ORACLE

Oracle® Fusion Middleware
User's Guide for Oracle Business Rules

11gRelease 1 (11.1.1.7)
E10228-12

June 2013

Documentation for developers and business users that
provides information about using and developing
applications involving facts, rules, and decision tables for
Oracle Business Rules by using design-time tools, such as
Oracle JDeveloper with Oracle SOA extension, and runtime
application such as Oracle SOA Composer.

Oracle Fusion Middleware User's Guide for Oracle Business Rules 11¢ Release 1 (11.1.1.7)
E10228-12

Copyright © 2005, 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PPEIACE ...ttt Xiii
AUAIEIICE ...ttt ettt ettt et et e e te e s e eseessessaesseessesbeessasbeessesbeessasseessesssensesreenbesseensenreans Xiii
Documentation AcCesSIDIlityccociiiiiiiiiiiiiiiiii e Xiii
Related DOCUMENTATIONcovievieiiiiieiisieieieietetetetee ettt et e st et e b es e saesbesaesaeseesassessessassessessassessnsessessenss Xiii
CONVENTIONS ..vvieitieiieiieesteeteesteeteesttessteesteesteesteesseeassaeassassseesssaesseesssessseesssesssessssesssessseesseesssessssessseessesans Xiv

What's New in This Guide for Release 11.1.1.7 ..., XV

1 Overview of Oracle Business Rules
1.1 What are Business RULES?c.oouioiiiieiiieceeeeeeeteetete ettt et ens 1-1
1.11 What Are Rule CONAItIONS?coueivieiiieiiiieieeieeieete ettt et vesreer v v s ae e re e e 1-3
1.1.2 What Are RUIE ACHONS?......ccveeieeieiieiieiieieeee ettt eete st asseetesressessessessessessessessssssssasens 1-3
1.1.3 What Are DeciSion TabLes?cccieeiiieiiiieeiieeeeieeeetee ettt reere e sae s ae s s essessnensens 1-4
1.14 What Are Facts and BucketSets?.........ocveviieeiiieiieiiiceeeeceeie ettt 1-4
115 WHhat ATE RUIESEES?ovierieieieeieeieiieiettettse ettt et a et etesbessesb e besaessessesseseesansensensens 1-4
1.1.6 What Are Decision FUNCHONS?.........ccoouiiieiecieiieieeeeete ettt be e sn v 1-4
1.1.7 What Are Decision POINES?cciiuieiiiiieiiereeiieteeie ettt sttt ve v e e neereennas 1-4
1.1.8 What Are DiCHONATIES?eeveieieieeieeieeteteeeteteeeete et eteseessesseesesseesesseensesseensesseensesseenses 1-5
1.2 Oracle Business Rules Runtime and Design Time Elements...........c.cccccccovvninninnninnen. 1-5
1.21 Decision Component (Business Rules) in a SOA Composite Application.................. 1-5
1.2.2 Using Rules Engine with Oracle Business Rules in a Java EE Application................. 1-6
1.2.3 Oracle Business Rules RL Language..........ccoccueueiiurieieiiicicieieiccie e 1-6
1.24 Oracle Business RuUles SDKccooiiiiiiiiiiiiiciicieeeee ettt eeeeve e sveevaeneas 1-6
1.2.5 Rules DeSIGNETouciiiiiciiecc 1-7
1.2.6 Oracle SOA Composer Applicationooccueiiiiiieiiiiiicc 1-7
1.3 Oracle Business Rules Engine Architecturecccociiiiiiiiiiiiiiiicicccccenceenas 1-8
1.3.1 Declarative RULEScc.eciiiieieieeeee ettt st a e ae e b e ssesseesaessaenees 1-8
1.3.2 The RETE ALGOTithimc.ovoiiiii e 1-9
1.3.3 What Is Working MemoTry? ... 1-9
1.3.4 Rule Firing and Rule SeSSIONS.........ccciuiiiiiiiiiiiiiiiiiiiicicei e 1-9

2 Working with Data Model Elements
2.1 Introduction to Working with Data Model Elements.............ccoooeviiiiiiiiiiiniie 2-1
2.2 Working with a Dictionary and Dictionary Links ... 2-1
2.2.1 Introduction to Dictionaries and Dictionary Links..........cccccocevvviinninnnnnnnnne. 2-2

222
2.2.3
224
2.2.5
2.2.6
227
2.2.8
2.2.9
2.2.10
2.3
2.3.1
2.3.2
2.3.3
2.4
2.5
2.5.1
2.5.2
2.6
2.6.1

How to Create a Dictionary in the SOA Tier Using Rules Designer................c.......... 2-2

How to Create a Dictionary in the Business Tier Using Rules Designer..................... 2-6
How to View and Edit Dictionary Settings...........cococovvvrrrrnninrnnsnrrrereceseseenne 2-6
How to Link t0 @ DIiCtONATIYcoueveviiiiieiiiiciee e 2-6
How to Update a Linked Dictionaryccceevirieieioiiiciicccecec 2-8
What You Need to Know About Dictionary Linking...........cccccocoeocvcccciiciciicnnnns 2-8
What You Need to Know About Dictionary Linking and Dictionary Copies............ 2-9
What You Need to Know About Dictionary Linking to a Deployed Dictionary....... 2-9
What You Need to Know About Business Rules Inputs and Outputs with BPEL.... 2-9
Working with Oracle Business Rules Globals ..o 2-10
How to Add Oracle Business Rules Globals............c.cccoooiiiiiiiniiic 2-10
How to Edit Oracle Business Rules Globals ..o 2-11
What You Need to Know About the Final and Constant Options............ccccceeuenunne. 2-11
Working with Decision FUNCHONSccouoiiiiiii 2-12
Working with Oracle Business Rules FUNCHONS ... 2-12
Introduction to Oracle Business Rules Functionscccccocevveivininnnnnnnnn 2-12
How to Add an Oracle Business Rules Function ... 2-13
Localizing Oracle Business Rule RESOUICEScccccueuimimimeieucicieieiiieiccecceceneneneneenenens 2-14
How to Localize the Resources in Oracle Business Rules.............cccccocovviniinnnninn 2-14

3 Working with Facts and Bucketsets

3.1

3.2

3.2.1
3.2.2
3.2.3
3.2.4
3.3

3.3.1
3.3.2
3.3.3
3.4

3.4.1
3.4.2
3.4.3
3.5

3.5.1
3.5.2
3.5.3
3.5.4
3.6

3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6

Introduction to Working with Facts and Bucketsetsccccooiii 3-1
Working with XIML Facts........cccccociiiiiiiiiiiiicccns 3-2
How to Import XML Schema and Add XML Factscccccccceeucieeiiiciicicicccenee 3-3
How to Display and Edit XML Factsc.cccoreieiiiieieiiiec s 3-5
How to Reload XML Facts with Updated Schemac.ccoooiiiiiii 3-7
What You Need to Know About XML Facts ... 3-7
Working with Java Facts ..o 3-8
How to Import Java Classes and Define Java Facts..........ccccoovninnnnininninnnn, 3-8
How to Display and Edit Java Factscccccccveviiinniiiircccrcecereeeeeeeees 3-10
What You Need to Know About Java Facts.......ccocevereneiieinininiiineeeneeeccenene 3-11
Working with RL FaCEs.......ccoiiiiiiiiiiiicc s 3-12
How to Define RL Factscccoviiiiiiiiiiiiic s 3-13
How to Display and Edit RL Facts and Add RL Fact Properties...........c.ccccceueuennnnne. 3-13
What You Need to Know About RL Facts ..., 3-14
Working with ADF Business Components Factsccccoooiiciiiiiiieicccececcenen 3-15
How to Import and Define ADF Business Components Facts...........cccccccovvvininiinnn 3-16
What You Need to Know About ADF Business Components Fact Classpaths 3-17
What You Need to Know About ADF Business Components Circular References 3-18
What You Need to Know About ADF Business Components Facts...............c......... 3-18
Working with Bucketsets ... 3-18
How to Define a List of Values Global Bucketsetcccccoovviiviiiiniiiinan, 3-19
How to Define a List of Ranges Global Bucketsetccccooovviiiniiniiie, 3-21
How to Define an Enumerated Type (Enum) Bucketset from XML Types 3-23
How to Define an Enumerated Type (Enum) Bucketset from Java Types............... 3-25
What You Need to Know About List of Values Bucketsetsccccooovviniiniiinnnnn. 3-27
What You Need to Know About Range Bucketsetsccccoovreinivriniiiiinnne 3-28

3.6.7
3.6.8
3.7

3.7.1
3.7.2
3.7.3

What You Need to Know About Bucketset Allowed in Actions Option 3-29

What You Need to Know About Bucket Values...........ccccovviiiiiiiininiiinn, 3-30
Associating a Bucketset with Business Termscccccovvviirnninvnnncicrcceeeees 3-30
How to Associate a Bucketset with a Fact Property ..o, 3-30
How to Associate a Bucketset with Functions or Function Arguments................... 3-31
How to Associate a Bucketset with a Global Value...........cccccoevuvvvniinnniicne 3-32

4 Working with Rulesets and Rules

41

4.2

4.21
422
4.2.3
424
4.3

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8
4.4

4.4.1
442
443
444
4.5

4.5.1
452
453
454
4.5.5
4.5.6
4.6

4.6.1
4.7

4.7.1
4.7.2
4.7.3
4.7.4
4.7.5
4.8

4.8.1
4.8.2
4.8.3

Introduction to Working with Rulesets and Rulesc.ccccccoeiiiiiiinnnninnrrnene. 4-1
Working with RUIESets.........ocuiiiiiiei e 4-2
How to Create a Rulesetccccooiiiiiiiiiiiiiiis 4-2
How to Set the Effective Date for a Rulesetcccccoviiiiiiiiiiiicc, 4-2
How to Use a Filter to Display Matching Rules in a Rulesetcccccoooiiiinnnan. 4-3
Using Auto Complete when Selecting Component Values from a List 4-7
Working With RULES ..o 4-8
HOW t0 Add RULESoviiiiiiiiiiic e 4-8
How to Define a Test in a Ruleccccccoiiiiiiiiiiiiiiiics 4-9
What You Need to Know About Oracle Business Rules Test Variables................... 4-12
How to Define Range Tests in Rules...........cccooooiiiiiiiiiiiie 4-13
How to Define Set Tests in Rulescccccociiiiiiiiiiiiiiiiiccce 4-16
How to Define Actions in RUlesccccooviiiiiiiiiiinces 4-19
What You Need to Know About Rule Actions...........cccceiveiiiiieniniiiiiiine, 4-21
What You Need to Know About Oracle Business Rules Performance Tuning....... 4-22
Validating DICtONATIESc.ccocuiuiuiuiiiiiiiiiieieiciciceeiee e ees 4-22
Understanding Data Model Validation ..., 4-23
Understanding Rule Validation...........cccooiii e 4-23
Understanding Decision Table Validation...........cccccccceceiiiniiiiniiiinrcccrene 4-24
How to Validate a Dictionarycoooeueviiiiieieiiicic s 4-25
Using Advanced Settings with Rules and Decision Tables.............ccccccceviiiiiiiininnnnn. 4-25
How to Show and Hide Advanced Settings in a Rule or Decision Table................. 4-26
How to Select the Advanced Mode Option.........ccccoveveieiiieiiiiiiiniicccc 4-27
How to Select the Active OPption ..o 4-28
How to Select the Logical Option........c.ccccccuciiiiiciiiiiiiiiceccceeeeeeeeeeeeeeees 4-28
How to Set a Priority for @ RUle.........cccoviiiiiiiiiiiiec e, 4-29
How to Specify Effective Dates..........cccooeuniiiiiniiiiiiccccc e 4-30
Working with Nested TeStS ... 4-30
How to Use Nested Tests.........cccviiiiiiiiiiiiiiiiciice s 4-30
Working with Advanced Mode Rules ... 4-31
How to Use Advanced Mode Pattern Matching Options........c.ccccccceecciccinicicncnnne. 4-32
How to Use Advanced Mode Matched Fact Namingcccococevioiiieiiiiciciiinnna 4-34
How to Use Advanced Mode Action FOrms...........cccccceucuiiinininiiiciiiicciiccccccees 4-37
How to Use Advanced Mode Aggregate Conditionsc.ccceeuevuvevevernrerenecenenenenes 4-38
What You Need to Know About Advanced Mode Rules............ccccvvevniiniininnnnnne. 4-42
Working with Tree Mode Rules............ccccocoiiiiiiiiiiiiiccceees 4-43
Introduction to Tree Mode RUlesccoocriiiiiiiiiiiic s 4-43
How to Create Simple Tree Mode Rules ... 4-48
How to Create Advanced Tree Mode Rules............cccccceciiiiiiiiiiiiiiiccee, 4-54

4.8.4 What You Need to Know About Tree Mode Rulesooovveiivvieeciieiciieicieeeieeene 4-55

4.9 Using Date Facts, Date Functions, and Specifying Effective Dates...........ccccccooeorieiennne. 4-56
4.9.1 How to Use the Current Date Fact........ccccooieiiiiiniiiiiiicccces 4-56
4.9.2 How to Set the Effective Date for a Rule...........cccccoviiiiiiiiniii 4-57
4.9.3 What You Need to Know About Effective Dates...........ccccccoovviiiiiniiiiiiiinn 4-58
4.9.4 How to Use Duration, JavaDate, OracleDate, and XMLDate Methods.................... 4-59
4.10 Working with Expression Builder ... 4-60
4.10.1 Introduction to the Expression Builder ..o 4-60
4.10.2 How to Use the Expression Builder ... 4-61
4.10.3 What You Need to Know About Working with Expressionsc.cccceveueviininnnee. 4-61
4.11 Using Bucketsets as Constraints for Options Values in Rulesc.cccccooeiinnin. 4-62
4.11.1 How to Use a List of Ranges Bucketset as a Constraint for a Business Term.......... 4-62
4.11.2 How to Use a List of Values Bucketset as a Constraint for a Fact Property............. 4-64
4.11.3 How to Use Bucketsets to Provide Options for Test Expressions............cccccceueueee. 4-64
4.12 Importing Runtime Rules Changes From Repository Into JDeveloperc......... 4-65

5 Working with Decision Tables

vi

5.1 Introduction to Working with Decision Tables ... 5-1
5.11 What is a Decision Table? ... 5-2
5.1.2 Understanding Decision Table Valuesc.cccoooeiieiiiiiiiiiiiccci 5-7
5.1.3 What You Need to Know About Decision Table LOOPScooveeiniiiciiiiiciicnns 5-8
5.2 Creating Decision Tables ... 5-8
5.2.1 How to Create a Decision Tablecccccoviiiiiiiiiiiniii, 5-8
522 How to Add Condition Rows to a Decision Table..........ccccoovveriiiiiiiniiiiiinnnne, 5-9
5.2.3 How to Add Actions to a Decision Table............cccccocoviiiiiiiniiiiiii 5-10
524 How to Add a Rule to a Decision Table............ccccoviiiiiiiiiiiiiiic, 5-12
525 How to Define Tests in a Decision Table............ccccooviiiiiiininiiiicccicnes 5-13
5.3 Performing Operations on Decision Tablesccccoooiriiiiiiiiiiiici 5-14
5.3.1 Introduction to Decision Table Operations............ccococeueiiirieiiiicicieiicceceee 5-14
5.3.2 How to Compact or Split a Decision Table..........cccccccoeueuiiiiiiiiiiiiciiccceceeees 5-23
5.3.3 How to Merge or Split Conditions in a Decision Tablecccccooooiiiiiiiiininne. 5-23
5.3.4 How to Merge, Split, and Specify Do Not Care for Condition Cells 5-23
5.3.5 How to Perform Decision Table Gap Checkingcccccococueueueuiuccceiececciecienenenen 5-24
5.3.6 How to Perform Decision Table Manual Conflict Resolution............cccccoeevivivinnnnne. 5-24
5.3.7 How to Set the Decision Table Auto Override Conflict Resolution Policy.............. 5-25
5.3.8 How to Set the Decision Table Ignore Conflicts POLiCYcccccoeuevvveviivrvnirine 5-25
5.4 Creating and Running an Oracle Business Rules Decision Table Application............... 5-25
5.4.1 How to Obtain the Source Files for the Order Approval Application...................... 5-26
54.2 How to Create an Application for Order Approval.........cccccccevvvvrvnnnnnrnceenes 5-27
5.4.3 How to Create a Business Rule Service Component for Order Approval................ 5-28
54.4 How to View Data Model Elements for Order Approval........cccccocoeviniiiiiieninnnnen. 5-32
5.4.5 How to Add Bucketsets to the Data Model for Order Approvalccccccevvveruencee 5-33
5.4.6 How to Associate Bucketsets with Order and CreditScore Properties..................... 5-35
5.4.7 How to Add a Decision Table for Order Approval.........ccccccoeiiiiiiiiiiiiniinennnn 5-37
5.4.8 How to Check the Business Rule Validation Log for Order Approval 5-47
5.4.9 How to Deploy the Order Approval Application............cccocovvevviivinnnnnninnn 5-47
5.4.10 How to Test the Order Approval Applicationcccoeeeeeueiiiiiieieiniieeceee 5-47

6 Working with Decision Functions

6.1 Introduction to Decision FUNCHONS ..o 6-1
6.2 Working with Decision FUNCHONS ..o 6-1
6.2.1 How to Add or Edit a Decision FUNCHON..........ccovviiiiiiiiiiics 6-1
6.3 What You Need to Know About Decision FUNCtions...........cccccovvviiiininniine, 6-5
6.3.1 What You May Need to Know About Rule Firing Limit Option for Debugging Rules....
6-6
6.3.2 What You May Need to Know to About Decision Function Arguments.................... 6-6
6.3.3 What You May Need to Know About the Decision Function Stateless Option.......... 6-6

7 Working with Rules SDK Decision Point API

7.1 Introduction to Rules SDK and the Car Rental Sample Applicationccccoooerierrinncnen. 7-1
711 Introduction to Decision Point APL..........c.ccoooviiiiiiiie 7-1
712 How to Obtain the Car Rental Sample Applicationccococvvivininnnininnnnininen, 7-2
7.1.3 How to Open the Car Rental Sample Application and Project........ccccccooeeriiiinnnnnn. 7-2
7.2 Creating a Dictionary for Use with a Decision Point.........c.ccccccevuevviirnnnninnnenneene. 7-3
7.21 How to Create Data Model Elements for Use with a Decision Point..............cccccc....... 7-3
722 How to View a Decision Function to Call from the Decision Point...........cccccceeununee 7-4
7.2.3 How to Create Rules or Decision Tables for the Decision Functioncccoevu.e. 7-6
7.2.4 What You Need to Know About Using Car Rental Sample with a Decision Table... 7-8
7.3 Creating a Java Application Using Rules SDK Decision Pointcccccovvnnniinininnnn. 7-9
7.3.1 How to Add a Decision Point Using Decision Point Builder............cccccccccceeeennne. 7-10
7.3.2 How to Use a Decision Point with a Pre-loaded Dictionarycccoeveirieiiiinnnne 7-11
7.3.3 How to Use Executor Service to Run Threads with Decision Point............cccccc.c...... 7-12
7.3.4 How to Create and Use Decision Point Instances...........cc.cccoevvvvivininciniininnnnnn 7-13
7.4 Running the Car Rental Sample..........c.cocooviiiiiiiii 7-14
7.5 What You Need to Know About Using Decision Point in a Production Environment. 7-15
7.6 What You Need to Know About Decision Point and Decision Tracingccccccue.... 7-16

8 Testing Business Rules

8.1 Testing Oracle Business Rules at Design Time.........ccccccciiiiiiiiiiiiicccccceceeeenenas 8-1
8.1.1 How to Test Rules Using the Rules Test Framework...........coooooiiiiiiinciiii, 8-1
8.1.2 What You Need to Know About Validation of Test Suitesccccccceevviiiinicnnne 8-11
8.1.3 What You Need to Know About Testing Linked Dictionariesccccccccceuvucucuennnne 8-12
8.1.4 What You Need to Know About Failure of Test Suitesccooovriiiiniiiinnnnnnn 8-12
8.1.5 How to Test a Decision Function Using an Oracle Business Rules Function........... 8-15
8.1.6 What You Need to Know About Testing Decision Functionscccccceeueucueenunne. 8-17
8.2 Testing Oracle Business Rules at RUNtime...........cooouiiiiiiiiiici 8-18

9 Creating a Rule-enabled Non-SOA Java EE Application

9.1 Introduction to the Grades Sample Application ... 9-1
9.2 Creating an Application and a Project for Grades Sample Application............cccceoevueueen. 9-2
9.2.1 How to Create a Fusion Web Application for the Grades Sample Application......... 9-2
9.2.2 How to Develop Accessible ADF Faces Pagescccovviiiiieiiiiiiiniiiiiniciceccinns 9-3
9.2.3 How to Create the Grades Project ..o 9-4

vii

10

11

viii

9.24 How to Add the XML Schema and Generate JAXB Classes in the Grades Project.... 9-5

9.2.5 How to Create an Oracle Business Rules Dictionary in the Grades Project................ 9-6
9.3 Creating Data Model Elements and Rules for the Grades Sample Application................ 9-9
9.3.1 How to Create Bucketsets for Grades Sample Application........cccccoevriiinriininnnnn. 9-10
9.3.2 How to Add a Decision Table for Grades Sample Application...........c.cccccoeuereenneen. 9-11
9.3.3 How to Add Actions in the Decision Table for Grades Sample Application 9-12
9.34 How to Rename the Decision Function for Grades Sample Application................. 9-14
9.4 Adding a Servlet with Rules SDK Calls for Grades Sample Application............c........... 9-15
9.4.1 How to Add a Servlet to the Grades Project ... 9-15
9.5 Adding an HTML Test Page for Grades Sample Application...........ccccceeveeiiriiiiiinnnnennen 9-22
9.5.1 How to Add an HTML Test Page to the Grades Project........cccccooeriiiiiccnnia 9-22
9.6 Preparing the Grades Sample Application for Deploymentcccccccoeeiicccecncnenne 9-23
9.6.1 How to Create the WAR File for the Grades Sample Application............ccceeuevnnnnn. 9-23
9.6.2 How to Add the Rules Library to the Grades Sample Applicationc.c.ccccc...... 9-26
9.6.3 How to Add the MDS Deployment File to the Grades Sample Application........... 9-27
9.6.4 How to Add the EAR File to the Grades Sample Application...........cccccevvvvvirininnnn 9-31
9.7 Deploying and Running the Grades Sample Applicationccccceevvvviiinninninnnnnnn, 9-33
9.7.1 How to Deploy to Grades Sample Application..........ccccceuvuveverererenrenirrnnnnnerecccnes 9-33
9.7.2 How to Run the Grades Sample Applicationccoeeieirieiiiiciniiiecccee 9-34

Working with Oracle Business Rules and ADF Business Components

10.1 Introduction to Using Business Rules with ADF Business Components........................ 10-1
10.1.1 Understanding Oracle Business Rules ADF Business Components Fact Types..... 10-1
10.1.2 Understanding Oracle Business Rules Decision Point Action Type.......cccccccceuueeee. 10-3
10.2 Using Decision Points with ADF Business Components Facts...........ccccccooeriiiiiiiinnnnn. 10-4
10.2.1 How to Call a Decision Point with ADF Business Components Facts 10-4
10.2.2 How to Call a Decision Function with Java Decision Point Interface....................... 10-7
10.2.3 What You Need to Know About Decision Function Configuration with ADF Business
Components 10-8

10.3 Creating a Business Rules Application with ADF Business Components Facts 10-9
10.3.1 How to Create an Application That Uses ADF Business Components Facts.......... 10-9
10.3.2 How to Add the Chapter10 Generic Projectccccocvveviiiiiiicnininininns 10-10
10.3.3 How to Create ADF Business Components Application for Business Rules......... 10-10
10.3.4 How to Update View Object Tuning for Business Rules Sample Application...... 10-12
10.3.5 How to Create a Dictionary for Oracle Business Rules..........c.ccccoooriiiiniiennne. 10-12
10.3.6 How to Add Decision Point Dictionary Links..........cccooiiiiiiiiiiiiiiiicinns 10-13
10.3.7 How to Import the ADF Business Components Facts..........ccccccovvvrrvnnnnnncne. 10-14
10.3.8 How to Add and Run the Outside Manager Rulesetcccccccovvivnninnnnnnnn 10-15
10.3.9 How to Add and Run the Department Manager Ruleset..............cccocorrnriirnnnnne. 10-25
10.3.10 How to Add and Run the Raises and Retract Employees Rulesets 10-31

Working with Decision Components in SOA Applications

11.1 Introduction to Decision COMPONENES..........cccvviiuimiiiiiiiiiiceieeeeee e enenens 11-1
11.2 Working with a Decision Componentcccoirieiiiiieiiiccccc e 11-2
11.2.1 Working with Decision Component Metadatacccccccoeeieiiiniiiiiiniicnne 11-2
11.2.2 Working with Decision Components that Expose a Decision Function................... 11-4
11.2.3 Using Stateful Interactions with a Decision Component...........ccccoouoirieiiiinciennnn. 11-5

12

11.24 What You Need to Know About Stateful Interactions with Decision Components 11-5

11.3 Decision Service Architectureccccocovviiiiiiniiiiii s 11-5
Using Oracle SOA Composer with Oracle Business Rules
121 Introduction to Oracle SOA COMPOSETcoouiviiririeiicieieieicci e 12-1
12.2 Using Oracle SOA Composer User Authentication.............cccccoceuiieiccccccceceenenenee. 12-2
12.2.1 What You Need to Know About SOA Composer Access Control and User
Authentication 12-3
12.3 Enabling Accessibility Features in SOA COMPOSETcceveiirmcieiiicicieieicicie e 12-3
12.4 Opening and Viewing an Oracle Business Rules Dictionary at Runtime........................ 12-4
12.4.1 Opening an Oracle Business Rules Dictionary at Runtimecoooooiiini. 12-4
12.4.2 What You Need to Know to Obtain the Dictionary Path from the Open Dialog.... 12-7
12.4.3 How to View Globals in an Oracle Business Rules Dictionary at Runtime.............. 12-7
12.4.4 How to View Bucketsets in an Oracle Business Rules Dictionary at Runtime........ 12-8
12.4.5 How to View Linked Dictionary Names at Runtimecooooeveiiniiniiciinne. 12-9
12.4.6 How to View Decision Functions in Oracle Business Rules Dictionary at Runtime..........
12-9
12.4.7 How to View Rulesets in an Oracle Business Rules Dictionary at Runtime.......... 12-10
125 Getting Started with Editing and Saving a Dictionary at Runtime.............c.c..cccoo.... 12-12
12.5.1 What You May Need to Know About Localized Number Formatting Support in Oracle

SOA Composer 12-12

12.5.2 What You May Need to Know About Cutting/Copying and Pasting Rule Elements at
Runtime 12-12

12.5.3 How to Edit Globals in an Oracle Business Rules Dictionary at Runtime.............. 12-13

12.5.4 How to Edit Bucketsets in an Oracle Business Rules Dictionary at Runtime........ 12-14

12.5.5 What You Need to Know About Editing Bucketsets...........ccccooereiiiiinininnnnnn 12-16

12.5.6 How to Work With Dictionary Links in an Oracle Business Rules Dictionary at
Runtime 12-16

12.5.7 How to Edit Decision Functions in an Oracle Business Rules Dictionary at Runtime......
12-18

12.5.8 What You May Need to Know About Oracle Business Rules Dictionary Editor
Declarative Component 12-21

12.5.9 What You May Need to Know About Oracle Business Rules Dictionary Editor Task

Flow 12-21
12.6 Editing Rules in an Oracle Business Rules Dictionary at Runtimecccccccceoeeneee. 12-21
12.6.1 How to Edit Rules in an Oracle Business Rules Dictionary at Runtime................. 12-21
12.6.2 How to Add a Rule at RUNTIMEccoioviiiiiiciieeeeteceteeeee e 12-22
12.6.3 How to Delete a Rule at RUNTIME.......cc.ooieieieieieireeeseseieet et 12-24
12.6.4 How to Show and Edit Advanced Settings for Rules at Runtime.............ccc.......... 12-24
12.6.5 How to Add Rule Conditions at RUNTIMEccccoievieiiieiieiiieieeieeeee e 12-25
12.6.6 How to Delete Rule Conditions at RUNTMEccecveieeiriniinienieiecieeeceeee e 12-27
12.6.7 How to Modify Rule Conditions at Runtimeccccoovoiiiiiiiiiic 12-27
12.6.8 How to Add Rule Actions at RUNEIME..........ccooieiiierieiiieeiececeeeeeeeeeve e 12-28
12.6.9 How to Delete Rule Actions at RUNEIMEcc.ccveieieiiinieiniesieieeeeeeeee e 12-29
12.6.10 How to Modify Rule Actions at RUNtimecccoooeieiiiiiiiiiiic, 12-30
12.6.11 How to Work with Advanced Mode Rules at Runtime...........ccccceevvevninininenienene. 12-31
12.6.12 How to Work with Tree Mode Rules at RUNtMEccocevveieieieieineneceeeeeee 12-35

12.6.13 What You May Need to Know About Rules Paging in Oracle SOA Composer ... 12-36

12.6.14 What You May Need to Know About Oracle Business Rules Editor Declarative
Component 12-37

12.6.15 What You May Need to Know About Oracle Business Rules Dictionary Editor
Declarative Component 12-37

12.6.16 What You May Need to Know About Oracle Business Rules Dictionary Editor Task

Flow 12-37
12.7 Using the Oracle SOA Composer Browser Windowsccccceviiiiiiiiiiciciciccie, 12-37
12.7.1 Expression Builder ..o 12-38
12.7.2 Condition BIOWSETc.cciimiiiiiiiiic s 12-39
12.7.3 Date BIOWSETcooiiieiitiiietctc ettt 12-39
12.7.4 Right Operand Browser ..o 12-40
12.8 Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime............... 12-40
12.8.1 Adding a Decision Table at Runtime...........cccccocoviviiiniiiiccccnes 12-40
12.8.2 Adding Condition Rows to a Decision Table..............cccooeiiiiiiie 12-41
12.8.3 Adding Actions to a Decision Table ... 12-44
12.8.4 Adding Rules to a Decision Table...........c.cccccoeuiiiiiiiiiiiiii 12-45
12.8.5 Deleting Rules in a Decision Table...........cccccccoiiiniiiiiniiiiiiiie 12-50
12.8.6 Defining Tests in a Decision Tablecccccooiiiiiinninrereeeereeeaes 12-51
12.8.7 Splitting and Compacting a Decision Table............ccccccoviiiiiiiiiiiiiines 12-53
12.8.8 Checking for Missing Rules in a Decision Table..........ccccccceiiniviinnninninnnn 12-54
12.8.9 Performing Conflict Resolution in Decision Tables..........cccccccoeevviinnnnninneene. 12-56
12.8.10 Switching From Rows t0 COIUMNSccceviimiiiiiiiici e 12-57
12.8.11 Working with Advanced Mode Options in a Decision Table.............ccccccccvvrininnne 12-58
12.8.12 Deleting a Decision Table at RUNtIMec.ccccccieiiiiiiiiiicccerereees 12-59
12.8.13 What You Need to Know About Rule Test Variablesccccocooviiniiiiinnnnnn. 12-60
12.9 Localizing Names of Resources in Oracle Business Rules...........ccccococoviiiniiiiiinnnnn. 12-60
12.9.1 How to Localize the Alias of a Oracle Business Rules Component 12-61
12.10 Committing Changes for an Oracle Business Rules Dictionary at Runtime................. 12-63
12.10.1 What You Need to Know About Editing With Multiple Users at Runtime 12-63
12.11 Synchronizing Rules Dictionary in Oracle JDeveloper With Runtime Dictionary Updates ..
12-64
12.12 Validating an Oracle Business Rules Dictionary at Runtimec.cccccooeveniiinnnnnn. 12-65
12.12.1 Understanding the Validation Panelcccccccccoviviiiniiinniinnes 12-66
12.12.2 Updating the Validation Panelc.cccoiiiiiiiiiiicicccccccceecceenes 12-69
12.13 Obtaining Composite and Dictionary Information at Runtime...........cccccecoovevviiinnnen. 12-69
12.14 Working with Tasks at RUNtime..........ccccccoviiviiiiiiics 12-70
12.14.1 How to View Task Metadata at Runtime..........c.cccoooveeviniinii, 12-70
12.14.2 How to Configure a Task or an AMX Rule Metadata at Runtime 12-73

Oracle Business Rules Files and Limitations

A1 Rules Designer Naming COnVeNtions.........ccceeciucieiiiciciniiciceeic e A-1
Al Ruleset NamiNg........ccccciuiiiiiiiiiiiiiiiiicce s A-1
A12 Dictionary Naming ..o A-1
A13 Alias NAIMING.cvvieiiciie e A-1

A1.4 XML Schema Target Package Namingccccccceeueieiieiiiiiinininiiiniccnccceenes A-1

B Oracle Business Rules Built-in Classes and Functions

B.1 SHING CLASSES ...ttt s B-1
B.2 LIS CLASSES .evrevirtietierisreieieiesteiteteeteesesbeste st e b e s estessesbeseastaseaseeseesessassessessessessassasansessensensensensensas B-4
B.3 INUINETIC CLASSES .. .uitieuiietieiieeeetietesteeetestestesteesaesseesaeteessesseesseseessessesssesseessessesssessesssessesssensenns B-7
B.4 Time and DUuration ClaSSES.......c.eccveriirierieieitieiesieetesteeee st eeesreetesaeeaesteessesveessessesssesseesens B-13
B.5 MISCEIIANEOUS CLASSEScvvevvevieiieiietiriiitiiiteietestesteaeseestetestessessessessessessessessessassasessessessessessens B-30
B.6 FUNICHIONS .ttt ettt et sttt st e et e st e e baesabeenbaessbesnsaensaesnsaensnennss B-31

Oracle Business Rules Frequently Asked Questions

C.1 Why Do Rules Not Fire When A Java Object is Asserted as a Fact and Then Changed
Without Using the Modify Action? C-1

Cc.2 What are the Differences Between Oracle Business Rules RL Language and Java?........ C-2
C.3 How Does a RuleSession Handle Concurrency and Synchronization?............ccccccceuueee. C-2
C.4 How Do I Correctly Express a Self-Join?ccooieiiiiiiiiiicc e, C-3
C5 How Do I Use a Property Change Listener in Oracle Business Rules?..............cc.cccc.c...... C-5
C.6 What Are the Limitations on a Decision Service with Oracle Business Rules? C-6
Cc7 How Do I Put Java Code in a RULE?couiiiiiiiiiieiiie ettt C-7
C.8 Can I Use Java Based Facts in a Decision Service with BPEL?.........ccccccoovveiiicicieierinenn. C-7
C.9 How Do I Enable Debugging in a BPEL Decision Service?c.cccccccoccueeiceecncceeeenenn. C-7
C.10 How Do I Support Versioning with Oracle Business Rules?ccccccoviiiininniinnnns C-7
C.11 What is the Priority Order Using Priorities with Rules and Decision Tables? C-8
C.12 Why do XML Schema with xsd:string Typed Elements Import as Type JAXBElement? C-8
C.13 Why Are Changes to My Java Classes Not Reflected in the Data Model?........................ C-9
C.14 How Do I Use Rules SDK to Include a null in an EXpression?ccccccvicviniieinininns C-9
C.15 Is WebDAYV Supported as a Repository to Store a Dictionary?ccccoeeecccccccnnns C-9
C.16 Using a Source Code Control System with Rules Designerc.ccccocvviivvniininnnes C-10

Oracle Business Rules Troubleshooting

D.1 Getter and Setter Methods are not Visible ... D-1
D.2 Java Class with Only a Property Setter...........cccocooeiiiniiiiiniiiiiicecc e, D-1
D.3 Runtime NoClassDefFound Error ..., D-2
D.4 RL Specific Keyword Naming Conflict Errors ..., D-2
D.5 java.lang Illegal AccessError from Business Rules Service Runtimecccccoevviiiinnnee. D-2
D.6 JAXB 1.0 Dictionaries and RL MultipleInheritanceException............cccocovvvrnninnincnennace. D-4
D.7 Why Does XML Schema with Underscores Fail JAXB Compilation?..........cccccevrieinnnes D-4
D.8 How Are Decision Service Input Output Element Types Restricted?ccocouvvrnrnenne. D-4
D.9 How Are Decision Service Input Output Schema Restricted?ccccocoveevivvvnnnnene. D-4
D.10 How Do I Handle Java Reserved Names in an Imported Fact Type?........cccccccevvvininnnne. D-5

E Working with Oracle Business Rules and JSR-94 Execution Sets

E.1 Introduction to Oracle Business Rules and JSR-94 Execution Setsccccoeveeeeincncnnenne. E-1
E.2 Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets..................... E-1
E.21 Creating Rule Execution Set with Oracle Business Rules RL Language Text............ E-2
E22 Creating a Rule Execution Set from Oracle RL Text Specified in a URL.................... E-3
E.2.3 Creating Rule Execution Sets with Rulesets from Multiple Sources...........cccceoeec.. E-4

xi

E.3 Using the JSR-94 Interface with Oracle Business Rules...........ccccoooiiiiiiiiiiinine, E-4

E.3.1 Creating a Rule Execution Set with createRuleExecutionSetcccccovvviinnnn E-5
E.3.2 Creating a Rule Session with createRuleSession...........ccccoeevvveeuinvvncnneeeeeene E-5
E.3.3 Working with JSR-94 Metadatacccoooviieiiiiiiiii e E-5
E.3.4 Using Oracle Business Rules JSR-94 EXteNSIONSccccoceuvvviiivinivininiiiiiniccnes E-6

F Working with Rule Reporter

F.1 Introduction to Working with Rule Reporter ..., F-1
F.1.1 What You Need to Know About Rule Reporter HTML Style Sheets.......................... F-1
F.1.2 What You Need to Know About RuleReporter APL..........c.cccoooiiiiiinininiiiiinnne, F-1
F.1.3 What You Need to Know About Rule Reporter Dependent Jar Files........................ F-2
F.2 Using Rule Reporter Command Line Interface...........cccccocoeeiieiiiiiinciiccieeceeeeee F-2
F.2.1 How to List the Contents of a Dictionary with Rule Reporter Command Line........ F-2
F.3 Using Rule Reporter with Java........cccooi F-3
F.3.1 How to List the Contents of a Dictionary Using Rule Reporter with Java................. F-3
Index

Xii

Audience

Preface

This Preface contains these topics:
= Audience

= Documentation Accessibility
= Related Documentation

s Conventions

Oracle Fusion Middleware User's Guide for Oracle Business Rules is intended for
application programmers, system administrators, and other users who perform the
following tasks:

» Create Oracle Business Rules programs

= Modify or customize existing Oracle Business Rules programs
» Create Java applications using rules programs

= Add rules programs to existing Java applications

To use this document, you need a working knowledge of Java programming language
fundamentals.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documentation

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

xiii

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN).

http://www.oracle.com/technology/documentation/index.html

Conventions

The following text conventions are used in this document:

Xiv

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

What's New in This Guide for Release

11.1.1.7

The following table lists the sections that have been added or changed.

For a list of known issues (release notes), see the "Known Issues for Oracle SOA
Products and Oracle AIA Foundation Pack” at
http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-know
nissuesindex-364630.html.

Sections

Changes Made

What's New in This Guide for
Release 11.1.1.7.0

Chapter added to list the new or updated
content for this release.

Multiple chapters

Added content for the following;:

Combining generic rules Ul and
customized task approvals Ul in
IF/THEN rules

Add filtering support to choice lists

Add/Delete Global Variables in Rules
ADF component

Support for customized action region for
decision table

Ability to import dictionary from MDS
into project

XV

XVi

1

Overview of Oracle Business Rules

This chapter describes the concepts of business rules and provides an overview of the
Oracle Business Rules runtime and design-time elements such as facts, bucketsets,
rulesets, Decision Table, and Oracle SOA Composer. It also describes the Oracle
Business Rules engine architecture.

This chapter includes the following sections:

s Section 1.1, "What are Business Rules?"

» Section 1.2, "Oracle Business Rules Runtime and Design Time Elements"
» Section 1.3, "Oracle Business Rules Engine Architecture”

For more information, see:

» Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules
» Oracle Fusion Middleware Java API Reference for Oracle Business Rules

» Oracle Fusion Middleware Developer’s Guide for Oracle SOA Suite

1.1 What are Business Rules?

Oracle Business Rules enable dynamic decisions at runtime allowing you to automate
policies, computations, and reasoning while separating rule logic from underlying
application code. This allows more agile rule maintenance and empowers business
analysts with the ability to modify rule logic without programmer assistance and
without interrupting business processes.

Business rules are statements that describe business policies or describe key business
decisions. For example, business rules include:

= Business policies such as spending policies and approval matrices.

s Constraints such as valid configurations or regulatory requirements.
s Computations such as discounts or premiums.

= Reasoning capabilities such as offers based on customer value.

For example, a car rental company might use the following business rule:

Overview of Oracle Business Rules 1-1

What are Business Rules?

=/ ¥ Driver Age Rule
Determine if driver is old enough ko rent.

IF
Rental_application.driver age < 21
THEN

modify Rental_application { status : "DECLINED")

An airline might use a business rule such as the following:

=l ¥ Frequent Flyer Rule
Calculate miles status

IF
Frequent_Flyer total_miles > 100000
THEN

modify Frequent_Flyer { status @ "GOLD")

A financial institution could use a business rule such as:

=l ¥ Loan Income Rule
Laan minimurn incomme

IF
Application_loan income < 10000
THEN

modify Application_loan { deny @ true)

These examples represent individual business rules. In practice, you can use Oracle
Business Rules to combine many business rules or to use more complex tests.

For the car rental example, you can name the rule the Driver Age Rule. Traditionally,
business rules such as the Driver Age Rule are buried in application code and might
appear in a Java application as follows:

public boolean checkDriverAgeRule (Driver driver) {
boolean declineRent = false;
int age = driver.getAge();
if(age < 21) {
declineRent = true;
}

return declineRent;

This code is not easy for nontechnical users to read and can be difficult to understand
and modify. For example, suppose that the rental company changes its policy so that
all drivers under 18 are declined using the Driver Age Rule. In many production
environments the developer must modify the application, recompile, and then
redeploy the application. Using Oracle Business Rules, this process can be simplified
because a business rules application is built to support easily changing business rules.

Oracle Business Rules allows a business analyst to change policies that are expressed
as business rules, with little or no assistance from a programmer. Applications using
Oracle Business Rules support continuous change that allows the applications to adapt
to new government regulations, improvements in internal company processes, or
changes in relationships between customers and suppliers.

A rule follows an if-then structure and consists of the following parts:

s IF part: a condition or pattern match (see Section 1.1.1, "What Are Rule
Conditions?").

1-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

What are Business Rules?

s THEN part: a list of actions (see Section 1.1.2, "What Are Rule Actions?").

Alternatively, you can express rules in a spreadsheet-like format called a Decision
Table (see Section 1.1.3, "What Are Decision Tables?").

You write rules and Decision Tables in terms of fact types and properties. Fact types
are often imported from the Java classes, XML schema, Oracle ADF Business
Components view objects, or may be created in Rules Designer. Fact properties have a
name, value, data type, and an optional bucketset. A bucketset splits the value space of
the data type into buckets that can be used in Decision Tables, choice lists, and for
design time validation (see Section 1.1.4, "What Are Facts and Bucketsets?").

You group rules and Decision Tables in an Oracle Business Rules object called a ruleset
(see Section 1.1.5, "What Are Rulesets?").

You group one or more rulesets and their facts and bucketsets in an Oracle Business
Rules object called a dictionary (see Section 1.1.8, "What Are Dictionaries?").

For more information, see Section 1.2, "Oracle Business Rules Runtime and Design
Time Elements".

1.1.1 What Are Rule Conditions?

The rule IF part is composed of conditional expressions, rule conditions, that refer to
facts. For example:

IF Rental_application.driver age < 21

The conditional expression compares a business term (Rental_application.driver age)
to the number 21 using a less than comparison.

The rule condition activates the rule whenever a combination of facts makes the
conditional expression true. In some respects, the rule condition is like a query over
the available facts in the Rules Engine, and for every row returned from the query the
rule is activated.

For more information, see:
s Chapter 4, "Working with Rulesets and Rules"

= "Rule Conditions" in the Oracle Fusion Middleware Language Reference Guide for
Oracle Business Rules

1.1.2 What Are Rule Actions?

The rule THEN part contains the actions that are executed when the rule is fired. A
rule is fired after it is activated and selected among the other rule activations using
conflict resolution mechanisms such as priority. A rule might perform several kinds of
actions. An action can add facts, modify facts, or remove facts. An action can execute a
Java method or perform a function which may modify the status of facts or create
facts.

Rules fire sequentially, not in parallel. Note that rule actions often change the set of
rule activations and thus change the next rule to fire.

For more information, see:
= Section 1.3.4, "Rule Firing and Rule Sessions"
s Chapter 4, "Working with Rulesets and Rules"

s "Ordering Rule Firing" in the Oracle Fusion Middleware Language Reference Guide for
Oracle Business Rules

Overview of Oracle Business Rules 1-3

What are Business Rules?

1.1.3 What Are Decision Tables?

A Decision Table is an alternative business rule format that is more compact and
intuitive when many rules are needed to analyze many combinations of property
values. You can use a Decision Table to create a set of rules that covers all
combinations or where no two combinations conflict.

For more information, see Chapter 5, "Working with Decision Tables".

1.1.4 What Are Facts and Bucketsets?

In Oracle Business Rules, facts are the objects that rules reason on. Each fact is an
instance of a fact type. You must import or create one or more fact types before you
can create rules.

In Oracle Business Rules a fact is an asserted instance of a class. The Oracle Business
Rules runtime or a developer writing in the RL Language uses the RL Language
assert function to add an instance of a fact to the Oracle Business Rules Engine.

In Rules Designer you can define a variety of fact types based on, XML Schema, Java
classes, Oracle RL definitions, and ADF Business Components view objects. In the
Oracle Business Rules runtime such fact type instances are called facts.

You can create bucketsets to define a list of values or a range of values of a specified
type. After you create a bucketset you can associate the bucketset with a fact property
of matching type. Oracle Business Rules uses the bucketsets that you define to specify
constraints on the values associated with fact properties in rules or in Decision Tables.
You can also use bucketsets to specify constraints for variable initial values and
function return values or function argument values.

For more information, see:
» Section 1.3, "Oracle Business Rules Engine Architecture”

s Chapter 3, "Working with Facts and Bucketsets"

1.1.5 What Are Rulesets?

A ruleset is an Oracle Business Rules container for rules and Decision Tables. A ruleset
provides a namespace, similar to a Java package, for rules and Decision Tables. In
addition you can use rulesets to partially order rule firing.

For more information, see:
s Chapter 4, "Working with Rulesets and Rules"

s "Ordering Rule Firing" in the Oracle Fusion Middleware Language Reference Guide for
Oracle Business Rules

1.1.6 What Are Decision Functions?

A decision function provides a contract for invoking rules from Java or SOA (from a
SOA composite application or from a BPEL process). The contract includes input fact
types, rulesets to run, and output fact types. For more information, see Chapter 6,
"Working with Decision Functions".

1.1.7 What Are Decision Points?

Oracle Business Rules SDK (Rules SDK) provides APIs that let you write applications
that access, create, modify, and execute rules in Oracle Business Rules dictionaries (and
all the contents of a dictionary). The Rules SDK provides the Decision Point API to

1-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Oracle Business Rules Runtime and Design Time Elements

access and run rules or Decision Tables from a Java application. For more information,
see Chapter 7, "Working with Rules SDK Decision Point API".

1.1.8 What Are Dictionaries?

A dictionary is an Oracle Business Rules container for facts, functions, globals,
bucketsets, links, decision functions, and rulesets. A dictionary is an XML file that
stores the application's rulesets and the data model. Dictionaries can link to other
dictionaries. Oracle JDeveloper creates an Oracle Business Rules dictionary in a
.rules file. You can create as many dictionaries as you need. A dictionary may
contain any number of rulesets. For more information, see Section 2.2, "Working with a
Dictionary and Dictionary Links".

1.2 Oracle Business Rules Runtime and Design Time Elements

Oracle Business Rules provides support for using business rules as a Decision
component or as a library in a Java application. A Decision component is a mechanism
for publishing rules and rulesets as a reusable service that can be invoked from
multiple business processes. To create and use rules in the Oracle SOA Suite, or to
create rules and integrate these rules into your applications, Oracle Business Rules
provides the following runtime and design time elements:

= Decision Component (Business Rules) in a SOA Composite Application
= Using Rules Engine with Oracle Business Rules in a Java EE Application
= Oracle Business Rules RL Language

s Oracle Business Rules SDK

= Rules Designer

s Oracle SOA Composer Application

1.2.1 Decision Component (Business Rules) in a SOA Composite Application

Oracle SOA Suite provides support for Decision components that support Oracle
Business Rules. A Decision component is a mechanism for publishing rules and
rulesets as a reusable service that can be invoked from multiple business processes.

A Decision Component is a SCA component that can be used within a composite and
wired to a BPEL component. Apart from that, Decision components are used for
dynamic routing capability of Mediator and Advanced Routing Rules in Human
Workflow.

Oracle Business Rules Rules Engine (Rules Engine) is available in a SOA composite
application using the SOA Business Rule service engine that efficiently applies rules to
facts and defines and processes rules.

Rules Engine has the following features:

= High performance: Rules Engine implements specialized matching algorithms for
facts that are defined in the system.

» Thread-safe execution suitable for a parallel processing architecture: Rules Engine
provides one thread that can assert facts while another is evaluating the network.

For more information, see Section 1.3, "Oracle Business Rules Engine Architecture".

Overview of Oracle Business Rules 1-5

Oracle Business Rules Runtime and Design Time Elements

1.2.2 Using Rules Engine with Oracle Business Rules in a Java EE Application

The Rules Engine is available as a library for use in a Java EE application (non-SOA).
Rules Engine efficiently applies rules to facts and defines and processes rules. Rules
Engine defines a Java-like production rule language called Oracle Business Rules RL
Language (RL Language), provides a language processing engine (inference engine),
and provides tools to support debugging.

Using Rules Designer you can specify business rules separately from application code
which allows you to change business policies quickly with graphical tools. The Rules
Engine evaluates the business rules and returns decisions or facts that are then used in
the business process.

Rules Engine has the following features:

= High performance: Rules Engine implements specialized matching algorithms for
facts that are defined in the system.

s Thread-safe execution suitable for a parallel processing architecture: Rules Engine
provides one thread that can assert facts while another is evaluating the network.

A rule-enabled Java application can load and run rules programs. The rule-enabled
application passes facts and rules to the Rules Engine (facts are asserted in the form of
Java objects or XML documents). The Rules Engine runs in the rule-enabled Java
application and uses the Rete algorithm to efficiently fire rules that match the facts.

For more information, see Section 1.3, "Oracle Business Rules Engine Architecture" and
Section 1.2.4, "Oracle Business Rules SDK".

1.2.3 Oracle Business Rules RL Language

Oracle Business Rules supports a high-level Java-like language called Oracle Business
Rules RL Language (RL Language). RL Language defines the valid syntax for Oracle
Business Rules programs. RL Language includes an intuitive Java-like syntax for
defining rules that supports the power of Java semantics, providing an easy-to-use
syntax for application developers. RL Language consists of a collection of text
statements that can be generated dynamically or stored in a file.

Using RL Language application programs can assert Java objects as facts, and rules can
reference object properties and invoke methods. Likewise, application programs can
use XML documents or portions of XML documents as facts.

Programmers can use RL Language as a full-featured rules programming language
both directly and as part of the Oracle Business Rules SDK (Rules SDK).

Business analysts can use Rules Designer to work with rules. In this case, the business
analyst does not need to directly view or write RL Language programs. For more
information, see Section 1.2.5, "Rules Designer".

For detailed information about RL Language, see Oracle Fusion Middleware Language
Reference Guide for Oracle Business Rules.

1.2.4 Oracle Business Rules SDK

Oracle Business Rules SDK (Rules SDK) is a Java library that provides business rule
management features that a developer can use to write a rule-enabled program that
accesses a dictionary, or to write customized rules programs that add rules or modify
existing rules. Rules Designer uses Rules SDK to create, modify, and access rules and
the data model using well-defined interfaces. Customer applications can use Rules
SDK to access, display, create, and modify collections of rules and the data model.

1-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Oracle Business Rules Runtime and Design Time Elements

You can use the Rules SDK APIs in a rule-enabled application to access rules or to
create and modify rules. The rules and the associated data model could be initially
created in a custom application or using Rules Designer.

This guide describes the Oracle Business Rules SDK Decision Point API. Using a
Decision Point you can access a dictionary and run the rules in the dictionary. For
complete Oracle Business Rules SDK API information, see Oracle Fusion Middleware
Java API Reference for Oracle Business Rules.

For more information, see Chapter 7, "Working with Rules SDK Decision Point API".

1.2.5 Rules Designer

The Oracle Business Rules Designer (Rules Designer) extension to Oracle JDeveloper is
an editor that enables you to create and edit rules as Figure 1-1 shows.

Figure 1-1 Oracle JDeveloper with Rules Designer

e ——

[—] [<J»OracteRules Lrutes > =&
rule_approval - P AR E @ R @ |z
~ Projects B - = . 2

& Facts ————— =
G- xsd Frequemt Flyer Rules ¥ [| Eilteron Miew: [IF/TH..~| =k ~ 3€ = B & & w2 || |B
£ =s1 J5 Functions s
- = *
| SEARR G (x) Clobals Hormal Custamer Rule
=1 Business Rules <enter description=
= 77 Bucketset
i =-{T project2 7 Bucketsets =
ce= ¥ Regular Customer Rule
i<Jr OracleRulesl.rules <& Links
Zenter description>
OracleRules1_Decision Fun =
-4§f OracleRulesl.componentTy & Decision Functions ¥ premium Customer Rule
[##] oracieRules1.decs @) Translations <enter description=
Rulesets == 3
P Application Resources
I Data Controls g W @ DriverAgeRules
I Recently Opened Files % Frequent Flyer Rules
= OracleRulesl.rules - Structure = | [R
G2 4+ 7 R
[EZl Dictionary - GracleRulesl.rules
[Facts
3 Functions
-2 clobals
[Bucketsets
i-[C3 Links
i..F3@ Decision FunEiERs
m-C0 Ruleser

Rules Designer provides a point-and-click interface for creating rules and editing
existing rules. Using Rules Designer you can work directly with business rules and a
data model. You do not need to understand the RL Language to work with Rules
Designer. Rules Designer provides an easy way for you to create, view, and modify
business rules.

Rules Designer supports several types of users, including the application developer
and the business analyst. The application developer uses Rules Designer to define a
data model and an initial set of rules. The business analyst uses Rules Designer either
to work with the initial set of rules or to modify and customize the initial set of rules
according to business needs. Using Rules Designer a business analyst can create and
customize rules with little or no assistance from a programmer.

1.2.6 Oracle SOA Composer Application

When a dictionary is deployed in a SOA composite application, Oracle Business Rules
lets you view the dictionary or edit and save changes to the dictionary. You can use the
SOA Composer application (SOA Composer) to work with a deployed dictionary that
is part of a SOA composite application, as Figure 1-2 shows.

Overview of Oracle Business Rules 1-7

Oracle Business Rules Engine Architecture

Figure 1-2 Using Oracle SOA Composer to View or Edit a Dictionary at Runtime

Select a dictionary to open =]

Show | Al

Compaosite

[=] | search composite ...

EIr

|Partition |Rules File

AutoLoanFlow_rev1.789
AutoLoanFlow_rev1.789
AutoLoanFlow_rev3. 789
AutoLoanFlow_rev3.789
AutoAppProj_rev2.0444
AutoAppProj_rev2.0444
Projectl_rev1.0
AutoAppProj_rev2.0
AutoAppProj_rev2.0
M

default
default
default
default
default
default
default

LoanOfferings.rules
RatingFY0&.rules
LoanOfferings.rules
RatingFY0&.rules
CreditRatingRules.rules
LoanAdvisorRules. rules
OradeRulesL.rules
default CreditRatingRules.rules
default LoanAdvisorRules. rules
N/A DynamicRouting.rules

Open Cancel

For more information, see Chapter 12, "Using Oracle SOA Composer with Oracle
Business Rules".

1.3 Oracle Business Rules Engine Architecture

A rule-based system using the Rete algorithm is the foundation of Oracle Business
Rules. A rule-based system consists of the following:

s The rule-base: Contains the appropriate business policies or other knowledge
encoded into IF/THEN rules and Decision Tables.

= Working memory: Contains the information that has been added to the system.
With Oracle Business Rules you add a set of facts to the system using assert calls.

= Inference Engine: The Rules Engine, which processes the rules, performs
pattern-matching to determine which rules match the facts, for a given run
through the set of facts.

In Oracle Business Rules the rule-based system is a data-driven forward chaining
system. The facts determine which rules can fire so when a rule fires that matches a set
of facts, the rule may add facts and these facts are again run against the rules. This
process repeats until a conclusion is reached or the cycle is stopped or reset. Thus, in a
forward-chaining rule-based system, facts cause rules to fire and firing rules can create
more facts, which in turn can fire more rules. This process is called an inference cycle.

1.3.1 Declarative Rules

With Oracle Business Rules you can use declarative rules, where you create rules that
make declarations based on facts rather than coding. For an example of declarative
rules,

IF a Customer is a Premium customer, offer them 10% discount
IF a Customer is a Gold customer, offer them 5% discount

In declarative rules:

= Statements are declared without any control flow

= Control flow is determined by the Rules Engine

1-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Oracle Business Rules Engine Architecture

= Rules are easier to maintain than procedural code
= Rules relate well to business user work methods

When a rule adds facts and these facts run against the rules, this process is called an
inference cycle. An inference cycle uses the initial facts to cause rules to fire and firing
rules can create more facts, which in turn can fire more rules. For example, using the
initial facts, Rules Engine runs and adds an additional fact, and an additional rule tests
for conditions on this fact creating an inference cycle:

IF a Customer is a Premium customer, offer them 10% discount
IF a Customer is a Gold customer, offer them 5% discount
IF a Customer spends > 1000, make them Premium customer

The inference cycle that Oracle Business Rules provides enables powerful and
modular declarative assertions.

1.3.2 The RETE Algorithm

The Rete algorithm was first developed by artificial intelligence researchers in the late
1970s and is at the core of Rules Engines from several vendors. Oracle Business Rules
uses the Rete algorithm to optimize the pattern matching process for rules and facts.
The Rete algorithm stores partially matched results in a single network of nodes in
working memory.

By using the Rete algorithm, the Rules Engine avoids unnecessary rechecking when
facts are deleted, added, or modified. To process facts and rules, the Rete algorithm

creates and uses an input node for each fact definition and an output node for each

rule.

Fact references flow from input to output nodes. In between input and output nodes
are test nodes and join nodes. A test occurs when a rule condition has a Boolean
expression. A join occurs when a rule condition ANDs two facts. A rule is activated
when its output node contains fact references. Fact references are cached throughout
the network to speed up recomputing activated rules. When a fact is added, removed,
or changed, the Rete network updates the caches and the rule activations; this requires
only an incremental amount of work.

The Rete algorithm provides the following benefits:

» Independence from rule order: Rules can be added and removed without affecting
other rules.

= Optimization across multiple rules: Rules with common conditions share nodes in
the Rete network.

= High performance inference cycles: Each rule firing typically changes just a few
facts and the cost of updating the Rete network is proportional to the number of
changed facts, not to the total number of facts or rules.

1.3.3 What Is Working Memory?

Oracle Business Rules uses working memory to contain facts (facts do not exist outside
of working memory). A RuleSession contains the Oracle Business Rules working
memory.

1.3.4 Rule Firing and Rule Sessions

A Rule Session consists of rules, facts and an agenda. An assert or retract adds or
removes fact instances from working memory.

Overview of Oracle Business Rules 1-9

Oracle Business Rules Engine Architecture

When facts in working memory are changed:

= Conditions for rules are evaluated

= Matching rules are added to the agenda (Activated)

= Rules which no longer match are removed from agenda

= Rules Engine runs and executes actions (fires), for activated rules

Figure 1-3 shows these parts of Oracle Business Rules runtime.
Figure 1-3 Rules in Rule Session with Working Memory and Facts

Client Rule Session
Rulesets

Matchin
O ‘ Agenda
i Fact Activation

Java
Objects —» Fact Activation
Activation
Fact
= ||l=1 Activation
r'y
XML § .
Data Working Memoﬁy

‘Rule:iring‘ }—b[Action }

A rule action may assert, modify, or retract facts and cause activations to be added or
removed from the agenda. There is a possible loop if a rule's action causes it to fire
again. Rules are fired sequentially, but in no pre-defined order. The rule session
includes a ruleset stack. Activated rules are fired as follows:

= Rules within top-of-the-stack ruleset are fired
= Within a ruleset, firing is ordered by user-defined priority
= Within the same priority, the most recently activated rule is fired first

Only rules within rulesets on the stack are fired, but all rules in a rule session are
matched and, if matched, activated.

1-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

2

Working with Data Model Elements

This chapter describes the Oracle Business Rules data model comprising fact types,
functions, globals, bucketsets, decision functions, and dictionary links.

The chapter includes the following sections:

= Section 2.1, "Introduction to Working with Data Model Elements"
= Section 2.2, "Working with a Dictionary and Dictionary Links"

» Section 2.3, "Working with Oracle Business Rules Globals"

= Section 2.4, "Working with Decision Functions"

= Section 2.5, "Working with Oracle Business Rules Functions"

= Section 2.6, "Localizing Oracle Business Rule Resources"

For more information, see Section 1.1.8, "What Are Dictionaries?".

2.1 Introduction to Working with Data Model Elements

To implement the data model portion of an Oracle Business Rules application you
create a dictionary and add data model elements. To complete the dictionary, you
create one or more rulesets containing rules that use or depend upon these data model
elements.

For more information, see:

s Chapter 3, "Working with Facts and Bucketsets"
= Chapter 4, "Working with Rulesets and Rules"

s Chapter 5, "Working with Decision Tables"

2.2 Working with a Dictionary and Dictionary Links

A dictionary is an Oracle Business Rules container for facts, functions, globals,
bucketsets, links, decision functions, and rulesets. A dictionary is an XML file that
stores the rulesets and the data model for an application. Dictionaries can link to other
dictionaries. You can create as many dictionaries as you need. A dictionary may
contain any number of rulesets and data model elements. A data model can be
contained in one or more dictionaries. All the data model elements referenced by the
rulesets must be available in the dictionary either directly or through links.

A dictionary is stored in a * . rules file.

Working with Data Model Elements 2-1

Working with a Dictionary and Dictionary Links

2.2.1 Introduction to Dictionaries and Dictionary Links

When you create a dictionary, you give it a name and a package, similar to a Java
class. You can create data model elements and rulesets inside this dictionary, and you
can also reference the data models and rulesets of other dictionaries by creating a
dictionary link and specifying the name and package of the target dictionary. Each
dictionary logically contains the built-in dictionary. This dictionary includes standard
functions and types that all Oracle Business Rules applications need. You cannot
modify the built-in dictionary.

In addition to the main dictionary, you can create one or more application-specific
dictionaries, such as PurchaseItems.rules. You can modify the properties of these
dictionaries.

The complete data model defined by a dictionary and its linked dictionaries is called a
combined dictionary. You can create multiple links to the same dictionary; in this
case, all but the first link is ignored.

For more information, see Section 2.2.7, "What You Need to Know About Dictionary
Linking".

2.2.2 How to Create a Dictionary in the SOA Tier Using Rules Designer

Oracle JDeveloper provides many ways to create a dictionary for Oracle Business
Rules. This section shows one of the ways to create a dictionary in a SOA project. You
can create a dictionary for use in a SOA application.

A typical SOA composite design pattern provides each application with its own
dictionary or dictionaries. This makes each application self-contained and it can be
deployed independently. When different applications need access to the same parts of
a common data model, you can use dictionary links to include dictionary of a target
application in the dictionary of a source application.

When you do this, application copies the dictionary of target application into the
source application and retains the contents of the copies linked to the source. When
you use the linked elements, they are shown as local contents.

You may also create a dictionary in the business tier, for use outside of a SOA
application. For more information, see Section 9.2.5, "How to Create an Oracle
Business Rules Dictionary in the Grades Project".

To create a dictionary in the SOA Tier using Rules Designer:

1. In the Application Navigator, select a SOA application and select or create a SOA
project.

2. Right-click, and from the list select New....

3. In the New Gallery select the Current Project Technologies tab and, in the
Categories area, expand SOA Tier as shown in Figure 2-1.

2-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with a Dictionary and Dictionary Links

Figure 2-1 Creating a Business Rules Dictionary for a SOA Project

3 New Gallery Ed
rAII Technologies |/ Current Project Technologies |
(&)
Categories: Items: |:| Show All Descriptions
r
..... Security ﬁSi EPEL Process
----- TopLink/JPA
o EC /] g lo@ A Q Business Rules
""" ¢ entz.ar (Sl = (Sl Opens the Create Business Rules dialog, which allows you to define a
""" Web Services dictionary of business rules based on the Oracle business rules engine.
= Client Tier
..... ADF Desktop Integration To enable this option, you must select a project or a file within a project
_____ ADF Swing inthe Application Navigator.
----- Extension Development W | ; Event Definition
----- Swing /AWT
[-Database Tier & Human Task
----- Database Files {é Mediator
----- Database Ohjects
----- Offline Database Objects
[=-S0A Tier :
8 Spring Context
ice Components h‘ﬂ bt
ransformations
[=H-Web Tier
efApplet
| Help | | Ok _J | Cancel |

4. In the New Gallery window, in the Items area, select Business Rules.
5. Click OK. This displays the Create Business Rules dialog.
6. In the Create Business Rules dialog, enter fields as shown in Figure 2-2:

= In the Name field, enter the name of your dictionary. For example, enter
PurchaselItems.

= In the Package field, enter the Java package to which your dictionary belongs.
For example, com. example.

Working with Data Model Elements 2-3

Working with a Dictionary and Dictionary Links

Figure 2-2 Create Business Rules Dialog

Business Rules

X

Business Rule
A business rule defines or constrains one aspect of your business that is intended to assert
business structure or influence the behavior of your business.

General Advanced

(3) Create Dictionary () Import Dictionary

Specify the name and package for the dictionary that will be created.

MName: |ItemizedFare |

Package: |com.examp|e| |

Project: |’kotha,’ru|es_sam ples/Rules_Sam ple_Projs,.'DesignTime,.'Applicationl,.’Project2,.’Prcject2.jpr|

Inputs/Outputs: g B A W
Direction Mame Type
| Help | | oK | Cancel

7. To specify the inputs and outputs:

a. Click the Add icon and select Input to create an input or Output, to create an
output.

b. In the Type Chooser dialog, expand the appropriate XSD and select the
appropriate type.
c. Click OK to close the Type Chooser dialog.

You can later add inputs or outputs, or remove the inputs or outputs. For more
information, see Chapter 6, "Working with Decision Functions".

8. In the Create Business Rules dialog, click OK to create the Decision component
and the Oracle Business Rules dictionary.

Oracle JDeveloper creates the dictionary in a file with a . rules extension, and
starts Rules Designer as shown in Figure 2-3.

2-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with a Dictionary and Dictionary Links

Figure 2-3 Creating a New Oracle Business Rules Dictionary Purchaseltems

Application Navigator *

rule_approval

~ Projects

-8

Qs v-=-
=] D SOA Content
{3 classes
{1 testsuites
std
£3 xs!
{1 sCA-INF/classes
DEusmess Rules
E\ m project2
i Q OracleRules] rules
E OracleRules1Trans
=-{I) com L

EI m example
; @\Iem\szare.ru
ItemizedFareTre

~

= OOracleRu\esl.ru\es x Qhemiudﬁre.rules X

®

YE D PYE DO 4

@

&P Facts ‘

f,. Functions

Rutesers v [IEiteron View [rmranmaes <) - X T B B 6 & v

SadJnosay

(x) Clobals

"3 Bucketsets

.J Links

@g Decision Functions
&Translaﬂons

+ ®

Rulesets

4P Rulesetl

¥

N

I

[Application Resources
[» Data Controls
[* Recently Opened Files

emizedFare.rules - Structure * =

+ 7%

Dictionary - temizedFare.rules

Farts

Functions

Clobals
Bucketsets

Links

Decision Functions
Rulesets

i
]
o
]
&
]

The ruleset contains no IF/THEM rules. You can create IF/THEM rules or decision tables by clicking the
corresponding buttons below or clicking the plus sign above in the ruleset editor's toolbar.

IF/THEN Rule

You create business rules to process facts
and to obtain intermediate conclusions that
Oracle Business Rules can process. To
create aruleyou first add the rule to a
ruleset, and then you insert tests and
actions. The actions are associated with
pattern matches. At runtime when atestin
the IF area of a rule matches, the Rules
Engine activates the THEM action and
prepares to run the actions associated with
the rule.

Decision Table

A Decision Table displays multiple related
rules in a single spreadsheet-style view. In
Rules Designer a Decision Table presents a
collection of related business rules with
condition rows, rules, and actions presented
in atabular form that is easy to understand
Business users can com pare cells and their
walues at a glance and can use Decision
Table rule analysis features by clicking icons
and selecting values in Rules Designerta
help identify and correct conflicting or
missing cases.

Q Create Rule

Create Decision Table

R

9. Oracle JDeveloper also creates a Decision component in composite.xml. To view
this component double-click the composite.xml file, as Figure 2—4 shows.

Figure 2-4 Decision Component Shown in Composite Editor

Application MNavigator X
rule_approval

~ Projects

Bl 7|

m project2

O OracleRulesl.rules

[oracierulesiTrans!

E-{I com

m example

0 ltemizedFare.ru

E ItemizedFareTrz

----- ﬁ ltemizedFare componentT:
E’I ltemizedFare.decs

ﬁ OracleRulesl.componentT
E OracleRulesl.decs
----- o3 Project2(composite.xmi)

T re—— >

[+ Application Resources
@

[+ Data Controls
[Recently Opened Files

M= ."

[=-[_] Business Rules ~

OracleRules1_DecisionFun|

¢ FPmR

@

| &% o &S

[:] \>OracIeRulesl rules X |\>\temizedFare rules X Hﬁﬁoﬁd?kmie.xml) Xl

=

Composite: Project2

roject2{com posite.xml) - 5t... %

=

&+ E

= Project?

[Business Rules
[Test suites

Source | Design

&

Design | Source | History

Exposed Services

ItemizedFare

Components

External References

~

a13Rd Wauodwor

Joljadsu|ﬁl_||_@ I

Working with Data Model Elements 2-5

Working with a Dictionary and Dictionary Links

2.2.3 How to Create a Dictionary in the Business Tier Using Rules Designer

Use Rules Designer to create a rules dictionary for use in the business tier, outside of a
SOA application. For information on using Oracle Business Rules without SOA, see
Chapter 9, "Creating a Rule-enabled Non-SOA Java EE Application".

2.2.4 How to View and Edit Dictionary Settings

You can view and edit dictionary settings using the Dictionary Settings icon.

To change the dictionary alias:
1. In Oracle JDeveloper, open an Oracle Business Rules dictionary.

2. In Rules Designer, click the Dictionary Settings icon.

3. In the Dictionary Settings dialog, in the Alias field, change the alias to the name
you want to use. This field is shown in Figure 2-5.

Figure 2-5 Dictionary Settings Dialog to Change Dictionary Alias or Description

Schema Path Root: |as_Sam ple_Projs /DesignTime/Applicationl /Project2/

Locale: |Eng|ish (United States)

|é Dictionary Settings x|

Ceneral Service
MName: |OracIeRuIesl |
Alias: |FIyerRuIes| |
Package: |prcject2 |
Version: [1111.00 |
Description: | |

|

|

| Help | o] 8 || Cancel

4. C(lick OK.

2.2.5 How to Link to a Dictionary

You can link to a dictionary in the same application or in another application using the
Links navigation tab in Rules Designer. To link to another dictionary you need at least
one other dictionary available.

To link to a dictionary using resource picker:
1. In Rules Designer, click the Links navigation tab as shown in Figure 2-6.

2-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with a Dictionary and Dictionary Links

Figure 2-6 Rules Designer Links Tab

=]

App\ication Mavigator X

7 rule_approval '7 ".
= Projects B & F-E- |
E| Praject2 i~

=7 SOA Content
=7 classes
[testsuites

3 scA-INF/classes
{7 Business Rules

G OracleRules1.rule.
i[2] Oraclerules1Tran
com

& Decision Functions
&Translations
Rulesets

+ X

& DriverAgeRules

é! m example
; Q temizedFare.r .
[S— >

[+ Application Resources
w7

|+ Data Controls
[* Recently Opened Files

=
.= OracleRulesl.rules - Structure * [:]
L 4
] + 7K
|EZl Dictionary - OracleRulesl.rules

C3 Facts

D Functions

3 cGlobals

[0 Bucketsets

3 Links

D Decizion Functions
1 Rulesets

&P Frequent Flyer Rules

[}

Design

ElLog

g

< OracleRulesLrules * |)ltemizedFare.rules % |offdProject2(composite xml) * =
-
va 9ol D0 % ® 3
=y
B Fact p a
@ Fucis &) Links 2
F«< Functions
(x) Clobals Links: m k-2 RE
@ Bucketsets Alias Mame Package Mame Prefix Linked Mames
Do emizedbare RGeS Jeomtranie L E |

In the Links area, click the Create icon and from the list select Browse Existing

Dictionaries. This displays the SOA Resource Browser dialog.

link to as shown in Figure 2-7.

Figure 2-7 Resource Picker

S

SOA Resource Bro

s5er

In the SOA Resource Browser dialog navigate to select the dictionary you want to

Applic

ation

4
@

El Praojectl jpr
E Project2 jpr

ItemizedFare.rules
OracleRulesl rules

o | Cancel

A

4. Click OK.

Working with Data Model Elements 2-7

Working with a Dictionary and Dictionary Links

When you work with ADF Business Components Facts you should create a link to the
Decision Point Dictionary. For more information, see Chapter 10, "Working with
Oracle Business Rules and ADF Business Components".

To link to the decision point dictionary:
1. In Rules Designer, click the Links navigation tab.

2. Inthe Links area, click Create and from the list select Decision Point Dictionary.

This operation takes awhile. You need to wait for the Decision Point Dictionary to
load.

2.2.6 How to Update a Linked Dictionary

When you have a dictionary, for example Project_rules1 that links to another
dictionary, for example, Shared_rules you need to see changes made to either
dictionaries in both. For example, you can modify the Shared_rules dictionary and see
those modifications in Project_rules1 by updating the Project_rulesl dictionary, or by
closing and reopening the Rules Designer.

To update a linked dictionary:

1. Using these sample dictionary names click the Save icon to save the Shared_rules
dictionary.

Select the Project_rulesl dictionary.

Select the Links navigation tab.

Click the Dictionary Cache... icon.

In the Dictionary Finder Cache dialog, select the appropriate linked dictionary.
Click the Clear icon.

In the Dictionary Finder Cache dialog, click Close.

Click the Validate icon.

© N o a » 0 b

2.2.7 What You Need to Know About Dictionary Linking

Using a dictionary with links to another dictionary is useful in the following cases:

= Data Model Sharing, to share portions of a data model within a project. When
you link to a dictionary in another project it is copied to the local project.

For example, consider a project where you would like to share some Oracle
Business Rules Functions. You can create a dictionary that contains the functions,
and name it DictCommon. Then, you can create two dictionaries, DictAppl and
DictApp?2 that both link to DictCommon, and both can use the same Oracle
Business Rules functions. When you want to change one of the functions, you only
change the version in DictCommon. Then, both dictionaries use the updated
function the next time RL Language is generated from either DictAppl or
DictApp?2.

In Oracle Business Rules a fully qualified dictionary name is called a DictionaryFQN
and this consists of two components:

= Dictionary Package: The package name
s Dictionary Name: The dictionary name

A dictionary refers to a linked dictionary using its DictionaryFON and an alias. Oracle
Business Rules uses the DictionaryFON to find a linked dictionary.

2-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with a Dictionary and Dictionary Links

The following are the naming constraints for combined dictionaries:

s The full names of the dictionaries, including the package and name, must be
distinct. In addition, the dictionary aliases must be distinct.

» The aliases of data model definitions of a particular kind, for example, function,
Oracle RL class, or bucketset, must be unique within a dictionary.

= A definition may be qualified by the alias of its immediately containing dictionary.
Definitions in the top and built-in dictionaries do not have to be qualified.
Definitions in other dictionaries must be qualified and this qualification is
controlled by the prefix linked names property of the dictionary link.

= Ruleset names must be unique within a dictionary. When RL Language for a
ruleset is generated, the dictionary alias is not part of any generated name. For
example, if the dictionary named dict1 links to dict2 to create a combined
dictionary, and dict1 contains ruleset_1 with rule_1 and dict2 also contains
ruleset_1 with rule_2, then in the combined dictionary both of these rules, rule_1
and rule_2 are in the same ruleset (ruleset_1).

s Allrules and Decision Tables must have unique names within a ruleset.

For example, within a combined dictionary that includes dictionary d1 and
dictionary d2, dictionary d1 may have a ruleset named Ruleset_1 with a rule
rule_1. If dictionary d2 also has a ruleset named Ruleset_1 with a rule_2, then
when Oracle Business Rules generates RL Language from the combined, linked
dictionaries, both rules rule_1 and rule_2 are in the single ruleset named
Ruleset_1.If you violate this naming convention and do not use distinct names
for the rules within a ruleset in a combined dictionary, Rules Designer reports a
validation warning similar to the following:

RUL-05920: Rule Set Ruleset_l has two Rules with name rule_1

For more information, see Appendix A, "Oracle Business Rules Files and Limitations".

2.2.8 What You Need to Know About Dictionary Linking and Dictionary Copies

When you create a dictionary link using the resource picker, the dictionary is copied to
the source project (the project where the dictionary that you are linking from resides).
Thus, this type of linking creates a local copy of the dictionary in the project. This is
not a link to the original target, no matter where the target dictionary is. Thus, Rules
Designer uses a copy operation for the link if you create a link with the resource
picker.

2.2.9 What You Need to Know About Dictionary Linking to a Deployed Dictionary

When you are using Rules Designer you can browse a deployed composite application
and any associated Oracle Business Rules dictionaries in the MDS connection.
However, you cannot create a dictionary link to a dictionary deployed to MDS.

2.2.10 What You Need to Know About Business Rules Inputs and Outputs with BPEL

Decision function inputs are available as variables to the initial actions of the decision
function. When the inputs are facts, the facts are asserted into working memory and
rules must match the facts based on type and property values and not on decision
function input name. For example, if you have inputs of same type, input1 and input2,
rules distinguish these inputs based on type or property values and not on the
different names they have.

Working with Data Model Elements 2-9

Working with Oracle Business Rules Globals

When the inputs are not visible facts, for example String or int, then a wrapper type
named <decision function name> is created, and rules must match this type.

2.3 Working with Oracle Business Rules Globals

You can use Rules Designer to add Oracle Business Rules globals.

In Oracle Business Rules a global is similar to a public static variable in Java. You can
specify that a global is a constant or is modifiable.

You can use global definitions to share information among several rules and functions.
For example, if a 10% discount is used in several rules you can create and use a global
Gold Discount, so that the appropriate discount is applied to all the rules using the
global.

Using global definitions can make programs modular and easier to maintain.

2.3.1 How to Add Oracle Business Rules Globals

You can use Rules Designer to add globals.

To add a global:
1. In Rules Designer, select the Globals navigation tab.

2. In the globals table, click the Create icon. This adds a global and displays the Edit
Global dialog, as shown in Figure 2-8.

Figure 2-8 Adding a Global in Rules Designer

QOracleRulesl.ruJes x QItemizedFare.rules x |ﬂ{[ﬂF‘rojeth{co.'rrpos.ite.x.’rr.'} x E] @
R G »
2 AL K @ |7
f=4
& Facts (x) Globals 2
_'f: Functions
Clobals:
(x) Globals S W 7R
= Mame Type Yalue Bucketset Final Description
2D Links
S
C_?; Decision Functions |é‘ Zdiz Slozal - Slogall -
%J Translations
. clobain [7
Rulesets 9= % Nees | :| 3
. int -
@ DriverAgeRules Tvpe=: []
@ Frequent Flyer Rules Bucketset: [v]
Value: ["Calendar.HOUR" '] =
[v] Constant
[v] Einal
Description:
@

3. In the Name field, enter a name or accept the default value.

2-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Oracle Business Rules Globals

In the Type field, select the type from the list.
Optionally, in the Bucketset field, select a value from the list.

In the Value field, enter a value, select a value from the list, or click the Expression
Builder icon to enter an expression. For more information, see Section 4.10,
"Working with Expression Builder".

If the global is a constant, then select the Constant checkbox. When selected, this
option specifies that the global is a constant value. For more information, see
Section 2.3.3, "What You Need to Know About the Final and Constant Options".

If the global is a nonfinal, then deselect the Final checkbox. When unselected, this
option specifies that the global is modifiable, for instance, in an assign action.

2.3.2 How to Edit Oracle Business Rules Globals

You can use Rules Designer to edit globals.

To edit a Global:

1.
2.

In Rules Designer, select the Globals navigation tab.

Double-click the globals icon in a row in the Globals table. When you double-click
the globals icon in a row this displays the Edit Global - Global Name window as
shown in Figure 2-9. In this window you can edit a global and change field values,
including the Final field and the Constant field (the Constant field is only shown
when you double-click a global to display the Edit Global dialog.

Figure 2-9 Edit Global Window

£

Edit Global - Globall x|

TIPSR Cloball [
Type: [t M
Bucketset: | '|
Value: ["Calendar HOUR" S | B

Constant '

Einal
Description:

@
ETE — ok][Cancal |

2.3.3 What You Need to Know About the Final and Constant Options

The Edit Global dialog shows the Constant and Final checkboxes that you can select
for a global.

Note the following when you use globals:

When you deselect Final, this specifies that the global is modifiable, for instance,
in an assign action.

When you select Final, this specifies that you can use the globals in a test in a rule
(nonfinal globals cannot be used in a test in a rule).

Working with Data Model Elements 2-11

Working with Decision Functions

= When you select Final, this specifies that the global is initialized one time at
runtime and cannot be changed.

When you select the Constant option in the Edit Global dialog, this specifies the global
is a constant. In Oracle Business Rules a constant is a string or numeric literal, a final
global whose value is a constant, or a simple expression involving constants and +, -,
* and /.

Selecting the Constant option for a global has three effects:

= You do not have to surround string literals with double quotes.
= Only constants appear in the expression value choice list.

= The expression value must be a constant to be valid.

Selecting the Constant option is optional. Note that bucket values, bucket range
endpoints, and ruleset filter values are always constant.

2.4 Working with Decision Functions

The data model includes decision functions. For information on working with decision
functions, see Section 6.1, "Introduction to Decision Functions".

2.5 Working with Oracle Business Rules Functions

Oracle Business Rules provides functions to hide complexity when you create rules.
Oracle Business Rules lets you use built-in or user-defined functions in rule and
Decision Table conditions and actions.

2.5.1 Introduction to Oracle Business Rules Functions

In Oracle Business Rules you define a function in a manner similar to a Java method,
but an Oracle Business Rules function does not belong to a class. You can use Oracle
Business Rules functions to extend a Java application object model so that users can
perform operations in rules without modifying the original Java application code.

You can use an Oracle Business Rules function in a condition or in an action associated
with a rule or a Decision Table.

You can also use an Oracle Business Rules function definition to share the same or a
similar expression among several rules, and to return results to the application.

An Oracle Business Rules function includes the following:
s Name: The Oracle Business Rules function name.

= Return Type: A return type for the Oracle Business Rules function, or void if there
is no return value.

s Bucketset: The bucketset to associate with the Oracle Business Rules function.

= Arguments: The function arguments. Each function argument includes a name
and a type.

= Function Body: The function body includes predefined actions. Using predefined
actions Rules Designer assures that an Oracle Business Rules function is well
formed and can be validated.

You can also use functions to test rules from within Rules Designer. For more
information, see Section 8.1.5, "How to Test a Decision Function Using an Oracle
Business Rules Function".

2-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Oracle Business Rules Functions

2.5.2 How to Add an Oracle Business Rules Function

You use Rules Designer to add an Oracle Business Rules function.

To add an Oracle Business Rules Function:

1.

a & 0N

© ®» N O

In Rules Designer, select the Functions navigation tab.

Select the Create... icon.

Enter the function name in the Name field, or use the default name.

Select the return type from the Return Type list. For example, select void.

Optionally, select a bucketset to associate with the function return type from the
list in the Bucketset field.

Optionally, in the Description field enter a description.
In the Arguments table, click Add to add one or more arguments for the function.
For each argument in the Type field, select the type from the list.

For each argument in the Bucketset field, to limit the argument values as specified
by a bucketset constraint, select a bucketset from the list.

. In the Body area, enter actions and arguments for the function body. You can add

any required action ranging from assert, call, modify to even conditional
actions such as if, else, elseif,while, for, if (advanced),and while
(advanced) . For example, see Figure 2-10.

Figure 2-10 Adding an Oracle Business Rules Function

Q&ackﬂultsl.ﬂlks x I\>ItemizedFare.ruIes x |ﬂ“ﬁgF‘rojectz‘{co.'npos.ite.xm.'} x E] E:]
- = =
VE O] PO 4 @ |z
. g
< Fact
(-, e fx Functions E
F« Functions
(%) Globals Functions: w GRS
7 Bucketsets Mame Return Type | Bucketse Description
Pt £ T I
Q} Decision Functions _ﬁa print void Print the string value of argl.
- .ﬁa RL.contains boolean boolean The contains{) function is similar to the contains{ met... «
%J Translations -~ *
. Raw
Rulesets 4. x Arguments:
) Mame Type Bucketset
&P Frequent Flyer Rules
-
Body:

call print{ message : arg_1)

<inzert action>

Working with Data Model Elements 2-13

Localizing Oracle Business Rule Resources

2.6 Localizing Oracle Business Rule Resources

You can localize the names, aliases and descriptions of rules resources. This enables
better control of these resources in Workspace and SOA Composer. You can localize
most of the resources like Buckets, Bucketsets, Globals, Rulesets, Rules and so on.

When you create these resources, you can add locale-specific information from the
Translations tab. Each locale is stored in a separate resource bundle.

Note: You should not manually edit the resource bundle to add or
edit localized strings. You must edit the resource bundle using the
Translation tab of the Rules Designer in JDeveloper or SOA Composer.

2.6.1 How to Localize the Resources in Oracle Business Rules

You can use the Rules Designer of JDeveloper to localize the resources of a business
rule.

To localize business rule resources:
1. In Rules Designer, select the Translations tab.

2. Click the Create Resource Bundle icon.

Create Resource Resource Bundle screen appears.
3. Select the Locale from the list.
4. Click OK.

2-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Localizing Oracle Business Rule Resources

Figure 2-11 Adding New Locales

QOracleRulesI.ruIes X GltemizedFare.rules x |D+tgProjedz‘(composite.xml) X E] E]
e
S Ak e O @ |5
L =
&3 Facts L3 3
@ Trans lations i
F«< Functions |
(x) Clobals Dictionary Locale: |English (United States) '] + %
7 Bucketsets
Besource Bundle Translations:
"a Links Untranslated Text + Englizsh {United States)
& Decision Functions FlyerRules
%’_]Translations BUCkEIEIl
athdl=] Create Resource Bundle

Rulesets Ei ®

@ CriverAgeRules

Select the Locale of the bundle you would like to create.

Locale: [English (United Kingdam) ']

@ Frequent Flyer Rules

S

QK “ Cancel]
.

Mormal Custamer Rule Mormal Customer Rule
Regular Customer Rule Regular Customer Rule
Premium Customer Rule Premium Customer Rule

Fit Columns To Width

Each locale that you add appears as a column in the Resource Bundle Translations
table. Each resource of the business rule appears as a row in this table. Each locale
is stored as a separate resource bundle

5. Double click the cell of the table corresponding to the resource and locale and
enter the localized text.

Working with Data Model Elements 2-15

Localizing Oracle Business Rule Resources

Figure 2-12 Localizing Rule Resources

Qﬂradeﬂukslnlles XloltemizedFare.rules x |D+EProject2(composite.me X

SE H oY O

L3 Facts
@ Trans lations
£« Functions

(x} Clobals Dictionary Locale: |English (United States) '] T+ ¥
{7 Bucketsets

5224Nn0say

Resource Bundle Translations:

& Links Untranslated Text " Englizh {United States) Englizh {United Kingdom}
@g Decision Functions FlyerRules
ﬁgTranslations EUCkeiserl
otherwise
Rulesets + X Globall
@ DriverAgeRules Functionl
arg_1l

@ Frequent Flyer Rules
DriverAgeRules

A set of rules to execute

A set of rules to execute

Freguent Flyer Rules Frequent Flyer Rules

tomer Rule Mormal Customer Rule Customer R
Premium Customer Rule Premium Custamer Rule
Regular Customer Rule Regular Customer Rule

Fit Columns To Width

=

Design

2-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

3

Working with Facts and Bucketsets

This chapter describes the Oracle Business Rules data model element called Facts,
which are the objects that rules reason on. It also covers another element called
Bucketsets that define groupings of fact property values.

The chapter includes the following sections:

Section 3.1, "Introduction to Working with Facts and Bucketsets"
Section 3.2, "Working with XML Facts"

Section 3.3, "Working with Java Facts"

Section 3.4, "Working with RL Facts"

Section 3.5, "Working with ADF Business Components Facts"
Section 3.6, "Working with Bucketsets"

Section 3.7, "Associating a Bucketset with Business Terms"

3.1 Introduction to Working with Facts and Bucketsets

In Rules Designer, you make business objects and their methods known to Oracle
Business Rules using fact types that are part of a data model.

You can create fact types and bucketsets before you create rules.

In Rules Designer you can work with the following kinds of facts:

XML Facts: XML Facts are imported from existing sources by specifying XML
Schema. You can add aliases to imported XML Facts or use XML Facts with RL
Facts to change the data model according to your business needs.

For more information, see Section 3.2, "Working with XML Facts".

Java Facts: Java Facts are imported from existing sources. You can add aliases to
Java Facts or use them with RL Facts to target the data model to business needs.
Java Facts are also used to import supporting Java classes for use with the rules or
Decision Tables that you create.

For more information, see Section 3.3, "Working with Java Facts".

RL Facts: RL Facts are the only kind of facts that you can create directly and do not
have an external source. All other types of Oracle Business Rules facts are
imported. An RL Fact is similar to a relational database row or a JavaBean without
methods. An RL Fact contains a list of properties of types available in the data
model, either RL Facts, Java Facts, or primitive types. You can use RL Facts to
extend a Java application object model by providing virtual dynamic types.

Working with Facts and Bucketsets 3-1

Working with XML Facts

For more information, see Section 3.4, "Working with RL Facts".

= ADF Business Components Facts: ADF Business Components Facts allow you to
use ADF Business Components as Facts in rules and in Decision Tables. By using
ADF Business Components Facts you can assert view object graphs representing
the business objects upon which rules should be based, and let Oracle Business
Rules deal with the complexities of managing the relationships between the
various related view objects in the view object graph.

For more information, see Section 3.5, "Working with ADF Business Components
Facts".

You typically use Java fact types and XML fact types to create rules that examine the
business objects in a rule-enabled application, or to return results to the application.
You use RL Language fact type definitions to create intermediate facts that can trigger
other rules in the Rules Engine. ADF Business Components fact types enables you to
use ADF Business Components as Facts in rules and in Decision Tables.

In Oracle Business Rules, facts that you can run against the rules are data objects that
have been asserted. Each object instance corresponds to a single fact. If an object is
re-asserted (whether it has been changed or not), the Rules Engine is updated to reflect
the new state of the object. Re-asserting the object does not create a fact. To have
multiple facts of a particular fact type, separate object instances must be asserted.

You can create bucketsets to define a list of values or a range of values of a specified
type. After you create a bucketset, you can associate the bucketset with a business
term of matching type. When a bucketset is associated with a business term, Oracle
Business Rules uses the buckets that you define as constraints for the values for the
business terms in rules or in Decision Tables.

For more information, see:
= Section 3.6, "Working with Bucketsets"

= Section 3.7, "Associating a Bucketset with Business Terms"

3.2 Working with XML Facts

The XML fact type allows XML Schema types, elements, and attributes to be used
when writing rules. Elements and types defined in XML Schema can be imported into
the data model and can then be used to create rules and Decision Tables, just as with
Java fact types and RL Fact types. The mapping between the XML Schema definition
and the XML Fact types uses the Java Architecture for XML Binding (JAXB). By
default, Oracle Business Rules uses the JAXB 2.0 shipped with the Oracle Application
Server. JAXB as defined in JSR-222 provides a mapping between the types, names, and
conventions in an XML Schema definition and the available types, allowed names and
conventions in Java. For example, an element named order-id and of type
xsd:integer is mapped to a Java Bean property named orderID of type
BigInteger (and xsd:int type maps to Java int).

Thus, with Oracle Business Rules if you have an XML document that contains data
associated with your application and you have the schema associated with the XML
document then you can use Rules Designer to define rules based on elements that you
specify from the XML Schema.

To create XML fact types, perform the following steps:
1. Define or obtain an XML Schema.

2. Use Rules Designer to import the XML Schema into a dictionary. This step uses the
JAXB compiler to generate Java classes from the XML Schema. After you compile

3-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with XML Facts

the XML Schema, you select the desired elements from the schema to add XML
Facts in the data model and import the generated JAXB classes into the data
model. For more information on these steps, see Section 3.2.1, "How to Import
XML Schema and Add XML Facts".

3. Write rules or create Decision Tables based on these XML Facts that you added to
the data model. For more information, see Section 4.3, "Working with Rules" and
Section 5.2, "Creating Decision Tables".

Elements and types defined in XML Schema can be imported into the data model so
that instances of types can be created, asserted, modified, and retracted by rules. Most
XML documents describe hierarchical information, where each element contains
subelements. It is common for users to want to write individual rules based on
multiple elements in this hierarchy, and the hierarchical relationship among the
elements. In Oracle Business Rules the default behavior when you assert a fact is to
only assert the single fact instance, and none of the child objects it may reference in the
hierarchy of subelements. When you create rules or a Decision Table it is often
desirable to assert an entire hierarchy of elements based on a reference to a root
element. Oracle Business Rules provides the assertTree action type that allows for a
recursive assert for a hierarchy. For more information, see Section 4.8, "Working with
Tree Mode Rules".

3.2.1 How to Import XML Schema and Add XML Facts

Before you can use XML Schema definitions in a data model you must import XML
schema. This step generates the JAXB classes and makes the generated classes and
packages associated with the XML schema visible in Rules Designer.

To import XML schema and add XML facts:
1. In Rules Designer, select the Facts navigation tab.

2. Select the XML Facts tab on the Facts navigation tab, as shown in Figure 3-1.

Working with Facts and Bucketsets 3-3

Working with XML Facts

Figure 3—1 The XML Facts Tab in Rules Designer

QOracIeRuIesl.rules = Qﬁﬂl‘li!cﬂf'c.ﬂlks x D{ﬁProjecQ(composite.xmIJ x E]
vYEIDOR DO % @ |&
&3 Facts E
F« Functions XML Facts: Eﬂ | 7 RS- “
(,_n‘ Clobals Alias Mame Yisible XML Name Gener Description
(ﬁ Bucketsats E BRI am .o m _
E ThecideContext com.oracle... fixsico.. xsd..
<D Links [#o] TeEpelProcess com.oracle... fixsico.. xsd.
@ Decizion Functions E TCompaosite com.oracle... fixsico.. xsd..
. E TDecisionServiceError com.oracle... fixsico.. xsd..
ﬁ] Translations E TAssertExecuteWatchStatelessDecision com.oracle.. fixsico.. xsd..
Rulesets + % [#] TAssertExecuteWatchStatefulDecision com.oracle . fixsico.. xsd..
@ Rulesetl E TProperty com.oracle... fixsico.. xsd..
E TCallFunctionStatefulDecision com.oracle... fixsico.. xsd..
E TWatchPattern com.oracle... fixsico.. xsd..
E TCallFunctionStatelessPattern com.oracle... fixsico.. xsd..
E TWatchDecision com.oracle... fixsico.. xsd..
E TAssertExecutePattern com.oracle... fixsico.. xsd..
E TCallFunctionStatefulPattern com.oracle... fixsico.. xsd..
E ThecisionContext com.oracle... fixsico.. xsd..
E TAssertExecuteWatchStatelessPattern com.oracle... fixsico.. xsd..
E TPropertyList com.oracle... fixsico... xsd..
E TAssertPattern com.oracle... fixsico.. xsd..
E TAssertExecuteWatchStatefulPattern com.oracle... fixsico.. xsd..
E ObjectFactory2 com.oracle... O ®sdl...
E ObjectFactory com.oracle... O wsel..
[
Design
Elan

3. In the XML Facts tab, click Create.... This displays the Create XML Fact dialog.

4, In the Create XML Fact dialog, in the Source Schemas area, click Add Source
Schema.... This displays the Add Source Schema dialog, as shown in Figure 3-2.

Figure 3-2 XML Fact: Add Source Schema Dialog

=

Add Source Schema

Schema Location: |

|4XE Classes Directory: |£DesignTim efhpplicationl/Project2/ rulesdesigner/jaxb_classes/

Custom File: |

Target Package: |

Preserve Directory Structure For Imported Schemas

|

Ok

] [Cancel

4

5. In the Add Source Schema dialog,

= Enter the location of the XML Schema you want to import, or click Browse to
locate the XML schema in the Schema Location field. During the import the

file is copied into the project.

Note:

Typically, the XML schema (xsd) file is located inside the xsd

folder because any XML schema that is created needs to be stored

inside the xsd folder under SOAContent.

3-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with XML Facts

Accept the default path or enter the directory where you want Rules Designer
to store the JAXB-generated Java source and class files in the JAXB Classes
Directory field.

Enter a target package name or leave this field empty in the Target Package
field. If you leave this field empty the JAXB classes package name is generated
from the XML target namespace of the XML schema using the default JAXB
XML-to-Java mapping rule or explicitly defined package name using
annotations, or "generated" if no namespace or annotation is defined. Using
the schema namespace is preferred.

For example, the namespace
http://www.oracle.com/asll/rules/demo is mapped to
com.oracle.asll.rules.demo.

Click OK.

Rules Designer processes the schema and compiles the JAXB, so depending on
the size of the schema this step may take some time to complete. When this
step completes Rules Designer displays the Create XML Fact dialog with the
Target Classes area updated to include the JAXB classes, as shown in

Figure 3-3.

Figure 3-3 XML Fact: Create XML Fact Dialog

Select Source Schemas
e
Select the schemas you would like to use as ¥ML Facks, The schemas will be converted ko JAXE classes éﬁ'

which wou can create =ML Facts From.

Source Schernas: “ﬂ' x Target Classes: Gﬂ

% file:C:{ IDeveloperfmywork{ Application1 afS0aCd m =mlfacksl

| Ok || Close: |

6.

7.

In the Create XML Fact dialog, in the Target Classes area, select the classes you
want to import as XML fact types.

Click OK.

3.2.2 How to Display and Edit XML Facts
To work with an XML Fact, in Rules Designer open the Edit XML Fact dialog.

To display and edit XML facts:

1.
2.
3.

In Rules Designer, select the Facts navigation tab.
Select the XML Facts tab on the Facts navigation tab.

In the XML Facts table, double-click the icon for the XML Fact you want to edit.
This displays the Edit XML Fact dialog, as shown in Figure 3—4.

Working with Facts and Bucketsets 3-5

Working with XML Facts

Figure 3—4 Edit XML Fact Dialog

é Edit XMLFact - com.oracle.xmIns.oraclerulesl.oraclerulesl_decisionfunctionl.TCallFunctionst ?"-

Name: |com.oracle.xmIns.oracIerules1.oraclerule51_decisionfunctionl.TCaIIFunctionStateIessDecision |
Alias: |Customer0rder @_—_J|
Super Class: |TDeci5ionComext |
HML Mame: |Hx5:com plexType[@name="tCallFunctionStatelessDecision'] |
Generated From: |)<5d,.fOracleRulesl_DecisionFunctioanypes.xsd |
Visible
[7] Support ¥Path Assertion
Description:
Customer Order Information @'_—J
T
AL
Attributes
|Proper‘tie5 =4
Alias Wizible Mame Type Bucketset Lizt Cantent Type Description
@ ecid ecid String
J resultlist resultlist Object
Eit Columns To Width
(3
| Help | | QK | | Cancel

The Edit XML Fact dialog includes the fields shown in Table 3-1.

Table 3—-1 XML Fact: Edit XML Fact Dialog Fields

Field Description

Name Displays the XML Fact name. You cannot change the name of
JAXB generated class.

Alias Enter the XML Fact alias. You can change this value. This
defaults to the unqualified name of the class.

Super Class Displays Java super class associated with this fact.

Description Enter the XML Fact description.

XML Name Displays the XML name associated with the XML Fact.

Generated From

Visible

Support XPath Assertion

Attributes area

Displays the XML schema file that was the source for the XML
Fact when it was copied into the business rules data model.

Select to show the XML Fact in lists in Rules Designer. XML
Facts often reference other XML Facts, forming a tree. You
should make all the XML fact types visible that contain
properties that you reference in rules.

Select to enable XPath assertion for the fact. This feature is
provided for backward compatibility only. Typically, this option
is not used.

Select the available constructors, properties, methods, or fields
associated with the JAXB class for the XML Fact to display or
edit.

3-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with XML Facts

3.2.3 How to Reload XML Facts with Updated Schema

If an XML schema changes in a project, the schema must be reimported into the Oracle
Business Rules dictionary. When you reimport the schema, Oracle Business Rules uses
JAXB to recompile all source schemas for every XML fact type and updates the XML
fact type definitions with the updated XML schema definitions. You should reimport
facts if you changed the schema or classes and you want to use the changed schema or
classes at runtime.

Note: When the XML schema on which an XML fact is based
changes, on reimporting the schema, the facts are updated and
imported into the base dictionary. When working with facts in a
linked dictionary, you need to reload the XML facts for the changed
schema from the base dictionary instead of the linked dictionary.

To reimport XML facts:
1. In Rules Designer, select the Facts navigation tab.

2. Select the XML Facts tab on the Facts navigation tab.
3. On the XML Facts page, click the Reload XML Facts from Updated Schemas icon.

After the reimport operation you need to correct any validation warnings that may be
caused by incompatible changes (for example, the updated schema may include a
change that removed a property that is referenced by a rule).

3.2.4 What You Need to Know About XML Facts

Keep the following points in mind when you work with XML Facts:

= When writing rules, the assertTree action type is available only in advanced
mode. For more information on creating rules using assertTree, see Section 4.8,
"Working with Tree Mode Rules".

= When creating a decision function, the tree option for the input types defines
whether assert or assertTree is used to put the input facts in working
memory. For more information on assertTree, see Section 4.8, "Working with
Tree Mode Rules".

s When XML Schema contain a restriction definition, this allows a user to
restrict the types that are valid for use in an element. A common use of restriction
is to define an enumeration of strings which can be used for an element, as shown
in Example 3-1.

Example 3—-1 XML Schema Restriction Example

<xs:simpleType name="status-type">
<xs:restriction base="xs:string">
<xs:enumeration value="manual"/>
<xs:enumeration value="approved"/>
<xs:enumeration value="rejected"/>
</xs:restriction>
</xs:simpleType>

Oracle JAXB 2.0 maps a restriction to a Java enum type. When you use Rules
Designer to import either a Java enum type or an element with an XML restriction,
the static final fields representing the enums are available for use in expressions.
Additionally, Oracle Business Rules creates a bucketset for each enum containing

Working with Facts and Bucketsets 3-7

Working with Java Facts

all of the enum values and null. For more information on bucketsets, see
Section 3.6, "Working with Bucketsets".

s There is a default version of the JAXB binding compiler supplied with Oracle
Application Server. You can use a different JAXB binding compiler. However, to
use a different JAXB binding compiler you must manually perform the XML
schema processing and then import the generated Java packages and classes into
the data model as Java Facts.

For more information about JAXB, see
http://java.sun.com/webservices/jaxb/

= You should reimport facts if you changed the schema or classes and you want to
use the changed schema or classes at runtime. You should correct any validation
warnings that may be caused by incompatible changes (for example, removing a
property that is referenced by a rule). For more information, see Section 3.2.3,
"How to Reload XML Facts with Updated Schema".

= Most users should not need to use the ObjectFactory or import it. If you do need to
import and use the ObjectFactory, then use a different package name for every
XML Schema that you import; otherwise the different ObjectFactory classes
conflict.

s The use of XML schema with elements that have minOccurs="0" and
nillable="true" has special handling in JAXB. For more information, see
Section C.12, "Why do XML Schema with xsd:string Typed Elements Import as
Type JAXBElement?".

s The default element naming conventions for JAXB can cause XML schema
containing the underscore character in XML-schema element names to fail to
compile. For more information, see Section D.7, "Why Does XML Schema with
Underscores Fail JAXB Compilation?".

s There are certain restrictions on the types and names of inputs for the Decision
Service. For more information, see Section D.8, "How Are Decision Service Input
Output Element Types Restricted?".

s The built-in dictionary includes support for the Java wrappers Integer, Long,
Short, Float, Double, BigDecimal, and BigInteger. These types can appear
in XML Fact Types.

3.3 Working with Java Facts

In Rules Designer, importing a Java Fact makes the Java classes and their methods
become visible to Rules Designer. Rules Designer does not copy the Java code or
bytecode into the data model or into the dictionary.

A Java fact type allows selected properties and methods of a Java class to be imported
to the Rules Engine so that rules can access, create, modify, and delete instances of the
Java class.

Importing a Java fact type allows the Rules Engine to access and use public attributes,
public methods, and bean properties defined in a Java class (bean properties are
preferable because they can be modified using the modify action).

3.3.1 How to Import Java Classes and Define Java Facts

Before you can use Java Facts in rules and in Decision Tables, you must make the
classes and packages that contain the Java Facts available to Rules Designer. To do this

3-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Java Facts

you use Rules Designer to specify the classpath that contains the Java classes, and then
you import the Java Facts.

To import and define Java Facts:
1. In Rules Designer, select the Facts navigation tab.

2. Select the Java Facts tab on the Facts navigation tab as shown in Figure 3-5.

Figure 3-5 The Java Facts Table in the Facts Navigation Tab

QOracIeRulesl.rules x Qlﬂniudﬁre.rules x D{EProject2(composite.)<ml) x E]

I Ak M ORI

a Facts

j._ Functions
(x) Globals
@ Bucketsets
2D Links

?g Decision Functions

%Translations
Rulesets + ®
@ Rulesetl

lava Facts:

W RS

Alias

BigDeci...
Biginte..
Couble
Float
Integer
Lang
Short
Mumber

JavaDate
XMLDate
Oracle...
HMLDW....
Duration
Curren...
List
Ohject
RL
JAXEEle...

Calendar java.util.Cale... A Calendar represents a datetime and timezone. A calendar instance ha...

Class Description

java.math.Big... Immutable, arbitrary-precision signed decimal numbers.

java.math.Big... Immutable arbitrary-precision integers.

javalang.Dou... & Double object. Unlike the primitive "double", a Double can be null and...
java.lang.Float A Float object. Unlike the primitive "float”, a Float can be null and can be...
javalang.Inte.. &ninteger object. Unlike the primitive "int", an Integer can be null and c...
javalang.Long A long integer object. Unlike the primitive "long", a Long can be null an...
java.lang.Short & short integer object. Unlike the primitive "short", a Short can be null a...
javalang.Mu... Base class of all numerics {except primitives).

XMLGre. |

ja‘wax.xmI.data'N!Je.XMLGregorianCalendar'_ Schema 1.0 date/time datatypes.

oracle.rules.r.. Helper class for working with Calendars as immutable ohjects. Treating...
oracle.rules.r... Helper class for working with *MLCregorianCalendars as immutable ob..
oracle.rules.s... Helper class for working with oracle jbo.domain. Timestamp. For examp...
javax.xml.dat... Immutable representation of a time span as defined in the W3C XML Sch...
oracle.rules.s... Helper class for comparing and subtracting dates. Can convert the diff..
oracle.rules.r.. Facttype of a holder for the current date. Can be used in rule patterns.
Java.util List Represents mutable and immutable lists. Lists use O-based indexes. Att..
java.lang.Ohj... Base class of all Java objects.

oracle.rules.r.. Supplement standard Java classes with W3C RIF functionality.
javax.xml.bin... Represents ®¥ML element information in XML Fact Types.

3. In the Java Facts tab, click Create.... This displays the Create Java Fact dialog, as
shown in Figure 3-6.

Working with Facts and Bucketsets 3-9

S3alInosay

Working with Java Facts

Figure 3—-6 Adding a Java Fact

Create Java Fact

Select Java Fact Classes
r

Select the Java classes you would like to be used as Java Facts inthe rules engine. & §—}

You can add aJAR file or directory to the classpath and then check the class files and/or packages you want to

create facts from.
Classpath: “* X D
'-L_'] file:/scratch/rrkotha/rules_samples fRules_Sample_Projs/DesignTime/Applicationl/Project2/ rulesdesigner/jaxb_class
|:| Add Project Library to Classpath

Ll e

Classes: E‘i
Q@ Classes
-] [org
| Help | | Ok | | Cancel |

4. In the Create Java Fact dialog, if the classpath that contains the classes you want to
import is not shown in the Classpath area, then click Add to Classpath. This
displays the Choose Directory/Jar dialog.

The default Rules Designer classpath includes three packages, java, javax, and
org. These packages contain classes that Rules Designer lets you import from the
Java runtime library (rtjar). Rules Designer does not let you remove these classes
from the Classes area (and the associated classpaths are not shown in the
Classpaths area).

5. In the Choose Directory/Jar dialog, browse to select the classpath or jar file to add.
By default, the output directory for the project is on the import classpath and any
Java classes in the project should appear in the Classes importer. If they do not
appear, execute the Build action for the project.

6. Click Open. This adds the classpath or jar file and updates the Classes area.

7. In the Create Java Fact dialog, in the Classes area select the packages and classes
to import.

8. Click OK. This updates the Java Facts table in the Java Facts tab.

3.3.2 How to Display and Edit Java Facts

To display or edit Java Facts after you import the Java Facts, use the Edit Java Fact
dialog.

To display and edit Java facts:
1. In Rules Designer, click the Facts navigation tab.

3-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Java Facts

2. Select the Java Facts tab in the Facts navigation tab.

3. In the Java Facts table, double-click the Java Fact you want to edit. This displays
the Edit Java Fact dialog as shown in Figure 3-7.

Figure 3—7 Edit Java Fact Dialog

Edit Java Fact - carrental.Driver

Class: carrental. Drive |
Alias: Drriver
Super Class: |Object |
Description:
[] visible:
Attributes
|Pr0perties -
Alias Wisible MName Twpe Bucketset List Content Twpe
W) ableToDrive ableTolrive bioalean bioolean
QD age age int
) licensehumber licenseMumber String
'J licenseTwpe licenseType Driver$licenseType Driver$licenseType
) name namne String
'J previousAccidents previousAccidents ink:
.J vehicleType wehicleType DrivergvehicleType Driver$vehicleType
Fit Columns To Width
| Help | | [0]4 || Cancel

The Edit Java Fact dialog includes the fields shown in Table 3-2.

Table 3-2 Edit Java Fact Dialog Fields

Field Description

Class Displays the Java Fact class for the source associated with the
Java Fact.

Alias Enter the Java Fact alias.

Super Class Displays Java super class associated with this fact.

Description Enter the Java Fact description.

Visible Select to show the Java Fact in lists in Rules Designer.

Attributes area Select the available class properties, constructors, methods, or
fields associated with the Java class for the Java Fact act to
display or edit.

3.3.3 What You Need to Know About Java Facts

When you define Java Facts you need to know the following:

= On Windows systems, you can use a backslash (\) or a slash (/) to specify the
classpath in the Classpath area. Rules Designer accepts either path separator.

» Classes and interfaces that you use in Rules Designer must adhere to the following
rules: If you are using a class or interface, only its superclass or one of its
implemented interfaces may be made visible.

Working with Facts and Bucketsets 3-11

Working with RL Facts

= When you specify the classpath you can specify a JAR file, a ZIP file, or a full path
for a directory.

= When you specify a directory name for the classpath, the directory specifies the
classpath that ends with the directory that contains the "root" package (the first
package in the full package name). Thus, if the classpath specifies a directory,
Rules Designer looks in that tree for directory names matching the package name
structure.

For example, to import a class cool . example.Testl located in
c:\myprj\cool\example\Testl.class, specify the classpath value,
c:\myprj.

= You should reimport facts if you change the classes. After the reimport operation
you may see validation warnings due to class changes. You should correct any
validation warnings that may be caused by incompatible changes (for example,
removing a property that is referenced by a rule).

3.4 Working with RL Facts

RL Facts are the only kind of facts that you can create directly and do not have an
external source. All other types of Oracle Business Rules facts are imported. An RL
Fact is similar to a relational database row or a JavaBean without methods. An RL Fact
contains a list of properties of types available in the data model, either RL Fact, Java
Fact, or primitive types. You can use an RL Fact to extend a Java application object
model by providing virtual dynamic types.

For example:
IF customer spent $500 within past 3 months
THEN customer is a Gold Customer

This rule might use a Java Fact to specify the customer data and also use an action that
creates an RL Fact, Gold Customer. A rule might be defined to use a Gold Customer
fact, as follows:

IF customer is a Gold customer
THEN offer 10% discount

This rule uses the RL Fact named Gold Customer. This rule then infers, using the Gold
Customer fact, that if a customer spent $500 within the past 3 months, then the
customer is eligible for a 10% discount. In addition rules could specify other ways that
a customer becomes a Gold Customer.

For testing and prototyping with Rules Designer you can create RL Facts and use the
RL Facts to write and test rules before you import a schema and switch to XML Facts
(you might need to wait for an approved XML schema to be created or to be made
available). Switching from RL Facts to corresponding XML Facts involves the
following steps:

1. Delete the RL Facts (this action shows validation warnings in the rules or Decision
Tables you created that use these RL Facts).

2. Import the XML Facts and give the facts and their properties aliases that match the
names of the RL Facts and properties you deleted in step 1.

3. This process should remove the validation warnings if the XML Fact and property
aliases and types match those of the RL Facts that you remove.

3-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with RL Facts

3.4.1 How to Define RL Facts

You add RL Facts from the Facts navigation tab.

To define RL facts:
1. In Rules Designer, select the Facts navigation tab.

2. Select the RL Facts tab in the Facts navigation tab as shown in Figure 3-8.

Figure 3-8 RL Facts Tab in Rules Designer

\>OracIeRuIesl.ruIes x @lemi:cdl-’ne.ﬂlks x D{EProjeth(composite.me) x E] E)
YE D OH @ & @ |F
&3 Facts %
e
F« Functions BL Facts: W+ AR
Mame Super Class Description

(x) Globals)
& PremiumCusotmer Ohject

Q RegularCustomer |Object
D Links & RLFact3 Object

\,‘j Bucketsets

& Decision Functions

‘E;J Translations
Rulesets + x
@ Rulesetl

LXML Facts Ljava Facts L EL Facts L ADF-BC Facts

=

Design

3. In the RL Facts tab, click Create.

4. In the RL Facts table, in the Name field, enter the name for the RL Fact or accept
the default name.

5. In the RL Facts table, in the Description field, enter a description or accept the
default, no description.

3.4.2 How to Display and Edit RL Facts and Add RL Fact Properties
You add properties to RL Facts using the Edit RL Facts dialog.

To display and edit RL facts and add RL fact properties:
1. In Rules Designer, select the Facts navigation tab.

2. In the RL Facts tab, double-click the icon for the RL Fact to display or edit the fact.
This displays the Edit RL Fact dialog, as shown in Figure 3-9.

Working with Facts and Bucketsets 3-13

Working with RL Facts

Figure 3-9 Edit RL Fact Dialog

(& Edit RL Fact - RLFact2 x|
HName: |Regu|arCustomer @:l
Super Class: |Object 'l
Description:

@
Properties: “ﬂ' x
Mame Type Bucketset Initial Walue List Cantent T+
© [neond N I I
'J Property2 “
Eit Columns To Width
| Help | | (o] 8 | | Cancel |

3. Toadd RL Fact properties, on the Edit RL Fact dialog in the Properties area, click
Create.

a. Inthe Name field, enter the property name.
b. In the Type field, select a type from the list or enter a property type.

c. To associate a bucketset with the property, from the list in the Bucketset field,
select a bucketset.

d. To associate an initial value with the property enter a value in the Initial
Value field.

4. Add additional properties by repeating these steps, as required.
5. Click OK.

3.4.3 What You Need to Know About RL Facts

When you add properties to RL Facts using the Edit RL Facts dialog, in the Properties
area the Initial Value field provides a list of possible values as shown in Figure 3-10.

3-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with ADF Business Components Facts

Figure 3-10 Setting RL Fact Property Initial Value

Edit RL Fact - RLFact2

Mame: |Regu|arCustom er @':|
Super Class: [Dbject ']
Description:
@
Properties: + R
Mame T\,fpe Bucketset Initial Walue List Content Ty
$ T
@ m RL.run until hak(~
RL.ruleset stack.pop().lengthi) -
BigDecimal ROUND_UP

Eil Columns To Width BigDecimal ROUND_DOWN
Integer.MIN_V:
Integer MAX_VALUE
Short MIN_VALUE
Short MAX_VALUE w

When you are working with some fields in Rules Designer, the initial values list or
other lists may be empty as shown in Figure 3-11. In this case the list is an empty box.
Thus, when Rules Designer does not find options to assist you in entering values, you
must supply a value directly in the text entry area or click the Expression Builder icon
to display the expression builder dialog.

Figure 3—-11 RL Fact Empty List Options for Initial Value Field

|'é-- Edit RL Fact - RegularCustomer Ell
MName: |Regu|arCustom er ‘E;J|
Super Class: [Object ']
Description:
@
Properties: Eﬂ' R
Mam e Type Bucketset Initial Walue List Content T
@D Income int Integer.MAX_...
¢ ETEETTEENEEE - .
Eit Columns To Width

3.5 Working with ADF Business Components Facts

ADF Business Components Facts allow you to use ADF Business Components as Facts
in rules and in Decision Tables. By using ADF Business Components Facts you can
assert view object graphs representing the business objects upon which rules should be
based, and let Oracle Business Rules deal with the complexities of managing the
relationships between the various related view objects in the view object graph.

For more information, see Chapter 10, "Working with Oracle Business Rules and ADF
Business Components".

Working with Facts and Bucketsets 3-15

Working with ADF Business Components Facts

3.5.1 How to Import and Define ADF Business Components Facts

When an ADF Business Components view object is imported, an ADF Business
Components fact type is created which has a property corresponding to each attribute
of the view object.

To add ADF Business Components facts:

1. Click the Facts navigation tab and select the ADF-BC Facts tab. This displays the
ADF-BC Facts table, as shown in Figure 3-12.

Figure 3—-12 ADF Business Components Facts Tab

\}OracleRulesl.rules x [WID-{tgProject2(composite.)<m|) x E]
YA 9D OR IO 4 @ |2
=1
=
&8 Facts :
i
F« Functions ADF-BC Facts: Eﬂ RS
{;‘, Globals Alias Wiew Definition

7 Bucketsets

=D Links

@ Decision Functions
%Translations
Rulesets 4+
@ Rulesetl

ADF-BC Facts

2. (lick Create.... This displays the ADF Business Components Fact dialog, as shown
in Figure 3-13.

3-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with ADF Business Components Facts

Figure 3-13 Create ADF-BC Fact Dialog

Create ADF-BC Fact

ADF-BC Fact &

Select the database connection and specify the view definition in which to base the
fact type on.

Connection: |a '|

|

+ X0

'-,L,'] Jscratchfrrkotha/rules_samples/Rules_Sample_Projs/DesignTime/Applicationl /Project2/.r
(L) /ade_autofs/nfsdo_base/|DKG/MAIN/LINUX/120828.1.6.0.35.0810.1/jdk6 jre /lib/rt jar

View Definition: |

Search Classpath:

| Help | | Qk. || Cancel |

3. In the Connection field, from the list, select the connection which your ADF
Business Components objects use. The Search Classpath area shows a list of
classpaths. For more information, see Section 3.5.2, "What You Need to Know

About ADF Business Components Fact Classpaths".

4. In the View Definition field, select the name of the view object to import.

5. Click OK. This displays the Facts navigation tab, as shown in Figure 3-14. Note
that the imported fact includes a validation warning. For information on how to
remove this validation warning, see Section 3.5.3, "What You Need to Know About

ADF Business Components Circular References".

Figure 3-14 ADF Business Components Facts in Rules Designer

Approvaldpp, jws M[ﬂcomposite.xml IQDradaRuJesl sreles %composite.xml Mtgcomposite.xml

| of[3 composite. xmil W)=

P W Erployeesiicw orderapproval Employeesyiew
2 Links

Q Decision Functions
?:J Translations

Rulesets @ K
@ Rulesetl

Qv @) L G ©)
3 Facts
#= Functions ADF-BC Facts: N
(X) Clobals Alias view Defirition Top Level
s Q Cepartmentstiew orderapproval Departmentsiisw
7 Bucketsets —

[%ML Facts | JavaFacts | RLFacts | ADF-BCFacts

=

Desian

3.5.2 What You Need to Know About ADF Business Components Fact Classpaths

In the classpath list shown in the Search Classpath area in the Create ADF Business
Components Fact dialog one of the listed classpaths allows you to see the view object
definitions available in your project. In this dialog you only need to click Add to
Classpath when you need to use a classpath that is not available to your project (this

case should be very rare).

Working with Facts and Bucketsets 3-17

Working with Bucketsets

3.5.3 What You Need to Know About ADF Business Components Circular References

ADF Business Components Facts can include a circular reference, as shown in

Figure 3-14. When this warning is shown in the Business Rule validation log you need
to manually resolve the circular reference. To do this you must deselect the Visible
checkbox for one of the properties that is involved in the circular reference.

3.5.4 What You Need to Know About ADF Business Components Facts

Each ADF Business Components fact type contains a property named ViewRowImpl
that references the oracle. jbo.Row instance that the fact instance represents and a
property named key_values which points to an
oracle.rules.sdk2.decisionpoint.KeyChain object that may be used to
retrieve the set of key-values for this row and its parent rows.

When working with ADF Business Components Facts you should know the following;:

= Relationships between view object definitions are determined by introspection of
attributes on the View Definition, specifically, those attributes which are View
Link Accessors.

The ADF Business Components fact type importer correctly determines which
relationships are 1-to-1 and which are 1-to-many, and generates definitions in the
dictionary accordingly. For 1-to-many relationships the type of the property
generated is a List, which contains facts of the indicated type at runtime.

s Itis not possible to use ADF Business Components fact types which have cyclic
type dependencies. These cycles must be broken by the deselecting the Visible
checkbox for at least one property involved in the cycle.

= ADF Business Components fact types are not Java fact types and do not allow
invoking methods on any explicitly created implementation classes for the view
object.

If you need to call such methods then add the view object implementation to the
dictionary as a Java fact type instead of as an ADF Business Components fact type.
In this case, all getters and setters and other methods become available but the
trade-off is that related view objects become inaccessible and, should related view
object access be required, these relationships must be explicitly managed.

= Internally, ADF Business Components fact types are instances of RL fact types.

Thus, you cannot assert ADF Business Components view object instances directly
to a Rule Session, but must instead use the helper methods provided in the
MetadataHelper and ADFBCFactTypeHelper classes. For more information,
see Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

3.6 Working with Bucketsets

You can create a bucketset to define a list of values or a list of value ranges to limit the
acceptable set of values for a fact or a property of a fact in Oracle Business Rules. You
can define a bucketset as a Global Bucketset that allows reuse, where a bucketset is
named and stored in the data model, or as a Local Bucketset that is specified when
you define a Decision Table and only applies to one condition expression. For more
information on using a local bucketset, see Section 5.2.2, "How to Add Condition Rows
to a Decision Table".

You can use Bucketsets for the following:

3-18 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Bucketsets

= You can associate fact type properties with bucketsets. This allows you to limit the
acceptable set of values for a property of a fact. For more information, see
Section 3.7.1, "How to Associate a Bucketset with a Fact Property".

s Ina Decision Table a bucketset defines a list of values or value ranges in the
condition expressions that are part of the Decision Table. The bucketset values or
ranges determine, for each condition expression in a Decision Table, that it has two
or more possibilities. Using a bucketset each possibility in a condition expression
is divided into groups or ranges where a cell specifies one Bucket of values from
the bucketset (or possibly multiple buckets of values per cell). For example, if a
bucketset is defined for colors, then the buckets could include a list of strings:
"blue”, "red", and "orange". A bucketset that includes integers could have three
buckets, less than 1, 1 to 10, and greater than 10. For more information, see
Section 5.2.2, "How to Add Condition Rows to a Decision Table".

= You can associate globals, functions, and function arguments with bucketsets.
Associating a bucketset with a global allows for design-time validation that an
assigned value is limited to the values specified in the bucketset. Associating a
bucketset with a function argument validates that the function is only called with
values in the bucketset. Using bucketsets in this manner allows Rules Designer to
report validation warnings for global values and function arguments that are
assigned or passed a constant argument value that is not allowed. Associating a
bucketset with a function automatically sets a Decision Table condition row to use
that bucketset when the function is used as the expression for that condition row.
This type of bucketset validation is "weak" in the sense that only design-time
constant values are validated. No runtime checks are applied based on the globals
or function arguments associated with bucketsets. For more information, see
Section 3.7.2, "How to Associate a Bucketset with Functions or Function
Arguments".

= Inaddition to design-time validation you can use an LOV bucketset to provide
options that are displayed in lists when entering expressions in IF/THEN rule
tests and actions. For more information, see Section 4.11.3, "How to Use Bucketsets
to Provide Options for Test Expressions".

There are three forms for bucketsets:

s LOV: Defined by a list of values (see Section 3.6.1, "How to Define a List of Values
Global Bucketset").

= Range: Defined by a list of value ranges, defined by the range endpoints (see
Section 3.6.2, "How to Define a List of Ranges Global Bucketset").

= Enum: Defined by a list of enumerated types that is imported from either of:

s XML types (see Section 3.6.3, "How to Define an Enumerated Type (Enum)
Bucketset from XML Types").

= Java facts (see Section 3.6.4, "How to Define an Enumerated Type (Enum)
Bucketset from Java Types").

3.6.1 How to Define a List of Values Global Bucketset

A list of values bucketset lets you specify the type and the list of buckets for the
bucketset.

For more information, see Section 3.6.5, "What You Need to Know About List of Values
Bucketsets".

Working with Facts and Bucketsets 3-19

Working with Bucketsets

To define a list of values (LOV) global bucketset:

1.
2.

From Rules Designer select the Bucketsets navigation tab.

From the list next to the Create BucketSet... icon, select List of Values, as shown
in Figure 3-15.

Figure 3—15 Adding a List of Values Bucketset

3) Start Page | \\>OracIeRuIesl.ruIes [OPurchaseItems.rules |) E}}RE
B 9 E: HO k% @ | -
&9 Facts > b, My
g1 = ICE

"/ Bucketsets

_f,; Functions

(x) Clobals Bucketsets:
\f'e?f Bucketsets Marne Datatype Fatm a List of ¥alues
<D Links 7 orderamount int Range :__al List of Ranges
2 7 5
. . g CreditScore int Range
‘E_'-_J Translations
Rulesets o= ¥
@ Rulesetl
I
Design

3. Double-click the bucket icon for the bucket. This displays the Edit Bucketset
dialog.

4. In the Edit Bucketset dialog, enter the bucketset name in the Name column.
Ensure that the bucketset name is not the same as the as a fact alias, because this
would result in a validation errors as the following;:

RUL-05006: The fact type "Rating" has the same alias as an unrelated bucketset.

5. Inthe Data Type column select a data type from list.

For example, select String from the list.
6. Click the Create icon to add a value.
7. For each bucket that you add, do the following:

= In the Value field, enter a value. Note that for String type values in an LOV
bucket, you can select the entire string with three clicks. This allows you to
enter the string and Rules Designer adds the same alias without quotation
marks, as shown in Figure 3-16.

s In the Alias field, enter an alias.

For more information on specifying aliases, see Section 3.6.2, "How to Define a
List of Ranges Global Bucketset."

s In the Allowed in Actions field, select this if the value is an allowable value.

For more information on the Allowed in Actions field and the Include
Disallowed Buckets in Tests field, see Section 3.6.7, "What You Need to Know
About Bucketset Allowed in Actions Option".

= In the Description field, enter a description.

3-20 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Bucketsets

8. Add additional values by clicking the Create icon as needed for the bucketset, as
shown in Figure 3-16.

Figure 3—-16 Create List of Values Bucketset

Edit Bucketset - Bucketsetl

MName: |Licensetype %:.J|
Form: |LD\.r |
Data Type: |String '|

[]Include Disallowed Buckets in Tests

Bucket Values: E* x & W
Walue Alias Character Code Allowed in Actions Description
B otherwise otherwnise Mot Applicable
= "Car' "Car" Mot Applicable
S
| Help | Ok || Cancel

9. On the Edit Bucketset window, click OK.

You can control rule ordering in a Decision Table by changing the relative position of
the buckets in an LOV bucketset associated with a condition expression in a Decision
Table.

To change the order of buckets in a list of values bucketset:

1. In the Edit Bucketset dialog for the bucketset, select the bucket you want to
reorder.

2. Click the Move Down icon to reorder the bucket down.
3. Click the Move Up icon to reorder the bucket up.
4. C(Click OK.

3.6.2 How to Define a List of Ranges Global Bucketset

A list of ranges bucketset lets you specify the type and the endpoints for buckets in the
bucketset.

For more information, see Section 3.6.6, "What You Need to Know About Range
Bucketsets".

To define a list of ranges (range) global bucketset:
1. From Rules Designer select the Bucketsets navigation tab.

2. From the list next to the Create BucketSet... icon, select List of Ranges.

3. Double-click in the Data Type field. This displays the Edit Bucketset dialog, as
shown in Figure 3-17.

Working with Facts and Bucketsets 3-21

Working with Bucketsets

Figure 3—17 Edit Bucketset: List of Ranges

3 Edit Bucketset - Bucketset2 B
MName: a
Data Type: [im ']

[[] Include Disallowed Buckets in Tests
Range Bucket Values: + x
Endpaint Included Endpaint Allowed in Actions Range Alias Description
B -Infinity othernise otherwise

4. In the Edit Bucketset dialog, enter the bucketset name in the Name field.

5. In the Edit Bucketset dialog, in the Data Type field, from the list, select the
appropriate data type for the bucketset.

In this example, select int.

6. Click the Add Bucket icon repeatedly to add the number of buckets you need in
the bucketset as shown in Figure 3-18.

Figure 3—18 Edit Bucketset: Adding Required Buckets

B Edit Bucketset - Bucketsetl x|

MName: |Bucketsetl a

Data Type: [im ']

[] Include Disallowed Buckets in Tests

Range Bucket Values: + R
Endpaint Included Endpoint Allowed in Actions Range Alias Description
-’ | @ | & - I
@0 [0.50 [0.50)
@ -Infinity <0 <0

In these steps you add three buckets. You start with the default values, as shown
in Figure 3-18. After changing the default buckets, the buckets have the following
values:

= greater than 1000
s between 500 and 1000, inclusive
s less than 500

Rules Designer added the buckets with the default values of 50 and 0 and a
negative Infinity (-Infinity) bucket.

7. Starting at the first or top bucket, in the Endpoint field, double-click the default
value and enter the top value bucket endpoint, and press Enter.

In this example, enter 1000 for the first bucket.

3-22 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Bucketsets

8. In the Included Endpoint field, select the checkbox as appropriate to include or
exclude the bucket endpoint.

In this example, you can leave this checkbox checked to include the bucket
endpoint.

9. Inthe Allowed in Actions field select the checkbox as appropriate to include the
bucket in the bucketset allowable values.

For more information on the Allowed in Actions field and the Include
Disallowed Buckets in Tests field, see Section 3.6.7, "What You Need to Know
About Bucketset Allowed in Actions Option".

10. Optionally, in the Alias field double-click the default value and enter the desired
bucket alias, and press Enter.

The alias appears in Decision Tables that use this bucketset. Use an alias to give a
more meaningful name to the bucket than the default value (the range-based
Range value).

Please note that most names and aliases in Oracle Business Rules allow only
letters, numbers, embedded single spaces, and the characters $, _, ', ., -, /, and :.
However, bucket aliases allow additional characters, such as [0..1]. If a bucket alias
contains such additional characters, then you cannot refer to the bucket by the
alias in the action cells in a Decision Table. In these cases, you can use the bucket
name, which is also known as the bucket value.

The Range field is read-only: it clearly identifies the actual range associated with
the bucket regardless of the Alias value. For more information, see Section 3.6.6,
"What You Need to Know About Range Bucketsets").

11. Moving down the list of buckets, for each subsequent bucket, repeat from Step 7.
For the second bucket, enter the endpoint value 500.

Figure 3-19 shows the completed bucketset.

Figure 3—-19 Edit Bucketset: Completed Range Buckets

Edit Bucketset - Bucketsetl

Mame: |Bucketset1 €|
Data Type: |im 3 '|
[]Include Disallowed Buckets in Tests
Range Bucket Values: + x
Erdpiaint Included Endpoint Alloveed in Actions Range Alias Deszcription
= 1000 »=1000 ==1000
0 | m | @ Jeodoon Jmodsn |
= -infinity <500 <500
| Help | [s]4 || Cancel

12. In the Edit Bucketset dialog, click OK.

3.6.3 How to Define an Enumerated Type (Enum) Bucketset from XML Types

When you import an XML schema, if the XSD contains enumeration values Rules
Designer automatically creates an enumerated type bucketset for each enumeration.

Working with Facts and Bucketsets 3-23

Working with Bucketsets

Although enumerated type bucketsets are read-only, you can change the order of
buckets.

For more information, see Section 3.2.4, "What You Need to Know About XML Facts".

To define an enumerated type (enum) bucketset from XML types:
1. Obtain an XSD with the desired enumerations.

Example 3-2 shows the order . xsd schema file which contains the enumeration
Status.

Example 3-2 Order.xsd Schema

<?xml version="1.0" ?>
<schema attributeFormDefault="qualified" elementFormDefault="qualified"
targetNamespace="http://example.com/ns/customerorder"
xmlns:tns="http://example.com/ns/customerorder"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<element name="CustomerOrder">
<complexType>
<sequence>
<element name="name" type="string" />
<element name="creditScore" type="int" />
<element name="annualSpending" type="double" />
<element name="value" type="string" />
<element name="order" type="double" />
</sequence>
</complexType>
</element>
<element name="OrderApproval">
<complexType>
<sequence>
<element name="status" type="tns:Status"/>
</sequence>
</complexType>
</element>
<simpleType name="Status">
<restriction base="string">
<enumeration value="manual"/>
<enumeration value="approved"/>
<enumeration value="rejected"/>
</restriction>
</simpleType>
</schema>

2. Open a dictionary in Rules Designer and create XML facts using the specified
schema that contains the enumeration. For more information, see Section 3.2,
"Working with XML Facts".

3. Click the Bucketsets navigation tab and select the Enum bucketset to see the
bucketset, as shown in Figure 3-20. In Figure 3-20, notice that the imported
Status enumeration values shown in Example 3-2 are imported as buckets with
the XSD-specified values.

3-24 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Bucketsets

Figure 3-20 Bucketset Showing the Form Enum with Imported Values

& Edit Bucketset - Status g|
Mame: | Status wo
Form: |Enum |

[] Include Disallowed Buckets in Tests
Bucket Yalues: Gﬂ' X aw
Value Alias Allowed in Actions Description
B Skabus MAMNUAL MAMNLAL
® Skabus REJECTED REJECTED
2l null
| Help | | [0]4 | | Cancel |

You can control rule ordering in a Decision Table by changing the relative position of
the buckets in an enum bucketset associated with a condition expression in a Decision
Table.

To change the order of buckets in an enum bucketset:

1. In the Edit Bucketset dialog for the bucketset, select the bucket you want to
reorder.

2. Click the Move Down icon to reorder the bucket down.

3. Click the Move Up icon to reorder the bucket up.

4. Click OK.

3.6.4 How to Define an Enumerated Type (Enum) Bucketset from Java Types

When you import a Java enum, Rules Designer automatically creates an enumerated
type bucketset for each Java enum. Although enumerated type bucketsets are
read-only, you can change the order of buckets.

To define an enumerated type (enum) bucketset from Java facts:
1. Create or obtain the Java class with the desired enumerations.

Example 3-3 shows the RejectPurchaseItem. java class which contains
enumeration OrderSize.

Example 3-3 Java Fact with enum OrderSize

package com.example;

public class Classl
{
public enum OrderSize { SMALL, MEDIUM, LARGE };
public Classl()
{
}

2. In Rules Designer open a dictionary and create a Java Fact using the Java class. For
more information, see Section 3.3, "Working with Java Facts".

Working with Facts and Bucketsets 3-25

Working with Bucketsets

Figure 3-21 shows a how to create a Java fact for the Java enumeration
ClasslsOrderSize.

Figure 3-21 Creating a Java Fact

® Create Java Fact

Select Java Fact Classes

EAES
Select the Java classes you would like to be used as Java Facts in the rules engine. P ?—})

‘fou can add a JAR file or directary to the classpath and then check the class Files and/or packages wou
want to create Facts from,

Classpath: 4‘ b 4 D Classes: GE}
’L:] File: }C:} IDeveloper frywork) SO&/Praject 1] rulesdesig Ck Classes
) File:{C:{Temp/praject.jar =Rl i projectt

[dass1$ordersize
L@ java

|:| m janax
1@ org
<
[] Add Project Library to Classpath

3. In Rules Designer click the Bucketsets navigation tab and select the Enum

bucketset, as shown in Figure 3-22. Note that the Class1$0OrderSize

enumeration from the enumeration in Example 3-3 is now a bucketset with the
Java enum-specified values.

Figure 3-22 Edit Bucketset Dialog for Java Enum

Edit Bucketset - Class1$0rderSize

Narne: | Class1$0rderSize |

Form: |Enum |
[] Include Disallowed Buckets in Tests
Bucket Yalues: :i' ®aw
Walue Alias Allowed in Actions | Description

B Class1§0rderSize, SMALL SMALL

B Classi$0rderSize LARGE LARGE

Bl null

You can control rule ordering in a Decision Table by changing the relative position of

the buckets in an enum bucketset associated with a condition expression in a Decision
Table.

3-26 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Bucketsets

To change the order of buckets in an enumerated type (enum) bucketset:

1. In the Edit Bucketset dialog for the bucketset, select the bucket you want to
reorder.

2. Click the Move Down icon to reorder the bucket down.
3. Click the Move Up icon to reorder the bucket up.
4. Click OK.

3.6.5 What You Need to Know About List of Values Bucketsets

In a Decision Table the order of the buckets in a bucketset associated with a condition
expression determines the order of the condition cells, and thus the order of the rules.
You can control rule ordering in a Decision Table by changing the relative position of
the buckets in a list of values bucketset associated with a condition expression;
however, you cannot reorder range buckets.

Figure 3-23 shows a bucketset definition in Rules Designer for a bucketset named
colors using a list of values.

Figure 3-23 Bucketset Definition Using List of Values

& Edit Bucketset - colors E|
Mame: |c0|0rs |
Form: |L0\" |
Data Type: |Stf'ing '|

[] Include Disallowed Buckets in Tests
Bucket Yalues: * Roawvw
Value Alias Allowed in Actions Description

B otherwise atherwise
= “blue" blue

I N S N - R
® ‘“grange” orange

| Help | | QK | | Cancel |

As shown in Figure 3-23, by default with a List of Values bucketset there is a value
otherwise included with the list of values (LOV). This value, otherwise, is distinct
from all other values and matches all values of the type that have no other bucket.
Thus, with otherwise in the list of values a condition expression that uses the
bucketset can handle every value and provides a match for every value of the specified
type, where a match is either a defined value or the otherwise bucket. The
otherwise value cannot be removed from an LOV bucketset but it can be excluded
by clearing the Allowed in Actions checkbox (when otherwise is excluded an
attempt to assign any value that is not in the list of buckets in the bucketset causes a
validation warning).

Table 3-3 shows the bucketset values that Rules Designer supports for LOV
bucketsets.

Working with Facts and Bucketsets 3-27

Working with Bucketsets

Table 3-3 Supported Types for LOV Bucketsets

Type Description

Java primitive types This includes int, double, boolean, char, byte, short,
long, and float

String Contains String types

Calendar Contains Calendar types in the current locale

Note: You are not required to specify an LOV bucketset when you
use a boolean type in a Decision Table. For boolean types, Oracle
Business Rules provides built-in buckets for the possible values (true
and false).

3.6.6 What You Need to Know About Range Bucketsets

When you add a bucket to a List of Ranges bucketset, the value is calculated based on
the currently selected bucket value and the next highest bucket value. When you
change the endpoint value the value is automatically sorted in the bucketset; thus, it
does not matter where a bucket is added. However, it is possible for Rules Designer to
not have spaces between the current bucketset endpoint value and the endpoint value.
In this case, Rules Designer shows a validation warning of the following form:

RUL-05849: Bucketset has duplicate bucket value "4999"

To correct this problem you must modify bucket endpoints to remove the duplicate
bucket.

Figure 3-24 shows the Edit Bucketset window for a bucketset with an integer, int,
range.

Figure 3-24 Bucketset Definition Using List of Ranges and Three Endpoints

& Edit Bucketsat E|

Mame: driver_range

Data Type: |i“t '|
[Include all Buckets in Decision Tables

=
Endpoint Included Endpoint Allowsable value Range Alias Description
& =
4 -Infinity
| Help | % | (a4 || Cancel

Table 3—4 shows the types Rules Designer supports for Range buckets.

Table 3—-4 Supported Types for Range Buckets

Type Description

Selected primitive types This includes: int, double, short, long, and float

3-28 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Bucketsets

Table 3—-4 (Cont.) Supported Types for Range Buckets

Type Description

Calendar Contains Calendar types in the current locale

Note the following conventions for the Range field:

= Logical operator: specifies a range with respect to positive or negative infinity. For
example, ">=25" means "from 25 to positive infinity" and "<18" means from
negative infinity up to but not including 18.

» Square bracket "[": specifies a range that includes this end point value. For
example, "[18..25) " means "from 18 up to but not including 25".

= Round bracket ")": specifies a range that excludes this end point value. For
example, " (18..25] " means "over 18, not including 18, up to and including 25".

3.6.7 What You Need to Know About Bucketset Allowed in Actions Option

When you define buckets in a bucketset you might define some buckets corresponding
to non-permissible values. For example, in a bucketset for driver ages you would
typically not allow a bucket that contains values less than 0. Thus, when a fact with
driver data includes an age property associated with a driver ages bucketset, then you
should not be able to create or modify a fact that has the age property set to a value
such as -1. In a bucketset you select Allowed in Actions for valid buckets and deselect
this option for invalid buckets.

The bucketset option Include Disallowed Buckets in Tests allows you to include all
the buckets, whether Allowed in Actions is selected or not, in Decision Table
conditions and in rule tests. By including all buckets you can explicitly test for illegal
values. Using the option Include Disallowed Buckets in Tests you can handle two
possible cases:

1. The input data for the Oracle Business Rules Engine is clean and does not contain
invalid data (such as a negative age). In this case, you should deselect the Include
Disallowed Buckets in Tests. Note: the reason you do not want to make age < 0
an Allowed in Actions is this provides design time validation warnings if you try
to create an action that uses an invalid value, such as the following:
modify(driver, age: -1)).For more information, see Section 4.11, "Using
Bucketsets as Constraints for Options Values in Rules".

2. You want to consider excluded buckets in rule tests and in Decision Tables. In this
case, you should select Include Disallowed Buckets in Tests. This is useful when
the input data for the Oracle Business Rules Engine may not be clean and may
contain invalid data (for example an invalid negative age). A Decision Table that
provides actions for all bucketsets could include cases for excluded buckets and
provide an appropriate action, such as asserting an error fact. To handle this you
could either select the Allowed in Actions field for every bucket in the bucketset,
or, leave the Allowed in Actions field configured as is and select the Include
Disallowed Buckets in Tests field. Using the Include Disallowed Buckets in
Tests field is not only convenient, you do not need to reconfigure every bucket, it
also preserves the configuration of Allowed in Actions so that you can easily
reuse this bucketset to handle the first case (when you deselect Include
Disallowed Buckets in Tests).

Working with Facts and Bucketsets 3-29

Associating a Bucketset with Business Terms

3.6.8 What You Need to Know About Bucket Values

When you enter a bucket value in a bucketset, the value you supply must be valid for
the type specified for the bucketset. If the value you enter is not valid for the bucketset
type, Rules Designer makes the value you supply a string by adding quotation marks.
Adding quotation marks is the only way to make a legal literal when the user
provided data is not appropriate for the specified type. For example, if you add an int
type LOV bucketset, and then supply a value 2.2 to a bucket, Rules Designer shows a
warning such as the following:

RUL-05833: Invalid characters "2.2" in bucket value

To fix this problem either enter a valid value for the bucket value, for example in this
case the value 2, or change the type of the bucketset.

For an additional example, when you enter a value for a bucket, for example if you
enter a bucket value with bucketset with data type short and add a bucket with the
value 999999, Rules Designer assigns this the value "999999". The maximum value for
a short is 32767. In this case you see a warning related to the bucket value, similar to
the previous example, because a String is not a valid bucket value for a bucketset with
data type short. The solution to this is to enter appropriate values for all buckets (in
this example, enter a value less than or equal to 32767).

3.7 Associating a Bucketset with Business Terms

After you define a global bucketset you can associate parts of the data model with the
global bucketset (if their types are compatible). In this way, condition cells in the
Conditions area can automatically be assigned a bucketset when you define a
Decision Table. Also, when a bucketset is associated with a business term, Oracle
Business Rules uses the buckets that you define as constraints for the values for
expressions for the business terms in rules.

You can associate the following four kinds of business term with a bucketset:
s Fact Property

= Function Result

s Function Argument

s Global Value

3.7.1 How to Associate a Bucketset with a Fact Property

To prepare for creating Decision Tables, you can associate a global bucketset with fact
properties in the data model.

To associate a bucketset with a fact property:
1. From Rules Designer, select the Facts navigation tab.

2. Select the fact type to edit and click the Edit icon. This displays the appropriate
Edit Fact dialog for the fact type you select.

3. In the Properties table, under Bucketset, select the cell for the appropriate fact
property and from the list select the bucketset you want to associate with the
property. For example, see Figure 3-25.

3-30 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Associating a Bucketset with Business Terms

Figure 3-25 Defining a Bucketset for a Property

® Edit RL Fact - Driver

Marme: Diriver

Description:

Super Class: | Object

Properties:

+ X

Marne

b e —

) has_training
'J eve_kesk

) eligible

Bucketset Initial value List Conkent Type

Orderfmount

driver_ages

Fit Columns Ta Width

| ek |

QK | | Cancel

4. On the Edit Fact page, click OK.

3.7.2 How to Associate a Bucketset with Functions or Function Arguments

To prepare for creating Decision Tables you can associate a global bucketset with

functions in the data model.

To associate a bucketset with a function return value:

1.
2

From Rules Designer, select the Functions tab.

Select the function to edit. This shows the function arguments and the function
body for the specified function.

In the Functions table, under Bucketset, select the cell and from the list select the
bucketset you want to use. For example, see Figure 3-26.

Working with Facts and Bucketsets 3-31

Associating a Bucketset with Business Terms

Figure 3-26 Defining a Bucketset for a Function Return Value

\>OracIeRuIesl.ruIes x Qiemi:cdl-"e.ﬂlks x u{tﬂProjecQ(composite.xmI) x E]
JE IR oY EO 8 @
&3 Facts
9 _ft Functions
f« Functions
(x) Clobals Functions:) o R
{7 Bucketsets Mame Return Type Bucketse Description
@ ks £ -
Function2 float ;
@; Decision Functions JE‘ Nm Nvefiv\ —
- _ﬁa print void t the strlngkalue of argl. ol
&Translations == 4.
. Xavw
Rulesets 4 x Arguments:
Mame Type Bucketset
&P Rulesetl arg_1 string
aw
Body:

call prined pessage; Dbjact)

<insert actionz

sanunosay {1

To associate a bucketset with a function argument:
1. From Rules Designer, select the Functions navigation tab.

2. Select the function to edit. This shows the function arguments and the function
body for the specified function.

3. In the Functions table, in the Arguments area select the appropriate argument.

4. For the specified argument, under Bucketset, select the cell and from the list select

the bucketset you want to use.

3.7.3 How to Associate a Bucketset with a Global Value

To prepare for creating Decision Tables, you can associate a global bucketset with
global values in the data model.

To associate a bucketset with a global value:
1. From Rules Designer, select the Globals navigation tab.

2. Select the global value to edit.

3. In the Globals table, under Bucketset, select the cell for the appropriate global
value, and from the list, select the bucketset that you want to associate with the
global value. For example, see Figure 3-27.

3-32 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Associating a Bucketset with Business Terms

Figure 3-27 Defining a Bucketset for a Global Value

GOracIeRulesl.rules x @‘tml‘!tdf't.ﬂlks X D{fﬂProjectztcomposite.xmlj x E]’_
=
YEIHEE O @ |z
=
=
Q Facts (x) Globals =
ﬁ Functions =
Clobals: |
(x) Globals = Eﬂ / tad
= Mam e Type Walue Bucketset Final Description
<D Links
@g Decision Functions
&Translations
Rulesets 4+ % .k
@ Rulesetl
&
Design
Log

Working with Facts and Bucketsets 3-33

Associating a Bucketset with Business Terms

3-34 Oracle Fusion Middleware User's Guide for Oracle Business Rules

4

Working with Rulesets and Rules

This chapter describes the Oracle Business Rules data model element called ruleset
that you use to group one or more rules and Decision Tables. It also discusses how to
work with dictionaries, nested tests, and advanced and tree mode rules, and
Expression Builder.

The chapter includes the following sections:

= Section 4.1, "Introduction to Working with Rulesets and Rules"

» Section 4.2, "Working with Rulesets"

= Section 4.3, "Working with Rules"

= Section 4.4, "Validating Dictionaries"

= Section 4.5, "Using Advanced Settings with Rules and Decision Tables"

= Section 4.6, "Working with Nested Tests"

= Section 4.7, "Working with Advanced Mode Rules"

= Section 4.8, "Working with Tree Mode Rules"

» Section 4.9, "Using Date Facts, Date Functions, and Specifying Effective Dates"
= Section 4.10, "Working with Expression Builder"

= Section 4.11, "Using Bucketsets as Constraints for Options Values in Rules"

For more information, see Section 1.1.5, "What Are Rulesets?".

4.1 Introduction to Working with Rulesets and Rules

You can use business rules to define key decisions and policies for a business,
including:

= Business Policies: for example spending policies and approval matrices

s Constraints: for example valid configurations or regulatory requirements
= Computations: for example discounts, premiums, or scores

= Reasoning Capabilities: for example offers based on customer value
Oracle Business Rules provides two ways to work with rules:

s Using IF/THEN rules

s Using rules in a Decision Table

This chapter describes working with IF/THEN rules. For information on Decision
Tables, see Chapter 5, "Working with Decision Tables".

Working with Rulesets and Rules 4-1

Working with Rulesets

4.2 Working with Rulesets

A ruleset provides a unit of execution for rules and for Decision Tables. In addition,
rulesets provide a unit of sharing for rules; rules belong to a ruleset. Multiple rulesets
can be executed in order. This is called rule flow. The ruleset stack determines the
order. The order can be manipulated by rule actions that push and pop rulesets on the
stack. In rulesets, the priority of rules applies to specify the order of firing of the rules
in the ruleset. Rulesets also provide an effective date specification that identifies that
the ruleset is always active, or that the ruleset is restricted based on a time and date
range, or a starting or ending time and date.

4.2.1 How to Create a Ruleset

All rules and Decision Tables are created in a ruleset. A ruleset organizes rules and
Decision Tables into a unit of execution.

To create a ruleset:
1. In Rules Designer, go to the Rulesets navigation tab.

2. (Click the Create Ruleset... icon. This displays the Create Ruleset dialog.
3. Enter a name in the Name field.

4. Enter a description in the Description field, as shown in Figure 4-1.

Figure 4-1 Adding a Ruleset

Marne:

Description: | 4 set of rules b execute

| Help | (o4 || Cancel

5. Click OK.

4.2.2 How to Set the Effective Date for a Ruleset

Effective date support provides the ability to specify a start date and an end date for a
ruleset, a rule or a Decision Table. For a ruleset the effective date defines the date range
in which the rules and Decision Tables within the ruleset are effective. For more
information on effective dates, see Section 4.9, "Using Date Facts, Date Functions, and
Specifying Effective Dates".

To set the effective date for a ruleset:
1. Select the ruleset name from the Rulesets navigation tab.

2. Click the navigation icon next to the ruleset name to expand the ruleset
information to show the ruleset Name, Description, and Effective Date fields, as
shown in Figure 4-2.

4-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Rulesets

Figure 4-2 Ruleset Showing Effective Date Field

= Rulesett ¥ [FitterOn View: [p IF/THEN Rules v -8 TBEHEHEA v‘

gcti\re Effective Date: Always Valid

Description:

@

¥ Rulel
<enter description

¥ Rule2
<enter description=

3. Select the Effective Date entry. This displays the Set Effective Date dialog, as
shown in Figure 4-3.

Figure 4-3 Using the Set Effective Date Dialog

[¥] Erom: [z009-0e-16 | [[13:42:00 (2] [(GMT-08:00) Pacific Standard Time |

@t [zoos-me-2s | B [1342:00 [[(GMT-08:00) Pacfic Standard Time |

(O Date (O) Time (3) Both

| Help | | [o]4 || Cancel |

4. Use the Set Effective Date dialog to specify the effective dates for the ruleset.
Clicking the Set Date icon displays a calendar to assist you in entering the From
and To field data.

4.2.3 How to Use a Filter to Display Matching Rules in a Ruleset

As the number of rules in a ruleset increases, it can be difficult to navigate the list of
rules. You can instruct Rules Designer to filter the list of rules, to display only rules of
interest. For example, you can display only active rules or only rules that have
validation warnings.

For more information on creating rules, see Section 4.3, "Working with Rules".

To use a filter to display matching rules in a ruleset:
1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. To show the rule filter settings, next to the ruleset name, click Show Filter Query
as Figure 44 shows.

Working with Rulesets and Rules 4-3

Working with Rulesets

Figure 4-4 Showing a Filter Query in a Ruleset

\>OracIeRuIesl.ruIes x Qicmi:tdfte.ﬂlks & D{tgProjeth(composite.xmI) x

=

vE 98 O %

@

‘J Facts X .
% [|Filter On Wiew: |Q IF/THEM Rules

YRR BRBRav

BT

_f,: Functions
[¥] Active Effect.2how Filter Query ;g

Description:

(x) Globals

\f‘j Bucketsets

<D Links

%

Q Decision Functions

Customer Order

%_'_J Translations
<enter description >

+ R

Rulesets

“®

Customer Order 2

&P Rulesetl o
<enter descrlpt|0n>

License Rule
=enter dezcription=

Age

<enter description >

€

3.
shows.

Figure 4-5 Inserting a Default Filter Query Test

In the Filter Query field, click <insert test> to insert a default test as Figure 4-5

\\>OracIeRuIesl.ruIes x Qiemi:cdl-"e.ﬂlles X DﬂgProjeth(composite.me) x E] E)
— - = (- &
s e AR Y RO R @ |z
. g
&4 Facts) o
< = Ruleset1 [&][]Filteron View: | IF/THEN Rules -8 TERBHA ||
_f,: Functions
(x) Clobals Filter Query: é
7 Bucketsets ¥ <operands == <operands | <inserttests ¥
<& Links \
Q Decision Functions
Ti lati
%'J ransiations Active Effective Date: Always Valid
LIEEE + x Description:
&P Rulesetl [

“®

Customer Order
<enter description=

QustomerOrder2
<enter description=

“®

LicenseRule
<enter description=

Age

<enter description=

4. Configure the default test.

salunosay &)

In this case, as shown in Figure 4-6, when you click an <operand> you can choose

from the rule-specific options shown in Table 4-1.

Table 4-1 Rule Filter Query Operands
Operand Description
name Matches against the rule name.
description Matches against the rule description.

4-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Rulesets

Table 4-1 (Cont.) Rule Filter Query Operands

Operand

Description

priority

Matches against the rule priority. For more information, see
Section 4.5.5, "How to Set a Priority for a Rule".

start date

Matches against the rule start date. For more information, see
Section 4.9.2, "How to Set the Effective Date for a Rule".

end date

Matches against the rule end date. For more information, see
Section 4.9.2, "How to Set the Effective Date for a Rule".

minutes until start date

Matches against a specified number of minutes until the rule start date.
For more information, see Section 4.9.2, "How to Set the Effective Date
for a Rule".

minutes until end date

Matches against a specified number of minutes until the rule end date.
For more information, see Section 4.9.2, "How to Set the Effective Date
for a Rule".

days until start date

Matches against a specified number of days until the rule start date.
For more information, see Section 4.9.2, "How to Set the Effective Date
for a Rule"

days until end date

Matches against a specified number of days until the rule end date. For
more information, see Section 4.9.2, "How to Set the Effective Date for a
Rule"

years until start date

Matches against a specified number of years until the rule start date.
For more information, see Section 4.9.2, "How to Set the Effective Date
for a Rule"

years until end date

Matches against a specified number of years until the rule end date.
For more information, see Section 4.9.2, "How to Set the Effective Date
for a Rule"

is active

Matches against whether the rule is active. For more information, see
Section 4.5.3, "How to Select the Active Option".

is wvalid

Matches against whether the rule has validation warnings. For more
information, see Section 4.4.2, "Understanding Rule Validation".

referenced fact types

Matches against one or more fact types.

Working with Rulesets and Rules 4-5

Working with Rulesets

Figure 4-6 Filter Query Operands

\\\/OracIeRuIesl.ruIes X QﬂtemizedFare rules X u{HPrujectz(composile mly % E] @
va 904 U0 % @ :
=]
c
& Facts . i o [G
= Rulesetl % [FiterOn View |y IF/THENRules | FB - &a v
fI Functions " u |OJ—| + % EEE % %
(x) Clobals Filter Query: ¢
{7 Bucketsets v coperands == <pperangs | Cinseritests ¥
< Links | B
Decision Functions Q Value Options
%Translaﬂons @ fame
é a description
Rulesets + X Desel @ priority
@ Rulesetl |: @ start date @_'.J
@ end date T
~@ Minutes until start date -
y minutes until end date
-8 days until stant date
@ days until end date
¥ | bea years until start date
@ years until end date
= -l is active
-8 s valid
(0 List View (3) Tree View
¥
["] Customizable

For more information, see Section 4.3.2, "How to Define a Test in a Rule".

5. Select the operator to choose an operator for the comparison. For example, for the
name you can select startsWith from the operand list.

6. Enter a comparison operand for the right-hand-side of the filter test. For example,
enter the string Customer.

7. When the filter query is complete you can apply the filter to the rules in the
ruleset:

a. To apply the filter, select the Filter On checkbox.

Rules Designer displays only the rules that match the filter query as Figure 4-7
shows.

4-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Rulesets

Figure 4-7 Enable Filter Query in a Ruleset with Filter On Option

\\>OracIeRuIesl.ruIes x Qlemiudl—'are.rules x J{[ﬂProjectz(composite.xmI) x E] E|
T IEEET WIoK @]z
=

£ Facts ; | B
= Ruleset1 # [|Eiter On Miew: [IF/THEN Rules ~| 4 - & HEHea ||

_f,: Functions

(X} Globals Filter Query: ¢
o ;

.7 Bucketsets name startswith ¢"customer") <insertiest= ¥ k

2D Links

Decision Functions

@_J Translations

Rulesets + x

&P Ruleset1

acti\re Effective Date: Always Valid

Description:

&)

¥ Customer Order,
=enter description=

[
<«

CustomerOrder2
=enter description >

2]
“®

LicenseRule
=enter description=

¥ Age
=enter description= I

b. To disable the filter query, deselect the Filter On checkbox.

Rules Designer displays all the rules in the ruleset.

c. To delete the filter query, select it and press Delete or click the Clear Filter
icon.

4.2.4 Using Auto Complete when Selecting Component Values from a List

The Rules Designer enables you to easily set values for the following components of a
business rule:

= Expressions
= Conditions
s Operands

= Actions

You can edit these components by clicking them in the Rules Editor and selecting the
desired value from a drop down list or tree. You can also enter the name of the desired
value in the text area at the top of the list. When you begin entering text, the list of
options are filtered as shown in Figure 4-8.

Working with Rulesets and Rules 4-7

Working with Rules

Figure 4-8 Using the Auto Complete Function

¥ 54, &4 DecisionTablel

soperand> == <operand-
= curr G‘,‘,

CurrentDate
CurrentDate date

A CurrentDate date.time
a Al CurrentDate date timelnMillis

5) List Wiews () Tree View

[Customizable
x Conflict Resolution

In this figure, only the options beginning with the text entered are displayed.

4.3 Working with Rules

You create business rules to process facts and to obtain intermediate conclusions that
Oracle Business Rules can process. You create rules in a ruleset, so before working
with rules you need to create a ruleset (or use the default ruleset). For more
information on creating a ruleset, see Section 4.2, "Working with Rulesets".

You can easily test your rules as you are designing them without having to deploy
your application. For more information, see Section 8.1.5, "How to Test a Decision
Function Using an Oracle Business Rules Function".

Rules Designer rule validation can assist you when you work with rules. To show the
validation log window;, click the Validate icon or select View>Log and select the
Business Rule Validation tab. This displays warnings for incorrect or incomplete
rules. Note that you must correct all warnings before you can test or deploy rules. For
more information on rule validation, see Section 4.4.2, "Understanding Rule
Validation".

As the number of rules in a ruleset increases, you can configure Rules Designer to filter
the list of rules to show only rules of interest. For more information, see Section 4.2.3,
"How to Use a Filter to Display Matching Rules in a Ruleset".

4.3.1 How to Add Rules

To create a rule you first add the rule to a ruleset, and then you insert tests and actions.
The actions are associated with pattern matches. At runtime when a test in the IF area
of a rule matches, the Rules Engine activates the THEN action and prepares to run the
actions associated with the rule.

Rules Designer lets you create a rule where by default the rule fires for each matching
fact. To enable other options, where the same fact type matches more than once, or
never, you select Advanced Mode. For more information on advanced mode and

showing advanced settings, see Section 4.5, "Using Advanced Settings with Rules and
Decision Tables".

To add rules in a ruleset:
1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. In the View field, select IF/THEN Rules.

3. Click Add to add a rule. For example, click Add to add a rule named Rule_1, as
shown in Figure 4-9.

4-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Rules

Figure 4-9 Adding a Rule in a Ruleset

2 OracleRulesl rules X chmiztdl"e.ﬂlks = u{[jProjeth(com|Josite.xml) X E] E|
IR @ g
£

3
< Facs Ruleset1 ¥ [|EilterOn View: [{Jp IF/THEN Rules Y-8 TEEH&a H

_f,: Functions

(x) Clobals =Y Rl

<enter description:
7 Bucketsets i
<D Links <insert test>

Q Decision Functions | tHEN

%Translations <inzert action>

Rulesets 4‘ x

&P Rulesetl

4.3.2 How to Define a Test in a Rule

To create a test in a rule you add conditions for facts. For example, with a sample
CustomerOrder fact with an annual spending property, you can add a test to
determine if a customer order is associated with a high value of spending, based on
the annual spending for the customer. Note that you can use bucketsets to limit the
values for tests and actions in rules. For more information, see Section 4.11, "Using
Bucketsets as Constraints for Options Values in Rules".

Figure 4-10 shows this sample rule.

Figure 4-10 Adding a Test to a Rule

Ruleset_1 ¥ [|Elteron Yiew: [(QIFTHENR.. v| 0 - 3¢ T2 0 [&8 &

= ¥ Rule_1
=enter description =
IF
CustomerCrder.annualSpending = 2000
THEN

modify CustomerOrder { walue @ "High")

At runtime, when this rule is processed the Rules Engine checks the facts against rule
pattern tests that you define to find matching facts. For this sample rule, Rule_1,
when a fact matches the Rules Engine modifies the fact and then modifies the value
property to "High".

To define tests in rules:

1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. In the View field, select IF/THEN Rules (this is the Rules Designer default).
3. Add or select the rule you want to use, for example, select Rule_1.

4. In Rule_1, in the IF area, select <insert test>.
5

For a test, the IF area of a rule includes a left-hand-side <operand> and a
right-hand-side <operand>, as shown in Figure 4-11.

Working with Rulesets and Rules 4-9

Working with Rules

Figure 4-11 Rule Test with Left-hand-side operand and Right-hand-side operand

Ruleset 1 ¥ []Fiter on Yiew: | IF/THEN Rules k- DO Aw

= ¥ Rule 1
<enter description=
IF
<operand: == <operand:

=insert test=

THEMN

=insert action

6. In a test, you replace the left-hand-side operand with a value.

To do this, select the left-hand-side <operand>. This displays a text entry area and
a list, as shown in Figure 4-12:

Figure 4-12 Configuring the Left-hand-side Operand of a Test in a Rule

Ruleset 1 ¥ [|Elteron Yewi [(QIFTH. v qp~ 38 T & a v

= ¥ Rpule 1
<enter description:=

IF

LCustomerOrder.annuiﬁpending == <0p.e_r.a.nd>]
CuskomerOrder, annualspending -f;_r

T Q Yalue Options
@ CustomerOrder

a |annualSpending

a creditScore

Orderfpproval
@ CurrentDate

() List Wiews (3) Tree Yiew

[] Customizable

a. To enter a value use the list to select an item from the value options.

You can view the options using a single list, by selecting List View, or using a
navigator by selecting Tree View.

b. To enter a literal value, type the value into the text entry area and press Enter.

The value you enter must agree with the type of the corresponding operand.
For example, in the test IF CustomerOrder . annualSpending >
<operand>, valid values for <operand> must agree with the type of
CustomerOrder field annualSpending.

7. Ina test, you replace the operator with the desired logical operator or accept the
default (==). To do this, select the default == operator. This displays a field and a
list. The list may contain additional operators, depending on the datatype of the
left operand. For example, to test strings, if you select a String operand on the left
hand side, then additional String operators, such as startsWith and
equalslgnoreCase are available as shown in Figure 4-13.

4-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Rules

Figure 4-13 Configuring String Operators in a Rule

Ruleset 1 ¥ [JEkeron vew [Q..v| dp- 8 TEHEH A v

= ¥ Rule 1
<enter descripkion =
IF
|LoanOFFer.pr0viderN«ﬂe == operand: |

<insert best:=

THEN

<insert ackion

J’\\Ii‘\u’

o=
bietween

in

contains
endsiith
equalslgnoreCase
matches
startsWith

starksiwith

Similarly, to test a logical condition between the left-hand and right-hand
operands, select one of the logical operators as shown in Figure 4-14: ==
(equality), ! = (not equal), > (greater than), >= (greater than or equal to), < (less
than), <= (less than or equal to). For more information on the operators, see
Appendix B, "Oracle Business Rules Built-in Classes and Functions.".

Figure 4-14 Configuring the Operator of a Test in a Rule

Ruleset 1 ¥ [fiteron Yew |QIFMH. v| G- 8 TeEHEQ A v

5 ¥ Rule 1
<gnter description =
IF
|CustomerOrder.annuaEpending == Soperand |

<insert tesk=

THEN

<insert action

AW

L=
between
in

8. Ina test, you replace the right-hand-side operand with a value.
Configure the <operand> placeholder as you would for any operand.

For example, enter 2000 into the text entry area and press Enter or Return, as
shown in Figure 4-15.

Working with Rulesets and Rules 4-11

Working with Rules

Figure 4-15 Configuring the Right-hand-side Operand of a Test in a Rule

Ruleset_1

¥ [Jekeron dew Q. v 4o - 8 TBEH A v

= ¥ Rule_1
<enter description:=

IF

CustormerOrder . annualSpending == EO0
<insert test> 2000 -f!
THEMN

Q, value Options
B} CustomerOrder
@ annualspending

<insert ackionz

creditScore
name.lengthi)
order
L@ walue lengthi)
----- @ CurrentDate,date, timeInMillis
[#-a RL
[#-@ Bighecimal
@ Calendar

() List Wiew (3) Tree View

[]Constant [Customizable

4.3.3 What You Need to Know About Oracle Business Rules Test Variables

Oracle Business Rules test variables provide a way to shorten lengthy expressions that
occur in rule and decision table conditions and actions. The variable and its value can
be represented as an inline business term definition. The test variables are also called
as inline aliases.

The option to insert test variables appears as a list next to <insert test> in the rules
condition section. As part of the definition of rule condition, you can define a variable
to represent a complex expression, a mathematical expression, or callouts to functions.

For example you have an XML fact called Song that has an attribute as composer
having a function called size. When referring to the attribute, instead of using
Song.composer.size () every time, you can just define a variable as the following:

lo = Song.composer.size()
Subsequently, in tests, you can use 1o as part of your expressions. The expression can
be anything from a simple to a complex expression. For example, in the body of a

function, if you click <insert action>, you can see expression as a part of the available
options.

Figure 4-16 displays a test variable.

4-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Rules

Figure 4-16 Rules Test Variable

<y Bas eDictionary.rules "| ;
@) Q -.i}:l ::3 @ dgg @
LJ Facts

SongArtistRules ¥ [| Filter On Wiew: E| +- X E % % -

_f,: Functions

= ¥ AssignPublisher AndComposer

(%) Clobals <enter descriptions

o,

7 Bucketsets \F

.;0 Lirks w Song.artist.hame == Artist.name and

<7 Decision Functions ¥ Artist.genre == null and

) w lo = Song.composer.sized and

@_—_J Translations F
v <operands == [Zoperandz]
<inzert test> ¥

Rulesets % ¥ Then
&b SongArtistRules call processSongi so|
@ CustomPublisherRules

<insert action:

[#-@ recordlabel
i@ S0ngQ
i@ CurrentDate
i@ RL
#-@ BigDecimal
i@ Biglnteger
i@ Double
i@ Float
H-@ Integer
Design i@ Long

Log t-@ Short
() List Viewy (3) Tree View Editing

Once you define an inline alias, for subsequent test conditions, the inline alias is
available in the list of the operands. The scope of an inline alias is restricted to the
subsequent tests in a particular rule, in which the inline alias is defined. In case of a
nested test, you can still use the inline alias, because the nested test is a part of the base
test where you have defined the alias. This is true even for any test that you define
even within the nested test. The scope of the inline alias is not just restricted to the test
conditions of the base and its nested test, but also to the actions of that rule. If the
inline alias is defined as a part of a nested test condition and not as a part of the main
test condition, even then the alias will be available to all the subsequent test conditions
and actions within or outside the main nested test.

=

fra O OO e B0 W O OO o O e OO B

However, if you define an inline alias inside a not nested test, then the scope of the
inline alias is restricted only to the subsequent tests inside the not nested test and not
to any tests that are outside the not nested test.

The inline aliases can be used both in If-Then rules as well as Decision Tables. In a
Decision Table, in advanced mode, you can show or hide patterns as well as enter a
pattern by clicking <insert pattern>. After you insert a pattern, you can insert tests. In
normal mode, you can show or hide tests as well as enter a test by clicking <insert
test>.

4.3.4 How to Define Range Tests in Rules

To create a range test in a rule, you add conditions for facts. For example, with a
sample CustomerOrder fact with an annual spending property, you can add a test to
determine if the value of a customer order falls between an upper and lower range.

The following summarizes this sample rule:

IF
CustomerOrder.annualSpending between 100 and 2000

Working with Rulesets and Rules 4-13

Working with Rules

THEN
Modify CustomerOrder.value = "Normal"

At runtime, when this rule is processed the Rules Engine checks the facts against rule
pattern tests that you define to find matching facts.

To define range tests in rules:
1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. Inthe View field, select IF/THEN Rules (this is the Rules Designer default).
3. Add or select the rule you want to use, for example, select Rule_1.

4. In Rule_1, in the IF area, select <insert test>.
5

The test in the IF area of a rule includes a left-hand side <operand> and a
right-hand-side <operand>, as shown in Figure 4-17.

Figure 4-17 Rule Test with Left-hand-side operand and Right-hand-side operand

Ruleset 1 ¥ [|Fiteron Wiew: | IF/THEN Rules - X B Aw

= ¥ Rule 1
<enter description:=

IF

JSoperandz, == Zoperandz,
<insert testx

THEMN

<insert actionz

6. Inarange test, you replace the left-hand-side operand with a value.

To do this, select the left-hand-side <operand>. This displays a text entry area and
a list, as shown in Figure 4-18:

Figure 4-18 Adding a Test Left-hand-side Operand to a Rule

Ruleset 1 ¥ [JElkeron Yew: [(QIFTH. v| 9o~ 38 T & a v

= ¥ Rule 1
<enter description =

IF

lCustomerOrder.annuEEpending == <operand:]
CuskomerQrder, annualspending Ef'!

T @, value Options
Eh-@ CustamerCrder

@ {annualspending

a creditScore

Orderapproval
@ CurrentDate

() List Wiews (3) Tree View

[] Customizable

a. To enter a value, use the list to select an item from the value options.

You can view the options using a single list, by selecting List View, or using a
navigator by selecting Tree View.

4-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Rules

b. To enter a literal value, type the value into the text entry area and press Enter.
The value you enter must agree with the type of the corresponding operand.

For example, in the test IF CustomerOrder . annualSpending >
<operand>, valid values for <operand> must agree with the type of
CustomerOrder field annualSpending.

7. Inarange test, you choose the between operator. To do this, select the default ==
operator. This displays a text entry area and a list. Select between as shown in
Figure 4-19.

Figure 4-19 Configuring the Operator of a Range Test in a Rule

Ruleset 1 ¥ [|Eilkeron Yiew: | IF/THEN Rules - R BERERAw

=¥ Rule 1
=enter description:=

IF

|CustomerOrder.annuaISpending == <0p.e-rand> |

<insert test =

THEN ==

<inserk action

This adds two more <operand> placeholders as shown in Figure 4-20.

Figure 4-20 Between Operator in a Range Test

IF
CustomerOrder. annualSpending between <operands and <operand:s

<insert test>
THEN

<insert ackion

8. Configure the <operand> placeholders as you would for any operand as shown in
Figure 4-21.

Working with Rulesets and Rules 4-15

Working with Rules

Figure 4-21 Configuring the Operand of a Range Test in a Rule

+ Ruleset 1 % [|Filter On Wiew: |<}IF,|’THENRules

- BEEHAw

= ¥ Rule 1

=enter description =

IF
CuskomerOrder, annualspending between 100 and [<operand o
<insert test =

2000] i

THEN Q) walue Options

[E-a CustomerOrder
----- a annualSpending
-@ credit3core
@ name.length{}
i@ order
Lea value.length()
----- a CurrentDate.date.timeInMillis
[#-@ RL
[#-a Bighecimal
@ Calendar

<insert action >

() Lisk Wiew (3) Tree View

[[]Constant [Customizable

The test is true when the left-most operand
(CustomerOrder.annual Spending) is between the values 100 and 2000.

4.3.5 How to Define Set Tests in Rules

To create a set test in a rule, you add conditions for facts. For example, with a sample
CustomerOrder fact with a line item property you can add a test to determine if the
line item belongs to an arbitrary set of products.

The following summarizes this sample rule:

IF

CustomerOrder.lineItem.sku in 12345, 43255, 76348

THEN
Modify CustomerOrder.value = "High"

At runtime, when this rule is processed the Rules Engine checks the facts against rule
pattern tests that you define to find matching facts.

To define set tests in rules:
1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. In the View field, select IF/THEN Rules (this is the Rules Designer default).
3. Add or select the rule you want to use, for example select Rule_1.

4. In Rule_1, in the IF area select <insert test>.
5

The test in the IF area of a rule includes a left-hand side <operand> and a
right-hand-side <operand>, as shown in Figure 4-11.

4-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Rules

Figure 4-22 Rule Test with Left-hand-side operand and Right-hand-side operand

Ruleset 1 ¥ []Fiter on Yiew: | IF/THEN Rules k- DO Aw

= ¥ Rule 1
<enter description=

IF
<operand: == <operand:

=insert test=
THEN

=insert action

6. In a set test, you replace the left-hand-side operand with a value.

To do this, select the left-hand-side <operand>. This displays a text entry area and
a list as shown in Figure 4-23:

Figure 4-23 Adding a Test Left-hand-side Operand to a Rule

Ruleset 1 ¥ [|Eiter On Yiews: | IF/THEN Rules - R BEHRRaAw

=¥ Rule 1
<enter description =

IF

LCustomerOrder.Iineitem.sku == <0p_e_r2nd> 1

CustomerOrder lineitern, sku

Ck Walue Options
El-@ CustomerCrder
i E-a lineikern

color
descripkion
@ annualspending
[-@ Lineltem

[-@ CurrentDake

() Lisk Wiew (3) Tree Yiew

[] Customizable

a. To enter a value use the list to select an item from the value options.

You can view the options using a single list, by selecting List View, or using a
navigator by selecting Tree View.

b. To enter a literal value, type the value into the text entry area and press Enter.

7. Inaset test, you use the in operator. To do this, select the default == operator.
This displays a text entry area and a list. Select in as shown in Figure 4-24.

Working with Rulesets and Rules 4-17

Working with Rules

Figure 4-24 Configuring the Operator of a Set Test in a Rule

Ruleset 1 ¥ [|Eiker On Wiews: [IF/THEN Rules k- R DA

5 ¥ Rule 1
<enter description =
IF
|CustomerOrder.Iineiteﬂ.sku == <operand: |

<insert tesk=

THEN

<insert action

WO

<
o=
between
in

This adds two more <operand> placeholders in a comma separated list and an
<insert> placeholder as shown in Figure 4-25.

Figure 4-25 In Operator in a Set Test

IF
CustomerOrder linelter.sky in <operand =, =operand= <inserb>

<insert tests
THEN

<insert ackion >

To add another operand to the list, click <insert>.

To delete an operand from the list, right-click the operand and select Delete Test
Expression.

8. Configure the <operand> placeholders as you would for any operand as shown
in Figure 4-26.

4-18 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Rules

Figure 4-26 Configuring the Operands of a Set Test in a Rule

+ Ruleset 1 ¥ [|Filker o0 Miew: |OIF,|’THEN Rules v| + - R & A v

= ¥ Rule 1
<enter description=
IF
CustomerCrder.lineitem.sku in 12345,43255,'<0Derana;| <insert =
=insert test=

76348 .

THEN »k Yalue Options

<insert ackion @ CuskomerOrder

H ---n lineiterm
@ annualSpending
-@ LineItem.sku

-@ CurrentDate, date. timeInMillis
[F-a RL

[#--@ BigDecimal

B-a Calendar

() List iew (3] Tree Yiew

[]Constant [Customizable

The test is true when the value of the left-most operand
(CustomerOrder.lineItem.sku)is any of 12345, 43255, or 76348.

4.3.6 How to Define Actions in Rules

To create a rule you insert tests and you insert actions. The actions are associated with
pattern matches. When a test in the IF area of a rule matches, the Rules Engine
activates the THEN action and prepares to run the actions associated with the rule.

When you add an action, you use one of the forms of actions shown in Table 4-2. For
each form shown in Table 4-2 the options that Rules Designer presents are context
sensitive, so the lists and the number of items you work with may be different,
depending on which action you add and the choices you make while you enter the
action. Table 4-2 shows the basic actions; additional actions are available with
Advanced Mode. For more information on advanced mode see Section 4.5, "Using
Advanced Settings with Rules and Decision Tables".

Table 4-2 Rule Action Choices

Action Form Description

Assert New Assert a new fact

Modify Modify a data value associated with a matched fact
Retract Retract a fact

call Call a function

If, else, elseif, for, Conditional actions

while

To define actions in rules:
1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. Inarule, in the THEN area, select <insert action>. This displays the add action list
as shown in Figure 4-27.

Working with Rulesets and Rules 4-19

Working with Rules

4-20

Figure 4-27 Adding a Modify Action to a Rule

= ¥ Rulel
<enter description =

IF
CustomerOrder is a CustomerOrder and

CustomerQrder, annualspending = "2,000" and
{ <insert test=)]
<insert kst

<insert patkern
THEN

<insert action= I

assert new
assign

call

modify
retrackt

if

while

asseth

assert tree
assign new
Expression
far

return

tl
swnchronized
throw

kry

if {advanced)
while {advanced)

3. Inthe add action list, select the type of action you want to add. For example, select
modify. You can also enter the name of the action in the text area. As you begin
entering a name, the list of available choices is automatically filters. This is useful
when there are a large number of options available.

You can add any required action ranging from assert, call, modify to even
conditional actions such as i f, else, elseif,while, for, if (advanced), and
while (advanced) as shown in

4. Inthe THEN area, select <target> to display the option list. For example, select
customerOrder as shown in Figure 4-28.

Figure 4-28 Adding Modify Action to a Rule and Selecting the Target

Ruleset 1 ¥ [|FlkerOn Yiew: [P IFTHENRUes ~| g~ 3¢ T B & A w

= ¥ Rule 1
<enter description=
IF
CustomerCrder,annualspending > 2000

=insert test=

THEN

aniF <tar§eta

<insert

CuskomerOrder

5. Select <add property>. This displays the Properties dialog.

6. In the Properties dialog, in the Value column, enter "High" (include the double
quotation marks) and press Enter or Return as shown in Figure 4-29.

Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Rules

Figure 4-29 Adding Modify Action Property and Value to a Rule

] (2)startPage (pOrackRules!.rules =

Bv 9ea @0 ®
&P Facts ! 7
Ruleset 1 % [|Filker Oon Wiew: 9= - % TR 6 a v

_f.: Functions

= ¥ Rule 1

X} Clobal
(x) clobals <enter descripkion =

\f‘,’? Bucketsets

IF
<D Links CustomerCrder. annualSpending = 2000
<?5, Decision Functions <insert testz
%Translations THEN
Rules ets 4‘ b4 modify CustomerCrder ()]
@ Rulesetl <insert actionz
® Properties k [$__<|
Mame Type Walue Zonskant
annualspending double B
creditScare ik O
name String B
order double O
T S - -
e Fit Columns Ta Width
Deg
L] f—
0
A rremre— " ——— =
Message Dictionary Object Froperty
& RUL-05810: The action "modify" requires at least one property be... OracleRules1 /Ruleset_1/Rule_1/Action[1]
SDE Warnings: 1 Last Yalidation Time: 1:38:05 PM PDT
Messages | BPEL | Business Rule Validation Extensions | Feedback. &SOA G][E]E]

7. In the Properties dialog, click Close. This displays the rule as shown in
Figure 4-30.

Figure 4-30 Rule with Test and Action Added

Ruleset_1 ¥ [|Fiteron Wiew: | IF/THEN Rules kR BHDZOAw

= ¥ Rule_1
<enter description =

IF
CustomerOrder, annualSpending > 2000
<insert test=

THEN
rodify CustarnerOrder € <add property = walue @ "High")

<insert action

4.3.7 What You Need to Know About Rule Actions

A rule loop occurs when the value for a condition is changed by an action. Loops can
occur across rules in a single rule, spread over several Decision Tables, or spread over
rules and Decision Tables in the same ruleset. You need to avoid creating rule actions

Working with Rulesets and Rules 4-21

Validating Dictionaries

that modify fact properties that are used in rule conditions. At runtime, such rules
could cause an infinite loop.

4.3.8 What You Need to Know About Oracle Business Rules Performance Tuning

In most cases, writing of rules should not require a focus on performance. However,
there are tips that can that help you to enhance and maximize rule performance.

For more information on Oracle Business Rules performance tuning, see "Oracle
Business Rules Performance Tuning" in Oracle Fusion Middleware Performance and
Tuning Guide.

4.4 Validating Dictionaries

Rules Designer performs dictionary validation when you make any change to the
dictionary. Rules Designer validation can assist you when you work with rules or
Decision Tables. To show the validation log window;, click the Validate icon or select
View>Log and select the Business Rule Validation tab. This displays warnings for
incorrect or incomplete rules. Note that you must correct all warnings before you can
test or deploy rules.

When a dictionary is invalid, Rules Designer produces a list of warning messages and
lists the associated dictionary objects. You can use the validation message information
to locate the dictionary object and to correct problems. In addition, Rules Designer
flags objects with validation warnings with a validation indicator (a red, wavy
underline), as shown in Figure 4-31.

Figure 4-31 Validation Warnings Shown in Log and On Screen with Wavy Underline

\\>OracIeRuIesl.ruIes x QItemizedFare.rules x Dﬂ;gProject2(composite.xml) x E] E|
— = = p =
¥ E D PG @ 1 @ |z
=
&4 Facts) —— o
= Ruleser ¥ Cleieron View [Qemrene | - % @R A v |8
_f,: Functions
= ¥ Rulel
(x) Clobals o
<enter description
\ff Bucketsets
IF
< Links ~ Customerorder.annualspending > 2000
Decision Functions <inserttest> ¥
@‘ Translations
k) THEN
Rulesets ‘+ x modify CustomerQrder (I <edit propertiess> I bl
@ Ruleset1 <inzert action> S
[
Design |
[=]Business Rule Validation - Log * =]
[Z3] Dictionary - ltemizedFare.rules Display NewWarnings First
Message Dictionary Ohject Property
.L\, RUL-05711: The expression cannot be blank. ltemizedFare /Data Model/Functionl fAction]...
.L\, RUL-05034: A "return” action is missing. Add a return actio... ltemizedFare /Data Model/Function{Functionl)
.3 RUL-05919: The body of function "Function2" has to be defi... ltemizedFare /Data Model/Function{Functionz2)
SDE Warnings: 6 Last Validation Time: 10:45:02 PM PST
Messages Extensions x | Business Rule Validation x G] 4 E]

4-22 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Validating Dictionaries

If a dictionary is invalid, you can save the dictionary. However, you can only generate
RL Language for a dictionary that is valid and does not display warnings in the Rules
Designer validation log.

In the validation log, each validation message includes the following:

= Message: The message provides details on the Oracle Business Rules exception
that describes the problem.

s Dictionary Object: This field displays a path that indicates details that should
allow you to identify a component in the dictionary.

s Property: provides information on a property of the object associated with the
warning message.

When you are viewing the validation log, if you select an item and then right-click and
select from the list Select and Highlight Object in Editor, Rules Designer moves the
cursor to select the dictionary object. Note that for some validation warnings this
functionality is not possible.

4.4.1 Understanding Data Model Validation

Rules Designer performs dictionary validation when you make any change to the
dictionary. When Rules Designer displays a warning message, the validation log
includes a message that should assist you in locating the dictionary object that caused
the validation warning. For example, the following string indicates that the warning
originates from the data model object named RLFact_1. In addition, the problem is in
the property named test_int:

CarRental/Data Model/RLFact_l/test_int/Expression

Table 4-3 specifies the parts of the dictionary object name specified in a validation
message.

Table 4-3 Data Model Dictionary Property in Validation Log

Name Description

CarRental Dictionary Name

Data Model Data Model component in dictionary.
RLFact_1 Element name in data model
test_int Property name in the specified element.
Expression Expression part of property.

For more information, see:

= Section 4.4.2, "Understanding Rule Validation"

= Section 4.4.3, "Understanding Decision Table Validation"
= Section 4.4.4, "How to Validate a Dictionary"

4.4.2 Understanding Rule Validation

When you click the Validate icon Rules Designer displays the validation log. When
you first add a rule you see validation warnings similar to those shown in Figure 4-32.

Working with Rulesets and Rules 4-23

Validating Dictionaries

Figure 4-32 Rules Validation Messages

[E]Business Rule Yalidation - Lag E]
[23] Dictionary - OracleRulest rules] Display New Warnings First
Message Dictionary Object Property

/Y RUL-05704: The pattern must have a fact type. Enter a valid fact type. OracleRulesl/Ruleset_2/Rule_1/Pattern[1] FactType

SDE Warnings: 1 Last Yalidation Time: 1:17:09 PM P3T
Messages | Business Rule validation | Extensions Feedback A=

The dictionary object name part of a validation message for a rule includes details that
help you to identify the ruleset, the rule, and an area in the rule that is associated with
the validation warning. For example, the following dictionary object specification
indicates a problem:

OracleRulesl/Ruleset_2/Rules_l/Pattern[1]
In validation messages, the dictionary object name for a rule uses indexes that start at
1. Thus, the first pattern is Pattern[1].

In addition to validating rules, you can also test them in Rules Designer as you are
designing them. For more information, see Section 8.1.5, "How to Test a Decision
Function Using an Oracle Business Rules Function".

4.4.3 Understanding Decision Table Validation

When you click the Validate icon Rules Designer displays the validation log. When
you first add a Decision Table you see validation warnings similar to those shown in
Figure 4-33.

Figure 4-33 Decision Table Validation Messages

[ElBusiness Rule Yalidation - Lag =]
[E2]) Dictionary - GracleRules1, rles Display New Watnings Fitst
Message Dickionary Object Froperty
M RUL-05837: The decision table has no conditions or rules, OracleRules1/Ruleset_2/Decision Table{DecisionTable_1)
/1 RUL-05533: The decision table has no actions, OracleRules1/Ruleset_2/Decision Table(DecisionTable_1)
Y RUL-05703: The rule or derision table rmust have at lzask one pattern or kesk, .., OracleRulesfRuleset_2/Decision Table(DecisionTable_1)
SDE Warnings: 3 Last Validation Time: 1:32:46 PMPST
Messages Business Rule Yalidation Extensions Feedback A=

The dictionary object name part of a validation message for a Decision Table includes
details that help you to identify the area of the Decision Table that is associated with
the validation warning. For example, the following dictionary object specification
indicates a problem in the first action row, and the first action cell of the Decision
Table:

OR1/Ruleset_1/DecisionTable_1/Action[1l]/Action Cell[1l]

In validation messages the dictionary object name for a Decision Table object uses
indexes that start at 1. For example, to indicate the first condition cell in the first row in
the Conditions area, the message is as follows:

OracleRulesl/Ruleset_1/DecisionTable_2/Condition[1]/Condition Cell[1]

This specification indicates the condition cell for the rule with the label R1 in the first
row of the Conditions area in a Decision Table as shown in Figure 4-34.

4-24 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using Advanced Settings with Rules and Decision Tables

Figure 4-34 Decision Table with Warning on a Condition Cell

| racleRulesi.rules |\>Purchaseltems.rules [QDradeRuJesl.ruJes |\>OracIeRuIesl.ruIes |x\>0racIeRuIesl.ruIes |\>OracleRuIesl.ruIe: 00

v e WO * @
I
& Facts
Ruleset 1 View: | DecisionTable_1 v| 3 - R |
f- Functions !
(X) Clobals ¥ ", DecisionTable 1 <enter description=
{7 Bucketsets 1 R2=|' =] |Z5) driver_agesz - F- R A H oE-R R EHE
D Links - conditions R
Q Decision Functions
fr_'—_J Translations
Rulesets ok
P Ruleset1
Q - Actions
A1 modify Driver2(
eligible:)] true true
[
Design
' [E]Business Rule validation - Log E]|
[E5] Dictionary - OracleRulest rules ity s WEmings (e
Message Dictionary Object Property,
A% RUL-05831: The decision table bucket reference cannot be Found, OracleRules1jRuleset_1/DecisionTable_1/Condition[1] Condition Cell[1]
SDE Warnings: 1 Last Yalidation Time: 2:08:32 PMPDT
Messages BFEL Business Rule Yalidation Extensions Feedback. i_%SOA @fs5earching for Driver2 E]E]E]

eirulesiprojectliCracleRules1. rules Editing i Heap

4.4.4 How to Validate a Dictionary

Rules Designer performs dictionary validation when you make any change to the
dictionary.

To validate a dictionary:
1. In Rules Designer, click the Validate icon (a checkmark).

2. Select the Business Rule Validation log from the messages area.

3. When you are viewing the validation log, if you select an item and then right-click
and select from the list Select and Highlight Object in Editor, Rules Designer
moves the cursor to select the dictionary object. Note that for some validation
warnings this functionality is not possible.

4.5 Using Advanced Settings with Rules and Decision Tables

Advanced settings for rules and Decision Tables let you work with features that
provide advanced options that not all Oracle Business Rules users need. These features
include:

= Advanced Mode: allows additional pattern matching options and nested tests in
rules.

For more information, see:

Working with Rulesets and Rules 4-25

Using Advanced Settings with Rules and Decision Tables

- Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or Decision
Table"

— Section 4.5.2, "How to Select the Advanced Mode Option"
— Section 4.7.5, "What You Need to Know About Advanced Mode Rules"

s Tree Mode: makes it easier to work with master detail hierarchy, nested elements
that map to a parent child relationship. These parent child relationships among
facts are common with XML and ADF Business Components fact types. You can
use this option with the Advanced Mode option.

For more information, see Section 4.8.2, "How to Create Simple Tree Mode Rules".

= Rule Active: specifies that a rule or Decision Table is active or inactive. When Rule
Active is unselected, Rules Designer does not validate the specified rule or
Decision Table.

For more information, see Section 4.5.3, "How to Select the Active Option".

= Logical: allows you to enable or disable logical dependence between the facts that
trigger a rule and the facts asserted by a rule.

For more information, see Section 4.5.4, "How to Select the Logical Option".

= Allow Gaps (available only with Decision Table advanced settings). This checkbox
determines if validation messages are reported when gaps are detected in a
Decision Table. The specific validation message is:

RUL-05852: Decision Table has gaps
For more information, see Section 5.3.1.3, "Understanding Decision Table Gap
Checking" and Section 5.3.5, "How to Perform Decision Table Gap Checking".

» Priority: specifies the priority for a rule or a Decision Table. Higher priority rules
run before lower priority rules, within a ruleset.

For more information, see Section 4.5.5, "How to Set a Priority for a Rule".

= Conflict Policy: (available only with Decision Table advanced settings). Specifies
the Decision Table conflict policy, one of the following;:

- manual: Conflicts are resolved by manually specifying a contflict resolution for
each conflicting rule.

- auto override: Conflicts are resolved automatically using an override conflict
resolution when this is possible, using the automatic conflict resolution
policies.

- ignore: Conlflicts are ignored.

For more information, see Section 5.3.1.4, "Understanding Decision Table Conflict
Analysis".

» Effective Date: specifies effective dates for a rule or a Decision Table.

For more information, see, Section 4.5.6, "How to Specify Effective Dates".

4.5.1 How to Show and Hide Advanced Settings in a Rule or Decision Table

In Rules Designer, next to each rule name and Decision Table name, the show or hide
advanced settings icon lets you show and hide advanced settings.

To show and hide advanced settings in a rule or decision table:
1. Select the ruleset where you want to show advanced settings.

4-26 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using Advanced Settings with Rules and Decision Tables

2. In the View field, from the list, select either IF/THEN Rules or select a Decision
Table.

a. To show the advanced settings, next to the rule name click Show Advanced
Settings, as shown in Figure 4-35 (there is a highlighted icon shown next to
the rule name, Rule_1).

Figure 4-35 Showing Rules Advanced Settings

7 Ruleset 1 ¥ [|Fiteron Yiew: | IF/THEM Rules R EHERAw

= ¥ Rule_1
=enter description:=

IF
CustomerOrder, annualSpending = 2000
<insert test =

THEN
rodify CustonerOrder (<add property = value @ "High")

<insert action

b. To hide the advanced settings, next to the rule name click Hide Advanced
Settings, as shown in Figure 4-36 (there is a highlighted icon shown next to
the rule name, Rule_1).

Figure 4-36 Hiding Advanced Settings in a Rule

Ruleset_1 ¥ [|Eiteron iew: | IF/THEN Rules - R ERERAw

=% Rule_1
<enker description=

[Advanced Made [Tree Made Rule Active [| Logical Priority: |medium v|
Effective Date: | Always Valid
IF

CustomerCrder.annualspending > 2000
<insert kst

THEN

modify CustomerOrder { <add property = value @ "High")

<insert ackionz

4.5.2 How to Select the Advanced Mode Option

Select Advanced Mode to use Rule or Decision Table features that provide additional
pattern matching options and additional actions. For more information, see
Section 4.7, "Working with Advanced Mode Rules".

To select the advanced mode option:
1. Select the rule or Decision Table where you want to set Advanced Mode.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

3. Select Advanced Mode, as shown in Figure 4-37.

Working with Rulesets and Rules 4-27

Using Advanced Settings with Rules and Decision Tables

Figure 4-37 Setting Advanced Mode Option

Ruleset 1 ¥ [|Fiteron Yiew: | IF/THEM Rules | 4R T B 0 60 A w

7 % Rule 1
=entar description =

Advanced Mode [] Tree Mode Rule Active [| Logical Priority: | mediom :|
Effective Date: Always Walid

IF

<variable = is & <fack bype >
<inserk test =
<inserk patkern:=
THEN

<inserk action

4.5.3 How to Select the Active Option

Oracle Business Rules includes the ability to specify that a rule or a Decision Table is
active or inactive. The active option is set independent of the effective dates and may
be set without changing or removing previously specified effective dates. When Rule
Active is unselected, Rules Designer does not validate the rule.

To select the active option:
1. Select the rule or Decision Table where you want to set the Rule Active option.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

3. Select Rule Active.

4.5.4 How to Select the Logical Option

A ruleset or Decision Table with the Logical option selected specifies that rules in the
generated RL Language use the logical property. The logical property allows you to
enable or disable logical dependence between the facts that trigger a rule and the facts
asserted by a rule.

A rule with the logical property enabled makes all facts that are asserted by an action
block in the rule dependent on facts matched in the rule condition. Anytime a fact
referenced in the rule condition changes, such that the rule's conditions no longer
apply, the facts asserted by the rule condition are automatically retracted. For more
information on the logical property, see Oracle Fusion Middleware Language Reference
Guide for Oracle Business Rules.

Using the ruleset and Decision Table Logical option you can enable or disable the
logical property for the generated RL Language associated with the rules in the ruleset
or the Decision Table. By default, the Logical option is not selected.

To select the logical option:
1. Select the rule or Decision Table where you want to set the Logical option.

2. C(Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

3. Select Logical.

4-28 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using Advanced Settings with Rules and Decision Tables

4.5.5 How to Set a Priority for a Rule

You can set the priority for a rule or a Decision Table. You can select from a predefined
named priority list as shown in Table 44, or enter a positive or negative integer to
specify your own priority level. Higher priority rules run before lower priority rules,
within a ruleset. The default priority is medium (with the integer value 0).

Table 4-4 Priority String Value Mapping

Named Priority Integer Value
highest 3000

higher 2000

high 1000

medium (Default Priority) 0

low -1000

lower -2000

lowest -3000

To set a priority for a rule:
1. Select the rule or Decision Table where you want to set the priority.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

3. In the Priority field, specify the priority value:
a. To specify a named priority, select a named priority from the Priority list as

Figure 4-38 shows.

Figure 4-38 Choosing a Predefined Named Priority

* Ruleset_1 ¥ [|FiterOn View: | IFTHEN Rules - ®R BEHDRAw

= % Rule_1

<enter description =
[] Advanced Mode [] Tree Made Rule Active [| Logical Priority: |V|
highest
higher
high

Effective Date: Always Valid

IF
CuskomerCrder. annualspending = 2000

o
ey
lowesk

<insert test=

THEN

<insert action >

b. To specify an integer priority, click in the Priority field and enter a positive or
negative integer value and press Enter, as Figure 4-39 shows.

Working with Rulesets and Rules 4-29

Working with Nested Tests

Figure 4-39 Choosing a User Defined Numeric Priority

Ruleset_1 ¥ [|FiterOn View: | IF/THEN Rules k- BEHRRAw

= % Rule_1
<enter descripkion =

[]Advanced Mode [] Tree Mode Rule Active [|Logical Priority: |10 :|
Effective Dake: Ahways valid

IF
CustormerOrder, annualspending > 2000
<insert test>

THEN

<insert ackionz

4.5.6 How to Specify Effective Dates

You can specify effective dates for a ruleset, a rule, or a Decision Table.

To specify effective dates:
1. Select the rule or Decision Table where you want to set the effective date.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

3. Select the Effective Date field. This displays the Set Effective Date dialog.
4. Use the Set Effective Date dialog to set the effective date.

For more information on using effective dates, see Section 4.9, "Using Date Facts, Date
Functions, and Specifying Effective Dates" and Section 4.2.2, "How to Set the Effective
Date for a Ruleset".

4.6 Working with Nested Tests

In a rule or a Decision Table you can create more complicated tests using the nested
tests feature.

4.6.1 How to Use Nested Tests

To use nested tests:
1. Select the rule where you want to use a nested test.

2. Inthe IF area, select a test. This surrounds the test with a highlighted box.
3. With a test selected right-click to display the list, as shown in Figure 4—40.

4-30 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Advanced Mode Rules

Figure 4-40 Adding a Nested Test to a Rule

~\>OracIeRuIesl.ruIes X Qhemiledﬁue.rules X ﬂ{tgProjeth(composite.me) X E]

va 908 30 % 2
& Facts # Ruleset1 ¥ [|Filter On !if‘-w + X BEE®Rav

f,. Functions

sa3inosay o

= ¥ Pulel
(x) Globals Sty -
<enterdescrlpt|on>

\fj Bucketsets T

J Lt | - Customerorder.annualsH ¥ - i I
Decision Functions jpsert test= o Validare Test
%Translations THEN Insert Gefore]
Rulesets 4 x modify CustamerCirder gzd Simple Test
&b Ruleset1 <insert actions e Surround With... S
x Cut
Copy
€ Delete Test

4. To add the nested test, from the list select either Insert Before or Insert After and
then select Nested Test. A nested test is shown in Figure 4-41.

Figure 4-41 A Nested Test Added to a Rule

\>OracIeRuIesl.ruIes x Qi‘cmi:edfne.ﬂlks X D-ﬂ;gProjeth(composite.xml) x E] £|
IR NI @13
f=

Q Facts] i -— =
Rulesetl ¥ [|EiterOn View: [IF/THEMRules »| dP~ 38 T2 En G5 68 & w | |3

_f,: Functions
= ¥ Pulel
(x) Globals Barhil -

<enter description

7 Bucketsets o

S ~ Customerorderannualspending > 2000 and
Q Decision Functions v { <inserttest= ¥)

%Translations <linsert test= ¥

Rulesets 4k % THEN

@ Rulesetl modify CustamerQrder { <edit propertiess)

<insert action

4.7 Working with Advanced Mode Rules

Oracle Business Rules provides features that allow you to create advanced rules that
add support for the following Oracle Business Rules features:

= Additional Pattern Match options (see Section 4.7.1, "How to Use Advanced Mode
Pattern Matching Options")

» Additional Matched Fact Naming options (see Section 4.7.2, "How to Use
Advanced Mode Matched Fact Naming")

= Additional Supported Action forms (see Section 4.7.3, "How to Use Advanced
Mode Action Forms")

= Pattern Match Aggregate Function options (see Section 4.7.4, "How to Use
Advanced Mode Aggregate Conditions")

Working with Rulesets and Rules 4-31

Working with Advanced Mode Rules

For more information, see Section 4.7.5, "What You Need to Know About Advanced
Mode Rules".

4.7.1 How to Use Advanced Mode Pattern Matching Options

The advanced mode pattern matching options specify when a rule should fire.
Table 4-5 shows the available options.

Table 4-5 Advanced Mode Pattern Matching Options

Option Description

for each case where Thisis the default pattern matching option. A rule should fire
each time there is a match (for all matching cases).

there is a case where This option selects one firing of the rule if there is at least one

match.
there is no case The value specifies that the rule fires once if there are no such
where matches.
aggregate This specifies an aggregate function is applied to all matches.

For more information, see Section 4.7.4, "How to Use Advanced
Mode Aggregate Conditions".

To use advanced mode pattern matching options:
1. Select the rule or Decision Table where you want to use pattern matching options.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

3. Select Advanced Mode.
4. Right-click a test pattern and select Surround With... as shown in Figure 4-42.

Figure 4-42 Surrounding With Option

Ruleset 1 ¥ [|Fiteron iew: |(Q IF{THEN Rules - R TRBHOAw

= 2 Rule 1
<enter description =

Advanced Mode [] Tree Mode Rule Active [| Logical Priority: | medium V|

Effective Date: Always Valid

IF

=variable> is a <fact bype:

<inserk test= W walidate Pattern

Advanced Pattern Test Mode
<insert patkern:

THEN Inserk Before »
Inserk After »

<insert action >

Surround With, ..

3 ocu
Copy

3¢ Delete Pattern

The Surround With dialog appears as shown in Figure 4-43.

4-32 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Advanced Mode Rules

Figure 4-43 Surround With Dialog

& Surround With D_<|

attern Block

| oK || Caneel |

L

5. Choose the Pattern Block option from the Surround With dialog and click OK.

The pattern is surrounded by a nested pattern with the default (for each case
where) as shown in Figure 4-44.

Figure 4-44 Default Pattern Matching Option: for each case where

Ruleset 1 ¥ [|Eiker On Wiews: | IF{THEN Rules k- R BEHHRAv

= % Rule 1
<gnter descripkion =

[]TreeMode [v]Rule Active [| Logical Priority: | medium :|

Effective Dake: | Ahways valid

IF
for each case wherel| {
<variable> is a <fack bvpe:
<insert besk:
<insetk patkerns
b <insert best>
<inserk patkern:
THEN

<insert actionz

6. Select the default (for each case where) option and select the desired pattern
matching option from the list as shown in Figure 4-45.

Working with Rulesets and Rules 4-33

Working with Advanced Mode Rules

Figure 4-45 Adding an Advanced Pattern Match Option

Ruleset 1 ¥ [|Eiker On Wiews: | IF{THEN Rules | - R & A v

= % Rule 1
<gnter description=

[]TreeMode [v]Rule Active [| Logical Priority: |medium :|

Effective Date: Ahways valid

IF

l'-For each case where]| {

(For each case where)

(for each case where)
there is a case where
there is no case where
aggregate

<inserk patkern=
THEN

<insert actionz

4.7.2 How to Use Advanced Mode Matched Fact Naming

The matched fact name field, pattern binding variable, in a rule or a Decision Table lets
you test multiple instances of the same type in a single rule. The matched fact name
lets you enter a temporary name for the matched fact to use in a test. For example, the
rules shown in Figure 4-46 show the use of pattern binding variables in a rule that
applies a discount on a shoe item when an order includes at least one "matching" hat
item.

Figure 4-46 Rule Using a Pattern Binding Variable

Ruleset 1 ¥ [|Fiteron dew: [P IFTHENRues v| G - 8 T2 B EH 60 &

= ¥ Rule_1
<enter description=

IF

Crder is a Crder
and

there is a case where {

Orderglineltem] is a Order$lineltern and

Crderflinelteml.sky == "HAT123"

}.

and

there is a case where {
Order$lineltem? is a Order$lineltemn and

Orderglineltemn? sk == "SHOE456"
'

THEN

modify Order { discount @ 0,05)

For example, you can create the rule, as shown in Figure 447 to find duplicate items
in a customer order. This example shows the use of matched in a rule.

4-34 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Advanced Mode Rules

Figure 4-47 Rule to Find Duplicate Items in an Order

7 Ruleset 2 ¥ [|Eiteron Yiew: [(DIFTHENRues v | dp - 38 T2 §h [& & w

e

= % Rule_1
=enter description =

[]IreeMode [¥]Rule Active [|Logical Priority: |medium |:|
Effective Date: Always valid
IF
Orderlinelter] is a Order$lineltem

<insert test>
and

Orderflineltern? is a Orderflineltem and

Orderlineltemnl.sku == Orderflineltemz.sku and
Orderflineltemnl.color == Order$lineltemz. color and
RL.get Fact ID{Crder$linelteri) = RL.get Fact ID{Orderflineltemz)

<insert bests

<insert pattern =
THEN

call print{ message : "Duplicate Item: Do you want to order two of the same item?")

<insert action

To use advanced mode matched fact naming:
1. Select the rule or Decision Table where you want to add a matched fact name.

2. Click the Show Advanced Settings icon next to the rule name (see Section 4.5.1,
"How to Show and Hide Advanced Settings in a Rule or Decision Table").

3. Select Advanced Mode.
4. Select the <fact type> and enter a fact type from the list.

5. Select the supplied matched fact name and modify it as needed, as shown in
Figure 4-48. For example, enter the matched fact name Order$LineIteml and
then press Enter.

Working with Rulesets and Rules 4-35

Working with Advanced Mode Rules

Figure 4-48 Adding a Matched Fact Variable Name

+# Ruleset 2 ¥ [|Flteron Yew: [P IFTHENRdes ~| o~ 8 T EHFH O A @

=l % Rule_1
<enker description =

[1IreeMade [#|Rule Active [| Logical Pricrity: |medium |:|

Effective Date: | Ahways valid

IF

COrderflineltem] is a Orderflineltem

Matched Fact Mame {Hit Enter Key Ta Save)
Order$linelteml

COrderflineltem? is a Orderflineltem and

Order$linelteml.sky == Order$lineltemz.sku and
COrderflinelteml.color == Orderflineltem?Z. color and
RL.get Fact ID{Crder$lineltem1) = RL.get Fact ID{Orderglineltemz)

<insert test

<insert patkern:=
THEN

call prink{ message : "Duplicate Ikem: Do vou want to order two of the same item?")

<insert ackion>

6. Create the rule as Figure 4-49 shows. Note that you can choose a matched fact
name as an operand. Choose the Lineltem1 and Lineltem2 operands as needed to
create the rule.

Figure 4-49 Choosing a Matched Fact Variable Name as an Operand

Ruleset 2 ¥ [|Fkeron Yew: |[(PIFTHENRUes ~| G0 - 8 T2 Gy T 60 & w

= % Rule_1
=enter description >

[]TreeMode [¥]Rule Active [|Logical Priority: |medium |:

Effective Date: Always valid

IF
Orderglinelteml is a Order$lineltem

<insert bests
and

Orderlineltem? is a Order$linelter and

Orderlineltenl.skuy == Crder$lineltemz.sku and
Orderlinelterl.color == OrderflineltemZ. color and
RL.get Fact ID{Order$linelteml) = RL.get Fact ID{OrderfLineltemz)

<insert test =

<insert patkern =
THEN

call prink(message : "Duplicate Item: Do yvou want to order bwo of the same iker?")

<insert action

Note in Figure 4-49 that the test checking;:
RL.get fact ID(Order$SLinelIteml) >RL.get fact ID(OrderS$SLineltem2)

Prevents a single instance of an Order$LineItem from matching both patterns that
match the Order$LineItem fact type. The ">" is required so that the rule does not

4-36 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Advanced Mode Rules

fire for different permutations of different instances. For more information, see
Appendix C.4, "How Do I Correctly Express a Self-Join?".

4.7.3 How to Use Advanced Mode Action Forms

When you create a rule with Advanced Mode, Rules Designer presents a list with the
available actions shown in Table 4-6. For each form shown in Table 4-6, the options
that Rules Designer presents are context sensitive. Thus, the lists and the number of
items you see when you work with the action types are context sensitive, depending
on which action you add and the choices you make while you enter the action.

Table 4-6 Advanced Mode Action Options

Action Form Description

Assert Assert a fact

Assert Tree Asserts a tree of facts given the root.
Assert New Assert a new fact.

Assign Assign a value to a variable.

Assign New
Expression
Call

For

If

Modify
Retract

Return

rl

synchronized

throw

try

while

Assign a value to a new variable.
Perform expression.
Call a function.

Oracle RL, like Java, has a for loop. A for loop includes a type with a
variable and a collection. The type and variable defines the loop variable
that holds the collection value used within the loop. Collection is an
expression that evaluates to a collection of the correct type for the loop
variable. You can use a for loop to iterate through any collection.

A return, throw, or halt may exit the action block.

Using the if else action, if the test is true, execute the first action block, and
if the test is false, execute the optional else part, which may be another if
action or an action block. Oracle RL, unlike Java, requires action blocks and
does not allow a single semicolon terminated action.

Modify a data value associated with a matched fact.
Retract a fact.

The return action returns from the action block of a function or a rule. A
return action in a rule pops the ruleset stack, so that execution continues
with the activations on the agenda that are from the ruleset that is currently
at the top of the ruleset stack.

Use an Oracle RL expression that you supply.

As in Java, the synchronized action is useful for synchronizing the actions
of multiple threads. The synchronized action block lets you acquire the
specified object's lock, then execute the action-block, then release the lock.

Throw an exception, which must be a Java object that implements
java.lang. Throwable. A thrown exception may be caught by a catch in a try
action block.

The try, catch, and finally in Oracle RL is like Java both in syntax and in
semantics. There must be at least one catch or finally clause.

While the test is true, execute the action block. A return, throw, or halt may
exit the action block.

Working with Rulesets and Rules 4-37

Working with Advanced Mode Rules

To use advanced mode action forms:

1.
2.
3.

In Rules Designer, select a ruleset from the Rulesets navigation tab.
Select or add a rule or a Decision Table.

In the rule or Decision Table click the Show Advanced Settings icon next to the
rule or Decision Table name (see Section 4.5.1, "How to Show and Hide Advanced
Settings in a Rule or Decision Table").

Select Advanced Mode.

With the insertion areas showing, in a rule in the THEN area select <insert
action>. This displays the action list, as shown in Figure 4-50.

Figure 4-50 Adding an Action to a Rule in Advanced Mode

Ruleset_1 ¥ [|Flkeron Wiew: | IF/THEN Rules k- THTOA
=l & Rule_1

<enter description =
[V] Advanced Mode [| Tree Mode W] Rule Active [| Logical Priovity: |medium |v|

Effective Date: | Always Valid

IF

CustomerOrder is a CustomerCrder

<insert test=

<inserk patkern:=
THEN

<insert ackion I

assert
assert tree
assert new
assign
assign new
EXpression
call

for

it

modify
retract
return

tl
synchronized
throw

Ery

while:

In the list select the action you want to add.
For example, select assign new.

In the THEN area, select the context sensitive parameters for the action and enter
appropriate values.

4.7.4 How to Use Advanced Mode Aggregate Conditions

When you create a rule with Advanced Mode, Rules Designer supports the pattern
matching aggregate option. When you write rule conditions that are based not only on
one fact, but on many facts, you can use an aggregate. You use aggregate functions
when the conditions have a view spanning multiple facts.

Table 4-7 shows the available aggregate functions.

4-38 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Advanced Mode Rules

Table 4-7 Aggregate Functions for Advanced Mode Rules

Function Description

count Count of matching facts.

average Average of matching facts.
maximum Maximum value of matching facts.
minimum Minimum value of matching facts.
sum Sum of matching facts.
collection Builds a list of matching facts.

For example, to write a rule that specifies a special order as follows:

IF

an order has more than 5 line items whose price is above a certain value
THEN

the order requires manual approval

The five line items may span multiple facts. Thus, you can use the count aggregate
function to write this sample special order rule.
When you use an aggregate function, do the following:
= Select aggregate for the pattern.
= Enter a function from the list shown in Table 4-7
= Enter or select values from the context sensitive menus:
- <variable> A name for the aggregate value.

- <expression> The value to aggregate, for example driver.age. When the
aggregate function you select is the count function the <expression> is not
used.

For example, you can compute the sum of the cost all the line items with color "red", as
shown in Figure 4-51.

Working with Rulesets and Rules 4-39

Working with Advanced Mode Rules

Figure 4-51 Using Aggregate Functions with Rules Red Color Total Cost Rule

Ruleset 1 ¥ [|Flteron Yiew: | IF/THEN Rules - R TR Eeea v

=l & Rule 1
<enter description:=

[|TreeMade [#]Rule Active [| Logical Priority: |medium |:|

Effective Date: Always Valid

IF

o_order is a Order
and
total_cast is the sum of item_x.price where {
item_x is a Orderflineltem
and

ol is a Order$lineltemn and

ol.color == “red"

tand total_cost !'= o_order.tokal

THEN

modify o_order { total : botal_cost)

To use advanced mode aggregates:

1. Select or create the rule or Decision Table where you want to use an aggregate
function.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

Select Advanced Mode.
Enter the fact type you want to work with.
Select <insert pattern> to add a pattern.

Select the new pattern.

N o g e

Right-click the pattern and select Surround With.... This displays the Surround
With dialog.

8. In the Surround With dialog select Pattern Block. For more information, see
Section 4.7.1, "How to Use Advanced Mode Pattern Matching Options".

9. Click OK.

10. In the pattern select the first field. By default this field contains (for each case
where), as shown in Figure 4-52.

4-40 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Advanced Mode Rules

Figure 4-52 Adding an Advanced Pattern Match Option

Ruleset 1 ¥ [|FiterOn Yiew: |) IF/THEN Rules - BEREHOAw

= % Rule_1
=enter description =

[] Tree Made Rule Active [| Logical Priority: |mediom |V|
Effective Date: Always Walid
IF
Order is a Order

<insert best=
and

rFor each case where) {

(For each .]
(for each case where)
there is a case where
there is no case where
aggregate

<insert pattern
THEN

<insert ackion>

11. Select the aggregate option. This adds the context sensitive fields for an aggregate,
as shown in Figure 4-53.

Figure 4-53 Using Aggregate Functions in a Rule

Ruleset 1 ¥ [|Eiker On Yiew: | IF/THEN Rules - EHBHRAw

S % Rule 1
<enter description =

[Tree Made Rule Active [| Logical Priority: @E'
Effective Date: Alwaws valid
IF

<variable> is the UF Sexpression: where {

<variable = is & <fack bype >

<inserk test =

<insert patkern:

b Zinsert tesk:

<insert pathern:>
THEN

<insert action

12. Click <function> and select a function from the list.
13. In the condition, click <fact type> and select a fact type from the list.
14. Click <expression> and select an expression from the list.

15. Rules Designer by default constructs variable names as you create the aggregate
pattern. If needed for the rule you are constructing enter variable names to replace
the default variable names. Figure 4-54 shows a completed rule using aggregate.
In this example, for clarity the rule shows the variable names total_cost and
item x.

Working with Rulesets and Rules 4-41

Working with Advanced Mode Rules

Figure 4-54 Completed Aggregate Function in a Rule

Ruleset_1 ¥ [|Flkeron Wiew: | IF/THEN Rules k- R BT Aw

=l % Rule_1
<enter description =

[Tree Made Rule Active [| Logical Priority: | medium E|
Effective Date: Always valid
IF
Order is a Order
<insert test=
and
total_cost is the sum of item_x.price where {
item_x is a Orderflineltem
<insert test=
<insert patkern:=
t <insert kest=

<inserk patkern:=
THEN

<insert ackionz

16. Enter additional tests as required. For this example you enter the test for items
with color "red", as Figure 4-55 shows.

Figure 4-55 Using Aggregate Functions with Rules Red Color Total Cost Rule

+# Ruleset 1 ¥ [|Flkeron Wiew: | IF/THEN Rules - R TR Eeea v

=l & Rule 1
<enter description:=

[|TreeMade [#]Rule Active [| Logical Priority: |medium |:|

Effective Date: Always Valid

IF

o_order is a Order
and
total_cast is the sum of item_x.price where {
item_x is a Orderflineltem
and

ol is a Order$lineltemn and

ol.color == “red"

tand total_cost !'= o_order.tokal

THEN

modify o_order { total : botal_cost)

4.7.5 What You Need to Know About Advanced Mode Rules

There are some special cases to keep in mind when you work with Advanced Mode
rules, including the following:

= When you work with aggregates, in actions, you do not see pattern variables. The
pattern variables are only shown for action lists when you use (foreach...) patterns.

Thus, you cannot see pattern variables in aggregate, "there is a case", or "there is
no case patterns".

4-42 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tree Mode Rules

= After you select Advanced Mode the Advanced Mode stays selected and inactive
(gray), as long as your rule uses advanced options such as advanced pattern
matching. To deselect Advanced Mode you must remove or undo the advanced
mode features (sometimes it is easier to start over by creating a non-advanced
mode rule and then delete the advanced mode rule).

To deselect the advanced mode option:
1. Select the rule or Decision Table where you want to deselect Advanced Mode.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

3. Consider the state of the rule:

s If you can simplify the rule to enable the Advanced Mode option (such that
the Advanced Mode icon changes from gray to enabled). Then simplify the
rule and when Advanced Mode is enabled, deselect Advanced Mode.

s If you can use Undo to undo the steps you used to create the Advanced Mode
rule, to get to a state where the rule is no longer in Advanced Mode, then use
this technique to simplify the rule.

s If you cannot simplify the rule, then delete the rule and re-create it.

4.8 Working with Tree Mode Rules

Tree Mode rules make it easier to work with a master detail hierarchy, where there are
nested elements that map to a parent child relationship.

4.8.1 Introduction to Tree Mode Rules

To introduce tree mode rules, it is instructive to work with an example. Consider the
lifecycle of an application fragment that uses business processes and rules to process a
retail purchase order (PO). The purchase order has a header with business terms that
apply to the entire PO. The PO also contains a list of shipping destinations. Each
destination has an address, a list of items to be shipped to the destination's address,
and a list of shipments.

Consider the business rule: the status of a PO is "fully shipped" if the status of every
item is either "shipped" or "canceled".

Figure 4-56 shows a sample XML schema representation for the PO example. The
XML documents for the PO are tree structured. This allows a natural representation for
the PO. For example, the PO itself is the top level document element and destinations
are nested elements that contain item elements and shipment elements. Shipment
elements also contain item elements that reference the ordered items. Status has a list
of valid values.

Working with Rulesets and Rules 4-43

Working with Tree Mode Rules

Figure 4-56 PO Schema for Tree Mode Rules Sample

53
<schema=

targethamespace | hitpifwnew example.org

header

status
type Status

order-date
type ¥sd.date

customer-value

address

hilling
payment

PO =

item

@ guantity
type xsdint

destination

status =
type xsd:string

“— enurneration| open
enumeration | parially shipped
enurmeration | fully shipped

Example 4-1 shows the sample purchase order XML schema as represented in
Figure 4-56.

Example 4-1 Sample Purchase Order (PO) Schema

<?xml version= 'l.0' encoding= 'UTF-8' ?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns="http://www.example.org"
targetNamespace="http://www.example.org"
elementFormDefault="qualified">
<xsd:element name="PO">
<xsd:annotation>
<xsd:documentation>A sample element</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="header">
<xsd:complexType>
<xsd:attribute name="status" type="Status"/>
<xsd:attribute name="order-date" type="xsd:date"/>
<xsd:attribute name="customer-value"/>
</xsd:complexType>

4-44 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tree Mode Rules

</xsd:element>
<xsd:element name="billing">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="address"/>
<xsd:element name="payment"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="destination" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="address"/>
<xsd:element name="item" maxOccurs="unbounded">
<xsd:complexType>
<xsd:attribute name="ID"/>
<xsd:attribute name="status"/>
<xsd:attribute name="quantity" type="xsd:int"/>
<xsd:attribute name="availability-date" type="xsd:date"/>
<xsd:attribute name="goh" type="xsd:int"/>
<xsd:attribute name="price"
type="xsd:decimal" />
</xsd:complexType>
</xsd:element>
<xsd:element name="shipment" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="item" maxOccurs="unbounded">
<xsd:complexType>
<xsd:attribute name="ID"/>
<xsd:attribute name="quantity"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="ship-date"/>
<xsd:attribute name="method"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="status" type="xsd:string"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:simpleType name="Status">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="open"/>
<xsd:enumeration value="partially shipped"/>
<xsd:enumeration value="fully shipped"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

Example 4-2 shows part of the XML for an instance of the PO schema. To use tree
mode rules you can create a rule that tests one or more business terms and if the tests
pass, one or more business terms are added or changed. Oracle Business Rules has
special support to enable error-free authoring of rules on fact trees like the sample PO
instance.

Working with Rulesets and Rules 4-45

Working with Tree Mode Rules

For example, consider creating a rule for an instance of the PO schema that states:

IF the time between the order date and the date for availability of an item is
more than 30 days
THEN cancel the item

Example 4-2 Sample Abbreviated PO XML Instance

<PO xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.example.org ../../../../Temp/PO.xsd"
xmlns="http://www.example.org">
<header/>
<billing>
<address/>
<payment/>
</billing>
<destination>
<address/>
<item ID="alOl"/>
<item ID="a02"/>
<item ID="a03"/>
<shipment>
<item ID="alOl"/>
<item ID="a02"/>
</shipment>
</destination>
</PO>

4.8.1.1 Understanding Tree Mode Rules (Non-Advanced Mode)

You use non-advanced tree mode, or simple tree mode, when the Advanced Mode
option is not selected and Tree Mode is selected. With this mode Rules Designer
shows ROOT: <fact type> where you enter the root fact type, as shown in Figure 4-57.

Figure 4-57 Simple Tree Mode Rule with Tree Mode Selected

Ruleset_1 ¥ [|FiterOn View: [IF/THEN Rules k- R BHPRAw

=l % Rule_2
<enter description:=

[] Advanced Mode Tree Mode Rule Active [| Logical Priority: | medium |:|
Effective Date: | Always valid

ROOT: PO
IF

Duration.days between{PO.header . orderDate, POfdestination/itemn, availabilityDate) = 30
<insert best

THEMN
modify PO/destinationfitem { <add property= status : "canceled")

=insert action

When you create rules with Tree Mode selected and Advanced Mode unselected you
can reference properties in the tree using qualified names, for example:

m PO/destination/item.quantity thatissimilar to item.quantity but only
items that are a destination of PO are matched.

m POSDestination$item.quantity that refers to a List<item>. This reference
is unchanged from non-tree mode.

4-46 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tree Mode Rules

With Simple Tree Mode you can only choose terms that do not require many-to-many
joins or aggregation.

For more information, see Section 4.8.2, "How to Create Simple Tree Mode Rules".

4.8.1.2 Understanding Advanced Tree Mode Rules

You use advanced tree mode when the Advanced Mode option is selected and the
Tree Mode option is selected. With this mode Rules Designer shows ROOT: <fact
type> where you enter the root fact type, as shown in Figure 4-58. Rules Designer

shows patterns for the tree structured facts but the simple tests that join the parent and
child facts are hidden.

Figure 4-58 Advanced Tree Mode

+ Ruleset 1 ¥ []Flteron Yiew: | Qb IF/THEN Rules - R DA w

=l % Rule_2
<enter description=

Advanced Mode Tree Mode Rule Active [| Logical Priority: | medium |:|
Effective Date: Ahways Yalid

ROOT: PO
IF

POisaPO

=insert test=
and

POJdestination is a POfdestination and

=insert test=
and

POjdestinationfitem is a PO/destination/itern and
Duration.days between{PO.header, orderDate, PO/ destination/itern, availabilityDate) > 30

<insert test>

<insert pattern:=
THEN

modify PO/destinationfitem { <add property = status : "canceled”)

<insert ackion

In advanced tree mode the tree mode patterns, except for the root, display as:
<operator> <variable> is a <fact path>

Where the <fact path> is an XPath-like path through the 1-to-1 and 1-to-many
relationships starting at the root. For example, each fact path has a name like
PO/destination, where PO is the root fact type and the destination is a property of
type List. A 1-to-many relationship in a fact path is indicated witha "/", as in
PO/destination.

A 1-to-1 relationship in a fact path is indicated with "." This unchanged from non-tree
mode. For example, item.availabilityDate.

Advanced mode exposes the concept of a pattern, the simplest of which is is a. For
example, p is a PO causes p to match, iterate over, all the PO facts,and d is a
p/destination causes d to match all the destinations of p. The left side of is ais a
variable, and the right side is a fact type or a fact path. By default, Oracle Business
Rules sets the variable name equal to the fact type or path. For example, PO is a PO. A

Working with Rulesets and Rules 4-47

Working with Tree Mode Rules

pattern can also be a pattern block. A pattern block has a logical quantifier, negation,
or aggregation that applies to the patterns and tests nested inside the block.

For more information, see Section 4.8.3, "How to Create Advanced Tree Mode Rules".

When you work with advanced tree mode rules, Rules Designer expects you to use an
aggregation pattern, including exists and not exists to combine terms from different
child forests into the same rule while avoiding a Cartesian product.

4.8.2 How to Create Simple Tree Mode Rules

Given the XML schema shown in Example 4-1 and the schema instance shown in
Example 4-2, the following procedure creates the PO rule to cancel non 30-day
availability items.

IF the time between the order date and the date for availability of an item is
more than 30 days
THEN cancel the item

To create simple tree mode rules:
1. Create an IF/THEN rule in your ruleset.

For more information, see Section 4.3.1, "How to Add Rules".
2. View advanced settings.

For more information, see Section 4.5.1, "How to Show and Hide Advanced
Settings in a Rule or Decision Table".

3. Select Tree Mode as Figure 4-59 shows.

Figure 4-59 Simple Tree Mode Advanced Settings

] istomerorder . xsd |ﬂ”:|schemal.xsd IQDradeRulesl.ruJes | S5 PO, xsd | < untitled 1 xml | | unititled2 ol |.-|tjcompn W=
Ay 9@ DO & @
B Facts

Ruleset 1 ¥ [|FiterOn Yiew: | IF/THEN Rules v - oA v
fe Functions EHAARER R I T
= % Rule 2

<enter description =

[] Advanced Mode Tree Mode Rule Active [| Logical Priority: | medium |:|
Effective Date: | Always valid

(x) Clobals

7 Bucketsets
2D Links

<f\, Decision Functions
ROOT: <fact type:=

@ Translations
= ¥

Rulesets + X <insert kest>
P Ruleserl THEN
=insert action
&
Design

4. Next to ROOT;, click the <fact type> place holder and select PO from the list as
Figure 4-60 shows.

4-48 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tree Mode Rules

Figure 4-60 Simple Tree Mode: Configuring the Root

IstomerOrder, xsd

=2 schemal.xsd

By 90 1O «

QOradeRuJesl s

S5 POLxsd | e+ untitled1 | [e] unititledz. xml |D-|Hcomposit @)=

&9 Facts

#« Functions
(x) Globals
7 Bucketsets

<D Links

Q Decision Functions

Ruleset_1 ¥ [|Filkeron Yiew: + - R TEHEH A v

= & Rule_2
=enter description:=

[] Advanced Made Tree Mode Rule Active [| Logical Priority:

Effective Date: Always Walid

%Translations ':;:DDT: p;
R EF X <inse PO$Header
P Ruleserl THEN | PO$Destination§Shipment$ltem
PO3Eilling
<inse| PO$DestinationgShipment
PO
PO$DestinationdItem
POfDestination
CurrentDate
&
Design
5. Select <insert test>.
The IF statement now reads IF <operand> == <operand>.

6. Select the left-hand <operand>.

7. Inthelist, select PO/destination/item.availabilityDate.

8. Select Expression Builder icon, as shown in Figure 4-61.

Working with Rulesets and Rules 4-49

Working with Tree Mode Rules

Figure 4-61 Adding Simple Tree Mode Expression

iskomerOrder. xsd = schemal csd QOradeRuJesl ules 2possd |[e]untitledt sl | [untitledz xml | of3composit M=

G e PO « €
& Facs Ruleset 1 ¥ [|Feron View: | PIFTHENRdes ~|dp - %8 Te G 6o A w

#= Functions
= & Rule 2

(x) clobals <enter description =

=

7 Bucketsets [] Advanced Mode Tree Mode Rule Active [| Logical Priority:
D Links

Effective Date: Always valid
Q Decision Functions

@, Transiat ROOT: PO

4 Translations o

Rulesets + 8 | PC/destinationfitem . availsbiltyDate == <operands 1
P Rulesetl (0 fdestination/itern, availabilityDate

Th Q, Value COptions

E-a PoOjdestinationjitem [Expression Buider. . |

@ ID

[#--@ | availabilityDate

m

| S [#-@ status

|| Design -a POjdestination
----- @ address E]'

[#-@ item |

- [Dickionary - CracleRules1, vl G-@ shipment Display Hews Warnings First

[Elpusiness Rule Yalidation - Log

Message e PO Property
.3 RUL-05711: The expre et_1/Rule_2,/P0/destination/item/Test[1]/Exp...

o destination

[#-@ header
@ POfHeader
@ PO$Destinationgshipment$ltem
a Pi4Eiling

a PO$Destinationgshipment
@ PO$DestinationgItem
a
a

POfDestination
CurrentDate

T -
B - E-

() List Wiew () Tree Yiew
SDE Warnings: 1 Last Yalidation Time: §:25:12 PM PST
Messages | BPEL Exken: D Custorizable m 13 [ﬂ

9. In the Expression Builder dialog, copy and delete the item shown in the
Expression area.

10. In the Expression Builder, select the Functions tab.
11. In the navigator, expand Duration and double-click the daysbetween function.

12. Remove the daysbetween argument templates, as shown in Figure 4-62.

4-50 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tree Mode Rules

Figure 4-62 Using Expression Builder to Add a Simple Tree Mode Rule

3 Expression Builder g|
Q

Expression: '@ A

Duration. days between(b

M Insert Into Expression

[Variables l Functions LOperators LConstants |

E| [Duration

[— compare{Calendar | %MLGregorianCalendar |oracle. jbo . domain, Timest amp, Calendar | XMLGregorianC alendar |oracle. jbo.
@ |days between{Calendar | ¥MLGregorianCalendar | or acle. jbo.domain. Timestarnp, Calendar | sMLGregorianCalendar |orach
-@ minutes between(Calendar|¥MLGregorianC alendar |oracle, jbo.domain, Timestamp, Calendar | XMLGregorianCalendar |or
@ years between{Calendar | ¥MLGregarianCalendar|oracle. jbo. dormain. Timestamp, Calendar | MLGregarianCalendar |orac
-@ hours between(Calendar | XMLGregorianCalendar |oracle. jbo, domain, Timestamp, Calendar | MLGregorianCalendar |orac
-@ milliseconds betweeniCalendar | <MLGregorianCalendar |oracle. jbo.domain. Timestamp, Calendar | MLGregorianCalenda
i@ manths between(Calendar|XMLGregarianCalendar |or acle. jbo.domain. Timeskamp, Calendar | XMLGregorianCalendar | or:

Conkent Preview: Description:

Duration. days between{Calendar | XMLGregorianCalendar |oracle

Help | | (a4 || Cancel |

13.

14.
15.

16.
17.
18.
19.

In the daysbetween function, paste the value you previously cut as the second
argument.

In the Expression Builder dialog, select the Variables tab.

For the daysbetween function first argument, use the navigator to expand PO and
expand header, and double-click orderDate.

In the Expression Builder dialog, click OK.
In the list, in the expression area and press Enter.
Select the operator and enter >.

Select the right-hand <operand> and enter the value 30 and press Enter, as shown
in Figure 4-63.

Working with Rulesets and Rules 4-51

Working with Tree Mode

Rules

Figure 4-63 Simple Tree Mode: Right-Hand Operand with Value 30

'__T’)Start Page |\>OracIeRuIesl.ruIes [QDradeRuJesl.ruJes %composite.xml |ﬂJa,PO.><sd E]
= R 0 4 @
&§ Facts ¥ Ruleset_1 % [|FiterOn View: | Jp IF/THEN Rules - EHBOAw

Functions
% = ¥ Rule_2
(x) Clobals <enter description =
7 Bucketsets ROOT: PO
2D Links 1F
<f\ Decision Functions Duration.days between(PO . header . orderDate, POJ/destinationyitem. availabilityDate) = 30
) <insert test>
@:J Translations
THEN
Rulesets + “
<insert action
&P Ruleset1
=
» Desinn |
20. Click <insert action> and from the list select modify.

21.

22,
23.

The THEN statement now reads: THEN modify <targets>.

Click <target> and from the list select PO/destination/item. The THEN statement
now reads:

THEN modify PO/destination/item (<add property>)

Click <add property>. This displays the properties dialog.

In the properties dialog for the status name, enter the value "canceled", as
Figure 4-64 shows.

4-52 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tree Mode Rules

Figure 4-64 Simple Tree Mode: Action

(2)5tart Page |@OracIeRuIesl Jules QOradaRuJesl wules Shorderxsd | offfcompositeaml | SAPO.xsd & (3
GY 905 D0 % @ @
kol
& Facts Ruleset 1 ¥ [|Fiteron iew: P HBEOA v

_f: Functions

= ¥ Rule_2
(x) crobals <enter description =
-ff Bucketsets

ROOT: PO
.J Links IF

4_}; Decision Functions Duration.days between(PO.header. orderDate, POdestinationfitemn. availabilityDate) = 30

<insert test>
@J Translations

THEN
Rulesets 4 x®
p Ruleset1 modify PO,I’destlnatlon,l’ltem(status canceled”)

<insert action:z

= Properties k [z|
Mame Tvpe alue Canskant
10 String]
Design qoh java.lang.Integer]
quankity java.lang. Integer |:|
| [Elpusiness ry stakus String "canceled" (|
[2] Dictionar
Mess 3
Fit Columns Ta Width
SDE Warnings: 0 Last Yalidation Time: 9:04:54 PM PST
Messaaes BFEL |Extensions | Feedback | Business Rule Validation | sl

24. In the Properties dialog, click Close.
25. This displays the finished rule, as shown in Figure 4-65.

Working with Rulesets and Rules 4-53

Working with Tree Mode Rules

Figure 4-65 Simple Tree Mode Rule Final Rule

(2)5tart Page |\>OracleRulesl.rules [QDracleRulesl.ruJes |ﬂJa,0rder.xsd | o2 campasite cml | S Po.xsd]
By @] 00O & @
I
& Facts

Ruleset 1 ¥ [|FlterOn Xiew: | (b IF/THEN Rules - R BEREOAw

f« Functions
= ¥ Rule_2

(x) Globals L
<enter description =

7 Bucketsets
ROOT: PO

@ Links IF
Q Decision Functions Duration.days between{PO.header .orderDate, POfdestination/item, availabilityDate) > 30

‘E_'—J Translations S

Rulesets T % [ILIEN

@ Rulesetl modify POJdestinationfitem { <add property = status @ "canceled")

<insert action=

=

Design

Note that in the modi fy statement, PO/destination/item refers to the particular
item instance member.

4.8.3 How to Create Advanced Tree Mode Rules

Given the XML schema shown in Example 4-1 and the instance of these facts shown in
Example 4-2, the following procedure creates a free shipping rule that can be
summarized as:

IF the total cost of "free shipping eligible" items to a given destination is
greater than $40
THEN shipping of those items is free

To create advanced tree mode rules:
1. Create an IF/THEN rule in your ruleset.

For more information, see Section 4.3.1, "How to Add Rules".
2. View advanced settings.

For more information, see Section 4.5.1, "How to Show and Hide Advanced
Settings in a Rule or Decision Table".

3. Select Advanced Mode and select Tree Mode as Figure 4-66 shows.

4-54 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tree Mode Rules

Figure 4-66 Advanced Tree Mode Rule for Free Shipping

| (Z)start Page |\>OracIeRuIesl.ruIes [ODradeRuJesl.ruJes | Sordersd | ofScomposite el | S5 POLxsd =
I
£ Facts . ==
Ruleset 1 ¥ [VIFiteron Yiew: [QIFTHENRUes v dp - R T EEH S A v
F« Functions @ IFTHEMRules v
F-3 - .
(x) Clobals = % free shipping

<enter description:=
Advanced Mode Tree Mode Rule Active [| Logical Priority: | mediom |'|
Effective Date: Always valid

7 Bucketsets
D Links

Q Decision Functions

gz:-:J Trarelams ROOT: <fact type =

IF
Rulesets
+ X <variable> is a <fact pathz
£ Ruleset1

<inserk best =
<insert patkern:=

THEN
<insert action

| =
Design

4. Select the <fact type> place holder and from the list, select PO.
5. Complete the free shipping rule, as shown in Figure 4-67.

Figure 4-67 Advanced Tree Mode Free Shipping Rule

(2)5tart Page |\>OracIeRuIesl.ruIes [QDracleRulesl.rules | Shorderxsd |offScomposite. sl | S POLxsd =]
By DE DO # @
I

&P Facts

Ruleset_1 ¥ [/]Fiteron Wiew: | IF/THEMRues ~| o - 3¢ LA v

_f,: Functions

= ¥ Ffree shipping

(x) Globals o
=entar description >

&7 Bucketsets

RODT: PO
< Links IF
Q Decision Functions POisa PO

%Translations

and
Rulesets + x
POfdestination is a POfdestination and
%P Rulesetl
and
free_ship_total is the sum of PO destinationfitem.price.longvaluel) where {
POfdestinationfitem is a PO/destinationfitem and
POfdestinationfiter.status == "free-shipping-eligible"
+and free_ship_total == 40
THEN
modify POJdestination { status : "free shipping")
e
Design

4.8.4 What You Need to Know About Tree Mode Rules

When you select Tree Mode and select a root fact type, the options lists show all
available fact types (not just the children of the root fact type). This allows you to view
all available fact types as well as the children of the root fact type. There is no option to
limit the option list to only show the children of the selected root fact type.

Working with Rulesets and Rules 4-55

Using Date Facts, Date Functions, and Specifying Effective Dates

4.9 Using Date Facts, Date Functions, and Specifying Effective Dates

Oracle Business Rules provides functions that make it easier for you to work with
times and dates, and provides effective date features to let you determine when rules
are effective, based on times and dates:

= The CurrentDate fact allows you to reason on a fact representing the current date.

» The Effective Date value lets you specify a start date and end date that defines a
date or date and time range when all the rules and Decision Tables in a ruleset, an
individual rule, or an individual Decision Table are effective.

Table 4-8 describes the available Effective Date options.

Table 4-8 Effective Date Possible Values

Effective Date Description

Always Valid Specifies to set neither "From" nor "To" dates.
From (without To date set) ~ Valid from a certain date indefinitely into the future.
To (without a From date set) Valid from now until a certain date.

From Set and To set Valid only between two dates.

An effective date specification other than Always can be one of the following:

= Date only, with no time specification: In this case, an effective date assumes a time
of midnight of that date in each time zone.

= Date, time zone, with no time specification: In this case, an effective date assumes
a time of midnight as of the specified date in the specified time zone.

= Date, time zone, time specification: In this case, the date and time is fully specified.

= Time specification only, with no date and no time zone: applies for all days at the
specified time.

= Time and time zone specified, with no date: applies for all days at the specified
time.

4.9.1 How to Use the Current Date Fact

You can use the current date fact in a rule or a Decision Table.

To use the CurrentDate fact:
1. Select a ruleset from the Rulesets navigation tab.

2. Select a rule within the ruleset.

3. IntheIF area, add a condition that uses the CurrentDate fact and the date method
of Calendar type, as shown in Figure 4-68.

4-56 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using Date Facts, Date Functions, and Specifying Effective Dates

Figure 4-68 Rule with Condition Using CurrentDate Fact

Ruleset_1 ¥ [|Fiker On ‘Wisw: | IF/THEN Rules - R EHERAv

= ¥ Rule_1
<gnter description =

IF

| CurrentDate, date = License.expires_date |
= LR
CurrentDate.date i,
T Q, value Cptions
E}-a License

F-a expires_date
=@ CurrentDate
e

poed Lime

Lm tmelnMilis

() List Wiews (3) Tree View

[] Customizable

4.9.2 How to Set the Effective Date for a Rule

You can specify an effective start date and or an effective end date for a ruleset, a rule,
or a Decision Table. For information on specifying the effective date for a ruleset, see
Section 4.2.2, "How to Set the Effective Date for a Ruleset".

To set the effective date for a rule:
1. Select the ruleset name from the Rulesets navigation tab.

2. Select a rule within the ruleset.

3. Next to the rule name click Show Advanced Settings, as shown highlighted in
Figure 4-69.

Figure 4-69 Showing Advanced Settings in a Rule

Ruleset_1 ¥ [|Eikeron Yiew: | IF/THEN Rules R BEHEHRAw

= ¥ Rule_1
=enter description:=

IF
CustomerQrder,annualspending = 2000
<inserk kest =

THEN
modify CustomerOrder { <add property = value @ "High"

<insert action

4. Select the Effective Date field. This displays the Set Effective Date dialog, as
shown in Figure 4-70.

Working with Rulesets and Rules 4-57

Using Date Facts, Date Functions, and Specifying Effective Dates

Figure 4-70 Setting the Effective Date for a Rule

\\>OracIeRuIesl.ruIes x OliemizedFare.ruJes x D{tgProjeth(composite.me) x E] Ej
= - e - -
YA DOR DD & @3
£ Facts ———————————— E
Ruleset1 ¥ []FiterOn Wiew: [iF/THENRules ~| 4R~ 88 T2 By G5 60 & v‘ &
_'f,; Functions
o a
(%) Clobals ® Rulel o
<enter description=
#z -
Bucketsets [] Advanced Mode [|Tree Mode [v]RuleActive [|Logical Priority: [Medium |v|
.:0 Uik Effective Date: [Always Valid
& Decision Functions
IF
%Translations e
| Set Effective Date x|
Rulesets + x
&b Ruleser1 [¥] Erom: | | B [z3:00:20[%] [(GMT-08:00) Metlakatia Standard Time ~
Mrel | | B [23:00:21[5] [(GMT-08:00) Metlakatia Standard Time ¥

(O Date () Time (3) Both

Help [s]:8 | | Cancel

5. Use the Set Effective Date dialog to specify the effective dates for the rule. Clicking
the Set Date icon displays a calendar to assist you in entering the From and To
field data.

6. In the Set Effective Date dialog, click OK.

4.9.3 What You Need to Know About Effective Dates

By default, the Oracle Business Rules Engine implicitly manages the clock associated
with the CurrentDate fact and the effective date, setting each to the value of the system
date. Using the RL Language functions setCurrentDate () and
setEffectiveDate () you can explicitly set the current date and the effective date.
For more information, see Oracle Fusion Middleware Language Reference Guide for Oracle
Business Rules.

An effective start date is defined as the first point in time at which a rule, Decision
Table, or ruleset may actively participate in rule evaluations and fire. Thus, if a rule is
effective it may fire if its condition is satisfied and if the rule is not effective, it does not
fire whether the condition is satisfied or not.

An effective end date is the first moment in time at which the rule, Decision Table, or
ruleset no longer actively participates in rule evaluations (not effective means the rule
does not fire).

The effective start and end date can be set on a Decision Table, but these dates cannot
be set individually for the rules within a Decision Table.

Rules and Decision Tables also include the Rule Active option. This option is set
independent of the effective dates and makes dates effective without changing or
removing the specified effective date. For more information on using the Rule Active
option, see Section 4.5.3, "How to Select the Active Option".

The precedence of the effective date, when it is defined for both a ruleset and for the
rules or Decision Tables within a ruleset, is as follows (with the top precedence being
1):

1. If the ruleset Rule Active option is unselected, then RL Language is not generated
for that entity.

4-58 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using Date Facts, Date Functions, and Specifying Effective Dates

If one or both of the effective date properties are selected for a ruleset, then those
effective start dates and effective end dates define the range of effective dates
allowable for rules or Decision Tables that are defined within the ruleset (that is, if
in the ruleset the From checkbox, the To checkbox, or both checkboxes are selected
in the Set Effective Date dialog).

Thus, the effective dates specified for rules or Decision Tables within a ruleset
must not violate the boundaries established by the ruleset that contains the rules
or Decision Tables. For example, a rule may not have an effective end date that is
later than the effective end date specified for a ruleset.

If any individual rule or Decision Table has Rule Active unselected, then RL
Language is not generated for that rule or Decision Table.

If the Set Effective Date dialog for a ruleset includes Time selected or this option is
selected on a rule or a Decision Table in the ruleset, then all instances of rules or
Decision Tables in the ruleset must have Time selected when effective dates are
specified. In this case, if Both or Date is selected then Rules Designer shows a
validation warning:

RUL-05742: Calendar form incompatibility detected with forms Time and DateTime.
If the calendar form is set to Time on a rule set or any of the rules or
decision tables within that ruleset then the calendar form for that entire
rule set is restricted to Time.

4.9.4 How to Use Duration, JavaDate, OracleDate, and XMLDate Methods

You can use the Duration, JavaDate, and XMLDate, OracleDate, and OracleDuration
extension methods in a rule or a Decision Table. For more information, see
Appendix B, "Oracle Business Rules Built-in Classes and Functions".

To use a Duration method:

1.
2.

9.

Select ruleset from the Rulesets navigation tab.

Select a rule within the ruleset (you can also use Duration methods in a Decision
Table).

In the IF area, add a condition.
Select an operand in the rule condition.

From the list, select Expression Builder.... For more information, see Section 4.10,
"Working with Expression Builder".

In the Expression Builder, select the Functions tab.
In the Expression Builder, in the Navigator, expand the Duration folder.

Double-click to select and insert the appropriate method as needed for your
duration test.

Provide the appropriate arguments for the method. For example, see Figure 4-71.

10. This allows you to create a rule such as that shown in Figure 4-72.

Working with Rulesets and Rules 4-59

Working with Expression Builder

Figure 4-71 Using Duration Methods in a Rule

-3 Expression Builder

Expression: L

2

CE)

¥

Duration.days between({CurrentDate . date, Driver LicenseExpires)

| @ Insert Inko Expression

E| [Duration
P e compare(CaIendarIXMLGregorlanCaIendarIoracle jbo.domain, Tlmestamp, Calendar | xMLGregorianCalendar |oracle. jbo. domain, Timestar

Calendar |ora

wears betweeniCalendar | ¥MLGregorianCalendar |oracle . jbo. domain. Timestamp, Calendar | ¥MLGregorianCalendar | oracle. jbo . domain, Ti
hours betweeniCalendar | XMLGregorianCalendar |oracle jbo. domain, Timestamp, Calendar | XMLGregorianCalendar | oracle, jbo . domain, Ti
-@ milliseconds betweeniCalendar | xMLGregorianCalendar |oracle. jbo . domain, Timestamp, Calendar | <MLGregorianC alendar |oracle. jbo. domr
i@ months between(Calendar | XMLGregarianCalendar |oracle. jbo.domain. Timestamp, Calendar [#MLGregorianCalendar|aracle. jbo. domain.

a

-@ minutes between(Calendar| XMLGregorianCalendar |oracle, jbo.domain, Tlmestamp,Calendar|XMLGregorlanCaIendarIoracle]bo domaln
a

a

[Variables l Functions LOperators LConstants |

Conkent Preview: Description:

Duration, days between({Calendar| XMLGregorianCalendar |oracle. jbo. dom

| Help | (o] 4 || Cancel
Figure 4-72 Adding a Rule Using Duration Function
Ruleset 2 ¥ [|Fiker On view: | <J IF/THEN Rules |- EHBRAw

= % Rule_1
<enter dascription =

[] Advanced Mode [] Tree Mode Rule Active [| Logical Priority: | medium |:|
Effective Date: Ahways valid

IF

Duration.days between{CurrentDate. date, Driver LicenseExpires) <= 30
<insert tests

THEN
call prink{ message : "Motice: License expires within 30 days.")

<insett ackion

4.10 Working with Expression Builder

Use the expression builder to create and edit expressions for Oracle Business Rules.

4.10.1 Introduction to the Expression Builder

You can access the expression builder from different parts of Rules Designer, including
in the Edit Globals dialog, and in the conditions area when you work with conditions
in Decision Tables, and when you enter rules and Decision Tables in advanced mode

with free form expressions selected.

4-60 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Expression Builder

Figure 4-73 shows the Rules Designer expression builder.

Figure 4-73 Rules Designer Expression Builder

® Expression Builder @
Expression: (e T

Driver.age|

| @ Insert Inko Expression

C% Options
ED Drriver

- [ooe]
-Elg: has_training
E'gi eye_kesk
-Elgi eligible

-L Wariables L Functions L Operators |\ Constants

Conkent Preview: Drescripkion:
Driver. age SDK Yariable COption
| Help | [0]:4 | | Cancel

4.10.2 How to Use the Expression Builder

In the expression builder when you double-click items in the Variables or Functions
navigation trees, or in the Operators tab, or in the Constants tab, this inserts the item
into the expression in the Expression area. You can also create or edit expressions
directly by entering text in the Expression area.

When you enter an expression, note that Variables are valid assignment targets and
Constants are not valid assignment targets. Thus, you should use both tabs if you are
unsure what type of item you want to add to the expression you are building.

Specify an argument for a selected function by placing the cursor inside the function in
the Expression field and double-clicking the expression or function to insert. For
example, place the cursor inside the parentheses of a function and select a variable.
This inserts the variable in the expression at the cursor position.

4.10.3 What You Need to Know About Working with Expressions

XML fact types allow XML Schema types, elements, and attributes to be used when
writing rules. Elements and types defined in XML Schema can be imported into the
data model and can then be used to create rules and Decision Tables, just as with Java
fact types and RL Fact types. The mapping between the XML Schema definition and
the XML Fact types uses the Java Architecture for XML Binding (JAXB). By default,
Oracle Business Rules uses the JAXB 2.0 shipped with the Oracle Application Server.
JAXB as defined in JSR-222 provides a mapping between the types, names, and
conventions in an XML Schema definition and the available types, allowed names and

Working with Rulesets and Rules 4-61

Using Bucketsets as Constraints for Options Values in Rules

conventions in Java. For example, an element named order-id and of type
xsd:integer is mapped to a Java Bean property named orderID of type
BigInteger (and xsd:int type maps to Java int).

You can use expressions in Oracle Business Rules. Expressions allow arithmetic using
the operators *, +, /, %, and other supported operators on primitive numerics, for
example double, int, and the numeric types Integer, Long, Short, Float,
Double BigDecimal, and BigInteger that are available in the built-in dictionary.
For more information on supported primitive numerics, see Oracle Fusion Middleware
Language Reference Guide for Oracle Business Rules.

Expressions allow casting between any two numeric types, for example,
(short) ((BigInteger)l + (Long)2).Example 4-3 shows a few additional
sample expressions.

The expression processor uses the XPath/Xquery rules for type promotion (XML Path
Language (XPath) 2.0). For example, BigDecimal is promoted to £1loat/double;
type promotion going the other direction requires a cast, except for literals such as 3.3.

Example 4-3 Sample Expressions in Actions with Types and Casting

assign new double db = 3.3

assign new BigDecimal bd = 3.3 // no cast required
assign db = bd // no cast required

assign bd = (BigDecimal)db // cast is required

4.11 Using Bucketsets as Constraints for Options Values in Rules

You can use List of Values Bucketsets and List of Ranges Bucketsets to specify
constraints for business terms in rules. This allows you to use Rules Designer to
produce validation warnings for possible errors where a value supplied is out of
range, or not within a set of possible values as specified in a bucketset. Oracle Business
Rules also lets you use bucketsets to specify constraints for global initial values,
function return values, or function argument values. For more information, see
Section 2.3, "Working with Oracle Business Rules Globals" and Section 3.7,
"Associating a Bucketset with Business Terms".

4.11.1 How to Use a List of Ranges Bucketset as a Constraint for a Business Term

You can use a list of ranges bucketset as a constraint for any business term other than a
function result.

For more information on using a list of values bucket set as a constraint, see
Section 4.11.2, "How to Use a List of Values Bucketset as a Constraint for a Fact
Property".

To use a List of Ranges bucketset as a constraint for a fact property:

1. Specify a bucketset that includes the ranges you want to include and select
Allowed in Actions for all valid ranges. To include a range, deselect Allowed in
Actions for the top and bottom endpoints.

2. Select Included Endpoint as needed for the application.

3. Deselect Include Disallowed Buckets in Tests. For example, for a bucketset that
defines valid grades and that does not allow values greater than 100, or less than 0,
define the bucketset endpoints as shown in Figure 4-74.

4-62 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using Bucketsets as Constraints for Options Values in Rules

Figure 4-74 Valid Grades Bucketset for Fact Property

& Edit Bucketset - valid |_grades fXI

Marne: | valid_grades |

Data Type: [i”t ']
[] Include Disallowed Buckets in Tests

Range Bucket Yalues: G ®
Endpoint Included Endpoint Allowed in Actions Range Alias Description
100 =100 =100 Mok Yalid
an [0..100] a
30 [50.,.,90)
70 [70..80)
60 [60..70)
[0, .60

[]
=
[]
=
[]
m 0

EEEEEO
EEEEEO

B
C
o]
E

<]

4. Associate this bucketset with a business term. For example, associate the bucketset
with test_math1 as shown in Figure 4-75.

Figure 4-75 Associating a Bucketset with a Fact Property

& Edit BL Fact - Grades X
Mame: |Grades |
Descripkion: | |
Super Class: [Object v]
Properties: “F R

Type Bucketset Initial value List Conkent Type
irik

valid_grades

Fit Columns To Width

Now, if you define a rule with a test that uses the fact property you receive a
validation warning when a value is out of range. For example if you define a rule with
an expression with the value -10, Rules Designer shows a validation warning as shown
in Figure 4-76.

Working with Rulesets and Rules 4-63

Using Bucketsets as Constraints for Options Values in Rules

Figure 4-76 Using a Fact Property Value that is not in the Allowed in Actions for Associated Bucketset

| < poraceRulsstrulss < pDracleRuleslrules | =
R g 9 4% N @
& Facts : -
[Ruleset 1 ¥ [|Elteron Yiew: (b IF/THEN Rules - BEHEDRaAw

_ﬁc Functions

(%) Clobals

7 Bucketsets

2 Links

Q Decision Functions
%Translations

+ &

Rulesets

P Rulesetl

=

= ¥ Rule 1
<enter description:=
IF
Grades.best_mathl == -10
<insert besk:

THEN

<insert ackion

Design

[ElBusiness Rule Yalidation - Log

[Z2) Dictionary - CracleRules! .rules

&)

Display Mew Warnings First

Message

Dictionary Object

Property

MY RUL-DS715: The value "-10" is excluded by bucket set "valid_grades".

OracleRulesi Ruleset_1/Rule_1/Grades) Test[1]/Expression[2]

SDK Warnings: 1

Messages EFEL

Business Rule Yalidation

Last Validation Time: 4:12:51 PM PDT

Extensions Feedback W=

E 3=tel) @8 5earching for valid_grades

4.11.2 How to

4.11.3 How to

Use a List of Values Bucketset as a Constraint for a Fact Property

You can use a list of values bucketset as a constraint for a fact property.

For more information on using a list of ranges bucket set as a constraint, see
Section 4.11.1, "How to Use a List of Ranges Bucketset as a Constraint for a Business
Term".

To use a List of Values bucketset as a constraint for a fact property:

1. Specify an LOV bucketset that includes the values you want to include, and select
Allowed in Actions for all valid values. For more information, see Section 3.6.1,
"How to Define a List of Values Global Bucketset".

2. Deselect Allowed in Actions for the otherwise bucket.
3. Deselect Include Disallowed Buckets in Tests.

4. Associate this bucketset with a fact property.

Use Bucketsets to Provide Options for Test Expressions

You can use LOV bucketsets to provide options for expressions and actions.

4-64 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Importing Runtime Rules Changes From Repository Into JDeveloper

How to use bucketsets to provide options for rule expressions and actions:

1. In Rules Designer, define an LOV bucketset of a type corresponding to a fact
property. For more information, see Section 3.6.1, "How to Define a List of Values
Global Bucketset".

2. Associate the bucketset with a fact property. For more information, see
Section 3.7.1, "How to Associate a Bucketset with a Fact Property".

3. When you enter expressions, Rules Designer shows the bucket values in the values
options. For example, when you associate a fact property Driver.eye_test
with an LOV bucketset named eyes, with values: pass, fail, and
glasses_required, and then you use Driver.eye_test in a test expression,
the bucket values are limited as shown in Figure 4-77.

Figure 4-77 Using a Bucketset to Provide Options for a Rule Test Expression

Ruleset 2 ¥ []FiterOn iiew: | < IF{THEN Rules R EEHEHRAw

= ¥ Rule_1
<gnter description =
IF

Driver.eye_test == | <0Derana;|

<insert best &
it
THEN Q, value Options

<insert action s Eha eyes

a glasses_required
(@ Driver
[RL

() List Wiews (3) Tree View

[]Constant [Customizable

4.12 Importing Runtime Rules Changes From Repository Into JDeveloper

This section dicusses how to import changes to a rule implemented in SOA Composer
into the JDeveloper.

When you make changes to a dictionary in SOA Composer, you must upload them to
MDS repository as described in Section 12.10, "Committing Changes for an Oracle
Business Rules Dictionary at Runtime". However, these changes do not get updated in
JDeveloper. You need to import the changes from MDS repository into JDeveloper
manually.

To import the changes into the JDeveloper,
1. Select the rule in the application navigator for which changes were made.

2. Click the Import From MDS button in Rule Editor as shown in Figure 4-78.

Working with Rulesets and Rules 4-65

Importing Runtime Rules Changes From Repository Into JDeveloper

Figure 4-78 Importing Changes from MDS Repository

Applimtbnl '|' & [[f?'-i*—““'@f\ B @
= Projects &l & W 3= ; 4
4 Facts Import From MDS...
-] Project1 9 m ¥ []FiterOn View: | IF/THEN Rules - - % T By G ¢
&[] 50A Content S Functions
-] dasses (%) Globals Active Effective Date: | Always Valid
(-] testsuites ¢ Bucketsets Description:
- %sd
-1 xsl < Links
E'D Business Rules <} Dedision Functions
& (M projectt. - 2 ¥ Rulel
i O OradeRules1.rules %._.JT'E”SIE‘]"”5 el o
. <enter description =
OracdeRules1Translations_en_l Rulesets + b3
----- ﬁ‘n OracleRules 1.componentType IF

----- o Project1(composite. xmi) & Rul g <insert kest> ¥
------ OradeRules1.decs

THEN

<insert action =
l>\ Application Resources
I Data Controls [T
[+ Recently Opened Files

— — U Nacian

3. Select the MDS Repository in the SOA Resource Browser window that opens.

Figure 4-79 Select the MDS Repository in SOA Resource Browser

.

e w— 7
=% SOA Resource Browser M

&7

|»qj Resource Palette = |

[IDE Connections

| Help | oK || Cancel _J

4. Click OK.

Changes are updated in JDeveloper and you can view the changes in the Rule
Editor.

4-66 Oracle Fusion Middleware User's Guide for Oracle Business Rules

O

Working with Decision Tables

This chapter describes how to use Decision Tables to create and use business rules in
an easy to understand format that provides an alternative to the IF/THEN rule format.
It also covers the various components of a Decision Table such, as conditions, conflicts,
actions, and discusses the various operations that you can perform on a Decision
Table.

The chapter includes the following sections:

= Section 5.1, "Introduction to Working with Decision Tables"
m Section 5.2, "Creating Decision Tables"

= Section 5.3, "Performing Operations on Decision Tables"

= Section 5.4, "Creating and Running an Oracle Business Rules Decision Table
Application”

5.1 Introduction to Working with Decision Tables

Businesses invest in software to automate their business processes. Historically, this
automation focused on the collection, presentation, and manipulation of data to
facilitate human decision-making about that data. Increasingly, however, software
designers and developers are called upon to automate the decision making process by
putting detailed rules about business processes into software architectures. In
addition, many enterprises are experiencing increasing pressure to make software
systems more responsive to business changes. In some cases, the role of writing and
testing business rules is no longer assigned to software engineers, but is passed to
trained business users. Alternatively, some organizations attempt to separate changes
in the business behavior of software from the traditional software development cycles,
and tie changes to business driven imperatives like product or sales cycles.

A Decision Table provides a mechanism for describing data processing tasks,
especially when that description is done by business analysts rather than computer
programmers.

The Decision Table format is intuitive for business analysts who are familiar with
spreadsheets. The formal structure that a Decision Table provides makes it easier to
author, understand, and change multiple similar rules and lets software check for rule
completeness and consistency.

Oracle Business Rules Decision Tables provide the following features:

s Powerful Visualization: Compact and structured presentation. This visualization
matches the way real world business policies are expressed: with many tables,
declarative, and organized into simple steps.

Working with Decision Tables 5-1

Introduction to Working with Decision Tables

s Error Prevention: Avoids incompleteness and inconsistency. Because a Decision
Table is well structured, automated tools can check for conflicts, redundancy, and
incompleteness to speed development of valid, consistent business rules.

= Modular Knowledge Organization: Group rules into a single table. A spreadsheet
metaphor puts groups of rules that work together onto a single viewable pane. For
example, if there are six rules that check an applicant's eligibility, it is more
convenient to see all the rules than to view the rules as individual but related
rules.

s Optimization of Rules and Performance Benefits: Oracle Business Rules Decision
Tables provide automated features that can reduce the number of required rules,
as compared to the IF/THEN rules (this is called rule coalescing).

= Rule Validation and Verification: Provides capabilities for ensuring the logical
consistency of rules before deployment. Automated tools for checking conflicts,
incompleteness, or gaps, help speed development of valid, consistent business
rules.

Ease of verification and visualization are the major reasons for using Decision Tables.

For information, see Chapter 4, "Working with Rulesets and Rules".

5.1.1 What is a Decision Table?

A Decision Table displays multiple related rules in a single spreadsheet-style view. In
Rules Designer a Decision Table presents a collection of related business rules with
condition rows, rules, and actions presented in a tabular form that is easy to
understand. Business users can compare cells and their values at a glance and can use
Decision Table rule analysis features by clicking icons and selecting values in Rules
Designer to help identify and correct conflicting or missing cases.

To help understand Decision Table concepts, consider a set of IF/THEN rules that
determine if a driver is eligible for a license, and an equivalent Decision Table. Note if
a driver has taken a driver training class then the driver has training certification.

The IF/THEN rules follow:

if driver.age < 20 and driver.has training then driver.eligible = true
if driver.age < 20 and driver.has training = false then driver.eligible = false
if driver.age >= 20 then driver.eligible = true (do not care about training for this case)

Figure 5-1 shows a Decision Table representation of these rules that includes areas for
Decision Table Conditions and Actions.

5-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Introduction to Working with Decision Tables

Figure 5-1 Sample Decision Table with Conditions and Actions

QDriver.ruIes =
B 5@z o ©)
-8 Fact A 5 —
& Facts ¥ Ruleset_1 Yiew: [DecisionTable_t - - K
fz Functions
¥ = DecisionTable_1 =enter description =
(x) Clobals
& bucketsets ol YEaveeges]/ R iav E--RIRIEE @
. - Conditions R1 RZ R3
D Links = —=
Decision Functions | oz Driver,has_training true false -
% Translations
Rulesets 4‘ R
@ Rulesetl * Conflict Resolution
i Actions
L1 modify Driver(
eligible:)} true false true
e Eit Columns To \Width
Design

5.1.1.1 What You Need to Know About Decision Table Conditions

The Conditions area in a Decision Table includes one or more condition rows. Each
condition row has a condition expression and, for each rule, a condition cell. A
condition expression is an expression that you build in Rules Designer. The condition
expression is often a fact property or a function result, but it can be any expression that
has a type that can be associated with a bucketset. Test expressions are often used,
such as Driver.age<16. These expressions are associated with the built-in boolean
bucketset, with values true and false. The value or the range for a given condition
cell takes its value or its range from one or more buckets in the associated LOV or
Ranges bucketset. For more information on bucketsets, see Section 3.6, "Working with
Bucketsets".

For example, Figure 5-1 shows the condition expression for a Driver fact with the
Driver .age property. The corresponding row in the Decision Table shows condition
cells including buckets for the ranges <20, and >=20. The values in the cells come
from the global bucketset named driver_ages.

Figure 5-1 also shows a condition row for the Driver fact with the
Driver.has_training property. This condition row shows condition cells with the
values, true, false, and -. The hyphen (-) means "do not care” (that is
Driver.has_training could be true or false in this case). The values for these
condition cells come from the default bucketset associated with boolean types (this
consists of default buckets for the values true and false).

Decision Tables show rules in bucket order, and to change the order of rules you need
to change the order of buckets in the bucketsets. Thus, the order of the buckets in the
bucketset associated with a condition row determines the order of the condition cells,
and thus the order of the rules. You can control rule ordering in a Decision Table by
changing the relative position of the buckets in an LOV bucketset associated with a
condition row; however, you cannot reorder range buckets. For information on

Working with Decision Tables 5-3

Introduction to Working with Decision Tables

ordering buckets in a bucketset, see Section 3.6.1, "How to Define a List of Values
Global Bucketset".

5.1.1.2 What You Need to Know About Decision Table Actions

Actions are associated with rules in a Decision Table. At runtime, when facts match for
condition cells, the Rules Engine prepares to run the actions associated with the rule.

Table 5-1 shows the types of actions you can choose in the Actions area. Thus, in an
action you can call a function, assert a new fact, retract a fact, or modify a fact. In the
Actions area the cells corresponding to an individual action for a rule are called action
cells. Note, in advanced mode there are additional options for actions. For more
information on advanced mode, see Section 4.5.2, "How to Select the Advanced Mode
Option".

Table 5-1 Decision Table Actions for Action Cells

Action Description

assert new Assert a new fact

call Call a function

retract Retract a fact

modify Modify a data value associated with a matched fact

When you add multiple actions the actions that you add in the Actions area are
ordered; actions appearing in the higher rows run before actions in the following
TOWS.

The Decision Table actions such as modi fy can refer to facts matched in the condition
cells. For example, given a Decision Table with condition rows on the Driver fact that
includes condition rows for Driver.age and Driver.has_training, actions can
modify the property Driver.eligible and you can specify a value for
Driver.eligible for each action cell.

Certain types of actions in the Actions area include a Parameterized checkbox. This
checkbox specifies that a property from the action can have its value set in the action
cell associated with a rule in the Decision Table. When the parameterized checkbox is
selected the value you supply for the expression value in the action, in the Actions
area, becomes the default value for the property if a value is not supplied in the action
cell. For example, see Figure 5-2 where the value false is assigned as the default
value for the action property eligible.

5-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Introduction to Working with Decision Tables

Figure 5-2 Action Editor Showing Parameterized Action with Default Value

& Action Editor rZ|

Form: |M0dify v|

Walue: | Modify Driver (eligible: 7 |

Target:

Arguments;
Properky Tvpe Yalue Parameterized Conskant
age int L] [}
has_training boalean L]]
eligible boalean true]
[] Always Selected
| Help | [0]4 | | Cancel

5.1.1.3 What You Need to Know About Decision Table Rules

A ruleset contains a Decision Table; this provides a way to group the Decision Table
along with IF/THEN rules. When rules and Decision Tables are grouped in a ruleset,
the IF/THEN rules and the Decision Table rules all execute as a set of interrelated
rules.

A rule in a Decision Table is not named. Although Rules Designer shows rules in a
Decision Table with labels, for example, R1, R2, and R3, these rule labels are not names
for individual rules but are labels derived from the current ordering of the rules in the
Decision Table. Thus, a rule with the label R1 could be moved to position 3 and then
Rules Designer relabels this rule R3.

Rules in a Decision Table are organized as a table that contains a tree of condition cells.
The condition cells in the first row span the cells of later condition rows. A parent cell
in row 7 spans its children in row i+1.

Figure 5-3 shows rules in a Decision Table where each rule consists of one cell from
each row in the Conditions area, and an associated action cell in the same column in
the Actions area. Figure 5-3 shows the rule with the label R3 defined by the first cell
from condition 1 (the Driver.age < 20 bucket), the second cell from condition 2 (the
Driver.eye_test equals fail bucket), and the third cell from condition 3 (the
Driver.has_training equals true bucket). Likewise for each of the other rules, R1
to R12, there is a unique path through the Decision Table.

Working with Decision Tables 5-5

Introduction to Working with Decision Tables

Figure 5-3 Rules in a Decision Table

- @

*

Cl
ca
C3

4l

Ruleset_1 View: | DecisionTable_1

4%

DecisionTable_1 <enter description =

Conditions
Criver.age

R1 RZ

Driver.eve_tesk pass

Driver.has_training true false

Actions
modify Driverd

eligible:)] true false

[¥] Eit Columns To Width

- ¥

R4 R5 RE R7
glasses_required

false true false true

alse false true false true

h W

pass

R

false

true

BB es B W

R9 R1i0 R11 R1Z
=20
Fail glasses_required
true false true false
false false true false

As shown in Figure 5-3, it is significant for a cell to be a parent of another cell and a
parent cell spans lower cells. In the Conditions area, when condition cells have the
same parent condition cell the cells are called siblings. Certain operations only apply
for condition cells that are siblings. For example, Figure 5-4 shows two sibling cells
that are selected; with these cells selected the Merge Selected Cells operation is valid.
For these cells, the corresponding bucket with the value fail for Driver.eye_test
is also a sibling (as shown in the R3 and R4 columns in Figure 5-4). For more
information, see Section 5.3.3, "How to Merge or Split Conditions in a Decision Table".

Figure 5-4 Sibling Condition Cells in a Decision Table

Ruleset_1

¥

Cl
cz
C3

41

Wigw: | DecisionTable_1

DecisionTable_1 <enter description=

Conditions R1 RZ
Driver.age
Driver. eye_test
Driver.has_training true false
Actions
modify Drivert
eligible:] true false

[W] Eit Columns Ta Width

TR Aav B oG-R 0 EW

R7

R

RE

R3 R4 R5 R&
<z0
Fail
true false true
false false true false

true

trug

RS9 R10 R11 R12
=20
Fail glasses_required
false true false
false false true false

5-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Introduction to Working with Decision Tables

Rules Designer lets you easily reorder rows by selecting the row and clicking a Move
icon. By reordering rows in the Conditions area you can perform operations on
condition cells at the desired granularity. Thus, the move operations can assist you
when you want to split, merge, or assign certain values that might only be appropriate
at a particular level in the tree, depending on the location of a condition cell or
depending on the location of the parent, children, or siblings of a condition cell.

5.1.2 Understanding Decision Table Values

By default, when you create a condition row, Rules Designer creates a single condition
cell and assigns the "?" value to the cell. A condition cell with the value "?" indicates
that the value of the cell is undefined in the bucketset. For example, Figure 5-5 shows
a "?" value for Driver.age.

Figure 5-5 Sample Decision Table Showing Undefined in Condition Cell

QOradaRuJesl.ruJes =
vE 9 DO % @

& Fact

;f e # Ruleset 1 Yiew: [DecisionTablel - 4 - R ‘

5z Functions

¥ = DecisionTable1
() Globals A
&7 Bucketsets C1:|:__i] driver_ages d PR avw BH-ii-B 6D EE- @
. - Conditions R1 RZ
<D Links

& Decision Functions

Cz Driver.has_training true false
Rulesets EH' b4
@ Ruleset_1 - Actions
41 modify Driver{
eligible: i} true false
i
[Z2) Dictionary - CracleRulest .rules Display Mew Warnings First
& Message Dictionary Object Property
% Y RUL-05831: Select one or more walues For .., OracleRules]fRuleset_1 (DecisionTable 1/Condition[1]{ Condi...
o
=3
=
b
=
§ SDK Warnings: 1 Last Yalidation Time: 11:44:47 AM IST
Messages Extensions Business Rule Yalidation [=)

In the Decision Table Actions area you can specify that an action cell "do nothing". In
this case, deselect the action cell. When the action cell checkbox is unselected this
means do not perform this action when the pattern matches for the specified condition
values in the Decision Table. Thus, for each action cell you can specify whether the
rule associated with the action cell should activate the action, or does not perform the
action.

In a Decision Table, when a condition cell represents a bucket that has been removed

from the bucketset, Rules Designer provides a validation warning such as the
following:

RUL-05831: Decision table bucket reference not found

To fix this type of validation warning you can do one of the following:

s Define a value by double-clicking the condition cell and selecting one or more
buckets from the list.

Working with Decision Tables 5-7

Creating Decision Tables

= Add the missing bucket to the bucketset or associate the condition with another
bucketset that contains the missing bucket.

5.1.3 What You Need to Know About Decision Table Loops

A Decision Table loop occurs when the value for a condition row is changed by an
action. Loops can occur across the rules in a single Decision Table or spread over
several Decision Tables, or spread over rules and Decision Tables in the same ruleset.
Try not to create Decision Table actions that modify fact properties that are used in
Decision Table conditions. This could cause an infinite loop.

Note: You can prevent infinite loops by using the rule firing limit on
the containing decision function.

5.2 Creating Decision Tables
You add a Decision Table by performing several steps. These steps include:
s Create a Decision Table
= Add conditions to the Decision Table
» Add actions to the Decision Table

» Use Decision Table operations to validate, correct, and modify the Decision Table

5.2.1 How to Create a Decision Table

To work with a Decision Table you start by creating a Decision Table in a ruleset.

To create a decision table:

1. From Rules Designer select an existing ruleset from the rulesets tab or create a
ruleset by clicking Create Ruleset....

2. Click the Add icon and from the list select Create Decision Table, as shown in
Figure 5-6. This creates a Decision Table.

Figure 5-6 Adding a Decision Table

+ Ruleset_1 Wiew: |@ DecisianTable_3 vl - R

G Create Rule
it Create Decision Table

i T

¥ = DecisionTable 3 <cnter description s

<insert condition =

<insert ackion >

5-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating Decision Tables

Note: When you add a Decision Table the rules validation log
displays validation warnings. The Decision Table is not complete and
does not validate without warnings until you add conditions and
actions to the Decision Table.

5.2.2 How to Add Condition Rows to a Decision Table

A Decision Table includes a Conditions area where you specify Decision Table
condition rows. The condition rows determine the facts that the Oracle Rules Engine
matches at runtime. To create a Decision Table you need to add one or more condition
rows to the Decision Table.

To add condition rows to a decision table:

1.

From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to add conditions.

In the Decision Table area, from the list next to the Add icon select Condition.

In the Conditions area, double-click <edit-condition> to display the navigator to
select or enter an expression as shown in Figure 5-7.

Figure 5-7 Adding a Condition to a Decision Table

Ruleset 1
e

C1RL|

%%

Wigw! | DecisionTable_2

DecisionTable 2 <enter descriptions=

> 'I4

R av iR REEA

[~ =) Lacal List of values

Conditions

Q, value Cptions

=@ Driver

---n CurrentDate

----- @ eye_test

[¥] Fit: Columns Ta Width

Actions

<insert ackion:

Enter an expression by clicking in the navigator to select a variable or click the
Expression Builder icon to display the Expression Builder window. The
Expression Builder lets you build expressions.

Each condition row requires a bucketset from which to draw the values for each
cell. When the value you select has an associated global bucketset, then by default
the bucketset is associated with the condition row.

Repeat Step 2 through Step 5, as required to add additional condition rows in the
Decision Table.

Working with Decision Tables 5-9

Creating Decision Tables

To use a local bucketset or specify the bucketset for a decision table condition:

1. Each condition row requires a bucketset from which to draw the values for each
cell. When the value you select has an associated global bucketset, then by default
the bucketset is associated with the condition row.

2. If there is no global bucketset associated with the value, then after you add a
condition row to a Decision Table you need to specify either a Local List of Values
or a Local List of Ranges bucketset to associate with the condition row, or specify
an existing global bucketset. To add a bucketset for the condition, in the
Conditions area select the condition and then select from the Bucketset list to
associate a bucketset, as shown in Figure 5-8. The bucketset list includes available
global bucketsets of the appropriate type.

Figure 5-8 Specifying a Bucketset For a Condition Row in a Decision Table

Ruleset_1 Wigw: |@ DecisionTable_2 v| - B
y - DecisionTable 2 <enter description
C1 R1:|- |V||='_|LocaIList0F\-'aIues v| Vs apr 3% v v | B i R e @

'_| Local List of Yalues
=2) Lacal List of Ranges

A Condil

Cl Driver.age

X conflict pUZ driver_sges

5 Actions

=insert ackionz

Fit Columns To Width

3. If you do not specify a global bucketset, then you can create and use a local
bucketset by selecting either Local List of Values or Local List of Ranges to create
and use the specified type of bucketset.

4. Repeat Step 2 through Step 3, as required to define additional condition rows in
the Decision Table.

For more information on creating bucketsets, see Section 3.6, "Working with
Bucketsets".

5.2.3 How to Add Actions to a Decision Table

A Decision Table includes an Actions area where you specify Decision Table actions.
The actions determine actions for rules in a Decision Table.

To create a valid Decision Table you need to do the following:
1. Add actions to a Decision Table.

2. For each action cell, where specific values apply, set the values for the action cells.

5-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating Decision Tables

3. For each action cell, when the action does not apply to the rule, deselect the action
cell. By default when you add an action to a Decision Table, actions for all the rules
are unselected.

To add actions to a decision table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to add actions.

2. From the list next to the Add icon select Action and select an available action from
the list. Table 5-1 lists the available actions. For example, select Modify. Rules
Designer displays the Action Editor dialog as shown in Figure 5-9.

Figure 5-9 Adding an Action to a Decision Table

& Action Editor g|

Form: |Modify V|

Walue: | Modify Driver (eligible:?) |

Target:

Arguments:
Properky Type Walue Parameterized Zonskant
age int [Ld] L]
has_training boalean 4]]
eligible boalean true]
[] Always Selected
| Help | | (a4 || Cancel |

3. In the Action Editor dialog select the action target in the Target area. This specifies
the data model object the action applies to.

4. For the specified target, as needed to make the action do what is required, modify
the fields in the Arguments table. In the Action Editor dialog the Arguments table
includes the fields shown in Table 5-2.

Table 5-2 Action Editor Dialog Arguments Fields

Field Description

Property Displays the property names for the specified target.

Type Displays the type for the property.

Value Select the default value for the action from the list of available
actions. The specified value applies to either the entire action, as
the default value, or when a particular action cell is selected, the
value specified applies for that particular action cell.

Parameterized This specifies a parameterized value. A parameterized value

displays in a Decision Table action cell. When you select
parameterized value for a property, this generally means that
each rule supplies a different parameter value.

Working with Decision Tables 5-11

Creating Decision Tables

Table 5-2 (Cont.) Action Editor Dialog Arguments Fields

Field Description

Constant Select to specify a constant value.

5. In the Action Editor dialog, to select action cells for all the rules, select the Always
Selected checkbox.

6. Repeat Step 2 through Step 5, as required to define additional actions for the
Decision Table.

To set values for action cells in a decision table:

1. From Rules Designer, select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to specify action cell values.

2. Inthe Actions area, check that the appropriate action cells are selected. If the
Always Selected checkbox is specified in the Action Editor dialog, then all action
cells should be selected. If Always Selected is not selected, then select the
appropriate action cells using the action cell checkbox.

3. Inthe Actions area, enter the appropriate value for parameterized properties for
each selected action cell. To do this select the action cell property cell, and either
enter a value, select a value from the list, or click the Expression Builder icon to
use the Expression Builder dialog.

For more information on referring to a bucketset from a Decision Table, see
Section 3.6.2, "How to Define a List of Ranges Global Bucketset."

To deselect an action cell in a decision table:
1. PFrom Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want deselect an action cell.

2. In the Actions area, select the action cell and deselect the checkbox in the action
cell. You are not allowed to deselect action cell values when Always Selected is
selected for the action.

When you add actions, you may need to change the order of the actions. In Rules
Designer you can use the Move Down icon or Move Up icon to change the order of
actions.

5.2.4 How to Add a Rule to a Decision Table

You can add a rule to a Decision Table. Rules Designer adds a column for the rule to
the left of the existing rules and each condition cell is initialized to "?", which actually
means a validation error prompting you to populate the cell with relevant values.

To add a rule to a decision table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to add the rule.

2. From the list next to the Add icon, select Rule.

3. Enter values for the condition cells. Notice that the new rule is added as the first
rule of the Decision Table on the left and the other rules have moved as required
to keep the bucket values in their defined order.

4. Enter values for the action cells.

5-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating Decision Tables

Ordering Rules by Bucket

The Order Rules By Bucket checkbox under the Advanced Settings of a Decision
Table is selected by default. In this case, the Decision Table layout changes
automatically on adding new rules.

When you add a new rule to a Decision Table, the new rule is added as the first rule of
the Decision Table and the other rules move as required to keep the bucket values in
their defined order. This is because Order Rules By Bucket is enabled, which means
rule ordering in a Decision Table is set according to the relative position of buckets
associated with a condition expression. If Order Rules By Bucket is not enabled when
you add a rule, the new rule is added as the last rule of the Decision Table. In either
case, the cells in the new rule column have "?" symbols, indicating the cells do not
have values yet.

Note: When Order Rules By Bucket is selected, the rules are ordered
and duplicate rules (rules with exactly the same buckets) are
combined. So, you cannot add two rules without any buckets to a
Decision Table, because in that case, the rules are duplicates and
would immediately be combined. When Order Rules By Bucket is
deselected, then duplicate rules are allowed.

In addition, the Move Left and Move Right buttons pertaining to a rule column is also
enabled and you can reposition rules. The Span options also get enabled and you can
also cut, copy, or paste rules.

5.2.5 How to Define Tests in a Decision Table

You can define tests in a Decision Table. The tests must evaluate to true for any rule in
the decision table to fire. For more information about defining tests and working with
rule conditions, see Section 4.3, "Working with Rules".

To add tests to a Decision Table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to add the rule.

2. Click the Show Advanced Settings icon (double downward pointing arrows) next
to the Decision Table name. If Advanced Mode is selected, deselect the checkbox.

3. Just below the Decision Table name, click the <insert test> downward pointing
arrow.

4. Select any of the following options according to your requirement:
= simple test
= variable
= nested test
= not nested test

5. Click the left and the right <operand> to enter the operand values, and the
operator list to select an operator.

The added test is displayed in Figure 5-10.

Working with Decision Tables 5-13

Performing Operations on Decision Tables

Figure 5-10 Adding Test to a Decision Table

[] Advanced Mode [] Tree Made Rule Active [Logical Allow Gaps]

Priatity: [medium E| Conflick Palicy: |manual v| Effective Date! Always Valid
Drescription:
[v <operand> == =operand= |

=insert test=

5.3 Performing Operations on Decision Tables

After you create a Decision Table there are operations that you may want to perform
on the Decision Table, including the following;:

= Compact or split cells in a Decision Table
= Merge a condition or split a condition in a Decision Table
= Finding and resolving conflicts between rules in a Decision Table

= Find and fix gaps in a Decision Table

5.3.1 Introduction to Decision Table Operations

After you create a Decision Table you may want to modify the contents of the Decision
Table to produce a Decision Table that includes a complete set of rules for all cases, or
to produce a Decision Table that provides the least number of rules for the cases.

5.3.1.1 Understanding Decision Table Split and Compact Operations

The split and compact operations allow you to manipulate the contents of the
condition cells in a Decision Table.

The split table operation creates a rule for every combination of buckets across the
conditions. For example, in a Decision Table with 3 boolean conditions, 2 x2 x2 =8
rules are created. In a Decision Table with 32 boolean conditions, 2**32 ~ 2 billion rules
are created. Thus, you only use split table when the number of rules created is small
enough that filling in the action cells is feasible.

When you want to apply match conditions for the "do not care" values in a Decision
Table and create a match case for each cell, you use the split table operation.

Split can be applied to an entire Decision Table or to a single condition row.
Additionally, split may be performed on an individual condition cell.

Depending on what is selected in the Decision Table, the split operation can create
condition cells. Thus, using the split operation you can create rules in a Decision Table.
Table 5-3 summarizes the split operation for a selected condition cell, condition row, or
for a complete Decision Table.

5-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Performing Operations on Decision Tables

Table 5-3 Summary of Split Operation

Operator Description

Condition Cell Creates one sibling condition cell for each bucket value represented by the cell.

If the condition cell value is "do not care”, then the cell is split into one sibling cell for each
bucket in the bucketset that is not represented by a sibling condition cell, and "do not care" is
no longer represented.

Condition Row For each condition cell in the proceeding condition expression, create a sibling group which
contains a cell for each value in the bucketset. The effect of this operation is the same as
adding a "do not care" to each sibling group and calling split on each condition cell in each
sibling group.

Decision Table Same as calling split on each condition row in the Decision Table.

Depending on what is selected in the Decision Table, the compact table or merge cells
operations remove condition cells. The compact table operation can be applied to an
entire Decision Table. Additionally, the merge operation may be performed on sibling
cells or on an entire condition row. Thus, using compact table or merge you can
remove rules from a Decision Table. Table 5-4 summarizes the compact table and
merge operations.

Table 5-4 Summary of Merge Operation

Operator Description

Condition Cell Merging two or more condition cells adds all buckets in the cells to a single cell, and
removes all but one of the cells. If one of the cells represents "do not care", then the merged
cell represents "do not care".

This operation may merge action cells and this can create warnings for duplicate action
cells, such as, RUL-05847: Duplicate decision table action parameter.

Condition Row Combine all values in each sibling group into a single "do not care" cell for each condition
cell in the proceeding condition expression. The effect of this is the same as calling merge
on all cells in each sibling group.

This operation may merge action cells and this can create warnings for duplicate action
cells, such as, RUL-05847: Duplicate decision table action parameter.

Decision Table Compacts the Decision Table by merging conditions of rules with identical actions.

Split and merge are inverse operations when conflicting action cells are not associated
with the operation. In this case, without conflicting action cells, a merge operation
combines all the values from the siblings into one sibling, and discards the other
sibling condition cells, and as a result of merging the condition cells, when a Decision
Table contains action cells, the action cells are also merged. Thus, the merge operation
combines multiple condition cells into a single condition cell and adds all buckets to
the single cell.

When there are conflicting values for the action cells, a merge operation merges the
action cells in a form that requires additional manual steps. Thus, if two action cells
have conflicting parameters, after the merge the action cell contains multiple
conflicting parameter values. These conflicting values are appended to the action cell
and must be manually resolved by selecting and deleting the unwanted duplicate
parameters. For example, see Figure 5-11 that shows conflicting values in an action
cell.

An action cell that contains multiple values for a property is invalid. When you select
the action cell Rules Designer shows a popup window with checkboxes to allow you
to select a single value for the action cell. As shown in the validation log in

Figure 5-11, Rules Designer shows a validation warning until you select a single value.

Working with Decision Tables 5-15

Performing Operations on Decision Tables

Figure 5-11 Conflicting Properties to be Resolved for a Merged Action Cell

QDrivar.rules | 3]
v ©H] H0 @
Facts
9 # Ruleset 1 Yiew: |[E DecisionTable_t ME XS
f= Functions :
¥ 9. DecisionTable 1 <enter description=
(x) Globals Gt e
& {un]]
\ﬁ;{ Bucketsets Al RI1: true,false “i" X A ﬁ' Eg' & &0 1 ﬂ EB
D Links - Conditions R1 Rz R3
C1 Driver.age =z0 »>=20
<& Decision Functions CZ Driver.has_training true False
@_—_J Translations
Rulesets T %
&P Ruleserl X Conflict Resolution
= Actions
Al mediy Briverl ¥ L4 L3
eligible:)] true true
Select the values vou want ko keep:
Walug Keep %
trug [v]
false [¥]
e Fit Columns To Width
Design

| [ElBusiness Rule Yalidation - Log

=)

| [E3] Dictionary - Driver. rules Display New Warnings First

Message
M\ RUL-05847: The decision table action parameter "eligible” is a duplicate,

Dictionary Object
DrriverjRuleset_1/DecisionTable_1 /Action[1]/Action Cel[1]

Property

SDEK Warnings: 1 Last Yalidation Time: §:27:45 AM PDT
Messages Feedback Business Rule Yalidation [+

5.3.1.2 Understanding Decision Table Move Operations

You can move the conditions or actions in a Decision Table. The Move icons let you
reorder condition rows in the Conditions area and actions in the Actions area. Moving
conditions up or down may reorder visual display of the rules, but these operations
does not change the logic in any way. For example, if (x.a == 1l andx.b == 1)is

logically the same as if (x.b landx.a 1).

When you work with Decision Tables some operations only apply for condition cells
that are siblings. Using the Move icon you can reorder rows so that Decision Table
operations apply to the tree at the desired granularity. For example, when you want to
change the action of a condition cell for a single rule, then you need to move that
condition cell to the last row in the Decision Table Conditions area. For example,

consider the Decision Table shown in Figure 5-12.

5-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Performing Operations on Decision Tables

Figure 5-12 Rules in a Decision Table

Ruleset_1 Wiew: | DecisionTable_1 v| g - R |
¥ = DecisionTable_1 =enter description
i - |Edriver_ages v| Va - R A2 B R & il T
% Conditions R1 RZ2 R3 R4 RS RB R7 RE R9 R10 R11 R12
CZ Driver.eyve_test pass Fail glasses_required pass Fail glasses_required
C3 Driver.has_training true false true false true false true false true false true false

x Conflict Resolution

i Actions

A1 modify Driver(

eligible: 9] true false False fFalse true false true true false false true fFalse

Fit Colurmns To Width

To view this table with granularity for the Driver.age, move the Driver.age
condition from the first row to the third row, as shown in Figure 5-13.

Figure 5-13 Decision Table After Move Down with Age Condition Last

Ruleset_1 Wig |@DecisionTable_1 v| - R

¥ = DecisionTable_1 <enter descriphion=

3 - | |5 driver_ages v| / 3 B A v -ﬁ—v ‘Ea’v B & FS‘E’ ﬂ Elﬂ
X Conditions R1 R2 R3 R4 R5 RE6 R7 RB R9 R10 R11 R12
Cl Driver.eve_test pass fail glasses_required

C2 Driver.has_training true false true False true false

X Conflict Resolution
- Actions
A1 modify Driver(
eligible:] true true false true false false False False true true false false

Fit Columns Ta Width

Now to make the Driver . age conditions "do not care" for the first two rules, where
the driver passes the eyesight test and has had driver training is true, you can easily
apply changes to these particular conditions when the Driver. age condition is in the
last row. Thus, in this table, it is easier to view and modify age related rules when
Driver.age is in the last row, with the finest granularity.

Working with Decision Tables 5-17

Performing Operations on Decision Tables

In general, the move operations can assist you when you want to split, merge, or
assign certain values that might only be appropriate at a particular level in the tree,
depending on the location of a condition cell, or depending on the location of the
parent, children, or siblings of a condition cell.

For actions in the Actions area, clicking Move Up or Move Down lets you reorder the
actions. Actions are ordered so that when multiple actions apply, the first action runs
before subsequent actions. Thus, using the Move Up or Move Down operation on an
action may be appropriate, depending on your application.

5.3.1.3 Understanding Decision Table Gap Checking

A gap is a "missing" rule in a Decision Table. A Decision Table has a gap if there is a
combination of buckets, one from each condition, that is not covered by an existing
rule. Rules Designer provides Gap Checking to check for gaps. When you click the
Gap Analysis icon, Rules Designer finds gaps and presents a dialog to fix any gaps
that are found.

You can choose to make existence of gaps a validation warning. When you deselect
Allow Gaps in the Advanced Settings area, the Decision Table reports a validation
warning when a gap is found. For more information, see Section 4.5, "Using Advanced
Settings with Rules and Decision Tables".

For example, using the Driver example if you create a gap by deleting the rule that
covers the case for Driver.age <20 and Driver.has_training false, and then
you click Gap Analysis, Rules Designer shows the Gap Analysis dialog as shown in
Figure 5-14. Clicking OK with the checkboxes selected adds either all rules or the
selected rules to the Decision Table (this example only shows a single rule to add).

Figure 5-14 Checking Gaps

Ruleset 1 Yiew: |@ DecisionTable_2 v| de - 3
¥ = DecisionTable_2 =enter description =
A1 R3: - Riav B f{-BIREE®
= Conditions R1 Rz R3
C1l Driver.age <z0 »=20
CZ2 Driver.has_training true true false
3 Gap Analysis E|
x Conflict Resolution o There is 1 missing rule in the decision table,
‘fou can add the missing rule to the decision table by selecting the checkbox in
the table header column,
Conditions [l
2 Actions Driver.age <20
41 modify Driver(Driver.has_training false
eligible: il I
[¥] Eit Columns To Width
| Help | | [s]4 | | Cancel

Gap checking generates different new rules for the following cases:

= Sibling rules: multiple missing sibling rules are added as a single new rule. For
example, consider a rule with two conditions, Driver.age and Driver .hair.
When there are two missing rules for different hair colors and the rules are
siblings, that is, they have a common parent, then gap checking shows a single
rule as shown in Figure 5-15.

5-18 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Performing Operations on Decision Tables

= Non-sibling rules: multiple missing non-sibling rules are added as individual new
rules. For example, when there are two different rules missing that do not have the
same parent, then gap checking provides two rules, as shown in Figure 5-16.

Figure 5-15 Gap Checking with Missing Sibling Rules

& Gap Analysis

There is 1 missing rule in the decision table,
et
‘ou can add the missing rule to the decision table by selecting the checkbaox in
the kable header columnn.
Conditions (|
Driver. age »=20
Driver, hair black, brown
[¥] Eit Columns Ta Width
| Help | [0]:4 | | Cancel

Figure 5-16 Gap Checking with Missing Non-Sibling Rules

e Gap Analysis E|
There are 2 missing rules in the decision table,
b
Flease select the rules vou want to add by selecting the checkboxes in the table
header columns.
Conditions O O
Driver, age <20 =20
Driver, hair brown black
[¥] Eit: Columns Ta Width
| Help | | [0]4 | | Cancel |

In both of these cases shown in Figure 5-15 and Figure 5-16 there are two missing
buckets, but for sibling rules the multiple buckets are combined in a single new rule.
Thus, in general gap checking suggests fewer more general rules in preference to
many more specific rules.

For sibling rules you can add multiple rules then edit each cell to pick the buckets you
want. Alternatively, you can use Find Gaps to add a rule and then split the cell with
multiple values, and delete the rules you do not want to keep.

5.3.1.4 Understanding Decision Table Conflict Analysis

The rules in a Decision Table can conflict. Two rules conflict when they overlap and
they have different actions. Two rules overlap when at least one of their condition cells
has a bucket in common. Overlap is common when a Decision Table contains "do not
care" condition cells. Overlap without conflict is common and harmless.

Rules Designer finds conflicts and you can see the conflicts in the Conflict Resolution
row in the Decision Table when you click Show Conflicts. How you handle and
resolve conflicts depends on the specified conflict policy. You can choose a conflict
policy or use the default manual conflict policy. When you set a conflict policy using
the Conflict Policy option in the Advanced Settings area, Rules Designer sets the

Working with Decision Tables 5-19

Performing Operations on Decision Tables

5-20

conflict policy for the Decision Table. The Conflict Policy specifies the Decision Table

conflict policy and is one of the following;:

= manual: Conflicts are resolved by manually specifying a conflict resolution for

each conflicting rule.

= auto override: Conflicts are resolved automatically using an override conflict
resolution when this is possible, using the Oracle Business Rules automatic conflict

resolution policies.

= ignore: Conflicts are ignored.

For more information, see Section 4.5, "Using Advanced Settings with Rules and
Decision Tables". For example, Figure 5-17 shows a Decision Table with conflicting
rules that you resolve with the default manual conflict policy.

Figure 5-17 Decision Table Showing Conflicting Rules in the Conflicts Area

QDrivar.ruJes]
Bl 8§ el o @
& : =
[PRuleset 1 Mg | 4 DecisionTable_1 '| “ﬂ' -
52
) ¥ = DecisionTable 1 <enter description
7 2Rl (v [55) driver_ages - Z F-R av H-E-RBRRE-@
D - Conditions Rl Rz R3 R4
Cl Driver.has_training true false
@/ |[c2 Driver.age <20 >=20 <20 -]
x Conflict Resolution
(4} Conflict Rt R3
< Actions
Al modify Driver|
eligible: i} true true False true
c Fit Colurns To YWidth
Dresign
' [E]Business Rule validation - Log E]l
(2] Dickionary - Driver rules Display New Warnings First
Message Dictionary Object Property
1 RUL-05851: The decision table has unresalved conflicks, DriverfRuleset_1{Decision Table{DecisionTable_1)
SDK Warnings: 1 Last Yalidakion Time: 11:26:17 AM PDT
Messages Business Rule Yalidation Extensions Feedback A=)

By clicking on the cells in the Decision Table Conflict Resolution area Rules Designer
lets you resolve conflicts between rules as follows:

= Opverride (Override and OverriddenBy): You override one rule with the other.
Override specifies that one rule fires. Override is a combination of prioritization
and mutual exclusion. Prioritization is transitive and not symmetric. Mutual

Oracle Fusion Middleware User's Guide for Oracle Business Rules

Performing Operations on Decision Tables

exclusion is both transitive and symmetric. If A overrides C and B overrides C,
then A or B runs before C but only one of A, B, or C runs.

s Run Before (RunBefore and RunAfter): You prioritize the rules. Run before lets
the two rules fire in a prescribed order. Prioritization is transitive but not
symmetric. That is, if A runs before B runs before C, then A runs before C but B
does not run before A. This uses a Decision Table runBefore list specifying that the
rule that runs before has a higher priority than rules in the list.

= Ignore (NoConflict): You OK the conflict. Ignore lets the two rules fire in arbitrary
order. For example, consider the following conflicting rules in a decision table:

rulel: everybody gets a 10% raise (as specified with a do not care value in a
decision table condition cell)
rule2: employee with Top Performer set to true gets a 5% raise

In these rules, if rule2 overrides rulel, then a top performer gets a 5% raise, and
everyone else gets a 10% raise. However, in this case, you would like to have both
rules fire. Because it does not matter which rule fires first, and there is no conflict,
then a top performer gets a 15.5% raise either way. In this case, use the NoConflict
list to remove the conflict. Note that no conflict is what you get with IF/THEN
rules with equal priorities, only you are not warned of a conflict and you have to
think carefully if you want one rule to override the other.

Figure 5-18 shows the Rules Designer Conflict Resolution dialog shown when you
select a conflicting rule in the Conflict Resolution area. This dialog lets you resolve
conflicts between rules by selecting overrides, prioritization with RunBefore or
RunAfter options, and a NoConflict option.

Working with Decision Tables 5-21

Performing Operations on Decision Tables

Figure 5-18 Using the Decision Table Conflict Resolution Dialog

QDr.iver.ruJes E]
Qv 9ER B0 @
9 Ruleset 1 vigw: |28 DecisionTable_1 | - ¥
PRty e ek ot
Ed
) ¥ = DecisionTable 1 =enter description =
& +-Riov B-li-RRIEE- W
D - Conditions R1 RZ R3 R4
Cl Driver.has_training true False
Q CZ Driver.age <z0 =20 <20
@ .
7Y & Conflict Resolution
X Cor] Below are the rules that conflict with rule R3 and the conflict resolution
1) Conflict methods ko resolve possible conflict occurrances. Ta change the resolution R3
i, method, please click the Resalution calumn and select the method vou would
like: ko use ko resolve the conflick,
Rule: R3 |
Conflicting Rule Resolution
= | Canflict =]
Al modif
eligil uoConfiict False true
Cverride
OverriddenBy
FunEefore
Fundfter
Help (0] 4 | | Cancel
c Fit Colurns To Width
Design
. [Eleusiness Rule Yalidation - Log E]]
[E3] Dictionary - Dtiver ules Display New Warrings First
Message Dictionary CObject Property
/M RUL-05851: The decision table has unresolved conflicts, Driver/Ruleset_1{Decision Table{DecisionTable_1)
SDK Warnings: 1 Lask Yalidation Time: 11:26:17 AMPDT
Messages Business Rule Yalidation Extensions Feedback =

You can use the Decision Table Advanced Settings Conflict Policy auto override
option to specify that, where possible, conflicts are automatically resolved. The
automatic override conflict resolution policy specifies that a special case overrides a
more general case. For more information, see Section 4.5, "Using Advanced Settings
with Rules and Decision Tables".

Thus, when there are conflicts in a Decision Table, you can do one or more of the
following to resolve the conflicts:

= Use auto override conflict resolution by selecting the Conflict Policy and then
auto override option in the Decision Table.

= Ignore conflicts by selecting the Conflict Policy and then ignore option in the
Decision Table.

s Use manual conflict resolution by selecting the Conflict Policy and then manual
option in the Decision Table and set Conflict Resolution for each conflicting rule in
the dialog by selecting cells in the Conflict Resolution area with the Show
Conflicts checkbox selected.

= Change the Decision Table to remove an overlap.

s Combine actions to remove conflicts.

5-22 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Performing Operations on Decision Tables

5.3.2 How to Compact or Split a Decision Table

Use the Compact Table and Split Table icons to compact or split cells in a Decision
Table. For more information, see Section 5.3.1.1, "Understanding Decision Table Split
and Compact Operations."

To compact a decision table:

1. In Rules Designer select a ruleset from the Rulesets navigation tab and select the
Decision Table to compact.

2. C(Click the Compact Table icon.

To split cells in a decision table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table to split.

2. Click the Split Table icon.

5.3.3 How to Merge or Split Conditions in a Decision Table

Use the merge condition and split condition operations to merge or split a condition in
a Decision Table. For more information, see Section 5.3.1.1, "Understanding Decision
Table Split and Compact Operations."

To merge a condition in a decision table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to merge a condition.

2. Inthe Conditions area, select the condition you want to merge.

3. Right-click, and from the list select Merge Condition.

To split a condition in a decision table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to split a condition.

2. In the Conditions area, select the condition you want to split.

3. Right-click and from the list select Split Condition.

5.3.4 How to Merge, Split, and Specify Do Not Care for Condition Cells

Use the condition cell operations to split a condition cell, to merge sibling condition
cells, or to specify a "do not care” value for a condition cell in a Decision Table. For
more information, see Section 5.3.1.1, "Understanding Decision Table Split and
Compact Operations."

To merge sibling cells in a condition in a decision table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to merge condition cells.

2. Select the sibling condition cells to merge.

3. Right-click, and from the list select Merge selected cells.
To split a cell in a condition in a decision table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to split a condition cell.

Working with Decision Tables 5-23

Performing Operations on Decision Tables

2. Select the cell to split.
3. Right-click, and from the list select Split selected cell.

To specify a "Do Not Care" value for a cell in a condition in a decision table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to set the "do not care" value.

2. Select the appropriate condition cell.

3. Right-click, and from the list select Do Not Care.

To select all buckets to specify a "Do Not Care" value for a cell in a condition:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to set the "do not care" value.

2. Select the appropriate condition cell.

3. Double-click, and from the list select all the available checkboxes for all possible
values.

5.3.5 How to Perform Decision Table Gap Checking

A gap is a "missing" rule in a Decision Table. A Decision Table has a gap if there is a
combination of buckets, one from each condition, that is not covered by an existing
rule. Rules Designer provides Gap Checking to check for gaps. When you use this
operation Rules Designer presents a window to fix gaps. For more information, see
Section 5.3.1.3, "Understanding Decision Table Gap Checking".

You can choose to make existence of gaps a validation warning. When you deselect
Allow Gaps in the Advanced Settings area, the Decision Table reports a validation
warning when a gap is found. For more information, see Section 4.5, "Using Advanced
Settings with Rules and Decision Tables".

To perform decision table gap checking:
1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to perform.

2, Click the Gap Analysis icon.

5.3.6 How to Perform Decision Table Manual Conflict Resolution

The rules in a Decision Table can conflict. Two rules conflict when they overlap and
they have different actions. Two rules overlap when at least one of their condition cells
has a bucket in common. For more information, see Section 5.3.1.4, "Understanding
Decision Table Conflict Analysis".

To perform manual decision table conflict resolution:
1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to check conflicts.

2. Set the conflict policy to manual (this is the default conflict policy). For more
information, see Section 5.3.1.4, "Understanding Decision Table Conflict Analysis".

3. In the Conditions area, in the conflicts area, when conflicts exist for each rule with
a conflict double-click the appropriate condition cell to display the Conflict
Resolution dialog.

5-24 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

4. In the Conflict Resolution dialog, for each conflicting rule, in the Resolution field
select a resolution from the list.

5.3.7 How to Set the Decision Table Auto Override Conflict Resolution Policy

When you select the Advanced Settings option in a Decision Table, you can select that
Decision Table conflicts are automatically resolved using the auto override conflict
policy (this applies only when it is possible to resolve the conflict using the Oracle
Business Rules automatic conflict resolution policies). The automatic override conflict
resolution uses a policy where when there is a rule conflict a special case overrides a
more general case. For more information, see Section 5.3.1.4, "Understanding Decision
Table Conflict Analysis".

To select the auto override policy:
1. Select the rule or Decision Table where you want to use ignore conflict policy.

2. C(Click the Show Advanced Settings icon next to the rule or Decision Table name.

3. From the Conflict Policy option select auto override.

5.3.8 How to Set the Decision Table Ignore Conflicts Policy

When you select the Advanced Settings option in a Decision Table, you can select that
the Decision Table conflicts are ignored using the ignore conflict policy. The ignore
policy tells Oracle Business Rules to ignore conflicts in the Decision Table. For more
information, see Section 5.3.1.4, "Understanding Decision Table Conflict Analysis".

To select the ignore conflict policy:
1. Select the rule or Decision Table where you want to use the ignore conflicts policy.

2. C(Click the Show Advanced Settings icon next to the rule or Decision Table name.

3. From the Conflict Policy option select ignore.

5.4 Creating and Running an Oracle Business Rules Decision Table

Application

The Order Approval application demonstrates the integration of a SOA composite
application with Oracle Business Rules and the use of a Decision Table.

In this application a process is modeled that uses the decision component to:

= Process rules from XML inputs including: a credit score and the annual spending
of a customer, and the total cost of the incoming order.

= Provide output that determines if an order is approved, rejected, or requires
manual processing.

To complete this procedure, you need to:

= Obtain the Source Files for the Order Approval Application

» Create an Application for Order Approval

» Create a Business Rule Service Component for Order Approval
= View Data Model Elements for Order Approval

= Add Bucketsets to the Data Model for Order Approval

= Associate Bucketsets with Order and CreditScore Properties

Working with Decision Tables 5-25

Creating and Running an Oracle Business Rules Decision Table Application

= Add a Decision Table for Order Approval
- Split the Cells in the Decision Table and Add Actions
— Compact the Decision Table
- Replace Several Specific Rules with One General Rule
- Add a General Rule
» Check Dictionary Business Rule Validation Log for Order Approval
= Deploy the Order Approval Application
» Test the Order Approval Application

5.4.1 How to Obtain the Source Files for the Order Approval Application

The source code for Oracle Business Rules-specific samples and SOA samples are
available online in the Oracle SOA Suite samples page.

To work with the Order Approval application, you first need to obtain the order.xsd
schema file either from the sample project that you obtain online or you can create the
schema file and create all the application, project, and other files in Oracle JDeveloper.
You can save the schema file provided in Example 5-1 locally to make it available to
Oracle JDeveloper.

Example 5-1 shows the order . xsd schema file.

Example 5-1 Order.xsd Schema

<?xml version="1.0" 2>
<schema attributeFormDefault="qualified" elementFormDefault="qualified"
targetNamespace="http://example.com/ns/customerorder"
xmlns:tns="http://example.com/ns/customerorder"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<element name="CustomerOrder">
<complexType>
<sequence>
<element name="name" type="string" />
<element name="creditScore" type="int" />
<element name="annualSpending" type="double" />
<element name="value" type="string" />
<element name="order" type="double" />
</sequence>
</complexType>
</element>
<element name="OrderApproval">
<complexType>
<sequence>
<element name="status" type="tns:Status"/>
</sequence>
</complexType>
</element>
<simpleType name="Status">
<restriction base="string">
<enumeration value="manual"/>
<enumeration value="approved"/>
<enumeration value="rejected"/>
</restriction>
</simpleType>
</schema>

5-26 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

5.4.2 How to Create an Application for Order Approval

To work with Oracle Business Rules, you first create an application in Oracle
JDeveloper.

To create an application for order approval:
1. In the Application Navigator, click New Application.

2. In the Name your application dialog, enter the name and location for the new
application.

a.

In the Application Name field, enter an application name. For example, enter
OrderApprovalApp.

In the Directory field, specify a directory name or accept the default.

In the Application Package Prefix field, enter an application package prefix,
for example com. example.order.

The prefix, followed by a period, applies to objects created in the initial project
of an application.

For a SOA composite with Oracle Business Rules, in the Application Template
area select SOA Application for the application template. For example, see
Figure 5-19.

Click Next.

Figure 5-19 Adding the Order Approval Application

& Create SOA Application - Step 1 of 3

Name your application

),\ Application Name

’]‘ Project Marme

Application Marne:

| CrderApprovaldpp |

Directary:

|C:'I,JDeveI0per'l,mywork'l,OrderP.pprovalP.pp || Browse, ., |

Application Package Prefix:

|c0m.example.order |

Application Template:

Java Deskbop Application (ADF)
Creates a databound rich client application. The application consists of one project
fFor the client {ADF Swing), and another praject far the ADF Model {ADF Business
Components).

Java EE Web application
Creates a databound web application, The application consists of one project for the
wigw and controller components (J5F), and another project for the data model (EJB
session beans and JPA entitizs),

504 Application
Creates a SOA (service-oriented architecture) application. The application consists of
one SO& project for the S04 composite, components, and adapters,

| Help | | Next = J| Finish || Cancel |

3. In the Name your project page enter the name and location for the project.

a.

b.

In the Project Name field, enter a name. For example, enter OrderApproval.
Enter or browse for a directory name, or accept the default.

For an Oracle Business Rules project, in the Project Technologies area ensure
that SOA, ADF Business Components, Java, and XML are in the Selected area
on the Project Technologies tab, as shown in Figure 5-20. If an item is missing,

Working with Decision Tables 5-27

Creating and Running an Oracle Business Rules Decision Table Application

select it in the Available pane and add it to the Selected pane using the Add
button.

Figure 5-20 Adding a Project to an Application

& Create SOA Application - Step 2 of 4

Name your project

e Project Name

T Project Java Settings r Project Technologies |/ Generated Components |/ Associated Libraties |

Project Mame: | Orderapproval |

Application Mame

Directory: |C:'l,JDeveloper'l,mywork‘l,OrderF\pprovalApp'l,OrderApproval || Browse. .. |

Available: Selected:
Javabeans

J5F ADF Business Components
J5P and Servlets 1ava

J5P fFor Business Components L
Mobile BN
Skruts p | 2 |
Swing AT <
TopLink.

LML

Web Services

X501 Documents

Technology Descripkion:

#30L documents combine XML (Extensible Markup Language) and S0L (Structured
Query Languane) ko provide a language- and database-independent means for

Help < Back Mext = Finish Cancel
) | | | ||)

4,

Click Finish.

5.4.3 How to Create a Business Rule Service Component for Order Approval

After creating a project in Oracle JDeveloper you need to create a Business Rule
Service component within the project. When you add a business rule you can create
input and output variables to provide input to the service component and to obtain
results from the service component.

To use business rules with Oracle JDeveloper, you do the following:

Add a business rules service component
Create input and output variables for the service component

Create an Oracle Business Rules dictionary in the project

To create a business rule service component:
1.

In the Application Navigator, in the OrderApproval project expand SOA Content
and double-click composite.xml to launch the SOA composite editor (this may
already be open after you create the project).

From the Component Palette, drag-and-drop a Business Rule from the Service
Components area of the SOA menu to the Components lane of the
composite.xml editor.

Oracle JDeveloper displays a Create Business Rules page, as shown in Figure 5-21.

5-28 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-21 Adding a Business Rule Dictionary with the Create Business Rules Dialog

® Create Business Rules @

Business Rule

A business rule defines or constrains one aspect of your business that is intended ko assert business @
structure or influence the behavior of your business,

General | Advanced |
(#) Create Dictionary () Impart Dictionary

Specify the name and package For the dictionary that will be created.

Mame: | OracleRules1|

Package: | orderapproval

Project: |C:'l,JDeveIoper'l,mywork'l,OrderApprovaIApp'l,OrderApproval'l,OrderApproval.jpr |

InputsfOukputs:

+ Xt 3

Direction

Marne Type

3. Toadd an input, from the list next to the Add icon select Input to enter input for
the business rule.

4. In the Type Chooser dialog, click the Import Schema File... icon. This displays the
Import Schema File dialog, as shown in Figure 5-22.

Figure 5-22 Import Schema File with Type Chooser

C& Type Explorer

- [Froject Schema Files

& Import Schema File

Copy ta Project

IYD9=|

[] Show Detailed Node Infarmation

Cancel

5. Inthe Import Schema dialog click Browse Resources to choose the XML schema
elements for the input variable of the process. This displays the SOA Resource
Lookup dialog.

Working with Decision Tables 5-29

Creating and Running an Oracle Business Rules Decision Table Application

6. In the SOA Resource Lookup dialog, navigate to find the order . xsd schema file
and click OK.

7. In the Import Schema File dialog, make sure Copy to Project is selected, as shown
in Figure 5-23.

Figure 5-23 Importing the Order.xsd Schema File

Q Type Explorer

U_J Project Schema Files

& Import Schema File

LRL: |yworkjOrdernpproval.ﬂpp,l’OrdernpprovaI,l'xsd,l’Order.xsd |

Copy to Project

Type: | |

[Show Detailed Node Information

8. In the Import Schema File dialog, click OK.

9. If the Localize Files dialog displays, click OK to copy the schema to the composite
process directory.

10. In the Type Chooser, navigate to the Project Schemas Files folder to select the
input variable.

For this example, select CustomerOrder as the input variable.

11. On the Type Chooser window, click OK. This displays the Create Business Rules
dialog, as shown in Figure 5-24.

5-30 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-24 Create Business Rules Dialog with CustomerOrder Input

® Create Business Rules @

Business Rule

A business rule defines or constrains one aspect of your business that is intended ko assert business @
structure or influence kthe behavior of your business,

General || Advanced |
(#) Create Dictionary () Import Dictionary

Specify the name and package For the dictionary that will be created.

Marme: | OracleRules1

Package: | orderapproval

Project: |C:'l,JDeveIoper'l,mywork'l,OrderApprovaIApp'l,OrderApproval'l,OrderApproval.jpr |

InputsfOutputs: +' Xetd
Direction Mame Type
Input CustomerCrder {http:) hanner, customer . comynsfcu. .

|:| Expose as Composite Service

e]

| oK “ Cancel |

12. In a similar manner, add the output fact type OrderApproval from the imported
order.xsd.

13. In the Create Business Rules dialog, select Expose as Composite Service, as shown
in Figure 5-25.

Figure 5-25 Create Business Rules Dialog with Input and OrderApproval Output

Create Business Rules

Business Rule

& business rule defines or constrains one aspect of your business that is intended ko assert business @
structure of influence the behavior of your business,

X

General [Advanced

(3) Create Dictionary () Import Dickionary

Specify the name and package for the dictionary that will be created,

Marme: | OracleRules1

Package: | orderapproval

Project: |C:'l,JDeveloper'l,mywork'l,OrderP.pprovaIP.pp'l,OrderP.pproval'l,OrderApprovaI.jpr |

Inputsfoukputs: - X &+ 3
Direction Mame Type

Input CustomerCrder {http: e, customer, comynsfcustomerorder o ustomerOrder

Cutput Orderdpproval Jhttp: e, customer, comjnsjcustomerorder horderApproval

Expose as Composite Service

Help |

K i Cancel |

14. Click OK. This creates the Business Rule component and Oracle JDeveloper shows
the Business Rule in the canvas workspace, as shown in Figure 5-26.

Working with Decision Tables 5-31

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-26 Business Rules Component in OrderApproval Composite

= AutoloanProcess . bpel | \Orderfpprovaldpp. jws D{Ecomposite.uml E]
FLWEEXD GGHBFD Composite! SOAComposite
Exposed Services Components External References
: = ® ® OracleRules1
OracleRules1_...
Operations:

callFunctionStat...
callFunctionStat...

Design | Source | Hiskary

The business rule service component enables you to integrate your SOA composite
application with a business rule. This creates a business rule dictionary and enables
you to execute business rules and make business decisions based on the rules.

5.4.4 How to View Data Model Elements for Order Approval

Before adding rules you need to create the Oracle Business Rules data model. The data
model contains the business data definitions (types) and definitions for facts that you
use to create rules. For example, for this sample the data model includes the XML
schema elements from order . xsd that you specify when you define inputs and
outputs for the business rule activity.

At times when you work with Rules Designer to create a rule or a Decision Table, you
may need to create or modify elements in the data model.

To view data model elements for Oracle business rules:

1. Select the composite tab with the value composite.xml, and in the Components
lane select the business rule (this surrounds the component, OracleRules1 with a
dashed selection box).

2. Double-click the selection box to launch Rules Designer.
3. In Rules Designer select the Facts navigation tab.

4. Select XML Facts tab in the Facts navigation tab as shown in Figure 5-27.

5-32 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-27 Opening a Business Rules Dictionary with Rules Designer

& AukoLoanProcess, bpel | | OrderApprovalApp. jws Mt'acomposite.xml IODracleRulesl.rules | E]
Qv HE U0 % ®
J Facts
; B

#« Functions EML Facks: B +EIRS
(X) Clobals Alias Marne De 2ML Mame (GEnet:

CustomerOrder com.customer, ns, cuskomerar . Hlxsielement[@name='"C... orde...
7 Bucketsets
e corm_cuskamer _ns_custameror... com,customer,ns,customerar, ., orde...
20 Links Orderpproval com,customer, ns, cuskomerar ., Mlesielement[@name="... orde...
Q Fizzfizizr BnEisng Status com, customer, ns, cuskomerar JfxsisimpleType[@name, .. orde...

@3 Translations
Rulesets 3+ B
@ Rulesetl

ML Facts || JavaFacts | RLFacts || ADF-BC Facts

=

Design

5.4.5 How to Add Bucketsets to the Data Model for Order Approval

To use a Decision Table you need to define bucketsets that specify how to draw values
for each cell for the conditions that constitute the Decision Table. For this example the
bucketsets are defined with a list of ranges that you define in Rules Designer.

To add OrderAmount bucketset to the data model:

1.
2.
3.

In Rules Designer, select the Bucketsets navigation tab.
From the dropdown next to the Create BucketSet... icon, select List of Ranges.

In the Name field, enter OrderAmount (In Rules Designer be sure to press Enter
to accept the name).

Double-click the OrderAmount bucketset icon to display the Edit Bucketset
dialog.

Click Add Bucket to add a bucket.
Click Add Bucket again to add another bucket.

In the Range Bucket Values area, in the top Endpoint field enter 1000 for the
endpoint value.

In the Range Bucket Values area, for the middle bucket in the Endpoint field
enter 500 for the endpoint value.

In the Included Endpoint field for each bucket ensure the checkbox is selected, as
shown in Figure 5-28.

Working with Decision Tables 5-33

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-28 Adding the OrderAmount Bucketset

& Edit Bucketset - Ordersmount fXI

Mame: Orderfmount

Data Type: [i”t ']
[] Include Disallowed Buckets in Tests

Range Bucket Values: G ®
Endpoint Included Endpoint Allowed in Actions' R.ange Alias Description
= 1000 ==1000 »=1000

B Irfinity <500 <500

| Help | (04 | Cancel

10. Modify the Alias field for each value to High, Medium, and Low, as shown in
Figure 5-29.

Figure 5-29 Adding the OrderAmount Bucketset with Low Medium and High Aliases

& Edit Bucketset - Orderdmount rg|
Mame: Orderfmount
Data Type: [i”t 'l
[] Include Disallowed Buckets in Tests
Range Bucket Yalues: % G ®
Endpoint Included Endpoint Allowed in Actions' R.ange Alias Description

= 1000 ==1000 High

= 500 [500,, 10003 Medium
N T N N - N = R T A

| Help | (04 | Cancel

11. Click OK.

To add CreditScore bucketset to data model:
1. In Rules Designer select the Bucketsets navigation tab.

From the dropdown next to the Create BucketSet... icon, select List of Ranges.
In the Name field, enter CreditScore.

Double-click the CreditScore bucketset icon to display the Edit Bucketset dialog.
Click Add Bucket to add a bucket.

Click Add Bucket again to add another bucket.

In the top bucket, in the Endpoint field enter 750.

For the middle bucket, in the Endpoint field enter 400.

© ® N o a » 0 DN

In the Included Endpoint field for each bucket, ensure the checkbox is selected as
shown in Figure 5-30.

5-34 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-30 Adding the CreditScore Bucketset

& Edit Bucketset - CreditScore fz|
Marme: CreditScore
Data Type: |i“t '|
[] Include Disallowed Buckets in Tests
Range Bucket Yalues: % G ®
Endpoint Included Endpoint Allowed in Actions' R.ange Alias Description
= 750 =750 »=750
R N O - N N
B -Infinity =400 <400
| Help | | [s]4 | | Cancel |

10. Modify the Alias field for each endpoint value to solid for 750, avg for 400, and
risky for -Infinity as shown in Figure 5-31.

11. Click OK.

Figure 5-31 Adding the CreditScore Bucketset with Risky Avg and Solid Aliases

& Edit Buckeiset - CreditScore fz|
[Marme:
Data Type: |i”t v|
[] Include Disallowed Buckets in Tests
Range Bucket Yalues: G‘ &
Endpaint Included Endpaint Allowed in Actions Range Alias Description
= 750 »=750 salid
= 4 [400..750) avg
= -Infinity <400 risky
| Help | (a4 | | Cancel

5.4.6 How to Associate Bucketsets with Order and CreditScore Properties

To prepare for creating Decision Tables you can associate a bucketset with fact
properties in the data model. In this way condition cells in a Decision Table
Conditions area can use the bucketset when you create a Decision Table.

Note that the OrderApproval. status property is associated with the Status
bucketset when the OrderApproval fact type is imported from the XML schema. In
the schema, Status is a restricted String type and is therefore represented as an
enum bucketset. Rules Designer creates the status bucketset. For more information, see
Section 3.2.4, "What You Need to Know About XML Facts".

To associate bucketsets with Order and CreditScore properties:
1. In Rules Designer select the Facts navigation tab.

Working with Decision Tables 5-35

Creating and Running an Oracle Business Rules Decision Table Application

2. Select the XML Facts tab in the Facts navigation tab as shown in Figure 5-32.

Figure 5-32 Opening a Business Rules Dictionary with Rules Designer

&' AukoLoanProcess, bpel |__:|-|Ordernpprovalnpp.jws Mtg composite., xml [OﬂracleRulesl.rules | E]
B 5 @ 0 & @

g—) Facts

£« Functions ML Facks: ORI g g

(x) Clobals Alias Marne D¢ ¥ML Marme GEners

CustomerOrder com, customer, ns, cuskomerar Jlxsielement[@name="C... orde...

% Bucketsets

e corm_cuskomer_ns_customerar ... com.customer.ns.customerar. .. orde...

D Links Orderapproval com, customer, ns, cuskomerar Jlxsielement[@name="... orde...

Q Decision Functions

Status

com.customer, ns, customerar .,

JlxsisimpleType[@name. . orde...

% Translations

+ R

Rulesets

@ Rulesetl

WML Facts | JavaFacts | RLFacts | ADF-BC Facts

=

Design

3. Select the type you want to modify. For example in the XML Facts table
double-click the icon next to the CustomerOrder entry. This displays the Edit
XML Fact dialog.

4. Inthe Edit XML Fact dialog, in the Properties table in the Bucketset column select
the cell for the appropriate property and from the list select the bucketset you
want to use. For example, for the property order select the OrderAmount
bucketset, as shown in Figure 5-33.

5-36 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-33 Associating the OrderAmount Bucketset with CustomerOrder.order

& Edit XMLFact - com.customer. ns.customerorder. CustomerOrder,

Marme: | com.customer s, cuskomerorder, CustomerOrder |
Alias: CustomerQrder

Super Class: |Object |
Description:

¥ML Mame: |,l’,l'xs:eIement[@name:'CustomerOrder'] |

Generated From: |0rder.xsd |
Wisible
[] Support ¥Path Assertion

Attributes

|Pr0perties -
Alias Visible Mame Type Bucketset List Content Twpe

'J annualspending annualspending double

) creditscore creditsoore int

Q) name name String

(€ bt @ b fobe CrTTORS

QD walue wvalue String

Orderdmount

CreditScore

Fit Columns To Width

| Help | | Ok || Cancel |

5. In asimilar manner, for the property creditScore select the CreditScore bucketset.

6. Click OK.

5.4.7 How to Add a Decision Table for Order Approval

You create a Decision Table to process input facts and to produce output facts, or to
produce intermediate conclusions that Oracle Business Rules can further process using
additional rules or in another Decision Table.

While you work with rules you can use the rule validation features in Rules Designer
to assist you. Rules Designer performs dictionary validation when you make any
change to the dictionary. To show the validation log window, click the Validate icon or
select View>Log and select the Business Rule Validation tab. If you view the rules
validation log you should see warning messages. You remove these warning messages
as you create the Decision Table. For more information on rule validation see

Section 4.4.2, "Understanding Rule Validation".

To use a Decision Table for rules in this sample application you work with facts
representing a customer spending level and a customer credit risk for a particular
customer and a particular order. Then, you use a Decision Table to create rules based
on customer spending, the order amount, and the credit risk of the customer.

To add a decision table for order approval:
1. In Rules Designer, select Ruleset_1 under the Rulesets navigation tab.

2. Click the Add icon and from the list and select Create Decision Table.

Working with Decision Tables 5-37

Creating and Running an Oracle Business Rules Decision Table Application

3. In the Decision Table, click the Add icon and from the list select Condition.

4. In the Decision Table, double-click <edit condition>. Then, in the navigator
expand CustomerOrder and select creditScore. This enters the expression
CustomerOrder.creditScore in the Conditions column.

5. Again, in the Decision Table, click the Add icon and from the list select Condition.

6. In the Decision Table, in the Conditions area double-click the <edit condition>.
Then, in the navigator expand CustomerOrder and select order. This enters the
expression CustomerOrder .order.

7. Again, in the Decision Table, click the Add icon and from the list select Condition.
8. In the Decision Table, double-click <edit condition>.

9. In the navigator expand CustomerOrder and select annualSpending. In the text
entry area, add >2000 as shown in Figure 5-34.

Figure 5-34 Adding the Annual Spending Entry to a Decision Table

2 AutoloanProcess. bpel

By @) HO &8

| EElorderapprovalapp. jus

| ﬂﬂ:g compasite, xml

OOradeRuJesl wules

i)
©)

& Facts

Ruleset_1

Wiew: | DecisionTable_1

- - R

F« Functions

v = DecisionTable 1 <enter description s
(x) Globals -
- = It e =
&7 Bucketsets C3R1.|:|1||.-_ILocaILlstoF\n'aIues ~| 7 d- R av WA ST EB
- Conditions R1
Links i
& Cl CustomerOrder.creditScore,
Q Decision Functions C2 Custamerrdsr.order, -
@ Transiations £3_Customerorder annualspending >2000 - |
BUIEsks + ® CustomerCrder. annualSpending =2000 Ef"!
& Ruleset Q, value Options
B-@ CustomerOrder
a Orderdpproval
a CurrentDate
@ RL
---n Biglnteger
---n BigDecimal
[Calendar
@ Status
&
Design

10. Type Enter to accept the value, as shown in Figure 5-35. If you view the rules
validation log you should see the warning messages as shown in Figure 5-35. You
remove these warning messages as you modify the Decision Table in later steps.

5-38 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-35 Adding Conditions to the CustomerOrder Decision Table

= dutoLoanProcess. bpel | | OrderApprovaldpp. jws | ”ﬂg composite,xml IQDracleRules Lrules E]

Qv @®R B0 % @
Ruleset 1 View: [DecisionTable_1 v| 4 - ¥
£ -
¥ " DecisionTable 1 <enter description=
(x)
\f‘ﬁ 3 R1:|- [V||§ILocaI List of Yalues vl / nﬂ-. x S W ‘ﬁ', Eg, & & ?S‘h’ ﬂ @ﬂ
D = Conditions R1
Cl Customerrder.creditoare, =
@ |, ustomerQrder.ordsy, =
@
- Actions
<insert ackionz
C
Dresign
[E]Business Rule Yalidation - Log E]

[2) Dictionary - CracleRules!.rules

|E| Display Mew Warnings First

Message
RUL-05164: The fact bype "OrderApproval” is referenced, but is not asserted nor input,

RUL-05538: The decision kable has no actions,
RUL-05164: The fact type "OrderApproval” is referenced, but is not asserted nor input,

bbbl bk

RUL-05835: All rules have "do nok care” set for condition "CustomerOrder creditScore”, ..
RUL-05535: All rules have "do nok care” set for condition "CustomerCrder, order”, Select...
RIUL-055835: All rules have "do nok care” set for condition "CustomerOrder, annualSpendi. ..

Dickionary Object Fr
OracleRules1/Data Model/Decision ...
OracleRules1/Ruleset _1 /DecisionT...
OracleRules1/Ruleset 1 [DecisionT...
OracleRules1/Ruleset 1 /DecisionT. ..
OracleRules1fRuleset_1/Decision T...
OracleRules1/Data Model/Decision ...

SDK \Warnings: &
Messages EFEL Feedback Business Rule Yalidation

Last Validation Time: 3:19:17 PM PDT

=

To create an action in a decision table:

1. In the Decision Table click the Add icon and from the list select Action > Assert

New.

2. Inthe Actions area, double-click assert new(. This displays the Action Editor

dialog.

3. In the Action Editor dialog, in the Facts area select OrderApproval.

4. In the Action Editor dialog, in the Properties table for the property status select
the Parameterized checkbox and the Constant checkbox. This specifies that each

rule independently sets the status.

5. In the Action Editor dialog, select the Always Selected checkbox as shown in

Figure 5-36.

Working with Decision Tables 5-39

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-36 Adding an Action to a Decision Table with the Action Editor Dialog

& Action Editor ['5_(|

Form: | Assert Mew - |

Walue: | Assert Mew OrderApproval (stabus:?) |

Facts:

i CustomerOrder

Properties:
Properky Tvpe Yalue Parameterized Conskant
status Status

Always Selected

| Help | oK || Cancel

6. In the Action Editor dialog, click OK.

Next you need to add rules to the Decision Table and specify an action for each rule.

5.4.7.1 Split the Cells in the Decision Table and Add Actions

You can use the Decision Table split operation to create rules for the bucketsets
associated with the condition rows in the Decision Table. This creates one rule for
every combination of condition buckets. There are three order amount buckets, three
credit score buckets, and two boolean buckets for the annual spending amount for a
total of eighteen rules (3 x 3 x 2 = 18).

To split cells in a decision table:
1. Select the Decision Table.

2. In the Decision Table, click the Split Table icon and from the list select Split Table.
The split table operation eliminates the "do not care" cells from the table. The table
now shows eighteen rules that cover all ranges as shown in Figure 5-37.

These steps produce validation warnings for action cells with missing expressions.
You fix these in later steps.

5-40 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-37 Splitting a Decision Table Using Split Table Operation

+ Ruleset 1
A

Wigws | DierisionTable_1

R

¥

AlLR1
Cl
ca
C3

4l

DecisionTable 1 <enter description =

Conditions
CustomerOrder . creditScore

CustomerOrder, order

CustomerCrder.annualSpending =2000

Actions
assert new. QrderApnrovall

skatus: gl

Rl RZ PR3 R4
tisky
Lo Mediurn

B § §EEEENEEE NN N DD o

e | e | eem | e

RS | R&

High

ra

e

R7

Low

rrn

R&

true | false | true false | true false true false true False | true False true false | true false | true False

e

X Av B iR e EH®
R9 | R10 RI1 R1Z RI13 R14 RIS RI&6 RI7 RIS
avg salid
Medium High Low Medium High

e | e | e | oen | e | e | eew | e | ees | oo

To add actions for each rule in the decision table:

In the Decision Table you specify a value for the status property associated with
OrderApproval for each action cell in the Actions area. The possible choices are:
Status.MANUAL, Status.REJECTED, or Status.ACCEPTED. In this step you fill in
a value for status for each of the 18 rules. The values you enter correspond to the
conditions that form each rule in the Decision Table.

1.

In the Actions area, double-click the action cell for the rule you want to work with,

as shown in Figure 5-38.

Figure 5-38 Adding Action Cell Values to a Decision Table

+ Ruleset 1
AT

« @
>

ALRL:

-

wiew: |} DecisionTable_l

SR

DecisionTable 1 =enter description=

P A AR

Conditions

Cl CustomerOrder creditScore

C2 CustomerOrder,order

C3 CustomerCrder.annualSpending >2000 | true | False | true false | true

R1 Rz R3 R4 RS

tisky
Low Medium

RA

High

false:

R7

true

Law

Rd

false

T Riav BFi-R «FHE
R9 Ri0 | R11 | R1Z R13 RI14 RIS RI16 | RI7 RIS
avg =solid
Mediumn High Low Medium High

true | false | true | false | true | false | true | false | true | false

= Actions
AL gssertnem Orderdpproyall
skakus; i) PR P R R P P P P R P R T T R T T

I E
null
CrderApproval. status
Stakus, MANLAL
Stakus APPROYED
Status REJECTED

[#] Eit Columns Ta Width

2. In the list, select and enter a value for the action cell. For example, enter

Status.MANUAL.

Working with Decision Tables 5-41

Creating and Running an Oracle Business Rules Decision Table Application

3. For each action cell, enter the appropriate value as determined by the logic of your
application. For this sample application use the values for the Decision Table
actions as shown in Table 5-5.

4. Select Save All from the File main menu to save your work.

Table 5-5 Values for Decision Table Actions

Rule | C1 creditScore | C2 order | C3 annualSpending > 2000 | A1 OrderApproval status
R1 risky Low true Status.MANUAL
R2 risky Low false Status.MANUAL
R3 risky Medium | true Status.MANUAL
R4 risky Medium | false Status.REJECTED
R5 risky High true Status.MANUAL
R6 risky High false Status.REJECTED
R7 avg Low true Status.APPROVED
R8 avg Low false Status.MANUAL
R9 avg Medium | true Status .APPROVED
R10 | avg Medium | false Status.MANUAL
R11 | avg High true Status.MANUAL
R12 | avg High false Status.MANUAL
R13 | solid Low true Status .APPROVED
R14 | solid Low false Status.APPROVED
R15 | solid Medium | true Status .APPROVED
R16 | solid Medium | false Status.APPROVED
R17 | solid High true Status .APPROVED
R18 | solid High false Status.MANUAL

5.4.7.2 Compact the Decision Table

In this step you compact the rules to merge from eighteen rules to nine rules. This
automatically eliminates the rules that are not needed and preserves the no gap, no
conflict properties for the Decision Table.

To compact the decision table:
1. Select the Decision Table.

2. C(lick the Resize All Columns to Same Width icon.

3. Click the Compact Table icon and from the list select Compact Table. The compact
table operation eliminates rules from the Decision Table. The Decision Table now
shows nine rules, as shown in Figure 5-39.

5-42 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-39 Compacting a Decision Table Using Compact Table

Ruleset_1 Yiew: | DecisionTable_1 v| & - %
¥ “. DecisionTable_1 <enter description =
o =
+ R A v (B R e W
v Conditions R1 Rz R3 R4 RS R& R7 RE RS
Cl CustomerOrder.creditScore risky avg solid
C2 CustomerOrder.arder Lo Mediurm,High Low , Medium High Lo, Mediurm High

C3 CustomerCrder.annualSpending =2000

| [#] it Columnns Ta Width]

true False krue False true False

Actions

5.4.7.3 Replace Several Specific Rules with One General Rule

Notice that five of the nine remaining rules result in a manual order approval status.
You can reduce the number of rules by deleting these five rules. Note it is often best
practice to not do this (that is not replace several specific rules with one general rule).
You need to compare the benefits of having fewer rules with the added complexity of
managing the conflicts introduced when you reduce the number of rules.

To replace several specific rules with one general rule:
1. Select the Decision Table.
2. In the Decision Table, select a rule with OrderApproval status action set to

Status.MANUAL. To select a rule, click the column heading. For example, click
rule R2 as shown in Figure 5-40.

3. Click Delete to remove a rule in the Decision Table. Be careful to click the delete
icon in the Decision Table area to delete a rule in the decision table (there is also a
delete icon shown in the Ruleset area that deletes the complete Decision Table).

Working with Decision Tables 5-43

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-40 Deleting Rules from a Decision Table

Ruleset 1 iew: [DecisionTable_1 v - %
¥ “. DecsionTable_1 <enter description=

R AvIH TR eF W
R4 RS R7 RS R9

& Conditions

Cl CustomerOrder.creditScare av solid
C2 CustomerCrder.ordsr Low, Medium High Lo, Medium High
C3 CustomerOrder,annualspending =2000 true false S S trug False

i Actions
A1 assert new Orderdpprovall
status:) Status, Ma, .

Status.RED... Status.AP... Status.MA... Status.MA... Status.AP... Status APP... StatusMA...

|[#] Eit Columins To Width

4. Repeat these steps to delete all the rules with action set to Status .MANUAL. This
should leave the Decision Table with four rules as shown in Figure 5-41.

Figure 5-41 Decision Table After Manual Actions Removed

Ruleset_1 Wiew: |DecwsinnTabIe_1 v| 9 v B
¥ % DecisionTable_1 <enfer description =
o =
X av (R eTEHA
- Conditions R1 Rz R3 R4
C2 CustomerOrder.order Medium,High Low, Medium Lo, Medium
C3 CustomerQrder.annualSpending 2000 false true - true
2 Actions
41 assert new Orderdpproval
status:) Status,REJECTED Status, APPROVED Status, APPROVED Status. APPROVED
|[¥] Eit Colurins To Width]

5.4.7.4 Add a General Rule

Now you can add a single rule to handle the manual case. After adding this rule you
set the conflict policy with the option Conflict Policy auto override for conflict
resolution.

To add a general rule:
1. In the Decision Table, click the Add icon and from the list select Rule.

5-44 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

2. In the Conditions area, for the three conditions leave the "-" do not care value for
each cell in the rule.

3. Inthe Actions area, enter Status.MANUAL, as shown in Figure 5-42. Notice that
the Business Rule Validation log includes the warning RUL-05851 for
unresolved conflicts.

Figure 5-42 Decision Table with Conflicting Rules

& dutoLoanProcess.bpel |j0rdernpprovalnpp.jws Mlﬂcomposite.xml [QDradeRuJesl.rules E]
B H @ 9 & @
Ruleset 1 Yiew! | DecisionTable_1 - | 3= -
¥ ., DecisionTable 1 <enter description=
ALRS: X av B R 0FEHB
7 Conditions R1 R2 R3 R4 RS
C1 CustomerOrder,creditScore risky avg solid
CZ CustomerOrder, order Mediunn,High Law, Medium Lo, Mediurm High
C3 CustomerOrder. annualSpending =2000 false true - true
i Actions
A1 assert new Orderdpproval(
status:] Status REJECTED Status, APPROYED Status, APPROYED Status, APPROYED Stakus, MARLAL
|
Dresign
[E]Business Rule Yalidation - Log =0
[E5] Dickionary - OracleRules1.rules Display Mew Warnings First
Message Dictionary Object Property
A RUL-05851: The decision kable has unresalved conflicts, OracleRules1jRuleset_1fDecision Table{DecisionTable_1)
SDK Warnings: 1 Last Yalidation Time: 4:03:23 PM POT
Messages |BPEL | Feedback | Business Rule validation ODE]

4. Show the conflicting rules by clicking the Toggle Display of Conflict Resolution
icon, as shown in Figure 5-43.

Working with Decision Tables 5-45

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-43 Adding a Rule to Handle Status Manual

+ Ruleset 1 Wi ‘DecwsiUnTable_l v| - R

¥y = DecisionTable 1 =enter description =
Al RS: +v ® # Ev Egv & &0 “:‘S‘H’ j EB
o Conditions R1 R2 R3 R4 RS

£l CustomerCrder.creditScore risky avg solid -

C2 Customerdrder.order Medium,High L, Medium Low, Medium High

C3 CustomerOrdet.annualSpending >2000 false true true

X Conflict Resolution

) Conflict RS RS RS RS R1, RZ, B3, R4

it Actions
4l assert new OrderfApproval{

skatus: i Status,REJECTED Status. APPROYED Status. APPROVED Status. APPROVED

L[] Eit Columns To ‘Width

To enable the auto override conflict resolution policy:
1. In the Decision Table click Show Advanced Settings (the icon next to the Decision
Table name).

2. In the Conflict Policy list, select auto override. After adding the manual case rule
and selecting auto override, notice that the conflicts are resolved and special cases
override the general case, as shown in Figure 5-44.

Figure 5-44 Adding a Rule to Handle Status Manual with Auto Override Conflict Policy

+ Ruleset_1 View: | DecisionTable_1 '| T+ - %
L DecisionTable_1 <enter description =

[]Advanced Mode [] Tree Made Rule Active [Logical Allow Gaps
Priority; [medium |:| Conflict Palicy: |auto override '| Effective Dake: | Always Yalid

- % s H-fi-RAIREEHE-@

8 Conditions R1 Rz R3 R4 RS
Cl CustomerOrder,creditScore risky avg solid
C2 CustomerOrder.order Tediur, High Lo, Mediurn Lo, Medium High
C3 CustomerOrder.annualspending >2000 false true true
X Conflict Resolution
9 Override RS RS RS RS
iz Actions
41 assert new Orderdpprovall

status: i} Staktus REJECTED Skatus, APPR.OVED Status. APPROVED Skatus. APPROVED Skatus MANUAL

| [w] it Columins To Width

5-46 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

5.4.8 How to Check the Business Rule Validation Log for Order Approval

Before you can deploy the application you need to make sure the dictionary validates
without warnings. If there are any validation warnings you need fix any associated
problems.

To validate the dictionary:
1. In the Business Rule Validation Log, check for validation warnings.

2. If there are validation warnings, perform appropriate actions to correct the
problems.

5.4.9 How to Deploy the Order Approval Application

Business rules created in a SOA application are deployed as part of the SOA composite
when you create a deployment profile in Oracle JDeveloper. You deploy a SOA
composite application to Oracle WebLogic Server.

To deploy and run the order approval application:

1. If you have not started your application server instance, then start the Oracle
WebLogic Server.

2. Inthe Application Navigator, right-click the OrderApproval project and select
Deploy > OrderApproval > to > WLS Server Name.

Then the SOA Deployment Configuration dialog displays.
3. Click OK.
4. In the Authorization Request dialog, enter your authorization.

5. Click OK.

5.4.10 How to Test the Order Approval Application

After deploying the application you can test the Decision Table in the SOA composite
application with the Oracle Enterprise Manager Fusion Middleware Control Console.

To test the application:

1. Open the composite application in Oracle Enterprise Manager Fusion Middleware
Control Console, as shown in Figure 5-45.

Working with Decision Tables 5-47

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-45 Testing the Order Approval Application

& 52 Farm_base_domain oll§ 504 Composite + Page Refreshed Mar 25, 2009 5:11:51 PM PDT L2
3 application Deployments
E E3 504 Running Instances O | Tatal 3 | Active | Retire ... Shut Dawn, .. Test Sethings... * @ |E|

= 5% soa-infra {AdminSeryer)

Dashboard | Instances = Faults and Rejected Messages — Unit Tests | Policies
off AutoloanComposite [2.0 |

offf soaCompositel [1.0] @ e’
o2 SDACompositel [4.0 ElRecent Instances
]]
& (3 weblogic Comain Shows Only Running Instances [] Running 0 Total 3
[Metadata Repositories
[User Messaging Service Instance ID - Mame Conversation I0 Skate Skark Time
20003 1238025540540 FR Mar 25, 2009 5:04:24 PM
20007 1238025277455 g - Mar 25, 2009 4:55:00 PM
20008 1238024335533 "o Mar 25, 2009 4:535:06 PM
9| & Show al
ERecent Faults and Rejected Messages
Shiow only syskem Faults
Etror Message Recovery Fault Time Fault Location CSmDDSIte WEEES Logs
Mo Faulks found
& Show all
EComponent Metrics 2

2. Click Test.

3. In the Input Arguments area, select XML View. Replace the XML with the
contents of example Example 5-2.

Example 5-2 Sample Input for Testing Order Approval Application

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body xmlns:nsl="http://xmlns.oracle.com/OracleRulesl/OracleRulesl_DecisionService_1">
<nsl:callFunctionStateless name="OracleRulesl_DecisionService_1">
<nsl:parameterList xmlns:ns3="http://example.com/ns/customerorder">
<ns3:CustomerOrder>
<ns3:name>Gary</ns3 :name>
<ns3:creditScore>600</ns3:creditScore>
<ns3:annualSpending>2001.0</ns3:annualSpending>
<ns3:value>High</ns3:value>
<ns3:order>100.0</ns3:order>
</ns3:CustomerOrder>
</nsl:parameterList>
</nsl:callFunctionStateless>
</soap:Body>
</soap:Envelope>

4. Replace the values in the input shown in Example 5-2 as desired for your test.
5. Click Test Web Service.

6. In the Response tab, view the results. For example, for this input:

/OracleRulesl_DecisionService_1" xmlns:ns2="http://xmlns.oracle.com/bpel">
<resultList>
<OrderApproval :OrderApproval
xmlns:OrderApproval="http://example.com/ns/customerorder"
xmlns="http://example.com/ns/customerorder">

5-48 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating and Running an Oracle Business Rules Decision Table Application

<status>approved</status>
</0OrderApproval : OrderApproval>
</resultList>
</callFunctionStatefulDecision>

Working with Decision Tables 5-49

Creating and Running an Oracle Business Rules Decision Table Application

5-50 Oracle Fusion Middleware User's Guide for Oracle Business Rules

6

Working with Decision Functions

This chapter describes how to use a decision function to call rules from a Java
application, from a composite, or from a BPEL process.

The chapter includes the following sections:
s Section 6.1, "Introduction to Decision Functions"
= Section 6.2, "Working with Decision Functions"

s Section 6.3, "What You Need to Know About Decision Functions"

6.1 Introduction to Decision Functions
A decision function is a function that is configured declaratively.
A decision function contains the following declarations:
= input facts
= rulesets and nested decision functions
= output facts
A decision function performs the following operations:

= Asserts inputs as rule facts into the Oracle Business Rules Engine working
memory

= Runs rulesets configured in the current decision function and in nested decision
functions in order

= Returns output facts from the Oracle Business Rules Engine working memory

You can create a decision function to simplify the use of Oracle Business Rules from a
Java application or from a BPEL process. In a decision function the rules you want to
use can be organized into several rulesets, and those rulesets can be executed in a
prescribed order. Facts may flow to the first ruleset, and this ruleset may assert
additional facts that flow to the second and subsequent rulesets until finally facts flow
back to the decision function as decision function output.

6.2 Working with Decision Functions

A decision function is a function that is configured declaratively.

6.2.1 How to Add or Edit a Decision Function

You use Rules Designer to add a decision function.

Working with Decision Functions 6-1

Working with Decision Functions

To add a decision function:
1. In Rules Designer, select the Decision Functions navigation tab.

2. In the Decision Functions area, click the Create icon.

A new Decision Function is created and an Edit Decision Function dialog is
displayed, as shown in Figure 6-1.

Figure 6—1 Edit Decision Function Dialog

= Edit Decision Function Bl

Mame: @
Rule Firing Limit: |10000 [\

Rule Firing Limit |s Error

[] will Be Invoked As A Webservice

Check Rule Flow

[v] stateless
Description:

@
r Inputs r Initial Actions r Outputs r Rulesets & Decision Functions
+ X aw
Mame Fact Type Tree List Description
@] CustomerOrder.annualSpe. . O s
3
[aer | [ox [caneel |

3. Enter a name for the Decision Function in Name field.
4. In the Description field, optionally enter a description.

5. In the Rule Firing Limit field, select unlimited or a value. In some cases when
you are debugging a decision function, you may want to enter a value for the rule
firing limit. For more information, see Section 6.3.1, "What You May Need to
Know About Rule Firing Limit Option for Debugging Rules".

6. Select the Rule Firing Limit is Error. The system throws an error when the firing
limit is reached.

7. Select the appropriate decision function options:

= Will be invoked as a Web Service: select whether the decision function will
be invoked as a Web Service and provide the Web Service name.

s Check Rule Flow: when selected, this option specifies that the rule flow is
checked to ensure that facts of the appropriate type are either explicit inputs to
the decision function or are asserted by rules in the rule flow. However, when
this is selected this does not always produce useful information; there are
cases where facts can be asserted in Java code that uses the decision function,

6-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Decision Functions

10.

but this code might not be available at design time. In this case, validation
warnings may produced with Check Rule Flow selected may not be useful.

= Stateless: when selected specifies the decision function is stateless. For more
information, see Section 6.3.3, "What You May Need to Know About the
Decision Function Stateless Option".

In the Inputs tab, click Add to add inputs. For each input in the Inputs Table,
select the appropriate options:

= Name - enter an input name and press Enter or accept the default name.
s Fact Type - select the appropriate fact type from the list.

s Tree - When unselected, the input is asserted using the assert function.
When selected, the input is asserted using the assertTree function. When
selected it is expected that the input object or objects are the root of an object
tree that is connected in one-to-many relationships with other objects using
List properties. For more information, see Section 4.8, "Working with Tree
Mode Rules".

s List - When unselected, the input must be a single object and the assertion
applies only to that single input object. When selected, the input must be a
List of objects and the assertion applies to each object in the input List
(java.util.List).

s Description - Description of the input.

In the Outputs tab, click Add to add outputs. For each output in the Outputs
Table, select the appropriate options:

= Name - enter an output name and press Enter or accept the default name.
s Fact Type - select the appropriate fact type from the list.

»s Tree - When selected, this option sets a flag that enables certain design-time
decision function argument checking. For an output argument, this option has
no effect on runtime behavior. However, at design time in the case where
several decision functions are called in a sequence, it is useful to notate
explicitly that the output of one decision function is a tree. This implies that
the input of another decision function in the sequence is expecting a tree as an
input. For more information, see Section 4.8, "Working with Tree Mode Rules".

s List - When unselected the output is a single object. When selected the output
is a group of objects. For more information on the behavior of the List option
on an output argument, see Section 6.3.2, "What You May Need to Know to
About Decision Function Arguments".

s Description - Description of the output.

In the Initial Actions tab, you can add actions that could be used to change input
facts before they are asserted, change the ruleset stack, set the effective date, or
even assert output facts. These actions could be used instead of rules, or to "set up"
the environment for running rules.

Consider a situation where a decision function (DF1) calls another decision
function (DF2) using the Initial Actions tab. DF1 is configured to push Ruleset1 to
the ruleset stack. DF2 is configured to push Ruleset2. In DF1, before the initial
actions are executed, Ruleset1 is pushed to the ruleset stack. Then, when DF2 is
called, Ruleset? is also pushed. So when rules start running, rules from both
rulesets fire because of the ruleset stack. If you want to push Ruleset2 (because in
the initial actions, you are calling DF2), you can use initial actions in DF1 to clear

Working with Decision Functions 6-3

Working with Decision Functions

the ruleset stack before calling DF2, and push Ruleset1 on the stack after calling
DF2.

You can add any required action ranging from assert, call, modify to even
conditional actions such as i f, else, elseif,while, for, if (advanced), and
while (advanced) as shown in Figure 6-2.

Figure 6-2 Adding Initial Actions

[" Editpecsion Function x|

HName: |DecisionFunction1 @

Rule Firing Limit: |10000 |v|

Rule Firing Limit Is Error

[will Be Invoked As A Webservice
Check Rule Flow

Stateless

Description:

Inputs Initial Actions r Qutputs r Rulesets & Decision Functions

it
w CustomerCrder.annualSpending == 10000
<inzert test> ¥

then

assert new CustomerOrder { <edit properties>)
<inzert action>
elze if

<inzert test> ¥
then

aszign Rezultdiscount = 20
<inzert action>
elze

<insert action>

Help (514 || Cancel

Note: If decision function DF1 contains DF2 in the Rulesets &
Decision Functions tab, then DF2 may not have any initial actions.

The if (advanced) and while (advanced) conditional actions accept only
boolean values. For each of the action conditions, you can add different test form

types.

11. In the Rulesets and Decision Functions area, use the shuttle to move items from
the Available box to the Selected box.

12. Select an item in the Selected box, and click Move Up or Move Down as
appropriate to order the rulesets and the decision functions.

To edit an existing decision function:
1. In Rules Designer, select the Decision Functions navigation tab.

2. Select the decision function to edit and click the Edit icon or double-click the
decision function icon.

6-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

What You Need to Know About Decision Functions

3. Edit the appropriate decision function fields in the same manner as you would
when you add a decision function.

To change the order of inputs:
1. In Rules Designer, select the Decision Functions navigation tab.

2. Select the decision function to edit and click the Edit icon or double-click the
decision function icon.

3. Select the input argument you want to move. Click either Move Up or Move
Down to reorder the input argument.

To change the order of outputs:
1. In Rules Designer, select the Decision Functions navigation tab.

2. Select the decision function to edit and click the Edit icon or double-click the
decision function icon.

3. Select the output argument you want to move. Click either Move Up or Move
Down to reorder the output argument.

To edit a Decision Function

1. Click on the Decision Function tab.
Decision Functions are displayed as shown in Figure 6-3.

2. Select the Decision Function you want to edit and click the Edit icon.
Edit Decision Function dialog is displayed.

3. Make necessary changes using the process that you have used for adding a new
Decision Function.

Figure 6-3 Editing Decision Function

-\>OracIeRuIesl.ruIes x Qhﬂni:cdl-’are.fuks x J{IﬂF‘rejec!Z{cempes.ite.xm.'} x E] Ej
— . = P Bl
va 9o B0 & @|:
=
B Fact s
9 Facts iz Decision Functions E
_f,: Functions
(x) Globals Decision Functions: QpTest- & W P L R
{-ﬁ Bucketsets Mame eb Service Description

Q Decision Functions

%Translations
Rulesets Eﬂ' %
@ Rulesetl

6.3 What You Need to Know About Decision Functions

A decision function is a function that is configured declaratively.

Working with Decision Functions 6-5

What You Need to Know About Decision Functions

6.3.1 What You May Need to Know About Rule Firing Limit Option for Debugging Rules

The Rule Firing Limit allows you to set the maximum number of steps (rule firings)
that are allowed at runtime. Using this option and specifying a value other than
unlimited can help you debug certain rule design problems and in some cases might
help prevent java.lang.OutOfMemoryError errors at runtime. This is can be
useful when debugging infinitely recursive rule firings.

When you choose a value other than unlimited, and choose Rule Firing Limit is Error,
system throws an error once the limit is reached.

6.3.2 What You May Need to Know to About Decision Function Arguments

Oracle Business Rules generates a corresponding RL Language function for each
decision function.

The signature of a generated decision function is similar to:

function <name>(InputFactTypel inputl, ... InputFactTypeN inputN) returns List

In a decision function, each parameter is generated depending on the List option, with
the decision function input, as follows:

= Input argument, List option unselected: for FactTypei the input must be a single
object and the assertion applies only to that single input object.

= Input List option selected: List<FactTypei> the input must be a List of objects
and the assertion applies to each object in the input List (java.util.List).

The generated RL Language function includes calls either to assert or assertTree
for each argument, depending on the decision function Input option, Tree. When Tree
is unselected the input is asserted using the assert function. When Tree is selected,
the input is asserted using the assertTree function. When Tree is selected it is
expected that the input object or objects are the root of an object tree that is connected
in one-to-many relationships with other objects using List or array type properties.

For the decision function selected rulesets, as specified in the Rulesets and Decision
Functions area Selected box, the generated RL Language function includes a call to
run () with the selected rulesets in the selected ruleset stack order.

The generated RL Language function returns a list. The list has an element for each
decision function output in order. If the output is declared to be a list, then the
corresponding element is a list. However, if the output is not declared to be a list, then
the corresponding element is the output fact or null (if there is no output fact of the
declared type). If an output is not declared to be a list, and more than one output fact
of the specified type is found in the working memory of Oracle Business Rules Engine,
then an exception is thrown.

After you edit a decision function, for example, to change or add inputs and outputs,
the changes are visible in BPEL for new Business Rule activities. However, the changes
are not visible to existing Business Rule activities. For more information, see "Getting
Started with Oracle Business Rules" in the Oracle Fusion Middleware Developer’s Guide
for Oracle SOA Suite.

6.3.3 What You May Need to Know About the Decision Function Stateless Option

A decision function supports either stateful or stateless operation. The Stateless
checkbox in the Edit Decision Function dialog provides support for these two modes
of operation.

6-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

What You Need to Know About Decision Functions

By default the Stateless checkbox is selected which indicates stateless operation. With
stateless operation, at runtime, the rule session is released after each invocation of the
decision function.

When Stateless is deselected the underlying Oracle Business Rules object is kept in the
memory of the Business Rules service engine, so that it is not given back to the Rule
Session Pool when the operation is finished. A subsequent use of the decision function
re-uses the cached RuleSession object, with all its state information from the previous
invocation. Thus, when Stateless is deselected the rule session is saved for a
subsequent request and a sequence of decision function invocations from the same
process should always end with a stateless invocation.

Working with Decision Functions 6-7

What You Need to Know About Decision Functions

6-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

7

Working with Rules SDK Decision Point API

This chapter describes how to use Oracle Business Rules SDK (Rules SDK) to write
applications that access, create, modify, and execute rules in Oracle Business Rules
dictionaries (and work with the contents of a dictionary). It also provides a brief
description of Rules SDK and shows how to work with the Rules SDK Decision Point
APIL

The chapter includes the following sections:

» Section 7.1, "Introduction to Rules SDK and the Car Rental Sample Application"
m Section 7.2, "Creating a Dictionary for Use with a Decision Point"

» Section 7.3, "Creating a Java Application Using Rules SDK Decision Point"

= Section 7.4, "Running the Car Rental Sample"

= Section 7.5, "What You Need to Know About Using Decision Point in a Production
Environment"

» Section 7.6, "What You Need to Know About Decision Point and Decision Tracing"

For more information, see Oracle Fusion Middleware Java API Reference for Oracle
Business Rules.

7.1 Introduction to Rules SDK and the Car Rental Sample Application
The Rules SDK consists of four areas:
= Engine: provides for rules execution
= Storage: provides access to rule dictionaries and repositories
= Editing: provides a programatic way to create and modify dictionary components

= Decision Point: provides an interface to access a dictionary and execute a decision
function

Other than for explanation purposes, there is not an explicit distinction between these
areas in Rules SDK. For example, to edit rules you also need to use the storage area of
Rules SDK to access a dictionary. These parts of the Rules SDK are divided to help

describe the different modes of usage, rather than to describe distinct Rules SDK APIs.

7.1.1 Introduction to Decision Point API

The Decision Point API provides a concise way to execute rules. Most users create
Oracle Business Rules artifacts, including data model elements, rules, Decision Tables,
and rulesets using the Rules Designer extension to Oracle JDeveloper. Thus, most

Working with Rules SDK Decision Point APl 7-1

Introduction to Rules SDK and the Car Rental Sample Application

users do not need to work directly with the engine, storage, or editing parts of Rules
SDK.

To work with the Rules SDK Decision Point package you need to understand three
important classes:

s DecisionPoint:is ahelper class that follows the factory design pattern to create
instances of DecisionPointInstance. In most applications there should be one
DecisionPoint object that is shared by all application threads. A caller uses the
getInstance () method of DecisionPoint to get an instance of
DecisionPointInstance which can be used to call the defined Decision Point.

s DecisionPointBuilder: follows the Builder design pattern to construct a
Decision Point.

m DecisionPointInstance: users call invoke () in this class to assert facts and
execute a decision function.

The DecisionPoint classes support a fluent interface model so that methods can be
chained together. For more information, see

http://www.martinfowler.com/bliki/FluentInterface.html
A Decision Point manages several aspects of rule execution, including:

s Useoforacle.rules.rl.RuleSession objects

= Reloading of a dictionary when the dictionary is updated

To create a Decision Point in a Java application you need the following:

= Either the name of a dictionary to be loaded from an MDS repository or a
pre-loaded oracle.rules.sdk2.dictionary.RuleDictionary instance.

= The name of a decision function stored in the specified dictionary.

7.1.2 How to Obtain the Car Rental Sample Application

This chapter shows a car rental application that demonstrates the use of Rules SDK
and the Decision Point API. You can obtain the sample application in a ZIP file,
CarRentalApplication.zip. This ZIP contains a complete JDeveloper application
and project.

The source code for Oracle Business Rules-specific samples and SOA samples are
available online in the Oracle SOA Suite samples page.

To work with the sample unzip CarRentalApplication.zip into an appropriate
directory. The car rental application project contains a rules dictionary and several
Java examples using Rules SDK.

7.1.3 How to Open the Car Rental Sample Application and Project

The Car Rental sample application shows you how to work with the Rules SDK
Decision Point APIL

To open the car rental sample application:
1. Start Oracle JDeveloper.

2. Open the car rental application in the directory where you unzipped the sample.
For example, from the File menu select Open... and in the Open dialog navigate to
the CarRental Application folder.

3. In the Open dialog select CarRental Application.jws and click Open.

7-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Dictionary for Use with a Decision Point

4. In the Application Navigator, expand the CarRentalApplication, expand
Application Sources and Resources. This displays the Oracle Business Rules
dictionary named CarRental . rules and several Java source files.

7.2 Creating a Dictionary for Use with a Decision Point

The car rental sample uses the Rules SDK Decision Point API with either a pre-loaded
Oracle Business Rules dictionary or a repository stored in MDS. When you are
working in a development environment you can use the Decision Point API with the
pre-loaded dictionary signature. In a production environment you would typically use
a Decision Point with the MDS repository signature.

The CarRental dictionary is pre-defined and is available in the car rental sample
application.

To work with the Decision Point API you need to create a dictionary that contains a
decision function (the car rental sample application comes with a predefined
dictionary and decision function).

You perform the following steps to create a dictionary and a decision function:
s Section 7.2.1, "How to Create Data Model Elements for Use with a Decision Point"
s Section 7.2.2, "How to View a Decision Function to Call from the Decision Point"

s Section 7.2.3, "How to Create Rules or Decision Tables for the Decision Function"

7.2.1 How to Create Data Model Elements for Use with a Decision Point

You need the following to add to a decision function when you create an application
with a Decision Point.

= A dictionary containing data model elements that you use to create rules or
Decision Tables and when working with ADF Business Components fact types,
you need to add links for the Decision Point support dictionary. For more
information, see Chapter 2, "Working with Data Model Elements". For more
information, see Chapter 10, "Working with Oracle Business Rules and ADF
Business Components".

= A dictionary containing fact definitions. For more information, see Chapter 3,
"Working with Facts and Bucketsets".

To view the data model in the supplied car rental sample application:
1. In Rules Designer, click the Facts navigation tab.

2. Select the Java Facts tab, as shown in Figure 7-1.

The Java Facts tab shows four fact types imported, in addition to the fact types
provided as built-in to the dictionary.

The Driver Java Fact is imported from the Driver Java class in the project.
The Denial Java Fact is imported from Denial Java class in the project.

The LicenseType and VehicleType facts are imported from the nested enum
classes defined in the Driver class.

Working with Rules SDK Decision Point APl 7-3

Creating a Dictionary for Use with a Decision Point

Figure 7-1 Defined Java Facts for the Car Rental Sample Application

QEarRentaJ.ruJes =
EE I S S| ! @
‘B Facts
£« Functions Jdava Facts: B +/XS
(x) Clobals Alias Class Description
. i=» Denial oracle.middleware. rules. demo. carrental, Denial
7 Bucketsets = Driver oracle middleware, rules, demao. carrental Driver
D Links i» LicenseType oracle,middleware, rules. demo, carrental Driver$license. .,
 Decision Functions = WehiceType oracle. middleware. rules, demo. carrental Drivergiehicle. .
4 _ @y ActionType oracle rules, sdkZ decisionpoint, ActionType
3 ‘E_'—_JTranslatlons &y KeyChain oracle.rules, sdkZ, decisionpoint. KewChain
Rulesets + ® gy KeyedhctionType oracle rules, sdkZ decisionpoint. KeyedactionType
@ Ruleset] @y DecisionPoint oracle.rules, sdkZ, decisionpoint, DecisionPoink
i@y DecisionPointBuilder oracle rules, sdkz decisionpoint, DecisionPoint Builder
@y DecisionPointInstance oracle.rules, sdkZ, decisionpoint, DecisionPoint Instance
&y Obiect jawa.lang. Object
&y String java.lang. string
@ Biglnteger jawa.math.Biglnteger
@y BigDecimal java.math.BigDecimal
gy Calendar jawa.util. Calendar
&y “MliaregorianCalendar javas, xml datatype sMLGregorianCalendar
HML Facts | JavaFacts | RLFacts || ADF-BC Facts
[
Design

When you use a Decision Point with Rules SDK, you call a decision function in a
specified dictionary. The decision function that you call can contain one or more
rulesets that are executed as part of the Decision Point.

To view the ruleset in the supplied car rental sample application:
1. In Rules Designer, expand the CarRental Application.

2. In the CarRentalApplication, expand Resources.

3. Double-click the CarRental.rules.

7.2.2 How to View a Decision Function to Call from the Decision Point

When you work with the Decision Point API you use decision functions to expose an
Oracle Business Rules dictionary. For more information on decision functions, see
Chapter 6, "Working with Decision Functions".

To view the decision function in the car rental sample application:

1. In Rules Designer, click the Decision Functions navigation tab. This displays the
available decision functions in the CarRental dictionary, as shown in Figure 7-2.

7-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Dictionary for Use with a Decision Point

Figure 7-2 Car Rental Sample Decision Function

QEarRental.rules E]
Qv 9@ DO @

Facts Z
s Decision Functions

F« Functions
(x) Clobals Diecision Functions: T A 4

\.f'ﬁ Eucketsets MName Description ieb Service
<D Links CarRentalDecisionFunction O

Q Decision Functions

@_-_J Translations
Rulesets a3 %
@ Rulesetl

=

Design

2. Select the row with CarRentalDecisionFunction and double-click the decision
function icon. This opens the Edit Decision Function dialog as shown in
Figure 7-3.
The decision function Inputs table includes a single argument for a Driver fact
type.
The decision function Outputs table includes a single argument for a Denial fact
type.

The decision function Rulesets and Decision Functions area shows Denial
Rules:if-then in the Selected box.

Working with Rules SDK Decision Point APl 7-5

Creating a Dictionary for Use with a Decision Point

Figure 7-3 Car Rental Decision Function for the Car Rental Sample Application

& Edit Decision Function

Marme: _arR entalDecisionFunction |
Description: | |
Rule Firing Limnit: |unlimited |V|
[] will Be Invoked As A Webservice
Check Rule Flow
Stateless
= Inputs Eﬂ' X Aaw
Mame Fack Type Tree List
&1 driverinput Driver E El
= Dutputs XA
Mame Fack Type Tree Lisk
[denials Deniial EH

= Rulesets & Decision Functions

Available: Selected: A v
& Denial Rules: decision table 5P Denial Rules: if-then
2
L® |
<
K3
| Help | [o4 || Cancel

7.2.3 How to Create Rules or Decision Tables for the Decision Function

The car rental sample includes two rulesets, one with IF/THEN rules and another
containing a Decision Table. You can use either IF/THEN rules or Decision Tables or
both in your application if you are using a Decision Point.

To view the rules in the car rental sample application:
1. In Rules Designer click the Denial Rules:if-then ruleset, as shown in Figure 7—4.

7-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Dictionary for Use with a Decision Point

Figure 7-4 Ruleset with IF/THEN Rules for the Car Rental Sample Application

f« Functions

(x) Globals

7 Bucketsets

D Links

& Decision Functions

% Translations
Rulesets + x

@} Rulesetl

@} Denial Rules: if-

@} Denial Rules: dec...

=

Qfarkmtal.rules &3]
Qv 9 @0 @
(2 e + Denial Rules:if-then ¥ [|Filter On View: |<>IF,|’THEN Rules '| &+ - % A v

= ¥ under age
Rentals should not be made ta drivers under 21 per Renting Guidelines section 34.6

IF
Driver.age < Minimum driver age
<insert tesk>

THEN
assert new Denial { <add property = driver : Driver , reason : "under age, age was " + Driver.age + ", minimum age is " + Minimum driver age
call auditf rule : "under age", info ; "driver age less than minimum threshold For license number * + Driver JicenseMumber)
<insert action:=

= ¥ too many accidents
<enter description =

IF
Driver.previoushccidents = 5

<insert test =
THEN
assert new Denial { <add property = driver @ Driver , reason ; "too many accidents”)

<insert ackion:=

Design

The Denial Rules:if-then ruleset includes two rules:

= under age: this rule defines the minimum age of the driver. The rule compares the
Driver instance age property to the global Minimum driver age.If the driver
is under this age, then a new Denial fact is asserted. A call to the decision
function collects this Denial fact, as defined in its output. The rule also calls a
user-defined function, audit, to provide some auditing output about why the
Denial is created.

= too many accidents: this rule defines an upper threshold for the number of
accidents a driver can have before a rental for the driver is denied. The rule also
calls a user-defined function, audit, to provide some auditing output about why
the Denial is created.

To view the Decision Table in the car rental application:

1. In Rules Designer, click the Denial Rules:decision table ruleset, as shown in
Figure 7-5.

Working with Rules SDK Decision Point APl 7-7

Creating a Dictionary for Use with a Decision Point

Figure 7-5 Ruleset with Decision Table for the Car Rental Sample Application

(}EarRental.rules =
EE e S (!) @
& Facts + Denial Rules: decision table Wiew: | Dienial DT v| % -
F« Functions
*x W Denial DT <enter description =
(x) Globals [] Advanced Mode [|TreeMode [] Auto Conflict Resclution Rule Active [| Logical allow Gaps
s -
¥ e Priarity: | medium |V| Effective Date: Alwaws Walid
< Links -
b o =
= +Xiav iR BTER
Q Decision Functions
o = Conditions R1 RZ R3 R4 RS R& R7 RS [2%:]
% Translations C1 Driver.age <18 [18..40) =40
Rulesets 4 % CZ Driver.previousiccidents = <1 [1..5) ==5 <1 1.5 ==5

& Rulesetl 3 Driver.vehicleTvpe - - TRUCK,... |[MOTOR... - - TRIJCK, SPORTS, SEDAN

&P Denial Rules: if-

&P Denial Rules: dec... | Conflict Resolution

= Actions
A1 assert new Deniall O O O O
driver:
reason: il "under a... "higher ri... "too ma... "higher ri... "tooma...
e Fit Colurns To Width

Design

7.2.4 What You Need to Know About Using Car Rental Sample with a Decision Table

The car rental sample application includes the Denial Rules: decision table ruleset. To
switch to use a Decision Table in the supplied decision function sample, move the
Denial Rules:if-then from the Selected area in the decision function and add the
Denial Rules: decision table ruleset, which uses a Decision Table to define similar
rules, as shown in Figure 7-6.

7-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Java Application Using Rules SDK Decision Point

Figure 7-6 Decision Function for Car Rental Sample with Decision Table Ruleset

& Edit Decision Function

Marme: | CarRentalDecisionFunction |
Description: | |
Rule Firing Lirnit: |unlimited |v|

[] will Be Invoked As A Webservice
Check Rule Flow

[¥] gtateless
= Inputs Eﬂ' X Aaw
Mame Fack Type Tree List
&1 driverinput Driver E El
= Dutputs XA
Mame Fack Type Tree Lisk
[denials Deniial EH

= Rulesets & Decision Functions

Available: Selected: A v
& Denial Rules: if-then &P Denial Rules: decision kable
2
L®]
<
L)
| Help | [o4 || Cancel

7.3 Creating a Java Application Using Rules SDK Decision Point

When use Rules SDK in a development environment you of the option of using
Decision Point API with a pre-loaded dictionary. In a production environment you
typically use the Decision Point API with the MDS repository signature and the
dictionary is stored in MDS. For more information on using a Decision Point with, see
Section 7.5, "What You Need to Know About Using Decision Point in a Production
Environment".

The source code for Oracle Business Rules-specific samples and SOA samples are
available online in the Oracle SOA Suite samples page.

The CarRentalProject project includes the com. example.rules.demo package that
includes the car rental sample file,
CarRentalWithDecisionPointUsingPreloadedDictionary.java. The
project also includes several . java source files that support different variations for
using Decision Point. Table 7-1 provides a summary of the different versions of the car
rental sample.

For more information on working with the Rules SDK Decision Point API, see Oracle
Fusion Middleware Java API Reference for Oracle Business Rules.

Working with Rules SDK Decision Point APl 7-9

Creating a Java Application Using Rules SDK Decision Point

Table 7-1

Java Files in the Decision Point Sample CarRentalProject

Base Java Filename

Description

CarRental

CarRentalWithDecisionPoint

CarRentalWithDecisionPointUsi
ngMdsRepository

CarRentalWithDecisionPointUsi
ngPreloadedDictionary

CarRentalWithRuleSession

CarRentalWithRuleSessionPool

Denial

Driver

DriverCheckerRunnable

This is the base class for all of the examples. It contains constant values
for using the CarRental dictionary and a method createDrivers
which creates instances of the Driver class.

Contains a static attribute of type DecisionPoint and a method
checkDriver () thatinvokes a Decision Point with a specified instance
of the Driver class. This class includes these methods for the sample
application so that both the MDS repository and pre-loaded dictionary
examples can share the same checkDriver () implementation.

Contains an example of creating a Decision Point that uses MDS to
access and load the rule dictionary. In a production environment, most
applications use the Decision Point API with MDS.

Contains an example of creating a Decision Point from an instance of the
RuleDictionary class. This example also contains code for manually
loading the dictionary to create a RuleDictionary instance.

Contains an advanced usage of the Engine API that is documented
further in the comments.

Contains an advanced usage of the Engine API that is documented
further in the comments.

Contains the class that defines the Denial fact type used to create the
rules and Decision Table.

Contains the class that defines the Driver fact type used to create the
rules and Decision Table.

Contains the class which can be used as a thread for simulating
concurrent users invoking the Decision Point.

7.3.1 How to Add a Decision Point Using Decision Point Builder

To use a Decision Point you create a DecisionPoint instance using
DecisionPointBuilder, as shown in Example 7-1.

Example 7-1 Using the Decision Point Builder

static {
try {

// specifying the Decision Function and a pre-loaded
// RuleDictionary instance

m_decisionPoint =

new DecisionPointBuilder ()
.with (DF_NAME)
.with(loadRuleDictionary())
Jbuild();

} catch (SDKException e) {
System.err.println("Failed to build Decision Point: " +

e.getMessage()) ;

e.printStackTrace() ;

Example 7-1 shows the DecisionPointBuilder supports a fluent interface pattern,
so all methods can easily be chained together when you create a Decision Point. The
three most common methods for configuring the Decision Point with
DecisionPointBuilder are overloaded to have the name with (). Eachwith ()
method takes a single argument of type RuleDictionary, DictionaryFQN, or
String. The DecisionPointBuilder also supports similar set and get methods:

7-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Java Application Using Rules SDK Decision Point

getDecisionFunction (), setDecisionFunction (), getDictionary (),
setDictionary (), getDictionaryFQN (), setDictionaryFQN().

This chain shown in Example 7-1 includes the following steps:

1. The first step is to create a DecisionPointBuilder instance with code such as
the following:

new DecisionPointBuilder ()

2. Thewith() method using a String argument defines the name of the decision
function that the Decision Point executes. Calling this method is mandatory.

.with (DF_NAME)

The DF_NAME specifies the name of the decision function you define for your
application. For example for the sample car rental application DF_NAME is defined
in CarRental.java as CarRentalDecisionFunction.

3. Call only one of the other two with () methods. In this case the sample code uses
a pre-loaded Rule Dictionary instance, containing the specified decision function.
The 1loadDictionary () method loads an instance of RuleDictionary from a
file. Example 7-2 shows the 1oadDictionary () method. For more information,
see Section 7.3.2, "How to Use a Decision Point with a Pre-loaded Dictionary".

.with(loadRuleDictionary())

4. Call the build () method to construct and return a DecisionPoint instance.

The DecisionPoint instance is shared among all instances of the application, which
is why it is a static attribute and created in a static block. Another way of initializing
the DecisionPoint would be to initialize the m_decisionPoint attribute with a
static method that created and returned a DecisionPoint instance.

7.3.2 How to Use a Decision Point with a Pre-loaded Dictionary

Example 7-2 shows the loadRuleDictionary () method that loads an instance of
RuleDictionary from a file.

When reading or writing a dictionary directly from a file as shown in Example 7-2,
ensure to set the encoding to UTF-8. If this is not done, Unicode characters used in the
dictionary are corrupted. The UTF-8 option must be set explicitly in the
FileInputStream or OutputStreamWriter constructor. Do not use Java classes
such as FileReader and FileWriter, as these classes always use the platform
default encoding which is usually an ASCII variant rather than a Unicode variant.

Example 7-2 Load Rule Dictionary Method

private static RuleDictionary loadRuleDictionary () {
RuleDictionary dict = null;
BufferedReader reader = null;
try {
reader = new BufferedReader (
new InputStreamReader (
new FileInputStream |
new File(DICT_LOCATION)), "UTF-8"));
dict = RuleDictionary.readDictionary (reader,
new
DecisionPointDictionaryFinder (null));

List<SDKWarning> warnings = new ArrayList<SDKWarning> () ;

Working with Rules SDK Decision Point APl 7-11

Creating a Java Application Using Rules SDK Decision Point

dict.update (warnings) ;
if (warnings.size() > 0) {
System.err.println("Validation warnings: " + warnings);
}
} catch (SDKException e) {
System.err.println(e);
} catch (FileNotFoundException e){
System.err.println(e);
} catch (IOException e){
System.err.println(e);
} finally {
if (reader != null) { try { reader.close(); } catch (IOException
ioe) {ioe.printStackTrace();}}

}

return dict;

7.3.3 How to Use Executor Service to Run Threads with Decision Point

The car rental sample allows you to use Oracle Business Rules and simulate multiple
concurrent users. Example 7-3 shows use of the Java ExecutorService interface to
execute multiple threads that invoke the Decision Point. The ExecutorService is
not part of the Rules SDK Decision Point API.

Example 7-3 Checking Drivers with Threads that Invoke Decision Point

ExecutorService exec = Executors.newCachedThreadPool () ;
List<Driver> drivers = createDrivers();

for (int i = 0; i1 < NUM_CONCURRENT; i++) {
Driver driver = drivers.get(i % drivers.size());
exec.execute (new DriverCheckerRunnable (driver));
}
Example 7-3 includes the following code for the sample application:
s Create the Executor Service:
ExecutorService exec = Executors.newCachedThreadPool () ;
s Call method createDrivers (), defined in CarRental . java, to create a list of

Driver instances.

List<Driver> drivers = createDrivers();

= Aloop through a list of Driver instances to fill the driver list with drivers.

= Aloop to start multiple threads from DriverCheckerRunnable instances. These
instances open a Decision Point and run the rules on each driver. For information
on this code, see Section 7.3.4, "How to Create and Use Decision Point Instances".

Example 7-4 shows the code that waits for the threads to complete.

Example 7-4 Code to Await Thread Termination

try {
exec.awaitTermination(5, TimeUnit.SECONDS) ;
} catch (InterruptedException e) {
e.printStackTrace() ;

7-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Java Application Using Rules SDK Decision Point

}

exec.shutdown() ;

7.3.4 How to Create and Use Decision Point Instances

The DriverCheckerRunnable instances call the checkDriver () method.
Example 7-5 shows the checkDriver () method that is defined in
CarRentalWithDecisionPoint. The checkDriver () method handles invoking
Decision Point with a Driver instance.

Example 7-5 Code to Create a Decision Point Instance with getinstance()

public class CarRentalWithDecisionPoint extends CarRental {
protected static DecisionPoint m_decisionPoint;

public static void checkDriver (final Driver driver) {
try {
DecisionPointInstance instance = m_decisionPoint.getInstance();
instance.setInputs (new ArrayList<Object>() {
{
add (driver) ;

I

List<Object> outputs = instance.invoke();

if (outputs.isEmpty())
System.err.println("Oops, no results");

java.util.List<Denial> denials =
(java.util.List<Denial>)outputs.get(0);
if (denials.isEmpty()) {
System.out.println("Rental is allowed for " +
driver.getName()) ;
} else {
for (Denial denial : denials) {
System.out.println("Rental is denied for " +
denial.getDriver () .getName () +
" because " + denial.getReason());

}

} catch (RLException e)
e.printStackTrace() ;

} catch (SDKException e) ({
e.printStackTrace ()

{

1

}

Example 7-5 shows the following:

s Getting a DecisionPointInstance from the static DecisionPoint defined
with the DecisionPointBuilder, with the following code.

DecisionPointInstance instance = m_decisionPoint.getInstance();

Working with Rules SDK Decision Point APl 7-13

Running the Car Rental Sample

Add inputs according to the signature of the decision function associated with the
Decision Point. This defines one argument of type List as the input. This List
contains the Driver instances:

instance.setInputs (new ArrayList<Object>() {

{

add (driver) ;
}
)

Invoke the Decision Point and store the return value. The return type follows the
same pattern as the decision function which is being called in the Decision Point.

List<Object> outputs = instance.invoke();

In this case the invoke () returns a List of length one, containing a List of
Denial instances.

If the return is a List of any other size than one, then this is an error:

if (outputs.isEmpty())
System.err.println("Oops, no results");

The first entry that is returned from the Decision Point is caste it to a List of type
List<Denials>:

java.util.List<Denial> denials =
(java.util.List<Denial>)outputs.get (0);

If the denials list is empty, then no Denial instances were asserted by the rules.
This indicates that it is OK to rent a car to the driver. Otherwise, print the reasons
why the driver rental was rejected:

if (denials.isEmpty()) {
System.out.println("Rental is allowed for " +
driver.getName());
} else {
for (Denial denial : denials) {
System.out.println("Rental is denied for " +
denial.getDriver () .getName() +
" because " + denial.getReason());

7.4 Running the Car Rental Sample

In the car rental sample installed on your system, for the code shown in Example 7-2,
modify the value of DICT_LOCATION to match the location of the dictionary on your
system.

To run the car rental sample on your system:

1.

In the Application Navigator, select the dictionary and from the Edit menu select
Copy Path.

In the CarRental . java file, paste the path value into the DICT_LOCATION
value.

In the CarRentalProject select the
CarRentalWithDecisionPointUsingPreloadedDictionary.java file.

7-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

What You Need to Know About Using Decision Point in a Production Environment

4. Right-click and in the list select Run.

Example 7-6 shows sample output.

Example 7-6 Output from Car Rental Sample

Rental
Rental
Rental
Rental
Rental

is
is
is
is
is

allowed for Carol
allowed for Alice
allowed for Alice
allowed for Carol

denied for Bob because under age, age was 15, minimum age is 21

Mar 13, 2009 11:18:00 AM oracle.rules.rl.exceptions.LogWriter flush

INFO: Fired: under age because driver age less than minimum threshold for license
number d222
Mar 13, 2009 11:18:00 AM oracle.rules.rl.exceptions.LogWriter flush

INFO: Fired: under age because driver age less than minimum threshold for license
number d222
Rental is denied for Bob because under age, age was 15, minimum age is 21
Rental is allowed for Alice
Rental is allowed for Eve

7.5 What You Need to Know About Using Decision Point in a Production

Environment

In a production environment you can use an MDS repository to store Oracle Business
Rules dictionaries. When you use an MDS repository to store the dictionary, the steps
shown in Section 7.3.1, "How to Add a Decision Point Using Decision Point Builder"

and Section 7.3.2, "How to Use a Decision Point with a Pre-loaded Dictionary" change
to access the dictionary. The
CarRentalWithDecisionPointUsingMdsRepository shows sample code for

using Decision Point with MDS.

To see a complete example with deployment steps showing the use of a Decision Point
to access a dictionary in MDS, see Section 9.4, "Adding a Servlet with Rules SDK Calls

for Grades Sample Application".

Example 7-7 shows the use of DictionaryFQN with DecisionPointBuilder to
access a dictionary in an MDS repository. The complete example is shown in the
sample code in CarRentalWithDecisionPointUsingMdsRepository.

Example 7-7 Using Decision Point Builder with MDS Repository

static {
try {
// specifying the Decision Function and Dictionary FQN
// loads the rules from the MDS repository.
m_decisionPoint = new DecisionPointBuilder ()

.with (DF_NAME)
.with (DICT_FON)
.build();

} catch (SDKException e) {
System.err.println("Failed to build Decision Point: " +

e.getMessage()) ;

Similar to the steps in Example 7-1, Example 7-7 shows the following:

1. The first step is to create a DecisionPointBuilder instance with.

new DecisionPointBuilder ()

Working with Rules SDK Decision Point APl 7-15

What You Need to Know About Decision Point and Decision Tracing

2. Thewith() method using a String argument defines the name of the decision
function that the Decision Point executes. Calling this method is mandatory.

.with (DF_NAME)

The DF_NAME specifies the name of the decision function you define for your
application. For example for the car rental application this is defined in
CarRental.java aCarRentalDecisionFunction.

3. Call only one of the other two with () methods. In this case the sample code calls
a DictionaryFOQN to access an MDS repository. Example 7-8 shows the routing
that uses the dictionary package and the dictionary name to create the
DictionaryFQN.

.with (DICT_FQN)

4. Call the build () method to construct and return a DecisionPoint instance.

Example 7-8 Using the DictionaryFQN Method with MDS Repository

protected static final String DICT _PKG = "com.example.rules.demo";
protected static final String DICT NAME = "CarRental";

protected static final DictionaryFQN DICT_FQON =
new DictionaryFQN(DICT PKG, DICT_NAME);
protected static final String DF_NAME = "CarRentalDecisionFunction";

7.6 What You Need to Know About Decision Point and Decision Tracing

The Rules SDK API contains methods to assist with processing a decision trace. These
methods process a decision trace to replace the RL names used in the trace with the
aliases used in the associated dictionary. This makes the decision trace naming
consistent with the naming used in the Oracle Business Rules dictionary.

The basic API for processing a decision trace requires a RuleDictionary object and
a DecisionTrace object:

RuleDictionary dict = ...;
DecisionTrace trace = ...;
dict.processDecisionTrace (trace);

This code shows the processing call that converts the naming in the decision trace to
use the same names, with aliases, as in the dictionary.

The Rules SDK Decision Point API contains methods that allow you configure decision
tracing and retrieve the resulting trace when you invoke a decision point. The trace
you retrieve from the Decision Point is internally processed using the
processDecisionTrace () method, thus you do not need to call this method to
process the decision trace when you are working with a decision trace from a Decision
Point.

Table 7-2 shows the Decision Point API methods for setting decision trace options. For
more information on these methods, see Oracle Fusion Middleware Language Reference
Guide for Oracle Business Rules.

7-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

What You Need to Know About Decision Point and Decision Tracing

Table 7-2 Decision Point Decision Tracing Methods

Method Description

decisionTrace Get the decision trace produced from the call to invoke.

Returns DecisionTrace

getDecisionTraceLevel Get the decision trace level to be used by the RuleSession.
This value defaults to DECISION_TRACE_OFF, which
means no trace information is gathered. Possible values are:
DECISION_TRACE_OFF

DECISION_TRACE_DEVELOPMENT
DECISION_TRACE_PRODUCTION
Return Type: String

getDecisionTraceLimit Get the decision trace limit, or maximum number of trace
elements which are retrieved for the trace.

Return Type: int

setDecisionTraceLevel Set the decision trace level to be used by the RuleSession.
This parameter value is a String. Possible values are:
DECISION_TRACE_OFF

DECISION_TRACE_DEVELOPMENT
DECISION_TRACE_PRODUCTION

setDecisionTraceLimit Set the decision trace limit, or maximum number of trace
elements which are retrieved for the trace.

Example 7-9 shows a sample usage of decision tracing with DecisionPoint APIL.

Example 7-9 Using Decision Trace from Decision Point API

DecisionPoint dp = new DecisionPointBuilder ()
.with(new DictionaryFQN("com.foo", "Bar"))
.with("MyDecisionFunction")
.setDecisionTraceLevel (DecisionPointBuilder.DECISION_ TRACE_DEVELOPMENT)
.setDecisionTraceLimit (24000)
Lbuild();

DecisionPointInstance dpi = dp.getInstance();
dpi.invoke();
DecisionTrace trace = dpi.decisionTrace(); // with aliases replaced

For more information on decision tracing, see "Tracing Rule Execution in Fusion
Middleware Control Console" in Oracle Fusion Middleware Administrator’s Guide for
Oracle SOA Suite and Oracle Business Process Management Suite.

Working with Rules SDK Decision Point APl 7-17

What You Need to Know About Decision Point and Decision Tracing

7-18 Oracle Fusion Middleware User's Guide for Oracle Business Rules

8

Testing Business Rules

This chapter describes how to test rules from Rules Designer of Oracle JDeveloper by
using the Rules Test Framework provided by Oracle Business Rules. It also discusses
how to test rules and Decision Tables by creating an Oracle Business Rules Function. In
addition, it covers at runtime, how to test a SOA Application that uses Oracle Business
Rules through a decision service by using Oracle Enterprise Manager Fusion
Middleware Control Console.

The chapter includes the following sections:
= Section 8.1, "Testing Oracle Business Rules at Design Time"

» Section 8.2, "Testing Oracle Business Rules at Runtime"

8.1 Testing Oracle Business Rules at Design Time

Oracle Business Rules provides a test framework that allows you to test rules with
complex input parameters. This framework enables you to test rules at the time of
designing so that you can validate or refine the rules as per your requirement.

Another way of testing rules is by defining a test function, where you can construct the
input, execute rules, and validate the output. Because inputs are constructed and
outputs are validated programmatically, test functions are typically used for simple
tests, and the test framework is used for comprehensive tests. In addition, this test
function is active only for functions that do not take any parameters and only return
boolean values.

8.1.1 How to Test Rules Using the Rules Test Framework

Oracle Business Rules provides an 'out-of-the-box' functionality that enables you to
test whether the rules you are defining works fine with a given set of inputs at the time
of designing. The granularity of testing provided is at the level of decision functions.
When you define decision functions in a dictionary, you can define test suites and
execute those test suites for each of the decision functions.

Oracle Business Rules supports multiple types of facts, such as Java facts, XML facts,
RL facts, and ADFBC facts. The test framework currently only supports XML facts. So,
if the decision function, which you have defined, have inputs or outputs referring to
non-XML facts, the test framework cannot be used to test the decision function. If you
use non-XML facts, a warning or error message is displayed indicating that you cannot
use the test feature for that decision function.

To test rules, you need to create a decision function as the prerequisite.

Testing Business Rules 8-1

Testing Oracle Business Rules at Design Time

8.1.1.1 Creating a Decision Function
1. Open Oracle JDeveloper.

2. From the Application Navigator, open the project file containing the dictionary
whose rules you want to test, say BaseDictionary.rules under Business Rules.

3. In the dictionary section, click Decision Functions to open the list of decision
functions.

4. In the decision functions section, click the Create icon (the plus sign) to display the
Edit Decision Function dialog box.

5. Enter the name of the decision function in the Name field, say TestDF.

6. In the Input tab, enter the input name under Name and press Enter. In this
example, enter songs.

7. Select the fact type from the Fact Type list. Ensure that you select XML facts. In
this example, select Song as the fact type. Similarly, another input variable with
the name as artists and fact type as Artist has been added.

8. Select Tree or List as required. See Section 6.2.1, "How to Add or Edit a Decision
Function" for more information on tree or list mode rules.

9. In the Output tab, enter an output name under Name and press Enter. In this
example, enter songs.

10. Select the fact type from the Fact Type list. Ensure that you select XML facts. In
this example, select Song.

11. Under Rulesets & Decision Functions, select the ruleset that you want to invoke
from the Available box, and use the shutter (>) icon to move it to the Selected
box. In this example, SongArtistRules has been selected.

Note: This example uses sample schema and corresponding facts.

12. Click OK to create the decision function. Figure 8-1 displays the Edit Decision
Function dialog box.

8-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Testing Oracle Business Rules at Design Time

Figure 8—1 The Edit Decision Function Dialog

& Edit Decision Function |
Marme: |TestDF |
Rule Firing Lirnit: |un|imited [\

[will Be Inwoked As A Webservice Check Rule Flow [v] Stateless
Description:

|/ Inputs r Initial Actions r Outpuks r Rulesets & Decision Functions |

Available: Selected: R
& CustomPublisherRules &P SongartistRules

& BaseDF
Q CustomDF

Help | [0]4 || Cancel |

When you create a decision function, two XML schemas (xsd files) get automatically
generated to help in testing the decision function. These schemas have suffixes
_TestSuite and _Types respectively. Further, these schemas are stored in an xsd folder
under the testsuites folder, which can be seen in the Application Navigator as shown
in Figure 8-2.

You need to define the test suites, which are created for the decision function, based
on the schema with the suffix _TestSuite.

Testing Business Rules 8-3

Testing Oracle Business Rules at Design Time

Figure 8-2 Application Navigator Displaying XSDs

Application Mavigator * [:] Qmseﬂmionary.rules * Iﬂ‘?—ﬁBaseDictionary_AnirbanDF_TestSuite.xsd x ﬂ‘?—ﬁBase E]E]E]
w1 — o= =
5 _ RulesTestProject2 v. MR JEE] @ g3 ::3 @ ng @
2| 7 Projects B ® W E-
7 oA Content &9 Facts isi i
fy Decision Functions
] testsuites #« Functions
BD e m (x) Globals Decision Functions: @ Test & | & | HR| &2 R
=] wsd
------ &5 BazeDictionary_BaseDF_TestSuite.xsd 7 Bucketsets Name Heb Service Description
------ % BaseDictionary_BaseDF_Types.xsd < Links Q BaseDF O
------ &5 BazeDictionary_Custom DF_TestSuite.xsd <& CustomDF]
------ G Decision Fncrons | N L N
g BaseDictionary_TestDF_Test5uite.xsd %Translations
= % BaseDictionary_TestDF_Types.xsd Rulesets “F X
------ &g “ustombictionary_LinkedDF_Testbuite xsd
------ % CustamDictionary_LinkedDF_Types.xsd @ Rulesetl
------ % CustomDictionary_TestErrorDF_Testiuite.x @ Denial Rules: if-
------ ﬁ CustomDictionary_TestErrorDF_Types.xsd
% DecisionFunctionPrimitiveTy pes.xsd @ Denial Rules: dec...
------ fileList.xml
:I xzd
:] xzl
"] Business Rules
3-{T0) test
Q Baselictionary. rules
Elm apps
% BaseDictionary.componentType
E BaseDictjonary.decs
I Applicat\ion Resources
[+ Data Controls Y
p Recently Opened Files =
Deszign

The generated schema files follows the following naming convention:

s <DictionaryName>_<DecisionFunctionName>_TestSuite.xsd: This file contains the
test suite schema for the decision function. Test Suites created for this decision
function should conform to this schema. The following is a sample of the
TestSuite.xsd file:

<?xml version = '1.0' encoding = 'UTF-8'?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://xmlns.oracle.com/rules/test"
targetNamespace="http://xmlns.oracle.com/rules/test"
elementFormDefault="qualified" attributeFormDefault="unqualified"
xmlns:df="http://xmlns.oracle.com/rules/BaseDictionary/BaseDF">
<annotation>
<documentation>
Decision Function Test Suite Schema
</documentation>
</annotation>
<import namespace="http://xmlns.oracle.com/rules/BaseDictionary/BaseDF"
schemalocation="BaseDictionary_ BaseDF_Types.xsd"/>
<element name="testSuite">
<complexType>
<sequence>
<element name="decisionFunction" type="string" minOccurs="1"
maxOccurs="1"/>
<element name="testCase" type="tns:testCaseType" minOccurs="1"
maxOccurs="unbounded" />
</sequence>
</complexType>
</element>

<complexType name="testCaseType">
<sequence>

8-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Testing Oracle Business Rules at Design Time

<element name="testInput" type="df:parameterList" minOccurs="0"
maxOccurs="1"/>
<element name="expectedOutput" type="df:resultList" minOccurs="0"
maxOccurs="1"/>
</sequence>
<attribute name="name" type="string" use="required"/>
</complexType>
</schema>

As you can see in the preceding sample, the schema contains a master testSuite
element, which in turn contains an element called decisionFunction that
defines to which decision function does this test suite corresponds.The
testSuite element also contains one or more testCase elements. Each
testCase contains a testInput and expectedOutput elements and a name.
The testInput values are the ones that are used as inputs to the test cases and
expectedOutput values are the ones against which the actual outputs are
matched. The types of testInput and expectedOutput (parameterList and
resultList respectively) have been defined in the subsequent XSD.

<DictionaryName>_<DecisionFunctionName>_Types.xsd: This schema contains two
complexTypes elements, parameterList and resultList. These two types are
used in the TestSuite schema but are defined here. The parameterList type
corresponds to the decision function input and the resultList type corresponds
to the decision function output. This is because a decision function has specific
inputs and outputs. When you write a test case for a decision function, then the
test case input need to correspond to the inputs accepted by the decision function
and the expected output need to correspond to the decision function outputs.
paramaterList and the resultList are single complexTypes. For example, a
decision function requires 10 inputs and 5 outputs, then the parameterList type
will be a single ComplexType that collectively defines 10 different elements that
need to be provided as the decision function input.

The following is a sample of the Types.xsd:

<?xml version = '1.0' encoding = 'UTF-8'?>

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://xmlns.oracle.com/rules/BaseDictionary/BaseDF"
attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:tns="http://xmlns.oracle.com/rules/BaseDictionary/BaseDF"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:rules="http://xmlns.oracle.com/bpel/rules"
xmlns:nsl="http://xmlns.oracle.com/rulestest/datamodel ">
<import namespace="http://xmlns.oracle.com/rulestest/datamodel"
schemalocation="../../xsd/XMLFactTypes2.xsd"/>
<import namespace="http://xmlns.oracle.com/bpel/rules"
schemalLocation="DecisionFunctionPrimitiveTypes.xsd"/>
<complexType name="parameterList">
<sequence>
<element name="tSongElement" type="nsl:tSong"/>
<element ref="nsl:Artist"/>
</sequence>
</complexType>
<complexType name="resultList">
<sequence>
<element name="tSongElement" type="nsl:tSong"/>
</sequence>
</complexType>
</schema>

Testing Business Rules 8-5

Testing Oracle Business Rules at Design Time

Every time there is an update to the decision function, the corresponding two schemas
get updated. For example, if you change the name of the decision function, then the
names of the associated schemas are changed. If you delete the decision functions, the
corresponding schemas get deleted. Even changes to the inputs and outputs of the
decision function results in the associated schemas getting changed. So a decision
function and its corresponding test schemas are always in sync.

In case you make any changes to the decision function, for example delete the decision
function, typically the schemas get deleted. When you click the Undo icon on the
dictionary toolbar, the decision function is retrieved. However, the corresponding
schemas remain deleted. You need to manually regenerate the schemas for the
decision function in this case. So the sync between the decision function and its
corresponding test schemas is not supported in undo and redo operations.

To manually regenerate the schemas:

Click the Generate test suite schemas for all decision functions icon on the dictionary
toolbar as shown in Figure 8-3.

Figure 8-3 Manually Regenerating Test Suite Schemas

QEaseDicrionaw.m.‘es x E]
vE I H e ORI @
i Facts

@ Decision Functions

_'FI Functions

(%) Clobals Decision Functions: B Test ‘E—r_\. W AR
¥

’e - —
#a/ HUEKETSELS lame e sE']Cemarate test suite schemas for all decision functions
D Links <}; BazeDF

Q CustomDF O
< Decision Functions | ¢ (T I W R
%Translations
Rulesets a9 %
@Rulesetl

@ Denial Rules: if-
&P Denial Rules: dec...

When you click the icon to regenerate the test suite schemas, a bulk regeneration
activity takes place, and all the test suite schemas pertaining to all the available
decision functions in the dictionary gets regenerated. If the schemas already exist,
those are overwritten.

This activity is particularly used in the following cases:

8-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Testing Oracle Business Rules at Design Time

When you have deleted or modified the decision function and have undone the
changes: This results in the decision function and the associated schemas getting
out of sync. To get them in sync, you use this option so that the schemas are
regenerated to correspond to the decision function.

When you migrate old dictionaries: Consider a situation when you already have
dictionaries from earlier releases with a number of decision functions defined and
you want to use the rules testing feature for defining test suites for those decision
functions to test them. In this case, either you have to open each decision function
in the editor window after migrating, and then click the OK button. This would
generate the corresponding test suite schemas. However, this is time-consuming
when you have hundreds of decision functions. In this case, you can use the
option of regenerating the schemas at one go.

Note: You need to ensure that the migrated decision functions have
XML facts as inputs and outputs, else the inputs and outputs defined
in the test suite schema files will be empty.

8.1.1.2 Testing the Rules

Once you have created the decision function for testing the rules, you can test rules.

To test rules:

1.

Select the decision function name, say TestDF in this case, in the dictionary page
and then click the Test button to display the Decision Function Test dialog box.

Click the Create icon (the plus sign) to display the Create Test Suite dialog box.

Enter the name for the test suite, say TestDFTestSuitel and click OK as
displayed in Figure 8—4.

Testing Business Rules 8-7

Testing Oracle Business Rules at Design Time

Figure 8-4 Creating a Test Suite

ot Mm%

Decizion Eunction: |TestDF
Test Sulte v| g

Test Results:

| [e | RunTest || Close

4. Click Close in the Decision Function test dialog box.

When you create a test suite, a <fest suite name>.xml file gets automatically
generated and gets stored in the <base dictionary name> folder under the rules
folder inside the testsuites folder. You can view the file in the Application
Navigator window. For every test suite that you create, a corresponding XML file
gets generated.

However, the newly created test suite file is empty, which does not contain any
test case, input definitions, or output definitions.

5. Open the <test suite name> XML and write the required test cases that conform to
the test suite XSD file, in this case the TestDF XSDs corresponding to the decision
function under test.

The following is a sample test suite file containing test cases:

<?xml version = '1.0' encoding = 'UTF-8'?>
<testSuite xmlns="http://xmlns.oracle.com/rules/test"
xmlns:nsl="http://xmlns.oracle.com/bpel/rules"
xmlns:ns2="http://xmlns.oracle.com/rules/BaseDictionary/BaseDF"
xmlns:ns3="http://xmlns.oracle.com/rulestest/datamodel ">
<decisionFunction>G}-733d3b8f:12f76ddad3a:-7c02</decisionFunction>
<testCase name="TestDFTestSuitel TestCasel">
<testInput>
<ns2:tSongElement>
<ns3:Title>Come What May</ns3:Title>
<ns3:Composer>Artist</ns3:Composer>
<ns3:Length>PT3M2S</ns3:Length>
<ns3:Year>2010</ns3:Year>
<ns3:Artist>
<ns3:name>MJ</ns3:name>
<ns3:age>20</ns3:age>

8-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Testing Oracle Business Rules at Design Time

<ns3:recordLabel >BMG Music</ns3:recordLabel>
</ns3:Artist>
</ns2:tSongElement>
<ns3:Artist>
<ns3 :name>MJ</ns3 :name>
<ns3:age>20</ns3:age>
<ns3:recordLabel >BMG Music</ns3:recordLabel>
</ns3:Artist>
</testInput>
<expectedOutput>
<ns2:tSongElement>
<ns3:Title>Come What May</ns3:Title>
<ns3:Composer>MJI</ns3:Composer>
<ns3:Publisher>BMG Music</ns3:Publisher>
<ns3:Length>PT3M2S</ns3:Length>
<ns3:Year>2010</ns3:Year>
<ns3:Artist>
<ns3 :name>MJ</ns3 :name>
<ns3:age>20</ns3:age>
<ns3:recordLabel >BMG Music</ns3:recordLabel>
</ns3:Artist>
</ns2:tSongElement>
</expectedOutput>
</testCase>
</testSuite>

Save the test suite file.

Open the dictionary page, select the decision function name (say TestDF), and
click the Test button to display the Decision Function test dialog box.

Select TestDFTestSuitel from the Test Suite list and click Run Test as shown in
Figure 8-5.

Testing Business Rules 8-9

Testing Oracle Business Rules at Design Time

Figure 8-5 Running the Test

b Decislon Funetion Test

Decision Eunction: R |

Tegt Suite: TestDFTestSuitel '] *
Test Results:

Help] ;‘ Fun Test Cloze]

N

This executes all the test cases in the test suite file.
You can see the test details for the decision function in a tabular form.

The details contain the test suite name, the overall result, and the test case details, such
as:

s The test case name
s The result of the test case

s The trace info such as which are the facts that were asserted, which are the rules
that were activated, which are the rules that were fired and the resultant change in
facts.

Figure 8-6 displays the test results.

8-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Testing Oracle Business Rules at Design Time

Figure 8-6 The Results Page

x
Decision Function: |TestDF |
Test Suite: [TestDFTestsuitet ~|
Test Results:

Test Suite : TestDFTestSuitel

Result : Passed
Test Case Details
Test Case Result Trace Info Cu.mments
(if any)

- Focus SongArtistRules, Ruleset stack: {"SongArtistRules"}
- f-1 com oracle ;mlns rulestest. datamodel TSong(artist :
com. oracle xmins. rulestest. datamodel Artist@18adh04, composer
- [Artist], length - PT3M2S, producer : [], publisher : null, title
"Come What May", year : 2010)
- £-2 com oracle ;mlns rulestest. datamodel Artist(age : 20, genre
[], name : "MJ", recordLabel : BMG_MUSIC)

TestDFTestSuitel_TestCasel |Passed |- Activation: SongArtistRules. AssignPublisher AndComposer : £-1,
f-2 Fire 1 SongArtistRules. AssignPublisherAndComposer £-1, £-2
<
- £-1 com oracle zmlns. rulestest. datamodel TSong(artist :
com oracle zmlns. rulestest. datamodel Artist@18adb04, composer
- [MJ], length : PT3M2S, producer : [], publisher : BMG_MUSIC,
title : "Come What May", year : 2010) <
- Focus SongArtistRules, Ruleset stacle {}

| Help | | Run Test | | Close |

The Comments section in the Results page displays any error details in case a test case
fails.

8.1.2 What You Need to Know About Validation of Test Suites

You may have a situation where your test suite XML file does not conform to the test
suite XSD file. In that case when you open the Decision Function Test window, in the
Test Suite list, adjacent to the test suite name, a yellow warning triangle appears as
shown in Figure 8-7.

Testing Business Rules 8-11

Testing Oracle Business Rules at Design Time

Figure 8-7 Invalid Test Suite

Diecision Eunction: (e
L B R |
Test Besults:

Help | | RunTest || Close

If you try to run an erroneous test suite, you will get the following error message:

0 The test suite "BaseDFTestSuitel" is invalid and could not be executed

Leed

If the test suite XML file is malformed, then the test suite name does not appear in the
list of test suites in the Decision Function Test window. In addition, for an invalid
dictionary , when you test the Decision Function, the following error message is
displayed:

Dictionary is invalid, fix validation errors and try again.

8.1.3 What You Need to Know About Testing Linked Dictionaries

Consider a situation, where you have a base dictionary and a custom dictionary. The
custom dictionary has a link to the base dictionary.

Now, navigate to the Decision Functions section of the custom dictionary. Note that
the list of decision functions in the custom dictionary includes the decision functions
from the linked /base dictionary. You can test the decision functions of the base
dictionary from the custom dictionary.

8.1.4 What You Need to Know About Failure of Test Suites

In case your test case fails, the Results page displays the probable reasons of failure in
the Comments section.

A test case can fail due to the following reasons:

8-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Testing Oracle Business Rules at Design Time

» The expected output specified for the test case is different from the actual output

as the following;:

Decision Function: |BaseDF

x4
|BaseDFTestsutet ~| &

Test Suite:

Test Results:

Test Suite : BaseDFTestSuitel
Result : Failed

Test Case Details

Test Case [Result | Trace Info

Comments (if any)

- Focus SongArtistRules, Ruleset stack:
{"SongArtistRules"}

- £-1 com oracle samlng rulestest. datamodel TSong(artist
- com. oracle xming rulestest. datamodel Artist@1933h62,
composer : [Artist], length : PT3M25, producer : [],
publisher : null, title ; "Come What May", vear : 2010)

- £-2 com oracle smlng rulestest datamodel Artist{age
20, genre [], name ; "MJ", recordLabel
BMG_MUSIC)

- Activation:

SongArtistRules. AssignPublisher AndComposer : £-1, £-2
Fire 1 SongArtistRules. AssignPublisher AndComposer
f1,£2<

- £-1 com.oracle.zanlng rulestest. datamodel TSong(artist
- com. oracle. xming rulestest. datamodel Artist@1933b62,
composer : [MJI], length : PT3M2E, producer : [],
publisher : BMG_MUSIC, title : "Come What May",
year : 2010) <

- Focus SongArtistRules, Ruleset stack: {}

BaseDFTestSuitel_TestCasel | Faled

Expected text value '2011' but was
'2010' - comparng <Year
..22011</Year> at
fresult]1]/Song[1]/ Year[1]ext([1]
to <Year..»2010</Year> at
fresult]1]/4Song[1]/ Year[1]text ([1]

Help

| Run Test || Close |

The Comments section clearly states that there is a mismatch between the

expected output and the actual output.

= The test case executes, but no output is generated as the following;:

Testing Business Rules 8-13

Testing Oracle Business Rules at Design Time

x
Decision Function: |TestErr0rDF |
Test Suite: |[ErrorDFMoOutput - +
Test Results:

Test Suite : ErrorDFNoCutput
Result : Failed
Test Case Details
Comments
Test Case Result Trace Info .
(if any)
Test execution
- Focus TestErrorRules, Ruleset stacle produced no
{"TestErrorRules"} results. None
- f-1 com oracle ;mlng rulestest. datamodel TSong(artist || of the outputs
com. oracle xmlns rulestest. datamodel Artist@13674d7, generated
composer : [NewArtst], length - PT3M2S, producer : [], from test
publisher : null, title : "Come What May", year : 2000) execution
. - Activation: TestErrorRules Rule? : £-1 Fire 1 matched the
ErrorDFNoOutput_TestCasel | Faied TestErrorRules Rule2 £-1 < types defined
- f-1 com oracle ;ming rulestest. datamodel TSong(artist : for the
com. oracle xmlns rulestest. datamodel Artist@13674d7, decision
composer : [NewArtst], length - PT3M2S, producer : [], function
publisher : BMG_MUSIC, title : "Come What May", vear outputs.
2000) < This 15 most
- Focus TestErrorRules, Ruleset stack: {} likely a rule
modeling error.

| Help | | Run Test || Close |

You can see that the Comments section displays that the test generated no results
and some more details on the probable cause.

s The test case executes, but multiple outputs are generated as the following:

& Decision Function Test x|

Decision Function: |TestErr0rDF |

Test Suite: |[ErrorDFMultioutpat -+

Test Resulks:

Test Suite : ErorDFMulhiOutput
Result : Failed

Test Case Details

Test Case Result T:;.EB Comments (if any)

Multiple results produced upon Test execution for
FactType "com. oracle zmlns rulestest datamodel Artist".
ErrorDFMultiOutput_TestCasel | Faled This 15 most likcely a rule modeling error. Start by checking
to malee sure that the decision function arguments have

been properly marked as List, wherever required.

| Help | | Run Test || Close |

The Comments section displays that multiple outputs were generated on test
execution along with some details on the probable cause.

» The test case does not fire any rule as the following:

8-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Testing Oracle Business Rules at Design Time

x
Diecision Function: |TestErrorDF |
Test Suike: |ErrorDFHoFiring - +
Test Resulks:
Test Suite : ErrorDFNoFiring
Result : Failed
Test Case Details
Comments
Test Case Result Trace Info .
(if any)
Mo rules
- Focus TestErrorRules, Ruleset stacle {"TestErrorRules"} fired upon
- £-1 com oracle.zamnlng rulestest. datamodel. TSong(artist © Test
- . s . com.oracle zming nilestest. datamodel Artist@19alaac, execution.
ErrorDFNoFiring_TestCasel | Faled composer : [Artist], length : PT3M25, producer : [, publisher | Tlus 15 most
s mull, title : "Come What May", year : 1999) < likely a rule
- Focus TestErrorRules, Ruleset stack: {3} modeling
error.
| Help | | Run Test | | Close |

This can be because the asserted fact failed to activate any rule resulting in no
rules getting fired. So, the Comments section indicates that this may be due to a
rule modelling error, because in all probabilities, the provided input failed to
match any rule condition.

8.1.5 How to Test a Decision Function Using an Oracle Business Rules Function

You can test rulesets by creating a decision function and calling the decision function
from Rules Designer with an Oracle Business Rules function. In the body of the Oracle
Business Rules function you create input facts, call a decision function, and validate
the facts output from the decision function. For more information, see Section 6.1,
"Introduction to Decision Functions" and Section 2.5, "Working with Oracle Business
Rules Functions".

To test a decision function using an Oracle Business Rules function:
1. Confirm that your dictionary is valid.

For more information on dictionary validation, see Section 4.4.4, "How to Validate
a Dictionary"

In Rules Designer, select the Functions navigation tab.
In the Functions area click the Create... icon.

Enter the function name in the Name field, or use the default name.

a0 DN

Select the return type from the Return Type list.
For a test function, select boolean.

6. In the Arguments table, confirm that there are no arguments. For a test function,
you cannot specify any arguments.

7. In the Body area, enter the test function body.

In the body of the test function you can call a decision function using assign

new to call and get the return value of the decision function (in the body of the test
function you create input facts, call a decision function, and validate the facts
output from the decision function).

Testing Business Rules 8-15

Testing Oracle Business Rules at Design Time

A decision function call returns a List. Thus, to test a decision function in a test
function you do the following;:

= You create the input data as required for the decision function input
arguments.

= You call the decision function with the arguments you create in the test
function.

= You place results in a List, for example, in the following:

assign new List resultsList = DecisionFunction_1 (testScore)

Figure 8-8 shows a test function that calls a decision function.

Figure 8-8 Test Function to Call a Decision Function that Returns a List

| |<pGradingRules.rules of[f composite. xml =
B @M o @
Fact
Q Facts _ﬁc Functions
JS: Functions
(x) Globalis Funictions: QoTest |G A R
=
7 Bucketsets Name Return Type Bucketset Description
D ks PR rciont —— hoden bosen ||
. . _f,: PrintTeskGrade woid
#& Decision Functions
%Translmions e +
. v
Rulesets 4_ y Arguments: x
Mame Type Bucketset
@ Rulesetl

@ Denial Rules: if-

@ Denial Rules: dec...

Aw

Body:

assign new TestScore testScore = new TestScore()
assign kestScare.name = "Bill Reynolds"

% assign kestScore, testMame = "Math1"

assign kestScore.testScore =51

assign new TestGrade testGrade = new Testarade()

]l assign new List resultLisk = GradeTestFunc(testSoore)

assign testGrade = (TestGrade)resultlist. get(0)
call PrintTestGraded score © testScore , grade : testGrade)
return true

<insert action

=

Design

8. Select the function and click the Test Function icon.

The function is executed. The output is shown in a Function Test Result dialog, as
Figure 8-9 shows.

8-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Testing Oracle Business Rules at Design Time

Figure 8-9 Test Function Results for Grade Test

X

& Function Test Result

@ Test Passed!

Cukput:

Bill Reynolds scored 81.0 on test Math Test and received a grade of B

| Hep | [ok |

9. Click OK to dismiss the Function Test Result dialog.

8.1.6 What You Need to Know About Testing Decision Functions

You can use Oracle Business Rules Functions to test decision functions from within
Rules Designer. Keep the following points in mind when using a test function:

s The Test Function icon is gray if the dictionary associated with the test Oracle
Business Rules Function contains any validation warnings. The Test Function icon
is only shown when the dictionary validates without warnings.

= To enable logging you can call RL.watch.all (). For more information on RL
Language functions, see Oracle Fusion Middleware Language Reference Guide for
Oracle Business Rules. In this guide, RL..watch.all () is an alias for the RL
Language function watchAll ().

= As an alternative to the example shown in Figure 8-8, you can enter the function
body that is shown in Example 8-1. This function runs and shows the
RL.watch.all () output. The dialog shows "Test Passed" when the grade is in
the B range as shown in Figure 8-10. The dialog shows "Test Failed" when the
grade asserted is not in the B range, as shown in Figure 8-11.

Example 8-1 Function Body with True or False Return Value

call RL.watch.all()

assign new TestScore testScore = new TestScore()

modify (testScore, name: "Bill Reynolds", testName: "Math Test", testScore: 81)
assign new TestGrade testGrade = (TestGrade)DecisionFunction_1 (testScore).get(0)
return testGrade.grade == Grade.B

For the testScore value 81, this function returns "Test Passed" as shown in

Figure 8-10. For the testScore value 91, this returns "Test Failed", as shown in
Figure 8-11.

Testing Business Rules 8-17

Testing Oracle Business Rules at Runtime

Figure 8-10 Test Passed Test Function Output

& Function Test Result

@ Test Passed!

Cukput:

X

testScore @ 89.0)

==> Activation: Ruleset_1 .DecisionTable_2Rules @ f-1
==> Focus Rulesek_1, Ruleset stack: {"Ruleset_1"}
Fire 1 Ruleset_1,DecisionTable_2Rule3 F-1

== f-2 com.grade.ns.testscore, TestGrade(grade : B)
== Focus Ruleset_1, Ruleset stack: {"main"}

<== Focus main, Ruleset stack: {}

==> f-1 com.grade.ns.testscore, TestScore{name ¢ "Bill Reynolds”, testCurve @ 0.0, testhlame @ "Math Test",

| ek |

Figure 8-11 Test Failed Test Function Output

& Function Test Result

Test Failzd!

Cukput:

X

==>= f-1 com.grade.ns.testscore, TestScore(namme ¢ "Bill Reynalds”, testCurve @ 0.0, testhlame @ "Math Test",
testScore @ 91.0)

==2 Activation: Ruleset_1 .DecisionTable_2Ruled : F-1
==> Focus Rulesek_1, Ruleset stack: {"Ruleset_1"}
Fire 1 Ruleset_1,DecisionTable_2Rule4 F-1

==> f-Z com.grade.ns.testscore, TestGrade(grade @ A)
<== Focus Ruleset_1, Ruleset stack: {"main":

<== Focus main, Ruleset stack: {}

| e |

8.2 Testing Oracle Business Rules at Runtime

In a SOA application that uses Oracle Business Rules with a Decision Service you can

test rules at runtime with Oracle Enterprise Manager Fusion Middleware Control
Console Test function.

For more information on using the Test function, see Oracle Fusion Middleware
Administrator’s Guide for Oracle SOA Suite and Oracle Business Process Management Suite

8-18 Oracle Fusion Middleware User's Guide for Oracle Business Rules

9

Creating a Rule-enabled Non-SOA Java EE
Application

This chapter describes how to use Oracle JDeveloper to create a rule-enabled non-SOA
Java EE application with Oracle Business Rules. It also shows a sample application, a
Java Servlet, which runs as a Java Enterprise Edition (EE) application using Oracle
Business Rules (this describes using of Oracle Business Rules without a SOA
composite).

The chapter includes the following sections:
= Section 9.1, "Introduction to the Grades Sample Application”
= Section 9.2, "Creating an Application and a Project for Grades Sample Application"

= Section 9.3, "Creating Data Model Elements and Rules for the Grades Sample
Application”

= Section 9.4, "Adding a Servlet with Rules SDK Calls for Grades Sample
Application”

= Section 9.5, "Adding an HTML Test Page for Grades Sample Application"
= Section 9.6, "Preparing the Grades Sample Application for Deployment"
= Section 9.7, "Deploying and Running the Grades Sample Application"

The source code for Oracle Business Rules-specific samples and SOA samples are
available online in the Oracle SOA Suite samples page.

9.1 Introduction to the Grades Sample Application

The Grades application provides a sample use of Oracle Business Rules in a Java
Servlet. The servlet uses Rules SDK Decision Point API. This sample demonstrates the
following:

» Creating rules in an Oracle Business Rules dictionary using an XSD schema that
defines the input and the output data, and the facts for the data model. In this case
you provide the XSD schema in the file grades . xsd.

s Creating a servlet that uses Oracle Business Rules to determine a grade for each
test score that is input.

» Creating a test page to supply input test scores and to submit the data to the
grades servlet.

= Deploying the application, running it, submitting test values, and seeing the
output.

Creating a Rule-enabled Non-SOA Java EE Application 9-1

Creating an Application and a Project for Grades Sample Application

9.2 Creating an Application and a Project for Grades Sample Application

To create the application and the project for the grades sample application, do the
following:

s Create a Fusion Web Application (ADF)
» Create a project in the application
= Add the schema to define the inputs, outputs, and the objects for the data model

= Create an Oracle Business Rules dictionary in the project

9.2.1 How to Create a Fusion Web Application for the Grades Sample Application

To work with Oracle Business Rules and create a Java EE application, you first need to
create the application in Oracle JDeveloper.

To create a fusion web application (ADF) for grades:

1. Create an application. You can do this in the Application Navigator by selecting
New Application..., or from the Application menu list by selecting New
Application....

2. In the Name your application dialog enter the application options, as shown in
Figure 9-1:

a. Inthe Application Template area, select Fusion Web Application.

b. Inthe Application Name field, enter an application name. For example, enter
GradeApp.

c. In the Directory field, specify a directory name or accept the default.

d. Inthe Application Package Prefix field, enter an application package prefix.
For example, com.example.grades.

The prefix, followed by a period applies to objects created in the initial project
of an application.

9-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating an Application and a Project for Grades Sample Application

Figure 9-1 Adding GradeApp Application

& Create Fusion Web Application (ADF) - Step 1 of 5

Name your application
i g Application Mame:
(et Application M.
)Tk pplication Name |GradeApp |
Project 1 Mame
)Tk Direckory:
] |C:'l,JDeveloper'l,mywork'l,Gradeﬁ\pp | | Brawse. .. |
/l\ Application Package Prefix:
- |c0m.example.grades| |
Application Template:
Generic Application
Creates an application which includes a single project. The project is nok
preconfigured with JDeveloper technologies, but can be customized to include any
technologies.
Fusion Web Application {(ADF)
Creates a databound ADF web application. The application consists of one project
for the view and controller components (ADF Faces and ADF Task Flows), and
another project for the data model { ADF Business Components),
Java Deskbop Application
Creates an application configured for building & generic Java application. The new
application will include a project that is preconfigured to use Java, Swing, and
1einy bl
| Help | | Mext = J | Finish | | Cancel |

3. Click Finish. After creating the application Oracle JDeveloper displays the file
summary, as shown in Figure 9-2.

Figure 9-2 New Grades Application Named GradeApp

Application Mawvigator E] GradeApp. jws E]
. Gradefpp - <l | show: al Projects = oo)
iuRpiects EVRE IR File Summary: Total: 4 () H i) Poks T
H- Model
=l-13] ViewController Java Files Getting Started v Mew~ - [| | MLFiles Getting S
£ web Content . -)) ’
£ WEB-INF Overview The Java Files category contains java classes and interfaces Overview The ML Files category contains xml filg
P Java Class #ML File
g |
B3 races-config.xml Java Interface
trinidad-config.xml
{7 Page Flows
Cue Cards | Tutorials | Detailed Help v CueCards | Tutorials | Detailed Help
Page Flows Getting Started = MNew~ o O Web Pages Getting St
|+ Application Resources - -
b Data Controls Overview Page Flows define an application's web pages Overview The Wweb Pages category con
I Recently Opened Files Enterprise JavaBeans 3.0 SOA Components | ADF Binding Files | Web Services | Offline Databases
Orerview

9.2.2 How to Develop Accessible ADF Faces Pages

Oracle software implements the standards of the Web Content Accessibility Guidelines
(WCAG) 1.0 Level AA using an interpretation of the standards at
http://www.oracle.com/accessibility/standards.html

ADF Faces user interface components have built-in accessibility support for visually
and physically impaired users. User agents such as a web browser rendering to
nonvisual media such as a screen reader can read component text descriptions to

Creating a Rule-enabled Non-SOA Java EE Application 9-3

Creating an Application and a Project for Grades Sample Application

provide useful information to impaired users. Access key support provides an
alternative method to access components and links using only the keyboard. ADF
Faces accessibility audit rules provide direction to create accessible images, tables,
frames, forms, error messages and popup windows using accessible HTML markup.

For information on how to develop accessible ADF Faces pages, see, "Developing
Accessible ADF Faces Pages" in Oracle Fusion Middleware Web User Interface Developer’s
Guide for Oracle Application Development Framework.

9.2.3 How to Create the Grades Project

In the Grades sample application you do not use the Model or ViewController projects.
You create a project in the application for the grades sample project.

To create a grades project:

1. In the GradeApp application, in the Application Navigator, from the Application
Menu select New Project....

2. Inthe New Gallery, in the Items area select Generic Project.

3. Click OK.

4. In the Name your project page enter the values as shown in Figure 9-3:
a. In the Project Name field, enter a name. For example, enter Grades.
b. Enter or browse for a directory name, or accept the default.
c. Select the Project Technologies tab.

d. Inthe Available area double-click ADF Business Components to move this
item to the Selected area. This also adds Java to the Selected area as shown in
Figure 9-3.

Figure 9-3 Adding Generic Project to the Grades Application

& Create Generic Project - Step 1 of 2

Name your project

.) Project MNarme: |Grades |
fe Project Name

@ Project Java Settings Dirgctory: |C:'l,JDeveloper'l,mywork'l,GradeApp'l,Grades || Browse. .. |

r Project Technologies r Generated Components r Associated Libraries |

Arvailable ! Selected:

5 Compaonents

ADF Library Web Application Suppork
ADF Page Flow

ADF Swing

Ank

Dratabase (OFFline)

EJE

HTML

JavaBean:

Technology Description:

ADF Deskbop Integration with Microsoft Office.

| Help | | Next>J| Finish || Cancel

5. Click Finish. This adds the Grades project.

9-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating an Application and a Project for Grades Sample Application

9.2.4 How to Add the XML Schema and Generate JAXB Classes in the Grades Project

To create the Grades sample application you need to use the grades . xsd file, shown
in Example 9-1. You can create and store the schema file locally and then use Oracle
JDeveloper to copy the file to your project.

Example 9-1 grades.xsd Schema

<?xml version= '1.0' encoding= 'UTF-8' ?>
<xs:schema targetNamespace="http://example.com/grades"

xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://example.com/grades"
attributeFormDefault="qualified" elementFormDefault="qualified"
xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:extensionBindingPrefixes="xjc"

jaxb:version="2.0">

<xs:element name="TestScore">
<xs:complexType>
<Xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="testName" type="xs:string"/>
<xs:element name="testScore" type="xs:double"/>
<xs:element name="testCurve" type="xs:double"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="TestGrade">
<xs:complexType>
<Xs:sequence>
<xs:element name="grade" type="tns:Grade"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:simpleType name="Grade">
<xs:restriction base="xs:string">
<xs:enumeration value="A"/>
<xs:enumeration value="B"/>
<xs:enumeration value="C"/>
<xs:enumeration value="D"/>
<xs:enumeration value="F"/>
</xs:restriction>
</xs:simpleType>

</xXs:schema>

To add the XML schema to the grades project:

1.

® N o g » 0 b

Save the schema file shown in Example 9-1 to a local file named grades . xsd.
In the Application Navigator select the Grades project.

Right-click and in the context menu select New....

In the New Gallery select the All Technologies tab.

In the Categories area, expand General and select XML.

In the Items area, select XML Schema.

Click OK.

In the Create XML Schema dialog, in the File Name field enter grades . xsd.

Creating a Rule-enabled Non-SOA Java EE Application 9-5

Creating an Application and a Project for Grades Sample Application

9. In the Create XML Schema dialog, in the Directory field add the xsd directory to

the Grades project path name, as shown in Figure 9-4.
Figure 9-4 Adding Schema to Grades Project in xsd Directory

X

| grades. xsd |

Create XML Schema

Enter the details of wour new file,

File: Marne:

Direckory:

|l,JDeveIoper'l,mywork'l,GradeApp'l,Grades'l,xsd|| Browse, ., |

| Help | | o4 J | Cancel |
10. Click OK.
11. In the grades . xsd file, select the Source tab.

12. Copy the schema shown in Example 9-1 to the grades . xsd in the Grades project,

as shown in Figure 9-5.

Figure 9-5 Shows the Grades.xsd Schema File in the Grades Project

. Gradedpp
Projecks

ERC fGrades

=[] Resources

o grades.xsd
(5] Model
ViewConkraller

Application Resources
Data Contraols
Recently Opened Files

A.pplication Navigator

E] “olGradedpp, jws ﬁ%grades.xsd E]
<& -] (8- (1)) .
Bl & V%= <ruml wersion= '1.0' encoding= 'UTF-5' 2>
El <xs:schema targetNamespace="http://exanple.con/grades™
xmlng:ixs="http: /S, wi. org /2001 ML 3chema™
xmlns: ths="http: //fexanple. con/grades"™
attributeFormnbefanlt="rqualified"” elementFormDefault="fqualified"”
¥mlns:ixjc="http://Jjava. sun. con/xnl /masjaxb/xic™
xmlns: jaxb="http: //Jawa. sun. consxnl /s Jaxh™
Jaxb:extensionBindingPrefixes="xjc"
jaxb:iversion="a.0">
El <xs:element name="Testicore™ >
= <%5 : complexType:
= LS ! SEUENCE:
<xs:element name="name” type="xs:string’ />
<xs:element nane="testName™ type="xs:string” />
<xz:element name="testScore” type="wa:double”/ =
<xs:element name="testCurve” type="x3:double”™/ >
< /HS i SEUENCe>
</us: complexTypel-
</x=z:element -
Design | Source | Histary [l

9.2.5 Howto

To generate JAXB 2.0 content model from grades schema:

1. In the Application Navigator, in the Grades project expand Resources and select
grades.xsd.

2. Right-click and in the context menu select Generate JAXB 2.0 Content Model.

3. Inthe JAXB 2.0 Content Model from XML Schema dialog, click OK.

Create an Oracle Business Rules Dictionary in the Grades Project

After creating a project in Oracle JDeveloper create business rules within the Grades
project.

To use business rules with Oracle JDeveloper, you do the following:

= Add a business rule to the project and import grades . xsd schema

9-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating an Application and a Project for Grades Sample Application

Create input and output variables

Create an Oracle Business Rules dictionary in the project

To create a business rules dictionary in the business tier:

1.
2
3.

Select the All Technologies tab.

In the Application Navigator, select the Grades project.

Right-click and in the context menu select New....

In the New Gallery, in the Categories area, expand Business Tier and select

Business Rules.

In the New Gallery, in the Items area, select Business Rules.

Click OK. Oracle JDeveloper displays the Create Business Rules dialog, as shown

in Figure 9-6.

Figure 9-6 Adding a Business Rule to Grades with the Create Business Rules Dialog

& Create Business Rules

Business Rule

& business rule defines or constrains one aspect of your business that is intended ko assert business @

structure or influence the behavior of vour business,

X

General | Adwanced

() Create Dictionary () Import Dictionary

Specify the name and package for the dictionary that will be created.

Marme: | OracleRulesi

Package: |c0m.example.grades

Project: |C:'l,JDeveIoper'l,mywork'l,GradeApp'l,Grades'l,Grades.jpr

Inputs/Oukputs:

P+ K aw

Direction Marne Type

Help |

| QK | Cancel |

10.

In the Name field, enter a name to name the dictionary. For example, enter

GradingRules.

To add an input, from the list next to the Add icon select Input....

In the Type Chooser, expand the Project Schemas Files folder and expand

grades.xsd.

Select the input TestScore, as shown in Figure 9-7.

Creating a Rule-enabled Non-SOA Java EE Application 9-7

Creating an Application and a Project for Grades Sample Application

Figure 9-7 Shows the Type Chooser Dialog with TestScore Element

=3 Type Chooser b_(|

-8

C_k Type Explorer
E}B Project Schema Files
o grades.xsd

€ cstscore]

Tvpe: |-{http:,l’,l’example.com,l’grades}TestScore |

[show Detailed Node Information

11. On the Type Chooser window, click OK. This displays the Create Business Rules
dialog.

12. In the Create Business Rules dialog, in a similar manner to the input add the
output by selecting Output... to add the output element TestGrade from the
grades .xsd schema.

The resulting Create Business Rules dialog is shown in Figure 9-8.

Figure 9-8 Create Business Rules Dialog with Grades Input and Output

Create Business Rules D__<|

Business Rule
A business rule defines o constrains one aspect of wour business that is inkended to assert business struckure or
influence the behavior of vour business,

General | Advanced

(3) Create Dictionary () Import Dictionary

Specify the name and package For the dictionary that will be created.

Mame: | GradingRules |

Package: | cam.example.grades |

Project: |C:'l,JDeveIoper'\mywork'l,GradeRpp\,Grades'l,Grades.jpr |

Inpuks/Outpuks: .+. Rav
Direction Mame Type
oot [TestScoee {htp: =

Cutput TestGrade Jhttp: }lexample.com/grades} TestGrade

9-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating Data Model Elements and Rules for the Grades Sample Application

13. Click OK. Oracle JDeveloper creates the GradingRules dictionary as shown in
Figure 9-9.

14. In the File menu, select Save All to save your work.

Figure 9-9 Shows the New Grading Rules Dictionary

Application Mavigatar E] &l Gradedpp. jws |;a,grades.xsd IQGradingRules.rules | E]
[&] Gradedpp ~EH-|| v B @ O @
~ Projects @) @ W r & & Foct
3§ Facks T
{0l Grades # Ruleset_t ¥ [JEkeron Yew [QPIFT. v| 9o - 8 T EHEH 6 A w
EID Resources _f,.; Functions e
a8 gradn-as.xsd (x) Globals
GradingRules.rules To create a Rule or Decision Table, please click the plus sign above.
Modsl 7 Bucketsets
odel
WiewController = Lirks
ﬂ Drecision Functions
Rulesets + ®
P Ruleset_1
|+ Application Resources
|+ Data Controls
|+ Recently Openad Files &
Dresign
= GradingRules.rules -... (2] Elpusiness Rule validation - Log £l
EH - . . .
L [E2] Dictionary - GradingRules.rules Display New Warnings First
@ﬂ cgm / ® Message Dickionary Object Pr
| 53 Dictionary - GradingRules.rules Y RUL-0S163; The Fack bype "TestScore” is nat used in any ruleset called by, GradingRules/Data Model/Decision Function{Deci, ..
-3 Facts 1 RLL-05164: The Fack bype "Testarade” is referenced, buk is not asserted ... GradingRules/Data Model/Decision Function{Dei, ..
D Functions
7 clobals
[Bucketsets
[Links
[Decision Functions
-7 Rulesets SDK Warnings: 2 Last Yalidation Time: 10:15:47 AM PDT
Messages Feedback Business Rule Yalidation W=

Note that the business rule validation log area for the new dictionary shows several
validation warnings. You remove these validation warning messages as you modify

the dictionary in later steps.

9.3 Creating Data Model Elements and Rules for the Grades Sample
Application

To create the data model and the business rules for the Grades sample application, do
the following:

» Create Bucketsets for grades
s Create rules by adding a Decision Table for grades
= Split the Decision Table and add actions for rules

s Rename the default decision function

Creating a Rule-enabled Non-SOA Java EE Application 9-9

Creating Data Model Elements and Rules for the Grades Sample Application

9.3.1 How to Create Bucketsets for Grades Sample Application

In this example you associate a bucketset with a fact type. This supports using a
Decision Table where you need bucketsets that specify how to draw values for each
cell in the Decision Table (for the conditions in the Decision Table).

To create the bucketset for the grades sample application:
1. In Rules Designer, select the Bucketsets navigation tab.

2. From the list next to the Create BucketSet... icon, select List of Ranges.

3. For the bucketset, double-click in the Name field to select the default name.
4. Enter Grade Scale, and press Enter to accept the bucketset name.
5

In the Bucketsets table, double-click the bucket icon for the Grade Scale bucketset
to display the Edit Bucketset dialog as shown in Figure 9-10.

Figure 9-10 Grade Scale Bucketset

& Edit Bucketset - Grade Scale

(X

Marne:

Data Type: |int '|
[] Include Disallawed Buckets in Tests

Range Bucket Yalues: @ ®
Endpaint Included Endpain Allowed in Action: Rangs Alias Description
= -Infinity otherwise otherwise
| Help | | oK | | Cancel

6. In the Edit Bucketset dialog, click Add Bucket to add a bucket.
7. Click Add Bucket three times to add three more buckets.

8. In the Endpoint field, enter 90 for the top endpoint and press Enter to accept the
new value.

9. For the next bucket, in the Endpoint field enter 80 and press Enter to accept the
new value.

10. Similarly, for the next two buckets enter values in the Endpoint field, values 70
and 60.

11. In the Included Endpoint field for each bucket select each checkbox.

12. Modify the Alias field for each value to enter the values A, B, C, D, and F, for each
corresponding range, as shown in Figure 9-11 (press Enter after you add each
alias).

9-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating Data Model Elements and Rules for the Grades Sample Application

Figure 9-11 Grade Scale Bucketset with Grade Values Added

& Edit Bucketset - Grade Scale

X

Mame: | Grade Scale |

Data Type: |i“t '|
[] Include Disallowed Buckets in Tests

Range Bucket Yalues: @ xR
Endpoint Included Endpoint Allowed in Actions Range Alias Description

a0 »=80
a0 [&0,.50)
70 [70..50)
[&0..70)

&0

EEEE
REEE

<]
a

| Help | | [s]4 || Cancel |

To associate a bucketset with a fact property:

To prepare for creating Decision Tables you can associate a global bucketset with fact
properties in the data model. In this way condition cells in a Decision Table
Conditions area can use the bucketset when you create a Decision Table.

1. In Rules Designer, select the Facts navigation tab.
2. In the Facts navigation tab select the XML Facts tab.

3. Double-click the XML fact icon for the TestScore fact. This displays the Edit XML
Fact dialog.

4. Inthe Edit XML Fact dialog select the testScore property.
5. In the Bucketset field, from the list select Grade Scale.
6. Click OK.

9.3.2 How to Add a Decision Table for Grades Sample Application

You create rules in a Decision Table to process input facts and to produce output facts,
or to produce intermediate conclusions that Oracle Business Rules can further process
using additional rules or in another Decision Table.

To use a Decision Table for rules in this application you work with facts representing a
test score. Then, you use a Decision Table to create rules based on the test score to
produce a grade.

To add a decision table for Grades application:
1. In Rules Designer, select Ruleset_1 under the Rulesets navigation tab.

2. In Ruleset_1, click the Add icon and from the list select Create Decision Table.
This creates DecisionTable_1. You can ignore the warning messages shown in the
Business Rule Validation log area. You remove these warning messages in later
steps.

3. In the Decision Table, DecisionTable_1, click the Add icon and from the list select
Condition.

4. In the Decision Table, double-click <edit condition>. Then, in the variables
navigator expand TestScore and select testScore. This enters the expression
TestScore.testScore for condition C1.

Creating a Rule-enabled Non-SOA Java EE Application 9-11

Creating Data Model Elements and Rules for the Grades Sample Application

If you view the rules validation log, you should see warning messages. You remove
these warning messages as you modify the Decision Table in later steps.

To add an action to a decision table:
You add an action to the Decision Table to assert a new Grade fact.

1. In the Decision Table, click the Add icon and from the list select Action and select
Assert New.

2. In the Actions area, double-click assert new (.
This displays the Action Editor dialog.
3. In the Action Editor dialog, in the Facts area select TestGrade.

4. In the Action Editor dialog, in the Properties table for the property grade, select
the Parameterized checkbox and the Constant checkbox.

This specifies that each rule independently sets the grade.
5. In the Action Editor dialog select the Always Selected checkbox.
6. In the Action Editor dialog click OK.
7. Select Save All from the File main menu to save your work.

Next you add rules to the Decision Table and specify an action for each rule.

9.3.3 How to Add Actions in the Decision Table for Grades Sample Application

You can use the Decision Table split operation to create rules for the bucketset
associated with the conditions row in the Decision Table. This creates one rule for
every bucket.

To split the decision table:
1. Select the Decision Table.

2. Click the Split Table icon and from the list select Split Table.

The split operation eliminates the "do not care" cells from the table. The table now
shows five rules that cover all ranges, as shown in Figure 9-12.

These steps produce validation warnings for action cells with missing expressions. You
fix these problems in later steps when you define actions for each rule.

9-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating Data Model Elements and Rules for the Grades Sample Application

Figure 9-12 Splitting a Decision Table Using Split Table Operation for Grades

QGradingRules.rules | E]
R RS 0 @
-4 Fact 3 —
& Facts Ruleset 1 Wi |DecisionTabIe_1 v| 3+ - R
F« Functions
¥ = DecisionTable 1 <enter descriptions=
(%) Clobals [
% - - g B
7 Bucketsets - B A v B - B e B B W
aa Links < Conditions R1 RZ R3 R4 RS
Cl TestScore.testScore F = C B a
<f\, Decision Functions
g_'j Translations
Rules ets @k X
P Ruleserl
< Actions
ALl assert new TestGradsl,
grade:]
e [¥] Fit Columns Ta Width
Design

To add actions for each rule in the decision table:

In the Decision Table you specify a value for the result, a grade property, associated
with TestGrade for each action cell in the Actions area. The possible choices for each
grade property are the valid grades. In this step you fill in a value for each of the rules.
The values you enter correspond to the conditions that form each rule in the Decision

Table.

1. In the Actions area, double-click the action cell for rule R1 as shown in

Figure 9-13.

Creating a Rule-enabled Non-SOA Java EE Application 9-13

Creating Data Model Elements and Rules for the Grades Sample Application

Figure 9-13 Adding Action Cell Values to Grades Decision Table

QGradingRuIes.rules E]
Bv @ @) o @
&F Facts i
Ruleset 1 Wiew: | DerisionTable_1 V| e+ ¥
fz Functions
¥ © DecisionTable 1 <enter description=
(x) Globals RSN
; o S o = B F
7 Bucketsets ALRL: F- XA BRI T EHW
aa Links i Conditions R1 RZ R3 R RS
Cl TestScore.bestScore F o C B A
Q Decision Functions
Q-:‘;J Translations
Rulesets + x
&P Rulesetl
- Actions
ALl assertnew TestGrads(,
grade:)]
| B
null
TestiGrade.grade
Grade.A
Grade.B
Grade.C
Grade.D
Grade.F
s Fit Columns To Wwidth
Design

2. In the list select the corresponding value for the action cell. For example, select
Grade.F.

3. For each of the remaining action cells select the appropriate value for the buckets
for TestScore: D, C, B, and A.

9.3.4 How to Rename the Decision Function for Grades Sample Application

The name you specify when you use a decision function with a Rules SDK Decision
Point must match the name of a decision function in the dictionary. To make the name
match, you can rename the decision function to any name you like. Thus, for this
example you rename the default decision function to use the name
GradesDecisionFunction.

To rename the decision function:
1. Inthe Application Navigator, in the Grades project, expand the Resources folder
and double-click the dictionary GradingRules.rules.

2. Select the Decision Functions navigation tab.

3. In the Name field in the Decision Functions table edit the decision function name
to enter the value GradesDecisionFunction, and then press Enter, as shown in

Figure 9-14.

9-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Adding a Servlet with Rules SDK Calls for Grades Sample Application

Figure 9-14 Renaming Decision Function in Rules Designer

i&] GradesServlet. java QﬁradingRules.rules | E]
B 9@ U0 @

-4 Facts . . -

L Decision Functions

F« Functions

(X) Clobals Decision Functions: @ﬂ + / “

{‘.ﬂ? Bucketsets Mame Description Web Service

@ GradesCecisionFunction _

<D Links

Q Decision Functions

% Translations
Rulesets 4 %

@} Rulesetl

=

Design

9.4 Adding a Servlet with Rules SDK Calls for Grades Sample Application
The Grades sample application includes a servlet that uses the Rules Engine.

To add this servlet with Oracle Business Rules you need to understand the important
Rules SDK methods. Thus, to use the Oracle Business Rules dictionary you created
with Rules Designer, you do the following:

» Create initialization steps that you perform one time in the servlet init routine.
» Create a servlet service routine using the Rules SDK Decision Point API.
» Perform steps to add the servlet code in the project.

For more information on Rules SDK Decision Point API, see Chapter 7, "Working with
Rules SDK Decision Point API".

9.4.1 How to Add a Servlet to the Grades Project
You add a servlet to the grades project using the Create HTTP Servlet wizard.

To add a servlet to the Grades project with Oracle JDeveloper:
1. Inthe Application Navigator, select the Grades project.

Right-click the Grades project and in the context menu select New....

In the New Gallery, select the All Technologies tab.

2
3
4. Inthe New Gallery, in the Categories area expand Web Tier and select Servlets.
5. In the New Gallery, in the Items area select HTTP Servlet.

6

Click OK.

Oracle JDeveloper displays the Create HTTP Servlet Welcome page, as shown in
Figure 9-15.

Creating a Rule-enabled Non-SOA Java EE Application 9-15

Adding a Servlet with Rules SDK Calls for Grades Sample Application

Figure 9-15 Create HTTP Serviet Wizard - Welcome

& Create HTTP Servlet - Welcome

X

Welcome

Welcome to the Create HTTP Servlet Wizard

This wizard will help you to create a new HTTP Servlet,

[] Skip this Page Mext Time

| Help | Mext = Cancel

7. Click Next.

This displays the Web Application page, as shown in Figure 9-16.

Figure 9-16 Create HTTP Servlet Wizard - Web Application

& Web Application

(X

wWeb Application

A web application does not yet exist in khis project, Select the version to create,
web Application Yersion:

() Serylet 2.315P 1.2 (J2EE 1.3)

-Z::Z- Serwlet 2.41J5P 2.0 (JZEE 1.4)

(%) Servlet 2,51J5P 2.1 {Java EE 1.5)

| Help | | < Back " Next = | Cancel

8. Select Servlet 2.5\JSP 2.1 (Java EE 1.5) and click Next.
This displays the Create HTTP Servlet - Step 1 of 3: Servlet Information page.

9. Enter values in Create HTTP Servlet - Step 1 of 3: Servlet Information page, as
follows, and as shown in Figure 9-17.

9-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Adding a Servlet with Rules SDK Calls for Grades Sample Application

s Class: GradesServlet
n Package: com.example.grades
= Generate Content Type: HTML

s Generate Header Comments: unchecked

= Implement Methods: service() checked and all other checkboxes unchecked

Figure 9-17 Create HTTP Serviet Wizard - Step 1 of 3: Servlet Information

& Create HTTP Serviet - Step 1 of 3: Servlet Information

Create HTTP Servlet - Step 1 of 3: Servlet Information

Enter serviet details

Class: |GradesServIet |
Package: |c0m.example.grades |v| | Erawse. ..
Generate Conkent Type: |HTML - |

[] Generate Header Comments
Implement Methods

servicel)

| Help | < Back " Mext = J Cancel

10. Click Next.

This displays the Create HTTP Servlet: Step 2 of 3: Mapping Information dialog as

shown in Figure 9-18.

Creating a Rule-enabled Non-SOA Java EE Application 9-17

Adding a Servlet with Rules SDK Calls for Grades Sample Application

Figure 9-18 Create HTTP Servlet Wizard - Step 2 of 3: Mapping Information

& Create HTTP Servlet - Step 2 of 3: Mapping Information

Create HTTP Servlet - Step 2 of 3: Mapping Information

Enter servlet mapping.
‘While this is not required to create a servlet, it is required o run a serviet.

Specify a name and mapping for the serviet,

Mapping Details

Mame: | GradesServlet |

URL Pattern: | loradesserviet |

| Help | < Back " Mext = || Finishi || Cancel

11. Configure this dialog as follows:

» Name: GradesServlet

s URL Pattern: /gradesservlet
12. Click Finish.

JDeveloper adds a Web Content folder to the project and creates a
GradesServlet.java file and opens the file in the editor as shown in
Figure 9-19.

9-18 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Adding a Servlet with Rules SDK Calls for Grades Sample Application

Figure 9-19 Generated GradesServlet.java

\>GradingRuIes.ruIes |\>OracleRuIesl.ruIes ||§]Grade.java [@GradesServlet.java | E]
(g- IPVS A BURETE ABkE ‘z'i‘
ECLELR ST E3ENHE, EEEE9 [Shew Selected Element Only |
import ...z

Elpublic class GradesServliet extends Http3ervlet |
private static final String CONTENT TYPE = "text/html; charset=windows-1252";

= public void init(SerwletConfig config) throws ServletException |
cinit{config);

}

public void service (Http3ervletRequest request,

Super

response. setContentType (CONTENT TYPE) ;

PrintWriter out = response.getliriter();

out.println("<html=");

out,println("<head=<titlex>Gradesdervlet</titles< head=");
out.println("<body>");

out.println("<p>The servlet has receiwed a PO3T or GET. This is the reply.</p>"
out.println ("< hodye< himl=")

out.close();

Source | Design | History

HttpfiervletResponse response) throws ServletException,
I0Exception {

13. Replace the generated servlet with the source shown in Example 9-2.

Example 9-2 Business Rules Using Servlet for Grades Application

package com.example.grades;

import
import

import
import

import
import
import
import
import

import
import
import
import
import
import

public

java.io.IOException;
java.io.PrintWriter;

java.util.ArrayList;

java.util.List;

javax.
javax.
javax.
javax.
javax.

oracle.
oracle.
oracle.
oracle.
oracle.
oracle.

servle
servle
servle
servle
servle

rules

rules.
rules.
rules.
rules.
rules.

t.ServletConfig;
t.ServletException;
t.http.HttpServlet;
t.http.HttpServletRequest;
t.http.HttpServletResponse;

rl.exceptions.RLException;
sdk2.decisionpoint.DecisionPoint;
sdk2.decisionpoint.DecisionPointBuilder;
sdk2.decisionpoint.DecisionPointInstance;
sdk2.exception.SDKException;
.sdk2.repository.DictionaryFQN;

class GradesServlet extends HttpServlet {

private static

pr
pr
pr

pr

ivate s
ivate s
ivate s

tatic
tatic
tatic

final String CONTENT TYPE = "text/html";
final String DICT_PKG = "com.example.grades";
final String DICT_NAME = "GradingRules";
final DictionaryFQN DICT_FQN =

new DictionaryFQN(DICT_PKG, DICT_NAME);
ivate static final String DF_NAME = "GradesDecisionFunction";

Creating a Rule-enabled Non-SOA Java EE Application

Adding a Servlet with Rules SDK Calls for Grades Sample Application

private DecisionPoint m_decisionPoint = null; // init in init()

public void init(ServletConfig config) throws ServletException {
super.init (config);

try {

// specifying the Decision Function and Dictionary FQN
// load the rules from the MDS repository.
m_decisionPoint = new DecisionPointBuilder ()

.with (DF_NAME)

.with (DICT_FQN)

.build();
} catch (SDKException e) {
System.err.println("Failed to build Decision Point: " +

e.getMessage()) ;
throw new ServletException(e);

public void service (HttpServletRequest request,
HttpServletResponse response) throws ServletException,
IOException {
// retrieve parameters
String name = request.getParameter ("name");
String strScore = request.getParameter ("testScore");

// open output document
StringBuilder doc = new StringBuilder();
addHeader (doc) ;

// create TestScore object to assert
final TestScore testScore = new TestScore();
testScore.setName (name) ;

try {
testScore.setTestScore (Integer.parselnt (strScore)) ;
} catch (NumberFormatException e){ /* use default val */ }

// get DecisionPointInstance for invocation
DecisionPointInstance point = m_decisionPoint.getInstance();

// set input parameters
point.setInputs(new ArrayList() {{ add(testScore); }});

// invoke decision point and get result value
TestGrade testGrade = null;
try {

// invoke the decision point with our inputs
List<Object> result = point.invoke();
if (result.size() != 1){
error (doc, testScore.getName(), "bad result", null);

}
// decision function returns a single TestGrade object
testGrade = (TestGrade)result.get(0);

} catch (RLException e) {

error (doc, testScore.getName(), "RLException occurred: ", e);
} catch (SDKException e) {
error (doc, testScore.getName(), "SDKException occurred", e);

if (testGrade != null){
// create output table in document
openTable (doc) ;
addRow (doc, testScore.getName(), strScore, testGrade.getGrade());

9-20 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Adding a Servlet with Rules SDK Calls for Grades Sample Application

closeTable (doc) ;

addFooter (doc) ;

// write document
response.setContentType (CONTENT_TYPE) ;
PrintWriter out = response.getWriter();
out.println(doc);

out.close();

public static void addHeader (StringBuilder doc) {
doc.append ("<html>") ;
doc.append ("<head><title>GradesServlet</title></head>");
doc.append ("<body>") ;
doc.append ("<hl>Test Results</hl>");

public static void addFooter (StringBuilder doc) {
doc.append ("</body></html>") ;

public static void openTable(StringBuilder doc) {
doc.append ("<table border=\"1\"");
doc.append ("<tr>");
doc.append ("<th>Name</th>") ;
doc.append ("<th>Score</th>") ;
()
(

i

doc.append ("<th>Grade</th>"
doc.append ("</tr>");

public static void closeTable (StringBuilder doc) {
doc.append ("</table>") ;

public static void addRow(StringBuilder doc, String name, String score, Grade grade){
doc.append ("<tr>");
doc.append ("<td>"+ name +"</td>");
doc.append("<td>"+ score +"</td>");
doc.append ("<td>"+ grade.value() +"</td>");
doc.append ("</tr>");

public static void error(StringBuilder doc, String name, String msg, Throwable t){
doc.append ("<tr>") ;
doc.append ("<td>"+ name +"</td>");
doc.append ("<td colspan=2>"+ msg + " " + t +"</td>");
doc.append ("</tr>");

Example 9-2 includes a Oracle Business Rules Decision Point, that uses an MDS
repository to access the dictionary. For more information, see Section 7.5, "What You
Need to Know About Using Decision Point in a Production Environment".

When you add the Servlet shown in Example 9-2, note the following:

s Inthe init () method the servlet uses the Rules SDK Decision Point API for
Oracle Business Rules. For more information on using the Decision Point API, see
Chapter 7, "Working with Rules SDK Decision Point API".

s TheDecisionPointBuilder () requires arguments including a decision
function name and, in a production environment a dictionary FQN to access a
dictionary in an MDS repository, as shown:

Creating a Rule-enabled Non-SOA Java EE Application 9-21

Adding an HTML Test Page for Grades Sample Application

m_decisionPoint = new DecisionPointBuilder ()
.with (DF_NAME)
.with(DICT_FQN)

For more information on using the Decision Point API, see Chapter 7, "Working
with Rules SDK Decision Point API".

9.5 Adding an HTML Test Page for Grades Sample Application

The Grades sample application includes an HTML test page that you use to invoke the
servlet you created in Section 9.4, "Adding a Servlet with Rules SDK Calls for Grades
Sample Application".

9.5.1 How to Add an HTML Test Page to the Grades Project
To add an HTML page to the servlet you use the Create HTML File wizard.

To add an HTML test page:
1. In the Application Navigator, in the Grades project select the Web Content folder.

2. Right-click the Web Content folder project and in the context menu select New....
3. Inthe New Gallery, select the All Technologies tab.
4. In the New Gallery, in the Categories area expand Web Tier and select HTML.
5. In the New Gallery, in the Items area select HTML Page.
6. In the New Gallery click OK.
Oracle JDeveloper displays the Create HTML File dialog.
7. Configure this dialog as follows and as shown in Figure 9-20:
s File Name: index.html
s Directory: C: \JDeveloper\mywork\GradeApp\Grades\public_html
Figure 9-20 Create HTML File Dialog
Create HTML File |

Enter the name, and directory For the HTML File,

Fil= Mame:
| index. hikml |

Directory:

|C:'l,JDeveIoper'l,mywork'l,GradeApp'l,Grades'l,public_html | | Browse. .. |
[] Create as ®ML file {*.xhtml)

| Help | | [o]4 | | Cancel |

8. Click OK.
JDeveloper adds index.html to the Web Content folder and opens the editor.
9. In the editor for index.html, select the Source tab.

10. Copy and paste the HTML code from Example 9-3 to replace the contents of the
index.html file.

9-22 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Preparing the Grades Sample Application for Deployment

Note that in the form element action attribute uses the URL Pattern you
specified in Figure 9-18.

Example 9-3 HTML Test Page

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252"></meta>
<title>Test Grade Example Servlet</title>
</head>
<body>
<form name="names_and_scores"
method="post"
action="/grades/gradesservlet" >
<p>Name: <input type="text" name="name" /></p>
<p>Test Score: <input type="text" name="testScore"/></p>
<input type="submit" value="Submit">
</form>
</body>
</html>

11. Select Save All from the File main menu to save your work.

9.6 Preparing the Grades Sample Application for Deployment

Business rules are deployed as part of the application for which you create a
deployment profile in Oracle JDeveloper. You deploy the application to Oracle
WebLogic Server.

9.6.1 How to Create the WAR File for the Grades Sample Application

You deploy the GradeApp sample application using JDeveloper with Oracle WebLogic
Server.

To create the WAR file for the grades sample application:
1. In the Application Navigator, select the Grades project.

2. Right-click the Grades project and in the context menu select Project Properties....
This displays the Project Properties dialog for the project.

3. In the Project Properties navigator, select the Deployment item as shown in
Figure 9-21.

Creating a Rule-enabled Non-SOA Java EE Application 9-23

Preparing the Grades Sample Application for Deployment

Figure 9-21 Project Properties - Deployment

& Project Properties - C:\Developerimywork\GradeApp\Grades\Grades. jpr

Deployment

[#- Project Source Paths () Use Custom Settings
[} ADF Model

----- ADF Yiew
[Ank Dieployment Profiles:

(#) Use Project Settings

=
Et

- Business Components
[Compiler
----- Dependencies

nenk

----- EJE Madule

----- Extension

[#- Javadoc

----- Jawva EE Application

----- J5P Tag Libraries

----- ISP Visual Editor

----- Libraries and Classpath
----- Resource Bundle

----- Run/DebugfProfile

----- Technology Scope

Help | (o] 4 | | Cancel

4. In the Project Properties dialog, click New....
This displays the Create Deployment Profile dialog.
5. In the Create Deployment Profile dialog, in the Archive Type list, select WAR File.

6. In the Create Deployment Profile dialog, in the Name field enter grades, as
shown in Figure 9-22. Note the Name value uses the package value that you
specified in the form element action attribute in Example 9-3.

Figure 9-22 Create Deployment Profile Dialog for WAR File

& Create Deployment Profile [Z|

Click, OK to create your new deployment profile and immediately open it ko see its configuration,

archive Type:
[waR File |

Mame:

| grades |

Description:

Creates a profile for deploying the Java EE web module (WAR) to an application server. The WaR
consists of the web compaonents (JSPs and serviets) and the corresponding deployment descriptors.

Help [0]4 j | Cancel

7. Click OK.
This displays the Edit WAR Deployment Profile Properties dialog.

8. In the Edit War Deployment Profile Properties dialog, select General and
configure the General page as follows, as shown in Figure 9-23:

a. Set the WAR File:
C:\JDeveloper\mywork\GradeApp\Grades\deploy\grades.war

9-24 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Preparing the Grades Sample Application for Deployment

b. Inthe Web Application Context Root area, select Specify Java EE Web
Context Root:

c. In the Specify Java EE Web Context Root: text entry area, enter grades.

d. Inthe Deployment Client Maximum Heap Size (in Megabytes): list select
Auto

Figure 9-23 Edit WAR Deployment Properties - General

& Edit WAR Deployment Profile Properties

':\'ﬁ || General
ricral WAR File:
AR Options |C:'l,JDeveIoper'l,mywork'l,Gradenpp'l,Grades'l,deploy'l,grades.war | | Browse. .. |

B File Groups
: ‘web Application's Context Root:

() Use Project's Java EE Web Context Root

| Gradefpp-Grades-context-root |
- WEB-INFjclasses (%) Specify Java EE Web Context Root:
Contributors

| grades| |

Filters RIS
[} WEB-INF/lib A Deployment Client Maximum Heap Size {in Megabytes):| Auto - |

Contributors
Filkers hd
----- Profile Dependencies
[=}- Platform
L WebSphere 6.x

| Help | | (0] 4 _j | Cancel

9. In the Edit WAR Deployment Profile Properties dialog, click OK.

JDeveloper creates a deployment profile named grades (WAR File) as shown
in Figure 9-24.

Creating a Rule-enabled Non-SOA Java EE Application 9-25

Preparing the Grades Sample Application for Deployment

Figure 9-24 Project Properties - Deployment Profile Created

3 Project Properties - C:\Developerimywork\GradeApp\Grades\Grades. jpr

Deployment

/- Project Source Paths () Use Custom Settings
- ADF Model

¢ Business Components
- Compiler

- Javadoc

T| oK | | Canicel

() Use Project Settings

----- ADF Yiew
- Ank Dieployment Profiles:

Edit...

e

;

----- Dependencies

Delete

----- EJE Madule
----- Extension

----- Jawva EE Application

----- J5P Tag Libraries

----- ISP Visual Editor

----- Libraries and Classpath
----- Resource Bundle

----- Run/DebugfProfile

----- Technology Scope

10. In the Project Properties dialog, click OK.

9.6.2 How to Add the Rules Library to the Grades Sample Application

To add the rules library to the weblogic-application file:

1.

In the GradeApp application, in the Application Navigator expand Application
Resources.

Expand Descriptors and expand META-INF and double-click to open
weblogic-application.xml.

Add the oracle.rules library reference to the weblogic-application.xml
file. Add the following lines, as shown in Figure 9-25.

<library-ref>
<library-name>oracle.rules</library-name>
</library-ref>

9-26 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Preparing the Grades Sample Application for Deployment

Figure 9-25 Adding Oracle Rules Library Reference to WebLogic Descriptor

P.ppli-:ation Mavigatar
. Gradedpp

EI"- Grades
ED Application Sources
B0 com, example, grades
[&] Grade.java
@ GradesServlet.java
jaxb.properties
@ ObjectFactary. java
@ package-info.java
[&] TestGrade java
[Testscore.java
=7 Resources
E &= grades.xsd
O GradingRules.rules
=[] Wb Conkent
-] WEB-INF
= Application Resources
= D Conneckions
-7 Descriptors
=2 META-INF
= l% weblogic-application. xml
-] ADF META-TNF
Lefeal adf-ronfin.eml
|+ Data Controls

|» Recently Opened Files

- [E -

= Projects Bl V- E-

) es |[@]indexc.biml | & Gradesserviet.java | 2] Gradesserviet.java [%wehlogic—application.HmI =
- ‘—|:|—‘ =

(d8- +e)
<zxml wersion = '1.0' encoding = 'windows-1252°' 7
Bl <sreblogic-application xulns:xsi="http: /. wi.orgs/20015N0Echena-instance”™ ®x31
E <listener:
<listener-class>oracle.mds. lcn.weblogic.WLLifecyclelistener< /listener-class
</listener>
E <listener:
<listener-class>oracle,adf. share.weblogic. listeners. ADFipplicationLifecycle
</listener>
E «<library-ref:
<library-name>-adf.oracle. donain< /library-names
<implementation-wersion-11.1.1.1.0<{/implementation-version-
</1ibrary-ref:-

</weblogic-application>

Source | History |

4. Save the weblogic-application.xml file.

9.6.3 How to Add the MDS Deployment File to the Grades Sample Application

To add the MDS deployment file:
1. Inthe Application Navigator, select the GradeApp application.

2. Right-click the GradeApp application and in the context menu select Application
Properties....

This displays the Application Properties dialog.

3. In the Application Properties navigator select the Deployment item, as shown in
Figure 9-26.

Creating a Rule-enabled Non-SOA Java EE Application 9-27

Preparing the Grades Sample Application for Deployment

Figure 9-26 Application Properties - Deployment

3 Application Properties - C:iDeveloperwmyworkiGradeAppiGradedpp. jws

(@8
- Application Content -_’::- Use Custom Sekkings
=pl it

>

Deployment

() Use Application Settings

- Resource Bundles

Deployment Profiles:

-Run
LW Palicy Store Gradedpp_applicationi (EAR File) (Defaulk) | Edit...

| Mew. ..
| Delete

Auta Generate and Synchronize weblagic-jdbe. xml Descriptors During Deployrent

Security Deployment Gptions
Decide whether ko overwrite the Following security objects if they were previously
deploved.
Application Policies
Credentials
Decide whether ko migrate the Following security objects,
Users and Groups

| Help [o] 4 J | Cancel

4. In the Application Properties dialog, click New....
This displays the Create Deployment Profile dialog.

5. Configure this dialog as follows, as shown in Figure 9-27:
= Archive Type: MAR File

» Name: metadatal

Figure 9-27 Create Deployment Profile Dialog for MAR File

 Create Deployment Profile D_<|

Click, OK to create your new deployment profile and immediately open it ko see its configuration.

archive Type:
[maR File |

Mame:
| metadatal] |

Description:

Creates a profile for deploving a metadata MAR file,

| Help (04 a | Cancel

6. Click OK.

This displays the Edit MAR Deployment Properties dialog as shown in
Figure 9-28.

9-28 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Preparing the Grades Sample Application for Deployment

Figure 9-28 Edit MAR Deployment Profile Properties - MAR Options

& Edit MAR Deployment Profile Properties rg|
(60)| ™AR options
[AR, Cptions MAR. File
[} Metadata File Groups
(]~ User Metadata |C:'l,JDeveloper'l,mywork'l,Gradeﬁ\pp'l,deploy'l,metadata1 .mar | | Browse...
L. Directories ;
[}~ HTML Roat Dir for Grades o G il
- Directoties [Enable custamizations For ADF metadata
N
¥
| Help | | (o] 4 _J | Cancel |

7. Expand the Metadata File Groups item and select the User Metadata item.
8. Click Add....
This displays the Add Contributor dialog.

9. In the Add Contributor dialog, click the Browse button and navigate to the
directory for the project that contains the GradingRules. rules dictionary file.

In this example, navigate to C: \JDeveloper\mywork\GradeApp\Grades and
click Select.

10. In the Add Contributor dialog, click OK to close the dialog. This displays the Edit
MAR Deployment Properties dialog as shown in Figure 9-29

Creating a Rule-enabled Non-SOA Java EE Application 9-29

Preparing the Grades Sample Application for Deployment

Figure 9-29 Edit MAR Deployment Profile Properties - User Metadata

& Edit MAR Deployment Profile Properties

.
|
A

MAR. Options
(- Metadata File Groups
E} tadata
o Direckories
E| HTML Root Dir for Grades
. ‘- Directories
- HTML Roak Dir for WiewCor

Lo Directories

Delete |
Help |

AN

[+

User Metadata

File Group Mame: |User Metadata |

Order of Contributors:

C:yIDeveloper\nywork Gradedpp’ Grades

[Ok Cancel

]|

X

11. In the Edit MAR Deployment Profile Properties dialog, expand the Metadata File
Groups and expand the User Metadata item and select Directories.

This displays the Directories page as shown in Figure 9-30.

Figure 9-30 Edit MAR Deployment Profile Properties - Directories

& Edit MAR Deployment Profile Properties

.
|
A

MAR. Options
(- Metadata File Groups
E} User Metadata
Y (e ctories
E| HTML Root Dir for Grades
. ‘- Directories
- HTML Rook Dir for WiewCor

Lo Directories

Help |

Directories

| Deselect All Customizations |

[SEMI®s] Merged Contents of This File Group's Cantributors
B[] £3 .designer
@ GradingRules_graphics, xml

[£ classes

: -[]C3 .data

-] 3 com

-1 3 aracle

- B[] E3 rules

=[] £3 public_html

@[3 WEB-INF

-] C3 src

-[]C3 com

B[] E3 xsd

‘ @ grades.xsd

X

Expand All Nodes | Collapse All Modes |

[Ok Cancel

]|

12. Select the oracle directory checkbox. This selects the GradingRules.rules
dictionary to be included in the MAR.

13. Click OK.

9-30 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Preparing the Grades Sample Application for Deployment

JDeveloper creates an application deployment profile named metadatal (MAR
File) asshown in Figure 9-31.

Figure 9-31 Application Properties - Deployment - MAR

3 Application Properties - C:iDeveloperimyworkiGradeAppiGradeApp. jws

Deployment

pplication Content () Use Custom Settings

oy ment (3) Use: Application Settings
esource Bundles
B Run Deployment Profiles:
[WS Palicy Store = =] Gradespp_application] (EAR. File) (Def ault) | Edit... |
- metadatal (MAR Fils) ——

Auto Generate and Synchronize weblogic-jdbe. xml Descriptors During Deployment

Security Deployment Cptions
Decide whether to overwrite the Following security objects if they were previoushy
deployed,
Application Policies
Credentials
Decide whether ko migrate the Following security objects,
Users and Groups

| Help | (o] 4 | | Cancel

14. In the Application Properties dialog, click OK.

9.6.4 How to Add the EAR File to the Grades Sample Application
Add an EAR file to the Grades sample application.

To add the ear file to the grades sample application:
1. Inthe Application Navigator, select the GradeApp application.

2. Right-click and in the context menu select Application Properties....

3. In the Application Properties dialog, select Deployment and click New.... This
displays the Create Deployment Profile dialog.

4. Configure this dialog as follows, as shown in Figure 9-32.
»s Archive Type: EAR

s Name: grades

Creating a Rule-enabled Non-SOA Java EE Application 9-31

Preparing the Grades Sample Application for Deployment

Figure 9-32 Create Deployment Profile Dialog for EAR File

& Create Deployment Profile r5_<|

Click. OK to create your new deployment profile and immediately open it ko see its configuration.

Archive Type:
EAR. File b |

Mame:

Description:

Creates a profile for deploying the Java EE enterprise archive (EAR) file to an application server.
The EAR. file consists of the application's assembled WwaR, EJB JAR, and client JAR Files,

Help |

[(o4 _i [Cancel |

5. Click OK. This displays the Edit EAR Deployment Profile Properties dialog.

6. In the Edit Ear Deployment Profile Properties dialog, in the navigator select
Application Assembly as shown in Figure 9-33.

Figure 9-33 Edit EAR Deployment Profile Properties - Application Assembly

& Edit EAR Deployment Profile Properties
(&8)

- zeneral

Application Assembly

Select the Java EE modules that you would like to assemble inko vour Java EE application,

Java EE Modules:

-~ EAR. Opkions

ile Groups
= Application Descriptars
- Contributaors

- Filkers
[} Platform
Lo ehSphere 6.

[T

E| metadatal

[

E} Grades.jpr
-] | arades

E} Model. jpr
Gradedpp_Model_adflibGradefppl
El iewiController. jpr

------ o Gradedpp_YiewController _webappl

OK _‘ | Cancel

7. Configure this dialog as follows:

= Select the metadatal checkbox.

= Expand the Grades.jpr item and select the grades checkbox.
8. In the Edit EAR Deployment Profile Properties dialog, click OK.

JDeveloper creates an application deployment profile named grades (EAR

File) asshown in Figure 9-34.

9-32 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Deploying and Running the Grades Sample Application

Figure 9-34 Application Properties - Deployment - EAR

& Application Properties - C:3JDevelopersmywork\GradeAppyGradespp. jws

(6)| Deployment

Application Content () Use Custom Settings

merk () Use Application Settings
esource Bundles
[Run Dieployment Profiles:

L WS Palicy Stare - |=| Gradeapp_application] (EAR File) (Default) | Edit... |
; metadatal (MAR Fils) —
PSS arades (EAR File)

Auta Generate and Synchronize weblagic-jdbe. xml Descriptors During Deployrent

Security Deployment Gptions
Decide whether ko overwrite the Following security objects if they were previously
deploved.
Application Policies
Credentials
Decide whether ko migrate the Following security objects,
Users and Groups

| Help | | [o]4 | | Cancel

9. Click OK to close the Application Properties dialog.

10. Select Save All from the File main menu to save your work.

9.7 Deploying and Running the Grades Sample Application

You can now deploy and run the grades sample application on Oracle WebLogic
Server.

9.7.1 How to Deploy to Grades Sample Application

To deploy the grades sample application:
1. In the Application Navigator, select the GradeApp application.

2. Right-click the GradeApp application and in the context menu select Deploy >
grades > to > and select either an existing connection or New Connection... to
create a connection for the deployment. This starts the deployment to the specified
Oracle WebLogic Server.

3. As the deployment proceeds, Oracle JDeveloper shows the Deployment
Configuration dialog.

4. In the Deployment Configuration dialog enter the following values, as shown in
Figure 9-32:

= In the Repository Name field, from the list, select: mds-soa

s In the Partition Name field, enter grades

Creating a Rule-enabled Non-SOA Java EE Application 9-33

Deploying and Running the Grades Sample Application

Figure 9-35 Deployment Configuration Dialog for MDS with Repository and Partition

3 Deployment Configuration

Configure and customize settings for this deployment o
MD3
- Metadata Repository
Repositary Mame: |mds-soa - |

Repositary Type: DB

Partition Marie: | Jrades

Path/IMDI Info: jdbcfmds/MDS_LocalTxDataSource

- Shared Metadata Repositories

Mamespace Repository Type Partition PathfIMDI Info

| Help | | Deploy | | Cancel

5. In the Deployment Configuration dialog, click Deploy.

9.7.2 How to Run the Grades Sample Application

After you deploy the grades sample application, you can run the application.

To run the grades sample application:
1. Point a web browser at,

http:/ /yourServerName:port / grades/
This displays the test servlet as shown in Figure 9-36.

9-34 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Deploying and Running the Grades Sample Application

Figure 9-36 Grades Sample Application Serviet

) Test Grade Example Servlet - Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help
@ - c {at I |j http:f{myserver example.com: 7001 | Jradesfindesc.html .7~ ' ,

Mast Yisited |j Aria C‘ Overview (Oracle Ent... |j Account Request |j CRM Tickets E My Oracle |j Metwork Request >

ORACLE - | €L search - & AriaSearch - & Bugld - 9

I ﬁ Test Grade Example Servlet & §

Name: | |

Test Score: | |

Crone

2. Enter a name and test score and click Submit. This returns results as shown in
Figure 9-37.

The first time you run the servlet there may be a delay before any results are returned.
The first time the servlet is invoked, during servlet initialization the runtime loads the
dictionary and creates a rule session pool. Subsequent invocations do not perform
these steps and should run much faster.

Figure 9-37 Grades Sample Application Serviet with Results

) GradesServlet - Mozilla Firefox

File Edit Yiew History Bookmarks Tools Help

@ - c ot | CI htkp:fmyserver, example.com: 7001 | rades/gradesserviet 7T ' ,
Most Yisited |j Aria |j Overview (Oracle Ent... |j Account Request |j CRM Tickets E] My Oracle |j Metwork Request »
ORACLE - |

I ﬁ GradesServlet

Test Results

Name |Score |Grade
Phil (84 B

Done

Creating a Rule-enabled Non-SOA Java EE Application 9-35

Deploying and Running the Grades Sample Application

9-36 Oracle Fusion Middleware User's Guide for Oracle Business Rules

10

Working with Oracle Business Rules and

ADF Business Components

This chapter describes how Oracle Business Rules allows you to use Oracle ADF
Business Components view objects as facts to assert trees of view object graphs
representing the business objects upon which rules should be based, and let Oracle
Business Rules handle the complexities of managing the relationships between the
various related view objects in the main view object's tree.

The chapter includes the following sections:

Section 10.1, "Introduction to Using Business Rules with ADF Business
Components"

Section 10.2, "Using Decision Points with ADF Business Components Facts"

Section 10.3, "Creating a Business Rules Application with ADF Business
Components Facts"

10.1 Introduction to Using Business Rules with ADF Business

Components

The ADF Business Components rule development process can be summarized as
follows:

1.

o o &~ w N

Create view object definitions.
Create action types.

Create rule dictionary.

Register view object fact types.
Register Java fact types for actions.
If you are invoking from Java:

» If the view object is already instantiated at the Decision Point, code the
Decision Point invocation passing the view object instance.

» If the view object is not instantiated at the Decision Point, code the Decision
Point invocation passing the view object key values.

10.1.1 Understanding Oracle Business Rules ADF Business Components Fact Types

When an ADF Business Components view object is imported into an Oracle Business
Rules data model, an ADF Business Components fact type is created which has a
property corresponding to each attribute of the view object, as shown in Figure 10-1.

Working with Oracle Business Rules and ADF Business Components 10-1

Introduction to Using Business Rules with ADF Business Components

Additionally, the ADF Business Components fact type contains the following:

A property named ViewRowImpl which points directly to the oracle. jbo.Row
instance that each fact instance represents.

A property named key_values which points to an
oracle.rules.sdk2.decisionpoint.KeyChain object. You can use this
property to retrieve the set of key-values for this row and its parent rows.

Figure 10-1 ADF Business Components Sample Fact Type

ADF-BC Facts: E{ﬁ + / x
‘Wiew Definition Top Level
le.managerfinder. model.Em -:-
com.example.managerfinder. model DepartmentsWiew
Wiew Definition: |
Alias: |Employee |
Visible
Properties:
Alias Mame ‘isible Primary Key Bucketset Type List Content Typ
'J WigwR.owImpl wigwR owImpl O oracle.jba.ser...
.‘ key_values key_values O oracle.rules.sd...
'J Ernplovesld emploveeld java.math.Big...
.‘ Firsthame firstharme jawa.lang.string
[I 'J LastMame lastMame java.lang.String
.‘ Email email jawa.lang.string
'J PhoneMumber phonetunber java.lang.String
) HireDate hireDate java.util.Caler...
D lohid jobId java.lang.String
s .‘ Salary salary jawa.math.Big...
= 'J CommissionPck commissionPck java.math.Big. ..
B .‘ ManagerId managerId jawa.math.Big...
It 'J Departmentld departmentld java.math.Big...
ml .‘ Departmentsii... departmenksiiew jana.ukil Lisk Department
:n 'J Ermploveesiiew emploveesyiew O java.ukil.List Ermployves
P
: it Calurins To Width
st -
st | Help | oK | | Cancel
o I e
Note the following:
= Relationships between view object definitions are determined by introspection of
attributes on the View Definition, specifically, those attributes which are View
Link Accessors.
The ADF Business Components fact type importer correctly determines which
relationships are 1-to-1 and which are 1-to-many and generates definitions in the
dictionary accordingly. For 1-to-many relationships the type of the property
generated is a List which contains facts of the indicated type at runtime.
= ADF Business Components fact types are not Java fact types and do not allow

invoking methods on any explicitly created implementation classes for the view
object.

If you need to call such methods then add the view object implementation to the
dictionary as a Java fact type instead of as an ADF Business Components fact type.
In this case, all getters and setters and other methods become available but the

10-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Introduction to Using Business Rules with ADF Business Components

trade-off is that related view objects become inaccessible and, should related view
object access be required, these relationships must be explicitly managed.

Internally in Oracle Business Rules, when you use ADF Business Components fact
types these fact types are created as instances of RL fact types. Thus, you cannot
assert ADF Business Components view object instances directly to a Rule Session,
but must instead use the helper methods provided in the MetadataHelper and
ADFBCFactTypeHelper classes. For more information, see Oracle Fusion
Middleware Java API Reference for Oracle Business Rules.

10.1.2 Understanding Oracle Business Rules Decision Point Action Type

With Rules SDK, the primary way to update a view object within a Decision Point is
with an action type. An action type is a Java class that you import into the rule
dictionary data model in the same way you import a rule pattern fact type Java class.
A new instance of this action type is then asserted in the action of a rule and then
processed by the Postprocessing Ruleset in the DecisionPointDictionary.

A Java class to be used as an action type must conform to the following requirements:

The Java fact type class must subclass
oracle.rules.sdk2.decisionpoint.ActionType or
oracle.rules.sdk2.decisionpoint.KeyedActionType.

By subclassing KeyedActionType the Java class inherits a standard
oracle.rules.sdk2.decisionpoint.KeyChain attribute, which may be
used to communicate the rule fact's primary keys and parent-keys to the
ActionType instance.

The class has a default constructor.

The class implements abstract exec method for the ActionType. The exec
method should contain the main action which you want to perform.

The Java class must have properties which conform to the JavaBean interface
(that is, each property must have a getter and setter method).

Example 10-1 shows a sample ActionType implementation.

Example 10-1 Implementing an ActionType

package com.example;

import oracle.jbo.domain.Number;

import oracle.rules.sdk2.decisionpoint.ActionType;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;

public class RaiseAction extends ActionType {

private double raisePercent;

public void exec(DecisionPointInstance dpi) {
Number salary = (Number)getViewRowImpl ().getAttribute("Salary");
salary = (Number)salary.multiply(1l.0d + getRaisePercent()).scale(100,2, new

boolean[] {false});

dpi.addResult ("raise for " + this.getViewRowImpl ().getAttribute("EmployeeId"),
getRaisePercent () + "=>" + salary);
getViewRowImpl () .setAttribute("Salary", salary);
}

public void setRaisePercent (double raisePercent) {

this.raisePercent = raisePercent;

}

Working with Oracle Business Rules and ADF Business Components 10-3

Using Decision Points with ADF Business Components Facts

public double getRaisePercent () {
return raisePercent;
}
}

In Example 10-1, there is an
oracle.rules.sdk2.decisionpoint.DecisionPointInstance asa
parameter to the exec method. Table 10-1 shows the methods in
DecisionPointInstance that an application developer might need when
implementing the ActionType exec.

Table 10-1 DecisionPointinstance Methods

Method Description

getProperties Supplies a HashMap<String, Object> object containing any runtime-specified
parameters that the action types may need.

If you intend to use the decision function from a Decision service, use only String
values.

getRuleSession Gives access to the Oracle Business Rules RuleSession object from which static
configuration variables in the Rule Dictionary may be accessed.

getActivationID If populated by the caller, supplies a String value to be used for Set Control
indirection.

getTransaction Provides a transaction object so that action types may make persistent changes in the
back end.

addResult Adds a named result to the list of output values in the form of a String key and
Object value.

Output is assembled as a List of
oracle.rules.sdk2.decisionpoint.DecisionPointInstance.NamedVal
ue objects as would be the case in a pure map implementation. The Namedvalue
objects are simple data-bearing classes with a getter each for the name and value.
Output values from one action types instance are never allowed to overwrite each
other, and in this regard, the action type implementations should be considered
completely independent of each other.

Using Rules Designer you can select parameters appropriate for the ActionType you
are configuring.

10.2 Using Decision Points with ADF Business Components Facts

You can use a Decision Point to execute a decision function. There are certain Decision
Point methods that only apply when working with ADF Business Components Fact
types. For more information on decision functions, see Chapter 6, "Working with
Decision Functions".

10.2.1 How to Call a Decision Point with ADF Business Components Facts

When you use ADF Business Components fact types you invoke a decision function
using the Rules SDK Decision Point interface.

To call a decision function using the Rules SDK Decision Point interface:

1. Construct and configure the template DecisionPoint instance using the
DecisionPointBuilder.

For more information, see Section 7.3.1, "How to Add a Decision Point Using
Decision Point Builder".

2. Create a DecisionPointInstance using the DecisionPoint method
getInstance.

10-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using Decision Points with ADF Business Components Facts

3. Add the fact objects you want to use to the DecisionPointInstance using
DecisionPointInstance method addInput, setInputs, or
setViewObject. These are either ViewObject or ViewObjectReference
instances. These must be added in the same order as they are declared in the
decision function input. For more information, see Section 10.2.1.3, "Calling the
Invoke Method for an ADF Business Components Rule"

4. Set the transaction to be used by the DecisionPointInstance.

For more information, see Section 10.2.1.1, "Setting the Decision Point
Transaction".

5. Set any runtime properties the consequent application actions may expect.
For more information, see Section 10.2.1.2, "Setting Runtime Properties".
6. Call the DecisionPointInstance method invoke.
For more information, see:

= Section 10.2.1.3, "Calling the Invoke Method for an ADF Business Components
Rule"

s Section 10.2.1.4, "What You Need to Know About Decision Point Invocation"

10.2.1.1 Setting the Decision Point Transaction

The Oracle Business Rules SDK framework requires an
oracle.jbo.server.DBTransactionImpl2 instance to load a ViewObject and
to provide ActionType instances within a transactional context. The class
oracle.jbo.server.DBTransactionImpl2 is the default JBO transaction object
returned by calling the ApplicationModule method getTransaction. Setting the
transaction requires calling the DecisionPointInstance method
setTransaction with the Transaction object as a parameter.

Should a DBTransaction instance not be available for some reason, the Oracle
Business Rules SDK framework can bootstrap one using any of the three provided
overrides of the setTransaction method.

These require one of:
= A JDBC URL, user name, and password.
= A]JDBC connection object.

» A javax.sqgl.DataSource object and a flag to specify whether the
DataSource represents a JTA transaction or a local transaction.

10.2.1.2 Setting Runtime Properties

Runtime properties may be provided with the set Property method. These can then
be retrieved by ActionType instances during their execution. If no runtime
properties are needed, you may safely omit these calls.

10.2.1.3 Calling the Invoke Method for an ADF Business Components Rule

The ViewObject to be used in a Decision Point invocation can be specified in one of
two ways, as shown in Table 10-2.

Working with Oracle Business Rules and ADF Business Components 10-5

Using Decision Points with ADF Business Components Facts

Table 10-2

Setting the View Object for a Decision Point Invocation

ViewObject Set

Method

Description

setViewObject The decision function is invoked once for each ViewObject row. This

addInput

setInputs

the preferred way to use view objects. Between each invocation of the
decision function, the rule session is not reset so any asserted facts from
previous invocations of the decision function are still in working
memory. In most cases, users should write rules that retract the
asserted facts before the decision function call completes. For example,
you can have a cleanup ruleset that retracts the ViewObject row that
runs before the Postprocessing decision function is called.

Section 10.3.9.3, "How to Add Retract Employees Ruleset" shows this
usage. To use setViewObject, the ViewObject must be the first
entry in the decision function InputTable.

The decision function is invoked once with all of the ViewObject
rows loaded at the same time. This is generally not a scalable operation,
since hundreds of thousands of rows can be loaded at the same time.
There are some cases where there are a known small number of rows in
a ViewObject that this method of calling the ViewObject can be
useful.

Example 10-2 shows how to invoke a Decision Point with a ViewObject instance
using the setInputs method. For the complete example, see Example 10-5.

Example 10-2 Invoking a Decision Point Using setinputs Method

public class OutsideManagerFinder {

private
private
private

private

private

private

static final String AM_DEF = "com.example.AppModule";
static final String CONFIG = "AppModuleLocal";
static final String VO_NAME = "EmployeesViewl";

static final DictionaryFQN DICT FQN =
new DictionaryFQN("com.example", "ChapterlORules");

static final String DF_NAME = "FindOutsideManagers";

DecisionPoint dp = null;

public OutsideManagerFinder() {

try

{

dp = new DecisionPointBuilder ()
.with (DICT_FQN)
.with (DF_NAME)
Lbuild();

} catch (SDKException e) {

System.err.println(e);

public void run() {
final ApplicationModule am =

Configuration.createRootApplicationModule (AM_DEF, CONFIG);

final ViewObject vo = am.findViewObject (VO_NAME) ;

final DecisionPointInstance point = dp.getInstance();
point.setTransaction((DBTransactionImpl2)am.getTransaction());
point.setAutoCommit (true);

point.setInputs(new ArrayList<Object>(){{ add(vo); }});

try

{

10-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using Decision Points with ADF Business Components Facts

List<Object> invokeList = point.invoke();

List<DecisionPoint.NamedValue> results = point.getResults();
} catch (RLException e) {
System.err.println(e);
} catch (SDKException e) {
System.err.println(e);
}
}

Example 10-3 shows how to invoke a DecisionPoint using the setViewObject
method to set the ViewObject.

Example 10-3 Invoking a Decision Point Using setViewObject Method

public void run() {
final ApplicationModule am =
Configuration.createRootApplicationModule (AM_DEF, CONFIG);
final ViewObject vo = am.findViewObject (VO_NAME) ;
final DecisionPointInstance point = dp.getInstance();

point.setTransaction((DBTransactionImpl2)am.getTransaction());
point.setAutoCommit (true) ;
point.setViewObject (vo);
try {
List<Object> invokeList = point.invoke();
List<DecisionPoint.NamedValue> results = point.getResults();
} catch (RLException e) {
System.err.println(e);
} catch (SDKException e) {
System.err.println(e);

}

10.2.1.4 What You Need to Know About Decision Point Invocation

Care must be taken when invoking Decision Points using a view object that loads large
amounts of data, since the default behavior of the JBO classes is to load all data
eagerly. If a view object with many rows and potentially very many child rows is
loaded into memory, not only is there risk of memory-exhaustion, but DML actions
taken based on such large data risk using all rollback segments.

10.2.2 How to Call a Decision Function with Java Decision Point Interface

To call a decision function with a ruleset using ADF Business Components fact types
with the Oracle Business Rules SDK Decision Point interface you must configure the
decision function with certain options. For more information on using decision
functions, see Chapter 6, "Working with Decision Functions".

To define a decision function using the Java Decision Point interface:

1. Double-click the decision function icon to the left of the decision function item or
select this item and click the Edit icon. The Edit Decision Function dialog appears.

2. In the Edit Decision Function dialog, configure the decision function:

= Input Fact Types: names the fact types to use in the configured business rules.

Working with Oracle Business Rules and ADF Business Components 10-7

Using Decision Points with ADF Business Components Facts

The inputs, when working with an application using ADF Business
Components fact types, are the ADF Business Components view objects used
in your rules.

When you use the setViewObject method with a Decision Point, the List
attribute should be unselected. Each Input fact type should have the List
attribute selected when you are using addInput or set Inputs methods
with the Decision Point. Optionally, depending on the usage of the view
objects, select the Tree attribute:

— List: defines that a list of ADF Business Components fact types are passed
to the decision function.

— Tree: defines that all objects in the master-detail hierarchy should be
asserted, instead of only the top-level object.

For more information, see Section 10.2.1, "How to Call a Decision Point with
ADF Business Components Facts".

s Output Fact Types: defines the fact types that the caller returns.

When calling a decision function using the Java Decision Point interface for a
decision function that uses ADF Business Components fact types, Output Fact
Types should be left empty. The view object is updated using an
ActionType. For more information, see Section 10.1.2, "Understanding
Oracle Business Rules Decision Point Action Type".

s RuleSets and Decision Functions: an ordered list of the rulesets and other
decision functions that this decision function executes. The rulesets
DecisionPointDictionary.Preprocessing and
DecisionPointDictionary.Postprocessing from the DecisionPoint dictionary
must be added so that they run before and after, respectively, the
application-specific rulesets and decision functions.

10.2.3 What You Need to Know About Decision Function Configuration with ADF
Business Components

Both rulesets and decision functions may be included in the definition of a decision
function. It is common for an application to require some rules or decision functions
which act as "plumbing code". Such applications include components that perform
transformations on the input data, assert auxiliary facts, or process output facts. The
plumbing code may need to run before or after the rules that contain the core business
rules of the application. You can separate these application concerns and their
associated rules from the application functional concerns using nested decision
functions. Using nested decision functions, the inner decision function does not contain
the administrative, plumbing-oriented concerns, and thus only presents those rules
which define the core logic of the application. This design eliminates the need for the
user to understand the administrative rules and prevents a user from inappropriately
modifying these rules (and possibly rendering the system inoperable due to these
changes).

To create a configuration using multiple rulesets and nested decision functions, create
two decision functions and add one to the other. A good naming scheme is to suffix
the nested inner decision function with the name Core. The user specified rulesets can
be added to the inner Core decision function. For example, DecisionFunction_1 can
be defined to run the DecisionPointDictionary.Preprocessing decision function, the
DecisionFunction_1Core decision function, and the
DecisionPointDictionary.Postprocessing decision function. For this example,
DecisionFunction_1Core contains the core business logic rulesets.

10-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

It is also common for the input of a Decision Point to be an ADF Business Components
fact type that is the root of a tree of ADF Business Components objects. However, the
user might only write business rules that match on a subset of the types found in the
tree. In this case, it is a good practice to define the inputs of the nested decision
functions to be only the types which are actually matched in the contained rulesets.
For example, consider a Decision Point calling a decision function whose input is an
Employee fact type with the Tree option selected; if this decision function includes a
nested decision function with rulesets that only matched on the Department fact
type. In this case, the nested decision function could either have as its input specified
as an Employee fact type with the Tree option selected, or a Department fact type
with the List option selected. For this example, the Tree option causes the children of
the Employee instances, including the Department instances to be asserted (due to
the one-to-many relationship between these types). If Employee is an input to the
outer decision function and the Tree option is selected, the then Department fact type
instances are asserted, and you can identify the signature on the inner decision
function as a list of Department instances (these are the exact types which are being
matched on for this decision function).

10.3 Creating a Business Rules Application with ADF Business
Components Facts

The ADF Business Components sample application shows the use of ADF Business
Component fact types.

The source code for Oracle Business Rules-specific samples and SOA samples are
available online in the Oracle SOA Suite samples page.

10.3.1 How to Create an Application That Uses ADF Business Components Facts

To work with Oracle Business Rules with ADF Business Components facts, you first
need to create an application and a project in Oracle JDeveloper.

To create an application that uses ADF Business Components facts:
1. Start Oracle JDeveloper. This displays the Oracle JDeveloper start page.

2. Inthe Application Navigator, in the application menu click New Application....

3. In the Name your application page enter the name and location for the new
application:

a. In the Application Name field, enter an application name. For example, enter
ChapterlO.

b. In the Directory field, enter or browse for a directory name or accept the
default.

c. Inthe Application Package Prefix field, enter an application package prefix.
For example, enter com. example.

This should be a globally unique prefix and is commonly a domain name
owned by your company. The prefix, followed by a period, applies to objects
created in the initial project of an application.

In this sample, use the prefix com.example.
d. Inthe Application Template field, select Fusion Web Application (ADF).
4. Click Finish.

Working with Oracle Business Rules and ADF Business Components 10-9

Creating a Business Rules Application with ADF Business Components Facts

10.3.2 How to Add the Chapter10 Generic Project

You need to add a new project named Chapter10.

Add a new project:
1. In the Chapter10 application, select the Application Menu.

2. In the Application Menu list, select New Project....

3. In the New Gallery, in the Items area select Generic Project.

4. Click OK.

5. On the Name your project page, in the Project Name field enter Chapter10.
6. Click Finish.

10.3.3 How to Create ADF Business Components Application for Business Rules

You need to add ADF Business Components from a database table. For this example
we use the standard HR database tables.

To add ADF Business Components:
1. In the Application Navigator, select the Chapter10 project.

2. Right-click and from the menu select New....

3. In the New Gallery, in the Categories area expand Business Tier and select ADF
Business Components.

4. In the Items area select Business Components from Tables.
5. Click OK.

6. In the Initialize Business Components Project dialog, enter the required connection
information to add a connection.

7. Click OK. This displays the Create Business Components from Tables wizard.

8. In the Entity Objects page, select the desired objects by moving objects from the
Available box to the Selected box. You may need to click Query to see the
complete list. For example, select DEPARTMENTS and EMPLOYEES, as shown
in Figure 10-2.

10-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

Figure 10-2 Selecting Entity Objects for Sample Application

Entity Objects

& Create Business Components from Tables - Step 1 of &

Entity Objects

)
+ Updatable Yiew Objects
!
!
J

Specify the package to contain vour new entity objects and associations,
Package: |c0m.example | ’Broﬂse. K]

Filter the bypes of schema objects to display as available, then select the schema object{s) and click "=' to create entity objects,

Schema: [HR V] Type Filker: OFF | Filker Twpes

Mamne Filkers |2 | [] Aute-cuery
i 8 Selected:
IES [DEPARTMENTS
EMP_DETAILS_YIE'W

JCES
JOE_HISTORY
LOCATIONS

| REGIOMS

Blel®ly

Entity Mame:! |Emplovess |

I Mexk = i’ Finish]’ Cancel]

9. Click Next. This displays the Updatable View Objects page.

10. In the Updatable View Objects page select Departments and Employees, as

shown in Figure 10-3.

Figure 10-3 Adding Updatable View Objects for Sample Application

& Create Business Components from Tables - Step 2 of &

Updatable View Obijects

Entity Objects
e Updatable ¥iew Obje

+ Read-Only Yiew Objects
I
I

Specify the package to contain vour new view objects and view links.,

Package: |com.example | ’Broﬂse. y]

To create an updatable view object, select an object from the list of available entity objects and click =", IF there is an
association between selected entity objects, a view link will automatically be created,

Available: Selected:

>
»

Object Name:| Employeesiiew

’ < Back. " Mext = i’ Finish]’ Cancel]

11. Click Next. This displays the Read-Only View Objects page.
12. Click Next. This displays the Application Module page.

Working with Oracle Business Rules and ADF Business Components 10-11

Creating a Business Rules Application with ADF Business Components Facts

13. Click Finish.

10.3.4 How to Update View Object Tuning for Business Rules Sample Application

You should tune the ViewObject to meet the performance requirements of your
application.

To set tuning options for EmployeesView:
1. In the Application Navigator, double-click EmployeesView.

2. In the General navigation tab, expand Tuning.

3. In the Tuning area, select All Rows.

4. In the Tuning area, in the Batches of: field, enter 128.
5

In the Tuning area, select All at Once.

To set tuning options for DepartmentsView:
1. In the Application Navigator, double-click DepartmentsView.

2. Inthe General navigation tab, expand Tuning.

3. In the Tuning area, select All Rows.

4. In the Tuning area, in the Batches of: field, enter 128.
5

In the Tuning area, select All at Once.

10.3.5 How to Create a Dictionary for Oracle Business Rules

You use Oracle JDeveloper to create an Oracle Business Rules dictionary.

To create a dictionary:
1. In the Application Navigator, select the Chapter10 project.

2. Right-click, and from the list select New....

3. In the New Gallery, select the All Technologies tab and in the Categories area
expand Business Tier and select Business Rules.

4. Inthe New Gallery, in the Items area select Business Rules.

5. Click OK.

6. In the Create Business Rules dialog enter the dictionary name and package, as
shown in Figure 10-4:

s For example, in the Name field enter Chapter10Rules.

= For example, in the Package field enter com. example.

10-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

Figure 10-4 Create Business Rules for Chapter10Rules Dictionary

& Create Business Rules

Business Rule
A business rule defines or constrains one aspect of your business that is intended ko assert business
structure or influence the behavior of your business,

General | Adwanced

(®) Create Dictionary () Import Dictionary

Specify the name and package For the dictionary that will be created.
Mame: |ChapterIDRuIes| |

Package: | com.exarnple |

Project: |C:'l,JDeveloper'l,mywork'l,chapterID'l,ChapterlD'l,ChapterlD.jpr |

Inputsfoutputs: G- M A v

Direction Marmne Tvpe

| Help | | [o]4 “ Cancel

7. Click OK.

JDeveloper creates the dictionary and opens the Chapterl0Rules.rules file in
Rules Designer, as shown in Figure 10-5.

Figure 10-5 Adding the Rules Dictionary

Application Mavigator E] glchapterlﬂ.jws OChapterlDRules.rules

[Chapterto = I A S o I
¥ Projects @] @ W & Qr
acts .
= hapterl Ruleset_1 ¥ [|Fiker on Wew: |Q IF{THEM Rules '| * - % E % % & & %
D Application Sources _ft Functions S
: [0l com.example (%) Globals
EID Resources e To create a Rule or Decision Table, please click the plus sign above.
-4 ChapterlORUles ulss {7 Bucketsets
Model <D Links

WigwController . i
<f\, Decision Functions

@_—_J Translations

Rules ets @ X
&P Ruleserl
|+ Application Resources
|+ Data Controls
I» Recently Openad Files)
Diesinn

10.3.6 How to Add Decision Point Dictionary Links

You need to add a dictionary links to the Oracle Business Rules supplied Decision
Point Dictionary. This dictionary supports features for working with the Decision
Point interface with ADF Business Components objects.

Add decision point dictionary links:
1. In the Rules Designer, click the Links navigation tab.

Working with Oracle Business Rules and ADF Business Components 10-13

Creating a Business Rules Application with ADF Business Components Facts

2. From the menu next to the Create icon, select Decision Point Dictionary. This
operation can take awhile to complete. After waiting, Rules Designer adds a link
to the Decision Point Dictionary as shown in Figure 10-6.

Figure 10-6 Adding a Dictionary Link to Decision Point Dictionary

Sl Chapter10.jws Othapterll]Rules.rules | E]
B D®:) U0 @

-4 Facts

< 40 Links

_f,: Functions

(x) Globals Links: Wl KB

gf-f Bucketsets Alias Marmne Package Mame

(D Links & DecisionPoinkDictionary DecisionPointDictionary oracle.rules, sdkZ decisionpoint.impl

& Decision Functions
‘E:'J Translations
Rulesets + %
@} Rulesetl

=

Design

10.3.7 How to Import the ADF Business Components Facts

You import ADF Business Components facts with Rules Designer to make these
objects available when you create rules.

Import the ADF Business Components facts:
1. In Rules Designer, select the Facts navigation tab.

2. Select the ADF-BC Facts tab.
3. Click the Create... icon. This displays the ADF Business Components Fact page.

4. In the Connection field, from the list select the connection which your ADF
Business Components objects use. The Search Classpath area shows a list of
classpaths.

5. In the View Definition field, select the name of the view object to import. For
example, select com.example.EmployeesView.

6. Click OK. This displays the Facts navigation tab, as shown in Figure 10-7.

10-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

Figure 10-7 ADF Business Components Facts in Rules Designer

{’ﬂDepartmentsView. =l | = Employeesyiew, xml [QManagerRules.ruJes | E]
Bv B) o @

“d Facts

72, Fopme ADF-BC Farts: @ s X

(X) Clobals & Alias Wiew Definition Top Level

@ EmployessView com, example.managerfinder EmploveesView

7 Bucketsets ~

L @ DepartmentsView com, example,managerfinder DepartmentsYiew

D Links

<f\, Decision Functions
{L-:":J Translations

Rulesets g €
@ Rulesetl

[T8MCFacts | JavaFacts | RLFacts | ADF-BC Facts

=

Design

ADF Business Components Facts can include a circular reference, as indicated with the
validation warning:

RUL-05037: A circular definition exists in the data model

When this warning is shown in the Business Rule validation log, you need to manually
resolve the circular reference. To do this you deselect the Visible checkbox for one of
the properties that is involved in the circular reference.

To mark a property as non-visible:
1. Select the Facts navigation tab and select the ADF Business Components Facts tab.

2. Double-click the icon in the DepartmentsView row.
3. In the Properties table, in the EmployeesView row deselect the Visible checkbox.
4. Click OK.

To set alias for DepartmentsView and EmployeesView:
1. Select the Facts navigation tab and select the ADF Business Components Facts tab.

2, In the Alias column, replace EmployeesView with Employee.

3. In the Alias column, replace DepartmentsView with Department.

10.3.8 How to Add and Run the Outside Manager Ruleset

The sample code that runs the outside manager ruleset invokes the Decision Point
with the view object set using the set Inputs method. This invokes the decision
function once, with all of the view object rows loaded in a List. Note that invoking
the Decision Point this way is not scalable, because all of the view object rows must be
loaded into memory at the same time, which can lead to OutOfMemory exceptions.
Only use this invocation style when there are a small and known number of view
object rows. You can also use a Decision Point with setViewObject. For more
information, see Section 10.2.1, "How to Call a Decision Point with ADF Business
Components Facts".

Working with Oracle Business Rules and ADF Business Components 10-15

Creating a Business Rules Application with ADF Business Components Facts

10.3.8.1 How to Add the Outside Manager Ruleset and Add a Decision Function

After the view objects are imported as facts, you can rename the ruleset and create the
decision function for the application.

To rename the ruleset:
1. In Rules Designer, select the Ruleset_1 navigation tab.

2. Select the ruleset name and enter Outside Manager Ruleset to rename the
ruleset.

To add a decision function:
1. Click the Decision Functions navigation tab.

2. In the Decision Functions area, click Create.... This displays the Edit Decision
Function dialog.

3. Edit the decision function fields as follows, as shown in Figure 10-8.
s Enter Name value FindOutsideManagers.

s In the Inputs area, click the Add Input icon and edit the input information as
follows:

— Click the Fact Type field and select Employee from the list.
- Select the List checkbox.

In this decision function you do not define any outputs because you use the
ActionType API for taking action rather than producing output. For more
information, see Section 10.1.2, "Understanding Oracle Business Rules
Decision Point Action Type".

s Inthe Rulesets & Decision Functions area move the following items from the
Available area to the Selected area, in the specified order:

— DecisionPointDictionary.Preprocessing
— Outside Manager Ruleset

— DecisionPointDictionary.Postprocessing

10-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

Figure 10-8 Adding the Find Outside Managers Decision Function

& Edit Decision Function

Mame: | FindOutsideManagers |
Description: | |
Rule Firing Lirnit: |unlimited |v|

[will Be Invoked As & Webservice
Check Rule Flow

[¥] gtateless
= Inputs Eﬂ' X aAaw
Mame Fack Type Tree Liskt
&] Input_t Employes il
= Dutputs XA v
Mame Fack Type Tree Lisk

= Rulesets & Decision Functions

Available:

Selected: A
Q DecisionPaointDictionary . Preprocessing

b) @ Outside Manager Ruleset

Q DecisionPaointDictionary . Poskpracessing

@ DecisionPoint_Poskprocessing

@ DecisionPoint_Postprocessing_webservice
@ DecisionPoint_Preprocessing_Webservice
E DecisionPointDictionary . Postprocessing_webservice | }})

<
LK

| Help | | (a4 || Cancel

4. Ensure that the items in the Selected area are in the order shown in Figure 10-8.

If they are not, select an item and use the Move Up and Move Down buttons to
correct the order.

5. Click OK.

Several warnings appear. These warnings are removed in later steps when you add
rules to the ruleset.

10.3.8.2 How to Create the ActionType Java Implementation Class

To create the sample application and to modify the view object in a rule, you need to
create a Java implementation class for abstract class
oracle.rules.sdk2.decisionpoint.ActionType. All subclasses of
ActionType must implement the abstract exec method.

To create the ActionType Java implementation class:
1. In Oracle JDeveloper, select the project named Chapter10.

2. In the Application Navigator, select the Application Sources folder.
3. Right-click and from the list select New....

Working with Oracle Business Rules and ADF Business Components 10-17

Creating a Business Rules Application with ADF Business Components Facts

In the New Gallery, in the Categories area select General.
In the New Gallery, in the Items area select Java Class.

Click OK.

N o a &

In the Create Java Class dialog, configure the following properties as shown in
Figure 10-9:

s Enter the Name value MessageAction.
= Enter the Package value com. example.

s Enter the Extends value
oracle.rules.sdk2.decisionpoint.ActionType.

Figure 10-9 Creating the Message Action Type Java Class

Create Java Class §|
Enter the details of wour new class, I:’
[arne: | Messagedction |
Package: |c0m.example | Ck
Extends: : point. AckionType

Optional Atkributes

Implements: 3 X

Access Modifiers Other Modifiers
(%) public
(_) package protected

Constructors From Superclass
Implement Abstract Methods
[] Main Method

| Help | Ok J | Cancel

8. Click OK.
Oracle JDeveloper displays the Java Class.
9. Replace this code with the code shown in Example 10—4.

Example 10-4 ActionType Java Implementation

package com.example;

import oracle.rules.sdk2.decisionpoint.ActionType;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;

public class MessageAction extends ActionType {

public MessageAction() {
super () ;

public void exec (DecisionPointInstance decisionPointInstance) {
System.out.println(message) ;

10-18 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

10.

private String message = null;

public void setMessage (String message) {
this.message = message;

}

public String getMessage() {
return message;

}

In the Application Navigator, right click the MessageAction. java and from the
list select Make.

10.3.8.3 How to Import the Message Action Java Fact

You just created a new Java class and you need to add this class as a Java fact type in
Rules Designer to use later when you create rules.

To create the Java fact type:

1.
2
3.

In Rules Designer, click the Facts navigation tab.
Select the Java Facts tab.
Click Create....

In the Create Java Fact dialog, in the Classes area navigate in the tree and expand
com and example to display the MessageAction checkbox.

Select the MessageAction checkbox, as shown in Figure 10-10.

Figure 10-10 Create Java Fact with Message Action Type

& Create Java Fact g|
Select Java Fact Classes ‘
Select the Java classes you would like to be used as Java Facts in the rules engine. ‘-"' ?—l‘
‘fou can add a JAR file or directory to the classpath and then check the class files and/or packages wou
want to create Facts from,
Classpath: + b 4 D Classes: Gél
'.L:] File:JC:{ IDeveloperfrmywork) Chapter 10/Chapter 10)cla Q Classes
&[] [com
=0 [T example
- =]
D m java
B @ javax
=-0] @ org
[] Add Project Library to Classpath
| Help | [a]4 | | Cancel

6.

Click OK.
This adds the fact to the table, as shown in Figure 10-11.

Working with Oracle Business Rules and ADF Business Components 10-19

Creating a Business Rules Application with ADF Business Components Facts

Figure 10-11 Adding the Message Action Type Java Fact

glchapterlﬂ.jws QEhapterll]Rules.rules I E]
v @) o @
B Facts
F= Functions Java Facts: @+, XS
(x) Clobals Alias Class Descriptio
= » Messagefction com.example. Messagedction
e &y ActionType oracle.rules.sdkz . decisionpoint . ActionType
2 Links @y KeyChain aracle.rules.sdkZ . decisionpoint . KeyChain
Q Decision Functions &y KeyedActionTvpe oracle.rules.sdk2 . decisionpoint KeyedactionTvpe
. @y DecisionPoint aracle.rules.sdkz . decisionpaint . DecisionPaint
%Translaﬂons @y DecisionPointInstance oracle.rules.sdkz . decisionpoint . DecisionPointInstance
Rulesets “i‘ ® @y DecisionPointBuildsr aracle.rules.sdkz . decisionpaint . DecisionPaintBuilder
@ Pulesetl & Object java.lang. Object
@y String java.lang.String
@y Biglnteger jawa.math. BigInteger
@&y BigDecimal java.math. Bighecimal
&y Calendar java.util. Calendar
¥MLFacts | JavaFacts [RLFacts | ADFEC Facts
[
Design

10.3.8.4 How to Add the Find Managers Rule

You add the rule to find the managers that are in a different departments than their

employees.

To add the find managers in different departments rule:
1. In Rules Designer, select the Outside Manager Ruleset tab.

2. C(Click Add and from the list select Create Rule.

3. Rename the rule by selecting the default rule name Rule_1. This displays a text
entry area. You enter a name. For example, enter Find managers in different
department. Press Enter to apply the name.

4. Click Show Advanced Settings. For more information, see Section 4.5.1, "How to
Show and Hide Advanced Settings in a Rule or Decision Table".

5. In the rule select Advanced Mode, as shown in Figure 10-12.

10-20 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

Figure 10-12 Adding the Find Managers in Different Departments Rule

| Chapter10.jis thapterl DRules.rules | OChapterlDRules.rules E]
EE R Rl ! @
o i i : b [
Outside Manager Ruleset ¥ [Eilter On Wiew: Q IFJTHEM Rules 'l * - R Tﬂ % % & A v
£
) = % Find managers in different department
<enter descripkion =
=
L Advanced Mode [] Tree Mode Rule Active [| Logical Priority:
&£ Effective Dake: | Ahways valid
&
@_-J IF
@ <variable is a <fack bvpes
<insert besk=
<inserk patkern:=
THEN
<insert action
c
Design

6. Enter the rule as shown in Figure 10-13. The action for the rule shown in the
THEN area is too long to show in the figure. The complete action that you build
includes the following items:

"Employee " + Employee.FirstName + " " + Employee.LastName + " (" +
Employee.EmployeeId + ")"+ " in dept " + Employee.DepartmentId + " has
manager outside of department, " + Manager.FirstName + " " + Manager.LastName
+ "(" + Manager.EmployeeId + ")" + " in dept " + Manager.DepartmentId

Figure 10-13 Find Managers in Different Departments Rule

QEhapterll]Rules.rules | ﬁn]OutsideManagerFinder.java E]
B 5 @) o @
a _ e —
Dutside Manager Ruleset % [| Filter On Yiew: QIF."THEN Rues «| 90 - 3§ 123 % % & A w0
%
® = #® Find managers in different department
<enter description =
ot
L [] Tree Mode Rule Active [| Logical Priority: |
<9 Effective Date: Always valid
@
% IF
@ Emplovee is a Emploves
<insert kst
and
Manager is a Employee and
Manager . Emploveeld == Employee.Managerld and
Manager.Departmentld |= Employee.DepartmentId
<insert kst
<insert pattern:>
THEN
assert new Messagedction { <add property = message : "Emplovee " + Emploves FirstMame + " " + Emploves LastMame + "{" + Er
<insert action:=
[=

Working with Oracle Business Rules and ADF Business Components 10-21

Creating a Business Rules Application with ADF Business Components Facts

10.3.8.5 How to Add the Outside Manager Finder Class

Add the outside manager finder class. This uses the Decision Point to execute a
decision function.

To add the Outside Manager Finder Class:
1. Select the Chapter10 project.

Right-click and select New....

In the New Gallery, in the Categories area select General.
In the New Gallery, in the Items area select Java Class.
Click OK.

In the Name field, enter OutsideManagerFinder.

Click OK.

©® N o a » 0 b

Replace the contents of this class with the code shown in Example 10-5.

Example 10-5 Outside Manager Finder Java Class with Decision Point

package com.example;
import java.util.ArrayList;

import oracle.jbo.ApplicationModule;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;

import oracle.rules.rl.exceptions.RLException;

import oracle.rules.sdk2.decisionpoint.DecisionPoint;

import oracle.rules.sdk2.decisionpoint.DecisionPointBuilder;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;
import oracle.rules.sdk2.exception.SDKException;

import oracle.rules.sdk2.repository.DictionaryFQN;

public class OutsideManagerFinder {
private static final String AM _DEF = "com.example.AppModule";
private static final String CONFIG = "AppModuleLocal";
private static final String VO_NAME = "EmployeesViewl";

private static final DictionaryFQN DICT_FQN =
new DictionaryFQN("com.example", "ChapterlORules");

private static final String DF_NAME = "FindOutsideManagers";
private DecisionPoint dp = null;

public OutsideManagerFinder() {
try {
dp = new DecisionPointBuilder ()
.with (DICT_FQN)
.with (DF_NAME)
Lbuild();
} catch (SDKException e) {
System.err.println(e);

public void run() {

10-22 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

final ApplicationModule am =
Configuration.createRootApplicationModule (AM_DEF, CONFIG);
final ViewObject vo = am.findViewObject (VO_NAME) ;
final DecisionPointInstance point = dp.getInstance();
point.setInputs (new ArrayList<Object>(){{ add(vo); 1}});
try {
point.invoke() ;
} catch (RLException e) ({
System.err.println(e);
} catch (SDKException e) {
System.err.println(e);

public static void main(String[] args) {
OutsideManagerFinder omf = new OutsideManagerFinder();
omf.run();

10.3.8.6 How to Update ADF META INF for Local Dictionary Access

You need to update the ADF-META-INF file with MDS information for accessing the
dictionary. You can use a local file with MDS to access the Oracle Business Rules
dictionary. However, this procedure is not the usual dictionary access method with
Oracle Business Rules in a production environment. For information on using a
Decision Point to access a dictionary with MDS in a production environment, see
Section 7.5, "What You Need to Know About Using Decision Point in a Production
Environment".

Update ADF-META-INF:
1. In the Application Navigator, expand Application Resources.

2. Expand Descriptors and ADF META-INF folders.

3. Double-click adf-config.xml to open this file.

4. Click the Source tab to view the adf-config.xml source.
5

Add the MDS information to adf-config.xml, before the closing
</adf-config> tag, as shown in Example 10-6.

Example 10-6 Adding MDS Elements to adf-config.xml for Local Dictionary Access

<adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
<mds-config version="11.1.1.000" xmlns="http://xmlns.oracle.com/mds/config">
<persistence-config>
<metadata-namespaces>
<namespace metadata-store-usage="mstore-usage_1" path="/"/>
</metadata-namespaces>
<metadata-store-usages>
<metadata-store-usage id="mstore-usage_1">
<metadata-store
class-name="oracle.mds.persistence.stores.file.FileMetadataStore">
<property name="metadata-path"
value="C:\jdevinstance\mywork\Chapterl0\.adf\"/>
</metadata-store>
</metadata-store-usage>
</metadata-store-usages>

Working with Oracle Business Rules and ADF Business Components 10-23

Creating a Business Rules Application with ADF Business Components Facts

</persistence-config>
</mds-config>
</adf-mds-config>

6. In the <property> element with the attribute metadata-path, change the path
to match . adf directory in the application on your system.

Copy definitions to MDS accessible location:

1. Ina file system navigator, outside of Oracle JDeveloper navigate to the Chapter10
application, and in the Chapter10 project, in the src folder select and copy the com
folder.

2. In the application directory for Chapter10, above the Chapterl0 project, navigate
to the .adf directory.

3. Copy the com folder to this directory.

Copy dictionary to MDS accessible location:

1. In a file system navigator, outside of Oracle JDeveloper navigate to the Chapter10
application and in the Chapter10 project, copy the oracle directory that contains
the Oracle Business Rules dictionary.

2. In the application directory for Chapter10, above the Chapter10 project, navigate
to the .adf directory.

3. Copy the oracle folder to this directory.

10.3.8.7 How to Build and Run the Project to Check the Outside Manager Finder

You can build and test the project by running the find managers with employees in
different departments rule.

Build the OutsideManagerFinder configuration:
1. From the dropdown menu next to Run icon, select Manage Run Configurations....

2. In the Project Properties dialog, click New....

3. In the Create Run Configuration dialog, enter a name. For example, enter
OutsideManagerFinder.

Click OK.
With OutsideManagerFinder selected, click Edit....
In the Default Run Target field, click Browse....

4
5
6
7. Select OutsideManagerFinder.java from the src\com\example folder.
8. Click Open.

9. In the Edit Run Configuration dialog, click OK.

10. In the Project Properties dialog, click OK.

Run the project:

1. In the dropdown menu next to the Run project icon, select
OutsideManagerFinder.

2. Running this configuration generates output, as shown in Example 10-7.

10-24 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

Example 10-7 Running the OutsideManagerFinder Ruleset

Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp
Emp

Shelley Higgins(205) in dept 110 manager outside of department, Neena Kochhar (101) in dept 90
Hermann Baer (204) in dept 70 manager outside of department, Neena Kochhar(101) in dept 90
Susan Mavris(203) in dept 40 manager outside of department, Neena Kochhar(101) in dept 90
Michael Hartstein(201) in dept 20 manager outside of department, Steven King(100) in dept 90
Jennifer Whalen(200) in dept 10 manager outside of department, Neena Kochhar(101) in dept 90
Kimberely Grant(178) in dept null manager outside of department, Eleni Zlotkey(149) in dept 80
Eleni Zlotkey(149) in dept 80 manager outside of department, Steven King(100) in dept 90
Gerald Cambrault (148) in dept 80 manager outside of department, Steven King(100) in dept 90
Alberto Errazuriz(147) in dept 80 manager outside of department, Steven King(100) in dept 90
Karen Partners(146) in dept 80 manager outside of department, Steven King(100) in dept 90

John Russell (145) in dept 80 manager outside of department, Steven King(100) in dept 90

Kevin Mourgos(124) in dept 50 manager outside of department, Steven King(100) in dept 90
Shanta Vollman(123) in dept 50 manager outside of department, Steven King(100) in dept 90
Payam Kaufling(122) in dept 50 manager outside of department, Steven King(100) in dept 90
Adam Fripp(121) in dept 50 manager outside of department, Steven King(100) in dept 90

Matthew Weiss(120) in dept 50 manager outside of department, Steven King(100) in dept 90

Den Raphaely(114) in dept 30 manager outside of department, Steven King(100) in dept 90

Nancy Greenberg(108) in dept 100 manager outside of department, Neena Kochhar(101) in dept 90
Alexander Hunold(103) in dept 60 manager outside of department, Lex De Haan(102) in dept 90

10.3.9 How to Add and Run the Department Manager Ruleset

The sample code that runs the department manager ruleset invokes the Decision Point
with the view object set using the setViewObject method. This invokes the decision
function once for each row in the view object. All decision function calls occur in the
same RuleSession. Between decision function calls, the RuleSession preserves all state
from the previous decision function call. Thus, any objects asserted during the
previous call remain in working memory for the next call unless they are explicitly
retracted by rulesets that you supply. When the state is maintained, you can retract all
facts or selectively retract facts between calls by running a ruleset with rules that use
the retract action. This ruleset is run as part of the same decision function that you use
with the Decision Point. The retract all employees ruleset demonstrates retracting
these facts, as shown in Figure 10-15. For more information, see Section 10.2.1, "How
to Call a Decision Point with ADF Business Components Facts".

10.3.9.1 How to Add the Department Manager Finder Ruleset

You now add the department manager finder ruleset.

To add the department manager finder ruleset:
1. In Rules Designer, click Create Ruleset....

2. In the Create Ruleset dialog, in the Name field enter Department Manager
Finder Ruleset.

3. Click OK.

10.3.9.2 How to Add the Find Rule in the Department Manager Finder Ruleset

Next you add the Find rule to find department managers. This rule demonstrates the
use of Tree Mode rules with Oracle ADF Business Components fact types.

Add department manager finder rule:
1. In Rules Designer select the Department Manager Finder Ruleset.

2. In the dropdown menu next to the Add icon, click Create Rule.

3. Change the rule name by selecting the name Rule_1, and entering Find.

Working with Oracle Business Rules and ADF Business Components 10-25

Creating a Business Rules Application with ADF Business Components Facts

4. Click Show Advanced Settings. For more information, see Section 4.5.1, "How to
Show and Hide Advanced Settings in a Rule or Decision Table".

5. In the rule, select Tree Mode.

6. Enter the Find rule tests and actions, as shown in Figure 10-14. The THEN area
includes the assert that is too wide for the figure. The following shows the
complete text of this rule, which is missing in Figure 10-14:

Employee.FirstName + " " + Employee.LastName + " is the manager of dept " +
Employee/DepartmentsView.DepartmentName

Figure 10-14 Adding the Find Rule to the Department Manager Finder Ruleset

Q Chapterl DRules.rules | _»Chapter 10Rules.rules E]
B o @Ee) 0O @
&P Facts

£ * Department Manager Finder Ruleset % [|Filker On View: |Gv| 4 - B "-Eg % % & A W
e Functions .

o2 Fi
(x) Clobals A Find o

<enter description=
] —
¥/ Bucketsets [] Adwanced Mode Tree Mode Rule Active [| Logical Priority: | medium |V|
<D Links -

Effective Date: | Ahways Valid
#& Decision Functions
ROOT: Emploves
IF
Employves/Departmentstiew . Managerld == Employes, EmplovesId

‘?1.‘_."_, Translations
Rulesets + b4
&P Outside Manager Ruleset <insert kest>
P Department Manager Finder Ruleset THEN
retract Employes

assert new Messageaction | =<add property= message : Emploves, FirskName + " " + Employes LastMame + " is the manager

=insert actionz

=

Dresign

10.3.9.3 How to Add Retract Employees Ruleset

You add a ruleset to retract the employee fact type instances. This ensures that the
Employee fact type is removed between invocations of the decision function.

To add the retract employee ruleset:
1. Add the Retract Employees Ruleset.

2, Inthe Retract Employees Ruleset, add a rule and name it Retract all employees, as
shown in Figure 10-15.

10-26 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

Figure 10-15 Adding the Retract All Employees Rule

&9 Facts

_'f,: Functions

(%) Clobals

7 Bucketsets

<D Links

Q Decision Functions

% Translations
Rulesets * R
8} Rulesetl

8} Retract Employees

8} Department Manage...

#OracleRulesl rules * Qnemiztdfare.ruk.i x J{LjProjeth(com|Josite.xml) x E]
¥ @ QO @ 14 @

¥ Retract Employees ¥ [|Eiteron View [e/THE. v Fp~ 8 TWHE @& & @

e

=l % Retract all employees

=enter description=

Effective Date: Always Valid

IF

Employee is a <fact type=
<inzert test>

=insert pattern:
THEN

retract Employee

<insert action>

@

saddnosay &)

[]Tree Mode [v] Rule Active [| Logical Priority: [Medium |:|

10.3.9.4 How to Add the Find Department Managers Decision Function

Now you create the decision function for the department manager finder ruleset. You
use this decision function to execute the ruleset from a Decision Point.

To add a decision function for department manager finder ruleset:

1.
2.

Click the Decision Functions navigation tab.

In the Decision Functions area, click Create.... This displays the Edit Decision
Function dialog.

Update the decision function fields as follows, as shown in Figure 10-16.

Enter Name value FindDepartmentManagers.

In the Inputs area, click the Add Input and edit the input information as
follows:

— Click the Fact Type field and select Employee from the list.
— Select the Tree checkbox.

In this decision function you do not define any outputs, because you use the
ActionType API for taking action rather than producing output.

In the Rulesets & Decision Functions area, move the following items from the
Available area to the Selected area, in the specified order:

— DecisionPointDictionary.Preprocessing
— Department Manager Finder Ruleset
— Retract Employees

— DecisionPointDictionary.Postprocessing

Working with Oracle Business Rules and ADF Business Components 10-27

Creating a Business Rules Application with ADF Business Components Facts

Figure 10-16 Adding the Find Department Managers Decision Function

& Edit Decision Function

Marme: indDepartmentManagers |
Description: | |
Rule Firing Limnit: |unlimited |V|
[will Be Invoked As & Webservice
Check Rule Flow
Stateless
= Inputs Eﬂ' X aAaw
Marme Fact Tvpe Tree List
&] Input_t Employes E
= Dutputs XA v
Mame Fack Type Tree Lisk

= Rulesets & Decision Functions

Available:

Selected: L
E DecisionPaoinkDictionary . Preprocessing

> @ Departrnent Manager Finder Ruleset

@ Retract Employvess

@ DecisionPoint_Poskprocessing
@ DecisionPoint_Postprocessing_webservice
@ DecisionPoint_Preprocessing_Webservice

Outside M Ruleset

@ u. e | é» | g DecisionPointDictionary . Fostprocessing
P Raises Ruleset

(B FindoutsideManagers <

E EmploveeR.aises | (« |

E DecisionPointDictionary . Postprocessing_webserwvice

| Help | | (a4 || Cancel

4. Ensure that the items in the Selected area are in the order shown in Figure 10-16.

If they are not, select an item and use the Move Up and Move Down buttons to
correct the order.

5. Click OK.

10.3.9.5 How to Add the Department Manager Finder Java Class

Add the department manager finder class. This class include the code with the
Decision Point that executes the decision function.

Add the department manager finder class:
1. In the Application Navigator, select the Chapter10 project.

Right-click and select New....

In the New Gallery, in the Categories area select General.

2
3
4. In the New Gallery, in the Items area, select Java Class.
5. Click OK.

6

In the Name field, enter DeptManagerFinder.

10-28 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

7. Click OK.

8. Replace the contents of this class with the code shown in Example 10-8.

Example 10-8 Department Manager Finder Class

package com.example;

import
import
import
import

import
import
import
import
import
import

public

private
private
private

private

private

oracle.
oracle.

oracle

oracle.

oracle

jbo.ApplicationModule;
jbo.ViewObject;

.jbo.client.Configuration;
oracle.

jbo.server.DBTransactionImpl?2;

rules.rl.exceptions.RLException;

.rules.sdk2.decisionpoint.DecisionPoint;
oracle.
oracle.
oracle.
oracle.

rules.sdk2.decisionpoint.DecisionPointBuilder;
rules.sdk2.decisionpoint.DecisionPointInstance;
rules.sdk2.exception.SDKException;
rules.sdk2.repository.DictionaryFQN;

class DeptManagerFinder {

static final String AM_DEF = "com.example.AppModule";
static final String CONFIG = "AppModuleLocal";

static final String VO_NAME = "EmployeesViewl";

static final String DF_NAME = "FindDepartmentManagers";

static final DictionaryFQN DICT FQN =

new DictionaryFQN("com.example", "ChapterlORules");

private DecisionPoint dp = null;

public DeptManagerFinder () {

try {

dp = new DecisionPointBuilder ()

.with (DICT_FQN)
.with (DF_NAME)
Jbuild();

} catch (SDKException e) {
System.err.println(e);

public void run() {

final

final
final

point.
point.
point.

try {

ApplicationModule am =
Configuration.createRootApplicationModule (AM_DEF, CONFIG);

ViewObject vo = am.findViewObject (VO_NAME) ;

DecisionPointInstance point = dp.getInstance();

setTransaction ((DBTransactionImpl2)am.getTransaction()) ;
setAutoCommit (true) ;
setViewObject (vo) ;

point.invoke() ;

} catch (RLException e) {

System.err.println(e)
} catch (SDKException e)
e

{

System.err.println(e);

Working with Oracle Business Rules and ADF Business Components 10-29

Creating a Business Rules Application with ADF Business Components Facts

public static void main(String[] args) {
new DeptManagerFinder().run();

}

10.3.9.6 How to Copy the Dictionary to an MDS Accessible Location
Copy the updated dictionary to an MDS accessible location.

Copy dictionary to MDS accessible location:

1. In a file system navigator, outside of Oracle JDeveloper, navigate to the Chapter10
application, and project and copy the oracle directory that contains the dictionary.

2. In the application directory for Chapter10, above the Chapterl10 project, navigate
to the . adf directory.

3. Copy the oracle folder to this directory.

10.3.9.7 How to Build and Run the Project to Check the Find Managers Rule

You can build and test the project to execute the department manager finder ruleset.

Build the project:
1. From the dropdown menu next to Run icon, select Manage Run Configurations....

2. In the Project Properties dialog, click New....

3. In the Create Run Configuration dialog, enter the name. For example, enter
DeptManagerFinder.

In the Copy Settings From field, enter Default.

Click OK.

With DeptManagerFinder selected, click Edit....

In the Default Run Target field, click Browse....

Select DeptManagerFinder.java from the src\com\example directory.
Click Open.

10. In the Edit Run Configuration dialog, click OK.

© ® N o o &

11. In the Project Properties dialog, click OK.

Run the project:
1. In the menu, next to the Run project icon, select DeptManager Finder.

2. Running the decision point generates output, as shown in Example 10-9.

Example 10-9 Output from Department Manager Finder Ruleset

Michael Hartstein is the manager of dept Marketing
John Russell is the manager of dept Sales

Adam Fripp is the manager of dept Shipping

Den Raphaely is the manager of dept Purchasing
Alexander Hunold is the manager of dept IT

Shelley Higgins is the manager of dept Accounting
Hermann Baer is the manager of dept Public Relations
Susan Mavris is the manager of dept Human Resources

10-30 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

Jennifer Whalen is the manager of dept Administration
Nancy Greenberg is the manager of dept Finance

Steven King is the manager of dept Executive

Shelley Higgins is the manager of dept Accounting
Hermann Baer is the manager of dept Public Relations
Susan Mavris is the manager of dept Human Resources
Jennifer Whalen is the manager of dept Administration
Nancy Greenberg is the manager of dept Finance
Alexander Hunold is the manager of dept IT

Alexander Hunold is the manager of dept IT

Nancy Greenberg is the manager of dept Finance

Den Raphaely is the manager of dept Purchasing

Adam Fripp is the manager of dept Shipping

John Russell is the manager of dept Sales

Jennifer Whalen is the manager of dept Administration
Michael Hartstein is the manager of dept Marketing
Susan Mavris is the manager of dept Human Resources
Hermann Baer is the manager of dept Public Relations
Shelley Higgins is the manager of dept Accounting

When you see duplicate entries in the output, when working with tree mode rules in
this example, the duplicate entries are due to multiple rule firings on the same data in
a different part of the view object graph.

10.3.10 How to Add and Run the Raises and Retract Employees Rulesets

The sample code that runs the raises ruleset invokes the Decision Point by specifying
the view object using the setViewObject method. This invokes the decision function
once for each row in the view object. The retract employees ruleset retracts all
instances of Employee asserted for each call, so that they do not remain in working
memory between calls to the decision function. The action type shown in

Example 10-10 shows how to change the ViewRowImpl attribute values with a
ActionType. For more information, see Section 10.2.1, "How to Call a Decision Point
with ADF Business Components Facts".

10.3.10.1 How to Add the Raises Ruleset

You now add the raises ruleset.

To add the raises ruleset:
1. In Rules Designer, click Create Ruleset....

2. In the Create Ruleset dialog, in the Name field enter Raises Ruleset.

3. C(lick OK.

10.3.10.2 How to Create the Raise ActionType Java Implementation Class

To create this part of the sample application and to modify the view object in the raises
rule, you need to create a Java implementation class for the abstract class
oracle.rules.sdk2.decisionpoint.ActionType. All subclasses of
ActionType must implement the abstract exec method.

To create the raise ActionType Java implementation class:
1. In Oracle JDeveloper, select the project named Chapter10.

2. Inthe Application Navigator, select the Application Sources folder.
3. Right-click and from the list select New....

Working with Oracle Business Rules and ADF Business Components 10-31

Creating a Business Rules Application with ADF Business Components Facts

In the New Gallery, in the Categories area select General.
In the New Gallery, in the Items area select Java Class.
Click OK.

N o a &

In the Create Java Class dialog, configure the following properties as shown in
Figure 10-17:

= Enter the Name value RaiseAction.
= Enter the Package value com. example.

s Enter the Extends value
oracle.rules.sdk2.decisionpoint.ActionType.

Figure 10-17 Creating the Raise ActionType Java Class

Create Java Class §|
Enter the details of wour new class, I:’
[arne: | Raisefction |
Package: |c0m.example | Ck
Extends: |oracle.rules.sdk2.decisionpoint.ActionType | Q§

Optional Atkributes

Implements: 3 ¥

Access Modifiers Other Modifiers
(%) public
(_) package protected

Constructors From Superclass
Implement Abstract Methods
[] Main Method

| Help | Ok | | Cancel

8. Click OK.
Oracle JDeveloper displays the Java Class.
9. Replace this code with the code shown in Example 10-10.

Example 10-10 ActionType Java Implementation
package com.example;
import oracle.jbo.domain.Number;

import oracle.rules.sdk2.decisionpoint.ActionType;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;

public class RaiseAction extends ActionType {
private double raisePercent;

public void exec(DecisionPointInstance dpi) {

Number salary = (Number)getViewRowImpl ().getAttribute("Salary");
salary = (Number)salary.multiply(1.0d + getRaisePercent()).scale(100,2, new

10-32 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

boolean[]{false});
dpi.addResult ("raise for " + this.getViewRowImpl ().getAttribute("EmployeeId"),
getRaisePercent () + "=>" + salary);
getViewRowImpl () .setAttribute("Salary", salary);
}

public void setRaisePercent (double raisePercent) {
this.raisePercent = raisePercent;

}

public double getRaisePercent () {
return raisePercent;
}
}

10. In the Application Navigator, right click the RaiseAction. java and from the
list select Make.

10.3.10.3 How to Import the Raise Action Java Fact

You just created a new Java class. You import this class as a Java fact type in Rules
Designer to use later when you create rules.

To create the Java fact type:
1. In Rules Designer, select the ManagerRules.rules dictionary.

2. Click the Facts navigation tab and select the Java Facts tab.
3. Click Create....

4. In the Create Java Fact dialog, in the Classes area navigate in the tree and expand
com and example to display the RaiseAction checkbox.

5. Select the RaiseAction checkbox as shown in Figure 10-18.

Figure 10-18 Create Java Fact from Raise Action Class

& Create Java Fact g|

Select Java Fact Classes

Select the Java classes you would like to be used as Java Facts in the rules engine. ‘-'! ?—l‘
‘fou can add a JAR file or directory to the classpath and then check the class files and/or packages wou
want to create Facts from,

Classpath: + b 4 D Classes: Gﬂ

'.L:] File:}1#C: fIDeveloper rivwark/Chapter 10/ Chapter10/5 Q Classes

'.LJ File: {{#iC: {IDeveloper fmywork/Chapter 10/Chapter10/g &[] m com

ED m example

L[] peptManagerFinder

D Messageackion - Fact Created

~[1E] outsidemanagerFinder
.08 o

uksideManagerFinderd 1
tion

[] Add Project Library to Classpath

| Help | (o] 4 || Cancel

6. Click OK.
This adds the Raise Action fact type to the Java Facts table.

Working with Oracle Business Rules and ADF Business Components 10-33

Creating a Business Rules Application with ADF Business Components Facts

10.3.10.4 How to Add the 12 Year Raise Rule

This rule shows how to use action types to update database entries.

To add 12 year raise rule:
1. In Rules Designer in the Raises Ruleset, click Create Rule.

2. Change the rule name by selecting Rule_1 and entering the value: Longer than
12 years.

3. Click Show Advanced Settings. For more information, see Section 4.5.1, "How to
Show and Hide Advanced Settings in a Rule or Decision Table".

4. Select Advanced Mode.

5. Enter the 12 year raise rules, as shown in Figure 10-19.

Figure 10-19 Adding the Longer Than 12 Years Rule to the Raises Ruleset

2 OracleRulesl rules * Qhemizedfare.rules x .-ItjProjeth(composite.xml) B E] ‘@
v 9o8 DO 8 @|f
s

S Fact ===
Q Facts + Retract Employees ¥ [|Eiteron View [(Q F/THE. v| 4P~ 38 T Gh 0 & & x‘ B

_'f,: Functions
(%) Clobals

7 Bucketsets

<D Links
Q Decision Functions

‘E_"J Translations

8} Rulesetl

8} Retract Employees

Rulesets * R

8} Department Manage...

= % Retract all employees

=enter description=
[]Tree Mode [v]Rule Active [|Logical Priority: (Medium ||

Effective Date: Always Valid

IF

Employee is a <fact type=

<inzert test>
and

CurrentDate iz a CurrentDate and

Durationyears between (Employee HireDate, CurrentDate date) == 12

<inzerttest>

<inzert pattern=
THEN

aszert new Raisefction { <edit properties=)

<ihgert actioh>

10.3.10.5 How to Add the Employee Raises Decision Function

Now create the decision function for the employee raises and the retract all employees
rulesets.

To add a decision function:
1. Click the Decision Functions navigation tab.

2. In the Decision Functions area, click Create.... This displays the Edit Decision
Function dialog.

3. Update the decision function fields as shown in Figure 10-20.
s Enter Name value EmployeeRaises.

s In the Inputs area, click the Add Input and edit the input information as
follows:

- Click the Fact Type field and select Employee from the list.

In this decision function you do not define any outputs, because you use the
ActionType API for taking action rather than producing output.

10-34 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

s Inthe Rulesets & Decision Functions area, move the following items from the
Available area to the Selected area, in the specified order.

— DecisionPointDictionary.Preprocessing
- Raises Ruleset
— Retract Employees Ruleset

— DecisionPointDictionary.Postprocessing

Figure 10-20 Adding the Employee Raises Decision Function

& Edit Decision Function

[Marme:

Description: | |
Rule Firing Limit: |unlimited |

[] will Be Invoked As A Webservice

Check Rule Elow

[¥] Stateless
= Inputs XA
Marne Fact Type Tree Lisk
&] Input_t Employes O E
= Outputs X aAaw
Marne Fact Type Tree Lisk

= Rulesets & Decision Functions

Available:

Selected: A v
E] DecisionPointDictionary . Preprocessing
P Raises Ruleset
s @ Retract Employess
é» | E] DecisionPointDictionary . Postprocessing

@ DecisionPoint_Postprocessing

@ DecisionPoint_Postprocessing_Webservice
@ DecisionPoint_Preprocessing_Webservice S’
@ Department Manager Finder Ruleset
& Outside Manager Ruleset

g FindCutsideManagers <
gFindDepartmentManagers | (« |
g DecisionPointDictionary . Postprocessing_Webservics ———
| Help | | (04 || Cancel

4. Ensure that the items in the Selected area are in the order shown in Figure 10-20.

If they are not, select an item and use the Move Up and Move Down buttons to
correct the order.

5. Click OK.

10.3.10.6 How to Add the Employee Raises Java Class

Add the employee raises class. This executes the decision function.

Working with Oracle Business Rules and ADF Business Components 10-35

Creating a Business Rules Application with ADF Business Components Facts

To add the employee raises class:
1. Select the Chapter10 project.

Right-click and select New....

In the New Gallery, in the Categories area select General.
In the New Gallery, in the Items area, select Java Class.
Click OK.

In the Name field, enter EmployeeRaises.

Click OK.

© N o a » 0 D

Replace the contents of this class with the code shown in Example 10-11.

Example 10-11 DeptManagerFinder Class

package com.example;

import oracle.jbo.ApplicationModule;

import oracle.jbo.ViewObject;

import oracle.jbo.client.Configuration;
import oracle.jbo.server.DBTransactionImpl2;

import oracle.rules.rl.exceptions.RLException;

import oracle.rules.sdk2.decisionpoint.DecisionPoint;

import oracle.rules.sdk2.decisionpoint.DecisionPointBuilder;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;
import oracle.rules.sdk2.exception.SDKException;

import oracle.rules.sdk2.repository.DictionaryFQN;

public class EmployeeRaises {
private static final String AM _DEF = "com.example.AppModule";
private static final String CONFIG = "AppModuleLocal";
private static final String VO_NAME = "EmployeesViewl";
private static final String DF_NAME = "EmployeeRaises";

private static final DictionaryFQN DICT_FQN =
new DictionaryFQN("com.example", "ChapterlORules");

private DecisionPoint dp = null;
public EmployeeRaises() {

try {
dp = new DecisionPointBuilder ()
.with (DICT_FQN)
.with (DF_NAME)
Lbuild();
} catch (SDKException e) {
System.err.println(e);

public void run() {
final ApplicationModule am =
Configuration.createRootApplicationModule (AM_DEF, CONFIG);
final ViewObject vo = am.findViewObject (VO_NAME) ;
final DecisionPointInstance point = dp.getInstance();

10-36 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating a Business Rules Application with ADF Business Components Facts

point.setTransaction((DBTransactionImpl2)am.getTransaction());
point.setAutoCommit (true);
point.setViewObject (vo) ;
try {
point.invoke() ;
} catch (RLException e) {
System.err.println(e);
} catch (SDKException e) {
System.err.println(e);

}

for (DecisionPoint.NamedValue result : point.getResults()){
System.out.println(result.getName() + " " + result.getValue());

}
}

public static void main(String[] args) {
new EmployeeRaises().run();

}

10.3.10.7 How to Copy Dictionary
Copy the updated dictionary to the MDS accessible location.

Copy dictionary to MDS accessible location:

1. In a file system navigator, outside of Oracle JDeveloper, navigate to the Chapter10
folder and the Chapter10 project and copy the oracle directory that contains the
dictionary.

2. In the application directory for Chapter10, above the Chapterl0 project, navigate
to the . adf directory.

3. Copy the oracle folder to this directory.

10.3.10.8 How to Build and Run the Project to Check the Raises Rule

You can build and test the project by running employee raises ruleset.

Build the project:
1. From the dropdown menu next to Run icon, select Manage Run Configurations....

2. In the Project Properties dialog, click New....

3. In the Create Run Configuration dialog, enter the name. For example, enter
EmployeeRaises.

4. Inthe Copy Settings From field, enter Default.

5. Click OK.

6. With EmployeeRaises selected, click Edit....

7. In the Default Run Target field, click Browse....

8. Select EmployeeRaises.java from the src\com\example folder.
9. Click Open.

10. In the Edit Run Configuration dialog, click OK.

Working with Oracle Business Rules and ADF Business Components 10-37

Creating a Business Rules Application with ADF Business Components Facts

11. In the Project Properties dialog, click OK.

Run the project:
1. In the menu, next to the Run project icon, select EmployeeRaises.

2. Oracle JDeveloper displays the output as shown in Example 10-12.

Example 10-12 Output from Raises Ruleset

.03=>81.7
.03=>1872.46
.03=>60596.78
.03=>31146.26
.03=>20159.43
.03=>35822.68

raise for 100
raise for 101
raise for 102
raise for 103
raise for 104
raise for 108

raise for 109 0.03=>26084.5
raise for 114 0.03=>27500.92
raise for 115 0.03=>7524.5

.03=>16262.34
.03=>16183.41
.03=>15591.35

raise for 120
raise for 121
raise for 122

raise for 131 0.03=>3671.33
raise for 133 0.03=>4567.98
raise for 137 0.03=>4838.1
raise for 141 0.03=>4703.71
raise for 142 0.03=>4044.79

.03=>17734.79
.03=>17101.39
.03=>15201.23
.03=>12667.7

.03=>12034.32
.03=>13047.73
.03=>12395.35
.03=>11400.93
.03=>10134.16
.03=>14567.86
.03=>13934.48
.03=>11147.58

raise for 145
raise for 146
raise for 147
raise for 150
raise for 151
raise for 156
raise for 157
raise for 158
raise for 159
raise for 168
raise for 174
raise for 175

raise for 184 0.03=>5480.03
raise for 185 0.03=>5193.76
raise for 192 0.03=>5219.1
raise for 193 0.03=>4940.41
raise for 200 0.03=>5740.99
raise for 201 0.03=>16962.05
raise for 203 0.03=>8481.03

.03=>13047.73
.03=>15657.27
.03=>10829.62

raise for 204
raise for 205
raise for 206

O o oo oo o o o o o o o

10-38 Oracle Fusion Middleware User's Guide for Oracle Business Rules

11

Working with Decision Components in SOA
Applications

This chapter discusses the Decision components that support Oracle Business Rules. It
also covers how to use a Decision component as a mechanism for publishing rules and
rulesets as a reusable service that can be invoked from multiple business processes.

A Decision Component is a SCA component that can be used within a composite and
wired to a BPEL component. Apart from that, Decision Components are used for
dynamic routing capability of Mediator and Advanced Routing Rules in Human
Workflow.

This chapter includes the following sections:
= Section 11.1, "Introduction to Decision Components"
= Section 11.2, "Working with a Decision Component"

s Section 11.3, "Decision Service Architecture"

11.1 Introduction to Decision Components

A Decision component is a Web service that wraps a rule session to the underlying
decision function.

A Decision component consists of the following:

= Rules or Decision Tables that are evaluated using the Rules Engine. These are
defined using Rules Designer and stored in a business rules dictionary.

= Metadata that describes facts required for specific rules to be evaluated. Each
ruleset that contains rules or Decision Tables is exposed as a service with facts that
are input and output. These facts must be exposed through XSD definitions.

For example, a credit rating ruleset may expect a customer ID and previous loan
history as facts, but a pension payment ruleset may expect a value with the years
of employee service, salary, and age as facts.

For more information, see Section 11.2.1, "Working with Decision Component
Metadata".

= A Web service wraps the input, output, and the call to the underlying rule engine.

This service lets business processes assert and retract facts as part of the process.
In some cases, all facts can be asserted from the business process as one unit. In
other cases, the business process can incrementally assert facts and eventually
consult the rule engine for inferences. Therefore, the service has to support both
stateless and stateful interactions.

Working with Decision Components in SOA Applications 11-1

Working with a Decision Component

You can create a variety of such business rules service components.

For more information, see Oracle Fusion Middleware Developer’s Guide for Oracle
SOA Suite.

11.2 Working with a Decision Component

Using Oracle JDeveloper with Rules Designer these tools automatically generate all
required metadata and WSDL operations. The Decision component can be integrated
into a SOA composite application in the following ways:

» Create a Decision component as a standalone component in the SOA Composite
Editor. In this scenario, the Decision Service is exposed on the composite level and
thus can be invoked from any Web service client.

For more information, see "Getting Started with Oracle Business Rules" in the
Oracle Fusion Middleware Developer’s Guide for Oracle SOA Suite.

» Create a Decision component in the SOA Composite Editor that you later associate
with a BPEL process. In this scenario the Decision Service is not exposed on the
composite level. However it can be wired to any other component within the
composite, such as BPEL, Oracle Mediator, and Oracle Human Workflow.

For more information, see "Getting Started with Oracle Business Rules" in the
Oracle Fusion Middleware Developer’s Guide for Oracle SOA Suite.

» Create a Decision component within the Human Task editor of a human task
component.

This integration provides the following benefits:

= Dynamic processing: provides for intelligent routing, validation of policies within
a process, and constraint checks.

» Integration with ad hoc human tasks: provides policy-based task assignment,
various escalation policies, and load balancing of tasks.

11.2.1 Working with Decision Component Metadata

A Decision component is defined by the following files:
»s Decision Service Metadata (.decs) File

s SCA Component Type (.componentType) File

s Decision Component Entry in composite.xml

Typically, Oracle JDeveloper generates and maintains these files.

11.2.1.1 Decision Service Metadata (.decs) File

Every Decision component within a composite comprises one business rule metadata
file. The business rule metadata file provides information about the location of the
component business rule dictionary and the Decision Services exposed by the Decision
component.

One Decision component might expose one or more Decision Services. For example a
CreditRating Decision component might expose two services, CheckEligibility and
CalculateCreditRating.

In Oracle Fusion Middleware 11¢ Release 1 (11.1.1), the Decision Service metadata
comprises the decision function name that is being exposed as a Web service. For
projects that are migrated from older releases of Oracle SOA Suite, the Decision

11-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with a Decision Component

Service metadata typically has more information depending on the interaction pattern
used in 10.1.3.x.

The business rule metadata file (business_rule_name.decs) defines the contract
between the components involved in the interaction of the business rule with the
design time and back-end Oracle Rules Engine.

This file is in the SOA Content area of the Application Navigator in Oracle JDeveloper
for your SOA composite application. Table 11-1 describes the top-level elements in the
Decision service . decs file.

Table 11-1 Decision Metadata File (.decs) Top-level Elements

Element Description

ruleEngineProvider Thebusiness_rule_name.decs file ruleEngineProvider element includes
details about the rule dictionary to use:

<ruleEngineProvider name="OracleRulesSDK" provider="Oracle_11.0.0.0.0">
<repository type="SCA-Archive">
<path>AutoLoanComposite/oracle/rules/AutoLoanRules.rules</path>
</repository>
</ruleEngineProvider>

The repository type is set to SCA-Archive for Decision components. This indicates
that the rule dictionary is located in the service component architecture archive. The
path is relative and interpreted differently by the following:

ms Design time — The path is prefixed with Oramds: /. Metadata service (MDS)
APIs open the rule dictionary. Therefore, the full path to the dictionary is as
follows:

Oramds: /AutoLoanComposite/oracle/rules/AutoLoanRules.rules

= Runtime (business rule service engine) — The business rule service engine uses
the Oracle Business Rules SDK RuleRepository API to open the rule
dictionary located in MDS. The composite name prefix, for example
(AutoLoanComposite) is removed from the path and the metadata manager
assumes the existence of oracle/rules/AutoLoanRules.rules relative to
the composite home directory.

decisionService A Decision service is a Web service (or SOA) enabler of business rules. It is a service
in the sense of a Web service, thus opening the world of business rules to
service-oriented architectures (SOA). In 11¢ Release 1 (11.1.1.7), a Decision service
consists of metadata and a WSDL contract for the service.

The business_rule name.decs file decisionService element defines the
metadata that describes business rules exposed as a Web service.

In general, a Decision service includes the following elements:
= Target namespace

= Reference to the back-end Oracle Rules Engine (this is the link to the rule
dictionary). Note that OracleRulesSDK is the reference name that matches the
name of the Oracle Rules Engine provider in ruleEngineProvider element.

= Name (CreditRatingService in the following example)
= Additional information about the dictionary name and ruleset to use
= List of supported operations (patterns)

Apart from the operations (patterns), the parameter types (or fact types) of operations
are specified (and validated later at runtime). Therefore, every Decision service
exposes a strongly-typed contract.

Working with Decision Components in SOA Applications 11-3

Working with a Decision Component

11.2.1.2 SCA Component Type (.componentType) File

An SCA business_rule_name.componentType file is included with each
Decision component. This file lists the services exposed by the business rules service
component. In the following sample, two services are exposed:
CreditRatingService and LoanAdvisorService.

<?xml version="1.0" encoding="UTF-8" 2>
<!-- Generated by Oracle SOA Modeler version 1.0 at [5/24/07 9:27 AM]. -->
<componentType xmlns="http://xmlns.oracle.com/sca/l.0">
<service name="CreditRatingService">
<interface.wsdl
interface="http://xmlns.oracle.com/creditrating/Rating#wsdl.interface (IDecisionSer
vice)"/>
</service>
<service name="LoanAdvisorService">
<interface.wsdl
interface="http://xmlns.oracle.com/loanoffer/Advisor#wsdl.interface(IDecisionServi
ce)"/>
</service>
</componentType>

11.2.1.3 Decision Component Entry in composite.xml
An entry in composite.xml is created for a decision component. For example,

<component name="OracleRulesl">
<implementation.decision src="OracleRulesl.decs"/>
</component>

The business rules service engine uses the information from this implementation type
to process requests for the Service Engine. From an SCA perspective, a Decision
Component is a new "implementation type".

11.2.2 Working with Decision Components that Expose a Decision Function

You can use a Decision service to expose an Oracle Business Rules Decision Function
as a service. A decision function is a function that is configured declaratively, without
using RL Language programming that you use to call rules from a Java EE application
or from a BPEL process.

Example 11-1 shows a business_rule_name.decs file decisionServices
element that defines the metadata for an Oracle Business Rules Decision Function
exposed as a service.

Example 11-1 decisionService for Decision Function Execution

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<decisionServices xmlns="http://xmlns.oracle.com/bpel/rules" name="Purchaseltems">
<ruleEngineProvider name="OracleRulesSDK" provider="Oracle_11.0.0.0.0">
<repository type="SCA-Archive">
<path>PurchasingSampleProject/oracle/rules/com/example/Purchaseltems.rules</path>
</repository>
</ruleEngineProvider>
<decisionService
targetNamespace="http://xmlns.oracle.com/Purchaseltems/Purchaseltems_DecisionService_Validate
PurchasesDF"
ruleEngineProviderReference="0OracleRulesSDK"
name="PurchaseItems_DecisionService_ValidatePurchasesDF">
<catalog>PurchaseItems</catalog>
<pattern name="CallFunctionStateless">
<arguments>
<call>com.example.Purchaseltems.ValidatePurchasesDF</call>
</arguments>

11-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Decision Service Architecture

</pattern>
<pattern name="CallFunctionStateful">
<arguments>
<call>com.example.Purchaseltems.ValidatePurchasesDF</call>
</arguments>
</pattern>
</decisionService>
</decisionServices>

In this case, the decision function ValidatePurchasesDF itself is specified entirely
in the PurchaseItems.rules file.

For more information, see, Chapter 6, "Working with Decision Functions".

11.2.3 Using Stateful Interactions with a Decision Component

To provide a stateful Decision service you create a decision function and specify that
the decision function is not stateless. To do so you deselect the Stateless checkbox in a
decision function.

Note the following details about stateful interactions with a decision component (also
see Figure 11-2):

= Rule sessions from the cache and those from the pool are mutually exclusive:
— The rule session pool is for simple, stateless interactions only

— The rule session cache keeps the state of a rule session across Decision service
requests

11.2.4 What You Need to Know About Stateful Interactions with Decision Components

A Decision Component running in a Business Rules service engine supports either
stateful or stateless operation. The Reset Session (stateless) checkbox in the Create
Business Rules dialog provides support for these two modes of operation.

When the Reset Session (stateless) checkbox selected, this indicates stateless
operation.

When Reset Session (stateless) checkbox is unselected, the underlying Oracle Business
Rules object is kept in memory of the Business Rules service engine at a separate
location (so that it is not given back to the Rule Session Pool when the operation is
finished). Only use stateful operation if you know you need this option (some errors
can occur at runtime when using stateful operation and these errors could use a
significant amount of service engine memory).

When Reset Session (stateless) checkbox is unselected, a subsequent use of the
Decision component reuses the cached RuleSession object, with all its state
information from the callFunctionStateful invocation, and then releases it back
to the Rule Session pool after the callFunctionStateless operation is finished.

11.3 Decision Service Architecture

A Decision service consists only of the service description. All other artifacts are
shared within a decision component as shown in Figure 11-1.

Working with Decision Components in SOA Applications 11-5

Decision Service Architecture

Figure 11-1 Decision Service Architecture

Decision Service 1 |-— Regquest—e| Decigion Componert

Metadsta

Decizion Service 2 |-— Request—s

Fules Stateless Rule Session

Decizion Service 3 |-— Reouest—e

Engine L Fool o

I

Deployment Artifacts
[Genersted
JAKB Clazzes)

Decizion Service M | — Reguest—w- o Cache

Stateful Rule Session

|

The heart of runtime is the Decision service cache, which is organized in a tree
structure. Every decision component owns a subtree of that cache (depending on the
composite distinguished name (DN), component, and service name). In this regard,
Decision services of a decision component share the following data:

Metadata of the decision component

- Fact type metadata

- Function metadata

- Ruleset metadata

Rule session pool

— One rule session pool is created per decision component

— The rule sessions in the pool are pre-initialized with the data model Oracle RL
and the ruleset Oracle RL already executed

— New rule sessions are created on demand

- Rule sessions can be reused for a configurable number of times
— The initial size of the rule session pool is configurable

Stateful rule session cache

— A special cache is maintained for stateful rule sessions.

For more information, see Section 11.2.3, "Using Stateful Interactions with a
Decision Component".

Deployment artifacts

- Decision component deployment can end up in class generation for JAXB fact
types. The classes can be shared across the composite.

Figure 11-2 shows how both stateless and stateful rule sessions interact with the rule
session pool and how stateful rule sessions interact with the stateful rule session cache
during a Decision service request.

11-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Decision Service Architecture

Figure 11-2 Stateless and Stateful Rule Session Usage for a Decision Service Request

Start

Computa
Aulesession

&

on in
cacha 7 e

Gat Rulesassion
—— MO from cache:

Gat Aulgsession
firom poal

Exacute request |

Retum ruse
S088i0n 1o pool

Rarmove rulé
session from
cacha

Return Aesponse

Working with Decision Components in SOA Applications 11-7

Decision Service Architecture

11-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

12

Using Oracle SOA Composer with Oracle

Business Rules

This chapter describes how to use the Oracle SOA Composer application (Oracle SOA
Composer) to work with a deployed dictionary and tasks that are part of a SOA
composite application at runtime.

The chapter includes the following sections:

Section 12.1, "Introduction to Oracle SOA Composer"
Section 12.2, "Using Oracle SOA Composer User Authentication”
Section 12.3, "Enabling Accessibility Features in SOA Composer"

Section 12.4, "Opening and Viewing an Oracle Business Rules Dictionary at
Runtime"

Section 12.5, "Getting Started with Editing and Saving a Dictionary at Runtime"
Section 12.6, "Editing Rules in an Oracle Business Rules Dictionary at Runtime"
Section 12.7, "Using the Oracle SOA Composer Browser Windows"

Section 12.8, "Editing Decision Tables in an Oracle Business Rules Dictionary at
Runtime"

Section 12.9, "Localizing Names of Resources in Oracle Business Rules"

Section 12.10, "Committing Changes for an Oracle Business Rules Dictionary at
Runtime"

Section 12.11, "Synchronizing Rules Dictionary in Oracle JDeveloper With Runtime
Dictionary Updates"

Section 12.12, "Validating an Oracle Business Rules Dictionary at Runtime"
Section 12.13, "Obtaining Composite and Dictionary Information at Runtime"

Section 12.14, "Working with Tasks at Runtime"

12.1 Introduction to Oracle SOA Composer

Oracle SOA Composer is a Web-based application that allows you to work with Oracle
Business Rules dictionaries and tasks for deployed applications. Figure 12-1 shows
how Oracle SOA Composer accesses a dictionary or a task in an MDS repository.

Using Oracle SOA Composer with Oracle Business Rules 12-1

Using Oracle SOA Composer User Authentication

Figure 12-1 Oracle SOA Composer Architecture

WLS Container MDS Repository
S0A Composer
- = SOA-Infra
Composile Arlifacts
DVM = DVM taskflow + DVM SDK.
Rules = Rules taskfiow + Rules SDK.

You can build accessibility into the applications while building them. For information
on building applications for SOA composer see, Chapter 9, "Creating a Rule-enabled
Non-SOA Java EE Application".

For information on how to develop accessible ADF Faces pages, see, "Developing
Accessible ADF Faces Pages" in Oracle Fusion Middleware Web User Interface Developer’s
Guide for Oracle Application Development Framework.

12.2 Using Oracle SOA Composer User Authentication

Figure 12-2 shows the Oracle SOA Composer login page. This page allows Oracle
SOA Composer to authenticate the specified user.

Figure 12-2 Oracle Oracle SOA Composer Login Page

ORACLE ctomposer

* Username

g

* Passwaord

Login

Copyright 2004, 2009, Cracle andfor its affiliates. All rights reserved,

To login to Oracle SOA Composer:

1. Access Oracle SOA Composer using the following URL in your browser address
bar:

12-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Enabling Accessibility Features in SOA Composer

http://SERVER_NAME _OR_IP ADDRESS/soa/composer
2. In the Oracle SOA Composer login page, in the Username field, enter a user name.
3. In the Password field, enter a password.
4. Click Login.

For information on creating and managing users and groups, see Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Online Help.

12.2.1 What You Need to Know About SOA Composer Access Control and User
Authentication

Oracle SOA Composer supports user and password access control and only
authenticated users can use Oracle SOA Composer. However, Oracle SOA Composer
does not provide finer grained access control. For example, Oracle SOA Composer
does not support access control for individual rulesets or rules within a dictionary.

Oracle SOA Composer does support access control to metadata. Using Oracle SOA
Composer, only users with the SOADesigner application role can access the metadata
from Oracle SOA Composer. By default all the users with the WLS Administrator
privileges have this role.

If a user without the SOADesigner role logs into Oracle SOA Composer, a message is
shown indicating the user is not authorized to modify the SOA metadata, as shown in
Figure 12-3.

Figure 12-3 SOA Composer Unauthorized Metadata Access Message

ORACLE SOA Composer & Bockmarkable Link Logout ©

Logged in a5 userl

Currently logged in user is not authorized to modify SOA metadata,

For more information on assigning the SOADesigner role to a nonadmin user who
requires access to Oracle SOA Composer, see "Managing Application Roles in Oracle
Enterprise Manager Fusion Middleware Control Console" in Oracle Fusion Middleware
Administrator’s Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

12.3 Enabling Accessibility Features in SOA Composer

SOA Composer provides the screen reader option. This option enables your screen
reader to access and read all components of the application.

To enable screen reader:
1. Click the Enable screen reader mode link on the top right corner.

2. A confirmation message, This will enable screen reader mode for the current
session. Do you want to continue?, appears as shown in Figure 12—4.

Using Oracle SOA Composer with Oracle Business Rules 12-3

Opening and Viewing an Oracle Business Rules Dictionary at Runtime

Figure 12-4 Enable Screen Reader Confirmation Message

ORACLE SOA COmpOSEI’ Enable screen reader mode (f Bookmarkable Link Logout o

Confirmation B

Logged in as weblogic

This will enable screen reader mode for the current session. Do ynul%\'antm continue?

Open a document to edit. ﬂ M

3. Click Yes to confirm.

12.4 Opening and Viewing an Oracle Business Rules Dictionary at
Runtime

After you login to Oracle SOA Composer you can select a document to open. Oracle
SOA Composer supports viewing and editing different types of metadata, including a
DVM document or an Oracle Business Rules dictionary. In Oracle SOA Composer, you
can open either an Oracle Business Rules dictionary or a DVM file with the Open
menu as shown in Figure 12-5.

Figure 12-5 Oracle Oracle SOA Composer Open Menu Options

ORACLE SOA Composer & Bookmarkable Lk Logout ©

Logged in as weblogic

[E2l Open Rules it
FEA open ovm
G Open Task

& Wy Edits »

12.4.1 Opening an Oracle Business Rules Dictionary at Runtime

To open an Oracle Business Rules dictionary using the Open menu:
1. In Oracle SOA Composer, from the Open menu, select Open Rules.

2. When you select Open Rules, Oracle SOA Composer connects to MDS and
displays the Select a dictionary to open dialog box. This dialog box presents the
available composite applications that contain dictionaries, as shown in
Figure 12-6. In addition, it lists the shared dictionaries, and these shared
dictionaries can also be viewed and edited.

12-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Opening and Viewing an Oracle Business Rules Dictionary at Runtime

Figure 12-6 Oracle SOA Composer with Oracle Business Rules Dictionaries

Select a dictionary to open =]
Show | Al [=] | search composite ... j &
Composite |Partition |Rules File
AutoLoanFlow_rev1.789 default LoanOfferings.rules
AutoLoanFlow_rev1.789 default RatingFY0&.rules
AutoLoanFlow_rev3. 789 default LoanOfferings.rules
AutoLoanFlow_rev3.789 default RatingFY0&.rules
AutoAppProj_rev2. 0444 default CreditRatingRules.rules
AutoAppProj_rev2. 0444 default LoanAdvisorRules.rules
Projectl_rev1.0 default OraceRules1.rules
AutoAppProj_rev2.0 default CreditRatingRules.rules
AutoAppProj_rev2.0 default LoanAdvisorRules.rules
MN/A N/A DynamicRouting.rules

Open Cancel

3. Toopen a dictionary select an entry in the table and click Open or double-click an
item. This opens the dictionary in view mode, as shown in Figure 12-7.

Figure 12-7 Oracle Business Rules Dictionary Open in Oracle SOA Composer View Mode

B& Open — | Edit B

3l pynamicRouting.rules

(x) Globals (x) Globals
7 Bucketsets
& Links g %
<f Dedision Functions |Name Description Value Bu
@ Translations (%) global_loan_offer il
(%) global_approval null
Rulesets

@ DynamicRoutingCreator

As shown in Figure 12-7, Oracle SOA Composer shows a dictionary that displays a
left-side panel with a list of tabs and links. Dictionary details for the selected item are
shown on the right-hand side. Oracle SOA Composer includes the following tabs:

= Globals

= Bucketsets

» Links

s Decision Functions

s Rulesets

Note: Functions are not supported in Oracle SOA Composer.

Using Oracle SOA Composer with Oracle Business Rules 12-5

Opening and Viewing an Oracle Business Rules Dictionary at Runtime

By default, a dictionary is opened in the view mode. If a dictionary is previously
opened in the edit mode and the changes made, if any, are not reverted, the next time
when you open it, Oracle SOA Composer opens the dictionary in the edit mode. For
more information on Edit mode, see Section 12.5, "Getting Started with Editing and
Saving a Dictionary at Runtime".

To open an Oracle Business Rules dictionary directly using a known URL:
1. Obtain the URL for a document that stores an Oracle Business Rules dictionary by
using Bookmarkable Link in Oracle SOA Composer:

a. Inan open dictionary, click Bookmarkable Link to obtain the URL
information for the dictionary, as shown in Figure 12-8.

Figure 12-8 Using Link Dialog to Obtain the URL for an Open Dictionary

ORACLE SOA Composer

Paste this link into email or chat.
" | Or paste into address bar in your browser and bookmark it.

in as weblogic

http: /fadc2190666.us. orade. com: 24851s0a /composer?docPath =/deployed-composites /default/AutoLoanFlow_rev3. 789 orade frules/Loar

[EZ] LoanoOfferings.rules

(x) Globals (x) Globals

7 Bucketsets

&P Links gk 3¢

< Dedsion Functions |Name Destription |value |Bucketset
%’:J Translations (X} gloabal_loan_offer null

Rulesets
&P PrivateFinancing

&P BusinessFinandng

b. Copy the URL information and save it for future use.

2. Inabrowser, use the saved URL to directly access the dictionary.
For example,

http://SERVER_NAME_OR_IP_ADDRESS/soa/composer?docPath=/deployed-composites/
default/BusinessRulesTest_revl.0/oracle/rules/businessrulestest/OrderBooking.ru
les

According to the preceding example, composites are stored as per the following
structure: deployed-composites/composite name_revcomposite
revision/oracle/rules/dictionary package path/dictionary
name.rules

To open and edit a recently edited dictionary using the My Edits option:

If you recently edited a dictionary, then you can use the Open menu My Edits option
to open and edit a dictionary.

1. In Oracle SOA Composer, from the Open menu select My Edits and select a
dictionary from the list, as shown in Figure 12-9.

12-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Opening and Viewing an Oracle Business Rules Dictionary at Runtime

Figure 12-9 Using Open My Edits Option to Open a Dictionary

ORACLE SOA COI’T‘IpOSEI’ &P Bookmarkable Link Logout O

Logged in as weblogic

Bs Open -
[E21 Open Rules
[open VM

/ Edt | B =) v | W 0 Info

5 Open Task (%) Glnhals
& My Edits G DradeRuIes%Lules
. CreditRatingRules. rules
&2 Links
<{f Dedsion Functions |Name Description [value |Bucketset
@ Translations (%) gloabal_loan_offer null
Rulesets

&p PrivateFinancing

& BusinessFinancing

2. Oracle SOA Composer opens the specified dictionary in edit mode.

12.4.2 What You Need to Know to Obtain the Dictionary Path from the Open Dialog

The Select a Dictionary to Open dialog includes a Rules File field. When you hold the
mouse over the values in the Rules File field, Oracle SOA Composer shows a
"Complete Path" popup that includes the dictionary path, as shown in Figure 12-10.

Figure 12-10 Showing the Dictionary Rules File Complete Path from the Open Dialog

Select a dictionary to open B]
Show | All E| Search composite ... ﬂ é Jdeployed-composites/default/autoLoanFlow_rev1. 789
Complete o e frules LoanOfferings/REVIEWED 050518

Compasite |Partition |Rules File / MLoanOfferings.rules

AutoLoanFlow_rev1.789 default LoanOfferings.ru es

AutoLoanFlow_rev1. 739 default RatingFYDS.ruIesi}

AutoLoanFlow_rev3.789 default LoanOfferings.rules

AutoLoanFlow_rev3. 789 default RatingFY0&.rules

AutoAppProj_rev2. 0444 default CreditRatingRules.rules

AutoAppProj_rev2.0444 default LoanAdvisorRules.rules

Projectl_rev1.0 default OradeRules1.rules

AutoAppProj_rev2.0 default CreditRatingRules.rules

AutoAppProj_rev2.0 default LoanAdvisorRules.rules

M/A M/ DynamicRouting.rules

Open Cancel

12.4.3 How to View Globals in an Oracle Business Rules Dictionary at Runtime

When you open a dictionary Oracle SOA Composer displays the Globals tab. The
Globals tab only shows final global variables (global variables with Final option
selected). Final global variables from linked dictionaries are also displayed in the

Using Oracle SOA Composer with Oracle Business Rules 12-7

Opening and Viewing an Oracle Business Rules Dictionary at Runtime

Globals tab. However, these linked global variables are not editable even in the edit
mode.

You cannot create or delete global variables. From the Globals tab, in edit mode, you
can edit the Name, Description, and Value fields. For the Value field, you can use the
expression builder to set the value. To check for validity, you can click Validate button
on the Oracle SOA Composer menu bar. In view mode, the edit operations are not
available. For information on using the Oracle SOA Composer edit mode, see

Section 12.5, "Getting Started with Editing and Saving a Dictionary at Runtime".

To view globals in Oracle SOA Composer:
1. In Oracle SOA Composer, from the Open menu, select Open Rules.

2. After you open a dictionary, select the Globals tab from the left-side pane. This
displays the Globals table, as shown in Figure 12-11.

Figure 12-11 Using the Oracle SOA Composer Rules Dictionary Globals Tab

B& Open — | Edit B

E2 DynamicRouting.rules

(x) Globals (x) Globals
7 Bucketsets
& Links g %
g Decision Functions |Name Description Value Bu
%Translah’ons (%) global_loan_offer null
(x) glabal_approval null

Rulesets

& DynamicRoutingCreator

12.4.4 How to View Bucketsets in an Oracle Business Rules Dictionary at Runtime

When you open a dictionary and select the Bucketsets tab, if the dictionary contains
bucketsets, the table shows all the bucketsets. Bucketsets from linked dictionaries are
also displayed in the Bucketsets table. You can select a linked bucketset and click the
Edit button to view the buckets. However, a linked bucketset is not editable even in
the edit mode.

For information on the Oracle SOA Composer edit mode, see Section 12.5, "Getting
Started with Editing and Saving a Dictionary at Runtime".

To view bucketsets in Oracle SOA Composer:
1. In Oracle SOA Composer, from the Open menu select Open Rules.

2. After you open a dictionary, select the Bucketsets tab from the left-side pane. This
displays the Bucketsets table, as shown in Figure 12-12.

12-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Opening and Viewing an Oracle Business Rules Dictionary at Runtime

Figure 12-12 Using the Oracle SOA Composer Rules Dictionary Bucketsets Tab

[E3 DynamicRouting.rules

(x) Globals {f -

{7 Bucketsets

P ks $l-0X % B @

Q Dedsion Functions |Name |Datatype Form Description

‘E_—':Translaﬁons \.:;2 ExecutionTypeBucket String LoV Execution Type List o
7 vipstatustype String LoV

Rulesets &7 creditscore int Range
% PromotionDate Date Range

&P DynamicRoutingCreator

12.4.5 How to View Linked Dictionary Names at Runtime

In Oracle SOA Composer, you can view the names of the dictionaries to which the
current dictionary is linked by using the Links tab on the left-side panel as shown in
Figure 12-13. Currently, even in the edit mode, you can only view the linked
dictionary names, but you cannot link to a dictionary or delete an existing link to any
dictionary.

To view linked dictionary names in Oracle SOA Composer:
1. In Oracle SOA Composer, from the Open menu, select Open Rules.

2. After you open a dictionary, select the Links tab from the left-side pane. This
displays the Links table, as shown in Figure 12-13.

Figure 12-13 Viewing the Linked Dictionary Name

ORACLE SOA Composer @ Bookmarkable Link Logout O

Logged in as weblogic

B& Open - | / Edit

3 LoanAdvisorRules.rules

(x) Globals ﬁ Inke

7 Bucketsets

&P Links

|Alias Mame |Package Name | Prefix Linked Names |
\f}; Dedision Functions

@ CreditRatingRules CreditRatingRules credit

@ Translations
¥
Rulcscts g 3¢

& My Active Ruleset

The Links table displays the name of the linked dictionaries, which in this case is
CreditRatingRules.

12.4.6 How to View Decision Functions in Oracle Business Rules Dictionary at Runtime

In Oracle SOA Composer, you can view the decision functions that are available to the
current dictionary by using the Decision Functions tab on the left-side panel as shown

Using Oracle SOA Composer with Oracle Business Rules 12-9

Opening and Viewing an Oracle Business Rules Dictionary at Runtime

in Figure 12-14. Currently, even in the edit mode, you can only modify the following
fields and options:

s Description

= Rule Firing Limit

s Check rule flow

= Make stateless

= Available Rulesets to fire

You cannot create any decision function, rename an existing decision function, or add
or delete any input or output.

To view decision function names in Oracle SOA Composer:
1. In Oracle SOA Composer, from the Open menu, select Open Rules.

2. After you open a dictionary, select the Decision Functions tab from the left-side
pane. This displays the Decision Functions table, as shown in Figure 12-14.

Figure 12-14 Viewing Decision Function Names

ORACLE" SOA Composer &P Bockmarkable Link Logout O

Logged in as weblogic

2l oracleRulesl.rules
(%) Globals @ Decision Functions
{7 Bucketsets
(§ Links &
Q Decision Functions |Name Description ‘ Web Service |
@__J Translations R OradeRules1_DedsionService_1
Rulesets
p Ruleset1
{
A

The Decision Functions table displays the names of all the available decision functions,
both parent and linked, which in this case are DecisionFunction_0, and
CreditRatingRules.DecisionFunction_0.

12.4.7 How to View Rulesets in an Oracle Business Rules Dictionary at Runtime

Oracle SOA Composer displays the rulesets in the dictionary on the left-side panel, as
shown in Figure 12-15. You can select a ruleset to display a detailed view of the
ruleset. In view mode, all the rules in the ruleset are displayed but they are not
editable. For information on the Oracle SOA Composer Edit mode, see Section 12.5,
"Getting Started with Editing and Saving a Dictionary at Runtime".

12-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Opening and Viewing an Oracle Business Rules Dictionary at Runtime

Note: Using Oracle SOA Composer in edit mode, you cannot create
or delete rulesets. You can view and modify rulesets.

Figure 12-15 Using the Oracle SOA Composer Rules Dictionary Rulesets Tab to View Rules

ORACLE SOA Composer (ﬁ Bookmarkable Link Logout €

Logged in as weblogic

BS Cpen - | / Edit B @ Info

5l Loanofferings.rules

(x) Globals
7 Bucketsets ¥ PrivateFinandng View | IF{THEN Rules [=] 5 [130f3[=] =

& Links
| ¥ defaultRule i
<f\l Dedision Functions F

@;J Translations v ¥ HighRiskOffer
Rulesets

p PrivateFinancing

m

@ BusinessFinancing la is & LoanApplicationType and

la.creditRisk is "High™

ﬂ cal » createLoanOfferRecommendation (“Bankrupters Bank™, 8.9)

To select the next ruleset or previous ruleset:
1. In Oracle SOA Composer, open a dictionary and select a ruleset.
2. When you are viewing a ruleset, you can click Select Next Ruleset or Select

Previous Ruleset to view the next or the previous ruleset, as shown in
Figure 12-16.

Figure 12-16 Using the Oracle SOA Composer Rules Dictionary Rulesets Tab to Select Next Ruleset

ORACLE SOCA CGmpOSEr ﬁ Bookmarkable Link Logout €

Logaged in as weblogic

B Open - | ./ Edit B B v | ¥ © Info

EEl LoanOfferings.rules

(%) Globals
#7 Bucketsets ¥ PrivateFinancing View | IF/THEN Rules [+ 3 [130f3 =] =

& Links

< Dedsion Functions

»

*| ¥ defaultRule -

@} Translations v ¥ HighRiskOffer
Rulesets

&p PrivateFinancing

m

@ BusinessFinancng |z iz a LoanApplicationType and

la.creditRisk iz "High”™

ﬂ cal » createloanOfferRecommendation (“Bankrupters Bank™, 8.9) -

Select Mext RuleSet

Using Oracle SOA Composer with Oracle Business Rules 12-11

Getting Started with Editing and Saving a Dictionary at Runtime

To add new Rulesets click on the Add Ruleset icon next to Rulesets in the left
navigation menu. For more information on Rulesets, see Chapter 4, "Working with
Rulesets and Rules".

12.5 Getting Started with Editing and Saving a Dictionary at Runtime

When you select and open a dictionary Oracle SOA Composer shows the dictionary in
read only mode. From each tab in view mode, you enter edit mode for the dictionary
item by selecting the Edit menu. In edit mode, after you make changes, click Save to
save your changes. Saving changes saves the dictionary to a work area. To apply the
changes to the runtime version of the dictionary, click Commit.

If you decide you do not want to apply the changes, you can revert the changes by
selecting either of the following:

» Click Revert on the Oracle SOA Composer menu and then select Clear all
unsaved changes.

This clears only the unsaved changes.

» Click Revert on the SOA Composer menu and then select Clear all session edits
and saved changes.

This aborts all the changes done as part of the existing edit session.

When you edit a composite and redeploy it by overwriting the existing composite, the
edit session is saved. When you reopen the dictionary, a dialog box opens in SOA
Composer that asks you whether you want to revert to the previous edit session. Use
the dialog box if you wish you revert to the previous edit session.

12.5.1 What You May Need to Know About Localized Number Formatting Support in
Oracle SOA Composer

In Oracle SOA Composer, number formatting changes based on the browser locale.
For example, you are using Oracle SOA Composer with U.S. English as the browser
language. You enter a floating-point data, such as 34533223.2345, as a value. If you
wish to view the data in any other language, such as French, you need to:

1. Modify the browser locale for the instance to French.
2. Click the Refresh button of the browser to view the number formatting changes

In French, the value should display as 34533223,2345.

Note: The grouping and decimal separators specified in Oracle SOA
Composer overrides the locale-specific ones.

12.5.2 What You May Need to Know About Cutting/Copying and Pasting Rule Elements

at Runtime

You can cut/copy a bucketset/rule from one dictionary and open another dictionary
in composer and paste it. However, cut/copy/paste works between different
dictionaries within the same session.

Cutting/copying and pasting feature enables you to quickly create a new rule element
based on an existing one, without having to create the new element from scratch.

The icons in the Figure 12-17help you with cut, copy and paste options.

12-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Getting Started with Editing and Saving a Dictionary at Runtime

Figure 12-17 Cut, Copy and Paste Icons

............

Oracle SOA Composer enables you to cut/copy and paste the following elements of a
rule:

= Rules

s Patterns

= Conditions
s Actions

» Bucketsets

Cut/copy/paste is not supported for the following:

s Globals
s Links
m Buckets

» Decision Functions

12.5.3 How to Edit Globals in an Oracle Business Rules Dictionary at Runtime

In Oracle SOA Composer, selecting the Globals tab shows you a table listing the
globals in the dictionary. To edit a global, select the appropriate row, and the entire
row becomes editable. Make necessary changes as required.

Figure 12-18 List of Globals in the Dictionary

B& Open — | [E Save F Commit.. g5 Revert.. = | « Vaidate @@ Info

E2 DynamicRouting.rules

(x) Globals (x) Globals
7 Bucketsets
&P Links %8
<3 Decision Functions |Name Description Value Buy
@) Translations (x) | global_loan_offer null
(%) global_approval null
Rulesets # %

@ DynamicRoutingCreator

\
2% =4

To add a global, click the Add Global icon on the top. A new empty row is added.
Make necessary changes to Name, Description, Value, Bucketset, Type, Final, Consent.
For more information on adding globals, see Section 2.3, "Working with Oracle
Business Rules Globals".

To delete a global, select a row and click the Delete icon.

Using Oracle SOA Composer with Oracle Business Rules 12-13

Getting Started with Editing and Saving a Dictionary at Runtime

12.5.4 How to Edit Bucketsets in an Oracle Business Rules Dictionary at Runtime

In Oracle SOA Composer, selecting the Bucketsets tab shows you a table listing the
bucketsets in the dictionary. To edit a bucketset, select the appropriate row, and click
the Edit Bucketset icon to display the Bucketset Editor. Depending on the type of the
bucketset, Range, Enum, or LOV, this displays a corresponding Edit bucketset page.

You can create a Range Bucketset by clicking the Add Bucketset icon and selecting a
type. This adds a new row in the Bucketsets table. For example, for Date types, such as
Date, DateTime, or Time, a calendar is displayed for selecting the date, time, and
timezone. Adding a bucket automatically adds an end point for a range bucket and a
value for an LOV bucket based on the datatype. You can modify the newly added
bucket end point or value. Note that the alias is modified when an end point or value
is changed.

For more information on adding Bucketsets, see Section 3.6, "Working with Bucketsets"
and Section 3.7, "Associating a Bucketset with Business Terms".

To cut or copy a bucket set, select a row and click Cut or Copy. To paste a copied
bucket set, click Paste.

To delete a bucketset, select a row and click Delete.

To edit a Range Bucketset:
1. To edit a Range bucketset, in Oracle SOA Composer select the Bucketsets tab. This
displays a table listing the bucketsets in the dictionary.

2. To edit a Range bucketset, select the appropriate Range bucketset row and click
the Edit Bucketset icon. This displays the Bucketset Editor page, as shown in
Figure 12-19.

Figure 12-19 Using Bucketset Editor to Edit a Range Bucketset

Bucketset Editor <]
. @
Mame | PromotionDates ikl
Description
Form LOV

Data Type | Date E
[1ndude Disallowed Buckets in Tests

Bucket Values ‘# x @ G

Value |.-'-\Iias | Allowed in Actions |Descriph'0n

otherwise otherwise ‘Z_‘J ‘?.‘_:J

Sep g, 2011 [Bucket 1 @)

MNov 29, 2011 [Bucket 2 @ s}

Jun 12, 2012 [Fy Bucket 3 @ s}

3
M Cancel

12-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Getting Started with Editing and Saving a Dictionary at Runtime

Use the Bucketset Editor to edit the appropriate fields in the bucketset. You can
click Add Bucket to add a bucket, and also select a row and click Delete Bucket to
delete a bucket.

Click OK to confirm the changes.

To edit an LOV Bucketset:

1.

To edit an LOV bucketset, in Oracle SOA Composer select the Bucketsets tab. This
displays a table listing the bucketsets in the dictionary.

To edit an LOV bucketset, select the appropriate LOV bucketset row and click the
Edit Bucketset icon. This displays the Bucketset Editor page, as shown in
Figure 12-20.

Figure 12-20 Bucketset Editor Dialog to Edit an LOV Bucketset

Bucketset Editor <]
MName | Productiames g‘.:_J
g‘_lJ
Description
Form LOV
Data Type | String E
[1indude Disallowed Buckets in Tests
Bucket Values ‘* x {} 0
Value Alias | Allowed in Actions |Descriph'0n
otherwise otherwise % ?—:J
"Laptop” Laptop a) @
Desktop” Desktop f.f:'] [%J
"Handled” Handled & e
"Hard Drrive” Hard Drive % q_l_l
Memory” Memory g:g g_lJ
“CD Drive” CD Drive L) L]
_ox |_cancel |
3. Use the Bucketset Editor to edit the appropriate fields in the bucketset. You can

click Add Bucket to add a bucket, and also select a row and click Delete Bucket to
delete a bucket.

To change the order of buckets in the bucketset, select a bucket and then use the
up or down arrow to move the selected bucket (Figure 12-21).

You can change the relative position of buckets in an LOV bucketset only; you
cannot reorder buckets in a Range bucketset.

Using Oracle SOA Composer with Oracle Business Rules 12-15

Getting Started with Editing and Saving a Dictionary at Runtime

Figure 12-21 Moving Buckets in a Bucketset to Change the Order of Values

Bucket Values ‘+ x G @

Value Alias | Allowed in Actions |Descripﬁon
otherwise otherwise ‘,’Q %
"Laptop” Laptop ‘?‘:J q_:J
"Desktop” Desktop g_'j (v E_:J
Handlzd” Hanidled ‘?;3 ‘?-:_:J
"Hard Drive” Hard Drive ‘?;3 ‘?-:_:J
"Memory” Memary @ U
"CD Drive”™ CD Drive & @

OK | Cancel

5. Click OK to confirm the changes.

12.5.5 What You Need to Know About Editing Bucketsets

Only when a bucket has the Allowed in Actions field selected does the bucketset
display in the condition cell drop-down in a Decision Table.

Click Validate in the menu bar to validate the dictionary while making changes to a
bucketset.

12.5.6 How to Work With Dictionary Links in an Oracle Business Rules Dictionary at

Runtime

An Oracle Business Rules dictionary can be linked to other dictionaries. The complete
data model defined by a dictionary and its linked dictionaries is called a combined
dictionary. You can create multiple links to the same dictionary. However, in this case,
all but the first link is ignored.

You cannot use Oracle SOA Composer to link dictionaries. However, if a deployed
composite already has linked dictionaries, using Oracle SOA Composer, you can view
the linked dictionary names and make use of the Globals, Bucketsets, and Rulesets of
the linked dictionaries across applications. For example you have an application called
Appl that contains a dictionary called Dictl. Dictl is linked to another dictionary
called Dict2. Because Dict1 is linked to Dict2, the objects of Dict2 will be
available for use in App1.

For more information on viewing linked dictionary names, see Section 12.4.5, "How to
View Linked Dictionary Names at Runtime."

In Oracle SOA Composer, in the edit mode, you can use the Prefix Linked Names
checkbox in the Links table to either display or hide the linked dictionary name that is
prefixed to the all the items in the dictionary such as Globals, Bucketsets, and Rulesets.
Selecting the checkbox prefixes facts from the linked dictionary with its dictionary
name, and deselecting hides the linked dictionary facts prefix. By default, the Prefix
Linked Names checkbox is in selected state as shown in Figure 12-22.

12-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Getting Started with Editing and Saving a Dictionary at Runtime

Figure 12-22 The Links Tab

ORACLE SOA Composer & Bockmarkable Link Logout O

Logged in as weblogic

BS5 Revert.. < | + Validate @ Info

3 LoanAdvisorRules.rules

(x) Globals
o f Links
i Bucketsets
& Links
|Alias Mame |Package Name | Prefix Linked Names |
Q Dedision Functions (ﬁ CreditRatingRules CreditRatingRules credit
Rulesets

&P Ruleset_22

Figure 12-23 displays three bucketsets: Rating from the current dictionary and
Bucketset_1 and Bucketset_2 from the base dictionary CreditRatingRules, which is
prefixed to both Bucketset_1 and Bucketset_2.

Figure 12-23 Prefixed Linked Dictionary Name Displayed

ORACLE SOA Composer &P Bookmarkable Link Logout O

Logged in as weblogic

B& Cpen < | | save # Commit.. g5 Revert.. = | 7 Vaidate @ Info

[E2 LoanAdvisorRules.rules

() Globals 2 i

% Bucketsets

@ tinks #-/7RY¥LED [+
< Dedision Functions |Name |patatype |Form Description
%Translatinns 2 Rating int Range
u{? CreditRatingRules.Bucketset_1 int LoV
Rulesets fa 3¢ 7 CreditRatingRules.Bucketset_2 it Range
@ Ruleset_1

Figure 12-24 displays the Rating bucketset name after you have deselected the Prefix
Linked Names checkbox in the Links tab. In this case, the linked dictionary name is
not prefixed to the bucketset name.

Using Oracle SOA Composer with Oracle Business Rules 12-17

Getting Started with Editing and Saving a Dictionary at Runtime

Figure 12-24 Prefixed Linked Dictionary Name Hidden

ORACLE SOA Composer &P Bookmarkable Link Logout ‘O

Logged in as weblogic

> Commit.. p5Revert.. = | + Validate @ Info

EZ LoanAdvisorRules.rules

(x) Globals &v I

{7 Bucketsets

& Links d-7ZR ¥ B @
< Dedsion Functions |Name |patatype |Form Description
%Translaﬁuns #2 Rating int Rangs

&7 Bucketset_1 int Laov

5.

Rulesets o 3¢ 47 Bucketset 2 int Range
@ Ruleset_1
q

Y -

For more information about linked dictionaries, see Section 2.2.7, "What You Need to
Know About Dictionary Linking."

12.5.7 How to Edit Decision Functions in an Oracle Business Rules Dictionary at
Runtime

In Oracle SOA Composer, in the edit mode, selecting the Decision Functions tab
shows you a table listing the decision functions that are available to the dictionary,
both parent and linked.

Currently, even in the edit mode, you can only modify the following fields and
options:

s Description

= Rule Firing Limit
n Check rule flow
= Make stateless

= Initial Actions

» Rulesets and Decision Functions

To edit a decision function:
1. To edit a decision function, in Oracle SOA Composer, select the Decision
Functions tab. This displays a table listing the decision functions in the dictionary.

2. Select the appropriate decision function row and click the Edit Decision Function
icon above the table. This displays the Decision Function Editor dialog box as
shown in Figure 12-25.

12-18 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Getting Started with Editing and Saving a Dictionary at Runtime

Figure 12-25 Decision Function Editor

Decision Function Editor <)
Mame DedsionFunction_0
@
Description
Rule Firing Limit | unlimited =
Check rule flow Make stateless
_a
Outputs Rulesets & Decision Functions
|FactType | Tree List |Descri|3tion
@ RaﬁngRequest‘fE‘J RatingReguest ‘E_:‘J
[[3
OK | Cancel

In the Description field, optionally enter a description.

Enter the required number value from the Rule Firing Limit list. By default, the
selected value is unlimited. However, you can enter an integer value for the rule
firing limit and press the Tab key. The newly specified value gets added to the
Rule Firing Limit list.

Select the appropriate decision function options:

»s Check rule flow: When selected, this option specifies that the rule flow is
checked

= Make stateless: When selected specifies the decision function is stateless.
You cannot edit the following;:

= Name field

= Inputs tab

= Outputs tab

In the Initial Actions tab, you can add actions that could be used to change input
facts before they are asserted, change the ruleset stack, set the effective date, or
even assert output facts. These actions could be used instead of rules, or to "set up"
the environment for running rules. Initial Actions always run just before the
inputs are asserted and the rules are run. The RL for the actions will be executed
just before the inputs are asserted.

Using Oracle SOA Composer with Oracle Business Rules 12-19

Getting Started with Editing and Saving a Dictionary at Runtime

Consider a situation where a decision function (DF1) calls another decision
function (DF2) using the Initial Actions tab. DF1 is configured to push Ruleset1 to
the ruleset stack. DF2 is configured to push Ruleset2. In DF1, before the initial
actions are executed, Ruleset1 is pushed to the ruleset stack. Then, when DF2 is
called, Ruleset?2 is also pushed. So when rules start running, rules from both
rulesets fire because of the ruleset stack. If you want to push Ruleset2 (because in
the initial actions, you are calling DF2), you can use initial actions in DF1 to clear
the ruleset stack before calling DF2, and push Ruleset1 on the stack after calling

DF2.

You can add any required action ranging from assert, call, modify to even
conditional actions such as i f, else, elseif,while, for, if (advanced), and

while (advanced) as shown in Figure 12-26.

Figure 12-26 Adding Initial Actions

Decision Function Editor

Mame DedsionFunction_0
Description

Rule Firing Limit | unlimited =l
Check rule flow Make stateless

*[- X CAELE
B -
Selected Tests (o (ks & EE

D RatingRequest.amount C% is E 1000
then

[[] assertnew » | RatingRequest = O
[while ~

Selected Tests {;‘{}.\ {Lg . ', _| :'J

[C] | Ratingrequest.date.day Q, [is Iz‘

do

l+| ~ Add Action
[for~ ¢ i

l$| + Add Action

4 L

3

Cancel

The if (advanced) and while (advanced) structs accepts only boolean
values. For each of the action conditions, you can add different test form types.

Note: If decision function DF1 contains DF2 in the Rulesets &
Decision Functions tab, then DF2 may not have any initial actions.

In the Rulesets & Decision Functions tab, use the left and right arrow buttons to
move items from the Available box to the Selected box.

12-20 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Rules in an Oracle Business Rules Dictionary at Runtime

8. Select an item in the Selected box, and click up or down arrow buttons as
appropriate to order the rulesets and the decision functions.

For more information on decision functions, see Chapter 6, "Working with Decision
Functions."

12.5.8 What You May Need to Know About Oracle Business Rules Dictionary Editor
Declarative Component

You can use the Oracle Business Rules Dictionary Editor composite declarative
component to leverage the functionality of editing Rules Dictionaries in any
ADF-based Web application. It enables you to edit business rules metadata artifacts,
such as Globals, Bucketsets, and Rulesets, by using the Rules SDK2 API.

For more information on Oracle Business Rules Dictionary Editor, see "Using the
Oracle Business Rules Dictionary Editor Declarative Component" in Oracle Fusion
Middleware Developer’s Guide for Oracle SOA Suite.

12.5.9 What You May Need to Know About Oracle Business Rules Dictionary Editor

Task Flow

Rules Dictionary Editor Task Flow, which is a wrapper around the Rules Dictionary
Editor declarative component is used in ADF-based Web applications that require a
task flow instead of a declarative component.

For more information on Oracle Business Rules Dictionary Editor, see "Using the
Oracle Business Rules Dictionary Task Flow" in Oracle Fusion Middleware Developer’s
Guide for Oracle SOA Suite.

12.6 Editing Rules in an Oracle Business Rules Dictionary at Runtime

In Oracle SOA Composer with edit mode you can edit, add, and delete rules in a
ruleset. For more information on how to use edit mode, see Section 12.5, "Getting
Started with Editing and Saving a Dictionary at Runtime".

12.6.1 How to Edit Rules in an Oracle Business Rules Dictionary at Runtime

Oracle SOA Composer allows you to edit the rules in a dictionary.

To edit a rule with Oracle SOA Composer:

1. In Oracle SOA Composer, with an Oracle Business Rules dictionary open, select a
ruleset.

2. C(lick the Edit menu item.

3. Oracle SOA Composer shows a confirm dialog if another user is currently editing
the same dictionary. In the confirm dialog, click No or Yes, depending on whether
you want to edit the document (if you click Yes, your changes could conflict with
another user's changes). For more information, see Section 12.10.1, "What You
Need to Know About Editing With Multiple Users at Runtime".

4. Oracle SOA Composer creates an area to save any modifications you make to the
dictionary, and the Edit menu changes to a Save menu.

Using Oracle SOA Composer with Oracle Business Rules 12-21

Editing Rules in an Oracle Business Rules Dictionary at Runtime

5.

Note: The Edit view provides an interface to the dictionary that
allows you to edit most dictionary components (you can only create
and edit some dictionary components at design-time using the Rules
Designer extension to Oracle JDeveloper).

To edit an item in the dictionary, in the navigation tab, select the item of interest.
For example, see Figure 12-27 with the ruleset SetupRules selected.

Figure 12-27 Using Oracle SOA Composer to Edit a Ruleset in a Dictionary

= save

BS Cpen —

2l CreditRatingRules.rules

(x) Globals

7 Bucketsets

&P Links

ORACLE" SOA Composer

& Commit ..

@Bookmarkab\eunk Logout (@]

Logged in as weblogic

+ Validate) Info

g5 Revert.. o

view [IF/THENRules [=] |+ 3¢ 130f3[=]

¥ Ruleset_1

~| % [younG G+RCIHEE it
<{p Dedsion Functions 7
@) Translations . e
Rulesets # ® Selected Tests (o (s i‘% =] G
] RatingRequest age Ck same or less than lz‘ 40 Ck -
b Ruleset_1 £
THEN
|~ X #BEE
{ 55M:RatingRequest.55N,
|:| assertnew - Rating j maxAmount:RatingRequest. amount, rating: 700, @ | 4

risk:™MED")

GRRFLHEM

6. Click the Save menu item to save your changes in the work area.

12.6.2 How to Add a Rule at Runtime

In Oracle SOA Composer you can add rules to a ruleset.

To add a rule in a ruleset:
1. In edit mode, select a ruleset of interest.

2. Inthe rule area, click Add Rule as shown in Figure 12-28. The rule is added
immediately after the current one unlike Rules Designer, where a new rule is
added at the end.

12-22 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Rules in an Oracle Business Rules Dictionary at Runtime

Figure 12-28 Adding a Rule in a Ruleset

ORACLE SOA COI’T‘IPOSEI’ f Bookmarkable Link Logout o

Logged in as weblogic

Bs Open — | IR Save # Commit.. g5 Revert.. = « Vaidate @ Info

E3 CreditRatingRules.rules

(x) Globals
7 Bucketsets ¥ Ruleset_1 view |IF/THEN Rules [=] |+ 3€ 1303 [x]
&P Links _)
~| % [voung %R $¢HEEDE i
Q Dedsion Functions F
@, Transiations o A
Rulesets ol 3¢ Selected Tests O (kg M EE
] RatingRegquest.age Q same or less than Iz‘ 40 Q -
&P Ruleset_1 E
THEN
*- X % E@m
(55M:RatingRequest.55M,
|:| assertnew - Rating j maxAmount:RatingRequest. amount, rating: 700, @ | N
risk:"MED"™)
i j > ¥ o CRRGBHED 4
-

If the ruleset where you are adding a new rule does not contain any existing rule, then
you can either:

» Click the down arrow adjacent to the Add icon and select Add Rule in the ruleset
area

» Click the Add Rule icon in the rules area
Figure 12-29 displays the Add and the Add Rule icon.

Figure 12-29 Adding a New Rule

| ORACLE SOA COmpOSEr &P Bookmarkable Link Logout o

Logged in as weblogic

Be Open - | IR Save & Commit.. g5 Revert.. = | « Validate @@ Info
[EE] CreditRatingRules.rules
(x) Globals
7 Bucketsets ¥ Rulesst_1 view | IF/THEN Rules [+ > X -30f3[=]
&P Links Add Rul
-) >l ¥ [YOUNG Add Da\L}:nTable b
Q Decision Functions
@ Translations e
Rulesets ol 3¢ Selected Tests Oz (kg 3 =B
[l RatingRegquest. age Q, same or less than lz‘ 40 Q§ =
£b Ruleset_1 =
THEN
+- X ¥EE
{ SSM:RatingRequest.S5N,
|:| assert new - Rating j maxAmount:RatingRequest.amount, rating: 700, @ B
risk:"MED"™)
o { sivlop dh B KR -
==

Using Oracle SOA Composer with Oracle Business Rules 12-23

Editing Rules in an Oracle Business Rules Dictionary at Runtime

12.6.3 How to Delete a Rule at Runtime

In Oracle SOA Composer you can delete rules in a ruleset.

To delete a rule in a ruleset:
1. In edit mode, select a ruleset of interest.

2. In the rule area locate the rule you want to delete and click Delete Rule, as shown
in Figure 12-30.
Figure 12-30 Deleting a Rule in a Ruleset

ORACLE s0A composer &P Bookmarkable Link Logout o

Logged in as weblogic

& Commit.. p5Revert.. = | -+ Valdate @@ Info
[E3 CreditRatingRules.rules
(x) Globals
{7 Bucketsets ¥ Ruleset_1 View |IF/THEN Rules [=] |~ €
&P Lirks e 9 RE
~| ¥ |YOUNG ‘A b = &
Q Decdision Functions < h LT:' 8
@ Translations IF N L
Rulesets 4 3 Selected Tests O (ke l‘% 3= LT:l
] RatingRequest.age Ck same or less than lz‘ 40 C&, -
P Ruleset_1 =
THEN
[~ X $EE
{ 55M:RatingRequest.55M,
I:‘ assertnew - Rating j maxAmount:RatingRequest.amount, rating:700, @ L5
risk:"™MED")
o { ¥l @ QD YER -
-

12.6.4 How to Show and Edit Advanced Settings for Rules at Runtime

In Oracle SOA Composer you can edit advanced settings for rules in a ruleset. For
more information on advanced settings, see Section 4.5, "Using Advanced Settings
with Rules and Decision Tables".

To show and edit advanced settings in a rule:
1. In edit mode, select a ruleset of interest.

2. In the rule area locate the rule you want to show or change advanced settings.
Expand the rule first, if necessary.

3. Click the Show Advanced Settings icon next to the rule name. This displays the
advanced settings, as shown in Figure 12-31.

12-24 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Rules in an Oracle Business Rules Dictionary at Runtime

Figure 12-31 Showing and Editing Rule Advanced Settings

ORACLE SOA COI’T‘IPOSEI’ (§ Bookmarkable Link Legout o

Logged in as weblogic

Bs Open - | & Save & Commit.. g5 Revert.. = « Vaidate @ Info
E CreditRatingRules.rules
(x) Globals
7 Bucketsets ¥ Ruleset_1 view |IF/THEN Rules [] |+ 3§
&P Links)
~| 3 | voung QERTIHEDE L
Q Dedsion Functions \b 8
@ Translations ¥ Shewbdencedseiiion)
Rulesets ol 3¢ Selected Tests O (b & EE
0 RatingRequest.age Q same or less than lz‘ 40 Q, -
5P Ruleset_1 =
THEN
[~ X ¥ &
{ 55M:RatingReguest. 55N,
|:| assertnew - Rating ﬂ maxAmount:RatingRequest.amount, rating:700, @ LN
risk:"MED"™)
o { i vlao bR adyEMm -
-

12.6.5 How to Add Rule Conditions at Runtime

In Oracle SOA Composer you can add conditions to a rule in a ruleset. For more
information on working with rule conditions, see Section 4.3, "Working with Rules".

To add rule conditions:
1. In edit mode, select a ruleset of interest.

2. In the rule area, locate the rule where you want to add a condition.

3. Next to the existing rule condition, click the down arrow to display a list of
options available for adding a condition as shown in Figure 12-32.

Using Oracle SOA Composer with Oracle Business Rules 12-25

Editing Rules in an Oracle Business Rules Dictionary at Runtime

Figure 12-32 Adding a New Rule Condition in a Ruleset

ORACLE SOA COFT'IPOSEI’ f Bookmarkable Link Logout o

Logged in as weblogic

BS Open — | & Save # Commit.. p5Revert.. = | « Validste @ Info
[EE] CreditRatingRules.rules
(x) Globals
7 Bucketsets ¥ Ruleset_1 view |FfTHENRules [v] |+ 3¢ 1-30f 3 [+]
&P Links)
v/ ¥ [vounG SCERTPHEE i
<f\, Dedision Functions 78
@ Translations i
Rulesets 4 ® Selected Tests O (ke i‘% [t LT:I
[|RratingRequest.age Q, same or less than lz‘ 40 Q -
b Ruleset_1 papm— L
THEN b variable
g ()
'ﬂ'|' b4 # BB & not(...)
(S5M:RatingReguest.S5N, & Delete Test
[assertnew v |Rating >| maxAmount:RatingRequest.amount, rating: LY
risk:"MED™)
o { sl vfo @k S5 ¥ E i
-

If the rule where you want to add a condition does not contain any existing
condition, then you need to click the Add Test down arrow to display a list of
available options for adding a condition as shown in Figure 12-33.

Figure 12-33 Adding a Condition to a Blank Rule

ORACLE soA Composer &P Bookmarkable Link Logout o

Logged in as weblogic

CreditRatingRules.rules
(x) Globals
{7 Bucketsets ¥ Ruleset_1 View [IF/THEN Rules [~] |+ 3¢ o [140fa[x] =
Links
(ﬁ m I:‘ assertnew - Rating ﬂ maxAmount:RatingRequest.amount, rating: 700, @ -
Q Decdision Functions risk:"MED™ }
E':J Translations
Rulesets o, 3¢ ~| ¥ |Rule 1 QERGSHLED
Ir
@Rulﬁet_l S 000000000000 00000000000000000000000000000000030002000 % —
Selected Tests O (ks +J “ &I
Qe =] g |-
THEN
m EF|v Add Action
ﬂ -
AT
|
4|

The following are the available options for adding a condition:
= simple test: Adds a simple test condition

= variable: Adds a variable definition. The variable and its value can be represented
as an inline business term definition.

12-26 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Rules in an Oracle Business Rules Dictionary at Runtime

= (..): Adds a new simple test within a nested parenthesis
= not(...): Adds a new simple test within a NOT nested parenthesis

Each nesting level provides a list with the preceding options to operate on a nested
block.

12.6.6 How to Delete Rule Conditions at Runtime

In Oracle SOA Composer you can delete conditions for a rule in a ruleset. For more
information on working with rule conditions, see Section 4.3, "Working with Rules".

To delete rule conditions:
1. In edit mode, select a ruleset of interest.

2. In the rule area, locate the rule where you want to delete a condition.

3. Next to the rule condition that you want to delete, click the down arrow, and then
click Delete Test from the list as shown in Figure 12-34.
Figure 12-34 Deleting a Rule Condition in a Ruleset

ORACLE SOA Composer &P Bookmarkable Link Logout o

Logged in as weblogic

B Open | I Save # Commit.. g5 Revert.. = | ~ Vaidate @ Info
2l CreditRatingRules.rules
(x) Globals
7 Bucketsets ¥ Ruleset_1 View [IF/THEN Rules [=] o[~ 3¢ 130f3[~]
&P Links i
~| ¥ |young GERTFHRED i
< Dedsion Functions w
@) Translations L7
Rulesets 4 % Selected Tests (i (ke f.‘% = LT:l
] RatingRequest.age Ck same or less than |z| 40 Q -
L o S Y @smpetst | |=
THEN 4 variable
) d(.)
gl ¢ X EE & not(,..)
{ 55M:RatingRequest.55M, 3 Delete Test
|:| assert new - Rating j maxAmount:RatingRequest. amount, rating: T LA
risk:™ED")
- { 2l vlop GRS AEE T
-]

Separate list is available for each nesting level. So the delete operation can be
performed on a single condition or a nested block.

12.6.7 How to Modify Rule Conditions at Runtime

Using Oracle SOA Composer, you can edit conditions in a rule. You can select a rule
condition for nesting or modify expression values within the condition. For more
information on working with rule conditions, see Section 4.3, "Working with Rules".

To modify a condition in a rule:
1. In edit mode, select a ruleset of interest.

2. In the rule area locate the rule where you want to modify conditions.

Using Oracle SOA Composer with Oracle Business Rules 12-27

Editing Rules in an Oracle Business Rules Dictionary at Runtime

3. Inthe IF area, use the controls, icons, and selection boxes, including the Left Value
expression icon, list for an operator, and Right Value expression icon to modify
the condition.

Filtering is supported for expressions. For example, when you type Employee,
values are filtered and the values with Employee are displayed in the drop-down.
Use mouse or arrow keys to select a value.

You can use the Expression Builder, Condition Browser, Date Browser, and Right
Operand Browser to edit the left and right-side expressions.

In addition to modifying the values, you can also change the form type of a condition.
For example, a simple test can be changed to variable definition and so on. To change
the form type of a condition, you need to select the condition by using the adjacent
check box and select the required form type from the Selected Tests list as shown in
Figure 12-35.

Figure 12-35 Changing the Condition Type

ORACLE" SOA Composer &P Bookmarkable Link Logout ‘O

Logged in as weblogic

B% Open - & Save # Commit.. g5 Revert.. = - Vaidate @ Info

[E3 creditRatingRules.rules

(x) Globals
17 Bucketsets ¥ Ruleset_1 View |FF/THEN Rules [v] |+ 3¢ 1-30f3 [+]
Links .
& ~| ¥ |vouns TR TP HEDE i
& Dedision Functions m
@:_J Translations IF ..
Rulesets 4 % Selected Tests isimple best ((ke g LT:|
RatingReqw simple test % Q same or less than lz‘ 40 Q, -
Ruleset_1 wvariable =
@ E
THEN
|+ % ¥ Bm
(55M:RatingRequest.55M,
|:| assertnew = Rating ﬂ maxAmount:RatingRequest. amount, rating:700, @ B
risk:"MED"™)
- { > %fop GRRXRRFIHEDE -
i
=]

12.6.8 How to Add Rule Actions at Runtime

In Oracle SOA Composer you can add actions to a rule. For more information on
working with rule actions, see Section 4.3, "Working with Rules".

To add rule actions:
1. In edit mode, select a ruleset of interest.

2. In the rule area locate the rule where you want to add an action.

3. Inthe THEN area for the rule, next to the rule action click Add Action, as shown
in Figure 12-36.

12-28 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Rules in an Oracle Business Rules Dictionary at Runtime

Figure 12-36 Adding a Rule Action in a Ruleset

ORACLE s0A Composer &P Bookmarkable Link Logout ©

Logged in as weblogic

B&Cpen — | B save # Commit.. g5 Revert.. = | « vaidate @@ Info
El CreditRatingRules.rules
(x) Globals
{7 Bucketsets ¥ Ruleset_1 view [IFTHEN Rules [+] |~ 3¢ 1-30f 3
&P Links)
~| ¥ [younG X IHBEDE -
< Dedsion Functions B
@ Transiations L .
Rulesets oy 3¢ Selected Tests (g ¥ EE
[| ratingrequest.age Qg same or less than Iz‘ 40 Q;, -
b Ruleset_1 E
THEN
+[- X ¥Em
assert He\h (55M:RatingRequest.55M,
assign Rating j maxAmount:RatingRequest.amount, rating: 700, @]
risk:"MED"™)
call
modify
o il B retact @b & 3 YR N
.

If the rule to which you want to add an action does not contain any existing action,
then you need to click the Add Action icon in the THEN area as shown in
Figure 12-37.

Figure 12-37 Adding an Action

ORACLE s0A composer &P Bookmarkable Link Logout o
Logged in a= weblogic

BS Open - | @ Save # Commit.. g5 Revert.. = | ~ Vaidate @ Info
[CreditRatingRules.rules
(x) Globals
{7 Bucketsets ¥ Ruleset_1 View [IF/THEN Rules [=] ofp| ~ € 130f3[~]
&P Lirks e)
~| ¥ |YOUNG 5 = i
Q Decdision Functions & l+ x a “ LT:' 8
@ Translations IF ..
Rulesets EF 3R Selected Tests O (ke i‘% B LT:l
] RatingRequest.age Ck same or less than 40 Q, -
P Ruleset_1 [=]
THEN i
LTJ * Add Action
Add Action
»| ¥ o GEREGIHEE
ﬂ »| ¥ |VERY_OLD GEREGLCHBDE .
AT
.

12.6.9 How to Delete Rule Actions at Runtime

In Oracle SOA Composer you can delete actions in a rule. For more information on
working with rule actions, see Section 4.3, "Working with Rules".

Using Oracle SOA Composer with Oracle Business Rules 12-29

Editing Rules in an Oracle Business Rules Dictionary at Runtime

To delete rule actions:
1. In edit mode, select a ruleset of interest.

2. In the rule area, locate the rule where you want to delete an action.
3. In the THEN area for the rule, select the action.
Click Delete Action, as shown in Figure 12-38.

Figure 12-38 Deleting a Rule Action in a Ruleset

ORACLE sOA Composer @ Bookmarkable Link Logout o

Logged in a5 weblogic

BS Open — | B Save # Commit.. p5Revert.. < | - Vaidate @@ Info
3 creditRatingRules.rules
(x) Globals

£ Bucketsets ¥ Ruleset_1 view |IF/THENRues [+] ob|v 3¢ 130f 3 [=]

£ Links) o
Selected Tests (o (ke ¥ED -

Q\r Dedsion Functions

. D RatingRequest.age Qb more than lz‘ 40 \% ant

%:J Translations

[| RatingRequest.age q;, same or less than lz‘ 70 \% -
Rulesets ,+ 4
&b Ruleset_1 [ERE
+-ookam
Delete Action (SsN:RatingRequest. 55N,
[7 assel v arg j maxAmount:RatingRequest.amount,2, rating: 400, @
risk: "HIGH™)
»| ¥ [verY_owD GERE O HEDE i
j < | . b
o T
A

12.6.10 How to Modify Rule Actions at Runtime

In Oracle SOA Composer you can modify actions in a rule. For more information on
working with rule actions, see Section 4.3, "Working with Rules".

To modify rule actions:
1. In edit mode, select a ruleset of interest.

2. In the rule area, locate the rule where you want to modify an action.

3. Inthe THEN area for the rule as shown in Figure 12-39 you can do the following:
= Add and delete actions using Add and Delete icons on the top.
= Select the action and move it up and down using the respective arrow icons.
s Cut, copy and paste using the Cut, Copy and Paste icons on the top.

» Click the More link in the drop-down area to launch Select a Target popup
and select a value.

» Click the Edit Properties icon next to the rule action and modify properties.

12-30 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Rules in an Oracle Business Rules Dictionary at Runtime

Figure 12-39 The Edit Properties Icon

THEN
F-REGIHLEDE
[modify + | LoanOffer >| (providerMame:™OT A GOCD BANK") EA
LoanOffer h
cal » [RL) 5P Edit properties
[[] assign~ |More.. = Q

The Properties dialog box is displayed where you can modify the property details
as shown in Figure 12—40.

Figure 12-40 The Properties Dialog Box

Properties 2]
MName Type |'-.-'a|ue | Constant |
annualSpending int Q]
creditScore int Q il
name String Q, O
totalAmount double Ck il
vipStatus VipStatusType VipStatusType, PLATIMULN Ck

For more information on number formatting in rules, see Section 12.5.1, "What You
May Need to Know About Localized Number Formatting Support in Oracle SOA
Composer."

12.6.11 How to Work with Advanced Mode Rules at Runtime

In Oracle SOA Composer, you can work with advanced mode rules in a ruleset. For
more information on working with advanced mode rules, see Section 4.7, "Working
with Advanced Mode Rules".

To show and modify advanced mode rules:
1. In edit mode, select a ruleset of interest.

2. Intherule area, locate the rule where you want to show or modify advanced mode
rules.

3. Click Show Advanced Settings icon to show advanced settings. For more
information on showing advanced settings, see Section 12.6.4, "How to Show and
Edit Advanced Settings for Rules at Runtime".

4. If the Advanced Mode icon is not selected, then select the Advanced Mode icon.
This shows the advanced mode rule options, as shown in Figure 12—41.

Using Oracle SOA Composer with Oracle Business Rules 12-31

Editing Rules in an Oracle Business Rules Dictionary at Runtime

Figure 12-41 Showing Advanced Mode Rule Options

¥ Fix The Provider Name view | IF/THEN Rules [=] l$| - X 1-30f 3 [=]
| # | Premium Customers % 4 & 0 R :J
Description | Treating premium customers ""*:_-J
Effective Date | Always El
Priority | Medium [=] [#] Active Advanced Mode [[] Tree Mode
IF
{for each case where) E| 1 {h- '[h ‘ii b} “ :J
LoanOffer isa | LoanOffer El and ':h- {E,g ‘# *® 0 x :J
Selected Tests (i (ke :"; = :J
[| LoanOffer. APR Q, [less than [=] [6.0 Q and -
[| application = | LoanOffer.approved Ck -
ar
date is a | CurrentDate E| ':h- {},3 Ei *® {} G 3& :J

[db|~ addTest

12.6.11.1 Working with Advanced Mode Options

The Advanced Mode rules options enables you to create, modify, and delete patterns,
as well as add, modify, and delete conditions and actions within a pattern.

Using the Advanced Mode rule options, you can:

= Specify a pattern variable and select a fact type for the variable: You can directly
enter the name of the pattern variable in the variable field. You can specify the fact
type for the variable by using the fact type list as shown in Figure 12-42.

Figure 12-42 Specifying Pattern Variable and Fact Type

(for each case where) E| { '[h- '[h ‘ii'] 3@; :.J
e+ PHED

LoanOffer isa il

L n
Selected Tests LoanCffer b (ks ¥ B
CurrentDate
[| LoanOffer.APR Q, [less than [=] [6.0 Q, and -
[| application = |LoanOffer.approved Ck -
aor
date iea |CurentDate [w] Om e dp € 40 & & g

7 gk - AddTest

In the graphic example, CustomerOrder is a pattern variable of
CustomerOrder fact type.

= Add a pattern: Click the Add Pattern icon to create a pattern to the existing rule.
Figure 1243 displays an added pattern. The newly created pattern is blank.

12-32 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Rules in an Oracle Business Rules Dictionary at Runtime

Figure 12-43 Adding a Pattern

Ir

{for each case where) E| { {h- '[h 4]

LoanOffer is a | LoanOffer [=] and
Selected Tests | simple test [+] O (ks
[V: | LoanOffer. APR Q
[| application = | LoanOffer.approved

ar

date isa |CurrentDate [

[dk|~ AddTest

& EBm

< 3

less than

{h-{}z,zﬁ & & B X

[=] |60

CLand v
Q, -

RGPS HED

= Delete a pattern: Click the Delete Pattern icon to delete a pattern from a rule.
Figure 12—44 displays how to delete a pattern.

Figure 12-44 Deleting a Pattern

IF
(for each case where) El ik 4 i }@. :J
LoanOffer is @ | LoanOffer [=] and

Selected Tests | simple test El (hn (12 @ }@, :'J
[| LoanOffer.APR 4, | less than
[| application = | LoanOffer.approved

ar

date isa |curentDate [+ (k (ks o h

[db|~ AddTest
and

LoanApplication is a | LoanApplication El

ldX T SHED

[=] 6.0
Q -

Qand'

¢S HEDE

ek X4V &ED

» Specify connectives: Two or more patterns are joined by a connective, and or or.
You can use the connective link to toggle between the connectives.

= Work with nested patterns: A nested pattern has patterns inside it. These are
enclosed within curly braces ({}). The pattern operator list is followed by the open
curly brace. You can create a nested pattern by clicking Surround pattern with
parentheses icon and you can remove the pattern nesting by clicking the Remove
parentheses from pattern icon as shown in Figure 12—45.

Figure 12-45 Adding and Removing Pattern Nesting

Inside the open curly brace, you can specify a pattern and then click the Add Test
down arrow to add conditions to the nested pattern as shown in Figure 1246, as
well as add another pattern to the same pattern block.

Using Oracle SOA Composer with Oracle Business Rules 12-33

Editing Rules in an Oracle Business Rules Dictionary at Runtime

Figure 12-46 Inserting Pattern Conditions

Lixl 0 G e e 53 & EBm

LoanOffer isa | LoanOffer El and ':h- {L@ ‘* x® 0 3@'; :J
Selected Tests (kg #$ B

[| LoanOffer. APR Q, [less than [=] [6.0 Q, and -
[| application = | LoanOffer.approved Q -

ar

date is a | CurrentDate E| ':h- {},@ ‘* *® {} “ :J

ig] M Add Test

)

@ k|~ AddTest

A nested pattern block ends with a closing curly brace. You can have multiple
levels of nested patterns, which means that inside a nested pattern, you can have
another nested pattern. You can click the Delete Nested Pattern Block icon to
remove the entire nested pattern block as shown in Figure 12—47.

Figure 12-47 Deleting a Nested Pattern Block

1=l 1 ﬂi-fh'ﬂi'?ﬂj PHEE

BN

LoanOffer is @ | LoanOffer ’ Delete Mested Pattern Block l a8 B
Selected Tests {91‘}-\ {}2.3 :‘% J :J
[| LoanOffer. APR. Q, [less than [=] [6.0 Q, -

When you nest a pattern, an operator list is displayed with (for each case where)
selected as the default operator in the operator list. The other items are there is a
case where, there is no case where, and aggregate as shown in Figure 12-48.

Figure 12-48 Selecting the Pattern Operator

ol O ek i

is & CustomerOrder;I and

= (0 (b

there is a case where
thers is no case where
aggregate

The user interface remains the same as (for each case where) when you select
there is a case where or there is no case where as the operator. However, when
you select aggregate, the user interface changes. For an aggregate operator, you
must enter a variable in the available field and select a function from the function
list. The function list displays the following:

n count
m average
= maximum

s minimum

12-34 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Rules in an Oracle Business Rules Dictionary at Runtime

] sum
m collection

Except for the count function, all the other functions require an expression. You
can specify an expression in the available field or launch the Condition Browser
window.

Figure 1249 displays a nested pattern, where numPricey is the variable name
and count is function name.

Figure 12-49 The Count Aggregate Operator

numPricey is the =] | count El where { ':ﬁ- ':h l+ 3 G % :J
LoanOffer is a | LoanOffer EI and ':h- {},3 Ei X 3& :J
Selected Tests {9{}-\ {?zz :‘% J :J

In the Advanced Mode of rules, in the THEN part, you can add any required action
ranging from assert, call, modify to even conditional actions such as if, else,
elseif,while, for, if (advanced),and while (advanced) as shown in
Figure 12-50.

Figure 12-50 Procedural Rules

THEN
v XK ¥ E B
[7] medify » | LoanOffer x| (providerName: PREMIUM BANK") EB
[i~
Selected Tests (i (b ¥ BB
[| customerOrder. CreditScore ‘:k less than El 500 ‘:k -
then
[7] medify » | LoanOffer x| (APR:onHold) B
[while -
Selected Tests (i (b ¥ BB
[| customerOrder. CustomerStatus ‘:k is El badCustomer ‘:k -
do
[l retract v | LoanOffer =

12.6.12 How to Work with Tree Mode Rules at Runtime

In Oracle SOA Composer you can work with tree mode rules in a ruleset. For more
information on working with tree mode rules, see Section 4.8, "Working with Tree
Mode Rules".

To show and modify tree mode rules:
1. In edit mode, select a ruleset of interest.

2. In the rule area locate the rule where you want to show or modify tree mode rules.

Using Oracle SOA Composer with Oracle Business Rules 12-35

Editing Rules in an Oracle Business Rules Dictionary at Runtime

3. Select Advanced Settings icon to show advanced settings. For more information

on showing advanced settings, see Section 12.6.4, "How to Show and Edit
Advanced Settings for Rules at Runtime".

4. If the Tree Mode icon is not selected, then select the Tree Mode icon. This shows

the tree mode rule options, as shown in Figure 12-51.

Figure 12-51 Showing the Tree Mode Rule Area in a Rule

¥ Fix The Provider Name View | IFfTHEN Rules [+ EF| - X 1-30f 3 [=]
| # | Premium Customers ‘;_"_, EF ® G 3@, :'J
Description ‘g_'-J
Effective Date | Always El
Priarity | Medium [=] [¥] Active Advanced Mode [#] Tree Mode
Root: QL =]
IF LoanApplication
B L o T
CurrentDate
LoanOffer is & | LoanOffer [=] and (g (k: o 3¢ 34 Fg|
Selected Tests (i (ke ¥ B E
[| LoanOffer.APR \—k less than El 6.0 \—k -

12.6.13 What You May Need to Know About Rules Paging in Oracle SOA Composer

In a ruleset with many rules, for the ease of navigation, the Oracle SOA Composer Ul
displays the rules in multiple pages, with each page containing a set of six rules. This
paging capability ensures better performance when a ruleset with a large number of
rules are loaded.

Oracle SOA Composer provides a list from where you can directly access the page
where the rule of your choice exists. Alternatively, you can click the Previous and Next
buttons on the either side of the list to move to the preceding or the following set of
rules.

Figure 12-52 displays the rules paging capability of Oracle SOA Composer.

12-36 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using the Oracle SOA Composer Browser Windows

Figure 12-52 Rules Paging

¥ Fix The Provider Name

- Not Active date based View | IFfTHEM Rules E| 4| - &g

1-5 of 13
*| & | Premium Customers E_"J EF 2] 6 && :'_| 13-13 0f 13

»| % | Good Customers

GEREGIHED

*| # | Not S0 Good Customers E_‘:-J 4 b4 ‘G & R ig]

*| 2 |Rule 1

x| & Rule 2

*| 2 |Rule 3

GEREGIHED
LERGIHED
GEREGIHED

12.6.14 What You May Need to Know About Oracle Business Rules Editor Declarative

Component

You can use the Oracle Business Rules Editor composite declarative component to
leverage the functionality of editing business rules in any ADF-based Web application.
It enables you to edit business rules available in rulesets by using the Rules SDK2 APL

For more information on Oracle Business Rules Editor, see "Using the Oracle Business
Rules Editor Declarative Component" in Oracle Fusion Middleware Developer’s Guide for
Oracle SOA Suite.

12.6.15 What You May Need to Know About Oracle Business Rules Dictionary Editor
Declarative Component

The Oracle Business Rules Dictionary Editor is a composite declarative component
that can be embedded in any ADF-based web application. It enables you to edit
business rules metadata artifacts, such as globals, bucketsets, and rulesets, by using
the Rules SDK2 API.

For more information on Oracle Business Rules Dictionary Editor, see Using the Oracle
Business Rules Dictionary Editor Declarative Component in Oracle Fusion Middleware
Developer’s Guide for Oracle SOA Suite.

12.6.16 What You May Need to Know About Oracle Business Rules Dictionary Editor

Task Flow

The Oracle Rules Dictionary Editor Task Flow is basically a wrapper around the Rules
Dictionary Editor declarative component. The task flow is used in ADF-based web
applications that require a task flow instead of a declarative component.

For more information on Oracle Business Rules Dictionary Editor Task Flow, see Using
the Oracle Business Rules Dictionary Editor Task Flow in Oracle Fusion Middleware
Developer’s Guide for Oracle SOA Suite.

12.7 Using the Oracle SOA Composer Browser Windows

Oracle SOA Composer provides browser windows that helps you to work with
different types of expressions such as rule expressions, XPATH expressions, date
expressions, and so on.

Using Oracle SOA Composer with Oracle Business Rules 12-37

Using the Oracle SOA Composer Browser Windows

The different types of browsers provided by Oracle SOA Composer are:
= Expression Builder

= Condition Browser

= Date Browser

= Right Operand Browser

12.7.1 Expression Builder

Expression Builder is used to build different types of expressions such as XPATH
expressions, rule expressions, and so on.

Expression Builder has a field where you can enter the expression directly. It has four
tabs: Variables, Functions, Operators, and Constants. Each of these tabs display data in
a tree structure. The Variables tab displays all the variables in the rules meta-data. The
Functions tab displays all the functions in the rules meta-data. The Operators tab
displays operators such as +, -, *, and so on. The Constants tab displays all the
constants that exist in the rules meta-data.

You can switch between the tabs, select an item in the tree, and click the Insert Into
Expression button to insert the selected item at the cursor position in the expression
field. When an item is selected in the tree, the Content Preview and the Description
areas display more information about the selected item. Once you create the
expression and click OK, the newly created expression appears in the field that is
available to the left of the expression builder icon.

Figure 12-53 displays the Expression Builder browser.

Figure 12-53 The Expression Builder Browser

Expression Builder B

Expression:

Cuskorner, Manne

4 Insert Into Expression

L [Mame ~
-3 OrderInfoType
=3 ContactType
-3 OrderTtemsType

E | ItemType

L= [Address

E | SupplierInfoType
=3 PurchaseCrderType
B> [Usaddress

- [order

W [customer

= [address
| Reqistered Date

L= [CurrentDate b
¥Yariables Functions Dperators Constants

(Content Preview: Drescription:
Customer, Mame SOk Wariable Option

M Cancel

12-38 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using the Oracle SOA Composer Browser Windows

12.7.2 Condition Browser

The Condition Browser has a field, a hierarchical tree, and an Expression Builder
embedded inside it. You can enter the expression directly in the field, or select an item
from the tree. Condition Browser supports filtering. For example, when you start
entering customer the tree is narrowed down to items with customer.

When an item is selected in the tree, the new selection appears in the field
immediately. You can also use the embedded Expression Builder to create an
expression.

Once the Expression Builder is launched and an expression is created, the new
expression appears in the Condition Browser field. Once you create an expression and
click the OK button in the Condition Browser, the newly created expression appears in
the field that is to the left of the Condition Browser icon.

Figure 12-54 displays the Condition Browser.

Figure 12-54 The Condition Browser

Condition Browser B
Cuskorner. Marne Ef"!
=) ItemType v

B3 SupplierInfoType

=3 PurchaseOrderType

L= [Usaddress

- [Order

v 3 cu
L= [address
=3 Registered Date

- [CurrentDate
=@ Temperature

=3 csco
=3 Global_3

=3 R

=3 BigDecimal

-3 BigInteger

= [Double v

Conskank |:|

M Cancel

12.7.3 Date Browser

The Date Browser is used to select a Literal Date or a Date Expression. The Date
Browser has two options to switch between a Literal Date and a Date Expression.
When one option is selected, the other one is disabled.

Select:
= Literal Date option to enter a date using a Calendar pop-up

= Date Expression option to enter the expression directly in the Date Expression
field or to launch the Condition Browser to select a date expression.

Figure 12-55 displays the Date Browser.

Using Oracle SOA Composer with Oracle Business Rules 12-39

Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime

Figure 12-55 The Date Browser

Set Date and Time B

{@} Literal Date E"(g {UTC-08:00) US Padfic Time

") Date Expression

M Cancel

12.7.4 Right Operand Browser

The Right Operand browser is used to select multiple right expressions. The browser
displays operands in each row. You can enter an expression directly in the operand
field or launch the Condition Browser to select an expression. The + icon adds a row
after the current one. The - icon deletes the current row. These icons are enabled and
disabled based on the selected operator. For instance the in operator allows multiple
right expressions. So in this case, the icons are enabled.

Figure 12-56 displays a Right Operand browser.

Figure 12-56 The Right Operand Browser

Right Operand B

“Customer.Registered Date between™

Cperandl Sep 22, 2009 4:18:55 AM S and [+]||—

Operand2 Sep 30, 2009 2:19:44 AM CDT '

+
Validate | OK | Cancel |

Note: Using Right Operand browsers, you can enter multiple values
for the right-side expression. However, you can place a Date browser
outside a Right Operand browser, and in which case, only one
expression can be entered. For both these browsers, you cannot enter
values directly in the right-side expression field. Once you have
entered values using the browser and clicked OK, the values get
added as comma-separated values on the Rules UL

12.8 Editing Decision Tables in an Oracle Business Rules Dictionary at
Runtime

When Oracle SOA Composer is in edit mode, you can edit, add, and delete a Decision
Table in a ruleset. For more information on how to use edit mode, see Section 12.5,
"Getting Started with Editing and Saving a Dictionary at Runtime".

12.8.1 Adding a Decision Table at Runtime

In Oracle SOA Composer, you can add a Decision Table to a ruleset. For more
information on working with Decision Tables, see Section 5.1, "Introduction to
Working with Decision Tables".

To add a Decision Table in a ruleset:
1. In edit mode, select a ruleset of interest.

2. In the ruleset area, click Add and then Add Decision Table, as shown in
Figure 12-57.

12-40 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime

Figure 12-57 Adding a Decision Table in a Ruleset

(x) Globals

{7 Bucketsets

& Links

Q\y Dedision Functions

%_—J Translations

Rulesets 4 %

@ DynamicRoutingCrea

¥ DynamicRoutingCreator View | IF/THEN Rules lz‘ Ei | - X 1-2of2 E
Add Rule
~| ¥ | AsyncDynamicRouting eg l# x 0 x | Add Ded'sion Table
Ir
Selected Tests (i (kg f.% = ﬁtl
=] RoutingAction.onCbkOperation Q isn't null C
[| RoutingAction.rplOperation Q is lz‘ null <
THEN
v % $EE
[cal + | assertDynamicRoutingAsync >| (RoutingAction) @
>| ¥ | SyncDynamicRouting @'_—_J l* *® {} 3{, [iE|
ﬂ < [0 3
e

A blank Decision Table is displayed as shown in Figure 12-58.

Figure 12-58 A Blank Decision Table

¥ | Dedsion Table 1

@ dk|~ AddTest

¥ DynamicRoutingCreator View | Decision Table 1 lz‘ EF| -~ %

e
o | v 2B E:" g g Local List of Ranges v Double dlick to edit cells
[
Conditions
Conflict Resolution
Actions
|

12.8.2 Adding

Condition Rows to a Decision Table

Using Oracle SOA Composer, you can add condition rows to a Decision Table.

Using Oracle SOA Composer with Oracle Business Rules 12-41

Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime

To add condition rows to a Decision Table:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and
select the Decision Table where you want to add conditions from the View box (for
example, Decision Table 1).

2. In the Decision Table toolbar, from the list next to the Add icon, select Add
Condition that displays the Condition Browser window where you can specify or
select conditions.

The selected or specified condition row and a Rules column with the header R1 is
added to the table; the cell below R1 has a "?" symbol (Figure 12-59). The "?"
symbol indicates that the cell does not have a value yet.

Figure 12-59 New Condition Row Added in a New Decision Table
¥ | Dedsion Table 1

[k|~ AddTest

4'7 /x H EE B g@ Local List of Ranges / Double dick to edit cells

Ri [

-

Conditions | CustomerCrder, annualSpending

Conflict Resolution

Actions

If you are adding a condition to a table that has existing condition rows, similar to
adding a condition to a blank Decision Table, Oracle SOA Composer prompts for
specifying the condition details. Once the details are provided, the specified
condition is added as the last condition row; the condition cells under each rule
column in the new row also have "?" symbols, as shown in Figure 12-60.

Figure 12-60 New Condition Row Added As Last Row in a Decision Table

¥ approvalMatrizRules Wi ApprovaIMatrix;I |+|v b4
¥ | ApprovalMatrix

[dk|> AddTest

‘$| 7 / ® ﬁ EE &M Local List of Ranges lz‘ / Double dick to edit cells

R [rz [ra
Conditions .
CustomerOrder, vipStatus PLATIMUM GOLD; SILVER
CustomerOrder,creditScore | - Low Medium
CurrentDate, date - - Eiefore Pron)
? ? ?
Conflict Resolution | 03 Overtide
Actions .
modify Result
discount: double 10] 5
status:StatusType SkatusType, APPROYVED SkatusType, MAMNLUAL StatusType |
4| | 3

For information about all symbols that might be used in a decision table, see
Section 12.8.4.1, "Editing Decision Table Cells."

12-42 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime

3. If you want to edit a specified condition, in the Conditions area, click the
condition row, and then click the Edit Condition icon on the toolbar as shown in
Figure 12-61. This displays the Condition Browser.

Figure 12-61 Editing a Condition to a Decision Table

¥ | Approvallatrix

[k|~ AddTest

|- 4% H R @ Creditscores =] /| Double dick to edt cels
R [r2 [R3 I
PLATINLIM GOLD; SILVER —

Edit Condition
CustomerOrder. vipstatus

Condition

Loy Medium
CurrentDate. date

Before Promo; After Proma

Conflict Resolution | 9% cverride

Actions

| modify Resulk

=
| | »

4. Enter an expression by clicking in the Conditions Browser to select a variable, or
click the Expression Builder icon to display the Expression Builder.

Expression Builder lets you build expressions.

5. Each condition row requires a bucketset from which to draw the values for each

cell. When the value you select has an associated global bucketset, then by default
the bucketset is associated with the condition row.

If there is no global bucketset associated with the value, then after you add a
condition row to a Decision Table, you need to either specify an existing global
bucketset or create a Local List of Values or a Local List of Ranges bucketset.

To associate a bucketset for the condition, perform either of the following:

= In the Conditions area, select the condition, and select an existing bucketset
from the Select Bucketset list as shown in Figure 12-62.

Figure 12-62 Associating an Existing Bucketset With a Condition Row

¥ | ApprovalMattiz

Select Bucketset

;I / I Double click ko edit cells

v ‘+|V Add Test
-7 g @Oa
RY Local List of Yalues |R2 |R3

Conditions ;
CustomerCrder, vipstatus Pme.—Q—IL““"' List of Ranges SOLD; SILVER,

Lo Medium

|»

CurrentDake, date Before Promo; After Promo

Conflict Resolution | 03 COrverride

Actions

| rnodify Result

=
4« | »

» In the Conditions area, select the condition, and select either Local List of

Values or Local List of Ranges (as relevant) from the Select Bucketset list as
shown in Figure 12-63.

Using Oracle SOA Composer with Oracle Business Rules 12-43

Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime

Figure 12-63 Associating a Local List of Values or Local List of Ranges With a Condition Row

»

¥ | ApprowalMatrix

[db|v AddTest

Select Bucketset
/ | Double dick ta edit cells

#-7% Ea/ @@

f
R i [rz R3
Conditions el Li -
CustomerOrdervipstatus | pLALDEal List of Ranges GOLD; SILVER: —
Low Medium
CurrentDate, dake Eefore Promo; After Promo
Conflict Resolution |03 Ovettide -
Actions
| modify Result _ILI
< | »

You can edit the bucketset for the selected condition by clicking the Edit Bucketset
icon as shown in Figure 12-64.

Figure 12-64 Editing a Bucketset

¥ | ApprovalMatriz

[&b|~ AddTest

4" / R’ E Eﬁ & gg CreditScores ;I 4}“ Double click ba edit cells

= Bl Edit Bucketset | RE I
Conditions . -
CustarmerOrder, vipStatus FPLATIMNUM GOLD; SILVER =

Loy Medium

CurrentDate, date

EBefore Promo; After Proma

Conflict Resolution | 03 Orvertide

Actions

| modify Result

=
4| | »

This displays the Bucketset Editor where you can add, edit or delete buckets. If

editing a Local List of Values bucketset, you can also reorder buckets in the
bucketset.

For more information on number formatting in bucketsets, see Section 12.5.1,

"What You May Need to Know About Localized Number Formatting Support in
Oracle SOA Composer."

6. Repeat Step 2 through Step 5, as required to add additional condition rows in the
Decision Table.

For more information on adding condition rows, see Section 5.2.2, "How to Add

Condition Rows to a Decision Table".

12.8.3 Adding Actions to a Decision Table

In Oracle SOA Composer, you can add actions to a Decision Table.

To add actions to Decision Table:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and

select the Decision Table where you want to add actions.

12-44 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime

2. From the list next to the Add icon, select Add Action and select an available action
from the list. For example, click Modify as shown in Figure 12-65.

Figure 12-65 Adding an Action to a Decision Table

¥ | ApprovalMatriz

T ok|+ AddTest

'$| - / % _ﬁ' EE @, H m Local List of Ranges |Z| / Double didk to edit cells

add Rule Rl [R2 [R3

Add Condition ¢ stomerOrder vipStatus | PLATIMUM GOLD; SILYER.
Add Action * assert new

- Loy Medium
assign
- - Eefore Promo; After Promo

call |

Conflict Resolution gl %

retrack

Actions
miodify Result
discount :double 10 a 5
skabus:StatusTepe StatusType, APPROVED StatusTyepe, MAMUAL StatusType. MARMUIAL
< | ol

The Action Editor window is displayed as shown in Figure 12-66.

Figure 12-66 The Action Editor Window

Action Editor

Form: | Modify ~

Value: Modify CustomerOrder

Target:
Result
Name Type |'-e'alue Parameterized | Constant
annualSpending int Ck O O
creditScore int Ck il i
REIEIE narne String Ck F El
totalAmount double Ck i]
vipStatus VipStatusType Q, F O
Always Selected: []
OKl Car

Table 5-1 in Chapter 5, "Working with Decision Tables," lists the available actions.

3. In the Action Editor window;, select the action target and then specify values for an
action cell.

For more information on number formatting in bucketsets, see Section 12.5.1,
"What You May Need to Know About Localized Number Formatting Support in
Oracle SOA Composer."

For more information on adding actions to Decision Tables, see Section 5.2.3, "How to
Add Actions to a Decision Table."

12.8.4 Adding Rules to a Decision Table

Using Oracle SOA Composer, you can add a rule to a Decision Table.

Using Oracle SOA Composer with Oracle Business Rules 12-45

Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime

To add a rule to a Decision Table:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and
select the Decision Table where you want to add the rule.

2. From the list next to the Add icon, select Add Rule as shown in Figure 12-67.

Figure 12-67 Adding a Rule to a Decision Table

¥ | ApprovalMatrix

[dh|~ AddTest

4' - / x ﬁ E'g' &Am Local List of Ranges |Z| / Double didck to edit cells
#Add Rule R = [R3
Add Condition
Add Action 4

CustomerOrder, vipStatus PLATINUM GOLD; SILVER

Loy Medium

CurrentDate, dake Eefore Promo; After Promo

Conflict Resolution | 03 Overtide

Actions
modify Result
discount:double 10 o 5
skatus:SkatusType StatusType, APPROVED StatusType . MANUAL StatusTepe, MARLUAL
dl | i

A new column for the added rule is displayed as shown in Figure 12-68.

Figure 12-68 Added Rule in the Decision Table

¥ | ApprovalMatriz

[gb|~ AddTest

‘i | - / ® ﬁ ‘EE & ! m Local List of Ranges lz‘ / Double didk to edit cells

Rl [Rz [R3
Conditions . -
CustomerCrder, vipStatus 7 FLATIMUM GOLD; SILVER =
CustomerOrder, creditSoore |7 - Low
CurrentDate, date 7 - -
Conflict Resolution | 03 Overtide
Actions
modify Result Il
discount :double ia i}
skakus:SkatusType StatusType, APPROYED SkatusType, MAMUAL
modif L] 1 O hl
4| | »

Note: When you add a rule to a blank Decision Table, Oracle SOA
Composer displays the Condition Browser window, and after you
select or specify a condition, a condition row gets added
automatically.

Notice that the new rule is added as the first rule of the Decision Table and the
other rules have moved as required to keep the bucket values in their defined
order. This is because Order Rules By Bucket is enabled by default, which means
rule ordering in a Decision Table is set according to the relative position of buckets

12-46 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime

associated with a condition expression. If Order Rules By Bucket is not enabled
when you add a rule, the new rule is added as the last rule of the Decision Table.
In either case, the cells in the new rule column have "?" symbols, indicating the
cells do not have values yet.

For information about all symbols used in a table, see Section 12.8.4.1, "Editing
Decision Table Cells." For additional information about rules ordering, see
Section 12.8.4.2, "Controlling the Order of Rules in a Decision Table."

3. Enter values for the condition cells by double-clicking the cells.

Note: You can enter values for the condition cells (or any other cells)
only by double-clicking the cell.

4. Double-click an Action row to enter values for the action cells.

Note: If because of the inadequate column width, you cannot view
the complete contents of a cell in a Decision Table, you can roll your
mouse pointer over the cell to view the contents.

12.8.4.1 Editing Decision Table Cells

Each rule in a Decision Table contains cells pertaining to three sections: Conditions,
Conflicts, and Actions.

Working with Condition Cells

In view mode, a condition cell with a "?" symbol indicates that the cell does not have a
condition value. If a cell has two or more values specified, a semicolon-separated list
of values is displayed in the cell.

In the editable mode (that is, when you double-click a conditions cell), the condition
cells display specified condition values in multichoice lists. When editing a new rule or
when a condition value is unspecified, the condition cell is blank, as shown in

Figure 12-69.

Figure 12-69 Unspecified Condition Value

¥ | Decision Table 1

T ok|+ AddTest

‘*l' AR HHR Em Local List of Ranges =+ |

Rl |
Conditions | CustomerCrder. annualSpending
LAl
Conflict Resolution [otherwise
Actions
If you select All:

= When the particular condition cell is double-click, the cell displays "All"

= When the particular condition cell is not selected, the cell displays the "-" symbol

Using Oracle SOA Composer with Oracle Business Rules 12-47

Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime

Figure 12-70 shows a Decision Table with a condition cell displaying the value "All" in
editable mode, a cell displaying the "-" symbol, and cells displaying a
semicolon-separated list of values.

Figure 12-70 Displaying All Values for a Condition

¥ | ApprovalMatriz

e,

[db|~ AddTest

o | e 2Bl EN F m Local List of Ranges 7 Double dick to edit cells

Rl [Rz [R3
Conditions . -~
CustarnerOrder, vipStatus PLATIMUIM GOLD; SILVER =
CustomerCrder. creditScare | Al | Lo Medium
CurrentDate. date Eefore Proma; After Promo

Conflict Resolution | 9 override

Actions
modify Result
discount :double 10 a 5
skatus: SkatusTepe StatusType . APPROVED StatusTyepe. MARUAL StatusType . MARMUIAL

modify N O [] O LI;I

You can select any value that is available in the condition value list.

Note: When you edit the condition cells, if Order Rules By Bucket is
selected, the Decision Table is refreshed and the edited rule column

may shift to the left or right depending on the selected condition cell
value.

Note: You can modify the bucketset associated with a a condition, by
clicking the condition. This enables the bucketset list and the Edit
Bucketset icon so that you can edit the associated bucketset.

Working with Action Cells

When you add an action, an action row is created with the specified action type. There
are two types of action cells:

s The Action form cells contain checkboxes. When a rule fires, only selected actions
are executed. In Figure 12-71, R1 and R3 action checkboxes are selected whereas
the other action checkboxes are deselected. In this case, if R1 fires, the action will
be executed, but if R2 fires, then the action will not be executed.

Note: The Edit Action icon is enabled only if the action form cell row
is selected. The Edit Action icon invokes the Action Editor window.

= The Action parameter cells contain the parameters of the action form. You can
directly enter the action parameter values in the respective field or you can invoke
the Condition Browser window to select a value.

Figure 12-71 displays both types of action cells. You can see that the action parameter
cells, in edit mode, have edit fields with the Condition Browser icons next to them.

12-48 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime

Figure 12-71 The Action Cells in a Decision Table

w

¥ | ApprovalMatriz

[k|~ AddTest

l*l SR | B W R g g Local List of Ranges 7 Double dick to edit cells

Rl [R2 [R3 I
Conditions) :I
CustomerCrder, vipStatus PLATIMNUIM GOLD; SILYER
CustomerOrder, creditScore |- Lo Medium
CurrentDate, date - - Eefore Promo; After Promo
Conflict Resolution | 03 Ovettide
Actions
modify Result m |
e
discount : double i10] "{ u] B
skatus:StatusType StaktusType, APFROVED StatusTepe, MARUAL StatusType, MARNLUIAL
miodify O O O -
4| | H

Figure 12-72 displays the Action Editor window where you can select the values for
an action parameter cell. If you select the Always Selected checkbox, all the
checkboxes for the particular action form get selected. All the checkboxes pertaining to
the action form are also disabled, because the specified action "is always selected".

Figure 12-72 The Action Editor Window

Action Editor

Form: | Modify w

Value: Modify Result

Target: | CustomerOrder

Arguments: |status

MName Type Value | Parameterized | Constant |

discount dauble Ck O
StatusType Q% D

surcharge double '- O

Always Selected: []

CK | Cancel

Using Oracle SOA Composer with Oracle Business Rules 12-49

Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime

Note: You can delete all the condition cells and all the action cells of
a Decision Table at one go. Clicking the Conditions or the Actions box
selects all the conditions or actions in the Decision Table respectively
as shown in the following graphic.

¥ | ApprowalMatriz I

T dk|+ AddTest

£ | -S| R F F !’ Local List of Ranges Va Double didk to edit cells
R [rz
B
CuskarnerOrder, vipStatus PLATIMUM GOLD; SILVER
CustomerOrder,creditScore |- Lo
CurrentDate, dake
Conflict Resolution | 93 override
Actions .
raodify Result
discount:double 10 \l o
skakus: SkatusTepe StakusType APPROVED StatusType. MAMUAL
rnodify]] -
| | i

You can then click the Delete icon on the Decision Table toolbar to
delete the conditions or actions.

12.8.4.2 Controlling the Order of Rules in a Decision Table

By default the Order Rules by Bucket checkbox is enabled in a Decision Table, as
shown in Figure 12-68. This means the order of the buckets in the bucketset associated
with a condition row determines the order of the condition cells, and thus the order of
the rules.

To change the order of rules in a Decision Table, you need to change the order of
buckets in the bucketsets. For example, you can control rule ordering in a Decision
Table by changing the relative position of the buckets in an LOV bucketset associated
with a condition row. Note, however, that you cannot reorder range buckets.

When the Order Rules by Bucket checkbox is selected in a Decision Table and you
add a rule, by default the new rule is added as the first rule column; the other rule
columns move as required to keep the bucket values in their defined order. When the
Order Rules by Bucket checkbox is not enabled and you add a rule, the new rule is
added as the last rule column. If you now select the Order Rules by Bucket checkbox,
the newly added rule shifts to the first column.

12.8.5 Deleting Rules in a Decision Table

You can delete one or multiple rules in a Decision Table.

To delete rules in a Decision Table:
1. Select the rules column that you want to delete.

2. Click the Delete icon.

To delete multiple rules in a Decision Table:
1. Select a rule column that you want to delete.

12-50 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime

2. DPress the Ctrl key, and by keeping the key pressed, select the other rule columns as
shown in Figure 12-73.

Figure 12-73 Selecting Multiple Rules

>

¥ | ApprovalMatriz

T db|~v AddTest

o | - S| 8 6 R F m Local List of Ranges 7 Double dick to edit cells

- [¥ [z
Conditions) ;I
CustomerCrder, vipStatus PLATINUIM GOLD; SILYER
CustomerOrder, creditScore | = Loy Medium

CurrentDate. date EBefare Proma; After Pramo

Conflict Resolution | 03 Overtide

Actions

miodify Result
discount :double 10 Ck u] 5
skakus:SkatusTepe SkakusType APPROVED StatusTepe, MAMUAL SkatusType, MARMLUIAL
modify] (]] B
4| | LI_

3. Click Delete.

12.8.6 Defining Tests in a Decision Table

In Oracle SOA Composer, you can define tests in a Decision Table by adding
conditions to facts. For more information about defining tests and working with rule
conditions, see Section 4.3, "Working with Rules".

Note: To add more complex conditions to facts, see Section 12.8.11,
"Working with Advanced Mode Options in a Decision Table."

To add tests to a Decision Table:

1. From Oracle SOA Composet, select a ruleset from the Rulesets navigation tab and
select the Decision Table where you want to add a test.

2. Click the Show Advanced Settings icon (double downward pointing arrows) next
to the Decision Table name. If Advanced Mode is selected, deselect the checkbox.

Using Oracle SOA Composer with Oracle Business Rules 12-51

Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime

Figure 12-74 Advanced Settings Area Expanded in a Decision Table

B& Open -~ | I@ Save & Commit .. g5 Revert.. o

+ Validate

0 Info

[Z2 approvalRules.rules

¥ ApprovalMatrizRules

view | ApprovalMatriz = | “Fl' b4
2 | Approvaliatrix

Descripkion | petermine approvals and discounts using decision table rules

Effective Date | Always = |

Priority | Mediom = | ¥ Rule Active [~ Advanced Mode [eeMode ¥ Allow Gaps Conflict Policy | Manual

Before Promo; After Promo Promo Period

[dk|v AddTest
Iiil| e 2N :RiN" g g Local List of Ranges 7 Double dick to edit cells
Rl [rz [r3 [ra
Conditions CustomerOrder, vipStatus PLATIMUM GOLD; SILVER
CustomerOrder.creditScore Low Medium Medium; High
CurrentDate. date

Conflict Resolution

03 Override

RS

3. Just above the Decision Table toolbar, click the Add Test downward pointing

arrow.

Figure 12-75:

= simple test
= variable

= nested test

= notnested test

Figure 12-75 Adding Tests

¥

¥ | ApprovalMatrix

[db|~ AddTest

sinI%e test
variable

G
not(...)

e
£ | - S| B W R g g Local List of Ranges Va Double dlick to edit cells

R1

Conditas CustomerOrder. vipstatus

Conflict Resolution

m

12-52 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Select any of the following options according to your requirement as shown in

Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime

5. Use the field controls or Left Value and Right Value icons, and the operator list to
create the condition expression.

Figure 12-76 Simple Test Added to a Decision Table

¥ | ApprovalMatrix

Selected Tests (g (kg Ul =| W=

] Q [= T

4 il b

_a
+ | - / &@ 'ﬁ' Eg B E m B3 Local List of Ranges / Double dick to edit cells
R1 |
Condition= CustomerOrder. vipstatus - *
?
, £
Conflict Resolution
|

Note: If a Decision Table already contains test conditions, you can
add new test conditions by clicking the downward pointing arrow at
the end of an existing condition and selecting the required test form

type.

12.8.7 Splitting and Compacting a Decision Table

You can modify the contents of a Decision Table to create a table that includes a
complete set of rules for all cases, or a table that provides the least number of rules for
the cases. The split and compact operations enables you to manipulate the contents in
a Decision Table.

The split table operation creates a rule for every combination of buckets across the
conditions. For example, in a Decision Table with 2 boolean conditions, 2 x 2 = 4 rules
are created. In a Decision Table with 20 boolean conditions, 2**20 ~ 1 million rules are
created. So, you only use split table when the number of rules created is small enough
that filling in the action cells is feasible.

Using Oracle SOA Composer, split can be applied to an entire Decision Table.

However, you cannot perform split operation on an individual condition row or cell.

To split a Decision Table:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and
select the Decision Table that you want to split.

2. Click the Split Table icon as shown in Figure 12-77.

Using Oracle SOA Composer with Oracle Business Rules 12-53

Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime

Figure 12-77 Splitting a Decision Table
¥ | ApprovalMatrix

B k|~ AddTest

Y
‘+ | ~ / X ﬁ' @ B @ @ Local List of Ranges / Double dick to edit cells
g
R1 |

CustomerCrder, vipstatus - i

Conditions

m

Conflict Resolution

Using Oracle SOA Composer, you can compact a Decision Table by merging
conditions of rules with identical actions. So, compacting a table enables you to
remove conditions from a Decision Table. However, using Oracle SOA Composer, you
cannot merge two or more condition cells.

To compact a Decision Table:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and
select the Decision Table that you want to compact.

2. Select the Compact Table icon as shown in Figure 12-78.
Figure 12-78 Compacting a Decision Table

¥ | ApprovalMatrix

B dk|~ AddTest

|
|+| - / % N EE B g g Local List of Ranges / Double dick to edit cells
R1 |

Conditions

»

CustomerOrder. vipstatus

m

Conflict Resolution

For more information on splitting and compacting Decision Tables, see Section 5.3,
"Performing Operations on Decision Tables."

12.8.8 Checking for Missing Rules in a Decision Table

In a Decision Table, a "missing" rule is termed as a "gap." A gap in a Decision Table

occurs when a rule does not cover some combinations of buckets, one from each
condition.

12-54 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime

Using Oracle SOA Composer, you can check for missing rules in Decision Tables.

To check for missing rules:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and

select the Decision Table in which you want to check for missing rules.

2. Click the Gap Analysis icon on the Decision Table menu as shown in Figure 12-79.

Figure 12-79 Checking for Missing Rules in a Decision Table

¥ | ApprovalMatriz

[db|~ AddTest

+ | - / % m— E'g' m_g_g Local List of Ranges / Double dick to edit cells
Rl

- [R2 [R3 |
Conditions Gap Analysis o
PLATINUM GOLD; SILYER

Lo MMedium

CustomerOrder, creditScore

CurrentDate, date Before Promo; After Promo

Confflict Resolution | 03 COverride

Actions
miodify Result
discount :double 10 Q@ u} B
skatus:StatusType StaktusType, APFROVED StatusType. MAMUAL StatusType. MAaMUAL

miodify O O O -
4| |

The Gap Analysis window is displayed as shown in Figure 12-80. You can select
the rules that need to be added to the Decision Table.

Figure 12-80 The Gap Analysis Window

Gap Analysis

There are 2 missing rule(s) in the decdision table. Please select the rules to add by dicking the checkboxes in the table header
columns.

CustomerCrder. vipStatus
CustomerOrder, creditScore Medium
CurrentDate.date - Before Promo, Pro...

ﬂ Cancel

For more information about checking for missing rules, see Section 5.3.5, "How to
Perform Decision Table Gap Checking."

Using Oracle SOA Composer with Oracle Business Rules 12-55

Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime

12.8.9 Performing Conflict Resolution in Decision Tables

Rules in a Decision Table can conflict when they overlap and have different actions.
Two rules overlap when at least one of their condition cells has a bucket in common.
However, overlap without conflict is common and harmless. For more information

about conflicts in Decision Tables, see Section 5.3.1.4, "Understanding Decision Table
Conflict Analysis."

Using Oracle SOA Composer, you can find and resolve conflicts in a Decision Table.

To perform conflict resolution in a Decision Table:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and
select the Decision Table on which you want to perform the Conflict Resolution.

2. Ensure that the Show Conflicts icon is selected on the Decision Table toolbar.

3. Click the Show Advanced Settings icon (double downward pointing arrows) next
to the Decision Table name.

4. Ensure that Conflict Policy is set to Manual in the Advanced Settings area as

shown in Figure 12-81. This is the default conflict policy.

Figure 12-81 Setting the Conflict Policy

| Approvaliatriz Double click o edit cells

Description | peterming approvals and discounts using decision table rules

Effective Date | Always = |

Priarity | Medium ;I ¥ active ™ Advanced Mode

Conflict Policy - ¥ allow Gaps [Tree Maode

Auko overtide
4| v Add E Ignore

-7k sun/ @R VpstatusType =] /2

Rl [rz 3
Conditions -
PLATIMNUIM GOLD; SILYER s
CustomerOrder creditScore | - Lo Medium b

CurrentDate. date

Eefore Promo; After Promo

1| | »

Note: For more information on conflict policies, see Section 5.3.1.4,
"Understanding Decision Table Conflict Analysis."

5. Select the Conflict row under Conflict Resolution and then click the rule that has
a conflict to display the Conflict Resolution window as shown in Figure 12-82.

12-56 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime

Figure 12-82 The Conflict Resolution Window

Conflict Resolution <]

Below are the rules that conflick with rule R1 and the conflict resolution methods
to resolve possible conflict occurrances, To change the resolution method, please
click the Resalution calumn and select the method vou wauld like to use ko resalve

the conflict.,

Rule: R1

Conflicting Rule |Resoluti0n

RS Conflict v

M Caniel

6. In the Conflict Resolution window, for each conflicting rule, in the Resolution
field select a resolution from the list and click OK as shown in Figure 12-83.

Figure 12-83 Options for Conflict Resolution

Conflict Resolution <]

Below are the rules that conflick with rule R1 and the conflict resolution methods
to resolve possible conflict occurrances, To change the resolution method, please
click the Resalution calumn and select the method vou wauld like to use ko resalve

the conflict.,

Rule: R1

Conflicting Rule |Resoluti0n

RS Conflict v

MoConflick
Override
OrverriddenBy
RunBefore
Runafter

M Caniel

For more information about the conflict resolution options in Decision Tables, see
Section 5.3.1.4, "Understanding Decision Table Conflict Analysis."

12.8.10 Switching From Rows to Columns

In Oracle SOA Composer, you can turn the rows in a Decision Table to columns by
clicking the Switch Rows to Columns icon on the Decision Table toolbar. This enables

Using Oracle SOA Composer with Oracle Business Rules 12-57

Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime

the rules to be displayed as rows, and conditions, actions, and conflicts to be displayed

as the columns.

Switching rows to columns provides ease of navigation when a Decision Table has
many rules because you can see all the rules together and you do not need to "page the

columns" for viewing the rules.

Figure 12-84 displays a Decision Table before the switch operation.

Figure 12-84 A Sample Decision Table

® | ApprovalMatrix

[dk|~ AddTest

4' - / % -ﬁ' Ea. R g @ M VipstatusType ;I / Double click to edit cells
[rz EE |
Conditions Switch Rows to Columns ;I
GOLD; SILVER
CustomerOrder, creditScore | - Lo Medium
CurrentDate, dake Eefore Promo; After Promo
Conflict Resolution | 03 Overtide
Actions
modify Fesult
discount :double 10 Q [u} B
skakus:SkaktusType SkaktusType APPROYED SkatusTyepe, MAMUAL SkatusTyepe, MAMUAL
miodify O O O -
4| | 3|

Figure 12-85 displays the sample Decision Table after switching the rows to columns.

Figure 12-85 Switching Rows to Columns

¥ | ApprovalMatriz

& db|~ AddTest

4" /% H EE & gg Double didk to edit cells

Local List of Ranges /

| |

Conditions Conflict Resolution
CustomerOrder, vipStatus | CuskomerCrder.creditScore | CurrentDate,date 03 Owverride modify Result
|RL | PLATINUM
Rz | GOLD; SILYER Low
|3 | TMedium Before Promo; After Promo
| R4 | Medium; High Promo Period RS
RS | High
|R& | PLUTONIUM; rnul

12.8.11 Working with Advanced Mode Options in a Decision Table

In Oracle SOA Composer, you can use advanced mode rules in a Decision Table just

like you can work with advanced mode rules in a ruleset. The Advanced Mode rules
options enable you to create, modify, and delete patterns, as well as add, modify, and
delete conditions and actions within a pattern. For more information about advanced

mode rules, see Section 4.7, "Working with Advanced Mode Rules".

12-58 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime

Note: To add a simple test using the <insert test> link above the
Decision Table, see Section 12.8.6, "Defining Tests in a Decision Table."

To show and use advanced mode options:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and
select the Decision Table on which you want to add more complex rules.

2. Click the Show Advanced Settings icon (double downward pointing arrows) next
to the Decision Table name.

3. Select Advanced Mode.

Figure 12-86 Advanced Mode Enabled in a Decision Table

| ApprovalMatrix

Description

Effective Date | Always |Z|

Pririty | Medium |Z| [Active %ﬂdvanced Mode
Confict Palicy | Manual E| [¥] Allow Gaps [T]Tree Made
isa E ':h {33 # N 0 % :J

B |+ Addtest

and

isa IZ| {h-{i,sdi'x{? gg:‘J
B |v Addtest

The advanced mode options in a Decision Table are similar to the advanced mode
options in a ruleset. For more information, see Section 12.6.11.1, "Working with
Advanced Mode Options."

12.8.12 Deleting a Decision Table at Runtime

In Oracle SOA Composer, you can delete Decision Tables in a ruleset. For more
information on working with Decision Tables, see Section 5.1, "Introduction to
Working with Decision Tables."

To delete a decision table in a ruleset:
1. In edit mode, select a ruleset of interest.

2. Inthe ruleset area, in the View field from the list, select the Decision Table you
want to delete.

3. Click Delete Decision Table as shown in Figure 12-87.

Using Oracle SOA Composer with Oracle Business Rules 12-59

Localizing Names of Resources in Oracle Business Rules

Figure 12-87 Select the Delete Decision Table Icon

¥ ApprovalMatrizRules

¥ | Approvaliatri:

T db|~ AddTest

Wiew | ApprovalMatrix = | EF|V ok

Delete Decision Table

EF| - X | B u R E F !l Local List of Ranges Va Double dick to edit cells
Rl [rz [r3
Conditions . -
CustomerOrder. vipStakus PLATIMUM GOLD; SILVER =
CustomerOrder,creditScore | - Low Medium
CurrentDate. date - - EBefore Promo; After Promao

Conflict Resolution | 03 Override

Actions
modify Result
discount:double 10 a 5
skabus:SkatusType StatusType, APPRIOVED StatusType MANLIAL StatusType, MANLAL il
4 3 I

12.8.13 What You Need to Know About Rule Test Variables

Oracle SOA Composer enables you to define test variables that provide a way to
shorten lengthy expressions that occur in rule and decision table conditions and
actions. The variable and its value can be represented as an inline business term
definition. The test variables are also called inline aliases.

So, instead of writing:

[| some.very.long, expression \% more than ;I 4 \% and -

[T | same.very long, expression '\% less than ;I 10 \% -

You can write:

T | foo = | some.very.ong.expression % and -
I | foo \:k mare than ;I 4 \% and -
™ | foo '\k less than ;I 10 \% -

In subsequent test conditions, you can use foo as part of your expressions. The
expression can be anything from a simple to a complex expression.

To define a variable, in the IF section of a rule, you need to click the down arrow
adjacent to Add Test, and select variable from the list.

Apart from variables, you can also define other test form types, such as simple test,
nested tests ((. . .)), and not nested tests (not (...)).

12.9 Localizing Names of Resources in Oracle Business Rules

Oracle BPM enables you localize the names of some rules components. Providing a
translated version of these aliases enables users to view these aliases based on the local
setting of their browser when using the following applications:

= Oracle SOA Composer
= Oracle Business Process Composer

» Oracle Process Workspace

12-60 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Localizing Names of Resources in Oracle Business Rules

Note: Locale dictionaries are stored as resource bundles. You must
create the resource bundle using Oracle JDeveloper. They must be
deployed as part of the SOA composite application.

Resource bundles cannot be created using Oracle SOA Composer.
However, you can use Oracle SOA Composer to edit the localized
strings within a resource bundle.

Oracle SOA Composer enables you to localize the aliases of the following rules
components.

= Buckets

= Bucketsets

s Decision Functions

s Decision Function Facts
= Globals

= Links

= Rulesets

= Rules

s Patterns

12.9.1 How to Localize the Alias of a Oracle Business Rules Component

Using Oracle SOA Composer, in the edit mode, you can add translated versions of the
aliases and their descriptions used to identify rules components.

To localize the alias of a rules component:

1. In Oracle SOA Composer, select the Translations tab. The Translations tab
displays a table with multiple columns. By default, there are two columns one
displaying the untranslated identifier of the rules component. The other displays
the English locale as shown in Figure 12-88.

Figure 12-88 The Translations Tab in Oracle SOA Composer

x) Globals
L @ Translations
{7 Bucketsets

&P Links Untransiated v English (United States)
{ Decision Functions ApprovalRules
@, Transiations LicenseTermCategaryType
PRICE_HOLD_OPTIONS LicenseTermCategoryType. PRIC
Rulesets NON_STANDARD_PRICING_AN LicenseTermCategoryType.NON
@ Ruleser_t LICENSE_MANAGEMENT SERV LicenseTermCategoryType.LICE

NON_STANDARD_LICENSING (LicenseTermCategoryType. NON
null null

LicenseTermCategoryType

PRICE_HOLD_OPTIONS LicenseTermCategoryType. PRIC
NON_STANDARD_PRICING_AN LicenseTermCategoryType. NON
LICENSE_MANAGEMENT_SERV LicenseTermCategoryType.LICE
NON_STANDARD_LICENSING (LicenseTermCategoryType. NON
null null

LicenseTermTypeType

FUTURE_PROGRAM_PRICE_HO LicenseTermTypeType. FUTURE,

AT BBAMIETF | icancaTarmTinaTune FLITLIOE

If you have defined other locales in your application, these also appear as columns
in this table. See Section 2.6, "Localizing Oracle Business Rule Resources." for more
information.

Using Oracle SOA Composer with Oracle Business Rules 12-61

Localizing Names of Resources in Oracle Business Rules

2. In the column of the locale you want to edit, double-click in cell corresponding to
the alias you want to translate.

3. Enter the localized text for the alias.

4. Repeat steps 2 and 3 to localize all the aliases required for the locale.

Note: Offline editing of locale files is not supported. When a locale is
added, the xml file generated does not contain all the keys by default.
They are added when a value is added.

You can also localize from the editor. To localize from the editor click the Translations
icon as shown in Figure 12-89

Figure 12-89 Translations Icon for Localizing from Editor

#| ¥ | Premium Customers %:J ‘* R G “ L_I.j
~| ¥ | Good Customers @“* & G G 3% LT:|
P
Selected Tests O (ke R, E LU
[| LoanOffer. APR. Qg, same or more than E| 6.0 Qg, and -
[| LoanOffer. APR. Ck less than E| 9.0 Ck -
THEN
|- X # E &
[[] modify = |LoanOffer x| (providerName: 'GOOD BANK™) E7
»| ¥ |NotSo Good Customers % ‘* & G “ LT:|

Translations pop up appears as shown in Figure 12-90. Enter the Alias for the rule
components and click OK.

12-62 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Committing Changes for an Oracle Business Rules Dictionary at Runtime

Figure 12-90 Translations Editor

Translations "

Untranslated - AsyncDynamicRouting
Locale |.ﬁ.lias |

+ English (United States) AsyncDynamicRouting

OK Cancel

12.10 Committing Changes for an Oracle Business Rules Dictionary at

Runtime

After you verify dictionary modifications, you can commit those changes to the MDS
repository.

To commit changes to an Oracle Business Rules dictionary:

1.
2.

Click the Commit menu item.

In the Confirm dialog, click No if you do not want to make the changes in the
MDS repository.

In the Confirm dialog, click Yes if you do want to make the changes in the MDS
repository.

Remember to update the runtime changes into Rule Editor ADF following the
tasks described in Section 4.12, "Importing Runtime Rules Changes From
Repository Into JDeveloper"

When you open the dictionary after saving the edit session and deploying the
composites, SOA composer opens the last saved edit session. To open the new
dictionary click Revert, Clear all session edits and save changes button in the top
menu.

Note: A dictionary with validation errors can be saved, but it can be
committed only after correcting the validation issues.

12.10.1 What You Need to Know About Editing With Multiple Users at Runtime

When multiple users are editing the same dictionary, Oracle SOA Composer shows a
message that the dictionary is being edited by another user and asks for a
confirmation. When multiple users work on a single dictionary, only the last commit is
persisted.

Using Oracle SOA Composer with Oracle Business Rules 12-63

Synchronizing Rules Dictionary in Oracle JDeveloper With Runtime Dictionary Updates

12.11 Synchronizing Rules Dictionary in Oracle JDeveloper With Runtime
Dictionary Updates

Oracle SOA Composer enables you to update rules dictionaries at runtime. However,
the modifications made to the dictionaries through Oracle SOA Composer are not
automatically reflected in Oracle JDeveloper. To synchronize the dictionary updates
made in Oracle SOA Composer with the dictionaries available in Oracle JDeveloper,
you must select the Export option in Oracle Enterprise Manager Fusion Middleware
Control Console. This utility allows you to export the SOA composite application
along with the dictionary.

To select the Export option in Fusion Middleware Control Console:

1. In Fusion Middleware Control Console, select the composite that contains the

dictionary to be exported. Figure 12-91 displays the selected composite in Fusion
Middleware Control Console.

Figure 12-91 Opening the SOA Composite

1} FODOrderProcessingComposite [11.0]& Loggediin a5 weblogic
o} 504 Composte » Page Refreshed Jan 27, 2080 116447 A psT 03
Rurming Instances 0 | Total 7| Active | Retire ... Shut Down. . Test » Settings... 7 % @ » !
Dashboard | Instances | Faults and Rejected Messages | UnitTests | Polces
@]
ElRecent Instances
e [2.0] z S - Total 7 .
o rvversation [D 2l Start Tme
FODOrderProce: posite {11.0]
“?f“ - . © . ‘ P { 1 i umeuuid:0a3242f,.. € Taulted Jan 27, 2010 1:0407 AM
o) sooMassigrPayieadProf [2.0] 8 -

Jan 27, 2010 1:03:35 AM
Jan 2 Il

B Shaw Al

HRecent Faults and Rejected Messages

ElComponent Metrics

Hame Component Type Totsl Instances Running Instance: faledkan
MNan LTy Tota Insta T st . |
Recovershie
Medator g o o =
10 0 o i
0 1 _)ﬁ
| »
ElServicas and References 1
4] | ¥

2. Click SOA Composite drop-down list on the right panel and select Export as
shown in Figure 12-92.

12-64 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Validating an Oracle Business Rules Dictionary at Runtime

Figure 12-92 Selecting the Export Utility

G~ ¢ FODOrderProcessingComposite [11.0] @ Lopged in a5 weblogic
= [stocyi4_base_domain o 504 Composite + Page Risfrashed Jan 27, 2000 1:16:47 &M P57 £}
= {3 Apoication Deployments Hame]
= E3 soa | . Shut Down,., | | Test = settirgs... + | (@b [| »|
= § oatinffe fmmn_perverd) || Monitoring 3 Messages | Uit Tasts | Policies
% (g default |
= (@) restashish | ||
ol Aprosect1 [1.0] W 30 Depknyment ’
off AProjecti [2.0] | Ewpert. -
wff File_MEDComposte [2.0] i R;J e :la ol 7 P
| - n e
FODOrderProcessingComposite [11.0] | 251 Service »
ﬁ SDOMAssigPayloacPro] [2.0] — hici023242f... € Fauted Jan 27, 2010 1:04:07 AM
SOET A apua 15 R U T Lid:280311F... o Completed 3an 27, 2010 1103135 AM
wf§ wansation [1.0] | Policias id: 747041... € Fauted Jan 27, 2010 1:03:04 AM
5 (@] umeshiest | hicthz3f01,.. € Fauted Jan 27, 2010 1:02: 20 AM
H B Weblogic " " d 110 17555
f: 3 weblogic Domain | SOA Infrastructure juid:9a3260... @ Comoleted Jan 27, 2010 12:55:33 AM
& Metadata Repositories
BE [3 User Messaging Service
504 Infrastructure Common Propertiss Is
Service Fleference Proper tiss »
Gereral Infarmation Totsl Instancas Rurring Instances tizdi
B Recoversbie
< orderFuifilment Mediator Bl a 0o -
{HiDscouniDictionar Decision Servics 10 [} o oo
4 FODOrderProces: BPEL 10 1 [
4 | b
Elservices and References |
-

Ll | I¥]

3. Select Option 1: Export with all post-deploy changes from the Export Composite
page and click Export as shown in Figure 12-93.

Figure 12-93 Exporting All Postdeployment Changes

g~ 4 FODOrderProcessingComposite [11.0]@ Loggedin 25 weblogic
El { sthry 14_base_domain [SOA Composite « Page Refreshed lan 27, 2010 1:58:55 A psT £}
3 Appication Deploymants
=13 soa tport Composite @ Expart Cancel 4]
5 38 sosinfa (sos_server))
@ [@] default -
_ tis page provides different optians for exporting a snapshot of a running composite, This is useful, for example, when you
8 @ testashish ant o replicate the same deployment on 2 dfferent deployment target. This aperation wil have na effect on your currently
of§ aprojectt [1.0] Fring composte,
Dﬂ AProject1 [2.0]
ofd Fie_MEDCOmposite [2.0] You have chosen to export the following composite revision.
ofj FODOrderProcessingComposite [11.0] Compasite Nams FODOrdeiProcassnglanmposite
off} soomassignPayioaderod [2.0] Composite Revison 11.0
off transiation [1.0] Current Deployment Target fstbcy14_base_domain/base_domain/soa_serverl
12} @ umeshtest
Ea w jic D "
?‘ :l vﬂu < Damein I # option 1: Export with all post-deploy changes
= ‘: eracsta I This option wil genarate & composite archive file contsining the original, design-tme definitions of the composite; a5 wel as
H (3 User Messaging Service all post-deployment information ksted in Option 2 and 3.
" Option 2: Export with runtime/metadata changes only
The compasite archive file will ndude the oniginal composite plus such post-deployment changes as task definitions, rule P

changes, eic..

" Dption 3: Export with property changes only
The composite archive fie will ndude the oniginal compasite plus any post-deployment property changes, such as binding
properties or policy settings.

" option 4: Export with no post-deploy changes

This option will generate & composite archive file containing anly the pre-deployment, design-tme definitions of the

composite. Any propesty sattings you may have made on a running composite, or any runtme metadata, wil be ignored in |:|
L4

| I T

12.12 Validating an Oracle Business Rules Dictionary at Runtime

In Oracle SOA Composer, in the Edit mode, you can validate a dictionary for errors.
The dictionary level validation errors are displayed in a Validation Panel in the bottom
of Oracle SOA Composer window as shown in Figure 12-94.

Using Oracle SOA Composer with Oracle Business Rules 12-65

Validating an Oracle Business Rules Dictionary at Runtime

Figure 12-94 The Validation Panel

ORACLE S0A CC‘mpC‘SEr § Bookmarkable Link Logout €3

Logged in as weblogic

Commit.. p5Revert.. < | - Validate @ Info

3 LoanAdvisorRules.rules

Global
FEs {f Bucketsets

{7 Bucketsets

Q\y Dedision Functions |Name |Datatype Form Desaription
%Translaﬁons \0:;7’ Rating int Range
§7 Risk Siring LoV
i £
Rulesets o, ¢ . BucketSet 1 int LoV

&P My Active Ruleset
&P My Not Active Ruleset rJ
4

s T

—x

Business Rule Validation - Log
|Message | Dictionary Object o
A% RUL-05832: The bucket name "null” s invalid. LoanAdvisorRulesData Model [Bucket Set 1/Bucket{Bucket 1) |E|
A RUL-05711: The expression cannot be blank. LoanAdvisorRules/Data Model [Budket Set 1/Bucket 1fexpression -

4| 1 +

Note: When you open rules in Oracle SOA Composer, the Validation
panel remains in the collapsed state. If you click the Validate button
on the Oracle SOA Composer toolbar, the Validation Panel is
expanded, and it remains in the expanded state during subsequent
user interactions.

However, if you manually collapse the Validation Panel or drag the
panel separator, the working of the automatic collapse and expand
cannot be guaranteed.

12.12.1 Understanding the Validation Panel

The Validation Panel lists all the dictionary-level validation errors. When you
double-click a row in the Validation Panel, Oracle SOA Composer leads you to the
erroneous component. For example, if a Bucket or a Bucketset error is double-clicked
in the Validation Panel, Oracle SOA Composer switches to the Bucketsets tab and
displays the invalid icon next to the Bucketset name. You can move the mouse cursor
over the invalid icon to see the list of error messages for that Bucketset as shown in
Figure 12-95.

12-66 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Validating an Oracle Business Rules Dictionary at Runtime

Figure 12-95 Bucketset Validation Error Messages

ORACLE" SOA Composer &P Bookmarkable Link Logout O
Logged in as weblogic

.+ Vaidate @ Info

Commit.. g5 Revert.. =

LoanAdvisorRules.rules

(x) Globals 2 TS

{7 Bucketsets

s ®-7/R % BB
4 Dedsion Functions |Mame |Datatype Form Description
@) Translations \':\5 Rating int Range
& Risk String LoV
Rulesets oy 3¢ %Bud@tSetl int Lov
-05832: The bucket name "null™is invalid.

@ My Active Rulesst RUL-05711: The expression cannot be blank.

& My Not Active Ruleset -fJ
4

oW
=
Business Rule Validation - Log
|Message |D\ctionary Object -
.B RUL-05832: The bucket name "null” is invalid. LoanAdvisorRules/Data Madel/Bucket Set 1/Bucket{Bucket 1) |;
.ﬁ RUL-05711: The expression cannot be blank. LoanAdvisorRules Data ModelBucket Set 1/Bucket 1/expression
vl

'l m |

When the Bucketset Editor window is displayed, the invalid fields are highlighted in
the editor, and a pop-up containing the error messages are displayed, as shown in
Figure 12-96.

Figure 12-96 Highlighted Error Entries in Bucketset Editor

Bucketset Editor

Bucket Set 1

& Warning B
Li
Messages for this page are listed below.

Value (&) RUL-05833: The bucket value contains invalid characters “Bucket 17,
& RUL-05720: data type mismatch for test "==": int == String

Value é RUL-05833: The bucket value contains invalid characters "™Bucket 2™,

value B\ RUL-05720: data type mismatch for test "==" int == String
Bucket 1 ok
Bucket 2 i

0K | Cancel
When you double-click an error pertaining to a Decision Table, the UI switches to the

Decision Table Ul and displays the error messages when you move the mouse cursor
on the invalid icon as shown in Figure 12-97.

Using Oracle SOA Composer with Oracle Business Rules 12-67

Validating an Oracle Business Rules Dictionary at Runtime

Figure 12-97 Accessing the Erroneous Component

¥ | Approvalldatrix Dauble click to edit cells

db|v AddTest

+- /7R R @B

CurrentDate, date - -

SkatusType. MANUAL % B ?

RUL-05831: Select one or more values For this condition,
RUL-05831: Select one or more walues For this condition.
RUL-05531: Seleck one or more values For this condition,

modify Result RUL-05831: Select one o more values for this condition.
RUL-05531: Seleck one or more values For this condition,
RUL-05831: Select one or more values For this condition.

Conflict Resolution | 03 Crverride

Actions

3usiness Rule ¥alidation - Log

|Message

R1 Rz [r3
Conditions . -
CustomerOrder, vipStatus PLATINUM GOLD; SILYVER =
CustomerOrdercreditcore | - Law Mediurn

-05710: The value chosen, "StatusTepe", is not a valid chaice for "Tepe" of "Bucket Set",

Before Promo; After Promo

T

|Dicti0nary CObject &

RUL-05710: The walue chosen, "StatusTepe", is not a valid choice for "Trpe" of "Bucket Set".
RUL-05831: Select one or more walues for this condition,
RUL-05531: Select one or more walues for this condition.
RUL-05831: Select one or more walues for this condition,
RUL-05531: Select one or more walues for this condition.
RUL-05831: Select one or more walues for this condition,

ApprovalRules!ApprovalMatrizRules/ApprovalMatris
ApprovalRules! approvalMatrizRules/Approvaltatris
ApprovalRules!approvalMatrizRules/ApprovalMatris
ApprovalRules!approvalMatrizRules)approvalMatri
ApprovalRules!approvalMatrizRules/ApprovalMatris
ApprovalRuIes,l’P.pprovaIMatrixRuIes,l’P.pprovaIMatri);I

Similarly, in the Validation Panel, if you double-click an error pertaining to a rule in a
ruleset, the Ul switches to the ruleset to which the rule belongs and highlights the
erring fields of the rule. In addition, all the errors pertaining to the rule are displayed

in a pop-up as shown in Figure 12-98.

Figure 12-98 Rules Validation

v| ¥ | freathsPlatinum ap &% =
IF
Selected Tasts =l (kg
[T i | CustomerOrdervipStatus Ck is ;I WipStatusTepe. GOLD Ck ar -
- CustomerOrder, vipstatus Qg is ;I WipStatusType, SILYER Qg = 1and *
[T | Cuskomerceder.creditSeare QL [same or more than -] 750 Q, and =
Warning: RUL-05720: data type mismatch for test
*=": Ghring > int I=| 10000 Q and -
RUL-05720: data bype riisratch Far kst "="1 String = ink i 1.
o um =] (4000 Q o~y and ~
[T | CuskomerOrdsr.name Qg more than ;I 2000 Qg -
THEN
[=
=
Business Rule ¥alidation - Log
Message |Dictionary Object -

m RUL-05720: data byvpe mismatch Far best "=": String = int
'y RUL-05710; The value chosen, "StatusType", is not a valid choice For "Tvpe” of "Buckek Set",
RUL-05831: Select one or more values For this condition.
RUL-05831: Select one or more values For this condition,
RUL-05831: Select one or more values For this condition.
RUL-05831: Select one or more values For this condition,

EEEEE

ApprovalRules/SetupRules) TreatAsPlatinumCustarn
ApprovalRules) ApprovalMatrizRules! Approvyaliatri:
ApprovalRules)/ApprovalMatrixRules Approvaliatri
ApprovalRules) ApprovalMatrizRules Approvaliatri:
ApprovalRules)ApprovalMatrixRules Approvaliatri
P.pprovaIRuIes,l’P.pprovaIMatrixRuIes,l’P.pprovalMatri)LI

12-68 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Obtaining Composite and Dictionary Information at Runtime

12.12.2 Updating the Validation Panel

The Validation Panel does not get updated automatically to display any new
validation errors that may be generated due to any modification to the dictionary
components.

For example, when a new rule is added with some errors, the Validation Panel is not
updated automatically. You need to click the Validate button on the Oracle SOA
Composer menu to update the Validation Panel with the new error entry, as shown in
Figure 12-99.

Figure 12-99 The Validate Button

ORACLE" SOA Composer & Bockmarkable Link Logout O

Logged in as weblogic

Bs Open — | IR Save # Commit.. g5 Revert. =
[E2 approvalRules.rules
¥ SetupRules View |IF/THEMRules »| B | - 1-2af2 =
~| ¥ | TreatasPlatinum e % 3 =
IF
Selected Tests =1 (O (ke
[T | CustomerCrder vipStatus Qg is ;I YipStatusType, SILYER Qg = 3and -
[T | CustomerOrder creditScare Q, [same or mare than =l 750 Q, and -
[T (| CustomerCrder, annualSpending Qg same of mare than ;I 10000 Qg and -
[CustamerCrder. botaldmount Ck is ;I 4000 Ck -) and -
[T | Customerrdername Qg more than | |zo00 Qg < -
THEN
[=
L}
Business Rule ¥alidation - Log
Message |Dicti0nary Cbject &
mRUL-DS?ZD: data kype mismatch For test "="1 String = int ApprovalRules)SetupRules{ TreatAsPlatinumCuskonm
A\ RUL-05710: The value chosen, "StatusTepe", is not a valid choice For "Trpe" of "Bucket Set”, ApprovalRules/ApprovalMatrixRules)ApprovalMatri
A RUL-05331: Seleck one or more values for this condition, ApprovalRules)ApprovalMatrizRules! Approvaliatri:
A\ RUL-05831: Select one or more values For this condition, ApprovalRules/ApprovalMatrixRules)ApprovalMatris
A RUL-05331: Seleck one or more values for this condition, ApprovalRules)ApprovalMatrizRules! Approvaliatri:
A\ RUL-05831: Select one or more values For this condition, ApprovaIRuIes,l'ApprovaIMatrixRuIes,l’ApprovalMatri)LI

12.13 Obtaining Composite and Dictionary Information at Runtime

When a dictionary is open, you can obtain dictionary and composite details from the
Info dialog.

To obtain dictionary information:

1. With an open document, you can obtain the document type, composite details,
and document path by clicking Info. This displays the Oracle SOA Composer
open file information, as shown in Figure 12-100.

Using Oracle SOA Composer with Oracle Business Rules 12-69

Working with Tasks at Runtime

Figure 12-100 Using Info Dialog to Obtain the Document Path for an Open Dictionary

ORACLE SOA Composer

Commit ..

Type Composite

Composite ApprovalRuleDema_revl .0
Dietails

 aps

~| ¥ | TreatfsPlatinum

Selected Tests ;I

[(| CustomerOrder, vipStatus

[T | Customerorder. creditScore

[T (| CustomerOrder, annualSpending
r CustamerCrder, tokalamaount

[T | CustomerCrder.name

g5 Revert .. =

« Validate

O Info

I

Document fdeploved-compositesidefaultfapprovalRuleDemo_revl.0joracle/rules
Path forderapprovaliapprovalRules roles
r— g

Jofz ;I

T =

* XS

Qis

Q same of more than ;I 750

| | WipSkatusType, SILYER

Q, [same or more than | | 10000
Q, [is =] [4000

Ck more than

(ﬁBookmarkableLink Logouk o

Logged in as weblogic

= | [z000

12.14 Working with Tasks at Runtime

Using Oracle SOA Composer, you can view and edit tasks that may be or may not be
associated to Approval Management Extensions (AMX) rules. AMX enables you to
define complex task routing slips for human workflow by taking into account business
documents and associated rules to determine the approval hierarchy for a work item.
Additionally, AMX lets you define multi-stage approvals with associated list builders
based on supervisor or position hierarchies. At design time, you can define the
approval task in the Human Task Editor of Oracle JDeveloper, and associate the task
with a BPEL process. For more information about approval management and tasks, see
"Using Approval Management" in Oracle Fusion Middleware Modeling and
Implementation Guide for Oracle Business Process Management.

In Oracle SOA Composer, the Task Editor is embedded as a task flow so that you can
view and perform all the task metadata lifecycle operations.

12.14.1 How to View Task Metadata at Runtime

12-70

In Oracle SOA Composer, you can open a task or an AMX rules metadata with the
Open menu.

To open a task or an AMX rule using the Open menu:

1. In Oracle SOA Composer, from the Open menu, select Open Task as shown in
Figure 12-101. Oracle SOA Composer connects to the MDS and displays the Select
a Task to open dialog box. This dialog box lists the available composite
applications that contain tasks and AMX rules.

Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tasks at Runtime

Figure 12-101 Opening a Task

ORACLE' SOA composer (ﬁ Bookmarkable Link Logout o

Logged in as weblogic

[EZl open Rules
[open ovm
53 Open Task

1y Edits

i,

Note:

You can differentiate between traditional rules and AMX rules

depends on the naming convention.

For example, if a composite has the following artifacts:

s <AMX task name>.tsk

s <AMX rule name>Rules.rules

In this case, the Rules.rules file is an AMX rules file associated with an
AMX task, and so, is displayed as a part of an AMX task in the list of

Select a Task to open, and not as a part of an ordinary Oracle Business
Rules listing.

2.

In the Select a Task to open dialog box, to open a task or AMX rule, select an entry

in the table and click Open, or double-click an item as shown in Figure 12-102.

Figure 12-102 Selecting a Task to Open

Select a Task to open

B
Composite j &
Composite |Partiti0n |Task File
simplelinkedrulestask_rewvl.1 default SimpleLinkedrulesTask. task
Simpleapproval _revl.0 default SimpleApproyalTask. task,
simplelinkedrulestask_rewvi.0 default SimpleLinkedRiulesTask, bask
Cpen Cancel

Using Oracle SOA Composer with Oracle Business Rules 12-71

Working with Tasks at Runtime

If the composite that you have selected only has a task and no associated AMX
rule or ruleset, then the task window is displayed as shown in Figure 12-103.

Figure 12-103 Oracle SOA Composer with Only Task Displayed
ORACLE" SOA Composer &P Bockmarkable Lk Logout ©

Logged in as weblogic
B COpen — | L Edi B

&Z SimpleApprovalTask.task

[simpleApprovalTask : Event Driven Configuration

Task Aggregation Nane
0n Error Mokify

Allows all participants ko invite other participants
Allows participants to edit future participants
Allows initiator to add participants

Assignment and Routing Policy [Enable auta claim

Complete task when participant chooses
[Enable eatly completion of parallel subtasks
| Complete parent tasks of early completing subtasks

~|Expiration and Escalation Policy

Never Expire

~|Motification Settings

® =
Task Status Recipient | Nokification Header ‘
Assign Assignees
Complete Initiator /
Error Ownier /

[Make notifications secure {exclude details)
Make natification actionable
[Send task attachments with email notifications v

If the composite contains a task and an associated AMX rule or ruleset, then Oracle

SOA Composer displays both the task and the rule or ruleset in a tabbed window
as shown in Figure 12-104.

12-72 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tasks at Runtime

Figure 12-104 Oracle SOA Composer with Both Task and AMX Rule

ORACLE S0OA Composer & Bookmarkable Link — Logout o

Logged in as weblogic

B open / Edit 'v -] v 0 Info

a% SimpleLinkedRulesTask.task [E3) simpleLinkedRulesTaskRules.rules

[Data driven configuration Add variable

Configure list builder propetties via task data-driven rules

Seleck Ruleset | Stagel : ParticipantRules

ParticipantRules [1gnare this participant

View | IFJTHEM Rules » 1-1af 1w

W ¥ Rule_1

List Builder Supervisory
Response Type Required

Mumnber of levels 3

Skarting Participant HierarchyBuilder, getPrincipaliweblogic”, -1, ™, "

Top Participant HierarchyBuilder, getPrincipal{"weblogic", -1, ™,

Auto Action Enabled False

Auko Action null

12.14.2 How to Configure a Task or an AMX Rule Metadata at Runtime

Task Configuration enables business users and administrators to review the rules that
were configured automatically by the workflow designer. These predefined rules can
be changed for a specific customer based on the customer's applicable corporate
policies.

In Oracle SOA Composer, Task Configuration enables you to edit the event-driven
(only tasks) and data-driven rules (tasks with an associated AMX rules) associated
with an approval flow at runtime.

12.14.2.1 Configuring Event-Driven Settings

To configure event-driven settings:
1. Log on to Oracle SOA Composer and open the required task.

2. Click Edit on the Oracle SOA Composer menu bar to open the selected task for
editing as shown in Figure 12-105.

Using Oracle SOA Composer with Oracle Business Rules 12-73

Working with Tasks at Runtime

Figure 12-105 Opening a Task for Editing
ORACLE" 50A Composer

@Bookmarkableunk Logout o

Logged in as weblogic

B Open - | /7 Edi B

cﬁ simpleApprovalTask.task
[E] simpleapprovalTask : Event Driven Configuration A
Task Aggregation Mane
On Error Motify
Allows all participants to invite ather participants
Allowy participants ko edit Fukture participants

Allow initiator to add participants
Assignment and Routing Policy [Enable auta claim

O Complete kask when participant chooses

[Enable early completion of parallel subtasks
O Complete parent tasks of early completing subtasks
~|Expiration and Escalation Policy
Mever Expire
~|Notification Settings
®
Task Status Fecipient | Matification Header |
Assign Assignees 7 N
Complete Inikiator /
Errar Cianer
/ [make notifications secure (exclude details)
[Make natification actionable
[Send task attachments with email natifications
v

3. Make the relevant edits and click Save as shown in Figure 12-106.

12-74 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tasks at Runtime

Figure 12-106 Saving Task Configuration

ORACLE SOA Composer @ Bockmarkable Lk Logout O

Bs Cpen = FEM # Commit ..

Logged in as weblogic

cﬁ simpleApprovalTask.task

SimpleapprovalTask : Event Driven Configuration

Task Aggregation | Mone w

On Error Motify Q

Allaw all participants to invite ather participants
Allow participants ko edit Fukure parkicipants
Allow initiakor to add participants
Assignment and Fouting Policy [[JEnable auta claim
[] complete task when participant chooses b

Enable early completion of parallel subtasks

Complete parent tasks of early cormplating subtasks

~|Extpiration and Escalation Policy

Mewver Expire %

~|Notification Settings

®
Task Status Recipient | Matification Header |
Assign b Assignees b

Complete v Initiator v 7

Error b DNt b /

[IMake notifications secure (excude details)
Make notification actionable
[5end task attachments with email notifications

Mo reminders % Day 1} §| Hour a §| Mirutes 1] §| Befare Expiration

*|Task Access

You can configure the following options and settings:
s Task aggregation

= Error notification

= Assignment and routing policy

» Expiration and escalation policy

= Notification settings

» Task access settings

Setting Approval Aggregation Requirements
Task aggregation requirements can be any of the following:

= None
= Once per task

= Once per stage

Using Oracle SOA Composer with Oracle Business Rules 12-75

Working with Tasks at Runtime

Notifying Errors
You can specify the user and group names that need to be notified in case of an error in
the task. You need to click the On Error Notify search icon to display the Configure

Error Assignees dialog box where you can specify the user or group names as shown
in Figure 12-107.

Figure 12-107 Specifying Error Assignees

ORACLE S0A Composer y Bookmarkable Link — Logout o

Logged in as weblogic

B Cpen

ﬁh simpleApprovalTask.task
SimpleApprovalTask : Event Driven Configuration A
Task Aggregation Mone Configure Error Assignees @
On Error Mokify Q Users
|
all
Al Groups |
all Ck
Assignment and Routing Policy [Cen i
o -
oK | Cancel | |
Complete parent tasks of early completing subtasks
~|Expiration and Escalation Policy
Mever Expire v hl

Setting Assignment and Routing Policy

You can set the assignment and routing policy by using the options available in Oracle
SOA Composer. Figure 12-111 shows the available options for setting assignment and
routing policy.

Figure 12-108 Setting Assignment and Routing Policy

ORACLE S0A COmposer ﬁ Bockrnarkable Link Logout o

Logged in as weblogic

Bs Open

0 Irfo

ch simpleApprovalTask.task

SimpleApprovalTask : Event Driven Configuration A

Task Aggregation | Mone e

on Errar Matify G

Allow all participants to invite okher participants
Allow participants to edit Future participants
Allow initiator to add participanks
Assignment and Routing Policy [[JEnable auta claim
Complete task when participant chooses x|

[JEnable early completion of parallel subteéD APFROVE
[JREECT

Complete parent tasks of early comple

~|Expiration and Escalation Policy

Mewver Expire %

12-76 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tasks at Runtime

For more information about the assignment and routing options available in
event-driven configuration, see "Routing Policy Method" in Oracle Fusion Middleware
Developer’s Guide for Oracle SOA Suite.

Setting Expiration and Escalation Policy

You can set the expiration and escalation policy for the task by using the available
items in the Expiration and Escalation Policy list. The available list items are:

s Never Expire

= Expire After

» Escalate After

= Renew After

Figure 12-109 displays the list of options for setting the expiration and escalation
policy.

Figure 12-109 Setting Expiration and Escalation Policy

ORACLE 50A Composer @ Bookmarkable Link Logout 'O

Logged in a5 weblogic

B& Open = | IR Save & Commit.. g§Revert. o |«

& SimpleApprovalTask.task

Allowy all participants to invite okher participants
Allow participants ko edit Fubure participants
Allowy initiator to add participants

Assignment and Fouting Policy [[JEnable auta claim
Complete kask when participant chooses |

[JEnable early completion of parallel subkasks
Complete parent tasks of early completing subtasks

~ |Extpiration and Escalation Policy
Mewver Expire |

Expire After
Escalate After
Renew After

K

Task Stakus |Recipient | Matification Header | v

|

Configuring Notification Settings

You can configure notification settings for a task by using the options available in the
Notification Settings section of Oracle SOA Composer.

Figure 12-110 displays the different options available to configure notification settings
for a task.

Using Oracle SOA Composer with Oracle Business Rules 12-77

Working with Tasks at Runtime

Figure 12-110 Specifying Notification Settings

ORACLE" SOA Composer @ Bockmarkable Lk Logout O

Logged in as weblogic

& simpleApprovalTask.task

~|Motification Settings

®
Task Status Recipient | Matification Header |

Assign W Assignees e /

Complete % Inikiakor v 7

Efiron X AR s / [IMake notifications secure (excude details)

Make notification actionable
[5end task attachments with email notifications

Mo reminders % Day a §| Hour a §| Minutes a §| Before Expiration w

|

Configuring Task Access Settings

You can set access-rule settings to control the actions a user can perform. You can also
specify content and action permissions based on the logical role of a user, such as
creator (initiator), owner, assignee, and reviewers.

In Oracle SOA Composer, you can set access settings by using the options available
under Task Access as shown in Figure 12-111.

Figure 12-111 Specifying Task Access Settings

ORACLE SOA Composer @ Bockmarkable Link Logout o

Logged in as weblogic

O Info
&2 simpleApprovalTask.task
A
~|Task Access 3
Task content (EETERT N,
i G Individuals with
Task Content Individuals with read access T
Payload Admin; Approvers;Reviewers x| All
ATTACHMENTS Admin; Approvers x| All
Assignees All x| all
Comments Admin; Approvers x| All
Dates All x| All
Flexfields Admin; Approvers;Reviewers x| All
Histary all x| all
Reviewers all | all
< @
o

For more information on configuring task access, see "How to Define Security Access
Rules" in Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business
Process Management.

12-78 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Working with Tasks at Runtime

12.14.2.2 Configuring Data-Driven Settings (Rule or Condition)

To configure data-driven settings:
1. Log on to Oracle SOA Composer and open the required task.

2. Click Edit on the Oracle SOA Composer menu bar to open the selected AMX
rule-associated task for editing as shown in Figure 12-112.

Figure 12-112 Opening an AMX Rule for Editing
ORACLE SOA Composer & Bockmarkable Link Logout O

Logged in as weblogic
B open < m B

4% SimpleLinkedRulesTask.task

[E3) SimpleLinkedRulesTaskRules.rules

[Data driven configuration #dd variable

Configure list builder properties via task data-driven rules

Seleck Ruleset | Stagel : ParticipantRules
ParticipantRules [1gnare this participant
Wiew | IFJTHEM Rules % 1-1af 1 %

= & Rule_1

3. Make the relevant edits and click Save as shown in Figure 12-113.

Figure 12-113 Saving AMX Rule Configuration

ORACLE 50A Composer &P Bookmarkable Link Logout O

Logged in as weblogic

B Cpen = FEM # Commit.. g5 Revert .. o | & 0 Info

s, SimpleLinkedRulesTask.task (3l simpleLinkedRulesTaskRules.rules

[Drata driven configuration Add variable

Configure list builder properties via task data-driven rules

Select Ruleset | Stagel : ParticipantRules

ParticipantRules [l 1gnore this participant
view [IF/THENRues v [|+ 3€ 1-lof1 ™ O ~
V¥ Rule_1 R
IF (s (s
[| Task.creatar Ck isn't » ol Ck + |- j
THEMN

List Builder Superwvisory
Response Type @ Required O FY1

Murnber of levels | 3

£

Using Oracle SOA Composer with Oracle Business Rules 12-79

Working with Tasks at Runtime

You can perform the following actions:
= Adding, updating, and deleting a rule

s Changing rule assertions (which depend on the type of list builder for which the
rule has been configured)

= Adding a variable

For more information about editing data-driven settings, see "How to Edit
Data-Driven Settings" in Oracle Fusion Middleware User’s Guide for Oracle Business
Process Management.

12-80 Oracle Fusion Middleware User's Guide for Oracle Business Rules

A

Oracle Business Rules Files and Limitations

This appendix lists known naming constraints for Rules Designer files and names, and
certain Rules SDK limitations.

This appendix includes the following sections:

= Section A.1, "Rules Designer Naming Conventions"

A.1 Rules Designer Naming Conventions

This section covers Rules Designer naming conventions.

A.1.1 Ruleset Naming

Rules Designer enforces a limitation for ruleset names; a ruleset name must start with
a letter and contain only letters, numbers, or the following characters: ".", "-","_","",
":","/", and single spaces. Letters include the characters (a to z and A to z) and

numbers (0 to 9).

A.1.2 Dictionary Naming

Rules Designer dictionary names can contain only the following characters, upper and
lowercase letters (a to z and A to z), numbers (0 to 9), and the underscore (_). Special
characters are not valid in a dictionary name.

Rules Designer dictionary names are case preserving but case-insensitive. For
example, the dictionary names Dictionary and DICT are both valid. If you create a
dictionary named Test, then you can create another dictionary named TEST only if
you first delete the dictionary named Test.

A.1.3 Alias Naming

Rules Designer alias names must begin with a letter and contain only letters, numbers,

LI LI L LA L L I LA I}

o=, e /", and single spaces.

A.1.4 XML Schema Target Package Naming

The Target Package Name that you specify for an XMLFact on the XML Schema
Selector page is limited to ASCII characters, digits, and the underscore character.

Oracle Business Rules Files and Limitations A-1

Rules Designer Naming Conventions

A-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

B

Oracle Business Rules Built-in Classes and

Functions

This appendix discusses the extensive library of Oracle Business Rules (OBR) built-in
classes, methods, and functions that help reasoning about data containing text strings,
lists, numbers, dates, times, and so on.

In the following sections, there are multiple tables whose each row has a Kind column
that is either Cl, Co, M, sM, P, or sP (Class, Constructor, Method, static Method,
Property, or static Property (Java static final field) respectively). The first row in each
table specifies the class. When the Java Name is the same as the OBR Name (the rule
SDK terms it the Alias), a '-' is displayed. The Signature column provides type
information for methods, functions, and properties. The signature of a property is
actually the type, for example BigDecimal. The signature of a method or function is
of the form return (argl, arg2, . ..), where return is the return type and
argl,arg2, ... are the argument types.

This appendix covers the following sections:
m Section B.1, "String Classes"

s Section B.2, "List Classes"

s Section B.3, "Numeric Classes"

s Section B.4, "Time and Duration Classes"
s Section B.5, "Miscellaneous Classes"

s Section B.6, "Functions"

B.1 String Classes

This section covers the String-related classes provided by Oracle Business Rules.

Table B-1 lists the String class.

Table B-1 The String Class

OBR Name Kind Signature Java Name Description Reference

String Cl

- javalang.Stri Java immutable character strings. http://java.sun.com/
ng Beware, Java uses 0-based indexing javase/6/docs/api/ja
for characters in strings, and XML va/lang/String.html
uses 1-based indexing

charAt S

char(int) - Returns the char value at 0-based http://java.sun.com/
index argl. "Oracle".charAt(2)=="a'. javase/6/docs/api/ja
va/lang/String.html#

charAt%28int%29

Oracle Business Rules Built-in Classes and Functions B-1

String Classes

Table B-1 (Cont.) The String Class

OBR Name Kind Signature Java Name Description Reference
compareTo M int(String) - Returns the value 0 if the argument http://java.sun.com/
string is equal to this string; a value javase/6/docs/api/ja
less than 0 if this string is va/lang/String.html#
lexicographically less than the string compareTo%28java.lan
argument; and a value greater than g.String%29
0 if this string is lexicographically
greater than the string argument.
"a".compareTo("b")<0.
contains M boolean(String) - Tests whether this string contains http://java.sun.com/
argl. "Oracle".contains("rac")==true. javase/6/docs/api/ja
va/lang/String.html#
contains%28java.lang
.CharSequence%29
endsWith M boolean(String) - Tests whether this string ends with http://java.sun.com/
argl. "Oracle".endsWith("le")==true. javase/6/docs/api/ja
va/lang/String.html#
endsWith%28java.lang
.String%29
equalsignoreCase M boolean(String) - Tests whether this string equals http://java.sun.com/
argl, ignoring case consideration. javase/6/docs/api/ja
"Oracle".equalslgnoreCase("oRaCIE va/lang/String.html#
")==true. equalsIgnoreCase%28j
ava.lang.String%29
indexOf M int(String,int) - Returns the 0-based index of the http://java.sun.com/
start of argl within this String, but javase/6/docs/api/ja
not before the 0-based index arg2. va/lang/String.html#
"banana".indexOf("an",2)==3. index0f%28java.lang.
String, %$20int%29
lastIndexOf M int(String,int) - Returns the 0-based index within http://java.sun.com/
this string of the last occurrence of ~ javase/6/docs/api/Jja
argl, searching backward starting at va/lang/String.html#
the index arg?2. lastIndexOf%28java.l
"banana".lastindexOf("an","banana". ang.String, $20int%29
length())==3.
length M int - Returns the length of this string. http://java.sun.com/
"Oracle".length()==6. javase/6/docs/api/ja
va/lang/String.html#
length%28%29
matches M boolean(String) - Tests if this string matches the given http://java.sun.com/
regular expression. javase/6/docs/api/ja
"banana".matches("/b.*a$")==true. = va/lang/String.html#
matches%28java.lang.
String%29
replaceAll M String(String, St - Replaces each substring of this http://java.sun.com/
ring) string that matches argl (aregular ~ javase/6/docs/api/ja
expression) with arg2. va/lang/String.html#
"banana".replaceAll(".a","x0")=="xox replaceAll%28java.la
oxo0". ng.String, %$20java.la
ng.String%29
replaceFirst M String(String, St - Replaces first substring of this string http://java.sun.com/
ring) that matches argl (a regular javase/6/docs/api/ja
expression) with arg?2. va/lang/String.html#
"banana".replaceFirst(".a","x0")=="x replaceFirst%28java.
onana". lang.String, $20java.
lang.String%29
startsWith M boolean(String) - Tests whether this string starts with http://java.sun.com/

argl.
"Oracle".startsWith("Or")==true.

javase/6/docs/api/ja
va/lang/String.html#
startsWith%28java.la
ng.String%29

B-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

String Classes

Table B-1 (Cont.) The String Class

OBR Name Kind Signature Java Name Description Reference
substring M String(int,int) - Returns the substring of this string, http://java.sun.com/
starting with the 0-based index javase/6/docs/api/ja
argl, and ending before the 0-based va/lang/String.html#
index arg2. substring%28int, %201
"Oracle".substring(1,4)=="rac". nt%29
toLowerCase M String() - Converts this string to lower case. http://java.sun.com/
"Oracle".toLowerCase()=="oracle". javase/6/docs/api/ja
va/lang/String.html#
toLowerCase%$28%29
toUpperCase M String() - Converts this string to upper case. ~ http://java.sun.com/
"Oracle".toUpperCase()=="ORACLE javase/6/docs/api/ja
", va/lang/String.html#
toUpperCase%28%29
trim M String() - Removes leading and trailing http://java.sun.com/

whitespace. " Oracle
".trim()=="Oracle".

javase/6/docs/api/ja
va/lang/String.html#
trim%28%29

Table B-2 The RL Class String Methods

Table B-2 lists the RL class strings methods.

OBR Name Kind Signature Java Name Description Reference
RL Cl - oracle.rules.r Supplement standard Java classes http://www.w3.org/TR/
Lextensions. with W3C RIF functionality. rif-dtb/
RL
string.join sM String(String...) stringJoin Concatenates first n-1 args using the http://www.w3.org/TR/
last arg as a separator. rif-dtb/#func:string-
RL.string join("a","b","c","#")=="a#b# join
c".
string.substring sM String(String,in substring Returns the substring of argl, http://www.w3.0rg/TR/
t,int) beginning at the 1-based index arg2, rif-dtb/#func:substri
and continuing for arg3 characters. ng
RL.string.substring("Oracle”,2,3)=="
rac".
string.suffix sM String(String,in substring Returns the suffix of argl, http://www.w3.org/TR/
t) beginning at the 1-based index arg2. rif-dtb/#func:substri
RL.string.suffix("Oracle",5)=="le". ng
string.substring sM String(String,St - substringBefo Returns the substring of argl that http://www.w3.org/TR/
before ring) re occurs before arg2. rif-dtb/#func:substri
RL.string.substring ng-before
before("Oracle","ac")=="0r".
string.substring sM String(String,St - substringAfte Returns the substring of argl that http://www.w3.org/TR/
after ring) r occurs after arg?2. rif-dtb/#func:substri
RL.string.substring ng-after
after("Oracle","ac")=="1e".
string.iri.encode sM String(String) encodeForUR Encodes characters not permitted in http://www.w3.org/TR/
path I an URI path. RL.string.iri encode rif-dtb/#func:encode-
path("Oracle Business for-uri
Rules")=="0Oracle%20Business%20R
ules".
string.iri.touri sM String(String) iriToUri Encodes some characters not http://www.w3.org/TR/
permitted in a URL RL.string.iri to iri-to-

uri("http:/ /www.example.com/~b
ébé")=="http:/ /www.example.com
/~b%C3%A9b%C3%A9"

rif-dtb/#func:
uri

Oracle Business Rules Built-in Classes and Functions B-3

List Classes

Table B-2 (Cont.) The RL Class String Methods

OBR Name Kind Signature Java Name Description Reference
string.iri.to ascii sM String(String) escapeHtmlU Encodes non-ascii characters. http://www.w3.org/TR/
ri RL.string.iri to ascii("javascript:if rif-dtb/#func:escape-
(navigator.browserLanguage == 'fr') html-uri
window.open(‘http:/ /www.exampl
e.com/~bébé');")=="javascript:if
(navigator.browserLanguage == 'fr')
window.open(‘http://www.exampl
e.com/~b%C3%A9b%C3%A9");"
string.is sM boolean(String) isNormalized A normalized string does not http://www.w3.org/TR/
normalized String contain the carriage return (#xD), rif-dtb/#Guard_Predic
line feed (#xA) nor tab (#x9) ates_for_Datatypes
characters. RL.string.is normalized("
Business Rules ")==true.
string.is token ~ sM boolean(String) isToken A token is a normalized string with http://www.w3.org/TR/
no leading or trailing spaces,and no rif-dtb/#Guard_Predic
double spaces. RL.string.is ates_for_Datatypes
token("Business Rules")==true.
string.is sM boolean(String) isLanguage A language identifier. RL.string.is http://www.w3.org/TR/
language language("en")==true. rif-dtb/#Guard_Predic
ates_for_Datatypes
string.is Name sM boolean(String) isName A name is a token with no spaces http://www.w3.org/TR/
(and some other constraints on its rif-dtb/#Guard_Predic
characters). RL.string.is ates_for_Datatypes
Name("xs:Name")==true.
string.is sM boolean(String) isNCName A non-colonized name. RL.string.is http://www.w3.org/TR/
NCName NCName("xs:NCName")==false. rif-dtb/#Guard_Predic
ates_for_Datatypes
string.is sM boolean(String) isSNMTOKEN An NMTOKEN is a Name withno http://www.w3.org/TR/
NMTOKEN restriction on the initial character. rif-dtb/#Guard_Predic
RL.string.is ates_for_Datatypes
NMTOKEN("-Oracle")==true.
string.compare sM int(String,Strin compare Returns -1, 0, or 1 if argl<arg?2, http://www.w3.org/TR/
g) argl==arg2, or argl>arg2, rif-dtb/#func:compare

respectively.
RL.string.compare("foo","bar")==1.

_.28adapted_from_fn:c
ompare.29

B.2 List Classes

This section covers the List classes provided by Oracle Business Rules.

Table B-3 lists the List class.

Table B-3 The List Class

OBR Name Kind Signature Java Name Description Reference

List Cl java.util.List Represents mutable and immutable http://java.sun.com/jav
lists. Lists use 0-based indexes. ase/6/docs/api/java/uti
Attempts to modify an immutable 1/List.html
list may result in
UnsupportedOperationExceptions.

append M void(Object) add Appends argl to this list. Modifies ~ http://java.sun.com/jav
this list. ase/6/docs/api/java/uti

1/List.html#add(E)
add M void(int,Objec - Inserts arg? into this list at position =~ http://java.sun.com/jav
t) argl. Modifies this list. ase/6/docs/api/java/uti

1/List.html#add(int, %20
E)

B-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

List Classes

Table B-3 (Cont.) The List Class
OBR Name Kind Signature Java Name Description Reference
appendAll M void(java.util. addAll Appends the contents of argl to this http://java.sun.com/jav
Collection) list. Modifies this list. ase/6/docs/api/java/uti
1/List.html#addall (java
.util.Collection)
addAll M void(intjava. - Inserts the contents of arg? into this http://java.sun.com/jav
util.Collection list at position argl. Modifies this ase/6/docs/api/java/uti
) list. 1/List.html#addall (int,
%20java.util.Collection
)
clear M void() - Removes the contents of this list. http://java.sun.com/jav
Modifies this list. ase/6/docs/api/java/uti
1/List.html#clear ()
contains M boolean(Objec - Tests whether this list contains argl. http://java.sun.com/jav
t) RL.list.create(1,2,3).contains(2)==tru ase/6/docs/api/java/uti
e. 1/List.html#contains(ja
va.lang.Object)
containsAll M boolean(java. - Tests whether this list contains every http://java.sun.com/jav
util.Collection element in argl. ase/6/docs/api/java/uti
) RL.list.create(1,2,3).containsAll(RL.li 1/List.html#containsAll
st.create(3,2,1))==true. (java.util.Collection)
get M Object(int) - Get the element at position argl. http://java.sun.com/jav
RL list.create(1,2,3).get(1)==2. ase/6/docs/api/java/uti
1/List.html#get (int)
indexOf M int(Object) - Returns first index of argl in this list. http://java.sun.com/jav
RL.list.create(1,2,3).indexOf(2)==1. ase/6/docs/api/java/uti
1/List.html#indexOf (jav
a.lang.Object)
remove M boolean(Objec - Removes first occurrence of argl http://java.sun.com/jav
t) from this list. Returns whether this ase/6/docs/api/java/uti
list was modified. 1/List.html#remove (java
.lang.Object)
remove by M Object(int) remove Removes and return the elementat http://java.sun.com/jav
index position argl. Modifies this list. ase/6/docs/api/java/uti
1/List.html#remove (int)
removeAll M boolean(java. - Removes all elements from this list http://java.sun.com/jav
util.Collection that are contained in argl. Returns ase/6/docs/api/java/uti
) whether this list was modified. 1/List.html#removeAll (j
ava.util.Collection)
retainAll M boolean(java. - Removes all elements from this list http://java.sun.com/jav
util.Collection that are *not* contained in argl. ase/6/docs/api/java/uti
) Returns whether this list was 1/List.html#retainAll (j
modified. ava.util.Collection)
set M Object(int,Obj - Replaces the item in this list at http://java.sun.com/jav
ect) position argl with arg2. Returns the ase/6/docs/api/java/uti
replaced item. Modifies this list. 1/List.html#set (int, %20
E)
size M int() - Returns the size of this list. http://java.sun.com/jav
RL.list.create(1,2,3).size()==3. ase/6/docs/api/java/uti
1/List.html#size()
subList M List(int,int) - Returns a view of the portion of this http://java.sun.com/jav

list between argl, inclusive, and
arg?, exclusive.
RL.list.create(1,2,3,4).subList(1,3)==R
L.list.create(2,3).

ase/6/docs/api/java/uti
1/List.html#subList (int
,%201int)

Table B—4 lists the RL class list methods.

Oracle Business Rules Built-in Classes and Functions B-5

List Classes

Table B-4 The RL Class List Methods

OBR Name Kind Signature Java Name Description Reference
RL Cl - oracle.rules. - -
rl.extension
s.RL
list.append sM List(List,Objec append Returns a new immutable list http://www.w3.org/TR/r
t...) containing the contents of argl, if-dtb/#func:append
followed by arg2, arg3, ...
RL list.append(RL.list.create(1),2,3)=
=RL.list.create(1,2,3).
list.concatenate sM List(List...) concatenate Returns a new immutable list http://www.w3.0org/TR/T
containing the concatenation of argl, if-dtb/#func:concatena
arg2, ... te
RL.list.concatenate(RL.list.create(1),R
L.list.create(2))==RL.list.create(1,2).
list.distinct sM List(List) distinctValu Returns a new immutable list like http://www.w3.org/TR/x
values es argl but with duplicates removed. if-dtb/#func:distinct-
RL.list.distinct values
values(RL.list.create(2,2))==RL.list.cr
eate(2).
list.except sM List(List,List) except Returns a new immutable list http://www.w3.0org/TR/r
containing elements from argl that ~ if-dtb/#func:except
are not in arg?2.
RL.list.except(RL.list.create(1,2,3,4),R
L.list.create(1,3))==RL.list.create(2,4).
list.get sM Object(List,int get Returns the element at position arg2 http://www.w3.org/TR/r
) in argl. If arg2<0, return the element if-dtb/#func:get
at argl.size()+arg2.
RL list.get(RL.list.create(1,2,3),-1)==3
list.index of sM List<Integer>(indexOf Returns a list of indexes where the http://www.w3.org/TR/r
List,Object) arg?2 occurs in argl. RL.list.index if-dtb/#func:index-of
of(RL.list.create(1,2,3,2),2)==RL.list.c
reate(1,3).
list.insert sM List(List,int,0 insertBefore Returns a new immutable list http://www.w3.org/TR/r
before bject) containing argl with arg3 inserted if-dtb/#func:insert-be
before the item at position arg2. If fore
arg2<0, arg3 is inserted before the
element at argl.size()+arg2.
RL.list.insert
before(RL.list.create(1,2,3),-1,99)==R
L.list.create(1,2,99,3).
list.intersect sM List(List,List) intersect Returns a new immutable list http://www.w3.org/TR/r
containing the intersection of argl if-dtb/#func:intersect
and arg2.
RL.list.intersect(RL.list.create(1,2,3),
RL.list.create(3,1))==RL.list.create(1,
3).
list.create sM List(Object...) list Returns a new immutable list http://www.w3.org/TR/T
containing the arguments. if-dtb/#func:make-list
list.remove sM List(List,int) remove Returns a new immutable list http://www.w3.0org/TR/r
containing the elements of argl, with if-dtb/#func:remove
the element at position arg2
removed. If arg2<0, the element at
argl.size()+arg2 is removed.
RL.list.remove(RL.list.create(1,2,3),0)
==RL.list.create(2,3).
list.reverse sM List(List) reverse Returns a new immutable list http://www.w3.org/TR/x

containing the elements of argl in
reverse order.
RL.list.reverse(RL.list.create(1,2,3))=
=RL.list.create(3,2,1).

if-dtb/#func:reverse

B-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Numeric Classes

Table B-4 (Cont.) The RL Class List Methods

OBR Name Kind Reference

sM

Signature Java Name

List(List)

Description

Returns a new immutable list
containing the concatenation of the
arguments with duplicates removed.
RL.list.union(RL.list.create(1,2),RL.1i
st.create(2,3))==RL.list.create(1,2,3).

http://www.w3.0rg/TR/r
if-dtb/#func:union

list.union union

B.3 Numeric Classes

Oracle Business Rules support the primitive Java numeric types byte, short, int,
long, float, and double. OBR also supports the "boxed" versions: Short, Int,
Long, Float, and Double. Unlimited precision integers and decimals are supported,
using the Java classes BigInteger and BigDecimal. OBR supports arithmetic
expressions (+, -, *, /, **) on all numeric types. For example, if *bd is BigDecimal,
then you can add one to it by simply writing bd + 1. You do not have to write
bd.add (Bighecimal .ONE).

Table B-5 lists the Integer class.

Table B-5 The Integer Class

OBR
Name Kind Signature Java Name Description Reference
Integer Cl - java.lang.Integer An integer object. Unlike the http://java.sun.com/javase
primitive "int", an Integer can /6/docs/api/java/lang/Inte
be null and can be in Lists. ger.html
Integer Co Integer(int | Stri - Creates an Integer from anint http://java.sun.com/javase
ng) or from its lexical /6/docs/api/java/lang/Inte
representation as a String. new ger.html#Integer (int)
Integer(1)==new Integer("1").
MIN_VA sP int - Smallest primitive int value. http://java.sun.com/javase
LUE Integer. MIN_VALUE<0. /6/docs/api/java/lang/Inte
ger.html#MIN_VALUE
MAX_V sP int - Largest primitive int value. http://java.sun.com/javase
ALUE Integer MAX_VALUE>O0. /6/docs/api/java/lang/Inte
ger . .html#MAX_VALUE
intValue M int() - Converts this Integer to anint. http://java.sun.com/javase
new Integer(1).intValue()==1. /6/docs/api/java/lang/Inte
ger.html#intValue ()
toString M String() - Converts this Integer to its http://java.sun.com/javase

lexical representation. new
Integer(1).toString()=="1".

/6/docs/api/java/lang/Inte
ger.html#toString /()

Table B-6 lists the Long class.

Table B-6 The Long Class

OBR Name Kind Signature

Java Name

Description

Reference

Long Cl - java.lang.Long A long integer object. Unlike http://java.sun.com/java
the primitive "long", a Long se/6/docs/api/java/lang/
can be null and can be in Long.html
Lists.

Long Co Long(long |Stri - Creates a Long from alongor http://java.sun.com/java

ng)

from its lexical representation

as a String. new Long(1)==new

Long("1").

se/6/docs/api/java/lang/
Long.html#Long (long)

Oracle Business Rules Built-in Classes and Functions B-7

Numeric Classes

Table B-6 (Cont.) The Long Class

Java Name

Description

Reference

Smallest primitive long value.
Long MIN_VALUE<0.

http://java.sun.com/java
se/6/docs/api/java/lang/
Long.html#MIN_VALUE

Largest primitive long value.
Long MAX_VALUE>O0.

http://java.sun.com/java
se/6/docs/api/java/lang/
Long.html#MAX_ VALUE

Converts this Long to a long.
new Long(1).longValue()==1.

http://java.sun.com/java
se/6/docs/api/java/lang/
Long.html#longValue ()

OBR Name Kind Signature
MIN_VAL sP long

UE

MAX_VAL sP long

UE

longValue M long()
toString M String()

Converts this Long to its lexical
representation. new
Long(1).toString()=="1".

http://java.sun.com/java
se/6/docs/api/java/lang/
Long.html#toString()

Table B-7 lists the Short class.

Table B-7 The Short Class

OBR Name Kind Signature Java Name Description Reference
Short Cl - java.lang.Short A short integer object. Unlike http://java.sun.com/java
the primitive "short", a Short se/6/docs/api/java/lang/
can be null and can be in Lists. Short.html
Short Co Short(short|Stri - Creates a Short from a shortor http://java.sun.com/java
ng) from its lexical representation se/6/docs/api/java/lang/
as a String. new Short(l)==new Short.html#Short (short)
Short("1").
MIN_VALU sP short - Smallest primitive short value. http://java.sun.com/java
E Short. MIN_VALUE<O. se/6/docs/api/java/lang/
Short.html#MIN_VALUE
MAX_VAL sP short - Largest primitive short value. http://java.sun.com/java
UE Short MAX_VALUE>0. se/6/docs/api/java/lang/
Short.html#MAX_VALUE
shortValue M short() - Converts this Short to a short. http://java.sun.com/java
new se/6/docs/api/java/lang/
Short(-1).shortValue()==-1. Short.html#shortvValue ()
toString M String() - Converts this Short to its lexical http://java.sun.com/java

representation. new
Short(-1).toString()=="-1".

se/6/docs/api/java/lang/
Short.html#toString ()

Table B-8 lists the Float class.

Table B-8 The Float Class

Java Name

Description

Reference

OBR Name Kind Signature

Float Cl -

Float Co Float(float | dou
ble | String)

infinite P boolean

java.lang.Float

A Float object. Unlike the
primitive "float", a Float can
be null and can be in Lists.

Creates a Float from a float, a
double, or from its lexical
representation as a String. new
Float(1.1)==new Float("1.1").

The value of this Float is
infinity. new

Float(Float. NEGATIVE_INFIN
ITY).infinite==true.

B-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

http://java.sun.com/javas
e/6/docs/api/java/lang/F1l
oat.html

http://java.sun.com/Jjavas
e/6/docs/api/java/lang/F1l
oat.html#Float (float)

http://java.sun.com/Jjavas
e/6/docs/api/java/lang/F1l
oat.html#isInfinite()

Numeric Classes

Table B-8 (Cont.) The Float Class

OBR Name Kind Signature Java Name Description Reference
naN P boolean - The value of this Floatisnota http://java.sun.com/javas
number. new e/6/docs/api/java/lang/Fl
Float(Float.NaN).naN==true. oat.html#isNaN () ()
NaN sP float - Value representing "not a http://java.sun.com/javas
number". e/6/docs/api/java/lang/F1l
oat.html#NaN
NEGATIV sP float - Value representing negative http://java.sun.com/javas
E_INFINIT infinity. e/6/docs/api/java/lang/F1l
Y oat.html#NEGATIVE_INFINIT
Y
POSITIVE_ sP float - Value representing positive http://java.sun.com/javas
INFINITY infinity. e/6/docs/api/java/lang/F1l
oat.html#POSITIVE_INFINIT
Y
floatValue M float() - Converts this Float to a float. http://java.sun.com/javas
new e/6/docs/api/java/lang/F1l
Float(1.1f).floatValue()==1.1f. oat.html#floatValue ()
toString M String() - Converts this Float to its lexical http://java.sun.com/javas
representation. new e/6/docs/api/java/lang/F1l
Float(1.1f).toString ()=="1.1". oat.html#toString ()
Table B-9 lists the Double class.
Table B-9 The Double Class
OBR Name Kind Signature Java Name Description Reference
Double Cl1 - javalang.Doubl A Double object. Unlike the http://java.sun.com/jav
e primitive "double", a Double ase/6/docs/api/java/lan
can be null and can be in Lists. g/Double.html
Double Co Double(double - Creates a Double from a http://java.sun.com/jav
| String) double or from its lexical ase/6/docs/api/java/lan
representation as a String. new g/Double.html#Double (do
Double(1.1)==new uble)
Double("1.1").
infinite P boolean - The value of this Double is http://java.sun.com/jav
infinity. new ase/6/docs/api/java/lan
Float(Float. POSITIVE_INFINIT g/Double.html#isInfinit
Y).infinite==true. e()
naN P boolean - The value of this Double isnot http://java.sun.com/jav
a number. new ase/6/docs/api/java/lan
Double(double.NaN).naN==tr g/Double.html#isNaN ()
ue.
NaN sP double - Value representing "not a http://java.sun.com/jav
number". ase/6/docs/api/java/lan
g/Double.html#NaN
NEGATIVE_ sP double - Value representing negative http://java.sun.com/jav
INFINITY inﬁnity. ase/6/docs/api/java/lan
g/Double.html#NEGATIVE_
INFINITY
POSITIVE_LI sP double - Value representing positive http://java.sun.com/jav
NFINITY infinity. ase/6/docs/api/java/lan
g/Double.html#POSITIVE_
INFINITY
doubleValue M double() - Converts this Double to a http://java.sun.com/jav

double. new
Double(1.1).doubleValue()==1.
1.

Oracle Business Rules Buil

ase/6/docs/api/java/lan
g/Double.html#doubleval
ue ()

t-in Classes and Functions B-9

Numeric Classes

Table B-9 (Cont.) The Double Class

OBR Name Kind Signature Java Name Description Reference
toString M String() - Converts this Double to its http://java.sun.com/jav
lexical representation. new ase/6/docs/api/java/lan
Double(1.1).toString()=="1.1". g/Double.html#toString(
)
Table B-10 lists the BigInteger class.
Table B-10 The Biginteger Class
OBR Name Kind Signature Java Name Description Reference
BigInteger Cl - java.math.BigInt Immutable arbitrary-precision http://java.sun.com/jav
eger integers. ase/6/docs/api/java/mat
h/BigInteger.html
BigInteger Co BigInteger(Strin - Creates a BigInteger from its http://java.sun.com/jav
g) lexical representation as a ase/6/docs/api/java/mat
String. new Biglnteger("1")==1. h/BigInteger.html#BigIn
teger (java.lang.String)
doubleValue M double() - Converts this BigInteger to a http://java.sun.com/jav
double. May lose precision. ase/6/docs/api/java/mat
new h/BigInteger.html#doubl
BigInteger("1").doubleValue()= evalue()
=1.0.
longValue M long() - Converts this BigInteger to a http://java.sun.com/jav
long. May lose precision. new ase/6/docs/api/java/mat
BigInteger("1").longValue()==1 h/BigInteger.html#longV
L. alue ()
max M Biginteger(Bigl - Returns the greater of this or http://java.sun.com/jav
nteger) argl. new ase/6/docs/api/java/mat
BigInteger("1").max(2)==2. h/BigInteger.html#max (Jj
ava.math.BigInteger)
min M BigInteger(Bigl - Returns the lesser of this or http://java.sun.com/jav
nteger) argl. new ase/6/docs/api/java/mat
BigInteger("1").min(2)==1. h/BigInteger.html#min (j
ava.math.BigInteger)
toString M String() - Returns the lexical http://java.sun.com/jav
representation of this ase/6/docs/api/java/mat
Bignteger. new h/BigInteger.html#toStr
BigInteger("123").toString()=="ing ()
123",
valueOf sM Biginteger(long - Converts argl (along) to a http://java.sun.com/jav
) BigInteger. ase/6/docs/api/java/mat
BigInteger.valueOf(123).toStrin h/BigInteger.html#value
g()=="123". of (long)
Table B-11 lists the BigDecimal class.
Table B-11 The BigDecimal Class
OBR Name Kind Signature Java Name Description Reference
BigDecimal Cl - java.math.BigDe Immutable, http://java.sun.com/java

cimal arbitrary-precision signed

decimal numbers.

B-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

se/6/docs/api/java/math/
BigDecimal.html

Numeric Classes

Table B-11 (Cont.) The BigDecimal Class

OBR Name Kind Signature Java Name Description Reference
BigDecimal Co BigDecimal(lon - Creates a BigDecimal from a http://java.sun.com/java
g | double | Strin long, a double, or from its se/6/docs/api/java/math/
g) lexical representation as a BigDecimal.html#BigDecim
String. new al (java.lang.String)
BigDecimal(1.1)==new
BigDecimal("1.1").
BigDecimal Co BigDecimal(Big - Creates a BigDecimal from http://java.sun.com/java
Integer,int) BigInteger argl and scale arg2. se/6/docs/api/java/math/
new BigDecimal(new BigDecimal.html#BigDecim
Biglnteger("123"),2)==1.23. al (java.math.BigInteger,
%201int)
doubleValue M double() - Converts this BigDecimaltoa http://java.sun.com/java
double. May lose precision. se/6/docs/api/java/math/
new BigDecimal.html#doubleVa
BigDecimal("0.1").doubleValue 1lue ()
()==0.1.
longValue M long() - Converts this BigDecimaltoa http://java.sun.com/java
long. May lose precision. new se/6/docs/api/java/math/
BigDecimal("0.1").longValue()= BigDecimal.html#longValu
=0L. e()
max M BigDecimal(Big - Returns the greater of this http://java.sun.com/java
Decimal) BigDecimal or argl. new se/6/docs/api/java/math/
BigDecimal("0.1").max(0.2)==0. BigDecimal.html#max (java
2. .math.BigDecimal)
min M BigDecimal(Big - Returns the lesser of this http://java.sun.com/java
Decimal) BigDecimal or argl. new se/6/docs/api/java/math/
BigDecimal("0.1").min(0.2)==0. BigDecimal.html#min (java
1. .math.BigDecimal)
scale M int() - Returns the scale--the number http://java.sun.com/java
of digits to the right of the se/6/docs/api/java/math/
decimal point. new BigDecimal.html#scale()
BigDecimal("1.00").scale()==2.
setScale M BigDecimal(int) - Sets the scale, but don't change http://java.sun.com/java
the value. new se/6/docs/api/java/math/
BigDecimal("1").setScale(2).toSt BigDecimal.html#setScale
ring()=="1.00". (int)
toEngineerin M String() - Returns the literal http://java.sun.com/java
gString representation of this se/6/docs/api/java/math/
BigDecimal using engineering BigDecimal.html#toEngine
notation if an exponent is eringString ()
needed. new
BigDecimal("123E2").toEnginee
ringString()=="12.3E+3".
toPlainStrin M String - Returns the literal http://java.sun.com/java
g representation of this se/6/docs/api/java/math/
BigDecimal withoutexponents. BigDecimal.html#toPlains
new tring()
BigDecimal("123E2").toPlainStr
ing()=="12300".
valueOf sM BigDecimal(lon - Converts argl (a long or http://java.sun.com/java
g | double) double) to a BigDecimal. new se/6/docs/api/java/math/
BigDecimal(1.3)==BigDecimal. BigDecimal.html#valueOf (
valueOf(1.3). double)
ROUND_UP sP int - Used with divide. new http://java.sun.com/java
BigDecimal("11").divide(2,Big ~ se/6/docs/api/java/math/
Decimal. ROUND_UP)==6. BigDecimal.html#ROUND_UP
ROUND_D sP int - Used with divide. new http://java.sun.com/java
OWN BigDecimal("11").divide(2,Big se/6/docs/api/java/math/

Decimal. ROUND_DOWN)==5

Oracle Business Rules Built-in Classes and Functions B-11

BigDecimal .html#ROUND_DO
WN

Numeric Classes

Table B-11 (Cont.) The BigDecimal Class

OBR Name Kind Signature Java Name

Description

Reference

divide M BigDecimal(Big -

Decimal,int)

Returns this/argl with scale
the same as this BigDecimal. If
rounding must be performed
to stay within the result scale,
use the rounding mode given
by arg2 (ROUND_UP or
ROUND_DOWN). new
BigDecimal("11").divide(2,Big
Decimal. ROUND_UP)==6.

http://java.sun.com/java
se/6/docs/api/java/math/
BigDecimal.html#divide (j
ava.math.BigDecimal, $201i
nt)

Table B-12 lists the Number clas

Table B-12 The Number Class

S.

OBR Name Kind Signature Java Name Description Reference
Number Cl - - Base class of all numerics http://java.sun.com/jav
(except primitives). ase/6/docs/api/java/lan
g/Number.html
doubleValue M double() - Converts this number to a http://java.sun.com/jav
double. ase/6/docs/api/java/lan
g/Float.html#doublevalu
e()
floatValue M float() - Converts this number to a http://java.sun.com/jav
float. ase/6/docs/api/java/lan
g/Float.html#floatValue
()
intValue M int() - Converts this number toaint. http://java.sun.com/jav
ase/6/docs/api/java/lan
g/Float.html#intValue ()
longValue M long() - Converts this number to a http://java.sun.com/jav
long. ase/6/docs/api/java/lan
g/Float.html#longValue (
)
shortValue M short() - Converts this number to a http://java.sun.com/jav
short. ase/6/docs/api/java/lan
g/Float.html#shortValue
()
Table B-13 lists the RL class number methods.
Table B-13 The RL Class Number Methods
OBR Name Kind Signature Java Name Description Reference
RL Cl1 - oracle.rules.rl.ex - -
tensions.RL
number.is sM boolean(Numb isByte argl is integral and http://www.w3.org/TR/ri
byte er) -128<=argl<=127. f-dtb/#Guard_Predicates
RL.numeric.is _for_Datatypes
byte(200)==false.
number.is sM boolean(Numb isShort argl is integral and http://www.w3.org/TR/ri
short er) -32768<=argl<=32767. f-dtb/#Guard_Predicates
RL.numeric.is _for_Datatypes
short(0.1)==false.
number.isint sM boolean(Numb isInt argl is integral and http://www.w3.org/TR/ri
er) -2147483648<=arg1<=21474836 f-dtb/#Guard_Predicates

47. RL.numeric.is
int(-1000)==true.

B-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

_for_Datatypes

Time and Duration Classes

Table B-13 (Cont.) The RL Class Number Methods

OBR Name Kind Signature Java Name Description Reference

number.is sM boolean(Numb isLong argl is integral and http://www.w3.org/TR/ri

long er) -9223372036854775808<=argl< f-dtb/#Guard_Predicates
=9223372036854775807. _for_Datatypes
RL.numeric.is integer(new
BigInteger("100")**100)==false.

number.is sM boolean(Numb isInteger argl is integral. RL.numeric.is http://www.w3.org/TR/ri

integer er) integer(new f-dtb/#Guard_Predicates
BigInteger("100")**100)==true. ~_for_Datatypes

number.is sM boolean(Numb isDecimal argl is neither Double nor http://www.w3.org/TR/ri

decimal er) Float. RL.numeric.is f-dtb/#Guard_Predicates
decimal(1.1)==false. _for_Datatypes

number.is sM boolean(Numb isNonNegativeln argl is integral and arg1>=0. http://www.w3.org/TR/ri

non-negative er) teger RL.numeric.is non-negative f-dtb/#Guard_Predicates

integer integer(-1)==false. _for_Datatypes

number.is sM boolean(Numb isNegativelntege argl is integral and arg1<0. http://www.w3.org/TR/ri

negative er) r RL.numeric.is negative f-dtb/#Guard_Predicates

integer integer(-1)==true. _for_Datatypes

number.is sM boolean(Numb isNonPositiveInt argl is integral and argl<=0. http://www.w3.org/TR/ri

non-positive er) eger RL.numeric.is non-positive f-dtb/#Guard_Predicates

integer integer(-1)==true. _for_Datatypes

number.is sM boolean(Numb isPositivelnteger argl is integral and arg1>0. http://www.w3.o0rg/TR/ri

positive er) RL.numeric.is positive f-dtb/#Guard_Predicates

integer integer(-1)==false. _for_Datatypes

number.is sM boolean(Numb isUnsignedByte argl is integral and http://www.w3.org/TR/ri

unsigned byte er) O<=argl<=255. RL.numeric.is f-dtb/#Guard_Predicates
unsigned byte(200)==true. _for_Datatypes

number.is sM boolean(Numb isUnsignedShort argl is integral and http://www.w3.org/TR/ri

unsigned er) O<=argl<=65535. f-dtb/#Guard_Predicates

short RL.numeric.is unsigned _for_Datatypes
short(0.1)==false.

number.is sM boolean(Numb isUnsignedInt argl is integral and http://www.w3.org/TR/ri

unsigned int er) 0<=argl1<=4294967295. f-dtb/#Guard_Predicates
RL.numeric.is unsigned _for_Datatypes
int(-1000)==false.

number.is sM boolean(Numb isUnsignedLong argl is integral and http://www.w3.org/TR/ri

unsigned long er) O<=argl<=184467440737095516 f-dtb/#Guard_Predicates

15.

_for_Datatypes

B.4 Time and Duration Classes

This section lists the time and duration classes provided by Oracle Business Rules.

Table B-14 lists the Calendar class.

Table B-14 The Calendar Class

OBR Name Kind Signature Java Name

Description

Reference

Calendar Ccl - java.util.Calendar

A Calendar represents a
datetime and timezone. A
calendar instance has a number
of mutable int fields. The first

argument to add, get, isSet, roll,

and set is a field number. This
class provides a number of
static properties that should be
used for the field numbers.

Oracle Business Rules Built-in Classes and Functions B-13

http://java.sun.com/jav
ase/6/docs/api/java/uti
1l/Calendar.html

Time and Duration Classes

Table B-14 (Cont.) The Calendar Class

OBR Name Kind Signature Java Name Description Reference

ERA sP int - Field number for the Calendar http://java.sun.com/jav
era. lis for A.D.and Ois for B.C. ase/6/docs/api/java/uti
((Calendar)"2010-02-01").get(Cale 1/Calendar.html#ERA
ndar.ERA)==1.

YEAR sP int - Field number for the Calendar http://java.sun.com/jav
year. ase/6/docs/api/java/uti
((Calendar)"2010-02-01").get(Cale 1/Calendar.html#YEAR
ndar.YEAR)==2010.

MONTH sP int - Field number for the Calendar http://java.sun.com/jav
month. Months are 0-based. ase/6/docs/api/java/uti
((Calendar)"2010-02-01").get(Cale 1/Calendar.html#MONTH
ndar MONTH)==1.

WEEK_OF_ sP int - Field number for the Calendar http://java.sun.com/jav

YEAR week. ase/6/docs/api/java/uti
((Calendar)"2010-02-01").get(Cale 1/Calendar.html#WEEK_OF
ndar WEEK_OF_YEAR)==6. _YEAR

DAY _OF.Y sP int - Field number for the Calendar http://java.sun.com/jav

EAR day of year. ase/6/docs/api/java/uti
((Calendar)"2010-02-01").get(Cale 1/Calendar.html#DAY_OF_
ndar.DAY_OF_YEAR)==32. YEAR

DAY_OF_M sP int - Field number for the Calendar http://java.sun.com/jav

ONTH day of month. ase/6/docs/api/java/uti
((Calendar)"2010-02-01").get(Cale 1/Calendar.html#DAY_OF_
ndar.DAY_OF_MONTH)==1. MONTH

DAY _OF_ W sP int - Field number for the Calendar http://java.sun.com/jav

EEK day of the week. ase/6/docs/api/java/uti
((Calendar)"2010-02-01").get(Cale 1/Calendar.html#DAY_ OF_
ndar.DAY_OF_WEEK)==2. WEEK

HOUR sP int - Field number for the Calendar http://java.sun.com/jav
hour, 12 hour format. ase/6/docs/api/java/uti
((Calendar)"2010-02-01T20:15:10" 1/Calendar.html#HOUR
).get(Calendar HOUR)==8.

AM_PM sP int - Field number for the Calendar http://java.sun.com/jav
AM_PM flag. 0is for AMand 1is ase/6/docs/api/java/uti
for PM. 1/Calendar.html#AM_PM
((Calendar)"2010-02-01T20:15:10"

)-.get(Calendar. AM_PM)==1.

HOUR_OF_ sP int - Field number for the Calendar http://java.sun.com/jav

DAY hour, 24 hour format. ase/6/docs/api/java/uti
((Calendar)"20:15:10").get(Calend 1/Calendar.html#HOUR_OF
ar.HOUR)==20. _DAY

MINUTE sP int - Field number for the Calendar http://java.sun.com/jav
minutes. JavaDate.from time ase/6/docs/api/java/uti
string("20:15:10").get(CalendarM 1/Calendar.html#MINUTE
INUTE)==15.

SECOND sP int - Field number for Calendar http://java.sun.com/jav
seconds. ase/6/docs/api/java/uti
((Calendar)"20:15:10").get(Calend 1/Calendar.html#SECOND
ar.SECOND)==10.

ZONE_OFF sP int - Field number for timezone. http://java.sun.com/jav

SET Value is millsecond offset from ase/6/docs/api/java/uti
GMT. 1/Calendar.html #ZONE_OF
((Calendar)"20:15:10-05:30").get(FSET
Calendar.ZONE_OFFSET)==-(5*
3600+30%60)*1000.

add M void(int,int) add Adds the amount of time http://java.sun.com/jav

specified by arg2 to the calendar
field specified by argl. Modifies
this Calendar.

B-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

ase/6/docs/api/java/uti
1/Calendar.html#add(int
,%20int)

Time and Duration Classes

Table B-14 (Cont.) The Calendar Class

OBR Name Kind Signature Java Name Description Reference

clear M void() clear Clears (unset all fields in) this http://java.sun.com/jav
Calendar. Modifies this ase/6/docs/api/java/uti
Calendar. 1/Calendar.html#clear ()

get M int(int) get Gets the value of the field http://java.sun.com/jav
specified by field number argl. ase/6/docs/api/java/uti
((Calendar)"20:15:10").get(Calend 1/Calendar.html#get (int
ar.SECOND)==10.)

getInstance sM Calendar() getInstance Gets a calendar initialized to the http://java.sun.com/jav
current time in the default time ase/6/docs/api/java/uti
zone and locale. 1/Calendar.html#getInst

ance ()

roll M void(int,int) roll Adds the amount of time http://java.sun.com/jav
specified by arg?2 to the calendar ase/6/docs/api/java/uti
field specified by argl. Doesnot 1/Calendar.html#roll (in
affect any other calendar field. t,%20int)
Modifies this Calendar.

set M void(int,int) set Sets the calendar field specified http://java.sun.com/jav
by argl to the value specified by ase/6/docs/api/java/uti
arg2. Modifies this Calendar. 1/Calendar.html#set (int

,%201int)
time P java.util.Dat time Returns a Date object http://java.sun.com/jav
e representing this Calendar's time ase/6/docs/api/java/uti

value. 1/Calendar.html#getTime
((Calendar)"2010-02-01").time<((()
Calendar)"2010-02-02").time.

timeInMillis P long timeInMillis Returns this Calendar's time http://java.sun.com/jav

value in milliseconds.
((Calendar)"2010-02-01").timeln
Millis<((Calendar)"2010-02-02").ti
melnMillis.

ase/6/docs/api/java/uti
1/Calendar.html#getTime
InMillis ()

Table B-15 lists the JavaDate class.

Table B-15 The JavaDate Class

OBR Name Kind Signature

Java Name

Description

Reference

oracle.rules. rl.

JavaDate cl -

add yearsto sM
,int)

Calendar(Calendar

extensions.JavaDate

addYearsTo

Oracle Business Rules Built-in Classes and Functions B-15

Helper class for working with
Calendars as immutable objects.
Treating Calendars as immutable
objects can help prevent errors.

Returns a new Calendar that is
arg?2 years later than argl.
JavaDate.add years
to(""2009-01-01",1)=="2010-01-01".

http://download.or
acle.com/docs/cd/E
12839_01
/apirefs.1111/el06
63/oracle/rules/rl
/extensions/JavaDa
te.html

http://download.or
acle.com/docs/cd/E
12839_01
/apirefs.1111/el106
63/oracle/rules/rl
/extensions/JavaDa
te.html#addYearsTo
_java_util_Calenda
r__int_

Time and Duration Classes

Table B-15 (Cont.) The JavaDate Class

OBR Name Kind Signature Java Name Description Reference
add months sM Calendar(Calendar addMonthsTo Returns a new Calendar that is http://download.or
to , int) arg2 months later than argl. acle.com/docs/cd/E
JavaDate.add months 12839_01
to("2009-01-01",1)=="2009-02-01". /apirefs.1111/el06
63/oracle/rules/rl
/extensions/
JavaDate.html#addM
onthsTo_java_util_
Calendar__int_
add weeks sM Calendar(Calendar addWeeksTo Returns a new Calendar that is http://download.or
to ,int) 7*arg?2 days later than argl. acle.com/docs/cd/E
JavaDate.add weeks 12839_01
to("2009-01-01",1)=="2009-01-08". /apirefs.1111/el06
63/oracle/rules/rl
/extensions/
JavaDate.html#addw
eeksTo_java_util_C
alendar__int_
add daysto sM Calendar(Calendar addDaysTo Returns a new Calendar thatis ~ http://download.or
,Ant) arg?2 days later than argl. acle.com/docs/cd/E
JavaDate.add days 12839_01
to("2009-01-01",1)=="2009-01-02". /apirefs.1111/el06
63/oracle/rules/rl
/extensions/
JavaDate.html#addD
aysTo_java_util_Ca
lendar__int_
add hours to sM Calendar(Calendar addHoursTo Returns a new Calendar that is http://download.or

add minutes
to

add seconds
to

add
milliseconds
to

sM

sM

sM

,int)

Calendar(Calendar addMinutesTo
,int)

Calendar(Calendar addSecondsTo
/int)

Calendar(Calendar addMillisecondsTo
,nt)

arg?2 hours later than arg]l.
JavaDate.add hours
to("01:01:01",1)=="02:01:01".

Returns a new Calendar that is
arg2 minutes later than argl.
JavaDate.add minutes
to("01:01:01",1)=="01:02:01".

Returns a new Calendar that is
arg2 seconds later than argl.
JavaDate.add seconds
to("01:01:01",61)=="01:02:02".

Returns a new Calendar that is

arg?2 milliseconds later than arg1.

JavaDate.add milliseconds

to("01:01:01",61)=="01:01:01.061".

B-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

acle.com/docs/cd/E
12839_01
/apirefs.1111/el106
63/oracle/rules/rl
/extensions/
JavaDate.html#addH
oursTo_java_util_C
alendar__int_

http://download.or
acle.com/docs/cd/E
12839_01
/apirefs.1111/el06
63/oracle/rules/rl
/extensions/
JavaDate.html#addM
inutesTo_java_util
_Calendar__int_

http://download.or
acle.com/docs/cd/E
12839_01
/apirefs.1111/el106
63/oracle/rules/rl
/extensions/
JavaDate.html#addsS
econdsTo_java_util
_Calendar__int_

http://download.or
acle.com/docs/cd/E
12839_01
/apirefs.1111/el106
63/oracle/rules/rl
/extensions/
JavaDate.html#addM
illsecondsTo_java_
util_Calendar__int

Time and Duration Classes

Table B-15 (Cont.) The JavaDate Class

OBR Name Kind Signature Java Name Description Reference

add sM Calendar(Calendar addDurationTo Returns a new Calendar that is http://www.w3.org/

duration to ,XMLDuration) later than argl by the duration TR/rif-dtb/#func:a
arg?. JavaDate.add duration dd-day
to("2009-12-30T23:59:00",Duratio TimeDuration-to-da
n.from teTime_.28adapted_
string("P1DTIM"))=="2010-01-01 from_op:

" add-dayTimeDuratio
n-to-dateTime.29
http://www.w3.org/
TR/rif-dtb/#func:
add-yearMonthDurat
ion-to-dateTime_.2
8adapted_from_op:
add-yearMonthDurat
ion-to-dateTime.29

from date sM Calendar(String) ~ fromDateString Creates a Calendar for the http://download.or
string extended ISO 8601 date literal acle.com/docs/cd/E

argl. Extended to allow 12839_01

YYYY-MM-DD@TimeZoneld. /apirefs.1111/el06

JavaDate.from date 63/oracle/rules/rl

string("2010-02-06@PST")=="2010 /extensions/

-02-06-08:00". JavaDate.html#from
DateString_java_la
ng_String_

from sM Calendar(String) fromDateTimeString Creates a Calendar for the http://download.or
datetime extended ISO 8601 datetime acle.com/docs/cd/E
string literal argl. Extended to allow 12839_01

YYYY-MM-DDTHH:MM:SS@Ti /apirefs.1111/el06

meZoneld. JavaDate.from 63/oracle/rules/rl

datetime /extensions/
string("2010-02-06T14:15:00@PST JavaDate.html#from

")=="2010-02-06T14:15:00-08:00". DateTimeString_ jav
a_lang_String_

from time sM Calendar(String) ~ fromTimeString Creates a Calendar for the http://download.or
string extended ISO 8601 time literal acle.com/docs/cd/E

argl. Extended to allow 12839_01

HH:MM:SS@TimeZoneld. /apirefs.1111/e106

Warning: the date portion of the 63/oracle/rules/rl

Calendar will be initialized to the /extensions/

current date. JavaDate.from time JavaDate.html#from

string("14:15:00@PST")=="14:15:0 TimeString_ java_la

0-08:00". ng_String_

subtract sM Calendar(Calendar subtractYearsFrom Returns a new Calendar that is http://download.or
years from ,Ant) arg? years earlier than argl. acle.com/docs/cd/E

JavaDate.subtract years 12839_01

from("2009-01-01",1)=="2008-01-0 /apirefs.1111/el06

1" 63/oracle/rules/rl
/extensions/
JavaDate.html#subt
ractYearsFrom_java
_util_Calendar__in
t_

subtract sM Calendar(Calendar subtractMonthsFrom Returns a new Calendar that is http://download.or

months from

,nt)

Oracle Business Rules Built-in Classes and Functions B-17

arg2 months earlier than arg].
JavaDate.subtract months
from('"2009-01-01",1)=="2008-12-0
1"

acle.com/docs/cd/E
12839_01
/apirefs.1111/el06
63/oracle/rules/rl
/extensions/
JavaDate.html#subt
ractMonthsFrom_jav
a_util_Calendar__ i
nt

Time and Duration Classes

Table B-15 (Cont.) The JavaDate Class

OBR Name

Kind Signature Java Name

Description

Reference

subtract
weeks from

subtract
days from

subtract
hours from

subtract
minutes
from

subtract
seconds
from

subtract
milliseconds
from

sM Calendar(Calendar subtractWeeksFrom
,nt)

sM Calendar(Calendar subtractDaysFrom
,int)

sM Calendar(Calendar subtractHoursFrom
Jint)

sM Calendar(Calendar subtractMinutesFro
,int) m

sM Calendar(Calendar subtractSecondsFro
,int) m
sM Calendar(Calendar subtractMilliseconds

,int) From

Returns a new Calendar that is
7*arg? days earlier than argl.
JavaDate.subtract weeks

5"

Returns a new Calendar that is
arg?2 days earlier than argl.
JavaDate.subtract days

from("2009-01-01",1)=="2008-12-3

1"

Returns a new Calendar that is
arg?2 hours earlier than argl.
JavaDate.subtract hours
from("01:01:01",1)=="00:01:01".

Returns a new Calendar that is
arg2 minutes earlier than argl.
JavaDate.subtract minutes

from("01:01:01",1)=="01:00:01".

Returns a new Calendar that is
arg?2 seconds earlier than argl.
JavaDate.subtract seconds

from("01:01:01",61)=="01:00:00".

Returns a new Calendar that is
arg?2 milliseconds earlier than
argl. JavaDate.subtract
milliseconds

from("01:01:01",61)=="01:01:00.93

9"

B-18 Oracle Fusion Middleware User's Guide for Oracle Business Rules

from("2009-01-01",1)=="2008-12-2

http://download.or
acle.com/docs/cd/E
12839_01
/apirefs.1111/el106
63/oracle/rules/rl
/extensions/
JavaDate.html#subt
ractWeeksFrom_java
_util_Calendar__in
t

http://download.or
acle.com/docs/cd/E
12839_01
/apirefs.1111/el106
63/oracle/rules/rl
/extensions/
JavaDate.html#subt
ractDaysFrom_java_
util_Calendar__int

http://download.or
acle.com/docs/cd/E
12839_01
/apirefs.1111/el06
63/oracle/rules/rl
/extensions/
JavaDate.html#subt
ractHoursFrom_java
_util_Calendar__in
t

http://download.or
acle.com/docs/cd/E
12839_01
/apirefs.1111/el06
63/oracle/rules/rl
/extensions/
JavaDate.html#subt
ractMinutesFrom_ja
va_util_Calendar_
int_

http://download.or
acle.com/docs/cd/E
12839_01
/apirefs.1111/el106
63/oracle/rules/rl
/extensions/
JavaDate.html#subt
ractSecondsFrom_ja
va_util_Calendar_
int_

http://download.or
acle.com/docs/cd/E
12839_01
/apirefs.1111/el106
63/oracle/rules/rl
/extensions/
JavaDate.html#subt
ractMillisecondsFr
om_java_util_Calen
dar__int_

Time and Duration Classes

Table B-15 (Cont.) The JavaDate Class

Java Name

Description

Reference

OBR Name Kind Signature
subtract sM

duration ,XMLDuration)
from

to date sM String(Calendar)
string

to datetime sM String(Calendar)
string

to time sM String(Calendar)
string

Calendar(Calendar subtractDurationFro

m

toDateString

toDateTimeString

toTimeString

Returns a new Calendar that is
earlier than argl by the duration
arg?. JavaDate.subtract duration
from('"2009-12-30T23:59:00",Dura
tion.from
string("P1DTIM"))=="20009-12-2
9T23:58:00".

Returns the ISO 8601 lexical
representation of argl, ignoring
time components. JavaDate.to
date
string("2010-07-04T12:30:00Z")==
"2010-07-04Z"

Returns the ISO 8601 lexical
representation of argl.
JavaDate.to datetime
string("2010-07-04T12:30:00Z")==
"2010-07-04T12:30:00.000Z"

Returns the ISO 8601 lexical
representation of argl, ignoring
date components. JavaDate.to
time
string("2010-07-04T12:30:00Z")==
"12:30:00.000Z"

http://www.w3.org/
TR/rif-dtb/#func:
add-dayTimeDuratio
n-to-dateTime_.28a
dapted_from_op:
subtract-dayTimeDu
ration-from-dateTi
me.29

http://www.w3.org/
TR/rif-dtb/#func:
subtract-yearMonth
Duration-from-date
Time_.28adapted_fr
om_op:
add-yearMonthDurat
ion-to-dateTime.29

http://download.or
acle.com/docs/cd/E
12839_01
/apirefs.1111/el106
63/oracle/rules/rl
/extensions/
JavaDate.html#toDa
teString_ java_util
Calendar

http://download.or
acle.com/docs/cd/E
12839_01
/apirefs.1111/el06
63/oracle/rules/rl
/extensions/
JavaDate.html#toDa
teTimeString_ java_
util_Calendar_

http://download.or
acle.com/docs/cd/E
12839_01
/apirefs.1111/el106
63/oracle/rules/rl
/extensions/
JavaDate.html#toTi
meString_ java_util

Calendar
Table B-16 lists the XMLGregorianCalendar class.
Table B-16 The XMLGregorianCalendar Class
OBR Name Kind Signature Java Name Description Reference
XMLGregorian Cl - javax.xml.datatyp Representation for W3C http://java.sun.com/
Calendar e XMLGregorian XML Schema 1.0 javase/6/docs/api/ja
Calendar date/time datatypes. vax/xml/datatype/
XMLGregorianCalendar
.html
normalize M XMLGregorianCalen - Normalizes this instance http://java.sun.com/
dar() to UTC. XMLDate.from Jjavase/6/docs/api/ja

string("2000-03-04T23:00:
00+03:00").normalize()==
XMLDate.from
string("2000-03-04T20:00:
00Z")

vax/xml/datatype/
XMLGregorianCalendar
.html#normalize ()

Oracle Business Rules Built-in Classes and Functions B-19

Time and Duration Classes

Table B-16 (Cont.) The XMLGregorianCalendar Class

OBR Name Kind

Signature

Java Name

Description

Reference

toGregorianCale M

ndar

year P
month P
day P
hour P
minute P
second P
timezone P

java.util. GregorianC
alendar()

int

int

int

int

int

int

int

Converts this
XMLGregorianCalendar
to a (superclass of)
Calendar.
XMLDate.from
string("2010-02-03").toGr
egorianCalendar()==(Cal
endar)"2010-02-03".

The year of this calendar,
or Integer. MIN_VALUE
if undefined.
XMLDate.from
string("2011-12-31").year
==2011.

The month of this
calendar, or

Integer MIN_VALUE if
undefined. Months are
1-based, e.g. Jan is month
1. XMLDate.from
string("2011-12-31").mont
h==12.

The day of this calendar,
or Integer. MIN_VALUE
if undefined.
XMLDate.from
string("2011-12-31").day=
=31.

The hour of this
calendar, or

Integer MIN_VALUE if
undefined.
XMLDate.from
string("2011-12-31").hour
==Integer MIN_VALUE.

The minute of this
calendar, or

Integer MIN_VALUE if
undefined.
XMLDate.from
string("2011-12-31T09:30:
00").minute==30.

The second of this
calendar, or

Integer MIN_VALUE if
undefined.
XMLDate.from
string("09:30:05Z").secon
d==5.

The timezone offset in
minutes of this calendar,
or Integer. MIN_VALUE
if undefined.
XMLDate.from
string("09:30:00-09:00").ti
mezone==-540.

http://java.sun.com/
javase/6/docs/api/ja
vax/xml/datatype/
XMLGregorianCalendar
.html#toGregorianCal
endar ()

http://java.sun.com/
javase/6/docs/api/ja
vax/xml/datatype/
XMLGregorianCalendar
.html#getYear ()

http://java.sun.com/
javase/6/docs/api/ja
vax/xml/datatype/
XMLGregorianCalendar
.html#getMonth ()

http://java.sun.com/
javase/6/docs/api/ja
vax/xml/datatype/
XMLGregorianCalendar
.html#getDay ()

http://java.sun.com/
javase/6/docs/api/ja
vax/xml/datatype/
XMLGregorianCalendar
.html#getHour ()

http://java.sun.com/
javase/6/docs/api/ja
vax/xml/datatype/
XMLGregorianCalendar
.html#getMinute ()

http://java.sun.com/
javase/6/docs/api/ja
vax/xml/datatype/
XMLGregorianCalendar
.html#getSecond/()

http://java.sun.com/
javase/6/docs/api/ja
vax/xml/datatype/
XMLGregorianCalendar
.html#getTimezone ()

Table B-17 lists the XMLDate class.

B-20 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Time and Duration Classes

Table B-17 The XMLDate Class

OBR Name Kind Signature Java Name Description Reference
XMLDate Cl - oracle.rules.rl.ext Helper class for http://download.orac
ensions.XMLDate working with le.com/docs/cd/E1283
XMLGregorianCalendar 9_01/apirefs.1111
s as immutable objects. /e10663/oracle/rules
Treating calendars as /rl/extensions/XMLDa
immutable objects can te.html
help prevent errors.
add years to sM XMLGregorianCalen addYearsTo Returns a new http://download.orac
dar(XMLGregorianC XMLGregorianCalendar le.com/docs/cd/E1283
alendar,int) that is arg? years later 9_01/apirefs.1111
than argl. XMLDate.add /el0663/oracle/rules
ears /rl/extensions/XMLDa
t0("2009-01-01",1)=="201 te.html
0-01-01". #addYearsTo_javax_xm
1_datatype_XMLGregor
ianCalendar__int_
add months to sM XMLGregorianCalen addMonthsTo Returns a new http://download.orac
dar(XMLGregorianC XMLGregorianCalendar le.com/docs/cd/E1283
alendar,int) that is arg2 months later 9_01/apirefs.1111
than argl. XMLDate.add /el0663/oracle/rules
months /rl/extensions/XMLDa
t0("2009-01-01",1)=="200 te.html
9-02-01". #addMonthsTo_javax_x
ml_datatype_XMLGrego
rianCalendar__int_
add weeks to sM XMLGregorianCalen addWeeksTo Returns a new http://download.orac
dar(XMLGregorianC XMLGregorianCalendar le.com/docs/cd/E1283
alendar,int) that is 7*arg2 days later =~ 9_01/apirefs.1111
than argl. XMLDate.add /e10663/oracle/rules
weeks /rl/extensions/XMLDa
t0("2009-01-01",1)=="200 te.html
9-01-08". #addWeeksTo_javax_xm
1_datatype_XMLGregor
ianCalendar__ int_
add days to sM XMLGregorianCalen addDaysTo Returns a new http://download.orac
dar(XMLGregorianC XMLGregorianCalendar le.com/docs/cd/E1283
alendar,int) that is arg2 days later 9_01/apirefs.1111
than argl. XMLDate.add /el0663/oracle/rules
days /rl/extensions/XMLDa
t0("2009-01-01",1)=="200 te.html
9-01-02". #addDaysTo_javax_xml
_datatype_XMLGregori
anCalendar__int_
add hours to sM XMLGregorianCalen addHoursTo Returns a new http://download.orac
dar(XMLGregorianC XMLGregorianCalendar le.com/docs/cd/E1283
alendar,int) that is arg2 hours later 9_01/apirefs.1111
than argl. XMLDate.add /el0663/oracle/rules
hours /rl/extensions/XMLDa
to("01:01:01",1)=="02:01:0 te.html
1" #addHoursTo_javax_xm
1_datatype_XMLGregor
ianCalendar__int_
add minutesto sM XMLGregorianCalen addMinutesTo Returns a new http://download.orac
dar(XMLGregorianC XMLGregorianCalendar le.com/docs/cd/E1283
alendar,int) that is arg2 minutes later 9_01/apirefs.1111

Oracle Business Rules Built-in Classes and Functions B-21

than argl. XMLDate.add
minutes
to("01:01:01",1)=="01:02:0
1"

/el0663/oracle/rules
/rl/extensions/XMLDa
te.html
#addMinutesTo_javax_
xml_datatype_XMLGreg
orianCalendar__int_

Time and Duration Classes

Table B-17 (Cont.) The XMLDate Class

OBR Name Kind

Signature

Java Name

Description

Reference

add secondsto sM

add sM
milliseconds to

add durationto sM

from string sM

subtract years sM
from

subtract months sM
from

XMLGregorianCalen addSecondsTo

dar(XMLGregorianC
alendar,int)

XMLGregorianCalen addMillisecondsT

dar(XMLGregorianC o
alendar,int)

XMLGregorianCalen addDurationTo

dar(XMLGregorianC
alendar,XMLDuratio
n)

XMLGregorianCalen fromString

dar(String)

XMLGregorianCalen subtractYearsFro

dar(XMLGregorianC m
alendar,int)

XMLGregorianCalen subtractMonthsFr

dar(XMLGregorianC om
alendar,int)

Returns a new
XMLGregorianCalendar
that is arg2 seconds later
than argl. XMLDate.add
seconds
to("01:01:01",61)=="01:02:
02".

Returns a new
XMLGregorianCalendar
that is arg2 milliseconds
later than arg].
XMLDate.add
milliseconds
to("01:01:01",61)=="01:01:
01.061".

Returns a new
XMLGregorianCalendar
that is later than argl by
the duration arg?2.
XMLDate.add duration
to("'2009-12-30T23:59:00",
Duration.from
string("P1DT1M"))=="20
10-01-01".

Creates an
XMLGregorianCalendar
for the ISO 8601 date
literal argl.
XMLDate.from
string("2010-02-06-08:00")
=="2010-02-06-08:00".

Returns a new
XMLGregorianCalendar
that is arg2 years earlier
than argl.
XMLDate.subtract years
from("2009-01-01",1)=="
008-01-01".

Returns a new
XMLGregorianCalendar
that is arg2 months
earlier than argl.
XMLDate.subtract
months
from("2009-01-01",1)=="2
008-12-01".

B-22 Oracle Fusion Middleware User's Guide for Oracle Business Rules

http://download.orac
le.com/docs/cd/E1283
9_01/apirefs.1111
/el0663/oracle/rules
/rl/extensions/XMLDa
te.html
#addSecondsTo_javax_
xml_datatype_XMLGreg
orianCalendar__int_

http://download.orac
le.com/docs/cd/E1283
9_01/apirefs.1111
/el0663/oracle/rules
/rl/extensions/XMLDa
te.html
#addMillisecondsTo_j
avax_xml_datatype_XM
LGregorianCalendar_
int

http://www.w3.org/TR
/rif-dtb/#func:add-y
earMonthDuration-to-
dateTime_ .28

adapted_from_op:add-
yvearMonthDuration-to
-dateTime.29

http://www.w3.org/TR
/rif-dtb/#func:add-d
ayTimeDuration-to-da
teTime_.28

adapted_from_op:add-
dayTimeDuration-to-d
ateTime.29

http://download.orac
le.com/docs/cd/E1283
9_01/apirefs.1111
/el0663/oracle/rules
/rl/extensions/XMLDa
te.html
#fromString_java_lan
g_String_

http://download.orac
le.com/docs/cd/E1283
9_01/apirefs.1111
/el0663/oracle/rules
/rl/extensions/XMLDa
te.html
#subtractYearsFrom_j
avax_xml_datatype_XM
LGregorianCalendar_
int

http://download.orac
le.com/docs/cd/E1283
9_01/apirefs.1111
/el0663/oracle/rules
/rl/extensions/XMLDa
te.html
#subtractMonthsFrom_
javax_xml_datatype_X
MLGregorianCalendar_
int

Time and Duration Classes

Table B-17 (Cont.) The XMLDate Class

OBR Name Kind Signature Java Name Description Reference
subtract weeks ~ sM XMLGregorianCalen subtractWeeksFro Returns a new http://download.orac
from dar(XMLGregorianC m XMLGregorianCalendar le.com/docs/cd/E1283
alendar,int) thatis 7*arg2 days earlier 9_01/apirefs.1111
than argl. /el0663/oracle/rules
XMLDate.subtract weeks /rl/extensions/XMLDa
from("2009-01-01",1)=="2 te.html
008-12-25". #subtractWeeksFrom_j
avax_xml_datatype_XM
LGregorianCalendar___
int_
subtract days sM XMLGregorianCalen subtractDaysFrom Returns a new http://download.orac
from dar(XMLGregorianC XMLGregorianCalendar le.com/docs/cd/E1283
alendar,int) that is arg2 days earlier =~ 9_01/apirefs.1111
than argl. /el0663/oracle/rules
XMLDate.subtract days /rl/extensions/XMLDa
from("2009-01-01",1)=="2 te.html
008-12-31". #subtractDaysFrom_ja
vax_xml_datatype_ XML
GregorianCalendar__ i
nt_
subtract hours ~ sM XMLGregorianCalen subtractHoursFro Returns a new http://download.orac
from dar(XMLGregorianC m XMLGregorianCalendar le.com/docs/cd/E1283
alendar,int) that is arg2 hours earlier 9_01/apirefs.1111
than argl. /el0663/oracle/rules
XMLDate.subtract hours /rl/extensions/XMLDa
from("01:01:01",1)=="00:0 te.html
1:01". #subtractHoursFrom_j
avax_xml_datatype_XM
LGregorianCalendar_
int_
subtract minutes sM XMLGregorianCalen subtractMinutesFr Returns a new http://download.orac
from dar(XMLGregorianC om XMLGregorianCalendar le.com/docs/cd/E1283
alendar,int) that is arg2 minutes 9_01/apirefs.1111
earlier than arg]. /el0663/oracle/rules
XMLDate.subtract /rl/extensions/XMLDa
minutes te.html
from("01:01:01",1)=="01:0 #subtractMinutesFrom
0:01". _javax_xml_datatype_
XMLGregorianCalendar
__int_
subtract seconds sM XMLGregorianCalen subtractSecondsFr Returns a new http://download.orac
from dar(XMLGregorianC om XMLGregorianCalendar le.com/docs/cd/E1283
alendar,int) that is arg2 seconds 9_0l1/apirefs.1111
earlier than arg]. /el0663/oracle/rules
XMLDate.subtract /rl/extensions/XMLDa
seconds te.html
from("01:01:01",61)=="01: #subtractSecondsFrom
00:00". _javax_xml_datatype_
XMLGregorianCalendar
__int_
subtract sM XMLGregorianCalen subtractMillisecon Returns a new http://download.orac
milliseconds dar(XMLGregorianC dsFrom XMLGregorianCalendar le.com/docs/cd/E1283
from alendar,int) that is arg2 milliseconds 9_01/apirefs.1111

earlier than arg].
XMLDate.subtract
milliseconds
from("01:01:01",61)=="01:
01:00.939".

/el0663/oracle/rules
/rl/extensions/XMLDa
te.html
#subtractMillisecond
sFrom_javax_xml_data
type_XMLGregorianCal
endar__int_

Oracle Business Rules Built-in Classes and Functions B-23

Time and Duration Classes

Table B-17 (Cont.) The XMLDate Class

OBR Name Kind Signature Java Name Description Reference
subtract sM XMLGregorianCalen subtractDurationF Returns a new http://www.w3.org/TR
duration from dar(XMLGregorianC rom XMLGregorianCalendar /rif-dtb/#func:subtr
alendar,XMLDuratio that is earlier than argl act-yearMonthDuratio
n) by the duration arg?. n-from-dateTime_.28
XMLDate.subtract adapted_from_op:subt
duration ract-yearMonthDurati
from("2009-12-30T23:59:0 on-from-dateTime.29
0",Duration.from .
g PIDTIN 20 3552% e ors o0
009-12-29T23:58:00". \ .
act-dayTimeDuration-
from-dateTime_.28
adapted_from_op:subt
ract-dayTimeDuration
-from-dateTime.29
to string sM String(XMLGregoria toString Returns the ISO 8601 http://download.orac
nCalendar) lexical representation of ~le.com/docs/cd/E1283
argl. XMLDate.to 9_01/apirefs.1111
string("2010-04-15T11:00: /el10663/oracle/rules
00-09:00")=="2010-04-15T /rl/extensions/XMLDa
11:00:00-09:00". te.html
#toString_ javax_xml_
datatype_XMLGregoria
nCalendar_
is datetime sM boolean(XMLGregor isDateTime Checks if this calendar http://www.w3.org/TR
ianCalendar) have both date and time /rif-dtb/#Guard_Pred
fields. XMLDate.is icates_for_Datatypes
datetime("2009-12-30T23:
59:00")==true.
is datetime sM boolean(XMLGregor isDateTimeStamp Checks if this calendar ~ http://www.w3.org/TR
stamp ianCalendar) have date, time, and /rif-dtb/#Guard_Pred
timezone fields. icates_for_Datatypes
XMLDate.is datetime
stamp("2009-12-30T23:59:
00")==false.
is date sM boolean(XMLGregor isDate Checks if this calendar http://www.w3.org/TR
ianCalendar) have date fields and no /rif-dtb/#Guard_Pred
time fields. XMLDate.is icates_for_Datatypes
date("2009-12-30")==true
is time sM boolean(XMLGregor isTime Checks if this calendar http://www.w3.org/TR
ianCalendar) have time fields and no /rif-dtb/#Guard_Pred
date fields. XMLDate.is icates_for_Datatypes
time("2009-12-30T23:59:0
0")==false.
get timezone sM XMLDuration(XML getTimezone Gets the timezone from http://www.w3.org/TR
GregorianCalendar) the calendar as a /rif-dtb/
duration. XMLDate.get #func:timezone-from-
timezone("11:00:00+05:30 dateTime_.28adapted_
")==Duration.from from_fn:timezone-fro
string("PT5H30M"). m-dateTime.29
get seconds sM BigDecimal(XMLGre getSeconds Gets the seconds, http://www.w3.org/TR
gorianCalendar) including fractional part, /rif-dtb/

from the calendar as a
BigDecimal.
XMLDate.get
seconds("00:00:12.345")=
=12.345.

#func:seconds-from-d
ateTime_.28adapted_f
rom_fn:seconds-from-
dateTime.29

Table B-18 lists the OracleDate class.

B-24 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Time and Duration Classes

Table B-18 The OracleDate Class

OBR Name Kind Signature Java Name Description
OracleDate Cl - oracle.rules.sdk2.extensio Helper class for working with
ns.OracleDate oracle.jbo.domain.Timestamp. For
examples of method use, see like-named
XMLDate methods.

add years to sM oracle.jbo.domain.Timest addYearsTo Returns a new
amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) years later than argl.

add monthsto sM oracle.jbo.domain.Timest addMonthsTo Returns a new
amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) months later than argl.

add weeks to sM oracle.jbo.domain.Timest addWeeksTo Returns a new
amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is
mestamp,int) 7*arg?2 days later than argl.

add days to sM oracle.jbo.domain.Timest addDaysTo Returns a new
amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) days later than argl.

add hours to sM oraclejbo.domain.Timest addHoursTo Returns a new
amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) hours later than arg1.

add minutesto sM oracle jbo.domain.Timest addMinutesTo Returns a new
amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) minutes later than argl.

add secondsto sM oracle.jpbo.domain.Timest addSecondsTo Returns a new
amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) seconds later than argl.

add sM oraclejbo.domain.Timest addMillisecondsTo Returns a new

milliseconds to amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) milliseconds later than argl.

add durationto sM oracle.jbo.domain.Timest addDurationTo Returns a new
amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is later
mestamp,XMLDuration) than argl by the duration arg?2.

from string sM oracle.jbo.domain.Timest fromString Creates an oracle.jbo.domain.Timestamp
amp(String) for the ISO 8601 date literal argl.

subtract years ~ sM oracle.jbo.domain.Timest subtractYearsFrom Returns a new

from amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) years earlier than arg].

subtract months sM oracle jbo.domain.Timest subtractMonthsFrom Returns a new

from amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) months earlier than argl.

subtract weeks = sM oracle jbo.domain.Timest subtractWeeksFrom Returns a new

from amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is
mestamp,int) 7*arg?2 days earlier than argl.

subtract days sM oracle jbo.domain.Timest subtractDaysFrom Returns a new

from amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) days earlier than argl.

subtract hours ~ sM oracle jbo.domain.Timest subtractHoursFrom Returns a new

from amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) hours earlier than argl.

subtract sM oracle.jbo.domain.Timest subtractMinutesFrom Returns a new

minutes from amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2
mestamp,int) minutes earlier than argl.

subtractseconds sM oracle.jbo.domain.Timest subtractSecondsFrom Returns a new

from amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is arg2

mestamp,int)

Oracle Business Rules Built-in Classes and Functions B-25

seconds earlier than argl.

Time and Duration Classes

Table B-18 (Cont.) The OracleDate Class

OBR Name Kind Signature Java Name Description

subtract sM oracle.jbo.domain.Timest subtractMillisecondsFro Returns a new

milliseconds amp(oracle.jpo.domain.Ti m oracle.jbo.domain.Timestamp that is arg2

from mestamp,int) milliseconds earlier than argl.

subtract sM oraclejbo.domain.Timest subtractDurationFrom Returns a new

duration from amp(oracle.jbo.domain.Ti oracle.jbo.domain.Timestamp that is
mestamp,XMLDuration) earlier than argl by the duration arg?2.

to string sM String(oracle jbo.domain. toString Returns the ISO 8601 lexical

Timestamp)

representation of argl.

Table B-19 lists the Duration class.

Table B-19 The Duration Class

Signature

Java Name

Description

Reference

OBR Name Kind
Duration Cl
compare sM

years between sM

months sM
between
weeks sM
between

- oracle.rules.sdk2.exte
nsions.OracleDuratio

n

int(Calendar | XM -
LGregorianCalen
dar | oracle.jbo.do
main.Timestamp,
Calendar | XMLGr
egorianCalendar |
oracle.jbo.domain.
Timestamp)

int(Calendar | XM

LGregorianCalen

dar | oracle.jbo.do

main.Timestamp,

Calendar | XMLGr
egorianCalendar |

oracle.jbo.domain.
Timestamp)

int(Calendar | XM
LGregorianCalen
dar | oracle.jbo.do
main.Timestamp,
Calendar | XMLGr
egorianCalendar |
oracle.jbo.domain.
Timestamp)

int(Calendar | XM
LGregorianCalen
dar | oracle.jbo.do
main.Timestamp,
Calendar | XMLGr
egorianCalendar |
oracle jbo.domain.
Timestamp)

Helper class for comparing -

yearsBetween

monthsBetween

weeksBetween

and subtracting dates. Can
convert the difference of 2
dates into an XMLDuration.
Can also create an
XMLDuration from its
literal (String)
representation. Only day
time and year month
XMLDurations are
supported.

Returns -1, 0, or 1 according
to whether argl<arg?,
argl==arg?2, or argl>arg2,
respectively.
Duration.compare("2010-01-
01","2010-02-02")==-1

Subtracts argl from arg2,
where the args are some
kind of date/time.
Duration.years
between("2008-01-01",
"2009-02-02")==1.

Subtracts argl from arg?2,
where the args are some
kind of date/time.
Duration.months
between("2009-01-01","2008-
02-02")==-10.

Subtracts argl from arg?2,
where the args are some
kind of date/time.
Duration.weeks
between("2000-01-01","2000-
02-04")==4.

B-26 Oracle Fusion Middleware User's Guide for Oracle Business Rules

http://www.w3.org
/TR/rif-dtb/#pred
:date
Time-less-than_.2
8adapted_from_op:
dateTime-less-tha
n.29

Time and Duration Classes

Table B-19 (Cont.) The Duration Class
OBR Name Kind Signature Java Name Description Reference
days between sM int(Calendar IXM daysBetween Subtracts argl from arg?2, -
LGregorianCalen where the args are some
dar | oracle.jbo.do kind of date/time.
main.Timestamp, Duration.days
Calendar | XMLGr between("2000-01-01","2000-
egorianCalendar | 02-04")==34.
oracle jbo.domain.
Timestamp)
hours sM int(Calendar | XM hoursBetween Subtracts argl from arg?2, -
between LGregorianCalen where the args are some
dar | oracle.jbo.do kind of date/time.
main.Timestamp, Duration.hours
Calendar | XMLGr between("2000-01-04T03:30:0
egorianCalendar | 0","2000-01-01T00:00:00")==-
oracle jbo.domain. 75
Timestamp)
minutes sM int(Calendar |IXM minutesBetween Subtracts argl from arg2, -
between LGregorianCalen where the args are some
dar | oracle.jbo.do kind of date/time.
main.Timestamp, Duration.minutes
Calendar | XMLGr between("03:30:00","04:45:00
egorianCalendar | ")==75.
oracle jbo.domain.
Timestamp)
seconds sM int(Calendar IXM secondsBetween Subtracts argl from arg?2, -
between LGregorianCalen where the args are some
dar | oracle.jbo.do kind of date/time.
main.Timestamp, Duration.seconds
Calendar | XMLGr between("03:30:00","03:31:15
egorianCalendar | ")==75.
oracle.jbo.domain.
Timestamp)
milliseconds sM int(Calendar | XM millisecondsBetween Subtracts argl from arg?2,
between LGregorianCalen where the args are some
dar | oracle.jbo.do kind of date/time.
main.Timestamp, Duration.milliseconds
Calendar | XMLGr between("03:30:00","03:31:15
egorianCalendar | ")==75000.
oracle.jbo.domain.
Timestamp)
between sM XMLDuration(Cal between Subtracts argl from arg2, http://www.w3.org
endar | XMLGrego where the args are some /TR/rif-dtb/#func
rianCalendar | ora kind of date/time. Returns :subtract-date
cle.jbo.domain.Ti day-time Duration. Times_.28adapted_
mestamp, Duration.between("2009-01- from_op:subtract-
Calendar | XMLGr 01T01:15:00","2009-02-02T11: dateTimes.29
egorianCalendar | 30:00")==Duration.from
oracle jbo.domain. string("P32DT10H15M").
Timestamp)
from string sM XMLDuration(Stri fromString Parses a duration from an http://www.w3.org
ng) ISO 8601 duration literal. /TR/xpath-functio

"P1DT2H3M" is the duration
of 1 day, 2 hours, and 3
minutes.

ns/#duration-subt
ypes

Oracle Business Rules Built-in Classes and Functions B-27

Time and Duration Classes

Table B-19 (Cont.) The Duration Class

Description

Reference

OBR Name Kind Signature Java Name
compare sM int(XMLDuration, compareDurations
durations XMLDuration)
is day-time sM boolean(XMLDur isDayTimeDuration
duration ation)
is year-month sM boolean(XMLDur isYearMonthDuratio
duration ation) n
get seconds sM BigDecimal(XML getSeconds
Duration)
divide sM XMLDuration(XM -
LDuration,int | do
uble)

Compares two durations.

Both must be either
day-time or year-month

durations. Returns -1, 0, or 1

according to whether

argl<arg?2, argl==arg2, or

argl>arg?, respectively.

Duration.compare(Duration.

from

string("P1Y"),Duration.from

string("P13M"))==-1.

Checks if argl a day-time
duration. Only day-time and
year-month durations are

supported. Duration.is
day-time
duration(Duration.from

string("P2DT1S"))==true.

Checks if argl a year-month
duration. Only day-time and
year-month durations are

supported. Duration.is
year-month
duration(Duration.from
string("P13M"))==true.

Gets the seconds field from

the duration as a
BigDecimal, including
fractional seconds.
Duration.get
seconds(Duraton.from

string("PT12.345S"))==12.34
5.

Divides a duration by an
integral or double divisor.
Duration.divide(Duration.fr

om

string("P1Y"),4)==Duration.f

rom string("P3M").

B-28 Oracle Fusion Middleware User's Guide for Oracle Business Rules

http://www.w3.org
/TR/rif-dtb/#pred
:dayTimeDuration-
less-than_ .28
adapted_from_op:d
ayTimeDuration-le
ss-than.29

http://www.w3.org
/TR/rif-dtb/#pred
:yearMonthDuratio
n-less-than_.28
adapted_from op:y
earMonthDuration-
less-than.29

http://www.w3.org
/TR/rif-dtb/#Guar
d_Predicates_for_
Datatypes

http://www.w3.org
/TR/rif-dtb/#Guar
d_Predicates_for_
Datatypes

http://www.w3.org
/TR/rif-dtb/#func
:seconds-from-dur
ation_.28
adapted_from_fn:s
econds-from-durat
ion.29

http://www.w3.org
/TR/rif-dtb/#func
:divide-dayTimeDu
ration_.28
adapted_from_op:d
ivide-dayTimeDura
tion.29

http://www.w3.org
/TR/rif-dtb/#func
:divide-yearMonth
Duration_.28
adapted_from_op:d
ivide-yearMonthDu
ration.29

Time and Duration Classes

Table B-19 (Cont.) The Duration Class

OBR Name Kind Signature Java Name Description Reference

ratio sM BigDecimal(XML - Computes the ratio of 2 http://www.w3.org
Duration,XMLDur durations as a BigDecimal. ~ /TR/rif-dtb/#func
ation) Duration.ratio(Duration.fro :divide-dayTimeDu

m

string("P1Y"),Duration.from

string("P3M"))==4

ration-by-dayTime
Duration_.28
adapted_from_op:d
ivide-dayTimeDura
tion-by-dayTimeDu
ration.29

http://www.w3.org
/TR/rif-dtb/#func
:divide-yearMonth
Duration-by-yearM
onthDuration_.28
adapted_from_op:d
ivide-yearMonthDu
ration-by-yearMon
thDuration.29

Table B-20 The XMLDuration Class

Table B-20 lists the XMLDuration class.

OBR Name Kind Signature Java Name Description Reference
XMLDuration Cl - javax.xml.datatype. Immutable representation http://java.sun.com/
Duration of a time span as definedin javase/6/docs/api/ja
the W3C XML Schema 1.0 vax/xml/datatype/Dur
specification. Only ation.html
day4hneagdyeapnunﬁh http://www.w3.0org/TR
XMLDurations are .
supported. /xpéth—functlons/#du
ration-subtypes
years P int - Years field of the duration. http://www.w3.org/TR
Duration.from /rif-dtb/#func:
string("P2Y3M").years==2. years-from-duration_
.28adapted_from_fn:y
ears-from-duration.?2
9
months P int - Months field of the http://www.w3.org/TR
duration. Duration.from /rif-dtb/#func:
string("P2Y3M").months==2. months-from-duration
_.28adapted_from_fn:
months-from-duration
.29
days p int - Days field of the duration. http://www.w3.org/TR
Duration.from /rif-dtb/#func:
string("P1DT2H3M4S").days days-from-duration_.
==1. 28adapted_from_fn:da
ys-from-duration.29
hours P int - Hours field of the duration. http://www.w3.org/TR
Duration.from /rif-dtb/#func:
string("P1DT2H3M4S").hour hours-from-duration_
s==2. .28adapted_from_fn:h
ours-from-duration.?2
9
minutes P int - Minutes field of the http://www.w3.org/TR

Oracle Business Rules Built-in Classes and Functions B-29

duration. Duration.from
string("P1DT2H3M4S").min
utes==3.

/rif-dtb/#func:
minutes-from-duratio
n_.28adapted_from_fn
:minutes-from-durati
on.29

Miscellaneous Classes

Table B-20 (Cont.) The XMLDuration Class

OBR Name Kind Signature Java Name Description Reference
seconds P int - Seconds field of the http://www.w3.org/TR
duration. Duration.from /rif-dtb/#func:
string("P1DT2H3M4S").seco seconds-from-duratio
nds==4. n_.28adapted_from_fn
:seconds-from-durati
on.29
sign P int - Returns the sign of this -
duration in -1,0, or 1.
Duration.from
string("-P1Y").sign==-1.
add M XMLDuration(XM - Adds two durations. http://java.sun.com/
LDuration) Duration.from javase/6/docs/api/ja
string("P6M").add(Duration. vax/xml/datatype/
from Duration.html#add(ja
string("P6M"))==Duration.fr vax.xml.datatype.Dur
om string("P1Y"). ation)
subtract M XMLDuration(XM - Subtracts two durations. http://java.sun.com/
LDuration) Duration.from javase/6/docs/api/ja
string("P6M").subtract(Dura vax/xml/datatype/
tion.from Duration.html#subtra
string("P6M"))==Duration.fr ct (javax.xml.datatyp
om string("P0Y"). e.Duration)
multiply M XMLDuration(Big - Multiplies argl durationby http://java.sun.com/
Decimal | int) arg? factor. Duration.from javase/6/docs/api/ja
string("P6M"). multiply(2)== vax/xml/datatype/
Duration.from string("P1Y"). Duration.html#multip
ly (java.math.BigDeci
mal)
negate M XMLDuration() - Durations can be negative, http://java.sun.com/
e.g. if you reverse the javase/6/docs/api/ja
arguments to vax/xml/datatype/
Duration.between(argl,arg2 Duration.html#negate
). Duration.from ()
string("P6M").negate()==Du
ration.from string("-P6M").
to string M String() toString Gets the ISO8601 literal http://www.w3.org/TR
representation for this /xpath-functions/
duration. Duration.from #duration-subtypes
string("P6M").to
string()=="P6M".
Table B-21 lists the CurrentDate class.
Table B-21 The CurrentDate Class
OBR Name Kind Signature Java Name Description
CurrentDate Cl - oracle.rules.rl.extension Fact type of a holder for the current
s.CurrentDate date. Can be used in rule patterns.
date P Calendar Returns the current date.

B.5 Miscellaneous Classes

This section covers the miscellaneous classes provided by Oracle Business Rules.

Table B-22 lists the JAXBEl ement class.

B-30 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Functions

Table B-22 The JAXBElement Class
OBR Name Kind Signature Java Name Description Reference
JAXBElement Cl - javax.xml.bind.JAXB Represents XML element http://java.sun.com/ja
Element information in XML Fact vase/6/docs/api/javax/
Types. xml/bind/JAXBElement.h
tml
nil P boolean - A nil element is not the same http://java.sun.com/ja
thing (in XML) as an absent vase/6/docs/api/javax/
element. xml/bind/JAXBElement.h
tml#isNil ()
value P Object - This is a reference to an XML http://java.sun.com/ja
Fact Type vase/6/docs/api/javax/
xml/bind/JAXBElement.h
tml#getValue ()
Table B-23 lists the Object class.
Table B-23 The Object Class
OBR Name Kind Signature Java Name Description Reference
Object Cl - java.lang.Object Base class of all Java objects. http://java.sun.com/jav

ase/6/docs/api/java/lan
g/Object.html

B.6 Functions
Table B-24 lists the different functions provided by Oracle Business Rules..

Table B-24 The Oracle Business Rules Functions

OBR Name Signature RL Name Description Reference
print void(Object) println Prints the string value of argl. Oracle Fusion
Middleware Language
Reference Guide for
Oracle Business Rules
RL.assert a tree of Object(Object) assertTree Asserts (insert into working ~ Oracle Fusion
facts memory) the tree of visible Middleware Language
fact types with argl as the Reference Guide for
root. Returns argl. Oracle Business Rules
RL.assert Object(Object) assert Asserts argl (insert argl into Oracle Fusion
working memory). Returns Middleware Language
argl. Reference Guide for
Oracle Business Rules
RL.retract void(Object) retract Removes the fact associated ~ Oracle Fusion
with the object argl from Middleware Language
working memory. Reference Guide for
Oracle Business Rules
RL.get fact ID int(Object) id Returns the fact id associated ~ Oracle Fusion
with the object argl. If argl is Middleware Language
not associated with a fact, Reference Guide for
return -1. Oracle Business Rules
RL.get factby ID Object(int) object Returns the object associated ~ Oracle Fusion

with the given fact id. If there

is no such fact id, returns null.

Middleware Language
Reference Guide for
Oracle Business Rules

Oracle Business Rules Built-in Classes and Functions B-31

Functions

Table B-24 (Cont.) The Oracle Business Rules Functions

OBR Name

Signature

RL Name

Description

Reference

RL.contains

RL.ruleset
stack.push

RL.ruleset
stack.pop

RL.ruleset
stack.get

RL.ruleset
stack.set

RL.ruleset
stack.clear

RL.date.get
current

RL.date.set
current

RL.date.get
effective

RL.date.set
effective

RL.watch.rules

RL.watch.activatio

ns

RL.watch.facts

RL.watch.focus

boolean(List,Object) contains

void(String)

String()

String[1(

void(String|[])

void()

Calendar()

void(Calendar)

Calendar()

void(Calendar)

void()

void()

void()

void()

pushRuleset

popRuleset

getRulesetStack

setRulesetStack

clearRulesetStack

getCurrentDate

setCurrentDate

getEffectiveDate

setEffectiveDate

watchRules

watchActivations

watchFacts

watchFocus

The contains() function is
similar to the contains()
method on Java Collection but
includes the ability to handle
the presence of JAXBElement
in the collection.

Pushes argl, the name of a
ruleset, onto the ruleset stack.

Pops and returns the top of
the ruleset stack, the name of
a ruleset.

Returns the ruleset stack as a
String array.

Sets the ruleset stack to argl, a
String array.

Pops all ruleset names off the
ruleset stack.

Returns the date associated
with the CurrentDate fact.

Sets the date for reasoning on
an engine managed fact
representing the "current"
date (with the CurrentDate
fact).

Returns the current value of
the effective date.

Updates the effective date in
the rules engine.

Prints information about rule
firings (execution of
activations).

Prints information about
addition or removal of
activations from the agenda.

Prints information about
assertion, retraction, or
modification of facts in
working memory.

Prints information about
pushing and popping of the
ruleset stack.

B-32 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Oracle Fusion
Middleware Language
Reference Guide for
Oracle Business Rules

Oracle Fusion
Middleware Language
Reference Guide for
Oracle Business Rules

Oracle Fusion
Middleware Language
Reference Guide for
Oracle Business Rules

Oracle Fusion
Middleware Language
Reference Guide for
Oracle Business Rules

Oracle Fusion
Middleware Language
Reference Guide for
Oracle Business Rules

Oracle Fusion
Middleware Language
Reference Guide for
Oracle Business Rules

Oracle Fusion
Middleware Language
Reference Guide for
Oracle Business Rules

Oracle Fusion
Middleware Language
Reference Guide for
Oracle Business Rules

Oracle Fusion
Middleware Language
Reference Guide for
Oracle Business Rules

Oracle Fusion
Middleware Language
Reference Guide for
Oracle Business Rules

Oracle Fusion
Middleware Language
Reference Guide for
Oracle Business Rules

Oracle Fusion
Middleware Language
Reference Guide for
Oracle Business Rules

Oracle Fusion
Middleware Language
Reference Guide for
Oracle Business Rules

Oracle Fusion
Middleware Language
Reference Guide for
Oracle Business Rules

Functions

Table B-24 (Cont.) The Oracle Business Rules Functions

OBR Name Signature RL Name Description Reference
RL.watch.compila void() watchCompilations Prints information about how Oracle Fusion
tions the condition parts of a rule Middleware Language
are shared with existing rules. Reference Guide for
Oracle Business Rules
RL.watch.all void() watchAll Prints information about Oracle Fusion
rules, facts, activations, focus, Middleware Language
and compilations. Reference Guide for
Oracle Business Rules
RL.stop void() clearWatchRules Stops printing information Oracle Fusion

watching.rules

RL.stop void()
watching.activatio

ns

RL.stop void()

watching.facts

RL.stop void()
watching.focus

RL.stop void()
watching.compilat

ions

RL.stop void()

watching.all

RL.show.facts void()

RL.show.activatio void()
ns

clearWatchActivations

clearWatchFacts

clearWatchFocus

clearWatchCompilations

clearWatchAll

showFacts

showActivations

about rule firings.

Stops printing information
about addition or removal of
activations from the agenda.

Stops printing information
about assertion, retraction, or
modification of facts in
working memory.

Stops printing information
about pushing and popping
of the ruleset stack.

Stops printing information
about how the condition parts
of a rule are shared with
existing rules.

Stops printing information
about rules, facts, activations,
focus, and compilations.

Prints all facts in working
memory.

Prints all activations on the
agenda.

Middleware Language
Reference Guide for
Oracle Business Rules

Oracle Fusion
Middleware Language
Reference Guide for
Oracle Business Rules

Oracle Fusion
Middleware Language
Reference Guide for
Oracle Business Rules

Oracle Fusion
Middleware Language
Reference Guide for
Oracle Business Rules

Oracle Fusion
Middleware Language
Reference Guide for
Oracle Business Rules

Oracle Fusion
Middleware Language
Reference Guide for
Oracle Business Rules

Oracle Fusion
Middleware Language
Reference Guide for
Oracle Business Rules

Oracle Fusion
Middleware Language
Reference Guide for
Oracle Business Rules

Oracle Business Rules Built-in Classes and Functions B-33

Functions

B-34 Oracle Fusion Middleware User's Guide for Oracle Business Rules

C

Oracle Business Rules Frequently Asked

Questions

This appendix contains frequently asked questions about Oracle Business Rules.

Section C.1, "Why Do Rules Not Fire When A Java Object is Asserted as a Fact and
Then Changed Without Using the Modify Action?"

Section C.2, "What are the Differences Between Oracle Business Rules RL
Language and Java?"

Section C.3, "How Does a RuleSession Handle Concurrency and Synchronization?"
Section C.4, "How Do I Correctly Express a Self-Join?"
Section C.5, "How Do I Use a Property Change Listener in Oracle Business Rules?"

Section C.6, "What Are the Limitations on a Decision Service with Oracle Business
Rules?"

Section C.7, "How Do I Put Java Code in a Rule?"

Section C.8, "Can I Use Java Based Facts in a Decision Service with BPEL?"
Section C.9, "How Do I Enable Debugging in a BPEL Decision Service?"
Section C.10, "How Do I Support Versioning with Oracle Business Rules?"

Section C.11, "What is the Priority Order Using Priorities with Rules and Decision
Tables?"

Section C.12, "Why do XML Schema with xsd:string Typed Elements Import as
Type JAXBElement?"

Section C.13, "Why Are Changes to My Java Classes Not Reflected in the Data
Model?"

Section C.14, "How Do I Use Rules SDK to Include a null in an Expression?"
Section C.15, "Is WebDAV Supported as a Repository to Store a Dictionary?"
Section C.16, "Using a Source Code Control System with Rules Designer"

C.1 Why Do Rules Not Fire When A Java Object is Asserted as a Fact and
Then Changed Without Using the Modify Action?

When a Java object has been asserted and then the object is changed without using the
modify action, the object must be re-asserted in the Rules Engine. Therefore, if a rule
associated with the changed Java object does not fire, this means that the Rules Engine

Oracle Business Rules Frequently Asked Questions C-1

What are the Differences Between Oracle Business Rules RL Language and Java?

did not reevaluate any rule conditions and did not activate any rules. Thus, when a
Java object changes without using the modify action, the object must be re-asserted in
the Rules Engine.

C.2 What are the Differences Between Oracle Business Rules RL
Language and Java?

For more information on the differences between Oracle Business Rules RL Language
and Java, see Appendix A in Oracle Fusion Middleware Language Reference Guide for
Oracle Business Rules.

C.3 How Does a RuleSession Handle Concurrency and Synchronization?

Method calls on an Oracle Business Rules RuleSession object are thread-safe such that
calls by multiple threads do not cause exceptions at the RuleSession level. However,
there are no exclusivity or transactional guarantees on the execution of methods. The
lowest-level run method in the Rules Engine is synchronized, so two threads with a
shared RuleSession cannot both simultaneously execute run. One call to run must
wait for the other to finish.

Oracle Business Rules functions are not synchronized by default. Like Java methods,
Oracle Business Rules functions can execute concurrently and it is the programmer's
responsibility to use synchronized blocks to protect access to shared data (for instance,
a HashMap containing results data).

Any set of actions that a user wants to be executed as in a transaction-like form must
synchronize around the shared object. Users should not synchronize around a
RuleSession object because exceptions thrown when calling RuleSession
methods may require the RuleSession object to be discarded.

For most uses of a RuleSession object in Oracle Business Rules, each thread or
servlet instance should create and use a local RuleSession object. This usage pattern
is roughly analogous to using a JDBC connection in this manner.

The following examples demonstrate how to use a shared RuleSession object.
For the case where Thread-1 includes the following:

ruleSession.callFunctionWithArgument ("assert", singleFactl);
ruleSession.callFunctionWithArgument ("assert", singleFact2);

and Thread-2 includes the following:

ruleSession.callFunction("run");
ruleSession.callFunction("clear");

In this case, the execution of the two threads might proceed as shown in Example C-1.

Example C-1 Using a Shared RuleSession Object in Oracle Business Rules

Thread-1: ruleSession.callFunctionWithArgument ("assert", singleFactl);
Thread-2: ruleSession.callFunction("run");

Thread-2: ruleSession.callFunction("clear");

Thread-1: ruleSession.callFunctionWithArgument ("assert", singleFact2);

In Example C-1, the two facts Thread-1 asserted are never both in the RuleSession
during a call to run. Notice also that only one thread calls the run method. If you use
a design where multiple threads can call run on a shared RuleSession, this can
create extremely hard to find bugs and there is usually no gain in performance.

C-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

How Do I Correctly Express a Self-Join?

All accesses to a shared RuleSession object must be synchronized to ensure the
intended behavior. However, a RuleSession instance may throw an exception and
not be recoverable, so do not use this object as the synchronization object. Instead, use
another shared object as the synchronization point.

One can envision a shared server process producer-consumer model for
RuleSession use. In this model, multiple threads assert facts to a shared
RuleSession and one thread periodically calls run, reads any results, and outputs
them. This ensures that thread conflicts cannot occur, because the two code segments
must be executed serially and cannot be intermingled. For example, the code with
shared objects, producer code, and consumer code in Example C-2, Example C-3, and
Example C—4.

Example C-2 RuleSession Shared Objects

RuleSession ruleSession;
Object ruleSessionLock = new Object();

Example C-3 RuleSession Producer Code

public String addFacts(FactTypeA fa, FactTypeB fb, FactTypeC fc) {
String status = "";
synchronized (ruleSessionLock) {
try {
ruleSession.callFunctionWithArgument ("assert", fa);
ruleSession.callFunctionWithArgument ("assert", fb);
status = "success";
} catch (Exception e) {
// a method that creates a new RuleSession loads it with rules
initializeRuleSession();
status = "failure";
}

return status;

Example C-4 RuleSession Consumer Code

public List exec()({
synchronized(ruleSessionLock) {

try {
ruleSession.callFunction("run");
List results = (List)ruleSession.callFunction("getResults");

ruleSession.callFunction("clearResults");
return results;
} catch (Exception e) ({
// a method that creates a new RuleSession loads it with rules
initializeRuleSession();
return null;

Note: When multiple threads are sharing a RuleSession object, if
more than one of the threads calls the run method, this can create
extremely hard to find bugs and there is usually no gain in
performance.

C.4 How Do I Correctly Express a Self-Join?

When working with facts, there are cases where the runtime behavior of Oracle RL
may produce surprising results.

Oracle Business Rules Frequently Asked Questions C-3

How Do | Correctly Express a Self-Join?

Consider the Oracle RL code in Example C-5.

Example C-5 Self-Join Using Fact F

class F {int 1i; };

rule rl {
if (fact F fl1 && fact F £2) {
println("Results: " + f1.i + ", " + £2.1);

}
}
assert (new F(i:1));
assert (new F(i:2));
run();

How many lines print in the Example C-5 output? The answer is 4 lines because the
same fact instance can match for both £1 and £2.

Thus, Example C-5 gives the following output:

Results: 2, 2
Results: 2, 1
Results: 1, 2
Results: 1, 1

Using the same example with a third F, for example (assert (new F(i:3)) ;) then
nine lines are printed and if, at the same time, a third term && fact F F3isadded
then 27 lines are printed.

If you are attempting to find all combinations and orders of distinct facts, you need an
additional term to in the test, as shown in Example C-6.

Example C-6 Find All Combinations of Fact F

rule rl {
if (fact F F1 && fact F F2 && F1 != F2) {
println("Results: " + F1.i + ", " + F2.1);

}
}

The code in Example C-6 gives the following output:

Results: 2, 1
Results: 1, 2

The simplest, although not the fastest way to find all combinations of facts, regardless
of their order, is to use the code shown in Example C-7.

Example C-7 Finding Combinations of Fact F

rule rl {
if (fact F Fl && fact F F2 && 1d(F1l) < id(F2)) {
println("Results: " + F1.i + ", " + F2.1);

}
}

Because the function 1d () shown in Example C-7 takes longer to execute in a test
pattern than a direct comparison, the fastest method is to test on a unique value in
each object. For example, you could add an integer value property "oid" to your class
that is assigned a unique value for each instance of the class.

Example C-8 shows the same rule using the oid value.

Example C-8 Fast Complete Comparison

rule rl {

C-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

How Do | Use a Property Change Listener in Oracle Business Rules?

if (fact F F1 && fact F F2 && Fl.oid < F2.o0id) {
println("Results: " + F1.1 + ", " + F2.1);
}
}

This problem may also arise if you attempt to remove all duplicate facts from the
Oracle Rules Engine, using a function as shown Example C-9.

Example C-9 Retracting Duplicate Facts Incorrect Sample

rule rRemoveDups {
if (fact F F1 && fact F F2 && F1.i == F2.i) {
retract (F2);
}
}

However, this rule removes all facts of type F, not just the duplicates because F1 and
F2 may be the same fact instance. Example C-10 shows the correct version of this rule.

Example C-10 Retracting Duplicate Facts Corrected Sample

rule rRemoveDups {
if (fact F F1 && fact F F2 && F1 != F2 && Fl.1i == F2.1) {
retract (F2) ;
}
}

C.5 How Do | Use a Property Change Listener in Oracle Business Rules?

The Oracle Rules Engine supports the Java PropertyChangeListener design
pattern. This allows an instance of a Java fact that uses the
PropertyChangeSupport class to automatically notify the Oracle Rules Engine
when property values have changed. Java facts are not required to implement this
pattern to be used by Oracle Rules Engine.

Typically, changes made to values of a property of a Java object that has previously
been asserted to the Oracle Rules Engine requires that the object be re-asserted in order
for rules to be reevaluated with the new property value. For properties that fire
PropertyChangeEvent, changing the value of those properties both changes the
value and re-asserts the fact to the Oracle Rules Engine.

To implement the PropertyChangeListener design pattern in a class, do the
following:

1. Import this package in the class:

import java.beans.PropertyChangeSupport;

2. Add a private member variable to the class:

private PropertyChangeSupport m_pcs = null;

3. In the constructor, create a new PropertyChangeSupport object:

m_pcs = new PropertyChangeSupport (this);

4. Then for each setter, add the call to firePropertyChange:

public void setName(String name) {
String oldval = m_name;
m_name = name;
m_pcs.firePropertyChange("name", oldval, m_name);

Oracle Business Rules Frequently Asked Questions C-5

What Are the Limitations on a Decision Service with Oracle Business Rules?

}

5. Implement addPropertyChangeListener method (delegate to m_pcs):

public void addPropertyChangeListener (PropertyChangeListener pcl) {
m_pcs.addPropertyChangeListener (pcl);
}

6. Implement removePropertyChangeListener method (delegate to m_pcs):

public removePropertyChangeListener (PropertyChangeListener pcl) {
m_pcs.removePropertyChangelListener(pcl);

}

When deciding whether to design your application to always explicitly re-assert
modified objects or implement the PropertyChangeListener design pattern,
consider the following;:

= Explicitly re-asserting modified objects allows a user to group several property
changes and making them visible to the rules all at once. This is most useful when
a concurrent thread is executing rules, and the rules should see only a complete
group of property changes.

= Explicit assert reduces the computational cost of rule re-evaluation when multiple
properties are changed. If multiple properties are changed at the same time, this
results in multiple re-evaluations of rule conditions that reference the fact type.
This occurs because each property change event results in a re-assertion of the
object. Using an explicit assert instead of the PropertyChangeListener pattern
eliminates this extra computational cost.

= Explicit assert is required when a rule modifies a fact that is also tested in its
condition, but the automatic reassert triggered by the
PropertyChangeListener before a guard condition property is set would
cause the rule to refire itself endlessly.

= Explicit assert must be used when modifying Oracle RL facts and XML facts,
because these cannot be defined to support the PropertyChangeListener
design pattern.

s PropertyChangeListener-enabled facts allow a Java application to
communicate property changes to the rule engine without having to change the
application to perform explicit asserts. This also means that code that modifies a
property of an object does not need to have a reference to the RuleSession object
in scope.

s PropertyChangeListener support prevents the common error of neglecting to
re-assert a fact after changing its properties.

C.6 What Are the Limitations on a Decision Service with Oracle Business

Rules?

There are some limitations for using Business Rules with a BPEL process, including
the following:

= Only visible XML fact types may be specified as the input for a decision service.
= Only visible XML fact types may be specified as the output of a decision service.

For an additional restriction, see Appendix D.8, "How Are Decision Service Input
Output Element Types Restricted?".

C-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

How Do | Support Versioning with Oracle Business Rules?

For information on setting XML fact type visible option, see Section 3.2, "Working with
XML Facts".

C.7 How Do | Put Java Code in a Rule?

You do not actually put Java code in a rule. However, you can invoke a Java method
from a rule condition or action.

C.8 Can | Use Java Based Facts in a Decision Service with BPEL?

Oracle BPEL PM can invoke only decision functions exposed as a decision service, and
this means that the decision function inputs and outputs must be XML fact types.

You can use an existing ruleset or decision function that uses Java fact types if you
convert the input XML facts to Java facts. For example, you could create some rules in
a ruleset, named convertFromXML, and put this ruleset before the Java ruleset in the
decision function ruleflow. Similarly, you could create a ruleset to convert from Java
facts to output XML facts and put this ruleset after the Java ruleset in the decision
function ruleflow.

Alternatively, if your rules use only properties, and no methods or fields, from the
Java fact types you can replace the Java fact types with XML fact types as follows:

1. Delete the Java fact types (first making careful note of the aliases of the fact types
and properties).

2. Import similar XML fact types and edit the aliases of the fact types and properties
to be the same as the deleted Java fact types and properties.

C.9 How Do | Enable Debugging in a BPEL Decision Service?

To enable debugging output during ruleset execution for a BPEL Decision Service, you
enable the SOA rules logger. When the SOA rules logger is set to TRACE level then the
output of watchAll is logged to the SOA diagnostic log. When you change the
logging level using Fusion Middleware Control Console, you do not need to redeploy
the application to use the specified level.

For information on using the SOA oracle.soa.service.rules and
oracle.soa.services.rules.obrtrace loggers, see Oracle Fusion Middleware Administrator’s
Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

C.10 How Do I Support Versioning with Oracle Business Rules?
Versioning is supported in Oracle Business Rules in two ways:

= Atdesign time, the dictionary is stored as an XML file in a JDeveloper project. The
dictionary can be versioned in a source control system in the same way as any
other source file.

= Atruntime, the dictionary is stored in MDS. If MDS is database backed then
versioning is supported using MDS.

Note: It is possible for a server application to respond to dictionary changes as they are
made visible to the application in MDS. The rule service engine (decision service) does
this automatically. For non-SCA application, this can be done using the
RuleRepository interface. At this time, they way to support an "in-draft" version is by
using the sandbox feature of MDS. The Oracle Business Rules RuleRepository interface
supports this.

Oracle Business Rules Frequently Asked Questions C-7

What is the Priority Order Using Priorities with Rules and Decision Tables?

C.11 What is the Priority Order Using Priorities with Rules and Decision

Tables?

The priority for rules and decision tables is highest to lowest, with the higher priority
rule or Decision Table executing first. For example, if you create rules with priorities
1-4, they would be executed in the execution priority order 4,3,2,1. Using Rules
Designer you can select a priority from a predefined named priority list or enter a
positive or negative integer to specify your own priority level. The default priority is
medium (with the integer value 0). For more information, see Section 4.5.5, "How to Set
a Priority for a Rule".

Note, however, you should try to avoid priorities as much as possible since they break
the purely declarative model of rules. If you find yourself using a lot of priorities, then
generally it is best to try to restructure your rule patterns and tests to avoid conflicts,
or divide the rules into multiple rulesets using ruleflow if they are intended to be run
in a certain order. A conflict is a case when more than one rule in a ruleset is able to
fire. For example, if a "gold customer" rule says to make a customer that spends over
$1000 a gold customer, and a "silver customer" rule says to make a customer that
spends over $500 a silver customer, then when a customer spends $1100 there is a
conflict. Rather than prioritize the rules, it is more declarative to change the "silver
customer" rule to test for customers that spend between $500 and $1000. This conflict
analysis and conflict avoidance is particularly easy if you use Decision Tables. For
more information on Decision Tables, see Chapter 5, "Working with Decision Tables".

You use ruleflow, that is the ruleset stack, to order rulesets. For information on
working with the ruleset stack, see Oracle Fusion Middleware Language Reference Guide
for Oracle Business Rules.

C.12 Why do XML Schema with xsd:string Typed Elements Import as
Type JAXBElement?

According to the JAXB 2.0 spec, the default type mapping for elements that have
minOccurs="0" and nillable="true" is JAXBElement<T>, where T is the
default mapping of the type defined for the element. For example, xsd: string maps
to JAXBElement<String>, xsd:int maps to JAXBElement<Integer>, and
xsd:integer maps to JAXBElement<BigInteger>. This is because
nillable="true" means the user has defined a semantic difference between a
element not being defined in a document, with minOccurs=0, it does not have to be
defined, and an element being defined but having the attribute nil="true". Thisis a
subtle difference and is often used to define the difference between an unknown value
and a value known to be "no value".

To use the JAXBElement-typed property in a rule, the property must be first checked
for non-null, and then the "value" property or getvValue () method can be used
retrieve a value of the underlying type:

fact FactTypel &&
FactTypel.propl != null &&
FactTypel.propl.value == "abc"

Alternatively, you may want to define a customized JAXB binding so nillable elements
are mapped to type T rather than JAXBElement<T>. However, this is a lossy
conversion, as you no longer are able to determine the difference between a
non-existent element and a nil one. This does make the nillable attribute less useful,
but it does allow you to explicitly define an element as nil in your document, similarly
to how in Java an Object-typed field is initialized to null by default or you can
explicitly initialize it to null.

C-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Is WebDAV Supported as a Repository to Store a Dictionary?

There are several ways to do this. In both cases, add these attributes to the top-level
xsd: schema element start tag:

xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0"

1. To specify ALL properties to use the binding, add this immediately inside the
xsd:schema opening tag:

<xsd:annotation>
<xsd:appinfo>
<jaxb:globalBindings generateElementProperty="false"/>
</xsd:appinfo>
</xsd:annotation>

2. To specify only specific properties use the binding, add an annotation like this to
each desired element:

<xsd:element name="stringElement2" type="xsd:string" minOccurs="0"
nillable="true">
<xsd:annotation>
<xsd:appinfo>
<jaxb:property generateElementProperty="false" />
</xsd:appinfo>
</xsd:annotation>
</xsd:element>

3. Add the definitions to an external customizations file and pass it as an argument
when adding the schema to the datamodel. This can only be done when
programmatically calling the SchemaBrowser class and is not exposed in Rule
Designer.

C.13 Why Are Changes to My Java Classes Not Reflected in the Data
Model?

Do not import classes that have been compiled into the "SCA-INF/classes" directory.
Classes in this directory cannot be reloaded into the datamodel when they change.

C.14 How Do I Use Rules SDK to Include a null in an Expression?
You can use the following Rules SDK code to include a null value:

SimpleTest test = pattern.getSimpleTestTable().add();
test.getLeft () .setValue(attr);

test.setOperator (Util.TESTOP_NE) ;
test.getRight () .setValue("null");

C.15 Is WebDAV Supported as a Repository to Store a Dictionary?

The Web Distributed Authoring and Versioning (WebDAV) repository is not
supported to store a dictionary in Oracle Fusion Middleware 11g Release 1 (11.1.1)
Oracle Business Rules. Oracle Business Rules supports using an MDS (file backed or
Database backed) repository for storing dictionaries.

Oracle Business Rules Frequently Asked Questions C-9

Using a Source Code Control System with Rules Designer

C.16 Using a Source Code Control System with Rules Designer

There are special considerations when you use Rules Designer and a source control
system, such as CVS or Subversion. When you use a source code control system with
Rules Designer you need to specify that rule dictionary files in your project are
recognized as "binary" files instead of "text" files. The rule dictionary files are XML
documents and by default the source code control system treats these files as text files.
However, rule dictionary files cannot be merged because the files contain semantic
structure. If a rule dictionary file is treated as a text file and then changed, the source
control system attempts to merge the file with a "trivial" merge. Using a trivial merge
creates a semantically invalid dictionary file which cannot be unmarshalled into a
RuleDictionary object.

Thus, when you use a source code control system with rule dictionary files, .rules files,
you need to make sure the source code control system treats the files as binary files.
There are configuration options you need to set to specify that the system treats
dictionary files as binary files. For example, in the Subversion source code control
system you can set the MIME type with the svn :mime-type file property. For more
information, see

http://svnbook.red-bean.com/nightly/en/svn.advanced.props.file-p
ortability.html#svn.advanced.props.special .mime-type

When you set the source code control system options to specify the binary file type,
this allows the source code control system, for example tortoiseSVN, to treat the rules
dictionary files correctly, as binary files.

C-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

D

Oracle Business Rules Troubleshooting

This appendix contains workarounds and solutions for issues you may encounter
when using Oracle Business Rules.

The following topics are covered:

s Section D.1, "Getter and Setter Methods are not Visible"

= Section D.2, "Java Class with Only a Property Setter"

s Section D.3, "Runtime NoClassDefFound Error"

= Section D.4, "RL Specific Keyword Naming Conflict Errors"

= Section D.5, "java.lang.Illegal AccessError from Business Rules Service Runtime"
= Section D.6, "JAXB 1.0 Dictionaries and RL MultipleInheritanceException”

s Section D.7, "Why Does XML Schema with Underscores Fail JAXB Compilation?"
» Section D.8, "How Are Decision Service Input Output Element Types Restricted?"
» Section D.9, "How Are Decision Service Input Output Schema Restricted?"

= Section D.10, "How Do I Handle Java Reserved Names in an Imported Fact Type?"

D.1 Getter and Setter Methods are not Visible

Rules Designer does not list the methods supporting a Java bean property in choice
lists; only the bean properties are visible. For example, a Java bean with a property
named Y must have at least a getter method getY () and may also have a setter
method setY (y-type-param). All of properties and methods (including getter and
setter that compose the properties) are displayed when viewing the Java FactType.
Only the properties of Java Classes (not the getter and setter methods) are displayed in
choice lists. When attempting to control the visibility of the property it is best to use
the properties visibility flag. Marking a getter or a setter method as not visible may not
remove the properties from choice lists.

D.2 Java Class with Only a Property Setter

In Java the Java Bean introspector includes write-only properties. Oracle RL does not
include such properties as Beans, because they cannot be reasoned on in a rule. Thus,
in order for Java fact type bean properties to be properly accessed in Oracle RL they
must have both a getter and setter. Properties which have a setter but not a getter, that
is write-only properties, are not allowed in the Oracle RL "new" syntax.

For example, if a bean Foo only has the method setPropl (int 1), then you cannot
use the following in Oracle RL:

Oracle Business Rules Troubleshooting D-1

Runtime NoClassDefFound Error

Foo f = new Foo(propl: 0)

D.3 Runtime NoClassDefFound Error
Sometimes when working with XML facts, you might receive an error of the form:
Exception in thread "main" java.lang.NoClassDefFoundError:
The java.lang.NoClassDefFoundError is very likely due to required classes not
in classpath. Try checking the following:
= Addxml.jar to your classpath when executing.

= Add the directory where the generated and compiled JAXB classes are placed to
the classpath.

D.4 RL Specific Keyword Naming Conflict Errors

Oracle Business Rules escapes RL specific keywords when generating RL from Rules
Designer. In most cases, RL specific keywords can be used without causing errors. One
exception is using a keyword as the name of a class. This is unlikely for Java classes
because by convention they start with an upper case letter and RL specific keywords
are all lowercase. For more information, see Oracle Fusion Middleware Language
Reference Guide for Oracle Business Rules.

D.5 java.lang.lllegalAccessError from Business Rules Service Runtime
Problem: I receive an error such as the following;:
java.lang.IllegalAccessError: tried to access class

com.sun.xml.bind.v2.runtime.reflect.opt.Const from class:...

Reason: This can be due to JAXB 2.1.6 issue 490, caused when unmarshalling incorrect,
for example letter characters when float is expected, data as described at the following
site,

http://java.net/jira/browse/JAXB-490

Workaround: the workaround for this problem is to assign a value to the appropriate
element, as shown in Figure D-1 and Figure D-2 where approvalRequired is
assigned a default value false().

D-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

java.lang.lllegalAccessError from Business Rules Service Runtime

Figure D-1 Adding an Expression to Initialize a Value for a Business Rules Service Input

"_T’,'Start Page | Sd0radefules1, rules [;,BPELProcessl.hpel Ij'a,OrderBooldngRules.xsd | =40radefules] rules |ﬁ<—nBPELProcessl.bpel MM]

o -] S o .f_gg- _}e.aBPELv® |'
B v]
7| assign . %

| General r Copy Operation r SEensars r Annotations |
LA AR 35 R .
Fram T
(x) ¥ariable (x) ¥ariable
inputyariable/pavload/client:proce... com_example_globalcompany_ns_o i
@ E/] Expression (x) variable |
Falsel) com_example_globalcompany_ns_o |
|
|
|
§
| Help | Apply | | (04 | | Cancel |
BPEL_Header - /process/sequence/scope/sequenceassign[3] Zoam: E v @‘.;
Desinn | Snnree | Hisknes
Figure D-2 Expression Assigned to Input Variable for Business Rules Service
& Edit Copy Operation Pz|
From To
Twpe: |Expressi0n V| Type: |'v'ariable V|
Expression: E/i r——l L
E}ﬁga Process
false() I B[] vaiables
EQQQ! Scope - BusinessRule_1

=[] Yariables
E}---(_x) com_example_globalcompany_ns_or
| [E-4e» nsl:approve

£=p nslprice

<> e approvaReaiiad]

t) com_example_globalcompany_ns_or

%) dsIn

- (%) dsOut

[Show Detailed Mode Information

#Path: |,-"nsl: approve/nsl:approvalRequired |

| Help | | (a4 | Cancel

Oracle Business Rules Troubleshooting D-3

JAXB 1.0 Dictionaries and RL MultipleInheritanceException

D.6 JAXB 1.0 Dictionaries and RL MultiplelnheritanceException

Dictionaries which have been migrated from 10.1.3 use JAXB 1.0 instead of JAXB 2.0,
which is the default for Oracle Fusion Middleware 11¢ Release 1 (11.1.1) dictionaries.
Because of this use of JAXB 1.0, the migrated dictionaries may contain Element types.
If your dictionary has Element types marked as visible, generated RL may throw
MultipleInheritanceException.

The solution to this issue is to mark the Element fact types non-visible or remove them
from the datamodel. Only the Type classes generated by JAXB should be used to write
rules, so there is no functionality loss from deleting the Element types.

D.7 Why Does XML Schema with Underscores Fail JAXB Compilation?

The defined behavior of JAXB is to fail when a name of the form '_' + number is
found. In this case JAXB cannot generate an "obvious" Java class name from this string.
The default behavior of JAXB for ' _' + char is to treat it as a word boundary
(underscoreBinding="asWordSeparator"), which means the underscore is
stripped and the char is UpperCamelCased. For example, _fooBar is mapped to

FooBar.

To fix this problem, you need to provide a schema customization to direct JAXB to
generate the names differently. The default value for underscoreBinding is
specified as "asWordSeparator", which does not allow an underscore to be used at
the beginning of a name.

The global annotation underscoreBinding="asCharInWord" causes the '_' tobe
preserved in the classname and UpperCamelCase after the number:

<xsd:annotation><xsd:appinfo>
<jaxb:globalBindings underscoreBinding="asCharInWord" />
</xsd:appinfo></xsd:annotation>

With this global annotation, the mapping for _1foo_bar_bazis _1Foo_Bar_Baz.

D.8 How Are Decision Service Input Output Element Types Restricted?

Using the Decision Service to run business rules with XML schema defining the input,
for any given complexType "tFoo" in an XML-Schema file Foo . xsd there can only be
one XML-Schema element "foo" of type "tFoo". The Decision Service does not allow
you to use two elements "foo" and "bar" of the same type "tFoo.

D.9 How Are Decision Service Input Output Schema Restricted?

When you use the Decision Service a schema must define a complexType or import
another schema which defines a complexType. You cannot use schemas which do not
define complexType, such as the following:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.example.org"
targetNamespace="http://www.example.org"
elementFormDefault="qualified">
<xsd:element name="count" type="xsd:int"/>
</xsd:schema>

Oracle Fusion Middleware User's Guide for Oracle Business Rules

How Do | Handle Java Reserved Names in an Imported Fact Type?

D.10 How Do | Handle Java Reserved Names in an Imported Fact Type?

In Oracle Business Rules, when you import fact type properties which would have the
same name as a Java language reserved word are excluded. For a complete list of Java
reserved words, see

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywo
rds.html

A workaround is to rename the getter and setter method pair that produce the
excluded property. If these methods names cannot be changed, the methods should be
used in rules instead of the properties.

For example, if a property named continue is excluded, you can create rules that use
getContinue () and setContinue () methods instead of using the property.

You can do this by rewriting a pattern. For example, replace:
fact IncrCount ic && ic.continue == "foo"

with:

fact IncrCount ic && ic.getContinue() == "foo"

For another example, in an action, replace:

[assert new] IncrCount (continue:"bar")

with:

[assign new] IncrCount ic = new IncrCount()

[call] ic.setContinue("bar")
[assert] ic

Oracle Business Rules Troubleshooting D-5

How Do | Handle Java Reserved Names in an Imported Fact Type?

D-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

E

Working with Oracle Business Rules and
JSR-94 Execution Sets

This appendix describes the Java Rule Engine API (JSR-94) specification that defines a
standard Java runtime API to access a rule engine from a Java SE or Java EE client.

The appendix includes the following sections:
m Section E.1, "Introduction to Oracle Business Rules and JSR-94 Execution Sets"

= Section E.2, "Creating JSR-94 Rule Execution Sets from Oracle Business Rules
Rulesets"

= Section E.3, "Using the JSR-94 Interface with Oracle Business Rules"
For more information, see:
m http://jcp.org/en/jsr/detail?id=94

m http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.h
tml

E.1 Introduction to Oracle Business Rules and JSR-94 Execution Sets

Oracle Business Rules provides JSR-94 support. This allows you to create more
portable rule-enabled applications.

You can create JSR-94 execution sets from Oracle Business Rules rulesets and you can
create JSR-94 rule sessions from these execution sets. For more information, see
Section E.2, "Creating JSR-94 Rule Execution Sets from Oracle Business Rules
Rulesets".

You can access Oracle Business Rules rulesets and execute them against the Oracle
Business Rules Engine using the JSR-94 API. For more information, see Section E.3,
"Using the JSR-94 Interface with Oracle Business Rules".

Oracle Business Rules also provides extensions to the JSR-94 API that you may find
useful. For more information, see Section E.3.4, "Using Oracle Business Rules JSR-94
Extensions".

E.2 Creating JSR-94 Rule Execution Sets from Oracle Business Rules
Rulesets

To use JSR-94 with rules in RL Language text, you must map the rules to a JSR-94 rule
execution set.

Working with Oracle Business Rules and JSR-94 Execution Sets E-1

Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets

A JSR-94 rule execution set (rule execution set) is a collection of rules that are intended
to be executed together. You also must register a rule execution set before running it. A
registration associates a rule execution set with a URI; using the URI, you can create a
JSR-94 rule session.

Note: In Oracle Business Rules, a JSR-94 rule execution set
registration is not persistent. Thus, you must register a rule execution
set programmatically using a JSR-94 RuleExecutionSetProvider
interface.

For more information, see Section E.3.1, "Creating a Rule Execution Set with
createRuleExecutionSet".

E.2.1 Creating Rule Execution Set with Oracle Business Rules RL Language Text

You can use JSR-94 with RL Language rulesets saved as text, where the Oracle RL text
is directly included in the rule execution set. For more information, see "Using the
Extended createRuleExecutionSet to Create a Rule Execution Set" on page E-6 for
information about JSR-94 extensions that assist you in including RL Language text.

To create a rule execution set from Oracle Business Rules Oracle RL language text:
1. Specify the RL Language mapping information in an XML document. Table E-1
shows the mapping elements required to construct a rule execution set.
Example E-1 shows a sample XML document for mapping RL Language text to a
JSR-94 rule execution set.

2. You then use the XML document with the JSR-94 administration APIs to create a
rule execution set. The resulting rule execution set is registered with a JSR-94
runtime (using a RuleAdministration instance).

Table E-1 Oracle Business Rules Oracle RL Language Text XML Mapping Elements for

JSR-94

Element Description

<rule-source> Includes an <r1-text> tag containing explicit RL Language
text containing an Oracle Business Rules ruleset. Multiple
<rule-source> tags can be used to specify multiple rulesets
(specified in the order in which they are interpreted).

<ruleset-stack> Specifies a list of rulesets that form the initial ruleset stack. The

order of the rulesets in the list is from the top of the stack to the
bottom of the stack.

Note: Inthe <rl-text> element the contents must escape XML
predefined entities. This includes the characters '&’, >, '<’, ", and "\".

Example E-1 XML Mapping File for Rulesets Defined in an Oracle RL Program

<rule-execution-set xmlns="http://xmlns.oracle.com/rules/jsr94/configuration"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" version="1.0">
<name>CarRentalDemo</name>
<description>The Car Rental Demo</description>
<rule-source>
<rl-text>
ruleset DM {
fact class carrental.Driver {

E-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets

hide property ableToDrive, driverLicNum, licIssueDate, licenceType,
llicIssueDate, numPreAccidents, numPreConvictions,
numYearsSinceLicIssued, vehicleType;

final String DeclineMessage = "Rental declined ";

public class Decision supports xpath {
public String driverName;
public String type;
public String message;

function assertXPath(String package,
java.lang.Object element, String xpath) {
//RL literal statement
main.assertXPath(package, element, xpath);

function println(String message) {
//RL literal statement
main.println(message) ;

function showDecision(DM.Decision decision) {
//RL literal statement
DM.println("Rental decision is " + decision.type +
" for driver " + decision.driverName +
" for reason " + decision.message);

}
</rl-text>
</rule-source>
<rule-source>
<rl-text>
ruleset vehicleRent {
rule UnderAge {
priority = 0;
if ((fact carrental.Driver v0_Driver &&
(vO_Driver.age &1t; 19))) {
DM.println("Rental declined: " + v0_Driver.name +
" Under age, age is: " + v0_Driver.age);
retract (v0_Driver) ;

}
</rl-text>
</rule-source>
<ruleset-stack>
<ruleset-name>vehicleRent</ruleset-name>
</ruleset-stack>
</rule-execution-set>

E.2.2 Creating a Rule Execution Set from Oracle RL Text Specified in a URL

You can use JSR-94 with Oracle RL rulesets specified using a URL. For more
information, see "Using the Extended createRuleExecutionSet to Create a Rule
Execution Set" on page E-6 for information about JSR-94 extensions that assist you in
specifying a URL.

To create a rule execution set from Oracle RL text specified in a URL:

1. Specify the Oracle RL mapping information in an XML document. Table E-2
shows the mapping elements required to construct a rule execution set.

Working with Oracle Business Rules and JSR-94 Execution Sets E-3

Using the JSR-94 Interface with Oracle Business Rules

Example E-2 shows a sample XML document for mapping Oracle RL text to a
JSR-94 rule execution set.

2. You then use the XML document with the JSR-94 administration APIs to create a
rule execution set. The resulting rule execution set is registered with a JSR-94
runtime (using a RuleAdministration instance).

Table E-2 Oracle Business Rules Oracle RL URL XML Mapping Elements for JSR-94

Element Description

<rule-source> Includes an <r1-url> tag containing a URL that specifies the
location of RL Language text. Multiple <rule-source> tags
can be used to specify multiple rulesets (in the order in which
they are interpreted).

<ruleset-stack> Specifies a list of rulesets that form the initial ruleset stack. The
order of the rulesets in the list is from the top of the stack to the
bottom of the stack.

Example E-2 XMP Mapping File for Rulesets Defined in a URL

<?xml version="1.0" encoding="UTF-8"?>
<rule-execution-set xmlns="http://xmlns.oracle.com/rules/jsr94/configuration"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" version="1.0">
<name>CarRentalDemo</name>
<description>The Car Rental Demo</description>
<rule-source>
<rl-url>
file:rl/DM.rl
</rl-url>
</rule-source>
<rule-source>
<rl-url>
file:rl/vehicleRent.rl
</rl-url>
</rule-source>
<ruleset-stack>
<ruleset-name>vehicleRent</ruleset-name>
</ruleset-stack>
</rule-execution-set>

E.2.3 Creating Rule Execution Sets with Rulesets from Multiple Sources

A rule execution set may contain rules that are derived from multiple sources and the
sources may be a mix of Rules Designer defined rulesets and RL Language rulesets. In
this case, the XML element <rule-execution-set> set contains multiple
<rule-source> elements, one for each source of rules. You must list each
<rule-source> in the order in which they are to be interpreted in Rules Engine.

Note: For this Oracle Business Rules release, a J[SR-94 rule execution
set can only reference one Rules Designer dictionary.

E.3 Using the JSR-94 Interface with Oracle Business Rules

This section describes some Oracle Business Rules specific details for JSR-94 interfaces.

E-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using the JSR-94 Interface with Oracle Business Rules

E.3.1 Creating a Rule Execution Set with createRuleExecutionSet

The RuleExecutionSetProvider and LocalRuleExecutionSetProvider
interfaces in javax.rules.admin include the createRuleExecutionSet to
create a RuleExecutionSet object.

For the remaining createRuleExecutionSet methods, the first argument is
interpreted as shown in Table E-3.

Table E-3 First Argument Types for createRuleExecutionSet Method

Argument Description

org.w3c.dom.Element Specifies an instance of the <rule-execution-set> element
from the configuration schema.

java.lang.String Specifies a URL that specifies the location of an XML document
that is an instance of the <rule-execution-set> element from
the configuration schema.

java.io.InputStream Specifies an input stream that is used to read an XML document
that is an instance of the <rule-execution-set> element from
the configuration schema.

java.io.Reader Specifies a character reader that is used to read an XML document
that is an instance of the <rule-execution-set> element from
the configuration schema.

Note: JSR-94 also includes createRuleExecutionSet methods
that take a java.lang.Object argument, which is intended to be an
abstract syntax tree for the rule execution set. In Oracle Business Rules
for Oracle Fusion Middleware 11g Release 1 (11.1.1), using these
methods with this argument is not supported. Invoking these
methods with a java.lang.Object argument gives a
RuleExecutionSetCreateException exception.

The second argument to the createRuleExecutionSet methodsis a
java.util.Map of vendor-specific properties.

E.3.2 Creating a Rule Session with createRuleSession

Clients create a JSR-94 rule session using the createRuleSession method in the
RuleRuntime class. This method takes a java.util.Map argument of
vendor-specific properties. This argument can be used to pass in any of the properties
defined for the Oracle Business Rules oracle.rules.rl.RuleSession. If a rule
execution set contains URL or repository rule sources, the rules from those sources are
fetched on the creation of each new RuleSession.

E.3.3 Working with JSR-94 Metadata

JSR-94 allows for metadata for rule execution sets and rules within a rule execution set.
The Oracle Business Rules implementation does not add any additional metadata
beyond what is in the JSR-94 specification. The rule execution set description is an
optional item and thus may not be present. If it is not present, the empty string is
returned. For rules, only the rule name is available and the description is initialized
with an empty string.

Working with Oracle Business Rules and JSR-94 Execution Sets E-5

Using the JSR-94 Interface with Oracle Business Rules

E.3.4 Using Oracle Business Rules JSR-94 Extensions

This section covers the following extensions provided in the JSR-94 implementation
classes.

s Using the Extended createRuleExecutionSet to Create a Rule Execution Set

= Invoking an RL Language Function in JSR-94

E.3.4.1 Using the Extended createRuleExecutionSet to Create a Rule Execution Set

Oracle Business Rules provides a helper function to facilitate creating the XML control
file required as input to create a RuleExecutionsSet.

The helper method createRuleExecutionSet is available in the
RLLocalRuleExecutionSetProvider class. The createRuleExecutionSet
method has the following signature:

RuleExecutionSet createRuleExecutionSet (String name,
String description,
RuleSource[] sources,
String[] rulesetStack,
Map properties)

Table E—4 describes the createRuleExecutionSet arguments.

Table E-4 createRuleExecutionSet Arguments

Argument Description

name Specifies the name of the rule execution set.

description Specifies the description of the rule execution set.

sources Specifies an array of specifications for the sources of rules. The

RuleSource is an interface that the following classes implement:
s RLTextSource: RL Language text for RL Language text.
= RLUrlSource: RL Language URL for a URL to RL Language text.

For more information, see the oracle.rules.jsr94.admin package in
Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

rulesetstack Specifies the initial contents of the RL Language ruleset stack to be set
before each time the rules are executed. The contents of the array should be
ordered from the top of stack (Oth element) to the bottom of stack (last
element).

properties Oracle specific properties.

E.3.4.2 Invoking an RL Language Function in JSR-94

In a stateful interaction with a JSR-94 rule session, a user may want the ability to
invoke an arbitrary RL Language function. The class that implements the JSR-94
StatefulRuleSession interface provides access to the callFunction methods in
the oracle.rules.rl.RuleSession class.

Example E-3 shows how you can to invoke an RL Language function with no
arguments in a JSR-94 StatefulRuleSession.

Example E-3 Using CallFunction with a StatefulRuleSession
import javax.rules.*;

StatefulRuleSession session;

((oracle.rules.jsr94.RLStatefulRuleSession) session).callFunction("myFunction");

E-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

F

Working with Rule Reporter

This appendix describes how to use the Rule reporter API to create lists or reports of
the contents of a rules dictionary.

The appendix includes the following sections:
» Section F.1, "Introduction to Working with Rule Reporter"
= Section F.2, "Using Rule Reporter Command Line Interface"

= Section E.3, "Using Rule Reporter with Java"

F.1 Introduction to Working with Rule Reporter

As the size and complexity of an Oracle Business Rules dictionary grows,
documenting the dictionary and communicating with others about the contents of the
rules dictionary can be important. Using the RuleReporter class you can create lists
or reports of the contents of a rules dictionary. You can use these reports to document
your design and to communicate about the dictionary contents.

There are two ways to use Rule Reporter:
s Execute RuleReporter on the command line
» Create custom reports using the RuleReporter APl in a Java program

Rule Reporter is written in the Groovy programming language using the
MarkupBuilder class, making it easy to create custom reporters whether you simply
want to have differently formatted HTML or use an entirely different markup
language. Groovy is a Java-like dynamic language which runs on the JVM and
interacts seamlessly with Java objects.

F.1.1 What You Need to Know About Rule Reporter HTML Style Sheets

The
JDEV_INSTALL/jdeveloper/soa/modules/oracle.rules_11.1.1/reporter
. Jar file contains style sheet oracle/rules/tools/reporter/style.css.
When you place this file in the same directory as the HTML output file that Rule
Reporter generates, this provides definitions to render the page. You can modify the
style sheet to change the HTML layout.

F.1.2 What You Need to Know About RuleReporter API

For complete details on the RuleReporter API, see the Oracle Fusion Middleware Java
API Reference for Oracle Business Rules.

Working with Rule Reporter F-1

Using Rule Reporter Command Line Interface

F.1.3 What You Need to Know About Rule Reporter Dependent Jar Files

The command-line or Java API use of Rule Reporter needs to have the classpath
include all required JAR files.

F.2 Using Rule Reporter Command Line Interface

You can execute a command line script to use Rule Report to list the contents of a
dictionary.

F.2.1 How to List the Contents of a Dictionary with Rule Reporter Command Line

You can execute a command line script to use Rule Report to list the contents of a
dictionary.

To list the contents of a dictionary with Rule Reporter using the command line:
1. Open a terminal shell window on your system.

2. Update your classpath to include RuleReporter dependencies as Example F-1
shows.

For more information, see Section F.1.3, "What You Need to Know About Rule
Reporter Dependent Jar Files".

3. Run RuleReporter with the following command line as Example F-1 shows:

java oracle.rules.tools.reporter.RuleReporter DICT-NAME
DEST-FILE LINK-PATHS

Where:

» DICT-NAME: the name of the rules dictionary you want to generate a report
on.

For example:
C:\JDeveloper\mywork\GradeApp\Grades\oracle\rules\grades\O
racleRulesl.rules.

» DEST-FILE: the name of the destination file for the generated Rule Reporter
output, usually suffixed with . html.

For example: C: \Temp\report.html.

s LINK-PATHS: a list of the locations on the file system which may contain
dictionaries that DTCT-NAME links to.

For example: C: \Temp.

If DICT-NAME does not link to any dictionaries, you must still specify at least
one path.

Example F-1 shows how to generate a report for a dictionary.

Example F-1 Executing RuleReporter on the Command Line

C:\> set CLASSPATH=%CLASSPATH$%;C:\Oracle\Middleware\jdeveloper\modules\oracle.adf.model_
11.1.1\adfm.jar;C:\Oracle\Middleware\jdeveloper\modules\oracle.adf .model_
11.1.1\groovy-all-1.5.4.jar;C:\Oracle\Middleware\wlserver_
10.3\server\lib\ojdbc6.jar;C:\Oracle\Middleware\jdeveloper\soa\modules\oracle.rules_
11.1.1\rules.jar;C:\Oracle\Middleware\jdeveloper\modules\oracle.xdk_11.1.1\xmlparserv2.jar

C:\> java oracle.rules.tools.reporter.RuleReporter

C:\JDeveloper\mywork\GradeApp\Grades\oracle\rules\grades\OracleRulesl.rules
C:\Temp\report.html C:\Temp

F-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using Rule Reporter with Java

4. Optionally, copy the
JDEV_INSTALL/jdeveloper/soa/modules/oracle.rules_11.1.1\repor
ter.jar file oracle/rules/tools/reporter/style.css

to the same directory as the HTML output file. In this example, copy the
style.css file to C: /Temp.

This causes a web browser to use the definitions to render the page. You can
modify the style sheet to change the visual layout of the HTML as shown in
Figure F-1.

Figure F-1 RuleReporter report.html with style.css

3 Report - Mozilla Firefox |Z“E|g|
File Edit Wiew History Bookmarks Tools Help

> s Q“I {l\f L File:,I',I',I'C:,I'Temp,l’report.h.t.n.ﬂl. . - | '[}- v : . 1%
uReport .. Q .

grades.OracleRules1 (OracleRules1)

DataModel

Variables

Alias Description BucketSet Type Visible Final

Functions

Fact Types

TestScore
TestScore extends Object
Imported from class com.grade.ns testscore, TestScore
from location file: /4T f[Developer frmywork /GradeApp/Grades/classes/
isabstract? [isenum?[) isfinal? g is interface? O
Generated from XML Scherma
file: /C: ADeveloper /mywiork /GradeApp/Grades xsd/grades xsd
into default target package
Using JAXE 2.0
in namespace http: /fwww .grade .com/hs/testscore T

F.3 Using Rule Reporter with Java

You can quickly and easily create a basic report of the contents of a dictionary using a
Java application with the oracle.rules. tools.reporter.RuleReporter class.

F.3.1 How to List the Contents of a Dictionary Using Rule Reporter with Java

You can use the RuleReporter class to list the contents of a dictionary. This class,
oracle.rules.tools.reporter.RuleReporter takes several arguments, as
shown:

RuleReporter ruleReporter = new RuleReporter (
DICT-NAME,

DEST-FILE,

LINK-PATHS

):

Working with Rule Reporter F-3

Using Rule Reporter with Java

Where:

DICT-NAME: the name of the rules dictionary you want to generate a report on.

For example:
C:\\JDeveloper\\mywork\\GradelApp\\Grades\\oracle\\rules\\grad
es\\OracleRulesl.rules.

DEST-FILE: the name of the destination file for the generated Rule Reporter
output, usually suffixed with .html.

For example: C: \\Temp\\report.html.

LINK-PATHS: a list of the locations on the file system which may contain
dictionaries that DTCT-NAME links to.

For example: new ArrayList<String> (Arrays.asList("C:\\Temp")).

If DICT-NAME does not link to any dictionaries, you must still specify at least one
path.

When you supply these arguments and call the RuleReporter.report () method,
this produces a dictionary report for the specified dictionary.

To list the contents of a dictionary using rule reporter with Java:

1.
2.

Start Oracle JDeveloper, this displays the Oracle JDeveloper start page.

In the Application Navigator, click New Application if no applications have been
created, or if applications have been created, click Applications and from the list
choose New Application.

In the Create Application wizard, enter the name and location for the application:

a. Inthe Application Name field, enter an application name. For example, enter
ReportApplication.

b. Enter or browse for a directory name, or accept the default.
c. Enter an application package prefix or accept the default, no prefix.

This should be a globally unique prefix and commonly uses a domain name
owned by your company. The prefix, followed by a period, applies to objects
created in the initial project of an application.

In this sample, you use the prefix com. example.

d. For this Oracle Business Rules project, select Generic Application for the
application template, as shown in Figure F-2.

F-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using Rule Reporter with Java

Figure F-2 Adding the Report Application

Create Generic Application - Step 1 of 2

Name your application

Application Narme:

() Application N
el Application Name |Repgrmpplicati0n |

s, Project Mame
Direckary:

|C:'l,JDeveIoper'l,mywork'l,ReportP.pplication |[Browse, ., |

Application Package Prefix:

| com, example |

Application Template:

Generic Application
Creates an application which includes a single project. The project is not
preconfigured with JDeveloper technalogies, but can be customized to include ary
technologies,

Fusion Web aApplication (ADF)
Creates a data-bound ADF web application. The application consists of one project
For the wiew and controller components (ADF Faces and ADF Page Flow), and
anather project For the data maodel (ADF Business Components),

Java Deskkop Application
reates an application configured For building a generic Java application. The new

Help | l Mext = H Finish || Cancel]

4. Click Next.

5. In the Create Generic Application wizard - Name your Generic project page, enter
the name and location for the project as shown in Figure F-3:

s In the Project Name field, enter an application name. For example, enter
ReportProject.

= Enter or browse for a directory name, or accept the default.

= On the Project Technologies tab, in the Available list, select Java and click Add
to add it to the Selected area.

Working with Rule Reporter F-5

Using Rule Reporter with Java

Figure F-3 Specifying Technologies in a Project

& Create Generic Application - Step 2 of 2

Name your Generic project

Praoject M LR tProject
A Broject: Mame: | eportProjec |

e Project Name Dirgckary: |C:'l,JDeveloper'l,mywork‘l,ReportApplication'l,ReportProject H Browse, .. |

|/ Project Technologies r Generated Components |/ Associated Libraries |

Available: Selected:
ADF Business Components

ADF Deskbop Integration

ADF Faces

ADF Library Web Application Support

ADF Page Flow
ADF Swing @
Ant

EI ADF Components
Database (Offline)

Technology Description:

ADF Business Components is the business services API provided by the Oracle
Application Development Framework (Oracle ADF), ADF Business Components
nrverns inferactinn hehween bhe resk nf the annlicatinn and the data skored in Fhe

| Help < Back Cancel

Click Finish.

In Oracle JDeveloper, select the project named ReportProject.
Right-click and from the list select Project Properties.
Select the Libraries and Classpath item.

10. Add the libraries Adfm Designtime API, JAXB, ADF Model Runtime, Oracle
XML Parser v2, Oracle JDBC, and Oracle Rules.

11. Click OK.

12. In Oracle JDeveloper, select the project named ReportProject.
13. Right-click and from the list select New.

14. In the New Gallery, in the Categories area, select General.

15. In the New Gallery, in the Items area, select Java Class.

16. Click OK.

17. In the Create Java Class window, configure the following properties as shown in
Figure F—4:

s Enter the Name value Report.

» Check the following check boxes:
— Public
— Main Method

F-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Using Rule Reporter with Java

Figure F-4 Creating the Report.java Class
3
Enter the details of vour new class, |:|
|

Create Java Class

Mame: |Rep0rt
Package: |c0m.example | Q
Extends: |java.lang.0bject | Ck

Optional Atkributes

Implements: '+ b4

Access Modifiers Other Modifiers

() package protected

Constructors From Superclass
Implement Abstract Methods
Main Method

| Help | QK | | Cancel

18. Click OK.

Oracle JDeveloper displays the Java Class, as shown in Example F-2.

Example F-2 Code Created for New Report.java Class

package com.example;

public class Report {
public static void main(String[] args) {
Report report = new Report();

19. Use the RuleReporter class as shown in Example F-3. Replace the first
argument to the RuleReporter constructor with the location of your dictionary.

Example F-3 Report.java Completed

package com.example;

import java.util.List;
import java.util.Arrays;
import java.util.ArrayList;

import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.tools.reporter.RuleReporter;

public class Report {
public Report() throws SDKException {
try {

RuleReporter ruleReporter = new RuleReporter (
"C:\\JDeveloper\\mywork\\GradeApp\\Grades\\oracle\\rules\\grades\\OracleRulesl.rules",
"C:\\Temp\\report.html",

Arrays.asList ("C:\\Temp")

Working with Rule Reporter F-7

Using Rule Reporter with Java

)i
ruleReporter.report () ;

} catch (Exception e) {
System.out.println(e);
}
}

public static void main(String[] args) throws SDKException {

}

Report report = new Report();

}

20. In the Application Navigator, right-click ReportProject and select Make.

21.

In the Application Navigator, right-click Report . java and select Run.

In this example, the Report . java class generates the report in
C:\Temp\report.html

22, Optionally, copy the

JDEV_INSTALL/jdeveloper/soa/modules/oracle.rules_11.1.1\repor
ter.jar file oracle/rules/tools/reporter/style.css style sheet to the
same directory as the HTML output file. In this example, copy the style.css file
to C: /Temp.

This causes a web browser to use the definitions to render the page. You can
modify the style sheet to change the visual layout of the HTML as shown in
Figure F-5.

Figure F-5 RuleReporter report.html with style.css

3 Report - Mozilla Firefox IZIIEI@

File Edit Wiew History Bookmarks Tools Help
- - {" /l\ L File: 10 fTempjrepart. bl v P ' L,

grades.OracleRules1 (OracleRules1)

DataModel

Variables

Alias Description BucketSet Type Visible Final

Functions

Fact Types

TestScore
TestScore extends Object
Imported from class com.grade.ns testscore, TestScore
from location file: /4T f[Developer frmywork /GradeApp/Grades/classes/
isabstract? [isenum?[) isfinal? g is interface? O
Generated from XML Scherma
file: /C: ADeveloper /mywiork /GradeApp/Grades xsd/grades xsd
into default target package
Using JAXE 2.0
in namespace http: /fwww .grade .com/hs/testscore T

F-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

A

actions
advanced, 4-37
area, 5-4
cell, 5-4
decision table, 5-4
definition, 4-19
do nothing value, 5-7
fact type, 10-3
active option, 4-28
ADF Business Components Fact
action fact type, 10-3
creating, 10-9
definition, 10-1
importing, 3-16
key_values, 3-18,10-2
types, 3-15
ADF Business Components Fact ViewRowImpl,
advanced actions, 4-37
advanced mode, 4-27
advanced settings, 4-25
aggregates
average, 4-38
collection, 4-38
count, 4-38
maximum, 4-38
minimum, 4-38
sum, 4-38
aliases, A-1
allow gaps option, 5-18, 5-24
auto override conflict resolution
setting option, 5-25
average aggregate, 4-38

3-15

batch invocation, 10-7

BigDecimal type, 3-8

BigInteger type, 3-8

BPEL
decision functions, 6-6
Human Tasks, 11-2
java.lang.IllegalAccessError, D-2
service component, 11-2

bucketsets

Index

adding Enum type, 3-23
adding list of ranges (Range), 3-21
adding list of values (LOV), 3-19
allowed in actions field, 3-29
associating with facts, 3-30
creating, 3-18
definition, 1-4,3-2
duplicate bucket value, 3-28
global, 3-18
Include Disallowed Buckets in Tests field, 3-29
list of values (LOV) adding, 3-19
local, 3-18

built-in dictionary
Java wrappers, 3-8

business rules
activity, 6-6
decision function, 6-6
definition, 1-1
deployment and runtime, 9-23
dictionary, 1-5
in a Java EE application, 9-1
RL Language, 1-6

Cc

calendar type

with CurrentDate fact, 4-56
check rule flow option, 6-2
classpath

Java facts, 3-8

Rule Reporter, F-2
collection aggregate, 4-38
combined dictionary, 2-2,12-16
com.sun.xml.bind.v2.runtime.reflect.opt.

Const errors, D-2

Condition Browser, 12-39, 12-43
condition expressions

cell, 5-3

definition, 5-3
conflict analysis, 5-19, 12-56

decision table, 5-24
conflict policy option, 5-19, 12-56
conflict resolution, 5-19, 12-56
constant option for globals, 2-11
count aggregate, 4-38
CurrentDate fact, 4-56

Index-1

D

data model
definition, 2-1
sharing, 2-8
data types
bucketset, 1-3
fact properties, 1-3
Date Browser, 12-39
dates
reasoning with CurrentDate fact, 4-56
decision functions, 6-1, 6-5
adding, 6-1
adding to a dictionary, 6-1
as decision service, 11-4
BPEL, 6-6
Business Rule activity, 6-6
calling with Java decision point interface, 10-7
check rule flow option, 6-2
definition, 1-4
rule firing limit option, 6-6
stateless option, 6-3
understanding, 6-1
Web service, 6-1,6-2
decision point API
batch invocation, 10-7
definition, 1-4
production dictionary, 7-15
rules SDK, 7-1
runtime properties, 10-5
transaction, 10-5
with MDS repository, 7-15
decision service
decision function, 11-4
decision table
action cell, 5-4
do nothing value, 5-7
actions, advanced, 4-37
active option, 4-28
adding a rule, 5-12
adding actions, 5-10
adding condition expressions, 5-9
advanced mode, 4-27
advanced settings, 4-25
aggregates, 4-38
allow gaps option, 5-18, 5-24
auto override conflict resolution, 5-25
cell values, 5-7
condition expression, 5-3
condition expression cell, 5-3
conflict analysis, 5-19, 5-24, 12-56
conflict policy option, 5-19, 12-56
conflict resolution, 5-19, 12-56
creating, 5-8
decision tree, 5-5
definition, 1-4
do not care values, 5-7
effective dates, 4-30
expression builder, 4-60
find gaps, 5-18, 5-24
gap analysis, 5-18, 5-24

Index-2

logical option, 4-28
move operation, 5-16
priority, 4-29
rules, 5-5
show conflicts, 5-19, 12-56
sibling cell, 5-14
understanding, 5-1
validation, 4-24
decision tree, 5-5
DecisionPoint class, 7-2
DecisionPointBuilder class, 7-2
DecisionPointInstance class, 7-2
.decs file, 11-3
deployment
EAR file, 9-31
MAR file, 9-28
dictionary
combined, 2-2,12-16
data model sharing, 2-8
decision function, 6-1, 6-5
definition, 1-5,2-1
globals, 2-10
link, 12-16
naming conventions, 2-9, A-1
package, 2-8
reading
UTF-8 character encoding, 7-11
validation, 4-22,4-23,4-25
viewing and editing settings, 2-6
dictionary links
updating, 2-8
do nothing value, 5-7
Double type, 3-8
duplicate bucket values, 3-28

E

EAR file, 9-31
effective dates, 4-2,4-30
expression
constant, 2-11
Expression Builder, 12-38, 12-43

expression builder
about, 4-60

F

fact type

ADF Business Components, 3-15
Java, 3-8

RL, 3-12
XML, 3-3
facts

and working memory, 1-9
associating with bucketsets, 3-30
definition, 1-4, 3-2
FileInputStream
UTF-8, 7-11
filtering rules, 4-3
final option for globals, 2-11

Float type, 3-8
forward-chaining system, 1-8
frequently asked questions, C-1
functions

decision, 6-5

oracle business rules, 2-12

testing, 8-1

G

gap analysis, 5-18, 5-24
global bucketset, 3-18
globals

constant option, 2-11

defined, 2-10

final option, 2-11

H

Human Tasks, 11-2

importing XML schema, 3-7

Include Disallowed Buckets in Tests option, 3-29
inference cycle, 1-8

Integer type, 3-8

J

Java EE application

with business rules, 9-1
Java Fact

adding, 3-8

getter method visibility, D-1

setter method visibility, D-1

types, 3-8

using a Property Change Listener with, C-5
java.lang.IllegalAccessError, D-2
java.lang.NoClassDefFoundError, D-2
JAXB

generated classes, 3-3

issue 490 troubleshooting, D-2

limitations with XML facts, 3-7

with XML facts, 3-2
JSR-94

definition, E-1

extensions, E-6

rule execution set, E-1

with RL Language text, E-2

with URL, E-3

K

key_values, 3-18,10-2

L

links
dictionary, 12-16
to a dictionary in the same application, 2-6

list tests, 4-43
local bucketset, 3-18
logical option, 4-28
Long type, 3-8

MAR file, 9-28
matched fact naming, 4-34
maximum aggregate, 4-38
metadata

.decs file, 11-3

EAR file, 9-31

MAR file, 9-28

service component, 11-1,11-3
minimum aggregate, 4-38
move operation, 5-16

N

named priority, 4-29
naming conventions
alias, A-1
dictionary, 2-9, A-1
matched fact, 4-34
RL Language keywords, D-2
Rule Designer, A-1
rulesets, A-1
XML schema target package name, A-1
nested tests, 4-30
numeric priority, 4-29

(o)

Oracle Business Rules Function, 2-12
testing, 8-1

Oracle Business Rules function
creating, 2-13

Oracle Business Rules RL Language. See RL Language
Oracle Business Rules Rules Engine. See Rules Engine

Oracle Business Rules SDK2. See SDK

Oracle Business Rules service component. See service

component

P

pattern binding variable, 4-34
pattern matching, 4-32
priority
default, 4-29
definition, 4-29
high, 4-29
higher, 4-29
highest, 4-29
integer value, 4-29
low, 4-29
lower, 4-29
lowest, 4-29
medium, 4-29
named, 4-29
numeric, 4-29

Index-3

order, C-8
Property Change Listener, C-5

prototyping
rules, 3-12

R

range tests, 4-13
reload XML facts from updated schemas,
Rete algorithm, 1-9
Right Operand Browser, 12-40
RL Fact
adding, 3-13
types, 3-12
RL Language
definition, 1-6
selfjoin, C-3
rule language. See RL Language
Rule Reporter
classpath, command line, F-2
command line, F-2
RuleDictionary
UTEF-8 character encoding, 7-11
rules
actions, 1-3,4-19
active option, 4-28
adding actions, 4-19
advanced mode, 4-27
actions, 4-37
aggregates, 4-38
matched fact naming, 4-34
pattern matching, 4-32
setting, 4-42
simple tree mode, 4-46
tree mode, 4-43
advanced settings, 4-25
aggregate, 4-32
conflicts, C-8
creating, 4-8
data driven, 1-8
definition, 1-1,4-1
effective dates, 4-30
engine, 1-5
expression builder, 4-60
filtering, 4-3
firing, 1-8
for each case where, 4-32
forward-chaining, 1-8
generating reports with SDK, F-1
list tests, 4-43
logical option, 4-28
nested tests, 4-30
pattern binding variable, 4-34
pattern block, 4-33
priority, 4-29,C-8
prototyping, 3-12
range tests, 4-13
reporter, F-1
rule actions, 1-2
rule conditions, 1-2,1-3

Index-4

SDK, 1-6
service component, 11-1
set tests, 4-16
testing, 8-1
tests, 4-9
there is a case where, 4-32
there is no case where, 4-32
tree mode, 4-43
validation, 4-23

Rules Designer
introduction, 1-7
rule actions, 1-3
rule conditions, 1-3
rules, 1-2
service component metadata, 11-2
WSDL, 11-2

Rules Engine
architecture, 1-8
definition, 1-5

rules paging, 12-36

rules SDK
decision point API, 7-1
definition, 1-6

rulesets
creating, 4-2
definition, 1-4, 4-1
effective dates, 4-2
filtering, 4-3
naming, A-1

S

SDK
definition, 1-6
generating reports, F-1
rule reporter, F-1
self5join in Oracle RL, C-3
service component
BPEL, 11-2
definition, 1-5,11-1
Human Tasks, 11-2
metadata, 11-1,11-3
rules, 11-1
SOA composite application integration,
standalone component, 11-2
Web service, 11-1
set tests, 4-16
Short type, 3-8
simple tree mode, 4-46
SOA Composer
adding rule actions, 12-28
adding rule conditions, 12-25
adding rules, 12-22
Bookmarkable Link, 12-6
Browser windows
Condition Browser, 12-39, 12-43
Date Browser, 12-39
Expression Builder, 12-38, 12-43
Right Operand browser, 12-40
browser windows, 12-37

11-2

commit menu, 12-63 tree mode

conflict resolution, 12-56 creating tree mode rules, 4-48
decision tables, 12-40 simple, 4-46
adding actions, 12-44 with decision tables, 4-43
adding condition rows, 12-41 with rules, 4-43
adding decision tables, 12-40 troubleshooting, D-1
adding rules, 12-45 getter method visibility, D-1
compacting table, 12-54 java.lang.IllegalAccessError, D-2
deleting decision tables, 12-59 java.lang.NoClassDefFoundError, D-2
gap analysis, 12-54 setter method visibility, D-1
splitting and compacting, 12-53
splitting table, 12-53 U
switching rows to columns, 12-57
deleting rule actions, 12-29 Unicode characters, 7-11
deleting rule conditions, 12-27 updated XML schema with XML facts, 3-7
deleting rules, 12-24 UTE-8 Characters, 7-11
dictionary path, 12-7
edit menu, 12-12 Vv

editing bucketsets, 12-13,12-14

editing a range bucketset, 12-14 validation
editing an LOV bucketset, 12-15 dat? model, 4-23
editing decision functions, 12-18 decision table, 4-24
editing rules, 12-21 dictionaries, 4-22,4-23,4-25
linked dictionaries, 12-16 1Tules, 4-23
modifying rule actions, 12-30 Vfll"la'b}G, 4-34
modifying rule conditions, 12-27 visibility
My Edits option, 12-6 getter methods, D-1

obtaining composite and dictionary setter methods, D-1

information, 12-69

open menu, 12-4 w
rules advanced settings, 12-24
rules paging, 12-36
synchronizing rules dictionary, 12-64
tree mode rules, 12-35
updating the validation panel, 12-69
validating rules dictionary, 12-65

validation panel, 12-66
validation panel, 12-66

updating the validation panel, 12-69
viewing bucketsets, 12-8
viewing globals, 12-7

Web service
decision function, and, 6-1, 6-2
service component, 11-1
WSDL, 11-1,11-2
WebDAV repository support, C-9
working memory, 1-9
WSDL
Rules Designer, 11-2
service component metadata, 11-1

viewing rulesets, 12-10 X
SOADesigner role
XML Fact
SOA Composer ac

adding, 3-3
java.lang.NoClassDefFoundError, D-2
JAXB-generated classes, 3-3

reload XML facts from updated schemas, 3-7
support XPath assertion, 3-6

authentication and SOADesigner role, 12-3
stateless option
decision functions, 6-3
sum aggregate, 4-38

XPath, 3-6
T XPath, 4-47
testing RL program, E-3
rules, 8-1 support assertion, 3-6
with a test function, 8-1 XML Fact, 3-6
tests
in rules, 4-9
list, 4-43
range, 4-13
set, 4-16

transactions, 10-5

Index-5

Index-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	What's New in This Guide for Release 11.1.1.7
	1 Overview of Oracle Business Rules
	1.1 What are Business Rules?
	1.1.1 What Are Rule Conditions?
	1.1.2 What Are Rule Actions?
	1.1.3 What Are Decision Tables?
	1.1.4 What Are Facts and Bucketsets?
	1.1.5 What Are Rulesets?
	1.1.6 What Are Decision Functions?
	1.1.7 What Are Decision Points?
	1.1.8 What Are Dictionaries?

	1.2 Oracle Business Rules Runtime and Design Time Elements
	1.2.1 Decision Component (Business Rules) in a SOA Composite Application
	1.2.2 Using Rules Engine with Oracle Business Rules in a Java EE Application
	1.2.3 Oracle Business Rules RL Language
	1.2.4 Oracle Business Rules SDK
	1.2.5 Rules Designer
	1.2.6 Oracle SOA Composer Application

	1.3 Oracle Business Rules Engine Architecture
	1.3.1 Declarative Rules
	1.3.2 The RETE Algorithm
	1.3.3 What Is Working Memory?
	1.3.4 Rule Firing and Rule Sessions

	2 Working with Data Model Elements
	2.1 Introduction to Working with Data Model Elements
	2.2 Working with a Dictionary and Dictionary Links
	2.2.1 Introduction to Dictionaries and Dictionary Links
	2.2.2 How to Create a Dictionary in the SOA Tier Using Rules Designer
	2.2.3 How to Create a Dictionary in the Business Tier Using Rules Designer
	2.2.4 How to View and Edit Dictionary Settings
	2.2.5 How to Link to a Dictionary
	2.2.6 How to Update a Linked Dictionary
	2.2.7 What You Need to Know About Dictionary Linking
	2.2.8 What You Need to Know About Dictionary Linking and Dictionary Copies
	2.2.9 What You Need to Know About Dictionary Linking to a Deployed Dictionary
	2.2.10 What You Need to Know About Business Rules Inputs and Outputs with BPEL

	2.3 Working with Oracle Business Rules Globals
	2.3.1 How to Add Oracle Business Rules Globals
	2.3.2 How to Edit Oracle Business Rules Globals
	2.3.3 What You Need to Know About the Final and Constant Options

	2.4 Working with Decision Functions
	2.5 Working with Oracle Business Rules Functions
	2.5.1 Introduction to Oracle Business Rules Functions
	2.5.2 How to Add an Oracle Business Rules Function

	2.6 Localizing Oracle Business Rule Resources
	2.6.1 How to Localize the Resources in Oracle Business Rules

	3 Working with Facts and Bucketsets
	3.1 Introduction to Working with Facts and Bucketsets
	3.2 Working with XML Facts
	3.2.1 How to Import XML Schema and Add XML Facts
	3.2.2 How to Display and Edit XML Facts
	3.2.3 How to Reload XML Facts with Updated Schema
	3.2.4 What You Need to Know About XML Facts

	3.3 Working with Java Facts
	3.3.1 How to Import Java Classes and Define Java Facts
	3.3.2 How to Display and Edit Java Facts
	3.3.3 What You Need to Know About Java Facts

	3.4 Working with RL Facts
	3.4.1 How to Define RL Facts
	3.4.2 How to Display and Edit RL Facts and Add RL Fact Properties
	3.4.3 What You Need to Know About RL Facts

	3.5 Working with ADF Business Components Facts
	3.5.1 How to Import and Define ADF Business Components Facts
	3.5.2 What You Need to Know About ADF Business Components Fact Classpaths
	3.5.3 What You Need to Know About ADF Business Components Circular References
	3.5.4 What You Need to Know About ADF Business Components Facts

	3.6 Working with Bucketsets
	3.6.1 How to Define a List of Values Global Bucketset
	3.6.2 How to Define a List of Ranges Global Bucketset
	3.6.3 How to Define an Enumerated Type (Enum) Bucketset from XML Types
	3.6.4 How to Define an Enumerated Type (Enum) Bucketset from Java Types
	3.6.5 What You Need to Know About List of Values Bucketsets
	3.6.6 What You Need to Know About Range Bucketsets
	3.6.7 What You Need to Know About Bucketset Allowed in Actions Option
	3.6.8 What You Need to Know About Bucket Values

	3.7 Associating a Bucketset with Business Terms
	3.7.1 How to Associate a Bucketset with a Fact Property
	3.7.2 How to Associate a Bucketset with Functions or Function Arguments
	3.7.3 How to Associate a Bucketset with a Global Value

	4 Working with Rulesets and Rules
	4.1 Introduction to Working with Rulesets and Rules
	4.2 Working with Rulesets
	4.2.1 How to Create a Ruleset
	4.2.2 How to Set the Effective Date for a Ruleset
	4.2.3 How to Use a Filter to Display Matching Rules in a Ruleset
	4.2.4 Using Auto Complete when Selecting Component Values from a List

	4.3 Working with Rules
	4.3.1 How to Add Rules
	4.3.2 How to Define a Test in a Rule
	4.3.3 What You Need to Know About Oracle Business Rules Test Variables
	4.3.4 How to Define Range Tests in Rules
	4.3.5 How to Define Set Tests in Rules
	4.3.6 How to Define Actions in Rules
	4.3.7 What You Need to Know About Rule Actions
	4.3.8 What You Need to Know About Oracle Business Rules Performance Tuning

	4.4 Validating Dictionaries
	4.4.1 Understanding Data Model Validation
	4.4.2 Understanding Rule Validation
	4.4.3 Understanding Decision Table Validation
	4.4.4 How to Validate a Dictionary

	4.5 Using Advanced Settings with Rules and Decision Tables
	4.5.1 How to Show and Hide Advanced Settings in a Rule or Decision Table
	4.5.2 How to Select the Advanced Mode Option
	4.5.3 How to Select the Active Option
	4.5.4 How to Select the Logical Option
	4.5.5 How to Set a Priority for a Rule
	4.5.6 How to Specify Effective Dates

	4.6 Working with Nested Tests
	4.6.1 How to Use Nested Tests

	4.7 Working with Advanced Mode Rules
	4.7.1 How to Use Advanced Mode Pattern Matching Options
	4.7.2 How to Use Advanced Mode Matched Fact Naming
	4.7.3 How to Use Advanced Mode Action Forms
	4.7.4 How to Use Advanced Mode Aggregate Conditions
	4.7.5 What You Need to Know About Advanced Mode Rules

	4.8 Working with Tree Mode Rules
	4.8.1 Introduction to Tree Mode Rules
	4.8.2 How to Create Simple Tree Mode Rules
	4.8.3 How to Create Advanced Tree Mode Rules
	4.8.4 What You Need to Know About Tree Mode Rules

	4.9 Using Date Facts, Date Functions, and Specifying Effective Dates
	4.9.1 How to Use the Current Date Fact
	4.9.2 How to Set the Effective Date for a Rule
	4.9.3 What You Need to Know About Effective Dates
	4.9.4 How to Use Duration, JavaDate, OracleDate, and XMLDate Methods

	4.10 Working with Expression Builder
	4.10.1 Introduction to the Expression Builder
	4.10.2 How to Use the Expression Builder
	4.10.3 What You Need to Know About Working with Expressions

	4.11 Using Bucketsets as Constraints for Options Values in Rules
	4.11.1 How to Use a List of Ranges Bucketset as a Constraint for a Business Term
	4.11.2 How to Use a List of Values Bucketset as a Constraint for a Fact Property
	4.11.3 How to Use Bucketsets to Provide Options for Test Expressions

	4.12 Importing Runtime Rules Changes From Repository Into JDeveloper

	5 Working with Decision Tables
	5.1 Introduction to Working with Decision Tables
	5.1.1 What is a Decision Table?
	5.1.2 Understanding Decision Table Values
	5.1.3 What You Need to Know About Decision Table Loops

	5.2 Creating Decision Tables
	5.2.1 How to Create a Decision Table
	5.2.2 How to Add Condition Rows to a Decision Table
	5.2.3 How to Add Actions to a Decision Table
	5.2.4 How to Add a Rule to a Decision Table
	5.2.5 How to Define Tests in a Decision Table

	5.3 Performing Operations on Decision Tables
	5.3.1 Introduction to Decision Table Operations
	5.3.2 How to Compact or Split a Decision Table
	5.3.3 How to Merge or Split Conditions in a Decision Table
	5.3.4 How to Merge, Split, and Specify Do Not Care for Condition Cells
	5.3.5 How to Perform Decision Table Gap Checking
	5.3.6 How to Perform Decision Table Manual Conflict Resolution
	5.3.7 How to Set the Decision Table Auto Override Conflict Resolution Policy
	5.3.8 How to Set the Decision Table Ignore Conflicts Policy

	5.4 Creating and Running an Oracle Business Rules Decision Table Application
	5.4.1 How to Obtain the Source Files for the Order Approval Application
	5.4.2 How to Create an Application for Order Approval
	5.4.3 How to Create a Business Rule Service Component for Order Approval
	5.4.4 How to View Data Model Elements for Order Approval
	5.4.5 How to Add Bucketsets to the Data Model for Order Approval
	5.4.6 How to Associate Bucketsets with Order and CreditScore Properties
	5.4.7 How to Add a Decision Table for Order Approval
	5.4.8 How to Check the Business Rule Validation Log for Order Approval
	5.4.9 How to Deploy the Order Approval Application
	5.4.10 How to Test the Order Approval Application

	6 Working with Decision Functions
	6.1 Introduction to Decision Functions
	6.2 Working with Decision Functions
	6.2.1 How to Add or Edit a Decision Function

	6.3 What You Need to Know About Decision Functions
	6.3.1 What You May Need to Know About Rule Firing Limit Option for Debugging Rules
	6.3.2 What You May Need to Know to About Decision Function Arguments
	6.3.3 What You May Need to Know About the Decision Function Stateless Option

	7 Working with Rules SDK Decision Point API
	7.1 Introduction to Rules SDK and the Car Rental Sample Application
	7.1.1 Introduction to Decision Point API
	7.1.2 How to Obtain the Car Rental Sample Application
	7.1.3 How to Open the Car Rental Sample Application and Project

	7.2 Creating a Dictionary for Use with a Decision Point
	7.2.1 How to Create Data Model Elements for Use with a Decision Point
	7.2.2 How to View a Decision Function to Call from the Decision Point
	7.2.3 How to Create Rules or Decision Tables for the Decision Function
	7.2.4 What You Need to Know About Using Car Rental Sample with a Decision Table

	7.3 Creating a Java Application Using Rules SDK Decision Point
	7.3.1 How to Add a Decision Point Using Decision Point Builder
	7.3.2 How to Use a Decision Point with a Pre-loaded Dictionary
	7.3.3 How to Use Executor Service to Run Threads with Decision Point
	7.3.4 How to Create and Use Decision Point Instances

	7.4 Running the Car Rental Sample
	7.5 What You Need to Know About Using Decision Point in a Production Environment
	7.6 What You Need to Know About Decision Point and Decision Tracing

	8 Testing Business Rules
	8.1 Testing Oracle Business Rules at Design Time
	8.1.1 How to Test Rules Using the Rules Test Framework
	8.1.2 What You Need to Know About Validation of Test Suites
	8.1.3 What You Need to Know About Testing Linked Dictionaries
	8.1.4 What You Need to Know About Failure of Test Suites
	8.1.5 How to Test a Decision Function Using an Oracle Business Rules Function
	8.1.6 What You Need to Know About Testing Decision Functions

	8.2 Testing Oracle Business Rules at Runtime

	9 Creating a Rule-enabled Non-SOA Java EE Application
	9.1 Introduction to the Grades Sample Application
	9.2 Creating an Application and a Project for Grades Sample Application
	9.2.1 How to Create a Fusion Web Application for the Grades Sample Application
	9.2.2 How to Develop Accessible ADF Faces Pages
	9.2.3 How to Create the Grades Project
	9.2.4 How to Add the XML Schema and Generate JAXB Classes in the Grades Project
	9.2.5 How to Create an Oracle Business Rules Dictionary in the Grades Project

	9.3 Creating Data Model Elements and Rules for the Grades Sample Application
	9.3.1 How to Create Bucketsets for Grades Sample Application
	9.3.2 How to Add a Decision Table for Grades Sample Application
	9.3.3 How to Add Actions in the Decision Table for Grades Sample Application
	9.3.4 How to Rename the Decision Function for Grades Sample Application

	9.4 Adding a Servlet with Rules SDK Calls for Grades Sample Application
	9.4.1 How to Add a Servlet to the Grades Project

	9.5 Adding an HTML Test Page for Grades Sample Application
	9.5.1 How to Add an HTML Test Page to the Grades Project

	9.6 Preparing the Grades Sample Application for Deployment
	9.6.1 How to Create the WAR File for the Grades Sample Application
	9.6.2 How to Add the Rules Library to the Grades Sample Application
	9.6.3 How to Add the MDS Deployment File to the Grades Sample Application
	9.6.4 How to Add the EAR File to the Grades Sample Application

	9.7 Deploying and Running the Grades Sample Application
	9.7.1 How to Deploy to Grades Sample Application
	9.7.2 How to Run the Grades Sample Application

	10 Working with Oracle Business Rules and ADF Business Components
	10.1 Introduction to Using Business Rules with ADF Business Components
	10.1.1 Understanding Oracle Business Rules ADF Business Components Fact Types
	10.1.2 Understanding Oracle Business Rules Decision Point Action Type

	10.2 Using Decision Points with ADF Business Components Facts
	10.2.1 How to Call a Decision Point with ADF Business Components Facts
	10.2.2 How to Call a Decision Function with Java Decision Point Interface
	10.2.3 What You Need to Know About Decision Function Configuration with ADF Business Components

	10.3 Creating a Business Rules Application with ADF Business Components Facts
	10.3.1 How to Create an Application That Uses ADF Business Components Facts
	10.3.2 How to Add the Chapter10 Generic Project
	10.3.3 How to Create ADF Business Components Application for Business Rules
	10.3.4 How to Update View Object Tuning for Business Rules Sample Application
	10.3.5 How to Create a Dictionary for Oracle Business Rules
	10.3.6 How to Add Decision Point Dictionary Links
	10.3.7 How to Import the ADF Business Components Facts
	10.3.8 How to Add and Run the Outside Manager Ruleset
	10.3.9 How to Add and Run the Department Manager Ruleset
	10.3.10 How to Add and Run the Raises and Retract Employees Rulesets

	11 Working with Decision Components in SOA Applications
	11.1 Introduction to Decision Components
	11.2 Working with a Decision Component
	11.2.1 Working with Decision Component Metadata
	11.2.2 Working with Decision Components that Expose a Decision Function
	11.2.3 Using Stateful Interactions with a Decision Component
	11.2.4 What You Need to Know About Stateful Interactions with Decision Components

	11.3 Decision Service Architecture

	12 Using Oracle SOA Composer with Oracle Business Rules
	12.1 Introduction to Oracle SOA Composer
	12.2 Using Oracle SOA Composer User Authentication
	12.2.1 What You Need to Know About SOA Composer Access Control and User Authentication

	12.3 Enabling Accessibility Features in SOA Composer
	12.4 Opening and Viewing an Oracle Business Rules Dictionary at Runtime
	12.4.1 Opening an Oracle Business Rules Dictionary at Runtime
	12.4.2 What You Need to Know to Obtain the Dictionary Path from the Open Dialog
	12.4.3 How to View Globals in an Oracle Business Rules Dictionary at Runtime
	12.4.4 How to View Bucketsets in an Oracle Business Rules Dictionary at Runtime
	12.4.5 How to View Linked Dictionary Names at Runtime
	12.4.6 How to View Decision Functions in Oracle Business Rules Dictionary at Runtime
	12.4.7 How to View Rulesets in an Oracle Business Rules Dictionary at Runtime

	12.5 Getting Started with Editing and Saving a Dictionary at Runtime
	12.5.1 What You May Need to Know About Localized Number Formatting Support in Oracle SOA Composer
	12.5.2 What You May Need to Know About Cutting/Copying and Pasting Rule Elements at Runtime
	12.5.3 How to Edit Globals in an Oracle Business Rules Dictionary at Runtime
	12.5.4 How to Edit Bucketsets in an Oracle Business Rules Dictionary at Runtime
	12.5.5 What You Need to Know About Editing Bucketsets
	12.5.6 How to Work With Dictionary Links in an Oracle Business Rules Dictionary at Runtime
	12.5.7 How to Edit Decision Functions in an Oracle Business Rules Dictionary at Runtime
	12.5.8 What You May Need to Know About Oracle Business Rules Dictionary Editor Declarative Component
	12.5.9 What You May Need to Know About Oracle Business Rules Dictionary Editor Task Flow

	12.6 Editing Rules in an Oracle Business Rules Dictionary at Runtime
	12.6.1 How to Edit Rules in an Oracle Business Rules Dictionary at Runtime
	12.6.2 How to Add a Rule at Runtime
	12.6.3 How to Delete a Rule at Runtime
	12.6.4 How to Show and Edit Advanced Settings for Rules at Runtime
	12.6.5 How to Add Rule Conditions at Runtime
	12.6.6 How to Delete Rule Conditions at Runtime
	12.6.7 How to Modify Rule Conditions at Runtime
	12.6.8 How to Add Rule Actions at Runtime
	12.6.9 How to Delete Rule Actions at Runtime
	12.6.10 How to Modify Rule Actions at Runtime
	12.6.11 How to Work with Advanced Mode Rules at Runtime
	12.6.12 How to Work with Tree Mode Rules at Runtime
	12.6.13 What You May Need to Know About Rules Paging in Oracle SOA Composer
	12.6.14 What You May Need to Know About Oracle Business Rules Editor Declarative Component
	12.6.15 What You May Need to Know About Oracle Business Rules Dictionary Editor Declarative Component
	12.6.16 What You May Need to Know About Oracle Business Rules Dictionary Editor Task Flow

	12.7 Using the Oracle SOA Composer Browser Windows
	12.7.1 Expression Builder
	12.7.2 Condition Browser
	12.7.3 Date Browser
	12.7.4 Right Operand Browser

	12.8 Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime
	12.8.1 Adding a Decision Table at Runtime
	12.8.2 Adding Condition Rows to a Decision Table
	12.8.3 Adding Actions to a Decision Table
	12.8.4 Adding Rules to a Decision Table
	12.8.5 Deleting Rules in a Decision Table
	12.8.6 Defining Tests in a Decision Table
	12.8.7 Splitting and Compacting a Decision Table
	12.8.8 Checking for Missing Rules in a Decision Table
	12.8.9 Performing Conflict Resolution in Decision Tables
	12.8.10 Switching From Rows to Columns
	12.8.11 Working with Advanced Mode Options in a Decision Table
	12.8.12 Deleting a Decision Table at Runtime
	12.8.13 What You Need to Know About Rule Test Variables

	12.9 Localizing Names of Resources in Oracle Business Rules
	12.9.1 How to Localize the Alias of a Oracle Business Rules Component

	12.10 Committing Changes for an Oracle Business Rules Dictionary at Runtime
	12.10.1 What You Need to Know About Editing With Multiple Users at Runtime

	12.11 Synchronizing Rules Dictionary in Oracle JDeveloper With Runtime Dictionary Updates
	12.12 Validating an Oracle Business Rules Dictionary at Runtime
	12.12.1 Understanding the Validation Panel
	12.12.2 Updating the Validation Panel

	12.13 Obtaining Composite and Dictionary Information at Runtime
	12.14 Working with Tasks at Runtime
	12.14.1 How to View Task Metadata at Runtime
	12.14.2 How to Configure a Task or an AMX Rule Metadata at Runtime

	A Oracle Business Rules Files and Limitations
	A.1 Rules Designer Naming Conventions
	A.1.1 Ruleset Naming
	A.1.2 Dictionary Naming
	A.1.3 Alias Naming
	A.1.4 XML Schema Target Package Naming

	B Oracle Business Rules Built-in Classes and Functions
	B.1 String Classes
	B.2 List Classes
	B.3 Numeric Classes
	B.4 Time and Duration Classes
	B.5 Miscellaneous Classes
	B.6 Functions

	C Oracle Business Rules Frequently Asked Questions
	C.1 Why Do Rules Not Fire When A Java Object is Asserted as a Fact and Then Changed Without Using the Modify Action?
	C.2 What are the Differences Between Oracle Business Rules RL Language and Java?
	C.3 How Does a RuleSession Handle Concurrency and Synchronization?
	C.4 How Do I Correctly Express a Self-Join?
	C.5 How Do I Use a Property Change Listener in Oracle Business Rules?
	C.6 What Are the Limitations on a Decision Service with Oracle Business Rules?
	C.7 How Do I Put Java Code in a Rule?
	C.8 Can I Use Java Based Facts in a Decision Service with BPEL?
	C.9 How Do I Enable Debugging in a BPEL Decision Service?
	C.10 How Do I Support Versioning with Oracle Business Rules?
	C.11 What is the Priority Order Using Priorities with Rules and Decision Tables?
	C.12 Why do XML Schema with xsd:string Typed Elements Import as Type JAXBElement?
	C.13 Why Are Changes to My Java Classes Not Reflected in the Data Model?
	C.14 How Do I Use Rules SDK to Include a null in an Expression?
	C.15 Is WebDAV Supported as a Repository to Store a Dictionary?
	C.16 Using a Source Code Control System with Rules Designer

	D Oracle Business Rules Troubleshooting
	D.1 Getter and Setter Methods are not Visible
	D.2 Java Class with Only a Property Setter
	D.3 Runtime NoClassDefFound Error
	D.4 RL Specific Keyword Naming Conflict Errors
	D.5 java.lang.IllegalAccessError from Business Rules Service Runtime
	D.6 JAXB 1.0 Dictionaries and RL MultipleInheritanceException
	D.7 Why Does XML Schema with Underscores Fail JAXB Compilation?
	D.8 How Are Decision Service Input Output Element Types Restricted?
	D.9 How Are Decision Service Input Output Schema Restricted?
	D.10 How Do I Handle Java Reserved Names in an Imported Fact Type?

	E Working with Oracle Business Rules and JSR-94 Execution Sets
	E.1 Introduction to Oracle Business Rules and JSR-94 Execution Sets
	E.2 Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets
	E.2.1 Creating Rule Execution Set with Oracle Business Rules RL Language Text
	E.2.2 Creating a Rule Execution Set from Oracle RL Text Specified in a URL
	E.2.3 Creating Rule Execution Sets with Rulesets from Multiple Sources

	E.3 Using the JSR-94 Interface with Oracle Business Rules
	E.3.1 Creating a Rule Execution Set with createRuleExecutionSet
	E.3.2 Creating a Rule Session with createRuleSession
	E.3.3 Working with JSR-94 Metadata
	E.3.4 Using Oracle Business Rules JSR-94 Extensions

	F Working with Rule Reporter
	F.1 Introduction to Working with Rule Reporter
	F.1.1 What You Need to Know About Rule Reporter HTML Style Sheets
	F.1.2 What You Need to Know About RuleReporter API
	F.1.3 What You Need to Know About Rule Reporter Dependent Jar Files

	F.2 Using Rule Reporter Command Line Interface
	F.2.1 How to List the Contents of a Dictionary with Rule Reporter Command Line

	F.3 Using Rule Reporter with Java
	F.3.1 How to List the Contents of a Dictionary Using Rule Reporter with Java

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

