
Part No: E36805-02
September 2014

Copying and Creating Package
Repositories in Oracle® Solaris 11.2

Copyright © 2011, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws.
Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute,
exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take
all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use
of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates
are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Copyright © 2011, 2014, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d’utilisation
et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter, transmettre, distribuer,
exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes d’erreurs et
vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel ou l’utilise
pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est destiné
à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre
d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation
dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l’utilisation de ce logiciel ou matériel
pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d’autres
propriétaires qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. UNIX
est une marque déposée d’The Open Group.

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant
de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En aucun cas, Oracle
Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l’accès à des contenus, produits ou
services tiers, ou à leur utilisation.

3

Contents

Using This Documentation .. 7

1 Image Packaging System Package Repositories ... 9
Local IPS Repositories ... 9
Best Practices for Creating and Using Local IPS Package Repositories 10
System Requirements ... 12
Repository Management Privileges ... 12

2 Copying IPS Package Repositories ... 15
Performance Considerations for Copying Repositories .. 15
Troubleshooting Local Package Repositories ... 16
Copying a Repository From a File .. 16

▼ How to Copy a Repository From a zip File ... 17
▼ How to Copy a Repository From an iso File ... 19

Copying a Repository From the Internet .. 21
▼ How to Explicitly Copy a Repository From the Internet 21
▼ How to Automatically Copy a Repository From the Internet 22

3 Providing Access To Your Repository ... 27
Enabling Users to Retrieve Packages Using a File Interface 27

▼ How to Enable Users to Retrieve Packages Using a File Interface 27
Enabling Users to Retrieve Packages Using an HTTP Interface 29

▼ How to Enable Users to Retrieve Packages Using an HTTP Interface 29

4 Maintaining Your Local IPS Package Repository ... 33
Updating Your Local Repository ... 33

▼ How to Update a Local IPS Package Repository 34
Resuming an Interrupted Package Receive .. 36

Maintaining Multiple Identical Local Repositories ... 36
▼ How to Clone a Local IPS Package Repository 37

Contents

4 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

Checking and Setting Repository Properties .. 38
Viewing Properties that Apply to the Entire Repository 38
Viewing Repository Publisher Properties .. 40
Modifying Repository Property Values ... 41

Customizing Your Local Repository .. 42
Adding Packages to Your Repository ... 42
Examining Packages In Your Repository .. 43
Removing Packages From Your Repository .. 44

Serving Multiple Repositories Using Web Server Access 44
▼ How to Serve Multiple Repositories From Separate Locations 45
▼ How to Serve Multiple Repositories From a Single Location 46

5 Running the Depot Server Behind a Web Server ... 49
Depot Server Apache Configuration .. 49

Required Apache Configuration Setting ... 50
Recommended Generic Apache Configuration Settings 50

Configuring Caching for the Depot Server .. 51
Cache Considerations for the Catalog Attributes File 52
Cache Considerations for Search .. 52

Configuring a Simple Prefixed Proxy .. 52
Multiple Repositories Under One Domain .. 53
Configuring Load Balancing .. 54

One Repository Server With Load Balancing .. 54
One Load-Balanced and One Non-Load-Balanced Repository Server 55

Configuring HTTPS Repository Access ... 55
Creating a Keystore .. 56
Creating a Certificate Authority for Client Certificates 57
Creating Client Certificates Used for Accessing the Repository 58
Add SSL Configuration to the Apache Configuration File 60
Creating a Self-Signed Server Certificate Authority 61
Creating a PKCS12 Keystore to Access a Secure Repository With Firefox 62
Complete Secure Repositories Example ... 63

Index .. 67

5

Examples

EXAMPLE 2-1 Creating a New Repository From a zip File ... 18
EXAMPLE 2-2 Adding to an Existing Repository From a zip File 19

6 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

Using This Documentation 7

Using This Documentation

■ Overview – Describes how to create, copy, make accessible, update, and maintain a
software package repository using the Oracle Solaris Image Packaging System (IPS)
feature.

■ Audience – System administrators who install and manage software or assist others who
install and manage software.

■ Required knowledge – Experience with the Oracle Solaris Service Management Facility
(SMF) feature and experience administering NFS and web servers.

Product Documentation Library

Late-breaking information and known issues for this product are included in the documentation
library at http://www.oracle.com/pls/topic/lookup?ctx=E36784.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://
www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

http://www.oracle.com/pls/topic/lookup?ctx=E36784
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/goto/docfeedback

8 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

Chapter 1 • Image Packaging System Package Repositories 9

 1 ♦ ♦ ♦ C H A P T E R 1

Image Packaging System Package Repositories

Oracle Solaris 11 software is distributed in Image Packaging System (IPS) packages. IPS
packages are stored in IPS package repositories, which are populated by IPS publishers.

This guide describes how to create a software package repository using the Oracle Solaris
Image Packaging System (IPS) feature. IPS tools enable you to easily copy an existing
repository or create your own repository for your own packages and easily update the packages
in the repository. You can provide a file interface or an HTTP or HTTPS interface for users
of the repository. This guide also describes how to automatically update your repository and
how to clone a repository, and shows Apache web server configuration such as caching, load
balancing, and configuring HTTPS access.

This chapter provides:

■ Reasons that you might want to create a local IPS package repository for internal use
■ Best practices for creating package repositories
■ System requirements for hosting a repository

Local IPS Repositories

You might want a local IPS repository for the following reasons:

■ Performance and security. You do not want your client systems to go to the Internet to
retrieve new software packages or update existing packages.

■ Change control. You want to ensure that you can perform the same installation next year
that you perform today. You want to easily control the versions to which systems can be
updated.

■ Custom packages. You want to deliver custom IPS packages.

Best Practices for Creating and Using Local IPS Package Repositories

10 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

Best Practices for Creating and Using Local IPS Package
Repositories

Employ the following best practices to maintain repository availability and minimize errors.

Include all content of all Support Repository Updates (SRUs).

Keep local repositories updated with all support updates. Support updates contain security
updates and other important fixes. Each minor release and update of the Oracle Solaris
OS package repository is released as a full set of packages. SRUs are released as a sparse
update of just the changed packages.
■ Do not add a subset of packages from a support update to your repository. Add all of

the content of the support update to your local repository.
■ Do not skip a support update. Accumulate all applicable support updates in each

repository.
■ Do not remove packages that are delivered by an Oracle publisher.
■ Use the svc:/application/pkg/mirror Service Management Facility (SMF) service

to automatically update the local master repository from the Oracle support repository.
See “How to Automatically Copy a Repository From the Internet” on page 22 for
instructions.

Users can update to a version earlier than the latest version in the repository by specifying
the version of the entire incorporation package to install. See Chapter 4, “Updating or
Upgrading an Oracle Solaris Image,” in “Adding and Updating Software in Oracle Solaris
11.2 ”.

Verify every time you update the repository.

Use the pkgrepo verify command whenever you change the content or property values of
the repository. The pkgrepo verify command verifies that the following attributes of the
repository content are correct:
■ File checksums.
■ File permissions. The repository files and directories and the path leading to the

repository are checked to ensure that the pkg5srv user can read the repository content.
■ Package manifest permissions.
■ Package manifest content.
■ Package signatures.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=AUOSSpkgupdate
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=AUOSSpkgupdate
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=AUOSSpkgupdate

Best Practices for Creating and Using Local IPS Package Repositories

Chapter 1 • Image Packaging System Package Repositories 11

Create repositories in a shared location.

A shared location is a location that is not in any bootable environment (BE). Examples
of shared locations include /var/share and /export. Creating a repository in a shared
location provides the following benefits:
■ The repository is easily available from other existing BEs.
■ When you create a new BE through upgrading or by cloning an existing BE, you do

not waste space by having multiple copies of a repository.
■ You do not waste time and I/O resources reapplying repository updates that you have

already made in a different BE.
If you are using non-global zones, all locations of publishers configured in non-global
zones must be accessible from the global zone even if that publisher is not configured in
the global zone.

Create each repository in its own ZFS file system.

Using a separate ZFS file system enables you to do the following:
■ Achieve better performance.
■ Set separate file system characteristics. For example, set atime to off for better

performance when updating the repository. The atime property controls whether
the access time for files is updated when the files are read. Turning this property off
avoids producing write traffic when reading files.

■ Manage resource use. Specify an appropriate disk quota for each repository
dataset to ensure that large repository updates do not consume all the space in
the pool. This best practice is especially important if you are performing updates
automatically as described in “How to Automatically Copy a Repository From the
Internet” on page 22.

■ Create snapshots.

Snapshot every time you update the repository.

Snapshot the repository file system every time you update the repository to gain the
following benefits:
■ Roll back to a previous version of the repository from a snapshot.
■ Update the repository from a snapshot to minimize user disruption.

Provide high availability.
■ Maintain repository clones in different locations. See “Maintaining Multiple Identical

Local Repositories” on page 36 for instructions.

System Requirements

12 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

■ Configure your web server for caching, load balancing, and serving multiple
repositories. See Chapter 5, “Running the Depot Server Behind a Web Server” for
information.

Secure your local repositories.

See “Configuring HTTPS Repository Access” on page 55 for instructions.

System Requirements

The system that hosts the IPS package repository can be either an x86-based or a SPARC-based
system.

Operating system

Repository servers running Oracle Solaris 11 11/11 support all Oracle Solaris 11 update
packages.

Disk space

To host a copy of the Oracle Solaris 11.2 release repository, the repository server must have
16 gigabytes of free space.
Because best practice is to keep local repositories updated with all support updates, plan to
use 10-15 GB of additional space each year for support updates. Additional software, such
as Oracle Solaris Studio or Oracle Solaris Cluster, of course requires additional space in the
package repository.

If one system hosts more than one IPS repository, make each repository a separate ZFS file
system so that you can rollback and recover each repository separately.

Repository Management Privileges

Use one of the following methods to gain the privilege you need to create and configure
package repositories. See “Securing Users and Processes in Oracle Solaris 11.2 ” for more
information about profiles and roles, including how to determine which profile or role you need.

Rights profiles

Use the profiles command to list the rights profiles that are assigned to you. The
following profiles are useful for maintaining local package repositories:

ZFS File System Management

This rights profile enables you to run the zfs command.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUP

Repository Management Privileges

Chapter 1 • Image Packaging System Package Repositories 13

Software Installation

This rights profile enables you to run the pkg command.

Service Management

This rights profile enables you to run SMF commands such as svccfg.

Roles

Use the roles command to list the roles that are assigned to you. If you have the root role,
you can use the su command with the root password to assume the root role.

sudo command

Depending on the security policy at your site, you might be able to use the sudo command
with your user password to execute a privileged command.

14 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

Chapter 2 • Copying IPS Package Repositories 15

 2 ♦ ♦ ♦ C H A P T E R 2

Copying IPS Package Repositories

This chapter describes two ways to create a copy of the Oracle Solaris IPS package repository:
You can use repository files from media or from an Oracle Solaris download site, or you can
retrieve the repository content from the Internet manually or automatically. In all cases, first
create a separate ZFS file system in a shared location for your local package repository. After
the repository is created, verify and snapshot the repository.

This chapter also provides performance and troubleshooting information related to copying
repositories.

Performance Considerations for Copying Repositories

If you download repository files from the Oracle Solaris download site, or if you use the
pkgrecv command shown in “Copying a Repository From the Internet” on page 21 to
retrieve repository content from an Internet location, consider the following configuration to
improve your transfer performance:

■ Ensure that your ZFS storage pool capacity is less than 80%. Use the zpool list
command to view your pool capacity.

■ If you are using a proxy, check the performance of the proxy.
■ Close applications that use a large amount of memory.
■ Ensure adequate free space is available in the temporary directory. During its operations,

the pkgrecv command uses $TMPDIR as a temporary storage directory. If TMPDIR is not set,
pkgrecv uses /var/tmp for this temporary storage. Ensure that $TMPDIR or /var/tmp has
enough free space for the size of the pkgrecv operation you are doing.

■ If you are using the pkgrecv command to copy a large repository, consider using the --
clone option. Using the --clone option is faster and consumes less memory. See “How to
Clone a Local IPS Package Repository” on page 37.

■ If you are using the pkgrecv command to create or update a large repository, consider
using an SSD for the destination repository. You can move the repository as needed after
the package retrieval is complete.

Troubleshooting Local Package Repositories

16 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

Troubleshooting Local Package Repositories

The following methods can prevent problems or help find the cause of problems you might
encounter:

■ Verify repository source files. If you use .zip files to create your repository, confirm that
the files on your system are correct by using the checksums as described in “How to Copy
a Repository From a zip File” on page 17.

■ Verify the installed repository. Use the pkgrepo verify command to check your installed
repository.

The following permissions problems are reported by pkgrepo verify:
■ File permissions. To avoid problems with directory and file permissions for file

system based repositories, ensure that the pkg5srv user has permission to read the
repository.

■ Directory permissions. Ensure that all directories in the repository have execute
permission.

If the pkgrepo verify command reports other types of errors, try using the pkgrepo fix
command to fix the errors. See the pkgrepo(1) man page for more information.

■ Check your publisher origin. Make sure you set the origin for each publisher appropriately
in each image. To update installed packages, install packages that depend on installed
packages, or install a non-global zone, the repository that you set as the publisher origin
must contain at least the same software that is installed in the image where you are setting
the publisher. See Step 3 in “How to Enable Users to Retrieve Packages Using a File
Interface” on page 27. See “Adding and Updating Software in Oracle Solaris 11.2 ” for
information about setting publishers and troubleshooting package installation problems.

■ Check web server configuration. If you configure an Apache web server to access your
repository, configure the web server to not decode encoded forward slashes. See the
instructions in “Required Apache Configuration Setting” on page 50. Decoding
encoded forward slashes can result in “package not found” errors.

■ Do not create a repository that is only accessible from a non-global zone. All locations of
publishers configured in non-global zones must be accessible from the global zone even if
that publisher is not configured in the global zone.

Copying a Repository From a File

This section describes how to make a local copy of the Oracle Solaris package repository from
one or more repository files. The repository files might be on media or might be available on an
Oracle Solaris download site. The repository files might be zip files or iso files.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1pkgrepo-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=AUOSS

How to Copy a Repository From a zip File

Chapter 2 • Copying IPS Package Repositories 17

How to Copy a Repository From a zip File

1. Create a ZFS file system for the new repository.

Create the repository in a shared location. Set atime to off when you create the
repository file system. See “Best Practices for Creating and Using Local IPS Package
Repositories” on page 10.

$ zfs create -o atime=off rpool/export/IPSpkgrepos

$ zfs create rpool/export/IPSpkgrepos/Solaris

$ zfs get atime rpool/export/IPSpkgrepos/Solaris
NAME PROPERTY VALUE SOURCE

rpool/export/IPSpkgrepos/Solaris atime off inherited from rpool/export/IPSpkgrepos

2. Get the package repository files.

Download the Oracle Solaris IPS package repository .zip files from the same location where
you downloaded the system installation image, or locate the repository DVD in the media
packet. Along with the .zip files, download the install-repo.ksh script, and the .txt files
(the README and checksum files).

$ ls
install-repo.ksh sol-11_2-ga-repo-3of4.zip

README-zipped-repo.txt sol-11_2-ga-repo-4of4.zip

sol-11_2-ga-repo-1of4.zip sol-11_2-ga-repo.txt

sol-11_2-ga-repo-2of4.zip

3. Make sure the script file is executable.

$ chmod +x install-repo.ksh

4. Run the repository installation script.

The repository installation script, install-repo.ksh, uncompresses each repository .zip file
into the specified directory. The script optionally performs the following additional tasks:

■ Verify checksums of the downloaded .zip files. If you do not specify the -c option
to verify checksums, verify the checksums manually before you run the repository
installation script. Run the following digest command, and compare the output with the
appropriate checksum from the .md5 file:

$ digest -a md5 file

■ Add the repository content to existing content if the specified destination already contains
a repository.

■ Verify the final repository. If you do not specify the -v option to verify the repository,
use the info, list, and verify subcommands of the pkgrepo command to verify the
repository after you run the repository installation script.

How to Copy a Repository From a zip File

18 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

■ Create an ISO image file for mounting and distribution. If you use the -I option to create
an .iso file, the .iso file and the README file that explains how to use the .iso file are in
specified destination directory.

5. Verify the repository content.

If you did not specify the -v option in the previous step, use the info, list, and verify
subcommands of the pkgrepo command to check that the repository has been copied correctly.
If the pkgrepo verify command reports errors, try using the pkgrepo fix command to fix the
errors. See the pkgrepo(1) man page for more information.

6. Snapshot the new repository.

$ zfs snapshot rpool/export/IPSpkgrepos/Solaris@sol-11_2_0

Example 2-1 Creating a New Repository From a zip File

In this example, no repository exists until the zip files are unpacked. The script can take the
following options:

-s Optional. Specifies the full path to the directory where the .zip files are
located. Default: The current directory.

-d Required. Specifies the full path to the directory where you want the
repository.

-i Optional. Specifies the files to use to populate this repository. The source
directory could contain multiple sets of .zip files. Default: The newest
image available in the source directory.

-c Optional. Compares the checksums of the .zip files with the checksums
in the specified file. If you specify -c with no argument, the default file
used is the .md5 file for the -i image in the source directory.

-v Optional. Verifies the final repository.

-I Optional. Creates an ISO image of the repository in the source directory.
Also leaves a mkiso.log log file in the source directory.

-h Optional. Displays a usage message.

$./install-repo.ksh -d /export/IPSpkgrepos/Solaris -c -v -I
Comparing checksums of downloaded files...done. Checksums match.

Uncompressing sol-11_2-ga-repo-1of4.zip...done.

Uncompressing sol-11_2-ga-repo-2of4.zip...done.

Uncompressing sol-11_2-ga-repo-3of4.zip...done.

Uncompressing sol-11_2-ga-repo-4of4.zip...done.

Repository can be found in /export/IPSpkgrepos/Solaris.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1pkgrepo-1

How to Copy a Repository From an iso File

Chapter 2 • Copying IPS Package Repositories 19

Initiating repository verification.

Building ISO image...done.

ISO image and instructions for using the ISO image are at:

/tank/downloads/sol-11_2-ga-repo.iso

/tank/downloads/README-repo-iso.txt

$ ls /export/IPSpkgrepos/Solaris
COPYRIGHT NOTICES pkg5.repository publisher README-iso.txt

The repository rebuild and verification can take some time, but the repository content is
retrievable after you get the “Repository can be found in” message.

Example 2-2 Adding to an Existing Repository From a zip File

In this example, the content of the repository zip files is added to the content in an existing
package repository.

$ pkgrepo -s /export/IPSpkgrepos/Solaris info
PUBLISHER PACKAGES STATUS UPDATED

solaris 4764 online 2014-03-18T05:30:57.221021Z

$./install-repo.ksh -d /export/IPSpkgrepos/Solaris -c -v -I
IPS repository exists at destination /export/IPSpkgrepos/Solaris

Current version: 0.175.2.0.0.35.0

Do you want to add to this repository? (y/n) y
Comparing checksums of downloaded files...done. Checksums match.

Uncompressing sol-11_2-ga-repo-1of4.zip...done.

Uncompressing sol-11_2-ga-repo-2of4.zip...done.

Uncompressing sol-11_2-ga-repo-3of4.zip...done.

Uncompressing sol-11_2-ga-repo-4of4.zip...done.

Repository can be found in /export/IPSpkgrepos/Solaris.

Initiating repository rebuild.

Initiating repository verification.

Building ISO image...done.

ISO image and instructions for using the ISO image are at:

/tank/downloads/sol-11_2-ga-repo.iso

/tank/downloads/README-repo-iso.txt

$ pkgrepo -s /export/IPSpkgrepos/Solaris info
PUBLISHER PACKAGES STATUS UPDATED

solaris 4768 online 2014-06-02T18:11:55.640930Z

How to Copy a Repository From an iso File

1. Create a ZFS file system for the new repository.

Create the repository in a shared location. Set atime to off when you create the
repository file system. See “Best Practices for Creating and Using Local IPS Package
Repositories” on page 10.

$ zfs create -o atime=off rpool/export/IPSpkgrepos

$ zfs create rpool/export/IPSpkgrepos/Solaris

$ zfs get atime rpool/export/IPSpkgrepos/Solaris

How to Copy a Repository From an iso File

20 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

NAME PROPERTY VALUE SOURCE

rpool/export/IPSpkgrepos/Solaris atime off inherited from rpool/export/IPSpkgrepos

2. Get the package repository image files.

Create an .iso file from the repository .zip files using the -I option as described in Example
2-1.

3. Mount the image file.

Mount the repository .iso file to access the content.

$ mount -F hsfs /path/sol-11_2-repo.iso /mnt

To avoid the need to remount the .iso image each time the repository server system restarts,
copy the repository file content as described in the next step.

4. Copy the repository content to the new location.

To increase the performance of repository accesses and to avoid the need to remount the .iso
image each time the system restarts, copy the repository files from /mnt/repo/ to a ZFS file
system. You can do this copy with the rsync command or with the tar command.

■ Use the rsync command.

If you use the rsync command, be sure to specify /mnt/repo/ (including the trailing slash
character) and not /mnt/repo to copy the files and subdirectories in the repo directory. See
the rsync(1) man page.

$ rsync -aP /mnt/repo/ /export/IPSpkgrepos/Solaris

■ Use the tar command.

Using the tar command as shown in the following example can be a faster way to copy
the repository from the mounted file system to the repository ZFS file system.

$ cd /mnt/repo; tar cf - . | (cd /export/IPSpkgrepos/Solaris; tar xfp -)

5. Unmount the image file.

Make sure you are not still in the /mnt directory.

$ umount /mnt

6. Verify the new repository content.

Use the info, list, and verify subcommands of the pkgrepo command to check that the
repository has been copied correctly. If the pkgrepo verify command reports errors, try
using the pkgrepo fix command to fix the errors. See the pkgrepo(1) man page for more
information.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1pkgrepo-1

Copying a Repository From the Internet

Chapter 2 • Copying IPS Package Repositories 21

7. Snapshot the new repository.

$ zfs snapshot rpool/export/IPSpkgrepos/Solaris@sol-11_2_0

Copying a Repository From the Internet

This section describes how to make a local copy of the Oracle Solaris package repository by
copying the repository from an Internet location. The first procedure shows issuing the copy
command from the command line. The second procedure shows using an SMF service to
automatically copy and update a repository.

How to Explicitly Copy a Repository From the
Internet

1. Create a ZFS file system for the new repository.

Create the repository in a shared location. Set atime to off when you create the
repository file system. See “Best Practices for Creating and Using Local IPS Package
Repositories” on page 10.

$ zfs create -o atime=off rpool/export/IPSpkgrepos

$ zfs create rpool/export/IPSpkgrepos/Solaris

$ zfs get atime rpool/export/IPSpkgrepos/Solaris
NAME PROPERTY VALUE SOURCE

rpool/export/IPSpkgrepos/Solaris atime off inherited from rpool/export/IPSpkgrepos

2. Create the required repository infrastructure.

Create the required pkg(5) repository infrastructure so that you can copy the repository. The
image files used in the previous method include the repository infrastructure, so this step is not
needed. When you copy repository content using the pkgrecv command as described in this
method, you need to create the repository infrastructure and then copy the repository content
into that infrastructure. See the pkg(5) and pkgrepo(1) man pages.

$ pkgrepo create /export/IPSpkgrepos/Solaris

3. Copy the repository content to the new location.

Use the pkgrecv command to copy the repository. This operation could affect your network
performance. The time required for this operation to complete depends on your network
bandwidth and connection speed. See also “Performance Considerations for Copying
Repositories” on page 15. If you update this repository later, only the changes are
transferred, and the process can take much less time.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN5pkg-5
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1pkgrepo-1

How to Automatically Copy a Repository From the Internet

22 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

The following command retrieves all versions of all packages from the package repository
specified by the -s option to the repository specified by the -d option. If you are copying from
a secure site, ensure that the required SSL certificate and key are installed, and specify the
required certificate and key options.

$ pkgrecv -s https://pkg.oracle.com/solaris/support -d /export/IPSpkgrepos/Solaris \

--key /path-to-ssl_key --cert /path-to-ssl_cert '*'

See the pkgrecv(1) man page for information about the -m and --clone options. You should
not use the -m latest option for this purpose. Using a repository that is too sparse can result in
errors when users attempt to update their images.

4. Verify the new repository content.

Use the info, list, and verify subcommands of the pkgrepo command to check that the
repository has been copied correctly. If the pkgrepo verify command reports errors, try
using the pkgrepo fix command to fix the errors. See the pkgrepo(1) man page for more
information.

5. Snapshot the new repository.

$ zfs snapshot rpool/export/IPSpkgrepos/Solaris@sol-11_2_0

How to Automatically Copy a Repository From the
Internet

By default, the svc:/application/pkg/mirror SMF service performs a periodic pkgrecv
operation from the solaris publisher origins defined in this image to /var/share/pkg/
repositories/solaris. This pkgrecv operation starts at 2:30am one day each month. To
change this default behavior, configure the service as described in this procedure.

At the end of each successful run of this service, the repository catalogs are refreshed. You do
not need to refresh the repository to build a search index.

Because this service runs periodically, the repository is created and also kept updated. You do
not need to use the manual repository update instructions shown in this document.

Other systems can set their solaris publisher origin to this automatically updated repository or
to a clone of this repository. Only one system needs to have an Internet publisher origin and run
the mirror service to automatically receive updates.

1. Set publisher origins.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1pkgrecv-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1pkgrepo-1

How to Automatically Copy a Repository From the Internet

Chapter 2 • Copying IPS Package Repositories 23

By default, the mirror service transfers packages from the solaris publisher configured in the
image rooted at /. Although you cannot directly specify publisher origins in the mirror service
configuration, you can configure the image root from which to retrieve this information. In that
image root, use pkg set-publisher to configure the publisher origins to use as the sources of
the pkgrecv transfer for the mirror repository.

a. (Optional) Set the image root.

If the publisher configuration you want to use for the mirror service is different from the
publisher configuration you want to use in this image, create a user image in a shared
location (not contained in any BE) and reset the value of the config/ref_image property
in the mirror service to that new image, as shown in the following example. The mirror
service will use the publisher configuration from the config/ref_image image.

$ svccfg -s pkg/mirror:default setprop config/ref_image = /var/share/pkg/

mirror_svc_ref_image

$ pkg image-create /var/share/pkg/mirror_svc_ref_image

b. (Optional) Set the publishers.

If you want to update your mirror repository with packages from other publishers in
addition to the solaris publisher, reset the value of the config/publishers property in
the mirror service, as shown in the following example that shows adding the ha-cluster
and solarisstudio publishers.

$ svccfg -s pkg/mirror:default setprop config/publishers = solaris,ha-

cluster,solarisstudio

c. Set the publisher origins.

Because this service runs periodically, you should set your publisher origins to a repository
that provides regular updates. For Oracle products, you probably want to set your publisher
origins to a support repository to retrieve Support Repository Updates (SRUs). In the
following example, the -R option is needed only if you are configuring publishers in an
alternate image root. The -k and -c options might not be needed, depending on the origin
URIs.

$ pkg -R /var/share/pkg/mirror_svc_ref_image set-publisher \

-g https://pkg.oracle.com/solaris/support/ -k ssl_key -c ssl_cert solaris
$ pkg -R /var/share/pkg/mirror_svc_ref_image set-publisher \

-g https://pkg.oracle.com/ha-cluster/support/ -k ssl_key -c ssl_cert ha-cluster
$ pkg -R /var/share/pkg/mirror_svc_ref_image set-publisher \

-g https://pkg.oracle.com/solarisstudio/support/ -k ssl_key -c ssl_cert solarisstudio

Use one of the following commands to verify the publishers configured in the new image:

$ pkg -R /var/share/pkg/mirror_svc_ref_image publisher

$ pkg -R /var/share/pkg/mirror_svc_ref_image publisher solaris ha-cluster

 solarisstudio

How to Automatically Copy a Repository From the Internet

24 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

2. (Optional) Configure other properties of the mirror service.

You might want to modify other properties of the mirror service, such as the time the service
runs or the location of the mirror repository.

You might want to change the time the service runs to more closely match the time you expect
the publisher origins being mirrored to be updated. To change the time the service runs, modify
the value of the config/crontab_period property.

To change the location of the mirror repository, modify the value of the config/repository
property. If you change the location of the mirror repository, keep the repository in
a shared location. See “Best Practices for Creating and Using Local IPS Package
Repositories” on page 10. The default location, /var/share/pkg/repositories/solaris, is a
shared location, not contained in any BE.

3. Enable the mirror service.

Use the svcs mirror command to check the state of the mirror service.

■ The service is disabled and you want to use this service.

a. Refresh the service instance if you changed the configuration.

If you changed any of the configuration of the mirror service, as shown in the svccfg
setprop commands in the previous steps, refresh the service to commit the changed
values into the running snapshot. If the output from the svcprop -p config mirror
command does not show the values you want, make sure the output from the svccfg
-s mirror:default listprop config command shows the values you want. Use
either svcadm refresh mirror:default or svccfg -s mirror:default refresh to
commit the changed values into the running snapshot of the service. Use the svcprop
-p config mirror command again to confirm that the service is configured the way
you want it configured.

b. Enable the service instance.

Use the following command to enable the mirror service:

$ svcadm enable mirror:default

Use the svcs mirror command to confirm that the mirror service is online. The
service will run at the time set in the config/crontab_period property.

■ The service is online and you want to run the service now.

If the service is online, refresh the service to run the service immediately. You should see
the svc-pkg-mirror method and the pkgrecv command being run by the pkg5srv user.

■ The service is online and you do not want to use this service.

How to Automatically Copy a Repository From the Internet

Chapter 2 • Copying IPS Package Repositories 25

Use the svcadm disable mirror command to disable this service. You might want to run
this service on only one system to maintain a master repository. On other systems, you
probably want to disable this service.

■ The service is in maintenance or is degraded.

Use the svcs -xvL mirror command to get more information to diagnose and fix the
problem.

4. Verify the repository content.

After the mirror service finishes a run, use the info, list, and verify subcommands of the
pkgrepo command to check that the repository has been copied or updated correctly. If the
pkgrepo verify command reports errors, try using the pkgrepo fix command to fix the errors.
See the pkgrepo(1) man page for more information.

Check the value of the config/crontab_period property of the mirror service to see when
the service will run. While the service is running, the svcs -p mirror command shows the
service state as online* and shows the processes started by this service. Wait until the service
state shows as online and no processes are associated with the service before you verify the
repository.

5. Snapshot the new repository.

$ zfs snapshot rpool/VARSHARE/pkg/repositories/solaris@sol-11_2_0

Next Steps You might not want to copy content from multiple publishers at the same time. Instead of
setting multiple publishers in one config/publishers property, you could create multiple
instances of the pkg/mirror service. For example, the config/publishers property could be
set to solaris for the default instance, to ha-cluster for a new pkg/mirror:ha-cluster
instance, and to solarisstudio for a new pkg/mirror:solarisstudio instance. Similarly, the
config/crontab_period could be set differently for each instance. You could store the content
from each publisher in one repository, as shown in this procedure, or you could set a separate
config/repository value for each pkg/mirror instance.

See Also See “Managing System Services in Oracle Solaris 11.2 ” for more information about SMF
commands.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1pkgrepo-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=SVSVF

26 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

Chapter 3 • Providing Access To Your Repository 27

 3 ♦ ♦ ♦ C H A P T E R 3

Providing Access To Your Repository

This chapter describes how to enable clients to retrieve packages in your local repository by
using a file interface or by using an HTTP interface. One repository can be configured for both
types of access.

Enabling Users to Retrieve Packages Using a File Interface
This section describes how to serve the local repository packages from a directory on your local
network.

How to Enable Users to Retrieve Packages Using
a File Interface

1. Configure an NFS share.

To enable clients to access the local repository by using NFS, create and publish an NFS share.

$ zfs share -o share.nfs=on rpool/export/IPSpkgrepos%ipsrepo

See the zfs_share(1M) man page for more information, such as additional share.nfs
properties that you could set.

2. Confirm that the share is published.

Use one of the following tests to confirm that the share is published:

■ Search for the repository in the shared file system table.

$ grep repo /etc/dfs/sharetab
/export/IPSpkgrepos ipsrepo nfs sec=sys,rw

■ Determine whether the repository is accessible from a remote system.

$ dfshares solaris

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mzfs-share-1m

How to Enable Users to Retrieve Packages Using a File Interface

28 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

RESOURCE SERVER ACCESS TRANSPORT

 solaris:/export/IPSpkgrepos solaris - -

3. Set the publisher origin.

To enable client systems to get packages from your local file repository, set the origin for the
publisher.

a. Determine the name of the publisher.

Use the following command to determine the names of publishers in your repository:

$ pkgrepo info -s /export/IPSpkgrepos/Solaris
PUBLISHER PACKAGES STATUS UPDATED

solaris 4768 online 2014-04-02T18:11:55.640930Z

b. Check the suitability of this publisher origin.

To update installed packages, install packages that depend on installed packages, or install
a non-global zone, the repository that you set as the publisher origin must contain at least
the same software that is installed in the image where you are setting the publisher. The
repository can also contain older or newer software, but it must contain the same software
that is installed in the image.

The following command shows that the specified repository is a not suitable publisher
origin for this image:

$ pkg list entire
NAME (PUBLISHER) VERSION IFO

entire 0.5.11-0.175.2.0.0.36.0 i--

$ pkgrepo list -Hs http://pkg.oracle.com/solaris/release

 entire@0.5.11-0.175.2.0.0.36.0
pkgrepo list: The following pattern(s) did not match any packages:

 entire@0.5.11-0.175.2.0.0.36.0

The following command shows that the specified repository is a suitable publisher origin
for this image:

$ pkgrepo list -Hs /export/IPSpkgrepos/Solaris entire@0.5.11-0.175.2.0.0.36.0
solaris entire 0.5.11,5.11-0.175.2.0.0.36.0:20140401T190148Z

c. Set the publisher origin.

Using the repository location and publisher name from the previous steps, run the
following command to set the origin for the publisher:

$ pkg set-publisher -G '*' -M '*' -g /export/IPSpkgrepos/Solaris/ solaris

-G '*' Removes all existing origins for the solaris publisher.

-M '*' Removes all existing mirrors for the solaris publisher.

Enabling Users to Retrieve Packages Using an HTTP Interface

Chapter 3 • Providing Access To Your Repository 29

-g Adds the URI of the newly-created local repository as the new
origin for the solaris publisher.

See “Configuring Publishers” in “Adding and Updating Software in Oracle Solaris 11.2 ”
for more information about configuring publishers.

If you reset the publisher origin in other images, perform the suitability test again: Other images
might have a different version of software installed and might not be able to use this repository.
If you reset the publisher origin in images on other systems, use a full path for the -g argument.

Enabling Users to Retrieve Packages Using an HTTP
Interface

This section describes how to serve the local repository packages using the package depot
server.

How to Enable Users to Retrieve Packages Using
an HTTP Interface

The package depot server, pkg.depotd, provides network access to the data contained within a
package repository. The svc:/application/pkg/server SMF service invokes the pkg.depotd
daemon. To enable clients to access the local repository by using HTTP, this procedure shows
how to configure the pkg/server service. You could configure the default instance of the
service. This procedure shows how to create and configure a new instance.

1. Create a depot server instance.

Use the add subcommand to add a new instance of the pkg/server service named solaris.

$ svccfg -s pkg/server add solaris

2. Set the path to the repository.

Set the path where this instance of the service can find the repository data.

$ svccfg -s pkg/server:solaris setprop pkg/inst_root=/export/IPSpkgrepos/Solaris

3. (Optional) Set the port number.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=AUOSSpublisher-config

How to Enable Users to Retrieve Packages Using an HTTP Interface

30 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

Set the port number on which the depot server instance should listen for incoming package
requests. By default, pkg.depotd listens for connections on port 80. To change the port, reset
the pkg/port property.

$ svccfg -s pkg/server:solaris setprop pkg/port=81

4. (Optional) Set other properties.

For a complete list of pkg/server properties, see the pkg.depotd(1M) man page.

To set multiple service properties, use the following command to edit all of the properties at
once. Remember to remove the comment marker (#) from the beginning of any lines that you
change.

$ svccfg -s pkg/server:solaris editprop

5. Start the repository service.

Restart the package depot server service.

$ svcadm refresh pkg/server:solaris

$ svcadm enable pkg/server:solaris

6. Test that the repository server is working.

To determine whether the repository server is working, open a browser window on the
localhost location. By default, pkg.depotd listens for connections on port 80. If you have
changed the port, open a browser window on the localhost:port_number location.

7. Set the publisher origin.

To enable client systems to get packages from your local file repository, set the origin for the
publisher.

a. Determine the name of the publisher.

Use the following command to determine the names of publishers in your repository:

$ pkgrepo info -s /export/IPSpkgrepos/Solaris
PUBLISHER PACKAGES STATUS UPDATED

solaris 4768 online 2014-04-02T18:11:55.640930Z

b. Check the suitability of this publisher origin.

To update installed packages, install packages that depend on installed packages, or install
a non-global zone, the repository that you set as the publisher origin must contain at least
the same software that is installed in the image where you are setting the publisher. The
repository can also contain older or newer software, but it must contain the same software
that is installed in the image.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mpkg.depotd-1m

How to Enable Users to Retrieve Packages Using an HTTP Interface

Chapter 3 • Providing Access To Your Repository 31

The following command shows that the specified repository is a not suitable publisher
origin for this image:

$ pkg list entire
NAME (PUBLISHER) VERSION IFO

entire 0.5.11-0.175.2.0.0.36.0 i--

$ pkgrepo list -Hs http://pkg.oracle.com/solaris/release

 entire@0.5.11-0.175.2.0.0.36.0
pkgrepo list: The following pattern(s) did not match any packages:

 entire@0.5.11-0.175.2.0.0.36.0

The following command shows that the specified repository is a suitable publisher origin
for this image:

$ pkgrepo list -Hs http://localhost:81/ entire@0.5.11-0.175.2.0.0.36.0
solaris entire 0.5.11,5.11-0.175.2.0.0.36.0:20140401T190148Z

c. Set the publisher origin.

Set the publisher origin to one of the following values:

■ The pkg/inst_root location.

$ pkg set-publisher -G '*' -M '*' -g /export/IPSpkgrepos/Solaris/ solaris

■ The pkg/port location.

$ pkg set-publisher -G '*' -M '*' -g http://localhost:81/ solaris

-G '*' Removes all existing origins for the solaris publisher.

-M '*' Removes all existing mirrors for the solaris publisher.

-g Adds the URI of the newly-created local repository as the new
origin for the solaris publisher.

See “Configuring Publishers” in “Adding and Updating Software in Oracle Solaris 11.2 ”
for more information about configuring publishers.

If you reset the publisher origin in other images, perform the suitability test again: Other images
might have a different version of software installed and might not be able to use this repository.

See Also ■ “Serving Multiple Repositories Using Web Server Access” on page 44 describes how
to serve multiple repositories from multiple locations or from a single location.

■ “Multiple Repositories Under One Domain” on page 53 describes how to run multiple
repositories under one domain name with different prefixes.

■ “Configuring HTTPS Repository Access” on page 55 describes how to configure
secure repository access.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=AUOSSpublisher-config

32 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

Chapter 4 • Maintaining Your Local IPS Package Repository 33

 4 ♦ ♦ ♦ C H A P T E R 4

Maintaining Your Local IPS Package Repository

This chapter describes how to update packages in an IPS repository, how to set or update
properties of a repository, and how to add packages to a repository from a second source.

Updating Your Local Repository

The procedures shown in this section illustrate the following best practices for updating IPS
package repositories:

■ Keep each repository updated with all support updates for that release. Support updates
contain security updates and other important fixes.
■ Do not try to choose particular fixes to apply from a support update. Do not add a

subset of packages from a support update to your repository. Add all of the content
of the support update to your local repository. The default behavior of the pkgrecv
command is to retrieve all versions of all packages.

■ Do not skip a support update. Accumulate all applicable support updates in each
repository.

Users can update to a version earlier than the latest version in the repository by specifying
the version of the entire incorporation package to install. See Chapter 4, “Updating or
Upgrading an Oracle Solaris Image,” in “Adding and Updating Software in Oracle Solaris
11.2 ”.

■ Update a copy of the repository. This practice helps ensure that systems do not access
the repository while the repository is being updated. Create a snapshot of your repository
before you update the repository, clone the snapshot, perform the update, and replace the
original repository with the updated clone.

If you are maintaining multiple copies of package repositories with the same content, use the
following procedure to update one of those identical repositories. See “Maintaining Multiple
Identical Local Repositories” on page 36 for the procedure to update the additional
repositories from this master repository.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=AUOSSpkgupdate
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=AUOSSpkgupdate
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=AUOSSpkgupdate

How to Update a Local IPS Package Repository

34 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

How to Update a Local IPS Package Repository

Note - You do not need to perform this procedure if you use the svc:/application/pkg/
mirror SMF service to periodically update your repository. See “How to Automatically Copy a
Repository From the Internet” on page 22 for instructions for using the mirror service.

1. Make a ZFS snapshot of the package repository.

Make sure you have a current snapshot of the repository to be updated.

$ zfs list -t all -r rpool/export/IPSpkgrepos/Solaris
NAME USED AVAIL REFER MOUNTPOINT

rpool/export/IPSpkgrepos/Solaris 17.6G 78.4G 34K /export/IPSpkgrepos/Solaris

rpool/export/IPSpkgrepos/Solaris@initial 0 - 17.6G -

If you already have a snapshot of the repository, use the zfs diff command to check whether
the snapshot is the same as the repository dataset.

$ zfs diff rpool/export/IPSpkgrepos/Solaris@initial
$

If the zfs diff command produces no output, then the snapshot is the same as its parent
dataset, and you can use that snapshot for the update.

If the zfs diff command produces output, or if you do not have a snapshot of the repository,
then take a new snapshot as shown in Step 6 in “How to Explicitly Copy a Repository From the
Internet” on page 21. Use this new snapshot for the update.

2. Make a ZFS clone of the package repository.

Clone the repository snapshot to create a copy of the repository that you can update.

$ zfs clone rpool/export/IPSpkgrepos/Solaris@initial rpool/export/IPSpkgrepos/Solaris_tmp

$ zfs list -r rpool/export/IPSpkgrepos/Solaris/
NAME USED AVAIL REFER MOUNTPOINT

rpool/export/IPSpkgrepos/Solaris 17.6G 78.4G 34K /export/IPSpkgrepos/Solaris

rpool/export/IPSpkgrepos/Solaris@initial 0 - 17.6G -

rpool/export/IPSpkgrepos/Solaris_tmp 76K 78.4G 17.6G /export/IPSpkgrepos/Solaris_tmp

3. Update the ZFS clone of the package repository.

Just as you created the original repository either from a file or from an HTTP location, you can
update your repository either from a file or from an HTTP location.

■ Update from a zip file.

See Example 2-2. If the specified destination already contains a package repository, the
content of the zip file is added to the content of the existing repository.

How to Update a Local IPS Package Repository

Chapter 4 • Maintaining Your Local IPS Package Repository 35

■ Update from an ISO file.

a. Mount the ISO image.

$ mount -F hsfs ./sol-11_2-incr-repo.iso /mnt

b. Copy the ISO file content to the repository clone.

Use either rsync or tar as shown in “How to Copy a Repository From an iso
File” on page 19.

$ rsync -aP /mnt/repo/ /export/IPSpkgrepos/Solaris_tmp

c. Unmount the ISO image.

■ Update from a repository.

Copy content from another repository to the repository clone. If you are copying from a
secure site, ensure that the required SSL certificate and key are installed, and specify the
required certificate and key options.

$ pkgrecv -s https://pkg.oracle.com/solaris/support \

-d /export/IPSpkgrepos/Solaris_tmp \

--key /path-to-ssl_key --cert /path-to-ssl_cert '*'

See the pkgrecv(1) man page for more information about the pkgrecv command. Only
packages that have changed are updated, so the time to update your repository can be
much less than the time to populate the original repository. See the performance tips in
“Performance Considerations for Copying Repositories” on page 15.

If the pkgrecv operation is interrupted, follow the instructions in “Resuming an Interrupted
Package Receive” on page 36.

4. Replace the working repository with the updated clone.

$ svcadm disable -st pkg/server:solaris

$ zfs promote rpool/export/IPSpkgrepos/Solaris_tmp

$ zfs rename rpool/export/IPSpkgrepos/Solaris rpool/export/IPSpkgrepos/Solaris_old

$ zfs rename rpool/export/IPSpkgrepos/Solaris_tmp rpool/export/IPSpkgrepos/Solaris

See the svcadm(1M) man page for more information about the svcadm command.

5. Verify the updated repository.

Use the pkgrepo verify command to verify the updated repository. See the pkgrepo(1) man
page for more information about the pkgrepo verify and pkgrepo fix commands.

6. Catalog new packages and update search indexes.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1pkgrecv-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Msvcadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1pkgrepo-1

Maintaining Multiple Identical Local Repositories

36 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

Catalog any new packages found in the newly updated repository and update all search indexes.

$ pkgrepo refresh -s rpool/export/IPSpkgrepos/Solaris

7. Make a ZFS snapshot the newly updated clone of the package repository.

$ zfs snapshot rpool/export/IPSpkgrepos/Solaris@S11U2SRU1

8. Restart the SMF service.

If you are providing the repository through an HTTP interface, restart the SMF service. Be sure
to specify the appropriate service instance when you restart the service.

$ svcadm restart pkg/server:solaris

9. Remove the old repository.

When you are satisfied that your updated repository is working correctly, you can remove the
old repository.

$ zfs destroy rpool/export/IPSpkgrepos/Solaris_old

Resuming an Interrupted Package Receive

If the pkgrecv operation is interrupted, use the -c option to retrieve content that was already
downloaded and resume the content download. The value of cache_dir is supplied in an
informational message when the transfer is interrupted, as shown in the following example:

PROCESS ITEMS GET (MB) SEND (MB)

...

pkgrecv: http protocol error: code: 503 reason: Service Unavailable

URL: 'https://pkg.oracle.com/solaris/support/file/file_hash

pkgrecv: Cached files were preserved in the following directory:

 /var/tmp/pkgrecv-fOGaIg

Use pkgrecv -c to resume the interrupted download.

$ pkgrecv -c /var/tmp/pkgrecv-fOGaIg \

-s https://pkg.oracle.com/solaris/support -d /export/IPSpkgrepos/Solaris_tmp \

--key /path/to/ssl_key --cert /path/to/ssl_cert '*'
Processing packages for publisher solaris ...

Retrieving and evaluating 156 package(s)...

Maintaining Multiple Identical Local Repositories

You might want to maintain multiple copies of package repositories with the same content to
meet the following goals:

How to Clone a Local IPS Package Repository

Chapter 4 • Maintaining Your Local IPS Package Repository 37

■ Increase the availability of the repository by maintaining copies on different nodes.
■ Enhance the performance of repository accesses if you have many users or your users are

spread across a great distance.

Use the “How to Update a Local IPS Package Repository” on page 34 procedure to
update one of your package repositories. Then use the “How to Clone a Local IPS Package
Repository” on page 37 procedure to update additional identical repositories from the
repository you updated first. These two procedures are very similar, with an important
difference in the way you use the pkgrecv command. The pkgrecv operation shown in the clone
procedure copies the source repository files exactly, with the following effects:

■ Timestamps for the catalogs of cloned repositories are exactly the same as timestamps
for the catalogs of the source repository. If your repositories are load balanced, the
catalogs in all of the repositories should be exactly the same to avoid problems when
the load balancer switches clients from one node to another. See “Configuring Load
Balancing” on page 54 for information about load balancing.

■ Packages that are in the destination repository but not in the source repository are removed
from the destination repository. Do not use a sparse repository as the source for a clone
operation unless your goal is to create an exact copy of only that sparse repository.

How to Clone a Local IPS Package Repository

See “How to Update a Local IPS Package Repository” on page 34 for details of these steps.

1. Copy the destination repository.

Make sure you have a current snapshot of the destination repository. Make a ZFS clone of this
snapshot.

2. Update the copy of the destination repository.

Use the pkgrecv command to clone your previously updated local package repository to the
copy of the destination repository. See the pkgrecv(1) man page for more information about
the pkgrecv clone operation.

$ pkgrecv -s /net/host1/export/IPSpkgrepos/Solaris \
-d /net/host2/export/IPSpkgrepos/Solaris_tmp --clone

3. Replace the working destination repository with the updated clone.

4. Verify the updated repository.

Use the pkgrepo verify command to verify the updated destination repository.

5. Snapshot the newly updated repository.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1pkgrecv-1

Checking and Setting Repository Properties

38 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

6. Restart the SMF service.

If you are providing the repository through an HTTP interface, restart the SMF service. Be sure
to specify the appropriate service instance when you restart the service.

7. Remove the old repository.

When you are satisfied that your updated repository is working correctly, remove the old
repository.

See Also If you are providing the repository through an HTTP interface, see the following related
documentation:

■ “Serving Multiple Repositories Using Web Server Access” on page 44 describes how
to serve multiple repositories using multiple pkg.depotd daemons running on different
ports.

■ “Multiple Repositories Under One Domain” on page 53 describes how to run multiple
repositories under one domain name with different prefixes.

Checking and Setting Repository Properties

This section describes how to display information about an IPS repository and how to change
repository property values.

Viewing Properties that Apply to the Entire
Repository
The following command displays a list of the package publishers known by the local repository.
The STATUS column indicates whether the publisher’s package data is currently being
processed.

$ pkgrepo info -s /export/IPSpkgrepos/Solaris
PUBLISHER PACKAGES STATUS UPDATED

solaris 4506 online 2013-07-11T23:32:46.379726Z

The following command displays property information that applies to the entire repository. See
the pkgrepo(1) man page for a complete list of repository properties and their descriptions,
including specifications of their values.

$ pkgrepo get -s /export/IPSpkgrepos/Solaris
SECTION PROPERTY VALUE

publisher prefix solaris

repository check-certificate-revocation False

repository signature-required-names ()

repository trust-anchor-directory /etc/certs/CA/

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1pkgrepo-1

Checking and Setting Repository Properties

Chapter 4 • Maintaining Your Local IPS Package Repository 39

repository version 4

publisher/prefix

The name of the default publisher. Though a repository can contain packages from multiple
publishers, only one of the publishers can be set as the default publisher. This default
publisher name is used for the following purposes:
■ To identify a package when no publisher is specified in the package FMRI in the pkg

command
■ To assign a publisher to a package when the package is published to the repository

(using the pkgsend(1) command) and no publisher is specified in the package manifest

repository/check-certificate-revocation

A flag for checking the certificate. When set to True, the pkgrepo verify command
attempts to determine whether the certificate has been revoked since being issued. This
value must match the value of the check-certificate-revocation image property
described in “Additional Image Properties” in “Adding and Updating Software in Oracle
Solaris 11.2 ” and in the pkg(1) man page.

repository/signature-required-names

A list of names that must be seen as common names of certificates while validating the
signatures of a package. This list is used by the pkgrepo verify command. This value
must match the value of the signature-required-names image property described in
“Image Properties for Signed Packages” in “Adding and Updating Software in Oracle
Solaris 11.2 ” and in the pkg(1) man page.

repository/trust-anchor-directory

The absolute path name of the directory that contains the trust anchors for packages in this
repository. The default is /etc/certs/CA/. This value must match the value of the trust-
anchor-directory image property described in “Additional Image Properties” in “Adding
and Updating Software in Oracle Solaris 11.2 ” and in the pkg(1) man page.

repository/version

The format version of the repository. This value cannot be set with the pkgrepo set
command shown in “Modifying Repository Property Values” on page 41. This value

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=AUOSSglmoy
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=AUOSSglmoy
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1pkg-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=AUOSSgkkne
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=AUOSSgkkne
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1pkg-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=AUOSSglmoy
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=AUOSSglmoy
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1pkg-1

Checking and Setting Repository Properties

40 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

can be set with the pkgrepo create command. Version 4 repositories are created by
default. Version 4 repositories support storage of packages for multiple publishers.

Viewing Repository Publisher Properties

The following command displays property information about the solaris publisher in the local
repository. Parentheses indicate that the value can be a list of values.

$ pkgrepo get -p solaris -s /export/IPSpkgrepos/Solaris
PUBLISHER SECTION PROPERTY VALUE

solaris publisher alias

solaris publisher prefix solaris

solaris repository collection-type core

solaris repository description ""

solaris repository legal-uris ()

solaris repository mirrors ()

solaris repository name ""

solaris repository origins ()

solaris repository refresh-seconds ""

solaris repository registration-uri ""

solaris repository related-uris ()

publisher/prefix

The name of the publisher specified in the -p option. If no -p option is specified, this value
is the name of the default publisher for this repository, as described in the previous section.

repository/collection-type

The type of packages in this repository. If the value is core, this repository contains all of
the dependencies declared by packages in the repository. If the value is supplemental, this
repository does not contain all of the dependencies declared by packages in the repository.

repository/description

The purpose and contents of this repository. If this repository is available from an HTTP
interface, this value displays in the About section near the top of the main page.

repository/legal-uris

A list of locations for documents that provide legal information about the repository.

repository/mirrors

A list of locations of repositories that contain the same package content as this repository.

Checking and Setting Repository Properties

Chapter 4 • Maintaining Your Local IPS Package Repository 41

repository/name

The name of this repository. If this repository is available from an HTTP interface, this
value displays at the top of the main page and in the window title.

repository/origins

A list of locations of repositories that contain the same package content and metadata as
this repository.

repository/refresh-seconds

The number of seconds for clients to wait between checks for updated package data in this
repository.

repository/registration-uri

The location of a resource that must be used to obtain credentials for access to this
repository.

repository/related-uris

A list of locations of repositories that contain other packages that might be of interest.

The following command displays information about the specified section/property in the
pkg.oracle.com repository.

$ pkgrepo get -p solaris -s http://pkg.oracle.com/solaris/release \

repository/name repository/description
PUBLISHER SECTION PROPERTY VALUE

solaris repository description This\ repository\ serves\ the\ Oracle\ Solaris\ 11\ Package\

 repository.

solaris repository name Oracle\ Solaris\ 11\ Package\ Repository

Modifying Repository Property Values

“Viewing Repository Publisher Properties” on page 40 shows that the repository name
and description property values are not set for the solaris publisher in the local repository. If
this repository is available from an HTTP interface and you use a browser to view the content
of this repository, you see a default name and no description. After you set these values, the
publisher repository/name value is displayed near the top of the page and as the page title, and
the publisher repository/description value is displayed in the About section just below the
name. You must use the -p option to specify at least one publisher when you set these values. If
this repository contains content from more than one publisher, you can set different values for
each publisher, or you can specify -p all.

$ pkgrepo set -p solaris -s /export/IPSpkgrepos/Solaris \

Customizing Your Local Repository

42 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

repository/description="Local copy of the Oracle Solaris 11 repository." \

repository/name="Oracle Solaris 11"

$ pkgrepo get -p solaris -s /export/IPSpkgrepos/Solaris repository/name repository/

description
PUBLISHER SECTION PROPERTY VALUE

solaris repository description Local\ copy\ of\ the\ Oracle\ Solaris\ 11\ repository.

solaris repository name Oracle\ Solaris\ 11

Customizing Your Local Repository

You can use the pkgrecv command to add packages and their publisher data to your repository.
You can use the pkgrepo command to remove packages and publishers from your repository.

Adding Packages to Your Repository

You can add publishers to a repository. For example, you could maintain solaris, ha-cluster,
and solarisstudio packages in one repository.

If you add custom packages, publish those packages under a custom publisher name. Do not
publish custom packages as an existing publisher such as solaris. If you publish packages
that do not have a publisher specified, those packages will be added to the default publisher for
the repository. Publish custom packages to a test repository with the correct default publisher.
Then use the pkgrecv command to add those packages and their publisher information to your
production repository. See “Publish the Package” in “Packaging and Delivering Software With
the Image Packaging System in Oracle Solaris 11.2 ” for instructions.

In the following example, the isvpub publisher data and all of the packages from the
ISVproducts.p5p package archive are added to the local repository. A package archive is a
file that contains publisher information and one or more packages provided by that publisher.
See “Deliver as a Package Archive File” in “Packaging and Delivering Software With the
Image Packaging System in Oracle Solaris 11.2 ”. Most pkgrepo operations are not available
for package archives. A package archive contains packages but does not contain repository
configuration. However, the pkgrepo list and pkgrepo contents commands work with
package archives. The pkgrepo contents command is discussed in “Examining Packages In
Your Repository” on page 43.

In the pkgrepo list output, the publisher is shown because it is not the publisher that is highest
ranked in search order in this image.

$ pkgrepo -s /tmp/ISVproducts.p5p list
PUBLISHER NAME O VERSION

isvpub isvtool 1.1,5.11:20131120T021902Z

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=PKDEVgluep
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=PKDEVgluep
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=PKDEVgluem
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=PKDEVgluem

Customizing Your Local Repository

Chapter 4 • Maintaining Your Local IPS Package Repository 43

isvpub isvtool 1.0,5.11:20131120T010105Z

The following pkgrecv command retrieves all packages from the source repository. If you list
names of packages to retrieve, or you specify a pattern other than '*', you should specify the -r
option to ensure you retrieve all necessary dependency packages.

$ pkgrecv -s /tmp/ISVproducts.p5p -d /export/IPSpkgrepos/Solaris '*'
Processing packages for publisher isvpub ...

Retrieving and evaluating 2 package(s)...

PROCESS ITEMS GET (MB) SEND (MB)

Completed 2/2 0.0/0.0 0.0/0

After you change the content of a repository, refresh the repository and restart any package
depot server service instance configured for this repository.

$ pkgrepo -s /export/IPSpkgrepos/Solaris refresh -p isvpub
Initiating repository refresh.

$ svcadm refresh pkg/server:solaris

$ svcadm restart pkg/server:solaris

The following pkgrepo info command shows one package because the two packages that were
retrieved are different versions of the same package. The pkgrepo list command shows both
packages.

$ pkgrepo -s /export/IPSpkgrepos/Solaris info
PUBLISHER PACKAGES STATUS UPDATED

solaris 4768 online 2014-01-02T19:19:06.983979Z

isvpub 1 online 2014-03-20T23:24:37.196773Z

$ pkgrepo -s /export/IPSpkgrepos/Solaris list -p isvpub
PUBLISHER NAME O VERSION

isvpub isvtool 1.1,5.11:20131120T021902Z

isvpub isvtool 1.0,5.11:20131120T010105Z

Add the new repository location for the isvpub publisher by using the pkg set-publisher
command.

If this repository is available from an HTTP interface and you use a browser to view the content
of this repository, you can view this new package by specifying the publisher in the location.
For example, you can specify http://localhost:81/isvpub/.

Examining Packages In Your Repository

In addition to the pkgrepo info and pkgrepo list commands shown in “Adding Packages to
Your Repository” on page 42, you can use the pkgrepo contents command to examine the
content of packages in your repository.

For a single package, the output from the pkgrepo contents command is the same as the
output from the pkg contents -m command. The pkgrepo contents command displays

Serving Multiple Repositories Using Web Server Access

44 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

the output for each matching package in the specified repository, while the pkg contents
command displays output only for versions of matching packages that are installable in this
image. If you specify the -t option, the pkgrepo contents command shows only the specified
actions.

The following example does not need to specify the version of the package because only one
version of this package exists in the specified repository. This package contains depend actions
to provide the set of Oracle Solaris packages required for installation and operation of Oracle
Database 12.

$ pkgrepo -s http://pkg.oracle.com/solaris/release/ \

contents -t depend oracle-rdbms-server-12cR1-preinstall
depend fmri=x11/library/libxi type=group

depend fmri=x11/library/libxtst type=group

depend fmri=x11/session/xauth type=group

depend fmri=compress/unzip type=require

depend fmri=developer/assembler type=require

depend fmri=developer/build/make type=require

Removing Packages From Your Repository

Do not remove packages that are delivered by an Oracle publisher. “Adding and Updating
Software in Oracle Solaris 11.2 ” shows methods for installing only the packages you want and
avoiding installing packages that you do not want.

You can use the pkgrepo remove command to remove packages that were not delivered by an
Oracle publisher. You can use the pkgrepo remove-publisher command to remove a publisher
and all of the packages delivered by that publisher. See the pkgrepo(1) man page for details.
These operations should be performed on a copy of the repository, as described in “How to
Update a Local IPS Package Repository” on page 34.

Serving Multiple Repositories Using Web Server Access

The procedures in this section show how to extend the information provided in “Enabling
Users to Retrieve Packages Using an HTTP Interface” on page 29 to support serving multiple
repositories.

The following methods are two different ways to serve multiple IPS package repositories
using HTTP access. For both methods, start by creating additional instances of the pkg/server
service with unique repository paths.

■ Multiple locations. Users access each repository by viewing pages at separate locations.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=AUOSS
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=AUOSS
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1pkgrepo-1

How to Serve Multiple Repositories From Separate Locations

Chapter 4 • Maintaining Your Local IPS Package Repository 45

■ Single location. Users access all repositories from one location.

In addition to providing access to multiple repositories, remember that a single repository
can provide packages from multiple publishers, as shown in “Adding Packages to Your
Repository” on page 42.

How to Serve Multiple Repositories From Separate
Locations

In this example, the SolarisStudio repository exists in addition to the Solaris repository. The
Solaris repository is accessible from http://localhost/ using port 81, as specified in the
solaris instance of the pkg/server service. See “Enabling Users to Retrieve Packages Using
an HTTP Interface” on page 29.

1. Create a new depot server instance.

Use the add subcommand of the svccfg command to add a new instance of the pkg/server
service.

$ svccfg -s pkg/server add studio

2. Check that you have added the new instance.

$ svcs pkg/server
STATE STIME FMRI

online 14:54:16 svc:/application/pkg/server:default

online 14:54:20 svc:/application/pkg/server:studio

online 14:54:20 svc:/application/pkg/server:solaris

3. Set the path to the repository.

Set the path where this instance of the service can find the repository data.

$ svccfg -s pkg/server:studio setprop pkg/inst_root=/export/IPSpkgrepos/SolarisStudio

4. (Optional) Set the port number for the new instance.

$ svccfg -s pkg/server:studio setprop pkg/port=82

5. (Optional) Set the Apache proxy base.

See “Configuring a Simple Prefixed Proxy” on page 52 for an example of setting the pkg/
proxy_base.

6. Set the repository name and description.

Make sure the repository name and description are set as shown in “Modifying Repository
Property Values” on page 41.

How to Serve Multiple Repositories From a Single Location

46 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

7. Start the repository service.

Restart the package depot server service.

$ svcadm refresh pkg/server:studio

$ svcadm enable pkg/server:studio

8. Test that the repository server is working.

Open a browser window on the http://localhost:82/ location.

If you did not set the port number, the default is 80. View your repository at http://
localhost:80/ or http://localhost/.

If the port number is also being used by another pkg/server instance, append the publisher
name to the location to see the new packages. For example, view your repository at http://
localhost:81/solarisstudio/.

9. Set the publisher origin.

Set the publisher origin to one of the following values:

■ The pkg/inst_root location.

$ pkg set-publisher -G '*' -M '*' -g /export/IPSpkgrepos/SolarisStudio/ \

solarisstudio

■ The pkg/port location.

$ pkg set-publisher -G '*' -M '*' -g http://localhost:82/ solarisstudio

See Also See “Multiple Repositories Under One Domain” on page 53 for information about
running multiple repositories under one domain name with different prefixes such as http://
pkg.example.com/solaris and http://pkg.example.com/studio.

How to Serve Multiple Repositories From a Single
Location

Many of the steps in this procedure are the same as the steps in the previous procedure. See the
previous procedure for details.

1. Create a new depot server instance.

2. Set the path to the repository.

Each pkg/server instance that is managed by a particular pkg/depot instance must have a
unique pkg/inst_root value.

How to Serve Multiple Repositories From a Single Location

Chapter 4 • Maintaining Your Local IPS Package Repository 47

3. Check the readonly property for the new instance.

The default value of the pkg/readonly property is true. If this value has been changed, reset
the value to true.

$ svcprop -p pkg/readonly pkg/server:studio
true

4. Set the standalone property for the new instance.

By default, the value of the pkg/standalone property is true. Any pkg/server instances
whose pkg/standalone property is set to false can be served from the same location by a pkg/
depot service instance.

$ svccfg -s pkg/server:studio

svc:/application/pkg/server:studio> setprop pkg/standalone=false

svc:/application/pkg/server:studio> refresh

svc:/application/pkg/server:studio> select solaris

svc:/application/pkg/server:solaris> setprop pkg/standalone=false

svc:/application/pkg/server:solaris> refresh

svc:/application/pkg/server:solaris> exit
$

Make sure the value of the pkg/inst_root property is unique for each instance of pkg/server
whose pkg/standalone property is set to false.

5. (Optional) Set the port number for the pkg/depot instance.

By default, the port number of the svc:/application/pkg/depot:default service is 80.
This port number can be the same as the port number for any of the pkg/server instances that
will be managed by this pkg/depot instance. To change the port number, set the config/port
property of pkg/depot:default.

6. Restart the pkg/depot instance.

$ svcadm refresh pkg/depot:default

$ svcadm restart pkg/depot:default

7. Test that the repository server is working.

When users open the http://localhost:80/ location, they see the http://localhost/
solaris repository listed with the solaris publisher, and they see the http://localhost/
studio repository listed with the solarisstudio publisher.

If one repository provides packages for multiple publishers, all publishers are listed. For
example, users might see the http://localhost/solaris repository listed with the solaris
and isvpub publishers.

8. Set the publisher origin.

How to Serve Multiple Repositories From a Single Location

48 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

Set the publisher origin to one of the following values:

■ The unique pkg/inst_root location.

$ pkg set-publisher -G '*' -M '*' -g /export/IPSpkgrepos/SolarisStudio/ \

solarisstudio

■ The location defined by the value of config/port plus the pkg/server instance name.

$ pkg set-publisher -G '*' -M '*' -g http://localhost:80/studio/ solarisstudio

Next Steps If you change the content of a repository that is managed by a pkg/depot instance, as
discussed in “Updating Your Local Repository” on page 33 and “Customizing Your Local
Repository” on page 42, perform both of the following steps:

■ Run pkgrepo refresh on the repository.
■ Run svcadm restart on the pkg/depot instance.

You can create additional instances of the pkg/depot service where each instance hosts one or
more repositories.

To generate a standalone configuration rather than configuring pkg/server and pkg/depot
service instances, see the pkg.depot-config(1M) man page.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=REFMAN1Mpkg.depot-config-1m

Chapter 5 • Running the Depot Server Behind a Web Server 49

 5 ♦ ♦ ♦ C H A P T E R 5

Running the Depot Server Behind a Web Server

Running the depot server behind an Apache web server instance provides the following
benefits:

■ Allows hosting multiple repositories under one domain name. The pkg(5) depot server
enables you to easily provide access to a repository in the local network or on the Internet.
However, the depot server does not support serving multiple repositories under one domain
name or sophisticated prefixes. To host multiple repositories under one domain name, run
the depot server behind a web proxy.

■ Improves performance and availability. Running the depot server behind a web proxy can
improve the performance and availability of the server by enabling load balancing over
multiple depots and enabling content caching.

■ Enables providing a secure repository server. Run the depot server behind a Secure Sockets
Layer (SSL) protocol enabled Apache instance that supports client certificates.

Depot Server Apache Configuration

The examples in this chapter use the Apache web server as the proxy software. Activate the
Apache web server by enabling the svc:/network/http:apache22 service. See Apache HTTP
Server Version 2.2 Documentation for additional information.

You should be able to apply the principles shown in these examples to any proxy server
software.

The Oracle Solaris 11.2 OS includes the Apache web server in the web/server/apache-22
package, which delivers a basic httpd.conf file in /etc/apache2/2.2. In general, you can use
the following command to locate the httpd.conf file:

$ pkg search -Hl -o path ':file:path:*httpd.conf'
etc/apache2/2.2/httpd.conf

etc/apache2/2.2/original/httpd.conf

http://httpd.apache.org/docs/2.2/
http://httpd.apache.org/docs/2.2/

Depot Server Apache Configuration

50 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

Required Apache Configuration Setting

If you run the package depot server behind an Apache web server instance, include the
following setting in your httpd.conf file to not decode encoded forward slashes:

AllowEncodedSlashes NoDecode

Package names can contain URL encoded forward slashes because forward slashes are used
to express hierarchical package names. For example, the package name pkg://solaris/
developer/build/make becomes http://pkg.oracle.com/solaris/release/manifest/0/
developer%2Fbuild%2Fmake to the web server. To prevent these forward slashes from being
interpreted as directory delimiters, instruct Apache not to decode the %2F encoded slashes.

Omitting this setting can result in 404 Not Found errors and can very negatively impact search
functionality.

Recommended Generic Apache Configuration
Settings

The following settings affect performance and security.

Reduce the over-the-wire size of metadata.

HTTP clients can tell the server that they accept compressed data in an HTTP request.
Enabling the Apache DEFLATE filter can dramatically reduce the over-the-wire size of
metadata such as catalogs and manifests. Metadata such as catalogs and manifests often
compress 90%.

AddOutputFilterByType DEFLATE text/html application/javascript text/css text/plain

Allow more pipelined requests.

Increase the MaxKeepAliveRequests value to allow clients to make a larger number of
pipelined requests without closing the connection.

MaxKeepAliveRequests 10000

Set the maximum wait time for response.

The proxy timeout sets how long Apache waits for the back-end depot to respond. For most
operations, 30 seconds is satisfactory. Searches with a very large number of results can take
significantly longer. You might want a higher timeout value to accommodate such searches.

Configuring Caching for the Depot Server

Chapter 5 • Running the Depot Server Behind a Web Server 51

ProxyTimeout 30

Disable forward proxying.

Make sure that forward proxying is disabled.

ProxyRequests Off

Configuring Caching for the Depot Server

Minimal configuration is required to set up the depot server behind a caching proxy. With
the exception of the catalog attributes file (see “Cache Considerations for the Catalog
Attributes File” on page 52) and repository search results (see “Cache Considerations for
Search” on page 52), all files served are unique and therefore safe to cache indefinitely if
necessary. Also, all depot responses contain the appropriate HTTP headers to ensure files in the
cache do not become stale by mistake.

See the Apache Caching Guide for more information about configuring Apache as a caching
proxy.

Use the CacheRoot directive to specify the directory to contain the cached files. Make sure the
specified directory is writable by the Apache process. No explicit error message is output if
Apache cannot write to this directory.

CacheRoot /tank/proxycache

Apache allows you to enable caching for specific directories. You probably want your
repository server to cache all of the content on the server, as shown in the following directive.

CacheEnable disk /

Use the CacheMaxFileSize directive to set the maximum size of files to be cached. The Apache
default of 1 MB might be too small for most repositories. The following directive sets the
maximum cached file size to 1 GB.

CacheMaxFileSize 1000000000

Adjust the directory structure of the on-disk cache for the best performance with the underlying
file system. In a ZFS dataset, multiple directory levels affect performance more than the number
of files in one directory. Therefore, configure one directory level with a large number of files in
each directory. Use the CacheDirLevels and CacheDirLength directives to control the directory
structure. Set CacheDirLevels to 1. Set CacheDirLength to a value that results in a good
balance between the number of directories and the number of files per directory. The value of
2 set below will generate 4096 directories. See the Apache Disk-based Caching documentation
for more information.

CacheDirLevels 1

CacheDirLength 2

http://httpd.apache.org/docs/2.2/caching.html
http://httpd.apache.org/docs/2.2/caching.html#disk

Configuring a Simple Prefixed Proxy

52 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

Cache Considerations for the Catalog Attributes
File

The repository catalog attributes file (catalog.attrs) contains the current status of the
repository catalog. This file can be large enough to warrant caching. However, this file becomes
stale if the catalog of the back-end repository has changed. You can use one of the following
two methods to address this issue.

■ Do not cache this file. This solution works best if the repository server runs in a high-
bandwidth environment where the additional traffic is not an important consideration. The
following partial httpd.conf file shows how to specify not to cache the catalog.attrs
file:

<LocationMatch ".*/catalog.attrs">

 Header set Cache-Control no-cache

</LocationMatch>

■ Prune this file from the cache whenever the catalog of the back-end repository is updated.

Cache Considerations for Search

Searching a package repository generates custom responses based on the request. Therefore,
search results are not well suited for being cached. The depot server sets the appropriate HTTP
headers to make sure search results do not become stale in a cache. However, the expected
bandwidth savings from caching are small. The following partial httpd.conf file shows how to
specify not to cache search results.

<LocationMatch ".*/search/\d/.*">

 Header set Cache-Control no-cache

</LocationMatch>

Configuring a Simple Prefixed Proxy

This example shows the basic configuration for a non-load-balanced depot server. This example
connects http://pkg.example.com/myrepo to internal.example.com:10000.

See “Serving Multiple Repositories Using Web Server Access” on page 44 for instructions
about setting other properties you need that are not described in this example.

Configure the depot server with a pkg/proxy_base setting that names the URL where the depot
server can be accessed. Use the following commands to set the pkg/proxy_base:

Multiple Repositories Under One Domain

Chapter 5 • Running the Depot Server Behind a Web Server 53

$ svccfg -s pkg/server add repo

$ svccfg -s pkg/server:repo setprop pkg/proxy_base = astring: http://pkg.example.com/

myrepo

$ svcadm refresh pkg/server:repo

$ svcadm enable pkg/server:repo

The pkg(5) client opens 20 parallel connections to the depot server when performing network
operations. Make sure the number of depot threads matches the expected connections to the
server at any given time. Use the following commands to set the number of threads per depot:

$ svccfg -s pkg/server:repo setprop pkg/threads = 200

$ svcadm refresh pkg/server:repo

$ svcadm restart pkg/server:repo

Use nocanon to suppress canonicalization of URLs. This setting is important in order for search
to work well. Also, limit the number of back-end connections to the number of threads the
depot server provides. The following partial httpd.conf file shows how to proxy one depot
server:

Redirect /myrepo http://pkg.example.com/myrepo/

ProxyPass /myrepo/ http://internal.example.com:10000/ nocanon max=200

For information about the Oracle Solaris SSL kernel proxy and using SSL to encrypt and
accelerate web server communications, see Chapter 3, “Web Servers and the Secure Sockets
Layer Protocol,” in “Securing the Network in Oracle Solaris 11.2 ”.

Multiple Repositories Under One Domain
The most important reason to run the depot server behind a proxy is to easily run several
repositories under one domain name with different prefixes. The example from “Configuring a
Simple Prefixed Proxy” on page 52 can be easily extended to support multiple repositories.

In this example, three different prefixes of one domain name are connected to three different
package repositories:

■ http://pkg.example.com/repo_one is connected to internal.example.com:10000
■ http://pkg.example.com/repo_two is connected to internal.example.com:20000
■ http://pkg.example.com/xyz/repo_three is connected to

internal.example.com:30000

The pkg(5) depot server is an SMF managed service. Therefore, to run multiple depot servers
on the same host, simply create a new service instance:

$ svccfg -s pkg/server add repo1

$ svccfg -s pkg/server:repo1 setprop pkg/property=value
$...

Like the previous example, each depot server runs with 200 threads.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=NWSECwebk-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=NWSECwebk-1

Configuring Load Balancing

54 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

Redirect /repo_one http://pkg.example.com/repo_one/

ProxyPass /repo_one/ http://internal.example.com:10000/ nocanon max=200

Redirect /repo_two http://pkg.example.com/repo_two/

ProxyPass /repo_two/ http://internal.example.com:20000/ nocanon max=200

Redirect /xyz/repo_three http://pkg.example.com/xyz/repo_three/

ProxyPass /xyz/repo_three/ http://internal.example.com:30000/ nocanon max=200

Configuring Load Balancing

You might want to run depot servers behind an Apache load balancer. One benefit of load
balancing is to increase the availability of your repository. This section shows two examples of
load balancing.

If your repositories are load balanced, the catalogs in all of the repositories should be exactly
the same to avoid problems when the load balancer switches clients from one node to another.
To ensure the catalogs are exactly the same, clone the repositories that participate in load
balancing as described in “Maintaining Multiple Identical Local Repositories” on page 36.

One Repository Server With Load Balancing

This example connects http://pkg.example.com/myrepo to internal1.example.com:10000
and internal2.example.com:10000.

Configure the depot server with an appropriate proxy_base setting as shown in “Configuring a
Simple Prefixed Proxy” on page 52.

Limit the number of back-end connections to the number of threads each depot is running
divided by the number of depots in the load-balancer setup. Otherwise, Apache opens more
connections to a depot than are available and they stall, which can decrease performance.
Specify the maximum number of parallel connections to each depot with the max= parameter.
The following example shows two depots, each running 200 threads. See “Configuring a
Simple Prefixed Proxy” on page 52 for an example of how to set the number of depot
threads.

<Proxy balancer://pkg-example-com-myrepo>

 # depot on internal1

 BalancerMember http://internal1.example.com:10000 retry=5 max=100

 # depot on internal2

 BalancerMember http://internal2.example.com:10000 retry=5 max=100

</Proxy>

Redirect /myrepo http://pkg.example.com/myrepo/

ProxyPass /myrepo/ balancer://pkg-example-com-myrepo/ nocanon

Configuring HTTPS Repository Access

Chapter 5 • Running the Depot Server Behind a Web Server 55

One Load-Balanced and One Non-Load-Balanced
Repository Server

This example includes all of the directives you need to add to the httpd.conf file for a
repository server that hosts a load-balanced and a non-load-balanced depot server setup.

In this example, two different prefixes of one domain name are connected to three different
package repositories:

■ http://pkg.example.com/repo_one is connected to internal1.example.com:10000 and
internal2.example.com:10000

■ http://pkg.example.com/repo_two is connected to internal1.example.com:20000

AddOutputFilterByType DEFLATE text/html application/javascript text/css text/plain

AllowEncodedSlashes NoDecode

MaxKeepAliveRequests 10000

ProxyTimeout 30

ProxyRequests Off

<Proxy balancer://pkg-example-com-repo_one>

 # depot on internal1

 BalancerMember http://internal1.example.com:10000 retry=5 max=100

 # depot on internal2

 BalancerMember http://internal2.example.com:10000 retry=5 max=100

</Proxy>

Redirect /repo_one http://pkg.example.com/repo_one/

ProxyPass /repo_one/ balancer://pkg-example-com-repo_one/ nocanon

Redirect /repo_two http://pkg.example.com/repo_two/

ProxyPass /repo_two/ http://internal.example.com:20000/ nocanon max=200

Configuring HTTPS Repository Access

Any client can download packages from a repository that is configured to serve packages over
HTTP. In some cases, you need to restrict access. One way to restrict access to the repository is
to run the depot server behind an SSL-enabled Apache instance that supports client certificates.

Using SSL provides the following benefits:

■ Ensures encrypted transfer of package data between the client and the server
■ Enables you to grant access to repositories based on the certificate the client presents to the

server

Configuring HTTPS Repository Access

56 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

To set up a secure repository server, you must create a custom certificate chain:

1. Create a certificate authority (CA), which is the head of the certificate chain.
2. Issue certificates from this CA to the clients that are allowed to access the repository.

One copy of the CA is stored on the repository server. Whenever a client presents a certificate
to the server, that client certificate is verified against the CA on the server to determine whether
to grant access.

This section describes the following steps to create the certificate chain and configure the
Apache front end to verify client certificates:

■ Create a keystore
■ Create a certificate authority for client certificates
■ Add SSL configuration to the Apache configuration file
■ Create a self-signed server certificate authority
■ Create a PKCS12 keystore

For information about Apache web server privileges in Oracle Solaris, see “Locking Down
Resources by Using Extended Privileges” in “Securing Users and Processes in Oracle Solaris
11.2 ”.

Creating a Keystore

To manage certificates and keys, create a keystore. The keystore stores the CA, the CA key, and
client certificates and keys.

The tool used for keystore management is pktool. See the pktool(1) man page for more
information.

The default keystore location for pktool is /var/user/username, where username is the name
of the current system user. This keystore default location can be problematic when a keystore
is managed by multiple users. In addition, IPS package repository management should have
a dedicated keystore to avoid confusing certificates. To set a custom location for the pktool
keystore for the IPS package repository, set the environment variable SOFTTOKEN_DIR. Reset the
SOFTTOKEN_DIR variable as necessary to manage multiple keystores.

Use the following commands to create a directory for the keystore. Set the owner, group, and
permissions appropriately if multiple users need to manage the keystore.

$ mkdir /path-to-keystore
$ export SOFTTOKEN_DIR=/path-to-keystore

Access to the keystore is protected by a passphrase that you must enter every time you invoke
the pktool command. The default passphrase for a newly created keystore is changeme. Be sure
to change the changeme passphrase to a more secure passphrase.

http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUPrbactask-lockdown-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUPrbactask-lockdown-1
http://www.oracle.com/pls/topic/lookup?ctx=E36784&id=OSSUPrbactask-lockdown-1

Configuring HTTPS Repository Access

Chapter 5 • Running the Depot Server Behind a Web Server 57

Use the following command to set the passphrase (PIN) for the keystore:

$ pktool setpin

Enter token passphrase: changeme
Create new passphrase:

Re-enter new passphrase:

Passphrase changed.

$ ls /path-to-keystore
pkcs11_softtoken

Creating a Certificate Authority for Client
Certificates

The CA is the top-level certificate in your certificate chain. The CA is required to generate
client certificates and to validate the certificates presented by clients to access a repository.

Third-party CAs are managed by a handful of trusted companies such as VeriSign. This trusted
management enables clients to verify the identity of a server against one of their CAs. The
example in this section does not include verifying the identity of the repository server. This
example only shows verifying client certificates. Therefore, this example uses a self-signed
certificate to create the CA and does not use any third-party CAs.

The CA requires a common name (CN). If you run only one repository, you might want to set
the CN to the name of your organization (for example, “Oracle Software Delivery”). If you
have multiple repositories, each repository must have its own CA. In this case, set the CN to a
name that uniquely identifies the repository for which you are creating the CA. For example,
if you have a release repository and a support repository, only certificates from the release CA
will allow access to the release repository, and only certificates from the support CA will allow
access to the support repository.

To identify the certificate in the keystore, set a descriptive label for the certificate. A good
practice is to set the certificate label to CN_ca, where CN is the CN of the certificate.

Use the following command to create the CA certificate, where name is the certificate CN and
CAlabel is the certificate label:

$ pktool gencert label=CAlabel subject="CN=name" serial=0x01

The CA will be stored in your keystore. Use the following command to show the contents of
your keystore:

$ pktool list

You will need to extract the CA certificate from the keystore when you configure Apache as
described in “Add SSL Configuration to the Apache Configuration File” on page 60. Use
the following command to extract the CA certificate to a file named ca_file.pem:

$ pktool export objtype=cert label=CAlabel outformat=pem \

Configuring HTTPS Repository Access

58 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

outfile=ca_file.pem

Creating Client Certificates Used for Accessing
the Repository

After you have generated the CA, you can generate client certificates.

Generating a Certificate Signing Request

To generate a client certificate, generate a Certificate Signing Request (CSR). The CSR contains
all of the information that you need to pass securely to the server.

If you only want to check whether the client possesses a valid certificate issued by you, you
do not need to encode any information. When the client presents its certificate to the server,
the server validates the certificate against the CA, verifying whether that client certificate
was generated by you. However, SSL requires a subject for the CSR. If you do not need to
pass any other information to the server, you can just set the subject to the country where the
certificate has been issued. For example, you could set the subject to C=US.

A good practice is to encode the user name of the client into the certificate to enable the server
to identify the client. The user name is the name of the user to whom you are giving access to
the repository. You can use the CN for this purpose. Specify a label for this CSR so that you
can find and extract the key for the final certificate as described in “Extracting the Certificate
Key” on page 59.

Use the following command to generate the CSR:

$ pktool gencsr subject="C=US,CN=username" label=label format=pem \
outcsr=cert.csr

Use the following OpenSSL command to inspect the CSR in the file cert.csr:

$ openssl req -text -in cert.csr

Signing the CSR

The CSR must be signed by the CA to create a certificate. To sign the CSR, provide the
following information:

■ Set the issuer of the certificate to the same string that you used for the subject when you
created the CA using the gencert command, as shown in “Creating a Certificate Authority
for Client Certificates” on page 57.

Configuring HTTPS Repository Access

Chapter 5 • Running the Depot Server Behind a Web Server 59

■ Set a hexadecimal serial number. In this example, the CA serial number was specified as
0x01, so the first client certificate should be given the serial number 0x02. Increment the
serial number for each new client certificate that you generate.
Each CA and its descendant client certificates has its own set of serial numbers. If you
have multiple CAs configured in your keystore, be careful to set client certificate serial
numbers correctly.

■ Set the signkey to the label of the CA in the keystore.
■ Set outcert to the name of the certificate file. A good practice is to name the certificate

and key after the repository to be accessed.

Use the following command to sign the CSR:

$ pktool signcsr signkey=CAlabel csr=cert.csr \
serial=0x02 outcert=reponame.crt.pem issuer="CN=name"

The certificate is created in the file reponame.crt.pem. Use the following OpenSSL command
to inspect the certificate:

$ openssl x509 -text -in reponame.crt.pem

Extracting the Certificate Key

Extract the key for this certificate from the keystore. Set the label to the same label value
you specified when you ran gencsr to generate the CSR in “Generating a Certificate Signing
Request” on page 58. Use the following command to export the key from the keystore:

$ pktool export objtype=key label=label outformat=pem \
outfile=reponame.key.pem

Transfer the certificate and key to the client systems that need to access the SSL-protected
repository.

Enabling Client Systems to Access the Protected Repository

To access the SSL-protected repository, client systems must have a copy of the certificate and
key and must specify the certificate and key in the publisher configuration.

Copy the certificate (reponame.crt.pem) and key (reponame.key.pem) to each client system.
For example, you could copy them to the /var/pkg/ssl directory on each client.

Use the following command to specify the generated certificate and key in your publisher
configuration:

$ pkg set-publisher -k reponame.key.pem -c reponame.crt.pem \
-p https://repolocation

Configuring HTTPS Repository Access

60 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

Note that SSL authentication is only supported for HTTPS repository URIs. SSL authentication
is not supported for file repository URIs.

Add SSL Configuration to the Apache
Configuration File

To use client certificate based authentication for your repository, first set up a
generic depot server Apache configuration as described in “Depot Server Apache
Configuration” on page 49. Then add the following SSL configuration at the end of your
httpd.conf file:

Let Apache listen on the standard HTTPS port

Listen 443

VirtualHost configuration for request on port 443

<VirtualHost 0.0.0.0:443>

 # DNS domain name of the server, needs to match your server certificate

 ServerName pkg-sec.example.com

 # enable SSL

 SSLEngine On

 # Location of the server certificate and key.

 # You either have to get one from a certificate signing authority like

 # VeriSign or create your own CA for testing purposes (see "Creating a

 # Self-Signed CA for Testing Purposes")

 SSLCertificateFile /path/to/server.crt

 SSLCertificateKeyFile /path/to/server.key

 # Intermediate CA certificate file. Required if your server certificate

 # is not signed by a top-level CA directly but an intermediate authority

 # Comment out this section if you are using a test certificate or your

 # server certificate doesn't require it.

 # For more info:

 # http://httpd.apache.org/docs/2.2/mod/mod_ssl.html#sslcertificatechainfile

 SSLCertificateChainFile /path/to/ca_intermediate.pem

 # CA certs for client verification.

 # This is where the CA certificate created in step 3 needs to go.

 # If you have multiple CAs for multiple repos, just concatenate the

 # CA certificate files

 SSLCACertificateFile /path/to/ca_cert.pem

 # If the client presents a certificate, verify it here. If it doesn't,

 # ignore.

 # This is required to be able to use client-certificate based and

 # anonymous SSL traffic on the same VirtualHost.

 # This statement could also go into the <Location> tags but putting it

 # here avoids re-negotiation which can cause security issues with older

 # servers/clients:

 # http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2009-3555

 SSLVerifyClient optional

Configuring HTTPS Repository Access

Chapter 5 • Running the Depot Server Behind a Web Server 61

 <Location /repo>

 SSLVerifyDepth 1

 # This is the SSL requirement for this location.

 # Requirements can be made based on various information encoded

 # in the certificate. Two variants are the most useful for use

 # with IPS repositories:

 # a) SSLRequire (%{SSL_CLIENT_I_DN_CN} =~ m/reponame/)

 # only allow access if the CN in the client certificate matches

 # "reponame", useful for different certificates for different

 # repos

 #

 # b) SSLRequire (%{SSL_CLIENT_VERIFY} eq "SUCCESS")

 # grant access if clients certificate is signed by one of the

 # CAs specified in SSLCACertificateFile

 SSLRequire (%{SSL_CLIENT_VERIFY} eq "SUCCESS")

 # proxy request to depot running at internal.example.com:12345

 ProxyPass http://internal.example.com:12345 nocanon max=500

 </Location>

</VirtualHost>

Creating a Self-Signed Server Certificate Authority

For testing purposes, you can use a self-signed server certificate authority (CA) rather than a
third-party CA. The steps to create a self-signed server CA for Apache are very similar to the
steps to create a CA for client certificates described in “Creating a Certificate Authority for
Client Certificates” on page 57.

Use the following command to create a server CA. Set the subject to the DNS name of the
server.

$ pktool gencert label=apacheCA subject="CN=apachetest" \

serial=0x01

Use the following command to create a CSR for a server CA. If the server is accessible
under several names or you want to make it available under its IP address directly, use
the subjectAltNames directive as described in Subject Alternative Name in the OpenSSL
documentation.

$ pktool gencsr label=apache subject="CN=pkg-sec.internal.example.com" \

altname="IP=192.168.1.1,DNS=pkg-sec.internal.example.com" \

format=pem outcsr=apache.csr

Use the following command to sign the CSR. Use server.crt for SSLCertificateFile.

$ pktool signcsr signkey=apacheCA csr=apache.csr serial=0x02 \

outcert=server.crt issuer="CN=apachetest"

Use the following command to extract the key. Use server.key for SSLCertificateKeyFile.

http://www.openssl.org/docs/apps/x509v3_config.html#Subject_Alternative_Name_

Configuring HTTPS Repository Access

62 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

$ pktool export objtype=key label=apache outformat=pem \

outfile=server.key

To ensure that your client will accept this server key, add the CA certificate (apacheCA) to the
accepted CA directory on the client system and restart the ca-certificates service to create
the required links for OpenSSL.

Use the following command to extract the CA certificate:

$ pktool export label=apacheCA objtype=cert outformat=pem \

outfile=test_server_ca.pem

Copy the CA certificate to the CA certificate directory on the client machine:

$ cp /path-to/test_server_ca.pem /etc/certs/CA/

Restart the CA certificates service:

$ svcadm refresh ca-certificates

Before you proceed, ensure that your new CA cert has been linked. After refreshing, the ca-
certificate service rebuilds the links in the /etc/openssl/certs directory. Run the following
command to check whether your new CA cert has been linked:

$ ls -l /etc/openssl/certs | grep test_server_ca.pem
lrwxrwxrwx 1 root root 40 May 1 09:51 e89d96e0.0 -> ../../certs/CA/

test_server_ca.pem

The hash value, e89d96e0.0, might be different for you since it is based on the subject of your
certificate.

Creating a PKCS12 Keystore to Access a Secure
Repository With Firefox

The PEM certificates created in “Creating Client Certificates Used for Accessing the
Repository” on page 58 will work to access the secured repository with the pkg client.
However, to access the browser user interface (BUI), you must convert the certificate and key to
a format that Firefox can import. Firefox accepts PKCS12 keystores.

Use the following OpenSSL command to create the PKCS12 keystore for Firefox:

$ openssl pkcs12 -export -in /path-to/certificate.pem \
-inkey /path-to/key.pem -out name.p12

To import the PKCS12 keystore that you just created, select the following Firefox menus, tabs,
and buttons: Edit > Preferences > Advanced > Encryption > View certificates > Authorities >
Import.

Import one certificate at a time.

How to Configure Secure Repositories

Chapter 5 • Running the Depot Server Behind a Web Server 63

Complete Secure Repositories Example

This example configures three secure repositories named repo1, repo2, and repo3. The repo1
and repo2 repositories are configured with dedicated certificates. Therefore, certificates for
repo1 will not work on repo2, and certificates for repo2 will not work on repo1. The repo3
repository is configured to accept either certificate.

The example assumes you have a proper server certificate for your Apache instance
already available. If you do not have a server certificate for your Apache instance, see
the instructions for creating a test certificate in “Creating a Self-Signed Server Certificate
Authority” on page 61.

The three repositories are set up under https://pkg-sec.example.com/repo1, https://pkg-
sec.example.com/repo2, and https://pkg-sec.example.com/repo3. These repositories point
to depot servers set up at http://internal.example.com on ports 10001, 10002, and 10003
respectively. Make sure the SOFTTOKEN_DIR environment variable is set correctly as described in
“Creating a Keystore” on page 56.

How to Configure Secure Repositories

1. Create a CA certificate for repo1.

$ pktool gencert label=repo1_ca subject="CN=repo1" serial=0x01

$ pktool export objtype=cert label=repo1_ca outformat=pem \

outfile=repo1_ca.pem

2. Create a CA certificate for repo2.

$ pktool gencert label=repo2_ca subject="CN=repo2" serial=0x01

$ pktool export objtype=cert label=repo2_ca outformat=pem \

outfile=repo2_ca.pem

3. Create a combined CA certificate file.

$ cat repo1_ca.pem > repo_cas.pem

$ cat repo2_ca.pem >> repo_cas.pem

$ cp repo_cas.pem /path-to-certs

4. Create one client certificate/key pair to allow user myuser to access repository
repo1.

$ pktool gencsr subject="C=US,CN=myuser" label=repo1_0001 format=pem \

outcsr=repo1_myuser.csr

$ pktool signcsr signkey=repo1_ca csr=repo1_myuser.csr \

serial=0x02 outcert=repo1_myuser.crt.pem issuer="CN=repo1"

$ pktool export objtype=key label=repo1_0001 outformat=pem \

How to Configure Secure Repositories

64 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

outfile=repo1_myuser.key.pem

$ cp repo1_myuser.key.pem /path-to-certs
$ cp repo1_myuser.crt.pem /path-to-certs

5. Create one client certificate/key pair to allow user myuser to access repository
repo2.

$ pktool gencsr subject="C=US,CN=myuser" label=repo2_0001 format=pem \

outcsr=repo2_myuser.csr

$ pktool signcsr signkey=repo2_ca csr=repo2_myuser.csr \

serial=0x02 outcert=repo2_myuser.crt.pem issuer="CN=repo2"

$ pktool export objtype=key label=repo2_0001 outformat=pem \

outfile=repo2_myuser.key.pem

$ cp repo2_myuser.key.pem /path-to-certs
$ cp repo2_myuser.crt.pem /path-to-certs

6. Configure Apache.

Add the following SSL configuration at the end of your httpd.conf file:

Let Apache listen on the standard HTTPS port

Listen 443

<VirtualHost 0.0.0.0:443>

 # DNS domain name of the server

 ServerName pkg-sec.example.com

 # enable SSL

 SSLEngine On

 # Location of the server certificate and key.

 # You either have to get one from a certificate signing authority like

 # VeriSign or create your own CA for testing purposes (see "Creating a

 # Self-Signed CA for Testing Purposes")

 SSLCertificateFile /path/to/server.crt

 SSLCertificateKeyFile /path/to/server.key

 # Intermediate CA certificate file. Required if your server certificate

 # is not signed by a top-level CA directly but an intermediate authority.

 # Comment out this section if you don't need one or if you are using a

 # test certificate

 SSLCertificateChainFile /path/to/ca_intermediate.pem

 # CA certs for client verification.

 # This is where the CA certificate created in step 3 needs to go.

 # If you have multiple CAs for multiple repos, just concatenate the

 # CA certificate files

 SSLCACertificateFile /path/to/certs/repo_cas.pem

 # If the client presents a certificate, verify it here. If it doesn't,

 # ignore.

 # This is required to be able to use client-certificate based and

 # anonymous SSL traffic on the same VirtualHost.

 SSLVerifyClient optional

How to Configure Secure Repositories

Chapter 5 • Running the Depot Server Behind a Web Server 65

 <Location /repo1>

 SSLVerifyDepth 1

 SSLRequire (%{SSL_CLIENT_I_DN_CN} =~ m/repo1/)

 # proxy request to depot running at internal.example.com:10001

 ProxyPass http://internal.example.com:10001 nocanon max=500

 </Location>

 <Location /repo2>

 SSLVerifyDepth 1

 SSLRequire (%{SSL_CLIENT_I_DN_CN} =~ m/repo2/)

 # proxy request to depot running at internal.example.com:10002

 ProxyPass http://internal.example.com:10002 nocanon max=500

 </Location>

 <Location /repo3>

 SSLVerifyDepth 1

 SSLRequire (%{SSL_CLIENT_VERIFY} eq "SUCCESS")

 # proxy request to depot running at internal.example.com:10003

 ProxyPass http://internal.example.com:10003 nocanon max=500

 </Location>

</VirtualHost>

7. Test access to repo1.

$ pkg set-publisher -k /path-to-certs/repo1_myuser.key.pem \
-c /path-to-certs/repo1_myuser.crt.pem \
-p https://pkg-sec.example.com/repo1/

8. Test access to repo2.

$ pkg set-publisher -k /path-to-certs/repo2_myuser.key.pem \
-c /path-to-certs/repo2_myuser.crt.pem \
-p https://pkg-sec.example.com/repo2/

9. Test access to repo3.

Use the repo1 certificate to test access to repo3.

$ pkg set-publisher -k /path-to-certs/repo1_myuser.key.pem \
-c /path-to-certs/repo1_myuser.crt.pem \
-p https://pkg-sec.example.com/repo3/

Use the repo2 certificate to test access to repo3.

$ pkg set-publisher -k /path-to-certs/repo2_myuser.key.pem \
-c /path-to-certs/repo2_myuser.crt.pem \
-p https://pkg-sec.example.com/repo3/

66 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

67

Index

A
accessing

file interface, 27
HTTP interface, 29
HTTPS interface, 55

Apache web server configuration, 49
caching, 51
catalog caching, 52
disable forward proxying, 51
error 404 Not Found, 50
HTTPS repository access, 55
increase pipelined requests, 50
proxying, 52
raise response timeout, 50
reduce size of metadata, 50
required, 50

automatic update, 22
availability, 11, 36, 54

C
CA, 55, 57, 61

creating, 57
extracting, 57

caching, 51
catalog.attrs file, 52
certificate authority (CA) See CA
certificate chain, 55
certificate key

extracting, 59
certificate management, 56

See also pktool command
creating a certificate authority, 57
creating a client certificate, 58
creating a keystore, 56
generating a certificate signing request, 58

certificate policy, 39
certificate signing request (CSR) See CSR
certificate, client See client certificate
certification authority See CA
checksums, 17
client certificate, 55
clone

repository, 37
ZFS file system, 34

copying
using a zip file, 17
using an iso file, 19
using mirror service, 22
using pkgrecv, 21

crt.pem file, 59
CSR, 58, 61

generating, 58
signing, 58

E
/etc/certs/CA/ trust anchor directory, 39

G
gencert command, 58

H
HTTP interface

About section, 40
repository description, 40
repository name, 41

httpd.conf file, 49, 60
HTTPS repository access, 55

Index

68 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

I
image-create command, 23
iso files, 19

creating, 18

K
key management, 56

See also pktool command
creating a keystore, 56

key.pem file, 59
keystore

creating, 56
default and custom locations, 56
PKCS12, 62
SOFTTOKEN_DIR, 56

M
mirror service, 22

N
NFS share, 27

O
openssl command, 58

P
package archive, 42
package depot server, 29

caching, 51
load-balanced, 54
non-load-balanced, 52
pkg/inst_root property, 29
pkg/port property, 29
pkg/proxy_base property, 52
pkg/threads property, 52
proxy base, 45, 52

package retrieval
file interface, 27
HTTP interface, 29
HTTPS interface, 55

performance
availability, 11, 36, 54
copying repositories, 15
search, 50, 50, 53

PKCS12 keystore, 62
pkg image-create command, 23
pkg set-publisher command, 23, 28, 31
pkg.depotd package depot server daemon, 29
pkg/depot service See package web server
pkg/inst_root property, 29
pkg/port property, 29
pkg/proxy_base property, 52
pkg/server service See package depot server
pkg/threads property, 52
pkgrecv command, 21, 35, 42

cloning a repository, 37
resume interrupted, 36

pkgrepo command
contents, 42, 43
create, 21, 39
fix, 16, 18
get, 40
info, 18, 19, 28, 42
list, 18, 28, 42
refresh, 35, 42
remove, 44
remove-publisher, 44
set, 39, 41
verify, 16, 18

pktool command
export, 58
gencert, 57
gencsr, 58
list, 57
setpin, 56
signcsr, 58

proxy, 15
publisher

default, 39
properties, 40
setting for file origin, 28
setting for HTTP origin, 31
setting for HTTPS origin, 59

Index

69

setting for mirror service, 23

R
repository

adding packages, 42
availability, 11, 36, 54
best practices, 10
certificate policy, 39
cloning, 15, 37
copying from a zip file, 17
copying from an iso file, 19
copying performance, 15
copying using mirror service, 22
copying using pkgrecv, 21
creating an iso file, 18
creating new structure, 21
default publisher, 39
file access, 27
HTTP access, 29
HTTPS access, 55
location, 11, 17
properties, 38

modifying, 41
publisher properties, 40
search index, 35
security, 12
separate file system, 11, 17
signature policy, 39
snapshots, 11, 18, 34
SRUs, 10
trust anchor directory, 39
updating automatically, 22
updating best practices, 33
updating using a zip file, 19, 34
updating using an iso file, 35
updating using mirror service, 22
updating using pkgrecv, 35
verification, 10, 16, 18
web server, 49

repository files
verifying, 17

retrieval
file interface, 27
HTTP interface, 29

HTTPS interface, 55

S
search performance, 50, 50, 53
searching, 35
secure repository, 55
secure sockets layer See SSL
Service Management Facility (SMF) services See SMF
services
set-publisher command, 23, 28, 31, 59
signature policy, 39
SMF services

ca-certificates, 62
pkg/depot, 46
pkg/mirror, 10, 22
pkg/server, 29
restarting repository service, 30

snapshots, 11, 18, 34
SRU, 10
SSL, 55
support repositories, 23
Support Repository Update (SRU), 10
svc:/application/pkg/depot, 46
svc:/application/pkg/mirror, 10, 22
svc:/application/pkg/server, 29
svc:/system/ca-certificates, 62
svcadm command, 24, 30
svccfg command, 22, 29
svcs command, 24

T
trust anchor directory, 39

U
updating

automatically, 22
best practices, 33
using mirror service, 22
using pkgrecv, 35

user image, 23

Index

70 Copying and Creating Package Repositories in Oracle Solaris 11.2 • September 2014

V
/var/pkg/ssl directory, 59
verify repository, 10, 16, 18
verify repository files, 17

W
web server

caching, 51

Z
ZFS

storage pool capacity, 15
ZFS clone, 34
zip files, 17

	Copying and Creating Package Repositories in Oracle® Solaris 11.2
	Contents
	Using This Documentation
	Product Documentation Library
	Access to Oracle Support
	Feedback

	Chapter 1 • Image Packaging System Package Repositories
	Local IPS Repositories
	Best Practices for Creating and Using Local IPS Package Repositories
	System Requirements
	Repository Management Privileges

	Chapter 2 • Copying IPS Package Repositories
	Performance Considerations for Copying Repositories
	Troubleshooting Local Package Repositories
	Copying a Repository From a File
	How to Copy a Repository From a zip File
	How to Copy a Repository From an iso File

	Copying a Repository From the Internet
	How to Explicitly Copy a Repository From the Internet
	How to Automatically Copy a Repository From the Internet

	Chapter 3 • Providing Access To Your Repository
	Enabling Users to Retrieve Packages Using a File Interface
	How to Enable Users to Retrieve Packages Using a File Interface

	Enabling Users to Retrieve Packages Using an HTTP Interface
	How to Enable Users to Retrieve Packages Using an HTTP Interface

	Chapter 4 • Maintaining Your Local IPS Package Repository
	Updating Your Local Repository
	How to Update a Local IPS Package Repository
	Resuming an Interrupted Package Receive

	Maintaining Multiple Identical Local Repositories
	How to Clone a Local IPS Package Repository

	Checking and Setting Repository Properties
	Viewing Properties that Apply to the Entire Repository
	Viewing Repository Publisher Properties
	Modifying Repository Property Values

	Customizing Your Local Repository
	Adding Packages to Your Repository
	Examining Packages In Your Repository
	Removing Packages From Your Repository

	Serving Multiple Repositories Using Web Server Access
	How to Serve Multiple Repositories From Separate Locations
	How to Serve Multiple Repositories From a Single Location

	Chapter 5 • Running the Depot Server Behind a Web Server
	Depot Server Apache Configuration
	Required Apache Configuration Setting
	Recommended Generic Apache Configuration Settings

	Configuring Caching for the Depot Server
	Cache Considerations for the Catalog Attributes File
	Cache Considerations for Search

	Configuring a Simple Prefixed Proxy
	Multiple Repositories Under One Domain
	Configuring Load Balancing
	One Repository Server With Load Balancing
	One Load-Balanced and One Non-Load-Balanced Repository Server

	Configuring HTTPS Repository Access
	Creating a Keystore
	Creating a Certificate Authority for Client Certificates
	Creating Client Certificates Used for Accessing the Repository
	Generating a Certificate Signing Request
	Signing the CSR
	Extracting the Certificate Key
	Enabling Client Systems to Access the Protected Repository

	Add SSL Configuration to the Apache Configuration File
	Creating a Self-Signed Server Certificate Authority
	Creating a PKCS12 Keystore to Access a Secure Repository With Firefox
	Complete Secure Repositories Example
	How to Configure Secure Repositories

	Index

