

Oracle® Fusion Middleware
Developer's Guide for Oracle JDeveloper Extensions

11g Release 2 (11.1.2.3.0)

E20067-04

August 2012

Documentation for Oracle JDeveloper users that describes
how to develop downloadable extensions to JDeveloper,
adding plug-in capabilities to support internal teams, or as
part of third-party applications.

Oracle Fusion Middleware Developer's Guide for Oracle JDeveloper Extensions 11g Release 2 (11.1.2.3.0)

E20067-04

Copyright © 2011, 2012 Oracle and/or its affiliates. All rights reserved.

Primary Author: Catherine Pickersgill

Contributing Author: John Brock

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... ix
Conventions ... x

What's New in This Guide in Release 11.1.2.3.0 .. xi

1 Introduction to Developing Oracle JDeveloper Extensions

1.1 About Developing Oracle JDeveloper Extensions ... 1-1
1.2 Developing Extensions with OSGi .. 1-3
1.2.1 Service/Component Platform.. 1-3
1.2.2 Deployment Infrastructure... 1-3
1.3 How JDeveloper Extensions Work... 1-4
1.3.1 How Extensions are Processed .. 1-5
1.3.2 Registering Extensions and Using Trigger Hooks.. 1-5
1.3.3 How Lazy Initialization Works ... 1-7
1.4 Guidelines for Writing JDeveloper Extensions .. 1-8
1.5 Migrating Extensions from Previous Releases ... 1-8
1.6 Getting Started With Extension Development ... 1-9
1.6.1 How to Create an Application and Project for Extension Development..................... 1-9
1.6.2 How to Develop for a Different JDeveloper Version .. 1-10
1.6.3 How to Create an Empty Extension Project.. 1-10
1.6.4 Next Steps .. 1-10
1.7 Working with the Extension Manifest .. 1-11
1.7.1 Editing the Extension Manifest in the Overview Editor ... 1-12
1.7.2 Editing the Extension Manifest in the Source Editor... 1-12
1.8 Working with the OSGi Manifest .. 1-12
1.8.1 Understanding Dependencies .. 1-13
1.8.1.1 How to Set Dependencies in the Extension Manifest... 1-13
1.8.1.2 How to Set Dependencies in the OSGi Bundle Profile... 1-13
1.8.1.3 Duplication Between extension.xml and manifest.mf ... 1-14

2 Developing Extensions in Oracle JDeveloper

2.1 About Developing Extensions in Oracle JDeveloper .. 2-1

iv

2.2 Use Cases for Developing Extensions ... 2-1
2.2.1 Understanding Rules Based Menu Sensitivity .. 2-1
2.2.1.1 How to Avoid Complex Controller.update() Implementations 2-2
2.2.2 How to Use Dynamic Menu Labels and Icons .. 2-4
2.2.2.1 How to Append the Short Name to the Menu Label .. 2-4
2.2.3 How to Construct Dynamic Top Menus .. 2-4
2.2.4 Understanding Node Recognizers .. 2-5
2.2.5 Understanding Content Sets .. 2-5
2.2.6 Understanding Large Extensions .. 2-6
2.2.7 Understanding Technology Scopes... 2-7
2.3 Getting the JDeveloper Look and Feel... 2-7
2.4 How to Create JDeveloper Elements.. 2-9
2.4.1 How to Quickly Create JDeveloper Elements ... 2-9
2.4.2 How to Create and Modify Menus ... 2-9
2.4.2.1 Understanding Menus .. 2-10
2.4.2.2 How to Create a Context Menu... 2-10
2.4.2.3 How to Improve Performance by Registering a Context Menu Listener.......... 2-12
2.4.2.4 How to Add Menu Items to an Existing JDeveloper Menu 2-13
2.4.2.5 How to Add a Drop-down Button to a Toolbar.. 2-14
2.4.3 Working with Windows and Views .. 2-14
2.4.3.1 Understanding Dockable Windows ... 2-14
2.4.3.2 How to Create Simple Dockable Windows ... 2-15
2.4.3.3 How to Position Dockable Windows.. 2-16
2.4.3.4 How to Add an IDE Listener to a View ... 2-16
2.4.3.5 How to Listen for the Active View ... 2-17
2.4.4 How to Develop Wizards ... 2-18
2.4.4.1 How to Set Up a Wizard Project.. 2-18
2.4.4.2 How to Implement the Wizard Interface ... 2-18
2.4.4.2.1 How to Define the Constructor .. 2-18
2.4.4.2.2 How to Define the Invoke Method .. 2-19
2.4.4.2.3 How to Define the getMenuSpecification Method.. 2-19
2.4.4.2.4 How to Define the isAvailable Method .. 2-19
2.4.4.2.5 How to Define the getIcon Method ... 2-20
2.4.4.2.6 How to Define the getName Method .. 2-20
2.4.4.3 How to Add a Wizard to the New Gallery.. 2-20
2.4.4.4 How to Add a Wizard to the Tools Menu ... 2-20
2.4.5 How to Develop Commands ... 2-21
2.4.5.1 How to Implement the Addin Interface... 2-21
2.4.5.2 How to Implement a Command ... 2-22
2.4.5.2.1 Handling the Event .. 2-22
2.4.5.2.2 How to Define the undo Method... 2-22
2.4.5.2.3 How to Define Other Methods... 2-22
2.4.5.3 How to Define an Action.. 2-23
2.4.5.3.1 How to Obtain an Action .. 2-23
2.4.5.3.2 How to Set Action Values ... 2-23
2.4.5.3.3 How to Extend an Action's Controller .. 2-24
2.4.5.3.4 Extending an Action's Command Class.. 2-24

v

2.4.5.4 How to Invoke an Addin From a Main Window Menu...................................... 2-24
2.4.5.5 How to Invoke an Addin From a Context Menu.. 2-25
2.4.6 How to Develop Editors ... 2-26
2.4.6.1 How to Implement the EditorAddin Class.. 2-26
2.4.6.1.1 How to Define the Constructor .. 2-27
2.4.6.1.2 How to Define the initialize Method... 2-27
2.4.6.1.3 How to Define the getEditorClass Method .. 2-27
2.4.6.1.4 How to Define the isDefault Method .. 2-27
2.4.6.1.5 How to Define the getMenuSpecification Method.. 2-27
2.4.6.2 How to Define an Editor Class .. 2-27
2.4.6.2.1 How to Instantiate the Editor ... 2-28
2.4.6.2.2 How to Initialize the Editor .. 2-28
2.4.6.2.3 How to Access the Controller... 2-28
2.4.6.2.4 How to Get the Root GUI Component.. 2-29
2.4.6.2.5 How to Respond to Explorer Events ... 2-29
2.4.6.2.6 How to Respond to Editor Component Events ... 2-29
2.4.6.2.7 How to Generate Update Messages .. 2-29
2.4.6.3 How to Implement a Controller ... 2-30
2.4.6.3.1 How to Define the handleEvent Method.. 2-30
2.4.6.3.2 How to Define the update Method.. 2-31
2.4.6.3.3 How to Define Command Constants .. 2-31
2.4.6.4 How to Specify an Editor Layout.. 2-31
2.4.6.5 Using Asynchronous Editors... 2-31
2.4.6.5.1 How Asynchronous Editors Work .. 2-32
2.4.7 How to Develop Explorers ... 2-35
2.4.7.1 How to Create an Explorer... 2-35
2.4.7.2 How to Register and Initialize a Structure Explorer .. 2-36
2.4.7.3 How to Create a Structure Explorer Element Model ... 2-36
2.4.7.4 How to Update the Structure Explorer .. 2-36
2.4.8 How to Add New Component Palette Pages .. 2-36
2.4.8.1 Understanding Component Palette Pages... 2-37
2.4.8.2 How to Declare Static Content for a Component Page.. 2-37
2.4.8.3 How to Declare a Dynamic Component for a Palette Page 2-39
2.4.8.4 How to Provide Help for a Component Page ... 2-45
2.4.8.5 How to Augment the Search for a Palette Item .. 2-46
2.4.9 Understanding Preferences ... 2-47
2.4.9.1 How to Implement Preferences ... 2-47
2.4.9.2 How to Implement the Data Model.. 2-47
2.4.9.3 How to Implement a UI Panel ... 2-49
2.4.9.4 How to Register a UI Panel .. 2-50
2.4.9.5 How to Obtain the Preference Model... 2-50
2.4.9.6 How to Listen for Changes .. 2-50
2.4.10 Understanding Project Properties .. 2-51
2.4.11 How to Make Changes Undoable .. 2-51
2.4.11.1 How to Make Text Changes Undoable .. 2-51
2.4.11.2 How to Make Commands Undoable.. 2-52
2.5 How to Define and Use Trigger Hooks .. 2-52

vi

2.5.1 How to Register a <trigger-hook-handler> .. 2-53
2.5.2 How to Define Trigger Hooks for your Extension... 2-54
2.5.3 How to Retrieve Parsed Information from the ExtensionRegistry 2-54
2.5.4 How to Define Rules and Condition Triggers Sections .. 2-55
2.5.4.1 How to Define Rules ... 2-55
2.5.4.2 How to Define Simple Rules.. 2-57
2.5.4.3 Implicitly Available Rules .. 2-58
2.5.4.4 Guidelines for Rules.. 2-58
2.5.4.5 How to Define Composite Rules... 2-58
2.5.4.6 How to Reference Rules From Hooks .. 2-59
2.5.4.7 How to Validate Rule References and Evaluate Rules... 2-60
2.6 How to Add Online Help Support .. 2-60
2.6.1 How to Create the Help System ... 2-60
2.6.2 How to Register the Help System .. 2-61
2.7 How to Add Print Support ... 2-61
2.7.1 How to Register DocumentPrintFactory... 2-61
2.7.2 How to Register a View Class to Enable Printing.. 2-62
2.7.2.1 How to Register a PageableFactory implementation for Handling a Node..... 2-63

3 Developing with the Extension SDK

3.1 About Developing with the Extension SDK ... 3-1
3.2 Downloading and Installing the Extension SDK .. 3-1
3.2.1 What Happens When you Install the Extension SDK .. 3-2
3.2.2 Troubleshooting Installing the Extension SDK ... 3-2
3.3 Using with the Sample Extensions .. 3-2
3.4 How to Run the Sample Projects .. 3-7

4 Testing and Debugging Extensions

4.1 About Testing and Debugging Extensions ... 4-1
4.2 Debugging Extension Code... 4-1
4.2.1 How to Run a JDeveloper Extension .. 4-1
4.2.2 How to Debug a JDeveloper Extension.. 4-2
4.3 Troubleshooting Debugging ... 4-2

5 Packaging and Deploying Extensions

5.1 About Packaging and Deploying Extensions .. 5-1
5.2 Packaging the Extension .. 5-2
5.2.1 How to Create the Deployment Profile .. 5-2
5.2.2 How to Create the OSGi Bundle.. 5-2
5.3 Deploying an Extension .. 5-2

A Elements Installed with the Extension SDK

A.1 Elements Installed in the File System.. A-1
A.2 Elements Installed in the IDE... A-1

vii

B Uninstalling the Extension SDK

B.1 About Uninstalling the Extension SDK .. B-1
B.2 How to Disable the Extension SDK... B-1
B.3 How to Delete the Sample Application .. B-2
B.4 How to Uninstall the Extension SDK.. B-2

viii

ix

Preface

Welcome to the Developer's Guide for Oracle JDeveloper Extensions.

Audience
This document is intended for developers that develop use Oracle JDeveloper
extensions.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
■ Oracle Fusion Middleware Installation Guide for Oracle JDeveloper

■ Oracle Fusion Middleware User Guide for Oracle JDeveloper

■ Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework

■ Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework

■ Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application
Development Framework

■ Oracle JDeveloper 11g Online Help

■ Oracle JDeveloper 11g Release Notes, link included with your Oracle JDeveloper 11g
installation, and on Oracle Technology Network

x

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xi

What's New in This Guide in Release
11.1.2.3.0

For Release 11.1.2.3.0 the Oracle Fusion Middleware Developer's Guide for Oracle
JDeveloper Extensions replaces the non-context sensitive online help that was available
in previous releases of Oracle JDeveloper.

For changes made to Oracle JDeveloper and Oracle ADF for this release, see the
What's New page on the Oracle Technology Network at
http://www.oracle.com/technetwork/developer-tools/jdev/documenta
tion/index.html.

xii

1

Introduction to Developing Oracle JDeveloper Extensions 1-1

1Introduction to Developing Oracle
JDeveloper Extensions

This chapter is designed to get you up and running quickly using Oracle JDeveloper to
develop extensions to the JDeveloper integrated development environment (IDE).

The following sections provide an overview of using and developing JDeveloper
extensions:

■ Section 1.1, "About Developing Oracle JDeveloper Extensions"

■ Section 1.2, "Developing Extensions with OSGi"

■ Section 1.3, "How JDeveloper Extensions Work"

■ Section 1.5, "Migrating Extensions from Previous Releases"

■ Section 1.6, "Getting Started With Extension Development"

■ Section 1.7, "Working with the Extension Manifest"

■ Section 1.8, "Working with the OSGi Manifest"

1.1 About Developing Oracle JDeveloper Extensions
Oracle JDeveloper is an integrated development environment (IDE) for building
applications using the latest standards for Java, XML, Web services, and SQL. Most of
the basic functionality in JDeveloper is implemented as extensions—software packages
which add features and capabilities to the basic JDeveloper IDE. You can add existing
extensions into JDeveloper, or you can build on JDeveloper’s native functionality by
creating extensions to provide new features tailored to your organization’s
development requirements, for example:

■ To streamline your work flow.

■ To use a third-party team development tool.

■ To use software packages unique to your team.

■ To help implement development standards and best practices with audit
extensions.

There are a wide variety of extensions readily available for you to download and use.
Some of these have been developed by Oracle, and some by third parties. These
provide new features to JDeveloper and integrate it with other applications that are
used by customers in their own development environments. For example, many of the
version control and teamworking systems available in JDeveloper are written and
distributed as extensions. The open architecture of JDeveloper means that you can
download and install them from Check for Updates on the JDeveloper Help menu.

About Developing Oracle JDeveloper Extensions

1-2 Developer's Guide for Oracle JDeveloper Extensions

Alternatively, you can install them from the Oracle JDeveloper Extensions page on the
Oracle Technology Network (OTN) at
http://www.oracle.com/technetwork/developer-tools/jdev/index-099
997.html.

For more information, see "Working with Extensions" in Oracle Fusion Middleware User
Guide for Oracle JDeveloper.

This same open architecture also makes it possible for you to write your own
extensions if you have specific needs or you would like to integrate JDeveloper with
some external process or tool that your development team uses. You can add menu
items, create context menus, integrate features into the JDeveloper toolbar, create
dockable windows that provide a view into your data objects, and more.

You can use JDeveloper’s native features to develop your own extensions. For more
information, see Chapter 2, "Developing Extensions in Oracle JDeveloper."

For more advanced development, the JDeveloper Extension Software Development Kit
(Extension SDK) has been developed by the JDeveloper development team. It includes
a collection of projects containing sample code, and the javadoc-generated
documentation for the Extension SDK API which provides reference for classes and
other features used in extension development. It is available from Check for Updates
on the JDeveloper Help menu, and it contains much more complete documentation
and examples. If you are planning to do serious extension development, either to
provide wide support to an internal team or to develop an extension as part of a
product or third-party application to pass on to your own customers, it is highly
recommended that you download the Extension SDK. For more information, see
Chapter 3, "Developing with the Extension SDK."

You can use the Oracle JDeveloper page on the OTN forum to ask a question about
developing an extension, contribute to a discussion, or interact with other users. The
Oracle JDeveloper page on the OTN forum is located at
https://forums.oracle.com/forums/forum.jspa?forumID=83.

Note: The recommended way of installing extensions to JDeveloper
is to use Check for Updates on the JDeveloper Help menu because
only extension versions that match the version of JDeveloper you are
using will be available.

Note: The way that JDeveloper handles extensions has changed in
Oracle JDeveloper 11.1.2.nn. For information about extensions for
earlier versions of JDeveloper, see the online help in your version of
JDeveloper.

Oracle extensions for earlier versions of JDeveloper, including the
Extension SDK, and third-party extensions for earlier versions of
JDeveloper are available from the Oracle JDeveloper Extensions page
at
http://www.oracle.com/technetwork/developer-tools/jd
ev/index-099997.html.

Information about migrating extensions written for earlier versions of
JDeveloper is in Section 1.5, "Migrating Extensions from Previous
Releases."

Developing Extensions with OSGi

Introduction to Developing Oracle JDeveloper Extensions 1-3

In contrast to the Extension SDK, JDeveloper also allows you to use external tools
without any coding:

■ You can invoke command line interfaces

■ You can pass parameters

■ You can add menus to JDeveloper

For more information about External Tools, see "Adding External Tools to JDeveloper"
in Oracle Fusion Middleware User Guide for Oracle JDeveloper.

1.2 Developing Extensions with OSGi
The Open Services Gateway Initiative (OSGi) is a specification for building service
platforms running on top of a Java Runtime environment. JDeveloper is built as a set
of extensions which conform to OSGi, and any extensions that you write must also
conform to this standard.

For more information about OSGi, see the OSGi Service Platform Core Specification
Release 4, Version 4.2 which is available from http://www.osgi.org.

The OSGi Framework can be divided into two main elements, both described below:

■ Service/Component Platform, that is the service providers, service requesters, and
service registry.

■ Deployment Infrastructure, that is the service bundles which contain
implementation classes, resources, bundle metadata, and manifest file.

1.2.1 Service/Component Platform
The Service/Component Platform allows an OSGi implementation to activate,
de-activate, update and de-install existing services and to install new services
dynamically.

The Service/Component platform supports the interaction between 3 actors:

1. Service providers, which provide specific services and publish service
descriptions.

2. Service requesters, which discover services and bind to the service providers.

3. Service registry, which manages the publication and discovery of services based
on the registered service descriptions.

An OSGi service is a Java class or interface (service interface), along with a variable
number of attributes (service properties), which are name and value pairs. Service
properties allow differentiation between service providers which use the same service
interface.

The service registry allows services to be discovered by service requesters using LDAP.

Service requesters can receive events signalling changes, for example, publication or
retrieval of a service in the service registry, using notification mechanisms.

1.2.2 Deployment Infrastructure
Services are packaged into service bundles which contain service implementation
classes and resources, along with the manifest file manifest.mf which contains the
bundle metadata. The manifest file contains information such as the service name,
version and dependencies.

How JDeveloper Extensions Work

1-4 Developer's Guide for Oracle JDeveloper Extensions

Service providers and service requesters are part of a service bundle that is both a
logical and a physical entity. The bundle is responsible for run-time service
dependency management activities which include:

■ Publication

■ Discovery

■ Binding

■ Adapting to changes resulting from the dynamic availability—the arrival or
departure—of services that are bound to the bundle.

When you create an extension in JDeveloper, it is composed into an OSGi service
bundle.

1.3 How JDeveloper Extensions Work
This section describes the essential features of how extensions work in JDeveloper. In
order to help with startup performance, overall memory use, and how JDeveloper
performs day to day, only extensions that the user is using are loaded. Some terms and
concepts that you may be unfamiliar with are described below:

■ JDeveloper users choose a role in which to work, and the role determines which
JDeveloper extensions are loaded because roles list the set of possible extensions
for that role. For example, the JDeveloper default role lists all extensions in the
Studio Edition.

■ Initialization is an operation that involves calling the extension initialization code
Addin.initialize(). Extension initialization gives the extension an
opportunity to initialize whatever it needs to function properly at the moment the
end user is about to exercise that extension's functionality.

The initialization list is a list of extensions previously initialized. These same
extensions are initialized when the user reopens a project recording this list.

■ Trigger hooks are a set of declarative integration hooks that provide the
mechanism to trigger extension initialization. They are defined in the
<trigger-hooks> section of the extension manifest extension.xml, and they
are processed when JDeveloper starts, even though your extension may not have
been initialized.

So, any information the JDeveloper IDE needs about your extension at startup,
such as the gallery items it contributes, or the Java libraries it defines, or the node
recognizers it defines, must be provided in trigger hooks.

By contrast, the <hooks> section of the extension manifest is processed later when
your extension is initialized.

■ Registration is an operation that involves reading and caching the trigger hooks
section of the extension manifest.

■ Lazy initialization is the term for extensions not being initialized until their trigger
hook is activated.

■ Extension versioning is managed by OSGi. Two or more versions of the same
extension can be loaded at the same time, and if an extension is activated all
dependent extensions are also loaded. OSGi handles the situation of an extension
depending on a certain version or range of versions.

■ Extensions are classloaded in their own classloader. The extension lists the set of
packages that it exports to other extensions. The OSGi bundle manifest file defines

How JDeveloper Extensions Work

Introduction to Developing Oracle JDeveloper Extensions 1-5

the Java packages that are made available to other bundles. Access to the restricted
classes is not possible, even using reflection, since OSGi protects them by means of
the extension's Java classloader.

■ The OSGi service infrastructure dynamically manages service providers and
requesters.

■ Extensions can have dependencies on other extensions. When an extension is
loaded, any other extension marked as a dependency in the OSGi bundle manifest
is also loaded. You may have already experienced this in JDeveloper, when you
have to click Load Feature, for example, in the Application Properties, Project
Properties, or Preferences dialog to start up a feature that you have not accessed
before, and have to wait while the relevant extensions load.

■ JDeveloper extensions conform to the JSR 198 specification, which provides a
standard extension API for IDEs. For more information, see
http://jcp.org/en/jsr/detail?id=198.

1.3.1 How Extensions are Processed
There are two distinct phases to the way that JDeveloper processes extensions:

■ Extension registration. This happens as JDeveloper starts up. It involves
registering all extensions available for the selected role. No extension code is
executed except for those extensions required to start JDeveloper.

■ Extension initialization. This happens at any time the user accesses a functional
area registered by an extension during the extension registration phase. Therefore
you can see that an extension can be initialized at any time when JDeveloper is
being used.

1.3.2 Registering Extensions and Using Trigger Hooks
Extension registration is the JDeveloper IDE startup phase during which the extension
registry processes the <trigger hooks> section of the extension manifest
extension.xml from all extensions available. During this processing no
extension-specific code is executed with the exception of translatable resources such as
Java resource bundles.

Extensions can define extension specific trigger hooks using the <trigger-hook>
integration hook. If they do so, they must use the
oracle.ide.extension.HashStructureHook handler since the IDE will not
execute extension specific code unless that extension is initialized. The extension
specific trigger hook data will be available for retrieval in the Extension Registry. The
extension owning the trigger hook can retrieve that data once that extension is
initialized. For more information, see Section 2.5.1, "How to Register a
<trigger-hook-handler>."

By contrast, other items that do not belong in the <trigger hooks> section of the
extension manifest extension.xml are initialized declaratively in the initialization
phase of the extension.

There are two types of trigger hooks, system and custom, and every extension is
initialized by:

■ Being called from a system trigger hook

■ Being called from a custom trigger hook

■ Being explicitly initialized by another, already initialized, extension

How JDeveloper Extensions Work

1-6 Developer's Guide for Oracle JDeveloper Extensions

The types of trigger hook defined by the JDeveloper IDE are:

■ Menus: Only menus that qualify as an entry point to an extension should be menu
trigger hooks, and menus that are used to support an already initialized extension
should not be trigger hooks. For example, in the JDeveloper View menu, the
Breakpoints menu item is a trigger hook since a user will want to set breakpoints
before running the debugger, but the debugger subMenu in the View menu is not
a trigger hook since everything in it is only used once the extension is initialized.
From this you can see that menu items for uninitialized extensions are not visible
in JDeveloper.

■ Context Menus: Extensions can create custom trigger hooks that use context
menus as the trigger. There are no system-level context menu trigger hooks.

■ IDE Actions and Controllers: Only actions and controllers to support menu
trigger hooks should be registered. All other actions and controllers should
execute in the initialization phase. Any controller registered for a trigger hook
menu will not be able to run code to determine if their menu is disabled or not; it
must use declarative controller logic to specify when the menu is shown.

■ Gallery Items: Extensions can list items in the JDeveloper New Gallery using the
gallery item trigger hook. When the user opens a dialog or wizard from the New
Gallery it causes the extensions for that item to initialize, and any extension
marked as a dependency in the OSGi bundle manifest of this extension is also
loaded.

■ Technology Scopes: When a technology scope is added to a project, the extension
that registered that technology scope is initialized, along with any other extension
marked as a dependency in the OSGi bundle manifest.

■ NodeFactory Recognizers: This allows extensions to identify the nodes they own.
When a node becomes visible in a navigator, if the extension for that node is
registered, it will be initialized. NodeFactory recognizers also handle things like
dragging a file from the desktop into JDeveloper.

■ IDE Preferences/Settings, Application Preferences/Settings, Project
Preferences/Settings: Uninitialized extensions will only show as a category listing
in the Preferences dialog (available from the Tools menu). It is not until a user
clicks on the category that they will be asked if they want to initialize the
extension at that point.

■ Singleton Registration: Singleton classes register as a trigger hook. When a client
requests a service from a singleton, the framework will check to see if that
singleton's extension has been initialized. If it has not, it will call for the extension
to be initialized. An example is the Log Manager.

■ Annotations: Extensions can register themselves as needing an annotation trigger
hook. They list out the annotation class names and when the user types one of
those annotations, we will initialize that extension at that time. The annotation
trigger hooks are used during navigator node expansion to determine icon
overlays. When a parent node is expanded, the framework will look for any
annotations that are registered and if found, will supply the appropriate icon for
that node. The extension will not be initialized in the case where the node icon
overlay is applied.

■ Application and project migrators: These migrators must be defined
declaratively. Migrators specify the current versions supported. If the application
or project file lists an older version of the migrator, or no version at all, JDeveloper
triggers the initialization of the extension in order to perform the migration of that
extension's data.

How JDeveloper Extensions Work

Introduction to Developing Oracle JDeveloper Extensions 1-7

■ Library and Tag Library: When a library or tag library is added to a project, the
associated extension will trigger to initialize. In addition to this, when a project is
opened (not loaded), JDeveloper looks for libraries of that project and
automatically loads the extensions that are associated with that library or tag
library if they are not already loaded.

■ Custom Trigger Hooks: An extension can define its own trigger hook. This is
useful for the situation that an extension wants to allow clients to plug into it. An
extension defines its trigger hook in the same manner that it defines a regular
hook. Client extensions can then add a trigger hook registration (either system or
custom) into their extension manifest. When registering a trigger hook, the
extension specifies which extension(s) need to be loaded in order for the trigger to
take effect. These are called hook dependencies. JDeveloper ensures that this hook
is only processed when all the extensions listed as hook dependencies are
initialized.

1.3.3 How Lazy Initialization Works
In order to avoid initializing all extensions every time JDeveloper starts lazy extension
initialization is used.

■ During JDeveloper startup, the IDE only executes Addin.initialize() code if
the extension that owns the Addin has been previously used by the end user in the
currently opened application or project. For more information, see Section 2.2.4,
"Understanding Node Recognizers."

■ Each extension identifies a type associated with their trigger hook so that this
hook:

– Can only be triggered when there is an application workspace open.

– Can only be triggered when there is a project open.

– Can be initialized at any time in the way that, for example, the HTTP Analyzer
can be.

■ As users work on an application in JDeveloper, the user's usage of extension
functionality is recorded in a project-specific extension initialization list. That way,
when the user stops working on a project by exiting JDeveloper and re-starting at
a later time, JDeveloper only initializes the extensions listed in the project's
initialization list.

For extensions that do not require a project, the information is stored in the IDE
preferences for the user.

When you are developing your extension you need to consider how the integration
points deal with lazy initialization. For example:

■ Extensions cannot assume that integration points are static; extensions must be
ready at any time during their life cycle to process and integrate new data
associated with their integration point.

For example, extension A has an API or a custom extension hook that allows other
extensions to register some listener class. Extension A cannot assume that all such
listeners are registered by the time extension A is initialized; other extensions that
depend on A can be lazy initialized later in the life cycle of ABC. Therefore,
extension A must update its event firing code associated with these listeners to
deal with this effect of extension lazy loading. The way this is done is described in
the next point.

Guidelines for Writing JDeveloper Extensions

1-8 Developer's Guide for Oracle JDeveloper Extensions

■ Extensions should use oracle.ide.extension.HashStructureHook to
implement custom integration hooks. This hook processing class has a property
change listener mechanism that lets clients know when new additional data is
registered. Your extension should listen for these property change events.

■ You should avoid having a deep dependency tree because having extensions with
deep dependency trees, What will happen is that the extension will cause the
initialization of all the extensions it depends on, which can diminish the
performance gains of lazy extension loading. If you find that your extension has a
deep dependency tree, you need to refactor the extensions to reduce the number of
extensions it depends on. For more information, see Section 2.2.6, "Understanding
Large Extensions."

1.4 Guidelines for Writing JDeveloper Extensions
This section is an outline of good development practice for JDeveloper extensions.

■ Write declarative trigger hooks to initialize the model of your extension and
declare them in the extension manifest. Extension initialization code happens in
the OSGi activator, and the first time that a class is classloaded from an extension,
OSGi automatically activates the bundle by calling its activator.

You can find more information to guide you in Section 2.2, "Use Cases for Developing
Extensions."

1.5 Migrating Extensions from Previous Releases
If you have an extension that you developed for an earlier version of JDeveloper, you
will need to change it to run in the current release of JDeveloper. Section Section 1.3,
"How JDeveloper Extensions Work" describes how extensions now work in
JDeveloper, so you should start by being familiar with the concepts described there.

The coding areas you need to consider are:

■ The Addin.initialize method is no longer called at IDE startup. You must
initialize your extension using a trigger hook.Trigger hooks are defined in the
extension manifest extension.xml, and you can use one of the trigger hooks types
defined by the JDeveloper IDE, or create a custom trigger hook. For more
information, see Section 2.5, "How to Define and Use Trigger Hooks."

■ Almost all <hooks> properties in the extension manifest extension.xml should
now be placed in <trigger hooks>.

■ In earlier versions of JDeveloper, role files were exclusionary, meaning that by
default all extensions were loaded and the role file told JDeveloper what not to
load. Now role files are inclusive; only extensions listed in a role are able to be
loaded when their trigger hook is activated.

■ All extensions have separate classloaders. As a result, code that calls
package-protected methods from classes in the same package but different
extensions will not work.

■ If your extension has custom integration points, these must be changed to handle
on-demand extension initialization. For more information, see Section 1.3.3, "How
Lazy Initialization Works."

■ Code that uses reflection to instantiate classes in an extension that it does not have
explicit dependencies on will not work.

Getting Started With Extension Development

Introduction to Developing Oracle JDeveloper Extensions 1-9

There are a number of use cases in Section 2.2, "Use Cases for Developing Extensions"
that describe situations you may encounter when you are converting your extensions
to use declarative trigger hooks support lazy initialization.

1.6 Getting Started With Extension Development
Whether you use the native features of JDeveloper to create an extension, described in
Chapter 2, "Developing Extensions in Oracle JDeveloper," or download the Extension
SDK to develop an extension, described in Chapter 3, "Developing with the Extension
SDK," you start by creating an application in JDeveloper along with one or more
projects configured for extension development.

1.6.1 How to Create an Application and Project for Extension Development
An application is the control structure for one or more projects. A project is a logical
container for a set of files that defines a program or part of a program. For more
information, see "About Working with Applications and Projects" in Oracle Fusion
Middleware User Guide for Oracle JDeveloper.

To create an application and project:
1. Open the New Gallery by choosing File > New.

2. In the New Gallery, in the Categories tree, under General select Applications.

3. In the Items list, double-click Custom Application. The Create Custom
Application wizard opens. For help with the wizard, press F1 or click Help.

4. Enter a name for the application and choose a location and an application package
prefix and click Finish.

The application is created with a default project called Project1 that you will not
use and can delete.

5. Next, create a project that is configured for extension development. Open the New
Gallery by choosing File > New.

6. In the New Gallery, in the Categories tree, under Client Tier select Extension
Development.

7. In the Items list, double-click Extension Project. The Create Extension Project
dialog opens. For help with the dialog, press F1 or click Help.

8. Enter a name and other details for the extension project. When you are done, click
Finish.

The extension project is created in the Application Navigator, and contains the
elements shown inFigure 1–1.

Figure 1–1 Extension Project in the Application Navigator

Getting Started With Extension Development

1-10 Developer's Guide for Oracle JDeveloper Extensions

The extension project is created, along with a copy of the extension manifest
extension.xml and the OSGi manifest manifest.mf. The extension manifest is
opened in the overview editor.

1.6.2 How to Develop for a Different JDeveloper Version
If you are developing an extension for a different version of JDeveloper, you choose
the platform when you create the Extension project.

When you create the extension project, as in Section 1.6.1, "How to Create an
Application and Project for Extension Development", when you have the Create
Extension Project dialog open (step 7), click Manage to open the Manage Extension
Platforms dialog.

In this dialog, enter details of the JDeveloper version that you are developing the
extension for. For more help, press F1 or click Help in the dialog.

1.6.3 How to Create an Empty Extension Project
If you are familiar with creating extensions, and want to start with an empty project,
you can create a custom application with a project that is set up for extension
development but which does not contain the extension manifest extension.xml and
the OSGi manifest manifest.mf.

To create an extension application with an empty project:
1. Open the New Gallery by choosing File > New.

2. In the New Gallery, in the Categories tree, under General select Applications.

3. In the Items list, double-click Custom Application. The Create Custom
Application wizard opens. For help with the wizard, press F1 or click Help.

4. Enter a name for the application and choose a location and an application package
prefix.

5. Click Next, and enter a name for the project. On the Project Features tab, select
Extension Design Time and shuttle it to the Selected list, then click Finish.

In this case, an empty project is created in the Application Navigator, and you need to
create extension.xml separately in the same way that you would create any XML file.
For more information, see "Creating XML Files in Oracle JDeveloper" in Oracle Fusion
Middleware User Guide for Oracle JDeveloper.

1.6.4 Next Steps
Once you have created an application and project you can begin to develop the
extension:

■ To continue by using the JDeveloper IDE to develop, for example, by creating an
extension Addin, see Section 2, "Developing Extensions in Oracle JDeveloper."

■ To use the samples in the Extension SDK to create your extension, or to use the
Extension SDK API, see Section 3, "Developing with the Extension SDK."

Note: You can only develop extensions for other versions of
JDeveloper 11.1.2.0.0.

Working with the Extension Manifest

Introduction to Developing Oracle JDeveloper Extensions 1-11

1.7 Working with the Extension Manifest
The extension manifest, extension.xml, controls many aspects of the extension.
Before you can deploy an extension, you must complete extension.xml to, for
example, register trigger hooks. There can only be one extension.xml per project,
and it must always be in a directory called meta-inf.

The extension manifest conforms to the JSR-198 specification, which is available at
http://jcp.org/aboutJava/communityprocess/final/jsr198/index.htm
l.

Hooks and trigger-hooks are set in the relevant sections of the extension manifest. The
<hooks> section of extension.xml is processed when the extension is initialized. The
<trigger-hooks> section is processed when JDeveloper starts up.

JDeveloper has a dedicated overview editor for extension.xml, illustrated in
Figure 1–2.

Figure 1–2 extension.xml in Overview Editor

You edit extension.xml using the overview editor, where you enter information
such as details about dependencies into fields, and choose from lists of available
objects, and where you can use the Structure window and Property Inspector. To edit
information in extension.xml that is not available in the overview editor, you can
either use the Structure window or work in the extension.xml source, which you
access by clicking the Source tab.

For more information about dependencies, see Section 1.8.1, "Understanding
Dependencies."

The template code for extension.xml created by creating an extension project
contains placeholders for the main elements, shown in Example 1–1.

Example 1–1 Template Code in extension.xml

<extension id="yourcompany.extension" version="1.0" esdk-version="1.0"
rsbundle-class="yourcompany.extension.Res"
 xmlns="http://jcp.org/jsr/198/extension-manifest">
 <name>${EXTENSION_NAME}</name>
 <trigger-hooks xmlns="http://xmlns.oracle.com/ide/extension">
 <!-- TODO Declare triggering functionality provided by extension:
yourcompany.extension -->
 <triggers/>
 </trigger-hooks>
 <hooks>

Working with the OSGi Manifest

1-12 Developer's Guide for Oracle JDeveloper Extensions

 <!-- TODO Declare functionality provided by extension: yourcompany.extension
-->
 </hooks>
</extension>

1.7.1 Editing the Extension Manifest in the Overview Editor
On the General tab of the overview editor for extension.xml you enter information
about the extension such as the extension name, the SDK version, and specify features
such as an icon and copyright information. This information populates the
feature-hook and platform-info elements.

The Dependencies tab is where you can specify that this extension is part of another
extension, or alternatively specify that this extension is parent to another extension.
This populates the dependencies element. The Hooks tab is where you details of
additional extensions to contribute functionality to your extension. For more
information, see Section 1.8.1, "Understanding Dependencies."

Detailed help, which describes the content of each field, is available by pressing F1
from any tab in the overview editor.

1.7.2 Editing the Extension Manifest in the Source Editor
You edit the extension manifest in the source editor using the XML editor, a
specialized schema-driven editor which includes a number of editing features
including Code Insight and XML validation. For more information, see "Using the
XML Editors" in Oracle Fusion Middleware User Guide for Oracle JDeveloper.

1.8 Working with the OSGi Manifest
The OSGi manifest, manifest.mf, lists the packages that the extension bundle
exports. There can only be one manifest.mf per project, and it must always be in a
directory called meta-inf.

When a new extension project is created, a default manifest.mf is created, as shown
in Example 1–2.

Example 1–2 Default of manifest.mf

Manifest-Version: 1.0
Bundle-ClassPath: .

For detailed information about the content of the OSGi manifest, see
http://www.osgi.org/javadoc/r4v42/overview-summary.html.

As part of the packaging process for an extension, JDeveloper updates manifest.mf
to provide:

■ Required-Bundle: Classes from another OSGi bundle that are required by your
extension are listed. Comes from the required-bundles elements in the
extension manifest.

■ Export-Package: When you want to make Java packages in your extension
available to other extensions, these packages are listed.

■ Bundle-Classpath: If your extension needs to reference classes from a JAR which
is not an OSGi bundle it is listed. Comes from <dependencies> elements in the
extension manifest.

Working with the OSGi Manifest

Introduction to Developing Oracle JDeveloper Extensions 1-13

These values are set in the OSGi Bundle Profile dialog. For more information, see
Section 5.2.1, "How to Create the Deployment Profile."

1.8.1 Understanding Dependencies
Extensions can depend on other extensions or JAR files. When you are developing
extensions for JDeveloper, you need to understand the dependencies upon the
extension, as well as the extension tree. You need to know the dependencies between
your extension and other extensions, that is whether:

■ Your extension is part of another extension

■ Or, one or more extensions are part of your extension

You also need to know the libraries and JAR files that need to be added. For example,
if you add a dependency on oracle.jdeveloper.maven.jar, you must also add
dependency libraries for those JAR files delivered with the external Maven module.

Once you have worked this out, you set dependencies in the extension manifest, and
ensure that any libraries and additional JAR files are part of the extension bundle.

1.8.1.1 How to Set Dependencies in the Extension Manifest
When you create an extension project, the extension manifest is created and opened in
the overview editor. For more information, see Section 1.7, "Working with the
Extension Manifest."

The order in which extensions are loaded depends on the entries in the extension
manifest.

To set dependencies in the Extension Manifest:
1. In necessary, open extension.xml in the overview editor by double-clicking on

extension.xml under META-INF in the Application Navigator. Select the
Dependencies tab.

2. To specify that other extensions are dependent on this extension, click Add
Extension Import. In the Select Extension dialog, choose one or more extensions
and click OK.

For more help at any time, press F1 or click Help from the dialog.

The extensions you select as listed as <import> elements in the
<dependencies> section of the extension manifest.

3. To specify extension requires classes from another OSGi bundle, click Add Bundle
Entry. In the Select Required Bundles dialog, choose one or more bundles that
depend on this extension and click OK.

The extensions you select as listed as <bundle> elements in the
<required-bundles> section of the extension manifest. When searching for a
class, OSGi will search in the order they are listed, so be sure to add the bundle to
the proper location in the list of bundles.

1.8.1.2 How to Set Dependencies in the OSGi Bundle Profile
As part of packaging up your extension, you create an OSGi bundle profile which is
used to determine the generated bundle manifest. For more information, see
Section 5.2.1, "How to Create the Deployment Profile."

The important entries to make on the OSGi Bundle Profile dialog are:

Working with the OSGi Manifest

1-14 Developer's Guide for Oracle JDeveloper Extensions

■ Package Exports: This is where you specify file groups that are contributors to the
Export-Package section of the generated bundle manifest. For example, if there are
Java packages in your extension which you want to make accessible to other
extensions, list the packages in this section.

■ Package Imports: This is where you specify file groups, library dependencies, and
profile dependencies that are contributors to the Import-Package section of the
generated bundle manifest.

■ Require Bundle: This is where you specify library dependencies and profile
dependencies that are contributors to the Require-Bundle section of the generated
bundle manifest.

The Library Dependencies page allows you to check the library dependencies for the
bundle, and the Profile Dependencies page allows you to examine and if necessary
change dependencies on other JAR deployment profiles in the application.

1.8.1.3 Duplication Between extension.xml and manifest.mf
If you edit the OSGi manifest by hand rather than letting JDeveloper create it as part of
the Deployment process, you can enter similar information about the extension in the
extension manifest extension.xml and in the OSGi manifest manifest.mf, for example:

Where there is duplication, the information in manifest.mf is used, however the
extension load order is always taken from the <dependencies> section of
extension.xml.

extension.xml manifest.mf

<dependencies> Required-Bundles

<extension-id> Bundle-SymbolicNa
me

2

Developing Extensions in Oracle JDeveloper 2-1

2Developing Extensions in Oracle JDeveloper

This chapter provides an introduction to some of the features available to JDeveloper
extension writers, developers, and users, and offers examples of several of the features
that extension developers ask about most frequently. It describes the native features of
JDeveloper that you can begin using immediately to develop features for an extension
you plan to develop.

This chapter includes the following sections:

■ Section 2.1, "About Developing Extensions in Oracle JDeveloper"

■ Section 2.2, "Use Cases for Developing Extensions"

■ Section 2.3, "Getting the JDeveloper Look and Feel"

■ Section 2.4, "How to Create JDeveloper Elements"

■ Section 2.5, "How to Define and Use Trigger Hooks"

■ Section 2.6, "How to Add Online Help Support"

■ Section 2.7, "How to Add Print Support"

2.1 About Developing Extensions in Oracle JDeveloper
JDeveloper uses an open architecture that makes it possible for you to write your own
extensions, if you have specific needs or you would like to integrate JDeveloper with
some external process or tool that your development team uses. You can add menu
items, create context menus, integrate features into the JDeveloper toolbar, create
dockable windows that provide a view into your data objects, and more.

2.2 Use Cases for Developing Extensions
This section outlines a series of use cases that you may encounter when planning your
extension or if you are converting an existing extension written for an earlier version
of JDeveloper to use declarative trigger hooks and support lazy initializations. Follow
the recommendations here to create extensions that load and execute quickly.

2.2.1 Understanding Rules Based Menu Sensitivity
Extensions control menu sensitivity by setting the enabled state of the action
associated with a menu item, which is determined by one of the
oracle.ide.controller.Controllers associated with that action. Since actions
are trigger hooks, oracle.ide.controller.Controller implementations
associated with the action are not called unless the extension that owns the controller

Use Cases for Developing Extensions

2-2 Developer's Guide for Oracle JDeveloper Extensions

has been initialized. For an example of setting simple rules, see Section 2.5.4.2, "How
to Define Simple Rules."

Consider the following general situation: Menu item M1 is associated with action A1,
which in turn is associated with several controllers. These controllers, in turn, are
allowed to indicate whether they handle action A1 for the given context. The first
controller that handles the selected action sets the action's enabled state.

As a specific example, EditCopy is associated with action IdeConstants.COPY_
CMD_ID, which in turn is associated with a controller that knows how to copy text,
and another controller that knows how to copy visual objects, such as UI components.

In the past, use cases following this pattern have led to performance problems, when
menus are shown or when toolbar buttons change their enabled state as JDeveloper
changes context—for example, when the user changes the current selection, changes
the current view, or changes the current active project.

To prevent time-consuming operations in these situations, develop your extensions'
menus using rule-based action sensitivity control. Controllers are defined declaratively
in the extension manifest file. For more information, see Section 1.7, "Working with the
Extension Manifest."

Part of the controller definition specifies action update rules, which control the
action-enabled state:

■ Enable "Always"

■ Enable when "Active application present"

■ Enable when "Active project present"

■ Enable when "Context has a node"

■ Enable when "Context has a node of type X"

■ Enable when "Context has selection"

■ Enable when "Context has single selection"

■ Enable when "Context has multiple selection"

Controller can define multiple rules, and the most specific rules must appear first in
the rule definition list.

JDeveloper analyses the controller rule-based sensitivity before the extension that
owns the controller is initialized. Once the extension is initialized, the extension's
Controller.update() method handles the action-enabled state. If no controller
does so, extension operation follows the rules as defined. The recommended way is to
have all Controller.update() methods return false so as not to interfere with
GUI responsiveness.

2.2.1.1 How to Avoid Complex Controller.update() Implementations
Controllers specify the rules that determine the enabled state of an action declaratively,
using the action-enabling rules described in Section 2.2.1, "Understanding Rules Based
Menu Sensitivity." If your menu is enabled and the user executes it, the extension can
then perform the operations needed to ensure that menu execution works properly.

Earlier implementations of Controller.update() used to execute complex and
time-consuming code in order to determine the action enabled state. The current menu
sensitivity model allows the enabled state of an action to be determined declaratively,
and reduces the time involved in choosing the appropriate action to perform.

The rules that control controller behavior are as follows.

Use Cases for Developing Extensions

Developing Extensions in Oracle JDeveloper 2-3

When the extension is initialized:

■ A menu is about to be shown:

– If it is a rules base controller, the rule will be evaluated. If false, the menu is
grayed out by the framework. If true or not a rules-based controller, see the
next bullet point.

– Controller.update() is called. If it returns true, no other controllers are
processed. The controller must set the enabled/disabled state of the action
inside the update() method.

■ The user selects an active action. Controller.update() is called. If it returns
true, no other controllers are processed. The controller must set the
enabled/disabled state of the action inside the update() method.

When the extension is not initialized: This is described in

■ A menu is about to be shown. The rule for the controller is evaluated. If false,
the menu is grayed out by the framework. If true it is activated by the
framework.

■ The user selects an active menu on an extension that has not been initialized:

– Controller.update() is called. If update() returns false an exception
will be thrown to say that when the controller's rule is evaluated to true, the
controller’s update() method must also return true, and a log message is
displayed to remind you. If update() returns true, go to the next bullet
point.

– The action will be checked to see if it is enabled/disabled. If the action is
enabled, Controller.handleEvent() will be called. If the action is
disabled, go to the next bullet point.

– If the controller is a TriggerController, the framework will display a
message to the user telling them why the action cannot be performed. If it is
not a TriggerController, an exception will be thrown telling the you that
this controller needs to be a TriggerController.

Therefore if the conditions in the first or third bullet points occur, you need to
address them declaratively.

Use Cases for Developing Extensions

2-4 Developer's Guide for Oracle JDeveloper Extensions

Figure 2–1 Flow Diagram for Unitialized Extension

2.2.2 How to Use Dynamic Menu Labels and Icons
Dynamic menu labels and icons are menu items that vary depending on which
application, project or node the user selects. From within your extension, dynamic
menu labels execute code when selected in order to modify the menu label string
and/or icon that is displayed when the user selects the menu.

2.2.2.1 How to Append the Short Name to the Menu Label
When the user selects a dynamic menu, JDeveloper appends the selected element short
label to the menu item label. You can see this in:

Run > Run myproject.jpr

In general, these menus depend on the selected application, project, node, or element.
Using the controller hook, extensions can request that JDeveloper update the label
based on the action update rules. For more information, see Section 2.2.1,
"Understanding Rules Based Menu Sensitivity."

This updates the menu label, adding the short name associated with the element
specified by the rule. This element can be an application, project, or node.

2.2.3 How to Construct Dynamic Top Menus
When constructing dynamic top level menus, such as the Source top level menu,
define them declaratively using the same trigger hooks as top level menus. For more
information, see Section 2.4.2, "How to Create and Modify Menus."

The editor type and the node type control whether a menu item is included in the
dynamic top level menu.

When these two conditions are met, the dynamic menu declaratively defined for the
active editor and node opened is displayed as a top level menu. When the extension
user selects this menu, menu item sensitivity is handled by setting the enabled state of

Use Cases for Developing Extensions

Developing Extensions in Oracle JDeveloper 2-5

the action associated with a menu item. For more information, see Section 2.2.1,
"Understanding Rules Based Menu Sensitivity."

2.2.4 Understanding Node Recognizers
Node recognizers are responsible for recognizing the oracle.ide.model.Node
subclass associated with a resource pointed to by a specific URL.

JDeveloper provides two standard recognizers:

■ One that can recognize node types such as file extensions, based on information
provided by the URL itself.

■ One that can recognize XML node types, based on the content of an XML file.

In previous versions, JDeveloper also allowed custom recognizer implementations to
be registered. This is now deprecated.

The Addin.initialize() method registers a custom implementation of the
oracle.ide.mode.Recognizer class using one of these methods:

■ Recognizer.registerRecognizer(String, Recognizer)

■ Recognizer.registerRecognizer(String, Recognizer)

■ Recognizer.registerLowPriorityRecognizer(Recognizer)

Extensions that provide custom recognizers must adjust their node recognition in such
a way that it can be handled by JDeveloper's recognizers.

If you are rewriting an extension developed for an earlier version of JDeveloper that
used the IDE standard recognizers, you need to remove the recognizer registration
code from the Addin.initialize() method and use the recognizer trigger hook to
register recognition rules in the extension manifest file, extension.xml. For more
information, see Section 1.7, "Working with the Extension Manifest."

2.2.5 Understanding Content Sets
JDeveloper uses content sets to define the categories that are displayed as nodes in the
Application Navigator. The categories in installed JDeveloper include:

■ Application Sources

■ Web Sources

■ Resources

Content sets are registered declaratively, but do not trigger initialization of the
extension that introduced the content set, because content sets require no custom
behavior. You must provide the content set ID, label, and default URLs that indicate
where to look for content in your extension.

Instances of ContentLevelFilter provide client behavior that control what is
shown under a content set.

A ContentLevelFilter is responsible for filtering the breadth-first traversal
implemented by the ContentLevel class to provide a virtual representation of each
level that differs from its physical representation. A ContentLevelFilter may:

■ Add new elements to be displayed.

■ Remove elements from the display.

■ Remove subdirectories from the display.

Use Cases for Developing Extensions

2-6 Developer's Guide for Oracle JDeveloper Extensions

■ Cause a subdirectory to be displayed even if it is empty.

Instances of ContentLevelFilter are registered statically via the static method
addContentLevelFilter(ContentLevelFilter) in the class ContentLevel.

After a new application is created or opened in the Application Navigator, if the
extension user expands the top-level folder of a project, before adding all the folders
and files in such project (which uses method open in BaseTreeExplorer) the
method applyContentLevelFilters(Context, List, List) in class
ContentLevel is called. This method:

1. Gets all the source root directories.

2. Checks that, for each of the instances of ContentLevelFilter registered,
whether a filter can be applied to the given Context. If it can, it calls the method
updateDir(URLPath, String, List, List, Context context) which
can modify the lists of elements and subdirectories for each level before they are
displayed. Whenever there are multiple instances of ContentLevelFilter
applying changes to the same level, later filters will see the effect of earlier filters
and, if appropriate, perform further filtering on them.

3. Does the same as in the previous step for instances of
AsynchronousContentLevelFilter, ContentLevel. It also obtains a
Callable from such a filter, which performs an asynchronous request to get
additional elements.

ContentLevelFilter does not need declarative registration. Before filtering takes
place, nodes are created using NodeFactory, which uses recognizers to create nodes
from URLs. Since recognizers are trigger hooks, by the time filtering takes place,
related extensions are already initialized.

In general, extensions that register content level filters also register recognizer rules;
therefore, they are always initialized if a node type is recognized by the recognizer
rules they registered. For example, the Application Navigator ensures that as the user
expands folders in the navigator, it creates instances of nodes for all files found under
that folder, which triggers extension initialization. At that point, JDeveloper invokes
the content level filters giving these a chance to filter out nodes or add other nodes to
display under the folder being expanded.

2.2.6 Understanding Large Extensions
Extensions that provide a wide set of functionality and have a deep dependency tree
are considered large extensions. In general, initializing large extensions causes the
pre-initialization of a number of other extensions due to their deep dependency tree.
In many cases extension users may only be accessing a subset of the wide functionality
provided by a large extension but, inadvertently, they get more than they require due
to the monolithic structure of this type of extension.

To improve the performance of a large extension, it is recommended that you refactor
large extensions following one of these models:

■ Identify the extension's main functional areas and refactor prominent areas into
separate extensions; or

Note: To find out whether a ContentLevelFilter can be applied to a
Context, ContentLevel retrieves all the content set keys from that
filter and checks to see whether the context has at least one of the keys
as property.

Getting the JDeveloper Look and Feel

Developing Extensions in Oracle JDeveloper 2-7

■ Keep abstract functional areas in a single extension with a shallow dependency
tree, while moving functional implementation details to separate extensions.

The first model works best when functional areas have simple dependencies between
them. For example, consider an extension, E1, which has two functional areas: X and Y.
A simple dependency means that refactoring extension E1 into extensions E2 and E3
introduces no bi-directional dependencies between E2 and E3, or if it does, these can
be resolved by introducing a support module, (for example, module M1), which
provides the functionality both E2 and E3 need. It is important that M1 not have the
same dependency tree as E1; this defeats the purpose of the refactoring exercise, which
was to reduce the number of extensions that need to be pre-initialized before the
functionality provided by E1 can be exercised. Ideally, extensions E2 and E3 do not
depend on each other and the original dependency tree from extension E1 is now
evenly distributed between extensions E2 and E3.

The second model leaves a version of extension E1 that has a very shallow
dependency tree. In order to reduce the dependency tree, the refactoring operation
must move the implementation of functional areas E2 and E3 to extensions E2impl and
E3impl. For this pattern to work, it is very important that E1 does not depend on
extensions E2impl and/or E3impl. To support this pattern, use the
singleton-service-hook which makes sure that the right implementation, say the
E2impl extension, is initialized when functionality E2 is accessed through extension
E1. By using the singleton-service-hook, E2impl is initialized even though E1
does not depend on that extension. For more information, see the section in Singleton
registration in Section 2.5, "How to Define and Use Trigger Hooks."

2.2.7 Understanding Technology Scopes
When the user selects a technology scope, the extension that introduced that
technology scope along with all the other extensions it depends on is initialized. The
deployment dependencies are stated in their projects' deployment profiles. For more
information, see "Deployment Profiles" in Oracle Fusion Middleware User Guide for
Oracle JDeveloper.

If the user’s selection makes it necessary to initialize extensions outside the
dependency tree of the extension introducing the technology scope, the recommended
method of handling this is to wait for the user to use some functional aspect of your
extension that triggers extension initialization. This avoids the concept of the feature
set, which would require initializing all members of the feature set and defeat the
purpose of lazy initialization.

2.3 Getting the JDeveloper Look and Feel
You can develop extensions that blend seamlessly with JDeveloper by following the
guidelines in this section. For example, you can use standard spacing and alignment
for common components by using the UI constants published in the
oracle.javatools.ui.LayoutConstants to achieve the recommended spacing.
The spacing can be used for all components, whether they are in dialogs, wizards or
modeless overview editors.

Figure 2–2 shows the standard spacing used for elements in a JDeveloper dialog.

Getting the JDeveloper Look and Feel

2-8 Developer's Guide for Oracle JDeveloper Extensions

Figure 2–2 JDeveloper Dialog Showing Spacing

Figure 2–3 shows the spacing used for an overview editor in JDeveloper.

Figure 2–3 Overview Editor Showing Spacing

How to Create JDeveloper Elements

Developing Extensions in Oracle JDeveloper 2-9

2.4 How to Create JDeveloper Elements
This section describes how to work with and develop various JDeveloper elements:

■ Menus

■ Windows and views

■ Wizards that can be invoked from the New Gallery or from the Tools menu

■ JDeveloper commands

■ Source editors

■ Explorers

■ File types

■ Component palettes

■ JDeveloper preferences

■ Making changes undoable

2.4.1 How to Quickly Create JDeveloper Elements
There are some JDeveloper elements that you can create quickly from the New Gallery:

■ Actions, that is operations that the extension user may invoke in the IDE. For more
information about Actions, see Section 2.4.5.3, "How to Define an Action."

■ Addins, which can perform programmatic initialization and registration for an
extension while JDeveloper is starting up. For more information about Addins, see
Section 2.4.5.1, "How to Implement the Addin Interface."

■ Data models, which subclass HashStructureAdapter to store the persistent data
model for preferences or project properties. For more information about data
models, see Section 2.4.9.2, "How to Implement the Data Model."

■ Wizards that can be invoked from the New Gallery or Tools menu. For more
information about wizards, see Section 2.4.4, "How to Develop Wizards."

■ New panels in the Preferences dialog. For more information about working with
the Preferences dialog, see Section 2.4.9, "Understanding Preferences."

■ New panels in the Project Properties dialog. For more information about project
properties, see Section 2.4.10, "Understanding Project Properties."

To quickly create a JDeveloper element from the New Gallery:
1. Follow the steps in Section 1.6.1, "How to Create an Application and Project for

Extension Development" to create an application and extension project.

2. Open the New Gallery by choosing File > New.

3. In the New Gallery, in the Categories tree, under Client Tier select Extension
Development.

4. In the Items list, double-click the JDeveloper element you want to create. The
appropriate dialog opens. For more help, press F1 or click Help from the dialog.

2.4.2 How to Create and Modify Menus
Because so much of a user's interaction with JDeveloper is through the menus,
JDeveloper lets you modify existing menus and create new ones. In addition to adding
selections to the items in JDeveloper's menu bar, you can also add context menus that

How to Create JDeveloper Elements

2-10 Developer's Guide for Oracle JDeveloper Extensions

give you finer control over user interactions with the functions provided by your
extension.

Menus interact with the command extension, which in turn relies on the Addin
interface. For more information, see Section 2.4.5, "How to Develop Commands."

2.4.2.1 Understanding Menus
Menus are an important way to integrate your extension's functionality into
JDeveloper. You may wish to add a major feature—selecting a versioning system, for
example, or accessing an internal code-snippet database—to JDeveloper's menu
system, so that your extension can be accessed or controlled through a selection from
the menu or tool bar. On the other hand, some features of your extension—checking
out a file from your organization's versioning software or verifying code with your
organization's preferred tool—might best be handled through a context menu that
pops up when the user clicks the right mouse button in the appropriate place.
JDeveloper's extension system lets you do both. For more information, see
Section 2.4.2.2, "How to Create a Context Menu."

JDeveloper includes a class to support the declarative creation of context menus,
which can then be hooked to the main JDeveloper functionality by a series of listeners
and controllers. This lets you create menu-based extensions that fit within the
structure and user interface of JDeveloper, while adding features and capabilities
beyond the basic IDE. For more information, see Section 2.4.5.5, "How to Invoke an
Addin From a Context Menu."

Alternatively, your extension might have features that already fit within the existing
menu structure of JDeveloper, but add unique functions to each of the current menus.
In this case, your extension needs to add specific new options to existing menus. For
more information, see Section 2.4.2.4, "How to Add Menu Items to an Existing
JDeveloper Menu."

You can also use a similar technique to add new selections to a toolbar. For more
information, see Section 2.4.2.5, "How to Add a Drop-down Button to a Toolbar."

2.4.2.2 How to Create a Context Menu
Creating a menu declaratively using the context menu listener classes lets you use
standard classes. This helps make your extension easy to update, adds consistency
across all menus, helps your extension load quickly, and can require no custom code to
develop. You can use the existing context menu listener classes, by registering them,
using the callback interface that lets you add menus to your extension, and finally by
using the controller associated with the specific view for which the menu is created.
For more information, see Section 2.4.5.5, "How to Invoke an Addin From a Context
Menu."

To create a menu with several selections:
1. Register the context menu listener classes in your extension manifest using the

sample code in Example 2–1.

Example 2–1 Registering Context Menu Listener Classes

<extension xmlns="http://jcp.org/jsr/198/extension-manifest" ...>
 ...
 <hooks>
 <jdeveloper-hook xmlns="http://xmlns.oracle.com/jdeveloper/1013/extension">
 <actions>
 <!-- Action to show the File List -->
 <action id="MY_CMD_ID">

How to Create JDeveloper Elements

Developing Extensions in Oracle JDeveloper 2-11

 <properties>
 <property name="Name">My Action</property>
 </properties>
 <controller-class>oracle.ide.extsamples.basic.SimpleController
 </controller-class>
 </action>
 </actions>
 <context-menu-listeners>
 <site idref="navigator"> <!-- or "editor", or "explorer" -->
 <listener-class>oracle.ide.extsamples.basic.
 SimpleContextMenuListener</listener-class>
 </site>
 </context-menu-listeners>
 </jdeveloper-hook>
 </hooks>
 ...
</extension>

2. Implement ContextMenuListener, as shown in Example 2–2.

This is the callback interface that allows extensions to add menu items and
submenus to the context menu:

Example 2–2 ContextMenuListener

package oracle.ide.extsamples.basic;
import oracle.ide.Context;
import oracle.ide.controller.ContextMenu;
import oracle.ide.controller.ContextMenuListener;
import oracle.ide.controller.IdeAction;
/**
 * ContextMenuListeners add items to context menus.
*/
public final class SimpleContextMenuListener
 implements ContextMenuListener
{
 public void menuWillShow(ContextMenu contextMenu)
 {
 // Add my menu to the context menu only when user clicked on SomeNode class.
 if (contextMenu.getContext().getNode() instanceof
oracle.ide.extsamples.basic.SomeNode.class)
 {
 IdeAction action = IdeAction.find(SimpleController.SAMPLE_CMD_ID);
 contextMenu.add(contextMenu.createMenuItem(action));
 }
 }
 public void menuWillHide(ContextMenu contextMenu)
 {
 // Most context menu listeners will do nothing in this method. In
 // particular, you should *not* remove menu items in this method.
 }
 public boolean handleDefaultAction(Context context)
 {
 // You can implement this method if you want to handle the default
 // action (usually double click) for some context.
 return false;
 }
}

3. Implement oracle.ide.controller.Controller, as shown in Example 2–3.

How to Create JDeveloper Elements

2-12 Developer's Guide for Oracle JDeveloper Extensions

Each View has an associated Controller. Controllers receive requests to handle
the commands associated with user actions. The controller's handleEvent method
gets called with the appropriate Command specified. If the Controller does not
handle the requested command, it delegates the Command to a supervising
Controller. Controllers are also responsible for determining the availability of a
specific command, by calling the update method.

Example 2–3 oracle.ide.controller.Controller

package oracle.ide.extsamples.basic;
import oracle.ide.Context;
import oracle.ide.controller.Controller;
import oracle.ide.controller.IdeAction;
/**
 * ContextMenuListeners add items to context menus.
 */
public final class SimpleController
 implements Controller
{
 public static final int MY_CMD_ID = Ide.findCmdID("MY_CMD_ID");
 public boolean handleEvent(IdeAction action, Context context)
 {
 if (IdeAction.getCommandId() == MY_CMD_ID)
 {
 // Do some action
 return true;
 }
 return false;
 }
 public boolean update(IdeAction action, Context context)
 {
 if (IdeAction.getCommandId() == MY_CMD_ID)
 {
 // Enable action
 action.setEnabled(true);
 return true;
 }
 action.setEnabled(false);
 return false;
 }
 }

2.4.2.3 How to Improve Performance by Registering a Context Menu Listener
Registering a context menu listener makes sure your context menus pop up quickly.

Context menu listeners should do the minimum amount of work so that they do not
delay the popping-up of context menus. Currently, there are close to 250 menu
listeners for the Application Navigator context menu, therefore, on average listeners
have to take less than 4 milliseconds for the context menu to pop up in less than a
second.

Here are some tips for improving performance:

■ If your extension is interested in certain nodes only, your context menu listeners
should be registered for that specific node type. This guarantees that your listener
is only called when the user of your extension clicks on a node of that type.

How to Create JDeveloper Elements

Developing Extensions in Oracle JDeveloper 2-13

■ When your listener's menuWillShow method is called, your only action should be
to add your menu item. Protect against non-applicable contexts when your menu
item action is executed.

■ Your listener's menuWillHide method should do nothing.

The following things have a negative impact on context-menu performance:

■ File I/O operations.

■ Parsing the contents of files.

■ Iterating over a list of things looking for something.

■ Searching for something on the file system.

■ Iterating over the menus already added to the context menu and trying to rename
them or remove them.

2.4.2.4 How to Add Menu Items to an Existing JDeveloper Menu
Sometimes, a feature of your extension can be handled simply by adding an item, or a
group of items, to an existing JDeveloper menu or toolbar. For more information, see
Section 2.4.5.4, "How to Invoke an Addin From a Main Window Menu."

To add a new menu item to the Tools menu:
1. Import oracle.ide.controller.*, then create the action (_myActionID) you

plan to call in the menu, as shown in Example 2–4.

Example 2–4 oracle.ide.controller.*

import oracle.ide.controller.*;
 // Create the action
 _myActionID = Ide.createCmdID("FirstAction");
 IdeAction firstAction = IdeAction.get(
 _myActionID,
 null,
 "My First Action",
 IdeMainWindow.ACTION_CATEGORY_TOOLS,
 new Integer('F'),
 null, null, true);

2. Set the current item as the controller:, as shown in Example 2–5.

Example 2–5 Controller

// Set ourselves as the controller
 firstAction.addController(this);

3. Add the menu item associated with firstAction to the menu, as shown in
Example 2–6.

Example 2–6 firstAction Menu Item

// Add a menu entry in the Tools menu
final Menubar menubar = Ide.getMenubar();
final JMenuItem firstActionMenu = menubar.createMenuItem
 firstAction,MenuConstants.WEIGHT_UNDEFINED);
 menubar.add
 (firstActionMenu,MenuManager.getJMenu(IdeMainWindow.MENU_TOOLS));

How to Create JDeveloper Elements

2-14 Developer's Guide for Oracle JDeveloper Extensions

To add multiple menu items to an existing menu:
Example 2–7 adds three menu items to an existing menu.

Example 2–7 Sample Code to Add Three Menu Items to Menu

// First menu of the first section
JMenuItem menu1 = contextMenu.createMenuItem(myAction1, 1f);
contextMenu.add(menu1, 1f);

// Second menu of the first section
final JMenuItem menu2 = contextMenu.createMenuItem(myAction2, 2f);
contextMenu.add(menu2, 1f);

// <- First menu of the second section
final JMenuItem menu3 = contextMenu.createMenuItem(menu3, 1f);
contextMenu.add(menu3, 2f);

2.4.2.5 How to Add a Drop-down Button to a Toolbar
In some cases, your extension will operate through a window which may itself have a
toolbar with specific options unique to your extension, or to the specific data object
viewed in your extension's window. For more information, see Section 2.4.5.4, "How to
Invoke an Addin From a Main Window Menu."

To add a drop-down button to a toolbar:
The code in Example 2–8, when included as a method to a window unique to your
extension, adds a drop-down button, with three actions, to a toolbar. When the user
clicks the button, the menu that appears contains three actions.

Example 2–8 Adding a Drop-down Button to a Toolbar

void doit(Toolbar toolbar, IdeAction dropDownIdeAction, IdeAction ideAction1,
IdeAction ideAction2, IdeAction ideAction3) {
 ActionMenuToolButton actionMenuToolButton =
toolbar.addActionMenuButton(dropDownIdeAction);
 Action[] actions = new Action[] {
 ideAction1,
 ideAction2,
 ideAction3,
 };
 actionMenuToolButton.setMenuActions(actions);
}

2.4.3 Working with Windows and Views
The JDeveloper data model uses two important concepts for displaying and
monitoring the content of the information you are working with: windows and views.
Windows (often dockable windows, which occupy a specific location in the IDE
framework) display information and take command inputs. Views define how
JDeveloper accesses the information objects (such as files or database records) that
your extension generates, manipulates or displays.

2.4.3.1 Understanding Dockable Windows
Dockable windows allow you to create a dedicated area for your extension at a
specified location in JDeveloper. Using dockable windows involves two key steps:

How to Create JDeveloper Elements

Developing Extensions in Oracle JDeveloper 2-15

1. Creating a dockable window.

2. Positioning a dockable window.

Once you have created and positioned the window to be used by your extension, you
need to make sure that your extension is aware of that window, and in particular, that
it is aware when the user has selected your window for input. The mechanism that
JDeveloper uses for this is the IDE listener. Adding an IDE listener to your window
connects your extension to the window you created. For more information, see
Section 2.4.3.4, "How to Add an IDE Listener to a View."

Now that you have created, positioned, and assigned an IDE listener to your dockable
window, you are ready to make sure that your extension is aware when the user has
selected it. When a window is selected, it has the active view. You can now instruct the
IDE listener you added to listen for the active view. For more information, see
Section 2.4.3.5, "How to Listen for the Active View."

2.4.3.2 How to Create Simple Dockable Windows
Creating a dockable window involves three steps: creating a DockableFactory,
creating a dockable window using the class MyDockableWindow, and then installing
the DockableFactory during the addin initialization.

To create a dockable window:
1. Create a DockableFactory, as shown in Example 2–9.

Example 2–9 DockableFactory

public class MyDockableFactory implements DockableFactory
{
 static final String VIEW_TYPE = "MY_VIEW_TYPE";
 public void install()
 {
 final DockingParam dockingParam = new DockingParam();
 dockingParam.setPosition(IdeConstants.SOUTH);
 DockStation.getDockStation().dock(
 new MyDockableWindow(),
 dockingParam);
}
 public Dockable getDockable(ViewId viewId)
{
 if (viewId.getName().equals(MyDockableWindow.VIEW_ID))
 return new MyDockableWindow();
 {
 return null;
 }
}

2. Create a DockableWindow, as shown in Example 2–10.

Example 2–10 DockableWindow

public class MyDockableWindow extends DockableWindow
{
 static final String VIEW_ID = "MY_VIEW_ID";
 private JLabel _ui;
 public MyDockableWindow()
 {
 super(MyDockableFactory.VIEW_TYPE + "." + VIEW_ID);
 }

How to Create JDeveloper Elements

2-16 Developer's Guide for Oracle JDeveloper Extensions

 public String getTabName()
 {
 return "ShortName";
 }
 public String getTitleName()
 {
 return "The Long Name Comes Here";
 }
 public String getTitleName()
 {
 return "The Long Name Comes Here";
 }
 public Component getGUI()
 {
 if (_ui == null)
 {
 _ui = new JLabel("The UI is here");
 }
 return _ui;
 }
 public int getDefaultVisibility(Layout layout)
 {
 return DEFAULT_VISIBILITY_VISIBLE;
 }
}

3. Install the factory during the addin initialization, as shown in Example 2–11.

Example 2–11 Install Factory

DockStation.getDockStation().registerDockableFactory(
 MyDockableFactory.VIEW_TYPE,
 new MyDockableFactory()
);

2.4.3.3 How to Position Dockable Windows
Example 2–12 shows how to center a dockable window with the Application
Navigator. If the application navigator extension is not loaded, the window will be
docked on the left (WEST).

Example 2–12 Centering a Dockable Window

dockingParam = new DockingParam();
final NavigatorManager applicationNavigatorManager =
NavigatorManager.getApplicationNavigatorManager();
final NavigatorWindow navigatorWindow =
applicationNavigatorManager.getNavigatorWindow();
dockingParam.setPosition(
 navigatorWindow,
 IdeConstants.CENTER,
 IdeConstants.WEST
);

2.4.3.4 How to Add an IDE Listener to a View
To add a selection listener to the active view, you need to listen for the active view
changes. If you added your listener to the view becoming inactive, you need to remove
your listener from that view.

How to Create JDeveloper Elements

Developing Extensions in Oracle JDeveloper 2-17

To add an active listener:
Create code based on Example 2–13.

Example 2–13 Adding an Active Listener

import oracle.ide.view.ActiveViewListener;
import oracle.ide.view.ActiveViewEvent;
import oracle.ide.view.ViewSelectionListener;
class MyActiveViewListener implements ActiveViewListener
 {
 private ViewSelectionListener _selectionListener = new ViewSelectionListener()
 {
 public void viewSelectionChanged(ViewSelectionEvent e)
 {
 //Your code responding to view selection changes goes here.
 {
 };

To change the active listener:
Create code based on Example 2–14.

Example 2–14 Changing an Active Listener

public void activeViewChanged(ActiveViewEvent e)
 {
 View view = e.getOldView();

 if (view != null) view.removeViewListener(_selectionListener);
 view = e.getNewView();
 //While this example adds a ViewSelectionListener to any active view,
 //it is strongly recommended that you add your view selection listener
 //to views your extension is interested in only.
 view.addViewListener(_selectionListener);
 }
}

2.4.3.5 How to Listen for the Active View
The JDeveloper IDE architecture’s model/view/controller model requires that your
extension keep track of which view—that is, which representation of the data is being
displayed in a given window—is active. (You may be familiar with windowing
systems that refer to active views as having input focus.) The JDeveloper IDE
architecture requires your extension to listen for the active view, as a way of ensuring
that commands executed by the view are applied to the appropriate data.

To listen for the active view:
Create code based onExample 2–15.

Example 2–15 Listening for the Active View

Ide.getMainWindow().addActiveViewListener(new ActiveViewListener()
 {
 public void activeViewChanged(ActiveViewEvent e)
 {
 final View view = e.getNewView();
 System.out.println(view.getId() + " has been activated");
 }

How to Create JDeveloper Elements

2-18 Developer's Guide for Oracle JDeveloper Extensions

});

2.4.4 How to Develop Wizards
A wizard is an extension that is invoked to perform some task. A typical wizard is
invoked through the UI to open a user interface consisting of one or a sequence of
dialog boxes, in which the user specifies task parameters. A typical task is the creation
of a document or other data object. Specialized invocation mechanisms are provided
for wizards that are installed in the New Gallery or the Tools menu. In these cases the
Wizard Manager manages the invocation details.

2.4.4.1 How to Set Up a Wizard Project
The wizard project's properties specify paths, libraries, and other settings for the
wizard project. When you have set up your project you can add your source files to it,
and then debug and deploy your wizard.

A wizard project usually has three main components:

■ A wizard class. This class deals with the wizard's appearance in the user interface,
and with its invocation. This class must implement the Wizard interface.

■ A modal dialog. The dialog interacts with the user to collect data required for the
function of the wizard.

■ A data object. The wizard applies the data collected by the dialog to create or
modify a data object.

The code examples shown in this section are taken from the HelloX sample project,
available as part of the Extension SDK. For more information, see Chapter 3,
"Developing with the Extension SDK.".

HelloX implements wizard directly, and uses a JDialog as its user interface. Wizards
that conform to JDeveloper's look and feel use the JEWT wizard framework.

2.4.4.2 How to Implement the Wizard Interface
Extensions that are to be invoked from the user interface to perform some modal task
should implement the oracle.ide.wizard.Wizard interface. This interface
provides for the extension's installation, and integrates it with JDeveloper's user
interface.

To Implement the wizard interface:

■ Define the constructor

■ Define the invoke method

■ Define the getMenuSpecification method

■ Define the isAvailable method

■ Define the getIcon method

■ Define the getName method

2.4.4.2.1 How to Define the Constructor A wizard's constructor is invoked only once,
when the wizard is loaded. The constructor should be lightweight, meaning that it
should not create and hold object references, and you should defer such operations to
the initialize method.

How to Create JDeveloper Elements

Developing Extensions in Oracle JDeveloper 2-19

2.4.4.2.2 How to Define the Invoke Method This method embodies the wizard's
functionality. Wizards generally open a dialog to obtain parameters from the user, and
then use those parameters to create or modify a document or other data object.

This method is called when the wizard's UI element is selected by the user through the
New Gallery or Tools menu. The context parameter identifies the currently selected
objects that the wizard might affect. The params parameter is empty when the wizard
is called from Tools menu, and contains the value set of the wizard's
wizardParameters tag from the extension.xml file.

To define the invoke method:
Create code based on Example 2–16.

Example 2–16 Defining the Invoke Method

public boolean invoke(oracle.ide.addin.Context context, java.lang.String[] params)
{
 if (!this.isAvailable(context))
 return false;
 String greetee = null;
 JProject project = (JProject) context.getProject();
 // Get the parameter from the user.
 greetee = JOptionPane.showInputDialog
 (new JDialog(), prompt, wizName, JOptionPane.OK_CANCEL_OPTION);
 if (greetee == null)
 return false;
 // Create the document and the node that represents it.
 if (!createNode(project, greetee))
 return false;
 return true;
}

2.4.4.2.3 How to Define the getMenuSpecification Method This method is called to
determine the appearance of the wizard's item in the Tools menu, when it is to be
displayed. If the wizard is not installed in the Tools menu this method should return
null.

To define the getMethodSpecification method:
Create code based on Example 2–17.

Example 2–17 Defining the getMethodSpecification Method

public MenuSpec getMenuSpecification()
 {
 if (menuSpec == null)
 {
 Icon icon = getIcon();
 menuSpec = new MenuSpec(wizName, new Integer((int)'X'), (KeyStroke)null,
icon);
 }
 return menuSpec;
 }

2.4.4.2.4 How to Define the isAvailable Method This method is called to determine if the
wizard's New Gallery entry or Tools menu item should be enabled or disabled, given

How to Create JDeveloper Elements

2-20 Developer's Guide for Oracle JDeveloper Extensions

the current context. For example, a wizard that operates on project nodes must only be
enabled only when the current node is a project node.

To define the isAvailable method:
Create code based on Example 2–18.

Example 2–18 Defining the isAvailable Method

public boolean isAvailable(oracle.ide.addin.Context context)
 {
 Project p = context.getProject();
 if ((p != null) && (p instanceof JProject))
 return true;
 return false;
}

2.4.4.2.5 How to Define the getIcon Method This method is called to obtain the wizard's
New Gallery or Tools menu icon. If the wizard does not require an icon, this method
should return null.

To define the getIcon method:
Create code based on Example 2–18.

Example 2–19 Defining the getIcon Method

public Icon getIcon()
{
 if (image == null)
 {
 image = GraphicsUtils.createImageIcon(
 GraphicsUtils.loadFromResource(imageName, this.getClass()));
 }
 return image;
}

2.4.4.2.6 How to Define the getName Method This method provides a human-readable
name for the wizard, so enter an appropriate string.

2.4.4.3 How to Add a Wizard to the New Gallery
Wizards can be installed in the New Gallery by including a gallery wizard description
for them in the extension manifest file. All of the details of wizard registration and
event processing are handled by the Wizard Manager.

If the wizard is to be invoked only from the New Gallery, the constructor for the
wizard class is not called until the extension user first opens its category. The Gallery
Manager reads the description file when the category is first opened, and then
instantiates the wizard and constructs the item using the icon and label derived from
the instance.

2.4.4.4 How to Add a Wizard to the Tools Menu
The Wizard Manager provides special support for wizards that are installed in the
Tools menu. The Wizard Manager takes care of the details of adding the menu item
and handling the user's selection of it.

How to Create JDeveloper Elements

Developing Extensions in Oracle JDeveloper 2-21

Wizards can also be installed elsewhere in the user interface, such as other menu,
context menus, or the tool bar, but in these cases a command must be defined, and
installed and handled explicitly. In the extension manifest file, include an addin
description for the wizard.

To install a wizard in the Tools menu:
1. Your wizard should implement getMenuSpecification(), as shown in

Example 2–20. In this method, create a new instance of
oracle.ide.util.MenuSpec, passing in the label, mnemonic, and icon of the
required menu item.

The code example is taken from the HelloX and ConfigPanel sample project,
available as part of the Extension SDK. For more information, see Chapter 3,
"Developing with the Extension SDK.".

Example 2–20 Installing a Wizard in the Tools Menu

public MenuSpec getMenuSpecification()
{
 if (menuSpec == null)
 {
 Icon icon = getIcon();
 menuSpec = new MenuSpec(wizName, new Integer((int)'X'),
(KeyStroke)null, icon);
 }
 return menuSpec;
}

2. Define the wizard's getMenuSpecification method to return an icon and
label. (This method may return null if the wizard is invoked only from the New
Gallery).

3. Deploy the extension to install it. For more information, see Chapter 5, "Packaging
and Deploying Extensions."

2.4.5 How to Develop Commands
An extension that adds a user-interface element such as menu item or toolbar icon, or
customizes an existing element for a new purpose, should encapsulate the
functionality in a command extension.

2.4.5.1 How to Implement the Addin Interface
Most extensions should implement the Addin interface. This interface provides for the
extensions installation at the time of JDeveloper's startup.

To implement the Addin interface, first define the constructor. The constructor should
do as little as possible; defer initialization tasks to the initialize method.

Then, define the initialize method. This method is called by the Addin Manager
after the instance has been created. The tasks that should be performed at initialization
are:

■ creation of UI elements and controllers.

■ Registration with managers.

Other tasks, such as the creation of data structures that are not needed until and if the
addin is invoked, should be deferred, so that JDeveloper's startup is not unnecessarily
delayed.

How to Create JDeveloper Elements

2-22 Developer's Guide for Oracle JDeveloper Extensions

2.4.5.2 How to Implement a Command
If your extension adds a menu item or toolbar icon, you should implement its
functionality as a command.

An extension that defines specialized behavior for an existing control should use the
action and command class already provided for it, rather than define a custom action
or implement a custom command class. Fields defined in the Ide class give the class
names and IDs of the IDE's standard commands.

 A command for an extension involves these tasks:

■ Handling the event

■ Defining the undo method

■ Defining other methods

The code examples in this section are taken from the FirstSample sample project,
available as part of the Extension SDK. For more information, see Chapter 3,
"Developing with the Extension SDK.".

2.4.5.2.1 Handling the Event The code in Example 2–21 shows how to handle the event,
which is triggered when you invoke the command.

Example 2–21 Handling the Event

/**
 * ContextMenuListeners add items to context menus.
 */
public final class SimpleContextMenuListener implements ContextMenuListener {
 public void menuWillShow(ContextMenu contextMenu) {
 // First, retrieve our action using the ID we specified in the
 // extension manifest.
 IdeAction action = IdeAction.find(SimpleController.SAMPLE_CMD_ID);
 // Then add it to the context menu.
 contextMenu.add(contextMenu.createMenuItem(action));
 }
 public boolean handleDefaultAction(Context context) {
 // You can implement this method if you want to handle the default
 // action (usually double click) for some context.
 return false;
 }
}

For long blocks of code, you can use the doIt method.

2.4.5.2.2 How to Define the undo Method This method must be defined only if the
constructor specifies that the controller is of the NORMAL type. The undo method
generally has two tasks:

■ Undo the doit methods effect by restoring a checkpointed state with the value
obtained from the getData method, or by performing the inverse of the doit
method's operation.

■ Notify observers that the modification has taken place.

Return OK if the command is successful, or CANCEL or some other non-zero value if
not. The default implementation returns CANCEL and has no side-effects.

2.4.5.2.3 How to Define Other Methods These methods' default implementations can be
overridden:

How to Create JDeveloper Elements

Developing Extensions in Oracle JDeveloper 2-23

■ getId returns the command ID passed to the constructor.

■ getType returns the "command type" constant passed to the constructor, or NO_
CHANGE if this argument was not given.

■ getName returns the name string passed to the constructor, or the empty string if
this argument was not given.

■ getAffectedNodes returns null by default.

■ setContext and getContext respectively write and read a protected Context
variable. The default value is null.

■ setData and getData respectively write and read a private Object variable.
The default value is null.

2.4.5.3 How to Define an Action
An extension that implements new command classes should define actions to contain
them. An action serves as the link between a menu item, or other user-interface
control, and the command that is executed when the menu item is selected. Actions are
instances of IdeAction.

An extension that defines specialized behavior for an existing UI element should use
the action already provided for it, rather than define a custom action. Fields defined in
the Ide class give the class names and IDs of the standard commands. For example,
any editor that provides a 'save' operation should use the predefined Ide.SAVE_CMD
and Ide.CUT_SAVE_ID values and the action that is associated with them.

Actions are typically defined as fields of the Addin class that installs the menu items
or toolbar icons they are associated with. Create and configure actions as part of the
extension's initialization.

The code examples in this section are taken from the FirstSample sample project,
available as part of the Extension SDK. For more information, see Chapter 3,
"Developing with the Extension SDK.".

2.4.5.3.1 How to Obtain an Action Actions are cached by command ID. If an action
already exists for the command you require, you should generally use it instead of
creating a new one.

Do not use the IdeAction contstructors to create actions. Instead, use the following
static methods to retrieve a cached action or create a new one:

■ The find method returns an action that contains the given command id, if one has
already been cached.

■ The various get methods return the action matching the given command id, if
such an action has been cached, but the properties of this action may or may not
match the parameters given. If no action is found for the command ID a new
action is created from the given parameters, cached, and returned.

■ The create methods create and return a new action without caching it. A action
obtained from create is not available to subsequently loaded extensions.

2.4.5.3.2 How to Set Action Values An action may have various properties, such as those
that determine appearance, which are accessed through string keys by the putValue
and getValue methods. Some of the properties are set when an action is created by a
create or get static method. Keys recognized by the IDE are defined in the
ToggleAction superclass. For more information, see ToggleAction in the Oracle
Fusion Middleware Java API Reference for Oracle Extension SDK.

How to Create JDeveloper Elements

2-24 Developer's Guide for Oracle JDeveloper Extensions

2.4.5.3.3 How to Extend an Action's Controller An action that is independent of a view,
such as 'open', must specify a controller to update the action and handle its events. An
action that is invoked in the context of a view need not have an action controller.

The behavior of a command, for all IDE features that use that command, can be
extended to perform some custom operation by replacing the controller of the
command's action, or by giving the action a controller if it did not already have one.
However, care must be taken to avoid disrupting default behavior.

To replace an existing controller:
1. Implement the new controller class by extending the old class.

2. In the new controller's handling of the command that is to be extended, perform
the custom operation, and then invoke the old controller's handleEvent method
for the command, so that the original behavior is preserved.

To add a controller to an action that does not have one:
1. Implement a new controller class.

2. In the new controller's handling of the command that is to be extended, perform
the custom operation, and then invoke the supervisor's handleEvent method
for the command, so that the original behavior is preserved.

Use the getController and addController methods to access an action's
controller.

2.4.5.3.4 Extending an Action's Command Class The getCommand method returns the
name of the action's command class. The setCommand method can be used to replace
it. However, doing so replaces it globally, affecting all IDE features that handle the
action. To avoid unwanted side effects, replace an original command class only with a
class that extends it.

2.4.5.4 How to Invoke an Addin From a Main Window Menu
To allow an addin to be invoked from a main window menu, add a menu item for it to
one of the main window menus. The item can be added to any menu, however, if the
extension is to be invoked from the Tools menu, it should be installed as a wizard,
rather than (or in addition to) being installed as an addin: the Wizard Manager takes
care of the details of adding and handling menu item in the Tools menu.

The IDE menus are represented by a singleton instance of Menubar, which can be
accessed using the getMenubar method.

Extensions can add menus, submenus, and menu items to the IDE menus. Extensions
that are invoked, such as wizards, add their own items to menus when they are
installed. Alternatively, extensions can define their own behavior for standard menu
items. For example, effect of the items in the Edit menu depend on the editor in use.

Menu items are associated with IdeAction objects.

When the state of the IDE changes, the enabled/disabled status of all menu items are
reset as dictated by the active view's controller. When the user then selects a menu
item or enters a keyboard shortcut for an item, the command named by the item's
action is executed under the current context.

To define a menu item, provide these components:

■ A command ID representing the command that is to be executed when the menu
item is selected.

How to Create JDeveloper Elements

Developing Extensions in Oracle JDeveloper 2-25

■ An action that is associated with the command ID, and acts as the link between
user actions and the controller. For more information, see Section 2.4.5.3, "How to
Define an Action."

■ A controller responsible for enabling and disabling the menu item and handling
its events, and ultimately invokes the feature installed by the addin. For more
information, see Section 2.4.6.3, "How to Implement a Controller."

■ The menu item, which serves as the link between user actions and the controller.

Call the menu bar's createMenuItem method to create the menu item. The menu bar
is a component of the IDE.

return Ide.getMenubar().createMenuItem(action);

Menus are static members of the Main Window. Call a menu's add method to add a
menu item. Menu items should be immediately available when JDeveloper is
launched, so create and install them in the addin's initialize method. The
following adds a menu item to the Navigate menu.

public void addMenuItem()
 {
 Environment.getJMenu(IdeMainWindow.MENU_EDIT).
add(createMenuItem(contextInfoAction));
}

2.4.5.5 How to Invoke an Addin From a Context Menu
Some views, such as the Application Navigator and the source editor have context
menus that pop-up when the user right-clicks in the window. Extensions can add
items to context menus.

User interface elements that are represented by objects of any class that implements
ContextMenuListener may have a context menu. Context menus can be used
almost anywhere in JDeveloper: most of the user interface's elements ultimately either
implement this class, or are subcomponents of implementors.

When the user right-clicks, the context menu is reconstructed. Selected context menu
listeners — those associated with the subject of the right-click — are polled, and given
the opportunity to contribute items or submenus to the context menu. For example,
when a node representing a document is right-clicked, editors and designers that are
registered as viewers for that document's type are allowed to add their menu items to
the context menu.

A context menu listener is polled through these methods:

■ poppingUp, called when the context menu is being constructed. The listener
should contribute its menu items at this time.

■ poppingDown, called when the context menu is dismissed.

■ handleDefaultAction, called on double-clicks, in which case exactly one of the
polled listeners should return true, indicating that the action associated with its
menu item should be invoked.

To allow an extension to be invoked from a context menu, add a menu listener to the
view's context menu. The menu listener is given an opportunity to install the menu
item when the context menu is recreated, which occurs whenever it pops-up.

To define a context menu item, provide these components:

How to Create JDeveloper Elements

2-26 Developer's Guide for Oracle JDeveloper Extensions

■ A command ID representing the command that is to be executed when the menu
item is chosen.

■ An action that is associated with the command ID, and acts as the link between
user actions and the controller. For more information, see Section 2.4.5.3, "How to
Define an Action."

■ A controller responsible for enabling and disabling the menu item and handling
its events, and ultimately invokes the feature installed by the addin. For more
information, see Section 2.4.6.3, "How to Implement a Controller."

■ A context menu listener, which provides a listener instance for each context menu
to which the item can be added. The various views each manage their own context
menus.

Example 2–22 adds a listener to the Application Navigator’s context menu.

Example 2–22 Adding a Listener to Context Window

public void createCtxMenuListeners(ContextInfoController controller) {
 ContextMenu menu;
 // Add a listener to the Explorer's context menu.
 // This form will work for any manager or view that defines getContextMenu.
 menu = EditorManager.getEditorManager().getContextMenu();
 menu.addContextMenuListener(new ContextInfoMenuListener(controller));
 // Add a listener to the Navigator's context menu.
 NavigatorManager.getWorkspaceNavigatorManager().addContextMenuListener
(new ContextInfoMenuListener(controller), null);
}

The context menu listener should be added when the addin is loaded, so this task
should be performed in the addin's initialize method. The creation of the controller
and action can be deferred until the context menu is opened; the first time it calls the
listener's method.

2.4.6 How to Develop Editors
An editor is a view that displays an object for the user to modify. Editors usually
display text; a designer is a non-textual editor. Editors are opened for a document
through its node's context menu or the View menu. The editors available for a
document are those registered for the document's type with the IDE's Editor Manager.
Editors are usually used in conjunction with structure explorers, but this is not
required.

2.4.6.1 How to Implement the EditorAddin Class
Editor extensions implement the EditorAddin class, which integrates the extension
with the Editor Manager, and provides for the extension’s installation at the time of
JDeveloper's startup.

To implement the EditorAddin class:

■ Define the constructor.

■ Define the initialize method.

■ Define the getEditorClass method.

■ Define the isDefault method.

■ Define the getMenuSpecification method.

How to Create JDeveloper Elements

Developing Extensions in Oracle JDeveloper 2-27

The code examples shown here are taken from the CustomEditor sample project,
available as part of the Extension SDK. For more information, see Chapter 3,
"Developing with the Extension SDK.".

2.4.6.1.1 How to Define the Constructor The constructor should do as little as possible.
Defer initialization tasks to the initialize method.

2.4.6.1.2 How to Define the initialize Method This method is called by the Addin Manager
after the instance has been created. Register the editor with the Editor Manager here.

Editors must be registered with the IDE's EditorManager. A registration associates an
editor with one or more node classes. When the user attempts to open an editor for a
node, through either its context menu or the View menu, only editors that are
registered for that node's class are enabled.

2.4.6.1.3 How to Define the getEditorClass Method This method names the class, an
implementation of Editor which acts as the editable view.

2.4.6.1.4 How to Define the isDefault Method A node class can have a default editor; when
the user double-clicks on the node it is opened in the default editor. To declare an
editor to be the default for its registered node types, implement this method to return
true.

2.4.6.1.5 How to Define the getMenuSpecification Method The Editor Manager adds the
menu specification for the icon and text which appear at the top of each navigator,
identifying it. The menu specification describes the appearance of the editors menu
item.

2.4.6.2 How to Define an Editor Class
An editor is a view that displays an object for the user to modify. Create your own
editor by extending Editor. The editor class is instantiated whenever a node of a type
registered for the editor is opened for viewing.

An editor is associated with these other components:

■ The Editor Manager, a component of the IDE, selects an editor class and
instantiates it when the user opens a node.

■ An EditorAddin serves as the go-between the editor and the Editor Manager.
When JDeveloper starts, the addin registers the editor class.

■ An object representing the data being edited, usually an implementation of Node.

■ An editor component, an implementation of JEditorPane, which performs the
actual modification of the data.

■ A Controller that interprets user interface editing commands and invokes
editor component methods.

■ An Explorer that displays the structure of the data object. The explorer responds
to user actions by calling editor methods.

An editor class must be responsible for:

■ Instantiating the editor

■ Initializing the editor

■ Accessing the Controller

■ Getting the root GUI component

How to Create JDeveloper Elements

2-28 Developer's Guide for Oracle JDeveloper Extensions

■ Responding to explorer events

■ Responding to editor component events

■ Generating update messages

The code examples shown here are taken from the CustomEditor sample project,
available as part of the Extension SDK. For more information, see Chapter 3,
"Developing with the Extension SDK.".

2.4.6.2.1 How to Instantiate the Editor The Editor Manager instantiates an editor class
when the user opens a node in the Application Navigator. The Editor Manager calls
the default constructor, so no context-specific parameters are available to it, as shown
in Example 2–23.

Example 2–23 Editor Manager Calling the Default Constructor

public PropFileEditor()
 {
 systemClipboard = Toolkit.getDefaultToolkit().getSystemClipboard();
}

2.4.6.2.2 How to Initialize the Editor The Editor Manager initializes a editor instance by
calling its setContext method. This method should extract the document to be edited
from the context, and initialize the editor component, as shown in Example 2–24.

Example 2–24 Initializing the Editor Component

public synchronized void setContext(Context context)
{
 if (context != null)
 {
 Element element = context.getElement();
 // A sanity check: if the context is bad the editor pane will be empty.
 if ((element != null) &&
 (element instanceof TextDocument))
 {
 super.setContext(context);
 document = (TextDocument) context.getElement();
 initializeGraphics(context);
 }
 }
}

2.4.6.2.3 How to Access the Controller The editor has an associated controller instance
that intercepts and interprets user events. The IDE calls the editor's getController
method to acquire the controller, which should create the controller when first called,
as shown in Example 2–25.

Example 2–25 Calling the Editor’s getController Method

public Controller getController()
{
 if (editorController == null)
 {
 editorController = new PropFileEditorController(this);
 }
 return editorController;

How to Create JDeveloper Elements

Developing Extensions in Oracle JDeveloper 2-29

}

2.4.6.2.4 How to Get the Root GUI Component The editor has an associated root graphical
user interface component, and return the panel for this editor instance, as shown in
Example 2–26.

Example 2–26 Getting the rootGUI component

public Component getGUI()
{
 return mainPanel;
}

2.4.6.2.5 How to Respond to Explorer Events An explorer view of a data object provides a
means of navigating in a document in an editor: when the user selects an element in
the explorer, the explorer instructs the editor to display the corresponding part of the
data.

If the editor is intended to be integrated with an explorer it must provide one or more
'goto' methods. (This capability is not required by the Editor interface.) Example 2–27
is a method that causes the editor's cursor to move to a specified line of a text file.

Example 2–27 Method that Moves Cursor

public void setCaretPosition(int offset)
{
 editorComponent.setCaretPosition(offset);
}

2.4.6.2.6 How to Respond to Editor Component Events The editor component, as an
implementation of JEditorPane, generates action events when its data changes. The
editor should implement an interface such as KeyListener, and during initialization
should call the editor component's addKeyListener method to register itself to
receive the events. Example 2–28 contains an example of the KeyListener method
keyTyped triggers a method that alerts other IDE objects, such as the recognizer, of
the change.

Example 2–28 KeyListener Method

public void keyTyped(KeyEvent e)
{
 timer.restart();
}

2.4.6.2.7 How to Generate Update Messages When the data object's state changes other
IDE components — such as the document's explorer — must be informed. This is
accomplished through the notification mechanism. The editor creates an
UpdateMessage instance and broadcasts it to the document's observers, as shown in
Example 2–29.

Example 2–29 UpdateMessage Instance

public void keyTyped(KeyEvent e)
{
 timer.restart();

How to Create JDeveloper Elements

2-30 Developer's Guide for Oracle JDeveloper Extensions

}

2.4.6.3 How to Implement a Controller
If your extension implements a view class it should also implement a controller class
to handle the view's events. To implement the controller, use the Controller
interface.

To implement a controller class provide definitions for the following members:

■ Defining the handleEvent method

■ Defining the update method

■ Define command constants

The code examples shown here are taken from the FirstSample and ClassSpy projects,
two of the sample projects available as part of the Extension SDK. For more
information, see Chapter 3, "Developing with the Extension SDK."

2.4.6.3.1 How to Define the handleEvent Method The handleEvent method is a switch
statement which handles actions referring to selected commands, and defers the rest to
its supervisor. You define this method to handle commands defined for the extension,
and others that the extension must override, as shown in Example 2–30.

Example 2–30 Defining the handleEvent method

public boolean handleEvent(IdeAction action, Context context) {
 int cmdId = action.getCommandId();
 // Handle actions containing this command:
 if (cmdId == CONTEXT_INFO_CMD_ID) {
 CommandProcessor cmdProc = CommandProcessor.getInstance();
 String commandName = action.getCommand();
 Command command = cmdProc.createCommand(commandName, context);
 // Use command processor to execute command.
 try {
 cmdProc.invoke(command);
 }
 catch (Exception e) {
 System.err.println(e.toString());
 }
 finally {
 return true;
 }
 }
 // Let the IDE try to find another Controller to handle this action.
 return false;
}

An event may be handled directly by calling methods that act on the data.
Alternatively, an event may be handled indirectly by creating a command object and
invoking it through the command processor. Some cases where the latter option is
preferable are:

■ The event has an applicable default behavior. If the action's command class is
compatable with the data then there is no need to re-implement the command. For
example, Ide.SAVE_CMD is the default command class for the 'Save' action and is
defined for any data class that implements the Document interface.

■ The event is to be undoable. The command processor manages undo stacks.

How to Create JDeveloper Elements

Developing Extensions in Oracle JDeveloper 2-31

■ The event interacts with the system or is otherwise computationally intensive. The
command process invokes commands in their own threads.

2.4.6.3.2 How to Define the update Method The update method is essentially a switch
statement which enables and disables selected actions, and defers the rest to its
supervisor. You define this method for actions defined for the extension, and others
that the extension must override, as shown in Example 2–31.

Example 2–31 Defining the update Method

public boolean update(IdeAction action, Context context) {
 int cmdId = action.getCommandId();
 // Set the enabled status for relevant actions.
 if (cmdId == CONTEXT_INFO_CMD_ID) {
 action.setEnabled(enableContextInfo(context));
 return true;
 }
 // Let the IDE try to find another Controller to update this action.
 return false;
}

2.4.6.3.3 How to Define Command Constants Define the commands required by your
extension by giving them command IDs. The Ide.findOrCreateCmdID static
method assigns unique command IDs, as shown in Example 2–32.

Example 2–32 Ide.findOrCreateCmdID Method

public static final int CONTEXT_INFO_CMD_ID =
 Ide.findOrCreateCmdID("ContextInfoController.CONTEXT_INFO_CMD_ID");

2.4.6.4 How to Specify an Editor Layout
Layouts are a feature of JDeveloper that allow the dockable windows to be arranged to
accommodate a particular task. Layouts are modified by user actions, saved when the
user changes to another task, and restored when the user returns.

Generally, users define custom layouts in the Environment page of the Preferences
dialog (available from the Tools menu), or using layout managers for the Java Visual
Editor. However, an editor extension can specify a layout for that editor.

The layout is specified by the methods of LayoutSelector, which is a subclass of
Editor. Editors should override these methods:

■ getPreferredLayoutURL names the properties file in which the state of the
layout is preserved between sessions. The layout is extracted from this file when
the editor is first used in a session, and it is written back to the file when
JDeveloper is closed.

■ onPreferredLayoutActivate is called when the layout file is not found, to
initialize the layout. This method should open, close, and arrange dockable
windows.

2.4.6.5 Using Asynchronous Editors
An asynchronous editor loads its contents in a worker thread, outside the UI thread
(event dispatch thread in Swing,) resulting in a more responsive user experience.
While loading the contents of an asynchronous editor, the editor framework:

How to Create JDeveloper Elements

2-32 Developer's Guide for Oracle JDeveloper Extensions

■ Shows a panel with the message "Loading Editor" and an animation. Both of these
are configurable.

■ Prevents the Component Palette from loading and blocking the UI.

Loading of the editor starts when a Context is set. This action triggers loading of the
model that the editor's UI needs from the UI thread. To do so, an asynchronous editor
creates a worker thread to perform the loading. While the model loading is taking
place, the IDE asks the editor for its GUI component. If the editor's real UI is not
loaded yet, a panel with a message (for example, "Loading Editor") appears and the
Component Palette is not loaded. Once the editor's real UI is created, the asynchronous
editor automatically swaps it.

The editor framework gives a lot of freedom as to how editors can be implemented.
For more information, see AsynchronousEditor in Oracle Fusion Middleware Java
API Reference for Oracle Extension SDK.

Life-cycle methods like open, close, activate are final. The asynchronous editor
introduces new but similar life-cycle methods that take an extra argument: a flag that
indicates whether the editor's UI has been loaded.

2.4.6.5.1 How Asynchronous Editors Work The first step is that EditorManager creates
and opens the editor, for example when a user double-clicks a node in the Application
Navigator:

1. EditorState creates a new asynchronous editor (a subclass of
oracle.ide.editor.AsynchronousEditor.)

2. When the asynchronous editor is created, it sets a property that lets other views in
the IDE know that it is an asynchronous editor and the "real" editor is not loaded
yet. An example of a view interested in this property is the Component Palette.
The Component Palette only loads its contents once the editor is fully loaded.

3. EditorState sets the Context in the new asynchronous editor.

4. The asynchronous editor waits for the appropriate flags indicating that its contents
are not loaded yet before loading the asynchronous editor content model. This is
done asynchronously (off the UI event thread.)

5. EditorManager sets the preferred layout for the editor

6. EditorState opens the editor, which eventually causes a call to getGUI.

This is illustrated in Section 2–4, "Opening the Editor".

How to Create JDeveloper Elements

Developing Extensions in Oracle JDeveloper 2-33

Figure 2–4 Opening the Editor

Once the editor is open. the editor's method getGUI is called. This is the moment that
asynchronous editors show a "loading editor" message, while scheduling a task off the
UI event thread to load the content model asynchronously, as illustrated in Section 2–5,
"Getting the Editor’s GUI".

Figure 2–5 Getting the Editor’s GUI

At this point, the content model has been loaded asynchronously, and:

■ AsynchronousEditor calls the methods openImpl, showImpl and
activateImpl, to load the editor's GUI, show it, and activate it.

■ AsynchronousEditor switches the "waiting" page with the "real" editor GUI

How to Create JDeveloper Elements

2-34 Developer's Guide for Oracle JDeveloper Extensions

■ AsynchronousEditor notifies listeners such as the Component Palette that it is
fully loaded, so they can load their respective contents.

To make a regular editor an asynchronous editor:
1. Extend oracle.ide.editor.AsynchronousEditor instead of

oracle.ide.editor.Editor.

2. Implement the abstract method getEditorContext(Context). This method is
the responsible of loading the model that the editor's UI needs from the given
Context.

3. Implement the abstract method doSetContext(Context). This method is
expected to have the same functionality as the original method
setContext(Context) in Editor. setContext(Context) is now final (to
guarantee correct behavior of asynchronous functionality.)

4. Implement the abstract method isContentModelLoaded(). This method
indicates the asynchronous editor framework if the model used by your editor is
loaded or not.

5. Implement the abstract method openImpl(boolean). To ensure correct behavior
of asynchronous editors, the abstract method open() in Editor is now final.
openImpl passes a boolean argument that indicates whether the model for the
editor's UI has been loaded or not. In most cases, you would only need to move
your existing implementation of open() to openImpl when the given argument
is true.

6. Move all the code in the Editor lifecycle events to the new methods. To
guarantee that asynchronous content loading works correctly,
AsynchronousEditor makes the editor life-cycle final, giving subclasses
implement them through "impl" methods.

The life-cycle methods made final are:

■ open

■ close

■ editorShown

■ editorHidden

■ activate

■ deactivate

Subclasses of AsynchronousEditor need to implement these methods instead:

■ openImpl(boolean)

■ closeImpl(boolean)

■ editorShownImpl(boolean)

■ editorHiddenImpl(boolean)

■ activateImpl(boolean)

■ deactivateImpl(boolean)

where the boolean argument specifies whether the content model of the editor has
been loaded or not.

The complexity of this task is related to the number levels in the class hierarchy for
a specific editor, especially when overriding life-cycle methods. If a chain of

How to Create JDeveloper Elements

Developing Extensions in Oracle JDeveloper 2-35

classes override close(), now all of them need to override
closeImpl(boolean) instead.

2.4.7 How to Develop Explorers
A structure explorer displays the organization of a document, usually as a tree.
JDeveloper provides explorers for various common document types, and allows
custom explorers to be installed and registered with the Explorer Manager.

2.4.7.1 How to Create an Explorer
A structure explorer displays the organization of a document, usually as a tree.

A structure explorer is a View of a Document. When an editor or designer is given
focus, its explorer is shown in the structure window. An explorer is essentially an
index or table of contents for the document: the user uses the explorer to navigate in
the content displayed in the document view. The hierarchy of the document is
displayed in the Structure window, and is updated as the document is edited.

JDeveloper provides explorers for various common document types, and allows
custom explorers to be installed and registered with the Explorer Manager. When a
document is opened in JDeveloper, the Explorer Manager provides an appropriate
explorer for it, which then parses the document and displays the resulting structure.

An explorer addin has the following components:

■ A class that performs the registration. This class implements Addin. A single
instance of this class is created by the addin manager when JDeveloper is
launched, and that instance performs the registration. The addin class does not
need to have any other purpose.

■ A class that provides the explorer's user interface. This class is a specialized
viewer. When the document's structure is to be represented by a tree most of the
required functionality can be provided by extending TreeExplorer or one of its
subclasses. This class handles mouse clicks on elements, tracks changes in the
editor, and invokes the parser to rebuild the tree when necessary.

■ An element model, which contains one or more instances of Element. The model
is the structural representation of the explorer view of a document. Elements are
associated with specific locations in the content of the document, and when
selected, scroll the viewer to that location.

■ A parser that generates a structure of elements from the document. The parser
reduces the document to a hierarchy of elements which map to viewer
coordinates.

Keep these facts in mind while designing your explorer:

■ An Explorer is a view which provides a visual, structured, representation of the
data contained in a Document.

■ Multiple explorer implementations may exist for a single document.

■ Implement the Explorer interface to create a structure explorer.

■ ChildFilter is an optional interface to use in conjunction with TreeExplorer
to filter which children of a given container node are made visible to the user
when the user expands that container node.

How to Create JDeveloper Elements

2-36 Developer's Guide for Oracle JDeveloper Extensions

2.4.7.2 How to Register and Initialize a Structure Explorer
Explorers must be registered with the IDE's ExplorerManager. Registration
associates an explorer with a node class, or with a node/viewer pair.

When the user selects a viewer for a node, the IDE sends a request to the
ExplorerManager for the explorer that best satisfies that node and viewer. The
resulting viewer will be one registered for that node and viewer, or else one registered
for the node alone. If no such registrations have been made, ExplorerManager tries to
find a viewer that is registered for a node class that converts to the requested node
class.

Registration operations should be performed in an addin class' initialize method, as
shown in Example 2–33. The code example is taken from the StructurePane project,
one of the sample projects available as part of the Extension SDK. For more
information, see Chapter 3, "Developing with the Extension SDK."

Example 2–33 Registration Operation

public void initialize()
{
 Class editorClass = PropFileEditor.class;
 ExplorerManager.getExplorerManager().register(PropFileSourceNode.class,
 PropFileExplorer.class,
 PropFileEditor.class);
}

2.4.7.3 How to Create a Structure Explorer Element Model
The element model of an Explorer is the structural representation, illustrated
graphically, of data in a given Document.

Each model is made up of one or more instances of Element. The model is typically
rendered visually in the Explorer as a tree, but this is not a requirement. The element
model is not a visual object, but can be rendered visually using graphical controls, for
example, javax.swing.tree.TreeModel rendered by javax.swing.JTree.

Implementations of Explorer are responsible for ensuring that their model, and by
extension their visual representation of that model, receive changes made to the data
in the Document by any method (for example, in the source editor, Property Inspector,
hand editing of the document outside of JDeveloper). You can use the JDeveloper
event messaging mechanism to achieve this.

2.4.7.4 How to Update the Structure Explorer
A structure explorer should be notified whenever the content of the of the associated
document is modified, so that it can update its state. Use the notification mechanism to
transmit information about changes in the viewer to the explorer. The structure
explorer should implement Observer, providing an update method, and register
with the object representing the viewer's document.

2.4.8 How to Add New Component Palette Pages
The Component Manager lets you add individual pages to the Component Palette that
users of your extension can employ to build a consistent user interface or perform
other standardized tasks. The Component Palette provides pages of components, from
which your users can select the components to add to the content they are building
with your extension, or for your extension.

How to Create JDeveloper Elements

Developing Extensions in Oracle JDeveloper 2-37

The ability to create and manage component pages is also available programmatically,
through the methods of the PaletteManager instance. For more information, see
PaletteManager in the Oracle Fusion Middleware Java API Reference for Oracle
Extension SDK.

This section includes examples for declaratively adding static and dynamic
components to your component palette, as well as providing additional help and
augmenting the user's ability to search for specific items in your individual component
pages.

2.4.8.1 Understanding Component Palette Pages
The Component Palette lets users add commonly used data structures to a project,
application, or other content in JDeveloper. The Component Palette provides pages,
from which users can select individual components to add to the content they are
building with or for your extension. The specific components can be as simple as a
copyright statement or as complicated as the settings for connecting to a remote
repository. Furthermore, in JDeveloper, the available components from any given
palette page varies depending on the type of file selected. For example, if you are
editing an HTML file, the Component Palette page might display a list of available
HTML components such as anchors, email links, and other commonly-used HTML
components. If you are editing a Java page, a completely different set of components
are at your disposal.

To see the Component Palette, select View > Component Palette.

At the extension developer's level, the Component Manager provides you with a
declarative way to add pages to the Component Palette, to make specific components
available to users of your extension. These pages can offer whatever standard
components (both static and dynamic) you wish to provide. For example, to help your
users build a consistent user interface, or to perform any standardized tasks that draw
on the components maintained by JDeveloper's Palette Manager, you can add one or
more pages of components to the Component Palette, using the Component Manager.

When you develop extensions, you can declaratively populate your extension with
component pages, static and dynamic components, and support for them. You can:

■ Declare static components on a Component Palette page.

■ Declare dynamic components, populating the Component Palette page when it is
loaded.

■ Make help your components available to your users.

■ Make it easier for users to search for your components.

If you use these declarative tools, users of your extension can add commonly used
elements to their own projects and applications using the extension you are creating.
In addition, the help and search features makes it easier for your users to find and
apply these palette components.

You can also add component pages programmatically, using the Palette Manager.

2.4.8.2 How to Declare Static Content for a Component Page
In many cases, the extension palette's content is constant: a set of connection
parameters to a source repository, or other fixed data that does not change regardless
of where it is used in your extension. For cases like this, you can define static content
in an extension manifest file, using palette-hook, as shown in Example 2–34.

The shape of the Component Palette is defined as a simple four-tier taxonomy:

How to Create JDeveloper Elements

2-38 Developer's Guide for Oracle JDeveloper Extensions

■ The top level, referred to as Page, groups components according to technology;
Swing, AWT, ADF Swing, ADF Faces, Java Server Faces (JSF), JavaServer Pages
(JSP), and so on. The combo box selections at the top of the Component Palette
window are where Pages display in the UI.

■ Within each Page are Groups. Groups contain a small number of functional
categories. For example, page Swing may have groups Common Controls and
Layout. Groups are the dockable windows within the Component Palette window.

■ Within each Group are Sections, sections provide the means to cluster common
components, display a separator line in the UI similar to menu separators, and
alphabetically sort components by name.

■ Finally, within each Section are Items (or components). Items are made up of
attributes that enable components to be displayed by the Component Palette, for
example name, description, icon, etc.

Example 2–34 demonstrates how to declare a palette page with a single component.

Example 2–34 Declaring a Palette Page with a Single Component

<?xml version="1.0" encoding="windows-1252" ?>
<extension xmlns="http://jcp.org/jsr/198/extension-manifest"
 id="oracle.ide.samples.pageprovider"
 version="1.0"
 esdk-version="1.0">
 <name>Component Palette Page Provider Sample</name>
 <owner>Oracle</owner>
 <dependencies>
 <import>oracle.ide.palette2</import>
 </dependencies>
 <hooks>
 <palette-hook xmlns="http://xmlns.oracle.com/jdeveloper/1013/extension">
 <page>
 <name>My Sample Components</name>
 <pageId>SampleStatic</pageId>
 <showForTypes>
 <type>java</type>
 </showForTypes>
 <technologyScopes>
 <technologyScope>Java</technologyScope>
 <technologyScope>JavaBeans</technologyScope>
 </technologyScopes>
 <type>java</type>
 <group>
 <name>Components</name>
 <groupId>SampleStatic-Components</groupId>
 <showForTypes>
 <type>java</type>
 </showForTypes>
 <technologyScopes>
 <technologyScope>Java</technologyScope>
 <technologyScope>JavaBeans</technologyScope>
 </technologyScopes>
 <type>java</type>
 <section>
 <sectionId>SampleStatic-Components-Section1</sectionId>
 <name/>
 <item>
 (name>Table</name>
 <description>Sample Table</description>

How to Create JDeveloper Elements

Developing Extensions in Oracle JDeveloper 2-39

 <icon>/oracle/ide/samples/pageprovider/table.png</icon>
 <info/>
 <type>JavaBean</type>
 <itemId>SampleStatic-Components-Section1-Item1</itemId>
 <technologyScopes>
 <technologyScope>Java</technologyScope>
 <technologyScope>JavaBeans</technologyScope>
 </technologyScopes>
 </item>
 </section>
 </group>
 </page>
 </palette-hook>
 </hooks>
</extension>

2.4.8.3 How to Declare a Dynamic Component for a Palette Page
At times, the content of a component palette cannot be identified before loading. For
the case when the Component Palette content can not be defined beforehand it is
necessary to define a Palette Page Provider. This approach provides considerable
flexibility to client developers in that the Component Palette provides the display
context to the provider and the provider is given an opportunity to return components
to be displayed in the Component Palette.

Palette Page Providers are developed by client developers using the published Palette
API and the page providers class name is provided to the Component Palette in an
extension manifest file.

For a description of the Palette API, see oracle.ide.palette2 in the Oracle Fusion
Middleware Java API Reference for Oracle Extension SDK.

The extension manifest entry uses palette-hook's element pageProvider.

Example 2–35 shows an extension manifest that identifies a Palette Page Provider class
name.

Example 2–35 Extension Manifest Identifying a Palette Page Provider Class Name

<?xml version="1.0" encoding="windows-1252" ?>
<extension xmlns="http://jcp.org/jsr/198/extension-manifest"
 id="oracle.ide.samples.pageprovider"
 version="1.0"
 esdk-version="1.0">
 <name>Component Palette Page Provider Sample</name>
 <owner>Oracle</owner>
 <dependencies>
 <import>oracle.ide.palette2
 </dependencies>
 <hooks>
 <palette-hook xmlns="http://xmlns.oracle.com/jdeveloper/1013/extension">
 <pageProvider>
 <providerClassName>oracle.ide.samples.pageprovider.SamplePageProvider
</providerClassName>
 </pageProvider>
 </palette-hook>
 </hooks>
</extension>

How to Create JDeveloper Elements

2-40 Developer's Guide for Oracle JDeveloper Extensions

Example 2–36 shows a Palette Page Provider that adds a palette page to the
Component Palette. This class extends PalettePageProvider.

The element pageProvider.providerClassName in extension.xml registers
this class with the Component Palette as a page provider. The Component Palette calls
createPalettePages() with the current Context.

The class SamplePages, which extends PalettePages, is constructed with the
current context, means that it should have sufficient information to assemble a list of
palette pages when getPages() is called by the Component Palette.

Example 2–36 Palette Page Provider

package oracle.ide.samples.pageprovider;
SamplePageProvider.java
import oracle.ide.Context;
import oracle.ide.palette2.PalettePageProvider;
import oracle.ide.palette2.PalettePages;
/**
 * SamplePageProvider
 * <p>
 * This is an example of a PalettePageProvider that adds a palette page to the
 * Component Palette(CP). As required this class extends PalettePageProvider.
 * </p>
 * <p>
 * Element pageProvider.providerClassName in extension.xml registers
 * this class with the CP as a page provider.
 * </p>
 * <p>
 * The CP will call method createPalettePages() with the current Context.
 * Class SamplePages which extends PalettePages is constructed with the current
context.
 * Using the current context SamplePages should have sufficient information to
 * assemble a list of palette pages when method getPages() is called by the CP.
 * </p>
 *
 * @see SamplePages
 * @see SamplePalettePage
 * @see SamplePaletteGroup
 * @see SamplePaletteItem
 */
public class SamplePageProvider extends PalettePageProvider {
 /**
 * Default constructor.
 *
 */
 public SamplePageProvider() {
 }
 /**
 * Override the default, returns SamplePages if context applies.
 *
 * @param context
 * @return PalettePages if context is relevant, otherwise null.
 */
 public PalettePages createPalettePages(Context context) {
 if (checkRelevantContext(context)) {
 SamplePages pages = SamplePages.getInstance();
 pages.initialize(context);
 return pages;
 }
 else

How to Create JDeveloper Elements

Developing Extensions in Oracle JDeveloper 2-41

 return null; // no pages to provide for this context.
 }
}

Example 2–37 shows an example of SamplePages.java. This class creates a palette
page with a single group that contains a single section that contains a single item when
the pageType is java. As required this class extends PalettePages.

Example 2–37 SamplePages.java

package oracle.ide.samples.pageprovider;
import java.net.URL;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.List;
import oracle.ide.Context;
import oracle.ide.net.URLFileSystem;
import oracle.ide.palette2.DefaultPaletteSection;
import oracle.ide.palette2.PaletteItem;
import oracle.ide.palette2.PalettePage;
import oracle.ide.palette2.PalettePages;
import oracle.ide.palette2.PalettePagesListener;
/**
 * SamplePages
 * <p>
 * This class creates a palette page with a single group that contains a
 * single section that contains a single item when the pageType is "java".
 * As required this class extends PalettePages.
 * </p>
 * <p>
 * TODO: palettePagesListener
 * </p>
 */
public class SamplePages extends PalettePages {
 private final static String SAMPLEPROVIDER_ID
=SamplePageProvider.class.getName();
 /**
 * Singleton
 */
 private static SamplePages _singleton = new SamplePages();
 /**
 * Composite for PalettePagesListener
 */
 protected List<PalettePagesListener> palettePagesListeners;
 /**
 * Composite for PalettePage
 */
 protected List<PalettePage> palettePages;
 // Default constructor
 public SamplePages() {
 }
 /**
 * Returns the singleton instance of SamplePages.
 * @return the singleton instance of SamplePages
 */
 public static SamplePages getInstance() {
 return _singleton;
 }
 /**

How to Create JDeveloper Elements

2-42 Developer's Guide for Oracle JDeveloper Extensions

 * Initialize palettePages.
 * @param context
 */
 public void initialize(Context context) {
 URL url = context.getNode().getURL();
 final String pageType = getSuffix(url);
 // Only interested in java.
 if(pageType.equals("java")) {
 if(palettePages != null) {
 palettePages.clear();
 }
 // create a PalettePage
 SamplePalettePage page = new SamplePalettePage
"oracle.ide.samples.pageprovider.SampPage01" // pageId
 , "My Sample Page Component" // description
 , null // icon
 , "java" // type
 , "java" // showForTypes
 , "Java;JavaBeans"); // technologyScope
 // create a PaletteGroup
 SamplePaletteGroup group = new SamplePaletteGroup
"oracle.ide.samples.pageprovider.SampGroup01" // groupId
 , "My Sample Group" // name
 , "My Sample Group Component" // description
 , "java"); // type
 // add group to page
 page.addGroup(group);
 // create a section. Make the name null since a separator is not neeeded.
 DefaultPaletteSection section = new DefaultPaletteSection
"oracle.ide.samples.pageprovider.SampSection01" // sectionId
 // add section to group
 group.addSection(section);
 // create an item. TODO: use SampleBean.java
 SamplePaletteItem item = new SamplePaletteItem
 ("oracle.ide.samples.pageprovider.SampItem01" // itemId
 , SAMPLEPROVIDER_ID // provider id
 , "My Sample Bean" // name
 , "My Sample Bean Description" // description
 , "/oracle/ide/samples/pageprovider/snapshot.png" // icon
 , "java"); // type
 // add item to section
 section.addItem(item); // add item to section
 // add page
 addPage(page);
 }
 else {
 palettePages.clear();
 }
 }
 /**
 * getPages
 */
 public Collection<PalettePage> getPages() {
 return Collections.unmodifiableList(palettePages);
}
/**
 * Returns the PaletteItem identified by itemId. providerId is used to
 * determine whether this item is owned by this page provider.
 * The provider returns the matching PaletteItem only if the PaletteItem
 * is within the current context. Null is returned if the PaletteItem is

How to Create JDeveloper Elements

Developing Extensions in Oracle JDeveloper 2-43

 * within the current context or not recognized by this provider.
 * </p>
 * @return PaletteItem
 */
 public PaletteItem getItem(String providerId, String itemId) {
 if(providerId == null || providerId.length() == 0
 || itemId == null || itemId.length() == 0) {
 return null;
 }
 PaletteItem paletteItem = null;
 if(providerId.equals(SAMPLEPROVIDER_ID)) {
 for(PalettePage palettePage : palettePages) {
 SamplePalettePage sampPage = (SamplePalettePage) palettePag
 paletteItem = sampPage.getItem(itemId);
 if(paletteItem != null) {
 break;
 }
 } // end of for
 }
 return paletteItem;
 }
 /**
 * addPalettePagesListener
 public void addPalettePagesListener(PalettePagesListener listener) {
 if(palettePagesListeners == null) {
 palettePagesListeners = new ArrayList<PalettePagesListener>();
 }
 palettePagesListeners.add(listener)
 }
 /*
 * add pages to palettePages.
 /*
 private void addPage(SamplePalettePage sampPage) {
 if (palettePages == null) {
 palettePages = new ArrayList<PalettePage>();
 }
 palettePages.add(sampPage);
 }
 */
 * Return suffix
 * @param title Title of EditorFrame
 */
 private String getSuffix(URL url)
 (
 final String suffix = URLFileSystem.getSuffix(url);
 int period = suffix.lastIndexOf(".");
 if(period != -1)
 {
 // Is a selected file
 return suffix.substring(period + 1);
 }
 return "";
 }
}

Example 2–38 shows an example of SamplePalettePage.java.

Example 2–38 SamplePalettePage.java

package oracle.ide.samples.pageprovider;

How to Create JDeveloper Elements

2-44 Developer's Guide for Oracle JDeveloper Extensions

import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
import oracle.ide.palette2.DefaultPalettePage;
/**
 * SamplePalettePage
 * <p>
 * This class extends DefaultPalettePage. DefaultPalettePage comprises
 * the attributes and methods that this example requires. A constructor is added
 * to accomodate the data values for this sample.
 * </p>
 */
public class SamplePalettePage extends DefaultPalettePage {
 public SamplePalettePage(String pageId, String pageName, String
pageDescription
 , String pageIcon, String pageType, String pageShowForTypes
 , String pageTechnologyScope) {
 setName(pageName);
 setDescription(pageDescription);
 setIcon(pageIcon);
 setData(PAGE_PAGEID, pageId);
 setData(PAGE_TYPE, pageType);
 // make delimited string into a List of strings
 List<String> showForTypes = new ArrayList<String>();
 final StringTokenizer tknTypes = new StringTokenizer pageShowForTypes, ";"
); //NOTRANS
 while(tknTypes.hasMoreTokens())
 {
 String token = (String)tknScopes.nextToken();
 technologyScope.add(token);
 }
 setData(PAGE_TECHNOLOGYSCOPES, technologyScope);
 }
}

Example 2–39 SamplePaletteGroup.java

package oracle.ide.samples.pageprovider;
import oracle.ide.palette2.DefaultPaletteGroup;
/**
 * SamplePaletteGroup
 * <p>
 * This sample extends DefaultPaletteGroup.DefaultPaletteGroup comprises the
 * attributes and methods that this example requires. A constructor is added to
 * accomodate the data values for this sample.
 * </p>
 *
 */
public class SamplePaletteGroup extends DefaultPaletteGroup {
 public SamplePaletteGroup(String groupId, String groupName, String
groupDescription , String groupType) {
 setName(groupName);
 setDescription(groupDescription);
 setData(GROUP_GROUPID, groupId);
 setData(GROUP_TYPE, groupType);
 }
}

Example 2–40 shows an example of SamplePaletteItem.java.

How to Create JDeveloper Elements

Developing Extensions in Oracle JDeveloper 2-45

Example 2–40 SamplePalette Item.java

package oracle.ide.samples.pageprovider;
import oracle.ide.palette2.DefaultPaletteItem;
 * SamplePaletteItem
 * <p>
 * This example extends DefaultPaletteItem. DefaultPaletteItem comprises
 * the attributes and methods that this example requires. A constructor is
 * added to accommodate the data values for this sample.
 * </p>
 *
 */
public class SamplePaletteItem extends DefaultPaletteItem
 {
 public SamplePaletteItem(String itemId, String itemProviderId, String itemName,
String itemDescription
 , String itemIcon, String itemType) {
 setName(itemName);
 setDescription(itemDescription);
 setIcon(itemIcon);
 setItemId(itemId);
 setProviderId(itemProviderId);
 setData(ITEM_TYPE, itemType);
)
)

2.4.8.4 How to Provide Help for a Component Page
There are two ways to provide help on a component:

■ The Palette Item description is displayed as a tool tip for the component, visible
when your user rolls the mouse over the component in the Component Palette.
You can use the "\n" newline character to break the description into multiple lines.

■ The user can right-click a Palette component and get help from its context menu.
The Help option appears on the context menu for the component only if a
Helpable is available for the component. If the helpable class cannot be
instantiated, the string is used as the helpId for the IDE help system.

Example 2–41 demonstrates how to do this.

Example 2–41 Providing Help for a Component Page

 <item>
 <name>Table</name>
 <description>Sample Table</description>
 <icon>/oracle/ide/samples/pageprovider/table.png</icon
 <info/>
 <type>JavaBean</type>
 <itemId>SampleStatic-Components-Section1-Item1</itemId>
 <technologyScopes>
 <technologyScopes>
 <technologyScope>JavaBeans</technologyScope>
 </technologyScopes>
 <helpable>oracle.samples.SampleHelpable</helpable>
 </item>

Alternatively, you can provide the helpid directly, as shown in Example 2–42.

How to Create JDeveloper Elements

2-46 Developer's Guide for Oracle JDeveloper Extensions

Example 2–42 Proving helpid directly

 <item>
 <name>Table</name>
 <description>Sample Table</description>
 <icon>/oracle/ide/samples/pageprovider/table.png</icon>
 <info/>
 <type>JavaBean</type>
 <itemId>SampleStatic-Components-Section1-Item1</itemId>
 <technologyScopes>
 <technologyScope>Java</technologyScope>
 <technologyScope>JavaBeans</technologyScope>
 </technologyScopes>
 <helpable>help_topic_id</helpable>
</item>

The programmatic equivalent of this would be to implement getHelpable() in the
PaletteItem interface.

2.4.8.5 How to Augment the Search for a Palette Item
By default, when the user types a word or phrase into the Component Palette search
box, JDeveloper looks for items that have the search string in their Name or
Description.

To make the Component Palette search on other embedded data that is not visible to
the user (such as tag attributes), a searchTextContext can be provided along with
the item.

Declaratively, you indicate this in the ComponentPalette extension hook as shown in
Example 2–43.

Example 2–43 Component Palette Extension Hook

 <item>
 <name>Table</name>
 <description>Sample Table</description>
 <icon>/oracle/ide/samples/pageprovider/table.png</icon>
 <info/>
 <type>JavaBean</type>
 <itemId>SampleStatic-Components-Section1-Item1</itemId>
 <technologyScopes>
 <technologyScope>Java</technologyScope>
 <technologyScope>JavaBeans</technologyScope>
 </technologyScopes>
 <searchTextContext>MySearchContext</searchTextContext>
 </item>

 SearchContext then implements the PaletteSearch interface, as shown in
Example 2–44.

Example 2–44 Palette Search

class MySearchContext implements PaletteSearch
 {
 boolean searchItemContainsText(String itemId, String searchString)
 {
 boolean found = false;
 // Search internal data
 return found;
 }

How to Create JDeveloper Elements

Developing Extensions in Oracle JDeveloper 2-47

}

2.4.9 Understanding Preferences
Making a way for your users to modify and store their preferences adds productivity
and flexibility to the process of using your JDeveloper extensions.

2.4.9.1 How to Implement Preferences
You manage product-level preferences with the Preferences class. For more
information, see Preferences in the Oracle Fusion Middleware Java API Reference for
Oracle Extension SDK.

The data structure used to store preferences is HashStructure, also described in
Oracle Fusion Middleware Java API Reference for Oracle Extension SDK. The
Preferences class saves preferences in only one extension directory—the extension
that represents the entire product. In JDeveloper, for example, the product directory
follows the format
jdev-user-directory/system/oracle.JDeveloper.11.2.0.x.y, where
"11.2.0" represents the version number and "x.y" represents the build number. The file
holding the preferences is named preferences.xml.

To incorporate a new set of preferences into the IDE:
1. Implement the data model for storing the preferences. For more information, see

Section 2.4.9.2, "How to Implement the Data Model."

2. Implement the data model for storing the preference. For more information, see
Section 2.4.9.3, "How to Implement a UI Panel."

3. Register the UI panel with the Preferences dialog, which is available from the Tools
menu. For more information, see Section 2.4.9.4, "How to Register a UI Panel."

4. Obtain the preferences model. For more information, see Section 2.4.9.5, "How to
Obtain the Preference Model."

5. Listen for changes to the preferences, so they can be stored. For more information,
see Section 2.4.9.6, "How to Listen for Changes."

2.4.9.2 How to Implement the Data Model
The class that represents your preferences data should be a subclass of
HashStructureAdapter. For more information, see HashStructureAdapter in
the Oracle Fusion Middleware Java API Reference for Oracle Extension SDK.

Example 2–45 contains a typical implementation pattern, with comments for the
details.

Example 2–45 Implementation Pattern

package oracle.killerapp.coolfeature;
import oracle.javatools.data.HashStructure;
import oracle.javatools.data.;
import oracle.javatools.data.PropertyStorage;
// Start with class being final. You can always remove final if subclassing ever
// proves useful. In many cases, subclassing is actually unnecessary and may get
// you into an instanceof/typecast mess. Consider defining a separate (not
// subclass) adapter class instead.
public final class CoolFeaturePrefs extends
{

How to Create JDeveloper Elements

2-48 Developer's Guide for Oracle JDeveloper Extensions

// The DATA_KEY should be a hard-coded String to guarantee that its value stays
 // constant across releases. Specifically, do NOT
 // constant across releases. Specifically, do NOT use
CoolFeaturePrefs.class.getName().
 // The reason is that if CoolFeaturePrefs is ever renamed or moved,
 // CoolFeaturePrefs.class.getName() will cause the DATA_KEY String to
change,which
 // introduces a preferences migration issue (since this key is used in the
persisted
 // XML) that will require more code and testing to accommodate and open up your
code to
 // annoying little bugs. Unknowing developers have been trapped by this problem
before,
 // so eliminate this cause of bugs by using a hard-coded String for DATA_KEY.
 //
 // By convention, DATA_KEY should be the fully qualified class name of the
 // . This helps ensure against name collisions. This also makes it
 // easier to identify what piece of code is responsible for a preference when
you're
 // looking at the XML in the product-preferences.xml file. Of course, that only
works
 // as long as the adapter class itself is never renamed or moved, so avoid
renaming or
 // moving this class once it's been released in production.
 private static final String DATA_KEY =
"oracle.killerapp.coolfeature.CoolFeaturePrefs";
 // Private constructor enforces use of the public factory method below.
 private CoolFeaturePrefs(HashStructure hash)
{
 super(hash);
}

// Factory method should take a PropertyStorage (instead of HashStructure
directly).
// This decouples the origin of the HashStructure and allows the future
possibility
// of resolving preferences through multiple layers of HashStructure.
Classes/methods
// that currently implement/return PropertyStorage:
// - oracle.ide.config.Preferences
// - oracle.ide.model.Project
// - oracle.ide.model.Workspace
// - oracle.ide.panels.TraversableContext.getPropertyStorage()
 public static CoolFeaturePrefs getInstance(PropertyStorage prefs)
{
 // findOrCreate makes sure the HashStructure is not null. If it is null, a
 // new empty HashStructure is created and the default property values will
 // be determined by the getters below.
 return new CoolFeaturePrefs(findOrCreate(prefs, DATA_KEY));
}

// Like DATA_KEY, all other keys also appear in the XML, so they should not be
// changed once released into production, or else you'll have some migration
issues
// to fix
private static final String MAX_NUMBER_OF_THINGIES = "maxNumberOfThingies";
//NOTRANS
private static final int DEFAULT_MAX_NUMBER_OF_THINGIES = 17;

public int getMaxNumberOfThingies()

How to Create JDeveloper Elements

Developing Extensions in Oracle JDeveloper 2-49

{
 // Specify default in the getInt call to take advantage of HashStructure's
 // placeholder mechanism. See HashStructure javadoc for details on
placeholders.
 return _hash.getInt(MAX_NUMBER_OF_THINGIES, DEFAULT_MAX_NUMBER_OF_THINGIES);
}
 public void setMaxNumberOfThingies(int maxNumberOfThingies)
{
 _hash.putInt(MAX_NUMBER_OF_THINGIES, maxNumberOfThingies);
}
//---
 private static final String THINGIE_NAME = "thingieName"; //NOTRANS
 private static final String DEFAULT_THINGIE_NAME = "widget"; //NOTRANS
 public String getThingieName()
{
 return _hash.getString(THINGIE_NAME, DEFAULT_THINGIE_NAME);
}
 public void setThingieName(String thingieName)
{
 return _hash.putString(THINGIE_NAME, thingieName);
}
 // etc..
}

2.4.9.3 How to Implement a UI Panel
The class that implements your preferences panel should be a subclass of
DefaultTraversablePanel. For more information, see
DefaultTraversablePanel in the Oracle Fusion Middleware Java API Reference for
Oracle Extension SDK.

Example 2–46 shows a typical implementation pattern.

Example 2–46 DefaultTraversalPanel

package oracle.killerapp.coolfeature;
import oracle.ide.panels.DefaultTraversablePanel;
// You should keep the panel class package-private and final unless there
// is a good reason to open it up. In general, preferences panels are not
// supposed to be part of a published API, so the class modifiers should
// enforce that.
final class CoolFeaturePrefsPanel extends DefaultTraversablePanel
{
 // But, the no-arg constructor still needs to be public.
 public CoolFeaturePrefsPanel()
 {
 // Layout the controls on this panel.
 }
 public void onEntry(TraversableContext tc)
 {
 final CoolFeaturePrefs prefs = getCoolFeaturePrefs(tc);
 // Load prefs into the panel controls' states.
 }
 public void onExit(TraversableContext tc)
 {
 final CoolFeaturePrefs prefs = getCoolFeaturePrefs(tc);
 // Save the panel controls' states to prefs.
}
 private static CoolFeaturePrefs getCoolFeaturePrefs(TraversableContext tc)
{

How to Create JDeveloper Elements

2-50 Developer's Guide for Oracle JDeveloper Extensions

 // If you've implemented CoolFeaturePrefs according to the typica
 // implementation pattern given above, this is how you attach the
 // adapter class to the defensive copy of the preferences being
 // edited by the Tools->Preferences dialog.
 return CoolFeaturePrefs.getInstance(tc.getPropertyStorage());
 }
}

2.4.9.4 How to Register a UI Panel
Example 2–47 contains an XML fragment for the extension manifest (extension.xml)
that registers the panel shown above with the Preferences dialog, which is available
from the Tools menu.

Example 2–47 XML Fragment for Extension Manifest

<extension ...>
 <hooks>
 <settings-ui-hook xmlns="http://xmlns.oracle.com/ide/extension">
 <page id="CoolFeaturePrefs" parent-idref="/preferences">
 <label>${SOME_RES_KEY}</label>
 <traversable-class>oracle.killerapp.coolfeature.CoolFeaturePrefsPanel
</traversable-class>
 </page>
 </settings-ui-hook>
 </hooks>
</extension>

2.4.9.5 How to Obtain the Preference Model
Use the oracle.ide.config.Preferences class to obtain preferences if you need
to read or write preferences in code other than preference dialog code. Do not use this
technique in preference pages. Any changes you make to the preference object using
this code takes immediate effect, which makes it unsuitable for the Preferences dialog,
which should always be cancelable.

Preferences p = oracle.ide.config.Preferences.getPreferences();
CoolFeaturePrefs myPrefs = CoolFeaturePrefs.getInstance(p);

2.4.9.6 How to Listen for Changes
You can listen for changes to preferences by attaching an
oracle.javatools.data.StructureChangeListener to the hash structure
underlying your preferences model object. Usually, a good approach is to expose
methods for attaching a listener to your model object as shown in Example 2–48.

Example 2–48 Exposing Methods for Attaching to your Model Object

public final class CoolFeaturePrefs extends
{
 //...
 public void addStructureChangeListener(StructureChangeListener l)
 {
 _hash.addStructureChangeListener(l);
 }
 public void removeStructureChangeListener(StructureChangeListener l)
 {
 _hash.removeStructureChangeListener(l);
 }
 //...

How to Create JDeveloper Elements

Developing Extensions in Oracle JDeveloper 2-51

}

2.4.10 Understanding Project Properties
Project properties are similar to project preferences, see Section 2.4.9, "Understanding
Preferences."

You manage project properties with the Project class. For more information, see
Project in the Oracle Fusion Middleware Java API Reference for Oracle Extension SDK.

2.4.11 How to Make Changes Undoable
Users who follow the rapid, iterative model of application development rely on the
ability to easily back out changes as they move from solution to solution. Adding the
ability to make your changes undoable provides this functionality for your users.

2.4.11.1 How to Make Text Changes Undoable
If your extension uses any form of text entry—for example, if you are implementing a
custom text editor with specific features used by your organization—your users will
expect to be able to undo changes they make while entering text. UndoableEdit
allows your extension to do and undo the changes made to text by the user, as show
in Example 2–49.

Example 2–49 Undoable Edit

import javax.swing.undo.UndoableEdit;
import oracle.ide.Context;
import oracle.ide.controller.Command;
import oracle.ide.controller.CommandProcessor;
import oracle.ide.model.TextNode;
import oracle.javatools.buffer.TextBuffer;
public class MyCommand extends Command
{
 private UndoableEdit _undoableEdit;
 public MyCommand(Context context)
 {
 super(-1, Command.NORMAL, "Insert Hello");
 setContext(context);
 }
 public int doit() throws Exception
 {
 if (_undoableEdit == null)
 {
 final TextNode textNode = (TextNode) context.getNode();
 final TextBuffer textBuffer = textNode.acquireTextBuffer();
 textBuffer.beginEdit();
 textBuffer.insert(0, "Hello World".toCharArray());
 _undoableEdit = textBuffer.endEdit();
 textNode.releaseTextBuffer();
 } else
 {
 _undoableEdit.redo();
 }
 return OK;
 }
 public int undo() throws Exception
 {
 _undoableEdit.undo();

How to Define and Use Trigger Hooks

2-52 Developer's Guide for Oracle JDeveloper Extensions

 return OK;
 }
}

2.4.11.2 How to Make Commands Undoable
If you want to make undoable changes to a document, you have to implement a
command that knows how to do and undo the changes, as shown in Example 2–50

Example 2–50 Doing and Undoing Changes

import oracle.ide.controller.Command;
import oracle.ide.Context;
import oracle.ide.model.Node;
public class MyCommand extends Command
{
 public MyCommand(Context context, Node affectedNode)
 {
 super(-1, Command.NORMAL, "My Changes");
 // The context usually already contains the node so this would not be necessary
 final Context contextCopy = new Context(context);
 contextCopy.setNode(affectedNode);
 setContext(contextCopy);
 }
 public int doit() throws Exception
{
 final Node affectedNode = context.getNode();
 // Do the changes to the node here
 return OK;
 }
public int undo() throws Exception
 final Node affectedNode = context.getNode();
 // Undo the changes to the node here
 return OK;
 }
}

2.5 How to Define and Use Trigger Hooks
The <trigger-hooks> element is in the
http://xmlns.oracle.com/ide/extension namespace.

The <trigger-hooks> element contains three child elements:

■ <registry> - used to register trigger hook handlers

■ <triggers> - where all trigger hooks are placed

■ <rules> - defines conditions that can be used to conditionally execute a set of
triggers

The IDE provided trigger-hooks are:

■ Actions

■ Controllers

■ Menus

■ Context Menus

How to Define and Use Trigger Hooks

Developing Extensions in Oracle JDeveloper 2-53

■ Feature Hook

■ Editor Menu

■ Accelerators/Shortcut Keys

■ Gallery Items

■ Technology Scopes

■ Editors

■ NodeFactory Recognizers

■ IDE Preferences/Settings

■ Application Preferences/Settings

■ Project Preferences/Settings

■ Content Set Providers

■ Singleton Registration

■ Application and Project Migrators

■ URLFileSystem Hook

■ ImportExport Hook

■ Menu Customizations Hook

■ Bridge Extensions Hook

■ On Project Open Hook

■ Help Callbacks Hook

■ Help Hook

■ Dockable Hook

■ Historian Hook

■ External Tools Hook

2.5.1 How to Register a <trigger-hook-handler>
To define your own trigger-hook, you register a trigger hook handler as shown in
Example 2–51, "Registering a Trigger Hook Handler".

Example 2–51 Registering a Trigger Hook Handler

<trigger-hooks xmlns="http//xmlns.oracle.com/ide/extension/myExtension">
 <registry>
 <trigger-hook-handler
 tag-name="my-hook"
 handler-class="oracle.ide.extension.HashStructureHook"
 namespace="http://xmlns.oracle.com/ide/extension"
 schema-location="my-hook.xsd"
 register-as-hook="true"/>
 </registry>
 </trigger-hooks>

The register-as-hook attribute controls whether or not the extension hook is also
allowed in the <hooks> section. The default value is false; only set it to true if it
makes sense to support the same element in <hooks>.

How to Define and Use Trigger Hooks

2-54 Developer's Guide for Oracle JDeveloper Extensions

If you have an existing declarative hook and you want it to now be a trigger hook, you
need to remove your current hook handler registration and instead register a
trigger-hook-handler as shown in Example 2–51, "Registering a Trigger Hook
Handler", and set the register-as-hook attribute to true.

If you are updating an existing extension built to previous standards used by
JDeveloper, for backward compatibility, you can keep the same namespace you used.
If your existing hook is a child of the old jdeveloper-hook and you would also like
to support it as a trigger hook, set the attribute register-as-jdeveloper-hook to
true.

Extensions outside of the core IDE must use a hook-handler class that is part of the
core IDE. There are two options you can use:

■ oracle.ide.extension.HashStructureHook as the handler-class. If your
trigger-hook is also in <hooks>, or if it can be used in conditional trigger sections,
then new elements are processed by the HashStructureHook after you observe
the HashStructure. In this situation, your code must listen to the
HashStructureHook events.

■ DeferredElementVisitorHook, allows you to use a custom
ElementVisitor class to process your hook's XML data, so if you have already
written a custom hook handler you can reuse your code.

2.5.2 How to Define Trigger Hooks for your Extension
To use a trigger hook, use syntax similar to Example 2–52, "Defining Trigger Hooks".

Example 2–52 Defining Trigger Hooks

 <triggers>
 <singleton-provider-hook>
 <singleton base-class="oracle.bali.xml.addin.JDevXmlContextFactory"
 impl-class="oracle.bali.xml.addin.JDevJavaXmlContextFactory" />
 </singleton-provider-hook>
 </triggers>
 </trigger-hooks>

2.5.3 How to Retrieve Parsed Information from the ExtensionRegistry
When you define a trigger-hook-handler for an element name, a single instance
of that ExtensionHook handler class is created that processes all the usages of that
trigger hook.

To retrieve that ExtensionHook instance, call
ExtensionRegistry.getHook(elementName). In earlier versions of JDeveloper
extension development, this API was used to retrieve the ExtensionHook for a
regular declarative hook. All the processed trigger hooks and all the currently loaded
hooks sections contribute to the same bucket of ExtensionHook instances.

If your trigger-hook-handler is HashStructureHook, you can retrieve the
HashStructure from the returned HashStructureHook instance. It contains the
XML information for all the usages of your element name in the HashStructure, as
well as stored information about what extensions the different sections of the
HashStructure came from. You can use a HashStructureAdapter subclass to
pull information out of the HashStructure.

How to Define and Use Trigger Hooks

Developing Extensions in Oracle JDeveloper 2-55

2.5.4 How to Define Rules and Condition Triggers Sections
This section describes how to define rules and conditions in the extension manifest.

2.5.4.1 How to Define Rules
Rules and rule-types are defined in the <rules> section of <trigger-hooks> in the
extension manifest, extension.xml.

A rule-type represents a rule function implemented in Java and describes the
parameters accepted by that function (such as a method signature). There is a set of
built-in rule-types provided by the IDE.

A rule represents a call to a rule function passing specific values for the parameters.
Each rule is given a globally unique id, and then referenced by id from the hooks that
support rules.

The rule framework is oracle.ide.extension.rules in the IDE module.

To define a rule type you must supply:

■ An id by which it is referenced,

■ An implementation class which is a subclass of
oracle.ide.extension.rules.RuleFunction, and list the supported
parameters. You can indicate whether a parameter is optional or required.

The IDE module's extension.xml defines several built-in rule types, illustrated in
Example 2–53.

Example 2–53 Built-in Rule Types

<trigger-hooks xmlns="http://xmlns.oracle.com/ide/extension">
 <rules>
 <rule-type id="always-enabled"
class="oracle.ide.extension.rules.functions.AlwaysEnabled" />

 <rule-type id="any-selection-has-attribute"
class="oracle.ide.extension.rules.functions.AnySelectionHasAttribute">
 <supported-parameters>
 <param name="element-attribute" required="true"/>
 </supported-parameters>
 </rule-type>
 <rule-type id="context-has-element"
class="oracle.ide.extension.rules.functions.ContextHasElement">
 <supported-parameters>
 <param name="element-class" required="true"/>
 </supported-parameters>
 </rule-type>
 <rule-type id="context-has-node"
class="oracle.ide.extension.rules.functions.ContextHasNode">
 <supported-parameters>
 <param name="node-class" required="true"/>
 </supported-parameters>
 </rule-type>
 <rule-type id="context-has-project"
class="oracle.ide.extension.rules.functions.ContextHasProject" />
 <rule-type id="context-has-view"
class="oracle.ide.extension.rules.functions.ContextHasView">
 <supported-parameters>
 <param name="view-class" required="true"/>
 </supported-parameters>
 </rule-type>

How to Define and Use Trigger Hooks

2-56 Developer's Guide for Oracle JDeveloper Extensions

 <rule-type id="context-has-workspace"
class="oracle.ide.extension.rules.functions.ContextHasWorkspace" />
 <rule-type id="element-has-attribute"
class="oracle.ide.extension.rules.functions.ElementHasAttribute">
 <supported-parameters>
 <param name="element-attribute" required="true"/>
 </supported-parameters>
 </rule-type>
 <rule-type id="on-extension-init"
class="oracle.ide.extension.rules.functions.ExtensionInitialized">
 <supported-parameters>
 <param name="extension-id" required="true"/>
 </supported-parameters>
 </rule-type>
 <rule-type id="extension-is-enabled"
class="oracle.ide.extension.rules.functions.ExtensionEnabled">
 <supported-parameters>
 <param name="extension-id" required="true"/>
 </supported-parameters>
 </rule-type>
 <rule-type id="on-single-selection"
class="oracle.ide.extension.rules.functions.SingleSelection">
 <supported-parameters>
 <param name="element-class" required="false"/>
 </supported-parameters>
 </rule-type>
 <rule-type id="on-multiple-selection"
class="oracle.ide.extension.rules.functions.MultipleSelection">
 <supported-parameters>
 <param name="element-class" required="false"/>
 </supported-parameters>
 </rule-type>
 <rule-type id="node-is-dirty"
class="oracle.ide.extension.rules.functions.NodeIsDirty" />
 <rule-type id="project-has-techscope"
class="oracle.ide.extension.rules.functions.ProjectHasTechScope">
 <supported-parameters>
 <!-- Comma-separated list of technology keys -->
 <param name="technology-keys" required="true" />
 <!-- Specify 'all' or 'any' for match, to specify if all keys should exist
or any one key suffices -->
 <param name="match" required="false" />
 </supported-parameters>
 </rule-type>
 </rules>
</trigger-hooks>

The handler for <rule-type> stores this information for use during parsing of
<rule> and the runtime evaluation of rules. The rule class is not loaded until the last
possible moment, when a rule needs to be evaluated.

You can introduce your own rule types however there are some restrictions that are
important to understand:

■ The IDE never loads a rule type class from an extension that is not fully loaded.

■ Rule evaluation never triggers loading an extension.

Consider the case that extension E1 introduces R1-rule-type and T1-trigger-hook.
Imagine that T1-trigger-hook supports using rules. Only when extension E1 is fully
loaded will it attempt to consume the data from T1-trigger-hook and evaluate any rule

How to Define and Use Trigger Hooks

Developing Extensions in Oracle JDeveloper 2-57

referenced within, so it is perfectly correct to use rules of R1-rule-type with
T1-trigger-hook.

However, if you try to use a rule of type R1-rule-type with an ide-core trigger hook
such as gallery, there is no guarantee that extension E1 would be loaded when that
rule was evaluated, in which case an error is logged.

2.5.4.2 How to Define Simple Rules
A rule is defined in the <rules> section of <trigger-hooks>. To define a rule type
you must supply an id by which it is referenced, a type attribute that identifies the
rule-type, and values for any parameters required by the rule-type.

The handler for <rule> verifies that, as shown in Example 2–54:

■ The id is unique.

■ The value of type matches the id of a rule-type defined in this extension.xml (or in
the extension.xml of a dependency).

■ All required parameters have values.

■ All provided parameters match parameter names defined by the rule type.

Example 2–54 Simple Rule

 <rules>
 <rule id="context-has-text-node" type="context-has-node">
 <parameters>
 <param name="node-class" value="oracle.ide.model.TextNode" />
 </parameters>
 </rule>
 <rule id="context-has-source-node-1" type="context-has-node">
 <parameters>
 <param name="node-class" value="org.product.SourceNode1" />
 </parameters>
 </rule>
 <rule id="context-has-source-node-2" type="context-has-node">
 <parameters>
 <param name="node-class" value="org.product.SourceNode2" />
 </parameters>
 </rule>
 <rule id="on-xxx-init" type="on-extension-init">
 <parameters>
 <param name="extension-id" value="org.product.MyXxxExtension"/>
 </parameters>
 </rule>
 <rule id="on-yyy-init" type="on-extension-init">
 <parameters>
 <param name="extension-id" value="org.product.MyYyyExtension"/>
 </parameters>
 </rule>
 <rule id="on-text-node-single-selection" type="on-single-selection">
 <parameters>
 <param name="element-class" value="oracle.ide.model.TextNode" />
 </parameters>
 </rule>
 </rules>
</trigger-hooks>

How to Define and Use Trigger Hooks

2-58 Developer's Guide for Oracle JDeveloper Extensions

2.5.4.3 Implicitly Available Rules
Each rule-type that has no required parameters is automatically registered as a rule
(using the rule-type ID as the rule ID). For example, context-has-project and
node-is-dirty are examples of rule-types with no required parameters, and those
ids can be used anywhere a rule is referenced without needing to explicitly add a
<rule> to an extension.xml.

2.5.4.4 Guidelines for Rules
You can avoid ID duplication and maximize reuse by carefully choosing which
extension.xml a rule should go into, and the rule name.

The simple rule of thumb is find the extension that contains the class name you are
passing as a parameter, and put it in that extension's extension.xml. So, for
example, in order to define the context-has-source-node-1 rules in
Example 2–54, find the extension that contains the SourceNode1 class and look to see
if there is an existing rule that meets your needs. If there is not, add the rule to that
extension.xml.

The ID should be descriptive and based on the rule-type ID, for example:

■ context-has-xxx-node

■ context-has-xxx-node

■ context-has-xxx-element

■ context-has-xxx-view

■ on-xxx-single-selection

■ on-xxx-init

2.5.4.5 How to Define Composite Rules
You can define a rule that is composed of other rules and boolean operators. The
supported boolean operators are <or>, <and>, and <not>. The <and> and <or>
boolean operator elements accept any number of children, and the <not> element
accepts one child. Each child of a boolean operator must be either a rule-reference or
another boolean operator, as illustrated in Example 2–55.

Example 2–55 Composite Rules

<trigger-hooks xmlns="http://xmlns.oracle.com/ide/extension">
 <rules>
 <composite-rule id="context-has-xxx-or-yyy-node">
 <or>
 <rule-reference id="context-has-jsp-node" />
 <rule-reference id="context-has-zzz-node" />
 </or>
 </composite-rule>
 <composite-rule id="on-aaa-and-bbb-init">
 <and>
 <rule-reference id="on-aaa-init" />
 <rule-reference id="on-bbb-init /">
 </and>
 </composite-rule>
 <composite-rule id="more-complicated-composite-rule">
 <or>
 <rule-reference id="rule-a" />
 <and>
 <rule-reference id="rule-b" />

How to Define and Use Trigger Hooks

Developing Extensions in Oracle JDeveloper 2-59

 <not>
 <rule-reference id="rule-c" />
 </not>
 </and>
 </or>
 </composite-rule>
 </rules>
</trigger-hooks>

2.5.4.6 How to Reference Rules From Hooks
All rules are defined in the <rules> section of an extension.xml and then
referenced by id in hooks that support rules.

A trigger hook that wants to support rules only needs to change its syntax to accept
the id of the rule. By convention, the rule id should be supplied in an attribute named
"rule". These are illustrated inExample 2–56, Example 2–57, and Example 2–58.

Example 2–56 Gallery Items

 ...
 <item rule="always-enabled">
 <name>oracle.jdeveloper.template.wizard.TemplateWizard</name>
 <id>Application</id>
 <description>${NEW_APPLICATION_TEMPLATE_GALLERY_ITEM}</description>
 <help>${MANAGE_TEMPLATES_WIZARD_DESCRIPTION}</help>
 <folder>Applications</folder>
 <technologyKey>General</technologyKey>
 <icon>/oracle/javatools/icons/apptemplate.jpg</icon>
 </item>
</gallery>

Example 2–57 Controllers

<controllers xmlns="http://xmlns.oracle.com/ide/extension">
 <controller class="com.random.FooController">
 <update-rules>
 <update-rule rule="on-text-node-selected">
 <action id="some.action.id1">
 <label>Perform Action on {0}</label>
 <label-param>${node.name}</label-param>
 </action>
 </update-rule>
 </update-rules>
 </controller>
 <controller class="com.random.BarController">
 <update-rules>
 <update-rule rule="on-jsp-node-selected">
 <action id="some.action.id3" />
 <action id="some.action.id4" />
 <action id="some.action.id5" />
 </update-rule>
 </update-rules>
 </controller>
</controllers>

Example 2–58 Context Menus

<context-menu-hook rule="context-has-xxx-or-yyy-node">

How to Add Online Help Support

2-60 Developer's Guide for Oracle JDeveloper Extensions

 <site ref-id="navigator"/>
 <menu>
 <section xmlns="http://jcp.org/jsr/198/extension-manifest" id="MY_CUSTOM_MENU_
SECTION_ONE" weight="1.0">
 <item action-ref="myTriggerActionId" weight="1.0" />
 <item action-ref="myOtherTriggerActionId" weight="2.0" />
 </section>
 </menu>
 </context-menu-hook>

2.5.4.7 How to Validate Rule References and Evaluate Rules
If you are implementing a trigger hook, and you'd like to support rules in your hook,
in your XML syntax add a rule attribute that accepts the ID of a rule (the XML Schema
type for the rule attribute should be xsd:NCName).

In your hook handler implementation, when you retrieve the value of the rule
attribute, you should call the following method on RuleEngine to do parsing-time
validation of the rule reference:

public static boolean validateRuleReference(String id, Set<String>
expectedRuleTypes, ElementContext referenceContext

This method validates that there is a known rule with that ID (in the same
extension.xml or in a dependency), and if you pass the optional
expectedRuleTypes it validates that the rule is one of those types (if it is a
composite rule all the particles must be of the expected types). If the optional
referenceContext parameter is passed, it logs all the problems to the
ElementContext's logger.

When it was time to actually evaluate the rule, you'd pass the rule id to a method on
the Rule Engine along with an IDE Context (if available). The Rule Engine instantiates
the rule-type class, pass the parameters from the rule definition, along with the
context, and return true or false.

public static boolean evaluateRule(String id, Context ideContext)

The first method logs any exceptions that occur during rule evaluation and returns
false if there were any problems evaluating the rule. The latter method also logs any
exceptions, but throws the exception to the caller (in case the caller wants to take a
different action).

2.6 How to Add Online Help Support
The help system used by JDeveloper provides context-sensitive F1 topics integrated
into the structure of the IDE, where users access help by clicking the Help button in a
wizard panel or a dialog, or by pressing the F1 key.

You can provide similar context-sensitive F1 help topics for your extension to make it
easier for the users of your extension to learn about it and to use it effectively.

2.6.1 How to Create the Help System
You create a help system by providing a helpset, which is a Java archive, containing a
number of HTML help topics.

For more information about creating a help system, see the Oracle Fusion Middleware
Developer's Guide for Oracle Help. For additional resources and to download the Oracle
Help for Java Developer’s Kit, see

How to Add Print Support

Developing Extensions in Oracle JDeveloper 2-61

http://www.oracle.com/technetwork/developer-tools/help/index-083
946.html.

To create the help system
1. For each panel of a wizard, or each window or editor, create an HTML topic file

describing the panel.

2. Create a map control file for the helpset.

3. Create a helpset (.HS) control file.

4. Assemble the topic and control files into a Java archive. The archive must have the
same root name as the HS file, and the HS file must be placed in the archive's root
directory.

5. Make an association between a component and a help topic. For each panel,
provide a call to registerTopic to register the topic ID. For example, if panel
is the name of a wizard panel, and topic is the topic ID for its documentation, the
call is:

HelpSystem.getHelpSystem().registerTopic((JComponent)panel, topic);

6. Include the helpset's Java archive in the extension for deployment, so that when
the extension is loaded the help topics are available for users.

2.6.2 How to Register the Help System
The help system for the extension should be available to users before the extension has
loaded so that they can find out about an area of functionality. Therefore the help
system has to be registered as shown in Example 2–59.

Example 2–59 Help Registered in <trigger-hooks>

<trigger-hooks xmlns="http://xmlns.oracle.com/ide/extension">
 <triggers>
 <help xmlns="http://xmlns.oracle.com/jdeveloper/1013/extension">
 <item>
 <helpName>ejb</helpName>
 <helpURL>../doc/$edition/ohj/helpset.jar!/helpset.hs</helpURL>
 <relativeTo>using_diagrams</relativeTo>
 <relativePosition>after</relativePosition>
 </item>
 </help>
 </triggers>
</trigger-hooks>

2.7 How to Add Print Support
JDeveloper provides a default implementation of DocumentPrintFactory that can
create a Pageable object based on a Component or a TextNode.

2.7.1 How to Register DocumentPrintFactory
Printing is supported by declaratively registering a DocumentPrintFactory in
extension.xm, as shown in Example 2–60.

Example 2–60 Registering DocumentPrintFactory

<hooks>

How to Add Print Support

2-62 Developer's Guide for Oracle JDeveloper Extensions

 <print-hook xmlns="http://xmlns.oracle.com/ide/extension">
 <documentPrintFactory id="oracle.jdevimpl.help.HelpTopicDocumentPrintFactory"

class="oracle.jdevimpl.help.HelpTopicDocumentPrintFactory" />
 </print-hook>
</hooks>

2.7.2 How to Register a View Class to Enable Printing
In order to enable printing from a view you need to register the view class and the
DocumentPrintFactory that is used to create a Pageable object when print is
called on the view.

Example 2–61 shows how to register a printHelper for
oracle.ide.navigator.NavigatorWindow and specifies that the
DocumentPrintFactory that is registered with the id
oracle.ide.print.DocumentPrintFactory is used to construct the Pageable
object.

Example 2–61 Registering the View Class

<hooks>
 <print-hook xmlns="http://xmlns.oracle.com/ide/extension">
 <printHelper
documentPrintFactoryId="oracle.ideri.navigator.NavigatorPrintFactory"
 view-class="oracle.ide.navigator.NavigatorWindow" />
 </print-hook>
</hooks>

If you want to print something else or enhance default printing you have to extend
DocumentPrintFactory to create the Pageable object for your view and register
your implementation of the DocumentPrintFactory. Example 2–62 shows how to
use the same DocumentPrintFactory for multiple views.

Example 2–62 Using the Same DocumentPrintFactory for Multiple Views

<print-hook xmlns="http://xmlns.oracle.com/ide/extension">
 <documentPrintFactory id="oracle.jdevimpl.help.HelpTopicDocumentPrintFactory"

class="oracle.jdevimpl.help.HelpTopicDocumentPrintFactory" />
 <printHelper
documentPrintFactoryId="oracle.jdevimpl.help.HelpTopicDocumentPrintFactory"
 view-class="oracle.jdevimpl.help.HelpTopicEditor" />
 <printHelper
documentPrintFactoryId="oracle.jdevimpl.help.HelpTopicDocumentPrintFactory"
 view-class="oracle.jdevimpl.help.HelpWindow" />
 <printHelper
documentPrintFactoryId="oracle.jdevimpl.help.HelpTopicDocumentPrintFactory"
 view-class="oracle.jdevimpl.help.HelpContentPanel" />
 <printHelper
documentPrintFactoryId="oracle.jdevimpl.help.HelpTopicDocumentPrintFactory"
 view-class="oracle.jdevimpl.help.HelpCenterWindow$HelpCenterView"
/>
 </print-hook>
</hooks>

How to Add Print Support

Developing Extensions in Oracle JDeveloper 2-63

2.7.2.1 How to Register a PageableFactory implementation for Handling a Node
JDeveloper provides a default PageableFactory implementation to handle printing
TextNode data.

In some cases you may want to override the standard PageableFactory
implementation with one that provides the output you want. For example, the
DocumentPrintFactory registered for the NavigatorWindow is the
NavigatorPrintFactory. When it needs to create a Pageable object to print it
calls PrintManager.createPageableForObject() which attempts to look up
the best PageableFactory for the selected element. You can register a
PageableFactory that is used to handle your node class.

Example 2–63 Registering a PageableFactory to Handle a Node Class

<print-hook xmlns="http://xmlns.oracle.com/ide/extension">
 <textNodePageableFactory node-class="oracle.mypackage.MyNodeClass"

weight="0.5">oracle.mypackage.MyPageableFactory</textNodePageableFactory>
</print-hook>

In Example 2–63 the node-class identifies the node that you want to be handled by the
PageableFactory specified (in this case
oracle.mypackage.MyPageableFactory). The weight is used to order the list of
registered PageableFactory implementations when checking for a match for the
current element.

How to Add Print Support

2-64 Developer's Guide for Oracle JDeveloper Extensions

3

Developing with the Extension SDK 3-1

3Developing with the Extension SDK

This chapter describes the Oracle JDeveloper Extension SDK, which is available to
download to JDeveloper, and how to use it to develop your own extensions.

This chapter includes the following sections:

■ Section 3.1, "About Developing with the Extension SDK"

■ Section 3.2, "Downloading and Installing the Extension SDK"

■ Section 3.3, "Using with the Sample Extensions"

■ Section 3.4, "How to Run the Sample Projects"

3.1 About Developing with the Extension SDK
The JDeveloper Extension Software Developer Kit (SDK) includes a collection of
projects containing sample code and the javadoc-generated documentation for the
Extension API.

Each sample project contains a deployment profile for one-click deployment of the
sample to the appropriate directory. You can also deploy all the projects at once.

You can use the code that provides each extension as a template to help you develop
similar features.

3.2 Downloading and Installing the Extension SDK
You can download and install the Extension SDK using the Check for Updates wizard,
or by downloading it from the Oracle website.

To install the Extension SDK using Check for Updates:
1. Follow the information in "How to Install Extensions with Check for Updates" in

Oracle Fusion Middleware User Guide for Oracle JDeveloper, and on the Source page
select the Official Oracle Extensions and Updates update center.

2. On the Updates page, choose Extension SDK from the list of available
extensions, and click Next. Owing to the size of the extension, it may take a few
minutes to download depending on your internet connection.

3. When you finish the wizard, JDeveloper will restart and install the Extension SDK.
When it restarts, you are asked whether JDeveloper should install the sample
application containing the sample projects described in this chapter. If you answer
yes, the application extensionsdk is open in the Application Navigator, and the
sample projects are listed.

Using with the Sample Extensions

3-2 Developer's Guide for Oracle JDeveloper Extensions

If you are working behind a firewall, JDeveloper will not be able to connect to the
update center until you enter details of your proxy server. You can either do this in the
Web Browser and Proxy page of the Preferences dialog (available from the Tools
menu), or the Check for Updates wizard will time out and display the Web Browser
and Proxy page.

To install the Extension SDK using a file:
1. Follow the information in "How to Install Extensions Directly from OTN" in Oracle

Fusion Middleware User Guide for Oracle JDeveloper, and navigate to the page for
Official Oracle JDeveloper Extensions.

2. Download the Extension SDK to a local location, then open the Check for Updates
wizard from the Help menu.

3. On the Source page, choose Install from Local File and enter the location
of the esdk_bundle.zip file and complete the wizard.

4. JDeveloper will restart and install the Extension SDK. When it restarts, you are
asked whether JDeveloper should install the sample application containing the
sample projects described in this chapter. If you answer yes, the application
extensionsdk is open in the Application Navigator, and the sample projects are
listed.

3.2.1 What Happens When you Install the Extension SDK
When you successfully install the Extension SDK, the sample application is optionally
open in the Application Navigator, giving you access to the sample projects that
illustrate different aspects of JDeveloper functionality. You can use the code to help
you develop your own extensions.

The Oracle Fusion Middleware Java API Reference for Oracle Extension SDK is
available from the Reference node in the Contents list of the online help (available
from the Help menu.

3.2.2 Troubleshooting Installing the Extension SDK
If you have trouble downloading the Extension SDK and you are working behind a
firewall, ensure that you have set the proxy server settings on the Web Browser and
Proxy page of the Preferences dialog (available from the Tools menu).

If the Check for Updates wizard has located the update center you are using, it may
take up to a couple of minutes before the list of available extensions is displayed,
depending on the speed of your connection.

When you select the Extension SDK in the wizard, it downloads while the wizard is
still open, and this can take a couple of minutes, depending on the speed of your
connection. Once the extension has finished downloading, JDeveloper needs to restart
in order to install it, and a message to this effect is displayed.

3.3 Using with the Sample Extensions
The sample projects available in the Extension SDK are briefly described in this
section. For more information, see the comments in each project, which provides
guidance on the functionality.

If you need more information about JDeveloper, see the relevant section of the Oracle
Fusion Middleware User Guide for Oracle JDeveloper.

Using with the Sample Extensions

Developing with the Extension SDK 3-3

For information about running the samples, see Section 3.4, "How to Run the Sample
Projects."

■ AllSamples.jpr: This sample provides a deployment profile that can be used to
run all the sample projects at once.

■ ApplicationOverview.jpr: Demonstrates how to plug in to the Application
Overview window. Adds a Show Overview menu item to both the Application
and Project context menus. It illustrates how to:

■ Add your own custom editor.

■ Get files from an application and project.

■ Get the status of individual files in a project.

■ AuditRefactor.jpr: Demonstrates using the Audit framework to detect problems in
Java code, and how to write a transform using the refactoring API to fix the
problems automatically.

– Adds an option to the IDE Audit properties page.

– Manages the public final static methods names.

– shows how to use the refactoring features of the IDE.

■ Balloon.jpr: Demonstrates how to install a balloon notification into the JDeveloper
status bar.

Shows how to:

■ Add an Action Listener to a dialog or Balloon element.

■ Interact with the IDE Status bar, both adding and removing items.

■ Get an icon from OracleIcons.

■ ClassBrowser.jpr: Shows how to use the JDeveloper ClassBrowser.

– Shows how to setup a single page wizard.

– Adds a context menu to Navigator and Observer UI sections.

■ ClassGenerator.jpr: Shows the basic of JOT (Java Object Tool) to generate a java
file in your project. Also demonstrates how to use the Finite State Machine (FSM)
Wizard utility to create a multi step wizard.

– Adds an item to the View menu.

– Shows how to enable and disable a menu option based on what is currently
selected in the Application Navigator.

– Shows how to setup a multi-page wizard.

■ ClassSpy.jpr: Shows the simplest way to identify the class of a given node in the
Navigator, and how to write its name in the log window. Shows how to:

– Add a context menu to the source editor, explorer, and Application Navigator
using extension.xml.

– Work with a Context object.

– Display information in a log window.

Code from this sample is used to illustrate Section 2.4.6.3, "How to Implement a
Controller."

■ ClickableURL.jpr: Shows how to generate a clickable URL in the log window.

Using with the Sample Extensions

3-4 Developer's Guide for Oracle JDeveloper Extensions

– Adds a context menu to the Application Navigator using the
extension.xml file.

– Shows interaction with a new log window.

– Shows how to work with a file URL.

– Works with MessageWindow to place data in a log.

– Shows how to launch a browser from the IDE.

■ CodeInteraction.jpr: Shows how to get text from the code editor, and launches a
Google search on the currently selected text.

– Adds context menu to the source editor.

– Shows how to enable the context menu item based on a condition in the source
editor.

– Shows how to call a browser with data from the source editor.

■ ConfigPanel.jpr: Demonstrates how to store and retrieve preferences, and install a
panel into the Preferences dialog.

– Adds a menu item to the Tools menu using an Addin class.

– Shows interaction with the log window.

– Shows how to use a listener to listen for changes to the IDE Preferences model.

– Code from this project is used to illustrate Section 2.4.4.4, "How to Add a
Wizard to the Tools Menu."

■ CPPageProvider.jpr: Demonstrates how to plug into the component palette using
the palette2 API.

■ CreateDialog.jpr: An example of a simple create dialog invoked from the gallery.

– Shows how to add a New Gallery item using extension.xml.

– Shows how to use a background task with monitor.

– Uses JEWTDialog and Panel to display data.

– Shows how to listen for Enter key press in text fields and do something with
the event.

■ CreateStructure.jpr: Demonstrates creating a new empty application (jws file) and
adding a new empty project (jpr file) to it.

– Works with the file system IO, creating files, and directories

– Uses oracle.ide APIs to build structure rather than JDeveloper APIs

– Shows the use of a logs() method for sending info to the logs window

■ CustomEditor.jpr: Shows how to implement your own editor for a given kind of
file. To see the tool in action, open any XML file and switch to the Query page.

Code from this sample project is used to illustrate Section 2.4.6.1, "How to
Implement the EditorAddin Class" and Section 2.4.6.2, "How to Define an Editor
Class."

■ CustomExtensionHook.jpr: Demonstrates a custom extension hook, which allows
other extensions to plug into your extension.

Shows how to add a menu item declaratively in extension.xml, specifically to
the View menu.

Using with the Sample Extensions

Developing with the Extension SDK 3-5

■ CustomNavigator.jpr: Demonstrates how to install a custom navigator window.
Installs a "Favorites" window which can be used to store frequently accessed files.

– Shows how to create your own navigator window.

– Shows file IO methods for saving a file to the system directory.

– Shows how to add a customer icon to the window.

– Shows how to work with selected items in a menu.

– Adds a separate controller for just one menu area.

■ DebugObjectPreferences.jpr: Demonstrates how to install a custom object
preferences renderer for the Data window of the debugger.

– Adds its parameter to the debugger output window in the Data tab.

– Shows how to work with the debugger_hook in extension.xml.

■ DockableWindow.jpr: Shows how to implement a custom dockable window.

– Shows how to work with DockableFactory.

– Uses Addin initialize to add extension to View menu.

– Shows how to work with DockableWindow.

■ ExternalToolCreation.jpr: Shows how to write an addin that installs an external
tools shortcut for an external program. This feature is actually part of the
JDeveloper IDE, and uses a wizard to set up external applications. For more
information about External Tools, see the section "Adding External Tools to
JDeveloper" in Oracle Fusion Middleware User Guide for Oracle JDeveloper.

Shows how to setup an external tool and integrate it into the JDeveloper IDE, for
example, passing the current editor content to an external tool for review or
processing.

■ ExternalToolImportExport.jpr: Imports and exports the properties associated with
a list of External Tools.

Works with reading and writing ExternalTool properties.

■ ExternalToolMacros.jpr: Shows how to write an addin that installs a custom
macro for use by external tools.

Shows the use of <externaltools> and <macros> tags in extension.xml.

■ ExternalToolScanner.jpr: Shows how to write a scanner for external tools that can
automatically install external program shortcuts when the user clicks on the Find
Tools button in the External Tools dialog, (available from the Tools menu).

■ FirstSample.jpr: A sample that illustrates the main concepts involved in writing
extensions for JDeveloper.

– Shows how to work with extension.xml tags for <menu-hook>,
<gallery>, <context-menu-listener>, <toolbars> and <actions>.

– All IDE integration points call a Wizard class that displays a message box.

– Code from this sample project is used to illustrate Section 2.4.5.2, "How to
Implement a Command," Section 2.4.5.3, "How to Define an Action," and
Section 2.4.6.3, "How to Implement a Controller."

■ FlatEditor.jpr: Demonstrates how to implement a form-based overview editor
similar to the one used for extension.xml.

– Shows <ide:editor> in extension.xml.

Using with the Sample Extensions

3-6 Developer's Guide for Oracle JDeveloper Extensions

– Adds a custom tab to the editor window.

– Shows how to work with VerticalFlowLayout.

■ HelloX.jpr: This is a sample that demonstrates a number of core concepts,
including installing New Gallery items, actions, and menu items.

– Shows how to call a dialup window.

– Shows how to add something to the New Gallery using extension.xml.

– Code from this sample project is used to illustrate Section 2.4.4.1, "How to Set
Up a Wizard Project" and Section 2.4.4.4, "How to Add a Wizard to the Tools
Menu."

■ LayoutMenuFilter.jpr: Shows how to filter the top level menus in the IDE when
the layout changes.

– Allows you to set only those menu items that you want shown.

– Uses ExtensionRegistry.

– Uses addIdeListener to get IDE events and act on them.

■ MethodCallCounter.jpr: Uses JOT (Java Object Tool) to count the number of
occurrences of a named method in some code.

– Shows how to determine node type in the navigator and source editor menus.

– Adds context menu options to the navigator and source editor.

– Uses showInputDialog to allow parameter entry at runtime.

– Uses MessageDialog.information to display results.

– Shows how to use two method declarations in one class. The method used
depends on parameters passed to it.

■ OpenNodes.jpr:Implements a dockable window which shows nodes that are open
in the NodeFactory, and tracks when nodes are opened and closed.

– Shows how to create and implement a dockable window in the IDE.

– Overrides toString() to set specific string formatting.

– Uses Jtable inside a Jpanel, and shows setup and configuration.

– Uses a timer to flash a color change on a table change then return to normal
state.

When you run this sample, you can choose View > ESDKSample: Open Nodes to
open an Open Node Tracker window, which shows the nodes that are open in
NodeFactory, and tracks when nodes are opened and closed.

■ Overlay.jpr: Shows how to use overlays in the navigator, like those used by the
version control extensions.

– Shows how to set up multiple Actions in extension.xml.

– Works with OverlayCache.

– Works with IdeActions.

■ ProgressBar.jpr: Shows how to implement a progress bar during the execution of
some lengthy task.

– Uses oracle.ide.progressbar.

– Illustrates a background running process.

How to Run the Sample Projects

Developing with the Extension SDK 3-7

– Shows an indeterminate progress bar.

– Writes to the log window in a background process.

■ ProjectSettings.jpr: Demonstrates storing and retrieving project properties and
adding custom project settings UI.

– Illustrates use of <settings-ui> tag in extension.xml.

– Uses ProjectSettingsTraversablePanel to layout project settings page.

– Uses HashStructure and PropertyStorage to store and retrieve project
settings data.

■ StructurePane.jpr: Shows how to display your own content in the Structure
Window.

– Shows how to register a Structure Window using ExplorerManager.

– Shows how to extend AbstractTreeExplore.

– Code from this sample project is used to illustrate Section 2.4.7.2, "How to
Register and Initialize a Structure Explorer."

■ UpdateCenter.jpr: Demonstrates how to install a custom update center as part of
an extension.

– Shows how to use <update-hook> and <update-center> tags in
extension.xml.

– Shows how your extension can add its own Update Center item to the
Updates Center page of the Check for Updates wizard.

■ VersionControlRCS.jpr: This is a sample version control integration using the
version control system (VCS) API.

– Shows implementation of VCS related tags such as <vcs-hook>,
<vcs-profile> and <vcs-menu>.

– Shows implementation of action tags such as <automatic-action> and
<refresh-action>.

3.4 How to Run the Sample Projects
You can run the sample projects in JDeveloper to see how they work.

To run a sample project:
1. The first time you run one of the sample project extensions, you have to right-click

on it and choose Deploy to Target Platform.

2. To run the extension, right-click and choose Run Extension.

This runs a second copy of JDeveloper with the sample project installed.

How to Run the Sample Projects

3-8 Developer's Guide for Oracle JDeveloper Extensions

4

Testing and Debugging Extensions 4-1

4Testing and Debugging Extensions

This chapter describes how to use the tools and features provided by Oracle
JDeveloper to test and debug JDeveloper extensions.

This chapter includes the following sections:

■ Section 4.1, "About Testing and Debugging Extensions"

■ Section 4.2, "Debugging Extension Code"

■ Section 4.3, "Troubleshooting Debugging"

4.1 About Testing and Debugging Extensions
You test and debug an extension by installing it and running it in a debug instance of
JDeveloper.

4.2 Debugging Extension Code
JDeveloper provides you with a comprehensive debugger to test your code. For
general information about debugging in JDeveloper, see "Debugging Applications" in
Oracle Fusion Middleware User Guide for Oracle JDeveloper.

To debug an extension, you run it in JDeveloper. A new instance of JDeveloper opens
in debug mode with the extension installed. If something is not working correctly then
you can set breakpoints in your extension code to debug it.

4.2.1 How to Run a JDeveloper Extension
When you have developed the code for your extension, you will want to try it out. To
do this you install the extension and then run JDeveloper. A new instance of
JDeveloper runs in debug mode for you to test your extension.

To run an extension in JDeveloper:
■ Run the extension using one of the following:

– In the Application Navigator, select the extension project and from the main
menu choose Run Extension.

– From the context menu of the project in the Application Navigator, or in the
source editor, choose Run.

– From the Run menu on the JDeveloper toolbar choose Run Extension.

A new version of JDeveloper starts with the extension running in it.

Troubleshooting Debugging

4-2 Developer's Guide for Oracle JDeveloper Extensions

4.2.2 How to Debug a JDeveloper Extension
With the extension running in a debug version of JDeveloper, you can text the
functionality and use the JDeveloper debugging features to find and fix problems. For
more information see "Debugging Applications" in Oracle Fusion Middleware User Guide
for Oracle JDeveloper.

To debug an extension in JDeveloper:
1. Enter suitable breakpoints in your code.

2. Run the extension in JDeveloper in debug mode using one of the following:

■ In the Application Navigator, select the project and from the main menu
choose Run > Debug Project.

■ From the context menu of the project in the Application Navigator, or in the
source editor, choose Debug.

■ Click the Debug icon on the JDeveloper toolbar.

A new version of JDeveloper starts in debug mode with the extension running in it.

Is it necessary to include

4.3 Troubleshooting Debugging
Use this list of symptoms and solutions to resolve extension issues:

■ Symptom: Exception at startup.

Solution: Check stack trace and debug it.

■ Symptom: Extension does not load.

Solution: Check the Features dialog (available from the Tools menu) to make sure
the extension is enabled when JDeveloper launches. For more information, see
"How to Manage JDeveloper Features" in Oracle Fusion Middleware User Guide for
Oracle JDeveloper.

■ Symptom: Class case exception.

Solution: For an extension that was written for an earlier version of JDeveloper,
some code has not been migrated, or the extension was compiled against an older
version of JDeveloper. Check to see that the extension has been migrated. For
more information, see Section 1.5, "Migrating Extensions from Previous Releases."

5

Packaging and Deploying Extensions 5-1

5Packaging and Deploying Extensions

This chapter describes how to package and deploy extensions to Oracle JDeveloper.

This chapter includes the following sections:

■ Section 5.1, "About Packaging and Deploying Extensions"

■ Section 5.2, "Packaging the Extension"

■ Section 5.3, "Deploying an Extension"

5.1 About Packaging and Deploying Extensions
The steps to package and deploy an extension are as follows:

1. First, you create an extension package which consists of a JAR that is packaged in
an extension bundle archive. The extension bundle archive is a JAR file containing
the extension JAR and any supporting files used by the extension.

The extension JAR file contains:

■ The extension manifest file extension.xml.

■ Compiled class files and resources in the same directory structure they had
while they were being developed.

The extension bundle archive contains:

■ One or more extension JAR files.

■ Any supporting files such as library JAR files.

2. Next, you package the extension JAR files into a .zip file for distribution.

3. If this is the first time you have opened the project in JDeveloper, for example if
you are migrating an extension written for an earlier version of JDeveloper,
right-click the project in the Application Navigator and choose Deploy to Target
Platform. This generates the bundle manifest manifest.mf if one does not
already exist. You may need to refresh the Application Navigator.

4. If the extension references external libraries, open the bundle manifest
manifest.mf by locating it in the Application Navigator under the META-INF
node, and change the line

Bundle-ClassPath: .

so that it says:

Bundle-Classpath: .,external:jdev-install/jdeveloper/jdev/extensions/library

Packaging the Extension

5-2 Developer's Guide for Oracle JDeveloper Extensions

5.2 Packaging the Extension
When you create an extension project, an extension deployment profile to create an
OSGi bundle is also created. For more information, see "Deployment Profiles" in Oracle
Fusion Middleware User Guide for Oracle JDeveloper.

5.2.1 How to Create the Deployment Profile
You set the OSGi bundle profile parameters from the Project Properties dialog.

To edit the deployment profile:
1. In the Application Navigator, right-click the project, then choose Properties.

Alternatively, choose Project Properties from the Application menu.

2. Select Deployment in the panel on the left of the Project Properties dialog. The
extension profile Extension (Extension JAR) is selected. Click Edit.

3. In the Bundle Options page of the OSGi Bundle Profile dialog, you can enter
details such as the bundle name, version, and activator. For more help at any time,
press F1 or click Help from the dialog.

You set dependencies and set libraries for inclusion by choosing other pages in the
dialog. For more information, see Section 1.8.1, "Understanding Dependencies."

Click OK when you are finished editing the deployment profile properties.

5.2.2 How to Create the OSGi Bundle
Once you have edited the deployment profile you can create the OSGi Bundle.

To create the OSGi Bundle:
1. In the Application Navigator, right-click the extension project and choose Deploy

> extension-profile to open the Deploy Extension dialog.

2. The option Deploy to OSGi Bundle is selected. You can click Next to examine
details of the bundle that will be created in the Summary page. When you are
satisfied, click Finish.

The OSGi bundle containing your extension is created in the
Oracle-home/jdeveloper/jdev/extensions directory.

You can run and debug the OSGi bundle from this location automatically. For more
information, see Chapter 4, "Testing and Debugging Extensions."

5.3 Deploying an Extension
Extensions can be distributed to a team by making them available on a file system, and
having users install the extension using the Check for Updates wizard available from
the Help menu. For more information, see "Working with Extensions" in Oracle Fusion
Middleware User Guide for Oracle JDeveloper

Alternatively, you can make an extension available to a wider audience by hosting it
on the Web somewhere, or you could have it hosted as an open source project so that
other people can help you enhance your extension and further develop it.

Oracle hosts some JDeveloper third party extensions, which are available at
http://www.oracle.com/technetwork/developer-tools/jdev/index-099
997.html. If you would like to upload your extension to this site, post a message on

Deploying an Extension

Packaging and Deploying Extensions 5-3

the JDeveloper and ADF forum at
https://forums.oracle.com/forums/forum.jspa?forumID=83.

Deploying an Extension

5-4 Developer's Guide for Oracle JDeveloper Extensions

A

Elements Installed with the Extension SDK A-1

AElements Installed with the Extension SDK

This appendix provides information about the elements installed with the Oracle
JDeveloper Extension SDK.

The appendix contains the following sections:

■ Section A.1, "Elements Installed in the File System"

■ Section A.2, "Elements Installed in the IDE"

A.1 Elements Installed in the File System
When you install the Extension SDK:

■ The Extension SDK API documentation is installed in jdev_
install/jdeveloper/jdev/extensions/oracle.jdeveloper.esdk.

■ The extension samples application extensionsdk.jws which contains the
sample projects is installed in jdev_
install/jdeveloper/mywork/extension-samples-11.1.2.0.nn.nn.nn
.

A.2 Elements Installed in the IDE
After downloading and installing the Extension SDK, and restarting JDeveloper the
following elements are present in the IDE:

■ If you have chosen to install the samples, the application extensionsdk.jws is
open in the Application Navigator. If you choose not to install the samples when
JDeveloper restarts, you can open the extension SDK samples application at a later
time from Help > Open Extension Samples.

■ In the Manage Features for Studio Developer Role dialog, available from Features
on the Tools menu, ESDK Samples is listed under the IDE node.

■ The Oracle Fusion Middleware Java API Reference for Oracle Extension SDK is
added to the Reference node in the JDeveloper online help Contents.

Elements Installed in the IDE

A-2 Developer's Guide for Oracle JDeveloper Extensions

B

Uninstalling the Extension SDK B-1

BUninstalling the Extension SDK

This appendix provides information about disabling and uninstalling the Oracle
JDeveloper Extension SDK.

The appendix contains the following sections:

■ Section B.1, "About Uninstalling the Extension SDK"

■ Section B.2, "How to Disable the Extension SDK"

■ Section B.3, "How to Delete the Sample Application"

■ Section B.4, "How to Uninstall the Extension SDK"

B.1 About Uninstalling the Extension SDK
You can disable the Extension SDK to optimize JDeveloper performance, and enable it
at a later time so that you do not have to download and install the Extension SDK
afresh, or you can uninstall the sample application, extensionsdk.jws and its
projects, or you can completely remove the Extension SDK from your machine.

B.2 How to Disable the Extension SDK
When you work with JDeveloper you choose a role in which to work, and the role you
choose determines which JDeveloper extensions are loaded. In general, different roles
remove JDeveloper extensions that are not needed so that JDeveloper performance is
optimized. Indeed, you can create your own JDeveloper role that disables the
extensions you do not want to work with and modifies the menus that are loaded
when the IDE starts. For more information, see "Working with JDeveloper Roles" in the
Oracle Fusion Middleware User Guide for Oracle JDeveloper.

If you want to disable the Extension SDK, you can do this in the same way that you
would disable any other JDeveloper extension.

To disable the Extension SDK:
1. From the Tools menu choose Features to open the Manage Features for Studio

Developer Role dialog. This displays all the extensions that are available for the
role in which you are working.

For more information at any time, press F1 or click Help from within the dialog.

2. If necessary, expand the IDE node, and uncheck ESDK Samples.

If you later want to use the Extension SDK, you can enable it by navigating to the same
dialog and checking ESDK Samples.

How to Delete the Sample Application

B-2 Developer's Guide for Oracle JDeveloper Extensions

B.3 How to Delete the Sample Application
You can delete the sample application, extensionsdk.jws, and the projects it
contains in the same way that you can delete any JDeveloper application.

To delete the sample application:
1. In the Application Navigator, click the Application menu dropdown list (next to

the name of the application, extensionsdk).

2. Select Delete Application.

3. In the Confirm Delete Application dialog, choose Yes.

Alternatively, right-click extensionsdk in the Application Navigator toolbar, and
choose Delete Application.

JDeveloper will delete the extensionsdk application, including all its projects and
their directories.

B.4 How to Uninstall the Extension SDK
When the Extension SDK is installed, it places the Extension SDK API documentation
in jdev_install/jdeveloper/jdev/extensions, where jdev_install is the
directory that JDeveloper is installed in, and the extension samples application
extensionsdk.jws which contains the sample projects in jdev_
install/jdeveloper/mywork.

You can completely remove the Extension SDK from your local drive by deleting:

■ jdev_
install/jdeveloper/jdev/extensions/oracle.jdeveloper.esdk

■ jdev_
install/jdeveloper/mywork/extension-samples-11.1.2.0.nn.nn.nn

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide in Release 11.1.2.3.0
	1 Introduction to Developing Oracle JDeveloper Extensions
	1.1 About Developing Oracle JDeveloper Extensions
	1.2 Developing Extensions with OSGi
	1.2.1 Service/Component Platform
	1.2.2 Deployment Infrastructure

	1.3 How JDeveloper Extensions Work
	1.3.1 How Extensions are Processed
	1.3.2 Registering Extensions and Using Trigger Hooks
	1.3.3 How Lazy Initialization Works

	1.4 Guidelines for Writing JDeveloper Extensions
	1.5 Migrating Extensions from Previous Releases
	1.6 Getting Started With Extension Development
	1.6.1 How to Create an Application and Project for Extension Development
	1.6.2 How to Develop for a Different JDeveloper Version
	1.6.3 How to Create an Empty Extension Project
	1.6.4 Next Steps

	1.7 Working with the Extension Manifest
	1.7.1 Editing the Extension Manifest in the Overview Editor
	1.7.2 Editing the Extension Manifest in the Source Editor

	1.8 Working with the OSGi Manifest
	1.8.1 Understanding Dependencies
	1.8.1.1 How to Set Dependencies in the Extension Manifest
	1.8.1.2 How to Set Dependencies in the OSGi Bundle Profile
	1.8.1.3 Duplication Between extension.xml and manifest.mf

	2 Developing Extensions in Oracle JDeveloper
	2.1 About Developing Extensions in Oracle JDeveloper
	2.2 Use Cases for Developing Extensions
	2.2.1 Understanding Rules Based Menu Sensitivity
	2.2.1.1 How to Avoid Complex Controller.update() Implementations

	2.2.2 How to Use Dynamic Menu Labels and Icons
	2.2.2.1 How to Append the Short Name to the Menu Label

	2.2.3 How to Construct Dynamic Top Menus
	2.2.4 Understanding Node Recognizers
	2.2.5 Understanding Content Sets
	2.2.6 Understanding Large Extensions
	2.2.7 Understanding Technology Scopes

	2.3 Getting the JDeveloper Look and Feel
	2.4 How to Create JDeveloper Elements
	2.4.1 How to Quickly Create JDeveloper Elements
	2.4.2 How to Create and Modify Menus
	2.4.2.1 Understanding Menus
	2.4.2.2 How to Create a Context Menu
	2.4.2.3 How to Improve Performance by Registering a Context Menu Listener
	2.4.2.4 How to Add Menu Items to an Existing JDeveloper Menu
	2.4.2.5 How to Add a Drop-down Button to a Toolbar

	2.4.3 Working with Windows and Views
	2.4.3.1 Understanding Dockable Windows
	2.4.3.2 How to Create Simple Dockable Windows
	2.4.3.3 How to Position Dockable Windows
	2.4.3.4 How to Add an IDE Listener to a View
	2.4.3.5 How to Listen for the Active View

	2.4.4 How to Develop Wizards
	2.4.4.1 How to Set Up a Wizard Project
	2.4.4.2 How to Implement the Wizard Interface
	2.4.4.3 How to Add a Wizard to the New Gallery
	2.4.4.4 How to Add a Wizard to the Tools Menu

	2.4.5 How to Develop Commands
	2.4.5.1 How to Implement the Addin Interface
	2.4.5.2 How to Implement a Command
	2.4.5.3 How to Define an Action
	2.4.5.4 How to Invoke an Addin From a Main Window Menu
	2.4.5.5 How to Invoke an Addin From a Context Menu

	2.4.6 How to Develop Editors
	2.4.6.1 How to Implement the EditorAddin Class
	2.4.6.2 How to Define an Editor Class
	2.4.6.3 How to Implement a Controller
	2.4.6.4 How to Specify an Editor Layout
	2.4.6.5 Using Asynchronous Editors

	2.4.7 How to Develop Explorers
	2.4.7.1 How to Create an Explorer
	2.4.7.2 How to Register and Initialize a Structure Explorer
	2.4.7.3 How to Create a Structure Explorer Element Model
	2.4.7.4 How to Update the Structure Explorer

	2.4.8 How to Add New Component Palette Pages
	2.4.8.1 Understanding Component Palette Pages
	2.4.8.2 How to Declare Static Content for a Component Page
	2.4.8.3 How to Declare a Dynamic Component for a Palette Page
	2.4.8.4 How to Provide Help for a Component Page
	2.4.8.5 How to Augment the Search for a Palette Item

	2.4.9 Understanding Preferences
	2.4.9.1 How to Implement Preferences
	2.4.9.2 How to Implement the Data Model
	2.4.9.3 How to Implement a UI Panel
	2.4.9.4 How to Register a UI Panel
	2.4.9.5 How to Obtain the Preference Model
	2.4.9.6 How to Listen for Changes

	2.4.10 Understanding Project Properties
	2.4.11 How to Make Changes Undoable
	2.4.11.1 How to Make Text Changes Undoable
	2.4.11.2 How to Make Commands Undoable

	2.5 How to Define and Use Trigger Hooks
	2.5.1 How to Register a <trigger-hook-handler>
	2.5.2 How to Define Trigger Hooks for your Extension
	2.5.3 How to Retrieve Parsed Information from the ExtensionRegistry
	2.5.4 How to Define Rules and Condition Triggers Sections
	2.5.4.1 How to Define Rules
	2.5.4.2 How to Define Simple Rules
	2.5.4.3 Implicitly Available Rules
	2.5.4.4 Guidelines for Rules
	2.5.4.5 How to Define Composite Rules
	2.5.4.6 How to Reference Rules From Hooks
	2.5.4.7 How to Validate Rule References and Evaluate Rules

	2.6 How to Add Online Help Support
	2.6.1 How to Create the Help System
	2.6.2 How to Register the Help System

	2.7 How to Add Print Support
	2.7.1 How to Register DocumentPrintFactory
	2.7.2 How to Register a View Class to Enable Printing
	2.7.2.1 How to Register a PageableFactory implementation for Handling a Node

	3 Developing with the Extension SDK
	3.1 About Developing with the Extension SDK
	3.2 Downloading and Installing the Extension SDK
	3.2.1 What Happens When you Install the Extension SDK
	3.2.2 Troubleshooting Installing the Extension SDK

	3.3 Using with the Sample Extensions
	3.4 How to Run the Sample Projects

	4 Testing and Debugging Extensions
	4.1 About Testing and Debugging Extensions
	4.2 Debugging Extension Code
	4.2.1 How to Run a JDeveloper Extension
	4.2.2 How to Debug a JDeveloper Extension

	4.3 Troubleshooting Debugging

	5 Packaging and Deploying Extensions
	5.1 About Packaging and Deploying Extensions
	5.2 Packaging the Extension
	5.2.1 How to Create the Deployment Profile
	5.2.2 How to Create the OSGi Bundle

	5.3 Deploying an Extension

	A Elements Installed with the Extension SDK
	A.1 Elements Installed in the File System
	A.2 Elements Installed in the IDE

	B Uninstalling the Extension SDK
	B.1 About Uninstalling the Extension SDK
	B.2 How to Disable the Extension SDK
	B.3 How to Delete the Sample Application
	B.4 How to Uninstall the Extension SDK

