

[1] Oracle® Fusion Middleware
Performance and Tuning Guide

11g Release 1 (11.1.1.7.0)

E10108-14

November 2014

Describes how to monitor and optimize performance,
configure components for optimal performance in the Oracle
Fusion Middleware environment.

Oracle Fusion Middleware Performance and Tuning Guide 11g Release 1 (11.1.1.7.0)

E10108-14

Copyright © 2013, 2014 Oracle and/or its affiliates. All rights reserved.

Primary Authors: Lisa Jamen, Sreetama Ghosh, Hannah Cheng

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

The information contained in this document is for informational sharing purposes only and should be
considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement
only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in
making purchasing decisions. The development, release, and timing of any features or functionality
described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the
exclusive property of Oracle. Your access to and use of this confidential material is subject to the terms and
conditions of your Oracle Software License and Service Agreement, which has been executed and with
which you agree to comply. This document and information contained herein may not be disclosed, copied,
reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle. This document
is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle
or its subsidiaries or affiliates.

v

Contents

Preface .. xvii

Audience.. xvii
Documentation Accessibility .. xvii
Conventions .. xvii

Part I Introduction

1 Introduction and Roadmap

1.1 Document Scope and Audience.. 1-1
1.2 Guide to this Document ... 1-1
1.3 Related Documentation.. 1-4

2 Top Performance Areas

2.1 About Identifying Top Performance Areas... 2-1
2.2 Securing Sufficient Hardware Resources .. 2-2
2.3 Tuning the Operating System ... 2-3
2.4 Tuning Java Virtual Machines (JVMs) ... 2-3
2.4.1 Configuring Garbage Collection ... 2-4
2.4.2 Logging Low Memory Conditions.. 2-7
2.4.3 Monitoring and Profiling the JVM .. 2-8
2.5 Tuning the WebLogic Server... 2-8
2.6 Tuning Database Parameters .. 2-8
2.6.1 Tuning Database Parameters ... 2-8
2.6.2 Tuning Redo Logs Location and Sizing .. 2-10
2.6.3 Tuning Automatic Segment-Space Management (ASSM).. 2-10
2.7 Reusing Database Connections.. 2-11
2.8 Enabling Data Source Statement Caching.. 2-11
2.9 Controlling Concurrency .. 2-12
2.9.1 Setting Server Connection Limits ... 2-12
2.9.2 Configuring Connection Pools ... 2-14
2.9.3 Tuning the WebLogic Sever Thread Pool ... 2-14
2.9.4 Tuning Oracle WebCenter Concurrency... 2-16
2.9.5 Tuning BPEL Concurrency.. 2-16
2.10 Setting Logging Levels .. 2-16

vi

3 Performance Planning

3.1 About Oracle Fusion Middleware Performance Planning ... 3-1
3.2 Performance Planning Methodology ... 3-1
3.2.1 Define Your Performance Objectives.. 3-1
3.2.2 Design Applications for Performance and Scalability ... 3-4
3.2.3 Monitor and Measure Your Performance Metrics .. 3-4

4 Monitoring Oracle Fusion Middleware

4.1 About Oracle Fusion Middleware Management Tools ... 4-1
4.1.1 Measuring Your Performance Metrics.. 4-2
4.2 Oracle Enterprise Manager 11g Fusion Middleware Control .. 4-2
4.2.1 Viewing Performance Metrics Using Fusion Middleware Control.............................. 4-3
4.3 Oracle WebLogic Server Administration Console ... 4-4
4.4 WebLogic Diagnostics Framework (WLDF)... 4-5
4.5 WebLogic Scripting Tool (WLST)... 4-6
4.5.1 Using Custom WLST Commands ... 4-6
4.6 DMS Spy Servlet.. 4-7
4.6.1 Viewing Performance Metrics Using the Spy Servlet .. 4-7
4.6.2 Using the DMS Spy Servlet .. 4-7
4.7 Oracle Process Manager and Notification Server .. 4-9
4.8 Oracle Enterprise Manager Cloud Control ... 4-9
4.9 Native Operating System Performance Commands... 4-10
4.10 Network Performance Monitoring Tools ... 4-10

Part II Core Components

5 Understanding the Oracle Dynamic Monitoring Service

5.1 About Dynamic Monitoring Service (DMS) ... 5-1
5.1.1 Understanding Common DMS Terms and Concepts .. 5-1
5.2 Understanding DMS Availability... 5-6
5.3 Understanding DMS Architecture ... 5-6
5.4 Viewing DMS Metrics .. 5-7
5.4.1 Viewing Metrics Using the Spy Servlet .. 5-7
5.4.2 Viewing Metrics with WLDF (WebLogic Diagnostic Framework) 5-8
5.4.3 Viewing metrics with WLST (Oracle WebLogic Server).. 5-8
5.4.4 Viewing metrics with JConsole.. 5-8
5.4.5 Viewing metrics with Oracle Enterprise Manager ... 5-8
5.4.6 Viewing metrics using WSADMIN (IBM WebSphere) .. 5-9
5.5 Accessing DMS Metrics with WLDF.. 5-9
5.6 DMS Execution Context ... 5-9
5.6.1 DMS Execution Requests and Sub-Tasks .. 5-10
5.6.2 DMS Execution Context Usage... 5-11
5.6.3 DMS Execution Context Communication ... 5-11
5.7 DMS Tracing and Events .. 5-11
5.7.1 Configuring the DMS Event System.. 5-12
5.7.2 Configuring Destinations .. 5-15

vii

5.7.3 Understanding DMS Event Output ... 5-24
5.7.4 Understanding DMS Event Actions... 5-27
5.8 DMS Best Practices .. 5-28

6 Oracle HTTP Server Performance Tuning

6.1 About Oracle HTTP Server.. 6-1
6.2 Monitoring Oracle HTTP Server Performance ... 6-1
6.3 Basic Tuning Considerations .. 6-2
6.3.1 Tuning Oracle HTTP Server Directives .. 6-2
6.3.2 Reducing Httpd Process Availability with Persistent Connections............................. 6-7
6.3.3 Logging Options for Oracle HTTP Server.. 6-8
6.4 Advanced Tuning Considerations ... 6-9
6.4.1 Tuning Oracle HTTP Server Security .. 6-9
6.4.2 Tuning Oracle HTTP Server.. 6-12

7 Oracle Metadata Service (MDS) Performance Tuning

7.1 About Oracle Metadata Services (MDS).. 7-1
7.2 Monitoring Oracle Metadata Service Performance ... 7-1
7.3 Basic Tuning Considerations... 7-2
7.3.1 Tuning the Database Repository ... 7-2
7.3.2 Tuning Cache Configuration ... 7-3
7.3.3 Purging Document Version History ... 7-4
7.3.4 Using Database Polling Interval for Change Detection ... 7-5
7.4 Advanced Tuning Considerations ... 7-6
7.4.1 Analyzing Performance Impact from Customization .. 7-6

Part III Oracle Fusion Middleware Server Components

8 Oracle Application Development Framework Performance Tuning

8.1 About Oracle ADF .. 8-1
8.2 Basic Tuning Considerations... 8-1
8.2.1 Oracle ADF Faces Configuration and Profiling .. 8-2
8.2.2 Tuning ADF Faces ... 8-2
8.2.3 Tuning ADF Faces Component Attributes .. 8-9
8.2.4 Tuning Table and Tree Components ... 8-12
8.2.5 Tuning Data Visualization Tool (DVT) Components.. 8-15
8.3 Advanced Tuning Considerations .. 8-16
8.3.1 Tuning ADF Server Performance ... 8-16
8.3.2 Tuning Groovy Usage.. 8-28

9 Oracle TopLink (EclipseLink) JPA Performance Tuning

9.1 About Oracle TopLink and EclipseLink .. 9-1
9.2 Monitoring TopLink Performance ... 9-2
9.3 Basic Tuning Considerations... 9-2
9.3.1 Using Efficient SQL Statements and Queries .. 9-3

viii

9.3.2 Tuning Cache Configuration .. 9-10
9.3.3 Integrating Oracle Toplink with Coherence ... 9-16
9.4 Advanced Tuning Considerations .. 9-17
9.4.1 Configuring Mappings .. 9-17
9.4.2 Configuring Data Partitioning.. 9-17

10 Oracle Web Cache Performance Tuning

10.1 About Oracle Web Cache.. 10-1
10.2 Performance Considerations .. 10-1
10.2.1 Optimizing Hardware Resources... 10-1
10.2.2 Optimizing Platform Connections ... 10-4
10.3 Basic Tuning Considerations.. 10-4
10.3.1 Optimizing Network Connections ... 10-4
10.3.2 Increasing Cache Hit Rates.. 10-7
10.3.3 Optimizing Response Time... 10-9
10.4 Advanced Tuning Considerations .. 10-10
10.4.1 Optimizing Performance with Oracle ADF .. 10-10

Part IV SOA Suite Components

11 General Tuning for SOA Suite Components

11.1 About SOA Suite Configuration Properties... 11-1
11.2 SOA Infrastructure Configurations... 11-1
11.2.1 Audit Level .. 11-2
11.2.2 Instance Tracking Audit Trail Threshold.. 11-2
11.2.3 Logging Level.. 11-2
11.3 Modifying SOA Configuration Parameters ... 11-2
11.4 JVM Tuning Parameters.. 11-3
11.5 Database Settings ... 11-3
11.5.1 Configuring Data Sources for SOA.. 11-3
11.5.2 Managing Tables and Indexes .. 11-3
11.5.3 Weblogic Server Performance Tuning... 11-4

12 Oracle Business Rules Performance Tuning

12.1 About Oracle Business Rules ... 12-1
12.2 Basic Tuning Considerations.. 12-1
12.2.1 Use Java Beans... 12-1
12.2.2 Assert Child Facts instead of Multiple Dereferences .. 12-2
12.2.3 Avoid Side Affects in Rule Conditions.. 12-2
12.2.4 Avoid Expensive Operations in Rule Conditions.. 12-2
12.2.5 Consider Pattern Ordering.. 12-2
12.2.6 Consider the Ordering of Tests in Rule Conditions .. 12-2
12.2.7 Enable assertXPath Support .. 12-3

13 Oracle BPEL Process Manager Performance Tuning

13.1 About BPEL Process Manager ... 13-1

ix

13.2 Basic Tuning Considerations.. 13-1
13.2.1 Tuning Audit Levels... 13-1
13.2.2 Tuning Database Persistence for BPEL.. 13-3
13.2.3 Tuning Invoke Messages ... 13-4
13.2.4 Tuning Processed Requests List ... 13-4
13.2.5 Tuning XML Document Persistence .. 13-5
13.2.6 Validating XML... 13-5
13.2.7 Tuning Wait Time... 13-5
13.2.8 Tuning Instance Key Block Size.. 13-5
13.2.9 Tuning Automatic Recovery Attempts ... 13-6
13.3 Advanced Tuning Considerations .. 13-6
13.3.1 Tuning BPEL Properties Set Inside a Composite ... 13-6
13.3.2 Identifying Tables Impacted By Instance Data Growth.. 13-6

14 Oracle Business Activity Monitoring Performance Tuning

14.1 About Oracle Business Activity Monitoring.. 14-1
14.2 Basic Tuning Considerations.. 14-1
14.2.1 BAM Server Tuning.. 14-1
14.2.2 BAM Dashboard Tuning ... 14-2
14.2.3 BAM Database Tuning... 14-3
14.2.4 Internet Browser Tuning.. 14-3
14.2.5 Enterprise Message Source Tuning.. 14-3

15 Oracle Mediator Performance Tuning

15.1 About Oracle Mediator ... 15-1
15.2 Basic Tuning Considerations.. 15-1
15.2.1 Tuning metricsLevel... 15-2
15.2.2 Using Domain-Value Maps... 15-2
15.2.3 Deploying Deferred Routing Rules.. 15-2
15.2.4 Tuning Error and Retry Parameters... 15-3
15.2.5 Setting the Audit Level .. 15-3
15.2.6 Using Resequencer for Messages ... 15-3
15.3 Tuning Event Delivery Network (EDN).. 15-4

16 Oracle Business Process Management Performance Tuning

16.1 About Oracle Business Process Management.. 16-1
16.2 Basic Tuning Considerations.. 16-1
16.2.1 Audit Level .. 16-2
16.2.2 LargeDocumentThreshold .. 16-2
16.2.3 Dispatcher System Threads... 16-2
16.2.4 Dispatcher Engine Threads ... 16-3
16.2.5 Dispatcher Invoke Threads ... 16-3
16.3 Tuning Oracle Workspace and Worklist Applications .. 16-3
16.4 Tuning Process Analytics.. 16-4
16.4.1 Process Measurement... 16-5
16.4.2 Tuning Process Cubes .. 16-5

x

17 Oracle Human Workflow Performance Tuning

17.1 About Oracle Human Workflow ... 17-1
17.2 Basic Tuning Considerations.. 17-1
17.2.1 Minimize Client Response Time... 17-2
17.2.2 Choose the Right Workflow Service Client .. 17-2
17.2.3 Narrow Qualifying Tasks Using Precise Filters ... 17-2
17.2.4 Retrieve Subset of Qualifying Tasks (Paging) .. 17-3
17.2.5 Fetch Only the Information That Is Needed for a Qualifying Task 17-3
17.2.6 Reduce the Number of Return Query Columns .. 17-4
17.2.7 Use the Aggregate API for Charting Task Statistics.. 17-4
17.2.8 Use the Count API Methods for Counting the Number of Tasks 17-5
17.2.9 Create Indexes On Demand for Flexfields .. 17-5
17.2.10 Use the doesTaskExist Method... 17-5
17.3 Improving Server Performance.. 17-5
17.3.1 Archive Completed Instances Periodically... 17-6
17.3.2 Select the Appropriate Workflow Callback Functionality.. 17-6
17.3.3 Minimize Performance Impacts from Notification.. 17-6
17.3.4 Deploy Clustered Nodes ... 17-6
17.4 Completing Workflows Faster ... 17-7
17.4.1 Use Workflow Reports to Monitor Progress .. 17-7
17.4.2 Specify Escalation Rules .. 17-7
17.4.3 Specify User and Group Rules for Automated Assignment 17-7
17.4.4 Use Task Views to Prioritize Work .. 17-8
17.5 Tuning Identity Provider .. 17-8
17.6 Tuning the Database.. 17-8

18 Oracle Adapters Performance Tuning

18.1 About Oracle Adapters ... 18-1
18.2 Oracle JCA Adapters for Files/FTP .. 18-1
18.2.1 Inbound Throttling Best Practices .. 18-2
18.2.2 Outbound Throttling Best Practices... 18-2
18.2.3 Outbound Performance Best Practices .. 18-3
18.3 Oracle JCA Adapter for Database Tuning.. 18-4
18.3.1 JCA Adapter Basic Tuning Considerations .. 18-4
18.3.2 Existence Checking... 18-6
18.3.3 Throttling ... 18-7
18.4 Oracle Socket Adapter Tuning... 18-7
18.5 Oracle SOA JMS Adapter Tuning.. 18-8
18.5.1 adapter.jms.receive.threads Property .. 18-8
18.6 Oracle AQ Adapter Tuning .. 18-8
18.6.1 adapter.aq.dequeue.threads Property ... 18-8
18.7 Oracle MQ Adapter Tuning ... 18-9

19 User Messaging Service Performance Tuning

19.1 About Oracle User Messaging Services .. 19-1
19.2 Basic Tuning Considerations.. 19-1

xi

19.2.1 SMPP Driver Performance Tuning .. 19-1
19.2.2 Email Driver Polling Frequency ... 19-2
19.3 Database Tuning for Optimal Throughput.. 19-2

20 Oracle B2B Performance Tuning

20.1 About Oracle B2B... 20-1
20.2 Basic Tuning Considerations.. 20-1
20.2.1 Tuning Data Storage Configurations for B2B... 20-1
20.2.2 Tuning MDS Cache Size .. 20-2
20.2.3 Tuning Number of Threads .. 20-2
20.2.4 Tuning the JMS Multiple Out Queues Setting.. 20-2

21 Oracle Service Bus Performance Tuning

21.1 About Oracle Service Bus ... 21-1
21.2 Monitoring Oracle Service Bus .. 21-1
21.3 Basic Tuning Considerations.. 21-2
21.3.1 Tuning JVM Memory .. 21-2
21.3.2 Tuning WebLogic Server for OSB .. 21-2
21.3.3 Tuning OSB Operational Settings .. 21-3
21.4 Advanced Tuning Considerations .. 21-4
21.4.1 Transport Tuning (Oracle WebLogic Server and Oracle Service Bus)...................... 21-4
21.4.2 Design Time Considerations for Proxy Applications.. 21-5
21.4.3 Design Considerations for XQuery Tuning .. 21-6

22 Oracle Business Intelligence Performance Tuning

22.1 About Oracle Business Intelligence... 22-1
22.2 Oracle BI Server Query Performance Tuning .. 22-1
22.3 Oracle BI Server Query Cache Performance Tuning .. 22-2
22.4 Oracle BI Web Client Performance Tuning.. 22-2

Part V Identity Management Suite Components

23 Oracle Internet Directory Performance Tuning

23.1 About Oracle Internet Directory.. 23-1
23.2 Monitoring Oracle Internet Directory Performance .. 23-2
23.2.1 Monitoring Performance on UNIX and Windows Systems 23-2
23.2.2 Obtaining Recommendations by Using the Tuning and Sizing Wizard 23-3
23.2.3 Updating Database Statistics by Using oidstats.sql... 23-4
23.2.4 Setting Performance-Related Replication Configuration Attributes 23-5
23.2.5 Managing System Configuration Attributes .. 23-5
23.2.6 Setting Garbage Collection Configuration Attributes... 23-6
23.3 Basic Tuning Considerations.. 23-6
23.3.1 Database Parameters .. 23-7
23.3.2 LDAP Server Attributes... 23-7
23.3.3 Database Statistics... 23-9

xii

23.3.4 Low-Priority Tuning Considerations... 23-9
23.4 Advanced Tuning Considerations .. 23-10
23.4.1 Replication or Oracle Directory Integration Platform... 23-10
23.4.2 Replication Server Configuration... 23-11
23.4.3 Garbage Collection Configuration ... 23-12
23.4.4 Oracle Internet Directory with Cluster Configuration.. 23-12
23.4.5 Password Policies and Verifier Profiles... 23-13
23.4.6 Server Entry Cache ... 23-13
23.4.7 Result Set Cache.. 23-15
23.4.8 Tuning Security Event Tracking... 23-16
23.4.9 Optimizing Searches... 23-16
23.5 Specific Use Cases That Require Additional Tuning.. 23-20
23.5.1 Bulk Load Operations .. 23-20
23.5.2 Bulk Delete Operations ... 23-20
23.5.3 High LDAP Write Operations Load ... 23-21
23.5.4 Sparc T4 Hardware Tuning... 23-21

24 Oracle Unified Directory Performance Tuning

24.1 About Oracle Unified Directory .. 24-1
24.2 Performance Considerations .. 24-1
24.3 Monitoring Unified Directory Performance .. 24-2
24.3.1 Examining Log Files ... 24-2
24.3.2 Monitoring the Server With LDAP .. 24-3
24.3.3 Monitoring the Server With SNMP.. 24-3
24.4 Basic Tuning Considerations.. 24-3
24.4.1 Tuning Java Virtual Machine Settings ... 24-3
24.4.2 Tuning the Server Configuration ... 24-5
24.5 Advanced Tuning Recommendations .. 24-7

25 Oracle Virtual Directory Performance Tuning

25.1 About Oracle Virtual Directory .. 25-1
25.2 Basic Tuning Considerations.. 25-1
25.2.1 Tuning the Ping Interval.. 25-2
25.2.2 Tuning Worker Threads .. 25-3
25.2.3 Tuning Work Queue Capacity.. 25-3
25.2.4 Tuning the LDAP Connection Pool ... 25-3
25.2.5 Tuning Heap Size.. 25-4
25.3 Advanced Tuning Considerations .. 25-4
25.3.1 Tuning Database Adapters.. 25-4
25.3.2 Tuning Join Adapters... 25-5
25.3.3 Tuning Filters .. 25-5
25.3.4 Tuning Load Balancer Local Store Adapter ... 25-6
25.3.5 Tuning the Cache Plug-In.. 25-6
25.3.6 Tuning LDAP Listener .. 25-7
25.3.7 Tuning the Server for OVD ... 25-8

xiii

26 Oracle Identity Federation Performance Tuning

26.1 About Oracle Identity Federation.. 26-1
26.2 Basic Tuning Considerations.. 26-1
26.2.1 Tuning Database Parameters for Identity Federation ... 26-1
26.2.2 Tuning the Oracle HTTP Server .. 26-3
26.3 Advanced Tuning Considerations .. 26-3
26.3.1 Tuning the LDAP Servers.. 26-3
26.3.2 Tuning SAML Protocol ... 26-5

27 Oracle Fusion Middleware Security Performance Tuning

27.1 About Security Services .. 27-1
27.2 Basic Tuning Considerations.. 27-2
27.3 Tuning Oracle Platform Security Services.. 27-2
27.3.1 JVM Tuning Parameters .. 27-3
27.3.2 JDK Tuning Parameters ... 27-3
27.3.3 LDAP Tuning Parameters ... 27-3
27.3.4 Authentication Tuning Parameters.. 27-3
27.3.5 Authorization Tuning Properties ... 27-3
27.3.6 OPSS PDP Service Tuning Parameters .. 27-6
27.4 Oracle Web Services Security Tuning ... 27-8
27.4.1 Choosing the Right Policy ... 27-9
27.4.2 Policy Manager.. 27-9
27.4.3 Configuring the Log Assertion to Record SOAP Messages 27-9
27.4.4 Configuring Connection Pooling ... 27-9
27.4.5 Monitoring the Performance of Web Services.. 27-10

Part VI Oracle WebCenter Components

28 Oracle WebCenter Portal Performance Tuning

28.1 About Oracle WebCenter Portal .. 28-1
28.2 Basic Tuning Considerations.. 28-1
28.2.1 Setting System Limit... 28-2
28.2.2 Setting JDBC Data Source ... 28-2
28.2.3 Setting JRockit Virtual Machine (JVM) Arguments... 28-3
28.2.4 Using Content Compression to Reduce Downloads ... 28-4
28.3 Tuning WebCenter Portal Application Configuration... 28-4
28.3.1 Setting Session Timeout for a Spaces Application... 28-5
28.3.2 Setting HTTP Session Timeout for a Framework Application................................... 28-5
28.3.3 Setting JSP Page Timeout... 28-5
28.3.4 Setting ADF Client State Token .. 28-6
28.3.5 Setting ADF View State Compression ... 28-6
28.3.6 Setting MDS Cache Size and Purge Rate... 28-6
28.3.7 Configuring Concurrency Management .. 28-7
28.4 Tuning Back-End Component Configuration.. 28-11
28.4.1 Tuning Performance of the Announcements Service.. 28-11
28.4.2 Tuning Performance of the Discussions Service .. 28-12

xiv

28.4.3 Tuning Performance of the Instant Messaging and Presence (IMP) Service 28-12
28.4.4 Tuning Performance of the Mail Service ... 28-13
28.4.5 Tuning Performance of the Personal Events Service... 28-13
28.4.6 Tuning Performance of the RSS News Feed Service ... 28-14
28.4.7 Tuning Performance of the Search Service ... 28-14
28.4.8 Tuning Policy Store Parameters ... 28-15
28.5 Tuning Identity Store Configuration .. 28-16
28.5.1 Tuning the Identity Store when Using SSL... 28-16
28.5.2 Tuning Performance when Using OVD .. 28-16
28.5.3 Tuning Performance when Using Active Directory .. 28-17
28.6 Tuning Portlet Configuration .. 28-17
28.6.1 Tuning Performance of the Portlet Service ... 28-18
28.6.2 Configuring Portlet Cache Size .. 28-19
28.6.3 Enabling Java Object Cache for WSRP Producers ... 28-19
28.6.4 Suppressing Optimistic Rendering for WSRP Portlets .. 28-19
28.6.5 Tuning Performance of Oracle PDK-Java Producers .. 28-20
28.6.6 Setting Portlet Container Runtime Options.. 28-20
28.6.7 Excluding Request Attributes for Portlets .. 28-20
28.6.8 Setting WSRP Attribute for Portet-served Resources.. 28-21
28.6.9 Setting WSRP Attribute for Resources Not Served by the Portlet........................... 28-21
28.6.10 Configuring Portlet Timeout .. 28-22
28.6.11 Tuning Performance of OmniPortlet ... 28-22

Part VII Capacity Planning, Scalability, and Availability

29 Capacity Planning

29.1 About Capacity Planning for Oracle Fusion Middleware ... 29-1
29.1.1 Capacity Planning Factors to Consider ... 29-2
29.2 Determining Performance Goals and Objectives .. 29-2
29.3 Measuring Your Performance Metrics.. 29-3
29.4 Identifying Bottlenecks in Your System ... 29-3
29.4.1 Using Clustered Configurations... 29-3
29.4.2 Using Connection Pooling... 29-4
29.4.3 Setting the Max HeapSize on JVM ... 29-4
29.4.4 Increasing Memory or CPU... 29-4
29.4.5 Segregation of Network Traffic .. 29-4
29.4.6 Segregation of Processes and Hardware Interrupt Handlers 29-4
29.5 Implementing a Capacity Management Plan .. 29-5
29.5.1 Hardware Configuration Requirements ... 29-5
29.5.2 JVM Requirements.. 29-6
29.5.3 Managed Servers... 29-6
29.5.4 Database Configuration ... 29-6

30 Using Clusters and High Availability Features

30.1 About Clusters and High Availability Features.. 30-1
30.2 Using Clusters with Oracle Fusion Middleware... 30-2

xv

30.3 Using High Availability Features with Oracle Fusion Middleware 30-3

xvi

xvii

Preface

This guide describes how to monitor and optimize performance, review the key
components that impact performance, use multiple components for optimal
performance, and design applications for performance in the Oracle Fusion
Middleware environment.

This preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Conventions

Audience
Oracle Fusion Middleware Performance and Tuning Guide is aimed at a target audience of
Application developers, Oracle Fusion Middleware administrators, database
administrators, and Web masters.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

xviii

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

Part I
Part I Introduction

This part describes basic performance concepts, how to measure performance, and
designing applications for performance and scalability. It contains the following
chapters:

■ Chapter 1, "Introduction and Roadmap"

■ Chapter 2, "Top Performance Areas"

■ Chapter 3, "Performance Planning"

■ Chapter 4, "Monitoring Oracle Fusion Middleware"

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

This section describes the contents and organization of this guide.

■ Section 1.1, "Document Scope and Audience"

■ Section 1.2, "Guide to this Document"

■ Section 1.3, "Related Documentation"

1.1 Document Scope and Audience
Oracle Fusion Middleware Performance and Tuning Guide is for a target audience of
Application developers, Oracle Fusion Middleware administrators, database
administrators, and Web masters. This Guide assumes knowledge of Fusion
Middleware Administration and hardware performance tuning fundamentals,
WebLogic Server, XML, and the Java programming language.

1.2 Guide to this Document
■ This chapter, Chapter 1, "Introduction and Roadmap," introduces the objectives

and organization of this guide.

■ Chapter 2, "Top Performance Areas," describes top tuning areas for Oracle Fusion
Middleware and serves as a 'quick start' for tuning applications.

■ Chapter 3, "Performance Planning," describes the performance planning
methodology and tuning concepts for Oracle Fusion Middleware.

■ Chapter 4, "Monitoring Oracle Fusion Middleware," describes how to monitor
Oracle Fusion Middleware and its components to obtain performance data that
can assist you in tuning the system and debugging applications with performance
problems.

■ Chapter 6, "Oracle HTTP Server Performance Tuning," discusses the techniques for
optimizing Oracle HTTP Server performance, the Web server component for
Oracle Fusion Middleware. It provides a listener for Oracle WebLogic Server and
the framework for hosting static pages, dynamic pages, and applications over the
Web.

■ Chapter 5, "Understanding the Oracle Dynamic Monitoring Service" provides an
overview and features available in the Oracle Dynamic Monitoring Service (DMS).

■ Chapter 7, "Oracle Metadata Service (MDS) Performance Tuning," provides tuning
tips for Oracle Metadata Service (MDS). MDS is used by components such as
Oracle WebCenter Framework and Oracle Application Development Framework
to manage metadata.

Guide to this Document

1-2 Oracle Fusion Middleware Performance and Tuning Guide

■ Chapter 8, "Oracle Application Development Framework Performance Tuning,"
provides basic guidelines on how to maximize the performance and scalability of
the ADF stack in applications. Oracle ADF is an end-to-end application framework
that builds on Java Platform, Enterprise Edition (Java EE) standards and
open-source technologies to simplify and accelerate implementing
service-oriented applications. This chapter covers design time, configuration time,
and deployment time performance considerations.

■ Chapter 9, "Oracle TopLink (EclipseLink) JPA Performance Tuning," provides
some of the available performance options for Java Persistence API (JPA) entity
architecture. Oracle TopLink includes EclipseLink as the JPA implementation.

■ Chapter 10, "Oracle Web Cache Performance Tuning," provides methods and
guidelines for improving the performance of Oracle Application Server Web Cache
(Oracle Web Cache). Oracle Web Cache is a content-aware server accelerator or
reverse proxy that improves the performance, scalability, and availability of Web
sites that run on Oracle Fusion Middleware.

■ Chapter 11, "General Tuning for SOA Suite Components," describes the common
SOA infrastructure tuning parameters for configuring Oracle Service-Oriented
Architecture (SOA) Suite components to improve performance. Oracle SOA Suite
provides a complete set of service infrastructure components for designing,
deploying, and managing SOA composite applications. Oracle SOA Suite enables
services to be created, managed, and orchestrated into SOA composite
applications. Composites enable you to easily assemble multiple technology
components into one SOA composite application.

■ Chapter 12, "Oracle Business Rules Performance Tuning" describes the technology
that enables automation of business rules; it also discusses the extraction of
business rules from procedural logic such as Java code or BPEL processes.

■ Chapter 13, "Oracle BPEL Process Manager Performance Tuning," provides several
BPEL property settings that can be configured to optimize performance at the
process, domain, and application server levels. This chapter describes these
property settings and provides recommendations on how to use them.

■ Chapter 15, "Oracle Mediator Performance Tuning," describes how to tune Oracle
Mediator, a service engine within the Oracle SOA Service Infrastructure, for
optimal performance. Oracle Mediator provides the framework to mediate
between various providers and consumers of services and events. The Mediator
service engine runs with the SOA Service Infrastructure Java EE application.

■ Chapter 16, "Oracle Business Process Management Performance Tuning" describes
how to tune Oracle Service Bus (OSB) which provides connectivity, routing,
mediation, management and also some process orchestration capabilities.

■ Chapter 17, "Oracle Human Workflow Performance Tuning," describes how to
tune Oracle Human Workflow for optimal performance. Oracle Human Workflow
is a service engine running in Oracle SOA Service Infrastructure that allows the
execution of interactive human driven processes. A human workflow provides the
human interaction support such as approve, reject, and reassign actions within a
process or outside of any process. The Human Workflow service consists of a
number of services that handle various aspects of human interaction with a
business process.

■ Chapter 18, "Oracle Adapters Performance Tuning," describes how to tune Oracle
Adapters for optimal performance. Oracle technology adapters integrate Oracle
Application Server and Oracle Fusion Middleware components such as Oracle
BPEL Process Manager (Oracle BPEL PM) or Oracle Mediator components to file

Guide to this Document

Introduction and Roadmap 1-3

systems, FTP servers, database queues (advanced queues, or AQ), Java Message
Services (JMS), database tables, and message queues (MQ Series).

■ Chapter 14, "Oracle Business Activity Monitoring Performance Tuning," describes
how to tune the Oracle Business Activity Monitoring dashboard application for
optimal performance. Oracle Business Activity Monitoring (BAM) provides the
tools for monitoring business services and processes in the enterprise.

■ Chapter 19, "User Messaging Service Performance Tuning," describes tips for
tuning the User Messaging Service. Oracle User Messaging Service (Oracle UMS)
enables two way communications between users and deployed applications. It has
support for a variety of channels, such as E-mail, IM, SMS, and text-to-voice
messages. Oracle UMS is integrated with Oracle Fusion Middleware components,
such as Oracle BPEL PM, Oracle Human Workflow, Oracle BAM and Oracle
WebCenter.

■ Chapter 20, "Oracle B2B Performance Tuning" provides tuning tips for Oracle B2B.
Oracle B2B is an e-commerce gateway that enables the secure and reliable
exchange of business documents between an enterprise and its trading partners.
Oracle B2B supports business-to-business document standards, security,
transports, messaging services, and trading partner management. With Oracle B2B
used as a binding component within an Oracle SOA Suite composite application,
end-to-end business processes can be implemented.

■ Chapter 21, "Oracle Service Bus Performance Tuning" provides basic and
advanced tuning tips and design considerations for Oracle Service Bus.

■ Chapter 22, "Oracle Business Intelligence Performance Tuning" provides basic and
advanced tuning tips for Oracle Business Intelligence.

■ Chapter 23, "Oracle Internet Directory Performance Tuning," provides guidelines
on Oracle Internet Directory tuning and configuration requirements. Oracle
Internet Directory is an LDAP Version 3-enabled service that enables fast retrieval
and centralized management of information about dispersed users, network
configuration, and other resources.

■ Chapter 25, "Oracle Virtual Directory Performance Tuning," provides tuning tips
for Oracle Virtual Directory. Oracle Virtual Directory is an LDAP Version
3-enabled service that provides an abstracted view of one or more enterprise data
sources. Oracle Virtual Directory consolidates multiple data sources into a single
directory view, enabling you to integrate LDAP-aware applications with diverse
directory server data stores.

■ Chapter 26, "Oracle Identity Federation Performance Tuning," provides tuning tips
for Oracle Identity Federation, a standalone, self-contained federation server that
enables single sign-on (SSO) and authentication in a multiple-domain identity
network.

■ Chapter 27, "Oracle Fusion Middleware Security Performance Tuning," describes
Oracle Platform Security for Java. Oracle Platform Security for Java is the Oracle
Fusion Middleware security implementation for Java features such as Java
Authentication and Authorization Service (JAAS) and Java EE security. This
chapter describes how you can configure it for optimal performance.

■ Chapter 28, "Oracle WebCenter Portal Performance Tuning," provides suggested
tuning tips for Oracle WebCenter including: Environment Configuration,
Application Configuration and Back-End Services and Server Configuration.

■ Chapter 29, "Capacity Planning," discusses the process of determining what type
of hardware and software configuration is required to meet application needs.

Related Documentation

1-4 Oracle Fusion Middleware Performance and Tuning Guide

■ Chapter 30, "Using Clusters and High Availability Features," discusses the
architecture, interaction, and dependencies of Oracle Fusion Middleware
components, and explains how they can be deployed in a high availability
architecture to maximize performance.

1.3 Related Documentation
For more information, see the following documents in the Oracle Fusion Middleware
11g Release 1 (11.1.1.7.0) documentation set:

■ Oracle Fusion Middleware Administrator's Guide

■ Oracle Fusion Middleware 2 Day Administration Guide

■ Oracle Fusion Middleware Concepts

■ Oracle Fusion Middleware Application Security Guide

■ Oracle Fusion Middleware High Availability Guide

■ Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server

■ Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle
Business Process Management Suite

■ Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal

■ Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

■ Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

■ Oracle Fusion Middleware Security and Administrator's Guide for Web Services

■ Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory

■ Oracle Fusion Middleware Administrator's Guide for Oracle Virtual Directory

■ Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation

2

Top Performance Areas 2-1

2Top Performance Areas

[2] This chapter describes the top tuning areas for Oracle Fusion Middleware. It covers
critical Oracle Fusion Middleware performance areas and provides a quick start for
tuning Java EE applications in the following sections:

■ Section 2.1, "About Identifying Top Performance Areas"

■ Section 2.2, "Securing Sufficient Hardware Resources"

■ Section 2.3, "Tuning the Operating System"

■ Section 2.4, "Tuning Java Virtual Machines (JVMs)"

■ Section 2.5, "Tuning the WebLogic Server"

■ Section 2.6, "Tuning Database Parameters"

■ Section 2.7, "Reusing Database Connections"

■ Section 2.8, "Enabling Data Source Statement Caching"

■ Section 2.9, "Controlling Concurrency"

■ Section 2.10, "Setting Logging Levels"

2.1 About Identifying Top Performance Areas
One of the most challenging aspects of performance tuning is knowing where to begin.
This chapter serves as a 'quick start' guide to performance tuning your Oracle Fusion
Middleware applications.

Table 2–1 provides a list of common performance considerations for Oracle Fusion
Middleware. While the list is a useful tool in starting your performance tuning, it is
not meant to be comprehensive list of areas to tune. You must monitor and track
specific performance issues within your application to understand where tuning can
improve performance. See Chapter 4, "Monitoring Oracle Fusion Middleware" for
more information.

Securing Sufficient Hardware Resources

2-2 Oracle Fusion Middleware Performance and Tuning Guide

2.2 Securing Sufficient Hardware Resources
A key component of managing the performance of Oracle Fusion Middleware
applications is to ensure that there are sufficient CPU, memory, and network resources
to support the user and application requirements for your installation.

No matter how well you tune your applications, if you do not have the appropriate
hardware resources, your applications cannot reach optimal performance levels.
Oracle Fusion Middleware has minimum hardware requirements for its applications
and database tier. For details on Oracle Fusion Middleware supported configurations,
see "System Requirements and Prerequisites" in the Oracle Fusion Middleware
Installation Planning Guide for your platform.

Table 2–1 Top Performance Areas for Oracle Fusion Middleware

Performance Area Description and Reference

Hardware Resources Ensure that your hardware resources meet or exceed the application's
resource requirements to maximize performance.

See Section 2.2, "Securing Sufficient Hardware Resources" for information
on how to determine if your hardware resources are sufficient.

Operating System Each operating system has native tools and utilities that can be useful for
monitoring purposes.

See Section 2.3, "Tuning the Operating System"

Java Virtual Machines (JVMs) This section discusses best practices and provides practical tips to tune the
JVM and improve the performance of a Java EE application. It also
discusses heap size and JVM garbage collection options.

See Section 2.4, "Tuning Java Virtual Machines (JVMs)".

Database For applications that access a database, ensure that your database is
properly configured to support your application's requirements.

See Section 2.6, "Tuning Database Parameters" for more information on
garbage collection.

WebLogic Server If your Oracle Fusion Middleware applications are using the WebLogic
Server, see Section 2.5, "Tuning the WebLogic Server".

Database Connections Pooling the connections so they are reused is an important tuning
consideration.

See Section 2.7, "Reusing Database Connections"

Data Source Statement Caching For applications that use a database, you can lower the performance
impact of repeated statement parsing and creation by configuring
statement caching properly.

See Section 2.8, "Enabling Data Source Statement Caching"

Oracle HTTP Server Tune the Oracle HTTP Server directives to set the level of concurrency by
specifying the number of HTTP connections.

See Section 2.9, "Controlling Concurrency".

Concurrency This section discusses ways to control concurrency with Oracle Fusion
Middleware components.

See Section 2.9, "Controlling Concurrency"

Logging Levels Logging levels are thresholds that a system administrator sets to control
how much information is logged. Performance can be impacted by the
amount of information that applications log therefore it is important to set
the logging levels appropriately.

See Section 2.10, "Setting Logging Levels".

Tuning Java Virtual Machines (JVMs)

Top Performance Areas 2-3

Sufficient hardware resources should meet or exceed the acceptable response times
and throughputs for applications without becoming saturated. To verify that you have
sufficient hardware resources, you should monitor resource utilization over an
extended period to determine if (or when) you have occasional peaks of usage or
whether a resource is consistently saturated. For more information on monitoring, see
Chapter 4, "Monitoring Oracle Fusion Middleware".

If any of the hardware resources are saturated (consistently at or near 100%
utilization), one or more of the following conditions may exist:

■ The hardware resources are insufficient to run the application.

■ The system is not properly configured.

■ The application or database must be tuned.

For a consistently saturated resource, the solutions are to reduce load or increase
resources. For peak traffic periods when the increased response time is not acceptable,
consider increasing resources or determine if there is traffic that can be rescheduled to
reduce the peak load, such as scheduling batch or background operations during
slower periods.

Oracle Fusion Middleware provides a variety of mechanisms to help you control
resource concurrency; this can limit the impact of bursts of traffic. However, for a
consistently saturated system, these mechanisms should be viewed as temporary
solutions. For more information see Section 2.9, "Controlling Concurrency".

2.3 Tuning the Operating System
Each operating system has native tools and utilities that can be useful for monitoring
and tuning purposes. Native operating system commands enable you to monitor CPU
utilization, paging activity, swapping, and other system activity information.

For details on operating system commands, and guidelines for performance tuning of
the network or operating system, refer to the documentation provided by the
operating system vendor.

2.4 Tuning Java Virtual Machines (JVMs)
How you tune your Java virtual machine (JVM) greatly affects the performance of
Oracle Fusion Middleware and your applications. This section discusses the tuning
options that have the greatest impact on performance.

To maximize performance from your JVM, be sure that you use only production JVMs
on which your applications have been certified and that your operating system
patches are up-to-date.

Tip: Your target CPU usage should not reach 100% utilization. You
should determine a target CPU utilization based on your application
needs, including CPU cycles for peak usage.

If your CPU utilization is optimized at 100% during normal load
hours, you have no capacity to handle a peak load. In applications
that are latency sensitive and maintaining a fast response time is
important, high CPU usage (approaching 100% utilization) can
increase response times while throughput stays constant or even
decreases. For such applications, a 70% - 80% CPU utilization is
recommended. A good target for non-latency sensitive applications is
about 90%.

Tuning Java Virtual Machines (JVMs)

2-4 Oracle Fusion Middleware Performance and Tuning Guide

The Supported Configurations pages at
http://www.oracle.com/technology/software/products/ias/files/fusion_
certification.html are frequently updated and contain the latest certification
information on various platforms.

This section covers the following performance tuning areas for your JVM:

■ Configuring Garbage Collection

■ Logging Low Memory Conditions

■ Monitoring and Profiling the JVM

2.4.1 Configuring Garbage Collection
Garbage collection is the JVM process of freeing up unused Java objects in the Java
heap. JVM garbage collection can be a resource-intensive operation and may effect
application performance. In some cases, inefficient garbage collection can severely
degrade application performance. Therefore, it is important to understand how
applications create and destroy objects.

This section cover the following Garbage Collection tuning options:

■ Specifying Heap Size Values

■ Selecting a Garbage Collection Scheme

■ Disabling Explicit Garbage Collection

An acceptable rate for garbage collection is application-specific and should be adjusted
after analyzing the actual time and frequency of garbage collections. If you set a large
heap size, full garbage collection is slower, but it occurs less frequently. If you set your
heap size in accordance with your memory needs, full garbage collection is faster, but
occurs more frequently.

To tune the JVM garbage collection options you must analyze garbage collection data
and check for the frequency and type of garbage collections, the size of the memory
pools, and the time spent on garbage collection.

Before you configure JVM garbage collection, analyze the following data points:

1. How often is garbage collection taking place? Compare the time stamps around
the garbage collection.

2. How long is a full garbage collection taking?

Note: For additional information about tuning the JVM, see the
following:

■ Java Performance Documentation:
(http://java.sun.com/docs/performance/)

■ The Java Tuning White Paper
(http://java.sun.com/performance/reference/whitepapers/tu
ning.html)

■ Garbage Collection Tuning
(http://www.oracle.com/technetwork/java/javase/tech/index
-jsp-136373.html)

■ "Tuning Java Virtual Machines (JVMs)" in Oracle Fusion
Middleware Performance and Tuning for Oracle WebLogic Server

Tuning Java Virtual Machines (JVMs)

Top Performance Areas 2-5

3. What is the heap size after each full garbage collection? If the heap is always 85
percent free, for example, you might set the heap size smaller.

4. Do the young generation heap sizes (Sun) or Nursery size (Jrockit) need tuning?

You can manually log garbage collection and memory pool sizes using verbose
garbage collection logging:

■ Sun JVM command line options:

-verbose:gc
-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps

Look for "Full GC" to identify major collections.

■ Additional Sun Tools:

– JStat

– JConsole

– Visualgc

For more information on Sun's options, see
http://java.sun.com/javase/technologies/hotspot/gc/index.jsp

■ Jrockit JVM command line options:

-XXverbose:gc

NOTE: Oracle provides other command-line options to improve the performance
of your JRockit VM. For detailed information, see "JRockit JDK Command Line
Options by Name" at http://download.oracle.com/docs/cd/E13150_
01/jrockit_jvm/jrockit/webdocs/index.html

■ Additional JRockit Tools:

– JRockit Runtime Analyzer (jra recording)

– JRockit Management Console (jrmc)

– JRockit Memory Leak Detector

2.4.1.1 Specifying Heap Size Values
The goal of tuning your heap size is to minimize the time that your JVM spends doing
garbage collection while maximizing the number of clients that the Fusion
Middleware stack can handle at a given time.

Specifically the Java heap is where the objects of a Java program live. It is a repository
for live objects, dead objects, and free memory. When an object can no longer be
reached from any pointer in the running program, it is considered "garbage" and ready
for collection. A best practice is to tune the time spent doing garbage collection to
within 5% of execution time.

The JVM heap size determines how often and how long the virtual machine spends
collecting garbage. An acceptable rate for garbage collection is application-specific and
should be adjusted after analyzing the actual time and frequency of garbage
collections. If you set a large heap size, full garbage collection is slower, but it occurs
less frequently. If you set your heap size in accordance with your memory needs, full
garbage collection is faster, but occurs more frequently.

Tuning Java Virtual Machines (JVMs)

2-6 Oracle Fusion Middleware Performance and Tuning Guide

In production environments, set the minimum heap size and the maximum heap size
to the same value to prevent wasting virtual machine resources used to constantly
grow and shrink the heap. Ensure that the sum of the maximum heap size of all the
JVMs running on your system does not exceed the amount of available physical RAM.
If this value is exceeded, the Operating System starts paging and performance
degrades significantly. The virtual machine always uses more memory than the heap
size. The memory required for internal virtual machine functionality, native libraries
outside of the virtual machine, and permanent generation memory (memory required
to store classes and methods) is allocated in addition to the heap size settings.

For example, you can use the following JVM options to tune the heap:

■ If you run out of heap memory (not due to a memory leak), increase -Xmx.

■ If you run out of native memory, you may need to decrease -Xmx.

■ For Oracle JRockit, modify -Xns:<nursery size> to tune the size of the nursery.

■ For Sun JVM, modify -Xmn to tune the size of the heap for the young generation.

If you receive java.lang.OutOfMemoryError: PermGen space errors, you may also
need to increase the permanent generation space.

2.4.1.2 Selecting a Garbage Collection Scheme
Depending on which JVM you are using, you can choose from several garbage
collection schemes to manage your system memory. Some garbage collection schemes
are more appropriate for a given type of application. Once you have an understanding
of the workload of the application and the different garbage collection algorithms
utilized by the JVM, you can optimize the configuration of the garbage collection.

Refer to the following links for garbage collection options for your JVM:

■ For an overview of the garbage collection schemes available with Sun's HotSpot
VM, see "Java SE 6 HotSpot Virtual Machine Garbage Collection Tuning" at
http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html.

See Also: For more information on how to specify heap size values
for Oracle WebLogic Server, see "Specifying Heap Size Values" in
Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic
Server

For more information on tuning the young generation see the "Young
Generation" section of the Java SE 6 HotSpot Virtual Machine Garbage
Collection Tuning at
http://java.sun.com/javase/technologies/hotspot/gc/gc_
tuning_6.html#generation_sizing.young_gen

For more information on Oracle JRockit heap configurations, see
"Setting the Heap and Nursery Size" in Diagnostics Guide at
http://download.oracle.com/docs/cd/E13188_
01/jrockit/geninfo/diagnos/memman.html

For the Sun java virtual machine see the "Insufficient Memory" section
of "Monitoring and Managing Java SE 6 Platform Applications" at
http://java.sun.com/developer/technicalArticles/J2SE/monitor
ing/index.html#Insufficient_Memory.

"Out of Memory" Frequently Asked Questions section at
http://java.sun.com/docs/hotspot/HotSpotFAQ.html#gc_oom

Tuning Java Virtual Machines (JVMs)

Top Performance Areas 2-7

■ For a comprehensive explanation of the collection schemes available, see "Memory
Management in the Java HotSpot™ Virtual Machine" at
http://java.sun.com/j2se/reference/whitepapers/memorymanagement_
whitepaper.pdf.

■ For a discussion of the garbage collection schemes available with the JRockit JDK,
see "Using the JRockit Memory Management System" at
http://download.oracle.com/docs/cd/E13150_01/jrockit_
jvm/jrockit/webdocs/index.html.

2.4.1.3 Disabling Explicit Garbage Collection
The following parameters are used to help diagnose whether explicit garbage
collections are occurring. They can also be used to disable the explicit garbage
collections if necessary until the code is fixed:

■ For Sun virtual machines use -XX:+DisableExplicitGC

For more information on using the explicit garbage collections, see "Java SE 6
HotSpot Virtual Machine Garbage Collection Tuning " at
http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html.

■ For Oracle JRockit virtual machines use -XXnoSystemGC

For more information on tuning the Oracle JRockit, see at
http://download.oracle.com/docs/cd/E13188_
01/jrockit/geninfo/diagnos/bestpractices.html

These parameters disable explicit garbage collection. Applications should avoid the
use of system.gc() calls. If you suspect an application may be explicitly triggering
garbage collection, set this parameter and observe the differences in your garbage
collection behavior. If you detect that performance is affected by explicit collections,
check the code to determine where explicit garbage collections are used and why, and
the impact of disabling the calls. Application developers sometimes use system.gc()
calls to trigger finalizers. This is not a recommended practice and can yield
indeterminate behavior.

2.4.2 Logging Low Memory Conditions
WebLogic Server enables you to automatically log low memory conditions observed
by the server. WebLogic Server detects low memory by sampling the available free
memory a set number of times during a time interval. At the end of each interval, an
average of the free memory is recorded and compared to the average obtained at the
next interval. If the average drops by a user-configured amount after any sample
interval, the server logs a low memory warning message in the log file and sets the
server health state to "warning."

See Also: For more information on using WebLogic Server to detect
low memory conditions refer to the following:

"Log low memory conditions" in Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Online Help.

"Automatically Logging Low Memory Conditions" in Oracle Fusion
Middleware Performance and Tuning for Oracle WebLogic Server

Tuning the WebLogic Server

2-8 Oracle Fusion Middleware Performance and Tuning Guide

2.4.3 Monitoring and Profiling the JVM
Monitoring the performance of your JVM is crucial to achieving optimal performance.
Depending on your platform, the following tools can be used to monitor and profile
your JVM:

■ Oracle JRockit® Mission Control

Oracle JRockit Mission Control is a suite of tools designed to monitor, manage,
profile, and eliminate memory leaks in your Java application without the
performance impacts normally associated with these types of tools.

For more information on the Oracle JRockit Mission Control see:
http://download.oracle.com/docs/cd/E13188_01/jrockit/tools/index.html

■ Sun JVM

The Java™ Platform comes with the following monitoring facilities built-in:

■ Java Virtual Machine Monitoring and Management API

■ JConsole

■ Hprof Tools

■ Logging Monitoring and Management Interface

■ Java Management Extensions (JMX)

For more information on the Java platform monitoring tools, see:
http://java.sun.com/developer/technicalArticles/J2SE/monitoring/

2.5 Tuning the WebLogic Server
If your Oracle Fusion Middleware applications are using the WebLogic Server, see
"Tuning Java Virtual Machines (JVMs)" in Oracle Fusion Middleware Performance and
Tuning for Oracle WebLogic Server.

2.6 Tuning Database Parameters
To achieve optimal performance for applications that use the Oracle database, the
database tables you access must be designed with performance in mind. Monitoring
and tuning the database ensures that you get the best performance from your
applications.

This section covers the following:

■ Tuning Database Parameters

■ Tuning Redo Logs Location and Sizing

■ Tuning Automatic Segment-Space Management (ASSM)

2.6.1 Tuning Database Parameters
The following tables provide common init.ora parameters and their descriptions.
Consider following these guidelines to set the database parameters. Ultimately,

Note: Always review the tuning guidelines in your database-specific
vendor documentation. For more information on tuning the Oracle
database, see the Oracle Database Performance Tuning Guide.

Tuning Database Parameters

Top Performance Areas 2-9

however, the DBA should monitor the database health and tune parameters based on
the need. See the following tables for more information:

■ Table 2–2, " Important init.ora Oracle 10g Database Tuning Parameters"

■ Table 2–3, " Important inti.ora Oracle 11g Database Tuning Parameters"

2.6.1.1 Initialization Parameters for Oracle 10g
The following table describes several performance-related database initialization
parameters for Oracle 10g database. The tuning considerations listed below are
applicable to most scenarios. Always set your database parameters based on your own
use case scenarios.

Note: Consider applying Patch Set Release (PSR) 11.1.0.7 and
upgrade the database prior to attempting the following modifications.

Table 2–2 Important init.ora Oracle 10g Database Tuning Parameters

Database Parameter Description

_b_tree_bitmap_plans Consider setting this parameter to FALSE to prevent optimizer from attempting
bitmap operations as there are no bitmap indexes in Fusion Middleware.

DB_BLOCK_SIZE DB_BLOCK_SIZE specifies (in bytes) the size of Oracle database blocks. The
default block size of 8K is optimal for most systems. Set this parameter at the
time of database creation.

NLS_SORT Consider setting NLS_SORT to BINARY, otherwise sort will do full table scan
and performance can be impacted.

OPEN_CURSORS Consider using a value of 500 open cursors (handles to private SQL areas) a
session can have at once.

SESSION_CACHED_CURSORS Consider using a value of 500 session cursors to cache.

SESSION_MAX_OPEN_FILES SESSION_MAX_OPEN_FILES specifies the maximum number of BFILEs that
can be opened in any session. Once this number is reached, subsequent attempts
to open more files in the session by using DBMS_LOB.FILEOPEN() or
OCILobFileOpen() may fail. The maximum value for this parameter depends on
the equivalent parameter defined for the underlying operating system.

JOB_QUEUE_PROCESSES JOB_QUEUE_PROCESSES specifies the maximum number of processes that can
be created for the execution of jobs. It specifies the number of job queue
processes per instance.

NOTE: The value for the JOB_QUEUE_PROCESSES parameter should NEVER
exceed the number of CPU cores available on the database server.

LOG_BUFFER LOG_BUFFER specifies the amount of memory (in bytes) that Oracle uses when
buffering redo entries to a redo log file. Redo log entries contain a record of the
changes that have been made to the database block buffers. The LGWR process
writes redo log entries from the log buffer to a redo log file.

UNDO_MANAGEMENT UNDO_MANAGEMENT specifies which undo space management mode the
system should use. When set to AUTO, the instance starts in automatic undo
management mode. In manual undo management mode, undo space is
allocated externally as rollback segments.

PL_SQL_CODE_TYPE Consider setting PL_SQL_CODE_TYPE to NATIVE

PROCESSES Consider using a value of 5000 operating system processes to be connected to
Oracle concurrently.

PGA_AGGREGATE_TARGET Consider setting PGA_AGGREGATE_TARGET to 1G of PGA memory available
to all server processes attached to the instance.

Tuning Database Parameters

2-10 Oracle Fusion Middleware Performance and Tuning Guide

2.6.1.2 Initialization Parameters for Oracle 11g
The following table provides information on some important performance-related
database initialization parameters for Oracle 11g database.

2.6.2 Tuning Redo Logs Location and Sizing
Tuning the redo log options can provide performance improvement for applications
running in an Oracle Fusion Middleware environment, and in some cases, you can
significantly improve I/O throughput by moving the redo logs to a separate disk.

Consider having at least 3 redo log groups with 2G of size each. Redo log files should
be placed on a disk separate from data files to improve I/O performance.

For more information see the Oracle Database Performance Tuning Guide.

2.6.3 Tuning Automatic Segment-Space Management (ASSM)
For permanent tablespaces, consider using automatic segment-space management.
Such tablespaces, often referred to as bitmap tablespaces, are locally managed
tablespaces with bitmap segment space management.

For backward compatibility, the default local tablespace segment-space management
mode is MANUAL.

SGA_MAX_SIZE Consider setting the SGA_MAX_SIZE to 2G initially and then monitor the
production database on daily basis and adjust SGA and PGA accordingly.

SGA_TARGET Consider setting the SGA_TARGET to 2G initially and then monitor the
production database on daily basis and adjust SGA and PGA accordingly.

TRACE_ENABLED TRACE_ENABLED controls tracing of the execution history, or code path, of
Oracle. Oracle Support Services uses this information for debugging.

Although the performance impacts incurred from processing is not excessive,
you may improve performance by setting TRACE_ENABLED to FALSE.

Table 2–3 Important inti.ora Oracle 11g Database Tuning Parameters

Database Parameter Description

AUDIT_TRAIL If there is NO policy to audit db activity, consider setting this parameter to NONE.
Enabling auditing can impact performance.

MEMORY_MAX_TARGET MEMORY_MAX_TARGET specifies the maximum value to which a DBA can set the
MEMORY_TARGET initialization parameter.

MEMORY_TARGET Consider setting the MEMORY_TARGET to NONE. Set SGA and PGA separately as
setting MEMORY_TARGET does not allocate sufficient memory to SGA and PGA as
needed.

PGA_AGGREGATE_
TARGET

Consider using a value of 1G for PGA initially and then monitor the production
database on daily basis and adjust SGA and PGA accordingly.

If the database server has more memory, consider setting PGA_AGGREGATE_
TARGET to a value higher than 1G based on usage needs.

SGA_MAX_SIZE Consider setting MEMORY_TARGET instead of setting SGA and the PGA separately.

SGA_TARGET Consider using a value of 2G for SGA is 2G to start with and initially and then
monitor the production database on daily basis and adjust SGA and PGA accordingly.

If the database server has more memory, consider setting SGA_TARGET to a value
higher than 2G based on usage needs.

Table 2–2 (Cont.) Important init.ora Oracle 10g Database Tuning Parameters

Database Parameter Description

Enabling Data Source Statement Caching

Top Performance Areas 2-11

While configuring tablespaces, consider setting the extent allocation type to SYSTEM.
If the allocation type is set to UNIFORM, it might impact performance.

For more information, see "Free Space Management" in Oracle Database Concepts, and
"Specifying Segment Space Management in Locally Managed Tablespaces" in Oracle
Database Administrator's Guide.

2.7 Reusing Database Connections
Creating a database connection is a relatively resource intensive process in any
environment. Typically, a connection pool starts with a small number of connections.
As client demand for more connections grow, there may not be enough in the pool to
satisfy the requests. WebLogic Server creates additional connections and adds them to
the pool until the maximum pool size is reached.

One way to avoid connection creation delays is to initialize all connections at server
startup, rather than on-demand as clients need them. This may be appropriate if your
load is predictable and even. Set the initial number of connections equal to the
maximum number of connections in the Connection Pool tab of your data source
configuration. Determine the optimal value for the Maximum Capacity as part of your
pre-production performance testing.

If your load is uneven, and has a much higher number of connections at peak load
than at typical load, consider setting the initial number of connections equal to your
typical load. In addition, consider setting the maximum number of connections based
on your supported peak load. With these configurations, WebLogic server can free up
some connections when they are not used for a period of time.

For more information, see "Tuning Data Source Connection Pool Options" in Oracle
Fusion Middleware Configuring and Managing JDBC Data Sources for Oracle WebLogic
Server.

2.8 Enabling Data Source Statement Caching
When you use a prepared statement or callable statement in an application or EJB,
there may be a performance impact associated with the processing of the
communication between the application server and the database server and on the
database server. To minimize the processing impact, enable the data source to cache
prepared and callable statements used in your applications. When an application or
EJB calls any of the statements stored in the cache, the server reuses the statement
stored in the cache. Reusing prepared and callable statements reduces CPU usage on
the database server, improving performance for the current statement and leaving
CPU cycles for other tasks.

Each connection in a data source has its own individual cache of prepared and callable
statements used on the connection. However, you configure statement cache options
per data source. That is, the statement cache for each connection in a data source uses
the statement cache options specified for the data source, but each connection caches
it's own statements. Statement cache configuration options include:

■ Statement Cache Type—The algorithm that determines which statements to store
in the statement cache.

■ Statement Cache Size—The number of statements to store in the cache for each
connection. The default value is 10. You should analyze your database's statement
parse metrics to size the statement cache sufficiently for the number of statements
you have in your application.

Controlling Concurrency

2-12 Oracle Fusion Middleware Performance and Tuning Guide

You can use the Administration Console to set statement cache options for a data
source. See "Configure the statement cache for a JDBC data source" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Online Help.

For more information on using statement caching, see "Increasing Performance with
the Statement Cache" in the Oracle Fusion Middleware Configuring and Managing JDBC
Data Sources for Oracle WebLogic Server.

2.9 Controlling Concurrency
Limiting concurrency, at multiple layers of the system to match specific usage needs,
can greatly improve performance. This section discusses a few of the areas within
Oracle Fusion Middleware where concurrency can be controlled.

When system capacity is reached, and a web server or application server continues to
accept requests, application performance and stability can deteriorate. There are
several places within Oracle Fusion Middleware where you can throttle the requests to
avoid overloading the mid-tier or database tier systems and tune for best performance.

■ Setting Server Connection Limits

■ Configuring Connection Pools

■ Tuning the WebLogic Sever Thread Pool

■ Tuning Oracle WebCenter Concurrency

■ Tuning BPEL Concurrency

2.9.1 Setting Server Connection Limits
Oracle HTTP Server uses directives in httpd.conf. This configuration file specifies the
maximum number of HTTP requests that can be processed simultaneously, logging
details, and certain limits and time outs.

For more information on modifying the httpd.conf file, see "Configuring Oracle HTTP
Server" in Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server.

You can use the MaxClients and ThreadsPerChild directives to limit incoming
requests to WebLogic instances from the Oracle HTTP Server based on your expected
client load and system resources. The following sections describe some Oracle HTTP
Server tuning parameters related to connection limits that you typically need to tune
based on your expected client load. See Chapter 6, "Oracle HTTP Server Performance
Tuning" for more information and a more complete list of tunable parameters.

2.9.1.1 MaxClients/ThreadsPerChild

The MaxClients property specifies a limit on the total number of server threads
running, that is, a limit on the number of clients who can simultaneously connect. If
the number of client connections reaches this limit, then subsequent requests are
queued in the TCP/IP system up to the limit specified (in the ListenBackLog
directive).

Note: The MaxClients parameter is applicable only to UNIX
platforms and on Microsoft Windows (mpm_winnt), the same is
achieved through the ThreadsPerChild and ThreadLimit parameters.

Controlling Concurrency

Top Performance Areas 2-13

You can configure the MaxClients directive in the httpd.conf file up to a maximum of
8K (the default value is 150). If your system is not resource-saturated and you have a
user population of more than 150 concurrent HTTP connections, you can improve
your performance by increasing MaxClients to increase server concurrency. Increase
MaxClients until your system becomes fully utilized (85% is a good threshold).

When system resources are saturated, increasing MaxClients does not improve
performance. In this case, the MaxClients value could be reduced as a throttle on the
number of concurrent requests on the server.

If the server handles persistent connections, then it may require sufficient concurrent
httpd server processes to handle both active and idle connections. When you specify
MaxClients to act as a throttle for system concurrency, you need to consider that
persistent idle httpd connections also consume httpd processes. Specifically, the
number of connections includes the currently active persistent and non-persistent
connections and the idle persistent connections. When there are no httpd server
threads available, connection requests are queued in the TCP/IP system until a thread
becomes available, and eventually clients terminate connections.

You can define a number of server processes and the threads per process
(ThreadsPerChild) to handle the incoming connections to Oracle HTTP Server. The
ThreadsPerChild property specifies the upper limit on the number of threads that can
be created under a server (child) process.

2.9.1.2 KeepAlive
A persistent, KeepAlive, HTTP connection consumes an httpd child process, or thread,
for the duration of the connection, even if no requests are currently being processed for
the connection.

If you have sufficient capacity, KeepAlive should be enabled; using persistent
connections improves performance and prevents wasting CPU resources
re-establishing HTTP connections. Normally, you should not need to change
KeepAlive parameters.

2.9.1.3 Tuning HTTP Server Modules
The Oracle HTTP Server (OHS) uses the mod_wl_ohs module to route requests to the
underlying Weblogic server or the Weblogic Server cluster. The configuration details
for mod_wl_ohs are available in the mod_wl_ohs.conf file in the config directory.

For more information on the tuning parameters for mod_wl_ohs see, "Understanding
Oracle HTTP Server Modules" in Oracle Fusion Middleware Administrator's Guide for
Oracle HTTP Server.

Note: ThreadsPerChild, StartServers, and ServerLimit properties
are inter-related with the MaxClients setting. All of these properties
must be set appropriately to achieve the number of connections as
specified by MaxClients. See Table 6–1, " Oracle HTTP Server
Configuration Properties" for a description of all the HTTP
configuration properties.

Note: The default maximum requests for a persistent connection is
100, as specified with the MaxKeepAliveRequests directive in
httpd.conf. By default, the server waits for 15 seconds between
requests from a client before closing a connection, as specified with
the KeepAliveTimeout directive in httpd.conf.

Controlling Concurrency

2-14 Oracle Fusion Middleware Performance and Tuning Guide

2.9.2 Configuring Connection Pools
Connection pooling is configured and maintained per Java runtime. Connections are
not shared across different runtimes. To use connection pooling, no configuration is
required. Configuration is necessary only if you want to customize how pooling is
done, such as to control the size of the pools and which types of connections are
pooled.

You configure connection pooling by using a number of system properties at program
startup time. Note that these are system properties, not environment properties and
that they affect all connection pooling requests.

For applications that use a database, performance can improve when the connection
pool associated with a data source limits the number of connections. You can use the
MaxCapacity attribute to limit the database requests from Oracle Application Server so
that incoming requests do not saturate the database, or to limit the database requests
so that the database access does not overload the Oracle Application Server-tier
resource.

The connection pool MaxCapacity attribute specifies the maximum number of
connections that a connection pool allows. By default, the value of MaxCapacity is set
to 15. For best performance, you should specify a value for MaxCapacity that matches
the number appropriate to your database performance characteristics.

Limiting the total number of open database connections to a number your database
can handle is an important tuning consideration. You should check to make sure that
your database is configured to allow at least as large a number of open connections as
the total of the values specified for all the data sources MaxCapacity option, as
specified in all the applications that access the database.

2.9.3 Tuning the WebLogic Sever Thread Pool
By default WebLogic Server uses a single thread pool, in which all types of work are
executed. WebLogic Server uses Work Managers to prioritize work based on rules you
can define, and run-time metrics, including the actual time it takes to execute a request
and the rate at which requests are entering and leaving the pool. There is a default
work manager that manages the common thread pool.

The common thread pool changes its size automatically to maximize throughput.
WebLogic Server monitors throughput over time and based on history, determines
whether to adjust the thread count. For example, if historical throughput statistics
indicate that a higher thread count increased throughput, WebLogic increases the
thread count. Similarly, if statistics indicate that fewer threads did not reduce
throughput, WebLogic decreases the thread count.

Since the WebLogic Server thread pool by default is sized automatically, in most
situations you do not need to tune this. However, for special requirements, an
administrator can configure custom Work Managers to manage the thread pool at a
more granular level for sets of requests that have similar performance, availability, or
reliability requirements. With custom work managers, you can define priorities and

See Also: "JDBC Data Source: Configuration: Connection Pool" in
the Oracle Fusion Middleware Oracle WebLogic Server Administration
Console Online Help.

"Tuning Data Source Connection Pool Options" in Oracle Fusion
Middleware Configuring and Managing JDBC Data Sources for Oracle
WebLogic Server.

Controlling Concurrency

Top Performance Areas 2-15

guidelines for how to assign pending work (including specifying a min threads or max
threads constraint, or a constraint on the total number of requests that can be queued
or executing before WebLogic Server begins rejecting requests).

Use the following guidelines to help you determine when to use Work Managers to
customize thread management:

■ The default fair share is not sufficient.

This usually occurs in situations where one application needs to be given a higher
priority over another.

■ A response time goal is required.

■ A minimum thread constraint needs to be specified to avoid server deadlock.

■ You use MDBs in your application.

To ensure MDBs use a well-defined share of server thread resources, and to tune
MDB concurrency, most MDBs should be modified to reference a custom work
manager that has a max-threads-constraint. In general, a custom work manager is
useful when you have multiple MDB deployments, or if you determine that a
particular MDB needs more threads.

See Also: For more information on how to use custom Work
Managers to customize thread management, and when to use custom
work managers, see the following:

■ "Tune Pool Sizes" in Oracle Fusion Middleware Performance and
Tuning for Oracle WebLogic Server

■ "Thread Management" in Oracle Fusion Middleware Performance and
Tuning for Oracle WebLogic Server

■ "MDB Thread Management" in Oracle Fusion Middleware
Performance and Tuning for Oracle WebLogic Server

■ "Using Work Managers to Optimize Scheduled Work" in Oracle
Fusion Middleware Configuring Server Environments for Oracle
WebLogic Server

■ "Avoiding and Managing Overload" in Oracle Fusion Middleware
Configuring Server Environments for Oracle WebLogic Server

You can use Oracle WebLogic Administration Console to view general
information about the status of the thread pool (such as active thread
count, total thread count, and queue length.) You can also use the
Console to view each application's scoped work manager metrics from
the Workload tab on the Monitoring page. The metrics provided
include the number of pending requests and number of completed
requests.

For more information, see "Servers: Monitoring: Threads" and
"Deployments: Monitoring: Workload" in the Oracle Fusion Middleware
Oracle WebLogic Server Administration Console Online Help.

The work manager and thread pool metrics can also be viewed from
the Oracle Fusion Middleware Control. For more information, see
Section 4.2.1, "Viewing Performance Metrics Using Fusion
Middleware Control".

Setting Logging Levels

2-16 Oracle Fusion Middleware Performance and Tuning Guide

2.9.4 Tuning Oracle WebCenter Concurrency
Oracle WebCenter has its own controls for managing concurrency. See "Advanced
Systems Administration for Oracle WebCenter Portal" in Oracle Fusion Middleware
Administrator's Guide for Oracle WebCenter Portal.

2.9.5 Tuning BPEL Concurrency
The Oracle BPEL Process Manager has its own thread controls and specialized tuning.

2.10 Setting Logging Levels
The amount of information that applications log depends on how the environment is
configured and how the application code is instrumented. To maximize performance it
is recommended that the logging level is not set higher than the default INFO level
logging. If the logging setting does not match the default level, reset the logging level
to the default for best performance.

Once the application and server logging levels are set appropriately, ensure that the
debugging properties or other application level debugging flags are also set to
appropriate levels or disabled. To avoid performance impacts, do not set log levels to
levels that produce more diagnostic messages, including the FINE or TRACE levels.

Each component may have specific recommendations for logging levels. See the
component chapters in this book for more information.

3

Performance Planning 3-1

3 Performance Planning

This chapter discusses performance and tuning concepts for Oracle Fusion
Middleware. This chapter contains the following sections:

■ Section 3.1, "About Oracle Fusion Middleware Performance Planning"

■ Section 3.2, "Performance Planning Methodology"

3.1 About Oracle Fusion Middleware Performance Planning
To maximize Oracle Fusion Middleware performance, you must monitor, analyze, and
tune all the components that are used by your applications. This guide describes the
tools that you can use to monitor performance and the techniques for optimizing the
performance of Oracle Fusion Middleware components.

Performance tuning usually involves a series of trade-offs. After you have determined
what is causing the bottlenecks, you may have to modify performance in some other
areas to achieve the expected results. However, if you have a clearly defined plan for
achieving your performance objectives, the decision on what to trade for higher
performance is easier because you have identified the most important areas.

3.2 Performance Planning Methodology
The Fusion Middleware components are built for performance and scalability. To
maximize the performance capabilities of your applications, you must build
performance and scalability into your design. The performance plan should address
the current performance requirements, the existing issues (such as bottlenecks or
insufficient hardware resources) and any anticipated variances in load, users or
processes. The performance plan should also address how the components scale
during peak usage without impacting performance.

The following sections of this chapter discuss the steps you should take to help create
a plan to tune your application environment and optimize performance:

■ Step 1: Define Your Performance Objectives

■ Step 2: Design Applications for Performance and Scalability

■ Step 3: Monitor and Measure Your Performance Metrics

3.2.1 Define Your Performance Objectives
Before you can begin performance tuning your applications, you must first identify the
performance objectives you hope to achieve. To determine your performance

Performance Planning Methodology

3-2 Oracle Fusion Middleware Performance and Tuning Guide

objectives, you must understand the applications deployed and the environmental
constraints placed on the system.

To understand what your performance objectives are, you must complete the
following steps:

■ Define Operational Requirements

■ Identify Performance Goals

■ Understand User Expectations

■ Conduct Performance Evaluations

Performance objectives are limited by constraints, such as:

■ The configuration of hardware and software such as CPU type, disk size, disk
speed, and sufficient memory.

There is no single formula for determining your hardware requirements. The
process of determining what type of hardware and software configuration is
required to meet application needs adequately is called capacity planning.

Capacity planning requires assessment of your system performance goals and an
understanding of your application. Capacity planning for server hardware should
focus on maximum performance requirements. For more information on capacity
planning, see Chapter 29, "Capacity Planning".

■ The configuration of high availability architecture to address peak usage and
response times. For more information on implementing high availability features
in Oracle Fusion Middleware applications, see Chapter 30, "Using Clusters and
High Availability Features".

■ The ability to interoperate between domains, use legacy systems, support legacy
data.

■ Development, implementation, and maintenance costs.

Understanding these constraints - and their impacts - ensure that you set realistic
performance objectives for your application environment, such as response times,
throughput, and load on specific hardware.

3.2.1.1 Define Operational Requirements
Before you begin to deploy and tune your application on Oracle Fusion Middleware, it
is important to clearly define the operational environment. The operational
environment is determined by high-level constraints and requirements such as:

■ Application Architecture

■ Security Requirements

■ Hardware Resources

3.2.1.2 Identify Performance Goals
Whether you are designing a new system or maintaining an existing system, you
should set specific performance goals so that you know how and what to optimize. To
determine your performance objectives, you must understand the application
deployed and the environmental constraints placed on the system.

Gather information about the levels of activity that components of the application are
expected to meet, such as:

■ Anticipated number of users

Performance Planning Methodology

Performance Planning 3-3

■ Number and size of requests

■ Amount of data and its consistency

■ Target CPU utilization

3.2.1.3 Understand User Expectations
Application developers, database administrators, and system administrators must be
careful to set appropriate performance expectations for users. When the system carries
out a particularly complicated operation, response time may be slower than when it is
performing a simple operation. Users should be made aware of which operations
might take longer.

For example, you might want to ensure that 90% of the users experience response
times no greater than 5 seconds and the maximum response time for all users is 20
seconds. Usually, it's not that simple. Your application may include a variety of
operations with differing characteristics and acceptable response times. You need to
set measurable goals for each of these.

You also need to determine how variances in the load can affect the response time. For
example, users might access the system heavily between 9:00am and 10:00am and then
again between 1:00pm and 2:00pm, as illustrated by the graph in Figure 3–1. If your
peak load occurs on a regular basis, for example, daily or weekly, the conventional
wisdom is to configure and tune systems to meet your peak load requirements. The
lucky users who access the application in off-time can experience better response times
than your peak-time users. If your peak load is infrequent, you may be willing to
tolerate higher response times at peak loads for the cost savings of smaller hardware
configurations.

Figure 3–1 Adjusting Capacity and Functional Demand

3.2.1.4 Conduct Performance Evaluations
With clearly defined performance goals and performance expectations, you can readily
determine when performance tuning has been successful. Success depends on the
functional objectives you have established with the user community, your ability to
measure whether the criteria are being met, and your ability to take corrective action
to overcome any exceptions.

Performance Planning Methodology

3-4 Oracle Fusion Middleware Performance and Tuning Guide

Ongoing performance monitoring enables you to maintain a well-tuned system.
Keeping a history of the application's performance over time enables you to make
useful comparisons. With data about actual resource consumption for a range of loads,
you can conduct objective scalability studies and from these predict the resource
requirements for anticipated load volumes. For more information on evaluating
performance, see Chapter 4, "Monitoring Oracle Fusion Middleware".

3.2.2 Design Applications for Performance and Scalability
The key to good performance is good design. The design phase of the application
development cycle should be an on-going process. Cycling through the planning,
monitoring and tuning phases of the application development cycle is critical to
achieving optimal performance across Fusion Middleware deployments. Using an
iterative design methodology enables you to accommodate changes in your work
loads without impacting your performance objectives.

See the following Oracle Fusion Middleware developer's documentation for more
information on recommended design techniques:

■ Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Portal

■ Oracle Fusion Middleware Developer's Guide for Oracle TopLink

■ Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework

■ Oracle Fusion Middleware Application Developer's Guide for Oracle Identity
Management

3.2.3 Monitor and Measure Your Performance Metrics
Oracle Fusion Middleware provides a variety of technologies and tools that can be
used to monitor Server and Application performance. Monitoring enables you to
evaluate Server activity, watch trends, diagnose system bottlenecks, debug
applications with performance problems and gather data that can assist you in tuning
the system. For more information, see Chapter 4, "Monitoring Oracle Fusion
Middleware.".

Performance tuning is specific to the applications and resources that you have
deployed on your system. Some common tuning areas are included in Chapter 2, "Top
Performance Areas."

See Also: Oracle Database Performance Tuning Guide

Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic
Server

Oracle Fusion Middleware Administrator's Guide

4

Monitoring Oracle Fusion Middleware 4-1

4 Monitoring Oracle Fusion Middleware

[3] Oracle Fusion Middleware provides a variety of technologies and tools that can be
used to monitor Server and Application performance. Monitoring is an important step
in performance tuning and enables you to evaluate server activity, watch trends,
diagnose system bottlenecks, debug applications with performance problems and
gather data that can assist you in tuning the system.

This chapter contains the following sections:

■ Section 4.1, "About Oracle Fusion Middleware Management Tools"

■ Section 4.2, "Oracle Enterprise Manager 11g Fusion Middleware Control"

■ Section 4.3, "Oracle WebLogic Server Administration Console"

■ Section 4.4, "WebLogic Diagnostics Framework (WLDF)"

■ Section 4.5, "WebLogic Scripting Tool (WLST)"

■ Section 4.6, "DMS Spy Servlet"

■ Section 4.7, "Oracle Process Manager and Notification Server"

■ Section 4.8, "Oracle Enterprise Manager Cloud Control"

■ Section 4.9, "Native Operating System Performance Commands"

■ Section 4.10, "Network Performance Monitoring Tools"

4.1 About Oracle Fusion Middleware Management Tools
After you install and configure Oracle Fusion Middleware, you can use the graphical
user interfaces or command-line tools to manage your environment.

You can use the following tools to manage your Oracle Fusion Middleware
installations:

■ Oracle Enterprise Manager Fusion Middleware Control. See Section 4.2.

■ Oracle WebLogic Server Administration Console. See Section 4.3.

■ Oracle WebLogic Diagnostics Framework (WLDF). See Section 4.4.

■ Oracle WebLogic Scripting Tool (WLST). See Section 4.5.

■ DMS Spy Servlet. See Section 4.6.

■ Oracle Process Manager and Notification Server. See Section 4.7.

Note: Additional monitoring information is included for most
products in the product-specific chapters of this guide.

Oracle Enterprise Manager 11g Fusion Middleware Control

4-2 Oracle Fusion Middleware Performance and Tuning Guide

■ Oracle Enterprise Manager Cloud Control. See Section 4.8.

■ Operating System Performance Commands. See Section 4.9.

■ Network Performance Monitoring Tools. See Section 4.10.

Use these tools, rather than directly editing configuration files, to perform all
administrative tasks unless a specific procedure requires you to edit a file. Editing a
file may cause the settings to be inconsistent and generate problems.

Both Fusion Middleware Control and Oracle WebLogic Server Administration Console
are graphical user interfaces that you can use to monitor and administer your Oracle
Fusion Middleware environment. You can perform some tasks with either tool, but, for
other tasks, you can only use one of the tools.

For more information on using WebLogic Server Administration Console for
monitoring your domain, see the Oracle Fusion Middleware Administrator's Guide.

4.1.1 Measuring Your Performance Metrics
Metrics are the criteria you use to measure your scenarios against your performance
objectives. You can use performance metrics to help locate bottlenecks, identify
resource availability issues, or help tune your components to improve throughput and
response times. After you have determined your performance criteria, take
measurements of the metrics used to quantify your performance objectives.

For example, you might use response time, throughput, and resource utilization as
your metrics. The performance objective for each metric is the value that is acceptable.
You match the actual value of the metrics to your objectives to verify that you are
meeting, exceeding, or failing to meet your performance objectives.

When you manage or monitor an Oracle Fusion Middleware component or application
with Fusion Middleware Control, you may see performance metrics that provide
insight into the current performance of the component or application. In many cases,
these metrics are shown in interactive charts; other times they are presented in tabular
format. The best way to use and correlate the performance metrics is from the
Performance Summary page for the component or application you are monitoring.

The next sections of this chapter provide an overview of the Oracle Fusion
Middleware technologies and tools that can be used to monitor Server and
Application performance. If you are new to Oracle Fusion Middleware or if you need
additional information about monitoring your environment using the Performance
Summary pages, see "Viewing the Performance of Oracle Fusion Middleware" in the
Oracle Fusion Middleware Administrator's Guide. In addition, the Fusion Middleware
Control online help provides definitions and other information about specific
performance metrics that are available on its management and monitoring pages. See
Section 4.2.1, "Viewing Performance Metrics Using Fusion Middleware Control".

4.2 Oracle Enterprise Manager 11g Fusion Middleware Control
Fusion Middleware Control is a Web browser-based, graphical user interface that you
can use to monitor and administer a farm. Fusion Middleware Control organizes a
wide variety of performance data and administrative functions into distinct,
Web-based home pages for the farm, domain, servers, components, and applications.
The Fusion Middleware Control home pages make it easy to locate the most important
monitoring data and the most commonly used administrative functions—all from
your Web browser.

Oracle Enterprise Manager 11g Fusion Middleware Control

Monitoring Oracle Fusion Middleware 4-3

In addition, Fusion Middleware Control provides a set of MBean browsers that allow
you to browse the MBeans for a WebLogic Server or for a selected application and
perform specific monitoring and configuration tasks from the MBean browser.

Use Fusion Middleware Control to:

■ Monitor and administer a single Fusion Middleware Farm

■ Monitor all elements of the farm - including deployed applications and Fusion
Middleware components such as:

– WebLogic Domain

– Cluster and Managed Servers

– SOA components

– Web Center

– Web Cache

– Oracle HTTP Server

– Oracle Identity Management

■ Monitor the state and performance of each of these targets by providing
out-of-the-box performance metrics

■ Monitor CPU usage, heap usage, Work Manager, JMS servers, and JDBC and JTA
usage for Oracle WebLogic Server

■ Monitor JVM performance in terms of heap versus non-heap usage, garbage
collection, and threads performance

■ Monitor applications and Web services deployed to WebLogic Server

■ Monitor a wide range of application metrics for servlets, JSPs, and EJBs are
available, as well as Web services metrics for faults, invocations, and violations.
Such metrics are accessible from a target's home page.

■ Access customizable performance summary pages to help administrators monitor
performance and diagnose problems. These charts can be modified to display
content that is relevant to your domain. A target or component might be added to
the chart so that you can compare the performance information for two targets in
one chart.

4.2.1 Viewing Performance Metrics Using Fusion Middleware Control
When you manage or monitor an Oracle Fusion Middleware component or application
with Fusion Middleware Control, you often see performance metrics that provide
insight into the current performance of the component or application. In many cases,
these metrics are shown in interactive charts; other times they are presented in tabular

See Also: "Getting Started Using Oracle Enterprise Manager Fusion
Middleware Control" in Oracle Fusion Middleware Administrator's
Guide.

See Also: For more information about monitoring your environment
using the Performance Summary pages, see "Viewing the Performance
of Oracle Fusion Middleware" in Oracle Fusion Middleware
Administrator's Guide.

Oracle WebLogic Server Administration Console

4-4 Oracle Fusion Middleware Performance and Tuning Guide

format. The best way to use and correlate the performance metrics is from the
Performance Summary page for the component or application you are monitoring.

Use the Fusion Middleware Control online help to obtain a definition of a specific
performance metric. There are two ways to access this information:

■ Browse or search for the metric in the Fusion Middleware Control online help.

■ Navigate to the Performance Summary page for your Oracle Fusion Middleware
component or application and do the following:

1. Click Show Metric Palette.

2. Browse the list of metrics available for the component or application to locate
a specific metric.

3. Right-click the name of the metric and select Help from the context menu.

If you encounter a problem, such as an application that is running slowly or is
hanging, you can view more detailed performance information, including
performance metrics for a particular target, to find out more information about the
problem.

Oracle Fusion Middleware automatically and continuously measures run-time
performance. The performance metrics are automatically enabled; you do not need to
set options or perform any extra configuration to collect them.

4.3 Oracle WebLogic Server Administration Console
Oracle WebLogic Server Administration Console is a Web browser-based, graphical
user interface that you use to manage an Oracle WebLogic Server domain. It is
accessible from any supported Web browser with network access to the
Administration Server.

Use the WebLogic Server Administration Console to:

■ Configure, start, and stop WebLogic Server instances

■ Configure and Monitor WebLogic Server clusters

■ Configure and Monitor WebLogic Server services, such as database connectivity
(JDBC) and messaging (JMS)

■ Configure security parameters, including creating and managing users, groups,
and roles

■ Configure and deploy Java EE applications

■ Monitor server and application performance

■ View server and domain log files

■ View application deployment descriptors

■ Edit selected run-time application deployment descriptor elements

Oracle WebLogic Server contains a Java Management Extensions (JMX) server
implementation and provides its own set of Management Beans (MBeans). Oracle

See Also: For general information on using the WebLogic Server
console, see "Getting Started Using Oracle WebLogic Server
Administration Console" in Oracle Fusion Middleware Administrator's
Guide.

WebLogic Diagnostics Framework (WLDF)

Monitoring Oracle Fusion Middleware 4-5

management tools described in this chapter use the MBeans provided by WebLogic
Server to allow you to configure, monitor, and manage WebLogic Server resources.

Additional WebLogic Server Console Resources:

For details on the content contained in each summary table, see "Monitor Servers" in
WebLogic Administration Console Online Help.

For detailed information on using the WebLogic Server to monitor your domain, see
the Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server.

The Oracle Technology Network at http://www.oracle.com/technology/index.html
provides product downloads, articles, sample code, product documentation, tutorials,
white papers, news groups, and other key content for WebLogic Server.

4.4 WebLogic Diagnostics Framework (WLDF)
The WebLogic Diagnostic Framework (WLDF) is a monitoring and diagnostic
framework that can collect diagnostic data that servers and applications generate. The
WLDF can be configured to collect the data and store it in various sources, including
log records, data events, and harvested metrics.

WLDF includes several components for collecting and analyzing data:

■ Data Creators— data publishers and data providers that are distributed across
WLDF components.

■ Diagnostic Image Capture—Creates a diagnostic snapshot from the server that
can be used for post-failure analysis.

■ Archive—Captures and persists data events, log records, and metrics from server
instances and applications.

■ Instrumentation—Adds diagnostic code to WebLogic Server instances and the
applications running on them to execute diagnostic actions at specified locations in
the code. The Instrumentation component provides the means for associating a
diagnostic context with requests so they can be tracked as they flow through the
system.

■ Harvester—Captures metrics from run-time MBeans, including WebLogic Server
MBeans and custom MBeans, which can be archived and later accessed for
viewing historical data.

■ Watches and Notifications—Provides the means for monitoring server and
application states and sending notifications based on criteria set in the watches. (A
watch rule can monitor log data, event data from the Instrumentation component,
or metric data from a data provider that is harvested by the Harvester. The Watch
Manager is capable of managing watches that are composed of several watch
rules.)

■ Logging services—Manage logs for monitoring server, subsystem, and application
events.

The relationship among these components is shown in Figure 4–1.

WebLogic Scripting Tool (WLST)

4-6 Oracle Fusion Middleware Performance and Tuning Guide

Figure 4–1 Major WLDF Components

All of the framework components operate at the server level and are only aware of
server scope. All the components exist entirely within the server process and
participate in the standard server lifecycle. All artifacts of the framework are
configured and stored on a per server basis.

4.5 WebLogic Scripting Tool (WLST)
The Oracle WebLogic Scripting Tool (WLST) is a command-line scripting environment
that you can use to create, manage, and monitor Oracle WebLogic Server domains. It is
based on the Java scripting interpreter, Jython. In addition to supporting standard
Jython features such as local variables, conditional variables, and flow control
statements, WLST provides a set of scripting functions (commands) that are specific to
WebLogic Server. You can extend the WebLogic scripting language to suit your needs
by following the Jython language syntax.

You can use any of the following techniques to invoke WLST commands:

■ Interactively, on the command line

■ In script mode, supplied in a file

■ Embedded in Java code

4.5.1 Using Custom WLST Commands
Many components, such as Oracle SOA Suite, Oracle Platform Security Services
(OPSS), Oracle Fusion Middleware Audit Framework, and MDS, and services such as
SSL and logging, supply custom WLST commands.

To use these custom WLST commands, you must invoke WLST from the Oracle home
in which the component has been installed. See "Using Custom WLST Commands" in
the Oracle Fusion Middleware Administrator's Guide for more information.

Note: For more information on the WebLogic Diagnostics
Framework and how it can be leveraged for monitoring Oracle Fusion
Middleware components, see Oracle Fusion Middleware Configuring and
Using the Diagnostics Framework for Oracle WebLogic Server.

See Also:

■ Oracle Fusion Middleware WebLogic Scripting Tool Command
Reference

■ "Using Custom WLST Commands" in Oracle Fusion Middleware
Administrator's Guide

DMS Spy Servlet

Monitoring Oracle Fusion Middleware 4-7

4.5.1.1 Using WLST Commands for System Components
In addition to the commands provided by WLST for Oracle WebLogic Server, WLST
provides a subset of commands to monitor and manage system components. These
commands are:

■ startproc(componentName [, componentType] [, componentSet): Starts the specified
component.

■ stopproc(componentName [, componentType] [, componentSet): Stops the specified
component.

■ status(componentName [, componentType] [, componentSet): Obtains the status of the
specified component.

■ proclist(): Obtains the list of components.

■ dumpMetrics([servers,] [format]): Displays available metrics in the internal format,
PDML, or in XML.

■ displayMetricTables([metricTable_1], [metricTable_2], [...,] [servers] [variables]):
Displays the content of the DMS metric tables.

■ displayMetricTableNames([servers]): Displays the names of the available DMS
metric tables. The returned value is a string array containing metric table names.

4.6 DMS Spy Servlet
The DMS Spy servlet provides access to DMS metric data from a web browser. Data
that is created and updated by DMS-enabled applications and components is
accessible through the DMS Spy Servlet.

4.6.1 Viewing Performance Metrics Using the Spy Servlet
The DMS Spy Servlet is part of the DMS web application. The DMS web application's
web archive file is dms.war, and can be found in the same directory as dms.jar:
<ORACLE_HOME>/modules/oracle.dms_11.1.1/dms.war.

The DMS web application is deployed by default as part of a JRF-enabled server
instance. The URL is: http://host:port/dms/Spy.

Only users who have Administrator role access can view this URL as access is
controlled by standard Java EE elements in web.xml.

4.6.2 Using the DMS Spy Servlet
Figure 4–2 shows the initial page of the Spy servlet: both sides show the same list of
metric tables.

Note: The dmstool command has been replaced with the following
commands: dumpMetrics, displayMetricTables,
displayMetricTableNames.

DMS Spy Servlet

4-8 Oracle Fusion Middleware Performance and Tuning Guide

Figure 4–2 Spy Servlet Page - Metrics Tables

Note that the Spy servlet can display metric tables for WebLogic Server and also for
non-Java EE components that are deployed.

For metric tables to appear in the Spy servlet, the component that creates and updates
that table must be installed and running. Metric tables for components that are not
running are not displayed. Metric tables with ":" in their name (for example, weblogic_
j2eeserver:app_overview) are aggregated metric tables generated by metric rules.

To view the contents of a metric table, click the table name. For example, Figure 4–3
shows the MDS_Partition table.

Oracle Enterprise Manager Cloud Control

Monitoring Oracle Fusion Middleware 4-9

Figure 4–3 MDS Partition Table

To get a description of the fields in a metric table, click the Metric Definitions link
below the table.

4.7 Oracle Process Manager and Notification Server
Oracle Process Manager and Notification Server (OPMN) monitors the status of Oracle
Fusion Middleware components. You can also start and stop system components,
monitor system components, and perform many other tasks related to process
management. For example, you can use OPMN to start and stop OPMN-managed
processes, such as Oracle HTTP Server and Oracle Web Cache. For more information
on OPMN commands, see "Section 6.2, "Monitoring Oracle HTTP Server
Performance".

4.8 Oracle Enterprise Manager Cloud Control
Oracle Enterprise Manager is Oracle's integrated enterprise information technology
(IT) management product line, which provides the industry's only complete,
integrated, and business-driven enterprise cloud management solution. Oracle
Enterprise Manager creates business value for IT by leveraging the built-in
management capabilities of the Oracle stack for traditional and cloud environments,
enabling customers to achieve unprecedented efficiency gains while dramatically
increasing service levels.

The key capabilities of Enterprise Manager include:

Note: For more information on using OPMN, refer to Oracle Fusion
Middleware Oracle Process Manager and Notification Server
Administrator's Guide.

Native Operating System Performance Commands

4-10 Oracle Fusion Middleware Performance and Tuning Guide

■ A complete cloud lifecycle management solution enabling you to quickly set up,
manage, and support enterprise clouds and traditional Oracle IT environments
from applications to disk.

■ Maximum return on IT management investment through the best solutions for
intelligent management of the Oracle stack and engineered systems with real-time
integration of Oracle's knowledge base with each customer environment.

■ Best service levels for traditional and cloud applications through business-driven
application management

For more information about the Oracle Enterprise Manager Cloud Control, refer to
Oracle Enterprise Manager Cloud Control Introduction.

4.9 Native Operating System Performance Commands
Each operating system has native tools and utilities that can be useful for monitoring
purposes. Native operating system commands enable you to gather and monitor for
example CPU utilization, paging activity, swapping, and other system activity
information.

For details on operating system commands, refer to the documentation provided by
the operating system vendor.

4.10 Network Performance Monitoring Tools
Your operating system's network monitoring tools can be used to monitor utilization,
verify that the network is not becoming a bottleneck, or detect packet loss or other
network performance issues. For details on network performance monitoring, refer to
your operating system documentation.

Part II
Part II Core Components

This part describes configuring core components to improve performance. It contains
the following chapters:

■ Chapter 5, "Understanding the Oracle Dynamic Monitoring Service"

■ Chapter 6, "Oracle HTTP Server Performance Tuning"

■ Chapter 7, "Oracle Metadata Service (MDS) Performance Tuning"

Note: For information on performance tuning the Oracle WebLogic
Server, see Oracle Fusion Middleware Performance and Tuning for Oracle
WebLogic Server.

5

Understanding the Oracle Dynamic Monitoring Service 5-1

5Understanding the Oracle Dynamic Monitoring
Service

[4] This chapter provides an overview and features available in the Oracle Dynamic
Monitoring Service (DMS).

■ Section 5.1, "About Dynamic Monitoring Service (DMS)"

■ Section 5.2, "Understanding DMS Availability"

■ Section 5.3, "Understanding DMS Architecture"

■ Section 5.4, "Viewing DMS Metrics"

■ Section 5.5, "Accessing DMS Metrics with WLDF"

■ Section 5.6, "DMS Execution Context"

■ Section 5.7, "DMS Tracing and Events"

■ Section 5.8, "DMS Best Practices"

5.1 About Dynamic Monitoring Service (DMS)
The Oracle Dynamic Monitoring Service (DMS) enables Oracle Fusion Middleware
components to provide administration tools, such as Oracle Enterprise Manager, with
data regarding the component's performance, state and on-going behavior. Fusion
Middleware Components push data to DMS and in turn DMS publishes that data
through a range of different components. Specifically, DMS is used by Oracle
WebCache, Oracle HTTP Server (OHS), Oracle Application Development Framework
(ADF), WebLogic Diagnostic Framework (WLDF), and JDBC. DMS measures and
reports metrics, trace events and system performance and provides a context
correlation service for these components.

5.1.1 Understanding Common DMS Terms and Concepts
This section defines common DMS terms and concepts related to the following:

■ DMS Tracing and Events

■ DMS Nouns

■ DMS Sensors

5.1.1.1 DMS Tracing and Events
Table 5–1 provides a list of DMS tracing and event terminology.

About Dynamic Monitoring Service (DMS)

5-2 Oracle Fusion Middleware Performance and Tuning Guide

5.1.1.2 DMS Nouns
DMS nouns organize performance data. Sensors, with their associated metrics, are
organized in an hierarchy according to nouns. Nouns enable you to organize DMS
metrics in a manner comparable to a directory structure in a file system. For example,
nouns can represent classes, methods, objects, queues, connections, applications,
databases, or other objects that you want to measure.

A noun type is a name that reflects the set of metrics being collected.

5.1.1.2.1 General DMS Naming A noun name is a simple string, not including a
delimiter. For example, BasicBinomial is a noun name. A noun full name consists of
the noun name with the namespace and localpart. The noun name is preceded by the
full name of its parent, and a delimiter.
/dmsDemo/BasicBinomial/"{http://mynamespace/}JAXWSHelloService" is a noun
full name.

Table 5–1 DMS Tracing and Event Terminology

DMS Term Definition

Condition A condition is the logic behind a condition filter. It determines
which events may pass through a filter, based on the rules
defined in the condition. Every condition filter has zero or one
root condition, but conditions may include AND or OR
arguments together to create compound conditions. The single
root condition can describe a relatively complex rule.

Two types of condition exist:

■ Noun Type Condition - operates on the name of the noun
type associated with a sensor or noun event.

■ Context Condition - operates on the values currently set
within the current Execution Context.

For more information on using conditions, see Section 5.7, "DMS
Tracing and Events".

Destination A destination implements a mechanism for reacting to events
that are passed to it. For example, a destination could log events
to a file, another could send transformed copies of event to the
JRockit Flight Recorder, yet another might render information
gleaned from incoming events as data in an MBean.

Event Route An event route connects a filter to a destination. Event routes
may be enabled or disabled. For event tracing to be activated for
a specific filter, one or more event routes must exist for that filter
and must be enabled.

Filter An event tracing filter selectively passes a subset of all possible
DMS runtime events. Filters can be configured with rules that
determine which events are passed and which are blocked.

For example it is possible to define filters to:

■ Only pass sensor updates that are made when the execution
context has a key-value pair of "role"-"admin"

■ Only pass sensor updates from nouns of type "JDBC_
Statement"

For more information on using filters, see Section 5.7, "DMS
Tracing and Events".

Listener A DMS listener is also known as the destination. See
Section 5.7.2, "Configuring Destinations" for more information.

About Dynamic Monitoring Service (DMS)

Understanding the Oracle Dynamic Monitoring Service 5-3

A sensor name is a simple string, not including the "." or the derivation. For example,
computeSeries, loops, and lastComputed are sensor names.

A sensor full name consists of the sensor name, preceded by the name of its associated
noun, and a delimiter. Examples: /dmsDemo/BasicBinomial/computeSeries,
/dmsDemo/BasicBinomial/loops, /dmsDemo/BasicBinomial/lastComputed.

A DMS metric name consists of a sensor name plus the "." character plus the metric.
For example, computeSeries.time, loops.count, and lastComputed.value are valid
DMS metric names.

5.1.1.2.2 General DMS Naming Conventions and Character Sets DMS names should be as
compact as possible. When you define noun and sensor names, avoid special
characters such as white space, slashes, periods, parenthesis, commas, and control
characters.

Table 5–2 shows DMS replacement for special characters in names.

5.1.1.2.3 Noun and Noun Type Naming Conventions The following conventions are used
when naming noun and noun types:

■ A noun name should be unique.

■ A noun name should identify a specific entity of interest.

■ Noun types should have names that clearly reflect the set of metrics being
collected. For example, Servlet is the type for a noun under which the metrics that
are specific to a given servlet fall.

■ Noun type names should start with a capital letter to distinguish them from other
DMS names. All nouns of a given type should contain the same set of sensors.

■ The noun naming scheme uses a '/' as the root of the hierarchy, with each noun
acting as a container under the root, or under its parent noun.

Note: The suffixes .time, .count, and .value are immutable. Sensor
and noun names, however, can be modified as needed.

Table 5–2 Replacement for Special Characters in DMS Names

Character DMS Replacement Character

Space character Underscore character: _

Period character: . Underscore character: _

Control character Underscore character: _

Less than character: < Open parenthesis: (

Greater than character: > Close parenthesis:)

Ampersand: & Caret: ^

Double quote: " Backquote: '

Single quote: ' Backquote: '

Note: Oracle Fusion Middleware includes several built-in metrics.
The Oracle Fusion Middleware built-in metrics do not always
follow the DMS naming conventions.

About Dynamic Monitoring Service (DMS)

5-4 Oracle Fusion Middleware Performance and Tuning Guide

5.1.1.3 DMS Sensors
DMS sensors measure performance data and enable DMS to define and collect a set of
metrics. Certain metrics are always included with a sensor and other metrics are
optionally included with a sensor.

DMS has three different kinds of sensors:

■ Section 5.1.1.3.1, "DMS PhaseEvent Sensors"

■ Section 5.1.1.3.2, "DMS Event Sensors"

■ Section 5.1.1.3.3, "DMS State Sensors"

5.1.1.3.1 DMS PhaseEvent Sensors A DMS PhaseEvent sensor measures the time spent
in a specific section of code that has a beginning and an end. Use a PhaseEvent sensor
to track time in a method or in a block of code.

DMS can calculate optional metrics associated with a PhaseEvent, including the
average, maximum, and minimum time that is spent in the PhaseEvent sensor.

Table 5–3 lists the metrics available with PhaseEvent sensors.

5.1.1.3.2 DMS Event Sensors A DMS event sensor counts system events. Use a DMS
event sensor to track system events that have a short duration, or where the duration
of the event is not of interest but the occurrence of the event is of interest.

Table 5–4 describes the metric that is associated with an event sensor.

Table 5–3 DMS PhaseEvent Sensor Metrics

Metric Description

sensor_name.time Specifies the total time spent in the phase sensor_name.

Default metric: time is a default PhaseEvent sensor metric.

sensor_name.completed Specifies the number of times the phase sensor_name has
completed since the process was started.

Optional metric

sensor_name.minTime Specifies the minimum time spent in the phase sensor_name, for
all the times the sensor_name phase completed.

Optional metric

sensor_name.maxTime Specifies the maximum time spent in the phase sensor_name, for
all the times the sensor_name phase completed.

Optional metric

sensor_name.avg Specifies the average time spent in the phase sensor_name,
computed as the (total time)/(number of times the phase
completed).

Optional metric

sensor_name.active Specifies the number of threads in the phase sensor_name, at the
time the DMS statistics are gathered (the value may change over
time).

Optional metric

sensor_name.maxActive Specifies the maximum number of concurrent threads in the
phase sensor_name, since the process started.

Optional metric

About Dynamic Monitoring Service (DMS)

Understanding the Oracle Dynamic Monitoring Service 5-5

5.1.1.3.3 DMS State Sensors A DMS state sensor tracks the value of Java primitives or
the content of a Java object. Supported types include integer, double, long, and object.
Use a state sensor when you want to track system status information or when you
need a metric that is not associated with an event. For example, use state sensors to
track queue lengths, pool sizes, buffer sizes, or host names. You assign a precomputed
value to a state sensor.

Table 5–5 describes the state sensor metrics. State sensors support a default metric
value, as well as optional metrics. The optional minValue and maxValue metrics only
apply for state sensors if the state sensor represents a numeric Java primitive (of type
integer, double, or long).

5.1.1.3.4 Sensor Naming Conventions The following list describes DMS sensor naming
conventions:

■ Sensor names should be descriptive, but not redundant. Sensor names should not
contain any part of the noun name hierarchy, or type, as this is redundant.

■ Sensor names should avoid containing the value for the individual metrics.

■ Where multiple words are required to describe a sensor, the first word should start
with a lowercase letter, and the following words should start with uppercase
letters. Example: computeSeries

■ In general, avoid using a "/" character in a sensor name. However, there are cases
where it makes sense to use a name that contains "/". If a "/" is used in a noun or
sensor name, then when you use the sensor in a string with DMS methods, you
need to use an alternative delimiter, such as "," or "_", which does not appear
anywhere in the path; this enables the "/" to be properly understood as part of the
noun or sensor name rather than as a delimiter.

For example, a child noun can have a name such as:

examples/jsp/num/numguess.jsp

Table 5–4 DMS Event Sensor Metrics

Metric Description

sensor_name.count Specifies the number of times the event has occurred since the
process started, where sensor_name is the name of the Event
sensor as specified in the DMS instrumentation API.

Default: count is the default metric for an event sensor. No other
metrics are available for an event sensor.

Table 5–5 DMS State Sensor Metrics

Metric Description

sensor_name.value Specifies the metric value for sensor_name, using the type
assigned when sensor_name is created.

Default: value is the default State metric.

sensor_name.count Specifies the number of times sensor_name is updated.

Optional metric

sensor_name.minValue Specifies the minimum value for sensor_name since startup.

Optional metric

sensor_name.maxValue Specifies the maximum value this sensor_name since startup.

Optional metric

Understanding DMS Availability

5-6 Oracle Fusion Middleware Performance and Tuning Guide

and you can look this up using the string:

,default,WEBs,defaultWebApp,JSPs,example/jsp/num/numguess.jsp,service

where the delimiter is the "," character.

■ Event sensor and PhaseEvent sensor names should have the form verbnoun.
Examples: activateInstance and runMethod. When a PhaseEvent monitors a
function, method, or code block, it should be named to reflect the task performed
as clearly as possible.

■ The name of a state sensor should be a noun, possibly preceded by an adjective,
which describes the semantics of the value which is tracked with this state sensor.
Examples: lastComputed, totalMemory, port, availableThreads,
activeInstances

■ To avoid confusion, do not name sensors with strings such as ".time", ".value", or
".avg", which are names of sensor metrics, as shown in Table 5–3, Table 5–4, and
Table 5–5.

5.2 Understanding DMS Availability
DMS functionality is available on all certified Java EE servers. This includes both the
runtime features and supporting commands. Also, several features of DMS will
operate in JSE applications and standalone C applications.

For more information, see the Oracle Fusion Middleware Certification Matrix at
http://www.oracle.com/technology/software/products/ias/files/fusion_
certification.html.

5.3 Understanding DMS Architecture
DMS consists of the following features:

■ DMS Metrics - The DMS metrics feature provides Java and C APIs that are also
used by other Oracle Fusion Middleware components for instrumenting code with
performance measurements and other useful state metrics. In addition, the metrics
feature provides an aggregation language for computing derived metrics and tools
for accessing the metrics.

■ Execution Context - Execution Context supports the maintenance and propagation
of a specific context structure throughout the Oracle stack. By making the context
structure available consistently across all Oracle code, the potential for cross
component and cross product correlation of diagnostic data increases. For more
information see Section 5.6, "DMS Execution Context".

■ Events and Tracing - Event Tracing enables you to configure live tracing with no
restarts. DMS metrics updated during the course of using Oracle Fusion
Middleware products may be traced using the DMS Event Tracing feature. The
system has been designed to facilitate not only tracing, but also to support other
functionality that may be driven from DMS activity.

Figure 5–1 shows the components of DMS and how they interact with other Oracle
Fusion Middleware components. Arrows show the direction in which information
flows from one component to the next.

Viewing DMS Metrics

Understanding the Oracle Dynamic Monitoring Service 5-7

Figure 5–1 DMS Interactions with Oracle Fusion Middleware Components

5.4 Viewing DMS Metrics
Oracle Fusion Middleware components are instrumented with DMS metrics in order
to collect information that developers, system administrators, and support analysts
can use to analyze system performance or monitor system status. The Fusion
Middleware Control online help provides information on each of the specific metrics.
See Section 4.2.1, "Viewing Performance Metrics Using Fusion Middleware Control"
for information on accessing metric information.

The Oracle Fusion Middleware metrics come from various sources and locations. They
include MBean attributes and DMS metrics. They also come from non-Java EE servers,
such as Oracle HTTP servers and Oracle WebCache.

The following sections describe how to use various tools to view the DMS metrics:

■ Viewing Metrics Using the Spy Servlet

■ Viewing Metrics with WLDF (WebLogic Diagnostic Framework)

■ Viewing metrics with WLST (Oracle WebLogic Server)

■ Viewing metrics with JConsole

■ Viewing metrics with Oracle Enterprise Manager

■ Viewing metrics using WSADMIN (IBM WebSphere)

5.4.1 Viewing Metrics Using the Spy Servlet
The Spy Servlet is part of the DMS Application that is deployed by default on
JRF-extended installations. The Spy Servlet is launched from
http://<host>:<port>/dms/Spy. The default port for WebLogic is 7001.

The DMS Application's web archive file is dms.war, and can be found in the same
directory as dms.jar: oracle_common/modules/oracle.dms_11.1.1/dms.war.

For more information see Section 4.6, "DMS Spy Servlet".

Note: The Spy Servlet is secured using standard Java EE declarative
security in the web-application's web.xml file, and will only grant
access to the Spy Servlet to members of the Administrator's group.

Viewing DMS Metrics

5-8 Oracle Fusion Middleware Performance and Tuning Guide

5.4.2 Viewing Metrics with WLDF (WebLogic Diagnostic Framework)
You can use WebLogic Diagnostic Framework (WLDF) to harvest DMS metrics from
DMS metric MBeans. You can also use WLDF to monitor changes to the attribute value
of an MBean. For more information see "Configuring the Harvester for Metric
Collection" in Oracle Fusion Middleware Configuring and Using the Diagnostics Framework
for Oracle WebLogic Server.

5.4.3 Viewing metrics with WLST (Oracle WebLogic Server)
DMS provides three commands to view metrics in WLST:

As well as displaying textual output, theses commands also return a structured object
or single value that you can use in a script to process.

For more information on using these commands, see Section 4.5.1.1, "Using WLST
Commands for System Components".

5.4.4 Viewing metrics with JConsole
To provide a standards-based way to access metrics, DMS exposes them through
MBeans. An MBean will be created and registered for each typed noun with the
runtime MBean Server. The DMS sensors contained by the noun are exposed as the
attributes of the MBean. Exposing the DMS metrics as MBeans allows administrators
to use tools such as JConsole (the Java monitoring and management console), and
other Java Management Extension (JMX) clients, to access the DMS metrics.

MBeans also allow for integration with other Oracle diagnostics software such as
WLDF (WebLogic Diagnostics Framework), which is described in Section 5.5. The
noun name and noun type are exposed as the name and type properties of the metric
MBean object name. The MBean domain name is "oracle.dms". The object name also
reflects the DMS noun hierarchy.

5.4.5 Viewing metrics with Oracle Enterprise Manager
Oracle Fusion Middleware automatically and continuously measures data regarding
the component's performance, state and on-going behavior. The metrics are
automatically enabled; there is no need to set options or perform any extra
configuration to collect them. For more information see Section 4.2.1, "Viewing
Performance Metrics Using Fusion Middleware Control".

Use this command... To do this...

displayMetricTableNames List the names of the available metric tables.

displayMetricTables Show the content of the DMS metric tables.

dumpMetrics Display metrics in the internal format. Valid formats
for the dumpMetrics command include raw, xml
and pdml.

Note: You can use JConsole to view DMS generated MBeans on a
Java EE server either locally or remotely. DMS generates an MBean for
each Java DMS noun that has a valid noun type. It does not generate
MBeans for the non-Java EE component's metrics and the DMS nouns
that have no noun types. Each DMS metric contained under the noun
is mapped to an attribute in the metric MBean.

DMS Execution Context

Understanding the Oracle Dynamic Monitoring Service 5-9

5.4.6 Viewing metrics using WSADMIN (IBM WebSphere)
The following commands can be used with IBM WebSphere to display the following:

For more information on using IBM WebSphere, see "Managing Oracle Fusion
Middleware on IBM WebSphere" in the Oracle Fusion Middleware Third-Party
Application Server Guide.

5.5 Accessing DMS Metrics with WLDF
The WebLogic Diagnostics Framework (WLDF) provides a diagnostic feature that
allows MBean attributes to be harvested and monitored for specific conditions. This
provides a proactive way of monitoring activity in your environment and creating
E-mail and JMX notifications when a condition is triggered.

The following steps describe how to configure WLDF to send an E-mail notification
using the WebLogic Administration Console:

1. Select an existing or create a new Diagnostics Module from the Diagnostics screen.

2. Click on the Watches and Notifications tab.

3. Click New.

4. Enter a Watch Name and click Next.

5. Enter the text as the Watch Rule and click Next.

(${ServerRuntime//[NOUNTYPE]oracle.dms:name=/starWars/alliance,type=NounType//f
orceBalance_value} = 'BAD')

6. Select Use a manual reset alarm and click Next. The manual reset option means
that once an E-mail is triggered, you must reset the watch using the WebLogic
Administration Console.

7. Select the E-mail notification type and click Finish.

It is also possible to configure WLDF to collect the MBean data for offline storage and
analysis. This is achieved by configuring a WLDF Diagnostic Module to collect specific
MBean attributes, and can be done so using the WebLogic Administration Console.

For more information on using WLDF to harvest and monitor MBean data see Oracle
Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic
Server.

5.6 DMS Execution Context
The DMS execution context is the mechanism by which requests (such as HTTP or
RMI requests) can be uniquely identified and thus tracked as they flow through the
system. It also provides a means by which context information can be communicated
between cooperating Fusion Middleware components involved in fulfilling requests.

Use this command... To do this...

OracleDMS.displayMetricTableNames() List the names of the available metric tables.

OracleDMS.displayMetricTables() Show the content of the DMS metric tables.

OracleDMS.dumpMetrics() Display metrics in the internal format. Valid
formats include raw, xml and pdml.

DMS Execution Context

5-10 Oracle Fusion Middleware Performance and Tuning Guide

5.6.1 DMS Execution Requests and Sub-Tasks
The DMS execution context has been developed with the understanding that a single
request (or task) may form the root of a tree of sub-tasks that are coordinated to
complete the request or root task. Consider the following examples of requests and
their associated sub-tasks:

1. An HTTP request sent directly to Oracle WebLogic Server from a browser:

■ Root task only on Oracle WebLogic Server

2. An HTTP request sent through Oracle HTTP Server (acting as a reverse proxy) to
Oracle WebLogic Server:

■ Root task on Oracle HTTP Server

■ Single sub-task on Oracle WebLogic Server

3. An HTTP request sent from Oracle HTTP Server (acting as a reverse proxy) to
Oracle WebLogic Server that then requires invocation of two remote web services
from Oracle WebLogic Server in order to fulfill the request:

■ Root task on Oracle HTTP Server

■ Single sub-task on Oracle WebLogic Server

■ Two sub-sub-tasks, one on each web service

A DMS execution context is composed of the following:

■ A unique identifier, the ECID

The Execution Context ID (ECID) is unique for each new root task and is shared
across the tree of tasks associated with the root task.

■ A relationship identifier, the RID

The Relationship ID (RID) is an ordered set of numbers that describes the location
of each task in the tree of tasks. The leading number is usually a zero. A leading
number of 1 indicates that it has not been possible to track the location of the
sub-task within the overall sub-task tree.

■ A set of name-value pairs by which globally relevant data can be shared among
Oracle Fusion Middleware components.

The following three scenarios illustrate how ECID and RID are used when an HTTP
request is sent from Oracle HTTP Server (acting as a reverse proxy) to an Oracle
WebLogic Server and the server requires invocation of two remote web services from
Oracle WebLogic Server.

1. Root task on Oracle HTTP Server:

– New ECID = B5C094FA...BE4AE8

– Root RID = 0

2. Single sub-task on Oracle WebLogic Server:

– Same ECID = B5C094FA...BE4AE8

– Sub-task RID = 0:1

3. Two Sub-tasks, one on each web service:

– First web service invoked

Same ECID = B5C094FA...BE4AE8

Sub-task RID = 0:1:1

DMS Tracing and Events

Understanding the Oracle Dynamic Monitoring Service 5-11

– Second web service invoked

Same ECID = B5C094FA...BE4AE8

Sub-task RID = 0:1:2

5.6.2 DMS Execution Context Usage
The most immediate benefits of the DMS execution context are realized when
attempting to correlate log messages between servers. The Oracle standard format for
logging involves a field dedicated to the ECID. Once the ECID is known, when its read
from an ERROR level log message for example, it is possible to locate all other log
messages associated with that task by querying the log files for messages containing
that ECID.

The following example shows a very specific case of using the command:

displayLogs(ecid="B5C094FA...BE4AE8");

In this example, any log files with messages that contain the ECID B5C094FA...BE4AE8
will be displayed.

5.6.3 DMS Execution Context Communication
Figure 5–2 shows the components that cooperate in order to communicate the DMS
execution context between each other. Arrows pointing to a component indicate the
protocols that are inspected for incoming context information. Outgoing arrows show
protocols to which context information is added. It is possible for a single component
to send requests to itself, passing context information in that request.

Figure 5–2 DMS Execution Context Communication Protocols

5.7 DMS Tracing and Events
Starting with Oracle Fusion Middleware 11g Release 1 (11.1.1.3.0), DMS can selectively
trace the following:

DMS Tracing and Events

5-12 Oracle Fusion Middleware Performance and Tuning Guide

■ DMS sensor lifecycle events (create, update, delete of state sensors, event sensors
and phase sensors)

■ Context events (start, stop)

■ HTTP events (start, stop)

The configuration that controls which of these types of events are traced, and how
those events are processed, is recorded in the dms_config.xml file. The DMS trace
configuration is split into three parts:

1. Filter Configuration

Defines the rules that select the events that are of interest

2. Destination Configuration

Defines how the events are used

3. eventRoute Configuration

Defines which filters are wired to which destinations

A filter can be associated with one or more destinations thus granting the
administrator the ability to define a filter rule once and have the resulting subset of all
possible events processed on one or more different destinations.

The configuration can be modified using the DMS configuration MBean or WLST
commands at runtime; this makes the DMS tracing feature invaluable for diagnosing
issues within a specific time period or collecting specific data at a specific time for a
specific set of criteria.

For more information, see "Configuring Selective Tracing Using WLST" in Oracle
Fusion Middleware Administrator's Guide.

The following types of filter rules are supported:

■ Event Type Conditions

Used to identify if an event was triggered from the START or STOP of a PHASE_
SENSOR

■ Context Type Conditions

Used to identify if the event was generated from a unit of work whose context
contains a value (for example, "USER")

■ Noun Type Conditions

Used to identify if the event was triggered from a sensor whose noun is of a
specific type (for example, JDBC_CONNECTION

■ Logical AND and OR combinations of the above conditions

5.7.1 Configuring the DMS Event System
Configuration is recorded in each server's dms_config.xml file. MBean updates can be
made at runtime using command line interface (CLI) commands and through the
Event Configuration Mbean. Configuration updates are applied to the running system
in a thread safe, but non-atomic, manner.

The object name of the DMS Event configuration MBean is:
oracle.dms.event.config:name=DMSEventConfigMBean,type=JMXEventConfig

To review the current state of your system's DMS event configuration, use the
following command:

DMS Tracing and Events

Understanding the Oracle Dynamic Monitoring Service 5-13

listDMSEventConfiguration([server=<server>])

The resulting output will look similar to this:

Event routes:
 FILTER : auto662515911
 DESTINATION : destination1
 ENABLED : true
 FILTER : filter0
 DESTINATION : q
 ENABLED : true
Filters with no event route:
 Fred

Destinations with no event route:
 des4

5.7.1.1 Adding and Editing Filters
Filters define the rules that select which events are considered for tracing.

The following example shows how to add a filter that selects all events related to JDBC
operations:

addDMSEventFilter(id='myJDBCFilter', props={'condition': 'NOUNTYPE sw JDBC_'})

Or:

addDMSEventFilter(id='myJDBCFilter', props={'condition': 'NOUNTYPE startsWith
JDBC_'})

This filter assumes that all DMS sensor updates associated with JDBC operations are
performed on nouns of types whose names begin "JDBC_".

If the rule must be modified, the filter may be updated as shown in the following
example:

updateDMSEventFilter(id="myJDBCFilter", props={'condition': 'NOUNTYPE startsWith
JDBC_ OR NOUNTYPE startsWith MDS_'});

As of Oracle Fusion Middleware 11.1.1.6.0, the following shortened convenience
operators have been added. Operators can be specified using either the shortened or
longer name.

Note that operators with an underscore have been deprecated in favor of the ODL
format, which is to use mixed case. For example, not_equals becomes notEquals or
ne. The old format will still work, but is discouraged.

Noun Type Operators

equals, eq notEquals, ne

contains in

startsWith, sw

Context Operators

equals, eq notequals, ne

isnull isnotnull

DMS Tracing and Events

5-14 Oracle Fusion Middleware Performance and Tuning Guide

Example:

addDMSEventFilter(id='mdsbruce', name='MyFilter', props={'condition':
'NOUNTYPE eq MDS_Connections AND CONTEXT user ne bruce'})

addDMSEventFilter(id='mdsbruce', name='MyFilter', props={'condition':
'NOUNTYPE equals MDS_Connections AND CONTEXT user notequals bruce'})
For more information about the syntax used to describe a filter's rule (the condition
property), refer to the WebLogic Scripting Tool Command Reference or the command
help.

5.7.1.2 Adding and Editing Destinations
Destinations encapsulate logic for responding to events. For example, a basic
destination will log the event, a different destination may transform an event and pass
it to another system for further processing.

The following example shows how to add a destination that will log events:

addDMSEventDestination(id="myLoggerDestination",
class="oracle.dms.trace2.runtime.LoggerDestination",
props={"loggerName":"myLogger"});

Note that merely adding the destination is not sufficient for events to be logged; to log
the events, you must associate a filter with a destination using an eventRoute, and the
eventRoute must be enabled (default).

The types of destination available, and their configuration options, are described in
Section 5.7.2. The following example shows how to edit an existing destination:

updateDMSEventDestination(id="myLoggerDestination",
props={"loggerName":"myTraceLogger"});

5.7.1.3 Adding and Editing Event Routes
The following example shows how to join the filter and destination created above:

addDMSEventRoute(filterid='myJDBCFilter', destinationid='myLoggerDestination')

Note that you can invoke addDMSEventRoute without an explicit filterId. In these
scenarios, all events are passed to the destination without filtering.

To remove a filter or destination, you must first remove the event routes associated
with the filter or destination (even if the event route is disabled). For example, if you
wanted to remove myJDBCFilter, you would first need to remove the eventRoute
created in the previous example, and then remove the filter as shown in the following
example:

removeDMSEventRoute(filterid='myJDBCFilter', destinationid='myLoggerDestination')
removeDMSEventFilter(id='myJDBCFilter')

5.7.1.4 Compound Operations
It is possible to create a filter and an eventRoute based on that filter using a single
command (rather than using two separate commands as shown in Section 5.7.1.3).

startswith, sw contains

lt gt

Context Operators

DMS Tracing and Events

Understanding the Oracle Dynamic Monitoring Service 5-15

Note, however, that the destination to be used by the event route must already be
defined:

enableDMSEventTrace (destinationid='myLoggerDestination', condition='NOUNTYPE
starts_with JDBC_')

In the example above, enableDMSEventTrace automatically creates a filter with the
specified condition, and also creates and enables an event route using the new filter
and the nominated destination. The output is shown in the following example:

Filter "auto605449842" using Destination "myLoggerDestination" added, and
event-route enabled for server "AdminServer"

5.7.2 Configuring Destinations
DMS offers the following types of destinations:

■ LoggerDestination

■ MBean Creator Destination

■ HTTP Request Tracker Destination

■ JRockit Flight Recorder Destination

5.7.2.1 LoggerDestination

Instances of logger destinations write events to the named logger at a log level of
FINER.

The loggerName property specifies the name of a logger, but the logger does not
necessarily have to be described in logging.xml, though it can be. If the logger name
refers to a logger that is explicitly named in logging.xml, then the logger is referred to
as a static logger (see Section 5.7.2.1.1). If the logger name refers to a logger that is not
explicitly named in logging.xml, then the logger is referred to as a dynamic logger (see
Section 5.7.2.1.2).

Use in the default configuration: the default configuration defines a logger
destination, with an identification of LoggerDestination. This particular instance does
not form part of any eventRoute and therefore is not active. It is provided for
convenience, and uses a dynamic logger.

5.7.2.1.1 Static Loggers and Handlers Loggers are the objects to which log records are
presented. Log handlers are the objects through which log records are written to log
files.

For complete control over the log file to which DMS trace data is written, define the
logger named in the logger destination in logging.xml. Doing this allows you to
explicitly define the name of the log file, the maximum size, format, file rotation and
policies.

Description The LoggerDestination writes each event to the
associated logger.

Implementing Class oracle.dms.trace2.runtime.LoggerDestination

Properties

 loggerName The name of the ODL logger to which events
will be written.

DMS Tracing and Events

5-16 Oracle Fusion Middleware Performance and Tuning Guide

Oracle recommends using commands (like the example below) to update the
configuration.

setLogLevel(logger="myTraceLogger", level="FINER", addLogger=1);

configureLogHandler(name="my-trace-handler", addToLogger=["myTraceLogger"],
path="/tmp/myTraceLogFiles/trace", maxFileSize="10m", maxLogSize="50m",
handlerType="oracle.core.ojdl.logging.ODLHandlerFactory", addHandler=1,
useParentHandlers=0);

configureLogHandler(name="my-trace-handler",
propertyName="useSourceClassandMethod", propertyValue="false", addProperty=1);

For more information on logging configuration, see "Managing Log Files and
Diagnostic Data" in the Oracle Fusion Middleware Administrator's Guide.]

The use of the optional property useSourceClassandMethod set to FALSE prevents the
'SRC_CLASS' and "SRC_METHOD' from appearing in every message and will
marginally improve performance by reducing file output times.

For static loggers, consider setting the useParentHandlers parameter to FALSE,
otherwise duplicate event messages will be logged to [server]-diagnostics.log, and
shown in a log query.

See Section 5.7.3, "Understanding DMS Event Output" for more information about
interpreting logger output.

5.7.2.1.2 Dynamic Loggers and Handlers If the named logger has no associated handler
defined in logging.xml, then the logger destination will dynamically create a handler
object that will write to a file in the server's default log output directory. (Instances of
logger destinations write events to the named logger at a log level of FINER.) The file
name will be the logger's name followed by "-event.log". For instance, in the example
in Section 5.7.2.1.1, DMS events would be written to "myTraceLogger-event.log".

5.7.2.1.3 Default Locations of the logging.xml File The logging.xml file can typically be
found in one of the following platform locations:

5.7.2.1.4 Using a CLI Command to Query the Trace Log File If the logger destination's
logger and handler are defined in logging.xml then you can take advantage of the
displayLogs() command to conveniently access logged trace data without having to
manually locate or search for it.

Examples:

■ To display all the log messages for the myTraceLogger:

displayLogs(query='MODULE equals myTraceLogger')

Platform Server Location

Oracle WebLogic
Server

AdminServer ORACLE_HOME/Middleware/user_
projects/domains/base_
domain/config/fmwconfig/servers/AdminSer
ver/logging.xml

WAS ND OracleAdminServer ORACLE_HOME/Middleware/was_
profiles/DefaultTopology/DefaultServer/confi
g/cells/DefaultCell/nodes/<nodename>/serve
rs/OracleAdminServer/fmwconfig/logging.xm
l

DMS Tracing and Events

Understanding the Oracle Dynamic Monitoring Service 5-17

■ To display only the log messages for myTraceLogger which have an ECID of
'0000HpmSpLWEkJQ6ub3FEH194kwB000004':

displayLogs(query='MODULE equals myTraceLogger and ECID equals
0000HpmSpLWEkJQ6ub3FEH194kwB000004')

■ To display only the log messages for myTraceLogger which have an ECID of
'0000HpmSpLWEkJQ6ub3FEH194kwB000004' in the last 10 minutes:

displayLogs(query='MODULE equals myTraceLogger and ECID equals
0000HpmSpLWEkJQ6ub3FEH194kwB000004', last=10)

■ To display all the log messages from a dynamic logger the log's file name must be
included:

displayLogs(disconnected=1, log=DOMAIN_
ROOT+"/servers/AdminServer/logs/myTraceLogger-event.log")

5.7.2.2 MBean Creator Destination

Use in the default configuration: An instance of the MBean Creator destination is
configured and active by default, and will create MBeans for all nouns created in the
server.

By associating an instance of this destination type with a filter based on a noun-type
rule, it is possible to expose (as MBeans) only those noun types that are of interest to
the administrator.

Although it is possible to modify the configuration associated with an MBean creator
destination at runtime, it must be understood that the reinitialization process for this
type of destination may impact performance. Frequent runtime reconfiguration is
therefore discouraged.

Note that WebLogic Diagnostic Framework (WLDF) can be used to harvest DMS
metrics exposed by the MBean creator destination. For more information about WLDF,
see Oracle Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle
WebLogic Server.

5.7.2.2.1 Metric MBean Object Name The noun name and noun type are exposed as the
name and type properties of the metric MBean object name. The MBean domain name
is "oracle.dms". The object name also reflects the DMS noun hierarchy.

For example if the noun's full path name is:

 /oracle/dfw/ofm/base_domain/AdminServer

and the noun type is DFW_Incident, the object name of the MBean representing the
noun is

oracle.dms:Location=AdminServer,name=/oracle/dfw/ofm/base_
domain/AdminServer,type=DFW_Incident.

Description The MBean creator destination make nouns accessible as
MBeans, exposing their metrics as attributes, for access
via WLDF, JConsole, etc.

Implementing Class oracle.dms.jmx.MetricMBeanFactory

DMS Tracing and Events

5-18 Oracle Fusion Middleware Performance and Tuning Guide

5.7.2.3 HTTP Request Tracker Destination

Use in the default configuration: An instance of the HTTP request tracker destination
is enable by default. In the case of a DFW incident being generated the active HTTP
request list will be dumped automatically, allowing an administrator to correlate the
failure with a specific request.

For each HTTP request the following information will be dumped:

■ URI (such as /webcenter/home)

■ Start time of the request

■ ECID

■ Query string

■ HTTP Headers

When the HTTP request tracker is not enabled the HTTP Request Dump will output
the following:

HTTP Requests are not being tracked. To enable HTTP request tracking enable the
DMS oracle.dms.event.HTTPRequestTrackerDestination in dms_config.xml

5.7.2.3.1 Executing the HTTP Request Tracker Dump The information being maintained by
the HTTP request tracker can be accessed manually. In order to execute the dump that
reports the HTTP request information the WLST executeDump command can be used,
when connected to a server, as follows:

> executeDump(name="http.requests")
Active Requests:

StartTime: 2009-12-14 02:24:41.870
ECID: 0000IMChyqEC8xT6uBf9EH1B9X9^000009,0
URI: /myApp/Welcome.jsp
QueryString:
Headers:
 Host: myHost.myDomain.com:7001
 Connection: keep-alive
 User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.5
(KHTML, like Gecko) Chrome/4.0.249.30 Safari/532.5
 Accept:
application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*
/*;q=0.5
 Accept-Encoding: gzip,deflate
 Cookie: ORA_MOS_LOCALE=en%7CGB; s_nr...
 Accept-Language: en-GB,en-US;q=0.8,en;q=0.6
 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

Description The HTTP Request Tracker destinations maintains a
list of active HTTP requests, and makes the requests
accessible to other Diagnostic Framework (DFW)
components.

Implementing Class oracle.dms.event.HTTPRequestTrackerDestination

Properties

 excludeHeaderNames Comma separated list of header names to exclude
from tracking

DMS Tracing and Events

Understanding the Oracle Dynamic Monitoring Service 5-19

5.7.2.4 JRockit Flight Recorder Destination
The JRockit Flight Recorder (JFR) records information regarding the runtime status
and behavior of the JRockit JVM. JFR also exposes an API through which third party
events can be reported. JFR is available in JRockit R28 and beyond.

By themselves DMS traces and JFR traces only show part of the picture of the actions
being performed in the server. DMS integration with JFR enhances the diagnostic
information available to administrators and developers as follows:

1. Application level events and JVM level events can be reported as a single sequence
therefore avoiding the need to combine such events from separate log files based
only on timestamp (which may not tick over fast enough to accurately order
events created at or around the same time).

2. Recent DMS activity can be dumped, retroactively, from the JVM at will.

3. Recent DMS and JVM events can be dumped to disk in the event of a fatal error
that causes the JVM to exit gracefully.

4. The DMS ECID can be used to correlate activity relating to the same request, or
unit of work, across the span of a JFR recording.

5. The DMS ECID can be used to collect diagnostic information from all systems
involved with an event, or series of events, recorded by JFR.

5.7.2.4.1 Dynamically Derived JFR Event Types – Names, Values and Descriptions A DMS
noun type will be associated with a JFR InstantEvent event type:

■ The name of the JFR event type for a noun type will be the noun type's name with
the suffix " state".

■ The path of the JFR event type for a noun type will be "dms/" followed by the
producer-name, followed by the event type name.

■ Event sensors will not contribute any values to the noun type's JFR event type.

■ The values of the JFR event for a noun type are described in Table 5–6:

Table 5–6 Values of the JFR Event for a Noun Type

Value Name Description Relational Notes

ECID The Execution Context ID
(ECID) associated with the
action.

Yes

RID The RID associated with the
action.

Yes

DMS Tracing and Events

5-20 Oracle Fusion Middleware Performance and Tuning Guide

A DMS phase sensor will be associated with a JFR DurationEvent event type:

■ The name of the JFR event type for a phase sensor belonging to a noun of a
particular noun type will be the noun type's name following by the phase sensor's
name.

■ The path of the JFR event for a noun type will be "dms/" followed by the
producer-name, followed by the event type name.

■ The values of the duration event will be as above (except for the sensorName
value). For example the "stop" of a phase event will result in a JFR duration event
being reported to JFR that contains the state information of the phase event's
parent noun.

Several DMS objects allow integrators to add descriptions. Descriptions from DMS
objects will be used as follows:

■ Noun type description will be used in creation of the JFR event type

■ State and event sensor descriptions will not be applied – there is nowhere to apply
them.

■ Phase sensor descriptions will be applied to their JFR event type.

5.7.2.4.2 Examples of Dynamically Derived Producers and Events Table 5–7 provides
examples for the rules described in Section 5.7.2.4.1:

<noun type> name The full path of the noun. This field will be populated
with the full path of the
noun. The field's name
assumes that the noun_type
meaningfully categorizes all
objects being measured by
the nouns of that type.

<state-sensor-name> The value of the state sensor. No Each state sensor belonging
to the noun will contribute
one of these values to the
instant event. There may be
more that one value in each
noun.

event name The name of the event sensor
that was updated, left null
otherwise.

No The event name field is
required for being able to
count the number of times a
DMS event sensor has been
updated in a recording
(event sensors do not
contribute values to an
event type).

Table 5–6 (Cont.) Values of the JFR Event for a Noun Type

Value Name Description Relational Notes

DMS Tracing and Events

Understanding the Oracle Dynamic Monitoring Service 5-21

DMS Tracing and Events

5-22 Oracle Fusion Middleware Performance and Tuning Guide

Table 5–7 Examples of Dynamically Derived Producers and Events

DMS JRockit Flight Recorder (JFR)

Noun type:

 JDBC_Connection

Noun path:

/JDBC/Driver/CONNECTION
_7

Sensors:

 CreateStatement (P)

 CreateNewStatement
(P)

 DBWaitTime (P)

 JDBC_Connection_Url
(S)

 JDBC_Connection_
Username (S)

Where:

P: Phase Sensor

S : State Sensor

E : Event Sensor

Producer Name: JDBC

The Producer Name is based on the leading component of the noun path.

Event Type 1

Event Type Name: JDBC_Connection State

<noun type> State

Event Type Path: dms/JDBC/JDBC_Connection_State

dms/<leading component of noun path>/<noun type>/_State

Fields:

■ ECID

■ RID

■ JDBC_Connection name

Value will be the full path of the noun

■ JDBC_Connection_Url

Value will be that of the state sensor of this name at the time of the event

■ JDBC_Connection_Username

Value will be that of the state sensor of this name at the time of the event

■ Event Name

Value will be one of the following:

■ The name of the DMS event sensor whose
activation caused this JFR event instance

■ Null if this JFR event instance was created for a
state sensor update

Producer Name: JDBC

Event Type 2

Event Type Name: JDBC_Connection CreateStatement

Event Type Path:

dms/JDBC/JDBC_Connection_CreateStatement

Fields:

■ ECID

■ RID

■ JDBC_Connection name

■ JDBC_Connection_Url

■ JDBC_Connection_Username

DMS Tracing and Events

Understanding the Oracle Dynamic Monitoring Service 5-23

Producer Name: JDBC

Event Type 3

Event Type Name: JDBC_Connection CreateNewStatement

Event Type Path:

dms/JDBC/JDBC_Connection_CreateNewStatement

Fields:

■ ECID

■ RID

■ JDBC_Connection name

■ JDBC_Connection_Url

■ JDBC_Connection_Username

Table 5–7 (Cont.) Examples of Dynamically Derived Producers and Events

DMS JRockit Flight Recorder (JFR)

DMS Tracing and Events

5-24 Oracle Fusion Middleware Performance and Tuning Guide

5.7.3 Understanding DMS Event Output
Table 5–8 describes the fields that make up a DMS event. Field elements are separated
by ":" (with a few exceptions). Sample events are provided to illustrate the position of
the field within an actual event string.

Producer Name: JDBC

Event Type 4

Event Type Name: JDBC_Connection DBWaitTime

Event Type Path:

dms/JDBC/JDBC_Connection_DBWaitTime

Fields:

■ ECID

■ RID

■ JDBC_Connection name

■ JDBC_Connection_Url

■ JDBC_Connection_Username

Noun type:

webcenter_lifecycle

Noun path:

/oracle/webcenter/webce
nter/lifecycle

Sensors:

ProcessingTime (P)

status (S)

successCount (E)

Where:

P: Phase Sensor

S : State Sensor

E : Event Sensor

Producer Name: webcenter

Event Type 1

Event Type Name: webcenter_lifecycle State

Fields:

■ ECID

■ RID

■ webcenter_lifecycle name

■ status

■ event name

Producer Name: webcenter

Event Type 2

Event Type Name: webcenter_lifecycle ProcessingTime

Fields:

■ ECID

■ RID

■ webcenter_lifecycle name

■ status

Table 5–7 (Cont.) Examples of Dynamically Derived Producers and Events

DMS JRockit Flight Recorder (JFR)

DMS Tracing and Events

Understanding the Oracle Dynamic Monitoring Service 5-25

Table 5–8 Event Formatting Descriptions

Applicable
Events

Field
Number Name Description

All 1 Version number The version number of the event format

For example:

v1:1280737384058:HTTP_REQUEST:STOP:/MyWebApp/emp

All 2 Event time The time at which the event occurred

For example:

v1:1280737384058:HTTP_REQUEST:STOP:/MyWebApp/emp

All 3 Source object type The type of object on which an action was performed to
produce the event including:

■ NOUN

■ EVENT_SENSOR

■ STATE_SENSOR

■ PHASE_SENSOR

■ EXECUTION_CONTEXT

■ HTTP_REQUEST

For example:

v1:1280737384058:HTTP_
REQUEST:STOP:/MyWebApp/emp

All 4 Action type The type of action that resulted in the generation of this event.
A given source object type may not necessarily produce
events for every action type:

■ CREATE

■ UPDATE

■ DELETE

■ START

■ STOP

■ ABORT

For example:

v1:1280737384058:HTTP_
REQUEST:STOP:/MyWebApp/emp

Nouns 5 Noun type The name of the noun type

For example:

v1:1281344803506:NOUN:CREATE:JDBC_
Connection:/JDBC/JDBC Data Source-0/CONNECTION_1

6 Noun path The full path identifying the noun to which the sensor
belongs

For example:

v1:1281344803506:NOUN:CREATE:JDBC_
Connection:/JDBC/JDBC Data Source-0/CONNECTION_1

DMS Tracing and Events

5-26 Oracle Fusion Middleware Performance and Tuning Guide

All Sensor
Types

5 Noun type The name of the noun type to which this sensor belongs

For example:

v1:1280503318973:STATE_SENSOR:UPDATE:JDBC_
Connection:LogicalConnection:/JDBC/JDBC Data
Source-0/CONNECTION_
1:State.ANY:LogicalConnection@13bed086

6 Sensor name The name of the sensor

For example:

v1:1280737383069:PHASE_SENSOR:STOP:JDBC_
Connection:DBWaitTime:/JDBC/JDBC Data
Source-0/CONNECTION_1:1280737382950:1280737383069

7 Noun path The full path identifying the noun to which the sensor
belongs

For example:

v1:1280737383069:PHASE_SENSOR:STOP:JDBC_
Connection:DBWaitTime:/JDBC/JDBC Data
Source-0/CONNECTION_1:1280737382950:1280737383069

Phase
Sensor
Types

8 Start token The start token of the phase.

For example:

v1:1280737383069:PHASE_SENSOR:STOP:JDBC_
Connection:DBWaitTime:/JDBC/JDBC Data
Source-0/CONNECTION_1:1280737382950:1280737383069

9 Stop token The end token of the phase.

For example:

v1:1280737383069:PHASE_SENSOR:STOP:JDBC_
Connection:DBWaitTime:/JDBC/JDBC Data
Source-0/CONNECTION_1:1280737382950:1280737383069

Table 5–8 (Cont.) Event Formatting Descriptions

Applicable
Events

Field
Number Name Description

DMS Tracing and Events

Understanding the Oracle Dynamic Monitoring Service 5-27

5.7.4 Understanding DMS Event Actions
Table 5–9 shows the action types that can be performed on source object types.

State Sensor
Types

8 State value type The type of value held by the state sensor including:

■ State.DOUBLE

■ State.INTEGER

■ State.LONG

■ State.OBJECT

■ State.ANY

For example:

v1:1280503318973:STATE_SENSOR:UPDATE:JDBC_
Connection:LogicalConnection:/JDBC/JDBC Data
Source-0/CONNECTION_
1:State.ANY:LogicalConnection@13bed086

9 State value The value of the state represented in string form.

For example:

v1:1280503318973:STATE_SENSOR:UPDATE:JDBC_
Connection:LogicalConnection:/JDBC/JDBC Data
Source-0/CONNECTION_
1:State.ANY:LogicalConnection@13bed086

HTTP
Requests

5 URI Uniform Resource Identifier (URI) identifies the resource
upon which to apply the request.

For example:

v1:1280737382889:HTTP_
REQUEST:START:/myWebApp/showEmployees

v1:1280737384058:HTTP_
REQUEST:STOP:/myWebApp/showEmployees

Execution
Context

5 ECID,RID The context identifier (composed of ECID and RID separated
by a comma).

For execution context events the complete substring starting
at the first character after the fourth event field separator (":")
records the ECID,RID identifiers - the context identifiers may
contain ":" but these should not be interpreted as event field
separators.

For example:

v1:1280737384058:EXECUTION_
CONTEXT:STOP:bc4fd0668f79d507:367c127f:12a23f2013c:-80
00-0000000000000f73,0

Table 5–9 Actions Performed on Source Object Types

Create Update Delete Start Stop Abort

Noun Yes - Yes - - -

Event Sensor Yes Yes Yes - - -

Phase Sensor Yes - Yes Yes Yes Yes

State Sensor Yes Yes Yes - - -

Table 5–8 (Cont.) Event Formatting Descriptions

Applicable
Events

Field
Number Name Description

DMS Best Practices

5-28 Oracle Fusion Middleware Performance and Tuning Guide

5.8 DMS Best Practices
The use of DMS metrics can have an impact on application performance. When adding
metrics, consider the following:

■ Use a High Resolution Clock to increase DMS Precision

By default DMS uses the system clock for measuring time intervals during a
PhaseEvent. The default clock reports microsecond precision in C processes such
as Apache and reports millisecond precision in Java processes. Optionally, DMS
supports a high resolution clock to increase the precision of performance
measurements and lets you select the values for reporting time intervals. You can
use a high resolution clock when you need to time phase events more accurately
than is possible using the default clock or when the system's default clock does not
provide the resolution needed for your requirements.

System clocks are not necessarily as accurate as their precision implies. For
example, a system clock that reports time in milliseconds may not tick (change)
once per millisecond. Instead, it may take up to 15ms to tick as shown in the
following example:

Table 5–10 shows a phase with a 12ms duration that runs from actual time
12:00:00.002 to 12:00:00.014 would be calculated in system time as having a
duration of zero. Similarly, a phase with a 2ms duration running from 12:00:00.014
to 12:00:00.016 would be reported in system time as having a duration of 15ms.

■ Configure DMS Clocks for Reporting Time for Java

Execution Context - - - Yes Yes -

Http Request - - - Yes Yes -

Table 5–10 Default System Clock Time versus Actual Time (in milliseconds)

Actual Time System Time

12:00:00.000 12:00:00.000

12:00:00.001 12:00:00.000

12:00:00.002 12:00:00.000

[...]

12:00:00.014 12:00:00.000

12:00:00.015 12:00:00.015

12:00:00.016 12:00:00.015

Note: These behaviors are more evident on some operating systems
than others. Use caution when analyzing individual periods of time
that are shorter than the tick period of the system clock. Configuring
DMS to use a higher resolution clock will cause DMS to record phase
sensor activations with higher resolution, but the accuracy will still be
limited by the underlying system.

Table 5–9 (Cont.) Actions Performed on Source Object Types

Create Update Delete Start Stop Abort

DMS Best Practices

Understanding the Oracle Dynamic Monitoring Service 5-29

Selecting the high resolution clock changes clocks for all applications running on
the server where the clock is changed. You set the DMS clock and the reporting
values globally using the oracle.dms.clock and oracle.dms.clock.units
properties, which control process startup options.

For example, to use the high resolution clock with the default values, set the
following property on the Java command line:

-Doracle.dms.clock=highres

Table 5–11 shows supported values for the oracle.dms.clock property.

Table 5–12 shows supported values for the oracle.dms.clock.units property.

Note the following when using the high resolution DMS clock:

■ When you set the oracle.dms.clock and the oracle.dms.clock.units
properties, any combination of upper and lower case characters is valid for the
value that you select (case is not significant). For example, any of the following
values are valid to select the high resolution clock: highres, HIGHRES,
HighRes.

■ DMS checks the property values at startup. When the clock property is set
with a value not listed in Table 5–11, DMS uses the default clock. If the
oracle.dms.clock property is not set, DMS uses the default clock.

Caution: If you use the high resolution clock, the default values are
different from the value that Fusion Middleware Control expects
(msecs). If you need the Fusion Middleware Control displays to be
correct when using the high resolution clock, then you need to set the
units property as follows:

-Doracle.dms.clock.units=msecs

Table 5–11 oracle.dms.clock Property Values

Value Description

DEFAULT Specifies that DMS use the default clock. With the default clock, DMS uses
the Java call java.lang.System.currentTimeMillis to obtain times for
PhaseEvents.

The default value for the units for the default clock is MSECS.

HIGHRES The Java Highres clock uses System.nanoTime() (no JNI required).

Table 5–12 oracle.dms.clock.units Property Values

Value Description

MSECS Specifies that the time be converted to milliseconds and reported as
"msecs". A millisecond is 10-3 seconds.

Note: This is the default value for the default clock.

USECS Specifies that the time be converted to microseconds and reported as
"usecs". A microsecond is 10-6 seconds.

NSECS Specifies that the time be converted to nanoseconds and reported as "nsecs".
A nanosecond is 10-9 seconds.

Note: This is the default value for the high resolution clock.

DMS Best Practices

5-30 Oracle Fusion Middleware Performance and Tuning Guide

■ When the clock units property is set to a value not listed in Table 5–12, DMS
uses the default units for the specified clock.

6

Oracle HTTP Server Performance Tuning 6-1

6 Oracle HTTP Server Performance Tuning

[5] This chapter discusses the techniques for optimizing Oracle HTTP Server
performance. This chapter contains the following sections:

■ Section 6.1, "About Oracle HTTP Server"

■ Section 6.2, "Monitoring Oracle HTTP Server Performance"

■ Section 6.3, "Basic Tuning Considerations"

■ Section 6.4, "Advanced Tuning Considerations"

6.1 About Oracle HTTP Server
Oracle HTTP Server (OHS) is the Web server component for Oracle Fusion
Middleware. It provides a listener for Oracle WebLogic Server and the framework for
hosting static pages, dynamic pages, and applications over the Web. Oracle HTTP
Server is based on the Apache 2.2.x infrastructure, and includes modules developed
specifically by Oracle. The features of single sign-on, clustered deployment, and high
availability enhance the operation of the Oracle HTTP Server.

For more information see Oracle Fusion Middleware Administrator's Guide for Oracle
HTTP Server.

For more information on the Apache open-source software infrastructure, see the
Apache Software Foundation web site at http://www.apache.org/.

6.2 Monitoring Oracle HTTP Server Performance
Oracle Fusion Middleware automatically and continuously measures run-time
performance for Oracle HTTP Server. The performance metrics are automatically
enabled; you do not need to set options or perform any extra configuration to collect
them. If you encounter a problem, such as an application that is running slowly or is
hanging, you can view particular metrics to find out more information about the
problem.

Note: The configuration examples and recommended settings
described in this chapter are for illustrative purposes only. Consult
your own use case scenarios to determine which configuration options
can provide performance improvements.

Basic Tuning Considerations

6-2 Oracle Fusion Middleware Performance and Tuning Guide

In addition to the Fusion Middleware Control, Oracle HTTP Server also has Dynamic
Monitoring Service (DMS), which collects metrics for every functional piece. You can
review these metrics as needed to understand system behavior at a given point of
time. This displays memory, CPU information and the minimum, maximum, and
average times for the request processing at every layer in Oracle HTTP Server. The
metrics also display details about load level, number of threads, number of active
connections, and so on, which can help in tuning the system based on real usage.

You can use Oracle Enterprise Manager or SpyServlet to monitor the metrics. See
Chapter 4, "Monitoring Oracle Fusion Middleware". Another way to view DMS
metrics for OHS is shown in the following example:

1. cd $INSTANCE_HOME/bin

2. ./opmnctl metric op=query COMPONENT_NAME=<component_name>
dmsarg=[name=/OHS/Modules/<module_name>.c

Examples:

./opmnctl metric op=query COMPONENT_NAME=ohs1
dmsarg=[name=/OHS/Modules/mod_cgi.c

./opmnctl metric op=query COMPONENT_NAME=ohs1 dmsarg=[name=*]

6.3 Basic Tuning Considerations
The following tuning configurations may improve the performance of the Oracle
HTTP Server. Always consult your own use case scenarios to determine if these
settings are applicable to your deployment.

6.3.1 Tuning Oracle HTTP Server Directives
Oracle HTTP Server uses directives in httpd.conf. This configuration file specifies the
maximum number of HTTP requests that can be processed simultaneously, logging
details, and certain limits and time outs.

More information on configuring the Oracle HTTP Server, see "Management Tools for
Oracle HTTP Server" in Oracle Fusion Middleware Administrator's Guide for Oracle HTTP
Server.

Oracle HTTP Server supports three different Multi-Processing Modules (MPMs) by
default. The MPMs supported are:

■ Worker - This uses Multi-Process-Multi-Threads model and is the default MPM on
all platforms other than Microsoft Windows platforms. Multi-thread support
makes it more scalable by using fewer system resources and multi-process support
makes it more stable.

Note: Fusion Middleware Control provides real-time data. For more
information on using Fusion Middleware Control to view
performance metrics for HTTP Server, see "Monitoring Oracle HTTP
Server Performance" in Oracle Fusion Middleware Administrator's Guide
for Oracle HTTP Server.

If you are interested in viewing historical data, consider using Grid
Control. See Section 4.8, "Oracle Enterprise Manager Cloud Control".

Basic Tuning Considerations

Oracle HTTP Server Performance Tuning 6-3

■ WinNT - This MPM is for Windows platforms only. It consists of a parent process
and a child process. The parent process is the control process, and the child
process creates threads to handle requests.

■ Prefork - This is Apache 1.3.x style and uses processes instead of threads. This is
considered the least efficient MPM.

The directives for each MPM type are defined in the ORACLE_
INSTANCE/config/OHSComponent/<ohsname>/httpd.conf file. The default MPM type
is Worker MPM. To use a different MPM (such as Prefork MPM), edit the ORACLE_
HOME/ohs/bin/apachectl file.

Note: The information in this chapter is based on the use of Worker
and WinNT MPMs, which use threads. The directives listed below
may not be applicable if you are using the prefork MPM. If you are
using Oracle HTTP Server based on Apache 1.3.x or Apache 2.2 with
prefork MPM, refer to the Oracle Application Server 10g Release 3
documentation at
http://www.oracle.com/technology/documentation/appserver1013
2.html.

Basic Tuning Considerations

6-4 Oracle Fusion Middleware Performance and Tuning Guide

Table 6–1 Oracle HTTP Server Configuration Properties

Directive Description

ListenBackLog

This directive maps to the
Maximum Queue Length
field on the Performance
Directives screen.

Specifies the maximum length of the queue of pending connections. Generally no
tuning is needed. Note that some operating systems do not use exactly what is
specified as the backlog, but use a number based on, but normally larger than, what is
set.

Default Value: 511

MaxClients

This directive maps to the
Maximum Requests field
on the Performance
Directives screen.

Note that this parameter is
not available in mod_
winnt (Microsoft
Windows). Winnt uses a
single process,
multi-threaded model and
is controlled by
ThreadLimit directive.

Specifies a limit on the total number of servers running, that is, a limit on the number
of clients who can simultaneously connect. If the number of client connections reaches
this limit, then subsequent requests are queued in the TCP/IP system up to the limit
specified with the ListenBackLog directive (after the queue of pending connections is
full, new requests generate connection errors until a thread becomes available).

You can configure the MaxClients directive in the httpd.conf file up to a maximum of
8000 (8K) (the default value is 150). If your system is not resource-saturated and you
have a user population of more than 150 concurrent HTTP/Thread connections, you
can improve your performance by increasing MaxClients to increase server
concurrency. Increase MaxClients until your system becomes fully utilized (85% is a
good threshold).

Conversely, when system resources are saturated, increasing MaxClients does not
improve performance. In this case, the MaxClients value could be reduced as a
throttle on the number of concurrent requests on the server.

If the server handles persistent connections, then it may require sufficient concurrent
httpd or thread server processes to handle both active and idle connections. When
you specify MaxClients to act as a throttle for system concurrency, you must consider
that persistent idle httpd connections also consume httpd/thread processes.
Specifically, the number of connections includes the currently active persistent and
non-persistent connections and the idle persistent connections. A persistent,
KeepAlive, http connection consumes an httpd child process, or thread, for the
duration of the connection, even if no requests are currently being processed for the
connection.

If you have sufficient capacity, KeepAlive should be enabled; using persistent
connections improves performance and prevents wasting CPU resources
reestablishing HTTP connections. Normally, you should not change KeepAlive
parameters.

The maximum allowed value for MaxClients is 8192 (8K).

Default Value: 150

StartServers

This directive maps to the
Initial Child Server
Processes field on the
Performance Directives
screen.

Specifies the number of child server processes created on startup. If you expect a
sudden load after restart, set this value based on the number child servers required.

Note that the following parameters are inter-related and applicable only on UNIX
platforms (worker_mpm):

■ MaxClients

■ MaxSpareThreads and MinSpareThreads

■ ServerLimit and StartServers

On the Windows platform (mpm_winnt), as well as UNIX platforms, the following
parameters are important to tune:

■ ThreadLimit

■ ThreadsPerChild

Note that each child process has a set of child threads defined for them and that can
actually handle the requests. Use ThreadsPerChild in connection with this directive.

The values of ThreadLimit, ServerLimit, and MaxClients can indirectly affect this
value. Read the notes for these directives and use them in conjunction with this
directive.

Default Value: 2

Basic Tuning Considerations

Oracle HTTP Server Performance Tuning 6-5

ServerLimit

Note that this parameter is
not available in mod_
winnt (Microsoft
Windows). Winnt uses a
single process,
multi-threaded model

Specifies an upper limit on the number of server (child) processes that can exist or be
created. This value overrides the StartServers value if that value is greater than the
ServerLimit value. This is used to control the maximum number of server processes
that can be created.

Default Value: 16

ThreadLimit Specifies the upper limit on the number of threads that can be created under a server
(child) process. This value overrides the ThreadsPerChild value if that value is
greater than the ThreadLimit value. This is used to control the maximum number of
threads created per process to avoid conflicts/issues.

Default Values:

■ Windows Multi-Processing Module (mpm_winnt): 1920

■ All others: 64

ThreadsPerChild

This directive maps to the
Threads Per Child Server
Process field on the
Performance Directives
screen.

Sets the number of threads created by each server (child) process at startup.

Default Value: 64 when mpm_winnt is used and 25 when Worker MPM is used.

The ThreadsPerChild directive works with other directives, as follows:

At startup, Oracle HTTP Server creates a parent process, which creates several child
(server) processes as defined by the StartServers directive. Each server process
creates several threads (server/worker), as specified in ThreadsPerChild, and a
listener thread which listens for requests and transfers the control to the
worker/server threads.

After startup, based on load conditions, the number of server processes and server
threads (children of server processes) in the system are controlled by
MinSpareThreads (minimum number of idle threads in the system) and
MaxSpareThreads (maximum number of idle threads in the system). If the number of
idle threads in the system is more than MaxSpareThreads, Oracle HTTP Server
terminates the threads and processes if there are no child threads for a process. If the
number of idle threads is fewer than MinSpareThreads, it creates new threads and
processes if the ThreadsPerChild value has already been reached in the running
processes.

The following directives control the limit on the above directives. Note that the
directives below should be defined before the directives above for them to take effect.

■ ServerLimit - Defines the upper limit on the number of servers that can be
created. This affects MaxClients and StartServers.

■ ThreadLimit - Defines the upper limit on ThreadsPerChild. If ThreadsPerChild
is greater than ThreadLimit, then it is automatically trimmed to the latter value.

■ MaxClients - Defines the upper limit on the number of server threads that can
process requests simultaneously. This should be equal to the number of
simultaneous connections that can be made. This value should be a multiple of
ThreadsPerChild. If MaxClients is greater than ServerLimit multiplied by
ThreadsPerChild, it is automatically be trimmed to the latter value.

Table 6–1 (Cont.) Oracle HTTP Server Configuration Properties

Directive Description

Basic Tuning Considerations

6-6 Oracle Fusion Middleware Performance and Tuning Guide

MaxRequestsPerChild

This directive maps to the
Max Requests Per Child
Server Process field on the
Performance Directives
screen.

Specifies the number of requests each child process is allowed to process before the
child process dies. The child process ends to avoid problems after prolonged use
when Apache (and any other libraries it uses) leak memory or other resources. On
most systems, this is not needed, but some UNIX systems have notable leaks in the
libraries. For these platforms, set MaxRequestsPerChild to 10000; a setting of 0 means
unlimited requests.

This value does not include KeepAlive requests after the initial request per
connection. For example, if a child process handles an initial request and 10
subsequent "keep alive" requests, it would only count as 1 request toward this limit.

Default Value: 0

Note: On Windows systems MaxRequestsPerChild should always be set to 0
(unlimited) since there is only one server process.

MaxSpareThreads

MinSpareThreads

These directives map to
the Maximum Idle
Threads and Minimum
Idle Threads fields on the
Performance Directives
screen.

Note that these parameters
are not available in mod_
winnt (Windows
platform).

Controls the server-pool size. Rather than estimating how many server threads you
need, Oracle HTTP Server dynamically adapts to the actual load. The server tries to
maintain enough server threads to handle the current load, plus a few additional
server threads to handle transient load increases such as multiple simultaneous
requests from a single browser.

The server does this by periodically checking how many server threads are waiting
for a request. If there are fewer than MinSpareThreads, it creates a new spare. If there
are more than MaxSpareThreads, some of the spares are removed.

Default Values:

MaxSpareThreads: 75

MinSpareThreads: 25

Timeout

This directive maps to the
Request Timeout field on
the Performance Directives
screen.

The number of seconds before incoming receives and outgoing sends time out.

Default Value: 300

KeepAlive

This directive maps to the
Multiple Requests Per
Connection field on the
Performance Directives
screen.

Whether or not to allow persistent connections (more than one request per
connection). Set to Off to deactivate.

Default Value: On

Table 6–1 (Cont.) Oracle HTTP Server Configuration Properties

Directive Description

Basic Tuning Considerations

Oracle HTTP Server Performance Tuning 6-7

6.3.2 Reducing Httpd Process Availability with Persistent Connections
If your browser supports persistent connections, you can support them on the server
using the KeepAlive directives in the Oracle HTTP Server. Persistent Connections can
improve performance by reducing the work load on the server. With Persistent
Connections enabled, the server does not have to repeat the work to set up the
connections with a client.

The default settings for the KeepAlive directives are:

KeepAlive on
MaxKeepAliveRequests 100
KeepAliveTimeOut 5

These settings allow enough requests per connection and time between requests to
reap the benefits of the persistent connections, while minimizing the drawbacks. You
should consider the size and behavior of your own user population when setting these
values. For example, if you have a large user population and the users make small
infrequent requests, you may want to reduce the keepAlive directive default settings,
or even set KeepAlive to off. If you have a small population of users that return to
your site frequently, you may want to increase the settings.

KeepAlive option should be used judiciously along with MaxClients directive.
KeepAlive option would tie a worker thread to an established connection until it times
out or the number of requests reaches the limit specified by MaxKeepAliveRequests.
This means that the connections or users in the ListenBacklog queue would be
starving for a worker until the worker is relinquished by the keep-alive user. The
starvation for resources happens on the KeepAlive user load with user population
consistently higher than that specified in the MaxClients.

MaxKeepAliveRequests The maximum number of requests to allow during a persistent connection. Set to 0 to
allow an unlimited amount.

If you have long client sessions, consider increasing this value.

Default Value: 100

KeepAliveTimeout

This directive maps to the
Allow With Connection
Timeout (seconds) field,
which is located under the
Multiple Requests Per
Connection field, on the
Performance Directives
screen.

Number of seconds to wait for the next request from the same client on the same
connection.

Default Value: 5 seconds

limit

ulimit

Number of objects that a program uses to read or write to an open file or open
network sockets. A lack of available file descriptors can impact operating system
performance.

Tuning the file descriptor limit can be accomplished by configuring the hard limit
(ulimit) in a shell script which starts the OHS. Once the hard limit has been set the
OHS will then adjust the soft limit (limit) to match.

Note that configuring file descriptor limits is platform specific. Refer to your
operating system documentation for more information.

Table 6–1 (Cont.) Oracle HTTP Server Configuration Properties

Directive Description

Basic Tuning Considerations

6-8 Oracle Fusion Middleware Performance and Tuning Guide

Increasing MaxClients may impact performance in the following ways:

■ A high number of MaxClients can overload the system resources and may lead to
poor performance.

■ For a high user population with fewer requests, consider increasing the
MaxClients to support KeepAlive connections to avoid starvation. Note that this
can impact overall performance if the user concurrency increases. System
performance is impacted by increased concurrency and can possibly cause the
system to fail.

MaxClients should always be set to a value where the system would be stable or
performing optimally (~85% CPU).

Typically for high user population with less frequent requests, consider turning the
KeepAlive option off or reduce it to a very low value to avoid starvation.

Disabling the KeepAlive connection may impact performance in the following ways:

■ Connection establishment for every request has a cost.

■ If the frequency of creating and closing connections is higher, then some system
resources are used. The TCP connection has a time_wait interval before it can
close the socket connection and open file descriptors for every connection. The
default time_wait value is 60 seconds and each connection can take 60 seconds to
close, even after it is relinquished by the server.

6.3.3 Logging Options for Oracle HTTP Server
This section discusses types of logging, log levels, and the performance implications
for using logging.

6.3.3.1 Access Logging
Access logs are generally enabled to track who accessed what. The access_log file,
available in the ORACLE_INSTANCE/diagnostics/logs/OHS/ohsname directory,
contains an entry for each request that is processed. This file grows as time passes and
can consume disk space. Depending on the nature of the workload, the access_log has
little impact on performance. If you notice that performance is becoming an issue, the
file can be disabled if some other proxy or load balancer is used and gives the same
information.

6.3.3.2 Configuring the HostNameLookups Directive
By default, the HostNameLookups directive is set to Off. The server writes the IP
addresses of incoming requests to the log files. When HostNameLookups is set to On,
the server queries the DNS system on the Internet to find the host name associated
with the IP address of each request, then writes the host names to the log. Depending
on the server load and the network connectivity to your DNS server, the performance

Note: The Maxclients property is applicable only to UNIX
platforms. On Windows, the same functionality is achieved through
the ThreadLimit and ThreadsPerChild parameters.

WARNING: To avoid potential performance issues, values for any
parameters should be set only after considering the nature of the
workload and the system capacity.

Advanced Tuning Considerations

Oracle HTTP Server Performance Tuning 6-9

impact of the DNS HostNameLookup may be high. When possible, consider logging
only IP addresses. On UNIX systems, you can resolve IP addresses to host names
off-line, with the logresolve utility found in the ORACLE_HOME/Apache/Apache/bin/
directory.

6.3.3.3 Error logging
The server notes unusual activity in an error log. The ohsname.log file, available in
ORACLE_INSTANCE/diagnostics/logs/OHS/ohsname directory, contains errors,
warnings, system information, and notifications (depending on the log-level setting).

The httpd.conf file contains the error log configuration for OHS. The logging mode is
defined by the "OraLogMode" directive. The default is "odl-text", which produces the
Oracle diagnostic logging format in a text file. Alternatively, change this to "odl-xml"
to produce the Oracle diagnostic logging format in an XML file.

For Oracle diagnostic-style logging, "OraLogSeverity" directive is used for setting the
log level.

For Apache-style logging, the ErrorLog and LogLevel directives identify the log file
and the level of detail of the messages recorded. The default debug level is Warn.

Excessive logging can have some performance cost and may also fill disk space. The
log level control should be used based on need. For requests that use dynamic
resources, for example, requests that use mod_osso or mod_plsql, there is a
performance cost associated with setting higher debugging levels, such as the debug
level.

6.4 Advanced Tuning Considerations
This section provides advanced tuning recommendations which may or may not apply
to your environment. Review the following recommendations to determine if the
changes would improve your HTTP Server performance.

6.4.1 Tuning Oracle HTTP Server Security
This section covers the following topics:

■ Tuning Oracle HTTP Server Secure Sockets Layer (SSL)

■ Tuning Oracle HTTP Server Port Tunneling

6.4.1.1 Tuning Oracle HTTP Server Secure Sockets Layer (SSL)
Secure Sockets Layer (SSL) is a protocol developed by Netscape Communications
Corporation that provides authentication and encrypted communication over the
Internet. Conceptually, SSL resides between the application layer and the transport
layer on the protocol stack. While SSL is technically an application-independent
protocol, it has become a standard for providing security over HTTP, and all major
web browsers support SSL.

SSL can become a bottleneck in both the responsiveness and the scalability of a
web-based application. Where SSL is required, the performance challenges of the
protocol should be carefully considered. Session management, in particular session
creation and initialization, is generally the most costly part of using the SSL protocol,
in terms of performance.

This section covers the following SSL performance-related information:

■ Section 6.4.1.1.1, "Caching SSL on Oracle HTTP Server"

Advanced Tuning Considerations

6-10 Oracle Fusion Middleware Performance and Tuning Guide

■ Section 6.4.1.1.2, "Using SSL Application Level Data Encryption"

■ Section 6.4.1.1.3, "Tuning SSL Performance"

6.4.1.1.1 Caching SSL on Oracle HTTP Server When an SSL connection is initialized, a
session-based handshake between client and server occurs that involves the
negotiation of a cipher suite, the exchange of a private key for data encryption, and
server and, optionally, client, authentication through digitally-signed certificates.

After the SSL session state has been initiated between a client and a server, the server
can avoid the session creation handshake in subsequent SSL requests by saving and
reusing the session state. The Oracle HTTP Server caches a client's SSL session
information by default. With session caching, only the first connection to the server
incurs high latency.

The SSLSessionCacheTimeout directive in ssl.conf determines how long the server
keeps a saved SSL session (the default is 300 seconds). Session state is discarded if it is
not used after the specified time period, and any subsequent SSL request must
establish a new SSL session and begin the handshake again. The SSLSessionCache
directive specifies the location for saved SSL session information (the default location
is the following directory):

$ORACLE_INSTANCE/diagnostics/logs/$COMPONENT_ TYPE/$COMPONENT_NAME

Note that multiple Oracle HTTP Server processes can use a saved session cache file.

Saving SSL session state can significantly improve performance for applications using
SSL. For example, in a simple test to connect and disconnect to an SSL-enabled server,
the elapsed time for 5 connections was 11.4 seconds without SSL session caching. With
SSL session caching enabled, the elapsed time for 5 round trips was 1.9 seconds.

The reuse of saved SSL session state has some performance costs. When SSL session
state is stored to disk, reuse of the saved state normally requires locating and
retrieving the relevant state from disk. This cost can be reduced when using HTTP
persistent connections. Oracle HTTP Server uses persistent HTTP connections by
default, assuming they are supported on the client side. In HTTP over SSL as
implemented by Oracle HTTP Server, SSL session state is kept in memory while the
associated HTTP connection is persisted, a process which essentially eliminates the
performance impacts associated with SSL session reuse (conceptually, the SSL
connection is kept open along with the HTTP connection). For more information see
Section 6.3.2, "Reducing Httpd Process Availability with Persistent Connections".

6.4.1.1.2 Using SSL Application Level Data Encryption In most applications using SSL, the
data encryption cost is small compared with the cost of SSL session management.
Encryption costs can be significant where the volume of encrypted data is large, and in
such cases the data encryption algorithm and key size chosen for an SSL session can be
significant. In general there is a trade-off between security level and performance.

Oracle HTTP Server negotiates a cipher suite with a client based on the
SSLCipherSuite attribute specified in ssl.conf. OHS 11g uses 128 bit Encryption
algorithm by default and no longer supports lower encryption. Note that the previous
release [10.1.3x] used 64 bit encryption for Windows. For UNIX, the 10.x releases had
128 bit encryption used by default.

See Also: Oracle Fusion Middleware Application Security Guide

Advanced Tuning Considerations

Oracle HTTP Server Performance Tuning 6-11

6.4.1.1.3 Tuning SSL Performance The following recommendations can assist you with
determining performance requirements when working with Oracle HTTP Server and
SSL.

1. The SSL handshake is an inherently resource intensive process in terms of both
CPU usage and response time. Thus, use SSL only where needed. Determine the
parts of the application that require the security, and the level of security required,
and protect only those parts at the requisite security level. Attempt to minimize
the need for the SSL handshake by using SSL sparingly, and by reusing session
state as much as possible. For example, if a page contains a small amount of
sensitive data and several non-sensitive graphic images, use SSL to transfer the
sensitive data only, use normal HTTP to transfer the images. If the application
requires server authentication only, do not use client authentication. If the
performance goals of an application cannot be met by this method alone,
additional hardware may be required.

2. Design the application to use SSL efficiently. Group secure operations to take
advantage of SSL session reuse and SSL connection reuse.

3. Use persistent connections, if possible, to minimize cost of SSL session reuse.

4. Tune the session cache timeout value (the SSLSessionCacheTimeout directive in
ssl.conf). A trade-off exists between the cost of maintaining an SSL session cache
and the cost of establishing a new SSL session. As a rule, any secured business
process, or conceptual grouping of SSL exchanges, should be completed without
incurring session creation more than once. The default value for the
SSLSessionCacheTimeout attribute is 300 seconds. It is a good idea to test an
application's usability to help tune this setting.

5. If large volumes of data are being protected through SSL, pay close attention to the
cipher suite being used. The SSLCipherSuite directive specified in ssl.conf
controls the cipher suite. If lower levels of security are acceptable, use a less-secure
protocol using a smaller key size (this may improve performance significantly).
Finally, test the application using each available cipher suite for the specified
security level to find the optimal suite.

6. If SSL remains a bottleneck to the performance and scalability of your application,
after taking the preceding considerations into account, consider deploying
multiple Oracle HTTP Server instances over a hardware cluster or consider the use
of SSL accelerator cards.

6.4.1.2 Tuning Oracle HTTP Server Port Tunneling
When OracleAS Port Tunneling is configured, every request processed passes through
the OracleAS Port Tunneling infrastructure. Thus, using OracleAS Port Tunneling can
have an impact on the overall Oracle HTTP Server request handling performance and
scalability.

With the exception of the number of OracleAS Port Tunneling processes to run, the
performance of OracleAS Port Tunneling is self-tuning. The only performance control
available is to start more OracleAS Port Tunneling processes; this increases the number
of available connections and the scalability of the system.

The number of OracleAS Port Tunneling processes is based on the degree of
availability required, and the number of anticipated connections. This number cannot

See Also: Oracle Fusion Middleware Administrator's Guide for Oracle
HTTP Server for information on using supported cipher suites.

Advanced Tuning Considerations

6-12 Oracle Fusion Middleware Performance and Tuning Guide

be automatically determined because for each additional process a new port must be
opened through the firewall between the DMZ and the intranet. You cannot start more
processes than you have open ports, and you do not want less processes than open
ports, since in this case ports would not have any process bound to them.

To measure the OracleAS Port Tunneling performance, determine the request time for
servlet requests that pass through the OracleAS Port Tunneling infrastructure. The
response time running with OracleAS Port Tunneling should be compared with a
system without OracleAS Port Tunneling to determine whether your performance
requirements can be met using OracleAS Port Tunneling.

6.4.2 Tuning Oracle HTTP Server
The following tips can enable you to avoid or debug potential Oracle HTTP Server
performance problems:

■ Analyzing Static Versus Dynamic Requests

■ Managing PL/SQL Requests

■ Limiting the Number of Enabled Modules

■ Monitoring Oracle HTTP Server Performance

6.4.2.1 Analyzing Static Versus Dynamic Requests
It is important to understand where your server is spending resources so you can
focus your tuning efforts in the areas where the most stands to be gained. In
configuring your system, it can be useful to know what percentage of the incoming
requests are static and what percentage are dynamic.

Generally, you want to concentrate your tuning effort on dynamic pages because
dynamic pages can be costly to generate. Also, by monitoring and tuning your
application, you may find that much of the dynamically generated content, such as
catalog data, can be cached, sparing significant resource usage.

6.4.2.2 Managing PL/SQL Requests
You can get unrepresentative results when data outliers appear. This can sometimes
occur at start-up. To simulate a simple example, assume that you ran a PL/SQL "Hello,
World" application for about 30 seconds. Examining the results, you can see that the
work was all done in mod_plsql.c:

 /ohs_server/ohs_module/mod_plsql.c
 handle.maxTime: 859330
 handle.minTime: 17099
 handle.avg: 19531
 handle.active: 0
 handle.time: 24023499
 handle.completed: 1230

Note that handle.maxTime is much higher than handle.avg for this module. This is
probably because when the first request is received, a database connection must be
opened. Later requests can make use of the established connection. In this case, to
obtain a better estimate of the average service time for a PL/SQL module, that does

See Also: Oracle Fusion Middleware Administrator's Guide for Oracle
HTTP Server for information on configuring OracleAS Port Tunneling

Advanced Tuning Considerations

Oracle HTTP Server Performance Tuning 6-13

not include the database connection open time which causes the handle.maxTime to be
very large, recalculate the average as in the following:

(time - maxTime)/(completed -1)
For example:

(24023499 - 859330)/(1230 - 1) = 18847.98

6.4.2.3 Limiting the Number of Enabled Modules
Oracle HTTP Server, which is now based on Apache 2.2, has a slight change in
architecture in the way the requests are handled, compared to the previous release of
Oracle HTTP Server, which was based on Apache 1.3.

In the new architecture, Oracle HTTP Server invokes the service function of each
module that is loaded (in the order of definition in httpd.conf file) until the request is
serviced. This indicates that there is some cost associated with invoking the service
function of each module, to know if the service is accepted or declined.

Because of this change in architecture, consider placing the most frequently hit
modules above the others in the httpd.conf file.

For the static page requests, which are directly deployed to Oracle HTTP Server and
served by the default handler, the request has to go through all the modules before the
default handler is invoked. This process can impact performance of the request so
consider enabling only the modules that are required by the deployed application.
Example, if "mod_plsql" is never used by the deployed application, disable it to
maintain performance.

In addition, there are a few modules that register their hooks to do some work during
the URL translation phase, which would add to the cost of request processing time.
Example: mod_security, when enabled, has a cost of about 10% on CPU Cost per
Transaction for the specweb benchmark. Again, enable only those modules that are
required by your deployed applications to save CPU time.

6.4.2.4 Tuning the File Descriptor Limit
A lack of available file descriptors can cause a wide variety of symptoms which are not
always easily traced back to the operating system's file descriptor limit. Tuning the file
descriptor limit can be accomplished by configuring the operating system's hard limit
for the user who starts the OHS. Once configured, the OHS will adjust the soft limit to
match the operating system limit.

Configuring file descriptor limits is platform-specific. Refer to your operating system
documentation for more information. The following code example shows the
command for Linux:

 APACHECTL_ULIMIT=ulimit -S -n `ulimit -H -n`

Note that this limit must be reconfigured after applying a patch set.

Advanced Tuning Considerations

6-14 Oracle Fusion Middleware Performance and Tuning Guide

7

Oracle Metadata Service (MDS) Performance Tuning 7-1

7 Oracle Metadata Service (MDS) Performance
Tuning

[6] This chapter provides tuning tips for Oracle Metadata Service (MDS).

■ Section 7.1, "About Oracle Metadata Services (MDS)"

■ Section 7.2, "Monitoring Oracle Metadata Service Performance"

■ Section 7.3, "Basic Tuning Considerations"

■ Section 7.4, "Advanced Tuning Considerations"

7.1 About Oracle Metadata Services (MDS)
Oracle Metadata Services (MDS) is an application server and Oracle relational
database that keeps metadata in these areas: a file-based repository data, dictionary
tables (accessed by built-in functions) and a metadata registry. One of the primary uses
of MDS is to store customizations and persisted personalization for Oracle
applications. Oracle Metadata Services (MDS) is used by components such as Oracle
WebCenter Portal: Framework and Oracle Application Development Framework
(ADF) to manage metadata. Examples of metadata objects managed by MDS are: JSP
pages and page fragments, ADF page definitions and task flows, and customized
variants of those objects.

7.2 Monitoring Oracle Metadata Service Performance
MDS uses DMS sensors to provide tuning and diagnostic information which can be
viewed using Enterprise Manager. This information is useful, for example, to see if the
MDS caches are large enough.

Information on DMS metrics can be found in the Fusion Middleware Control Console.
Click Help at the top of the page to get more information. In most cases, the Help
window displays a help topic about the current page. Click Contents in the Help
window to browse the list of help topics, or click Search to search for a particular word
or phrase.

Note: Most of the Oracle Metadata Service configuration parameters
are immutable and cannot be changed at run time unless otherwise
specified.

Basic Tuning Considerations

7-2 Oracle Fusion Middleware Performance and Tuning Guide

7.3 Basic Tuning Considerations
Tuning is the adjustment of parameters to improve performance. The default MDS
configuration must be tuned in almost all deployments. Please review the
requirements and recommendations in this section carefully.

7.3.1 Tuning the Database Repository
For optimal performance of MDS APIs, the database schema for the MDS repository
must be monitored and tuned by the database administrator. This section lists some
recommended actions to tune the database repository:

■ Collecting Schema Statistics

■ Increasing Redo Log Size

■ Reclaiming Disk Space

■ Monitoring the Database Performance

For additional information on tuning the database, see "Optimizing Instance
Performance" in Oracle Database Performance Tuning Guide.

7.3.1.1 Collecting Schema Statistics
While MDS provides database indexes, they may not be used as expected due to a lack
of schema statistics. If performance is an issue with MDS operations such as accessing
or updating metadata in database repository, the database administrator must ensure
that the statistics are available and current.

The following example shows one way that the Oracle database schema statistics can
be collected:

execute dbms_stats.gather_schema_stats(ownname => '<username>',
estimate_percent => dbms_stats.auto_sample_size, method_opt=> 'for all
columns size auto', cascade=>true);

If the performance does not improve after statistics collection, then try to flush the
database shared pool to clear out the existing SQL plans by using the following
command:

alter system flush shared_pool;

In general, the database should be configured with automatic statistics recollection.
For additional information on gathering statistics, see 'Automatic Performance
Statistics" in Oracle Database Performance Tuning Guide.

7.3.1.2 Increasing Redo Log Size
The size of the redo log files can influence performance because the behavior of the
database writer and archiver processes depend on the redo log sizes. Generally, larger
redo log files provide better performance. Undersized log files increase checkpoint
activity and can reduce performance.

Consider having at least 3 redo log groups with 2G of size each. Redo log files should
be placed on a disk separate from data files to improve I/O performance.

For more information see "Sizing Redo Log Files" in Oracle Database Performance Tuning
Guide.

Basic Tuning Considerations

Oracle Metadata Service (MDS) Performance Tuning 7-3

7.3.1.3 Reclaiming Disk Space
While manual and auto-purge operations delete the metadata content from the
repository, the database may not immediately reclaim the space held by tables and
indexes. This may result in the disk space consumed by MDS schema growing.
Database administrators can manually rebuild the indexes and shrink the tables to
increase performance and to reclaim disk space.

For more information see "Reclaiming Unused Space" in Oracle Database Performance
Tuning Guide.

7.3.1.4 Monitoring the Database Performance
Database administrators must monitor the database (for example, by generating
automatic workload repository (AWR) reports for Oracle database) to observe lock
contention, I/O usage and take appropriate action to address the issues.

For more information see:

■ "Generating Automatic Workload Repository Reports" in Oracle Database
Performance Tuning Guide

■ "Monitoring Performance" in Oracle Database Administrator's Guide.

7.3.2 Tuning Cache Configuration
MDS uses a cache to store metadata objects and related objects (such as XML content)
in memory. MDS Cache is a shared cache that is accessible to all users of the
application (on the same JVM). If a metadata object is requested repeatedly, with the
same customizations, that object may be retrieved more quickly from the cache (a
"warm" read). If the metadata object is not found in the cache (a "cold" read), then
MDS may cache that object to facilitate subsequent read operations depending on the
cache configuration, the type of metadata object and the frequency of access.

Cache can be configured or changed post deployment through MBeans. This element
maps to the MaximumCacheSize attribute of the MDSAppConfig MBean. For more
information see "Changing MDS Configuration Attributes for Deployed Applications"
in Oracle Fusion Middleware Administrator's Guide.

Having a correctly sized cache can significantly improve throughput for repeated
reading of metadata objects. The optimal cache size depends on the number of
metadata objects used and the individual sizes of these objects. Prior to packaging the
Enterprise ARchive (EAR) file, you can manually update the cache-config in
adf-config.xml, by adding the following entry:

<mds-config>
 <cache-config>
 <max-size-kb>200000</max-size-kb>
 </cache-config>
</mds-config>

Note: MDS Metrics, visible in Enterprise Manager, are useful for
tuning the MDS cache. In particular, "IOs Per MO Content Get" or
"IOs Per Metadata Object Get" should be less than 1. If not,
consider increasing the size of the MDS cache. For more information
on viewing DMS metric information, see Section 7.2, "Monitoring
Oracle Metadata Service Performance".

Basic Tuning Considerations

7-4 Oracle Fusion Middleware Performance and Tuning Guide

7.3.2.1 Enabling Document Cache
In addition to the main MDS cache, MDS uses a document cache in conjunction with
each metadata store to store thumbnail information about metadata documents (base
document and customization documents) in memory. The entry for each document is
small (<100 bytes) and the cache size limit is specified in terms of the number of
document entries. MDS calculates an appropriate default size limit for the document
cache based on the configured maximum size of the MDS Cache, as follows:

■ If MDS cache is disabled, MDS defaults to having no document cache.

■ If MDS cache is enabled, MDS defaults the document cache size to one document
entry per KB of document cache configured.

■ If cache-config is not specified, MDS defaults to 10000 document entries.

■ If MDS cache is set to a very small value, MDS uses a minimum size of 500 for
document cache.

In general, the defaults should be sufficient in most cases. However, insufficient
document cache size may impact performance. Prior to packaging the Enterprise
ARchive (EAR) file, you can explicitly set document cache size by adding this entry to
adf-config.xml:

<metadata-store-usage id="db1">
 <metadata-store …>
 <property name = …/>
 </metadata-store>
 <document-cache max-entries="10000"/>
</metadata-store-usage>

The DMS metric "IOs Per Document Get" (visible in Enterprise Manager, see
Section 7.2) should be less than 1. If not, consider increasing the document cache size.

7.3.3 Purging Document Version History
MDS keeps document version history in the database's metadata store. As version
history accumulates, it requires more disk space and degrades read/write
performance. Assuming the document versions are not part of an active label, there are
two ways to purge version history:

■ Auto Purge

Note: MDS cache grows in size as metadata objects are accessed until
it hits max-size-kb. After that, objects are removed from the cache to
make room as needed on a least recently used (LRU) basis to make
room for new objects. Unless time-to-live (TTL) is set, the MDS cache
continues to occupy the max-size-kb of memory.

Note: Document cache is cleared when it exceeds the
document-cache max-entries value. To avoid performance issues,
consider increasing the document cache size if you receive a
notification like the following for example:

NOTIFICATION: Document cache DBMetadataStore : MDS
Repository connection = <> exceeds its maximum number of
entries <NNNN>, so the cache is cleared.

Basic Tuning Considerations

Oracle Metadata Service (MDS) Performance Tuning 7-5

■ Manual Purge

7.3.3.1 Auto Purge
The auto-purge interval can be configured or changed post deployment through
MBeans. This element maps to the AutoPurgeTimeToLive attribute of the
MDSAppConfig MBean. If your application uses the database store for MDS, you can set
auto-purge by adding this entry in adf-config.xml prior to packaging the EAR:

<persistence-config>
 <auto-purge seconds-to-live="T"/>
</persistence-config>

In the example above, the auto-purge interval removes versions that are older than the
specified time T (in seconds). For more information, see "Changing MDS
Configuration Attributes for Deployed Applications" in Oracle Fusion Middleware
Administrator's Guide.

7.3.3.2 Manual Purge
When you suspect that the database is running out of space or performance is
becoming slower, you can manually purge existing version history using WLST
command or through Oracle Enterprise Manager. Manual purging may impact
performance, so plan to purge in a maintenance window or when the system is not
busy.

For more information about manually purging version history, see "Purging Metadata
Version History" in Oracle Fusion Middleware Administrator's Guide.

7.3.4 Using Database Polling Interval for Change Detection
MDS employs a polling thread which queries the database to gauge if the data in the
MDS in-memory cache is out of sync with data in the database. This can happen when
metadata is updated in another JVM. If it is out of sync, MDS clears any out of
date-cached data so subsequent operations see the latest versions of the metadata.
MDS invalidates the document cache, as well as MDS cache, so subsequent operations
have the latest version of the metadata.

The polling interval can be configured or changed post deployment through MBeans.
The element maps to the ExternalChangeDetection and
ExternalChangeDetectionInterval attributes of the MDSAppConfig MBean. Prior to
packaging the Enterprise ARchive (EAR) file, you can configure the polling interval by
adding this entry in adf-config.xml:

<mds-config>
 <persistence-config>
 <external-change-detection enabled="true" polling-interval-secs="T"/>
 </persistence-config>

Note: Purging version history manually may impact performance
depending on the number of metadata updates that have been made
since the last purge.

Tip: Adjust the auto-purge interval based on document versions
created in your application. Purging can take longer based on number
of versions created. See also "Advanced Systems Administration for
Oracle WebCenter Portal" in Oracle Fusion Middleware Administrator's
Guide for Oracle WebCenter Portal.

Advanced Tuning Considerations

7-6 Oracle Fusion Middleware Performance and Tuning Guide

</mds-config>
In the example above, 'T' specifies the polling interval in seconds. The minimum value
is 1. Lower values cause metadata updates, that are made in other JVMs, to be seen
more quickly. It is important to note, however, that a lower value can also create
increased middle tier and database CPU consumption due to the frequent queries. By
default, polling is enabled ('true') and the default value of 30 seconds should be
suitable for most purposes. For more information, see "Changing MDS Configuration
Attributes for Deployed Applications" in Oracle Fusion Middleware Administrator's
Guide ".

7.4 Advanced Tuning Considerations
After you have performed the modifications recommended in the previous section,
you can make additional changes that are specific to your deployment. Consider
carefully whether the recommendations in this section are appropriate for your
environment.

7.4.1 Analyzing Performance Impact from Customization
MDS customization may impact performance at run time.The impact from
customization depends on many factors including:

■ The type of customization that has been created (shared or user level)

■ The percentage of metadata objects in the system which is customized. The lower
this percentage the lower the impact of customization.

■ The number of configured customization layers, and the efficiency of the
customization classes.

There are two main types of customization:

■ Shared Customizations: these are layers of customization corresponding to
customization classes whose getCacheHint method returns ALL_USERS or MULTI_
USER, meaning the layer applies to all or multiple users. Shared customizations are
cached in the (shared) MDS cache.

■ User Level Customizations (also known as Personalizations): these are layers of
customization corresponding to customization classes whose getCacheHint
method returns SINGLE_USER, meaning the layer applies to just one user. User
customizations are generally cached on the user's session (HttpSession) until the
user logs out.

For more information about customization concepts, writing customization classes,
and configuring customization classes, see "Customizing Applications with MDS" in
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

Note: When setting the polling interval, consider the following: if
you poll too frequently, the database is queried for out-of-date
versions; too infrequently, and those versions may stack up and
polling can take longer to process.

Part III
Part III Oracle Fusion Middleware Server

Components

This part describes configuring Oracle Fusion Middleware server components to
improve performance. It contains the following chapters:

■ Chapter 8, "Oracle Application Development Framework Performance Tuning"

■ Chapter 9, "Oracle TopLink (EclipseLink) JPA Performance Tuning"

■ Chapter 10, "Oracle Web Cache Performance Tuning"

8

Oracle Application Development Framework Performance Tuning 8-1

8Oracle Application Development Framework
Performance Tuning

[7] This chapter provides basic guidelines on how to maximize the performance and
scalability of the Oracle Application Development Framework (ADF). This chapter
covers design, configuration, and deployment performance considerations in the
following sections:

■ Section 8.1, "About Oracle ADF"

■ Section 8.2, "Basic Tuning Considerations"

■ Section 8.3, "Advanced Tuning Considerations"

This chapter assumes that you are familiar with building ADF applications. To learn
about ADF, see the following guides:

■ Oracle Application Development Framework Developer's Guide

■ Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework

8.1 About Oracle ADF
Oracle Application Development Framework (Oracle ADF) is an end-to-end
application framework that builds on Java Platform, Enterprise Edition (Java EE)
standards and open-source technologies to simplify and accelerate implementing
service-oriented applications. Oracle ADF is suitable for enterprise developers who
want to create applications that search, display, create, modify, and validate data using
web, wireless, desktop, or web services interfaces.

For more information see "Introduction to Oracle ADF" in Oracle Application
Development Framework Developer's Guide.

8.2 Basic Tuning Considerations
Before building, configuring, and deploying ADF applications, review the following
tuning recommendations to achieve optimal performance:

■ Oracle ADF Faces Configuration and Profiling

■ Tuning ADF Faces

■ Tuning ADF Faces Component Attributes

■ Tuning Table and Tree Components

■ Tuning Data Visualization Tool (DVT) Components

Basic Tuning Considerations

8-2 Oracle Fusion Middleware Performance and Tuning Guide

■

8.2.1 Oracle ADF Faces Configuration and Profiling
This section discusses the configuration and profiling concepts of the ADF Faces.
Configuration options for Oracle ADF Faces are set in the web.xml file. Most of
parameters have default values that can be tuned for performance. Table 8–1 describes
some of these configuration options.

8.2.2 Tuning ADF Faces
Table 8–2 provides configuration recommendations that may improve performance of
ADF Faces:

Table 8–1 ADF Configuration Options

Parameter Description

Compress View State

org.apache.myfaces.trinidad.COMPRESS_
VIEW_STATE

Controls whether or not the page state is compressed. Latency
can be reduced if the size of the data is compressed. The default
is False, but to optimize performance, consider setting this
parameter to True.

Debug Mode

org.apache.myfaces.trinidad.resource.DEBU
G

Controls whether output should be enhanced for debugging or
not. This parameter should be removed or set to False.

Check File Modification

org.apache.myfaces.trinidad.resource.CHEC
K_FILE_MODIFICATION

Controls whether ADF faces check for modification date of JSP
pages and discard any saved state if the file is changed. This
parameter should be removed or set to False.

Client State Method

oracle.adf.view.rich.CLIENT_STATE_METHOD

Specifies which type of saving (all or token) should be used
when client-side state saving is enabled. The default value is
token. Consider using token to optimize performance.

Log Level

oracle.adf.view.rich.LOGGER_LEVEL

Sets the log level on the client side. The default value is OFF. This
parameter should be removed or set to OFF.

Assert Enabled

oracle.adf.view.rich.ASSERT_ENABLED

Specifies whether to process assertions on the client side. The
default value is OFF. This parameter should be removed or set to
OFF.

Note: When you are profiling or measuring client response time
using the Firefox browser, ensure that the Firebug plug-in is disabled.
While this plug-in is very useful for getting information about the
page and for debugging JavaScript code on the page, it can impact the
total response time.

For more information on disabling the Firefox Firebug plug-in, see the
Firefox Support Home Page at
http://support.mozilla.com/en-US/kb/.

Basic Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-3

Table 8–2 Configuration Parameters for ADF Faces

Configuration
Recommendation Description

Avoid inline JavaScript
in pages.

Inline JavaScript can increase response payload size, will never be cached in browser,
and can block browser rendering. Instead of using inline JavaScript, consider putting all
scripts in .js files in JavaScript libraries and add scripts to the page using af:resource tag.

NOTE: Consider using af:resource rather than trh:script when possible.

Avoid self-signed SSL
certificates. Opt for
officially signed
security certificates
instead.

In some browsers, using a self-signed SSL certificate prevents resources from being
cached. The resources, such as JavaScript libraries, images, and style sheets, must be
reloaded each time a user accesses the application, which can impact network
performance.

An added benefit of using officially-signed SSL certificates is the additional security
assurances they can provide over self-signed certificates.

Configure the JSP
timeout parameter.

Using the JavaServer Pages (JSP) timeout parameter causes infrequently used pages to
be flushed from the cache by the following setting in web.xml:

<servlet>
 <servlet-name>
 oraclejsp
 <init-param>
 <param-name>
 jsp_timeout
 </param-name>
 <param-value>
 600
 </param-value>
 </init-param>
 </servlet-name>
</servlet>

NOTE: Set this parameter based on your own use case scenarios.

Create a single toolbar
item with a drop-down
popup.

When the browser size is small because of the screen resolution, the menubar/toolbar
overflow logic becomes expensive in Internet Explorer 7 and 8. It especially has
problems with laying out DOM structures with command items.

Create a single toolbar item with a drop-down popup and put all the input fields inside
it. This popup should have deferred child creation and contentDelivery="lazy".

Use shared popups in
collection-based
components (like table).

Stamping popups in a table can impact performance, so consider using a shared popup
in collection-based components (like table) to reduce the overhead.

Do not use hover
popups on navigation
links.

A hover popup on a navigation link causes the navigation to wait for the hover to be
fetched first.

Move hover popups on navigation links in a table to a separate icon within the table cell

Basic Tuning Considerations

8-4 Oracle Fusion Middleware Performance and Tuning Guide

Use partial page
navigation.

Partial Page Navigation is a feature of the ADF Faces framework that enables navigating
from one ADF Faces page to another without a full page transition in the browser.The
new page is sent to the client using Partial Page Rendering (PPR)/Ajax channel.

The main advantage of partial page navigation over traditional full page navigation is
improved performance: the browser no longer re-interprets and re-executes Javascript
libraries, and does not spend time for cleanup/initialization of the full page. The
performance benefit from this optimization is very big; it should be enabled whenever
possible.

Some known limitations of this feature are:

■ For the document's "metaContainer" facet (the HEAD section), only scripts are
brought over with the new page. Any other content, such as icon links or style rules
can be ignored.

■ Applications cannot use anchor (hash) URLs for their own purposes.

For more information, see "Using Partial Page Navigation" in the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework.

Use page templates. Page templates enable developers to build reusable, data-bound templates that can be
used as a shell for any page. A developer can build one or more templates that provide
structure and consistency for other developers building web pages. The templates have
both static areas on them that cannot be changed when they are used and dynamic areas
on them where the developer can place content specific to the page they are building.

There are some important considerations when using templates:

■ Since templates are present in every application page, they have to be optimized so
that common performance impacts are avoided. Adding round corners to the
template, for example, can impact the performance for every page.

■ When building complex templates, avoid building them in multiple pieces and
including them in the top-level template using <f:subview> tag. From a
performance perspective, doing so can impact memory usage on the server side.
(<f:subview> introduces another level into the ID scoping hierarchy, which results
in longer IDs. Long IDs have a negative impact on performance. Developers are
advised to avoid using <f:subview> unless it is required. It is not necessary to use
<f:subview> around <jsp:include> if you can ensure that all IDs are unique. For
example, if you are using <jsp:include>, break a large page into multiple pieces for
easier editing. And whenever possible, avoid using <f:subview>. If you are
including content developed by someone else, use <f:subview> if you do not know
which IDs the developer used. In addition, you do not have to put <f:subview> at
the top of a region definition.

■ Avoid long IDs in all cases, especially on pageTemplates, subviews, subforms, and
on tables or within tables. Long IDs can have a performance impact on the server
side, network traffic, and client processing.

For more information, see the topic "Using Page Templates" in Oracle Fusion Middleware
Web User Interface Developer's Guide for Oracle Application Development Framework.

Table 8–2 (Cont.) Configuration Parameters for ADF Faces

Configuration
Recommendation Description

Basic Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-5

Enable ADF faces
geometry management.

ADF Rich Client supports geometry management of the browser layout where parent
components are in the UI explicitly. The children components are sized to stretch and fill
up available space in the browser. While this feature makes the UI look better, it has a
cost. The impact is on the client side where the browser must spend time resizing the
components. The components that have geometry management by default are:

■ PanelGridLayout

■ PanelAccordion

■ PanelStretchLayout

■ PanelTabbed

■ BreadCrumbs

■ NavigationPane

■ PanelSplitter

■ Toolbar

■ Toolbox

■ Table

■ Train

Notes:

■ Consider using panelGridLayout to flatten HTML hierarchy and improve
performance when designing page layouts for non-stamped component.
panelGridLayout uses JavaScript to accomplish page layout like PSL, but it does not
have the overheard of nesting JS layout components.

To avoid performance degradation, do not use PanelGridLayout in stamped
components

■ When using geometry management, try minimizing the number of child
components that are under a parent geometry managed component.

■ The cost of geometry management is directly related to the complexity of child
components.

■ The performance cost of geometry management can be smaller (as perceived by the
user) for the pages with table or other data stamped components when table data
streaming is used. The client-side geometry management can be executed while the
browser is waiting for the data response from the server.

For more information, see the topic "Geometry Management and Component
Stretching" in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle
Application Development Framework.

Use the ADF rich client
overflow feature.

ADF Rich Client supports overflow feature. This feature moves the child components to
the non-visible overflow area if they cannot fit the page. The components that have
built-in support for overflow are: PanelTabbed, BreadCrumbs, NavigationPane,
PanelAccordion, Toolbar, and Train. Toolbar should be contained in a Toolbox to handle
the overflow.

While several optimizations methods are in place to reduce the cost of overflow, it is
necessary to pay special attention to the number of child components and complexity of
each of them in the overflow component. Consider setting a big enough initial size of
the overflow component so that overflow does not happen in most cases.

To prevent performance degradation, however, consider adding a drop-down with the
command items to avoid these overflow areas.

Table 8–2 (Cont.) Configuration Parameters for ADF Faces

Configuration
Recommendation Description

Basic Tuning Considerations

8-6 Oracle Fusion Middleware Performance and Tuning Guide

Use ADF Rich Client
Partial Page Rendering
(PPR).

ADF Rich Client is based on Asynchronous JavaScript and XML (Ajax) development
technique. Ajax is a web development technique for creating interactive web
applications, where web pages feel more responsive by exchanging small amounts of
data with the server behind the scenes, without the whole web page being reloaded. The
effect is to improve a web page's interactivity, speed, and usability.

With ADF Faces, the feature that delivers the Ajax partial page refresh behavior is called
partial page rendering (PPR). PPR enables small areas of a page to be refreshed without
having to redraw the entire page. For example, an output component can display what a
user has chosen or entered in an input component or a command link or button can
cause another component on the page to be refreshed.

Two main Ajax patterns are implemented with partial page rendering (PPR):

■ native component refresh

■ cross-component refresh

While the framework builds in native component refresh, cross-component refresh has
to be done by developers in certain cases.

Cross-Component refresh is a concept where different components on the page have a
semantic relationship to one an other. For example, if a user selects one choice
component on a page that prompts a country selection. The outcome of this selection
requires another component on the page to be changed and updated to show the valid
states of the country. This relationship requires a cross-component refresh. This can be
accomplished either declarative or programmatically. For more information, refer to
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework).

It is important to note the differences between partial targets and partial triggers when
using cross-component refresh. Partial triggers are used when a component wants to
listen for changes on another component. Partial targets are used when a component
that changes wants to make sure other components on the page are re-rendered.

Consider a typical situation in which a page includes an af:inputText component, an
af:commandButton component, and an af:outputText component. When the user enters
a value for the af:inputText, then clicks the af:commandButton, the input value is
reflected in the af:outputText. Without PPR, clicking the af:commandButton triggers a
full-page refresh. Using PPR, you can limit the scale of the refresh to only those
components you want to refresh, in this case the af:outputText component. To achieve
this, you would do two things:

■ Set up the af:commandButton for partial submit by setting the partialSubmit
attribute to true. Doing this causes the command component to start firing partial
page requests each time it is clicked.

■ Define which components are to be refreshed when the partial submit takes place,
in this example the af:outputText component, by setting the partialTriggers
attribute for each of them to the id of the component triggering the refresh. In this
example, this means setting the partialTriggers attribute of the af:outputText
component to give the id of the af:commandButton component.

The steps above achieve PPR using a command button to trigger the partial page
refresh.

The main reason why partial page rendering can significantly boost the performance is
that full page refresh does not happen and the framework artifacts (such as ADF Rich
Client JS library, and style sheets) are not reloaded and only a small part of page is
refreshed. In several cases, this means no extra data is fetched or no geometry
management.

The ADF Rich Client has shown that partial page rendering results in the best client-side
performance. Besides the impact on the client side, server-side processing can be faster
and can have better server-side throughput and scalability.

For more information, see the topic "Rerendering Partial Page Content" in Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework.

Table 8–2 (Cont.) Configuration Parameters for ADF Faces

Configuration
Recommendation Description

Basic Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-7

Use ADF rich client
navigation.

ADF Rich Client has an extensive support for navigation. One of the common use cases
is tabbed navigation. This functionality is currently supported by components like
navigationPane which can bind to xmlMenuModel to easily define navigation.

There is one drawback in this approach, however. Using ADF rich client navigation
results in a full page refresh every time the user switches the tab. One option is to use
panelTabbed instead. panelTabbed has built-in support for partial page rendering of the
tabbed content without requiring any developer work. However, panelTabbed cannot
bind to any navigational model and the content has to be available from within the
page, so it has limited applicability.

Cache resources. Developers are strongly encouraged to ensure that any resources that can be cached
(images, CSS, JavaScript) have their cache headers specified appropriately. Also, client
requests for missing resources on the server result in addition round trips to the server.
To avoid this, make sure all the resources are present on the server.

Consider using the ResourceServlet to configure web.xml to enable resource caching:

<servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/js/*</url-pattern>
 </servlet-mapping>
<servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/images/*</url-pattern>
 </servlet-mapping>

Reduce the size of state
token cache.

This property is defined in web.xml org.apache.myfaces.trinidad.CLIENT_STATE_
MAX_TOKENS in "token"-based client-side state saving and determines how many
tokens should be preserved at any one time. The default value is 15. When this value is
exceeded, state will be "forgotten" for the least recently viewed pages, which can impact
users that actively use the Back button or that have multiple windows open
simultaneously.

In order to reduce live memory per session, consider reducing this value to 2. Reducing
the state token cache to 2 means one Back button click is supported. For applications
without support for a Back button, this value should be set to 1.

CAUTION: Setting this parameter to 1 is not recommended for Oracle WebCenter
applications as it may cause the JSP error IllegalStateException. For example,
WebCenter Spaces and WebCenter Framework Portal applications launch dialog
windows, implying that the previous state of the JSF view tree has to be stored. If the
number is set to 1, then the system can store the current main view page and then view
the dialog page when viewing a mail, for example. The dialog page is now trying to
open another dialog page (for reply or forward), but the server cannot save the state of
the previous page and returns the IllegalStateException.

Use af:resource
component to deliver
css and js scripts.

A common developer task is to define custom styles inside a regular page or template
page. Since most browsers use progressive scanning of the page, a late introduction of
styles forces the browser to recompute the page. This impacts the page layout
performance. For better performance use af:resource component to deliver css and js
scripts.

To get a component (or static CDATA content) to display in the "head", use the
"metaContainer" facet.

See the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework for details about af:facetRef.

Table 8–2 (Cont.) Configuration Parameters for ADF Faces

Configuration
Recommendation Description

Basic Tuning Considerations

8-8 Oracle Fusion Middleware Performance and Tuning Guide

Optimize custom
JavaScript code.

ADF Rich Client uses JavaScript on the client side. The framework itself provides most
of the functionality needed. However, you may have to write custom JavaScript code. To
get the best performance, consider bundling the JavaScript code into one JS lib (one
JavaScript file) and deliver it to the client. The easiest approach is to use the ADF tag:
<af:resource type="javascript" source=" "/>.

If most pages require custom JavaScript code, the tag should be included in the
application template. Otherwise, including it in particular pages can result in better
performance. If custom the JavaScript code lib file becomes too big, then consider
splitting it into meaningful pieces and include only the pieces needed by the page.
Overall, this approach is faster since the browser cache is used and the html content of
the page is smaller.

Disable debug output
mode.

The debug-output element in the trinidad-config.xml file specifies whether output
should be more verbose to help with debugging. When set to TRUE, the output
debugging mechanism in Trinidad produces pretty-printed, commented HTML content.
To improve performance by reducing the output size, you should disable the debug
output mode in production environments.

Set the debug-output element to FALSE, or if necessary, remove it completely from the
trinidad-config.xml file.

Disable test
automation.

Enabling test automation parameter oracle.adf.view.rich.automation.ENABLED
generates a client component for every component on the page which can negatively
impact performance.

Set the oracle.adf.view.rich.automation.ENABLED parameter value to FALSE (the
default value) in the web.xml file to improve performance.

Disable animation. ADF Rich Client framework has client side animation enabled by default. Animation is
introduced to provide an enhanced user experience. Some of the components, like
popup table, have animation set for some of the operations. While using animation can
improve the user experience, it can increase the response time when an action is
executed. If speed is the biggest concern, then animation can be disabled by setting the
flag in trinidad-config.xml

Disable client-side
assertions.

Assertions on client-side code base can have a significant impact on client-side
performance. Set the parameter value to FALSE (the default value) to disable client-side
assertions. Also ensure that the oracle.adf.view.rich.ASSERT_ENABLED is not explicitly
set to TRUE in the web.xml file.

Disable JavaScript
Profiler.

When the JavaScript oracle.adf.view.rich.profiler.ENABLED profiler is enabled, an
extra round-trip occurs on every page in order to fetch the profiler data. Disable the
profiler in the web.xml file to avoid this extra round-trip. Default is DISABLED.

Disable resource debug
mode.

When resource debug mode is enabled, the HTTP response headers do not tell the
browser (or WebCache) that resources (JS libraries, CSS style sheets, or images) can be
cached.

Disable the org.apache.myfaces.trinidad.resource.DEBUG parameter in the web.xml
file to ensure that caching is enabled.

Disable timestamp
checking.

The org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION parameter controls
whether jsp or jspx files are checked for modifications each time they are accessed.

Ensure that the parameter value org.apache.myfaces.trinidad.CHECK_FILE_
MODIFICATION is set to FALSE (the default value) in the web.xml file.

Disable checking for
CSS file modifications.

The org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION parameter controls
when CSS file modification checks are made. To aid in performance, this configuration
option defaults to false - do not check for css file modifications. Set this to TRUE if you
want the skinning css file changes to be reflected without stopping or starting the server.

Table 8–2 (Cont.) Configuration Parameters for ADF Faces

Configuration
Recommendation Description

Basic Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-9

8.2.3 Tuning ADF Faces Component Attributes
Table 8–3 provides configuration recommendations for ADF Faces Component
Attributes:

Enable content
compression.

By default, style classes that are rendered are compressed to reduce page size. In
production environments, make sure you remove the DISABLE_CONTENT_COMPRESSION
parameter from the web.xml file or set it to FALSE.

For debugging, turn off the style class content compression. You can do this by setting
the DISABLE_CONTENT_COMPRESSION property to TRUE.

Enable JavaScript
obfuscation.

ADF Faces supports a runtime option for providing a non-obfuscated version of the
JavaScript library. The obfuscated version is supplied by default, but the non-obfuscated
version is supplied for development use. Obfuscation reduces the overall size of the
JavaScript library by about 50%.

To provide an obfuscated ADF Faces build, set the
org.apache.myfaces.trinidad.DEBUG_JAVASCRIPT parameter to FALSE in the web.xml
file.

Enable library
partitioning.

In the Oracle 11g Release, library partitioning is on by default. In previous versions
library partitioning was off by default. Ensure that the library partitioning is on by
validating the oracle.adf.view.rich.libraryPartitioning.DISABLED property is set
to false in the web.xml file.

Table 8–2 (Cont.) Configuration Parameters for ADF Faces

Configuration
Recommendation Description

Basic Tuning Considerations

8-10 Oracle Fusion Middleware Performance and Tuning Guide

Table 8–3 ADF Faces Component Attributes

Configuration Recommendation Description

Use the childCreation property for
panelTabbed components to control
when the contents of the
ShowDetailItem children are created.

By default, the child components of showDetailItems inside a
panelTabbed are created even if they are not disclosed. This can cause
unnecessary memory and CPU usage.

To control when the contents of the showDetailItems children are
created, use the childCreation property. Using this property can
improve server-side performance by postponing construction of the
components until they are likely to be disclosed.

The childCreationproperty options are:

■ immediate

All showDetailItem children will be populated immediately

■ lazy

showDetailItem children will be populated when they are likely to
be disclosed and kept in memory thereafter

■ lazyuncached

showDetailItem children will be populated when they are likely to
be disclosed and may be removed when undisclosed

Use the immediate data delivery
attribute with ADF Rich Client
components.

ADF Rich Client components have an immediate attribute. If a
component has its immediate attribute set to TRUE (immediate="true"),
then the validation, conversion, and events associated with the
component are processed during the applyRequestValues phase. These
are some cases where setting immediate to TRUE can lead to better
performance.

■ The commandNavigationItem in the navigationPane can use the
immediate attribute set to TRUE to avoid processing the data from
the current screen while navigating to the new page.

■ If the input component value has to be validated before the other
values, immediate should be set to TRUE. In case of an error it be
detected earlier in the cycle and additional processing be avoided.

ADF Rich Client is built on top of JSF and uses standard JSF lifecycle. See
"Understanding the JSF and ADF Faces Lifecycles" in Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

There are some important issues associated with the immediate attribute.
Refer to "Using the Immediate Attribute" in Oracle Fusion Middleware Web
User Interface Developer's Guide for Oracle Application Development
Framework for more information.

Note that this is an advanced feature. Most of the performance
improvements can be achieved using the af:subform component. Refer
to Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle
Application Development Framework for af:subform details.

Use the "visible" and "rendered"
attributes.

All ADF Faces Rich Client display components have two properties that
dictate how the component is displayed on the page:

■ The visible property specifies simply whether the component is to
be displayed on the page, or is to be hidden.

■ The rendered property specifies whether the component shall exist
in the client page at all.

The EL expression is commonly used to control these properties. For
better performance, consider setting the component to "not rendered"
instead of "not visible", assuming there is no client interaction with the
component. Making a component "not rendered" can improve server
performance and client response time since the component does not
have client side representation.

Basic Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-11

Use client-side events. ADF Rich Client framework provides the client-side event model based
on component-level events rather than DOM level. The client-side event
model is a very useful feature that can speed up the application. Review
the following performance considerations:

■ Consider using client-side events for relatively simple event
handling that can be done on the client side. This improves client
side performance by reducing the number of server round trips.
Also, it can increase server-side throughput and scalability since
requests do not have to be handled by the server.

■ By default, the events generated on the client by the client
components are propagated to the server. If a client-side event
handler is provided, consider canceling the event at the end of
processing so that the event does not propagate to the server.

Limit character length when using "id"
attribute.

The "id" attribute should not be longer than 7 characters in length. This is
particularly important for naming containers. A long id can impact
performance as the amount of HTML that must be sent down to the
client is impacted by the length of the ids.

Table 8–3 (Cont.) ADF Faces Component Attributes

Configuration Recommendation Description

Basic Tuning Considerations

8-12 Oracle Fusion Middleware Performance and Tuning Guide

8.2.4 Tuning Table and Tree Components
Table, Tree, and TreeTable are some of the most complex, and frequently used,
components. Since these components can include large sets of data, they can be the
common source of performance problems. Table 8–4 provides some performance
recommendations.

Use client-side components. ADF Rich Client framework has client-side components that play a role
in client-side event handling and component behavior. The
clientComponent attribute is used to configure when (or if) a client-side
component should be generated. Setting clientComponent attribute to
TRUE has a performance impact, so determine if its necessary to generate
client-side components.

For more information, see "Client-side Components" in Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

Optimize popups by setting the
childCreation attribute on af:popup to
deferred for a server-side performance
enhancement

Setting childCreation to deferred postpones construction of the
components under the popup until the content is delivered. A deferred
setting can therefore reduce the footprint of server-side state in some
cases.

CAUTION: This approach CANNOT be used if any of the following tags
are present inside the popup:

■ f:attribute

■ af:setPropertyListener

■ af:clientListener

■ af:serverListener

It also CANNOT be used if you need to refer to any child components of
the popup before the popup is displayed. Setting
childCreation="deferred" will postpone creating any child components
of the popup and you cannot refer to them until after the popup is
shown.

Use the lazy data delivery attribute to
optimize popups that include regions.

If setting the childCreation attribute to deferred cannot be used, or
you have regions within the popup, consider using the lazy data
delivery attribute to optimize the popup.

For this scenario, perform the following:

1. Edit the pageDef for the page or fragment containing the region in
the popup.

2. Locate the <taskflow> binding entry for the task flow in question.

3. Set the activation attribute to conditional (this is one of the options
from the pull down list in the property inspector).

4. Set the active attribute to an EL expression that initially resolves to a
boolean false.

5. In a popupFetch setPropertyListener, update the underlying
value tested by the EL used in Step 4 so that it resolves to true.

Table 8–3 (Cont.) ADF Faces Component Attributes

Configuration Recommendation Description

Basic Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-13

8.2.4.1 Specifying a Data Delivery Method
Data for Table, Tree, and other stamped components can be delivered immediately or
lazily. The table below describes tuning scenarios when one option is better for
performance than the other. In many cases you must consider what is being tuned to
determine which option to use.

Table 8–4 Table and Tree Component Configurations

Configuration Recommendation Description

Use editingMode="clickToEdit". When using editingMode="editAll" all content of the editable values
holders and their client components is sent. This can significantly increase
the HTTP payload and the Document Object Model (DOM) content on the
client.

Consider switching to editingMode="clickToEdit" to reduce the amount of
transmitted data and potentially improve user interaction.

Set the RowCountTreshold to optimize
the SELECT COUNT execution for ADF
table rendering.

By default table components render in "known row count" mode which
means it will size scrollbar based on total number of rows. This mode
provides rich UI, but also requires SELECT COUNT execution for ADF table
rendering to get total the number of rows. In some cases SELECT COUNT
can be slow and hard to optimize on the database.

If ADF-Business Components (BC) is used, then RowCountTreshold can be
set to -1 which will avoid SELECT COUNT but the table will render in
"unknown row count" mode.

The other option is to set RowCountTreshold to positive N which causes an
optimized SELECT COUNT to execute and the table will have a richer
rendering as long as user scrolls within N rows.

Reduce fetchSize when possible. A larger fetch size attribute on af:table implies that more data needs to be
processed, fetched from the server, and displayed on the client. This can
also increase the amount of DOM displayed on the client.

Modify table fetch size. Tables have a fetch size which defines the number of rows to be sent to the
client in one round-trip. To get the best performance, keep this number
low while still allowing enough rows to fulfill the initial table view port.
This ensures the best performance while eliminating extra server requests.

In addition, consider keeping the table fetch size and iterator range size in
sync. By default, the table fetch size is set to the EL expression
#{bindings.<name>.rangeSize} and should be equal to the iterator size.

For more information see "Using Tables and Trees" in Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

Disable column stretching. Columns in the table and treeTable components can be stretched so that
there is no unused space between the end of the last column and the edge
of the table or treeTable component. This feature is turned off by default
due to potential performance impacts. Turning this feature on may have a
performance impact on the client rendering time, so use caution when
enabling this feature with complex tables.

Use header rows and frozen columns
only when necessary.

The table component provides features that enable you to set the row
Header and frozen columns. These options can provide a well-designed
interface which can lead to a good user experience. However, they can
impact client-side performance. To get the best performance for table
components, use these options only when they are needed.

Disable popups that cannot be
displayed by the user.

Most cells have no attachments initially and only one popup can be
displayed by the user. Therefore, popups that cannot be displayed by the
user should have renderer="false". This will cut down the unnecessary
DOM/client components sent to the browser. Similarly the DOM has a
panelGroupLayout with a number of cells which are empty. There is no
need to send DOM for empty cells.

Basic Tuning Considerations

8-14 Oracle Fusion Middleware Performance and Tuning Guide

By default, lazy delivery is used. This means that data is not delivered in the initial
response from the server. Rather, after the initial page is rendered, the client asks the
server for the data and gets it as a response to the second request.

In the case of immediate delivery, data can be in line with the response to the page
request. It is important to note that data delivery is per component and not per page.
This means that these two can be mixed on the same page.

When choosing between these two options, consider the following:

8.2.4.2 Performance Considerations for autoSuggest
autoSuggest is a feature that can be enabled for inputText, inputListOfValues, and
inputComboboxListOfValues components. When the user types characters in the input
field, the component displays a list of suggested items. The feature performs a query
in the database table to filter the results. In order to speed up database processing, a
database index should be created on the column for which autosuggest is enabled.

Lazy Delivery (default) Lazy delivery should be used for tables, or other stamped components, which are
known to have slow fetch time. The examples are stamped components are the
ones based on data controls using web services calls or other data controls with
slow data fetch. Lazy delivery can also be used on pages where content is not
immediately visible unless the user scrolls down to it. In this case the time to
deliver the visible context to the client will be shorter, and the user perceives
better performance.

Lazy delivery is implemented using data streaming technique. The advantage of
this approach is that the server has the ability to execute data fetches in parallel
and stream data back to the client as soon as the data is available. The technique
performs very well for a page with two tables, one that returns data very quickly
and one that returns data very slowly. Users see the data for the fast table as soon
as the data is available.

NOTE: When using lazy delivery, consider using whenAvailable to first determine
if the data is available, then render if it is not available.

Executing data fetches in parallel also speeds up the total time to fetch data. This
gives an advantage to lazy loading in cases of multiple, and possibly slow, data
fetches. While streaming is the default mechanisms to deliver data in lazy mode,
parallel execution of data controls is not. In order to enable parallel execution,
open the page definition and change RenderHint on the iterator to background.

In certain situations, the advantage of parallel execution is faster response time.
Parallel execution could potentially use more resources due to multiple threads
executing request in parallel and possibly more database connections will be
opened.

Consider using parallel execution only when there are multiple slow components
on the page and the stamped components belong to different data control frames
(such as isolated taskflows). Since parallel execution synchronizes on the data
control frame level, when there is a single data control frame parallel execution
may not improve performance.

Immediate Delivery Immediate delivery (contentDelivery="immediate") should be used if table data
control is fast, or if it returns a small set of data. In these cases the response time
be faster than using lazy delivery.

Another advantage of immediate delivery is less server resource usage, compared
to lazy delivery. Immediate delivery sends only one request to the server, which
results in lower CPU and memory usage on the server for the given user
interaction.

There are some important issues associated with the immediate attribute. Refer to
"Using the Immediate Attribute" in Oracle Fusion Middleware Web User Interface
Developer's Guide for Oracle Application Development Framework for more
information.

Basic Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-15

This improves the component's response times especially when the database table has
a large number of rows.

8.2.5 Tuning Data Visualization Tool (DVT) Components
Data Visualization Tool (DVT) components are built on top of ADF Rich Client
components. DVT components include graphs, gauges, Gantt charts, pivot tables and
maps. Table 8–5 provides some configuration recommendations for DVT components:

Note: In order to prevent large number of autoSuggest items being
returned, consider using the maxSuggestedItems property on
autoSuggestBehavior with a value appropriate for your usage.

Table 8–5 DVT Component Configurations

Configuration Recommendation Description

Modify the RangeSize attribute. The RangeSize attribute defines the number of rows to return
simultaneously. A RangeSize value of -1 causes the iterator to return all
the rows. Using a lower value may improve performance, but it may be
harder to manage the data. Also, any data beyond rangeSize will not be
available in the view.

Use horizontal text instead of vertical
text.

By default, pivot tables use horizontal text for column headers. However,
there is an option to use vertical text as well. Vertical text can be used by
specifying a CSS style for the header format such as:

writing-mode:tb-rl;filter:flipV flipH;

While vertical text can look better in some cases, it has a performance
impact when the Firefox browser is used.

The problem is that vertical text is not native to Firefox as it is in Internet
Explorer. To show vertical text, the pivot table uses images produced by
GaugeServlet. These images cannot be cached as the text is dynamic and
depends on the binding value. Due to this, every rendering of the pivot
table incurs extra round-trips to the server to fetch the images, which
impact network traffic, server memory, and CPU.

To have the best performance, consider using horizontal text instead of
vertical text.

Avoid using dynamic resizing. The dynamicResize="DYNAMIC_SIZE" property on DVT graph and gauge
provides the ability to size a component based on available area on the
browser. Since the available area is not always known before geometry
management calculates it, a second request is needed to fetch the correct
graph or gauge size.

The additional fetch can impact performance. If possible, set the dynamic
resize property on the component and avoid using dynamic resize and
explicity set the correct area size.

Use HTML5, instead of Flash, as the
default image format.

As of Oracle Fusion Middleware 11g Release 1 (11.1.1.7.0), graph and
gauge supports HTML5 output format. A new web.xml context
parameter has been introduced to change the default output format to
HTML5. The context parameter, oracle.adf.view.rich.dvt.DEFAULT_
IMAGE_FORMAT, will be automatically added to new applications.

Applications that have this context parameter, but have not yet specified
an image format, will automatically default to HTML5. Valid values are
HTML5 and FLASH. For the applications that do not have this context
parameter, the default rendering for Graph and Gauge would be Flash.

To maintain optimal performance, use HTML5 for all modern browsers.

Advanced Tuning Considerations

8-16 Oracle Fusion Middleware Performance and Tuning Guide

8.3 Advanced Tuning Considerations
After you have performed the tuning modifications recommended in the previous
section, you can make additional changes that are specific to your ADF Server
deployment. Consider carefully whether the recommendations in this section are
appropriate for your environment.

■ Tuning ADF Server Performance

■ Tuning Groovy Usage

8.3.1 Tuning ADF Server Performance
Oracle ADF Server components consist of the non-UI components within ADF. These
include the ADF implementations of the model layer (ADFm), business services layer
(ADFbc), and controller layer (ADFc). As the server components are highly
configurable, it is important to choose the combination of configurations that best suits
the available resources with the specified application performance and functionality.

8.3.1.1 HTTP Session Timeout Tuning
For ADF applications with a significant user community, the amount of memory held
by sessions waiting to expire can negatively impact performance when the default
HTTP session timeout of 45 minutes is used. The memory being held can be higher
than what is physically available, causing the server to not be able to handle the load.
For large numbers of users, such as those using a public facing website, the session
timeout should be as short as possible.

To improve performance, consider modifying the default session timeout value (in
minutes) in the web.xml file. Use a session timeout value that works with your use case
scenario. The example below shows a session timeout of 10 minutes:

<session-config>
 <session-timeout>
 10
 </session-timeout>
</session-config>

8.3.1.2 View Objects Tuning
View objects (VOs) provide many tuning options to enable a developer to tailor the
View Object to the application's specific needs. View Objects should be configured to
use the minimal feature set required to fulfill the functional requirement. The Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework
provides detailed information on tuning View Objects. The following sections provide
some tips pertaining to View Object performance.

8.3.1.2.1 Creating View Objects To maximize View Object performance, the View Object
should match the intended usage. For instance, data retrieved for a list of values
pick-list is typically read-only, so a read-only View Object should be used to query this
data. Tailoring the View Object to the specific needs of the application can improve
performance, memory usage, CPU usage, and network usage.

Advanced Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-17

8.3.1.2.2 Configuring View Object Data Fetching View Object performance is largely
dependent on how the view object is configured to fetch data. If the fetch options are
not tuned correctly for the application, then the view object may fetch an excessive
amount of data or may take too many round-trips to the database. Fetch options can
be configured through the Retrieve from the Database group box in the View Object
dialog Figure 8–1.

View Object Type Description

Read-only View Objects Consider using a read-only View Object if the View Object does not have to
insert or update data. There are two options for read-only View Objects:

■ Non-updatable EO-based View Objects

■ Expert-mode View Objects

Non-updatable EO-based View Objects offer the advantage of a customizable
select list at runtime which retrieve attributes needed in the UI, data reads
from local cache (instead of re-executing a database query), and data
consistency with other updatable View Objects based on the same EO.

Expert-mode View Objects have the ability to perform SQL operations not
supported by EOs and avoid the small performance impact from coordinating
View Object and EO rows. EO-based View Objects can be marked
non-updatable by deselecting the "updatable" option in the selected EO for the
View Object, which can also be done by adding the parameter
ReadOnly="true" on the EntityUsage attribute in the View Object XML
definition.

Insert-only View Objects For View Objects that are used only for inserting records, you can prevent
unnecessary select queries from being executed when using the View Object.
To do this, set the option No Rows in the Retrieve from the Database group
box in the View Objects Overview tab. This sets MaxFetchSize to 0 (zero) for
the View Object definition.

Runtime-created View Objects View Objects can be created at runtime using the
createViewObjectFromQueryStmt() API on the AM. However, avoid using
runtime-created View Objects unless absolutely necessary due to potential
performance impacts and complexity of tuning.

Advanced Tuning Considerations

8-18 Oracle Fusion Middleware Performance and Tuning Guide

Figure 8–1 View Object Dialog

Fetch Option Description

Fetch Mode The default fetch option is the All Rows option, which is retrieved as needed
(FetchMode="FETCH_AS_NEEDED") or all at once (FetchMode="FETCH_ALL"),
depending on which option is appropriate. The FETCH_AS_NEEDED option
ensures that an executeQuery() operation on the view object initially retrieves
only as many rows as necessary to fill the first page of a display. The number of
rows is set based on the view object's range size.

CAUTION: Avoid using the FetchMode="FETCH_ALL" unless required. This
option can impact performance.

Fetch Size In conjunction with the fetch mode option, the Batches field controls the number
of records fetched simultaneously from the database (FetchSize in the View
Object, XML). The default value is 1, which may impact performance unless only
1 row is fetched. The suggested configuration is to set this value to n+1 where n
is the number of rows to be displayed in the user interface.

Note that for DVT objects, Fetch Size should be n+1 where n is either rangeSize
or the likely maximum rowset size if rangeSize is -1.

Advanced Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-19

8.3.1.2.3 Additional View Object Configurations Table 8–6 provides additional tuning
considerations when using the View Object:

Max Fetch Size The default max fetch size for a View Object is -1, which means that there is no
limit to the number of rows the View Object can fetch. Setting a max fetch size o
0 (zero) makes the View Object insert-only. In cases where the result set should
only contain n rows of data, the option Only Up to Row Number should be
selected and set or call setMaxFetchSize(N) to set this programmatically. To se
this manually, add the parameter MaxFetchSize to the View Object XML.

For View Objects whose WHERE clause expects to retrieve a single row, set the
option At Most One Row. This option ensures that the view object knows not to
expect any more rows and skips its normal test for that situation. In this case no
select query is issued and no rows are fetched.

Max fetch size can also be used to limit the impact from an non-selective query
that may return hundreds (or thousands) of rows. In such cases, specifying the
max fetch size limits the number of rows that can be fetched and stored into
memory.

Forward-Only Mode If a data set is only traversed going forward, then forward-only mode can help
performance when iterating through the data set. This can be configured by
programmatically calling setForwardOnly(true) on the View Object. Setting
forward-only can also prevent caching previous sets of rows as the data set is
traversed.

Table 8–6 Additional View Object Configurations

Configuration Recommendation Description

Optimize large data sets. View Objects provide a mechanism to page through large data sets so that a
user can jump to a specific page in the results. This is configured by calling
setRangeSize(N) followed by setAccessMode(RowSet.RANGE_PAGING) on
the View Object where N is the number of rows contained within 1 page.
When navigating to a specific page in the data set, the application can call
scrollToRangePage(P) on the View Object to navigate to page P. Range
paging fetches and caches only the current page of rows in the View Object
row cache at the cost of another query execution to retrieve each page of
data. Range paging is not appropriate where it is beneficial to have all
fetched rows in the View Object row cache (for example, when the
application must read all rows in a data set for an LOV or page back and
forth in records of a small data set).

Get an estimated row count using
getEstimatedRowCount.

Use getEstimatedRowCount instead of getRowCount to prevent any impacts
to performance. getRowCount can impact performance because it fetches all
rows to memory and then count them.

Disable "spillover" configurations
when possible.

You can use the data source as "virtual memory" when the JVM container
runs out of memory. By default this is disabled and can be enabled (if
needed) by setting jbo.use.pers.coll=true. Keep this option disabled (if
possible) to avoid a potential performance impact.

Review SQL style configuration. If the generic SQL92 SQL style is used to connect to generic SQL92-compliant
database, then some View Object tuning options do not apply. The View
Object fetch size is one such tuning option. When SQL92 SQL style is used,
the fetch size defaults to 10 rows, regardless of what is configured for the
View Object. The SQL style is set when defining the database connection. By
default when defining an Oracle database connection, the SQL style can be
Oracle. To manually override the SQL style, pass the parameter
-Djbo.SQLBuilder="SQL92" to the JVM at startup.

Fetch Option Description

Advanced Tuning Considerations

8-20 Oracle Fusion Middleware Performance and Tuning Guide

8.3.1.3 Batch Processing
Batch processing enables multiple inserts, updates, and deletes to be processed
together when sending the operations to the database. Enabling this feature is done on
the Entity Object (EO) by either selecting the "Use Update Batching" check box in the
Tuning section of the EO's General tab, or by directly modifying the EO's XML file and
adding the parameter BatchThreshold with the specified batch size to the Entity
attribute.

The BatchThreshold value is the threshold at which a group of operations can be
batched instead of performing each operation one at a time. If the threshold is not
exceeded, then rows may be affected one at a time. On the other hand, more rows than
specified by the threshold can be batched into a single batch.

Note that the BatchThreshold configuration for the EO is not compatible if an attribute
in the EO exists with the configuration to refresh after insert
(RetrievedOnInsert="true") or update (RetrievedOnUpdate="true").

8.3.1.4 RangeSize Tuning
This parameter controls the number of records ADFm requests from the BC layer
simultaneously. The default RangeSize is 25 records. Consider setting this value to the
number of records to be displayed in the UI simultaneously for the View Object so that
the number of round-trips between the model and BC layers is reduced to one. This is
configured in the Iterator attribute of the corresponding page's page definition XML.

8.3.1.5 Application Module Design Considerations
Designing an application's module granularity is an important consideration that can
significantly impact performance and scalability. It is important to note that each root
application module generally holds its own database connection. If a user session
consumes multiple root application modules, then that user session can potentially

Use bind variables for view object
queries.

If the query associated with the View Object contains values that may change
from execution to execution, consider using bind variables. This may help to
avoid re-parsing the query on the database. Bind variables can be added to
the View Object in the Query section of the View Object definition.

Remove unused list bindings to improve performance.

Use query optimizer hints for view
object queries.

The View Object can pass hints to the database to influence which execution
plan to use for the associated query. The optimizer hints can be specified in
the Retrieve from the Database group box.

CAUTION: To prevent performance issues, do not use ENDSWITH/CONTAINS
on required/selectively required view criteria items.

Use dynamic SQL generation. View Objects can be configured to dynamically generate SQL statements at
runtime instead of defining the SQL at design time. A View Object instance,
configured with generating SQL statements dynamically, can avoid
re-querying a database. This is especially true during page navigation if a
subset of all attributes with the same key Entity Object list is used in the
subsequent page navigation. Performance can be improved by activating a
superset of all the required attributes to eliminate a subsequent query
execution.

Passivate transient expressions. Consider passivating TransientExpressions to maintain performance. This is
controlled by a flag on EO/VO level or individual expression level. From the
View Object dialog screen, select Including All Transient Values when
enabling Passivate.

Table 8–6 (Cont.) Additional View Object Configurations

Configuration Recommendation Description

Advanced Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-21

hold multiple database connections simultaneously. This can occur even if the
connections are not actively being used, due to the general affinity maintained
between an application module and a user session. To reduce the possibility that a user
can hold multiple connections at once, consider the following options:

■ Design larger application modules to encompass all of the functionality that a user
needs.

■ Nest smaller application modules under a single root application module so that
the same database connection can be shared among the nested application
modules.

■ Use lazy loading for application modules. In the Application Module tuning
section, customize runtime instantiation behavior to use lazy loading. Lazy
loading can also be set JVM-wide by adding the following JVM argument:

-Djbo.load.components.lazily=true

8.3.1.6 Application Module Pooling
Application module (AM) pooling enables multiple users to share several application
module instances. The configurations for the AM pool vary depending on the
expected usage of the application.

Most of the AM pool parameters can be set through Oracle JDeveloper. The
configurations are saved in bc4j.xcfg, which can be manually edited if needed.
Parameters can also be set at the system level by specifying these as JVM parameters
(-Dproperty=value). The bc4j.xcfg configuration takes precedence over the JVM
configuration; this enables a generic system-level configuration to be overridden by an
application-specific exception.

Advanced Tuning Considerations

8-22 Oracle Fusion Middleware Performance and Tuning Guide

8.3.1.6.1 General AM Pool Configurations The following guidelines can be used as a
general starting point when tuning AM and AM pool behavior. More specific tuning
for memory or CPU usage can be found in .

Table 8–7 Application Module (AM) Pool Tuning

Configuration Recommendation Description

Use the lazy data delivery method. By default AM loads all the associated definitions when the instance
of AM is created. AM can have a large number of VOs associated with
it. This can make loading of AM slower and passivation slower.

To prevent possible performance issues, set
LoadComponentsLazily="true".

Optimize the number of AM pools in the
application.

Parameters applied at the system level are applied per AM pool. If the
application uses more than 1 AM pool, then system-level values for
the number of AM instances must be multiplied by the number of AM
pools to realize the actual limits specified on the system as a whole.

For example, if an application uses 4 separate AM pools to service the
application, and a system-level configuration is used to limit the max
AM pool size to 100, then this can result in a maximum of 400 AM
instances (4 pools * 100 max pool size).

If the intent is to limit the entire application to a max pool size of 100,
then the system-level configuration should specify a max pool size of
25 (100 max pool size / 4 pools). Finer granularity for configuring
each AM pool can be achieved by configuring each pool separately
through JDev or directly in bc4j.xcfg.

Optimize the number of database
connections.

By default AM instances retain their database connections even when
checked back into the AM pool. There are many performance benefits
to maintain this association. To maintain performance, consider
configuring more AM instances than the maximum number of
specified database connections.

NOTE: If you have an AM pool that needs to be used as root pool,
consider tuning at the specific AM pool level. For pools that are
infrequently used, consider tuning pool sizes on the pool level so that
top-level application parameters are not used.

Advanced Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-23

Table 8–8 AM Pool Tuning Parameters

Parameter Description

Initial Pool Size

jbo.ampool.initpoolsize

Specifies the number of application module instances to create when the pool is
initialized (default is zero). Setting a nonzero initial pool size increases the time
to initialize the application, but improves subsequent performance for
operations requiring an AM instance.

Configure this value to 10% more than the anticipated number of concurrent
AM instances required to service all users.

Maximum Pool Size

jbo.ampool.maxpoolsize

Specifies the maximum number of application module instances that the pool
can allocate (default is 4096). The pool can never create more application
module instances than this limit imposes. A general guideline is to configure
this to 20% more than the initial pool size to allow for some additional growth.

Minimum Available Size

jbo.ampool.minavailablesize

The minimum number of available application module instances that the pool
monitor should leave in the pool during a resource cleanup operation, when the
server is under light load.

Set to 0 (zero) if you want the pool to shrink to contain no instances when all
instances have been idle for longer than the idle time-out after a resource
cleanup.

The default is 5 instances.

While application module pool tuning allows different values for the
jbo.ampool.minavailablesize | jbo.ampool.maxavailablesize parameters,
in most cases it is fine to set these minimum and maximum tuning properties to
the same value.

Maximum Available Size

jbo.ampool.maxavailablesize

The ideal maximum number of available application module instances in the
pool when the server is under load.

When the pool monitor wakes up to do resource cleanup, it will try to remove
available application module instances to bring the total number of available
instances down to this ideal maximum. Instances that have been not been used
for a period longer than the idle instance time-out will always get cleaned up at
this time, then additional available instances will be removed if necessary to
bring the number of available instances down to this size.

The default maximum available size is 25 instances. Configure this to leave the
maximum number of available instances desired after a resource cleanup. A
lower value generally results in more application module instances being
removed from the pool on a cleanup.

While application module pool tuning allows different values for the
jbo.ampool.maxavailablesize | jbo.ampool.minavailablesize parameters,
in most cases it is fine to set these minimum and maximum tuning properties to
the same value.

Referenced Pool Size

jbo.recyclethreshold

Specifies the maximum number of application module instances in the pool
that attempt to preserve session affinity for the next request made by the
session that used them last before releasing them to the pool in managed-state
mode (default is 10).

The referenced pool size should always be less than or equal to the maximum
pool size. This enables the configured number of available instances to try and
remain "loyal" to the affinity they have with the most recent session that
released them in managed state mode.

Configure this value to the expected number of concurrent users that perform
multiple operations with short think times. If there are no users expected to use
the application with short think times, then this can be configured to 0 (zero) to
eliminate affinity.

Advanced Tuning Considerations

8-24 Oracle Fusion Middleware Performance and Tuning Guide

Maximum Instance Time to Live

jbo.ampool.timetolive

The number of milliseconds after which to consider an connection instance in
the pool as a candidate for removal during the next resource cleanup regardless
of whether it would bring the number of instances in the pool below
minavailablesize.

The default is 3600000 milliseconds of total time to live (which is 3600 seconds,
or one hour). A lower value reduces the time an application module instance
can exist before it must be removed at the next resource cleanup. The default
value is sufficient for most applications. A higher value increases the time an
application module instance can exist before it must be removed at the next
cleanup.

Idle Instance Timeout

jbo.ampool.maxinactiveage

The number of milliseconds after which to consider an inactive application
module instance in the pool as a candidate for removal during the next resource
cleanup.

The default is 600000 milliseconds of idle time (which is 600 seconds, or ten
minutes). A lower value results in more application module instances being
marked as a candidate for removal at the next resource cleanup. A higher value
results in fewer application module instances being marked as a candidate for
removal at the next resource cleanup.

Pool Polling Interval

jbo.ampool.monitorsleepinter
val

The length of time in milliseconds between pool resource cleanup.

While the number of application module instances in the pool will never exceed
the maximum pool size, available instances which are candidates for getting
removed from the pool do not get "cleaned up" until the next time the
application module pool monitor wakes up to do its job.

The default is to have the application module pool monitor wake up every
600000 milliseconds (which is 600 seconds, or ten minutes). Configuring a lower
interval results in inactive application module instances being removed more
frequently to save memory. Configuring a higher interval results in less
frequent resource cleanups.

Failover

jbo.dofailover

Specifies whether to disable or enable failover. By default, failover is disabled.
To enable failover, set the parameter to true.

NOTE: When enabling application module state passivation, a failure can occur
when Oracle WebLogic Server is configured to forcibly release connection back
into the pool. A failure of this type produces a SQLException (Connection has
already been closed) that is saved to the server log. The exception is not
reported through the user interface.

To ensure that state passivation occurs and changes are saved, set an
appropriate value for the weblogic-application.xml deployment descriptor
parameter inactive-connection-timeout-seconds on the
<connection-check-params> pool-params element.

Setting the deployment descriptor parameter to several minutes, in most cases,
should avoid forcing the inactive connection timeout and the resulting
passivation failure. Adjust the setting as needed for your environment.

Table 8–8 (Cont.) AM Pool Tuning Parameters

Parameter Description

Advanced Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-25

For parameters that can be configured for memory-constrained systems, see Table 8–9.

For parameters that can be configured to reduce the load on the CPU to some extent
through a few parameters, see Table 8–10.

Locking Mode

jbo.locking.mode

Specifies the locking mode (optimistic or pessimistic). The default is
pessimistic, which means that a pending transaction state can be created on
the database with row-level locks. With pessimistic locking mode, each time an
AM is recycled, a rollback is issued in the JDBC connection. Web applications
should set the locking mode to optimistic to avoid creating the row-level
locks.

Database Connection Pooling

jbo.doconnectionpooling

Specifies whether the AM instance can be disconnected from the database
connection when the AM instance is returned to the AM pool. This enables an
application to size the AM pool larger than the database connection pool. The
default is false, which means that an AM instance can retain its database
connection when the AM instance is returned to the AM pool. When set to
true, the AM can release the database connection back to the database
connection pool when the AM instance is returned to the AM pool. Note that
before an AM is disconnected from the database connection, a rollback can be
issued on that database connection to revert any pending database state.

Transaction Disconnect Level

jbo.txn.disconnect_level

When used in conjunction with jbo.doconnectionpooling=true, specifies BC4J
behavior for maintaining JDBC ResultSets. By default jbo.txn.disconnect_
level is 0, and passivation can be used to close any open ResultSets when the
database connection is disconnected from the AM instance. Configuring
jbo.txn.disconnect_level to 1 can prevent this behavior to avoid the
passivation costs for this situation.

Table 8–9 AM Pool Sizing Configurations - Memory Considerations

Parameter Description

Initial Pool Size

jbo.ampool.initpoolsize

Set this to a low value to conserve memory at the cost of slower performance
when additional AM instances are required. The default value of 0 (zero) does
not create any AM instances when the AM pool is initialized.

Maximum Pool Size

jbo.ampool.maxpoolsize

Configure this to prevent the number of AM instance from exceeding the
determined value. However, if this is set too low, then some users may see an
error accessing the application if no AM instances are available.

Minimum Available Pool Size

jbo.ampool.minavailablesize

Set to 0 (zero) to shrink the pool to contain no instances when all instances have
been idle for longer than the idle time out after a resource cleanup. However, a
setting of 1 is commonly used to avoid the costs of re-creating the AM pool.

Maximum Available Pool Size

jbo.ampool.maxavailablesize

Configure this to leave the maximum number of available instances specified
after a resource cleanup.

Table 8–10 AM Pool Sizing Configurations - CPU Considerations

Parameter Description

Initial Pool Size

jbo.ampool.initpoolsize

Set this value to the number of AM instances you want the application pool to
start with. Creating AM instances during initialization takes the CPU
processing costs of creating AM instances during the initialization instead of
on-demand when additional AM instances are required.

Session Recycle Threshold
jbo.recyclethreshold

Configure this value to maintain the AM instance's affinity to a user's session.
Maintaining this affinity as much as possible save the CPU processing cost of
needing to switch an AM instance from one user session to another.

Table 8–8 (Cont.) AM Pool Tuning Parameters

Parameter Description

Advanced Tuning Considerations

8-26 Oracle Fusion Middleware Performance and Tuning Guide

8.3.1.6.2 AM Pool Resource Cleanup Configurations These parameters affect the frequency
and characteristics for AM pool resource cleanups.

For memory-constrained systems, configure the AM pool to clean up more AM
instances more frequently so that the memory consumed by the AM instance can be
freed for other purposes.

The AM pool can be configured to reduce the need for CPU processing by allowing
more AM instances to exist in the pool for longer periods of time. This generally comes
at the cost of consuming more memory.

CAUTION: Reducing the number of available AM instances and increasing the
frequency of cleanups can result in higher CPU usage and longer response times.

Table 8–11 AM Pool Resource Cleanup Configurations - Memory Considerations

Parameter Description

Minimum Available Size
jbo.ampool.minavailablesize

A setting of 0 (zero) shrinks the pool to contain no instances when all
instances have been idle for longer than the idle time out. However, a setting
of 1 is commonly used to avoid the costs of re-creating the AM pool

Maximum Available Size

jbo.ampool.maxavailablesize

A lower value generally results in more AM instances being removed from
the pool on a cleanup.

Setting these to a higher value leaves more idle instances in the pool, so that
AM instances do not have to be recreated at a later time. However, the values
should not be set excessively high to keep more AM instances than can be
required at maximum load.

Time to Live

jbo.ampool.timetolive

A lower value reduces the time an AM instance can exist before it must be
removed at the next resource cleanup.

A higher value increases the time an AM instance can exist before it must be
removed at the next resource cleanup.

CAUTION: A setting of -1 implies unlimited time to live. This setting should
only be used for well tested applications with no memory leaks.

Maximum Inactive Age

jbo.ampool.maxinactiveage

A low value results in more AM instances being marked as a candidate for
removal at the next resource cleanup.

A higher value results in fewer AM instances being marked as a candidate
for removal at the next resource cleanup.

Monitor Sleep Interval

jbo.ampool.monitorsleepinterva
l

This controls how frequent resource cleanups can be triggered. Configuring a
lower interval results in inactive AM instances being removed more
frequently to save memory.

Configuring a higher interval results in less frequent resource cleanups.

Advanced Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-27

8.3.1.7 ADFc: Region Usage

8.3.1.8 Defer Task Flow Execution
By default, task flows are activated when the page is loaded, even when the task flow
is not initially rendered. This causes unnecessary overhead if the task flow is never
displayed.

8.3.1.9 Configuring the Task Flow Inside Switcher
By default, task flows under switchers are activated when the page is loaded, not
when the switcher facet is displayed. To avoid this, use conditional activation and set
"active" to an expression language (EL) expression that returns 'true' when the facet is
displayed. Consider using the same condition for switcher to drive task flow
conditional activation.

Example of switcher:

 <af:switcher id="s1" defaultFacet="1" facetName="#{pageFlowScope.facet}">
 <f:facet name="1">
 <af:region value="#{bindings.TF1.regionModel}" id="r1"/>
 </f:facet>
 <f:facet name="2">
 <af:region value="#{bindings.TF2.regionModel}" id="r2"/>
 </f:facet>
 </af:switcher>

Associated binding:

 <taskFlow id="tTF1" taskFlowId="-----" active="#{pageFlowScope.facet=='1'}"
activation="conditional" xmlns="http://example.host.com/adf/controller/binding"/>
<taskFlow id="tTF2" taskFlowId="-----" active="#{pageFlowScope.facet=='2'}"
activation="conditional" xmlns="http://example.host.com/adf/controller/binding"/>

Table 8–12 ADFc Region Configurations

Configuration Recommendation Description

Add regions to a page only when the
specific functionality is required.

Adding regions to a page can be a powerful addition to the
application. However, regions can be a resource-intensive
component on the page. For better performance, consider using
regions only when the specific functionality is required.

Disable detect-metadata-changes in
adf-config.

Disable detect-metadata-changes by setting it to false in adf-config.

Detecting metadata changes is only needed for applications that are
not using ADFc DT@RT operations to customize unbounded task
flows. If the application does customize unbounded flow, the
property can be enabled and disabled as needed using RT API's.

Consider nesting "hidden" popups inside of
the 1 "visual" root component when
possible.

Regions with multiple root components can have a negative impact
on performance. Even if only 1 "visual" root component exists, and
the rest are "hidden" popups, there may still be an impact to
performance.

For example, if you do not want stretching, consider wrapping
everything in a panelGroupLayout layout="vertical" or "scroll"
(as applicable). If you do want stretching, consider putting the
"visual" root in the "center" facet and then put the popups in the
"bottom" facet and set bottomHeight="0px" on the
panelStretchLayout.

Advanced Tuning Considerations

8-28 Oracle Fusion Middleware Performance and Tuning Guide

8.3.1.10 Reusing Static Data
If the application contains static data that can be reused across the application, the
cache data can be collected using a shared application module. More information on
creating and using shared application modules can be found in "Sharing Application
Module View Instances" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

8.3.1.11 Conditional Validations
For resource-intensive validations on entity attributes, consider using preconditions to
selectively apply the validations only when needed. The cost of validation must be
weighted against the cost of the precondition to determine if the precondition is
beneficial to the performance. More information on specifying preconditions for
validation can be found in "How to Set Preconditions for Validation" in Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

8.3.2 Tuning Groovy Usage
If you have applications that are using Groovy to evaluate expressions, then you may
need to tune the expressions to improve performance. Groovy script parsing can
impact performance, so its best to use it only when required.

For example, if you are using groovy to evaluate a common expression like this:

 Date currentDate = null;

 ExprEval expression = new ExprEval("adf.currentDate", ExprEval.EXPR_STYLE_
GROOVY);
 currentDate = (Date)expression.evaluate(null);

You might improve performance by making the following changes:

■ If date and time are important, you might improve performance by using the
following:

currentDate = new Date(System.currentTimeMillis());

■ If the current time is not required, consider using the following:

 Calendar cal = Calendar.getInstance();
 cal.set(Calendar.HOUR, 0);
 cal.set(Calendar.HOUR_OF_DAY, 0);
 cal.set(Calendar.MINUTE, 0);
 cal.set(Calendar.SECOND, 0);
 cal.set(Calendar.MILLISECOND, 0);
 currentDate = new java.sql.Date(cal.getTimeInMillis());

9

Oracle TopLink (EclipseLink) JPA Performance Tuning 9-1

9 Oracle TopLink (EclipseLink) JPA Performance
Tuning

This chapter describes some of the available performance tuning features for
EclipseLink, an open-source persistence framework used with Oracle TopLink. The
chapter includes the following topics:

■ Section 9.1, "About Oracle TopLink and EclipseLink"

■ Section 9.3, "Basic Tuning Considerations"

■ Section 9.4, "Advanced Tuning Considerations"

9.1 About Oracle TopLink and EclipseLink
Oracle TopLink includes the open source EclipseLink as the Java Persistence API (JPA)
implementation. Oracle TopLink extends EclipseLink with advanced integration into
the Oracle Application Server.

The Java Persistence API (JPA) is a specification for persistence in Java EE and Java SE
applications. In JPA, a persistent class is referred to as an entity. An entity is a plain old
Java object (POJO) class that is mapped to the database and configured for usage
through JPA using annotations, persistence XML, or both. This chapter focuses on
tuning JPA in the context of EJB3.0 and a Java EE environment.

The information in this chapter assumes that you are familiar with the basic
functionality of EclipseLink. Before you begin tuning, consider reviewing the
introductory information found at the following:

Note: For more information on performance tuning in these areas,
see the following:

■ EclipseLink Performance Tuning at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Advance
d_JPA_Development/Performance

■ Performance Monitoring and Profiling at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Advance
d_JPA_Development/Performance/Performance_Profiling

■ Introduction to Optimization at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Advance
d_JPA_Development/Performance#Identifying_General_
Performance_Optimization

Monitoring TopLink Performance

9-2 Oracle Fusion Middleware Performance and Tuning Guide

■ The EclipseLink JPA User's Guide at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA

■ "Considering JPA Entity Architecture" at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Introduction/Architec
ture

■ Introduction to EclipseLink Queries at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_
Development/Querying

■ Introduction to Cache at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_
Development/Caching

■ Introduction to Mapping and Configuration at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_
Development/Mapping

For more information on Oracle TopLink, see the TopLink page on OTN
http://www.oracle.com/technology/products/ias/toplink/index.html.

[Note that as of Oracle TopLink Release 11g, the older Toplink APIs have been
deprecated. For more information, see the TopLink Release Notes at
http://www.oracle.com/technology/products/ias/toplink/doc/11110/relnotes/t
oplink-relnotes.html#CHDGAEDJ]

9.2 Monitoring TopLink Performance
This section lists a few features in EclipseLink that can help you analyze your JPA
application performance:

■ Form monitoring performance, see "Performance Monitoring" in the EclipseLink
User's Guide. Note that this tool is intended to profile and monitor information in
a multithreaded server environment.

■ For profiling performance, see "Measuring EclipseLink Performance with the
EclipseLink Profiler" in the EclipseLink User's Guide. Note that this tool is
intended for use with single-threaded finite use cases.

■ For debugging performance issues and testing, you can view the SQL generated
from EclipseLink. To view the SQL, increase the logging level to "FINE" by using
the EclipseLink JPA extensions for logging.

For best performance, restore the logging levels to the default levels when you are
done profiling or debugging.

9.3 Basic Tuning Considerations
The following tuning recommendations will apply to most deployments. Always
consult your use case scenarios to determine which tuning parameters are appropriate
for your environment.

Note: This chapter serves as a 'quick start' guide to performance
tuning JPA in the context of a Java EE environment. While the chapter
provides common performance tuning considerations and related
documentation resources, it is not meant to be comprehensive list of
areas to tune.

Basic Tuning Considerations

Oracle TopLink (EclipseLink) JPA Performance Tuning 9-3

■ Using Efficient SQL Statements and Queries

■ Tuning Cache Configuration

■ Integrating Oracle Toplink with Coherence

9.3.1 Using Efficient SQL Statements and Queries
This section covers using efficient SQL statements and SQL querying. Table 9–1 and
Table 9–2 show tuning parameters and performance recommendations related to SQL
statements and querying.

Basic Tuning Considerations

9-4 Oracle Fusion Middleware Performance and Tuning Guide

Basic Tuning Considerations

Oracle TopLink (EclipseLink) JPA Performance Tuning 9-5

Table 9–1 EJB/JPA Using Efficient SQL Statements and Querying

Tuning Parameter Description Performance Notes

Parameterized SQL
Binding

Using parameterized SQL and prepared statement
caching, you can improve performance by reducing
the number of times the database SQL engine parses
and prepares SQL for a frequently called query.
EclipseLink enables parameterized SQL by default.
However, not all databases and JDBC drivers
support these options. Note that the Oracle JDBC
driver bundled with Oracle Application Server does
support this option. The persistence property in
persistence.xml "eclipselink.jdbc.bind-parameters" is
used to configure this.

See Also: "Caching" at
http://wiki.eclipse.org/EclipseLink/UserGuide
/JPA/Basic_JPA_Development/Caching and
"Querying" at
http://wiki.eclipse.org/EclipseLink/UserGuide
/JPA/Basic_JPA_Development/Querying

Default Value: PERSISTENCE_UNIT_DEFAULT
(which is true by default)

Leave parameterized SQL binding
enabled for selected databases and
JDBC drivers that support these
options.

JDBC Statement
Caching

Statement caching is used to lower the performance
impact of repeated cursor creation and repeated
statement parsing and creation; this can improve
performance for applications using a database.

Note: For Java EE applications, use the data source's
statement caching (and do not use EclipseLink
Statement Caching for EJB3.0/JPA, for example:
eclipselink.jdbc.cache-statements"="true").

Set this option in an Oracle Weblogic data-source by
setting Statement Cached Type and Statement
Cached Size configuration options.

See also "Increasing Performance with the Statement
Cache" in Oracle Fusion Middleware Configuring and
Managing JDBC Data Sources for Oracle WebLogic
Server.

Default Value: The Oracle Weblogic Server data
source default statement cache size is 10 statements
per connection.

You should always enable statement
caching if your JDBC driver supports
this option. The Oracle JDBC driver
supports this option.

Basic Tuning Considerations

9-6 Oracle Fusion Middleware Performance and Tuning Guide

Fetch Size The JDBC fetch size gives the JDBC driver a hint as
to the number of rows that should be fetched from
the database when more rows are needed.

For large queries that return a large number of
objects, you can configure the row fetch size used in
the query to improve performance by reducing the
number database hits required to satisfy the selection
criteria.

Most JDBC drivers use a default fetch size of 10. If
you are reading 1000 objects, increasing the fetch size
to 256 can significantly reduce the time required to
fetch the query's results.

Note: The default value means use the JDBC driver
default value, which is typically 10 rows for the
Oracle JDBC driver.

To configure this, use query hint
"eclipselink.jdbc.fetch-size".

Default Value: 0

The optimal fetch size is not always
obvious. Usually, a fetch size of one
half or one quarter of the total
expected result size is optimal. Note
that if you are unsure of the result set
size, incorrectly setting a fetch size
too large or too small can decrease
performance.

Batch Writing Batch writing can improve database performance by
sending groups of INSERT, UPDATE, and DELETE
statements to the database in a single transaction,
rather than individually.

The persistence property in persistence.xml
"eclipselink.jdbc.batch-writing"="JDBC" is used
to configure this.

Default Value: Off

Enable for the persistence unit.

Change Tracking This is an optimization feature that lets you tune the
way EclipseLink detects changes in an Entity.

Default Value: AttributeLevel if using weaving (Java
EE default), otherwise Deferred.

Leave at default AttributeLevel for
best performance.

Weaving Can disable through persistence.xml properties
"eclipselink.weaving"

Default Value: On

Leave on for best performance.

Table 9–1 (Cont.) EJB/JPA Using Efficient SQL Statements and Querying

Tuning Parameter Description Performance Notes

Basic Tuning Considerations

Oracle TopLink (EclipseLink) JPA Performance Tuning 9-7

9.3.1.1 Entity Relationships Query Parameter Tuning
Table 9–2 shows the Entity relationship query parameters for performance tuning.

Read Only Setting an EJB3.0 JPA Entity to read-only ensures that
the entity cannot be modified and enables
EclipseLink to optimize unit of work performance.

Set through query hint "eclipselink.read-only".

Can also be set at entity level using @ReadOnly class
annotation.

Default Value: False

For optimal performance use
read-only on any query where the
resulting objects are not changed.

firstResult and
maxRows

These are JPA query properties that are used for
paging large queries. Typically, these properties can
be used when the entire result set of a query
returning a large number of rows is not needed. For
example, when a user scans the result set (a page at a
time) looking for a particular result and then
discards the rest of the data after the record is found.

Use on queries that can have a large
result set and only a subset of the
objects is needed.

Sequence number
pre-allocation

Sequence number pre-allocation enables a batch of
ids to be queried from the database simultaneously
in order to avoid accessing the database for an id on
every insert.

Default Value: 50

Always use sequence number
pre-allocation for best performance
for inserts. SEQUENCE or TABLE
sequencing should be used for
optimal performance, not IDENTITY
which does not allow pre-allocation.

Table 9–1 (Cont.) EJB/JPA Using Efficient SQL Statements and Querying

Tuning Parameter Description Performance Notes

Basic Tuning Considerations

9-8 Oracle Fusion Middleware Performance and Tuning Guide

Basic Tuning Considerations

Oracle TopLink (EclipseLink) JPA Performance Tuning 9-9

Table 9–2 EJB3.0 Entity Relationship Query Performance Options

Tuning Parameter Description Performance Notes

Batch Fetching The eclipselink.batch hint supplies EclipseLink
with batching information so subsequent queries
of related objects can be optimized in batches
instead of being retrieved one-by-one or in one
large joined read.

Batch fetching has three types: JOIN, EXISTS and
IN. The type is set through the query hint
"eclipselink.batch.type"

Note that batching is only allowed on queries
that have a single object in their select clause. The
query hint to configure this is "eclipselink.batch".
Batch fetching can also be set using the
@BatchFetch annotation.

Default Value: Off

Use for queries of tables with
columns mappings to table data
you need.You should only use
either batch fetching or joining if
you know that you are going to
access all of the data; if you do
not intend to access the
relationships, then just let
indirection defer their loading.

Batch fetching is more efficient
than joining because it avoids
reading duplicate data; therefore
for best performance for queries
where batch fetching is
supported, consider using batch
fetching instead of join reading.

Join Fetching Join fetching is a query optimization feature that
enables a single query for a class to return the
data to build the instances of that class and its
related objects.

Use this feature to improve query performance
by reducing database access. By default,
relationships are not join-read: each relationship
is fetched separately when accessed if you are
using lazy-loading, or as a separate database
query if you are not using lazy-loading.

You can specify the use of join in JPQL (JOIN
FETCH), or you can set it multi-level in a query
hint, "eclipselink.join-fetch". It also can be set in
the mapping annotation @JoinFetch.

Joining is part of the JPA specification, whereas
batch fetching is not. And, joining works on
queries that not work with batch fetching. For
example, joining works on queries with multiple
objects in the select clause, queries with a single
result, and for cursors and first/max results,
whereas batch fetching does not.

See Also: "Join Fetch" at
http://wiki.eclipse.org/EclipseLink/UserGu
ide/JPA/Basic_JPA_
Development/Querying/Query_Hints#Join_
Fetch

Default Value: Not Used

Use for queries of tables with
columns mappings to table data
you need.You should only use
either batch fetching or joining if
you know that you are going to
access all of the data; if you do
not intend to access the
relationships, then just let
indirection defer their
loading.For the best performance
of selects, where batch fetching
is not supported, a join is
recommended

Basic Tuning Considerations

9-10 Oracle Fusion Middleware Performance and Tuning Guide

9.3.2 Tuning Cache Configuration
This section describes tuning the default internal cache that is provided by
EclipseLink. Oracle Toplink/EclipseLink can also be integrated with Oracle
Coherence. For information on configuring and tuning an EclipseLink Entity Cache
using Oracle Coherence, see Section 9.3.3, "Integrating Oracle Toplink with
Coherence".

The default settings for EJB3.0/JPA used with the EclipseLink persistence manager
and cache are no locking, no cache refresh, and cache-usage DoNotCheckCache. To
ensure that your application uses the cache and does not read stale data from the cache
(when you do not have exclusive access), you must configure these and other isolation
related settings appropriately. Table 9–3 shows the cache configuration options.

For more information on cache configuration, see "Caching" at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_
Development/Caching.

Lazy loading Without lazy loading on, when EclipseLink
retrieves a persistent object, it retrieves all of the
dependent objects to which it refers. When you
configure lazy reading (also known as
indirection, lazy loading, or just-in-time reading)
for an attribute mapped with a relationship
mapping, EclipseLink uses an indirection object
as a place holder for the referenced object.

EclipseLink defers reading the dependent object
until you access that specific attribute. This can
result in a significant performance improvement,
especially if the application is interested only in
the contents of the retrieved object, rather than
the objects to which it is related.

See Also: "Lazy Loading" at
http://wiki.eclipse.org/EclipseLink/UserGu
ide/JPA/Basic_JPA_
Development/Mapping/Basic_Mappings/Lazy_
Basics

Default Value: On for collection mapping
(ToMany mappings, @OneToMany,
@ManyToMany)

Default Value: Off for reference (ToOne
mappings, @OneToOne, @ManyToOne)

(Note that setting lazy loading On for
@OneToOne, @ManyToOne requires weaving,
which is On by default for Java Java EE.)

Use lazy loading for all
mappings. Using lazy loading
and querying the referenced
objects using batch fetching or
Join is more efficient than Eager
loading.

You may also consider using
optimized loading with
LoadGroups which allows a
query to force instantiation of
relationships.

Note: By default, EclipseLink assumes that your application has
exclusive access to the data it is using (that is, there are no external,
non-EclipseLink, applications modifying the data). If your application
does not have exclusive access to the data, then you must change
some of the defaults from Table 9–3.

Table 9–2 (Cont.) EJB3.0 Entity Relationship Query Performance Options

Tuning Parameter Description Performance Notes

Basic Tuning Considerations

Oracle TopLink (EclipseLink) JPA Performance Tuning 9-11

Basic Tuning Considerations

9-12 Oracle Fusion Middleware Performance and Tuning Guide

Table 9–3 EJB3.0 JPA Entities and Cache Configuration Options

Tuning Parameter Description Performance Notes

Object Cache EclipseLink sessions provide an object cache. EJB3.0
JPA applications that use the EclipseLink persistence
manager create EclipseLink sessions that by default
use this cache. This cache, known as the session cache,
retains information about objects that are read from or
written to the database, and is a key element for
improving the performance of an EclipseLink
application.

Typically, a server session's object cache is shared by
all client sessions acquired from it. Isolated sessions
provide their own session cache isolated from the
shared object cache.

The annotation type @Cacheable specifies whether an
entity should be cached. Caching is enabled when the
value of the persistence.xml caching element is
ENABLE_SELECTIVE or DISABLE_SELECTIVE. The
value of the Cacheable annotation is inherited by
subclasses; it can be overridden by specifying
Cacheable on a subclass.

Cacheable(false) means that the entity and its state
must not be cached by the provider.

Default Value: Enabled (shared is True)

Generally it is recommended
that you leave caching
enabled. If you have an object
that is always read from the
database, as in a pessimistic
locked object, then the cache
for that entity should be
disabled. Also, consider
disabling the cache for
infrequently accessed entities

Query Result Set Cache In addition to the object cache in EclipseLink,
EclipseLink also supports a query cache:

■ The object cache indexes objects by their primary
key, allowing primary key queries to obtain cache
hits. By using the object cache, queries that access
the data source can avoid the cost of building the
objects and their relationships if the object is
already present.

■ The query cache is distinct from the object cache.
The query cache is indexed by the query and the
query parameters - not the object's primary key.
This enables any query executed with the same
parameters to obtain a query cache hit and return
the same result set.

The query hints for a query cache are:

"eclipselink.query-cache"

"eclipselink.query-cache.size"

"eclipselink.query-cache.invalidation"

See Also: "Caching" at
http://wiki.eclipse.org/EclipseLink/UserGuide/J
PA/Basic_JPA_Development/Caching and "EclipseLink
JPA Query Hints" at
http://wiki.eclipse.org/EclipseLink/UserGuide/J
PA/Basic_JPA_Development/Querying/Query_Hints

Default Value: Not Used

Use for frequently executed
non-primary key queries
with infrequently changing
result sets.Use with a cache
invalidation time out to
refresh as needed.

Basic Tuning Considerations

Oracle TopLink (EclipseLink) JPA Performance Tuning 9-13

Cache Size Cache size can be configured through persistence
properties: "eclipselink.cache.size.<entity>"

"eclipselink.cache.size.default"

"eclipselink.cache.type.default"

See Also: "Configuring Persistence Units Using
persistence.xml" at
http://wiki.eclipse.org/EclipseLink/UserGuide/J
PA/Basic_JPA_
Development/Configuration/JPA/persistence.xml
and 'Class PersistenceUnitProperties" at
http://www.eclipse.org/eclipselink/api/2.3/org/
eclipse/persistence/config/PersistenceUnitPrope
rties.html

Default Value: Type SoftWeak, Size 100 (per Entity).

Set the cache size relative to
how much memory you have
available, how many
instances of the class you
have, the frequency the
entities are accessed, and
how much caching you want
based on your tolerance for
stale data.

Consider creating larger
cache sizes for entities that
have many instances that are
frequently accessed and stale
data is not a big issue.

Consider using smaller cache
sizes or no cache for
frequently updated entities
that must always have fresh
data, or infrequently accessed
entities.

Locking Oracle supports the locking policies shown in
Table 9–4: no locking, optimistic, pessimistic, and
read-only.

Locking is set through JPA @Version annotation,
eclipselink.read-only

How to Use EclipseLink Locking at
http://wiki.eclipse.org/EclipseLink/Examples/JP
A/Locking

Default Value: No Locking

For entities that can be
updated concurrently,
consider using the locking
policy to prevent a user from
writing over another users
changes. To optimize
performance for read-only
entities, consider defining the
entity as read-only or use a
read-only query hint.

Table 9–3 (Cont.) EJB3.0 JPA Entities and Cache Configuration Options

Tuning Parameter Description Performance Notes

Basic Tuning Considerations

9-14 Oracle Fusion Middleware Performance and Tuning Guide

Cache Usage By default, all query types search the database first
and then synchronize with the cache. Unless refresh
has been set on the query, the cached objects can be
returned without being refreshed from the database.
You can specify whether a given query runs against
the in-memory cache, the database, or both.

To get performance gains by avoiding the database
lookup for objects already in the cache, you can
configure that the search attempts to retrieve the
required object from the cache first, and then search
the data source only if the object is not in the cache.
For a query that looks for a single object based on a
primary key, this is done by setting the query hint
"eclipselink.cache-usage" to
CheckCacheByExactPrimaryKey.

Default Value: DoNotCheckCache

For faster performance on
primary key queries, where
the data is typically in the
cache and does not require a
lot of refreshing, it is
recommended to check the
cache first on these queries
(using
CheckCacheByExactPrimaryK
ey).

This avoids the default
behavior of retrieving the
object from the database first
and then for objects already
in the cache, returning the
cached values (not updated
from the database access,
unless refresh has been set on
the query).

Isolation There is not a single tuning parameter that sets a
particular database transaction isolation level in a JPA
application that uses EclipseLink.

In a typical EJB3.0 JPA application, a variety of factors
affect when database transaction isolation levels apply
and to what extent a particular database transaction
isolation can be achieved, including the following:

■ Locking mode

■ Use of the Session Cache

■ External Applications

■ Database Login method
setTransactionIsolation

See Also: "Shared and Isolated Cache" at
http://wiki.eclipse.org/EclipseLink/UserGuide/J
PA/Basic_JPA_Development/Caching/Shared_and_
Isolated

Table 9–3 (Cont.) EJB3.0 JPA Entities and Cache Configuration Options

Tuning Parameter Description Performance Notes

Basic Tuning Considerations

Oracle TopLink (EclipseLink) JPA Performance Tuning 9-15

9.3.2.1 Cache Refreshing Scenarios
There are a few scenarios to consider for data refreshing in the cache, all with
performance implications:

■ In the case where you never want cached data and always want fresh data,
consider using an isolated cache (Shared=False). This is the case when certain data
in the application changes so frequently that it is desirable to always refresh the
data, instead of only refreshing the data when a conflict is detected.

■ In the case when you want to avoid stale data, but getting stale data is not a major
issue, then using a cache expiry policy would be the recommended solution. In
this case you should also use optimistic locking, which automatically refresh stale
objects when a locking error occurs. If using optimistic locking, you could also
enable the entity @Cache attributes alwaysRefresh and refreshOnlyIfNewer to
allow queries that access the database to refresh any stale objects returned, and
avoid refreshing invalid objects when unchanged. You may also want to enable
refreshing on certain query operations when you know you want refreshed data,
or even provide the option of refreshing something from the client that would call
a refreshing query.

■ In the case when you are not concerned about stale data, you should use
optimistic locking; this automatically refresh stale objects in the cache on locking
errors.

9.3.2.2 Locking Modes
The locking modes, as shown in Table 9–4, along with EclipseLink cache-usage and
query refreshing options, ensures data consistency for EJB entities using JPA. The
different combinations have both functional and performance implications, but often

Cache Refreshing By default, EclipseLink caches objects read from a data
source. Subsequent queries for these objects access the
cache and thus improve performance by reducing data
source access and avoiding the cost of rebuilding
object's and their relationships. Even if a query
accesses the data source, if the objects corresponding
to the records returned are in the cache, EclipseLink
uses the cached objects. This default caching policy
can lead to stale data in the application.

Refreshing can be enabled at the entity level
(alwaysRefresh or refreshOnlyIfNewer and expiry)
and at the query level (with the eclipselink.refresh
query hint). You can also force queries to go to the
database with (disableHits). Using an appropriate
locking policy is the only way to ensure that stale or
conflicting data does not get committed to the
database.

For more information see: Section 9.3.2.1, "Cache
Refreshing Scenarios"

See Also: "Caching Overview" at
http://wiki.eclipse.org/EclipseLink/UserGuide/J
PA/Basic_JPA_Development/Caching/Caching_
Overview

Default Value: No Cache Refreshing

Try to avoid entity level
cache refresh and instead,
consider configuring the
following:

■ cache refresh on a
query-by-query basis

■ cache expiration

■ isolated caching

Table 9–3 (Cont.) EJB3.0 JPA Entities and Cache Configuration Options

Tuning Parameter Description Performance Notes

Basic Tuning Considerations

9-16 Oracle Fusion Middleware Performance and Tuning Guide

the functional requirements for up-to-date data and data consistency lead to the
settings for these options, even when it may be at the expense of performance.

For more information, see "Locking" at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_
Development/Mapping/Locking.

9.3.3 Integrating Oracle Toplink with Coherence
Oracle Toplink can be integrated with Oracle Coherence. This integration is provided
through the Oracle TopLink Grid feature. With TopLink Grid, there are several types of
integration with EclipseLink JPA features.

For example:

■ Replace the default EclipseLink L2 cache with Coherence. This provides support
for very large L2 caches that span cluster nodes. EclipseLink's default L2 cache
improves performance for multi-threaded and Java EE server hosted applications
running in a single JVM, and requires configuring special cache coordination
features if used across a cluster.

Table 9–4 Locking Mode Policies

Locking Option Description Performance Notes

No Locking The application does not prevent users overwriting
each other's changes. This is the default locking
mode. Use this mode if the Entity is never updated
concurrently or concurrent reads and updates to the
same rows with read-committed semantics is
sufficient.

Default Value: No Locking

In general, no locking is faster, but
may not meet your needs for data
consistency.

Optimistic All users have read access to the data. When a user
attempts to make a change, the application checks to
ensure the data has not changed since the user read
the data.

See Also: "Optimistic Locking" at
http://wiki.eclipse.org/EclipseLink/UserGuide
/JPA/Basic_JPA_
Development/Mapping/Locking/Optimistic_
Locking

If infrequent concurrent updates to
the same rows are expected, then
optimistic locking may provide the
best performance while providing
data consistency guarantees.

Pessimistic The first user who accesses the data with the
purpose of updating it locks the data until
completing the update.

If frequent concurrent updates to the
same rows are expected, pessimistic
locking may be faster than optimistic
locking that is getting a lot of
concurrent access exceptions and
retries.

When using pessimistic locking at
the entity level, it is recommended
that you use it with an isolated cache
(Shared=False) for best performance.

Read Only Setting an EJB3.0 JPA Entity to read-only ensures
that the entity cannot be modified and enables
EclipseLink to optimize unit of work performance.

Set at the entity level using @ReadOnly class
annotation. Can also be set at the query level
through query hint "eclipselink.read-only".

Defining an entity as read-only can
perform better than an entity that is
not defined as read-only, yet does no
inserts, updates, or deletes, since it
enables EclipseLink to optimize the
unit of work performance. Always
use read-only for all read-only
operations

Advanced Tuning Considerations

Oracle TopLink (EclipseLink) JPA Performance Tuning 9-17

■ Configure entities to execute queries in the Coherence data grid instead of the
database. This allows clustered application deployments to scale beyond
database-bound operations.

For more information on using EclipseLink JPA with a Coherence Cache, see "JPA on
the Grid" Approach at
http://www.oracle.com/technology/products/ias/toplink/doc/11110/grid/tlgug
003.htm

For more information on Oracle Toplink integration with Oracle Coherence, see
"Oracle TopLink Integration with Coherence Grid Guide" at
http://www.oracle.com/technology/products/ias/toplink/doc/11110/grid/toc.h
tm

9.4 Advanced Tuning Considerations
The following tuning recommendations may or may not apply to your deployment.
Consult your use case scenarios to determine is using these parameters is appropriate
for your environment:

■ Configuring Mappings

■ Configuring Data Partitioning

9.4.1 Configuring Mappings
EclipseLink can transform data between an object representation and a representation
specific to a data source. This transformation is called mapping and it is the core of a
EclipseLink project.

A mapping corresponds to a single data member of a domain object. It associates the
object data member with its data source representation and defines the means of
performing the two-way conversion between object and data source.

For information on Mapping see, "Configuring Mappings" at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_
Development/Mapping.

9.4.2 Configuring Data Partitioning
EclipseLink allows you to configure data partioning using the @Partitioned
annotation. Partitioning enables an application to scale information across multiple
databases; including clustered databases. For more information on using @Partioned
and other partitioning policy annotations, see "Data Partitioning" at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Advanced_JPA_
Development/Data_Partitioning.

Advanced Tuning Considerations

9-18 Oracle Fusion Middleware Performance and Tuning Guide

10

Oracle Web Cache Performance Tuning 10-1

10 Oracle Web Cache Performance Tuning

[8] This chapter provides guidelines for improving the performance of Oracle Web Cache.

■ Section 10.1, "About Oracle Web Cache"

■ Section 10.2, "Performance Considerations"

■ Section 10.3, "Basic Tuning Considerations"

■ Section 10.4, "Advanced Tuning Considerations"

10.1 About Oracle Web Cache
Oracle Web Cache is a content-aware server accelerator, or a reverse proxy, for the Web
tier. Oracle Web Cache is the primary caching mechanism provided with Oracle Fusion
Middleware. Caching improves the performance, scalability, and availability of Web
sites that run on Oracle Fusion Middleware by storing frequently accessed URLs in
memory. It can also improve the performance, scalability, and availability of Web sites
that run on any Web server or application server, such as Oracle HTTP Server and
Oracle WebLogic Server.

For more information, see the Oracle Fusion Middleware Administrator's Guide for Oracle
Web Cache.

10.2 Performance Considerations
Effective Oracle Web Cache performance tuning starts with a good understanding of
its usage and general performance issues. Before you begin tuning Oracle Adaptive
Access Manager, review this section as well as the recommendations discussed in Top
Performance Areas:

■ Optimizing Hardware Resources

■ Optimizing Platform Connections

10.2.1 Optimizing Hardware Resources
■ Hardware Resources

■ Memory Configuration

10.2.1.1 Hardware Resources
Oracle Web Cache performs best with one very powerful CPU or two CPUs. Because
Oracle Web Cache is an in-memory cache, it is rarely limited by CPU cycles.
Additional CPUs do not increase performance significantly. However, the speed of the

Performance Considerations

10-2 Oracle Fusion Middleware Performance and Tuning Guide

processors is critical-use the fastest CPUs you can afford. Use more CPUs if Web Cache
is sharing the system with other Oracle application server components or other
applications.

Note that Oracle Web Cache is limited by the available addressable memory.
Additional memory can increase performance and scalability. For information about
the amount of memory needed, see Section 10.2.1.2, "Memory Configuration".

Oracle Web Cache has two processes: one for the administration server and one for the
cache server.

■ The administration server process is used for configuring and monitoring Oracle
Web Cache. This process consumes very little CPU time. However, when viewing
the statistics pages in Oracle Web Cache Manager, the administration server
process must query the cache server process to obtain the relevant metrics.
Accessing the statistics pages frequently, or setting a high refresh rate on a
statistics page can affect cache server performance.

■ The cache server process uses three threads: one to manage the front-end activities,
a second to manage the back-end activities, and a third to process requests.

For a cost-effective way to use Oracle Web Cache, run it on a fast two-CPU dedicated
computer with lots of memory. See the Oracle Fusion Middleware Administrator's Guide
for Oracle Web Cache for information about various deployment scenarios.

For a Web site with more than one Oracle Web Cache instance, consider installing each
instance on a separate two-CPU node, either as part of a cache cluster or as a
standalone instance. When Oracle Web Cache instances are on separate nodes, you are
less likely to encounter operating system limitations, particularly in network
throughput. For example, two caches on two separate two-CPU nodes are less likely to
encounter operating system limitations than two caches on one four-CPU node.

Of course, if other resources are competing with Oracle Web Cache for CPU usage, you
should take the requirements of those resources into account when determining the
number of CPUs needed. Although a separate node for Oracle Web Cache is optimal,
you can also derive a significant performance benefit from Oracle Web Cache running
on the same node as the rest of the application Web server.

10.2.1.2 Memory Configuration
To avoid swapping documents in and out of the cache, configure enough memory for
the cache. Generally, the amount of memory (maximum cache size) for Oracle Web
Cache should be set to at least 512 MB. Your application's memory requirements can
vary based upon factors such document size, number of documents, the number of
HTTP headers returned, and whether ESI is present. To get a close approximation on
the maximum amount of memory required, you may apply the formula provided
below. If your application uses ESI then all templates and document fragments must
be accounted for when figuring the TotalDocs and the AvgDocSize.

Estimated Cache size in bytes = 1.25 *(TotalDocs * ((AvgDocSize/8192+1) *8192+
16384))

■ 0.25 accounts for the run time memory usage. The Web Cache action limit is set to
5% below than the maximum Web Cache size by default. Web Cache also allocates
5% of the total cache size to optimize access misses that cannot be cached.

■ TotalDocs refers to the total number of documents you intend to place in Web
Cache.

■ The AvgDocSize is self-explained.

■ Remember to convert the estimated cache size is returned in bytes by the formula.

Performance Considerations

Oracle Web Cache Performance Tuning 10-3

The memory formula presented above was verified against actual memory usage
measurements and it showed very close results as can be seen in the table below:

10.2.1.2.1 Configuring WebCache Memory The cache is empty when Oracle Web Cache
starts. For monitoring to be valid, ensure that the cache is fully populated. That is,
ensure that the cache has received enough requests so that a representative number of
documents are cached.

The Oracle Web Cache Statistics page (Monitoring > Web Cache Statistics) provides
information about the current memory use, the maximum memory use and the total
documents currently resident in Oracle Web Cache. Note the following metrics in the
Cache Overview table:

■ Size of Documents in Cache shows the current logical size of the cache, which is
the size of the valid documents in the cache. For example, if the cache contains two
documents, one 3 KB and one 50 KB, the Size of Documents in Cache is 53 KB, the
total of the two sizes.

■ Configured Maximum Cache Size indicates the maximum cache size as specified
in the Resource Limits page.

■ Current Allocated Memory displays the physical size of the cache, which is the
amount of data memory allocated by Oracle Web Cache for cache storage and
operation. This number is always smaller than the process size shown by
operating system statistics because the Oracle Web Cache process, like any user
process, consumes memory in other ways, such as instruction storage, stack data,
thread, and library data.

■ Current Action Limit is 95% of the Configured Maximum Cache Size. This number
is usually larger than the Current Allocated Memory.

If the Current Allocated Memory is greater than the Current Action Limit, Oracle Web
Cache begins to use allocated but unused memory, and may begin garbage collection
to free more memory. During garbage collection, Oracle Web Cache removes the less
popular and less valid documents from the cache in favor of the more popular and
more valid documents to obtain space for new HTTP responses without exceeding the
maximum cache size.

If the Current Allocated Memory is close to or greater than the Current Action Limit,
increase the maximum cache size to avoid swapping documents in and out of the
cache. For more information, see "Specifying Properties for an Oracle Web Cache
System Component" in Oracle Fusion Middleware Administrator's Guide for Oracle Web
Cache.

Number of Cached Doc Size In Measured Cache
Formula Generated
Results

Docs Bytes Size in MB Size in MB

3300.00 102400 499.61 499.51

5525.00 51200 499.27 499.08

11050.00 51200 998.54 998.17

6600.00 102400 999.22 999.02

13200.00 102400 1998.44 1998.05

22100.00 51200 1997.07 1996.34

3300.00 102400 499.61 499.51

Basic Tuning Considerations

10-4 Oracle Fusion Middleware Performance and Tuning Guide

10.2.2 Optimizing Platform Connections
■ UNIX Connections

■ Windows Connections

10.2.2.1 UNIX Connections
On most UNIX platforms, each client connection requires a separate file descriptor.
The Oracle Web Cache server attempts to reserve the maximum number of file
descriptors when it starts. If you have root privileges, you can increase this number.
For example, for the LINUX Operating System you can increase the maximum number
of file descriptors by modifying Oracle Web Cache users file descriptors limits in
/etc/security/limits.conf.

For example to allow the user "WC_USER" to have 4092 connections, in the
/etc/security/limits.conf file add the following entries:

WC_User soft nofile 4092
WC_User hard nofile 4092
Ensure that there are adequate file descriptors available to any process on the host by
increasing the fs.file-max parameter in the /etc/sysctl.conf file.

On Solaris Operating System you can increase the maximum number of file
descriptors by setting the rlim_fd_max parameter. If webcached is not run as root, the
Oracle Web Cache server logs an error message and fails to start.

10.2.2.2 Windows Connections
On Windows, only available kernel resources limit the number of file handles as well
as socket handles - the size of paged and non-paged pools. However, the number of
TCP ports the system can open restricts the number of active TCP/IP connections.

For more information on establishing connections, see "Set Resource Limits and
Network Thresholds" in Oracle Fusion Middleware Administrator's Guide for Oracle Web
Cache.

10.3 Basic Tuning Considerations
This section provides the basic tuning considerations for Oracle Web Cache. It contains
the following tuning recommendations:

■ Optimizing Network Connections

■ Increasing Cache Hit Rates

■ Optimizing Response Time

10.3.1 Optimizing Network Connections
■ Network Bandwidth

■ Network Connections

■ Network-Related Parameters

10.3.1.1 Network Bandwidth
When you use Oracle Web Cache, ensure that each system has sufficient network
bandwidth to accommodate the throughput load. Otherwise, the network may be

Basic Tuning Considerations

Oracle Web Cache Performance Tuning 10-5

saturated but Oracle Web Cache has additional capacity. For example, if an application
generates 100 megabits of data or more per second, 10/100 Megabit Ethernet can be
saturated.

If the network is saturated, consider using Gigabit Ethernet rather than 10/100
Megabit Ethernet. Gigabit Ethernet provides the most efficient deployment scenario to
avoid network collisions, retransmissions, and bandwidth starvation. Additionally,
consider using two separate network cards: one for incoming client requests and one
for requests from the cache to the application Web server.

Use network-monitoring utilities that show network bandwidth usage. If the network
is under utilized and throughput is less than expected, check whether the CPUs are
saturated.

10.3.1.2 Network Connections
It is important to specify a reasonable number for the maximum connection limit for
the Oracle Web Cache server. If you set a number that is too high, performance can be
affected, resulting in slower response time. If you set a number that is too low, fewer
requests can be satisfied. Strike a balance between response time and the number of
requests processed concurrently.

To help determine a reasonable number, consider the following factors:

■ The maximum number of clients that you intend to serve concurrently at any
given time.

■ The average size of a document and the average number of requests per
document.

■ Network bandwidth. The amount of data that can be transferred at any one time is
limited by the network bandwidth.

■ The percentage of cache misses. Cache misses are forwarded to the application
Web server. Those requests consume additional network bandwidth, resulting in
longer response times; especially if a large percentage of requests are cache misses.

■ How quickly a document is processed. Use a network monitoring utility, such as
ttcp or LoadRunner to determine how quickly your system processes a document.

■ The cache cluster member capacity, if you have a cache cluster environment. The
capacity reflects the number of incoming connections from other cache cluster
members. Set the cluster member capacity using the Clustering page (Properties >
Clustering) of Oracle Web Cache Manager.

Use various tools, such as those available with the operating system and with Oracle
Web Cache, to help determine the maximum number of connections. For example, the
netstat-a command enables you to determine the number of established connections;
the ttcp utility enables you to determine how fast a document is processed. The
Oracle Web Cache Manager provides statistics on hits and misses.

For detailed instructions on how to set the maximum number of incoming
connections, see "Specifying Properties for an Oracle Web Cache System Component"
in Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache.

WARNING: Do not set the values listed above to an arbitrarily high
value. Oracle Web Cache sets aside some resources such as memory
for each connection. Altering these values can adversely affect
performance.

Basic Tuning Considerations

10-6 Oracle Fusion Middleware Performance and Tuning Guide

10.3.1.3 Network-Related Parameters
Besides the number of network connections, other network-related parameters for
Oracle Web Cache, the application Web server, and the operating system can affect
response time. In most situations, the default settings are sufficient.

If response time is slow, you should tune Oracle Web Cache, the application Web
server, and operating system parameters that affect connections, as explained in this
section.

For Oracle Web Cache, check the values of the following settings:

■ Keep-Alive Timeout

The amount of time a network connection is left open after Oracle Web Cache
sends a response to a browser. Keep-Alive enables an HTTP client to send multiple
requests to Oracle Web Cache using the same network connection. By default, the
connection is left open for five seconds, which is typically enough time for the
browser to send subsequent requests to Oracle Web Cache using the same
connection.

If the network between the browser and Oracle Web Cache is slow, consider
increasing the timeout, experiment with 10 seconds then 20 seconds and perhaps
up to 30 seconds.

If you receive the following error, either increase the maximum incoming
connections for Oracle Web Cache or lower the Keep-Alive Timeout:

11313: The cache server reached the maximum number of allowed incoming
connections. Listening is temporarily suspended.

With a heavy load, such as during stress-testing, if clients continuously send one
request and then disconnect, set the Keep-Alive Timeout to 0. With this value,
Oracle Web Cache closes the connection as soon as the request is completed, to free
up resources.

Set the Keep-Alive Timeout value in the Network Timeouts page (Properties >
Network Timeouts).

■ Origin Server Timeout

The amount of time for the application Web server to generate a response to
Oracle Web Cache. If the application Web server or proxy server is unable to
generate a response within that time, Oracle Web Cache sends a network apology
page to the browser.

Usually, this value should be equal to the response time of the slowest document
served by the application Web Server. If the value is too low, long-running
requests can timeout before the response is complete. If the value is too high and
the application Web server hangs for some reason, it can take longer for Oracle
Web Cache to failover to another application Web server.

Set this value in the Network Timeouts page (Properties > Network Timeouts).

For the application Web server, check the values of the following settings in the
application Web server's configuration file (httpd.conf). (These particular
parameter names are specific to the Oracle HTTP Server.)

■ KeepAlive

Whether to allow persistent connections. Persistent connections allow a client to
send multiple sequential requests through the same connection.

Basic Tuning Considerations

Oracle Web Cache Performance Tuning 10-7

Make sure KeepAlive is enabled. This can improve performance because the
connection is set up only once and is kept open for subsequent requests from the
same client.

■ KeepAliveTimeout: The time a connection is left open to wait for the next
request from the same client. If requests are primarily from Oracle Web Cache,
you can set this value fairly high. A reasonable value is 30 seconds.

■ MaxKeepAliveRequests: The maximum number of requests to allow during a
persistent connection. Set to 0 to allow an unlimited number of requests.

■ MaxClients: The maximum number of clients that can connect to the
application Web server simultaneously.

If KeepAlive is enabled for the application Web server, you may require more
concurrent httpd server processes, and you may have to set the MaxClients
directive to a higher value.

If client requests have a short response time, you may be able to improve
performance by setting MaxClients to a lower value. However, when the
MaxClients value is reached, no additional processes can be created, causing other
requests to fail. The MaxClients limit on the application Web server should be
greater than or equal to the application Web server capacity as set through the
Oracle Web Cache Manager.

For the operating system, check the TCP time-wait setting. This setting controls
the amount of time that the operating system holds a port, not allowing new
connections to use the same port.

On the Linux operating system, validate the value of /proc/sys/net/ipv4/tcp_
fin_timeout. On the Solaris Operating System, check the tcp_time_wait_interval
setting, using the following command:

ndd -get /dev/tcp tcp_time_wait_interval.
On Windows, check the value of TcpTimeWaitDelay in the following key in the
registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

This setting is usually only an issue during stress testing, if you continuously open
more TCP/IP connections from one client computer. In this situation, lower the
TCP time-wait setting. In real world deployments, this is rarely an issue because it
is unlikely that a single client can generate a huge number of connections.

10.3.2 Increasing Cache Hit Rates
A cache hit is a web browser request that can be satisfied from documents stored in the
cache. A cache miss is a web browser request that cannot be satisfied from documents
stored in the cache and must be forwarded to the application web server.

If the ratio of cache hits to cache misses is low, consider the following ways to raise the
cache hit rate:

■ Use cookies and URL parameters to increase cache hit rates.

Oracle Web Cache can cache different versions of a document with the same URL,
based on request cookies or headers. To use this feature, applications may need to
implement simple changes, such as creating a cookie or header that differentiates
the documents.

Some applications contain insignificant URL parameters, which can lead to
different URLs representing the same content. If the documents are cached under

Basic Tuning Considerations

10-8 Oracle Fusion Middleware Performance and Tuning Guide

their full URLs, the cache hit/miss ratio becomes very low. You can configure
Oracle Web Cache to ignore the non-differentiating URL parameter values, so that
a single document is cached for different URLs, greatly increasing cache hit rates.

Sometimes the content for a set of documents is nearly identical. For example, the
documents may contain hyperlinks composed of the same URL parameters with
different session-specific values, or they may include some personalized strings in
the document text, such as welcome greetings or shopping cart totals. You can
configure Oracle Web Cache to store a single copy of the document with
placeholders for the embedded URL parameters or the personalized strings, and
to dynamically substitute the correct values for the placeholders when serving the
document to clients.

For more information on multiple version documents, sessions, ignoring URL
parameter values, and simple personalization, see "Getting Started with
Administering Oracle Web Cache" in Oracle Fusion Middleware Administrator's
Guide for Oracle Web Cache.

■ Use redirection to cache entry documents.

For some popular site entry documents, such as "/", that typically require session
establishment, session establishment effectively makes the document
non-cacheable to all new users without a session. To cache these documents while
preserving session establishment, you can either:

– Create a blank document that provides session establishment for all initial
requests and redirects to the actual popular document. Subsequent redirected
requests to the popular document can specify the session, enabling the
popular document to be served from the cache.

– Use a JavaScript that sets a session cookie for the popular documents.

■ Use partial page caching where possible.

Many Web documents, such as pages generated by OracleAS Portal, are composed
of fragments with unique caching properties. For these pages, full-page caching is
not feasible. However, Oracle Web Cache provides partial page caching using
Edge Side Includes (ESI). With ESI, you can divide each Web page into a template
and multiple fragments that can, in turn, be further divided into templates and
lower level fragments. Each fragment or template is stored and managed
independently; a full page is assembled from the underlying fragments upon
request. Fragments can be shared among different templates, so that common
fragments are not duplicated to waste cache space. Sharing can also greatly reduce
the number of updates required when fragments expire.

Depending on the application, updating a fragment can be cheaper than updating
a full page. In addition, each template or fragment can have its own unique
caching policies such as expiration, validation, and invalidation, so that each
fragment in a full Web page can be cached if possible, even when some fragments
are not cached or are cached for a much shorter period of time.

■ Use ESI variables for improved cache hit/miss ratio for personalized pages.

Note: For more information on configuring caching rules for
documents requiring session establishment, see "Caching and
Compressing Content" in Oracle Fusion Middleware Administrator's
Guide for Oracle Web Cache.

Basic Tuning Considerations

Oracle Web Cache Performance Tuning 10-9

Personalized information often appears in Web pages, making them unique for
each user. For example, many Web pages contain tens or hundreds of hyperlinks
embedding application session IDs. To resolve this, create your ESI pages with
variables. Because variables can resolve to different pieces of request information
or response information, the uniqueness of templates and fragments can be
significantly reduced. This, in turn, results in better cache hit/miss ratios.

10.3.3 Optimizing Response Time
If you have not configured the application Web server or the cache correctly, response
time may be slower than anticipated. This section summarizes much of the
information presented in this chapter.

If the application Web server is responding more slowly than expected or if the
application Web server is not responding to requests from the cache because it has
reached its capacity, check the application Web server and Oracle Web Cache settings.

First, check the following:

■ Caching rules: Ensure that you are caching the appropriate objects. Are there
popular objects that you should cache but are not caching? Use the Popular
Requests page (Monitoring > Popular Requests) to see a list of the most popular
requests and to check that those objects are being cached.

■ Priority rankings of the caching rules: Give frequently accessed non-cacheable
documents a higher priority than cacheable documents. Give frequently accessed
cacheable documents the lowest priority. Note that parsing of caching rules may
be resource-intensive if a large number of rules are defined.

■ Compression: If the network is a bottleneck for the client, compressing documents
as they are cached can relieve some of the congestion on the network because
compressed documents are smaller.

Then, check the following:

The application Web server configuration, particularly the MaxClients, KeepAlive,
KeepAliveTimeout, and MaxKeepAliveRequests settings.

The MaxClients limit on the application Web server should be greater than or equal to
the application Web server capacity as set through the Oracle Web Cache Manager.

The application Web server capacity as set using the Origin Servers page (Origin
Servers, Sites, and Load Balancing > Origin Servers) of the Oracle Web Cache
Manager. See the Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache
for information about setting application Web server capacity.

Then, if the application Web server is still busier than anticipated, it may mean that the
cache cannot process the requests and is routing more requests to the application Web
server. Check the following Oracle Web Cache settings in the Oracle Web Cache
Manager:

■ The number of cache connections. Check Maximum Incoming Connections in the
Resource Limits page (Properties > Resource Limits).

■ The memory size for the cache. Check Maximum Cache Size in the Resource
Limits page (Properties > Resource Limits).

■ The cache cluster capacity. In a cache cluster, if cluster capacity is too low, a cache
may not receive a response for owned content from a peer cache in the specified
interval. As a result, the request is sent to the application Web server. Check
Capacity in the Clustering page (Properties > Clustering). See the Oracle Fusion
Middleware Administrator's Guide for Oracle Web Cache for more information.

Advanced Tuning Considerations

10-10 Oracle Fusion Middleware Performance and Tuning Guide

If the settings for the application Web server and Oracle Web Cache are set correctly,
but the response times are still higher than expected, check system resources,
especially:

■ Network bandwidth

■ CPU usage

10.4 Advanced Tuning Considerations
The following Oracle Web Cache tuning considerations are provided as a guide.
Always consult your own use case scenarios to determine if these configurations
should be used in your deployment.

10.4.1 Optimizing Performance with Oracle ADF
Consider the following configuration options for optimizing Oracle Web Cache
performance with Oracle ADF Rich Client Applications:

■ After you configure the Maximum Cache Size setting in the Resource Limits page
of Oracle Web Cache Manager, use a simulated load or an actual load to monitor
the cache to see how much memory is actually used. Verify that any additional
memory usage does not result in the host swapping memory to disk, as this may
impact performance.

■ Personalization and compression rules for all sites include the following:

– Images should be cached but not compressed

– CSS files should be both cached and compressed for all request types

– JS files should be both cached and compressed for all request types

– HTML files should be both cached and compressed

– SWF files should be cached but not compressed

– Add a rule to compress but not cache .jspx files for all GET and POSTS

– Add a rule to compress but not cache \.jspx.*$ files for all GET and POSTS

– Add a rule to compress but not cache adw\.jspx for all request types

– Add a rule not to compress and not cache profiling.js for all request types

For more detail on setting cache and compression rules, see "Caching and
Compressing Content," in Oracle Fusion Middleware Administrator's Guide for Oracle Web
Cache.

Part IV
Part IV SOA Suite Components

This part describes configuring Oracle Service-Oriented Architecture (SOA) Suite
components to improve performance. Oracle SOA Suite is a component of Oracle
Fusion Middleware. Oracle SOA Suite provides a complete set of service infrastructure
components for designing, deploying, and managing SOA composite applications. The
image below shows the Oracle SOA Platform.

Oracle SOA Suite enables services to be created, managed, and orchestrated into SOA
composite applications. Composites enable you to easily assemble multiple technology
components into one SOA composite application. SOA composite applications consist
of:

■ Service components: Service components are the basic building blocks of SOA
composite applications. Service components implement a part of the overall
business logic of the SOA composite application. BPEL Process, Oracle Mediator,
Human task flow and decision services are examples of the service components.

■ Binding components: Binding components connect SOA composite applications
to external services, applications, and technologies. Binding components are
organized into two groups:

– Services: Provide the outside world with an entry point to the SOA composite
application. The WSDL file of the service advertises its capabilities to external
applications. The service bindings define how a SOA composite service can be
invoked (for example, through SOAP).

– References: Enable messages to be sent from the SOA composite application to
external services (for example, the same functionality that partner links
provide for BPEL processes, but at the higher SOA composite application
level).

The SOA Suite Components are documented in the following chapters:

■ Chapter 11, "General Tuning for SOA Suite Components"

■ Chapter 12, "Oracle Business Rules Performance Tuning"

■ Chapter 13, "Oracle BPEL Process Manager Performance Tuning"

■ Chapter 15, "Oracle Mediator Performance Tuning"

■ Chapter 16, "Oracle Business Process Management Performance Tuning"

■ Chapter 17, "Oracle Human Workflow Performance Tuning"

■ Chapter 18, "Oracle Adapters Performance Tuning"

■ Chapter 14, "Oracle Business Activity Monitoring Performance Tuning"

■ Chapter 19, "User Messaging Service Performance Tuning"

■ Chapter 20, "Oracle B2B Performance Tuning"

11

General Tuning for SOA Suite Components 11-1

11General Tuning for SOA Suite Components

This chapter describes tuning configurations that can apply to multiple SOA Suite
applications.

■ Section 11.1, "About SOA Suite Configuration Properties"

■ Section 11.2, "SOA Infrastructure Configurations"

■ Section 11.3, "Modifying SOA Configuration Parameters"

■ Section 11.4, "JVM Tuning Parameters"

■ Section 11.5, "Database Settings"

For more information on any of the SOA Suite Applications, see Section IV, "SOA Suite
Components" for a list of the application-specific documentation provided in this
guide.

11.1 About SOA Suite Configuration Properties
Refer to the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and
Oracle Business Process Management Suite for more information on configuring the SOA
Applications.

11.2 SOA Infrastructure Configurations
SOA Infrastructure configuration parameters impact the entire SOA Infrastructure.
The following configurations are modified through the SOA-INFRA component:

■ Viewing and setting the SOA Infrastructure audit level

■ Capturing the state of the SOA composite application instance

■ Enabling the payload validation of incoming messages

■ Specifying the callback server and server URLs

■ Setting UDDI registry properties

■ Viewing the data source JNDI locations

■ Setting the non-fatal connection retry count

■ Setting Web service binding properties

Note: Additional SOA tuning recommendations can be found in
"Managing Large Documents and Large Number of Instances" in the
Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

Modifying SOA Configuration Parameters

11-2 Oracle Fusion Middleware Performance and Tuning Guide

For more information on SOA configuration, see "Configuring SOA Infrastructure
Properties" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and
Oracle Business Process Management Suite.

11.2.1 Audit Level
The Audit Level property enables you to select the level of information to be collected
by the message tracking infrastructure. This information is collected in the instance
data store (database) associated with the SOA Infrastructure. This setting has no
impact on what is written to log files.

11.2.2 Instance Tracking Audit Trail Threshold
This parameter is used to limit the audit trail size while it is being built. The default
value is 1MB. If the audit trail exceeds the instanceTrackingAuditTrailThreshold
size (1MB by default), then an exception is thrown, and the audit trail is not fully built.
The value is in Bytes, so the default value is 1024*1024. This parameter can improve
performance, as it prevents huge audit trails to potentially consume a lot or all the
memory available on the SOA server where the audit trail is built. So in many way it
acts as a safety valve. However in some cases users might want to increase the default
value, if they get an exception while retrieving audit trails from Enterprise Manager,
that states the " instanceTrackingAuditTrailThreshold" has been exceeded.

11.2.3 Logging Level
For more information on setting the logging levels for your applications, see
"Configuring Log Files" in Oracle Fusion Middleware Administrator's Guide for Oracle
SOA Suite and Oracle Business Process Management Suite.

11.3 Modifying SOA Configuration Parameters
SOA soa-infra level configurations can be set through Oracle Enterprise Manager.

For more information, see "Getting Started with Administering Oracle SOA Suite and
Oracle BPM Suite" in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA
Suite and Oracle Business Process Management Suite.

Value Description

Off No composite instance tracking and payload tracking
information is collected. Note that no logging and display
of instances in Oracle Enterprise Manager Fusion
Middleware Control Console can result in a slight
performance increase for processing instances. Instances
are created, but are not displayed.

Production Composite instance tracking is collected, but the Oracle
Mediator service engine does not collect payload details
and the process service engine does not collect payload
details for assign activities (payload details for other
activities are collected). This level is optimal for most
normal production operations.

Development Enables both composite instance tracking and payload
detail tracking. However, this setting may impact
performance. This level is useful largely for testing and
debugging purposes.

Database Settings

General Tuning for SOA Suite Components 11-3

11.4 JVM Tuning Parameters
JVM parameters can have an impact on SOA performance. The major factors that
impact a SOA component's performance relate to the heap size. For more information
on tuning the JVM for performance, see Section 2.4, "Tuning Java Virtual Machines
(JVMs)".

11.5 Database Settings
Tuning your database configurations may be useful with the SOA Suite of
applications. Configurations and specific settings may vary for different use cases. See
your database-specific administration manuals for more information on tuning
database properties.

For additional basic database tuning guidelines, see Section 2.6, "Tuning Database
Parameters".

11.5.1 Configuring Data Sources for SOA
SOA obtains database connections using an application server managed data source.
You can use the WebLogic Server Console to configure SOA data source. For more
information on using the WebLogic Server Console, seethe Oracle Fusion Middleware
Administrator's Guide.

Consider the following data source configurations when performance is an issue:

■ When configuring the data source, ensure that the connection pool has enough
free connections.

■ Statement caching can eliminate potential performance impacts caused by
repeated cursor creation and repeated statement parsing and creation. Statement
caching also reduces the performance impact of communication between the
application server and the database server

■ Disable unnecessary connection testing and profiling.

For more information, see "Tuning JDBC Stores" in Oracle Fusion Middleware
Performance and Tuning for Oracle WebLogic Server.

11.5.2 Managing Tables and Indexes
Consider using hash partitioning on your tables and indexes if your data does not
easily lend itself to range partitioning, but you would like to partition for performance
and manageability reasons. Hash partitioning provides a method of evenly
distributing data across a specified number of partitions. Rows are mapped into
partitions based on a hash value of the partitioning key. Creating and using hash
partitions gives you a highly tunable method of data placement, because you can
influence availability and performance by spreading these evenly sized partitions
across I/O devices (striping).

Caution: Do not use partitioning on any date-based index that is
likely to be used in range queries by Enterprise Manager or SOA.
Partitioning date-based indexes, such as STATE_TYPE_DATE and
COMPOSITE_INSTANCE_CREATED, for example, could
siginificantly impact perforamance.

Database Settings

11-4 Oracle Fusion Middleware Performance and Tuning Guide

To improve performance, consider using hash partitioning on the following tables and
indexes. Note that the performance improvement of each partitioning will vary
considerably depending on the type of composite.

11.5.3 Weblogic Server Performance Tuning
For complete performance tuning of Weblogic Server, refer to Oracle Fusion Middleware
Performance and Tuning for Oracle WebLogic Server.

Partitioned Table Name Partition Type Number

CUBE_INSTANCE Partitioned and Reverse key
index CI_CREATION_DATE

Not Applicable

CUBE_SCOPE Partition by hash (CIKEY) Partitions = 200

MEDIATOR_CASE_INSTANCE Partition by hash ("ID") Partitions = 200

XML_DOCUMENT Partition by hash (document_id) Partitions = 200

Hash Partitioned Indexes

BRDECISIONINSTANCE_INDX3

MEDIATOR_INSTANCE_INDEX2

MEDIATOR_INSTANCE_INDEX5

MEDIATOR_INSTANCE_INDEX6

MEDIATOR_INSTANCE_INDEX1

MEDIATOR_INSTANCE_INDEX3

MEDIATOR_CASE_INSTANCE_INDEX2

MEDIATOR_CASE_DETAIL_INDEX1

REFERENCE_INSTANCE_CO_ID

CI_NAME_REV_STATE

DOC_DLV_MSG_GUID_INDEX

REFERENCE_INSTANCE_ECID

DMEDIATOR_CASE_INSTANCE_INDEX3

REFERENCE_INSTANCE_ID

MEDIATOR_CASE_DETAIL_INDEX1

CI_ECID

COMPOSITE_INSTANCE_ID

MEDIATOR_CASE_DETAIL_INDEX2

12

Oracle Business Rules Performance Tuning 12-1

12Oracle Business Rules Performance Tuning

Oracle Business Rules technology enables automation of business rules; it also enables
extraction of business rules from procedural logic such as Java code or BPEL processes.

The chapter includes the following sections:

■ Section 12.1, "About Oracle Business Rules"

■ Section 12.2, "Basic Tuning Considerations"

12.1 About Oracle Business Rules
Oracle Business Rules provides high performance and easy to use implementation of
Business Rules technology. It provides easy to use authoring environment as well as a
very high performance inference capable rules engine. Oracle Business Rules is part of
the Oracle Fusion Middleware stack and will be a core component of many Oracle
products including both middleware and applications.

12.2 Basic Tuning Considerations
In most cases, writing of Rules should not require a focus on performance. However,
as in any technology, there are tips and tricks that can be used to maximize
performance when needed. Most of the considerations are focused on the initial
configuration of the data model.

■ Section 12.2.1, "Use Java Beans"

■ Section 12.2.2, "Assert Child Facts instead of Multiple Dereferences"

■ Section 12.2.3, "Avoid Side Affects in Rule Conditions"

■ Section 12.2.4, "Avoid Expensive Operations in Rule Conditions"

■ Section 12.2.5, "Consider Pattern Ordering"

■ Section 12.2.6, "Consider the Ordering of Tests in Rule Conditions"

■ Section 12.2.7, "Enable assertXPath Support"

12.2.1 Use Java Beans
The rule engine is most efficient when the facts it is reasoning on are Java Beans (or RL
classes) and the associated tests involve bean properties. The beans should expose get
and set methods (if set is allowed) for each bean property. If application data is not
directly available in Java Beans, flatten the data to a collection of Java Beans that will
be asserted as facts (and used in the rules).

Basic Tuning Considerations

12-2 Oracle Fusion Middleware Performance and Tuning Guide

12.2.2 Assert Child Facts instead of Multiple Dereferences
Expressions like Account.Contact.Address involve more than one object dereference.
In a rule condition, this is not as efficient as expressions with single dereferences. It is a
best practice to flatten fact types as much as possible. If the fact type has a hierarchical
structure, consider using assertXPath or other means to assert object hierarchy; that is
for the preceding example, assert both Account and Contact as Fact Types.

12.2.3 Avoid Side Affects in Rule Conditions
Methods or functions that have side affects such as changing a value or state should
not be used in a rule condition. Due to the optimizations performed when the rule
engine builds the Rete network, and the Rete network operations that are performed
as facts are asserted, modified (and re-asserted), or retracted, the tests in a rule
condition may be evaluated a greater or lesser number of times than would occur in a
procedural program. If a method or function has side effects, those side effects may be
performed an unexpected number of times.

12.2.4 Avoid Expensive Operations in Rule Conditions
Expensive operations should be avoided in rule conditions. Expensive operations
would include any operation that involves I/O (disk or network) or even intensive
computations. In general, consider avoiding I/O or DBMS access from the rules engine
directly. These operations should be done external to the rules engine. For other
expensive operations or calculations, consider performing the computations and assert
the results as a Java or RL fact. These facts are used in the rule conditions instead of
the expensive operations.

12.2.5 Consider Pattern Ordering
Reordering rule patterns can improve the performance of rule evaluation in time,
memory use, or both. There are two main guidelines for ordering fact clauses
(patterns) within a rule condition.

■ If a fact is not expected to change (or will not change frequently) during rule
evaluation, place its fact clause before fact clauses that change more frequently.
That is, order the fact clauses by expected rate of change from least to greatest.
Ordering fact clauses in this way can improve the performance (time) of rule
evaluation.

■ If a fact clause (including any tests that involve only that fact) is expected to match
fewer facts than other fact clauses in the rule condition, place that fact clause
before the others. That is, order the fact clauses from most restrictive (matches
fewest facts) to least restrictive. This can reduce the amount of memory used
during rule evaluation. It may also improve the performance.

Sometimes these two guidelines conflict and it may require some experimentation to
arrive at the best ordering.

12.2.6 Consider the Ordering of Tests in Rule Conditions
Similar to the recommendations for fact clauses, the tests in a rule condition should be
ordered such that a test that will be more restrictive is placed before a test that is less
restrictive. This can reduce the amount of computation required for facts that do not
satisfy the rule condition. If the degree of restrictiveness is not known, or estimated to
be equal for a collection of tests, then the simpler tests should be placed before more
expensive tests.

Basic Tuning Considerations

Oracle Business Rules Performance Tuning 12-3

12.2.7 Enable assertXPath Support

Most of the work done by the rules engine is done during assert, retract, or modify
operations. In particular, the assertXPath method, though very convenient, may have
a performance impact. The power of this method is not only that it asserts the whole
hierarchy in one call, but also asserts some XLink facts for children facts to link back to
parent facts. However, if these features are not needed, and you need to assert only a
few levels as facts, it is better to turn off the "Supports XPath" for the relevant fact
types and then use a function to do custom asserts.

Instead of using assertXPath the following example uses a function to assert
ExpenseReport and ExpenseLineItems:

function assertAllObjectsFromList(java.util.List objList)
{
 java.util.Iterator iter = objList.iterator();
 while (iter.hasNext())
 {
 assert(iter.next());
 }
}

function assertExpenseReport (demo.ExpenseReport expenseReport)
{
 assert(expenseReport);
 assertAllObjectsFromList(expenseReport.getExpenseLineItem());
}

To improve performance of assertXPath, select the "Enable improved assertXPath
support for performance" check box in the Dictionary Properties page in Rule Author.
Taking advantage of this will require that the following conditions are met:

■ assertXPath is only invoked with an XPath expression of "//*". Any other XPath
expression will result in an RLIllegalArgumentException.

■ XLink facts should not be used in rule conditions as the XLink facts will not be
asserted.

Note: AssertXPath is only relevant for 10g rules usage or for 10g
projects migrated to 11g. In 11g Release 1 and later, AssertXPath was
replaced by AssertTree. In 11g, no XLink facts are asserted as the
linkage is now handled in a different manner. AssertTree has the same
performance, by default, as the special check box for 10g rules.

Basic Tuning Considerations

12-4 Oracle Fusion Middleware Performance and Tuning Guide

13

Oracle BPEL Process Manager Performance Tuning 13-1

13Oracle BPEL Process Manager Performance
Tuning

[9] Oracle Business Process Execution Language (BPEL) Process Manager provides
several property settings that can be configured to optimize performance at the
composite, fabric, application and server levels. This chapter describes these property
settings and provides recommendations on how to use them.

This chapter contains the following sections:

■ Section 13.1, "About BPEL Process Manager"

■ Section 13.2, "Basic Tuning Considerations"

■ Section 13.3, "Advanced Tuning Considerations"

13.1 About BPEL Process Manager
BPEL is the standard for assembling a set of discrete services into an end-to-end
process flow, radically reducing the cost and complexity of process integration
initiatives. Oracle BPEL Process Manager offers a comprehensive and easy-to-use
infrastructure for creating, deploying and managing BPEL business processes.

For more information, see "Configuring BPEL Process Service Components and
Engines" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and
Oracle Business Process Management Suite and "Using the BPEL Process Service
Component" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

13.2 Basic Tuning Considerations
This section describes the performance tuning properties at the BPEL engine level.
They can be configured using Oracle Enterprise Manager. For more information, see
"Configuring BPEL Process Service Engine Properties" in the Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

13.2.1 Tuning Audit Levels
The following properties can be set to audit levels.

Note: The configuration examples and recommended settings
described in this chapter are for illustrative purposes only. Consult
your own use case scenarios to determine which configuration options
can provide performance improvements.

Basic Tuning Considerations

13-2 Oracle Fusion Middleware Performance and Tuning Guide

13.2.1.1 Audit Level
The auditLevel property sets the audit trail level. This configuration property is
applicable to both durable and transient processes. This property controls the amount
of audit events that are logged by a process. Audit events result in more database
inserts into the audit_trail table which may impact performance. Audit information
is used only for viewing the state of the process from Oracle Enterprise Manager
Console.

Use the off value if you do not want to store any audit information. Always choose
the audit level according to your business requirements and use cases. For more
information on setting the audit level, see "Introduction to the Order of Precedence for
Audit Level Settings" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA
Suite and Oracle Business Process Management Suite.

13.2.1.2 Audit Trail Threshold
The audittrailthreshold property sets the maximum size (in kilobytes) of an audit
trail details string before it is stored separately from the audit trail. If an audit trail
details string is larger than the threshold setting, it is not immediately loaded when the
audit trail is initially retrieved; a link is displayed with the size of the details string.
Strings larger than the threshold setting are stored in the audit_details table, instead
of the audit_trail table.

The details string typically contains the contents of a BPEL variable. In cases where the
variable is very large, performance can be severely impacted by logging it to the audit
trail.

The default value is 50000 (50 kilobytes).

13.2.1.3 Audit Store Policy
This property specifies the strategy to persist the BPEL audit data.

Value Description

Inherit Inherits the audit level from infrastructure level.

off No audit events (activity execution information) are
persisted and no logging is performed; this can result in
a slight performance boost for processing instances.

Minimal All events are logged; however, no audit details
(variable content) are logged.

Error Logs only serious problems that require immediate
attention from the administrator and are not caused by a
bug in the product. Using this level can help
performance.

Production All events are logged. The audit details for assign
activities are not logged; the details for all other
activities are logged.

Development All events are logged; all audit details for all activities
are logged.

Value Description

syncSingleWrite (default) AuditTrail and dehydration are persisted to DB in one
transaction.

syncMultipleWrite AuditTrail and dehydration are persisted in the same
thread but separate transactions.

Basic Tuning Considerations

Oracle BPEL Process Manager Performance Tuning 13-3

By default, audit messages are stored as part of the main BPEL transaction. A BPEL
instance holds on to the audit messages until the flow reaches dehydration. In some
use cases, for example when you have a large loop, and there is no dehydration point
in the loop, a large number of audit logs are accumulated. This could lead to an
out-of-memory issue and BPEL main transaction can experience timeout errors. You
may consider using syncMultipleWrite or async to store the audit message separately
from the main transaction.

When you use syncMultipleWrite and async auditStorePolicy, there are a few other
properties that need to be considered. Please see the sections below.

13.2.1.4 Audit Flush ByteThreshold
This property controls how often the engine should flush the audit events, basically
after adding an event to the current batch, the engine checks to see if the current batch
byte size is greater than this value or not.

Consider tuning this property when async or syncMultipleWrite audit strategies are
used. This size needs to be tuned based on the application.

13.2.1.5 Audit Flush EventThreshold
This property controls how often the engine should flush the audit events, basically
when it reaches this limit of the number of events, the engine would trigger the store
call.

Consider tuning this property when async or syncMultipleWrite audit strageties are
used. This size needs to be tuned based on the application.

13.2.2 Tuning Database Persistence for BPEL
The oneWayDeliveryPolicy property controls database persistence of messages
entering Oracle BPEL Server. By default, incoming requests are saved in the delivery
service database table dlv_message. These requests are later acquired by Oracle BPEL
Server worker threads and delivered to the targeted BPEL process. This property
persists delivery messages and is applicable to durable processes.

This property can be set during creation of a BPEL process service component. For
more information, see "How to Add a BPEL Process Service Component" in Oracle
Fusion Middleware Developer's Guide for Oracle SOA Suite.

async AuditTrail and dehydration are persisted by separate
threads and separate transactions.

CAUTION: If you set auditStorePolicy to async,
audit messages write to the database in a separate
thread and transaction, which increases transaction
speed. However, if a node crash occurs, audit trace
functionality may be lost.

Oracle recommends setting auditStorePolicy to async
only if enhanced performance is critical.

For more information, see "Oracle BPEL Process
Manager High Availability Architecture and Failover
Considerations" in the Oracle Fusion Middleware High
Availability Guide.

Value Description

Basic Tuning Considerations

13-4 Oracle Fusion Middleware Performance and Tuning Guide

The oneWayDeliveryPolicy is from the Oracle 10g configuration property
deliveryPersistencePolicy. The configuration property name in 11g is
bpel.config.oneWayDeliveryPolicy.

13.2.3 Tuning Invoke Messages
The MaximumNumberOfInvokeMessagesInCache property specifies the number of invoke
messages that can be kept in the in-memory cache. Once the engine hits this limit, the
message is pushed to dispacther in-memory cache. The saved messages can be
recovered using a recovery job. Use value -1 to disable.

The default value is 100000 messages.

13.2.4 Tuning Processed Requests List
The StatsLastN property sets the size of the most-recently processed request list. After
each request is finished, statistics for the request are kept in a request list. A value less
than or equal to 0 disables statistics gathering. To optimize performance, consider
disabling statistics collection if you do not need them.

This property is applicable to both durable and transient processes.

The default value is -1.

Note: One-way invocation messages are stored in the delivery cache
until delivered. If the rate at which one-way messages arrive is much
higher than the rate at which Oracle BPEL Server delivers them, or if
the server fails, messages may be lost.

Value Description

async.persist (Default) Delivery messages are persisted in the database. With this
setting, reliability is obtained with some performance impact
on the database. In some cases, overall system performance
can be impacted.

async.cache Incoming delivery messages are kept only in the in-memory
cache. If performance is preferred over reliability, this setting
should be considered.

CAUTION: If you set OneWayDeliveryPolicy to
async.cache, invoke messages do not persist to the
database; they are in memory. If the SOA node that holds
these messages fails, those messages will be lost.

Use the async.cache option only when performance is
critical and when you have an external means to track
messages and redeliver them.

For more information, see "Oracle BPEL Process Manager
High Availability Architecture and Failover Considerations"
in the Oracle Fusion Middleware High Availability Guide.

sync Directs Oracle BPEL Server to bypass the scheduling of
messages in the invoke queue, and invokes the BPEL
instance synchronously. In some cases this setting can
improve database performance.

Basic Tuning Considerations

Oracle BPEL Process Manager Performance Tuning 13-5

13.2.5 Tuning XML Document Persistence
The largedocumentthreshold property sets the large XML document persistence
threshold. This is the maximum size (in kilobytes) of a BPEL variable before it is stored
in a separate table from the rest of the instance scope data.

This property is applicable to both durable and transient processes.

Large XML documents impact the performance of the entire Oracle BPEL Server if
they are constantly read in and written out whenever processing on an instance must
be performed.

The default value is 10000 (100 kilobytes).

13.2.6 Validating XML
The validateXML property validates incoming and outgoing XML documents. If set to
True, the Oracle BPEL Process Manager applies schema validation for incoming and
outgoing XML documents. Nonschema-compliant payload data is intercepted and
displayed as a fault.

This setting is independent of the SOA composite application and SOA Infrastructure
payload validation level settings. If payload validation is enabled at both the service
engine and SOA Infrastructure levels, data is checked twice: once when it enters the
SOA Infrastructure, and again when it enters the service engine

CAUTION: Enabling XML payload validation can impact performance.

This property is applicable to both durable and transient processes.

The default value is False.

13.2.7 Tuning Wait Time
The SyncMaxWaitTime property sets the maximum time the process result receiver
waits for a result before returning. Results from asynchronous BPEL processes are
retrieved synchronously by a receiver that waits for a result from Oracle BPEL Server.

The default value is 45 seconds.

The SyncMaxWaitTime property can be found on the BPEL Service Engine Properties
page by clicking the More BPEL Configuration Properties link at the bottom of the
screen. For more information, see "Configuring BPEL Process Service Engine
Properties" in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite
and Oracle Business Process Management Suite.

13.2.8 Tuning Instance Key Block Size
The InstanceKeyBlockSize property controls the instance ID range size. Oracle BPEL
Server creates instance keys (a range of process instance IDs) in batches using the
value specified. After creating this range of in-memory IDs, the next range is updated
and saved in the ci_id_range table.

For example, if instanceKeyBlockSize is set to 100, Oracle BPEL Server creates a
range of instance keys in-memory (100 keys, which are later inserted into the cube_
instance table as cikey). To maintain optimal performance, ensure that the block size
is larger than the number of updates to the ci_id_range table.

The default value is 10000.

Advanced Tuning Considerations

13-6 Oracle Fusion Middleware Performance and Tuning Guide

13.2.9 Tuning Automatic Recovery Attempts
The MaxRecoveryAttempt parameter allows you to configure the number of automatic
recovery attempts to submit in the same recoverable instance. The value you provide
specifies the maximum number of times invoke and callback messages are recovered.
Once the number of recovery attempts on a message exceeds the specified value, a
message is marked as nonrecoverable.

When a BPEL instance makes a call to another server using invokeMessage, and that
call fails due to a server down, validation error, or security exception, the
invokeMessage is placed in a recovery queue and BPEL attempts to retry those
messages. When there are many messages, and a majority of them are being sent to the
same target, the target can become overloaded. Setting the appropriate value of
MaxRecoveryAttempt will prevent excessive load on servers that are targeted from
BPEL web service calls.

For more information on configuring the number of automatic recovery attempts to
submit in the same recoverable instance, see "Configuring Automatic Recovery
Attempts for Invoke and Callback Messages" in the Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

13.3 Advanced Tuning Considerations
The following BPEL tuning considerations may not be applicable to all BPEL
deployments. Always consult your own use case scenarios to determine if these
configurations should be used in your deployment.

13.3.1 Tuning BPEL Properties Set Inside a Composite
The BPEL properties set inside a composite affect the behavior of the component
containing the BPEL process only. Each BPEL process can be created as a component of
a composite. Component properties include inMemoryOptimization,
completionPersistPolicy, and auditLevel.

For more information on configuring these properties, see the "Deployment Descriptor
Properties" appendix of the Oracle Fusion Middleware Developer's Guide for Oracle SOA
Suite.

13.3.2 Identifying Tables Impacted By Instance Data Growth
Instance data occupies space in Oracle BPEL Process Manager schema tables. Data
growth from auditing and dehydration can have a significant impact on database
performance and throughput. See Section 13.2.1, "Tuning Audit Levels" for audit
configuration and Section 13.3.1, "Tuning BPEL Properties Set Inside a Composite" for
dehydration configuration. The table below describes the tables that are impacted by
instance data growth. A brief description is provided of each table.

Table 13–1 Oracle BPEL Process Manager Tables Impacted by Instance Data Growth

Table Name Table Description

audit_trail Stores the audit trail for instances. The audit trail viewed in
Oracle BPEL Control is created from an XML document. As an
instance is processed, each activity writes events to the audit
trail as XML.

Advanced Tuning Considerations

Oracle BPEL Process Manager Performance Tuning 13-7

audit_details Stores audit details that can be logged through the API.
Activities such as an assign activity log the variables as audit
details by default.

Audit details are separated from the audit_trail table due to
their large size. If the size of a detail is larger than the value
specified for this property, it is placed in this table. Otherwise, it
is placed in the audit_trail table.

cube_instance Stores process instance metadata (for example, the instance
creation date, current state, title, and process identifier)

cube_scope Stores the scope data for an instance (for example, all variables
declared in the BPEL flow and some internal objects that help
route logic throughout the flow).

dlv_message Stores incoming (invocation) and callback messages upon
receipt. This table only stores the metadata for a message (for
example, current state, process identifier, and receive date).

dlv_subscription Stores delivery subscriptions for an instance. Whenever an
instance expects a message from a partner (for example, the
receive or onMessage activity) a subscription is written out for
that specific receive activity.

document_ci_ref Stores cube instance references to data stored in the xml_
document table.

document_dlv_msg_ref Stores references to dlv_message documents stored in the xml_
document table.

wftask Stores tasks created for an instance. The TaskManager process
keeps its current state in this table.

work_item Stores activities created by an instance. All activities in a BPEL
flow have a work_item table. This table includes the metadata
for the activity (current state, label, and expiration date (used by
wait activities)).

xml_document Stores all large objects in the system (for example, dlv_message
documents). This table stores the data as binary large objects
(BLOBs). Separating the document storage from the metadata
enables the metadata to change frequently without being
impacted by the size of the documents.

Headers_properties Stores headers and properties information.

Table 13–1 (Cont.) Oracle BPEL Process Manager Tables Impacted by Instance Data

Table Name Table Description

Advanced Tuning Considerations

13-8 Oracle Fusion Middleware Performance and Tuning Guide

14

Oracle Business Activity Monitoring Performance Tuning 14-1

14Oracle Business Activity Monitoring
Performance Tuning

This chapter describes how to tune the Oracle Business Activity Monitoring (BAM)
dashboard application for optimal performance. Oracle BAM provides the tools for
monitoring business services and processes in the enterprise.

This chapter discusses useful parameters that can be modified to enhance the overall
performance of BAM:

■ Section 14.1, "About Oracle Business Activity Monitoring"

■ Section 14.2, "Basic Tuning Considerations"

14.1 About Oracle Business Activity Monitoring
Oracle Business Activity Monitoring (BAM) provides the tools for monitoring business
services and processes in the enterprise. It allows correlating of market indicators to
the actual business process and to changing business processes quickly or taking
corrective actions if the business environment changes. Oracle BAM also provides the
necessary tools and run-time services for creating dashboards that display real-time
data inflow and define rules to send alerts under specified conditions.

For more information see Oracle Fusion Middleware User's Guide for Oracle Business
Activity Monitoring.

14.2 Basic Tuning Considerations
The following sections provide Oracle BAM tuning considerations that can be used to
address performance issues:

■ BAM Server Tuning

■ BAM Dashboard Tuning

■ BAM Database Tuning

■ Internet Browser Tuning

■ Enterprise Message Source Tuning

14.2.1 BAM Server Tuning
The following tuning configurations can be used to improve performance of the BAM
Server:

Basic Tuning Considerations

14-2 Oracle Fusion Middleware Performance and Tuning Guide

14.2.1.1 Set the ViewSetSharing and ElementCountLimit Parameters
The ViewSetSharing parameter can be set to TRUE or FALSE in the BAM server
configuration file. This parameter enables view set sharing when possible. Typically a
particular view set can be shared with other users if they are trying to access the same
dashboard, if the view sets are not dissimilar due to factors like row level security or
prompts/parameters tied to filters.

Consider setting the ViewSetSharing parameter to TRUE so that Active Data Cache
(ADC) can reuse the same viewset and snapshot and avoid creating more viewsets.
This reduces the BAM server resource usage and improves user response time.

If this parameter is turned on, it does not always guarantee that ADC can reuse the
existing viewset. If there have been too many changes to the underlying snapshot for
the existing viewset, ADC may choose to create new viewset instead.

The ReportCache parameter used to determine if there have been too many changes is
ElementsCountLimit. This defines the number of changes to the snapshot used by
Report Cache to do the determination. In cases where the active data comes in at a fast
rate, try to set this parameter to a large number so that ADC can use view sharing at
the expense of more server CPU usage. The default value of ElementsCountLimit is 50.

14.2.1.2 Enable the Async Servlet
During periods of higher active data rates, the browser uses more memory. To prevent
potential impacts to performance, consider providing more memory on the client
machine. To do this, set the UseAsynchServlet=TRUE for the BAM dashboard
application.

The BAM dashboard application uses the Async servlet feature so that the BAM server
does not bind a specific thread to a specific user request. This provides for better
server-side system resource usage.

This parameter can be turned off by adding UseAsynchServlet=FALSE in the server
configuration file. During debugging, consider turning it off to make the process
easier.

Otherwise this should always be turned on, which is the default.

See "Creating the Dashboard View" in Oracle Fusion Middleware User's Guide for Oracle
Business Activity Monitoring.

14.2.2 BAM Dashboard Tuning
This section provides information on tuning the BAM dashboard for performance.

14.2.2.1 Tune the Active Data Retrieval Interval
The Active Data Retrieval Interval parameter controls the rate in milliseconds at which
the Oracle BAM Active Data Cache (ADC) pushes events to the Oracle BAM Report
Server. This is one of the factors that can affect the frequency of viewing active events
on the dashboard page. Increasing this interval reduces the load on the Oracle BAM
Server. Note that larger intervals increase the likelihood of multiple updates in the
dashboard collapsing into a single update.

 The default ADCPushInterval value is 1 second. You can override the default
ADCPushInterval value within a particular report using the Active Data Retrieval
Interval property in Active Studio.

Basic Tuning Considerations

Oracle Business Activity Monitoring Performance Tuning 14-3

For more information on using Active Studio, see "Getting Started With Oracle BAM
Active Studio" in Oracle Fusion Middleware User's Guide for Oracle Business Activity
Monitoring.

14.2.3 BAM Database Tuning
To achieve the best performance for Oracle Business Activity Monitoring, consider
maintaining a database on its own hardware dedicated to the Oracle Business Activity
Monitoring system. General database administration practices, as described in the
Oracle Database Performance Tuning Guide, also apply to a database dedicated to Oracle
Business Activity Monitoring.

For more information on general database configurations, see Section 2.6, "Tuning
Database Parameters".

14.2.4 Internet Browser Tuning
This section provides performance tuning configurations for Internet browsers:

14.2.4.1 Set iActiveDataScriptsCleanupFactor
BAM sends active data in <script> blocks to the browser over a persistent connection.
In some cases, the browser does not free up the memory used by the <script> blocks.
This can impact dashboard performance over time.

The iActiveDataScriptsCleanupFactor parameter provides a solution for these
memory issues. A periodic browser refresh is forced after receiving the specified
number of characters. The issue may become apparent when active data is being sent
to the dashboard at a fast pace. You may need to increase this value further for
particularly high rates of data such as when active data is coming to the dashboard at
a rate of 25 events per second or greater. Ultimately the value you set depends on
factors like your data, number of views, number of viewsets, ADCPushinterval, and so
on). You can monitor the browser's memory consumption to help determine an
appropriate value.

If performance continues to be an issue, consider increasing the value for this
parameter. For example, set the value to 2 or 3 times the default value if active data is
predicted to increase. The default value for this parameter is 1048576 bytes. The
default value often prevents frequent reconnects and prevents CPU/memory on the
client machine from creeping up too high.

14.2.4.2 Set Browser Cache Settings
If you are using Microsoft Internet Explorer, consider setting the Browsing History
Settings to "Automatic." See the Microsoft Internet Explorer online help for more
information.

14.2.5 Enterprise Message Source Tuning
BAM Enterprise Message Source (EMS) provides inbound JMS connectivity to BAM.
After setup, a BAM EMS instance can monitor JMS queues/topics and read data from
them. Each EMS instance is configured to publish data to a single Data Object in BAM
Server. The Enterprise Message Source supports four types of operations: Insert,
Update, Upsert, or Delete. Two types of JMS messages are supported: MapMessage
and TextMessage.

Basic Tuning Considerations

14-4 Oracle Fusion Middleware Performance and Tuning Guide

14.2.5.1 Message Batching
The EMS batching process clubs messages into one single message before it is sent to
BAM EMS. This feature enables the sender to send all messages in one batch over JMS.
The batching process can improve network performance by limiting the number of
round trips from the sender to JMS server to BAM EMS.

15

Oracle Mediator Performance Tuning 15-1

15 Oracle Mediator Performance Tuning

This chapter describes how to tune Oracle Mediator for optimal performance. It
contains the following topics:

■ Section 15.1, "About Oracle Mediator"

■ Section 15.2, "Basic Tuning Considerations"

■ Section 15.3, "Tuning Event Delivery Network (EDN)"

15.1 About Oracle Mediator
Mediator is a component of Oracle SOA offering that provides mediation capabilities
like selective routing, transformation and validation capabilities, along with various
message exchange patterns, like synchronous, asynchronous and event publishing or
subscription. Oracle Mediator provides the framework to mediate between various
providers and consumers of services and events. The Mediator service engine runs
with the SOA Service Infrastructure Java EE application.

15.2 Basic Tuning Considerations
In most business environments, customer data resides in disparate sources including
business partners, legacy applications, enterprise applications, databases, and custom
applications. The challenge of integrating this data efficiently can be met by using
Oracle Mediator to deliver real-time data access to all applications that update or have
a common interest in the same data.

This section provides details about setting common Oracle Mediator properties such
as:

See Also: For details about the SOA Suite, see Oracle Fusion
Middleware Developer's Guide for Oracle SOA Suite.

For details about Oracle Mediator, see "Administering Oracle
Mediator Service Components and Engines" in Oracle Fusion
Middleware Administrator's Guide for Oracle SOA Suite and Oracle
Business Process Management Suite.

Note: Before you begin tuning Oracle Mediator properties, be sure
that you have read and understand the Oracle Mediator chapters in
the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite
and Oracle Business Process Management Suite.

Basic Tuning Considerations

15-2 Oracle Fusion Middleware Performance and Tuning Guide

■ Tuning metricsLevel

■ Using Domain-Value Maps

■ Deploying Deferred Routing Rules

■ Tuning Error and Retry Parameters

■ Setting the Audit Level

■ Using Resequencer for Messages

15.2.1 Tuning metricsLevel
This property controls DMS metrics tracking level. By default, DMS metrics collections
is enabled. If you do not need to collect DMS metrics data, consider setting the
metricsLevel to Disabled to improve performance.

15.2.2 Using Domain-Value Maps
When performance is an issue, consider using domain-value maps instead of database
lookup within XSL transformations to minimize file I/O.

For more information on using domain value maps, see "Working with Domain Value
Maps" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

15.2.3 Deploying Deferred Routing Rules
The following performance configuration parameters can be used for tuning
components with parallel routing rules deployed:

■ DeferredWorkerThreadCount: Specifies the number of deferred dispatchers for
processing messages in parallel. For higher loads consider increasing this
parameter to have more number of outbound threads for deferred processing as
each parallel rule is processed by one of the DeferredWorkerThreads. Default
value is 4 threads.

■ DeferredMaxRowsRetrieved: When Mediator routing rule type is set to 'Parallel',
DeferredMaxRowsRetrieved sets the number of maximum rows (maximum
number of messages for parallel routing rule processing) that are retrieved from
Mediator store table (which stores messages for parallel routing rule for
processing.) Note that each message retrieved in this batch is processed by one
worker thread at a time. Default value is 200 rows.

■ DeferredLockerThreadSleep: For processing parallel routing rules, Oracle
Mediator has a daemon locker thread that retrieves and locks messages from
Mediator store database. The thread polls the database to retrieve messages for
parallel processing. When no messages are available, the locker thread "sleeps" for
the amount of time specified in the DeferredLockerThreadSleep and prevents
round trips to database. Default value is 2 seconds. Consider increasing this value
to improve performance. Some use case scenarios can benefit from a 'sleep' of 3600
seconds (60 minutes.)

During the specified time, no messages are available for parallel routing in either
of the following cases:

– There are no Mediator components with parallel routing rules deployed.

– Mediator component(s) with parallel routing rule is deployed, but there are no
continuous incoming messages for such components.

Basic Tuning Considerations

Oracle Mediator Performance Tuning 15-3

15.2.4 Tuning Error and Retry Parameters
Consider increasing the ErrorLockerThreadSleep parameter value when you do not
want to reduce the number of database trips.

The ErrorLockerThreadSleep parameter specifies the idle time between two
successive iterations for retrieving errored out messages when there is no errored out
message from parallel processing. The time is measured in seconds. Default value is 5
seconds. Consider increasing this value to improve performance. Some use case
scenarios can benefit from an idle time of 3600 seconds (60 minutes.)

For more information on routing, see "Creating Mediator Routing Rules" in Oracle
Fusion Middleware Developer's Guide for Oracle SOA Suite.

15.2.5 Setting the Audit Level
The auditLevel property sets the audit trail logging level. This configuration property
is applicable to all the Mediator components. This property controls the amount of
audit events that are logged by a Mediator component. Audit events result in more
database inserts into the audit_trail table which may impact performance. Audit
information is used only for viewing the state of the Mediator component from Oracle
Enterprise Manager Console.

Use the off value if you do not want to store any audit information. This value can
improve performance in some use cases. Always choose the audit level according to
your business requirements and use cases. For more information on setting the audit
level, see "Understanding the Order of Precedence for Audit Level Settings" in Oracle
Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process
Management Suite.

15.2.6 Using Resequencer for Messages
A Resequencer is used to rearrange a stream of related but out-of-sequence messages
back into order. It sequences the incoming messages that arrive in a random order and
then send them to the target services in an orderly manner.

Note: You can specify Oracle Mediator component Priority through
JDeveloper Mediator designer. This property is used to set priority
among Oracle Mediator components with parallel routing rules.

For more information, see "Creating Mediator Routing Rules" in Oracle
Fusion Middleware Developer's Guide for Oracle SOA Suite.

Value Description

Inherit Inherits the audit level from infrastructure level.

off No audit events (flow execution information) are
persisted and no logging is performed; this can result in
a slight performance boost for processing instances.

Production All events are logged. For each audit event, the payload
details are not persisted.

Development All audit events are logged. For each audit event, the
payload details are also persisted.

Tuning Event Delivery Network (EDN)

15-4 Oracle Fusion Middleware Performance and Tuning Guide

For more information about Resequencers, refer to "Administering Oracle User
Messaging Service" in the Oracle Fusion Middleware Administrator's Guide for Oracle
SOA Suite and Oracle Business Process Management Suite.

You can fine tune Resequencer by setting the value of the following properties in the
Mediator Service Engine Properties page:

■ ResequencerWorkerThreadCount: Specifies the worker thread count. Default is 4.

■ ResequencerMaxGroupsLocked: Specifies the maximum number of groups locked
in each iteration. Default is 4.

■ ResequencerLockerThreadSleep: Specifies the sleep interval for the locker threads
in seconds. Default is 10.

15.3 Tuning Event Delivery Network (EDN)
The Event Delivery Network (EDN) delivers events published by Oracle Mediator,
Oracle BPEL Process Manager components, and external publishers such as Oracle
Application Development Framework entity objects.

To improve performance of the Event Delivery Network, consider increasing the
thread count (default is 3.) This property can be modified through WLST. For more
information, see Section 11.3, "Modifying SOA Configuration Parameters".

16

Oracle Business Process Management Performance Tuning 16-1

16Oracle Business Process Management
Performance Tuning

The Oracle Business Process Management (BPM) Suite provides a seamless integration
of all stages of the application development life cycle from design-time and
implementation to run-time and application management.

This chapter contains the following sections:

■ Section 16.1, "About Oracle Business Process Management"

■ Section 16.2, "Basic Tuning Considerations"

■ Section 16.3, "Tuning Oracle Workspace and Worklist Applications"

■ Section 16.4, "Tuning Process Analytics"

16.1 About Oracle Business Process Management
The Oracle BPM Suite provides an integrated environment for developing,
administering, and using business applications centered around business processes.
BPM is layered on the Oracle SOA Suite and shares many of the same product
components, including Business Rules, Human Workflow, and Oracle Adapter
Framework for Integration.

For more information on using BPM, see the Oracle Fusion Middleware User's Guide for
Oracle Business Process Management.

For more information on tuning Oracle BPM with your other Oracle Fusion
Middleware components, see Chapter 2, "Top Performance Areas".

16.2 Basic Tuning Considerations
This section describes the following basic BPM performance tuning properties:

■ Audit Level

■ LargeDocumentThreshold

■ Dispatcher System Threads

■ Dispatcher Engine Threads

■ Dispatcher Invoke Threads

Basic Tuning Considerations

16-2 Oracle Fusion Middleware Performance and Tuning Guide

16.2.1 Audit Level
The auditLevel property sets the audit trail logging level. This configuration property
is applicable to both durable and transient processes. This property controls the
amount of audit events that are logged by a process. Audit events result in more
database inserts into the audit_trail table which may impact performance. Audit
information is used only for viewing the state of the process from Oracle Enterprise
Manager Console.

Use the off value if you do not want to store any audit information. Always choose
the audit level according to your business requirements and use cases. For more
information on setting the audit level, see "Understanding the Order of Precedence for
Audit Level Settings" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA
Suite and Oracle Business Process Management Suite.

16.2.2 LargeDocumentThreshold
The largedocumentthreshold property sets the large XML document persistence
threshold. This is the maximum size (in kilobytes) of a BPMN Data Object before it is
stored in a separate location from the rest of the instance scope data.

This property is applicable to both durable and transient processes.

Large XML documents impact the performance of the entire Oracle BPM Runtime if
they are constantly read in and written out whenever processing on an instance must
be performed.

The default value is 10000 (100 kilobytes).

16.2.3 Dispatcher System Threads
The dspSystemThreads property specifies the total number of threads allocated to
process system dispatcher messages. System dispatcher messages are general clean-up

Note: The configuration examples and recommended settings
described in this chapter are for illustrative purposes only. Consult
your own use case scenarios to determine which configuration options
can provide performance improvements.

Value Description

Inherit Inherits the audit level from infrastructure level.

off No audit events (activity execution information) are
persisted and no logging is performed; this can result in
a slight performance boost for processing instances.

Minimal All events are logged; however, no audit details
(variable content) are logged.

Error Logs only serious problems that require immediate
attention from the administrator and are not caused by a
bug in the product. Using this level can help
performance.

Production All events are logged. The audit details for assign
activities are not logged; the details for all other
activities are logged.

Development All events are logged; all audit details for all activities
are logged.

Tuning Oracle Workspace and Worklist Applications

Oracle Business Process Management Performance Tuning 16-3

tasks that are typically processed quickly by the server (for example, releasing stateful
message beans back to the pool). Typically, only a small number of threads are
required to handle the number of system dispatch messages generated during run
time.

The minimum number of threads for this thread pool is 1 and it cannot be set to 0 a or
negative number.

The default value is 2. Any value less than 1 thread is changed to the default.

16.2.4 Dispatcher Engine Threads
The dspEngineThreads property specifies the total number of threads allocated to
process engine dispatcher messages. Engine dispatcher messages are generated
whenever an activity must be processed asynchronously. If the majority of processes
deployed are durable with a large number of dehydration points (mid-process receive,
onMessage, onAlarm, and wait activities), greater performance may be achieved by
increasing the number of engine threads. Note that higher thread counts can cause
greater CPU utilization due to higher context switching costs.

The minimum number of threads for this thread pool is 1 and it cannot be set to 0 a or
negative number.

The default value is 30 threads. Any value less than 1 thread is changed to the default.

16.2.5 Dispatcher Invoke Threads
The dspInvokeThreads property specifies the total number of threads allocated to
process invocation dispatcher messages. Invocation dispatcher messages are generated
for each payload received and are meant to instantiate a new instance. If the majority
of requests processed by the engine are instance invocations (as opposed to instance
callbacks), greater performance may be achieved by increasing the number of
invocation threads. Higher thread counts may cause greater CPU utilization due to
higher context switching costs.

The minimum number of threads for this thread pool is 1 and it cannot be set to 0 a or
negative number.

The default value is 20 threads. Any value less than 1 thread is changed to the default.

16.3 Tuning Oracle Workspace and Worklist Applications
The following settings can be used to tune Oracle Workspace and Worklist
applications:

Tuning Process Analytics

16-4 Oracle Fusion Middleware Performance and Tuning Guide

16.4 Tuning Process Analytics
Tuning Process Analytics includes the following:

Parameter Description

HTTP Session Timeout To manage over resource usage, adjust the session timeout
value, in minutes, in the web.xml file.

The following is a sample snippet of web.xml:

<session-config>
 <session-timeout>
 5
 </session-timeout>
 </session-config>

NOTE: If you must modify this property, post deployment, you
must edit web.xml manually. See "Editing web.xml Properties"
in Oracle Fusion Middleware Administrator's Guide for Oracle
WebCenter Portal.

ADF Client State Token Through this setting, you can control the number of pages users
can navigate using the browser Back button without losing
information. To reduce CPU and memory usage, you can
decrease the value in the web.xml file.

The following is a sample snippet of web.xml:

<context-param>
 <param-name>
 org.apache.myfaces.trinidad.CLIENT_STATE_
MAX_TOKENS
 </param-name>
 <param-value>
 3
 </param-value>
 </context-param>

NOTE: If you must modify this property, post deployment, you
must edit web.xml manually. See "Editing web.xml Properties"
in Oracle Fusion Middleware Administrator's Guide for Oracle
WebCenter Portal.

Compress_View_State Token This setting controls whether or not the page state is
compressed. Zipping greatly reduced the memory being taken
up by page state in the session object.

The following is a snippet of the web.xml:

<param-name>org.apache.myfaces.trinidad.COMPRESS_VIEW_
STATE</param-name>
 <param-value>true</param-value>

DISABLE_CONTENT_COMPRESSION By default, style classes that are rendered are compressed to
reduce page size. In production environments, make sure you
remove the DISABLE_CONTENT_COMPRESSION parameter
from the web.xml file or set it to FALSE.

The following is a snippet of the web.xml:

<param-name>org.apache.myfaces.trinidad.DISABLE_
CONTENT_COMPRESSION</param-name>
 <param-value>false</param-value>

Tuning Process Analytics

Oracle Business Process Management Performance Tuning 16-5

16.4.1 Process Measurement
Process Analytics uses measurement events to sample the process and publish
measurements to registered consumers. These measurements can be disabled using the
BPMN Configuration "Disable Sensors". Specific consumers for these measurements
can be disabled by setting the BPMN Configuration "Disable Actions". For more
information, see the Oracle Fusion Middleware Administrator's Guide.

Measurement events are published on the JMS Topic: MeasurementTopic, and
consumed by registered Action MDBs. In order to tune JMS for Measurements,
consider changing the following, as needed, in a high volume environment:

■ MeasurementTopic

Bytes Max 800 MB

Message Max 1000000

■ MeasurementTopicConnectionFactory

Send Timeout 240000

■ BPMJMSServer

MessageBuffer Size 100000

Note that the BPMJMSServer uses a Paging File and JMSFileStore.

16.4.2 Tuning Process Cubes
Process Cubes perform periodic aggregations to compute workload information. The
frequency of these computations is determined by the CubeUpdateFrequency
parameter of BPMNConfig mbean and can be changed from the Oracle Enterprise
Manager console. In a high volume environment, consider changing this parameter to
an appropriately higher value such as 12 hours, for example, to conserve computing
resources.

Process Cube Aggregator uses the BPM_CUBE_AUDITINSTANCE table to compute
workload and performance information. Unwanted records from the BPM_CUBE_
AUDITINSTANCE table get purged as part of the SOA Purge script. Additionally,
consider running the following delete script periodically to purge the unwanted
records from BPM_CUBE_AUDITINSTANCE table for improving the performance of Process
Cube computations.

DELETE FROM BPM_CUBE_AUDITINSTANCE A
WHERE EXISTS
(SELECT 1 FROM BPM_CUBE_AUDITINSTANCE B

Note: Only data that is useful should be published. The process
design specifies what data (dimensions, measure, counters) should be
published and at what point(s). If data is being generated that is not
useful, then it could be adding unnecessary load to the system.

Note: The creation of workload snapshots can impact performance.
Consider using the properties in Oracle Fusion Middleaware Control
to tune the frequency and time to live (TTL) for workload snapshots.
For more information on using Fusion Middleware Control, see the
Oracle Fusion Middleware Administrator's Guide.

Tuning Process Analytics

16-6 Oracle Fusion Middleware Performance and Tuning Guide

WHERE A.COMPONENTINSTANCEID = B.COMPONENTINSTANCEID AND
B.OPERATION='INSTANCE_CREATED' AND
B.ACTIVITYSTATUS='PROCESSED')

After deleting unwanted records as described above, you should also consider
"shrinking space". Deleted space is not immediately reclaimed, therefore run the
following commands:

alter table BPM_CUBE_AUDITINSTANCE enable row movement;

alter table BPM_CUBE_AUDITINSTANCE shrink space;

ALTER TABLE BPM_CUBE_AUDITINSTANCE MODIFY LOB (<lob_column>) (SHRINK SPACE);

16.4.2.1 Tuning Workload Table Record Proliferation
1. Use the "Attribute" business indicators instead of "Dimension" business indicators

when there is high cardinality. Workload records get generated in large numbers if
a dimension business indicator has high cardinality. Before 11.1.1.7.0 release, its
best to avoid using such business indicator. If the value is numeric, please consider
making them as measure business indicator

From 11.1.1.7.0 release onwards, "Attribute" type business indicators have been
introduced. It is recommended that all business indicators with high cardinality,
which are neither dimensions nor measures, should be ideally created as an
"Attribute" type business indicator. If you notice high memory usage (by
workload calculation) and generation of large number of workload records for
each interval, then re-evaluate all the dimension business indicators in the
composite and determine if any of them should be actually created as an
"Attribute" business indicator (keeping the same name). Once the change is done,
re-deploy the updated composite with "Keep instances running" option.

2. Workload timer does the purge and workload calculation as part of the same
transaction. If the purge times out, for example, txn timeout, connection
resource not available and more, workload timer stops purging from the next
snapshot onwards so that it does not affect the workload calculation.

■ The timer based purge can be resumed by either updating the BPMNConfig
CubeUpdateFrequency parameter or by the restarting server.

■ If the environment has high number of records in bpm_cube_workload table,
then it is best to update the bpm_cube_workload table manually. The only
impact of this action is that the workload dashboards in workspace do not
show any data till a fresh snapshot of workload calculation is populated.

17

Oracle Human Workflow Performance Tuning 17-1

17 Oracle Human Workflow Performance Tuning

This chapter describes how to tune Oracle Human Workflow for optimal performance.
You can tune Oracle Human Workflow in these areas:

■ Section 17.1, "About Oracle Human Workflow"

■ Section 17.2, "Basic Tuning Considerations"

■ Section 17.3, "Improving Server Performance"

■ Section 17.4, "Completing Workflows Faster"

■ Section 17.5, "Tuning Identity Provider"

■ Section 17.6, "Tuning the Database"

17.1 About Oracle Human Workflow
Oracle Human Workflow is a service engine running in Oracle SOA Service
Infrastructure that allows the execution of interactive human driven processes. A
human workflow provides the human interaction support such as approve, reject, and
reassign actions within a process or outside of any process. The Human Workflow
service consists of a number of services that handle various aspects of human
interaction with a business process.

For more information, see "Using the Human Workflow Service Component" in Oracle
Fusion Middleware Developer's Guide for Oracle SOA Suite.

See also the Oracle Human Workflow web site at
http://www.oracle.com/technology/products/soa/hw/index.html.

17.2 Basic Tuning Considerations
This section discusses the various options available to address performance issues:

■ Minimize Client Response Time

■ Choose the Right Workflow Service Client

■ Narrow Qualifying Tasks Using Precise Filters

■ Retrieve Subset of Qualifying Tasks (Paging)

■ Fetch Only the Information That Is Needed for a Qualifying Task

■ Reduce the Number of Return Query Columns

■ Use the Aggregate API for Charting Task Statistics

■ Use the Count API Methods for Counting the Number of Tasks

Basic Tuning Considerations

17-2 Oracle Fusion Middleware Performance and Tuning Guide

■ Create Indexes On Demand for Flexfields

■ Use the doesTaskExist Method

17.2.1 Minimize Client Response Time
Since workflow client applications are interactive, it is important to have good
response time at the client. Some of the factors that affect the response time include
service call performance impacts, querying time to determine the set of qualifying
tasks for the request, and the amount of additional information to be retrieved for each
qualifying task.

17.2.2 Choose the Right Workflow Service Client
Workflow services support two major types of clients: SOAP and EJB clients. EJB
clients can be further separated into local EJB clients and remote EJB clients.

If the client application is based on .Net technologies, then only the SOAP workflow
services can be used. However, if the client application is based on Java EE technology,
then consider which client should be used based on your use case scenarios. The
options are listed below:

■ Remote client - This is the best option in terms of performance in most cases. If the
client is running in the same JVM as the workflow services (soa-infra application),
the API calls are optimized so that there is no remote method invocation (RMI)
involved. If the client is on a different JVM, then RMI is used, which can impact
performance due to the serialization and de-serialization of data between the API
methods.

■ SOAP client - While this option is preferred for standardization (based on web
services), there are additional performance considerations when compared to the
remote method invocation (RMI) used in the remote client. Additional processing
is performed by the web-services technology stack which causes the marshalling
and unmarshalling of API method arguments between XML.

For more information, see Oracle Fusion Middleware Developer's Guide for Oracle SOA
Suite.

17.2.3 Narrow Qualifying Tasks Using Precise Filters
Using precise filters is one of the most important factors in improving response time.
When a task list is retrieved, the query should be as precise as possible so the
maximum filtering can be done at the database level.

For example, when the inbox view is requested for a user, the tasks are filtered mainly
based on whether they are assigned to the current user or to the groups the user
belongs to. By specifying additional predicate filters on the inbox view, the overall
response time for the query can be reduced since lesser number of tasks qualify.

Alternatively, you can define views by specifying predicate filters and the overall
response time for such views is reduced since lesser number of tasks qualify. All
predicates passed to the query APIs (or defined in the views) are directly pushed to
the database level SQL queries. With this information, the database optimizer can use
the best indexes to create an optimal execution plan. The additional filters can be
based on task attributes or promoted flex fields. For example, instead of listing all PO
approval tasks, views can be defined to present tasks to the user based on priority,
date, category, or amount range.

Basic Tuning Considerations

Oracle Human Workflow Performance Tuning 17-3

Example: To retrieve all assigned tasks for a user with priority = 1, you can use the
following API call:

Predicate pred = new Predicate(TableConstants.WFTASK_STATE_COLUMN,
Predicate.OP_EQ,
IWorkflowConstants.TASK_STATE_ASSIGNED);
pred.addClause(Predicate.AND,
TableConstants.WFTASK_PRIORITY_COLUMN,
Predicate.OP_EQ,

1);
List tasks = querySvc.queryTasks(ctx,
queryColumns,
null,
ITaskQueryService.AssignmentFilter.MY ITaskQueryService.AssignmentFilter.MY,
null,
pred,
null,
startRow,
endRow);

17.2.4 Retrieve Subset of Qualifying Tasks (Paging)
Once the task list has been narrowed down to meet a specific criteria as discussed in
the previous section, the next level of filtering is based on how many tasks are to be
presented to the user. You want to avoid fetching too many rows, which not only
increases the query time but also increases the application process time and the
amount of data returned to client. The query API has paging parameters that control
the number of qualifying rows returned to the user and the start row.

For example, in the queryTasks method:

List tasks = querySvc.queryTasks(ctx,
queryColumns,
null,
 ITaskQueryService.AssignmentFilter.MY,
null,
pred,
null,
startRow,
endRow);
Consider setting the startRow and endRow parameters to values that may limit the
number of return matching records.

17.2.5 Fetch Only the Information That Is Needed for a Qualifying Task
When using the queryTask service, consider reducing the amount of optional
information retrieved for each task returned in the list. This may reduce the
performance impacts from additional SQL query and Java logic.

For example, in the following queryTasks method, only the group actions information
is retrieved. You can also retrieve attachment and payload information directly in the
listing, but you may encounter performance impacts.

List<ITaskQueryService.OptionalInfo> optionalInfo
= new ArrayList<ITaskQueryService.OptionalInfo>();
optionalInfo.add(ITaskQueryService.OptionalInfo.GROUP_ACTIONS);
// optionalInfo.add(ITaskQueryService.OptionalInfo.ATTACHMENTS);
// optionalInfo.add(ITaskQueryService.OptionalInfo.PAYLOAD);
List tasks = querySvc.queryTasks(ctx,
queryColumns,

Basic Tuning Considerations

17-4 Oracle Fusion Middleware Performance and Tuning Guide

optionalInfo,
ITaskQueryService.AssignmentFilter.MY,
null,
pred,
null,
startRow,
endRow);
In rare cases where the entire payload is needed, then the payload information can be
requested. Typically only some of the payload fields are needed for displaying the task
list. For example, for PO Tasks, the PO amount may be a column that must be
displayed. Rather than fetching the payload as additional information and then
retrieving the amount using an xpath expression and displaying it in the listing,
consider mapping the amount column from the payload to a flex field. The flex field
can then be directly retrieved during SQL querying which may significantly reduce the
processing time.

Similarly, for attachments where the name of the attachment is to be displayed in the
listing and the document itself is stored in an external repository, consider capturing
the attachment name in the payload and mapping it to a flex field, so that processing
time is optimized. While constructing the listing information, the link to the
attachment can be constructed by fetching the appropriate flex field.

17.2.6 Reduce the Number of Return Query Columns
When using the queryTask service, consider reducing the number of query columns to
improve the SQL time. Also, try to use the common columns as they are most likely
indexed and the SQL can execute faster.

For example, in the following queryTasks method, only the TASKNUMBER and TITLE
columns are returned:

List queryColumns = new ArrayList();
queryColumns.add("TASKNUMBER");
queryColumns.add("TITLE");
...
List tasks = querySvc.queryTasks(ctx,
null,
 ITaskQueryService.AssignmentFilter.MY,
null,
pred,
null,
startRow,
endRow);

17.2.7 Use the Aggregate API for Charting Task Statistics
Sometimes it is necessary to display charts or statistics to summarize task information.
Rather than fetching all the tasks using the query API, and computing the statistics at
the client layer, consider using the new aggregate APIs to compute the statistics at the
database level.

For example, the following call illustrates the use of the API to get summarized
statistics based on state for tasks assigned to a user:

List taskCounts = querySvc.queryAggregatedTasks(ctx,
Column.getColumn(WFTaskConstants.STATE_COLUMN),
 ITaskQueryService.AssignmentFilter.MY,
keyWordFilter,
filterPredicate,
false,

Improving Server Performance

Oracle Human Workflow Performance Tuning 17-5

false);

17.2.8 Use the Count API Methods for Counting the Number of Tasks
Sometimes it is only necessary to count how many tasks exist that match certain
criteria. Rather than calling the queryTasks API method, and determining the size of
the returned list, call the countTasks API method, which returns only the number of
matching tasks. The performance impact of returning a count of tasks is much lower
than returning a list of task objects.

For example, the following call illustrates the use of the API to get the total number of
tasks assigned to a user:

int numberOfTasks = querySvc.countTasks(ctx,
ITaskQueryService.AssignmentFilter.MY,
keyWordFilter,
filterPredicate);

17.2.9 Create Indexes On Demand for Flexfields
The workflow schema table WFTASK contains several flexfield attribute columns that
can be used for storing task payload values in the workflow schema. Because there are
numerous columns, and their use is optional, the installed schema does not contain
indexes for these columns. In certain use-cases, for example, where certain mapped
flexfield columns are frequently used in query predicates, performance can be
improved if you create indexes on these columns.

For example, to create an index on the TEXTATTRIBUTE1 column, the following SQL
command should be run:

create index WFTASKTEXTATTRIBUTE1_I on WFTASK(TEXTATTRIBUTE1);

17.2.10 Use the doesTaskExist Method
Sometimes it is necessary to check whether any tasks exist that match particular query
criteria. Rather than calling the countTasks method, and checking if the number
returned is zero, consider using doesTaskExist. The doesTaskExist method performs
an optimized query that simply checks if any rows exist that match the specified
criteria. This method may achieve better results than calling the countTasks method.

For example, the following call illustrates the use of the API method to determine if a
user owns any task instances:

boolean userOwnsTask = querySvc.doesTaskExist(ctx,
ITaskQueryService.AssignmentFilter.OWNER,null,null);

17.3 Improving Server Performance
Server performance essentially determines the scalability of the system under heavily
loaded conditions. Section 17.2.1, "Minimize Client Response Time" lists several ways
in which client response times can be minimized by fetching the right of amount of
information and reducing the potential performance impact associated with querying.
These techniques also reduce the database and service logic performance impacts at

Note: The exact indexes required depend on the flexfield attribute
columns being used, and the nature of the queries being executed.
After creating the indexes, the statistics for the WFTASK table should
be re-computed and flushed.

Improving Server Performance

17-6 Oracle Fusion Middleware Performance and Tuning Guide

the server and can improve server performance. In addition, a few other configuration
changes can be made to improve server performance:

■ Archive Completed Instances Periodically

■ Select the Appropriate Workflow Callback Functionality

■ Minimize Performance Impacts from Notification

■ Deploy Clustered Nodes

17.3.1 Archive Completed Instances Periodically
The database scalability of a system is largely dependent on the amount of data in the
system. Since business processes and workflows are temporal in nature, once they are
processed, they are not queried frequently. Having numerous completed instances in
the system can slow the system. Consider using an archival scheme to periodically
move completed instances to another system that can be used to query historical data.
Archival should be done carefully to avoid orphan task instances.

17.3.2 Select the Appropriate Workflow Callback Functionality
The workflow callback functionality can be used to query or update external systems
after any significant workflow event, such as assignment or completion of task. While
this functionality is very useful, it has to be implemented correctly to avoid impacting
performance.

When performance is critical, ensure that there are sufficient resources to update the
external system after the task is completed instead of after every workflow event. For
example, instead of using a callback, the service can be invoked once after the
completion of the task. If a callback cannot be avoided, then consider using a Java
callback instead of a BPEL callback. Java callbacks do not have the performance impact
associated with a BPEL callback since the callback method is executed in the same
thread. In contrast, a BPEL callback may impact performance when sending a message
to the BPEL engine, which in turn must be correlated so that it is delivered to the
correct process instance. The workflow service has to be called by the BPEL engine
after the invocation of the service.

17.3.3 Minimize Performance Impacts from Notification
Notifications are useful for alerting users that they have a task to execute. In
environments where most approvals happen through email, actionable notifications
are especially useful. This also implies that there is not much load in terms of worklist
usage. However if most users interact through the Worklist, and notifications serve a
secondary purpose, then notifications should be used judiciously. Consider
minimizing the notification to just alert a user when a task is assigned instead of
sending out notifications for each workflow event. Also, if the task content is also
mailed in the notification there may be an impact to performance. To minimize the
impact, consider making the notifications secure in which case only a link to the task is
sent in the notification and not the task content itself.

17.3.4 Deploy Clustered Nodes
All workflow instances and state information are stored in the dehydration database.
Workflow services are stateless which means they can be used concurrently on a
cluster of nodes. When performance is critical and a highly scalable system is needed,
a clustered environment can be used for supporting workflow. For more information
on clustered architecture, see Section 30.2, "Using Clusters with Oracle Fusion

Completing Workflows Faster

Oracle Human Workflow Performance Tuning 17-7

Middleware".

17.4 Completing Workflows Faster
The time it takes for a workflow to complete depends on the routing type specified for
the workflow. The workflow functionality provides some options that can be used to
improve the amount of time it takes to complete workflows. Some of these options are
discussed in this section:

■ Use Workflow Reports to Monitor Progress

■ Specify Escalation Rules

■ Specify User and Group Rules for Automated Assignment

■ Use Task Views to Prioritize Work

17.4.1 Use Workflow Reports to Monitor Progress
Several workflow reports (and corresponding views) are available that can make
monitoring and proactively fixing problems easier. A few of these reports are listed
below:

■ The Unattended Tasks Report provides a list of group tasks that need attention
since they have not yet been acquired by any user to work on.

■ The Task Cycle Time Report gives an idea of how much time it takes for a
particular type of workflow to complete.

■ The Task Productivity Report indicates the inflow and outflow of tasks for
different users.

■ The Assignee Time Distribution Report provides a detailed drill-down of the time
spent by each user during the task life cycle (including the idle time when the task
was waiting to be picked up by a user.)

All of these reports can be used effectively to fix problems. By checking unattended
tasks report, you can assign tasks that have been in the queue for a long time to
specific users. By monitoring cycle time and other statistics, you can add staff to
groups that are overloaded or take a longer time to complete. Thus reports can be used
effectively to ensure workflows complete faster.

17.4.2 Specify Escalation Rules
To ensure that tasks do not get stuck at any user, you can specify escalation rules. For
example, you can move a task to a manager if a certain amount of time passes without
any action being taken on the task. Custom escalation rules can also be plugged in if
the task must be escalated to some other user based on alternative routing logic. By
specifying proper escalation rules, you can reduce workflow completion times.

17.4.3 Specify User and Group Rules for Automated Assignment
Instead of manually reassigning tasks to other users or members of a group, you can
use user and group rules to perform automated reassignment. This ensures that
workflows get timely attention. For example, a user can set up a user rule such that
workflows of a specific type and matching a certain filter criteria are automatically
reassigned to another user in a specified time window. Similarly, a group rule can be
used to automatically reassign workflows to a member of the group based on different
routing criteria such as round robin or most productive. Thus rules can help

Tuning Identity Provider

17-8 Oracle Fusion Middleware Performance and Tuning Guide

significantly reduce workflow waiting time, which results in faster workflow
completion.

17.4.4 Use Task Views to Prioritize Work
A user's inbox can contain tasks of various types with various due dates. The user has
to manually sift through the tasks or sort them to find out which one he or she should
work on next. Instead, by creating task views where tasks are filtered based on due
dates or priority, users can get their work prioritized automatically so they can focus
on completing their tasks instead of wasting their time on deciding which tasks to
work on. This also results in faster completion of workflows.

17.5 Tuning Identity Provider
The workflow service uses information from the identity provider in constructing the
SQL query to determine the tasks qualifying for a user based on his or her role/group
membership. The identity provider is also queried for determining role information to
determine privileges of a user when fetching the details of a task and determining
what actions can the user perform on a task. There are a few ways to speed up
requests made to the identity provider.

■ Set the search base in the identity configuration file to node(s) as specific as
possible. Ideally you should populate workflow-related groups under a single
node to minimize traversal for search and lookup. This is not always possible; for
example, you may need to use existing groups and grant membership to groups
located in other nodes. If it is possible to specify filters that can narrow down the
nodes to be searched, then you should specify them in the identity configuration
file.

■ Index all critical attributes such as dn and cn in the identity provider. This ensures
that when a search or a lookup is done, only a subset of the nodes are traversed
instead of a full tree traversal.

■ Use an identity provider that supports caching. Not all LDAP providers support
caching but Oracle Internet Directory supports caching which can make lookup
and search queries faster.

17.6 Tuning the Database
The Human Workflow schema is shipped with several indexes defined on the most
important columns for all the tables. Based on the type of request, different SQL
queries are generated to fetch the task list for a user. The database optimizer evaluates
the cost of different plan alternatives (for example, full table scan, access table by
index) and decides on a plan that is lower in cost. For the optimizer to work correctly,
the index statistics should be current at all times. As with any database usage, it is
important to make sure the database statistics are updated at regular intervals and
other tunable parameters such as memory, table space, and partitions are used
effectively to get maximum performance.

For more information on tuning the database, see Section 2.6, "Tuning Database
Parameters".

18

Oracle Adapters Performance Tuning 18-1

18 Oracle Adapters Performance Tuning

This chapter describes how to tune Oracle Adapters for optimal performance. Oracle
Adapters, a component of the Oracle SOA Suite of Applications, provide an integrated
view of data and allow multiple applications to be integrated.

This chapter contains the following sections:

■ Section 18.1, "About Oracle Adapters"

■ Section 18.2, "Oracle JCA Adapters for Files/FTP"

■ Section 18.3, "Oracle JCA Adapter for Database Tuning"

■ Section 18.4, "Oracle Socket Adapter Tuning"

■ Section 18.5, "Oracle SOA JMS Adapter Tuning"

■ Section 18.6, "Oracle AQ Adapter Tuning"

■ Section 18.7, "Oracle MQ Adapter Tuning"

18.1 About Oracle Adapters
Oracle technology adapters integrate Oracle Application Server and Oracle Fusion
Middleware components such as Oracle BPEL Process Manager (Oracle BPEL PM) or
Oracle Mediator components to file systems, FTP servers, database queues (advanced
queues, or AQ), Java Message Services (JMS), database tables, and message queues
(MQ Series).

For more information on Oracle Adapters, see Oracle Fusion Middleware User's Guide for
Technology Adapters.

18.2 Oracle JCA Adapters for Files/FTP
This section describes the various features available for scalability and performance
tuning of Oracle File and FTP Adapters.The Oracle File and FTP Adapters provide
knobs to throttle the inbound and outbound operations. The Oracle File and FTP
Adapters also provide knobs that can be used to tune the performance of outbound
operations. The Oracle File and FTP Adapters knobs are described in the following
sections:

■ Inbound Throttling Best Practices

■ Outbound Throttling Best Practices

■ Outbound Performance Best Practices

Oracle JCA Adapters for Files/FTP

18-2 Oracle Fusion Middleware Performance and Tuning Guide

18.2.1 Inbound Throttling Best Practices
The Oracle File and FTP Adapters provide parameters that can be used to throttle the
inbound operations. The table below describes the inbound throttling practices:

18.2.2 Outbound Throttling Best Practices
The Oracle File and FTP Adapters provide parameters that can be used to throttle the
outbound operations. The table below describes the outbound throttling practices:

Note: For composites with Oracle File and FTP Adapters, which are
designed to consume very large number of concurrent messages, you
must set the number of open files parameter for your operating
system to a larger value. For example, to set the number of open files
parameter to 8192 for Linux, use the ulimit -n 8192 command

Parameter Type Values Description

MaxRaiseSize JCA <property
name="MaxRaiseSize
" value="100"/>

Default: 10000 (ten
thousand)

This parameter defines the maximum number of files
that the inbound adapter would submit for processing
on each polling cycle. For example, if your inbound
directory has 1000 files and the MaxRaiseSize is set to
100, the adapter can increase to 100 files on each
polling cycle.

Defined in the Inbound JCA File.

SingleThreadModel JCA <property
name="SingleThread
Model"
value="true"/>

Default: False (In this
case, the global
in-memory queue is
used).

If the value is true, the poller lists, translates, or
publishes files in the same thread. In other words, it
does not use the global in-memory queue for
publishing.

Defined in the Inbound JCA File.

ThreadCount JCA <property
name="ThreadCount"
value="10"/>

Default: -1 (In this
case, the adapter uses
the global thread
pool and in-memory
queue)

This parameter enables the Oracle File and FTP
Adapters to create their own processor threads rather
than depending on the global pool of processor
worker threads for processing the enqueued files. This
parameter partitions the in-memory queue and each
composite application receives its own in-memory
queue.

If the ThreadCount is set to 0, then the threading
behavior is the same as that of the
SingleThreadModel. If the ThreadCount is set to -1,
then the global thread pool is activated, which is the
same as the Default Threading Model. The maximum
value that can be set for ThreadCount is 40.

Defined in the Inbound JCA File.

PublishSize This parameter enables you to break the file content
into a specified number batches. The debatching
process can improve performance when the message
size is big as the receiver of the message. Debatching
can create more instances with less data.

Oracle JCA Adapters for Files/FTP

Oracle Adapters Performance Tuning 18-3

18.2.3 Outbound Performance Best Practices
The Oracle File and FTP Adapters provide parameters that can be used to tune the
performance of outbound operations. The table below describes the outbound
performance parameters:

Parameter Type Value Description

ConcurrentThreshold JCA <property
name="ConcurrentThre
shold" value="100"/>

Default: 20 (In this case,
not more than 20
translations occur for a
particular outbound
scenario.)

This parameter specifies the
maximum number of translation
activities that are allowed to start in
parallel for a particular outbound
scenario. The translation step
during the outbound operation is
CPU intensive and must be
monitored as it might cause other
applications or threads to starve.
The maximum value is 100.

Defined in the Outbound JCA File.

Parameter Type Value Description

UseStaging JCA <property
name="UseStaging"
value="true"/>

Default: True

If the parameter is set to true, then
the outbound Oracle File or FTP
Adapter writes translated data to a
staging file and later streams the
staging file to the target file. If the
parameter is set to false, then the
outbound Oracle File or FTP
Adapter does not use an
intermediate staging file.

Defined in Outbound JCA File.

serializeTranslation Endpoint Property <reference
name="PurchaseOrderOut
"> <interface.wsdl
interface="...."/>
<binding.jca
config="PurchaseOrderO
ut_ftp.jca"/>
<property
name="serializeTransla
tion" type="xs:string"
many="false" source=""
override="may">true</p
roperty> </reference>

Defaults:

■ True (If the value of
UseStaging is set to
True)

■ False (If the value of
UseStaging is set to
False)

If True, then the translation step is
serialized using a semaphore. The
number of permits for semaphore
(monitoring the translation step)
comes from ConcurrentThreshold
parameter (listed in the preceding
table). The default value of True is
used because the translation step is
CPU intensive and you do not
want to starve other applications or
threads.

If False, then the translation step
occurs outside the semaphore.

Defined in Binding property for
reference in composite.xml.

Oracle JCA Adapter for Database Tuning

18-4 Oracle Fusion Middleware Performance and Tuning Guide

18.3 Oracle JCA Adapter for Database Tuning
The Oracle Database Adapter is pre-configured with many performance
optimizations. You can, however, make some changes to reduce the number of round
trips to the database, as described in the following sections:

■ JCA Adapter Basic Tuning Considerations

■ Existence Checking

18.3.1 JCA Adapter Basic Tuning Considerations
Adapter performance is directly related to the number of round-trips to the database,
and the network cost of each trip. If performance becomes an issue, and making
modifications is appropriate for your deployment, consider tuning the following
parameters:

■ Use Indexes

Indexes can improve performance of selects, updates and deletes. Index all
queried fields, such as the primary key and the MarkReadField of the
LogicalDeletePollingStrategy, when polling. For MarkReadField specify a non-null
MarkUnreadValue. Caution: An index on a column containing many nulls may
revert to full table scans.

■ Disable OptimizeMerge

The OptimizeMerge parameter allows the detection of XML elements for which no
value was specified. The related columns are excluded from inserts and updates.
Disabling this parameter generally improves performance, but there is one case
where it could have a negative effect. If multiple rows are being passed in as a
single XML, and each row has different columns set (user entered with many
optional fields), there is no benefit from batch writing, as each insert or update is
different.

■ Increase MaxRaiseSize

inMemoryTranslation Binding Property <reference
name="PurchaseOrderOut
"> <interface.wsdl
interface="...."/>
<binding.jca
config="PurchaseOrderO
ut_ftp.jca"/>
<property
name="inMemoryTranslat
ion" type="xs:string"
many="false"
source=""override="may
">false</property>
</reference>

Default: False

This parameter is applicable only if
UseStaging is False.

If True, then the translation step
occurs in-memory (an in-memory
byte array is created.)

If False, then the adapter creates an
output stream to the target file
(FTP, FTPS, and SFTP included)
and allows the translator to
translate and write directly to the
stream.

Defined in Binding property for
reference in composite.xml.

Note: The tuning considerations in this chapter are listed for
example only. Tuning parameters are specific to each deployment.
Review you current usage and performance issues to determine which
tuning considerations can improve performance.

Parameter Type Value Description

Oracle JCA Adapter for Database Tuning

Oracle Adapters Performance Tuning 18-5

The MaxRaiseSize parameter indicates the maximum number of XML records that
can be raised at a time to the BPEL engine. For example, if you set MaxRaiseSize =
10, then 10 database records are raised simultaneously. On an inbound read, for
example, you can set MaxRaiseSize = 0 (unbounded) which means that if you read
1000 rows, you can create one XML with 1000 elements. These elements are passed
through a single Oracle BPEL Process Manager instance. A merge on the outbound
side can then take all 1000 in one group and write them all at once with batch
writing. Use the MaxRaiseSize parameter for publishing large payloads.

■ Increase MaxTransactionSize

This property controls the number of records processed per transaction by each
thread. If set to a large value such as 1000, turning on the UseBatchDestroy option
could have a negative impact on performance. Setting a large MaxTransactionSize
and a small MaxRaiseSize could also have negative impact on performance.
Consider maintaining up to a 10:1 ratio in a synchronous scenario. Ideally, you
should consider increasing MaxRaiseSize until it is a 1:1 ratio.

■ Enable UseBatchDestroy

This property controls how the processed records are updated (ex: Deleted for
DeletePollingStrategy, MarkedProcessed for LogicalDeleteStrategy). If set,
only one update/delete is executed for all the rows that are part of that
transaction. The number of rows in a transaction is controlled by the
MaxTransactionSize option. Note that this may not always offer an improvement
because, by default, batch writing is used, which also ends up in a single round
trip to the database.

■ Enable Batch Reading

Batch reading of one-to-many and one-to-one relationships is on by default. You
can also use joined reading for one-to-one relationships instead, which may offer a
slight improvement.

■ Disable Delete Polling Strategy

Avoid the delete polling strategy because it must individually delete each row. The
sequencing polling strategy can destroy 1000 rows with a single update to a helper
table. Note that a LogicalDelete is also better than Delete, as updates are typically
faster than deletes. To maintain performance, however, ensure that you have
indexed the table. If you have not indexed, you can keep the total number of rows
small by using deletes. In some instances deletes may be faster as the cost of a full
table scan is negligible.

■ Use Distributed Polling

Distributed polling enables you to configure polling for scalability. For more
information, see "Scalability" in Oracle Fusion Middleware User's Guide for Technology
Adapters.

■ Use Synchronous Processes

On BPEL you can configure Database Adapter processes to be synchronous. You
can also create sequential routing rules in Mediator. This can improve throughput
in database-to-database scenarios, as there is less instance processing impact.

■ Use Insert

The insert operation is the most performant because it uses no existence check and
has no extra performance impact associated with it. There are no reads, only
writes. If you know that you are inserting most of the time, use insert, and catch a

Oracle JCA Adapter for Database Tuning

18-6 Oracle Fusion Middleware Performance and Tuning Guide

unique key constraint SQL exception inside your BPEL process, which can then
perform a merge or update instead.

To monitor performance, you can enable debug logging and then watch the SQL
for various inputs.

■ Disable Merge

Merge executes one extra SELECT per related table. The SELECT is used to
determine whether each row should be inserted or updated. If the row is updated,
the update performed is minimal. If no rows have changed, nothing is updated.

■ Use Connection Pooling

The adapter should also point to a tuned data source connection pool. Tuning the
connection pool is important because creating and tearing down database
connections can impact performance.

■ Use Attribute Filtering

On the Attribute Filtering page of the Adapter Configuration Wizard you can
choose which fields to map to the XML and vice versa. You can improve
performance by deselecting columns that are not needed for your particular
business case, especially large columns like LOBs.

■ Use Native Sequencing

If you are using the XSL functions to assign primary keys to records, consider
using the built-in native sequencing support in the adapter. Sequencing support
obtains and caches 50 keys at a time by default. Caching improves performance by
reducing the number of round trips. The chunk size can be controlled
incrementally by modifying the sequencePreallocationSize connector property.

■ Do not use primary or foreign keys on the database

Using primary and foreign keys can impact performance. Avoid using them when
possible. If foreign keys are defined on the tables, make sure an index is created on
the foreign key.

■ JDBC Driver Class

The default JDBC driver class used to create the physical database connections in
the connection pool is oracle.jdbc.xa.client.OracleXADataSource. Changing
the driver to oracle.jdbc.OracleDriver may provide some performance
improvement.

For more information on tuning the JDBC drivers, see "Third Party JDBC Driver
and Database Connection Configuration" in Oracle Fusion Middleware User's Guide
for Technology Adapters.

18.3.2 Existence Checking
One method of performance optimization for merge is to eliminate check database
existence checking. The existence check is marginally better if the row is new, because
only the primary key is returned, not the entire row. Due to the nature of merge,
however, if the existence check passes, the entire row must be read to calculate what
changed. Therefore, for every row to be updated, you see one extra round trip to the
database during merge.

Use check cache on the root descriptor/table and any child tables if A is master and B
is a privately owned child. If A does not exist, B cannot exist. And if A exists, all of its
child tables are loaded as part of reading A.

Oracle Socket Adapter Tuning

Oracle Adapters Performance Tuning 18-7

18.3.3 Throttling
It is possible to configure a speed limit on DbAdapter performance to protect
down-stream components from message bursts. Consider leaving burst records
unprocessed on the source database until SOA can process them efficiently. As of
Oracle Adapters release 11.1.1.6.0 you can set the inbound DbAdapter property
RowsPerPollingInterval. It acts as a limit on the number of records which can be
processed in one polling interval. The default is unlimited.

The following sections describe the configuration options for
RowsPerPollingInterval:

18.3.3.1 Formula
The formula for maximum rows per second is:

Number of active nodes in SOA cluster x NumberOfThreads x RowsPerPollingInterval
/ PollingInterval

18.3.3.2 RowsPerPollingInterval and MaxTransactionSize
MaxTransactionSize can be thought of as RowsPerDatabaseTransaction or
DatabaseFetchSize. It does not affect how many rows can be processed in one polling
interval period.

The one exception is the following configuration:

-distributed polling checked, usesSkipLocking="false"

In this one case RowsPerPollingInterval will default to MaxTransactionSize instead
of unlimited.

If RowsPerPollingInterval is set to lower than MaxTransactionSize or MaxRaiseSize,
they will be effectively lowered to RowsPerPollingInterval.

18.3.3.3 Configuration
There is no UI support for RowsPerPollingInterval. Instead find the db.jca file for the
inbound polling service and add the property manually. Add it to the same section as
the properties MaxRaiseSize, MaxTransactionSize, and PollingInterval, in any
order.

18.4 Oracle Socket Adapter Tuning
This section describes performance tuning for Oracle Socket Adapter. Performance can
be optimized for the Oracle Socket Adapter using Connection Pool if the socket server
you are connecting to does not close the socket with each interaction. Connection pool
lets you use a socket connection repeatedly, avoiding the overload of creating a new
socket for each interaction.

Note: One way to prevent merge from performing an existence
check for every record, when you know that an insert is required, is to
set the primary key to null.

Oracle SOA JMS Adapter Tuning

18-8 Oracle Fusion Middleware Performance and Tuning Guide

In order to enable the connection pool feature for the Oracle Socket Adapter, the
KeepAlive connection factory property must be set to True. This connection property
can be modified using the Connection Pool tab of Oracle WebLogic Server
Administration Console.

For instructions on modifying the Oracle Socket Adapter connection pooling, see
"Configuring Oracle Socket Adapter Connection Pooling" in Oracle Fusion Middleware
User's Guide for Technology Adapters.

18.5 Oracle SOA JMS Adapter Tuning
This section describes some of the properties that can be set for the Oracle SOA JMS
Adapter to optimize performance. See "Introduction to the Oracle JMS Adapter" in the
Oracle Fusion Middleware User's Guide for Technology Adapters for more information.

18.5.1 adapter.jms.receive.threads Property
To improve performance, the adapter.jms.receive.threads property can be tuned
for an adapter service. The default value is 1, but multiple inbound threads can be
used to improve performance. When specified, the value of
adapter.jms.receive.threads is used to spawn multiple inbound poller threads.

For example:

<service name="dequeue" ui:wsdlLocation="dequeue.wsdl">
<interface.wsdl
interface="http://xmlns.oracle.com/pcbpel/adapter/jms/textmessageusingqueues/textm
essageusingqueues/dequeue%2F#wsdl.interface(Consume_Message_ptt)"/>
<binding.jca config="dequeue_jms.jca">
<property name="adapter.jms.receive.threads" type="xs:string"
many="false">10</property>
</binding.jca">
</service>

18.6 Oracle AQ Adapter Tuning
This section describes Oracle AQ Adapter tuning configurations.

18.6.1 adapter.aq.dequeue.threads Property
To improve dequeue performance 'adapter.aq.dequeue.threads' property can be set for
an adapter service. Default value is 1 but multiple inbound threads can be used to
improve performance. The value of property 'adapter.aq.dequeue.threads' is used to
spawn multiple inbound poller threads.

For example:

<service name="dequeue" ui:wsdlLocation="dequeue.wsdl">
<interface.wsdl
interface="http://xmlns.oracle.com/pcbpel/adapter/aq/raw/raw/dequeue/#wsdl.interfa
ce(Dequeue_ptt)"/>
<binding.jca config="dequeue_aq.jca">

Note: The Connection Pool feature is applicable to outbound
interactions only. For more information on Socket Adapters, see
"Oracle JCA Adapter for Sockets" in Oracle Fusion Middleware User's
Guide for Technology Adapters

Oracle MQ Adapter Tuning

Oracle Adapters Performance Tuning 18-9

<property name="adapter.aq.dequeue.threads" type="xs:string"
many="false">10</property>
</binding.jca>
</service>

18.7 Oracle MQ Adapter Tuning
The Oracle MQ Series Adapter supports the scalability feature for inbound operations
only. Oracle MQ Series Adapter provides the parameter to control the number of
threads that dequeue the messages from the inbound queue.You must specify the
following property in the.jca file:

InboundThreadCount='N'
In the example above N is the number of threads that you want to span to dequeue the
messages from the inbound queue.

Oracle MQ Adapter Tuning

18-10 Oracle Fusion Middleware Performance and Tuning Guide

19

User Messaging Service Performance Tuning 19-1

19 User Messaging Service Performance Tuning

This chapter describes tips for tuning the User Messaging Service. It contains the
following sections:

■ Section 19.1, "About Oracle User Messaging Services"

■ Section 19.2, "Basic Tuning Considerations"

■ Section 19.3, "Database Tuning for Optimal Throughput"

19.1 About Oracle User Messaging Services
Oracle User Messaging Service enables users to receive notifications sent from SOA
applications that are developed and deployed to the Oracle WebLogic Server using
Oracle JDeveloper.

At the application level, there is notification activity for a specific delivery channel
(such as SMS or E-Mail). For example, when you build a SOA application that sends
e-mail notification, you drag and drop an Email Activity component from the
JDeveloper Component Palette to the appropriate location within a workflow. The
application connects then sends notifications.

For more information on Oracle User Messaging Service, see Oracle WebLogic
Communication Services Administrator's Guide, Oracle WebLogic Communication Services
Developer's Guide, and the Oracle Fusion Middleware Developer's Guide for Oracle SOA
Suite.

19.2 Basic Tuning Considerations
Depending on your User Messaging usage and performance issues, you may consider
tuning the following:

■ SMPP Driver Performance Tuning

■ Email Driver Polling Frequency

19.2.1 SMPP Driver Performance Tuning
Short Messaging Peer-Peer Protocol (SMPP) messaging drivers can be configured
using Enterprise Manager. One of the key parameters for optimizing SMPP
performance is WindowSize. This is especially important when the SMPP driver is
connected to a remote SMSC and there is high network latency between the two
elements. Configuring the WindowSize parameter enables the SMPP driver to send
several requests to the Short Messaging Service Center (SMSC) before waiting for an
acknowledgment. Without windowing (i.e., a WindowSize of 1), the driver must wait

Database Tuning for Optimal Throughput

19-2 Oracle Fusion Middleware Performance and Tuning Guide

for a synchronous acknowledgment from the SMSC before sending the next message.
With windowing, more messages can be sent per network round-trip, allowing a
higher overall throughput.

To take advantage of an increased WindowSize, the number of MDB threads for the
driver must be correspondingly increased. The two values should be matched so that
driver threads can process and send messages before waiting for the requests to be
acknowledged. Increasing the two values may improve performance, but only up to
the point at which network latency no longer dominates the sending rate. Also, the
maximum allowed value for the WindowSize is normally defined as a service policy by
the SMSC operator.

For more information, see "Configuring Oracle User Messaging Service" in Oracle
WebLogic Communication Services Administrator's Guide.

19.2.2 Email Driver Polling Frequency
For Email drivers, the "CheckMailFreq" configuration parameter defines how
frequently the driver checks for incoming emails. For example, a value of "30" means
the driver checks the configured inbox every 30 seconds. This parameter can influence
performance; checking more frequently enables the driver to keep up with a higher
incoming email load, but can impact performance due to frequent IMAP or POP3
operations. Default value is 30 seconds.

19.3 Database Tuning for Optimal Throughput
User Messaging Service stores messaging state such as sent and received messages and
delivery status information in the database. Therefore, database and data source
tuning may have an effect on messaging throughput. The connection pool size for the
data sources can be tuned for higher load levels, but the defaults are sufficient for most
cases.

For general database tuning considerations, see Section 2.6, "Tuning Database
Parameters".

20

Oracle B2B Performance Tuning 20-1

20Oracle B2B Performance Tuning

This chapter describes tips for tuning Oracle B2B performance. It contains the
following sections:

■ Section 20.1, "About Oracle B2B"

■ Section 20.2, "Basic Tuning Considerations"

20.1 About Oracle B2B
Oracle B2B (Business to Business) is an e-commerce gateway that enables the secure
and reliable exchange of business documents between an enterprise and its trading
partners. Oracle B2B supports business-to-business document standards, security,
transports, messaging services, and trading partner management. With Oracle B2B
used as a binding component within an Oracle SOA Suite composite application,
end-to-end business processes can be implemented.

For more information about Oracle SOA Suite, see Oracle Fusion Middleware Developer's
Guide for Oracle SOA Suite.

20.2 Basic Tuning Considerations
The following sections describe basic tuning configurations that you should also
consider while tuning:

■ Tuning Data Storage Configurations for B2B

■ Tuning MDS Cache Size

■ Tuning Number of Threads

■ Tuning the JMS Multiple Out Queues Setting

20.2.1 Tuning Data Storage Configurations for B2B
Tuning the B2B_DATA_STORAGE table attributes can improve performance in some
deployments. Review your use case scenarios and then consider the following to
improve performance:

■ If the B2B_DATA_STORAGE table logging attribute is set to NOLOGGING, consider
changing it to LOGGING.

When performing DML operations using NOLOGGING option, the unrecoverable
System Change Number (SCN) in the control files are recorded and this can lead
to "control file contention" under heavy data load.

Basic Tuning Considerations

20-2 Oracle Fusion Middleware Performance and Tuning Guide

■ Consider migrating LOB columns in the B2B_DATA_STORAGE table to
SecureFiles

■ Partition the table B2B_DATA_STORAGE by HASH(ID) with 128 partitions

■ Partition the PK index by GLobal HASH(ID) with 64 partitions

20.2.2 Tuning MDS Cache Size
Changing the value of the Metadata Service (MDS) instance cache size can improve
performance. A ratio of 5:1 is recommended for the xmx-to-mdsCache values. For
example, if the xmx size is 1024, maintain mdsCache at 200 MB.

These settings can be modified using Oracle Enterprise Manager Fusion Middleware
Control. For more information, see "Configuring Oracle B2B" in the Oracle Fusion
Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process
Management Suite.

20.2.3 Tuning Number of Threads
Changing the value of b2b.inboundThreadCount and b2b.outboundThreadCount can
improve Oracle B2B message processing. The recommended value depends on your
system. For a 2 GB computer, for example, a setting of 3 to 5 is recommended. The
b2b.inboundThreadSleepTime and b2b.outboundThreadSleepTime properties put a
thread to sleep after message processing. A setting between 10 and 1000 (milliseconds)
is recommended.

These settings can be modified using Oracle Enterprise Manager Fusion Middleware
Control. For more information, see "Configuring Oracle B2B" in the Oracle Fusion
Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process
Management Suite.

20.2.4 Tuning the JMS Multiple Out Queues Setting
The JMS Out Queue component is the element that enables B2B to receive data from a
JMS queue. To maximize performance, consider enabling the Multiple
JMSOUTQUEUES and create the corresponding listening channels in B2B.

21

Oracle Service Bus Performance Tuning 21-1

21Oracle Service Bus Performance Tuning

This chapter describes tips for tuning Oracle Service Bus performance. It contains the
following sections:

■ Section 21.1, "About Oracle Service Bus"

■ Section 21.2, "Monitoring Oracle Service Bus"

■ Section 21.3, "Basic Tuning Considerations"

■ Section 21.4, "Advanced Tuning Considerations"

21.1 About Oracle Service Bus
Within a SOA framework, Oracle Service Bus (OSB) provides connectivity, routing,
mediation, management and also some process orchestration capabilities. The design
philosophy for OSB is to be a high performance and stateless (non-persistent state)
intermediary between two or more applications. However, given the diversity in scale
and functionality of SOA implementations, OSB applications are subject to large
variety of usage patterns, message sizes and QOS requirements.

In most SOA deployments, OSB is part of a larger system where it plays the role of an
intermediary between two or more applications (servers). A typical OSB configuration
involves a client invoking an OSB proxy which may make one or more service callouts
to intermediate back-end services and then route the request to the destination back
end system before routing the response back to the client.

It is necessary, therefore, to understand that OSB is part of a larger system and the
objective of tuning is the optimization of the overall system performance. This
involves not only tuning OSB as a standalone application, but also using OSB to
implement flow-control patterns such as throttling, request-buffering, caching,
prioritization and parallelism.

For more information about Oracle Service Bus, see the Oracle Fusion Middleware
Administrator's Guide for Oracle Service Bus.

21.2 Monitoring Oracle Service Bus
Though the out-of-the-box monitoring sub-system has a very low overhead, and scales
well to numerous services and multiple nodes in a cluster, when dealing with
thousands of services or a large scale cluster deployment, being selective about
enabling monitoring can help reduce network traffic. When a business or proxy service
is created, monitoring is disabled by default for that particular service. For more
information, see "Configuring Operational Settings for Proxy Services" or "Configuring

Basic Tuning Considerations

21-2 Oracle Fusion Middleware Performance and Tuning Guide

Operational Settings for Business Services" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Service Bus.

To enable or disable monitoring of all services that have individually been enabled or
disabled for monitoring, use the "Enable Monitoring" option on the Operations
Global Settings page. For more information, see "Enabling Global Settings" in the
Oracle Fusion Middleware Administrator's Guide for Oracle Service Bus.

21.3 Basic Tuning Considerations
Depending on your OSB usage and performance issues, you may consider tuning the
following:

■ Tuning JVM Memory

■ Tuning WebLogic Server for OSB

21.3.1 Tuning JVM Memory
As with all other Oracle Fusion Middleware components, OSB performance can be
impacted by JVM parameters. The two primary JVM tuning parameters to consider
when optimizing OSB performance are heap size and garbage collection. For more
information on tuning the JVM for performance, see Section 2.4, "Tuning Java Virtual
Machines (JVMs)".

21.3.2 Tuning WebLogic Server for OSB
To optimize OSB, consider tuning the following WebLogic Server parameters:

21.3.2.1 Domain Mode
For production environments, create a domain in "Production" mode to maximize
performance. The parameter is:

-Dweblogic.ProductionModeEnabled=true

To enable Weblogic server production mode through Weblogic Administration
Console, see Oracle Fusion Middleware Understanding Domain Configuration for Oracle
WebLogic Server.

21.3.2.2 WebLogic Server Logging Levels
For OSB performance testing and production environments, consider using the lowest
acceptable logging level, such as "ERROR" or "WARNING" whenever possible. For
more information, see Section 2.10, "Setting Logging Levels"

21.3.2.3 HTTP Access Logging
To optimize OSB perfomance, consider turning off the HTTP access logging. For more
information, see Section 6.3.3.1, "Access Logging".

21.3.2.4 JMS Tuning
Ensure that the right persistence level is set for the Java Message Service (JMS)
destinations. Consider the following scenarios:

■ For non-persistent JMS scenarios:

Explicitly turn off persistence at the JMS server level by un-checking the "Store
Enabled" flag from the Advanced section of the General tab for the JMS server on

Basic Tuning Considerations

Oracle Service Bus Performance Tuning 21-3

the WebLogic Server console. It is also possible to override the persistence mode at
the JMS destination level.

■ For persistent JMS scenarios:

There are two choices: file store and JDBC store. Typically operations on a File
Store perform better than JDBC store. If there are multiple JMS servers involved,
create each store on a separate disk to lower I/O contention.

For more information on JMS Server Tunings, see "Tuning WebLogic JMS" in the Oracle
Fusion Middleware Performance and Tuning for Oracle WebLogic Server.

21.3.2.5 Connection Backlog Buffering
You can tune the number of connection requests that a WebLogic Server instance will
accept before refusing additional requests. The Accept Backlog parameter specifies
how many Transmission Control Protocol (TCP) connections can be buffered in a wait
queue. This fixed-size queue is populated with requests for connections that the TCP
stack has received, but the application has not accepted yet. This parameter should be
tuned when dealing a large number of concurrent clients. For more information, see
"Tuning Connection Backlog Buffering" in Oracle Fusion Middleware Performance and
Tuning for Oracle WebLogic Server.

21.3.3 Tuning OSB Operational Settings
This section discusses the following Oracle Service Bus operational settings:

■ OSB Tracing

■ Cache Tuning for Proxy Service Runtime Data

■ Initialize Router Cache for Proxy Service Runtime Data

21.3.3.1 OSB Tracing
Oracle Service Bus has the option to trace messages without having to shutdown the
server. This is an extremely useful feature both in a development and production
environment for debugging, diagnosing and troubleshooting problems involving
message flows in one or more proxy services.

Tracing is disabled by default but can be enabled on a per service basis. When tracing
is enabled, the entire message context is also printed including headers and message
body. It is important to realize its impact for large message sizes and high throughput
scenarios.

For more information, see "How to Enable or Disable Tracing" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Service Bus.

21.3.3.2 Cache Tuning for Proxy Service Runtime Data
OSB caches proxy service runtime meta-data using a two-level cache with static and
dynamic sections. The cache introduces a performance tradeoff between memory
consumption and compilation cost. Note that caching proxy services may help
throughput but could impact memory usage.

The static section is an upper-bound Least Recently Used (LRU) cache that is never
garbage collected. When a proxy service is bumped from the static section, it is
demoted to the dynamic section where the cache can be garbage collected when there
is memory pressure.

The number of proxy services in the static portion of the cache can be tuned by setting
its size using the system property

Advanced Tuning Considerations

21-4 Oracle Fusion Middleware Performance and Tuning Guide

com.bea.wli.sb.pipeline.RouterRuntimeCache.size. The default value is 100. This
can be increased to a desired value provided there is sufficient memory for runtime
data processing for large number of proxy services.

This property value can be set in the setDomainEnv.sh file as an extra java argument as
follows:

-Dcom.bea.wli.sb.pipeline.RouterRuntimeCache.size={size}

Example:

EXTRA_JAVA_PROPERTIES="-Dcom.bea.wli.sb.pipeline.RouterRuntimeCache.size=3000
${EXTRA_JAVA_PROPERTIES}"

To preload the router runtime cache with the compiled runtime of proxy services, set
the system property, com.bea.wli.sb.pipeline.RouterRuntimeCache.preload, to
true.

EXTRA_JAVA_PROPERTIES="-Dcom.bea.wli.sb.pipeline.RouterRuntimeCache.preload=true

Enabling this property may improve performance by decreasing the time it takes to
make the initial calls to the proxy server. It can also preload the cache when a
configuration session is committed.

If the number of proxy services exceeds 100, then the
com.bea.wli.sb.pipeline.RouterRuntimeCache.sizeproperty should be used to set
the appropriate cache size as the cache size is finite.

21.3.3.3 Initialize Router Cache for Proxy Service Runtime Data
The OSB system property com.bea.wli.sb.pipeline.initializeRouterCache
initializes the RouterRuntimeCache for proxy services at server startup. Setting this
property to true processes the first request to the proxy service faster since the
runtime metadata model required for proxy service execution is already built at server
startup. It is important to note, however, that this property can lead to longer server
startup times due to the proxy service model initialization that is done.

To initialize the RouterRuntimeCache at server startup, set the system property as
follows:

com.bea.wli.sb.pipeline.initializeRouterCache=true

21.4 Advanced Tuning Considerations
After you have performed the modifications recommended in the previous section,
you can make additional changes that are specific to your deployment. Consider
carefully whether the recommendations in this section are appropriate for your
environment.

21.4.1 Transport Tuning (Oracle WebLogic Server and Oracle Service Bus)
Latency and throughput of poller-based transports depends on the frequency with
which a source is polled and the number of files and messages read per polling sweep.

The following are the main transport configurations to tune:

Advanced Tuning Considerations

Oracle Service Bus Performance Tuning 21-5

21.4.1.1 Polling Interval
Consider using a smaller polling interval for high throughput scenarios where the
message size is not very large and the CPU is not saturated. The primary polling
interval defaults are listed below with links to additional information:

21.4.1.2 Read Limit
The read limit determines the number of files or messages that are read per polling
sweep. This defaults to 10 for the File and FTP transports. It can be set to 0 to specify
no limit. Set this value to the desired concurrency. For more information, see " File
Transport Configuration Page" in the Oracle Fusion Middleware Administrator's Guide for
Oracle Service Bus.

21.4.2 Design Time Considerations for Proxy Applications
Consider the following design configurations for proxy applications based on your
OSB usage and use case scenarios:

■ Avoid creating many OSB context variables that are used just once within another
XQuery

Context variables created using an Assign action are converted to XmlBeans and
then reverted to the native XQuery format for the next XQuery. Multiple "Assign"
actions can be collapsed into a single Assign action using a FLWOR expression.
Intermediate values can be created using "let" statements. Avoiding redundant
context variable creation eliminates overheads associated with internal data

Polling Intervals Default Interval Additional Information

File Transport 60 seconds "File Transport Configuration Page" in
the Oracle Fusion Middleware
Administrator's Guide for Oracle Service
Bus

FTP Transports 60 seconds " FTP Transport Configuration Page" in
the Oracle Fusion Middleware
Administrator's Guide for Oracle Service
Bus

MQ Transport 1000 milliseconds "MQ Transport Configuration Page" in
the Oracle Fusion Middleware
Administrator's Guide for Oracle Service
Bus

SFTP Transport 60 seconds "SFTP Transport Configuration Page" in
the Oracle Fusion Middleware
Administrator's Guide for Oracle Service
Bus

JCA Transport 60 seconds "JCA Transport Configuration Page" in
the Oracle Fusion Middleware
Administrator's Guide for Oracle Service
Bus

See also Section 18.3.1, "JCA Adapter
Basic Tuning Considerations"

Note: Setting the Read Limit to a high value and the Polling Interval
to a small value may result in a large number of messages being
simultaneously read into memory. This can lead to an OOM
(out-of-memory error) if the message size is large.

Advanced Tuning Considerations

21-6 Oracle Fusion Middleware Performance and Tuning Guide

format conversions. This benefit has to be balanced against visibility of the code
and reuse of the variables.

■ Transforming contents of a context variable such as $body.

Use a Replace action to complete the transformation in a single step. If the entire
content of $body is to be replaced, leave the XPath field blank and select "Replace
node contents". This is faster than pointing to the child node of $body (e.g.
$body/Order) and selecting "Replace entire node". Leaving the XPath field blank
eliminates an extra XQuery evaluation.

■ Use $body/*[1] to represent the contents of $body as an input to a Transformation
(XQuery / XSLT) resource.

OSB treats "$body/*[1]" as a special XPath that can be evaluated without invoking
the XQuery engine. This is faster than specifying an absolute path pointing to the
child of $body. A general XPath like "$body/Order" must be evaluated by the
XQuery engine before the primary transformation resource is executed.

■ Enable Streaming for pure Content-Based Routing scenarios.

Read-only scenarios such as Content-Based Routing can derive better performance
from enabling streaming. OSB leverages the partial parsing capabilities of the
XQuery engine when streaming is used in conjunction with indexed XPaths. Thus,
the payload is parsed and processed only to the field referred to in the XPath.
Other than partial parsing, an additional benefit for read-only scenarios is that
streaming eliminates the overhead associated with parsing and serialization of
XmlBeans.

The gains from streaming can be negated if the payload is accessed a large number
of times for reading multiple fields. If all fields read are located in a single
subsection of the XML document, a hybrid approach provides the best
performance. See Section 21.4.3, "Design Considerations for XQuery Tuning" for
additional details.

The output of a transformation is stored in a compressed buffer format either in
memory or on disk. Therefore, streaming should be avoided when running out of
memory is not a concern.

■ Set the appropriate QOS level and transaction settings.

Do not set XA or Exactly-Once unless the reliability level required is once and only
once and its possible to use the setting (it is not possible if the client is a HTTP
client). If OSB initiates a transaction, it is possible to replace XA with LLR to
achieve the same level of reliability.

OSB can invoke a back end HTTP service asynchronously if the QOS is "Best-
Effort". Asynchronous invocation allows OSB to scale better with long running
back-end services. It also allows Publish over HTTP to be truly fire-and-forget.

■ Disable or delete all log actions.

Log actions add an I/O overhead. Logging also involves an XQuery evaluation
which can be expensive. Writing to a single device (resource or directory) can also
result in lock contentions.

21.4.3 Design Considerations for XQuery Tuning
OSB uses XQuery and XPath extensively for various actions like Assign, Replace, and
Routing Table. The following XML structure ($body) is used to explain XQuery and
XPath tuning concepts:

Advanced Tuning Considerations

Oracle Service Bus Performance Tuning 21-7

<soap-env:Body>
<Order>
<CtrlArea>
<CustName>Mary</CustName>
</CtrlArea>
<ItemList>
<Item name="ACE_Car" >20000 </Item>
<Item name=" Ext_Warranty" >1500</Item>
…. a large number of items
</ItemList>
<Summary>
<Total>70000</Total>
<Status>Shipped</Status>
<Shipping>My Shipping Firm </Shipping>
</Summary>
</Order>
</soap-env:Body>
■ Avoid the use of double front slashes ("//") in XPaths.

$body//CustName while returning the same value as
$body/Order/CtrlArea/CustName will perform a lot worse than the latter
expression. "//" implies all occurrences of a node irrespective of the location in an
XML tree. Thus, the entire depth and breadth of the XML tree has to be searched
for the pattern specified after a "//". Use "//" only if the exact location of a node is
not known at design time.

■ Index XPaths where applicable.

An XPath can be indexed by simply adding "[1]" after each node of the path.
XQuery is a declarative language and an XPath can return more than one node; it
can return an array of nodes. $body/Order/CtrlArea/CustName implies returning
all instances Order under $body and all instances of CtrlArea under Order.
Therefore, the entire document has to be read in order to correctly process the
above XPath. If you know that there is a single instance of Order under $body and
a single instance of CtrlArea under Order, we could rewrite the above XPath as
$body/Order[1]/CtrlArea[1]/CustName[1].

The second XPath implies returning the first instances of the child nodes. Thus,
only the top part of the document needs to be processed by the XQuery engine
resulting in better performance. Indexing is key to processing only what is needed.

■ Extract frequently used parts of a large XML document as intermediate variables
within a FLWOR expression

An intermediate variable can be used to store the common context for multiple
values. Sample XPaths with common context:

$body/Order[1]/Summary[1]/Total, $body/Order[1]/Summary[1]/Status,
$body/Order[1]/Summary[1]/Shipping

The above XPaths can be changed to use an intermediate variable:

let $summary := $body/Order[1]/Summary[1]

Note: Indexing should not be used when the expected return value is
an array of nodes. For example, $body/Order[1]/ItemList[1]/Item
returns all "Item" nodes, but $body/Order[1]/ItemList[1]/Item[1]
only returns the first item node. Another example is an XPath used to
split a document in a "for" action.

Advanced Tuning Considerations

21-8 Oracle Fusion Middleware Performance and Tuning Guide

$summary/Total, $ summary/Status, $summary/Shipping

Using intermediate variables consumes more memory but reduces redundant
XPath processing.

■ Using a Hybrid Approach for read-only scenarios with Streaming

The gains from streaming can be negated if the payload is accessed a large number
of times for reading multiple fields. If all fields read are located in a single
subsection of the XML document, a hybrid approach provides the best
performance. The hybrid approach includes enabling streaming at the proxy level
and Assigning the relevant subsection to a context variable, The individual fields
can then be accessed from this context variable.

The fields "Total" and "Status" can be retrieved using three Assign actions:

Assign "$body/Order[1]/Summary[1]" to "foo"
Assign "$foo/Total" to "total"
Assign "$foo/Status" to "total"

22

Oracle Business Intelligence Performance Tuning 22-1

22Oracle Business Intelligence Performance
Tuning

This chapter describes tips for tuning Oracle Business Intelligence performance. It
contains the following sections:

■ Section 22.1, "About Oracle Business Intelligence"

■ Section 22.2, "Oracle BI Server Query Performance Tuning"

■ Section 22.3, "Oracle BI Server Query Cache Performance Tuning"

■ Section 22.4, "Oracle BI Web Client Performance Tuning"

22.1 About Oracle Business Intelligence
Oracle Business Intelligence (BI) Enterprise Edition (or Oracle Business Intelligence)
provides a full range of business intelligence capabilities that collects up-to-date data
from the organization, presents the data in easy-to-understand formats (such as tables
and graphs), and delivers the data quickly to the members of the organization.

These capabilities enable the organization to make better decisions, take informed
actions, and implement more-efficient business processes.

22.2 Oracle BI Server Query Performance Tuning
This section describes some important considerations for improving query
performance with the Oracle BI Server.

For detailed information on BI performance tuning, see "Managing Performance
Tuning and Query Caching" in Oracle Fusion Middleware System Administrator's Guide
for Oracle Business Intelligence Enterprise Edition.

The following list summarizes methods that you can use to improve query
performance:

■ Tuning and indexing underlying databases: For Oracle BI Server database
queries to return quickly, the underlying databases must be configured, tuned, and
indexed correctly. Note that different database products have different tuning
considerations.

If there are queries that return slowly from the underlying databases, then you can
capture the SQL statements for the queries in the query log and provide them to
the database administrator (DBA) for analysis. See "Managing the Query Log" in
Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition for more information about configuring query logging on the
system.

Oracle BI Server Query Cache Performance Tuning

22-2 Oracle Fusion Middleware Performance and Tuning Guide

■ Aggregate tables: It is extremely important to use aggregate tables to improve
query performance. Aggregate tables contain precalculated summarizations of
data. It is much faster to retrieve an answer from an aggregate table than to
recompute the answer from thousands of rows of detail.

The Oracle BI Server uses aggregate tables automatically, if they have been
properly specified in the repository. See Oracle Fusion Middleware Metadata
Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition for
examples of setting up aggregate navigation.

■ Query caching: The Oracle BI Server can store query results for reuse by
subsequent queries. Query caching can dramatically improve the apparent
performance of the system for users, particularly for commonly used dashboards,
but it does not improve performance for most ad-hoc analysis.

See "About the Oracle BI Server Query Cache" in Oracle Fusion Middleware System
Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more
information about query caching concepts and setup.

■ Setting parameters in Fusion Middleware Control: You can set various
performance configuration parameters using Fusion Middleware Control to
improve system performance. See "Setting Performance Parameters in Fusion
Middleware Control" in Oracle Fusion Middleware System Administrator's Guide for
Oracle Business Intelligence Enterprise Edition for more information.

■ Setting parameters in NQSConfig.INI: The NQSConfig.INI file contains
additional configuration and tuning parameters for the Oracle BI Server, including
parameters to configure disk space for temporary storage, set virtual table page
sizes, and several other advanced configuration settings. See "NQSConfig.INI File
Configuration Settings" in Oracle Fusion Middleware System Administrator's Guide for
Oracle Business Intelligence Enterprise Edition for more information.

22.3 Oracle BI Server Query Cache Performance Tuning
You can configure the Oracle BI Server to maintain a local, disk-based cache of query
result sets (query cache). The query cache allows the Oracle BI Server to satisfy many
subsequent query requests without having to access back-end data sources (such as
Oracle or DB2). This reduction in communication costs can dramatically decrease
query response time. See "About the Oracle BI Server Query Cache" in Oracle Fusion
Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise
Edition.

22.4 Oracle BI Web Client Performance Tuning
You can improve the performance of the Oracle BI web client (UI) by configuring your
Web server to serve up all static files, as well as enabling compression for both static
and dynamic resources. BI 11g ships with WebLogic Server (WLS) serving as the
default HTTP server for the BI web client. By allowing the Oracle HTTP Server (OHS)
to proxy requests to WLS instead, you may see an improvement in BI Web Client
performance. See "Improving Oracle BI Web Client Performance" in Oracle Fusion
Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise
Edition.

Part V
Part V Identity Management Suite Components

This part describes configuring Oracle Identity Management Suite components to
improve performance. The Oracle Identity Management products enable you to
configure and manage the identities of users, devices, and services across diverse
servers, to delegate administration of these identities, and to provide end users with
self-service privileges. These products also enable you to configure single sign-on
across applications and to process users' credentials to ensure that only users with
valid credentials can log into and access online resources.

It contains the following chapters:

■ Chapter 23, "Oracle Internet Directory Performance Tuning"

■ Chapter 25, "Oracle Virtual Directory Performance Tuning"

■ Chapter 26, "Oracle Identity Federation Performance Tuning"

■ Chapter 24, "Oracle Unified Directory Performance Tuning"

■ Chapter 27, "Oracle Fusion Middleware Security Performance Tuning"

23

Oracle Internet Directory Performance Tuning 23-1

23 Oracle Internet Directory Performance Tuning

This chapter provides guidelines for tuning and sizing an Oracle Internet Directory
installation. It contains these topics:

■ Section 23.1, "About Oracle Internet Directory"

■ Section 23.2, "Monitoring Oracle Internet Directory Performance"

■ Section 23.3, "Basic Tuning Considerations"

■ Section 23.4, "Advanced Tuning Considerations"

■ Section 23.5, "Specific Use Cases That Require Additional Tuning"

23.1 About Oracle Internet Directory
Oracle Internet Directory is Oracle's Lightweight Directory Application Protocol
(LDAP) version 3 Directory Server. Oracle Internet Directory is highly scalable,
available, and manageable. It has a multi-threaded, multi-process, multi-instance
process architecture with Oracle Database as the directory store. This unique physical
architecture enables Oracle Internet Directory to be deployed on several hardware
architectures including Symmetric Multi-Processor (SMP), Non-Uniform Memory
Access (NUMA) and Cluster hardware. Oracle Internet Directory's physical
architecture enables linear performance scalability with hardware resources and
numerous high availability configurations.

For more information see Oracle Fusion Middleware Administrator's Guide for Oracle
Internet Directory.

Many of the recommendations in this chapter require changes to Oracle Internet
Directory system configuration attributes and replication configuration attributes.

Note: Oracle Internet Directory's out of box configuration is not
optimal for most production or test deployments. You must follow at
least the steps listed in Section 23.3, "Basic Tuning Considerations" to
achieve optimal performance and availability.

See Also:

■ Section 23.2.2, "Obtaining Recommendations by Using the Tuning
and Sizing Wizard.".

■ "Troubleshooting Oracle Internet Directory" in Oracle Fusion
Middleware Administrator's Guide for Oracle Internet Directory

Monitoring Oracle Internet Directory Performance

23-2 Oracle Fusion Middleware Performance and Tuning Guide

23.2 Monitoring Oracle Internet Directory Performance
To identify performance bottlenecks, you can monitor real-time performance metrics
for the Oracle Internet Directory database. For more information on how to monitor
other Oracle Fusion Middleware components, see Chapter 4, "Monitoring Oracle
Fusion Middleware".

23.2.1 Monitoring Performance on UNIX and Windows Systems
Knowledge of the following tools is recommended for Linux, Solaris, and other
UNIX-like operating systems:

Knowledge of the following tools is recommended for Microsoft Windows:

Knowledge of the following tools is recommended for the Oracle Database:

■ utlbstat.sql and utlestat.sql, or statspack

■ Automatic Workload Repository (AWR) and Automatic Database Diagnotic
Monitor (ADDM) reports

■ Collecting optimizer statistics using DBMS_STATS package

See Also:

■ The "Managing System Configuration Attributes" chapter of
Oracle Fusion Middleware Administrator's Guide for Oracle Internet
Directory

■ The "Managing Replication Configuration Attributes" chapter of
Oracle Fusion Middleware Administrator's Guide for Oracle Internet
Directory

■ The "Attribute Reference" chapter of Oracle Fusion Middleware
Reference for Oracle Identity Management

for more information about Oracle Internet Directory configuration
attributes.

Tool Description

top Displays the top CPU consumers on a system

vmstat Shows running statistics on various parts of the system including the Virtual
Memory Manager

mpstat Shows an output similar to vmstat but split across various CPUs in the system.
This is available on Solaris only.

iostat Shows the disk I/O statistics from various disk controllers

sar Collect, report, or save system activity information.

Tool Description

Windows Performance
Monitor

Provides a customized view of the events in the system

Windows Task Manager Provides a high level output (like top on UNIX) of the major things
happening in the system.

Monitoring Oracle Internet Directory Performance

Oracle Internet Directory Performance Tuning 23-3

In addition to the operating system tools, the LDAP applications being used in a
customer environment must be able to provide latency and throughput measurement.

In addition, the Database Statistics Collection Tool (oidstats.sql), located at $ORACLE_
HOME/ldap/admin, is provided to analyze the various database 'ods' schema objects to
estimate the statistics. See Section 23.2.3, "Updating Database Statistics by Using
oidstats.sql".

23.2.2 Obtaining Recommendations by Using the Tuning and Sizing Wizard
Oracle Enterprise Manager Fusion Middleware Control provides a convenient tool for
tuning and sizing Oracle Internet Directory.

Use the wizard to obtain tuning and sizing recommendations for your system. You can
select Tuning, Sizing, or Both. If you select Sizing or Both, you can select Basic or
Advanced

Tuning
1. From the Oracle Internet Directory menu, select Administration, then Tuning and

Sizing.

2. Click the Create icon to invoke the wizard.

3. On the Type Selection page, change the report name, then select Tuning.

4. The wizard presents the following pages: Hardware, Features, Load, Data
Characteristics, and Garbage Collection.

On each page, specify values for the text fields (or use defaults) and Select Yes or
No for each question. Some choices might be greyed out, depending upon your
previous choices. Most fields have tool tips that appear when you move the cursor
over the field.

Click Next to go to the next page or Back to return to the previous page. Click
Cancel to close the wizard.

5. On the Review page, review the data you entered. Click Back to change your
specifications or click Finish to view the report.

6. The report appears on the bottom right section of the page.

To download the report, click Download Report. To delete the report, click Delete.

Sizing
1. From the Oracle Internet Directory menu, change the report name, then select

Administration, then Tuning and Sizing.

2. Click the Create icon to invoke the wizard.

3. On the Type Selection page, select Sizing.

See Also:

■ Oracle Database Reference in the Oracle Database Documentation
Library for information about utlbstat.sql and utlestat.sql

■ Oracle Database Performance Tuning Guide for information about
stats package

■ Oracle Database Concepts in the Oracle Database Documentation
Library for information about the ANALYZE function in the
DBMS_STATS package

Monitoring Oracle Internet Directory Performance

23-4 Oracle Fusion Middleware Performance and Tuning Guide

4. Select Basic or Advanced.

5. On the Sizing page, specify values for the text fields (or use defaults) and Select
Yes or No for each question. Some choices might be greyed out, depending upon
your previous choices.

6. Click Next.

7. On the Review page, review the data you entered. Click Back to change your
specifications or click Finish to view the report.

8. The report appears on the bottom right section of the page.

To download the report, click Download Report. To delete the report, click Delete.

Both
1. From the Oracle Internet Directory menu, change the report name, then select

Administration, then Tuning and Sizing.

2. Click the Create icon to invoke the wizard.

3. On the Type Selection page, select Both.

4. Select Basic or Advanced.

5. Click Next.

6. The wizard presents the following pages: Sizing, Hardware, Features, Load, Data
Characteristics, and Garbage Collection.

On each page, specify values for the text fields (or use defaults) and Select Yes or
No for each question. Some choices might be greyed out, depending upon your
previous choices.

Click Next to go to the next page or Back to return to the previous page. Click
Cancel to close the wizard.

7. On the Review page, review the data you entered. Click Back to change your
specifications or click Finish to view the report.

8. The report appears on the bottom right section of the page.

To download the report, click Download Report. To delete the report, click Delete.

23.2.3 Updating Database Statistics by Using oidstats.sql
Database statistics are updated automatically, OIDMON runs oidstats.sql for every
configured number of updates to the database. By default, for every 5000 entries
added OIDMON runs the oidstats.sql. This frequency can be changed using
ldapmodify commad as shown below

$ORACLE_HOME/bin/ldapmodify -p <oidPort> -h <oidHost> -D cn=orcladmin -w
<adminPassword> << eof
dn: cn=configset,cn=oidmon,cn=subconfigsubentry
changetype: modify
replace: orclstatsperiodicity
orclstatsperiodicity: <desired_number>
eof

See Also: The oidstats.sql command-line tool reference in
Oracle Fusion Middleware Reference for Oracle Identity Management

Monitoring Oracle Internet Directory Performance

Oracle Internet Directory Performance Tuning 23-5

23.2.4 Setting Performance-Related Replication Configuration Attributes
To set the replication attributes, you can use either the Replication Wizard in Oracle
Enterprise Manager Fusion Middleware Control or the command line.

The attributes orclthreadspersupplier, orclchangeretrycount, and
orclconflresolution are replication configuration set attributes.

The attributes orclhiqschedule and orclupdateschedule are replication agreement
entry attributes.

23.2.5 Managing System Configuration Attributes
You can set most performance-related system configuration attributes from Oracle
Enterprise Manager Fusion Middleware Control or from the command line. You can
also use the Data Browser in Oracle Directory Services Manager to modify system
configuration attributes.

For information on setting system configuration attributes for Oracle Internet
Directory, see "Managing System Configuration Attributes" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Internet Directory:

■ "Managing System Configuration Attributes by Using Fusion Middleware
Control"

See Also:

■ "Configure Replication Attributes by Using Fusion Middleware
Control" inOracle Fusion Middleware Administrator's Guide for
Oracle Internet Directory

■ "Configuring Attributes of the Replication Configuration Set by
Using ldapmodify" in Oracle Fusion Middleware Administrator's
Guide for Oracle Internet Directory

for information about

See Also:

■ "Viewing or Modifying an LDAP-Based Replication Setup by
Using the Fusion Middleware Control Replication Wizard" in
Oracle Fusion Middleware Administrator's Guide for Oracle Internet
Directory

■ "Configuring Replication Agreement Attributes by Using
ldapmodify" in Oracle Fusion Middleware Administrator's Guide for
Oracle Internet Directory

See Also:

■ "Setting Up a One-Way, Two-Way, or Multimaster LDAP-Based
Replication Agreement by Using the Replication Wizard in Fusion
Middleware Control" in Oracle Fusion Middleware Administrator's
Guide for Oracle Internet Directory or information on setting
replication attributes by using the Replication Wizard.

■ "Configuring Attributes of the Replication Configuration Set by
Using ldapmodify" in Oracle Fusion Middleware Administrator's
Guide for Oracle Internet Directory.

Basic Tuning Considerations

23-6 Oracle Fusion Middleware Performance and Tuning Guide

■ "Managing System Configuration Attributes by Using WLST"

■ "Managing System Configuration Attributes by Using LDAP Tools"

■ "Managing System Configuration Attributes by Using ODSM Data Browser"

23.2.6 Setting Garbage Collection Configuration Attributes
The attributes orclpurgetargetage and orclpurgeinterval reside in the changelog
purging configuration entry. You can change them with ldapmodify or Oracle
Directory Services Manager.

23.2.6.1 Modifying Changelog Purging Attributes by Using ldapmodify
The following example is an LDIF file used to configure change log purging.

This example configures time-based purging for 120 hours (5 days). Use an LDIF file
similar to this:

dn: cn=changelog purgeconfig,cn=purgeconfig,cn=subconfigsubentry
changetype:modify
replace: orclpurgetargetage
orclpurgetargetage: 240

To apply the LDIF file mod.ldif, type:

ldapmodify -D "cn=orcladmin" -q -p port -h host -D dn -q -f mod.ldif

23.2.6.2 Modifying Changelog Purging in Oracle Directory Services Manager
You can modify orclpurgetargetage and orclpurgeinterval by using the data
browser in Oracle Directory Services Manager. You cannot navigate to the changelog
purging configuration entry directly in the data tree, but you can get to it by using an
advanced search as follows:

1. On the Data Browser tab, click Advanced.

2. Expand Garbage Collection in the left pane, then select changelog purgeconfig.
The Garbage Collector Window appears in the right pane.

3. In the right pane, enter the changes you want to make to the Purge Target Age and
Purge Interval.

4. Choose Apply.

23.3 Basic Tuning Considerations
Tuning is the adjustment of parameters to improve directory performance. The default
Oracle Internet Directory configuration must be tuned in almost all deployments.
Please review the requirements and recommendations in this section carefully.

See Also: "Change Log Purging" in Oracle Fusion Middleware
Administrator's Guide for Oracle Internet Directoryfor a description of
change log purging.

See Also: "Configuring Time-Based Change Log Purging" in Oracle
Fusion Middleware Administrator's Guide for Oracle Internet Directory.

Basic Tuning Considerations

Oracle Internet Directory Performance Tuning 23-7

23.3.1 Database Parameters
The suggested minimum values for Oracle Database instance parameters are described
in Table 23–1:

See the Oracle Database Performance Tuning Guide for information on setting Oracle
Database instance parameters.

23.3.2 LDAP Server Attributes
The recommendations in this section are summarized in Table 23–2.

Table 23–1 Minimum Values for Oracle Database Instance Parameters

Parameter Value Notes

sga_target and

sga_max_size

1700M for
32-bit systems

Applicable when SGA Auto Tuning using sga_target
and sga_max_size is being used. Especially important
for bulkdelete performance.

A higher value may be required if the directory size
exceeds 1 million entries or a high rate of I/O is
observed. In case of 64-bit systems, one can go up to
60-70% of the RAM available for the Oracle Database on
the box.

db_cache_size 1200M for
32-bit systems.

Applicable when SGA Auto Tuning using sga_target
and sga_max_size is not being used. (SGA auto tuning
using sga_target and sga_max_size is recommended
instead of this parameter.)

A higher value may be required if the directory size
exceeds 1 million entries or a high rate of I/O is
observed. In case of 64-bit systems, one can go up to
60-70% of the RAM available for the Oracle Database on
the box.

shared_pool_size 300M Applicable when SGA Auto Tuning using sga_target
and sga_maxsize is not being used

session_cached_cursors 500

processes 500

memory_target 0 Consider setting this to 0 and set only sga_target and
pga_aggregate_target as described.

pga_aggregate_target 1 - 4 GB Set this to 1-4 GB, if sufficient RAM is available.
Increase the size if you see a pattern of increased PGA
usage. This is especially useful when running large bulk
loads.

job_queue_processes 1 or more. Tune this parameter only if you are using Oracle
Database Advanced Replication-based multimaster
replication.

NOTE: This parameter should NOT exceed the number
of CPU cores available on the database server.

_b_tree_bitmap_plans FALSE The default value of TRUE for this parameter could
cause unwanted bitmap operations in the execution
plan of SQL which may impact performance.

NLS_SORT BINARY Consider setting NLS_SORT to BINARY, otherwise sort
will do full table scan and performance can be
impacted.

PL_SQL_CODE_TYPE NATIVE Consider setting PL_SQL_CODE_TYPE to NATIVE.

Basic Tuning Considerations

23-8 Oracle Fusion Middleware Performance and Tuning Guide

■ Tune the number of processes and threads for the Oracle Internet Directory server
instance that services LDAP application traffic. This has a major impact on overall
performance. See the recommended setting for orclmaxcc in Table 23–2.

■ Disable change log generation if you are not deploying either replication or Oracle
Directory Integration Platform. Set the attribute orclgeneratechangelog to 0.

■ Skip referrals in LDAP searches if you have no referral entries in the directory. Set
orclskiprefinsql to 1. This can have a major impact on performance.

■ Close idle LDAP connections after a period of time instead of leaving them open.
This prevents the unnecessary buildup of connections. For example, you can set
orclldapconntimeout to 60 minutes.

As of 10g (10.1.4.0.1), you can only set this for users who are not configured for
operation statistics tracking. Connections by users configured for statistics
collection do not time out as per this setting.

■ If no clients require detailed MatchDN information when the Base DN of an LDAP
search operation is not present in the directory, disable it. Change
orclmatchdnenabled to 0.

The following values are appropriate for most deployments:

For information about configuring orclserverprocs, orclldapconntimeout, and
orclmatchdnenabled with Oracle Enterprise Manager Fusion Middleware Control, see
"Attributes of the Instance-Specific Configuration Entry" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Internet Directory.

For information about configuring orclskiprefinsql or orclmatchdnenabled with
Oracle Enterprise Manager Fusion Middleware Control, see "Configuring Shared

See Also: "Configuring a User for Statistics Collection by Using
Fusion Middleware Control" in Oracle Fusion Middleware
Administrator's Guide for Oracle Internet Directory.

Table 23–2 LDAP Server Attributes to Tune

Attribute Default Recommended Value Notes

orclserverprocs 1 Number of CPU cores When setting the value, use only CPU
cores and not CPU threads.

orclmaxcc 2 10 Server restart required.

orclskiprefinsql 0 1 This change is highly recommended. Do
not change if you have LDAP referral
entries. LDAP referral entries are not
common.

Server restart required.

orclgeneratechangelog 1 0 Disable change log generation only if you
do not deploy either replication or Oracle
Directory Integration Platform.

orclldapconntimeout 0 (no
timeout)

Varies, 60 minutes is
reasonable

Users configured for statistics tracking do
not time out.

orclmatchdnenabled 1 0 Disable only if no application needs
detailed MatchDN information when
base DN of a search is not present.

Basic Tuning Considerations

Oracle Internet Directory Performance Tuning 23-9

Properties" in the Oracle Fusion Middleware Administrator's Guide for Oracle Internet
Directory.

For information about configuring these attributes, as well as orclgeneratechangelog,
from the command line, see "Setting System Configuration Attributes by Using
ldapmodify" in the Oracle Fusion Middleware Administrator's Guide for Oracle Internet
Directory.

23.3.3 Database Statistics
If you use LDAP commands to add a large number entries to Oracle Internet
Directory, it can affect directory performance. If this occurs, update the database
statistics. See Section 23.2.3, "Updating Database Statistics by Using oidstats.sql."

Typically, you only need to do this when you add entries in bulk for the first time after
installing Oracle Internet Directory. You do not need to do it again because the
database statistics are updated nightly automatically. If, however, you suddenly
experience slow LDAP operations, without a corresponding change in data footprint,
consider running oidstats.sql once to see if that improves performance. The impact
may be due to changes in database SQL execution plans, which oidstats.sql can help to
improve.

You do not need to update database statistics if you use the bulkload tool to add the
entries. The bulkload command automatically updates the database statistics.

23.3.4 Low-Priority Tuning Considerations
This section describes attributes that can sometimes improve performance, but are
considered low-priority.

23.3.4.1 Controlling the Number of Entries to be Returned by a Search
■ The attribute orclsizelimit controls the maximum number of entries to be

returned by a search. The default value is 10000. Setting it very high impacts
server performance. It also plays a role in limiting the maximum number of
changelogs the replication server can process at a time.

■ The multivalued attributes of orclsimplemodchglogattributes control the
attributes for which change logs contain only changes, not lists of all values.
Limiting the return to changes only can sometimes improve performance.

For more information, see "Change Logs in Directory Replication" in the Oracle
Fusion Middleware Administrator's Guide for Oracle Internet Directory.

23.3.4.2 Enabling the Group Cache
The instance-specific subentry attribute orclenablegroupcache controls whether
privilege groups and ACL groups are cached. Using this cache can improve the
performance of access control evaluation for users.

Use the group cache when a privilege group membership does not change frequently.
If a privilege group membership does change frequently, then it is best to turn off the
group cache. It is important to note that computing a group cache may affect
performance. The default is 1 (enabled). Change to 0 (zero) to disable.

See Also: Oracle Database Performance Tuning Guide for information
about SQL tuning.

Advanced Tuning Considerations

23-10 Oracle Fusion Middleware Performance and Tuning Guide

See "Setting System Configuration Attributes by Using ldapmodify" in the Oracle
Fusion Middleware Administrator's Guide for Oracle Internet Directory.

23.3.4.3 Timeout for Write Operations
When an LDAP client initiates an operation, then does not respond to the server for a
configured number of seconds, the server closes the connection. The number of
seconds is controlled by the orclnwrwtimeout attribute of the instance-specific
configuration entry. The default is 30 seconds.

You can modify orclnwrwtimeout by using Fusion Middleware Control or the
command line. See "Attributes of the Instance-Specific Configuration Entry" in the
Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory.

23.4 Advanced Tuning Considerations
After you have performed the modifications recommended in the previous section,
you can make additional changes that are specific to your deployment. Consider
carefully whether the recommendations in this section are appropriate for your
environment.

■ Replication or Oracle Directory Integration Platform

■ Replication Server Configuration

■ Garbage Collection Configuration

■ Oracle Internet Directory with Cluster Configuration

■ Password Policies and Verifier Profiles

■ Server Entry Cache

■ Result Set Cache

■ Tuning Security Event Tracking

■ Optimizing Searches

23.4.1 Replication or Oracle Directory Integration Platform
When you deploy Oracle Internet Directory with the Oracle Directory Integration
Platform or with replication, you can improve performance by having a dedicated
LDAP server instance for those two servers. This allows the default Oracle Internet
Directory LDAP instance to serve the LDAP application traffic and the second instance
to serve LDAP requests from the replication and Oracle Directory Integration Platform
servers.

1. Create an additional server instance, as described in the chapter "Managing Oracle
Internet Directory Instances" in Oracle Fusion Middleware Administrator's Guide for
Oracle Internet Directory.

2. Set orclmaxcc to 10 and orclserverprocs to 1 in the new instance configuration.

3. Restart the server, as described in the chapter "Managing Oracle Internet Directory
Instances" in Oracle Fusion Middleware Administrator's Guide for Oracle Internet
Directory.

4. Set the SSL and non-SSL ports used by the new instance and configure the
replication and Oracle Directory Integration Platform to point to them.

To configure orclmaxcc and orclserverprocs, see "Attributes of the Instance-Specific
Configuration Entry" in the Oracle Fusion Middleware Administrator's Guide for Oracle

Advanced Tuning Considerations

Oracle Internet Directory Performance Tuning 23-11

Internet Directory and "Setting System Configuration Attributes by Using ldapmodify"
in the Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory.

23.4.2 Replication Server Configuration
The following recommendations can be useful when replication traffic is heavy. Be
sure you understand the trade-offs before making these changes. The recommended
values are summarized in Table 23–3.

■ If you are deploying a single master with read-only replica consumers, you may
reduce performance impacts by turning off conflict resolution. To do so, change
the value of orclconflresolution to 0.

■ If the supplier is a bottleneck, increase orclthreadspersupplier on the supplier.
You can also increase orclthreadspersupplier at the consumer if is a bottleneck,
but be aware that increased parallelism causes race conditions in the application of
changelogs, resulting in more human intervention queue (HIQ) changes.

■ Decrease orclchangeretrycount so that new changelogs get more resources. If
there are conflicts, however, this increases the human intervention queue (HIQ)
changes.

■ Change orclupdateschedule to 0 to make the server process changelogs
immediately, instead of at the default, 60-second intervals. Do this on both the
supplier and consumer.

■ Increase the orclhiqschedule to a higher value. For example, if accessing the
human intervention queue (HIQ) four times a day is sufficient and appropriate for
your deployment, set the orclhiqschedule to 21600 seconds (6 hours).

Table 23–3 summarizes these recommendations.

Note: In an Oracle Internet Directory Cluster configuration
(rack-mounted or multi-box), the replication server must be started on
one hardware node only. The LDAP server instance dedicated to
replication must be started on the same node. The Oracle Directory
Integration Platform server can be on a different node.

Table 23–3 Replication Attributes

Attribute Default
Recommende
d Value Notes

orclthreadspersupplier transport=1

 apply=5

Set transport
threads to 1
and apply
threads to 10 or
greater

Most useful if the supplier is the
bottleneck.

orclchangeretrycount 10 4 Provides more resources to changelogs
but might increase HIQ.

orclupdateschedule 60 seconds 0 Causes changelogs to be processed
immediately

orclhiqschedule 600 seconds 21600 seconds Provides more resources to process new
changes.

orclconflresolution 1 0 Change only if you are deploying a single
master with read-only replica consumers.

Advanced Tuning Considerations

23-12 Oracle Fusion Middleware Performance and Tuning Guide

See Section 23.2.4, "Setting Performance-Related Replication Configuration Attributes"
for information on setting these replication attributes.

23.4.3 Garbage Collection Configuration
By default, Oracle Internet Directory runs database jobs to purge change logs, server
manageability statistics, and other data beginning at midnight, with each job starting
15 minutes after the previous one. You can change this configuration to suite your
deployment needs by modifying the parameters shown in Table 23–4.

You can modify these attributes by using ldapmodify or Oracle Directory Services
Manager. See Section 23.2.6, "Setting Garbage Collection Configuration Attributes."

23.4.4 Oracle Internet Directory with Cluster Configuration
As described in Section 23.4.2, "Replication Server Configuration", you can have a
dedicated LDAP server for Oracle Directory Integration Platform and replication, in
addition to the default server. In an Oracle Internet Directory Cluster, start the default
LDAP instance on all Oracle Internet Directory nodes, but start the dedicated instance
only on the node where Oracle Directory Integration Platform and replication are
running.

To maintain optimal performance, consider carefully which database instance Oracle
Internet Directory should connect to:

■ You can configure the Oracle Internet Directory for load balancing between Oracle
Database instances in the cluster, or failover mode.

■ Use a dedicated IP address and Oracle Internet Directory instance for notifications
in a cluster. The orclcachenotifyip configuration attribute can be added to the
ldiffile to indicate the port number and IP address to use. Note, however, that if
orclcachenotifyip is configured for an Oracle Internet Directory instance, the IP
address must be local to the node where that instance is running.

For more information, see "Configuring IP Addresses for Notifications in a
Cluster" in the Oracle Fusion Middleware Administrator's Guide for Oracle Internet
Directory

■ If you use a dedicated LDAP server instance for replication and Oracle Directory
Integration Platform, you can configure the connection strings of that instance for
failover. You would use the following in tnsnames.ora:

(FAILOVER=ON)(LOAD_BALANCE=OFF)

■ When performing a bulk operation, such as bulkload, connect the tool to just one
Oracle Database instance for the entire operation.

■ Configure Oracle Internet Directory instances as follows:

– One Oracle Internet Directory instance on each of the nodes to service LDAP
application traffic

Table 23–4 Garbage Collection Configuration Parameters

Parameter Value Notes

orclpurgetargetage Less than 10days (240
hours)

Only if there is no requirement to retain change logs

orclpurgeinterval 6–12 hours

Advanced Tuning Considerations

Oracle Internet Directory Performance Tuning 23-13

– An instance of the Oracle Internet Directory replication server and Oracle
Directory Integration Platform server on one node

23.4.5 Password Policies and Verifier Profiles
Oracle Internet Directory has password policies and password verifier profiles enabled
out of box. If Oracle Internet Directory is not required to enforce password policies in a
given deployment, then the password policies can be disabled. The password verifier
profiles enabled out of box control the generation of certain password verifiers
required by Oracle products like Enterprise User Security and Oracle Collaboration
Suite. If Oracle Internet Directory is not being deployed for other Oracle products, you
can disable all the password verifier profiles.

You can disable password policies and password verifiers by using Oracle Directory
Services Manager or ldapmodify.

23.4.6 Server Entry Cache
The Oracle Internet Directory server cache enables LDAP entries to be cached on
Oracle Internet Directory SHARED MEMORY, all the Oracle Internet Directory process
running on the node share the cache for better performance.

23.4.6.1 Benefits of Using the Entry Cache
Oracle Internet Directory has been enhanced to support entry cache in cluster
configuration starting from release 11.1.1.6.0. One of the key benefits of using the entry
cache is that LDAP search operation is 4 times fast. This applies only when all or most
entries can be cached.

23.4.6.2 Values for Configuring the Entry Cache
You can configure and optimize the server entry cache by setting the values shown in
Table 23–5.

See Also:

■ The "Managing Password Policies" chapter in Oracle Fusion
Middleware Administrator's Guide for Oracle Internet Directory.

■ The "Managing Password Verifiers" chapter in Oracle Fusion
Middleware Administrator's Guide for Oracle Internet Directory.

Table 23–5 Server Entry Cache Configuration

Attribute Default
Recommended
Value Notes

orclmaxcc 2 10 Restart the server after changing this
attribute.

orclecacheenabled 1 2

orclecachemaxsize 200000000 Bytes Total size of the
directory, in bytes

To determine the optimal setting for this
attribute, use the number of entries in the
Directory Information Tree and multiply by
the average entry size.

Estimate three times the size of the entries
in LDIF format.

orclecachemaxentries 100000 Total number of
entries in the DIT

Advanced Tuning Considerations

23-14 Oracle Fusion Middleware Performance and Tuning Guide

For example, if the total size of the Directory Information Tree is 300K and the total
size of 300K entries in LDAP Data Interchange Files (LDIF) format is 500M, you would
set orclecacheenabled to 1, orclecachemaxsize to 1,500,000,000, and
orclecachemaxentries to 300,000.

To obtain the number of entries in the Directory Information Tree, use the following
command:

sqlplus ods@oiddb
select count(*) from ct_dn;

oidctl connect=oiddb status -diag
The following example shows the oidctl connect=oiddb status -diag command
output:

 +--+
 | Process | PID | InstName | CompName |Inst#| Port | Sport |
 +--+
 | oidmon | 8192 | inst1 | oid1 | 0| | |
 +--+
oidldapd disp	8201	inst1	oid1	1	5678	0
oidldapd serv	8205	inst1	oid1	1	5678	0
oidldapd serv	8209	inst1	oid1	1	5678	0
oidldapd serv	8213	inst1	oid1	1	5678	0
oidldapd serv	8217	inst1	oid1	1	5678	0
Config DN	cn=oid1,cn=osdldapd,cn=subconfigsubentry					
 +--+

 +--+
 |Printing LDAP Operation in progress status ... |
 +--+
 +--+
 OIDLDAPD_PID: 8205 WorkerID: 8 DBSID: 168 DBPID: 8245 ==> IDLE
 +--+
 OIDLDAPD_PID: 8205 WorkerID: 9 DBSID: 170 DBPID: 8253 ==> IDLE
 +--+
 OIDLDAPD_PID: 8205 WorkerID: 10 DBSID: 180 DBPID: 8261 ==> IDLE
 +--+
 OIDLDAPD_PID: 8205 WorkerID: 11 DBSID: 189 DBPID: 8269 ==> IDLE
 +--+
 OIDLDAPD_PID: 8209 WorkerID: 13 DBSID: 171 DBPID: 8249 ==> IDLE
 +--+
 OIDLDAPD_PID: 8209 WorkerID: 9 DBSID: 181 DBPID: 8257 ==> IDLE
 +--+
 OIDLDAPD_PID: 8209 WorkerID: 12 DBSID: 193 DBPID: 8267 ==> IDLE
 +--+
 OIDLDAPD_PID: 8209 WorkerID: 10 DBSID: 199 DBPID: 8225 ==> IDLE
 +--+
 OIDLDAPD_PID: 8209 WorkerID: 11 DBSID: 190 DBPID: 8227 ==> IDLE
 +--+
 OIDLDAPD_PID: 8205 WorkerID: 13 DBSID: 197 DBPID: 8223 ==> IDLE
 +--+
 OIDLDAPD_PID: 8205 WorkerID: 12 DBSID: 182 DBPID: 8229 ==> IDLE
 +--+

 Cache Max Size : 96000001024
 Max Entries configured : 2600000
 Max Entries cached : 3000000
 Num Entries in Cache : 3000000
 Num Entries in GC : 6000000

Advanced Tuning Considerations

Oracle Internet Directory Performance Tuning 23-15

 Page size : 46062504
 Entry cache Hit count : 164805647431
 Entry cache Mis count : 8981856
 Hash Area bytes used : 39904896
 Hash Area blocks used : 22
 Free pages : 944
 Freed Blks : 18008766
 Entry cache bytes used : 47468777224
 Entry cache blocks used : 675008984
 Cache memory used : 47508682120

The -opdiag option for OIDCTL displays the total number of LDAP operations
performed in 5 second intervals (similar to the vmstat/iostat).

oidctl connect=oiddb status -opdiag
To configure the attributes, see "Attributes of the Instance-Specific Configuration
Entry" in the Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory
and "Setting System Configuration Attributes by Using ldapmodify" in the Oracle
Fusion Middleware Administrator's Guide for Oracle Internet Directory.

23.4.7 Result Set Cache
Result set cache is an Oracle 11g OID feature that allows complete result sets to be
stored in memory. If a SQL query is executed and its result set is in the cache then
almost the entire overhead of the SQL execution is avoided: this includes parse time,
logical reads, physical reads and any cache contention overhead (latches for instance)
that might normally be incurred. Configuring the result cache can improve
performance since most LDAP applications typically look up user entry such as
mail=john.doe@acme.com or uid=john.doe from a user tree. Such queries are repeated by
the application every time a user logins or uses the application. The result set of such
queries may be a single entry. Performance may be affected as OID makes a trip to the
database for the entry each time the query is run.

23.4.7.1 When to Use Result Set Cache
Consider using Result Set Cache only under the following conditions:

■ Filter matches one or few entries.

■ SQL statement causes multiple reads from disk or buffer (expensive)

23.4.7.2 Benefits of Using Result Set Cache
Benefits of using the entry cache include:

■ OID evaluates the filter without making a trip to the database and therefore
reduces the load on the database.

■ Performance may be improved by 3 to 5 times when compared to performance
when result set cache is not used.

23.4.7.3 Configuring Result Set Cache
The OrclRSCacheAttr attribute is used to configure the result set cache for OID.
OrclRSCacheAttr is a multi-valued attribute that includes cn, mail, uid, orclguid.
Typically these attributes are not modified for the life of the entry.

To enable result set cache, set orclecacheenabled=2. Result set cache can be turned off
by setting orclecacheenabled=1 or orclecacheenabled=0.

Advanced Tuning Considerations

23-16 Oracle Fusion Middleware Performance and Tuning Guide

Note that any change to the following configuration attributes requires a restart of OID
server (all the instances).

23.4.8 Tuning Security Event Tracking
The instance-specific configuration entry attributes orcloptrackmaxtotalsize and
orcloptracknumelemcontainers control how much memory is used for security event
tracking.

 The attribute orcloptrackmaxtotalsize specifies the maximum number of bytes of
RAM that security events tracking can use for each type of operation. If the Directory
Server exceeds this limit for information collected for an operation, the server stops
collecting new information and records appropriate messages in server log files. For
the compare operation, the Directory Server uses twice the value of the attribute,
which is the combined amount of information about users performing compare
operation and users whose passwords are being compared. The default value of
orcloptrackmaxtotalsize is 100000000 Bytes, which should be sufficient for most
deployments. It can be increased to 200MB. For information about modifying
orcloptrackmaxtotalsize, see the instance-specific configuration attribute examples
in "Setting System Configuration Attributes by Using ldapmodify" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Internet Directory.

The attribute orcloptracknumelemcontainers allows you to choose the number of
in-memory cache containers to be allocated for security event tracking in the Oracle
Internet Directory server. There are two subtypes for this attribute. They are 1stlevel
and 2ndlevel. The 1stlevel subtype is for setting the number of in-memory cache
containers for storing information about users performing operations. The 2ndlevel
subtype, which is applicable only to compare operation, sets the number of in-memory
cache containers for information about the users whose user password is compared
and tracked when detailed compare operation statistics is programmed.

The default value of both subtypes is 256. The appropriate values for these subtypes
depend on the number of users in your environment and the number of applications
used to access the directory, as follows:

■ In a deployment where several applications perform operations on behalf of a
large number of end users, set 1stlevel proportional to the number of applications,
plus a few hundred more for end users directly accessing the directory. Then set
2ndlevel proportional to the number of end users.

■ In a deployment where end users themselves perform the operations, set 1stlevel
proportional to the number of end users, then set 2ndlevel to a small value, such
as 25.

■ A typical proportional value is one fifth. Proportions between one tenth and one
half are reasonable in most environments.

If your deployment requires it, set the values for orcloptracknumelemcontainers only
when security events collection is turned on.

23.4.9 Optimizing Searches
This section contains these topics:

■ Section 23.4.9.1, "Optimizing Searches for Large Group Entries"

■ Section 23.4.9.2, "Optimizing Searches for Skewed Attributes"

■ Section 23.4.9.3, "Optimizing Performance of Complex Search Filters"

Advanced Tuning Considerations

Oracle Internet Directory Performance Tuning 23-17

23.4.9.1 Optimizing Searches for Large Group Entries
Searches for group entries with several thousand attribute values for either the member
or uniquemember attribute can have high latency. If you find the latency unacceptably
high, there are steps you can take to reduce it.

The simplest step is to reduce the number of attributes you are searching for. If you do
not need to retrieve all the attributes of the group entry, specify required attributes in
the search request to optimize the latency.

23.4.9.1.1 Entry Cache Enabled Configuration If you still see unacceptable latency, even
with required attributes specified, then you can try to cache the large group entry in
the entry cache:

cn=componentname,cn=osdldapd,cn=subconfigsubentry

23.4.9.1.2 Entry Cache Disabled Configuration. No action is required. This configuration
is enabled by default.

23.4.9.2 Optimizing Searches for Skewed Attributes
To service a typical search request, the Directory Server sends a SQL statement to the
Oracle Database. If a given attribute has very different response times depending on
its value, then the attribute is said to be skewed. For example, if searches for my_
attribute=value1 and my_attribute=value2 have very different response times, then
my_attribute is said to be a skewed.

You can uniform the response times for searches for such an attribute by adding it as a
value of the orclskewedattribute attribute, which is in the DSA configuration entry.
The DN of the DSA configuration entry is

cn=dsaconfig,cn=configsets,cn=oracle internet directory

By default, the objectclass attribute is listed as a value in the orclskewedattribute
attribute.

You can change the value of orclskewedattribute by using or ldapmodify. See
"Attributes of the Instance-Specific Configuration Entry" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Internet Directory and "Setting System
Configuration Attributes by Using ldapmodify" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Internet Directory.

23.4.9.3 Optimizing Performance of Complex Search Filters
When Oracle Internet Directory receives an LDAP search filter from a client
application, it sends the filter to the Oracle Database as an SQL query. Sometimes
client applications send filters that include terms that match a large number of entries
in the directory. For example, consider the following filter:

(&(uid=msmith)(objectclass=inetorgperson)(orclisenabled=TRUE))

The terms (objectclass=inetorgperson) and (orclisenabled=TRUE) in that filter
match nearly all entries. It would be very resource-intensive to execute that entire filter
in the Oracle Database. To improve performance, you can specify that Oracle Internet

Note: If you expect frequent updates to large groups, then do not use
this tuning methodology. Use the Entry Cache Disabled
Configuration.

Advanced Tuning Considerations

23-18 Oracle Fusion Middleware Performance and Tuning Guide

Directory execute a portion of that filter in its own memory, rather than in the
database. To do that, you use orclinmemfiltprocess, an attribute in the DSA
configuration entry:

cn=dsaconfig,cn=configsets,cn=oracle internet directory

When orclinmemfiltprocess is configured, the following events occur each time
Oracle Internet Directory receives an LDAP search:

1. Oracle Internet Directory removes all the terms that are configured in the
orclinmemfiltprocess before forming the SQL query.

2. Oracle Internet Directory sends the SQL query to Oracle Database.

3. Oracle Database sends the entries resulting from the SQL query to Oracle Internet
Directory.

4. Oracle Internet Directory applies the original filter sent by the client (the terms in
orclinmemfiltprocess) to those entries in memory.

5. Oracle Internet Directory sends the entries that match that filter to the client.

For example, suppose orclinmemfiltprocess is set to
(objectclass=inetorgperson)(orclisenabled=TRUE). When Oracle Internet
Directory receives the search
(&(uid=msmith)(objectclass=inetorgperson)(orclisenabled=TRUE)), it sends a
filter containing only the parameter (uid=msmith) to the database. After Oracle
Internet Directory receives entries back from the database, Oracle Internet Directory
itself applies the filter (objectclass=inetorgperson) (orclisenabled=TRUE) to those
entries.

By default, orclinmemfiltprocess is set to the following values:

(objectclass=inetorgperson)

(objectclass=oblixorgperson)

(|(!(obuseraccountcontrol=*))(obuseraccountcontrol=activated))

(|(obuseraccountcontrol=activated)(!(obuseraccountcontrol=*)))

(objectclass=*)

(objectclass=oblixworkflowstepinstance)

(objectclass=oblixworkflowinstance)

(objectclass=orcljaznpermission)

(obapp=groupservcenter)(!(obdynamicparticipantsset=*))

(objectclass=orclfeduserinfo)

You can change the value of orclinmemfiltprocess by using or ldapmodify. See
"Attributes of the Instance-Specific Configuration Entry" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Internet Directory and "Setting System
Configuration Attributes by Using ldapmodify" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Internet Directory.

Under some conditions, Oracle Internet Directory ignores orclinmemfiltprocess and
sends the entire filter to the database. It does this if the filter it receives meets the
following conditions:

■ It contains only one parameter, that is, one attribute-value pair.

■ It contains no filter condition other than those in orclinmemfiltprocess

Advanced Tuning Considerations

Oracle Internet Directory Performance Tuning 23-19

■ It contains an OR condition applied to the terms that are in orclinmemfiltprocess

■ It contains the same terms as in orclinmemfiltprocess, but in a different order

The following cases illustrate those conditions. In all of the following cases,
orclinmemfiltprocess is set to
(objectclass=inetorgperson)(employeetype=Contract).

Examples

Case A
(&(manager=cn=john doe)(objectclass=inetorgperson)
(employeetype=Contract))

Oracle Internet Directory sends the filter (&(manager=cn=john doe)) to the database.

Case B
(&(uid=rmsmith)((objectclass=inetorgperson)(employeetype=Contract)))

Oracle Internet Directory sends only (&(uid=rmsmith)) to the database, then applies
the filter (&(objectclass=inetorgperson)(employeetype=Contract)) to the entries
that are returned from the database.

Case C
(|(uid=rmsmith)(objectclass=inetorgperson) (employeetype=Contract))

In this filter, the terms that match orclinmemfiltprocess are part of an OR condition.
Oracle Internet Directory sends the filter, as is, to the database.

Case D
(&(uid=rmsmith)(employeetype=Contract) (objectclass=inetorgperson))

Even though some of the terms in this filter match orclinmemfiltprocess, they are in
a different order, so Oracle Internet Directory sends the whole filter to the database.
You could add (employeetype=Contract)(objectclass=inetorgperson) to
orclinmemfiltprocess if you do not want Oracle Internet Directory to send this filter
to the database.

Case E
(|(&(uid=rmsmith)(sn=smith)(objectclass=inetorgperson)(employeetype=Contra
ct))

In this filter, the terms that match orclinmemfiltprocess are part of an OR condition.
Oracle Internet Directory sends the filter, as is, to the database.

Case F
(&(|(uid=rmsmith)(sn=smith))(objectclass=inetorgperson)(employeetype=Contr
act)))

Even though this filter contains an OR operator, it is not applied to the terms that
match orclinmemfiltprocess. Oracle Internet Directory sends
(&(|(uid=rmsmith)(sn=smith))) to the directory and applies the filter
(&(manager=cn=john doe)(&(objectclass=inetorgperson)
(employeetype=Contract)) to the entries that are returned from the database.

Specific Use Cases That Require Additional Tuning

23-20 Oracle Fusion Middleware Performance and Tuning Guide

Configuring Multiple Filters
If the application is sending multiple filters, and the terms in one filter are a superset
of the terms in the other, you must configure orclinmemfiltprocess for both values.

For example, suppose the application is sending the following two filters:

(&(uid=rmsmith)(objectclass=inetorgperson)(employeetype=Contract))

(&(uid=rmsmith)(objectclass=inetorgperson)(employeetype=Contract)(departme
ntNumber=627))

where (departmentNumber=627) matches a lot of entries. You must configure
orclinmemfiltprocess as follows:

(objectclass=inetorgperson)(employeetype=Contract)

(departmentNumber=627)

Optimizing Performance for Search baseDN
In the DIT, if all the users are under one baseDN, such as cn=users,dc=acme,dc=com,
and all the LDAP search clients send base as cn=users,dc=acme,dc=com, then the
configuration of the orclinmemfilter will significantly reduce database processing
time. See the following example:

orclinmemfiltprocess;dn: cn=users,dc=acme,dc=com

23.5 Specific Use Cases That Require Additional Tuning
This section describes some specific use cases that require additional tuning, in
addition to Section 23.3, "Basic Tuning Considerations".

23.5.1 Bulk Load Operations
If you are planning a large bulkload operation, make the following changes:

■ Set the database initialization parameter pga_aggregate_target to 1-4GB, if
sufficient RAM is available. Consider increasing the size if there is a pattern of
increased PGA usage.

■ Increase the database temporary tablespace before loading a large number entries.
You need about 1G of temporary tablespace per million entries being loaded. You
can free up the tablespace after the operation.

23.5.2 Bulk Delete Operations
If you are planning a large bulkdelete operation, perform the following tasks:

■ Ensure that the database initialization parameter sga_target are tuned as
described in Section 23.3.1, "Database Parameters."

■ Set the database initialization parameter log_buffer to 10M. This can provide
additional performance benefit.

■ Ensure that you have at least three database redo log files with at least 2 GB each.

■ Ensure that the undo tablespace is at least 1 GB in total size.

■ Follow the recommendations about redo logs and undo tablespace in the next
section, Section 23.5.3, "High LDAP Write Operations Load."

Specific Use Cases That Require Additional Tuning

Oracle Internet Directory Performance Tuning 23-21

23.5.3 High LDAP Write Operations Load
If you have a high LDAP write operations load, or if you perform many bulkdelete
operations, consider tuning the following values:

■ Increase the size or number of the database redo log files so that the total size is
1000-1500 MB. Other considerations affect the total size of redo logs.

■ Depending on how the disks are configured, it might be beneficial to isolate the
redo log files to a dedicated set of disks.

■ Increase the undo tablespace size by adding data files to this tablespace. For most
deployments, 2-4 GB should suffice.

■ Do not use the Oracle Internet Directory server entry cache. See Section 23.4.6,
"Server Entry Cache."

■ If neither Oracle Internet Directory replication nor DIP is deployed, disable change
log generation. See Section 23.4.1, "Replication or Oracle Directory Integration
Platform."

Table 23–6 summarizes the redo log and undo tablespace recommendations provided
in this section.

23.5.4 Sparc T4 Hardware Tuning
On Sparc T4 hardware, set OID_BIND_CPU=0 environment variable, and make sure
$ORACLE_HOME/bin/oiddispd is owned by root process with setuid bit ON.

OIDDISPD creates the processor set, so, make sure the orclserverprocs =
NumberOfcores-1.

Table 23–6 Redo Log and Undo Tablespace Values

Attribute Value Notes

Redo Log 3 logs, 2GB
each

Sufficient to handle many bulkdelete operations and large
numbers of write operations.

Undo
Tablespace

At least 1GB
total

Many bulkdelete operations.

Undo
Tablespace

2-4 GB Large number of write operations.

Specific Use Cases That Require Additional Tuning

23-22 Oracle Fusion Middleware Performance and Tuning Guide

24

Oracle Unified Directory Performance Tuning 24-1

24Oracle Unified Directory Performance Tuning

This chapter provides guidelines for tuning and sizing Oracle Unified Directory. It
contains these topics

■ Section 24.1, "About Oracle Unified Directory"

■ Section 24.2, "Performance Considerations"

■ Section 24.3, "Monitoring Unified Directory Performance"

■ Section 24.4, "Basic Tuning Considerations"

■ Section 24.5, "Advanced Tuning Recommendations"

24.1 About Oracle Unified Directory
Oracle Unified Directory is a comprehensive next generation directory service that is
designed to address large deployments, to provide high performance, to be highly
extensive and to be easy to deploy, manage, and monitor.

24.2 Performance Considerations
Oracle Unified Directory aims to be high-performing and highly-scalable. Although
the server can achieve impressive results with the "out-of-the-box" server
configuration and default JVM settings, performance can often be improved
significantly through some basic tuning.

The default settings of Oracle Unified Directory are targeted at evaluators and
developers who are running equipment with limited resources. When you deploy
Oracle Unified Directory in a production environment, it useful to do some initial
tuning of the Java Virtual Machine (JVM) and of the server configuration to improve
scalability and performance (particularly for write operations).

In addition, performance tuning strategies differ depending on whether you are
running a directory server or a proxy server. This section describes some of the areas
that you should consider tuning based on your server usage. Note that the specific
tuning parameters and descriptions are discussed in Section 24.4, "Basic Tuning
Considerations".

■ When OUD is used as an LDAP Directory Server. When used as a Directory
Server, you can maximize performance by:

– Tuning the database cache size, preload, and file cache size appropriately.

– Placing the database on a fast file system.

– Using the correct database caching mode for your deployment.

Monitoring Unified Directory Performance

24-2 Oracle Fusion Middleware Performance and Tuning Guide

– Tuning the Oracle Berkeley DB Java Edition log cleaners.

■ When OUD is used as an LDAP Proxy Server. When used as a Proxy Server, you
can maximize performance by:

– Making sure you have a sufficient number of worker threads. Proxying
requires a large number of worker threads to optimize performance.

– Setting the heap size to an appropriate value and using the correct JVM. It is
unlikely that a proxy will need more than 4GB of heap, therefore a 32-bit JVM
should be used in most cases.

In addition, the following items can improve performance in specific deployment
scenarios.

■ Java Version. Use the most recent Java Runtime Environment (JRE) release
available. Oracle Unified Directory is designed to work with Java SE 6 and 7.

■ Environment Variables. The server uses the OPENDS_JAVA_HOME environment
variable to point to your installed JRE. If you have multiple versions of Java
installed on a system, set the JAVA_HOME environment variable to point to the
root of the desired installation. In this way, the version of the JRE specified by the
JAVA_HOME variable can be used by other applications but not by Oracle Unified
Directory.

To specify a JRE installation for the server, do one of the following:

■ Use the dsjavaproperties command to set the appropriate environment
variables.

■ Set the OPENDS_JAVA_BIN environment variable (with the JAVA binary
path).

■ Set the OPENDS_JAVA_HOME environment variable (with the JAVA
installation path).

24.3 Monitoring Unified Directory Performance
This chapter provides an overview of the key monitoring tools you can use to gather
performance information for Unified Directory.

24.3.1 Examining Log Files
Oracle Unified Directory provides several types of logs: access logs, audit logs, error
logs, debug logs, oud-setup logs, server.out logs, and a replication repair log. The
replication repair log is read-only and its use is restricted to enabling replication
conflict resolution.

To quickly determine whether performance issues are related to problems with the
server or with the client, review the access log at INSTANCE_DIR/OUD/logs/access.
Access logs record information about the types of operations processed by the
directory server. Access logs are provided by default.

This log contains entries of the form:

Note: Oracle Unified Directory provides an extensible monitoring
framework. Oracle Unified Directory performance can also be
monitored by using the Enterprise Manager Grid Control plugin. For
more information, see the System Monitoring Plug-in for Oracle Unified
Directory User's Guide.

Basic Tuning Considerations

Oracle Unified Directory Performance Tuning 24-3

[09/Sep/2009:15:36:18 +0200] SEARCH RES conn=1 op=16 msgID=17
 result=0 nentries=1 etime=1

The value of the etime field is the time (in milliseconds) that the server spent
processing the request. Large etimes generally indicate an issue on the server side
(which can usually be resolved by appropriate performance tuning or indexing. If you
are experiencing performance problems but the etimes are small, the issue is more
likely to be with your client application.

24.3.2 Monitoring the Server With LDAP
The following sections of the Oracle Unified Directory Administrator's Guide provide
detailed instructions on how to monitor the server using Lightweight Directory
Application Protocol (LDAP):

■ Viewing Monitoring Information Using the cn=monitor Entry

■ Monitoring Using the manage-tasks Command

■ Monitoring the Server With JConsole

24.3.3 Monitoring the Server With SNMP
Oracle Unified Directory provides a jar file extension that contains a Simple Network
Management Protocol (SNMP) connection handler for Management Information Base
(MIB) 2605 support. The extension contains the SNMP connection handler, the
required classes to support MIB 2605 objects and SNMP requests, and the SNMP
adapter that allows an SNMP manager to access the server monitoring information.

24.4 Basic Tuning Considerations
The following sections describe basic tuning configurations that you should also
consider while tuning Oracle Unified Directory:

■ Tuning Java Virtual Machine Settings

■ Tuning the Server Configuration

24.4.1 Tuning Java Virtual Machine Settings
As discussed in Chapter 2.4, "Tuning Java Virtual Machines (JVMs)", you can use the
JAVA_ARGS environment variable to provide global configuration arguments that can
be passed to the JVM, or you can use the java.properties file. Any argument that can
be used with the java command can be used with both methods.

The following table describes the main JVM tunable options for Oracle Unified
Directory. Note that some of these settings apply to Sun JVM only, but that similar
settings could be applied to JRockit.

Parameter Description

When using OUD
as a Directory
Server...

When using OUD
as a Proxy
Server...

-server Always use the server JVM instead of the
client JVM. The client VM is better optimized
for processes that run for a short period of
time and need to start as quickly as possible.
The server VM can take longer to warm up
but is faster than the client VM.

Set this parameter
as described.

Set this parameter
as described.

Basic Tuning Considerations

24-4 Oracle Fusion Middleware Performance and Tuning Guide

-d32 or -d64 Select the 32-bit or 64-bit version of the JVM as
follows:

■ -d32 provides better performance for JVM
heaps smaller than 3.5Gbytes.

■ -XX:+UseCompressedOops should be used
for JVM heaps between 3.5Gbytes and
31Gbytes.

■ -d64: should be used for JVM heaps over
32Gbytes.

The JVM version
used will depend
on heap size.

Not applicable,
except for the case
when global index
is used, otherwise
it's unlikely that a
Proxy Server will
need more than
4GB of heap.

In most cases the
32-bit version of
the JVM should be
used.

-XX:+UseCompressedOops Use this option if you use the 64-bit JVM and
if the heap size is less than 32 Gbytes.

Set this parameter
as described.

Not applicable a
64-bit JVM is
required.

-Xms (Initial heap size)

-Xmx (Maximum heap
size)

This parameter sets the initial and maximum
heap size available to the JVM.

Increasing the heap size can improve
performance, but setting it too high can have a
detrimental effect in the form of longer pauses
for full garbage collection runs. The initial and
maximum sizes should generally be set to the
same values.

For maximum performance, size the heap so
that the entire DB can be cached in memory. In
general, you should allocate enough heap for
the server runtime and the rest to the DB
cache.

If you use CMS as the garbage collector of the
oldgen, you must take into account the
-XX:CMSInitiatingOccupancyFraction
property when you calculate the heap size so
that it is coherent with the size (or percent of
the heap) occupied by the dbcache.

If you set the
CMSInitiatingOccupancyFraction to 55, the
dbcache percent should be set to 50. Then if
you have a database on disk that is 10GB, you
need at least a heap of 22GB if you want the
entire database to fit into the dbcache.

Set this parameter
as described.

Example:

-Xmx31G

-Xms31G

Set this parameter
as described.

Example:

-Xmx3500M

-XX:NewSize The total heap space is divided into the old
generation and the young generation. This
parameter sets the size of the young
generation. The remaining memory (old
generation) must be sufficient to hold the DB
cache plus some overhead.

Set this parameter
as described.

Example:

-XX:NewSize=512M

Set this parameter
as described.

Example:

-XX:NewSize=2G

-XX:+UseConcMarkSweepG
C

Use the Concurrent Mark Sweep (CMS)
garbage collector. This option allows the JVM
to minimize the response time of LDAP
operations, but it can have a small impact on
the overall performance (throughput) of the
server. Use this option of long pause times are
not tolerated.

Set this parameter
as described.

Set this parameter
as described.

Parameter Description

When using OUD
as a Directory
Server...

When using OUD
as a Proxy
Server...

Basic Tuning Considerations

Oracle Unified Directory Performance Tuning 24-5

24.4.2 Tuning the Server Configuration
Various components of the server can be tuned to provide performance improvements
in specific scenarios. Most performance tuning recommendations depend on several
variables, including the anticipated workload, the types of data that are stored, and the
hardware and resources available. The following general tuning recommendations can
improve server performance in specific deployments.

24.4.2.1 Oracle Berkeley DB Java Edition Tuning Parameters
Oracle Berkeley DB Java Edition is an open source, embeddable, transactional storage
engine. The architecture of Oracle Berkeley DB Java Edition supports very high
performance and concurrency for both read-intensive and write-intensive workloads.

The following Berkeley DB Java Edition (JE) tuning parameters can be used to tune
performance:

-XX:CMSInitiatingOccup
ancyFraction=<percenta
ge>

Specify the level at which the CMS garbage
collection is started. The default value is
approximately 68%. Use this value if you want
to set the percentage to something other than
the default value.

If you use CMS as the garbage collector of the
oldgen, then it is important to take into
account the CMS property
-XX:CMSInitiatingOccupancyFraction in the
computation of the heap size such it is
coherent with the size (or percent of the heap)
occupied by the dbcache.

If you setup the
CMSInitiatingOccupancyFraction to 55, then
the dbcache percent should be setup to 50.
Then if you have a db on disk that is 10GB,
this means you need at least a heap of 22GB if
you want all the db to fit into the dbcache.

Set this parameter
as described.

Set this parameter
as described.

-XX:+UseCMSInitiatingO
ccupancyOnly

Add -XX:UseCMSInitiatingOccupancyOnly if
you specified
-XX:CMSInitiatingOccupancyFraction=60,
and the CMS collections are still starting
before they reach that threshold. Remove the
-XX:CMSInitiatingOccupancy=60 (using the
default value of 69%), and consider adding the
line: -XX:UseCMSInitiatingOccupancyOnly.

Set this parameter
as described.

Set this parameter
as described.

-XX:+UseBiasedLocking Improve locking performance in the server in
cases where there is not expected to be a high
degree of contention.

Set this parameter
as described.

Set this parameter
as described.

-XX:LargePageSizeInByt
es=256m

Use large pages for the information it stores in
memory.

NOTE: This argument applies primarily to
systems using the UltraSPARC T1 processor.

Set this parameter
as described.

Set this parameter
as described.

-XX:+CMSScavengeBefore
Remark

Causes a minor collection to occur just before
the remark which reduces the remark pause
time.

Set this parameter
as described.

Set this parameter
as described.

-XX:+UseNUMA NOTE: This option should only be used on
UltraSPARC Tx processors.

Set this parameter
as described.

Set this parameter
as described.

Parameter Description

When using OUD
as a Directory
Server...

When using OUD
as a Proxy
Server...

Basic Tuning Considerations

24-6 Oracle Fusion Middleware Performance and Tuning Guide

Parameter Description

db-cache-percent and

db-cache-size

Use these properties to configure the amount of memory that the database cache uses.
db-cache-size is dependant on the size of the directory and the amount of available
memory.

There are two caching options:

■ Fully cached in JVM heap.

When the directory is small and there is enough memory available, the db-cache_
size should be tuned to contain the entire node.This caching mode provides
deterministic response times and low disk I/O, but requires large JVM heap and
can impact garbage collection.

■ Partially cached in JVM heap, remainder cached in File System cache.

When the directory is too large to store all of the nodes in memory, the
db-cache-size should be tuned to contain only the Upper Inner Nodes (UpperIN)
and the Bottom Inner Nodes (BIN). This caching mode also provides low disk I/O
and can eliminate some of the issues related to large heap, but it can be slower and
has slightly less deterministic response times (performance degradation is
proportional to the amount of DB cached in the JVM).

The size of the Inner Node can be computed using the DbCacheSize utility. For
more information, see "Estimating the JE Cache Size".

Before you can accurately set the db-cache-size, you must first determine the
approximate size of the database after an import. For example, after doing an import
into the userRoot back end, run the following command (on UNIX systems) to
determine the size of the database:

$ cd INSTANCE_DIR/OUD/db
$ du -sk userRoot/
910616 userRoot/

On Windows systems, use an equivalent procedure to determine the database size.
Remember that the database size is not static and can increase after an initial import
when modifications are made.

Setting the JVM heap to 2 Gbytes (-Xms2g -Xmx2g), and the db-cache-percent to 50, will
cause the DB cache to use 1 Gbyte of memory.

je.checkpointer.highP
riority

If true, the checkpointer uses more resources in order to complete the checkpoint in a
shorter time interval. Btree latches are held and other threads are blocked for a longer
period. Log cleaner record migration is performed by cleaner threads instead of lazily
during eviction and checkpoints (see CLEANER_LAZY_MIGRATION). When set to
true, application response time may be longer during a checkpoint, and more cleaner
threads may be required to maintain the configured log utilization.

Setting that property to false is a way to achieve better throughput and lower response
times.

preload-time-limit You can configure the server to preload some of the database contents into memory on
startup. For large databases, preloading the database cache avoids a long warm-up
period after server startup.

db-directory Ensure that the database is held on a fast file system with adequate storage. The file
system should be different to the location of the access logs. By default, the database will
grow to twice its original size. For example, if the database is 1 Gbyte after an import,
the file system should have at least 2 Gbytes available.

db-evictor-lru-only Use this property to control how the database cache retains information. Setting this
value to false ensures that the internal nodes are maintained in cache, which provides
better performance when the JE cache holds only a small percentage of the database
contents.

Advanced Tuning Recommendations

Oracle Unified Directory Performance Tuning 24-7

24.4.2.2 Core Server Tuning Parameters
The following core server tuning parameters can be used to tune performance:

24.5 Advanced Tuning Recommendations
The following additional recommendations can improve performance in specific
scenarios.

■ Enable an Entry Cache. In some cases, particularly those involving relatively
small directories (for example, up to a few hundred thousand entries), it can be
useful to enable an entry cache. In general the FIFO entry cache provides better
results than the soft reference entry cache.

For large databases, it is recommended that you store only a specific set of the data
in the cache, by using the include-filter property. Storing static groups in the
entry cache can greatly improve the overall performance of the server. This
reduces the time required to perform group membership lookup, which is
necessary in evaluating ACIs, for example.

db-txn-durability Use this property to configure durability for write operations. Reducing durability can
increase write performance, but it can also increase the chance of data loss in the event
of a JVM crash or a system crash. This property takes the following values:

write-to-disk. All data are written synchronously to disk.

write-to-fs. Data are written to the file system immediately but might stay in the file
system before being flushed to disk.

write-to-cache. Data are written to an internal buffer and flushed to the file system, then
to disk when necessary.

db-log-file-max Use this property to control the size of JE log files. Increasing the file size can improve
write performance, but it can also make it harder to maintain the desired utilization
percentage.

db-num-cleaner-thread
s

and
db-cleaner-min-utiliz
ation

These properties control how the cleaner works, which keeps the database size down
and keeps up with high write throughput. As older records become obsolete they are
cleaned. The cleaning process can impact performance if not tuned.

db-num-lock-tables On systems with a large number of CPUs, this property can improve concurrency
within the database lock manager.

Parameter Description

num-request-handlers This property can be configured so that the LDAP connection handler (and the LDAPS
connection handler, if it is enabled) use multiple threads for decoding client requests.
Increasing the number of threads on systems with a larger number of CPUs can
improve performance. As a rule of thumb, you should set this property to a quarter the
number of CPUs, with a maximum of twelve.

In some cases disabling the keep-stats property can help reduce lock contention in the
connection handlers.

num-worker-threads The default value of this property is two times the number of CPUs. This value is
sufficient in most deployments.

log-file Ensure that the access log publisher is on a fast file system, or turn it off altogether by
setting the enabled property to false.

Parameter Description

Advanced Tuning Recommendations

24-8 Oracle Fusion Middleware Performance and Tuning Guide

■ Disable Unused Virtual Attributes. If the functionality needed by one or more of
the virtual attributes is not required, they can be disabled for a slight performance
improvement when decoding entries.

■ Disable Unused Access Logging. If access logging is not necessary, disabling the
server access logger can help improve performance.

■ Disable Unused Access Control Handlers. If you do not need access control
processing in the server, then you can disable it by setting the enabled
configuration property to false for the Access Control Handler. You can set the
property by using dsconfig.

■ Reduce Lock Contention. On systems with large numbers of CPUs (for example,
chip multi-threading (CMT) systems with several hardware threads per core), you
can reduce lock contention by setting the
org.opends.server.LockManagerConcurrencyLevel system property to be equal
to the number of worker threads you intend to use.

NOTE: This property must be set as a JVM system property, because it can be
required very early in the server startup process, even before accessing the server
configuration.

25

Oracle Virtual Directory Performance Tuning 25-1

25 Oracle Virtual Directory Performance Tuning

This chapter provides tuning tips for Oracle Virtual Directory. It contains the following
sections:

■ Section 25.1, "About Oracle Virtual Directory"

■ Section 25.2, "Basic Tuning Considerations"

■ Section 25.3, "Advanced Tuning Considerations"

25.1 About Oracle Virtual Directory
Oracle Virtual Directory is an LDAP Version 3-enabled service that provides an
abstracted view of one or more enterprise data sources. Oracle Virtual Directory
consolidates multiple data sources into a single directory view, enabling you to
integrate LDAP-aware applications with diverse directory server data stores.

The information in this chapter assumes that you have reviewed the concepts and
administration information in the Oracle Fusion Middleware Administrator's Guide for
Oracle Virtual Directory.

25.2 Basic Tuning Considerations
The tuning considerations in this section apply to most deployments and usage
scenarios. It is highly recommended that you review these configurations and
implement those that are appropriate for your use case scenarios. The tuning
information is summarized in Table 25–1.

Note: Oracle Virtual Directory's out of box configuration may not be
optimal for many production and test deployments. You are
encouraged to incorporate the recommendations listed in "Basic
Tuning Considerations" to achieve optimal performance and
availability.

Basic Tuning Considerations

25-2 Oracle Fusion Middleware Performance and Tuning Guide

25.2.1 Tuning the Ping Interval
Consider increasing the ping interval to 60 seconds (or more as needed) in the
opmn.xml file.

When the system is busy, a ping from the Oracle Process Manager and Notification
Server (OPMN) to Oracle Virtual Directory may fail. As a result, OPMN will restart
Oracle Virtual Directory after 20 seconds (the default ping interval). To avoid this,
consider increasing the ping interval to 60 seconds or more.

The ping interval can be modified in the $ORACLE_
INSTANCE/config/OPMN/opmn/opmn.xml as shown below:

<process-type id="OVD" module-id="OVD">
 <module-data>
 <category id="start-options">
 <data id="java-bin" value="$ORACLE_HOME/jdk/bin/java"/>
 <data id="java-options" value="-server -Xms2056m -Xmx2056m

Table 25–1 Basic Tuning Considerations

Configuration
Attribute Category Default Value

Recommended
Value Notes

Threads Listener
Properties

10 10 * Number Of
central
processing units
(CPUs) available
for Oracle Virtual
Directory Server

Recommendation
applies only to the
active LDAP
Listeners.

For more
information, see
Tuning Worker
Threads.

Work Queue
Capacity

Listener
Properties

2048 Expected
Number of Max
Concurrent
Clients * 2

2048 operations are
executed
concurrently. Some
clients may send
asynchronous
operations as well.

For more
information, see
Tuning Work Queue
Capacity.

Max, Initial Pool
Connections

LDAP Adapter
Properties

10 Total Number of
'Threads
parameter values
for all active
Listeners that use
this Adapter

Ensure that the
back-end Directory
Servers can handle
these connections.

For more
information, see
Tuning the LDAP
Connection Pool.

Max Heap Size System
Properties

256 MB Up to 2 GB on
32-bit systems
and higher
values on 64-bit
systems.

Higher values
protect against Out
Of Memory errors.
Ensure that there is
sufficient RAM on
the system to
handle the
configured value.

For more
information, see
Tuning Heap Size.

Basic Tuning Considerations

Oracle Virtual Directory Performance Tuning 25-3

-Dvde.soTimeoutBackend=0 -DdisableECID=1 -Didm.oracle.home=$ORACLE_HOME
-Dcommon.components.home=$ORACLE_HOME/../oracle_common
-Doracle.security.jps.config=$ORACLE_INSTANCE/config/JPS/jps-config-jse.xml"/>
 <data id="java-classpath" value="$ORACLE_HOME/ovd/jlib/vde.jar$:$ORACLE_
HOME/jdbc/lib/ojdbc6.jar"/>
 </category>
 </module-data>
 <stop timeout="120"/>
 <ping interval="60"/>
</process-type>

25.2.2 Tuning Worker Threads
Tune the number of worker threads based on the number of central processing units
(CPU) available for Oracle Virtual Directory Server on the system.

The 'Threads' configuration parameter in the Oracle Virtual Directory Listener settings
should be set to an appropriate value. The default value for Threads in the Admin
Gateway listener and DSML Gateway listener should not be changed. The number of
Threads for the LDAP Listeners are typically the threads that need to be tuned since it
is the LDAP Listeners that take on concurrent traffic from applications. A common
configuration is to have 10 threads per CPU. For example, if there are 4 central
processing units on the system, then there would be 40 threads.

For more information, see "Managing Listeners" in Oracle Fusion Middleware
Administrator's Guide for Oracle Virtual Directory.

25.2.3 Tuning Work Queue Capacity
Tune the Work Queue Capacity based on the expected maximum number of
concurrent clients to a given LDAP Listener.

The 'WorkQueueCapacity' configuration parameter in the Oracle Virtual Directory
Listener settings should be set to an appropriate value. This ensures that the
connection requests from LDAP clients are not rejected due to a lack of work queue
capacity. Work elements are allocated on demand only, therefore a value higher than
the actual estimate can be used.

The Fusion Middleware Control Performance Monitor provides a historical report
which contains the maximum number of connections. Use this report to determine
how to adjust the connection value based on production data.

If Oracle Virtual Directory needs to support high number of concurrent clients, then
set the ulimit 'nofiles' (descriptor) parameter to the number of LDAP Clients expected.
For example, in the command window where OPMN is started, set the following
ulimit when 8000 concurrent clients are expected:

ulimit -n 8192

This change requires restart of OPMN and Oracle Virtual Directory to take effect.

For more information, see "Managing Listeners" in Oracle Fusion Middleware
Administrator's Guide for Oracle Virtual Directory.

25.2.4 Tuning the LDAP Connection Pool
Tune the size of the LDAP connection pool in Oracle Virtual Directory LDAP Adapter
to be at least as high as the total number of Threads configured in the Oracle Virtual
Directory Listeners that actively use the LDAP Adapter.

Advanced Tuning Considerations

25-4 Oracle Fusion Middleware Performance and Tuning Guide

This ensures that in the worker threads have enough LDAP connections to process
requests. The actual number of active adapters, active listeners and traffic pattern
control the usage of connections. However, since connections that are idle in the LDAP
Adapter connection pool are periodically closed, a higher value should not impact
performance. Ensure that the back-end Directory Server is configured to handle the
number of concurrent connections from Oracle Virtual Directory LDAP Adapter
connection pool.

For more information, see "Configuring LDAP Adapter" in Oracle Fusion Middleware
Administrator's Guide for Oracle Virtual Directory.

25.2.5 Tuning Heap Size
Tune the maximum Java heap size of the JVM running Oracle Virtual Directory. This is
to ensure that Oracle Virtual Directory has sufficient heap to handle the concurrent
load.

For more information, see "Controlling the Maximum Heap Size Allocated to the
Oracle Virtual Directory Server" in Oracle Fusion Middleware Administrator's Guide for
Oracle Virtual Directory.

25.3 Advanced Tuning Considerations
Depending on your Oracle Virtual Directory deployment's use case scenarios, the
following tuning configurations may improve performance.

25.3.1 Tuning Database Adapters
The Database Adapter is a fully featured LDAP-to-JDBC gateway supporting
translation of all LDAP operations (add, bind, delete, baseSearch, modify,
wildCardSearch) into equivalent SQL prepared statement code. The Database Adapter
uses JDBC class libraries to form connections to databases for the purpose of
performing LDAP searches. The database libraries are generally provided by the
database vendor.

For optimal performance, consider the following configuration options for the
database schema against which the Oracle Virtual Directory database adapter is
configured:

■ Enable the Case Insensitive Search option.

Enabling (selecting) the Enable Case Insensitive Search option makes the search
case insensitive for case insensitive LDAP attributes, such as uid. Oracle Virtual
Directory uses UPPER in the SQL query when Enable Case Insensitive Search is
enabled. If the database cannot maintain functional indexes, such as for Oracle
TimesTen or MySQL databases, then you should disable the Enable Case
Insensitive Search option. When the Enable Case Insensitive Search is disabled,
Oracle Virtual Directory performs case sensitive searches and does not use UPPER
in the SQL query. The default value for Enable Case Insensitive Search is Enable.

Note: For improved performance, tune the database before using the
Database adapter. Consult your database documentation for more
information. If the database being used is an Oracle database, see
Oracle Database Performance Tuning Guide.

Advanced Tuning Considerations

Oracle Virtual Directory Performance Tuning 25-5

■ In general, the mapped columns in the underlying database schema should have
an index defined if the mapped LDAP attribute is used in LDAP search filters.

■ In scenarios where an LDAP attribute that is used in an LDAP search filter has a
matching rule of 'caseIgnoreMatch', the mapped database table column for this
attribute needs a function index to be defined for optimal look-up performance.

For example, if LDAP attribute 'CN' is mapped to database schema column
EMP.NAME, then a function index on UPPER(EMP.NAME) is required for optimal
performance of LDAP search filters involving CN attribute.

For more information on function-based indexes, see "Using Function-based
Indexes for Performance" in Oracle Database Performance Tuning Guide.

Table 25–2 describes some additional Database Adapter settings:

25.3.2 Tuning Join Adapters
If you are using Join Adapters, join only appropriate sources. For example if a
deployment requires only to link attributes in the primary source under "cn=users"
branch, create a primary adapter that only exposes this branch. And then create the
join rule with that adapter. This can reduce the need for Oracle Virtual Directory to try
to join entries that may never have corresponding linked entries.

25.3.3 Tuning Filters
If a known client search filter does not apply to certain adapters, apply the filter to all
applicable "Exclude Filters" to improve performance and reduce network traffic.

Table 25–2 Database Adapter Settings

Parameter Value Notes

Adapter Default: Active An adapter can be configured as Active or
Inactive. An inactive adapter can not start
during a server restart or when you try to
start it. The purpose of the Inactive setting
is to keep old configurations available or
on stand-by without having to delete them
from the configuration.

Maximum Connections Default: 10
connections

This defines the maximum connections the
Database Adapter may make with the
database.

Database Connection
Timeout

Default: 10 seconds The database connection timeout adapter
property controls the LDAP request to wait
for a connection to become available in the
cache after reaching the maximum number
of connections limit.

If a connection does not become available
within the number of seconds defined, the
LDAP request fails. If database connection
timeout system property is not used, the
LDAP request waits 10 seconds for a
connection to become available.

Tip: Always make sure that the attributes used by join rules are
properly indexed.

Advanced Tuning Considerations

25-6 Oracle Fusion Middleware Performance and Tuning Guide

25.3.4 Tuning Load Balancer Local Store Adapter
Some load balancers query an LDAP server to determine if it is up or down. If your
load balancer uses this feature, consider creating a local store adapter with a separate
namespace (for example dc=loadbalancer) that is used only for the load balancer.
While the performance impact of the load-balancer is probably not noticeable, by
keeping it in a separate namespace. it makes it easier to exclude the load-balancer
KeepAlive requests from creating large log files during troubleshooting.

25.3.5 Tuning the Cache Plug-In
The CachePlug-in provides an in-memory cache for Oracle Virtual Directory. It has the
ability to cache query results from any source for re-use by LDAP clients. This plug-in
can improve performance for those applications where queries are highly repetitive.

To review cache operation and configuration, set VE logging level to 'Dump' to see
more details. Because the cache is a normal plug-in, the cache can be configured to run
anywhere within Oracle Virtual Directory. It can be executed globally, or within the
context of a single adapter. It can also be restricted to specific namespaces by using the
namespace filtering available in standard plug-in configuration.

25.3.5.1 Cache Hit Logic
The cache works by storing query results and making them available for later use. If a
query is repeated by the same user and the same attributes or a subset of attributes are
requested, the cache can return its results instead of having Oracle Virtual Directory
pull the information from the source. The plug-in can also be configured to allow
cache hits to be shared between users.

Sharing cache entries between users should not be used unless the pass credentials are
not being passed to back-end sources and Oracle Virtual Directory is solely responsible
for security enforcement. Careful consideration should be given when sharing cache
hits between users as it would then be possible for one user to see something they
should not, since they may have access to a cache result from a more privileged user.

25.3.5.2 Cache Plug-in Memory Management
This plug-in periodically reviews the cache and checks for expired results, or entries
that have been invalidated by a previous modify transaction. In the event that the
cache quota is exceeded, the plug-in attempts to trim memory by purging the queries
that were least recently used (LRU).

Table 25–3 describes some parameters used to tune the Memory Management Plug-in:

Table 25–3 Memory Management Plug-in Settings

Parameter Value Notes

Size Default: 1000 entries The maximum number of entries that
may be cached at any one time.

MaxResultSize Default: 1000 entries The maximum number of entries that
may be cached for any particular
query.

Trimsize Default: 1000 entries When the maximum cache size is
exceeded, the amount by which the
cache manager must reduce the
balance. Note: when necessary,
trimming is done by purging expired
queries first followed by queries in
order of least recent use.

Advanced Tuning Considerations

Oracle Virtual Directory Performance Tuning 25-7

25.3.6 Tuning LDAP Listener
Table 25–4 describes some parameters used to tune the LDAP Listener:

MaximumAge Default: 600 seconds The maximum age in seconds for any
query/entry stored in the cache.

MaintenanceInterval Default: 60 seconds The interval in seconds between
when the cache manager checks for
expired queries.

BySubject Default: 1 (not shared) A flag (1 or 0) indicating whether
cache results are shared between
subjects. A value of 1 indicates that
results are not be shared between
subjects.

Table 25–4 Listener Parameters

Parameter Value Notes

Backlog Default: 128 requests Specifies the maximum number of
pending connection requests that are
allowed to queue up before the server
starts rejecting new connection
attempts.

The default value is sufficient in most
cases and the need to change this
value is very rare.

Reuse address Default: False This option determines whether LDAP
listener should reuse socket
descriptors.

If enabled, the SO_REUSEADDR
socket option is used on the Oracle
Virtual Directory server listen socket
to potentially allow the reuse of socket
descriptors for clients in TIME_WAIT
state.

Keep Alive Default: False This option determines whether the
LDAP connection should use TCP
keep-alive.

If enabled, the SO_KEEPALIVE socket
option is used to indicate that TCP
keepalive messages should
periodically be sent to the client to
verify that the associated connection is
still valid.

TCP No delay Default: True This option determines whether the
LDAP connection should use TCP
no-delay.

If enabled, TCP_NODELAY socket
option is used to ensure that response
messages to the client are sent
immediately rather than potentially
waiting to determine whether
additional response messages can be
sent in the same packet.

Table 25–3 (Cont.) Memory Management Plug-in Settings

Parameter Value Notes

Advanced Tuning Considerations

25-8 Oracle Fusion Middleware Performance and Tuning Guide

25.3.7 Tuning the Server for OVD
Table 25–5 describes some basic parameters used to tune the server:

Read Timeout Default: 0 This option enables/disables SO_
TIMEOUT with the specified timeout,
in milliseconds.

With this option set to a nonzero
timeout, client connection to the
Oracle Virtual Directory server can
remain idle only for this amount of
time. If the connection is idle for a
period longer than the specified
timeout, the client connection is
terminated.

A timeout of zero is interpreted as an
infinite timeout.

Warning: This option is equivalent to
vde.soTimeoutFrontend system
property in Oracle Virtual Directory
version 10g. The
vde.soTimeoutFrontend system
property is not supported for 11g.
Users must modify the value specified
in system property

The mapping of values from 10g to 11g
are:

.Enabled to 0

Disabled to nonzero amount of time in
milliseconds

Table 25–5 Server Parameters

Parameter Value Notes

Anonymous Search Limit Default: 1000 The maximum number of entries
returned for an anonymous client.

Connection Timeout Default: 120 (minutes) The Connection Timeout system
property is used to prevent service
outages caused by clients that do not
properly close connections. The
default value is 120. This value can
be set in Oracle Enterprise Manager's
Server Properties page.

When you enable quota enforcement
the value for
inactiveConnectionTimeout can be
changed. The default value here is 0
instead of 120.

Warning: Setting to 0 disables the
enforcement and client connections
can not be closed regardless of how
long they are inactive. The system
property is not enforced on IP
addresses and subjects that are
exempt from the quota limit or that
have disabled quota enforcement.

Table 25–4 (Cont.) Listener Parameters

Parameter Value Notes

Advanced Tuning Considerations

Oracle Virtual Directory Performance Tuning 25-9

Logging Levels Default: Error:1 (Severe) By default, log messages are written
to the access.log file only when
logging is set to NOTIFICATION:1.
To maintain performance, consider
keeping the default log level or use
WARNING:1 (WARNING) to limit
the amount of information written to
the access.log file.

Table 25–5 (Cont.) Server Parameters

Parameter Value Notes

Advanced Tuning Considerations

25-10 Oracle Fusion Middleware Performance and Tuning Guide

26

Oracle Identity Federation Performance Tuning 26-1

26 Oracle Identity Federation Performance
Tuning

Oracle Identity Federation is a standalone, self-contained federation server that
enables single sign-on and authentication in a multiple-domain identity network. It
contains the following sections:

■ Section 26.1, "About Oracle Identity Federation"

■ Section 26.2, "Basic Tuning Considerations"

■ Section 26.3, "Advanced Tuning Considerations"

26.1 About Oracle Identity Federation
Oracle Identity Federation (OIF) is a standalone, self-contained federation server that
enables single sign-on (SSO) and authentication in a multiple-domain identity
network. The federation single sign-on capabilities are based on the SAML 1.x/SAML
2.0/WS-Fed protocols. The server is a Java EE Application deployed in a WebLogic
Managed Server. This enables users to federate in heterogeneous environments and
business associations, whether they have implemented other Oracle Identity
Management products in their solution set.

For more information see Oracle Fusion Middleware Administrator's Guide for Oracle
Identity Federation.

26.2 Basic Tuning Considerations
The following tuning considerations are generally applicable to most use case
scenarios and can improve Oracle Identity Federation performance.

26.2.1 Tuning Database Parameters for Identity Federation
This section provides configuration settings that can be used to tune the database.

See "Additional RDBMS Configuration" in Oracle Fusion Middleware Administrator's
Guide for Oracle Identity Federation.

Note: The configuration examples and recommended settings
described in this chapter are for illustrative purposes only. Consult
your own use case scenarios to determine which configuration options
can provide performance improvements.

Basic Tuning Considerations

26-2 Oracle Fusion Middleware Performance and Tuning Guide

26.2.1.1 Data Sources
Oracle Identity Federation uses a Java EE data source to interact with a database for
various operations, such as:

■ Locating a user record in the User Data Store

■ Retrieving attributes from a user record in the User Data Store

■ Locating, creating, or deleting an Oracle Identity Federation record from the
Federation Data Store

■ Locating, creating, or deleting an Oracle Identity Federation transient record from
the Session or Message Data Store. (A transient record can be a user session, an
artifact record, or federation protocol or session state.)

When creating a data source in the WebLogic Administration Console that can be used
by Oracle Identity Federation, the maximum and minimum connection settings should
be tuned for better performance. Consult your use case scenarios to determine what
the connections settings should be to improve performance in your application.

26.2.1.2 RDBMS Session Cache
When Oracle Identity Federation is integrated with RDBMS for its Session Data Store,
the server uses a caching mechanism to improve performance at run time. This enables
the server to keep a reference to recently used session objects in memory to avoid read
access to the database.

To optimize RDBMS session caching, configure the following:

■ Number of session objects kept in memory at a given time

■ Length of time a specific session object is kept in memory

See "Configuring RDBMS Session Cache" in Oracle Fusion Middleware Administrator's
Guide for Oracle Identity Federation.

26.2.1.3 RDBMS Compression
To decrease the amount of data to be stored in an RDBMS, Oracle Identity Federation
provides the capability to compress the data before storing it to the database.There are
three kinds of data that can be compressed:

■ AuthnRequest for SSO Artifact profile: when Oracle Identity Federation acts as an
IdP for Liberty 1.x protocol, the server stores the AuthnRequest message in the
RDBMS when the artifact profile is used.

■ Assertion Response for SSO Artifact profile: when Oracle Identity Federation acts
as an IdP for SSO protocols, the server stores the Response message containing the
Assertion in the RDBMS when the artifact profile is used. This must be enabled if
attributes are contained in the assertion.

■ User Session Data: Oracle Identity Federation stores some session data related to
the user at run time. If several attributes are stored in the User Session (set by a
custom Authentication Engine, or because the Attributes Assertion storage was
enabled when Oracle Identity Federation was a service provider), then
compression should be used.

Note: if Oracle Identity Federation is in High Availability (HA) mode
with a load balancer, sticky sessions must be enabled to ensure that
the cache is always reflecting accurate data.

Advanced Tuning Considerations

Oracle Identity Federation Performance Tuning 26-3

See "Configuring RDBMS Data Compression" in Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Federation.

26.2.2 Tuning the Oracle HTTP Server
If Oracle Identity Federation is fronted by Oracle HTTP Server (OHS), then the
configuration of the HTTP Server can be tuned to increase performance. For more
information on Oracle HTTP Server, see Oracle Fusion Middleware Administrator's Guide
for Oracle HTTP Server.

The following parameters can be changed in the httpd.conf file of the OHS. For
additional Oracle HTTP tuning configurations, see Chapter 6, "Oracle HTTP Server
Performance Tuning". Consult your use case scenarios to determine what your settings
should be.

■ Timeout

■ KeepAlive

■ MaxKeepAliveRequests

■ KeepAlive TimeOut

■ MinSpareServers

■ MaxSpareServers

■ StartServers

■ MaxClients

■ MaxRequestPerChild

After modifying these parameters, save and restart OHS.

26.3 Advanced Tuning Considerations
The following tuning considerations may or may not apply to your OIF deployment.
Review your use case scenarios to determine if these changes can help improve
performance:

26.3.1 Tuning the LDAP Servers
This section provides configuration settings that can be used to tune LDAP such as:

■ Connection Pool Settings

■ Connection Settings

■ Federation Data Store Settings

For the best performance, review the tuning configurations in Chapter 2, "Top
Performance Areas" before tuning Oracle Identity Federation.

26.3.1.1 Connection Pool Settings
When Oracle Identity Federation is integrated with LDAP Servers as a user data store,
federation data store, or authentication engine, the server keeps a pool of LDAP
connections that can be re-used for subsequent requests.

Oracle Identity Federation performs the following kind of operations to the LDAP
Servers:

1. User Data Store

Advanced Tuning Considerations

26-4 Oracle Fusion Middleware Performance and Tuning Guide

■ Locate users during assertion mappings

■ Retrieve attributes from the user record when creating an assertion

2. Authentication Engine

■ Locate user

■ Validate user credentials during authentication operations

3. Federation Data Store, if used

■ Create a federation record

■ Locate a federation record

■ Update or delete a federation record. The LDAP Connection Pool can be
configured by:

– Setting Maximum Connections to indicate how many LDAP connections
can the pool contain.

– Setting the Connection Wait Timeout which is the time that a thread waits
before re-trying to get an LDAP connection when none are available in the
pool and that the pool is at maximum capacity.

See "Configuring Oracle Identity Federation" in Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Federation for more information on the User and
Federation Stores as well as the LDAP Authentication Engine.

26.3.1.2 Connection Settings
When Oracle Identity Federation is integrated with LDAP Servers as a user data store,
federation data store, or authentication engine, the LDAP run time connections can be
configured. For more information, see "Configuring Oracle Identity Federation" in
Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation.

The LDAP Connections can be configured by:

■ Setting the LDAP Inactivity setting which tells Oracle Identity Federation how
long an LDAP connection should be kept in a pool before being removed due to
inactivity. Over time, the LDAP server may close some connections due to a long
inactivity period, and if left unchecked, this can result in errors and may impact
performance in Oracle Identity Federation.

See "Configuring the LDAP Inactivity Setting" in Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Federation.

■ Setting the LDAP Read Timeout Setting. Sometimes the LDAP server can become
unresponsive, causing the thread/user to wait for a response or an error. To avoid
waiting too long for an error when the server is not responding, Oracle Identity
Federation sets a read timeout property on the LDAP connection. If the LDAP
server does not respond before the read timeout period, an error is generated.
Oracle Identity Federation closes the connection, open a new one and re-issue the
LDAP command.

See "Configuring the LDAP Read Timeout Setting" in Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Federation.

■ Setting the High Availability (HA) LDAP Flag. When integrated with LDAP
Servers that are deployed in HA mode, Oracle Identity Federation must
configured to indicate that the LDAP Servers are in HA mode.

See "Configuring High Availability LDAP Servers" in Oracle Fusion Middleware
Administrator's Guide for Oracle Identity Federation.

Advanced Tuning Considerations

Oracle Identity Federation Performance Tuning 26-5

26.3.1.3 Federation Data Store Settings
When using Oracle Internet Directory as the Federation Data Store, Oracle Identity
Federation creates, locates, updates and deletes federation records containing Account
Linking Information.

Oracle Identity Federation uses specific queries when interacting with Oracle Internet
Directory, and the performance can be improved by creating filters in Oracle Internet
Directory. If Oracle Internet Directory is used as the Federation Data Store, it is
possible to tune the LDAP Server to improve the performance of the lookup
operations. Oracle Identity Federation server can be configured to use a Federation
Store to persist Federated Identities records.

The Federation server uses this store to:

■ Lookup a federation record through different queries

■ Create a federation record

■ Delete a federation

In addition to the Oracle Identity Federation-related orclinmemfiltprocess filter
(objectclass=orclfeduserinfo), which is included by default, some Oracle Identity
Federation environments might benefit from additional filters with the following
formats:

(orclfedserverid=local_oif_server_id)

(orclfedproviderid=providerid_of_remote_server)

(orclfedfederationtype=n)

where orclfedserverid denotes the Oracle Identity Federation server that is making
the query, orclfedproviderid is the identifier of a remote SAML server, and
orclfedfederationtype is 1 or 3. Use 1 as the value for orclfedfederationtype when
Oracle Identity Federation is an Identity Provider and the remote provider is a Service
Provider. Use 3 when Oracle Identity Federation is a Service Provider and the remote
provider is an Identity Provider.

A deployment can be configured to work with many remote SAML servers, so there
can be several orclfedproviderid filters and more than one orclfedfederationtype
filter.

For example:

(orclfedserverid=my_oif_server)

(orclfedproviderid=http://server.example.com:7499/fed/idp)

(orclfedproviderid=http://server2.example.com:7492/fed/idp)

(orclfedfederationtype=1)

(orclfedfederationtype=3)

26.3.2 Tuning SAML Protocol
The Security Assertion Markup Language (SAML) protocol involves interacting with
remote servers through the use of the Simple Object Access Protocol (SOAP).

26.3.2.1 SOAP Connections
The Oracle Identity Federation server uses the SOAP protocol to send SAML Requests
and to receive SAML Responses.

Advanced Tuning Considerations

26-6 Oracle Fusion Middleware Performance and Tuning Guide

To optimize performance, configure the following SOAP connections:

■ Total maximum number of SOAP connections that Oracle Identity Federation can
open at the same time

■ Maximum number of SOAP connections that Oracle Identity Federation can open
at the same time to a given remote server

For more information, see "SOAP Binding" in Oracle Fusion Middleware Administrator's
Guide for Oracle Identity Federation.

26.3.2.2 XML Digital Signatures
The SAML and WS-Fed protocols of Oracle Identity Federation rely on XML Digital
Signatures to ensure the authenticity of messages and that messages are not tampered
with.

When possible, sign the Assertion and/or the Response to prevent any modifications.
When no XML Digital Signature is present on the message, the audited message that is
archived does not contain any data that proves the authenticity and integrity of the
message.

Configuring Oracle Identity Federation to not sign Assertion and/or Response may be
appropriate if:

■ Performance must be improved

■ SSL with SSL authentication is enabled for SOAP communications

■ Disabling XML Digital Signatures is compliant with company security regulations

26.3.2.3 POST and Artifact Single Sign-On Profiles
There are two Single Sign-On profiles defined by the SAML specifications:

■ POST Profile

In the POST profile, the Assertion transits through the user's browser, therefore the
Assertion and/or the Response must be signed to ensure that the content has not
been modified.

■ Artifact Profile

In the Artifact profile, the Identity Provider creates a random identifier referencing
the Assertion in the IdP's local store. (The Assertion is provided directly from the
Identity Provider to the Service Provider.) That identifier is carried by the user's
browser and presented to the Service Provider that contacts the Identity Provider
to de-reference the identifier and retrieve the corresponding Assertion.

If the SOAP connection made from the SP to the IdP is encrypted using the SSL
protocol with an SSL Server Certificate, then the SP authenticates the IdP and the

Note: The content of the Assertion is viewable unless SAML 2
Encryption is used. Encrypting the Assertion is optional, but XML
Encryption is resource intensive and decreases performance

Note: If the performance must be improved and if using the POST
profile is compliant with company security regulations, then
configuring Oracle Identity Federation to use the POST profile may be
an option to improve performance.

Advanced Tuning Considerations

Oracle Identity Federation Performance Tuning 26-7

content of the communication has not been tampered with: in this case, the
transport layer is providing the authenticity and the integrity of the message, and
the XML Digital Signature on the SAML Response and Assertion can be optional.

If no XML Digital Signature is present on the message, then the audited message
that is archived does not contain any data that proves the authenticity and
integrity of the message.

Note: Since the Artifact profile involves additional communication
flow between the Service Provider and the Identity Provider,
performance may be slower when using the Artifact profile.

Advanced Tuning Considerations

26-8 Oracle Fusion Middleware Performance and Tuning Guide

27

Oracle Fusion Middleware Security Performance Tuning 27-1

27 Oracle Fusion Middleware Security
Performance Tuning

Oracle Fusion Middleware security services enable you to secure critical applications
and sensitive data. This chapter describes how you can configure security services for
optimal performance.

This chapter contains the following topics:

■ Section 27.1, "About Security Services"

■ Section 27.2, "Basic Tuning Considerations"

■ Section 27.3, "Tuning Oracle Platform Security Services"

■ Section 27.4, "Oracle Web Services Security Tuning"

27.1 About Security Services
Oracle Fusion Middleware provides security services through Oracle Platform
Security Services (OPSS) and Oracle Web Services.

■ Oracle Platform Security Services

Oracle Platform Services is a key component of Oracle Fusion Middleware. It
offers an integrated suite of security services and is easily integrated with Java SE
and Java EE applications that use the Java security model. Security Services
includes features that implement user authentication, authorization, and
delegation services that developers can integrate into their application
environments. Instead of devoting resources to developing these services,
application developers can focus on the presentation and business logic of their
applications.

Using Oracle Platform Security for Java, applications can enforce fine-grained
access control upon resource users. The three key steps are:

– Configure and invoke a login module, as appropriate. You can use provided
login modules, or you can use custom login modules.

– Authenticate the user attempting to log in, which is the role of the identity
store service.

– Authorize the user by checking permissions for any roles the user belongs to
for whatever the user is attempting to accomplish, which is the role of the
policy store service.

■ Oracle Web Services Security

Basic Tuning Considerations

27-2 Oracle Fusion Middleware Performance and Tuning Guide

Oracle Web Services Security provides a framework of authorization and
authentication for interacting with a web service using XML-based messages.

27.2 Basic Tuning Considerations
This section offers some general guidelines on how to identify a performance
bottleneck and how to approach addressing such problems.

If you discover a performance bottleneck, you should first verify that you have
addressed the expected traffic load throughout your Web services deployment. If there
is a system in the critical path that is at 100% CPU usage, you may simply need to add
one or more computers to the cluster.

If there is a bottleneck in your deployment, it is likely to be within one of the
following:

■ Traffic through a slow connection with an agent

■ Latency in connections to third-party queuing systems like JMS

For any of these problems, check the following potential sources:

■ Problems with policy assertions that include connections to outside resources,
especially the following types:

– Database Repositories

– LDAP Repositories

– Secured Resources

– Proprietary Security Systems

■ Problems with database performance

If you identify one of these as the cause of a bottleneck, you may need to change how
you manage your database or LDAP connections or how you secure resources.

27.3 Tuning Oracle Platform Security Services
This section provides the following basic tuning configurations for Oracle Platform
Security Services (OPSS):

■ JVM Tuning Parameters

■ LDAP Tuning Parameters

■ Authentication Tuning Parameters

■ Authorization Tuning Properties

■ OPSS PDP Service Tuning Parameters

Note: The information in this chapter assumes that you have
reviewed and understand the concepts and administration
information for Oracle Fusion Middleware Security Services. For more
information, see the Oracle Fusion Middleware Security and
Administrator's Guide for Web Services before tuning any security
parameters.

Tuning Oracle Platform Security Services

Oracle Fusion Middleware Security Performance Tuning 27-3

27.3.1 JVM Tuning Parameters
Tuning the JVM parameters can greatly improve performance. For example, the JVM
Heap size should be tuned depending upon the number of roles and permissions in
the store. At run time, all roles and permissions are stored in the in-memory cache. For
more JVM tuning information, see Section 2.4, "Tuning Java Virtual Machines (JVMs)".

27.3.2 JDK Tuning Parameters
Starting with Java Development Kit 7 (JDK 7), the default keystore size is now 2048
bits. JDK 6 and earlier had a default size of 1024 bits.

When using the Java keytool to generate keystores, the -keysize parameter can be
used to control the keystore size. Larger keystores provide stronger security, though at
the cost of decreased security performance. Consider your envinronment's use case
scenarios to determine if increasing the keystores would negatively impact your
security or performance thresholds.

For more information see the JDK 7 release notes at
http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html

27.3.3 LDAP Tuning Parameters
This section covers Lightweight Directory Access Protocol (LDAP) tuning. Oracle
supports the management of policies in file-based repositories: Oracle Internet
Directory and Oracle Virtual Directory.

If you encounter increased CPU usage due to high SQL execution times, see the
following chapters for basic tuning configurations for large deployments:

■ Oracle Internet Directory configuration settings can impact performance. For more
information, see Chapter 23, "Oracle Internet Directory Performance Tuning".

■ In addition to being configured as a LDAP server, Oracle Virtual Directory can
also be configured as a local storage adapter (LSA). See Chapter 25, "Oracle Virtual
Directory Performance Tuning".

27.3.4 Authentication Tuning Parameters
For OPSS Authentication tuning, see "Improving the Performance of WebLogic and
LDAP Authentication Providers" in the Oracle Fusion Middleware Securing Oracle
WebLogic Server guide at the Oracle Technology Network
http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/secmanage/atn.html#wp1199087.

27.3.5 Authorization Tuning Properties
The following Java system properties can be used to optimize authorization:

Tuning Oracle Platform Security Services

27-4 Oracle Fusion Middleware Performance and Tuning Guide

Tuning Oracle Platform Security Services

Oracle Fusion Middleware Security Performance Tuning 27-5

Table 27–1 Authorization Properties

Java System Properties Default Value Valid Values Notes

-Djps.subject.cache.key 4 3

4

5

JPS uses a Subject Resolver to
convert a platform subject to
JpsSubject which contains
user/enterprise-role information,
as well as ApplicationRole
information. This information is
represented as principals in the
subject.

This conversion can be CPU
intensive, especially if the subject's
principal set has a large population.
To improve performance, JPS code
caches the conversion between
Platform subject and JpsSubject.
Note that two subjects could be
confused if their contents are the
same, but the case of the principals'
name is different.

The following settings can be used
to configure the cache key:

■ 3: Use the platform subject
directly as the key. Note: On
WLS if the
principalEqualCaseinsensit
ive flag is enabled, two
subjects could confused if their
contents are the same, but the
case of the principals is
different.

■ 4: This setting is similar to '3'
but overcomes the
case-sensitive issue. This is the
out-of-the-box setting.

■ 5: Instead of using the whole
subject as the key, this settings
uses a subset of the principal
set inside the subject as the key
(actually use principals of
WLSUSerImpl type).

This setting will accelerate the
cache retrieval operation if the
subject has a large principal
set. On a non WLS platform
(such as WAS and JBOSS, this
reverts back to case '4'), so this
setting is for WLS only. For this
case, there is also a Time To
Live setting (TTL) flag which
controls how long the cache is
valid, as explained below.

Tuning Oracle Platform Security Services

27-6 Oracle Fusion Middleware Performance and Tuning Guide

27.3.6 OPSS PDP Service Tuning Parameters
Table 27–2 provides OPSS tuning parameters for policy store:

-Djps.subject.cache.ttl 60000ms Cache's Time To Live (TTL) for case
'5' (above). This system property
controls how long the cache is
valid. When the time expired, the
cahed value is dumped. The setting
can be controlled by the flag of
-Djps.subject.cache.ttl=xxxx,
where 'xxx' is the duration in
milliseconds.

Consider setting the duration of
this TTL setting to the same value
as the value used for the group and
user cache TTL in WLS LDAP
authenticator.

-Djps.combiner.optimize False True

False

This system property is used to
cache the protection domains for a
given subject. Setting
-Djps.combiner.optimize=true
can improve Java authorization
performance.

-Djps.combiner.optimize.lazyeval False True

False

This system property is used to
evaluate a subject's protection
domain when a checkPermission
occurs. Setting
-Djps.combiner.optimize.lazyev
al=true can improve Java
authorization performance.

-Djps.policystore.hybrid.mode=tru
e

True True

False

This 'hybrid mode' property is used
to facilitate transition from SUN
java.security.Policy to OPSS Java
Policy Provider.

The OPSS Java Policy Provider
reads from both java.policy and
system-jazn-data.xml."Hybrid"
mode can be disabled by setting the
system property
jps.policystore.hybrid.mode to
false when starting the WebLogic
Server. Setting
-Djps.policystore.hybrid.mode=
false can reduce runtime
overhead.

-Djps.authz No default
value.

ACC

SM

Delegates the call to JDK API
AccessController.checkPermissi
on which can reduce the
performance impact at run time or
while debugging.

ACC: delegate to
AccessController.checkPermissi
on

SM: delegate to SecurityManager if
SecurityManager is set.

Table 27–1 (Cont.) Authorization Properties

Java System Properties Default Value Valid Values Notes

Tuning Oracle Platform Security Services

Oracle Fusion Middleware Security Performance Tuning 27-7

Table 27–2 OPSS PDP Service Tuning Parameters

Parameter Default Value Valid Values Notes

oracle.security.jps.policystore.ro
lemember.cache.type

STATIC STATIC, SOFT,
WEAK

This parameter specifies the type of
role member cache.Valid only in Java
EE applications.

Valid values:

■ STATIC: Cache objects are
statically cached and can be
cleaned explicitly only according
the applied cache strategy, such
as FIFO. The garbage collector
does not clean a cache of this
type.

■ SOFT: The cleaning of a cache of
this type relies on the garbage
collector when there is a memory
crunch.

■ WEAK: The behavior of a cache
of this type is similar to a cache
of type SOFT, but the garbage
collector cleans it more
frequently.

Consider maintaining the default
value for the best performance.

oracle.security.jps.policystore.ro
lemember.cache.strategy

FIFO FIFO

NONE

The type of strategy used in the role
member cache. Valid only in Java EE
applications.

Valid values:

■ FIFO: The cache implements the
first-in-first-out strategy.

■ NONE: All entries in the cache
grow until a refresh or reboot
occurs; there is no control over
the size of the cache; not
recommended but typically
efficient when the policy
footprint is very small.

Consider maintaining the default
value for the best performance.

oracle.security.jps.policystore.ro
lemember.cache.size

1000 The size of the role member cache.
The role being referred to is the
enterprise role (group). You can find
out the number of the groups you
have in your ID store first. Then,
based on your performance
requirement, you can set this number
to the number of the groups - full
cache scenario. Or you can change to
a certain percentage of the number of
the groups - partial group cache
scenario.

oracle.security.jps.policystore.po
licy.lazy.load.enable

True True

False

Enables or disables the policy lazy
loading. If this parameter is set to
false, the server initial startup time
will take longer - especially in a large
policy store. For faster start-up time,
the recommended value is true.

Oracle Web Services Security Tuning

27-8 Oracle Fusion Middleware Performance and Tuning Guide

27.4 Oracle Web Services Security Tuning
Oracle Web Services Security provides a framework of authorization and
authentication for interacting with a web service using XML-based messages. This

oracle.security.jps.policystore.po
licy.cache.strategy

PERMISSION_
FIFO

PERMISSION_
FIFO

NONE

The type of strategy used in the
permission cache. Valid only in Java
EE applications.

Valid Values:

■ PERMISSION_FIFO: The cache
implements the first-in-first-out
strategy.

■ NONE: All entries in the cache
grow until a refresh or reboot
occurs; there is no control over
the size of the cache; not
recommended but typically
efficient when the policy
footprint is very small.

Consider using the default value for
the best performance.

oracle.security.jps.policystore.po
licy.cache.size

1000 The size of the permission cache. If
you cache all policies, then you can
set this value to the total number of
grants.

oracle.security.jps.policystore.ca
che.updatable

True True

False

This property is used for refresh
enabling. Consider maintaining the
default value for the best
performance.

oracle.security.jps.policystore.re
fresh.enable

True True

False

This property is used for refresh
enabling. Consider maintaining the
default value for performance.

oracle.security.jps.policystore.re
fresh.purge.timeout

43200000 The time, in milliseconds, after which
the policy store is refreshed. Consider
maintaining the default value for the
best performance.

oracle.security.jps.ldap.policysto
re.refresh.interval

600000 (10
minutes)

The interval, in milliseconds, at which
the policy store is polled for changes.
Consider maintaining the default
value for the best performance. This
property is valid in Java EE and J2SE
applications.

oracle.security.jps.policystore.ro
lemember.cache.warmup.enable

False True

False

This property controls the way the
ApplicationRole membership cache is
created. If set to True, the cache is
created at server startup; otherwise, it
is created on demand (lazy loading).

Set to True when the number of users
and groups is significantly higher
than the number of application roles;
set to False otherwise, that is, when
the number of application roles is
very high.

Table 27–2 (Cont.) OPSS PDP Service Tuning Parameters

Parameter Default Value Valid Values Notes

Oracle Web Services Security Tuning

Oracle Fusion Middleware Security Performance Tuning 27-9

section provides information on factors that might affect performance of the web
service.

■ Choosing the Right Policy

■ Policy Manager

■ Configuring the Log Assertion to Record SOAP Messages

■ Monitoring the Performance of Web Services

27.4.1 Choosing the Right Policy
Oracle Web Services Security supports many policies and the appropriate policies
must be implemented based on the security need of the deployment. Careful
consideration should be given to performance, since each additional policy can impact
performance. For example Transport level security (SSL) is faster than Application
level security, but transport level security can be vulnerable in multi-step transactions.
Application level security has more performance implications, but provides
end-to-end security.

See "Configuring Policies" in Oracle Fusion Middleware Security and Administrator's
Guide for Web Services to determine which security policies are required for a
deployment.

27.4.2 Policy Manager
There is an inherent performance impact when using the database-based policy
enforcement. When database policy enforcement is chosen, careful consideration must
be given to the "polling" frequency of the agent to the database.

27.4.3 Configuring the Log Assertion to Record SOAP Messages
The request and response pipelines of the default policy include a log assertion that
causes policy enforcement points (PEP) to record SOAP messages to either a database
or a component-specific local file. There can be potential performance impacts to the
logging level. To prevent performance issues, consider using the lowest logging level
that is appropriate for your deployment.

The following logging levels can be configured in the log step:

■ Header - Only the SOAP header is recorded.

■ Body - Only the message content (body) is recorded.

■ Envelope - The entire SOAP envelope, which includes both the header and the
body, is recorded. Any attachments are not recorded.

■ All - The full message is recorded. This includes the SOAP header, the body, and
all attachments, which might be URLs existing outside the SOAP message itself.

Note: Typically, system performance improves when log files are located in topological
proximity to the enforcement component. If possible, use multiple distributed logs in a
highly distributed environment.

27.4.4 Configuring Connection Pooling
When you request that a Context instance use connection pooling by using the
"com.sun.jndi.ldap.connect.pool" environment property, the connection that is
used might or might not be pooled. The default rule is that plain (non-SSL)
connections that use simple or no authentication are allowed to be pooled. You can

Oracle Web Services Security Tuning

27-10 Oracle Fusion Middleware Performance and Tuning Guide

change this default to include SSL connections and the DIGEST-MD5 authentication
type by using system properties. To allow both plain and SSL connections to be
pooled, set the "com.sun.jndi.ldap.connect.pool.protocol" system property to the
string "plain ssl" as shown below:

"-Dcom.sun.jndi.ldap.connect.pool.protocol="plain ssl"

27.4.5 Monitoring the Performance of Web Services
You can monitor the performance on the following Oracle Web Services through the
Web Services home page of Oracle Fusion Middleware Control:

■ Endpoint Enabled Metrics such as:

– Policy Reference Status

– Total Violations

– Security Violations

■ Invocations Completed

■ Response Time, in seconds

■ Policy Violations such as:

– Total Violations

– Authentication Violations

– Authorization Violations

– Confidentiality Violations

– Integrity Violations

■ Total Faults

For general information on monitoring Oracle Fusion Middleware components, see
Chapter 4, "Monitoring Oracle Fusion Middleware".

For detailed information on using Oracle Fusion Middleware Control to monitor
Oracle Web Services, see "Monitoring the Performance of Web Services" in Oracle
Fusion Middleware Security and Administrator's Guide for Web Services.

Part VI
Part VI Oracle WebCenter Components

This part describes configuring Oracle WebCenter components to improve
performance. It contains the following chapter:

■ Chapter 28, "Oracle WebCenter Portal Performance Tuning"

28

Oracle WebCenter Portal Performance Tuning 28-1

28 Oracle WebCenter Portal Performance Tuning

[10] This chapter outlines how to tune configuration properties for the operating system on
which WebCenter Portal applications are installed, WebCenter Portal applications, and
their back-end components.

■ Section 28.1, "About Oracle WebCenter Portal"

■ Section 28.2, "Basic Tuning Considerations"

■ Section 28.3, "Tuning WebCenter Portal Application Configuration"

■ Section 28.4, "Tuning Back-End Component Configuration"

■ Section 28.5, "Tuning Identity Store Configuration"

■ Section 28.6, "Tuning Portlet Configuration"

28.1 About Oracle WebCenter Portal
Oracle WebCenter Portal 11g is an integrated suite of products used to create social
applications, enterprise portals, communities, composite applications, and internet or
intranet Web sites on a standards-based, service-oriented architecture (SOA). Oracle
WebCenter Portal combines the development of rich internet applications, a
multi-channel portal framework, and a suite of horizontal Enterprise 2.0 applications,
which provide content, presence, and social networking capabilities to create a highly
interactive user experience. Interacting with services such as instant messaging, blogs,
wikis, RSS, tags, discussion forums, activities and social networks directly within the
context of a portal or an application improves user and group productivity and
enhances the return on IT investments.

Oracle WebCenter Portal: Spaces is an out-of-the-box WebCenter Portal application
that brings you the latest technology in terms of social networking, communication,
collaboration, and personal productivity with no development effort. Through the
robust set of integrated services and applications provided by Oracle WebCenter
Portal's Framework, Composer, and Resource Catalog, the Spaces application enables
you to deploy instant community portals, team sites and other collaborative
applications.

For more information about Oracle WebCenter Portal, see Oracle Fusion Middleware
Administrator's Guide for Oracle WebCenter Portal and Oracle Fusion Middleware
Developer's Guide for Oracle WebCenter Portal.

28.2 Basic Tuning Considerations
The tuning considerations in this section apply to most WebCenter Portal and
WebCenter Portal: Spaces deployments and usage scenarios. It is highly recommended

Basic Tuning Considerations

28-2 Oracle Fusion Middleware Performance and Tuning Guide

that you review these configurations and implement those that are appropriate for
your use case scenarios.

28.2.1 Setting System Limit
To run a WebCenter Portal application at moderate load, set the open-files-limit to
4096. If you encounter errors, such as running out of file descriptors, then increase
the system limit.

For example, on Linux, you can use this command:

ulimit -n 8192

Refer to your operating system documentation to find out how to change this system
limit.

28.2.2 Setting JDBC Data Source
To determine the correct setting for the JDBC data source, use the Oracle WebLogic
Server Administation Console to monitor the running system database connection
usage as described "Configuring JDBC Data Sources". If the "Waiting for Connection
Failure" rate is noticably higher, and the "Active Connections Current Count" is close
to reaching the maximum capacity, then consider increasing capacity to avoid
potential database connection contention.

However, if the "Active Connections Current Count" is routinely lower than the
maximum capacity, consider reducing the capacity to save memory.

For more information, see "Configuring Connection Pool Features" in Oracle Fusion
Middleware Configuring and Managing JDBC Data Sources for Oracle WebLogic Server.

The following data source settings are the defaults for mds-SpacesDS and WebCenterDS.
These settings can be adjusted depending on the application's usage pattern and load.

 <jdbc-connection-pool-params>
 <initial-capacity>10</initial-capacity>
 <max-capacity>50</max-capacity>
 <capacity-increment>1</capacity-increment>
 <shrink-frequency-seconds>0</shrink-frequency-seconds>
 <highest-num-waiters>2147483647</highest-num-waiters>

<connection-creation-retry-frequency-seconds>0</connection-creation-retry-frequenc
y-seconds>

<connection-reserve-timeout-seconds>60</connection-reserve-timeout-seconds>
 <test-frequency-seconds>0</test-frequency-seconds>
 <test-connections-on-reserve>true</test-connections-on-reserve>

<ignore-in-use-connections-enabled>true</ignore-in-use-connections-enabled>

<inactive-connection-timeout-seconds>0</inactive-connection-timeout-seconds>
 <test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
 <login-delay-seconds>0</login-delay-seconds>
 <statement-cache-size>5</statement-cache-size>
 <statement-cache-type>LRU</statement-cache-type>
 <remove-infected-connections>true</remove-infected-connections>

<seconds-to-trust-an-idle-pool-connection>60</seconds-to-trust-an-idle-pool-connec
tion>
 <statement-timeout>-1</statement-timeout>
 <pinned-to-thread>false</pinned-to-thread>

Basic Tuning Considerations

Oracle WebCenter Portal Performance Tuning 28-3

 </jdbc-connection-pool-params>

To edit JDBC data source settings:

1. Login to WebLogic Server Administration Console.

2. From the Home page, select Summary of JDBC Data Sources, Settings for
mds-SpacesDS, and then the Connection Pool tab.

3. Edit properties, as required.

To edit WebCenter Portal data source settings:

1. Login to WebLogic Server Administration Console.

2. From the Home page, select Summary of JDBC Data Sources and navigate to the
Connection Pool tab.

See also "Tuning Data Source Connection Pools" in Oracle Fusion Middleware
Configuring and Managing JDBC Data Sources for Oracle WebLogic Server.

28.2.3 Setting JRockit Virtual Machine (JVM) Arguments
JVM arguments are set in the setDomainEnv.sh file on Unix operating systems and
setDomainEnv.cmd on Windows operating systems. The setDomainEnv file is located in
the <domain_dir>/bin directory.

■ WebLogic Server production mode: When Webcenter is installed for production
deployment, the WebLogic Server is set to production mode. However, if it is
installed for development and then switched to production mode for better
performance, you need to include the following parameter in the startup
command:

-Dweblogic.ProductionModeEnabled=true

For information on setting your domain to production mode using the
Administration Console, see "Change to production mode" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Online Help.

■ Heap size: If the server is overloaded, that is, garbage is collected or out of
memory error occurs frequently, then increase the heap size as appropriate to your
server's available physical memory.

For more information, see Section 2.4.1.1, "Specifying Heap Size Values" and "Set
Java options for servers started by Node Manager" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Online Help.

The following parameters can be modified in the server's startup command or
through the Administration Console to increase heap size:

jrockit vm: -Xms2048M -Xmx2048M -Xns512M

hotspot vm: -Xms2048M -Xmx2048M -XX:MaxPermSize512M

■ Garbage Collection

In some usecase scenarios modifying the following garbage collection settings
may improve performance:

-XX:+UseParallelOldGC -XX:+ParallelRefProcEnabled

See Also: Section 2.4, "Tuning Java Virtual Machines (JVMs)"

Tuning WebCenter Portal Application Configuration

28-4 Oracle Fusion Middleware Performance and Tuning Guide

-XX:SoftRefLRUPolicyMSPerMB=0

Note that the values of -Xmn and SoftRefLRUPolicyMSPerMB(0-1000) can aslo be
adjusted in accordance with the respective application memory settings and
requirements. For example:

-XX:PermSize=512m -XX:MaxPermSize=512m -Xmn512m
-Dweblogic.threadpool.MaxPoolSize=25

28.2.4 Using Content Compression to Reduce Downloads
If clients connect to your server using relatively slow connections, that is, using
modems or VPN from remote locations, consider compressing content before it
downloads to the client. While content compression increases the load on the server,
the client's download experience is much improved.

Several content compression methods are available. The following steps describe how
to use the mod_deflate module from Apache.

1. Enable mod_deflate module on Apache.

To do this, add the following to httpd.conf ($OH/instances/$INSTANCE_
NAME/config/OHS/$OHS_NAME)

LoadModule deflate_module "${ORACLE_HOME}/ohs/modules/mod_deflate.so"

2. Setup the Output Filter and specify the rules for compression.

Here is a sample snippet that you can add to the httpd.conf (same location
mentioned above). Modify the content based on your content and the compression
requirements.

<IfModule mod_deflate.c>
SetOutputFilter DEFLATE
AddOutputFilterByType DEFLATE text/plain
AddOutputFilterByType DEFLATE text/xml
AddOutputFilterByType DEFLATE application/xhtml+xml
AddOutputFilterByType DEFLATE text/css
AddOutputFilterByType DEFLATE application/xml
AddOutputFilterByType DEFLATE image/svg+xml
AddOutputFilterByType DEFLATE application/rss+xml
AddOutputFilterByType DEFLATE application/atom+xml
AddOutputFilterByType DEFLATE application/x-javascript
AddOutputFilterByType DEFLATE text/html
SetEnvIfNoCase Request_URI \.(?:gif|jpe?g|png)$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.(?:exe|t?gz|zip|bz2|sit|rar)$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.(?:pdf|doc?x|ppt?x|xls?x)$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.avi$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.mov$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.mp3$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.mp4$ no-gzip dont-vary
</IfModule>

For more information about mod_deflate, refer to:
http://httpd.apache.org/docs/2.0/mod/mod_deflate.html

28.3 Tuning WebCenter Portal Application Configuration
This section describes parameters that enable administrators to tune performance of
WebCenter Portal applications.

Tuning WebCenter Portal Application Configuration

Oracle WebCenter Portal Performance Tuning 28-5

This section includes the following:

■ Setting Session Timeout for a Spaces Application

■ Setting HTTP Session Timeout for a Framework Application

■ Setting JSP Page Timeout

■ Setting ADF Client State Token

■ Setting ADF View State Compression

■ Setting MDS Cache Size and Purge Rate

■ Configuring Concurrency Management

28.3.1 Setting Session Timeout for a Spaces Application
The default session timeout for the Spaces application is 45 minutes. Spaces
administrators can customize the session time to suit their installation, for details see
"Specifying Session Timeout Settings" in Oracle Fusion Middleware User's Guide for
Oracle WebCenter Portal: Spaces.

28.3.2 Setting HTTP Session Timeout for a Framework Application
To manage overall resource usage for WebCenter Portal Framework applications,
adjust the application's http session timeout value, in minutes, in the web.xml file. In
general, shorter session timeout values correspond to less memory and CPU usage on
the server.

If you must modify this property, post deployment, you must edit web.xml manually.
See "Editing web.xml Properties" in Oracle Fusion Middleware Administrator's Guide for
Oracle WebCenter Portal.

The following is a sample snippet of web.xml:

<session-config>
 <session-timeout>
 45
 </session-timeout>
</session-config>

28.3.3 Setting JSP Page Timeout
You can specify an integer value, in seconds, after which any JSP page will be removed
from memory if it has not been requested in the web.xml file. This frees up resources in
situations where some pages are called infrequently.

Increasing the value reduces user response time, and decreasing it reduces application
memory foot print. The default value for is 600 seconds or 10 minutes. If jsp_timeout is
not specified, it means there is no timeout.

To modify this property post deployment, you must edit web.xml manually. See
"Editing web.xml Properties" in Oracle Fusion Middleware Administrator's Guide for
Oracle WebCenter Portal.

The following is a sample snippet of web.xml:

Note: Note that this value applies only to WebCenter Portal
Framework applications and not to WebCenter Portal: Spaces.

Tuning WebCenter Portal Application Configuration

28-6 Oracle Fusion Middleware Performance and Tuning Guide

<servlet>
<servlet-name>
oraclejsp

<init-param>
<param-name>

jsp_timeout
</param-name>
<param-value>

600
</param-value>

</init-param>

28.3.4 Setting ADF Client State Token
Through this setting, you can control the number of pages users can navigate using the
browser Back button without losing page state. To reduce CPU and memory usage,
you can decrease the value in the web.xml file.

If you must modify this property, post deployment, you must edit web.xml manually.
See "Editing web.xml Properties" in Oracle Fusion Middleware Administrator's Guide for
Oracle WebCenter Portal.

The following is a sample code snippet of web.xml:

<context-param>
 <param-name>
 org.apache.myfaces.trinidad.CLIENT_STATE_MAX_TOKENS
 </param-name>
 <param-value>
 3
 </param-value>
</context-param>

28.3.5 Setting ADF View State Compression
Enabling ADF View State Compression can improve performance for some, but
consider the following:

■ Enabling COMPRESS_VIEW_STATE saves heap usage, but compressing and
decompressing can impact CPU resources.

■ Enabling COMPRESS_VIEW_STATE in a clustered environment can improve
performance during session replication as less data has to be sent.

■ Enabling COMPRESS_VIEW_STATE in a single node environment should only be
considered when the CPU/memory usage trade-off is acceptable.

The following is a sample code snippet of enabling the parameter in web.xml:

<context-param>
 <param-name> org.apache.myfaces.trinidad.COMPRESS_VIEW_STATE
 </param-name>
 <param-value> true </param-value>
</context-param>

28.3.6 Setting MDS Cache Size and Purge Rate
The default MDS cache size is 100MB. If you encounter the error message, JOC region
full, then you can increase the MDS cache size in the adf-config.xml file.

Tuning WebCenter Portal Application Configuration

Oracle WebCenter Portal Performance Tuning 28-7

Post deployment, modify these properties through the System MBeans Browser. For
more information, see the section "Changing MDS Configuration Attributes for
Deployed Applications" in Oracle Fusion Middleware Administrator's Guide.

The following is a sample snippet of adf-config.xml:

<cache-config>
<max-size-kb>150000</max-size-kb>
</cache-config>

Purging MDS data improves MDS queries. If your portal site changes frequently, you
may want to purge old MDS data more often, by reducing the time between purges.

Consider setting the MDS auto-purge seconds-to-live parameter (as shown in the
example below) to remove older versions of metadata automatically every hour. By
default, old versions of metadata are automatically purged every hour, that is, the
auto-purge seconds-to-live parameter is set to 3600 seconds (as shown in the
example below).

If excessive metadata is accumulated and each purge is very expensive, reduce this
interval in the adf-config.xml file.

By default there is no auto-purge entry in adf-config.xml Use the following sample
snippet of adf-config.xml to modify auto-purge:

<mdsC:adf-mds-config version="11.1.1.000">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config">
 <persistence-config>
 <metadata-namespaces>
 ...
 </metadata-namespace>
 <auto-purge seconds-to-live="3600"/>
 </persistence-config>

To ensure the initial purge does not impact ongoing user activities, consider using the
following WLST command to induce an MDS purge immediately before the bulk of
the user load hits the system:

The following example shows how to purge all documents in the application
repository whose versions are older than 10 seconds:

wls:/weblogic/serverConfig>purgeMetadata(application='[AppName]',server='[ServerNa
me]',olderThan=10)

28.3.7 Configuring Concurrency Management
Concurrency management includes global settings that impact the entire WebCenter
Portal and service- and resource-specific settings that only impact a particular service.

You can define deployment-specific overrides or additional configuration in the
adf-config.xml file. For example, you can specify resource-specific (producers) values
that are appropriate for a particular deployment.

Note: Each purge incurs CPU usage in the database. Do not purge
too often (for example, every 5 or 10 minutes) because the database
CPU impact might outweigh the performance gains from the purge.

Tuning WebCenter Portal Application Configuration

28-8 Oracle Fusion Middleware Performance and Tuning Guide

The following describes the format of the global, service, and resource entries in
adf-config.xml:

<concurrent:adf-service-config
 xmlns="http://xmlns.oracle.com/webcenterportal/concurrent/config">
 <global
 queueSize="SIZE"
 poolCoreSize="SIZE"
 poolMaxSize="SIZE"
 poolKeepAlivePeriod="TIMEPERIOD"
 timeoutMinPeriod="TIMEPERIOD"
 timeoutMaxPeriod="TIMEPERIOD"
 timeoutDefaultPeriod="TIMEPERIOD"
 timeoutMonitorFrequency="TIMEPERIOD"
 hangMonitorFrequeny="TIMEPERIOD"
 hangAcceptableStopPeriod="TIMEPERIOD" />
 <service
 service="SERVICENAME"
 timeoutMinPeriod="TIMEPERIOD"
 timeoutMaxPeriod="TIMEPERIOD"
 timeoutDefaultPeriod="TIMEPERIOD" />
 <resource
 service="SERVICENAME"
 resource="RESOURCENAME"
 timeoutMinPeriod="TIMEPERIOD"
 timeoutMaxPeriod="TIMEPERIOD"
 timeoutDefaultPeriod="TIMEPERIOD" />
</concurrent:adf-service-config>

Where:

SIZE: A positive integer. For example: 20.

TIMEPERIOD: Any positive integer followed by a suffix indicating the time unit, which
must be one of: ms for milliseconds, s for seconds, m for minutes, or h for hours. For
example: 50ms, 10s, 3m, or 1h. The following are examples of default settings for
different services. These settings are overwritten with any service-specific
configurations in connections.xml or adf-config.xml files:

<concurrent:adf-service-config
 xmlns="http://xmlns.oracle.com/webcenter/concurrent/config">
 <service service="oracle.webcenter.community" timeoutMinPeriod="2s"
timeoutMaxPeriod="50s" timeoutDefaultPeriod="30s"/>
 <resource service="oracle.webcenter.community"
 resource="oracle.webcenter.doclib"
 timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/>
 <resource service="oracle.webcenter.community"
 resource="oracle.webcenter.collab.calendar.community"
 timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/>
 <resource service="oracle.webcenter.community"
 resource="oracle.webcenter.collab.rtc"
 timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/>
 <resource service="oracle.webcenter.community"
 resource="oracle.webcenter.list"
 timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/>
 <resource service="oracle.webcenter.community"
 resource="oracle.webcenter.collab.tasks"
 timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/>
</concurrent:adf-service-config>

Tuning WebCenter Portal Application Configuration

Oracle WebCenter Portal Performance Tuning 28-9

You can use the Enterprise Manager System MBean Browser to view, add, modify, and
delete the concurrency configuration based on your usage pattern. To access the
MBean Browser for your WebCenter Portal application, see "Accessing the System
MBean Browser" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter
Portal.

1. In System MBean Browser, navigate to:

Application Defined MBeans -> oracle.adf.share.config -> Server: (your server
name) -> Application: (your application name) ->ADFConfig -> ADFConfig
(bean) -> ADFConfig -> WebCenterConcurrentConfiguration -> Operations ->
listResource

Figure 28–1 System MBean Browser - WebCenterConcurrentConfiguration

2. To view the current concurrency settings, select listResource, and then click
Invoke (Figure 28–2).

Note: All of the attributes except service and resource are optional,
and therefore, for example, the following tags are valid:

<global queueSize="20"/>
 <resource service="foo" resource="bar" timeoutMaxPeriod="5s"/>

Tuning WebCenter Portal Application Configuration

28-10 Oracle Fusion Middleware Performance and Tuning Guide

Figure 28–2 System MBean Browser - listResource

3. To change a setting, select setResource, enter the resource details, and then click
Invoke (Figure 28–3).

Figure 28–3 System MBean Browser - setResource

Take care to enter the correct values for service, resource, name and value.

NOTE: If the resource parameter you are attempting to modify already has a
[value] setting, you must remove the setting first by invoking the
[removeResource] operation (Figure 28–4).

Tuning Back-End Component Configuration

Oracle WebCenter Portal Performance Tuning 28-11

Figure 28–4 System MBean Browser - removeResource

4. To save changes, navigate to Application Defined MBeans:
ADFConfig:ADFConfig -> save, and click Invoke.

28.4 Tuning Back-End Component Configuration
This section describes performance configuration for back-end services used by
WebCenter Portal applications. Performance of back-ends such BPEL servers or Oracle
WebCenter Content servers, for example, should be tuned as described in guidelines
for those back-ends.

This section includes the following sub sections:

■ Tuning Performance of the Announcements Service

■ Tuning Performance of the Discussions Service

■ Tuning Performance of the Instant Messaging and Presence (IMP) Service

■ Tuning Performance of the Mail Service

■ Tuning Performance of the Personal Events Service

■ Tuning Performance of the RSS News Feed Service

■ Tuning Performance of the Search Service

■ Tuning Policy Store Parameters

28.4.1 Tuning Performance of the Announcements Service
To manage overall resource usage for the Announcements service, you can tune the
Connection Timeout property:

■ Default: 10 seconds

■ Minimum: 0 seconds

■ Maximum: 45 seconds

Post deployment, modify the Connection Timeout property through Fusion
Middleware Control or using WLST. For details, see:

■ "Modifying Discussions Server Connection Details Using Fusion Middleware
Control" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter
Portal

Tuning Back-End Component Configuration

28-12 Oracle Fusion Middleware Performance and Tuning Guide

■ "Modifying Discussions Server Connection Details Using WLST" in Oracle Fusion
Middleware Administrator's Guide for Oracle WebCenter Portal

The following is a sample code snippet of the connections.xml to change the default
timeout to 5 seconds:

<Reference name="Jive-7777"
className="oracle.adf.mbean.share.connection.webcenter.Announcement.
AnnouncementConnection">

<Factory
className="oracle.adf.mbean.share.connection.webcenter.forum.ForumConnectionFactor
y"/>

<REFAddresses>
<StringRefAddr addrType="connection.time.out">

<Contents>5</Contents>
</StringRefAddr>

</RefAddresses>
</Reference>

28.4.2 Tuning Performance of the Discussions Service
To manage overall resource usage for the Discussions service, you can tune the
Connection Timeout property:

■ Default: 10 seconds

■ Minimum: 0 seconds

■ Maximum: 45 seconds

Post deployment, modify the Connection Timeout property through Fusion
Middleware Control or using WLST. For details, see:

■ "Modifying Discussions Server Connection Details Using Fusion Middleware
Control" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter
Portal

■ "Modifying Discussions Server Connection Details Using WLST" in Oracle Fusion
Middleware Administrator's Guide for Oracle WebCenter Portal

The following is a sample snippet of connections.xml:

<Reference name="Jive-7777"
className="oracle.adf.mbean.share.connection.webcenter.forum.ForumConnection">

<Factory
className="oracle.adf.mbean.share.connection.webcenter.forum.ForumConnectionFactor
y"/>

<REFAddresses>
<StringRefAddr addrType="forum.url">

 <Contents>http://[machine]:[port]/owc_discussions_
5520</Contents>

<StringRefAddr addrType="connection.time.out">
<Contents>5</Contents>

</StringRefAddr>
</REFAddresses>

</Reference>

28.4.3 Tuning Performance of the Instant Messaging and Presence (IMP) Service
To manage overall resource usage for the IMP service, you can tune the Connection
Timeout property:

■ Default: 10 seconds

Tuning Back-End Component Configuration

Oracle WebCenter Portal Performance Tuning 28-13

■ Minimum: 0 seconds

■ Maximum: 45 seconds

Post deployment, modify the Connection Timeout property through Fusion
Middleware Control or using WLST. For details, see:

■ "Modifying Instant Messaging and Presence Connections Details Using Fusion
Middleware Control" in Oracle Fusion Middleware Administrator's Guide for Oracle
WebCenter Portal

■ "Modifying Instant Messaging and Presence Connections Details Using WLST" in
Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal

The following is a sample code snippet of the connections.xml to change the default
timeout to 5 seconds:

<Reference name="IMPService-LCS"
 className="oracle.adf.mbean.share.connection.webcenter.rtc.RtcConnection">
 <Factory
className="oracle.adf.mbean.share.connection.webcenter.rtc.RtcConnectionFactory"/>
 <RefAddresses>
 <StringRefAddr addrType="connection.time.out">
 <Contents>5</Contents>
 </StringRefAddr>
 </RefAddresses>
</Reference>

28.4.4 Tuning Performance of the Mail Service
To manage overall resource usage for the Mail service, you can tune the Connection
Timeout property:

■ Default: 10 seconds

■ Minimum: 0 seconds

■ Maximum: 45 seconds

Post deployment, modify the Connection Timeout property through Fusion
Middleware Control or using WLST. For details, see:

■ "Modifying Mail Server Connection Details Using Fusion Middleware Control" in
the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal

■ "Modifying Mail Server Connection Details Using WLST" in the Oracle Fusion
Middleware Administrator's Guide for Oracle WebCenter Portal

The following is a sample code snippet of the connections.xml to change the default
timeout to 5 seconds:

<Reference name="MailConnection"
className="oracle.adf.mbean.share.connection.webcenter.mail.MailConnection">
 <StringRefAddr addrType="connection.time.out">
 <Contents>5</Contents>
 </StringRefAddr>
</Reference>

28.4.5 Tuning Performance of the Personal Events Service
To manage overall resource usage for the Personal Events service, you can tune the
Connection Timeout property:

■ Default: 10 seconds

Tuning Back-End Component Configuration

28-14 Oracle Fusion Middleware Performance and Tuning Guide

■ Minimum: 0 seconds

■ Maximum: 45 seconds

You can also set a cache expiration period:

■ Default: 10 seconds

■ Minimum: 0 seconds

■ Maximum: 45 seconds

Post deployment, modify the Connection Timeout and Cache Expiration properties
through Fusion Middleware Control or using WLST. For details, see:

■ "Modifying Event Server Connection Details Using Fusion Middleware Control" in
the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal

■ "Modifying Event Server Connection Details Using WLST" in the Oracle Fusion
Middleware Administrator's Guide for Oracle WebCenter Portal

The following is a sample code snippet of the connections.xml to change the default
timeout to 5 seconds:

<Reference
name="MSExchange-my-pc"className="oracle.adf.mbean.share.connection.webcenter.cale
ndar.PersonalEventConnection">
 <Factory
className="oracle.adf.mbean.share.connection.webcenter.calendar.PersonalEventConne
ctionFactory"/>
 <StringRefAddr addrType="eventservice.connection.timeout">
 <Contents>5</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="eventservice.cache.expiration.time">
 <Contents>5</Contents>
 </StringRefAddr>
 </RefAddresses>
</Reference>

28.4.6 Tuning Performance of the RSS News Feed Service
To manage overall resource usage for the RSS News Feed service, you can adjust the
refresh interval and timeout in the adf-config.xml file.

If you must modify these properties, post deployment, use the System MBeans
Browser.

The following is a sample snippet of adf-config.xml:

<rssC:adf-rss-config>
 <rssC:RefreshSecs>3600</rssC:RefreshSecs>
 <rssC:TimeoutSecs>3</rssC:TimeoutSecs>
 <rssC:Configured>true</rssC:Configured>
</rssC:adf-rss-config>

28.4.7 Tuning Performance of the Search Service
To manage overall resource usage and user response time for searching, you can adjust
the number of saved searches displayed, the number of results displayed, and these
timeout values:

■ prepareTimeoutMs - Maximum time that a service is allowed to initialize a search
(in ms).

Tuning Back-End Component Configuration

Oracle WebCenter Portal Performance Tuning 28-15

■ timeoutMs - Maximum time that a service is allowed to execute a search (in ms).

■ showAllTimeoutMs - Maximum time that a service is allowed to display search all
results (in ms).

Post deployment, modify timeout properties through Fusion Middleware Control or
using WLST. For details, see:

■ "Modifying Oracle SES Connection Details Using Fusion Middleware Control" in
Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.

■ "Modifying Oracle SES Connection Details Using WLST" in Oracle Fusion
Middleware Administrator's Guide for Oracle WebCenter Portal.

The following is a sample snippet of adf-config.xml:

<searchC:adf-search-config
xmlns="http://xmlns.oracle.com/webcenter/search/config">
 <display-properties>
 <common numSavedSearches="25"/>
 <region-specific>
 <usage id="simpleSearchResultUIMetadata" numServiceRows="5"/>
 <usage id="searchResultUIMetadata" numServiceRows="5"/>
 <usage id="localToolbarRegion" numServiceRows="5"/>
 </region-specific>
 </display-properties>
 <execution-properties prepareTimeoutMs="1000" timeoutMs="3000"
showAllTimeoutMs="20000" />
 </execution-properties>
</searchC:adf-search-config>

28.4.8 Tuning Policy Store Parameters
If you are experiencing performance issues post login, especially in the area of
permission checks, you may need to tune the policy store parameters as described in
Section 27.3.6, "OPSS PDP Service Tuning Parameters". Depending on your use case
scenarios, performance of WebCenter Portal and WebCenter Portal: Spaces,
specifically, can be improved by modifying the following parameters:

■ Set oracle.security.jps.policystore.rolemember.cache.warmup.enable to
True

■ Modify oracle.security.jps.policystore.rolemember.cache.size based on
the number of active groups you expect to have in your WebCenter Portal - Spaces
environment.

NOTE: This parameter should only be modified if you expect to have more than
3000 active Spaces in your WebCenter Portal: Spaces environment.

■ Set oracle.security.jps.policystore.policy.cache.size to 5 times the
number of group spaces

Note: Always refer to your own use case scenarios before modifying
the policy store parameters. For more information, see the Oracle
Fusion Middleware Security and Administrator's Guide for Web Services
before tuning any security parameters.

Tuning Identity Store Configuration

28-16 Oracle Fusion Middleware Performance and Tuning Guide

28.5 Tuning Identity Store Configuration
The following sections describe performance-related configurations that may be
required for specific environments.

This section includes the following subsections:

■ Section 28.5.1, "Tuning the Identity Store when Using SSL"

■ Section 28.5.2, "Tuning Performance when Using OVD"

■ Section 28.5.3, "Tuning Performance when Using Active Directory"

28.5.1 Tuning the Identity Store when Using SSL
When you configure an identity store with WebCenter Portal (using WebLogic Server
providers), you can choose to configure either an SSL port or a non-SSL port. If you
choose an SSL port, by default, the JNDI connections are not pooled causing increased
response time and decreased performance when looking up users, groups, or other
identity store entities. To address this, do the following:

1. Open the jps-config.xml file under domain_
home/config/fmwconfig/jps-config.xml, locate the idstore.ldap service
instance and add the line highlighted below:

<!-- JPS WLS LDAP Identity Store Service Instance -->
 <serviceInstance name="idstore.ldap" provider="idstore.ldap.provider">
 <property name="idstore.config.provider"
value="oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfigProvider"/>
 <property name="CONNECTION_POOL_CLASS"
value="oracle.security.idm.providers.stdldap.JNDIPool"/>
 <property name="java.naming.ldap.factory.socket"
value="javax.net.ssl.SSLSocketFactory"/>
 </serviceInstance>

2. Restart all the servers within the domain that are connected to the identity store on
an SSL port with the following JVM parameter:

-Dcom.sun.jndi.ldap.connect.pool.protocol=ssl

You can specify this by modifying setDomainEnv.sh or directly from the console.

3. Verify that the servers are running with this JVM parameter, and then (for *nix
systems) run the following grep command:

ps -aef | grep WC_Spaces

and verify that the process state specifies
com.sun.jndi.ldap.connect.pool.protocol=ssl.

28.5.2 Tuning Performance when Using OVD
For OVD, the only object class against which attributes are looked up is
inetOrgPerson (and it's parent object classes). Since the Profile Gallery can display
attributes not defined in inetOrgPerson, all the additional attributes not covered in
inetOrgPerson would require an additional round trip to the identity store.

For best performance when using OVD in a production environment, Oracle
recommends that you add the following configuration entry (in bold) to the
domain-level jps-config.xml file:

 <!-- JPS WLS LDAP Identity Store Service Instance -->

Tuning Portlet Configuration

Oracle WebCenter Portal Performance Tuning 28-17

 <serviceInstance name="idstore.ldap"
 provider="idstore.ldap.provider">
 <property name="idstore.config.provider"
value="oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfigProvider"/>
 <property name="CONNECTION_POOL_CLASS"
value="oracle.security.idm.providers.stdldap.JNDIPool"/>

 <extendedProperty>
 <name>user.object.classes</name>
 <values>
 <value>top</value>
 <value>person</value>
 <value>inetorgperson</value>
 <value>organizationalperson</value>
 <value>orcluser</value>
 <value>orcluserv2</value>
 <value>ctCalUser</value>
 </values>
 </extendedProperty>
 </serviceInstance>

28.5.3 Tuning Performance when Using Active Directory
For best performance when using Active Directory in a production environment,
Oracle recommends that you add the following configuration entries (in bold) to the
domain-level jps-config.xml file:

 <serviceInstance provider="idstore.ldap.provider"
 name="idstore.ldap">
 <property
value="oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfigProvider"
 name="idstore.config.provider"/>
 <property value="oracle.security.idm.providers.stdldap.JNDIPool"
 name="CONNECTION_POOL_CLASS"/>
 <property name="PROPERTY_ATTRIBUTE_MAPPING" value="WIRELESS_ACCT_
NUMBER=mobile:MIDDLE_NAME=middlename:MAIDEN_NAME=sn:DATE_OF_HIRE=pwdLastSet:NAME_
SUFFIX=generationqualifier:DATE_OF_BIRTH=pwdLastSet:DEFAULT_GROUP=primaryGroupID"
/>
 <property value="sAMAccountName" name="username.attr"/>
 <property value="sAMAccountName" name="user.login.attr"/>
 </serviceInstance>

The People Profile Service queries for all these attributes and there is no default
mapping for these attributes in the Active Directory provider. A vanilla Active
Directory installation doesn't have any mapping corresponding to DATE_OF_HIRE,
DATE_OF_BIRTH.

Note that the two attributes are simply a mapping to some attribute of the correct data
type to reduce unnecessary LDAP server calls as Active Directory really doesn't have
corresponding attributes with the same semantic meaning.

28.6 Tuning Portlet Configuration
This section describes portlet performance-related configuration. This section includes
the following sub sections:

■ Tuning Performance of the Portlet Service

■ Configuring Portlet Cache Size

Tuning Portlet Configuration

28-18 Oracle Fusion Middleware Performance and Tuning Guide

■ Enabling Java Object Cache for WSRP Producers

■ Suppressing Optimistic Rendering for WSRP Portlets

■ Tuning Performance of Oracle PDK-Java Producers

■ Setting Portlet Container Runtime Options

■ Setting WSRP Attribute for Portet-served Resources

■ Setting WSRP Attribute for Resources Not Served by the Portlet

■ Configuring Portlet Timeout

■ Tuning Performance of OmniPortlet

28.6.1 Tuning Performance of the Portlet Service
To manage overall resource usage and user response time, you can remove
unnecessary locale support, modify portlet timeout and cache size in the
adf-config.xml file.

For the Portlet service, 28 supported locales are defined out-of-the-box. You can
remove the locales that are unnecessary for your application.

If you must modify these properties, post deployment, you must edit adf-config.xml
manually. See "Editing adf-config.xml" in the Oracle Fusion Middleware Administrator's
Guide for Oracle WebCenter Portal.

The following is a sample snippet of adf-config.xml:

<portletC:adf-portlet-config xmlns="http://xmlns.oracle.com/adf/portlet/config">
 <supportedLocales>
 <value>es</value>
 <value>ko</value>
 <value>ru</value>
 <value>ar</value>
 <value>fi</value>
 <value>nl</value>
 <value>sk</value>
 <value>cs</value>
 <value>fr</value>
 <value>no</value>
 <value>sv</value>
 <value>da</value>
 <value>hu</value>
 <value>pl</value>
 <value>th</value>
 <value>de</value>
 <value>it</value>
 <value>pt</value>
 <value>tr</value>
 <value>el</value>
 <value>iw</value>
 <value>pt_BR</value>
 <value>zh_CN</value>
 <value>en</value>
 <value>ja</value>
 <value>ro</value>
 <value>zh_TW</value>
 </supportedLocales>
 <defaultTimeout>20</defaultTimeout>
 <minimumTimeout>1</minimumTimeout>

Tuning Portlet Configuration

Oracle WebCenter Portal Performance Tuning 28-19

 <maximumTimeout>300</maximumTimeout>
 <parallelPoolSize>10</parallelPoolSize>
 <parallelQueueSize>20</parallelQueueSize>
 <cacheSettings enabled="true">
 <maxSize>10000000</maxSize>
 </cacheSettings>
</portletC:adf-portlet-config>

28.6.2 Configuring Portlet Cache Size
You can modify the portlet cache size in the adf-config.xml file. The default portlet
cache size is set to 10 MB.

If you must modify these properties, post deployment, you must edit adf-config.xml
manually.

The following is a sample snippet of adf-config.xml:

<adf-portlet-config>

 <supportedLocales>
 <cacheSettings enabled="true">
 <maxSize>10000000</maxSize>
 </cacheSettings>
</adf-portlet-config>

28.6.3 Enabling Java Object Cache for WSRP Producers
Oracle recommends that you enable the Java Object Cache (JOC) for WSRP producers
so that objects written to the persistent store are cached.

The following is a sample snippet of web.xml:

<env-entry>
<env-entry-name>oracle/portal/wsrp/server/enableJavaObjectCache</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>false</env-entry-value>
</env-entry>

28.6.4 Suppressing Optimistic Rendering for WSRP Portlets
To suppress the optimistic render of WSRP portlets after a WSRP
PerformBlockingInteraction or HandleEvents call, set the Portlet container runtime
option (specified in portlet.xml) as follows:
com.oracle.portlet.suppressWsrpOptimisticRender=true.

■ true - optimistic render always suppressed

■ false - optimistic render may be performed

Normally, if a WSRP portlet receives a WSRP PerformBlockingInteraction request
(processAction in JSR168/JSR286 portlets) and the portlet does not send any events as
a result, the WSRP producer renders the portlet and returns the portlet's markup in the
response to the PerformBlockingInteraction SOAP message. This markup may be
cached by the consumer until the consumer's page renders, and if nothing else
affecting the state of the portlet happens (such as the portlet receiving an event), the
cached markup can be used by the consumer, eliminating the need for a second SOAP
call to GetMarkup.

This assumes that the portlet's render phase is idempotent, which is always a best
practice. However, if the portlet expects to receive an event, or rendering the portlet is

Tuning Portlet Configuration

28-20 Oracle Fusion Middleware Performance and Tuning Guide

more costly than a second SOAP message for GetMarkup, the developer may use this
container option to suppress the optimistic render of the portlet after a processAction
or handleEvent call. The portlet still renders normally when the producer receives the
WSRP GetMarkup request.

28.6.5 Tuning Performance of Oracle PDK-Java Producers
To manage overall resource usage for a Web producer, you can tune the Connection
Timeout property:

■ Default: 30000 ms

■ Minimum: 5000 ms

■ Maximum: 60000 ms

Post deployment, modify the Connection Timeout property through Fusion
Middleware Control or using WLST. For details, see:

■ "Editing Producer Registration Details Using Fusion Middleware Control" in
Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.

■ "Editing Producer Registration Details Using WLST" in Oracle Fusion Middleware
Administrator's Guide for Oracle WebCenter Portal.

The following is a sample snippet of connections.xml:

<webproducerconnection producerName="wc-WebClipping"
urlConnection="wc-WebClipping-urlconn" timeout="10000" establishSession="true"
mapUser="false"/>

28.6.6 Setting Portlet Container Runtime Options
You can use the WebCenter Portal-specific excludedActionScopeRequestAttributes
container runtime option to specify how to store action-scoped request attributes so
that they are available to portlets until a new action occurs.

Request attributes which match any of the regular expressions are not stored as
action-scoped request attributes if the
javax.portlet.actionScopedRequestAttributes container runtime option is used, in
addition to any request parameters whose values match the regular expressions
defined in the com.oracle.portlet.externalScopeRequestAttributes container runtime
option.

If set to true, you can specify a second value of numberOfCachedScopes and a third
value indicating the number of scopes to be cached by the portlet container.

28.6.7 Excluding Request Attributes for Portlets
The excludedActionScopeRequestAttributes is a multi-valued, Portlet container
runtime property, where each value is a regular expression.

If using the javax.portlet.actionScopedRequestAttributes container runtime
option with a portlet, it is possible to optimize which request attributes get stored
between portlet lifecycles using the
com.oracle.portlet.excludedActionScopeRequestAttributes container runtime
option. Any request attributes which are unnecessary to store between lifecycles can
be indicated to increase performance.

Consider setting the Portlet container runtime option (specified in portlet.xml) as
follows:

Tuning Portlet Configuration

Oracle WebCenter Portal Performance Tuning 28-21

com.oracle.portlet.excludedActionScopeRequestAttributes

Default values:

 javax\.portlet.*

 oracle\.portlet.*

 com\.oracle\.portlet.*

28.6.8 Setting WSRP Attribute for Portet-served Resources
To specify the default WSRP requiresRewrite flag to use when generating Resource
URLs for portlet-served resources, set the Portlet container runtime option (specified
in portlet.xml) as follows:
com.oracle.portlet.defaultServedResourceRequiresWsrpRewrite.

This setting is used for all ResourceURLs created by the portlet, unless overridden by
the presence of the oracle.portlet.server.resourceRequiresRewriting request
attribute when the ResourceURL methods write() or toString() are called. This
setting is also used to specify the WSRP requiresRewriting flag on the served
resource response, but can be overridden by the presence of the
oracle.portlet.server.resourceRequiresRewriting request attribute when the
portlet's serveResource() method returns.

Valid values:

■ unspecified - (Default) The requiresRewrite URL flag is not given a value, and
the requiresRewriting response flag for a serveResource operation is based on
the MIME type of the response.

■ true - The requiresRewrite URL flag and requiresRewriting response flag is set
to true, indicating that the resource should be rewritten by the consumer.

■ false - The requiresRewrite URL flag and requiresRewriting response flag is
set to false, indicating that the resource does not necessarily need to be rewritten
by the consumer, though the consumer may choose to rewrite the resource.

28.6.9 Setting WSRP Attribute for Resources Not Served by the Portlet
To specify the default WSRP requiresRewrite flag to use when encoding URLs for
resources not served by the portlet, set the Portlet container runtime option (specified
in portlet.xml) as follows:
com.oracle.portlet.defaultProxiedResourceRequiresWsrpRewrite.

This setting is used for all URLs returned by the PortletResponse.encodeURL()
method, unless overridden by the presence of the
oracle.portlet.server.resourceRequiresRewriting request attribute when the
PortletResponse.encodeURL() method is called.

Valid values:

■ true - (Default) The requiresRewrite URL flag is set to true, indicating that the
resource should be rewritten by the consumer.

■ false - The requiresRewrite URL flag is set to false, indicating that the resource
does not necessarily need to be rewritten by the consumer.

Tuning Portlet Configuration

28-22 Oracle Fusion Middleware Performance and Tuning Guide

28.6.10 Configuring Portlet Timeout
You can modify the portlet timeout value in the adf-portlet-config element of the
adf-config.xml file. Default: 10 seconds, minimum: 0.1 seconds, maximum: 60
seconds.

If you must modify these properties, post deployment, you must edit adf-config.xml
manually. See "Editing adf-config.xml" in the Oracle Fusion Middleware Administrator's
Guide for Oracle WebCenter Portal.

The following is a sample snippet of adf-config.xml:

<adf-portlet-config>

 <defaultTimeout>5</defaultTimeout>
 <minimumTimeout>2</minimumTimeout>
 <maximumTimeout>300</maximumTimeout>
</adf-portlet-config>

28.6.11 Tuning Performance of OmniPortlet
To manage overall resource usage for OmniPortlets, you can tune the Connection
Timeout property:

■ Default: 30000 ms

■ Minimum: 5000 ms

■ Maximum: 60000 ms

Post deployment, modify the Connection Timeout property through Fusion
Middleware Control or using WLST. For details, see:

■ "Editing Producer Registration Details Using Fusion Middleware Control" in
Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.

■ "Editing Producer Registration Details Using WLST" in Oracle Fusion Middleware
Administrator's Guide for Oracle WebCenter Portal.

The following is a sample snippet of connections.xml:

<webproducerconnection producerName="wc-OmniPortlet"
urlConnection="wc-OmniPortlet-urlconn" timeout="10000" establishSession="false"
mapUser="false"/>

Part VII
Part VII Capacity Planning, Scalability, and

Availability

This part describes how to plan your site for high traffic, scalability, and availability. It
contains the following chapters:

■ Chapter 29, "Capacity Planning"

■ Chapter 30, "Using Clusters and High Availability Features"

29

Capacity Planning 29-1

29 Capacity Planning

Capacity Planning is the process of determining what type of hardware and software
configuration is required to meet application needs. Like performance planning,
capacity planning is an iterative process. A good capacity management plan is based
on monitoring and measuring load data over time and implementing flexible solutions
to handle variances without impacting performance.

The following sections provide an introduction to capacity planning:

■ Section 29.1, "About Capacity Planning for Oracle Fusion Middleware"

■ Section 29.2, "Determining Performance Goals and Objectives"

■ Section 29.3, "Measuring Your Performance Metrics"

■ Section 29.4, "Identifying Bottlenecks in Your System"

■ Section 29.5, "Implementing a Capacity Management Plan"

29.1 About Capacity Planning for Oracle Fusion Middleware
While performance tuning can be defined as optimizing your existing system for better
performance, capacity planning determines what your system needs (and when it
needs it) to maintain performance in both steady-state and peak usage periods.

Capacity Planning involves designing your solution and testing the configuration, as
well as identifying business expectations, periodic fluctuations in demand, and
application constraints. You need to plan carefully, test methodically, and incorporate
design principles that focus on performance. Before deploying any application into a
production environment, the application should be put through a rigorous
performance testing cycle. Creating an effective Capacity Management plan includes
some of the same steps as performance planning:

■ Step 1:Determining Performance Goals and Objectives

■ Step 2: Measuring Your Performance Metrics

■ Step 3: Identifying Bottlenecks in Your System

■ Step 4: Implementing a Capacity Management Plan

Note: The information contained in this chapter is meant to provide
an overview of various techniques that can be used to develop an
effective capacity management plan. The steps you take - and the plan
you ultimately create - depends on your specific requirements and
deployment structure.

Determining Performance Goals and Objectives

29-2 Oracle Fusion Middleware Performance and Tuning Guide

29.1.1 Capacity Planning Factors to Consider
Before you can create a plan, you must have the data to support your deployment
strategy. The following list of questions should be asked - and the information you
receive should be analyzed carefully - to ensure a successful capacity management
plan.

29.2 Determining Performance Goals and Objectives
The first step in creating an effective capacity management plan is to determine your
network load and performance objectives. You need to understand the applications
deployed and the environmental constraints placed on the system. Ideally you have
information about the levels of activity that components of the application are
expected to meet, such as:

■ The anticipated number of users.

■ The number of concurrent sessions.

■ The number of SSL connections required.

■ The number and size of requests.

■ The amount of data and its consistency.

■ Determining your target CPU utilization.

Performance objectives are limited by constraints, such as

■ The configuration of hardware and software such as CPU type, disk size versus
disk speed, sufficient memory.

■ The ability to interoperate between domains, use legacy systems, support legacy
data.

■ The security requirements and use of SSL. SSL involves intensive computing
operations and supporting the cryptography operations in the SSL protocol can
impact the performance of the WebLogic Server.

■ Development, implementation, and maintenance costs.

Table 29–1 Capacity Planning Factors to Consider

Capacity Planning Questions For more information see,

What are your performance goals and
objectives?

Section 29.2, "Determining Performance
Goals and Objectives"

How many users need to run simultaneously
(concurrently?)

Section 29.2, "Determining Performance
Goals and Objectives"

Is the simulated workload adequate? (Is the
workload likely to increase?)

Section 29.2, "Determining Performance
Goals and Objectives"

Is the Oracle Fusion Middleware deployment
configured to support clustering and other high
availability factors?

Section 29.4.1, "Using Clustered
Configurations"

Does the hardware meet the configuration
requirements?

Section 29.5.1, "Hardware Configuration
Requirements"

Do you have adequate JVMs to support your
users?

Section 29.5.2, "JVM Requirements"

Is the database a limiting factor? Section 29.5.4, "Database Configuration"

Identifying Bottlenecks in Your System

Capacity Planning 29-3

You can use this information to set realistic performance objectives for your
application environment, such as response times, throughput, and load on specific
hardware.

29.3 Measuring Your Performance Metrics
After you have determined your performance criteria in Section 29.2, "Determining
Performance Goals and Objectives", take measurements of the metrics you can use to
quantify your performance objectives. Benchmarking key performance indicators
provides a performance baseline. See Chapter 4, "Monitoring Oracle Fusion
Middleware" for information on measuring your performance metrics with Oracle
Fusion Middleware applications.

29.4 Identifying Bottlenecks in Your System
Bottlenecks, or areas of marked performance degradation, should be addressed while
developing your capacity management plan. If possible, profile your applications to
pinpoint bottlenecks and improve application performance. Oracle provides the
following profilers:

■ Oracle Jrockit Mission Control provides profiling capabilities for processes using
Jrockit JVM.

http://www.oracle.com/technology/products/jrockit/missioncontrol/index.
html

■ Oracle Application Diagnostics provides profiling capabilities for java processing
using SUN JDK.

http://www.oracle.com/technology/software/products/oem/htdocs/jade.html

The objective of identifying bottlenecks is to meet your performance goals, not
eliminate all bottlenecks. Resources within a system are finite. By definition, at least
one resource (CPU, memory, or I/O) can be a bottleneck in the system. Planning for
anticipated peak usage, for example, may help minimize the impact of bottlenecks on
your performance objectives.

There are several ways to address system bottlenecks. Some common solutions
include:

■ Using Clustered Configurations

■ Using Connection Pooling

■ Setting the Max HeapSize on JVM

■ Increasing Memory or CPU

■ Segregation of Network Traffic

■ Segregation of Processes and Hardware Interrupt Handlers

29.4.1 Using Clustered Configurations
Clustered configurations distribute work loads among multiple identical cluster
member instances. This effectively multiplies the amount of resources available to the
distributed process, and provides for seamless fail over for high availability.

For more information see Chapter 30, "Using Clusters and High Availability Features".

Identifying Bottlenecks in Your System

29-4 Oracle Fusion Middleware Performance and Tuning Guide

29.4.2 Using Connection Pooling
You may be able to improve performance by using existing database connections. You
can limit the number of connections, timing of the sessions and other parameters by
modifying the connection strings.

See Section 2.7, "Reusing Database Connections" for more information on configuring
the database connection pools.

29.4.3 Setting the Max HeapSize on JVM
This is a application-specific tunable that enables a trade off between garbage
collection times and the number of JVMs that can be run on the same hardware. Large
heaps are used more efficiently and often result in fewer garbage collections. More
JVM processes offer more fail over points.

See Section 2.4, "Tuning Java Virtual Machines (JVMs)" for more information.

29.4.4 Increasing Memory or CPU
Aggregating more memory and/or CPU on a single hardware resource allows
localized communication between the instances sharing the same hardware. More
physical memory and processing power on a single machine enables the JVMs to scale
and run much larger and more powerful instances, especially 64-bit JVMs. Large JVMs
tend to use the memory more efficiently, and Garbage Collections tend to occur less
frequently. In some cases, adding more CPU means that the machine can have more
instruction and data cache available to the processing units, which means even higher
processing efficiency.

See Section 2.2, "Securing Sufficient Hardware Resources" for more information.

29.4.5 Segregation of Network Traffic
Network-intensive applications can introduce significant performance issues for other
applications using network. Segregating the network traffic of time-critical
applications from network-intensive applications, so that they get routed to different
network interfaces, may reduce performance impacts. It is also possible to assign
different routing priorities to the traffic originating from different network interfaces.

29.4.6 Segregation of Processes and Hardware Interrupt Handlers
When planning for the capacity that a specific hardware resource can handle, it is
important to understand that the operating system may not be able to efficiently
schedule the JVM processes as well as other system processes and hardware interrupt
handlers. The JVM may experience performance impacts if it shares even a few of its
CPU cores with the hardware interrupt handlers. For example, disk and
network-intensive applications may induce performance impacts that are
disproportionate to the load experienced by the CPU. In addition, hardware interrupts
can prevent the active Java threads from reaching a "GC-safe point" efficiently.
Separating frequent hardware interrupt handlers from the CPUs running the JVM
process can reduce the wait for Garbage Collections to start.

It may also be beneficial to dedicate sibling CPUs on a multi-core machine to a single
JVM to increase the efficiency of its CPU cache. If multiple processes have to share the
CPU, the data and instruction cache can be contaminated with the data and
instructions from both processes, thus reducing the amount of the cache used
effectively. Assigning the processes to specific CPU cores, however, can make it
impossible to use other CPU cores during peak load bursts. The capacity management

Implementing a Capacity Management Plan

Capacity Planning 29-5

plan should include a determination on whether the CPUs should be used more
efficiently for the nominal load, or should there be some extra capacity for a burst of
activity.

29.5 Implementing a Capacity Management Plan
Once you have defined your performance objectives, measured your workload, and
identified any bottlenecks, you must create and implement a capacity management
plan. The goal of your plan should be to meet or exceed your performance objectives
(especially during peak usage periods) and to allow for future workload increases. To
achieve your performance objectives, you must implement your management plan
and then continuously monitor the performance metrics as discussed in Chapter 4,
"Monitoring Oracle Fusion Middleware".

Since no two deployments are identical, its virtually impossible to illustrate how a
capacity management plan would be implemented for all configurations. Capacity
planning is an iterative process and your plan must be calibrated as changes in your
workload or environment change. The following section provides key factors that
should be addressed in the plan:

29.5.1 Hardware Configuration Requirements
There is no single formula for determining your hardware requirements. The process
of determining what type of hardware and software configuration involves assessment
of your system performance goals and an understanding of your application. Capacity
planning for server hardware should focus on maximum performance requirements.

The hardware requirements you have today are likely to change. Your plan should
allow for workload increases, environment changes (such as added servers or 3rd
party services), software upgrades (operating systems, middleware or other
applications), network connectivity and network protocols.

29.5.1.1 CPU Requirements
Your target CPU usage should not be 100%, you should determine a target CPU
utilization based on your application needs, including CPU cycles for peak usage. If
your CPU utilization is optimized at 100% during normal load hours, you have no
capacity to handle a peak load. In applications that are latency sensitive and
maintaining the ability for a fast response time is important, high CPU usage
(approaching 100% utilization) can reduce response times while throughput stays
constant or even increases because of work queuing up in the server. For such
applications, a 70% - 80% CPU utilization recommended. A good target for
non-latency sensitive applications is about 90%.

29.5.1.2 Memory Requirements
Memory requirements are determined by the optimal heap size for the applications
you are going to use, for each JVM co-located on the same hardware. Each JVM needs
up to 500MB in addition to the optimal heap size; the actual impact to performance
depends on the JVM brand, and on the type of application being run. For example,
applications with more Java classes loaded need more space for compiled classes.
32-bit JVMs normally cannot exceed a limit of approximately 3GB on some
architecture when a limit is imposed by the hardware architecture and the Operating
System. It is recommended to reserve some memory for the Operating System, IO
buffers and shared-memory devices.

Implementing a Capacity Management Plan

29-6 Oracle Fusion Middleware Performance and Tuning Guide

29.5.2 JVM Requirements
The number of users/processes that a single Java Virtual Machine (JVM) can handle
varies widely on the types of requests and the type of JVM you are running. As part of
your performance monitoring and benchmarking procedures, you should determine
how many and what kinds of processes are executed and determine if your hardware
meets the requirements for your specific JVM.

29.5.3 Managed Servers
Using multiple managed servers across multiple nodes in a clustered configuration is
recommended for both high performance and reliability. It is important to note,
however, that having multiple managed servers may mean using more memory which
can enable some applications to optimize certain operations in-memory, therefore
reducing impact of disk, database and network latency.

For more information on using clustered configurations, see "Understanding Managed
Servers and Managed Server Clusters" in Oracle Fusion Middleware Administrator's
Guide.

29.5.4 Database Configuration
To maintain sustained performance, you must ensure that your existing database can
scale with the increases in capacity planned for the application server tier. Tuning the
database parameters and monitoring database metrics during peak usage, can help
you determine if the existing database resources can scale to handle increased loads.
You may need to add additional memory or upgrade the database hardware
configuration. For more information on tuning an Oracle database, see the Oracle
Database Performance Tuning Guide.

In some cases, however, you may find that the database is still not able to effectively
manage increases in load, even after increasing the memory or upgrading the CPU. In
these situations, consider deploying an Oracle Real Application Cluster (Oracle RAC)
environment to handle the increases. Oracle RAC configurations not only provide
enhanced performance, but they can also improve reliability and scalability. For more
information on Oracle RAC, see Oracle Real Application Clusters Administration and
Deployment Guide.

30

Using Clusters and High Availability Features 30-1

30 Using Clusters and High Availability Features

A high availability architecture is one of the key requirements for any Enterprise
Deployment. Oracle Fusion Middleware has an extensive set of high availability
features, which protect its components and applications from unplanned down time
and minimize planned downtime.

This chapter provides an overview of the architecture, interaction, and dependencies
of Oracle Fusion Middleware components, and explains how they can be deployed in
a high availability architecture to maximize performance.

This chapter includes the following sections:

■ Section 30.1, "About Clusters and High Availability Features"

■ Section 30.2, "Using Clusters with Oracle Fusion Middleware"

■ Section 30.3, "Using High Availability Features with Oracle Fusion Middleware"

30.1 About Clusters and High Availability Features
One of the most important factors in both high availability and performance is the use
of clusters. A cluster is a set of processes running on single or multiple computers that
share the same workload. Using a clustered configuration promotes scalability, high
availability, and performance.

High availability refers to the ability of users to access a system without loss of
service. Deploying a high availability system minimizes the time when the system is
down, or unavailable and maximizes the time when it is running, or available. See

Details about using clusters and other high availability features can be located in the
application-specific guides listed in Table 30–1:

Note: Using clusters and other high availability options is a complex
and detailed process. This chapter is meant to introduce the concepts
as they relate to Oracle Fusion Middleware. Table 30–1 provides a list
of Oracle Fusion Middleware guides that contain detailed high
availability information.

Using Clusters with Oracle Fusion Middleware

30-2 Oracle Fusion Middleware Performance and Tuning Guide

30.2 Using Clusters with Oracle Fusion Middleware
For production environments that require increased application performance,
throughput, or high availability, you can configure two or more Managed Servers to
operate as a cluster. A cluster is a collection of multiple Oracle WebLogic Server server
instances running simultaneously and working together to provide increased
scalability and reliability.

For more information on using clusters with Oracle Fusion Middleware, see the
following:

■ "Understanding Managed Servers and Managed Server Clusters" in Oracle Fusion
Middleware Administrator's Guide

■ Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server

■ Oracle Real Application Clusters Administration and Deployment Guide

Table 30–1 Clusters and High Availability Information in Oracle Fusion Middleware Documentation

Component Location of Information

Oracle Fusion Middleware Oracle Fusion Middleware Administrator's Guide

Oracle WebLogic Server Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server

Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server

Oracle SOA Suite The Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and
Oracle Business Process Management Suite

The Oracle Fusion Middleware Enterprise Deployment Guide for Oracle SOA
Suite

Oracle WebCenter The Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter
Portal

The Oracle Fusion Middleware Enterprise Deployment Guide for Oracle
WebCenter Portal

Oracle ADF The Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework

The Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle
Application Development Framework

Oracle Fusion Middleware Backup
and Recovery

The Oracle Fusion Middleware Administrator's Guide

Oracle Web Cache The Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Oracle Identity Management The Oracle Fusion Middleware Installation Guide for Oracle Identity
Management

The Oracle Fusion Middleware Enterprise Deployment Guide for Oracle Identity
Management

Oracle Virtual Directory The Oracle Fusion Middleware Administrator's Guide for Oracle Virtual
Directory

Oracle HTTP Server The Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

Oracle Internet Directory The Oracle Fusion Middleware Administrator's Guide for Oracle Internet
Directory

Oracle Repository Creation Utility
(RCU)

The Oracle Fusion Middleware Repository Creation Utility User's Guide

Oracle Portal The Oracle Fusion Middleware Administrator's Guide for Oracle Portal

Using High Availability Features with Oracle Fusion Middleware

Using Clusters and High Availability Features 30-3

30.3 Using High Availability Features with Oracle Fusion Middleware
In addition to using a clustered architecture within your Fusion Middleware
components, there are a number of high availability features built-in to ensure your
applications are continuously accessible by the users. The following list provides a few
options for setting up a comprehensive high availability system. The options that you
integrate depend on your overall performance goals as well as your system
architecture. This list is meant to provide examples only.

■ Process death detection and automatic restart

Processes may die unexpectedly due to configuration or software problems. A
proper process monitoring and restart system should constantly check the health
of the applications and restart them when problems appear.

A system process should also maintain the number of restarts within a specified
time interval. This is also important since continually restarting within short time
periods may lead to additional faults or failures. Therefore a maximum number of
restarts or retries within a specified time interval should also be designed as well.

■ State replication and routing

For stateful applications, client state can be replicated to enable stateful failover of
requests in the event that processes servicing these requests fail.

■ Failover

With a load-balancing mechanism in place, the instances are redundant. If any of
the instances fail, requests to the failed instance can be sent to the surviving
instances.

■ Server load balancing

When multiple instances of identical server components are available, client
requests to these components can be load balanced to ensure that the instances
have roughly the same workload.

■ Disaster Recovery

Disaster recovery solutions typically set up two homogeneous sites, one active and
one passive. Each site is a self-contained system. The active site is generally called
the production site, and the passive site is called the standby site. During normal
operation, the production site services requests; in the event of a site failover or
switchover, the standby site takes over the production role and all requests are
routed to that site. To maintain the standby site for failover, not only must the
standby site contain homogeneous installations and applications, data and
configurations must also be synchronized constantly from the production site to
the standby site.

For more information see the Oracle Fusion Middleware High Availability Guide.

Using High Availability Features with Oracle Fusion Middleware

30-4 Oracle Fusion Middleware Performance and Tuning Guide

	Contents
	Preface
	Audience
	Documentation Accessibility
	Conventions

	Part I Introduction
	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to this Document
	1.3 Related Documentation

	2 Top Performance Areas
	2.1 About Identifying Top Performance Areas
	2.2 Securing Sufficient Hardware Resources
	2.3 Tuning the Operating System
	2.4 Tuning Java Virtual Machines (JVMs)
	2.4.1 Configuring Garbage Collection
	2.4.1.1 Specifying Heap Size Values
	2.4.1.2 Selecting a Garbage Collection Scheme
	2.4.1.3 Disabling Explicit Garbage Collection

	2.4.2 Logging Low Memory Conditions
	2.4.3 Monitoring and Profiling the JVM

	2.5 Tuning the WebLogic Server
	2.6 Tuning Database Parameters
	2.6.1 Tuning Database Parameters
	2.6.1.1 Initialization Parameters for Oracle 10g
	2.6.1.2 Initialization Parameters for Oracle 11g

	2.6.2 Tuning Redo Logs Location and Sizing
	2.6.3 Tuning Automatic Segment-Space Management (ASSM)

	2.7 Reusing Database Connections
	2.8 Enabling Data Source Statement Caching
	2.9 Controlling Concurrency
	2.9.1 Setting Server Connection Limits
	2.9.1.1 MaxClients/ThreadsPerChild
	2.9.1.2 KeepAlive
	2.9.1.3 Tuning HTTP Server Modules

	2.9.2 Configuring Connection Pools
	2.9.3 Tuning the WebLogic Sever Thread Pool
	2.9.4 Tuning Oracle WebCenter Concurrency
	2.9.5 Tuning BPEL Concurrency

	2.10 Setting Logging Levels

	3 Performance Planning
	3.1 About Oracle Fusion Middleware Performance Planning
	3.2 Performance Planning Methodology
	3.2.1 Define Your Performance Objectives
	3.2.1.1 Define Operational Requirements
	3.2.1.2 Identify Performance Goals
	3.2.1.3 Understand User Expectations
	3.2.1.4 Conduct Performance Evaluations

	3.2.2 Design Applications for Performance and Scalability
	3.2.3 Monitor and Measure Your Performance Metrics

	4 Monitoring Oracle Fusion Middleware
	4.1 About Oracle Fusion Middleware Management Tools
	4.1.1 Measuring Your Performance Metrics

	4.2 Oracle Enterprise Manager 11g Fusion Middleware Control
	4.2.1 Viewing Performance Metrics Using Fusion Middleware Control

	4.3 Oracle WebLogic Server Administration Console
	4.4 WebLogic Diagnostics Framework (WLDF)
	4.5 WebLogic Scripting Tool (WLST)
	4.5.1 Using Custom WLST Commands
	4.5.1.1 Using WLST Commands for System Components

	4.6 DMS Spy Servlet
	4.6.1 Viewing Performance Metrics Using the Spy Servlet
	4.6.2 Using the DMS Spy Servlet

	4.7 Oracle Process Manager and Notification Server
	4.8 Oracle Enterprise Manager Cloud Control
	4.9 Native Operating System Performance Commands
	4.10 Network Performance Monitoring Tools

	Part II Core Components
	5 Understanding the Oracle Dynamic Monitoring Service
	5.1 About Dynamic Monitoring Service (DMS)
	5.1.1 Understanding Common DMS Terms and Concepts
	5.1.1.1 DMS Tracing and Events
	5.1.1.2 DMS Nouns
	5.1.1.2.1 General DMS Naming
	5.1.1.2.2 General DMS Naming Conventions and Character Sets
	5.1.1.2.3 Noun and Noun Type Naming Conventions

	5.1.1.3 DMS Sensors
	5.1.1.3.1 DMS PhaseEvent Sensors
	5.1.1.3.2 DMS Event Sensors
	5.1.1.3.3 DMS State Sensors
	5.1.1.3.4 Sensor Naming Conventions

	5.2 Understanding DMS Availability
	5.3 Understanding DMS Architecture
	5.4 Viewing DMS Metrics
	5.4.1 Viewing Metrics Using the Spy Servlet
	5.4.2 Viewing Metrics with WLDF (WebLogic Diagnostic Framework)
	5.4.3 Viewing metrics with WLST (Oracle WebLogic Server)
	5.4.4 Viewing metrics with JConsole
	5.4.5 Viewing metrics with Oracle Enterprise Manager
	5.4.6 Viewing metrics using WSADMIN (IBM WebSphere)

	5.5 Accessing DMS Metrics with WLDF
	5.6 DMS Execution Context
	5.6.1 DMS Execution Requests and Sub-Tasks
	5.6.2 DMS Execution Context Usage
	5.6.3 DMS Execution Context Communication

	5.7 DMS Tracing and Events
	5.7.1 Configuring the DMS Event System
	5.7.1.1 Adding and Editing Filters
	5.7.1.2 Adding and Editing Destinations
	5.7.1.3 Adding and Editing Event Routes
	5.7.1.4 Compound Operations

	5.7.2 Configuring Destinations
	5.7.2.1 LoggerDestination
	5.7.2.1.1 Static Loggers and Handlers
	5.7.2.1.2 Dynamic Loggers and Handlers
	5.7.2.1.3 Default Locations of the logging.xml File
	5.7.2.1.4 Using a CLI Command to Query the Trace Log File

	5.7.2.2 MBean Creator Destination
	5.7.2.2.1 Metric MBean Object Name

	5.7.2.3 HTTP Request Tracker Destination
	5.7.2.3.1 Executing the HTTP Request Tracker Dump

	5.7.2.4 JRockit Flight Recorder Destination
	5.7.2.4.1 Dynamically Derived JFR Event Types – Names, Values and Descriptions
	5.7.2.4.2 Examples of Dynamically Derived Producers and Events

	5.7.3 Understanding DMS Event Output
	5.7.4 Understanding DMS Event Actions

	5.8 DMS Best Practices

	6 Oracle HTTP Server Performance Tuning
	6.1 About Oracle HTTP Server
	6.2 Monitoring Oracle HTTP Server Performance
	6.3 Basic Tuning Considerations
	6.3.1 Tuning Oracle HTTP Server Directives
	6.3.2 Reducing Httpd Process Availability with Persistent Connections
	6.3.3 Logging Options for Oracle HTTP Server
	6.3.3.1 Access Logging
	6.3.3.2 Configuring the HostNameLookups Directive
	6.3.3.3 Error logging

	6.4 Advanced Tuning Considerations
	6.4.1 Tuning Oracle HTTP Server Security
	6.4.1.1 Tuning Oracle HTTP Server Secure Sockets Layer (SSL)
	6.4.1.1.1 Caching SSL on Oracle HTTP Server
	6.4.1.1.2 Using SSL Application Level Data Encryption
	6.4.1.1.3 Tuning SSL Performance

	6.4.1.2 Tuning Oracle HTTP Server Port Tunneling

	6.4.2 Tuning Oracle HTTP Server
	6.4.2.1 Analyzing Static Versus Dynamic Requests
	6.4.2.2 Managing PL/SQL Requests
	6.4.2.3 Limiting the Number of Enabled Modules
	6.4.2.4 Tuning the File Descriptor Limit

	7 Oracle Metadata Service (MDS) Performance Tuning
	7.1 About Oracle Metadata Services (MDS)
	7.2 Monitoring Oracle Metadata Service Performance
	7.3 Basic Tuning Considerations
	7.3.1 Tuning the Database Repository
	7.3.1.1 Collecting Schema Statistics
	7.3.1.2 Increasing Redo Log Size
	7.3.1.3 Reclaiming Disk Space
	7.3.1.4 Monitoring the Database Performance

	7.3.2 Tuning Cache Configuration
	7.3.2.1 Enabling Document Cache

	7.3.3 Purging Document Version History
	7.3.3.1 Auto Purge
	7.3.3.2 Manual Purge

	7.3.4 Using Database Polling Interval for Change Detection

	7.4 Advanced Tuning Considerations
	7.4.1 Analyzing Performance Impact from Customization

	Part III Oracle Fusion Middleware Server Components
	8 Oracle Application Development Framework Performance Tuning
	8.1 About Oracle ADF
	8.2 Basic Tuning Considerations
	8.2.1 Oracle ADF Faces Configuration and Profiling
	8.2.2 Tuning ADF Faces
	8.2.3 Tuning ADF Faces Component Attributes
	8.2.4 Tuning Table and Tree Components
	8.2.4.1 Specifying a Data Delivery Method
	8.2.4.2 Performance Considerations for autoSuggest

	8.2.5 Tuning Data Visualization Tool (DVT) Components

	8.3 Advanced Tuning Considerations
	8.3.1 Tuning ADF Server Performance
	8.3.1.1 HTTP Session Timeout Tuning
	8.3.1.2 View Objects Tuning
	8.3.1.2.1 Creating View Objects
	8.3.1.2.2 Configuring View Object Data Fetching
	8.3.1.2.3 Additional View Object Configurations

	8.3.1.3 Batch Processing
	8.3.1.4 RangeSize Tuning
	8.3.1.5 Application Module Design Considerations
	8.3.1.6 Application Module Pooling
	8.3.1.6.1 General AM Pool Configurations
	8.3.1.6.2 AM Pool Resource Cleanup Configurations

	8.3.1.7 ADFc: Region Usage
	8.3.1.8 Defer Task Flow Execution
	8.3.1.9 Configuring the Task Flow Inside Switcher
	8.3.1.10 Reusing Static Data
	8.3.1.11 Conditional Validations

	8.3.2 Tuning Groovy Usage

	9 Oracle TopLink (EclipseLink) JPA Performance Tuning
	9.1 About Oracle TopLink and EclipseLink
	9.2 Monitoring TopLink Performance
	9.3 Basic Tuning Considerations
	9.3.1 Using Efficient SQL Statements and Queries
	9.3.1.1 Entity Relationships Query Parameter Tuning

	9.3.2 Tuning Cache Configuration
	9.3.2.1 Cache Refreshing Scenarios
	9.3.2.2 Locking Modes

	9.3.3 Integrating Oracle Toplink with Coherence

	9.4 Advanced Tuning Considerations
	9.4.1 Configuring Mappings
	9.4.2 Configuring Data Partitioning

	10 Oracle Web Cache Performance Tuning
	10.1 About Oracle Web Cache
	10.2 Performance Considerations
	10.2.1 Optimizing Hardware Resources
	10.2.1.1 Hardware Resources
	10.2.1.2 Memory Configuration
	10.2.1.2.1 Configuring WebCache Memory

	10.2.2 Optimizing Platform Connections
	10.2.2.1 UNIX Connections
	10.2.2.2 Windows Connections

	10.3 Basic Tuning Considerations
	10.3.1 Optimizing Network Connections
	10.3.1.1 Network Bandwidth
	10.3.1.2 Network Connections
	10.3.1.3 Network-Related Parameters

	10.3.2 Increasing Cache Hit Rates
	10.3.3 Optimizing Response Time

	10.4 Advanced Tuning Considerations
	10.4.1 Optimizing Performance with Oracle ADF

	Part IV SOA Suite Components
	11 General Tuning for SOA Suite Components
	11.1 About SOA Suite Configuration Properties
	11.2 SOA Infrastructure Configurations
	11.2.1 Audit Level
	11.2.2 Instance Tracking Audit Trail Threshold
	11.2.3 Logging Level

	11.3 Modifying SOA Configuration Parameters
	11.4 JVM Tuning Parameters
	11.5 Database Settings
	11.5.1 Configuring Data Sources for SOA
	11.5.2 Managing Tables and Indexes
	11.5.3 Weblogic Server Performance Tuning

	12 Oracle Business Rules Performance Tuning
	12.1 About Oracle Business Rules
	12.2 Basic Tuning Considerations
	12.2.1 Use Java Beans
	12.2.2 Assert Child Facts instead of Multiple Dereferences
	12.2.3 Avoid Side Affects in Rule Conditions
	12.2.4 Avoid Expensive Operations in Rule Conditions
	12.2.5 Consider Pattern Ordering
	12.2.6 Consider the Ordering of Tests in Rule Conditions
	12.2.7 Enable assertXPath Support

	13 Oracle BPEL Process Manager Performance Tuning
	13.1 About BPEL Process Manager
	13.2 Basic Tuning Considerations
	13.2.1 Tuning Audit Levels
	13.2.1.1 Audit Level
	13.2.1.2 Audit Trail Threshold
	13.2.1.3 Audit Store Policy
	13.2.1.4 Audit Flush ByteThreshold
	13.2.1.5 Audit Flush EventThreshold

	13.2.2 Tuning Database Persistence for BPEL
	13.2.3 Tuning Invoke Messages
	13.2.4 Tuning Processed Requests List
	13.2.5 Tuning XML Document Persistence
	13.2.6 Validating XML
	13.2.7 Tuning Wait Time
	13.2.8 Tuning Instance Key Block Size
	13.2.9 Tuning Automatic Recovery Attempts

	13.3 Advanced Tuning Considerations
	13.3.1 Tuning BPEL Properties Set Inside a Composite
	13.3.2 Identifying Tables Impacted By Instance Data Growth

	14 Oracle Business Activity Monitoring Performance Tuning
	14.1 About Oracle Business Activity Monitoring
	14.2 Basic Tuning Considerations
	14.2.1 BAM Server Tuning
	14.2.1.1 Set the ViewSetSharing and ElementCountLimit Parameters
	14.2.1.2 Enable the Async Servlet

	14.2.2 BAM Dashboard Tuning
	14.2.2.1 Tune the Active Data Retrieval Interval

	14.2.3 BAM Database Tuning
	14.2.4 Internet Browser Tuning
	14.2.4.1 Set iActiveDataScriptsCleanupFactor
	14.2.4.2 Set Browser Cache Settings

	14.2.5 Enterprise Message Source Tuning
	14.2.5.1 Message Batching

	15 Oracle Mediator Performance Tuning
	15.1 About Oracle Mediator
	15.2 Basic Tuning Considerations
	15.2.1 Tuning metricsLevel
	15.2.2 Using Domain-Value Maps
	15.2.3 Deploying Deferred Routing Rules
	15.2.4 Tuning Error and Retry Parameters
	15.2.5 Setting the Audit Level
	15.2.6 Using Resequencer for Messages

	15.3 Tuning Event Delivery Network (EDN)

	16 Oracle Business Process Management Performance Tuning
	16.1 About Oracle Business Process Management
	16.2 Basic Tuning Considerations
	16.2.1 Audit Level
	16.2.2 LargeDocumentThreshold
	16.2.3 Dispatcher System Threads
	16.2.4 Dispatcher Engine Threads
	16.2.5 Dispatcher Invoke Threads

	16.3 Tuning Oracle Workspace and Worklist Applications
	16.4 Tuning Process Analytics
	16.4.1 Process Measurement
	16.4.2 Tuning Process Cubes
	16.4.2.1 Tuning Workload Table Record Proliferation

	17 Oracle Human Workflow Performance Tuning
	17.1 About Oracle Human Workflow
	17.2 Basic Tuning Considerations
	17.2.1 Minimize Client Response Time
	17.2.2 Choose the Right Workflow Service Client
	17.2.3 Narrow Qualifying Tasks Using Precise Filters
	17.2.4 Retrieve Subset of Qualifying Tasks (Paging)
	17.2.5 Fetch Only the Information That Is Needed for a Qualifying Task
	17.2.6 Reduce the Number of Return Query Columns
	17.2.7 Use the Aggregate API for Charting Task Statistics
	17.2.8 Use the Count API Methods for Counting the Number of Tasks
	17.2.9 Create Indexes On Demand for Flexfields
	17.2.10 Use the doesTaskExist Method

	17.3 Improving Server Performance
	17.3.1 Archive Completed Instances Periodically
	17.3.2 Select the Appropriate Workflow Callback Functionality
	17.3.3 Minimize Performance Impacts from Notification
	17.3.4 Deploy Clustered Nodes

	17.4 Completing Workflows Faster
	17.4.1 Use Workflow Reports to Monitor Progress
	17.4.2 Specify Escalation Rules
	17.4.3 Specify User and Group Rules for Automated Assignment
	17.4.4 Use Task Views to Prioritize Work

	17.5 Tuning Identity Provider
	17.6 Tuning the Database

	18 Oracle Adapters Performance Tuning
	18.1 About Oracle Adapters
	18.2 Oracle JCA Adapters for Files/FTP
	18.2.1 Inbound Throttling Best Practices
	18.2.2 Outbound Throttling Best Practices
	18.2.3 Outbound Performance Best Practices

	18.3 Oracle JCA Adapter for Database Tuning
	18.3.1 JCA Adapter Basic Tuning Considerations
	18.3.2 Existence Checking
	18.3.3 Throttling
	18.3.3.1 Formula
	18.3.3.2 RowsPerPollingInterval and MaxTransactionSize
	18.3.3.3 Configuration

	18.4 Oracle Socket Adapter Tuning
	18.5 Oracle SOA JMS Adapter Tuning
	18.5.1 adapter.jms.receive.threads Property

	18.6 Oracle AQ Adapter Tuning
	18.6.1 adapter.aq.dequeue.threads Property

	18.7 Oracle MQ Adapter Tuning

	19 User Messaging Service Performance Tuning
	19.1 About Oracle User Messaging Services
	19.2 Basic Tuning Considerations
	19.2.1 SMPP Driver Performance Tuning
	19.2.2 Email Driver Polling Frequency

	19.3 Database Tuning for Optimal Throughput

	20 Oracle B2B Performance Tuning
	20.1 About Oracle B2B
	20.2 Basic Tuning Considerations
	20.2.1 Tuning Data Storage Configurations for B2B
	20.2.2 Tuning MDS Cache Size
	20.2.3 Tuning Number of Threads
	20.2.4 Tuning the JMS Multiple Out Queues Setting

	21 Oracle Service Bus Performance Tuning
	21.1 About Oracle Service Bus
	21.2 Monitoring Oracle Service Bus
	21.3 Basic Tuning Considerations
	21.3.1 Tuning JVM Memory
	21.3.2 Tuning WebLogic Server for OSB
	21.3.2.1 Domain Mode
	21.3.2.2 WebLogic Server Logging Levels
	21.3.2.3 HTTP Access Logging
	21.3.2.4 JMS Tuning
	21.3.2.5 Connection Backlog Buffering

	21.3.3 Tuning OSB Operational Settings
	21.3.3.1 OSB Tracing
	21.3.3.2 Cache Tuning for Proxy Service Runtime Data
	21.3.3.3 Initialize Router Cache for Proxy Service Runtime Data

	21.4 Advanced Tuning Considerations
	21.4.1 Transport Tuning (Oracle WebLogic Server and Oracle Service Bus)
	21.4.1.1 Polling Interval
	21.4.1.2 Read Limit

	21.4.2 Design Time Considerations for Proxy Applications
	21.4.3 Design Considerations for XQuery Tuning

	22 Oracle Business Intelligence Performance Tuning
	22.1 About Oracle Business Intelligence
	22.2 Oracle BI Server Query Performance Tuning
	22.3 Oracle BI Server Query Cache Performance Tuning
	22.4 Oracle BI Web Client Performance Tuning

	Part V Identity Management Suite Components
	23 Oracle Internet Directory Performance Tuning
	23.1 About Oracle Internet Directory
	23.2 Monitoring Oracle Internet Directory Performance
	23.2.1 Monitoring Performance on UNIX and Windows Systems
	23.2.2 Obtaining Recommendations by Using the Tuning and Sizing Wizard
	23.2.3 Updating Database Statistics by Using oidstats.sql
	23.2.4 Setting Performance-Related Replication Configuration Attributes
	23.2.5 Managing System Configuration Attributes
	23.2.6 Setting Garbage Collection Configuration Attributes
	23.2.6.1 Modifying Changelog Purging Attributes by Using ldapmodify
	23.2.6.2 Modifying Changelog Purging in Oracle Directory Services Manager

	23.3 Basic Tuning Considerations
	23.3.1 Database Parameters
	23.3.2 LDAP Server Attributes
	23.3.3 Database Statistics
	23.3.4 Low-Priority Tuning Considerations
	23.3.4.1 Controlling the Number of Entries to be Returned by a Search
	23.3.4.2 Enabling the Group Cache
	23.3.4.3 Timeout for Write Operations

	23.4 Advanced Tuning Considerations
	23.4.1 Replication or Oracle Directory Integration Platform
	23.4.2 Replication Server Configuration
	23.4.3 Garbage Collection Configuration
	23.4.4 Oracle Internet Directory with Cluster Configuration
	23.4.5 Password Policies and Verifier Profiles
	23.4.6 Server Entry Cache
	23.4.6.1 Benefits of Using the Entry Cache
	23.4.6.2 Values for Configuring the Entry Cache

	23.4.7 Result Set Cache
	23.4.7.1 When to Use Result Set Cache
	23.4.7.2 Benefits of Using Result Set Cache
	23.4.7.3 Configuring Result Set Cache

	23.4.8 Tuning Security Event Tracking
	23.4.9 Optimizing Searches
	23.4.9.1 Optimizing Searches for Large Group Entries
	23.4.9.1.1 Entry Cache Enabled Configuration
	23.4.9.1.2 Entry Cache Disabled Configuration.

	23.4.9.2 Optimizing Searches for Skewed Attributes
	23.4.9.3 Optimizing Performance of Complex Search Filters

	23.5 Specific Use Cases That Require Additional Tuning
	23.5.1 Bulk Load Operations
	23.5.2 Bulk Delete Operations
	23.5.3 High LDAP Write Operations Load
	23.5.4 Sparc T4 Hardware Tuning

	24 Oracle Unified Directory Performance Tuning
	24.1 About Oracle Unified Directory
	24.2 Performance Considerations
	24.3 Monitoring Unified Directory Performance
	24.3.1 Examining Log Files
	24.3.2 Monitoring the Server With LDAP
	24.3.3 Monitoring the Server With SNMP

	24.4 Basic Tuning Considerations
	24.4.1 Tuning Java Virtual Machine Settings
	24.4.2 Tuning the Server Configuration
	24.4.2.1 Oracle Berkeley DB Java Edition Tuning Parameters
	24.4.2.2 Core Server Tuning Parameters

	24.5 Advanced Tuning Recommendations

	25 Oracle Virtual Directory Performance Tuning
	25.1 About Oracle Virtual Directory
	25.2 Basic Tuning Considerations
	25.2.1 Tuning the Ping Interval
	25.2.2 Tuning Worker Threads
	25.2.3 Tuning Work Queue Capacity
	25.2.4 Tuning the LDAP Connection Pool
	25.2.5 Tuning Heap Size

	25.3 Advanced Tuning Considerations
	25.3.1 Tuning Database Adapters
	25.3.2 Tuning Join Adapters
	25.3.3 Tuning Filters
	25.3.4 Tuning Load Balancer Local Store Adapter
	25.3.5 Tuning the Cache Plug-In
	25.3.5.1 Cache Hit Logic
	25.3.5.2 Cache Plug-in Memory Management

	25.3.6 Tuning LDAP Listener
	25.3.7 Tuning the Server for OVD

	26 Oracle Identity Federation Performance Tuning
	26.1 About Oracle Identity Federation
	26.2 Basic Tuning Considerations
	26.2.1 Tuning Database Parameters for Identity Federation
	26.2.1.1 Data Sources
	26.2.1.2 RDBMS Session Cache
	26.2.1.3 RDBMS Compression

	26.2.2 Tuning the Oracle HTTP Server

	26.3 Advanced Tuning Considerations
	26.3.1 Tuning the LDAP Servers
	26.3.1.1 Connection Pool Settings
	26.3.1.2 Connection Settings
	26.3.1.3 Federation Data Store Settings

	26.3.2 Tuning SAML Protocol
	26.3.2.1 SOAP Connections
	26.3.2.2 XML Digital Signatures
	26.3.2.3 POST and Artifact Single Sign-On Profiles

	27 Oracle Fusion Middleware Security Performance Tuning
	27.1 About Security Services
	27.2 Basic Tuning Considerations
	27.3 Tuning Oracle Platform Security Services
	27.3.1 JVM Tuning Parameters
	27.3.2 JDK Tuning Parameters
	27.3.3 LDAP Tuning Parameters
	27.3.4 Authentication Tuning Parameters
	27.3.5 Authorization Tuning Properties
	27.3.6 OPSS PDP Service Tuning Parameters

	27.4 Oracle Web Services Security Tuning
	27.4.1 Choosing the Right Policy
	27.4.2 Policy Manager
	27.4.3 Configuring the Log Assertion to Record SOAP Messages
	27.4.4 Configuring Connection Pooling
	27.4.5 Monitoring the Performance of Web Services

	Part VI Oracle WebCenter Components
	28 Oracle WebCenter Portal Performance Tuning
	28.1 About Oracle WebCenter Portal
	28.2 Basic Tuning Considerations
	28.2.1 Setting System Limit
	28.2.2 Setting JDBC Data Source
	28.2.3 Setting JRockit Virtual Machine (JVM) Arguments
	28.2.4 Using Content Compression to Reduce Downloads

	28.3 Tuning WebCenter Portal Application Configuration
	28.3.1 Setting Session Timeout for a Spaces Application
	28.3.2 Setting HTTP Session Timeout for a Framework Application
	28.3.3 Setting JSP Page Timeout
	28.3.4 Setting ADF Client State Token
	28.3.5 Setting ADF View State Compression
	28.3.6 Setting MDS Cache Size and Purge Rate
	28.3.7 Configuring Concurrency Management

	28.4 Tuning Back-End Component Configuration
	28.4.1 Tuning Performance of the Announcements Service
	28.4.2 Tuning Performance of the Discussions Service
	28.4.3 Tuning Performance of the Instant Messaging and Presence (IMP) Service
	28.4.4 Tuning Performance of the Mail Service
	28.4.5 Tuning Performance of the Personal Events Service
	28.4.6 Tuning Performance of the RSS News Feed Service
	28.4.7 Tuning Performance of the Search Service
	28.4.8 Tuning Policy Store Parameters

	28.5 Tuning Identity Store Configuration
	28.5.1 Tuning the Identity Store when Using SSL
	28.5.2 Tuning Performance when Using OVD
	28.5.3 Tuning Performance when Using Active Directory

	28.6 Tuning Portlet Configuration
	28.6.1 Tuning Performance of the Portlet Service
	28.6.2 Configuring Portlet Cache Size
	28.6.3 Enabling Java Object Cache for WSRP Producers
	28.6.4 Suppressing Optimistic Rendering for WSRP Portlets
	28.6.5 Tuning Performance of Oracle PDK-Java Producers
	28.6.6 Setting Portlet Container Runtime Options
	28.6.7 Excluding Request Attributes for Portlets
	28.6.8 Setting WSRP Attribute for Portet-served Resources
	28.6.9 Setting WSRP Attribute for Resources Not Served by the Portlet
	28.6.10 Configuring Portlet Timeout
	28.6.11 Tuning Performance of OmniPortlet

	Part VII Capacity Planning, Scalability, and Availability
	29 Capacity Planning
	29.1 About Capacity Planning for Oracle Fusion Middleware
	29.1.1 Capacity Planning Factors to Consider

	29.2 Determining Performance Goals and Objectives
	29.3 Measuring Your Performance Metrics
	29.4 Identifying Bottlenecks in Your System
	29.4.1 Using Clustered Configurations
	29.4.2 Using Connection Pooling
	29.4.3 Setting the Max HeapSize on JVM
	29.4.4 Increasing Memory or CPU
	29.4.5 Segregation of Network Traffic
	29.4.6 Segregation of Processes and Hardware Interrupt Handlers

	29.5 Implementing a Capacity Management Plan
	29.5.1 Hardware Configuration Requirements
	29.5.1.1 CPU Requirements
	29.5.1.2 Memory Requirements

	29.5.2 JVM Requirements
	29.5.3 Managed Servers
	29.5.4 Database Configuration

	30 Using Clusters and High Availability Features
	30.1 About Clusters and High Availability Features
	30.2 Using Clusters with Oracle Fusion Middleware
	30.3 Using High Availability Features with Oracle Fusion Middleware

