is allocated to reinitialize the quotation. Again, the DDI_UMEM_SLEEP flag is used so that
when the ddi_umem_alloc(9F) function returns, the requested memory has been allocated.

The gqotd ioctl routine then calls the ddi_umem_free(9F) function to free the memory that
was previously allocated.

Managing Thread Synchronization

The Quote Of The Day Version 3 driver uses condition variables and mutual exclusion locks
(mutexes) together to manage thread synchronization. See the “Multithreaded Programming
Guide ” for more information about mutexes, condition variables, and thread synchronization.

In this driver, the mutex and condition variable both are initialized in the qotd attach entry
point and destroyed in the qotd detach entry point. The condition variable is tested in the
gotd rw routine and in the qotd ioctl entry point.

The condition variable waits on the QOTD_BUSY condition. This condition is needed because

the driver must do some operations that rely on exclusive access to internal structures without
holding a lock. Accessing the storage buffer or its metadata requires mutual exclusion, but the
driver cannot hold a lock if the operation might sleep. Instead of holding a lock in this case, the
driver waits on the QOTD_BUSY condition.

The driver acquires a mutex when the driver tests the condition variable and when the driver
accesses the storage buffer. The mutex protects the storage buffer. Failure to use a mutual
exclusion when accessing the storage buffer could allow one user process to resize the buffer
while another user process tries to read the buffer, for example. The result of unprotected buffer
access could be data corruption or a panic.

The condition variable is used when functions are called that might need to sleep. The

ddi copyin(9F), ddi copyout(9F), and uiomove(9F) functions can sleep. Memory
allocation can sleep if you use the SLEEP flag. Functions must not hold a mutex while they are
sleeping. Sleeping while holding a mutex can cause deadlock. When a function might sleep,
set the QOTD_BUSY flag and take the condition variable, which drops the mutex. To avoid race
conditions, the QOTD_BUSY flag can be set or cleared only when holding the mutex. For more

Chapter 3 « Reading and Writing Data in Kernel Memory 81

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-umem-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-umem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-umem-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=MTP
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=MTP
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fuiomove-9f

Modifying Data Stored in Kernel Memory

information on deadlock, see “Using Mutual Exclusion Locks” in “Multithreaded Programming
Guide ” and “Avoiding Deadlock” in “Multithreaded Programming Guide ”.

Locking Rules for Quote Of The Day Version 3

The locking rules for this qotd 3 driver are as follows:

1. You must have exclusive access to do any of the following operations. To have exclusive
access, you must own the mutex or you must set QOTD_BUSY. Threads must wait on
QOTD_BUSY.

m Test the contents of the storage buffer.
m Modify the contents of the storage buffer.
m Modify the size of the storage buffer.
m Modify variables that refer to the address of the storage buffer.
2. If your operation does not need to sleep, do the following actions:
a. Acquire the mutex.
b. Wait until QOTD_BUSY is cleared. When the thread that set QOTD BUSY clears QOTD_BUSY,

that thread also should signal threads waiting on the condition variable and then drop
the mutex.

¢. Perform your operation. You do not need to set QOTD_BUSY before you perform your
operation.

d. Drop the mutex.

The following code sample illustrates this rule:

mutex_enter(&qsp->lock);
while (gsp->flags & QOTD BUSY) {
if (cv_wait sig(&gqsp->cv, &gsp->lock) == 0) {
mutex_exit(&qsp->lock);
ddi umem_free(new _cookie);
return (EINTR);

}
memcpy (new_qotd, qsp->qotd, min(gsp->qotd len, new len));
ddi_umem free(qsp->qotd cookie);
qsp->qotd = new_qotd;
qsp->qotd _cookie = new_cookie;
gsp->qotd len = new len;
gsp->flags |= QOTD_CHANGED;
mutex_exit(&gqsp->lock);
3. If your operation must sleep, do the following actions:
a. Acquire the mutex.

b. Set QOTD BUSY.

82 Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=MTPsync-110
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=MTPsync-110
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=MTPguide-35930

Modifying Data Stored in Kernel Memory

Drop the mutex.
Perform your operation.
Reacquire the mutex.

Signal any threads waiting on the condition variable.

Q =™ ® 0N

Drop the mutex.

These locking rules are very simple. These three rules ensure consistent access to the buffer and
its metadata. Realistic drivers probably have more complex locking requirements. For example,
drivers that use ring buffers or drivers that manage multiple register sets or multiple devices
have more complex locking requirements.

Lock and Condition Variable Members of the State Structure

The device state structure for Version 3 of the Quote Of The Day driver contains two new
members to help manage thread synchronization:

® The lock member is used to acquire and exit mutexes for the current instance of
the device. The lock member is an argument to each mutex(9F) function call. The
lock member also is an argument to the cv_wait sig(9F) function call. In the
cv_walt sig(9F) function call, the lock value ensures that the condition will not be
changed before the cv_wait sig(9F) function returns.

® The cv member is a condition variable. The cv member is an argument to each
condvar(9F) (cv) function call.

Creating and Destroying Locks and Condition Variables

Version 3 of the Quote Of The Day driver defines two constants to make sure the mutex and
condition variable are destroyed when the driver is finished with them. The driver uses these
constants to set and reset the new flags member of the device state structure.

® The QOTD DIDMUTEX flag is set in the qotd attach entry point immediately after
a successful call to mutex init(9F). If the QOTD DIDMUTEX flag is set when
the qotd_detach entry point is called, the gqotd detach entry point calls the
mutex destroy(9F) function.

® The QOTD DIDCV flag is set in the qotd attach entry point immediately after a successful
call to cv_init(9F). If the QOTD_DIDCV flag is set when the qotd detach entry point is
called, the qotd detach entry point calls the cv_destroy(9F) function.

Chapter 3 « Reading and Writing Data in Kernel Memory 83

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fmutex-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fcv-wait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fcondvar-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fmutex-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fmutex-destroy-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fcv-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fcv-destroy-9f

Modifying Data Stored in Kernel Memory

84

Waiting on Signals

In the qotd rwand qotd ioctl routines, the cv_wait sig(9F) calls wait until the condition
variable is signaled to proceed or until a signal(3C) is received. Either the cv_signal(9F)
function or the cv_broadcast(9F) function signals the cv condition variable to proceed.

A thread can wait on a condition variable until either the condition variable is signaled or a
signal(3C) is received by the process. The cv_wait(9F) function waits until the condition
variable is signaled but ignores signal(3C) signals. This driver uses the cv_wait sig(9F)
function instead of the cv_wait(9F) function because this driver responds if a signal is
received by the process performing the operation. If a signal(3C) is taken by the process, this
driver returns an interrupt error and does not complete the operation. The cv_wait sig(9F)
function usually is preferred to the cv_wait(9F) function because this implementation offers
the user program more precise response. The signal(3C) causes an effect closer to the point at
which the process was executing when the signal(3C) was received.

In some cases, you cannot use the cv_wait sig(9F) function because your driver cannot be

interrupted by a signal(3C). For example, you cannot use the cv_wait sig(9F) function
during a DMA transfer that will result in an interrupt later. In this case, if you abandon the

cv_wait sig(9F) call, you have nowhere to put the data when the DMA transfer is finished,
and your driver will panic.

Writing New Data

The cb_ops(9S) structure for Version 3 of the Quote Of The Day driver declares two new
entry points that support modifying the quotation. The two new entry points are write(9E) and
10ct(9E). The qotd_rw routine is a third new routine in Version 3 of the driver. The qotd rw
routine is called by both the read(9E) entry point and the write(9E) entry point.

The device state structure for Version 3 of the Quote Of The Day driver contains two new
members that are used to modify the quotation. The qotd string holds the quotation for the
current instance of the device. The gqotd len member holds the length in bytes of the current
quotation.

Version 3 of the driver also defines two new constants that support modifying the quotation.

In place of QOTD MAXLEN, Version 3 of the driver defines QOTD MAX_LEN. QOTD MAX LEN is used
in the qotd_ioctl entry point to test whether the user has entered a string that is too long.
Version 3 of the driver also defines QOTD CHANGED. The QOTD CHANGED flag is set in the qotd rw
routine and in the qotd_ioctl entry point when a new quotation is copied from the user.

Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fcv-wait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fcv-signal-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fcv-broadcast-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fcv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fcv-wait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eioctl-9e

Modifying Data Stored in Kernel Memory

When the qotd 3 device is opened for writing, the kernel calls the qotd write entry point.
The qotd write entry point then calls the gotd rw routine and passes a UI0 WRITE flag. The
new gotd read entry point is exactly the same as the qotd write entry point, except that the
gotd read entry point passes a UIO READ flag. The qotd rw routine supports both reading and
writing the device and thereby eliminates much duplicate code.

The qotd_rw routine first gets the device soft state. Then the qotd_rw routine checks the length

of the I/O request in the u10(9S) I/O request structure. If this length is zero, the qotd_rw
routine returns zero. If this length is not zero, the qotd rw routine enters a mutex.

While the device is busy, the qotd rw routine checks whether the condition variable has been

signaled or a signal(3C) is pending. If either of these conditions is true, the qotd rw routine
exits the mutex and returns an error.

When the device is not busy, the qotd rw routine checks whether the data offset in the uio(9S)
I/0 request structure is valid. If the offset is not valid, the qotd rw routine exits the mutex

and returns an error. If the offset is valid, the local length variable is set to the difference
between the offset in the I/O request structure and the length in the device state structure. If this
difference is zero, the qotd rw routine exits the mutex and returns. If the device was opened for
writing, the qotd_rw routine returns a space error. Otherwise, the qotd_rw routine returns zero.

The gotd rw routine then sets the QOTD BUSY flag in the flags member of the device state
structure and exits the mutex. The gotd_rw routine then calls the uiomove(9F) function to
copy the quotation. If the rw argument is UI0 READ, then the quotation is transferred from the

state structure to the I/O request structure. If the rw argument is UI0 WRITE, then the quotation is
transferred from the I/O request structure to the state structure.

The gqotd rw routine then enters a mutex again. If the device was opened for writing, the
gotd rw routine sets the QOTD_CHANGED flag. The qotd_rw routine then sets the device to not

busy, calls cv_broadcast(9F) to unblock any threads that were blocked on this condition
variable, and exits the mutex.

Finally, the qotd rw routine returns the quotation. The quotation is written to the device node.

Reporting and Setting Device Size and Re-initializing the
Device

The behavior of the 10Ct1(9E) entry point depends on the command value passed in to the
entry point. These constants are defined in the new qotd.h header file. The qotd_ioct1 routine
reports the size of the space allocated for the quotation, sets a new amount of space to allocate
for the quotation, or resets the quotation back to its initial value.

Chapter 3 « Reading and Writing Data in Kernel Memory 85

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fuiomove-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fcv-broadcast-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eioctl-9e

Modifying Data Stored in Kernel Memory

86

If the request is to report the size of the space allocated for the quotation, then the gotd ioctl
routine first sets a local size variable to the value of the quotation length in the state structure. If
the device was not opened for reading, the qotd ioctl routine returns an error.

Because the gotd ioctl routine transfers data between kernel space and user space, the
gotd ioctl routine must check whether both spaces are using the same data model. If the

return value of the ddi_model convert from(9F) function is DDI MODEL ILP32, then the
driver must convert to 32-bit data before calling ddi copyout(9F) to transfer the current size

of the quotation space. If the return value of the ddi_model convert from(9F) function is
DDI MODEL NONE, then no data type conversion is necessary.

If the request is to set a new size for the space allocated for the quotation, then the gqotd ioctl
routine first sets local variables for the new size, the new quotation, and a new memory
allocation cookie. If the device was not opened for writing, the qotd_ioct1 routine returns an
erTor.

The qotd_ioctl routine then checks again for data model mismatch. If the return value of the
ddi model convert from(9F) function is DDI_MODEL ILP32, then the driver declares a 32-

bit size variable to receive the new size from ddi_copyin(9F). When the new size is received,
the size is converted to the data type of the kernel space.

If the new size is zero or is greater than QOTD MAX LEN, the qotd ioctl routine returns an error.
If the new size is valid, then the gotd ioctl routine allocates new memory for the quotation
and enters a mutex.

While the device is busy, the qotd_ioctl routine checks whether the condition variable has

been signaled or a signal(3C) is pending. If either of these conditions is true, the qotd ioctl
routine exits the mutex, frees the new memory it allocated, and returns an error.

When the device is not busy, the qotd_ioctl routine uses memcpy(9F) to copy the quotation
from the driver's state structure to the new space. The qotd_ioct1 routine then frees the
memory currently pointed to by the state structure, and updates the state structure members to
the new values. The gotd ioctl routine then sets the QOTD CHANGED flag, exits the mutex, and
returns.

If the request is to discard the current quotation and reset to the initial quotation, then the

gotd ioctl routine first sets local variables for the new quotation and a new memory allocation
cookie. If the device was not opened for writing, the qotd ioctl routine returns an error. If

the space allocated for the current quotation is different from the space allocated for the initial
quotation, then the qotd ioctl routine allocates new memory that is the size of the initial space
and enters a mutex.

While the device is busy, the qotd_ioctl routine checks whether the condition variable has

been signaled or a signal(3C) is pending. If either of these conditions is true, the qotd_ioctl
routine exits the mutex, frees the new memory it allocated, and returns an error.

Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-model-convert-from-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-model-convert-from-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fmemcpy-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Asignal-3c

Modifying Data Stored in Kernel Memory

When the device is not busy, the gotd ioctl routine frees the memory currently pointed to by
the state structure, updates the memory state structure members to the new values, and resets
the length to its initial value. If the size of the current quotation space was the same as the initial

size and no new memory was allocated, then qotd ioctl calls bzero(9F) to clear the current

quotation. The qotd ioctl routine then calls the strlcpy(9F) function to copy the initial
quotation string to the quotation member of the state structure. The qotd_ioct1 routine then
unsets the QOTD CHANGED flag, exits the mutex, and returns.

Once the QOTD_CHANGED flag has been set, the only way to unset it is to run the qotdctl
command with the -r option. See “Exercising the Driver's I/O Controls” on page 98 for
more information about the gotdct1 command.

Quote Of The Day Version 3 Source

Enter the source code shown in the following example into a text file named gotd_3.c.

EXAMPLE 3-5 Quote Of The Day Version 3 Source File

#include <sys/types.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/uio.h>
#include <sys/stat.h>
#include <sys/ksynch.h>
#include <sys/modctl.h>
#include <sys/conf.h>
#include <sys/devops.h>
#include <sys/debug.h>
#include <sys/cmn_err.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

#include "qotd.h"
#define QOTD NAME "gotd 3"
static const char init qotd[]

= "On the whole, I'd rather be in Philadelphia. - W. C. Fields\n";
static const size t init qotd len = 128;

#define QOTD MAX LEN 65536 /* Maximum quote in bytes */
#define QOTD CHANGED 0x1 /* User has made modifications */
#define QOTD DIDMINOR 0x2 /* Created minors */

#define QOTD DIDALLOC 0x4 /* Allocated storage space */
#define QOTD DIDMUTEX 0x8 /* Created mutex */

#define QOTD DIDCV 0x10 /* Created cv */

#define QOTD BUSY 0x20 /* Device is busy */

Chapter 3 « Reading and Writing Data in Kernel Memory 87

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fbzero-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fstrlcpy-9f

Modifying Data Stored in Kernel Memory

static void *qotd state head;

struct gqotd state {

int instance;
dev_info_ t *devi;

kmutex t lock;
kcondvar_t cv;

char *qotd;

size t qotd len;

ddi umem cookie t qotd cookie;
int flags;

+

static int qotd getinfo(dev_info t *, ddi info cmd t, void *, void **);
static int qotd attach(dev_info t *, ddi attach cmd t);

static int qotd detach(dev_info t *, ddi detach cmd t);

static int qotd open(dev_t *, int, int, cred t *);

static int qotd close(dev_t, int, int, cred t *);

static int qotd read(dev_t, struct uio *, cred t *);

static int qotd write(dev_t, struct uio *, cred t *);

static int qotd rw(dev_t, struct uio *, enum uio rw);

static int qotd ioctl(dev_t, int, intptr_t, int, cred t *, int *);

static struct cb ops qotd cb ops = {

gotd open, /* cb_open */
gotd close, /* cb_close */
nodev, /* cb_strategy */
nodev, /* cb_print */
nodev, /* cb_dump */
gotd read, /* cb_read */
gotd write, /* cb write */
gotd ioctl, /* cb_ioctl */
nodev, /* cb_devmap */
nodev, /* cb_mmap */
nodev, /* cb_segmap */
nochpoll, /* cb_chpoll */
ddi_prop_op, /* cb_prop_op */
(struct streamtab *)NULL, /* cb_str */
D_MP | D_64BIT, /* cb_flag */
CB_REV, /* cb_rev */
nodev, /* cb_aread */
nodev /* cb_awrite */

}

static struct dev_ops qotd_dev_ops = {
DEVO REV, /* devo_rev */
0, /* devo_refcnt */
gotd getinfo, /* devo_getinfo */
nulldev, /* devo_identify */
nulldev, /* devo _probe */
gotd attach, /* devo_attach */
gotd detach, /* devo _detach */
nodev, /* devo_reset */
&gotd cb ops, /* devo _cb ops */
(struct bus ops *)NULL, /* devo bus ops */
nulldev, /* devo_power */

ddi quiesce not needed, /* devo quiesce */
}

88 Device Driver Tutorial July 2014

Modifying Data Stored in Kernel Memory

static struct modldrv modldrv = {
&mod_driverops,
"Quote of the day 3.0",
&gotd dev_ops};

static struct modlinkage modlinkage = {

MODREV 1,
(void *)&modldrv,
NULL
};
int
_init(void)
{
int retval;
if ((retval = ddi_soft state init(&qotd state head,
sizeof (struct qotd state), 1)) != 0)
return retval;
if ((retval = mod install(&modlinkage)) != 0) {
ddi soft state fini(&gotd state head);
return (retval);
}
return (retval);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
int
_fini(void)
{
int retval;
if ((retval = mod remove(&modlinkage)) != 0)
return (retval);
ddi soft state fini(&qotd state head);
return (retval);
}
/*ARGSUSED*/
static int

gotd getinfo(dev_info t *dip, ddi info cmd t cmd, void *arg, void **resultp)
{

struct qotd state *qsp;

int retval = DDI FAILURE;

ASSERT (resultp != NULL);
switch (cmd) {

case DDI_INFO_DEVT2DEVINFO:
if ((gsp = ddi_get_soft_state(qotd_state_head,

Chapter 3 « Reading and Writing Data in Kernel Memory

89

Modifying Data Stored in Kernel Memory

90

getminor((dev_t)arg))) != NULL) {

*resultp = gqsp->devi;
retval = DDI SUCCESS;

} else
*resultp = NULL;

break;

case DDI INFO DEVT2INSTANCE:
*resultp = (void *)getminor((dev_t)arg);
retval = DDI SUCCESS;

break;
}
return (retval);
}
static int

gotd attach(dev_info t *dip, ddi attach cmd t cmd)

{

int instance = ddi get instance(dip);
struct qotd state *qsp;

switch (cmd) {
case DDI_ATTACH:
if (ddi_soft state zalloc(qotd state head, instance)
!= DDI SUCCESS) {
cmn_err(CE_WARN, "Unable to allocate state for %d",
instance);
return (DDI_FAILURE);

}
if ((gsp = ddi_get_soft_state(qotd_state_head, instance))
== NULL) {
cmn_err(CE_WARN, "Unable to obtain state for %d",
instance);
ddi soft state free(dip, instance);
return (DDI_FAILURE);
}

if (ddi_create minor node(dip, QOTD NAME, S IFCHR, instance,
DDI PSEUDO, @) != DDI SUCCESS) {
cmn_err(CE_WARN, "Unable to create minor node for %d",
instance);
(void)qotd detach(dip, DDI_DETACH);
return (DDI_FAILURE);
}
qsp->flags |= QOTD_DIDMINOR;
gsp->qotd = ddi umem alloc(init qotd len, DDI_UMEM NOSLEEP,
&gqsp->qotd cookie);
if (gqsp->qotd == NULL) {
cmn_err(CE_WARN, "Unable to allocate storage for %d",
instance);
(void)qotd detach(dip, DDI_DETACH);
return (DDI_FAILURE);
}
qsp->flags |= QOTD_DIDALLOC;
mutex init(&gsp->lock, NULL, MUTEX DRIVER, NULL);
qsp->flags |= QOTD_DIDMUTEX;
cv_init(&gsp->cv, NULL, CV DRIVER, NULL);
gsp->flags |= QOTD_DIDCV;

Device Driver Tutorial July 2014

Modifying Data Stored in Kernel Memory

(void)strlcpy(qgsp->qotd, init qotd, init qotd len);
gsp->qotd len = init qotd len;

gsp->instance = instance;

qsp->devi = dip;

ddi report dev(dip);

return (DDI_SUCCESS);
case DDI_RESUME:

return (DDI_SUCCESS);
default:

return (DDI_FAILURE);

}
}
static int
gotd detach(dev_info t *dip, ddi detach cmd t cmd)
{
int instance = ddi get instance(dip);
struct qotd state *qsp;
switch (cmd) {
case DDI DETACH:
gsp = ddi_get soft state(qotd state head, instance);
if (gqsp != NULL) {
ASSERT (! (qsp->flags & QOTD_BUSY));
if (qsp->flags & QOTD_CHANGED)
return (EBUSY);
if (gsp->flags & QOTD DIDCV)
cv_destroy(&qsp->cv);
if (qsp->flags & QOTD_DIDMUTEX)
mutex_destroy(&qsp->lock);
if (gqsp->flags & QOTD_DIDALLOC) {
ASSERT(gsp->qotd != NULL);
ddi umem free(qsp->qotd cookie);
}
if (qsp->flags & QOTD_DIDMINOR)
ddi remove minor_node(dip, NULL);
}
ddi soft state free(qotd state head, instance);
return (DDI_SUCCESS);
case DDI_SUSPEND:
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
}
/*ARGSUSED*/
static int

qgotd open(dev_t *devp, int flag, int otyp, cred t *credp)

{

int instance = getminor(*devp);
struct qotd state *qsp;

if ((gsp = ddi_get soft_state(qotd_state_head, instance)) == NULL)
return (ENXIO);

Chapter 3 « Reading and Writing Data in Kernel Memory

91

Modifying Data Stored in Kernel Memory

ASSERT (gsp->instance == instance);

if (otyp !'= OTYP_CHR)
return (EINVAL);

return (0);

/*ARGSUSED*/
static int
gotd close(dev_t dev, int flag, int otyp, cred t *credp)
{
struct qotd state *qsp;
int instance = getminor(dev);

if ((gsp = ddi_get soft_state(qotd_state_head, instance)) == NULL)

return (ENXIO);
ASSERT (gsp->instance == instance);

if (otyp !'= OTYP_CHR)
return (EINVAL);

return (0);

/*ARGSUSED*/
static int
gotd read(dev_t dev, struct uio *uiop, cred t *credp)
{
return qotd rw(dev, uiop, UIO READ);

/*ARGSUSED*/
static int
qotd write(dev_t dev, struct uio *uiop, cred t *credp)
{
return qotd rw(dev, uiop, UIO WRITE);

static int
gotd rw(dev_t dev, struct uio *uiop, enum uio rw rw)
{

struct qotd state *qsp;

int instance = getminor(dev);

size t len = uiop->uio_resid;

int retval;

if ((gsp = ddi_get soft_state(qotd_state_head, instance)) == NULL)

return (ENXIO);

ASSERT (gsp->instance == instance);

if (len == 0)
return (0);

mutex_enter(&qsp->lock);

Device Driver Tutorial July 2014

Modifying Data Stored in Kernel Memory

while (gqsp->flags & QOTD BUSY) {

if (cv_wait sig(&gsp->cv, &qsp->lock) == 0) {

mutex_exit(&gsp->lock);
return (EINTR);

}

}

if (uiop->uio offset < @ || uiop->uio offset > qsp->qotd len) {
mutex_exit(&qsp->lock);
return (EINVAL);

}

if (len > gsp->qotd len - uiop->uio offset)

len = gsp->qotd_len - uiop->uio_offset;

if (len == 0) {
mutex_exit(&qsp->lock);

return (rw == UIO WRITE ? ENOSPC : 0);

gsp->flags |= QOTD_BUSY;
mutex_exit(&qsp->lock);

retval = uiomove((void *)(qsp->qotd + uiop->uio offset), len, rw, uiop);

mutex_enter(&qsp->lock);
if (rw == UIO WRITE)

qsp->flags |= QOTD_CHANGED;
gsp->flags &= ~QOTD BUSY;
cv_broadcast(&qsp->cv);
mutex_exit(&qsp->lock);

return (retval);

/*ARGSUSED*/

static int

gotd ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred t *credp,
int *rvalp)

struct qotd state *qsp;
int instance = getminor(dev);

if ((gsp = ddi_get soft_state(qotd_state_head, instance)) == NULL)

return (ENXIO);
ASSERT (gsp->instance == instance);

switch (cmd) {
case QOTDIOCGSZ: {

/* We are not guaranteed that ddi_ copyout(9F) will read

* automatically anything larger than a byte.

Therefore we

* must duplicate the size before copying it out to the user.

*/
size t sz = qsp->qotd len;

if (!(mode & FREAD))
return (EACCES);

Chapter 3 « Reading and Writing Data in Kernel Memory 93

Modifying Data Stored in Kernel Memory

94

#ifdef _MULTI_DATAMODEL

switch (ddi _model convert from(mode & FMODELS)) {
case DDI MODEL ILP32: {
size32 t sz32 = (size32 t)sz;
if (ddi_copyout(&sz32, (void *)arg, sizeof (size32 t),

mode) != 0)
return (EFAULT);
return (0);

}
case DDI MODEL NONE:
if (ddi_copyout(&sz, (void *)arg, sizeof (size t),

mode) != 0)
return (EFAULT);
return (0);

default:
cmn_err(CE_WARN, "Invalid data model %d in ioctl\n",
ddi_model convert from(mode & FMODELS));
return (ENOTSUP);
}

#else /* | MULTI_DATAMODEL */

if (ddi_copyout(&sz, (void *)arg, sizeof (size t), mode) != 0)
return (EFAULT);
return (0);

#endif /* MULTI_DATAMODEL */

case QOTDIOCSSZ: {

size t new len;

char *new qotd;

ddi umem cookie t new cookie;
uint_t model;

if (!(mode & FWRITE))
return (EACCES);

#ifdef _MULTI_DATAMODEL

model = ddi model convert from(mode & FMODELS);

switch (model) {
case DDI MODEL ILP32: {
size32 t sz32;
if (ddi_copyin((void *)arg, &sz32, sizeof (size32 t),
mode) != 0)
return (EFAULT);
new len = (size t)sz32;
break;
}
case DDI MODEL NONE:
if (ddi_copyin((void *)arg, &new len, sizeof (size t),
mode) != 0)
return (EFAULT);
break;
default:
cmn_err(CE_WARN, "Invalid data model %d in ioctl\n",
model) ;
return (ENOTSUP);
}

#else /* | MULTI_DATAMODEL */

Device Driver Tutorial July 2014

Modifying Data Stored in Kernel Memory

if (ddi_copyin((void *)arg, &new len, sizeof (size t),
mode) != 0)
return (EFAULT);

#endif /* MULTI_DATAMODEL */

}

if (new_len == 0 || new_len > QOTD_MAX_LEN)
return (EINVAL);

new _qotd = ddi umem alloc(new len, DDI UMEM SLEEP, &new cookie);

mutex_enter(&qsp->lock);
while (qsp->flags & QOTD BUSY) {
if (cv_wait sig(&gsp->cv, &gsp->lock) == 0) {
mutex_exit(&qsp->lock);
ddi umem free(new cookie);
return (EINTR);

}

memcpy (new_qotd, qsp->qotd, min(qsp->qotd len, new len));
ddi_umem free(qsp->qotd cookie);

gsp->qotd = new qotd;

gsp->qotd cookie = new cookie;

gsp->qotd len = new len;

qsp->flags |= QOTD_CHANGED;

mutex_exit(&qsp->lock);

return (0);

case QOTDIOCDISCARD: {

char *new qotd = NULL;
ddi umem cookie t new cookie;

if (!(mode & FWRITE))
return (EACCES);

if (qsp->qotd len != init qotd len) {
new qotd = ddi umem alloc(init qotd len,
DDI UMEM SLEEP, &new cookie);

mutex_enter(&qsp->lock);
while (qsp->flags & QOTD BUSY) {
if (cv_wait sig(&gsp->cv, &gsp->lock) == 0) {
mutex_exit(&gqsp->lock);
if (new _qgotd != NULL)
ddi umem free(new cookie);
return (EINTR);

}
if (new _gotd != NULL) {
ddi_umem free(qsp->qotd cookie);
qsp->qotd = new qotd;
gsp->qotd cookie = new cookie;
gsp->qotd len = init qotd len;
} else {
bzero(qsp->qotd, gsp->qotd_len);
}
(void)strlcpy(qgsp->qotd, init qotd, init qotd len);

Chapter 3 « Reading and Writing Data in Kernel Memory

95

Modifying Data Stored in Kernel Memory

96

gsp->flags &= ~QOTD CHANGED;
mutex_exit(&qsp->lock);

return (0);
}
default:

return (ENOTTY);
}

}

Enter the definitions shown in the following example into a text file named gotd.h.

EXAMPLE 3-6 Quote Of The Day Version 3 Header File

#ifndef SYS QOTD H
#define SYS QOTD H

#define QOTDIOC ('q' << 24 | 't' << 16 | 'd' << 8)
#define QOTDIOCGSZ (QOTDIOC | 1) /* Get quote buffer size */
#define QOTDIOCSSZ (QOTDIOC | 2) /* Set new quote buffer size */

#define QOTDIOCDISCARD (QOTDIOC | 3) /* Discard quotes and reset */
#endif /* SYS QOTD H */

Enter the configuration information shown in the following example into a text file named
qotd_3.conf.

EXAMPLE 3-7 Quote Of The Day Version 3 Configuration File

name="qotd 3" parent="pseudo" instance=0;

Building and Installing Quote Of The Day
Version 3

Compile and link the driver. The following example shows compiling and linking for a 32-bit
architecture:

% cc -D_KERNEL -c qotd_3.c
% 1d -r -o qotd_3 qotd_3.0

Make sure you are user root when you install the driver.

Copy the driver binary to the /tmp directory as discussed in “Building and Installing the
Template Driver” on page 54.

cp qotd_3 /tmp
1n -s /tmp/qotd_3 /usr/kernel/drv/qotd_3

Copy the configuration file to the kernel driver area of the system.

Device Driver Tutorial July 2014

Modifying Data Stored in Kernel Memory

cp qotd_3.conf /usr/kernel/drv
In a separate window, enter the following command:

% tail -f /var/adm/messages

Make sure you are user root when you load the driver. Use the add _d rv(1M) command to
load the driver:

add_drv qotd_3

You should see the following messages in the window where you are viewing /var/adm/
messages:

date time machine pseudo: [ID 129642 kern.info] pseudo-device: qotd 30
date time machine genunix: [ID 936769 kern.info] qotd 30 is /pseudo/qotd 3@@

Using Quote Of The Day Version 3

This section describes how to read and write the qotd_ 3 device and how to test the driver's I/O
controls. The 1/O controls include retrieving the size of the storage buffer, setting a new size for
the storage buffer, and reinitializing the storage buffer size and contents.

Reading the Device

When you access this qotd_3 device for reading, the command you use to access the device
retrieves the data from the device node. The command then displays the data in the same way
that the command displays any other input. To get the name of the device special file, look in
the /devices directory:

% ls -1 /devices/pseudo/qotd*
Crw------- 1 root sys 122, 0 date time /devices/pseudo/qotd 3@0:qotd 3

To read the qotd_3 device, you can use the cat(1) command:

cat /devices/pseudo/qotd_3@0:qotd_3
On the whole, I'd rather be in Philadelphia. - W. C. Fields

Writing the Device

To write to the qotd_3 device, you can redirect command-line input:

echo "A life is not important except in the impact it has on others.
- Jackie Robinson" >> /devices/pseudo/qotd_3@0:qotd_3

cat /devices/pseudo/qotd_3@0:qotd_3

A life is not important except in the impact it has on others. - Jackie

Chapter 3 « Reading and Writing Data in Kernel Memory 97

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Madd-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1cat-1

Modifying Data Stored in Kernel Memory

Robinson

Exercising the Driver's 1/O Controls

In addition to changes in the driver, Quote Of The Day Version 3 introduces a new utility
program. The gotdctl command enables you to test the driver's I/O controls.

The source for this command is shown in Example 3-8. Compile the qotdct1 utility as follows:

% cc -0 gqotdctl qotdctl.c

The qotdctl command has the following options:

-9 Get the size that is currently allocated. Call the i0Ct1(9E) entry point of

the driver with the QOTDIOCGSZ request. The QOTDIOCGSZ request reports
the current size of the space allocated for the quotation.

-s size Set the new size to be allocated. Call the i0ct1(9E) entry point of the

driver with the QOTDIOCSSZ request. The QOTDIOCSSZ request sets a new
size for the quotation space.

-r Discard the contents and reset the device. Call the 10Cct1(9E) entry point
of the driver with the QOTDIOCDISCARD request.

Invoking qotdctl with the -r option is the only way to unset the
QOTD_CHANGED flag in the device. The device cannot be detached while
the QOTD_CHANGED flag is set. This protects the contents of the ramdisk
device from being unintentionally or automatically removed. For
example, a device might be automatically removed by the automatic
device unconfiguration thread.

When you are no longer interested in the contents of the device, run the
gotdctl command with the -r option. Then you can remove the device.

-h Display help text.
-V Display the version number of the qotdctl command.
-d device Specify the device node to use. The default value is /dev/qotd0.

Use the gotdctl command to test the driver's I/O controls:

./qotdctl -V

gotdctl 1.0

./qotdctl -h

Usage: ./qotdctl [-d device]l {-g | -h | -r | -s size | -V}
./qotdctl -g

open: No such file or directory

98 Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eioctl-9e

Modifying Data Stored in Kernel Memory

By default, the gotdctl command accesses the /dev/qotd® device. The qotd 3 device in this
example is /devices/pseudo/qotd 3@0:qotd 3. Either define a link from /dev/qotd0 to /
devices/pseudo/qotd 3@0:qotd 3 or use the -d option to specify the correct device:

./qotdctl -d /devices/pseudo/qotd_3@0:qotd_3 -g

128

./qotdctl -d /devices/pseudo/qotd_3@0:qotd_3 -s 512
./qotdctl -d /devices/pseudo/qotd_3@0:qotd_3 -g

512

./qotdctl -d /devices/pseudo/qotd_3@0:qotd_3 -r

cat /devices/pseudo/qotd_3@0:qotd_3

On the whole, I'd rather be in Philadelphia. - W. C. Fields

If you try to remove the device now, you will receive an error message:

rem_drv qotd_3

Device busy

Cannot unload module: qotd 3
Will be unloaded upon reboot.

The device is still marked busy because you have not told the driver that you are no
longer interested in this device. Run the qotdctl command with the -r option to unset the
QOTD CHANGED flag in the driver and mark the device not busy:

./qotdctl -r

Enter the source code shown in the following example into a text file named qotdctl.c.

EXAMPLE 3-8 Quote Of The Day I/O Control Command Source File

#include <sys/ioctl.h>
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <stdlib.h>

#include "qotd.h"

static const char *DEFAULT DEVICE = "/dev/qotd0@";
static const char *VERSION = "1.0";

static void show usage(const char *);
static void get size(const char *);

static void set size(const char *, size t);
static void reset dev(const char *);

int
main(int argc, char *argv[])
{

int op = -1;

int opt;

int invalid usage = 0;
size t sz arg;

Chapter 3 « Reading and Writing Data in Kernel Memory 99

Modifying Data Stored in Kernel Memory

const char *device = DEFAULT DEVICE;

while ((opt = getopt(argc, argv,
"d: (device)g(get-size)h(help)r(reset)s:(set-size)V(version)"))

1= -1) {
switch (opt) {
case 'd':
device = optarg;
break;
case 'g':
if (op >= 0)
invalid usage++;
op = QOTDIOCGSZ;
break;
case 'h':
show_usage(argv[0]);
exit(0);
/*NOTREACHED*/
case 'r':
if (op >= 0)
invalid usage++;
op = QOTDIOCDISCARD;
break;
case 's':
if (op >= 0)
invalid usage++;
op = QOTDIOCSSZ;
sz_arg = (size t)atol(optarg);
break;
case 'V':
(void) printf("qotdctl %s\n", VERSION);
exit(0);
/*NOTREACHED*/
default:
invalid usage++;
break;
}
}
if (invalid usage > @ || op < 0) {
show usage(argv[0]);
exit(1l);
}

switch (op) {
case QOTDIOCGSZ:
get size(device);
break;
case QOTDIOCSSZ:
set size(device, sz arg);
break;
case QOTDIOCDISCARD:
reset _dev(device);
break;
default:
(void) fprintf(stderr,
"internal error - invalid operation %d\n", op);
exit(2);

100 Device Driver Tutorial July 2014

Modifying Data Stored in Kernel Memory

return (0);

static void
show _usage(const char *execname)
{
(void) fprintf(stderr,
"Usage: %s [-d device] {-g | -h | -r | -s size | -V}\n", execname);

static void
get size(const char *dev)
{

size t sz;

int fd;

if ((fd = open(dev, O RDONLY)) < 0) {

perror("open");
exit(3);

if (ioctl(fd, QOTDIOCGSZ, &sz) < 0) {

perror("QOTDIOCGSZ");

exit(4);

(void) close(fd);

(void) printf("%zu\n", sz);

static void
set size(const char *dev, size t sz)

{
int fd;
if ((fd = open(dev, O RDWR)) < @) {
perror("open");
exit(3);
}
if (ioctl(fd, QOTDIOCSSZ, &sz) < 0) {
perror("Q0OTDIOCSSZ");
exit(4);
}
(void) close(fd);
}

static void
reset dev(const char *dev)

{
int fd;

if ((fd = open(dev, 0 RDWR)) < 0) {
perror("open");

Chapter 3 « Reading and Writing Data in Kernel Memory 101

Modifying Data Stored in Kernel Memory

exit(3);

}

if (ioctl(fd, QOTDIOCDISCARD) < 0) {
perror("QOTDIOCDISCARD") ;
exit(4);

}

(void) close(fd);

102 Device Driver Tutorial July 2014

LKA CHAPTER 4

Tips for Developing Device Drivers

This chapter provides some general guidelines for writing device drivers.

The guidelines are organized into the following categories:

= “Device Driver Coding Tips” on page 103
= “Device Driver Testing Tips” on page 106
= “Device Driver Debugging and Tuning Tips” on page 108

Device Driver Coding Tips

Use these guidelines when you write the code for your driver:

m Use a prefix based on the name of your driver to give global variables and functions
unique names.

The name of each function, data element, and driver preprocessor definition must be
unique for each driver.

A driver module is linked into the kernel. The name of each symbol unique to a particular
driver must not collide with other kernel symbols. To avoid such collisions, each function
and data element for a particular driver must be named with a prefix common to that
driver. The prefix must be sufficient to uniquely name each driver symbol. Typically, this
prefix is the name of the driver or an abbreviation for the name of the driver. For example,

xx_open would be the name of the open(9E) routine of driver xx.

When building a driver, a driver must necessarily include a number of system header
files. The globally-visible names within these header files cannot be predicted. To avoid
collisions with these names, each driver preprocessor definition must be given a unique
name by using an identifying prefix.
A distinguishing driver symbol prefix also is an aid to deciphering system logs and panics
when troubleshooting. Instead of seeing an error related to an ambiguous attach function,
you see an error message about xx_attach.

m If you are basing your design on an existing driver, modify the configuration file before
adding the driver.

Chapter 4 « Tips for Developing Device Drivers 103

Device Driver Coding Tips

104

The -n option in the add_drv(1M) command enables you to update the system
configuration files for a driver without loading or attaching the driver.

Use the cmn_err function to log driver activity.

You can use the cmn_err(9F) function to display information from your driver similar to
the way you might use print statements to display information from a user program. The
cmn_err(9F) function writes low priority messages to /dev/log. The syslogd(1M)
daemon reads messages from /dev/log and writes low priority messages to /var/adm/

messages. Use the following command to monitor the output from your cmn_err(9F)
messages:

% tail -f /var/adm/messages

Be sure to remove cmn_err calls that are used for development or debugging before

you compile your production version driver. You might want to use cmn_err calls in a
production driver to write error messages that would be useful to a system administrator.
Clean up allocations and other initialization activities when the driver exits.

When the driver exits, whether intentionally or prematurely, you need to perform such
tasks as closing opened files, freeing allocated memory, releasing mutex locks, and
destroying any mutexes that have been created. In addition, the system must be able to
close all minor devices and detach driver instances even after the hardware fails. An

orderly approach is to reverse _init actions in the _fini routine, reverse open operations
in the close routine, and reverse attach operations in the detach routine.

Use ASSERT(9F) to catch unexpected error returns.

ASSERT is a macro that halts the kernel execution if a condition that was expected to be true
turns out to be false. To activate ASSERT, you need to include the sys/debug.h header file
and specify the DEBUG preprocessor symbol during compilation.

Use mutex_owned to validate and document locking requirements.

The mutex owned(9F) function helps determine whether the current thread owns a
specified mutex. To determine whether a mutex is held by a thread, use mutex owned
within ASSERT.

Use conditional compilation to toggle “costly” debugging features.
The OS provides various debugging functions, such as ASSERT and mutex-owned, that can
be turned on by specifying the DEBUG preprocessor symbol when the driver is compiled.

With conditional compilation, unnecessary code can be removed from the production
driver. This approach can also be accomplished by using a global variable.

Use a separate instance of the driver for each device to be controlled.
Use DDI functions as much as possible in your device drivers.

These interfaces shield the driver from platform-specific dependencies such as mismatches
between processor and device endianness and any other data order dependencies. With

Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Madd-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fcmn-err-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Msyslogd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fassert-9f
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fmutex-owned-9f

Device Driver Coding Tips

these interfaces, a single-source driver can run on the SPARC platform, x86 platform, and
related processor architectures.

Anticipate corrupted data.

Always check that the integrity of data before that data is used. The driver must avoid
releasing bad data to the rest of the system.

A device should only write to DMA buffers that are controlled solely by the driver.

This technique prevents a DMA fault from corrupting an arbitrary part of the system's
main memory.

Use the ddi_umem_alloc(9F) function when you need to make DMA transfers.

This function guarantees that only whole, aligned pages are transferred.

Set a fixed number of attempts before taking alternate action to deal with a stuck interrupt.

The device driver must not be an unlimited drain on system resources if the device locks
up. The driver should time out if a device claims to be continuously busy. The driver
should also detect a pathological (stuck) interrupt request and take appropriate action.

Use care when setting the sequence for mutex acquisitions and releases so as to avoid
unwanted thread interactions if a device fails.

Check for malformed ioctl requests from user applications.
User requests can be destructive. The design of the driver should take into consideration
the construction of each type of potential ioctl request.

Try to avoid situations where a driver continues to function without detecting a device
failure.

A driver should switch to an alternative device rather than try to work around a device
failure.

All device drivers in the OS must support hotplugging.

All devices need to be able to be installed or removed without requiring a reboot of the
system.

All device drivers should support power management.

Power management provides the ability to control and manage the electrical power usage
of a computer system or device. Power management enables systems to conserve energy
by using less power when idle and by shutting down completely when not in use.

Apply the volatile keyword to any variable that references a device register.

Without the volatile keyword, the compile-time optimizer can delete important accesses
to a register.

Perform periodic health checks to detect and report faulty devices.

A periodic health check should include the following activities:

m Check any register or memory location on the device whose value might have been
altered since the last poll.

= Timestamp outgoing requests such as transmit blocks or commands that are issued by
the driver.

Chapter 4 « Tips for Developing Device Drivers 105

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Fddi-umem-alloc-9f

Device Driver Testing Tips

= [Initiate a test action on the device that should be completed before the next scheduled
check.

Device Driver Testing Tips

106

Testing a device driver can cause the system to panic and can harm the kernel.

The following tips can help you avoid problems when testing your driver:

Install the driver in a temporary location.

Install drivers in the /tmp directory until you are finished modifying and testing the _info,
_init, and attach routines. Copy the driver binary to the /tmp directory. Link to the driver
from the kernel driver directory.

If a driver has an error in its _info, init, or attach function, your machine could get
into a state of infinite panic. The OS automatically reboots itself after a panic and loads
any drivers it can during boot. If you have an error in your attach function that panics the
system when you load the driver, then the system will panic again when it tries to reboot
after the panic. The system will continue the cycle of panic, reboot, panic as it attempts to
reload the faulty driver every time it reboots after panic.

To avoid an infinite panic, keep the driver in the /tmp area until it is well tested. Link to
the driver in the /tmp area from the kernel driver area. The OS removes all files from the
/tmp area every time the system reboots. If your driver causes a panic, the OS reboots
successfully because the driver has been removed automatically from the /tmp area. The
link in the kernel driver area points to nothing. The faulty driver did not get loaded, so the
system does not go back into a panic. You can modify the driver, copy it again to the /tmp
area, and continue testing and developing. When the driver is well tested, copy it to the /
usr/kernel/drv area so that it will remain available after a reboot.

The following example shows you where to link the driver for a 32-bit platform. For other
architectures, see the instructions in “Installing a Driver” on page 27.

cp mydriver /tmp

ln -s /tmp/mydriver /usr/kernel/drv/mydriver

Enable the deadman feature to avoid a hard hang.

If your system is in a hard hang, then you cannot break into the debugger. If you enable the
deadman feature, the system panics instead of hanging indefinitely. You can then use the
kmdb(1) kernel debugger to analyze your problem.

The deadman feature checks every second whether the system clock is updating. If the
system clock is not updating, then you are in an indefinite hang. If the system clock has

not been updated for 50 seconds, the deadman feature induces a panic and puts you in the
debugger.

Take the following steps to enable the deadman feature:

Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1kmdb-1

Device Driver Testing Tips

1. Make sure you are capturing crash images with dumpadm(1M).

2. Set the snooping variable in the /etc/systenm file.

set snooping=1

3. Reboot the system so that the /etc/systen file is read again and the snooping setting
takes effect.

Note that any zones on your system inherit the deadman setting as well.

If your system hangs while the deadman feature is enabled, you should see output similar
to the following example on your console:

panic[cpul]/thread=30018dd6cc@: deadman: timed out after 9 seconds of

clock inactivity

panic: entering debugger (continue to save dump)

Inside the debugger, use the : : cpuinfo command to investigate why the clock interrupt
was not able to fire and advance the system time.

Use a serial connection to control your test machine from a separate host system.

This technique is explained in “Testing With a Serial Connection” in “Writing Device
Drivers for Oracle Solaris 11.2 ”.

Use an alternate kernel.

Booting from a copy of the kernel and the associated binaries rather than from the default
kernel avoids inadvertently rendering the system inoperable.

Use an additional kernel module to experiment with different kernel variable settings.

This approach isolates experiments with the kernel variable settings. See “Setting Up Test
Modules” in “Writing Device Drivers for Oracle Solaris 11.2 .

Make contingency plans for potential data loss on a test system.

If your test system is set up as a client of a server, then you can boot from the network if
problems occur. You could also create a special partition to hold a copy of a bootable root
file system. See “Avoiding Data Loss on a Test System” in “Writing Device Drivers for
Oracle Solaris 11.2 7.

Capture system crash dumps if your test system panics.
Use fsck(1M) to repair the damaged root file system temporarily if your system crashes

during the attach(9E) process so that any crash dumps can be salvaged. See “Recovering
the Device Directory” in “Writing Device Drivers for Oracle Solaris 11.2 ”.

Install drivers in the /tmp directory until you are finished modifying and testing the _info,
_init, and attach routines.

Keep a driver in the /tmp directory until the driver has been well tested. If a panic occurs,
the driver will be removed from /tmp directory and the system will reboot successfully.

Chapter 4 « Tips for Developing Device Drivers 107

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mdumpadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVERdebug-62
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVERdebug-62
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVEReupvl
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVEReupvl
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVERdebug-70
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVERdebug-70
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mfsck-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVERdebug-74
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=DRIVERdebug-74

Device Driver Debugging and Tuning Tips

Device Driver Debugging and Tuning Tips

108

The Oracle Solaris OS provides various tools for debugging and tuning your device driver:

You might receive the following warning message from the add _drv(1M) command:
Warning: Driver (driver_name) successfully added to system but failed to attach

This message might have one of the following causes:

m The hardware has not been detected properly. The system cannot find the device.

m The configuration file is missing. See “Writing a Configuration File” on page 25 for
information on when you need a configuration file and what information goes into
a configuration file. Be sure to put the configuration file in /kernel/drv or /usr/
kernel/drv and not in the driver directory.

Use the kmdb(1) kernel debugger for runtime debugging.

The kmdb debugger provides typical runtime debugger facilities, such as breakpoints,
watch points, and single-stepping. For more information, see “Oracle Solaris Modular
Debugger Guide ™.

Use the mdb(1) modular debugger for postmortem debugging.

Postmortem debugging is performed on a system crash dump rather than on a live system.
With postmortem debugging, the same crash dump can be analyzed by different people
or processes simultaneously. In addition, mdb enables you to create special macros called
dmods to perform rigorous analysis on the dump. For more information, see “Oracle
Solaris Modular Debugger Guide .

Use the kstat(3KSTAT) facility to export module-specific kernel statistics for your
device driver.

Use the DTrace facility to add instrumentation to your driver dynamically so that you can
perform tasks such as analyzing the system and measuring performance. For information
on DTrace, see the “Oracle Solaris 11.2 Dynamic Tracing Guide ” .

If your driver does not behave as expected on a 64-bit platform, make sure you are using
a 64-bit driver. By default, compilation on the Oracle Solaris OS yields a 32-bit result

on every architecture. To obtain a 64-bit result, follow the instructions in “Building a
Driver” on page 25.

Use the file(1) command to determine whether you have a 64-bit driver.

% file qotd_3

qotd 3: ELF 32-bit LSB relocatable 80386 Version 1

If you are using a 64-bit system and you are not certain whether you are currently running
the 64-bit kernel or the 32-bit kernel, use the -k option of the isainfo(1) command. The

-v option reports all instruction set architectures of the system. The -k option reports the
instruction set architecture that is currently in use.

Device Driver Tutorial July 2014

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1kmdb-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=MDB
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=MDB
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1mdb-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=MDB
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=MDB
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN3Ekstat-3kstat
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSDTG
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1file-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1isainfo-1

Device Driver Debugging and Tuning Tips

% isainfo -v
64-bit sparcv9 applications

vis2 vis
32-bit sparc applications

vis2 vis v8plus div32 mul32
% isainfo -kv
64-bit sparcv9 kernel modules
If your driver seems to have an error in a function that you did not write, make sure you
have called that function with the correct arguments and specified the correct include
files. Many kernel functions have the same names as system calls and user functions. For
example, read and write can be system calls, user library functions, or kernel functions.
Similarly, ioctl and mmap can be system calls or kernel functions. The man mmap command
displays the mmap(2) man page. To see the arguments, description, and include files for the
kernel function, use the man mmap.9e command. If you do not know whether the function

you want is in section 9E or section 9F, use the man -1 mmap command, for example.

Chapter 4 « Tips for Developing Device Drivers 109

110 Device Driver Tutorial July 2014

Index

Numbers and Symbols

/dev directory, 20, 21

/devices directory, 20, 20, 22, 28
/devices/pseudo directory, 21, 55,76
/etc/driver_aliases file, 28
/etc/name_to major file, 28, 56, 76
/usr/kernel directory, 19, 19
/var/adm/messages file, 55, 65
_fini entry point, 32, 35, 68

_info entry point, 27, 32, 34, 106
_init entry point, 27, 32, 34, 68, 106

A
add_drv command, 28, 55

use in modifying existing drivers, 103

alternate kernels

use in testing, 107
ASSERT kernel function, 66, 70, 75, 104
attach entry point, 27, 37, 39, 68, 106

B

blk device, 21
block device, 21

boot command, 19
bzero kernel function, 87

C

cat command, 56

cb_ops driver structure, 16, 48, 50, 84
cc command, 25

character device, 21

close entry point, 44, 46, 69
cmn_err kernel function, 34, 55, 63, 104
commands

add_drv, 28,55, 103

boot, 19

cat, 56

cc, 25

dmesg, 69

echo, 57

fsck, 107

gcc, 26

kernel, 18

1d, 15,25, 36

mknod, 20

modinfo, 28, 56, 76

modload, 56

modunload, 58

more, 76

prtconf, 20, 20, 25, 29, 56, 76

prtpicl, 20

rem drv, 29, 29,57

syslogd, 55, 65

update drv, 29
compiling, 25
condition variables, 81
conditional compilation, 104
condvar kernel functions, 83
configuration files, 25, 54
crash dumps

use in testing, 107
cv_broadcast kernel function, 84, 85
cv_destroy kernel function, 79, 83
cv_init kernel function, 79, 83
cv_signal kernel function, 84

111

Index

cv_wait kernel function, 84
cv_wait_sig kernel function, 83, 84

D
data loss

avoiding while testing, 107
data model

converting, 24,78
ddi_copyin kernel function, 16, 78, 81, 86
ddi_copyout kernel function, 16, 78, 86
ddi create minor node kernel function, 37, 40, 68,
78
ddi_get_instance kernel function, 23, 40, 68
ddi_get soft state kernel function, 67, 68, 69, 70
ddi_model convert_ from kernel function, 24, 78, 86
ddi_prop_get int kernel function, 25
ddi_prop_lookup kernel function, 25
ddi_prop_op kernel function, 37, 43
ddi_remove minor node Kkernel function, 37, 41, 68,
79
ddi_report_dev kernel function, 69
ddi soft state kernel function, 39
ddi_soft state fini kernel function, 67, 68
ddi_soft state free kernel function, 67, 68
ddi_soft state init kernel function, 67, 68
ddi_soft state zalloc kernel function, 67, 68
ddi_umem_alloc kernel function, 80
ddi_umem_free kernel function, 79, 80
deadman kernel feature, 106
debugging device drivers

tips, 108
detach entry point, 36, 37, 41, 69
dev_info device structure, 40, 41, 42
dev_ops driver structure, 16, 48, 51
devfs devices file system, 20
devfsadmd devices file system administration
command, 21
device drivers, 16

adding, 28

coding tips, 103

compiling, 25

condition variables, 81

conditional compilation, 104

112 Device Driver Tutorial July 2014

debugging tips, 108
development guidelines, 103
directories, 18
adding, 19
entry points, 14, 16,17, 32
See also entry points
how used, 18
I/O controls, 85, 98
installing, 27, 106
linking, 25
loading, 19, 29, 55
mutexes, 81
naming conventions, 103
recommended housekeeping, 104
removing, 29, 57
structures See driver structures
test areas, 29
testing, 106
thread synchronization, 81
tuning, 108
unloading, 29, 58
updating, 29
device instance pointer (dip), 40, 41, 42
device number, 22
device structures
dev_info, 40, 41,42
device tree, 20

devices
blk, 21
block, 19,21

character, 19, 21, 32
configuration files, 25, 54
device tree, 20
directories, 20, 21
exclusive access, 82
file system

devfs, 20

devfsadmd, 21
instances, 22, 40, 41, 42
md metadevice, 21
names, 21
nexus, 17,20
numbers, 20, 22, 40
prefixes, 24, 38
properties, 25, 43
pseudo, 17,31

Index

ramdisk, 17, 77
raw, 21
reading, 56, 76, 97
special files, 19
state, 67
writing, 57,77, 84, 97
devmap entry point, 16
dmesg command, 69
driver structures
cb_ops, 16,48, 50, 84
character and block operations structure, 50
dev_ops, 16,48, 51
device operations structure, 51
modinfo, 34
modldrv, 48,52
modlinkage, 34,48, 52
module linkage structures, 52

driver.conf file, 25
drivers See device drivers
DTrace analyzer, 108

E

echo command, 57

entry points
_fini, 32,35, 68
_info, 27,32, 34,106
_init, 27,32, 34,68, 106
attach, 27,37, 39, 68, 106
autoconfiguration, 37
close, 44,46, 69
detach, 36,37, 41, 69
devmap, 16
getinfo, 37,42, 69
ioctl, 19, 84, 85, 98
loadable module configuration, 32
open, 44, 46, 69
prop_op, 37,43
read, 44,47,70
user context, 44
write, 44,47, 84

F
files
/etc/name_to major, 28, 56,76
/var/adm/messages, 55, 65
driver.conf, 25
system, 18
fsck command, 107
functions
kstat, 108
printf, 104
signal, 84, 85, 86
G

gcc command, 26

getinfo entry point, 37, 42, 69
getminor kernel function, 69, 70
GNUC, 26

H
hotplugging, 105

I
I/O controls, 85, 98
instance number, 22, 40, 41, 42
interrupts

avoiding problems, 105
ioctl entry point, 19, 84, 85, 98
ioctl requests

avoiding problems, 105

K
kernel, 13
address space, 14, 16
privilege, 14
See also kernel mode
kernel command, 18
kernel functions
ASSERT, 66, 70, 75, 104
bzero, 87
cmn_err, 34,55, 63, 104

113

Index

condvar, 83 kernel mode, 13
cv_broadcast, 84,85 kernel modules
cv_destroy, 79,83 use in testing, 107
cv: init, 79,83 kernel statistics, 108
) kernel structures
cv_signal, 84
uio, 70,85

cv_wait, 84

cv_wait_sig, 83,84

ddi_copyin, 16,78, 81, 86

ddi copyout, 16,78, 86

ddi_create _minor_node, 37,40, 68, 78
ddi get instance, 23,40, 68

ddi get soft state, 67,68, 69, 70

kmdb kernel debugger, 106, 108
kmem_alloc kernel function, 80
kmem_zalloc kernel function, 80
kstat function, 108

ddi model convert from, 24,78, 86 L
ddi_prop get int, 25 1d command, 15, 25, 36
ddi_prop_lookup, 25 linking, 15, 25, 36

ddi prop op, 37,43
ddi_remove minor_node, 37,41, 68,79

ddi report dev, 69 M

ddi_soft_state, 39 major number, 20, 22

ddi soft state fini, 67,68 mdb modular debugger, 108
ddi_soft_state_free, 67,68 memcpy kernel function, 86

ddi_soft state init, 67, 68 metadevice, 21
ddi_soft state zalloc, 67,68 minor number, 20, 22, 40

ddi umem_alloc, 80 mknod command, 20

ddi_umem free, 79,80 mknod system call, 20

getminor, 69, 70 mmap system call, 16

kmem_alloc, 80 mod_info kernel function, 32, 34
kmem_zalloc, 80 mod_install kernel function, 32, 34, 68
memcpy, 86 mod_remove kernel function, 32, 35, 68
mod_info, 32,34 moddir kernel variable, 19
mod_install, 32, 34, 68 modinfo command, 28, 56, 76
mod_remove, 32, 35, 68 modinfo driver structure, 34

mutex, 83 modldrv driver structure, 48, 52
mutex_destroy, 79,83 modlinkage driver structure, 34, 48, 52
mutex_init, 79,83 modload command, 56

mutex_owned, 104 modunload command, 58

nochpoll, 50 more command, 76

nodev, 50,52 mutex kernel function, 83

nulldev, 44,52 mutex_destroy kernel function, 79, 83
strlicpy, 79,87 mutex_init kernel function, 79, 83
strncpy, 79 mutex_owned kernel function, 104
uiomove, 70, 78,81, 85 mutexes, 81

avoiding problems, 105

114 Device Driver Tutorial July 2014

Index

N
naming
unique prefix for driver symbols, 103
naming conventions, 103
nexus device, 20
nochpoll kernel function, 50
nodev kernel function, 50, 52
nulldev kernel function, 44, 52

(0]
open entry point, 44, 46, 69
Oracle Solaris Studio, 25

P
PCI ID numbers, 28
power management, 105
prefix
unique prefix for driver symbols, 103
prefixes, 24, 38
printf function, 104
prop_op entry point, 37, 43
protected mode, 13
prtconf command, 20, 20, 25, 29, 56, 76
prtpicl command, 20

Q

QOTD_BUSY condition, 81, 82

R

raw device, 21

read entry point, 44, 47,70
read system call, 19

rem_drv command, 29, 29,57
restricted mode, 13

S
serial connections
use in testing, 107

signal function, 84, 85, 86
snooping kernel variable, 106
soft state, 67
SPARC
address space, 16
compiling, 25
special files, 19
state structures, 66, 67
strlcpy kernel function, 79, 87
strncpy kernel function, 79
syslogd command, 55, 65
system calls

mknod, 20
mmap, 16
read, 19

system configuration information file, 18
system crash dumps
use in testing, 107

T
testing device drivers, 106
thread synchronization, 81
tuning device drivers

tips, 108

§)

uio kernel structure, 70, 85

uiomove kernel function, 70, 78, 81, 85
update drv command, 29

user mode, 13

\'
volatile keyword, 105

W
write entry point, 44,47, 84

x86

115

Index

address space, 16
compiling, 25

116 Device Driver Tutorial July 2014

	Device Driver Tutorial
	Contents
	Using This Documentation
	Product Documentation Library
	Access to Oracle Support
	Feedback

	Chapter 1 • Introduction to Device Drivers
	Oracle Solaris Operating System Definition
	Kernel Overview
	Differences Between Kernel Modules and User Programs
	Execution Differences Between Kernel Modules and User Programs
	Structural Differences Between Kernel Modules and User Programs
	Data Transfer Differences Between Kernel Modules and User Programs

	User and Kernel Address Spaces on x86 and SPARC Machines
	Device Drivers
	Driver Directory Organization

	Devices as Files
	Devices Directories
	Device Tree
	Character and Block Devices
	Device Names
	Device Numbers

	Development Environment and Tools
	Writing a Driver
	Writing a Driver Module
	Writing a Configuration File

	Building a Driver
	Compiling with Oracle Solaris Studio
	Compiling with the GNU C Compiler

	Installing a Driver
	Adding, Updating, and Removing a Driver
	Loading and Unloading a Driver
	Testing a Driver

	Chapter 2 • Template Driver Example
	Overview of the Template Driver Example
	Writing the Template Driver
	Writing the Loadable Module Configuration Entry Points
	Declaring the Loadable Module Configuration Entry Points
	Defining the Module Initialization Entry Point
	Defining the Module Information Entry Point
	Defining the Module Unload Entry Point
	Including Loadable Module Configuration Header Files

	Writing the Autoconfiguration Entry Points
	Declaring the Autoconfiguration Entry Points
	Defining the Device Attach Entry Point
	Defining the Device Detach Entry Point
	Defining the Get Driver Information Entry Point
	Defining the Report Driver Property Information Entry Point
	Including Autoconfiguration Header Files

	Writing the User Context Entry Points
	Declaring the User Context Entry Points
	Defining the Open Device Entry Point
	Defining the Close Device Entry Point
	Defining the Read Device Entry Point
	Defining the Write Device Entry Point
	Including User Context Header Files

	Writing the Driver Data Structures
	Defining the Character and Block Operations Structure
	Defining the Device Operations Structure
	Defining the Module Linkage Structures
	Including Data Structures Header Files

	Writing the Device Configuration File
	Building and Installing the Template Driver
	Testing the Template Driver
	Adding the Template Driver
	Reading and Writing the Device
	Removing the Template Driver

	Complete Template Driver Source

	Chapter 3 • Reading and Writing Data in Kernel Memory
	Displaying Data Stored in Kernel Memory
	Writing Quote Of The Day Version 1
	Building, Installing, and Using Quote Of The Day Version 1

	Displaying Data on Demand
	Writing Quote Of The Day Version 2
	Managing Device State
	Initializing and Unloading
	Attaching and Detaching
	Opening the Device, Closing the Device, and Getting Module Information
	Reading the Data
	Checking Data Validity
	Quote Of The Day Version 2 Source

	Building, Installing, and Using Quote Of The Day Version 2

	Modifying Data Stored in Kernel Memory
	Writing Quote Of The Day Version 3
	Attaching, Allocating Memory, and Initializing a Mutex and a Condition Variable
	Checking for Changes, Cleaning Up, and Detaching
	Allocating and Freeing Kernel Memory
	Managing Thread Synchronization
	Locking Rules for Quote Of The Day Version 3
	Lock and Condition Variable Members of the State Structure
	Creating and Destroying Locks and Condition Variables
	Waiting on Signals

	Writing New Data
	Reporting and Setting Device Size and Re-initializing the Device
	Quote Of The Day Version 3 Source

	Building and Installing Quote Of The Day Version 3
	Using Quote Of The Day Version 3
	Reading the Device
	Writing the Device
	Exercising the Driver's I/O Controls

	Chapter 4 • Tips for Developing Device Drivers
	Device Driver Coding Tips
	Device Driver Testing Tips
	Device Driver Debugging and Tuning Tips

	Index

