
man pages section 3: Extended Library
Functions, Volume 1

Part No: E29036
October 2012

Copyright © 2012, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions
d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est
interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que
prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes
d’erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel
ou l’utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est
destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel
dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures
nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés
par l’utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à
d’autres propriétaires qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des
marques déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro
Devices. UNIX est une marque déposée d’The Open Group.

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services
émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En
aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l’accès à
des contenus, produits ou services tiers, ou à leur utilisation.

130304@25097

Contents

Preface ...9

Extended Library Functions, Volume 1 .. 13
auto_ef(3EXT) ... 14
config_admin(3CFGADM) ... 17
cpc(3CPC) .. 25
cpc_access(3CPC) ... 27
cpc_bind_curlwp(3CPC) .. 28
cpc_bind_event(3CPC) .. 37
cpc_buf_create(3CPC) .. 44
cpc_count_usr_events(3CPC) .. 47
cpc_enable(3CPC) ... 49
cpc_event(3CPC) ... 51
cpc_event_diff(3CPC) .. 53
cpc_getcpuver(3CPC) ... 55
cpc_npic(3CPC) ... 57
cpc_open(3CPC) ... 60
cpc_pctx_bind_event(3CPC) .. 61
cpc_set_create(3CPC) .. 63
cpc_seterrfn(3CPC) ... 66
cpc_seterrhndlr(3CPC) .. 68
cpc_shared_open(3CPC) .. 70
cpc_strtoevent(3CPC) .. 72
cpc_version(3CPC) ... 75
crypt(3EXT) .. 76
ct_ctl_adopt(3CONTRACT) .. 78
ct_dev_status_get_dev_state(3CONTRACT) .. 80
ct_dev_tmpl_set_aset(3CONTRACT) ... 82

3

ct_event_read(3CONTRACT) ... 85
ct_pr_event_get_pid(3CONTRACT) ... 88
ct_pr_status_get_param(3CONTRACT) .. 91
ct_pr_tmpl_set_transfer(3CONTRACT) .. 94
ct_status_read(3CONTRACT) ... 97
ct_tmpl_activate(3CONTRACT) ... 100
dat_cno_create(3DAT) .. 102
dat_cno_free(3DAT) .. 104
dat_cno_modify_agent(3DAT) .. 105
dat_cno_query(3DAT) .. 106
dat_cno_wait(3DAT) .. 107
dat_cr_accept(3DAT) .. 109
dat_cr_handoff(3DAT) .. 111
dat_cr_query(3DAT) .. 112
dat_cr_reject(3DAT) .. 114
dat_ep_connect(3DAT) .. 115
dat_ep_create(3DAT) .. 119
dat_ep_create_with_srq(3DAT) ... 123
dat_ep_disconnect(3DAT) .. 128
dat_ep_dup_connect(3DAT) .. 130
dat_ep_free(3DAT) ... 133
dat_ep_get_status(3DAT) .. 135
dat_ep_modify(3DAT) .. 137
dat_ep_post_rdma_read(3DAT) .. 142
dat_ep_post_rdma_write(3DAT) ... 145
dat_ep_post_recv(3DAT) .. 148
dat_ep_post_send(3DAT) .. 151
dat_ep_query(3DAT) .. 154
dat_ep_recv_query(3DAT) .. 156
dat_ep_reset(3DAT) .. 159
dat_ep_set_watermark(3DAT) .. 160
dat_evd_clear_unwaitable(3DAT) ... 162
dat_evd_dequeue(3DAT) .. 163
dat_evd_disable(3DAT) .. 166
dat_evd_enable(3DAT) .. 167
dat_evd_free(3DAT) .. 168

Contents

man pages section 3: Extended Library Functions, Volume 1 • October 20124

dat_evd_modify_cno(3DAT) .. 169
dat_evd_post_se(3DAT) .. 171
dat_evd_query(3DAT) .. 173
dat_evd_resize(3DAT) .. 174
dat_evd_set_unwaitable(3DAT) ... 175
dat_evd_wait(3DAT) .. 176
dat_get_consumer_context(3DAT) ... 180
dat_get_handle_type(3DAT) .. 181
dat_ia_close(3DAT) .. 182
dat_ia_open(3DAT) ... 185
dat_ia_query(3DAT) .. 188
dat_lmr_create(3DAT) .. 194
dat_lmr_free(3DAT) .. 198
dat_lmr_query(3DAT) .. 199
dat_lmr_sync_rdma_read(3DAT) ... 200
dat_lmr_sync_rdma_write(3DAT) ... 202
dat_provider_fini(3DAT) .. 204
dat_provider_init(3DAT) .. 205
dat_psp_create(3DAT) .. 207
dat_psp_create_any(3DAT) .. 211
dat_psp_free(3DAT) .. 213
dat_psp_query(3DAT) .. 215
dat_pz_create(3DAT) .. 216
dat_pz_free(3DAT) ... 217
dat_pz_query(3DAT) .. 218
dat_registry_add_provider(3DAT) ... 219
dat_registry_list_providers(3DAT) ... 220
dat_registry_remove_provider(3DAT) ... 222
dat_rmr_bind(3DAT) .. 223
dat_rmr_create(3DAT) .. 227
dat_rmr_free(3DAT) .. 228
dat_rmr_query(3DAT) .. 229
dat_rsp_create(3DAT) .. 230
dat_rsp_free(3DAT) .. 232
dat_rsp_query(3DAT) .. 234
dat_set_consumer_context(3DAT) ... 235

Contents

5

dat_srq_create(3DAT) .. 236
dat_srq_free(3DAT) .. 239
dat_srq_post_recv(3DAT) .. 240
dat_srq_query(3DAT) .. 243
dat_srq_resize(3DAT) .. 245
dat_srq_set_lw(3DAT) .. 247
dat_strerror(3DAT) .. 249
demangle(3EXT) ... 250
devid_get(3DEVID) .. 251
di_binding_name(3DEVINFO) .. 255
di_child_node(3DEVINFO) .. 257
di_devfs_path(3DEVINFO) .. 259
di_devlink_dup(3DEVINFO) .. 261
di_devlink_init(3DEVINFO) .. 262
di_devlink_path(3DEVINFO) .. 264
di_devlink_walk(3DEVINFO) .. 265
di_init(3DEVINFO) .. 267
di_link_next_by_node(3DEVINFO) ... 270
di_link_spectype(3DEVINFO) .. 272
di_lnode_name(3DEVINFO) .. 273
di_lnode_next(3DEVINFO) .. 274
di_minor_devt(3DEVINFO) .. 275
di_minor_next(3DEVINFO) .. 276
di_node_private_set(3DEVINFO) ... 277
di_path_bus_addr(3DEVINFO) .. 279
di_path_client_next_path(3DEVINFO) ... 281
di_path_prop_bytes(3DEVINFO) ... 283
di_path_prop_lookup_bytes(3DEVINFO) ... 285
di_path_prop_next(3DEVINFO) ... 287
di_prom_init(3DEVINFO) .. 288
di_prom_prop_data(3DEVINFO) ... 289
di_prom_prop_lookup_bytes(3DEVINFO) ... 291
di_prop_bytes(3DEVINFO) .. 293
di_prop_lookup_bytes(3DEVINFO) ... 295
di_prop_next(3DEVINFO) .. 297
di_walk_link(3DEVINFO) .. 298

Contents

man pages section 3: Extended Library Functions, Volume 1 • October 20126

di_walk_lnode(3DEVINFO) .. 299
di_walk_minor(3DEVINFO) .. 300
di_walk_node(3DEVINFO) .. 302
ea_error(3EXACCT) ... 303
ea_open(3EXACCT) ... 304
ea_pack_object(3EXACCT) .. 306
ea_set_item(3EXACCT) .. 311
ecb_crypt(3EXT) ... 314
efi_alloc_and_init(3EXT) .. 316
elf32_checksum(3ELF) .. 318
elf32_fsize(3ELF) .. 319
elf32_getehdr(3ELF) .. 320
elf32_getphdr(3ELF) .. 322
elf32_getshdr(3ELF) .. 324
elf32_xlatetof(3ELF) .. 326
elf(3ELF) ... 328
elf_begin(3ELF) .. 334
elf_cntl(3ELF) .. 339
elf_errmsg(3ELF) .. 341
elf_fill(3ELF) .. 342
elf_flagdata(3ELF) .. 343
elf_getarhdr(3ELF) .. 345
elf_getarsym(3ELF) .. 347
elf_getbase(3ELF) .. 348
elf_getdata(3ELF) .. 349
elf_getident(3ELF) .. 354
elf_getscn(3ELF) .. 357
elf_hash(3ELF) .. 359
elf_kind(3ELF) .. 360
elf_rawfile(3ELF) .. 361
elf_strptr(3ELF) .. 362
elf_update(3ELF) .. 363
elf_version(3ELF) .. 367
FCOE_CreatePort(3FCOE) .. 368
FCOE_DeletePort(3FCOE) .. 370
FCOE_GetPortList(3FCOE) .. 371

Contents

7

fmev_shdl_init(3FM) ... 372
fstyp_get_attr(3FSTYP) .. 383
fstyp_ident(3FSTYP) ... 385
fstyp_init(3FSTYP) ... 386
fstyp_mod_init(3FSTYP) .. 387
fstyp_strerror(3FSTYP) .. 389
gelf(3ELF) ... 391
generic_events(3CPC) .. 397
ld_support(3ext) .. 411
md4(3EXT) .. 412
md5(3EXT) .. 414
nlist(3ELF) ... 416
NOTE(3EXT) .. 417
pctx_capture(3CPC) ... 419
pctx_set_events(3CPC) .. 421
queue(3EXT) .. 424
read_vtoc(3EXT) ... 438
rtld_audit(3EXT) ... 440
rtld_db(3EXT) ... 441
sendfile(3EXT) ... 443
sendfilev(3EXT) ... 447
sha1(3EXT) .. 450
sha2(3EXT) .. 452
stdarg(3EXT) .. 455
SUNW_C_GetMechSession(3EXT) .. 457
tsalarm_get(3EXT) ... 459
v12n(3EXT) .. 462
varargs(3EXT) ... 465

Contents

man pages section 3: Extended Library Functions, Volume 1 • October 20128

Preface

Both novice users and those familar with the SunOS operating system can use online man pages
to obtain information about the system and its features. A man page is intended to answer
concisely the question “What does it do?” The man pages in general comprise a reference
manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the information it
references:

■ Section 1 describes, in alphabetical order, commands available with the operating system.
■ Section 1M describes, in alphabetical order, commands that are used chiefly for system

maintenance and administration purposes.
■ Section 2 describes all of the system calls. Most of these calls have one or more error returns.

An error condition is indicated by an otherwise impossible returned value.
■ Section 3 describes functions found in various libraries, other than those functions that

directly invoke UNIX system primitives, which are described in Section 2.
■ Section 4 outlines the formats of various files. The C structure declarations for the file

formats are given where applicable.
■ Section 5 contains miscellaneous documentation such as character-set tables.
■ Section 7 describes various special files that refer to specific hardware peripherals and device

drivers. STREAMS software drivers, modules and the STREAMS-generic set of system calls
are also described.

■ Section 9E describes the DDI (Device Driver Interface)/DKI (Driver/Kernel Interface),
DDI-only, and DKI-only entry-point routines a developer can include in a device driver.

■ Section 9F describes the kernel functions available for use by device drivers.
■ Section 9S describes the data structures used by drivers to share information between the

driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section generally
follow this order, but include only needed headings. For example, if there are no bugs to report,

9

there is no BUGS section. See the intro pages for more information and detail about each
section, and man(1) for more information about man pages in general.

NAME This section gives the names of the commands or functions
documented, followed by a brief description of what they
do.

SYNOPSIS This section shows the syntax of commands or functions.
When a command or file does not exist in the standard
path, its full path name is shown. Options and arguments
are alphabetized, with single letter arguments first, and
options with arguments next, unless a different argument
order is required.

The following special characters are used in this section:

[] Brackets. The option or argument enclosed in
these brackets is optional. If the brackets are
omitted, the argument must be specified.

. . . Ellipses. Several values can be provided for the
previous argument, or the previous argument
can be specified multiple times, for example,
“filename . . .” .

| Separator. Only one of the arguments
separated by this character can be specified at a
time.

{ } Braces. The options and/or arguments
enclosed within braces are interdependent,
such that everything enclosed must be treated
as a unit.

PROTOCOL This section occurs only in subsection 3R to indicate the
protocol description file.

DESCRIPTION This section defines the functionality and behavior of the
service. Thus it describes concisely what the command
does. It does not discuss OPTIONS or cite EXAMPLES.
Interactive commands, subcommands, requests, macros,
and functions are described under USAGE.

IOCTL This section appears on pages in Section 7 only. Only the
device class that supplies appropriate parameters to the
ioctl(2) system call is called ioctl and generates its own
heading. ioctl calls for a specific device are listed
alphabetically (on the man page for that specific device).

Preface

man pages section 3: Extended Library Functions, Volume 1 • October 201210

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1man-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2ioctl-2

ioctl calls are used for a particular class of devices all of
which have an io ending, such as mtio(7I).

OPTIONS This section lists the command options with a concise
summary of what each option does. The options are listed
literally and in the order they appear in the SYNOPSIS
section. Possible arguments to options are discussed under
the option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and describes
how they affect the actions of the command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

RETURN VALUES If the man page documents functions that return values,
this section lists these values and describes the conditions
under which they are returned. If a function can return
only constant values, such as 0 or –1, these values are listed
in tagged paragraphs. Otherwise, a single paragraph
describes the return values of each function. Functions
declared void do not return values, so they are not
discussed in RETURN VALUES.

ERRORS On failure, most functions place an error code in the global
variable errno indicating why they failed. This section lists
alphabetically all error codes a function can generate and
describes the conditions that cause each error. When more
than one condition can cause the same error, each
condition is described in a separate paragraph under the
error code.

USAGE This section lists special rules, features, and commands
that require in-depth explanations. The subsections listed
here are used to explain built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of how to use a
command or function. Wherever possible a complete

Preface

11

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7mtio-7i

example including command-line entry and machine
response is shown. Whenever an example is given, the
prompt is shown as example%, or if the user must be
superuser, example#. Examples are followed by
explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the
SYNOPSIS, DESCRIPTION, OPTIONS, and USAGE
sections.

ENVIRONMENT VARIABLES This section lists any environment variables that the
command or function affects, followed by a brief
description of the effect.

EXIT STATUS This section lists the values the command returns to the
calling program or shell and the conditions that cause these
values to be returned. Usually, zero is returned for
successful completion, and values other than zero for
various error conditions.

FILES This section lists all file names referred to by the man page,
files of interest, and files created or required by commands.
Each is followed by a descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands, utilities,
and device drivers by defining the attribute type and its
corresponding value. See attributes(5) for more
information.

SEE ALSO This section lists references to other man pages, in-house
documentation, and outside publications.

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions which
could seriously affect your working conditions. This is not
a list of diagnostics.

NOTES This section lists additional information that does not
belong anywhere else on the page. It takes the form of an
aside to the user, covering points of special interest.
Critical information is never covered here.

BUGS This section describes known bugs and, wherever possible,
suggests workarounds.

Preface

man pages section 3: Extended Library Functions, Volume 1 • October 201212

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

Extended Library Functions, Volume 1

R E F E R E N C E

13

auto_ef, auto_ef_file, auto_ef_str, auto_ef_free, auto_ef_get_encoding, auto_ef_get_score –
auto encoding finder functions

cc [flag ...] file... -lauto_ef [library...]

#include <auto_ef.h>

size_t auto_ef_file(auto_ef_t **info, const char *filename, int flags);

size_t auto_ef_str(auto_ef_t **info, const char *buffer, size_t bufsize,
int flags);

void auto_ef_free(auto_ef_t *info);

char *auto_ef_get_encoding(auto_ef_t info);

double auto_ef_get_score(auto_ef_t info);

Auto encoding finder provides functions that find the encoding of given file or string.

The auto_ef_file() function examines text in the file specified with filename and returns
information on possible encodings.

The info argument is a pointer to a pointer to an auto_ef_t, the location at which the pointer
to the auto_ef_t array is stored upon return.

The flags argument specifies the level of examination. Currently only one set of flags, exclusive
each other, is available: AE_LEVEL_0, AE_LEVEL_1, AE_LEVEL_2, and AE_LEVEL_3. The
AE_LEVEL_0 level is fastest but the result can be less accurate. The AE_LEVEL_3 level produces
best result but can be slow. If the flags argument is unspecified, the default is AE_LEVEL_0.
When another flag or set of flags are defined in the future, use the inclusive-bitwise OR
operation to specify multiple flags.

Information about encodings are stored in data typeauto_ef_t in the order of possibility with
the most possible encoding stored first. To examine the information, use the
auto_ef_get_encoding() and auto_ef_get_score() access functions. For a list of
encodings with which auto_ef_file() can examine text, see auto_ef(1).

If auto_ef_file() cannot determine the encoding of text, it returns 0 and stores NULL at the
location pointed by info.

The auto_ef_get_encoding() function returns the name of the encoding. The returned
string is vaild until until the location pointed to by info is freed with auto_ef_free().
Applications should not use free(3C) to free the pointer returned by
auto_ef_get_encoding().

The auto_ef_get_score() function returns the score of this encoding in the range between
0.0 and 1.0.

The auto_ef_str() function is identical to auto_ef_file(), except that it examines text in
the buffer specified by buffer with a maximum size of bufsize bytes, instead of text in a file.

Name

Synopsis

Description

auto_ef(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 22 Sep 200314

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1auto-ef-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afree-3c

The auto_ef_free() function frees the area allocated by auto_ef_file() or by
auto_ef_str(), taking as its argument the pointer stored at the location pointed to by info.

Upon successful completion, the auto_ef_file() and auto_ef_str() functions return the
number of possible encodings for which information is stored. Otherwise, −1 is returned.

The auto_ef_get_encoding() function returns the string that stores the encoding name.

the auto_ef_get_score() function returns the score value for encoding the name with the
examined text data.

The auto_ef_file() and auto_ef_str() will fail if:

EACCES Search permission is denied on a component of the path prefix, the file exists and
the permissions specified by mode are denied, the file does not exist and write
permission is denied for the parent directory of the file to be created, or
libauto_ef cannot find the internal hashtable.

EINTR A signal was caught during the execution.

ENOMEM Failed to allocate area to store the result.

EMFILE Too many files descriptors are currently open in the calling process.

ENFILE Too many files are currently open in the system.

EXAMPLE 1 Specify the array index to examine stored information.

Since auto_ef_file() stores the array whose elements hold information on each possible
encoding, the following example specifies the array index to examine the stored information.

#include <auto_ef.h>

auto_ef_t *array_info;

size_t number;

char *encoding;

number = auto_ef_file(&array_info, filename, flags);

encoding = auto_ef_get_encoding(array_info[0]);

auto_ef_free(array_info);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Return Values

Errors

Examples

Attributes

auto_ef(3EXT)

Extended Library Functions, Volume 1 15

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

auto_ef(1), libauto_ef(3LIB), attributes(5)See Also

auto_ef(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 22 Sep 200316

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1auto-ef-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibauto-ef-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

config_admin, config_change_state, config_private_func, config_test, config_stat, config_list,
config_list_ext, config_ap_id_cmp, config_unload_libs, config_strerror – configuration
administration interface

cc [flag...] file... -lcfgadm [library...]

#include <config_admin.h>

#include <sys/param.h>

cfga_err_t config_change_state(cfga_cmd_t state_change_cmd,
int num_ap_ids, char * const *ap_ids, const char *options,
struct cfga_confirm *confp, struct cfga_msg *msgp,
char **errstring, cfga_flags_t flags);

cfga_err_t config_private_func(const char *function, int num_ap_ids,
char * const *ap_ids, const char *options,
struct cfga_confirm *confp, msgp, char **errstring,
cfga_flags_t flags);

cfga_err_t config_test(int num_ap_ids, char * const *ap_ids,
const char *options, struct cfga_msg *msgp,
char **errstring, cfga_flags_t flags);

cfga_err_t config_list_ext(int num_ap_ids, char * const *ap_ids,
struct cfga_list_data **ap_id_list, int *nlist,
const char *options, const char *listops,
char **errstring, cfga_flags_t flags);

int config_ap_id_cmp(const cfga_ap_id_t ap_id1,
const cfga_ap_id_t ap_id2);

void config_unload_libs(void);

const char *config_strerror(cfga_err_t cfgerrnum);

The following interfaces have been deprecated and their use is strongly discouraged:

cfga_err_t config_stat(int num_ap_ids, char * const *ap_ids,
struct cfga_stat_data *buf, const char *options, char **errstring);

cfga_err_t config_list(struct cfga_stat_data **ap_id_list,
int *nlist, const char *options, char **errstring);

The config_admin library is a generic interface that is used for dynamic configuration, (DR).
Each piece of hardware that supports DR must supply a hardware-specific plugin library that
contains the entry points listed in this subsection. The generic library will locate and link to
the appropriate library to effect DR operations. The interfaces specified in this subsection are
really “hidden” from users of the generic libraries. It is, however, necessary that writers of the
hardware-specific plug in libraries know what these interfaces are.

cfga_err_t cfga_change_state(cfga_cmd_t state_change_cmd,
const char *ap_id, const char *options, struct cfga_confirm *confp,
struct cfga_msg *msgp, char **errstring, cfga_flags_t flags);

Name

Synopsis

Deprecated Interfaces

Hardware
Dependent Library

Synopsis

config_admin(3CFGADM)

Extended Library Functions, Volume 1 17

cfga_err_t cfga_private_func(const char *function,
const char *ap_id, const char *options, struct cfga_confirm *confp,
struct cfga_msg *msgp, char **errstring, cfga_flags_t flags);

cfga_err_t cfga_test(const char *ap_id, const char *options,
struct cfga_msg *msgp, char **errstring, cfga_flags_t flags);

cfga_err_t cfga_list_ext(const char *ap_id,
struct cfga_list_data **ap_id_list, nlist, const char *options,
const char *listopts, char **errstring, cfga_flags_t flags);

cfga_err_t cfga_help(struct cfga_msg *msgp, const char *options,
cfga_flags_t flags);

int cfga_ap_id_cmp(const cfga_ap_id_t ap_id1, const cfga_ap_id_t ap_id2);

The following interfaces have been deprecated and their use is strongly discouraged:

cfga_err_t cfga_stat(const char *ap_id, struct cfga_stat_data *buf,
const char *options, char **errstring);

cfga_err_t cfga_list(const char *ap_id,
struct cfga_stat_data **ap_id_list, int *nlist, const char *options,
char **errstring);

The config_*() functions provide a hardware independent interface to hardware-specific
system configuration administration functions. The cfga_*() functions are provided by
hardware-specific libraries that are dynamically loaded to handle configuration
administration functions in a hardware-specific manner.

The libcfgadm library is used to provide the services of the cfgadm(1M) command. The
hardware-specific libraries are located in /usr/platform/${machine}/lib/cfgadm,
/usr/platform/${arch}/lib/cfgadm, and /usr/lib/cfgadm. The hardware-specific library
names are derived from the driver name or from class names in device tree nodes that identify
attachment points.

The config_change_state() function performs operations that change the state of the
system configuration. The state_change_cmd argument can be one of the following:
CFGA_CMD_INSERT, CFGA_CMD_REMOVE, CFGA_CMD_DISCONNECT, CFGA_CMD_CONNECT,
CFGA_CMD_CONFIGURE, or CFGA_CMD_UNCONFIGURE. The state_change_cmd CFGA_CMD_INSERT

is used to prepare for manual insertion or to activate automatic hardware insertion of an
occupant. The state_change_cmd CFGA_CMD_REMOVE is used to prepare for manual removal or
activate automatic hardware removal of an occupant. The state_change_cmd
CFGA_CMD_DISCONNECT is used to disable normal communication to or from an occupant in a
receptacle. The state_change_cmd CFGA_CMD_CONNECT is used to enable communication to or
from an occupant in a receptacle. The state_change_cmd CFGA_CMD_CONFIGURE is used to
bring the hardware resources contained on, or attached to, an occupant into the realm of
Solaris, allowing use of the occupant's hardware resources by the system. The
state_change_cmd CFGA_CMD_UNCONFIGURE is used to remove the hardware resources

Deprecated Interfaces

Description

config_admin(3CFGADM)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 1 Sep 200418

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mcfgadm-1m

contained on, or attached to, an occupant from the realm of Solaris, disallowing further use of
the occupant's hardware resources by the system.

The flags argument may contain one or both of the defined flags, CFGA_FLAG_FORCE and
CFGA_FLAG_VERBOSE. If the CFGA_FLAG_FORCE flag is asserted certain safety checks will be
overridden. For example, this may not allow an occupant in the failed condition to be
configured, but might allow an occupant in the failing condition to be configured. Acceptance
of a force is hardware dependent. If the CFGA_FLAG_VERBOSE flag is asserted hardware-specific
details relating to the operation are output utilizing the cfga_msg mechanism.

The config_private_func() function invokes private hardware-specific functions.

The config_test() function is used to initiate testing of the specified attachment point.

The num_ap_ids argument specifies the number of ap_ids in the ap_ids array. The ap_ids
argument points to an array of ap_ids.

The ap_id argument points to a single ap_id.

The function and options strings conform to the getsubopt(3C) syntax convention and are
used to supply hardware-specific function or option information. No generic
hardware-independent functions or options are defined.

The cfga_confirm structure referenced by confp provides a call-back interface to get
permission to proceed should the requested operation require, for example, a noticeable
service interruption. The cfga_confirm structure includes the following members:

int (*confirm)(void *appdata_ptr, const char *message);

void *appdata_ptr;

The confirm() function is called with two arguments: the generic pointer appdata_ptr and
the message detailing what requires confirmation. The generic pointer appdata_ptr is set to
the value passed in in the cfga_confirm structure member appdata_ptr and can be used in a
graphical user interface to relate the confirm function call to the config_*() call. The
confirm() function should return 1 to allow the operation to proceed and 0 otherwise.

The cfga_msg structure referenced by msgp provides a call-back interface to output messages
from a hardware-specific library. In the presence of the CFGA_FLAG_VERBOSE flag, these
messages can be informational; otherwise they are restricted to error messages. The cfga_msg
structure includes the following members:

int (*message_routine)(void *appdata_ptr, const char *message);

void *appdata_ptr;

The message_routine() function is called with two arguments: the generic pointer
appdata_ptr and the message. The generic pointer appdata_ptr is set to the value passed in in
the cfga_confirm structure member appdata_ptr and can be used in a graphical user
interface to relate the message_routine() function call to the config_*() call. The messages
must be in the native language specified by the LC_MESSAGES locale category; see
setlocale(3C).

config_admin(3CFGADM)

Extended Library Functions, Volume 1 19

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agetsubopt-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asetlocale-3c

For some generic errors a hardware-specific error message can be returned. The storage for
the error message string, including the terminating null character, is allocated by the config_*
functions using malloc(3C) and a pointer to this storage returned through errstring. If
errstring is NULL no error message will be generated or returned. If errstring is not NULL and no
error message is generated, the pointer referenced by errstring will be set to NULL. It is the
responsibility of the function calling config_*() to deallocate the returned storage using
free(3C). The error messages must be in the native language specified by the LC_MESSAGES
locale category; see setlocale(3C).

The config_list_ext() function provides the listing interface. When supplied with a list of
ap_ids through the first two arguments, it returns an array of cfga_list_data_t structures
for each attachment point specified. If the first two arguments are 0 and NULL respectively,
then all attachment points in the device tree will be listed. Additionally, dynamic expansion of
an attachment point to list dynamic attachment points may also be requested by passing the
CFGA_FLAG_LIST_ALL flag through the flags argument. Storage for the returned array of stat
structures is allocated by the config_list_ext() function using malloc(3C). This storage
must be freed by the caller of config_list_ext() by using free(3C).

The cfga_list_data structure includes the following members:

cfga_log_ext_t ap_log_id; /* Attachment point logical id */

cfga_phys_ext_t ap_phys_id; /* Attachment point physical id */

cfga_class_t ap_class; /* Attachment point class */

cfga_stat_t ap_r_state; /* Receptacle state */

cfga_stat_t ap_o_state; /* Occupant state */

cfga_cond_t ap_cond; /* Attachment point condition */

cfga_busy_t ap_busy; /* Busy indicator */

time_t ap_status_time; /* Attachment point last change*/

cfga_info_t ap_info; /* Miscellaneous information */

cfga_type_t ap_type; /* Occupant type */

The types are defined as follows:

typedef char cfga_log_ext_t[CFGA_LOG_EXT_LEN];

typedef char cfga_phys_ext_t[CFGA_PHYS_EXT_LEN];

typedef char cfga_class_t[CFGA_CLASS_LEN];

typedef char cfga_info_t[CFGA_INFO_LEN];

typedef char cfga_type_t[CFGA_TYPE_LEN];

typedef enum cfga_cond_t;

typedef enum cfga_stat_t;

typedef int cfga_busy_t;

typedef int cfga_flags_t;

The listopts argument to config_list_ext() conforms to the getsubopt(3C) syntax and is
used to pass listing sub-options. Currently, only the sub-option class=class_name is
supported. This list option restricts the listing to attachment points of class class_name.

config_admin(3CFGADM)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 1 Sep 200420

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afree-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asetlocale-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afree-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agetsubopt-3c

The listopts argument to cfga_list_ext() is reserved for future use. Hardware-specific
libraries should ignore this argument if it is NULL. If listopts is not NULL and is not supported by
the hardware-specific library, an appropriate error code should be returned.

The ap_log_id and the ap_phys_id members give the hardware-specific logical and physical
names of the attachment point. The ap_busy memberd indicates activity is present that may
result in changes to state or condition. The ap_status_time member provides the time at
which either the ap_r_state, ap_o_state, or ap_cond field of the attachment point last
changed. The ap_info member is available for the hardware-specific code to provide
additional information about the attachment point. The ap_class member contains the
attachment point class (if any) for an attachment point. The ap_class member is filled in by
the generic library. If the ap_log_id and ap_phys_id members are not filled in by the
hardware-specific library, the generic library will fill in these members using a generic format.
The remaining members are the responsibility of the corresponding hardware-tospecific
library.

All string members in the cfga_list_data structure are null-terminated.

The config_stat(), config_list(), cfga_stat(), and cfga_list() functions and the
cfga_stat_data data structure are deprecated interfaces and are provided solely for
backward compatibility. Use of these interfaces is strongly discouraged.

The config_ap_id_cmp function performs a hardware dependent comparison on two ap_ids,
returning an equal to, less than or greater than indication in the manner of strcmp(3C). Each
argument is either a cfga_ap_id_t or can be a null-terminated string. This function can be
used when sorting lists of ap_ids, for example with qsort(3C), or when selecting entries from
the result of a config_list function call.

The config_unload_libs function unlinks all previously loaded hardware-specific libraries.

The config_strerror function can be used to map an error return value to an error message
string. See RETURN VALUES. The returned string should not be overwritten. config_strerror
returns NULL if cfgerrnum is out-of-range.

The cfga_help function can be used request that a hardware-specific library output it's
localized help message.

The config_*() and cfga_*() functions return the following values. Additional error
information may be returned through errstring if the return code is not CFGA_OK. See
DESCRIPTION for details.

CFGA_BUSY The command was not completed due to an element of
the system configuration administration system being
busy.

CFGA_ATTR_INVAL No attachment points with the specified attributes exists

Return Values

config_admin(3CFGADM)

Extended Library Functions, Volume 1 21

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Astrcmp-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aqsort-3c

CFGA_ERROR An error occurred during the processing of the
requested operation. This error code includes validation
of the command arguments by the hardware-specific
code.

CFGA_INSUFFICIENT_CONDITION Operation failed due to attachment point condition.

CFGA_INVAL The system configuration administration operation
requested is not supported on the specified attachment
point.

CFGA_LIB_ERROR A procedural error occurred in the library, including
failure to obtain process resources such as memory and
file descriptors.

CFGA_NACK The command was not completed due to a negative
acknowledgement from the confp->confirm function.

CFGA_NO_LIB A hardware-specific library could not be located using
the supplied ap_id.

CFGA_NOTSUPP System configuration administration is not supported
on the specified attachment point.

CFGA_OK The command completed as requested.

CFGA_OPNOTSUPP System configuration administration operation is not
supported on this attachment point.

CFGA_PRIV The caller does not have the required process privileges.
For example, if configuration administration is
performed through a device driver, the permissions on
the device node would be used to control access.

CFGA_SYSTEM_BUSY The command required a service interruption and was
not completed due to a part of the system that could not
be quiesced.

Many of the errors returned by the system configuration administration functions are
hardware-specific. The strings returned in errstring may include the following:

attachment point ap_id not known

The attachment point detailed in the error message does not exist.

unknown hardware option option foroperation
An unknown option was encountered in the options string.

hardware option option requires a value

An option in the options string should have been of the form option=value.

Errors

config_admin(3CFGADM)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 1 Sep 200422

listing option list_option requires a value

An option in the listopts string should have been of the form option=value.

hardware option option does not require a value

An option in the options string should have been a simple option.

attachment point ap_id is not configured

A config_change_state command to CFGA_CMD_UNCONFIGURE an occupant was made to an
attachment point whose occupant was not in the CFGA_STAT_CONFIGURED state.

attachment point ap_id is not unconfigured

A config_change_state command requiring an unconfigured occupant was made to an
attachment point whose occupant was not in the CFGA_STAT_UNCONFIGURED state.

attachment point ap_id condition not satisfactory

A config_change_state command was made to an attachment point whose condition
prevented the operation.

attachment point ap_id in condition condition cannot be used

A config_change_state operation with force indicated was directed to an attachment point
whose condition fails the hardware dependent test.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/core-os, system/library/platform

MT-Level Safe

cfgadm(1M), devinfo(1M), dlopen(3C), dlsym(3C), free(3C), getsubopt(3C), malloc(3C),
qsort(3C), setlocale(3C), strcmp(3C), libcfgadm(3LIB), attributes(5)

Applications using this library should be aware that the underlying implementation may use
system services which alter the contents of the external variable errno and may use file
descriptor resources.

The following code shows the intended error processing when config_*() returns a value
other than CFGA_OK:

void

emit_error(cfga_err_t cfgerrnum, char *estrp)

{

const char *ep;

ep = config_strerror(cfgerrnum);

if (ep == NULL)

ep = gettext("configuration administration unknown error");
if (estrp != NULL && *estrp != ’\0’) {

(void) fprintf(stderr, "%s: %s\n", ep, estrp);

Attributes

See Also

Notes

config_admin(3CFGADM)

Extended Library Functions, Volume 1 23

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mcfgadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mdevinfo-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Adlsym-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afree-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agetsubopt-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aqsort-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asetlocale-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Astrcmp-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcfgadm-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

} else {

(void) fprintf(stderr, "%s\n", ep);

}

if (estrp != NULL)

free((void *)estrp);

}

Reference should be made to the Hardware Specific Guide for details of System Configuration
Administration support.

config_admin(3CFGADM)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 1 Sep 200424

cpc – hardware performance counters

Modern microprocessors contain hardware performance counters that allow the measurement
of many different hardware events related to CPU behavior, including instruction and data
cache misses as well as various internal states of the processor. The counters can be configured
to count user events, system events, or both. Data from the performance counters can be used
to analyze and tune the behavior of software on a particular type of processor.

Most processors are able to generate an interrupt on counter overflow, allowing the counters
to be used for various forms of profiling.

This manual page describes a set of APIs that allow Solaris applications to use these counters.
Applications can measure their own behavior, the behavior of other applications, or the
behavior of the whole system.

There are two principal models for using these performance counters. Some users of these
statistics want to observe system-wide behavior. Other users want to view the performance
counters as part of the register set exported by each LWP. On a machine performing more than
one activity, these two models are in conflict because the counters represent a critical
hardware resource that cannot simultaneously be both shared and private.

The following configuration interfaces are provided:

cpc_open(3CPC) Check the version the application was compiled with against the
version of the library.

cpc_cciname(3CPC) Return a printable string to describe the performance counters of
the processor.

cpc_npic(3CPC) Return the number of performance counters on the processor.

cpc_cpuref(3CPC) Return a reference to documentation that should be consulted to
understand how to use and interpret data from the performance
counters.

Performance counters can be present in hardware but not acccessible because either some of
the necessary system software components are not available or not installed, or the counters
might be in use by other processes. The cpc_open(3CPC) function determines the accessibility
of the counters and must be invoked before any attempt to program the counters.

Each different type of processor has its own set of events available for measurement. The
cpc_walk_events_all(3CPC) and cpc_walk_events_pic(3CPC) functions allow an
application to determine the names of events supported by the underlying processor. A
collection of generic, platform independent event names are defined by
generic_events(3CPC). Each generic event maps to an underlying hardware event specific to
the underlying processor and any optional attributes. The

Name

Description

Shared Counters or
Private Counters

Configuration
Interfaces

Performance Counter
Access

Finding Events

cpc(3CPC)

Extended Library Functions, Volume 1 25

cpc_walk_generic_events_all(3CPC) and cpc_walk_generic_events_pic(3CPC)
functions allow an application to determine the generic events supported on the underlying
platform.

Some processors have advanced performance counter capabilities that are configured with
attributes. The cpc_walk_attrs(3CPC) function can be used to determine the names of
attributes supported by the underlying processor. The documentation referenced by
cpc_cpuref(3CPC) should be consulted to understand the meaning of a processor's
performance counter attributes.

Each processor on the system possesses its own set of performance counter registers. For a
single process, it is often desirable to maintain the illusion that the counters are an intrinsic
part of that process (whichever processors it runs on), since this allows the events to be
directly attributed to the process without having to make passive all other activity on the
system.

To achieve this behavior, the library associates performance counter context with each LWP in
the process. The context consists of a small amount of kernel memory to hold the counter
values when the LWP is not running, and some simple kernel functions to save and restore
those counter values from and to the hardware registers when the LWP performs a normal
context switch. A process can only observe and manipulate its own copy of the performance
counter control and data registers.

Though applications can be modified to instrument themselves as demonstrated above, it is
frequently useful to be able to examine the behavior of an existing application without
changing the source code. A separate library, libpctx, provides a simple set of interfaces that
use the facilities of proc(4) to control a target process, and together with functions in libcpc,
allow truss-like tools to be constructed to measure the performance counters in other
applications. An example of one such application is cputrack(1).

The functions in libpctx are independent of those in libcpc. These functions manage a
process using an event-loop paradigm — that is, the execution of certain system calls by the
controlled process cause the library to stop the controlled process and execute callback
functions in the context of the controlling process. These handlers can perform various
operations on the target process using APIs in libpctx and libcpc that consume pctx_t
handles.

cputrack(1), cpustat(1M), cpc_bind_curlwp(3CPC), cpc_buf_create(3CPC),
cpc_enable(3CPC), cpc_npic(3CPC), cpc_open(3CPC), cpc_set_create(3CPC),
cpc_seterrhndlr(3CPC), generic_events(3CPC), libcpc(3LIB), pctx_capture(3CPC),
pctx_set_events(3CPC), proc(4)

Using Attributes

Performance Counter
Context

Performance Counters
In Other Processes

See Also

cpc(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 8 Oct 200826

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4proc-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1cputrack-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1cputrack-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mcpustat-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcpc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4proc-4

cpc_access – test access CPU performance counters

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

int cpc_access(void);

Access to CPU performance counters is possible only on systems where the appropriate
hardware exists and is correctly configured. The cpc_access() function must be used to
determine if the hardware exists and is accessible on the platform before any of the interfaces
that use the counters are invoked.

When the hardware is available, access to the per-process counters is always allowed to the
process itself, and allowed to other processes mediated using the existing security mechanisms
of /proc.

Upon successful completion, cpc_access() returns 0. Otherwise, it returns −1 and sets errno
to indicate the error.

By default, two common errno values are decoded and cause the library to print an error
message using its reporting mechanism. See cpc_seterrfn(3CPC) for a description of how
this behavior can be modified.

The cpc_access() function will fail if:

EAGAIN Another process may be sampling system-wide CPU statistics.

ENOSYS CPU performance counters are inaccessible on this machine. This error can occur
when the machine supports CPU performance counters, but some software
components are missing. Check to see that all CPU Performance Counter
packages have been correctly installed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Obsolete

cpc(3CPC), cpc_open(3CPC), cpc_seterrfn(3CPC), libcpc(3LIB), proc(4), attributes(5)

The cpc_access() function exists for binary compatibility only. Source containing this
function will not compile. This function is obsolete and might be removed in a future release.
Applications should use cpc_open(3CPC) instead.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

cpc_access(3CPC)

Extended Library Functions, Volume 1 27

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcpc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4proc-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

cpc_bind_curlwp, cpc_bind_pctx, cpc_bind_cpu, cpc_unbind, cpc_request_preset,
cpc_set_restart – bind request sets to hardware counters

cc [flag...] file... -lcpc [library...]

#include <libcpc.h>

int cpc_bind_curlwp(cpc_t *cpc, cpc_set_t *set, uint_t flags);

int cpc_bind_pctx(cpc_t *cpc, pctx_t *pctx, id_t id, cpc_set_t *set,
uint_t flags);

int cpc_bind_cpu(cpc_t *cpc, processorid_t id, cpc_set_t *set,
uint_t flags);

int cpc_unbind(cpc_t *cpc, cpc_set_t *set);

int cpc_request_preset(cpc_t *cpc, int index, uint64_t preset);

int cpc_set_restart(cpc_t *cpc, cpc_set_t *set);

These functions program the processor's hardware counters according to the requests
contained in the set argument. If these functions are successful, then upon return the physical
counters will have been assigned to count events on behalf of each request in the set, and each
counter will be enabled as configured.

The cpc_bind_curlwp() function binds the set to the calling LWP. If successful, a
performance counter context is associated with the LWP that allows the system to virtualize
the hardware counters to that specific LWP.

By default, the system binds the set to the current LWP only. If the CPC_BIND_LWP_INHERIT
flag is present in the flags argument, however, any subsequent LWPs created by the current
LWP will inherit a copy of the request set. The newly created LWP will have its virtualized
64-bit counters initialized to the preset values specified in set, and the counters will be enabled
and begin counting events on behalf of the new LWP. This automatic inheritance behavior can
be useful when dealing with multithreaded programs to determine aggregate statistics for the
program as a whole.

If the CPC_BIND_LWP_INHERIT flag is specified and any of the requests in the set have the
CPC_OVF_NOTIFY_EMT flag set, the process will immediately dispatch a SIGEMT signal to the
freshly created LWP so that it can preset its counters appropriately on the new LWP. This
initialization condition can be detected using cpc_set_sample(3CPC) and looking at the
counter value for any requests with CPC_OVF_NOTIFY_EMT set. The value of any such counters
will be UINT64_MAX.

The cpc_bind_pctx() function binds the set to the LWP specified by the pctx-id pair, where
pctx refers to a handle returned from libpctx and id is the ID of the desired LWP in the target
process. If successful, a performance counter context is associated with the specified LWP and
the system virtualizes the hardware counters to that specific LWP. The flags argument is
reserved for future use and must always be 0.

Name

Synopsis

Description

cpc_bind_curlwp(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 1 Feb 201128

The cpc_bind_cpu() function binds the set to the specified CPU and measures events
occurring on that CPU regardless of which LWP is running. Only one such binding can be
active on the specified CPU at a time. As long as any application has bound a set to a CPU,
per-LWP counters are unavailable and any attempt to use either cpc_bind_curlwp() or
cpc_bind_pctx() returns EAGAIN.

The purpose of the flags argument is to modify the behavior of cpc_bind_cpu() to adapt to
different calling strategies.

Values for the flags argument are defined in <libcpc.h> as follows:

#define CPC_FLAGS_DEFAULT 0

#define CPC_FLAGS_NORELE 0x01

#define CPC_FLAGS_NOPBIND 0x02

When flags is set to CPC_FLAGS_DEFAULT, the library binds the calling LWP to the measured
CPU with processor_bind(2). The application must not change its processor binding until
after it has unbound the set with cpc_unbind().

The remaining flags may be used individually or bitwise-OR'ed together.

When only CPC_FLAGS_NORELE is asserted, the library binds the set to the measured CPU
using processor_bind(). When the set is unbound using cpc_unbind(), the library will
unbind the set but will not unbind the calling thread from the measured CPU.

When only CPC_FLAGS_NOPBIND is asserted, the library does not bind the calling thread the
measured CPU when binding the counter set, with the expectation that the calling thread is
already bound to the measured CPU. If the thread is not bound to the CPU, the function will
fail. When the set is unbound using cpc_unbind(), the library will unbind the set and the
calling thread from the measured CPU.

If both flags are asserted (CPC_FLAGS_NOPBIND|CPC_FLAGS_NORELE), the set is bound and
unbound from the measured CPU but the calling thread's CPU binding is never altered.

The intended use of CPC_FLAGS_NOPBIND and CPC_FLAGS_NORELE is to allow a thread to cycle
through a collection of counter sets without incurring overhead from altering the calling
thread's CPU binding unnecessarily.

The cpc_request_preset() function updates the preset and current value stored in the
indexed request within the currently bound set, thereby changing the starting value for the
specified request for the calling LWP only, which takes effect at the next call to
cpc_set_restart().

When a performance counter counting on behalf of a request with the CPC_OVF_NOTIFY_EMT
flag set overflows, the performance counters are frozen and the LWP to which the set is bound
receives a SIGEMT signal. The cpc_set_restart() function can be called from a SIGEMT signal
handler function to quickly restart the hardware counters. Counting begins from each
request's original preset (see cpc_set_add_request(3CPC)), or from the preset specified in a

cpc_bind_curlwp(3CPC)

Extended Library Functions, Volume 1 29

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2processor-bind-2

prior call to cpc_request_preset(). Applications performing performance counter overflow
profiling should use the cpc_set_restart() function to quickly restart counting after
receiving a SIGEMT overflow signal and recording any relevant program state.

The cpc_unbind() function unbinds the set from the resource to which it is bound. All
hardware resources associated with the bound set are freed. If the set was bound to a CPU, the
calling LWP is unbound from the corresponding CPU according to the policy requested when
the set was bound using cpc_bind_cpu().

Upon successful completion these functions return 0. Otherwise, -1 is returned and errno is
set to indicate the error.

Applications wanting to get detailed error values should register an error handler with
cpc_seterrhndlr(3CPC). Otherwise, the library will output a specific error description to
stderr.

These functions will fail if:

EACCES For cpc_bind_curlwp(), the system has Pentium 4 processors with
HyperThreading and at least one physical processor has more than one hardware
thread online. See NOTES.

For cpc_bind_cpu(), the process does not have the cpc_cpu privilege to access
the CPU's counters.

For cpc_bind_curlwp(), cpc_bind_cpc(), and cpc_bind_pctx(), access to the
requested hypervisor event was denied.

EAGAIN For cpc_bind_curlwp() and cpc_bind_pctx(), the performance counters are
not available for use by the application.

For cpc_bind_cpu(), another process has already bound to this CPU. Only one
process is allowed to bind to a CPU at a time and only one set can be bound to a
CPU at a time.

EINVAL The set does not contain any requests or cpc_set_add_request() was not called.

The value given for an attribute of a request is out of range.

The system could not assign a physical counter to each request in the system. See
NOTES.

One or more requests in the set conflict and might not be programmed
simultaneously.

The set was not created with the same cpc handle.

For cpc_bind_cpu(), the specified processor does not exist.

Return Values

Errors

cpc_bind_curlwp(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 1 Feb 201130

For cpc_unbind(), the set is not bound.

For cpc_request_preset() and cpc_set_restart(), the calling LWP does not
have a bound set.

ENOSYS For cpc_bind_cpu(), the specified processor is not online.

ENOTSUP The cpc_bind_curlwp() function was called with the CPC_OVF_NOTIFY_EMT flag,
but the underlying processor is not capable of detecting counter overflow.

ESRCH For cpc_bind_pctx(), the specified LWP in the target process does not exist.

EXAMPLE 1 Use hardware performance counters to measure events in a process.

The following example demonstrates how a standalone application can be instrumented with
the libcpc(3LIB) functions to use hardware performance counters to measure events in a
process. The application performs 20 iterations of a computation, measuring the counter
values for each iteration. By default, the example makes use of two counters to measure
external cache references and external cache hits. These options are only appropriate for
UltraSPARC processors. By setting the EVENT0 and EVENT1 environment variables to other
strings (a list of which can be obtained from the -h option of the cpustat(1M) or cputrack(1)
utilities), other events can be counted. The error() routine is assumed to be a user-provided
routine analogous to the familiar printf(3C) function from the C library that also performs
an exit(2) after printing the message.

#include <inttypes.h>

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <libcpc.h>

#include <errno.h>

int

main(int argc, char *argv[])

{

int iter;

char *event0 = NULL, *event1 = NULL;

cpc_t *cpc;

cpc_set_t *set;

cpc_buf_t *diff, *after, *before;

int ind0, ind1;

uint64_t val0, val1;

if ((cpc = cpc_open(CPC_VER_CURRENT)) == NULL)

error("perf counters unavailable: %s", strerror(errno));

if ((event0 = getenv("EVENT0")) == NULL)

event0 = "EC_ref";

Examples

cpc_bind_curlwp(3CPC)

Extended Library Functions, Volume 1 31

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcpc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mcpustat-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1cputrack-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aprintf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2exit-2

EXAMPLE 1 Use hardware performance counters to measure events in a process. (Continued)

if ((event1 = getenv("EVENT1")) == NULL)

event1 = "EC_hit";

if ((set = cpc_set_create(cpc)) == NULL)

error("could not create set: %s", strerror(errno));

if ((ind0 = cpc_set_add_request(cpc, set, event0, 0, CPC_COUNT_USER, 0,

NULL)) == -1)

error("could not add first request: %s", strerror(errno));

if ((ind1 = cpc_set_add_request(cpc, set, event1, 0, CPC_COUNT_USER, 0,

NULL)) == -1)

error("could not add first request: %s", strerror(errno));

if ((diff = cpc_buf_create(cpc, set)) == NULL)

error("could not create buffer: %s", strerror(errno));

if ((after = cpc_buf_create(cpc, set)) == NULL)

error("could not create buffer: %s", strerror(errno));

if ((before = cpc_buf_create(cpc, set)) == NULL)

error("could not create buffer: %s", strerror(errno));

if (cpc_bind_curlwp(cpc, set, 0) == -1)

error("cannot bind lwp%d: %s", _lwp_self(), strerror(errno));

for (iter = 1; iter <= 20; iter++) {

if (cpc_set_sample(cpc, set, before) == -1)

break;

/* ==> Computation to be measured goes here <== */

if (cpc_set_sample(cpc, set, after) == -1)

break;

cpc_buf_sub(cpc, diff, after, before);

cpc_buf_get(cpc, diff, ind0, &val0);

cpc_buf_get(cpc, diff, ind1, &val1);

(void) printf("%3d: %" PRId64 " %" PRId64 "\n", iter,

val0, val1);

}

if (iter != 21)

error("cannot sample set: %s", strerror(errno));

cpc_bind_curlwp(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 1 Feb 201132

EXAMPLE 1 Use hardware performance counters to measure events in a process. (Continued)

cpc_close(cpc);

return (0);

}

EXAMPLE 2 Write a signal handler to catch overflow signals.

The following example builds on Example 1 and demonstrates how to write the signal handler
to catch overflow signals. A counter is preset so that it is 1000 counts short of overflowing.
After 1000 counts the signal handler is invoked.

The signal handler:

cpc_t *cpc;

cpc_set_t *set;

cpc_buf_t *buf;

int index;

void

emt_handler(int sig, siginfo_t *sip, void *arg)

{

ucontext_t *uap = arg;

uint64_t val;

if (sig != SIGEMT || sip->si_code != EMT_CPCOVF) {

psignal(sig, "example");
psiginfo(sip, "example");
return;

}

(void) printf("lwp%d - si_addr %p ucontext: %%pc %p %%sp %p\n",
_lwp_self(), (void *)sip->si_addr,

(void *)uap->uc_mcontext.gregs[PC],

(void *)uap->uc_mcontext.gregs[SP]);

if (cpc_set_sample(cpc, set, buf) != 0)

error("cannot sample: %s", strerror(errno));

cpc_buf_get(cpc, buf, index, &val);

(void) printf("0x%" PRIx64"\n", val);

(void) fflush(stdout);

/*

* Update a request’s preset and restart the counters. Counters which

* have not been preset with cpc_request_preset() will resume counting

cpc_bind_curlwp(3CPC)

Extended Library Functions, Volume 1 33

EXAMPLE 2 Write a signal handler to catch overflow signals. (Continued)

* from their current value.

*/

(cpc_request_preset(cpc, ind1, val1) != 0)

error("cannot set preset for request %d: %s", ind1,

strerror(errno));

if (cpc_set_restart(cpc, set) != 0)

error("cannot restart lwp%d: %s", _lwp_self(), strerror(errno));

}

The setup code, which can be positioned after the code that opens the CPC library and creates
a set:

#define PRESET (UINT64_MAX - 999ull)

struct sigaction act;

...

act.sa_sigaction = emt_handler;

bzero(&act.sa_mask, sizeof (act.sa_mask));

act.sa_flags = SA_RESTART|SA_SIGINFO;

if (sigaction(SIGEMT, &act, NULL) == -1)

error("sigaction: %s", strerror(errno));

if ((index = cpc_set_add_request(cpc, set, event, PRESET,

CPC_COUNT_USER | CPC_OVF_NOTIFY_EMT, 0, NULL)) != 0)

error("cannot add request to set: %s", strerror(errno));

if ((buf = cpc_buf_create(cpc, set)) == NULL)

error("cannot create buffer: %s", strerror(errno));

if (cpc_bind_curlwp(cpc, set, 0) == -1)

error("cannot bind lwp%d: %s", _lwp_self(), strerror(errno));

for (iter = 1; iter <= 20; iter++) {

/* ==> Computation to be measured goes here <== */

}

cpc_unbind(cpc, set); /* done */

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Attributes

cpc_bind_curlwp(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 1 Feb 201134

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

cpustat(1M), cputrack(1), psrinfo(1M), processor_bind(2), cpc_seterrhndlr(3CPC),
cpc_set_sample(3CPC), libcpc(3LIB), attributes(5)

When a set is bound, the system assigns a physical hardware counter to count on behalf of
each request in the set. If such an assignment is not possible for all requests in the set, the bind
function returns -1 and sets errno to EINVAL. The assignment of requests to counters depends
on the capabilities of the available counters. Some processors (such as Pentium 4) have a
complicated counter control mechanism that requires the reservation of limited hardware
resources beyond the actual counters. It could occur that two requests for different events
might be impossible to count at the same time due to these limited hardware resources. See the
processor manual as referenced by cpc_cpuref(3CPC) for details about the underlying
processor's capabilities and limitations.

Some processors can be configured to dispatch an interrupt when a physical counter
overflows. The most obvious use for this facility is to ensure that the full 64-bit counter values
are maintained without repeated sampling. Certain hardware, such as the UltraSPARC
processor, does not record which counter overflowed. A more subtle use for this facility is to
preset the counter to a value slightly less than the maximum value, then use the resulting
interrupt to catch the counter overflow associated with that event. The overflow can then be
used as an indication of the frequency of the occurrence of that event.

The interrupt generated by the processor might not be particularly precise. That is, the
particular instruction that caused the counter overflow might be earlier in the instruction
stream than is indicated by the program counter value in the ucontext.

When a request is added to a set with the CPC_OVF_NOTIFY_EMT flag set, then as before, the
control registers and counter are preset from the 64-bit preset value given. When the flag is set,
however, the kernel arranges to send the calling process a SIGEMT signal when the overflow
occurs. The si_code member of the corresponding siginfo structure is set to EMT_CPCOVF

and the si_addr member takes the program counter value at the time the overflow interrupt
was delivered. Counting is disabled until the set is bound again.

If the CPC_CAP_OVERFLOW_PRECISE bit is set in the value returned by cpc_caps(3CPC), the
processor is able to determine precisely which counter has overflowed after receiving the
overflow interrupt. On such processors, the SIGEMT signal is sent only if a counter overflows
and the request that the counter is counting has the CPC_OVF_NOTIFY_EMT flag set. If the
capability is not present on the processor, the system sends a SIGEMT signal to the process if
any of its requests have the CPC_OVF_NOTIFY_EMT flag set and any counter in its set overflows.

Different processors have different counter ranges available, though all processors supported
by Solaris allow at least 31 bits to be specified as a counter preset value. Portable preset values
lie in the range UINT64_MAX to UINT64_MAX-INT32_MAX.

The appropriate preset value will often need to be determined experimentally. Typically, this
value will depend on the event being measured as well as the desire to minimize the impact of
the act of measurement on the event being measured. Less frequent interrupts and samples
lead to less perturbation of the system.

See Also

Notes

cpc_bind_curlwp(3CPC)

Extended Library Functions, Volume 1 35

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mcpustat-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1cputrack-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpsrinfo-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2processor-bind-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcpc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

If the processor cannot detect counter overflow, bind will fail and return ENOTSUP. Only user
events can be measured using this technique. See Example 2.

Most Pentium 4 events require the specification of an event mask for counting. The event
mask is specified with the emask attribute.

Pentium 4 processors with HyperThreading Technology have only one set of hardware
counters per physical processor. To use cpc_bind_curlwp() or cpc_bind_pctx() to measure
per-LWP events on a system with Pentium 4 HT processors, a system administrator must first
take processors in the system offline until each physical processor has only one hardware
thread online (See the -p option to psrinfo(1M)). If a second hardware thread is brought
online, all per-LWP bound contexts will be invalidated and any attempt to sample or bind a
CPC set will return EAGAIN.

Only one CPC set at a time can be bound to a physical processor with cpc_bind_cpu(). Any
call to cpc_bind_cpu() that attempts to bind a set to a processor that shares a physical
processor with a processor that already has a CPU-bound set returns an error.

To measure the shared state on a Pentium 4 processor with HyperThreading, the
count_sibling_usr and count_sibling_sys attributes are provided for use with cpc_bind_cpu().
These attributes behave exactly as the CPC_COUNT_USER and CPC_COUNT_SYSTEM request flags,
except that they act on the sibling hardware thread sharing the physical processor with the
CPU measured by cpc_bind_cpu(). Some CPC sets will fail to bind due to resource
constraints. The most common type of resource constraint is an ESCR conflict among one or
more requests in the set. For example, the branch_retired event cannot be measured on
counters 12 and 13 simultaneously because both counters require the CRU_ESCR2 ESCR to
measure this event. To measure branch_retired events simultaneously on more than one
counter, use counters such that one counter uses CRU_ESCR2 and the other counter uses
CRU_ESCR3. See the processor documentation for details.

Pentium 4

cpc_bind_curlwp(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 1 Feb 201136

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpsrinfo-1m

cpc_bind_event, cpc_take_sample, cpc_rele – use CPU performance counters on lwps

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

int cpc_bind_event(cpc_event_t *event, int flags);

int cpc_take_sample(cpc_event_t *event);

int cpc_rele(void);

Once the events to be sampled have been selected using, for example,
cpc_strtoevent(3CPC), the event selections can be bound to the calling LWP using
cpc_bind_event(). If cpc_bind_event() returns successfully, the system has associated
performance counter context with the calling LWP. The context allows the system to virtualize
the hardware counters to that specific LWP, and the counters are enabled.

Two flags are defined that can be passed into the routine to allow the behavior of the interface
to be modified, as described below.

Counter values can be sampled at any time by calling cpc_take_sample(), and dereferencing
the fields of the ce_pic[] array returned. The ce_hrt field contains the timestamp at which
the kernel last sampled the counters.

To immediately remove the performance counter context on an LWP, the cpc_rele()
interface should be used. Otherwise, the context will be destroyed after the LWP or process
exits.

The caller should take steps to ensure that the counters are sampled often enough to avoid the
32-bit counters wrapping. The events most prone to wrap are those that count processor clock
cycles. If such an event is of interest, sampling should occur frequently so that less than 4
billion clock cycles can occur between samples. Practically speaking, this is only likely to be a
problem for otherwise idle systems, or when processes are bound to processors, since normal
context switching behavior will otherwise hide this problem.

Upon successful completion, cpc_bind_event() and cpc_take_sample() return 0.
Otherwise, these functions return −1, and set errno to indicate the error.

The cpc_bind_event() and cpc_take_sample() functions will fail if:

EACCES For cpc_bind_event(), access to the requested hypervisor event was denied.

EAGAIN Another process may be sampling system-wide CPU statistics. For
cpc_bind_event(), this implies that no new contexts can be created. For
cpc_take_sample(), this implies that the performance counter context has been
invalidated and must be released with cpc_rele(). Robust programs should be
coded to expect this behavior and recover from it by releasing the now invalid
context by calling cpc_rele() sleeping for a while, then attempting to bind and
sample the event once more.

Name

Synopsis

Description

Return Values

Errors

cpc_bind_event(3CPC)

Extended Library Functions, Volume 1 37

EINVAL The cpc_take_sample() function has been invoked before the context is bound.

ENOTSUP The caller has attempted an operation that is illegal or not supported on the
current platform, such as attempting to specify signal delivery on counter
overflow on a CPU that doesn't generate an interrupt on counter overflow.

Prior to calling cpc_bind_event(), applications should call cpc_access(3CPC) to determine
if the counters are accessible on the system.

EXAMPLE 1 Use hardware performance counters to measure events in a process.

The example below shows how a standalone program can be instrumented with the libcpc
routines to use hardware performance counters to measure events in a process. The program
performs 20 iterations of a computation, measuring the counter values for each iteration. By
default, the example makes the counters measure external cache references and external cache
hits; these options are only appropriate for UltraSPARC processors. By setting the PERFEVENTS
environment variable to other strings (a list of which can be gleaned from the -h flag of the
cpustat or cputrack utilities), other events can be counted. The error() routine below is
assumed to be a user-provided routine analogous to the familiar printf(3C) routine from the
C library but which also performs an exit(2) after printing the message.

#include <inttypes.h>

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <libcpc.h>

int

main(int argc, char *argv[])

{

int cpuver, iter;

char *setting = NULL;

cpc_event_t event;

if (cpc_version(CPC_VER_CURRENT) != CPC_VER_CURRENT)

error("application:library cpc version mismatch!");

if ((cpuver = cpc_getcpuver()) == -1)

error("no performance counter hardware!");

if ((setting = getenv("PERFEVENTS")) == NULL)

setting = "pic0=EC_ref,pic1=EC_hit";

if (cpc_strtoevent(cpuver, setting, &event) != 0)

error("can’t measure ’%s’ on this processor", setting);

setting = cpc_eventtostr(&event);

if (cpc_access() == -1)

error("can’t access perf counters: %s", strerror(errno));

Usage

Examples

cpc_bind_event(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 02 Mar 200738

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aprintf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2exit-2

EXAMPLE 1 Use hardware performance counters to measure events in a process. (Continued)

if (cpc_bind_event(&event, 0) == -1)

error("can’t bind lwp%d: %s", _lwp_self(), strerror(errno));

for (iter = 1; iter <= 20; iter++) {

cpc_event_t before, after;

if (cpc_take_sample(&before) == -1)

break;

/* ==> Computation to be measured goes here <== */

if (cpc_take_sample(&after) == -1)

break;

(void) printf("%3d: %" PRId64 " %" PRId64 "\n", iter,

after.ce_pic[0] - before.ce_pic[0],

after.ce_pic[1] - before.ce_pic[1]);

}

if (iter != 20)

error("can’t sample ’%s’: %s", setting, strerror(errno));

free(setting);

return (0);

}

EXAMPLE 2 Write a signal handler to catch overflow signals.

This example builds on Example 1, but demonstrates how to write the signal handler to catch
overflow signals. The counters are preset so that counter zero is 1000 counts short of
overflowing, while counter one is set to zero. After 1000 counts on counter zero, the signal
handler will be invoked.

First the signal handler:

#define PRESET0 (UINT64_MAX - UINT64_C(999))

#define PRESET1 0

void

emt_handler(int sig, siginfo_t *sip, void *arg)

{

ucontext_t *uap = arg;

cpc_event_t sample;

if (sig != SIGEMT || sip->si_code != EMT_CPCOVF) {

psignal(sig, "example");

cpc_bind_event(3CPC)

Extended Library Functions, Volume 1 39

EXAMPLE 2 Write a signal handler to catch overflow signals. (Continued)

psiginfo(sip, "example");
return;

}

(void) printf("lwp%d - si_addr %p ucontext: %%pc %p %%sp %p\n",
_lwp_self(), (void *)sip->si_addr,

(void *)uap->uc_mcontext.gregs[PC],

(void *)uap->uc_mcontext.gregs[USP]);

if (cpc_take_sample(&sample) == -1)

error("can’t sample: %s", strerror(errno));

(void) printf("0x%" PRIx64 " 0x%" PRIx64 "\n",
sample.ce_pic[0], sample.ce_pic[1]);

(void) fflush(stdout);

sample.ce_pic[0] = PRESET0;

sample.ce_pic[1] = PRESET1;

if (cpc_bind_event(&sample, CPC_BIND_EMT_OVF) == -1)

error("cannot bind lwp%d: %s", _lwp_self(), strerror(errno));

}

and second the setup code (this can be placed after the code that selects the event to be
measured):

struct sigaction act;

cpc_event_t event;

...

act.sa_sigaction = emt_handler;

bzero(&act.sa_mask, sizeof (act.sa_mask));

act.sa_flags = SA_RESTART|SA_SIGINFO;

if (sigaction(SIGEMT, &act, NULL) == -1)

error("sigaction: %s", strerror(errno));

event.ce_pic[0] = PRESET0;

event.ce_pic[1] = PRESET1;

if (cpc_bind_event(&event, CPC_BIND_EMT_OVF) == -1)

error("cannot bind lwp%d: %s", _lwp_self(), strerror(errno));

for (iter = 1; iter <= 20; iter++) {

/* ==> Computation to be measured goes here <== */

}

cpc_bind_event(NULL, 0); /* done */

Note that a more general version of the signal handler would use write(2) directly instead of
depending on the signal-unsafe semantics of stderr and stdout. Most real signal handlers

cpc_bind_event(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 02 Mar 200740

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2write-2

EXAMPLE 2 Write a signal handler to catch overflow signals. (Continued)

will probably do more with the samples than just print them out.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Obsolete

cpustat(1M), cputrack(1), write(2). cpc(3CPC), cpc_access(3CPC),
cpc_bind_curlwp(3CPC), cpc_set_sample(3CPC), cpc_strtoevent(3CPC),
cpc_unbind(3CPC), libcpc(3LIB), attributes(5)

The cpc_bind_event(), cpc_take_sample(), and cpc_rele() functions exist for binary
compatibility only. Source containing these functions will not compile. These functions are
obsolete and might be removed in a future release. Applications should use
cpc_bind_curlwp(3CPC), cpc_set_sample(3CPC), and cpc_unbind(3CPC) instead.

Sometimes, even the overhead of performing a system call will be too disruptive to the events
being measured. Once a call to cpc_bind_event() has been issued, it is possible to directly
access the performance hardware registers from within the application. If the performance
counter context is active, then the counters will count on behalf of the current LWP.

rd %pic, %rN ! All UltraSPARC

wr %rN, %pic ! (ditto, but see text)

rdpmc ! Pentium II only

If the counter context is not active or has been invalidated, the %pic register (SPARC), and the
rdpmc instruction (Pentium) will become unavailable.

Note that the two 32-bit UltraSPARC performance counters are kept in the single 64-bit %pic
register so a couple of additional instructions are required to separate the values. Also note
that when the %pcr register bit has been set that configures the %pic register as readable by an
application, it is also writable. Any values written will be preserved by the context switching
mechanism.

Pentium II processors support the non-privileged rdpmc instruction which requires [5] that
the counter of interest be specified in %ecx, and returns a 40-bit value in the %edx:%eax
register pair. There is no non-privileged access mechanism for Pentium I processors.

As described above, when counting events, some processors allow their counter registers to
silently overflow. More recent CPUs such as UltraSPARC III and Pentium II, however, are
capable of generating an interrupt when the hardware counter overflows. Some processors

Attributes

See Also

Notes

SPARC

x86

Handling counter
overflow

cpc_bind_event(3CPC)

Extended Library Functions, Volume 1 41

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mcpustat-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1cputrack-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcpc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

offer more control over when interrupts will actually be generated. For example, they might
allow the interrupt to be programmed to occur when only one of the counters overflows. See
cpc_strtoevent(3CPC) for the syntax.

The most obvious use for this facility is to ensure that the full 64-bit counter values are
maintained without repeated sampling. However, current hardware does not record which
counter overflowed. A more subtle use for this facility is to preset the counter to a value to a
little less than the maximum value, then use the resulting interrupt to catch the counter
overflow associated with that event. The overflow can then be used as an indication of the
frequency of the occurrence of that event.

Note that the interrupt generated by the processor may not be particularly precise. That is, the
particular instruction that caused the counter overflow may be earlier in the instruction
stream than is indicated by the program counter value in the ucontext.

When cpc_bind_event() is called with the CPC_BIND_EMT_OVF flag set, then as before, the
control registers and counters are preset from the 64-bit values contained in event. However,
when the flag is set, the kernel arranges to send the calling process a SIGEMT signal when the
overflow occurs, with the si_code field of the corresponding siginfo structure set to
EMT_CPCOVF, and the si_addr field is the program counter value at the time the overflow
interrupt was delivered. Counting is disabled until the next call to cpc_bind_event(). Even in
a multithreaded process, during execution of the signal handler, the thread behaves as if it is
temporarily bound to the running LWP.

Different processors have different counter ranges available, though all processors supported
by Solaris allow at least 31 bits to be specified as a counter preset value; thus portable preset
values lie in the range UINT64_MAX to UINT64_MAX−INT32_MAX.

The appropriate preset value will often need to be determined experimentally. Typically, it will
depend on the event being measured, as well as the desire to minimize the impact of the act of
measurement on the event being measured; less frequent interrupts and samples lead to less
perturbation of the system.

If the processor cannot detect counter overflow, this call will fail (ENOTSUP). Specifying a null
event unbinds the context from the underlying LWP and disables signal delivery. Currently,
only user events can be measured using this technique. See Example 2, above.

By default, the library binds the performance counter context to the current LWP only. If the
CPC_BIND_LWP_INHERIT flag is set, then any subsequent LWPs created by that LWP will
automatically inherit the same performance counter context. The counters will be initialized
to 0 as if a cpc_bind_event() had just been issued. This automatic inheritance behavior can
be useful when dealing with multithreaded programs to determine aggregate statistics for the
program as a whole.

Inheriting events onto
multiple LWPs

cpc_bind_event(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 02 Mar 200742

If the CPC_BIND_EMT_OVF flag is also set, the process will immediately dispatch a SIGEMT signal
to the freshly created LWP so that it can preset its counters appropriately on the new LWP.
This initialization condition can be detected using cpc_take_sample() to check that both
ce_pic[] values are set to UINT64_MAX.

cpc_bind_event(3CPC)

Extended Library Functions, Volume 1 43

cpc_buf_create, cpc_buf_destroy, cpc_set_sample, cpc_buf_get, cpc_buf_set,
cpc_buf_hrtime, cpc_buf_tick, cpc_buf_sub, cpc_buf_add, cpc_buf_copy, cpc_buf_zero –
sample and manipulate CPC data

cc [flag...] file... -lcpc [library...]

#include <libcpc.h>

cpc_buf_t *cpc_buf_create(cpc_t *cpc, cpc_set_t *set);

int cpc_buf_destroy(cpc_t *cpc, cpc_buf_t *buf);

int cpc_set_sample(cpc_t *cpc, cpc_set_t *set, cpc_buf_t *buf);

int cpc_buf_get(cpc_t *cpc, cpc_buf_t *buf, int index, uint64_t *val);

int cpc_buf_set(cpc_t *cpc, cpc_buf_t *buf, int index, uint64_t val);

hrtime_t cpc_buf_hrtime(cpc_t *cpc, cpc_buf_t *buf);

uint64_t cpc_buf_tick(cpc_t *cpc, cpc_buf_t *buf);

void cpc_buf_sub(cpc_t *cpc, cpc_buf_t *ds, cpc_buf_t *a, cpc_buf_t *b);

void cpc_buf_add(cpc_t *cpc, cpc_buf_t *ds, cpc_buf_t *a, cpc_buf_t *b);

void cpc_buf_copy(cpc_t *cpc, cpc_buf_t *ds, cpc_buf_t *src);

void cpc_buf_zero(cpc_t *cpc, cpc_buf_t *buf);

Counter data is sampled into CPC buffers, which are represented by the opaque data type
cpc_buf_t. A CPC buffer is created with cpc_buf_create() to hold the data for a specific
CPC set. Once a CPC buffer has been created, it can only be used to store and manipulate the
data of the CPC set for which it was created.

Once a set has been successfully bound, the counter values are sampled using
cpc_set_sample(). The cpc_set_sample() function takes a snapshot of the hardware
performance counters counting on behalf of the requests in set and stores the 64-bit
virtualized software representations of the counters in the supplied CPC buffer. If a set was
bound with cpc_bind_curlwp(3CPC) or cpc_bind_curlwp(3CPC), the set can only be
sampled by the LWP that bound it.

The kernel maintains 64-bit virtual software counters to hold the counts accumulated for each
request in the set, thereby allowing applications to count past the limits of the underlying
physical counter, which can be significantly smaller than 64 bits. The kernel attempts to
maintain the full 64-bit counter values even in the face of physical counter overflow on
architectures and processors that can automatically detect overflow. If the processor is not
capable of overflow detection, the caller must ensure that the counters are sampled often
enough to avoid the physical counters wrapping. The events most prone to wrap are those that
count processor clock cycles. If such an event is of interest, sampling should occur frequently
so that the counter does not wrap between samples.

Name

Synopsis

Description

cpc_buf_create(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 30 Jan 200444

The cpc_buf_get() function retrieves the last sampled value of a particular request in buf.
The index argument specifies which request value in the set to retrieve. The index for each
request is returned during set configuration by cpc_set_add_request(3CPC). The 64-bit
virtualized software counter value is stored in the location pointed to by the val argument.

The cpc_buf_set() function stores a 64-bit value to a specific request in the supplied buffer.
This operation can be useful for performing calculations with CPC buffers, but it does not
affect the value of the hardware counter (and thus will not affect the next sample).

The cpc_buf_hrtime() function returns a high-resolution timestamp indicating exactly
when the set was last sampled by the kernel.

The cpc_buf_tick() function returns a 64-bit virtualized cycle counter indicating how long
the set has been programmed into the counter since it was bound. The units of the values
returned by cpc_buf_tick() are CPU clock cycles.

The cpc_buf_sub() function calculates the difference between each request in sets a and b,
storing the result in the corresponding request within set ds. More specifically, for each
request index n, this function performs ds[n] = a[n] - b[n]. Similarly, cpc_buf_add() adds
each request in sets a and b and stores the result in the corresponding request within set ds.

The cpc_buf_copy() function copies each value from buffer src into buffer ds. Both buffers
must have been created from the same cpc_set_t.

The cpc_buf_zero() function sets each request's value in the buffer to zero.

The cpc_buf_destroy() function frees all resources associated with the CPC buffer.

Upon successful completion, cpc_buf_create() returns a pointer to a CPC buffer which can
be used to hold data for the set argument. Otherwise, this function returns NULL and sets errno
to indicate the error.

Upon successful completion, cpc_set_sample(), cpc_buf_get(), and cpc_buf_set() return
0. Otherwise, they return -1 and set errno to indicate the error.

These functions will fail if:

EINVAL For cpc_set_sample(), the set is not bound, the set and/or CPC buffer were not
created with the given cpc handle, or the CPC buffer was not created with the
supplied set.

EAGAIN When using cpc_set_sample() to sample a CPU-bound set, the LWP has been
unbound from the processor it is measuring.

ENOMEM The library could not allocate enough memory for its internal data structures.

Return Values

Errors

cpc_buf_create(3CPC)

Extended Library Functions, Volume 1 45

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

cpc_bind_curlwp(3CPC), cpc_set_add_request(3CPC), libcpc(3LIB), attributes(5)

Often the overhead of performing a system call can be too disruptive to the events being
measured. Once a cpc_bind_curlwp(3CPC) call has been issued, it is possible to access
directly the performance hardware registers from within the application. If the performance
counter context is active, the counters will count on behalf of the current LWP.

Not all processors support this type of access. On processors where direct access is not
possible, cpc_set_sample() must be used to read the counters.

SPARC

rd %pic, %rN ! All UltraSPARC

wr %rN, %pic ! (All UltraSPARC, but see text)

x86

rdpmc ! Pentium II, III, and 4 only

If the counter context is not active or has been invalidated, the %pic register (SPARC), and the
rdpmc instruction (Pentium) becomes unavailable.

Pentium II and III processors support the non-privileged rdpmc instruction that requires that
the counter of interest be specified in %ecx and return a 40-bit value in the %edx:%eax register
pair. There is no non-privileged access mechanism for Pentium I processors.

Attributes

See Also

Notes

cpc_buf_create(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 30 Jan 200446

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcpc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

cpc_count_usr_events, cpc_count_sys_events – enable and disable performance counters

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

int cpc_count_usr_events(int enable);

int cpc_count_sys_events(int enable);

In certain applications, it can be useful to explicitly enable and disable performance counters
at different times so that the performance of a critical algorithm can be examined. The
cpc_count_usr_events() function can be used to control whether events are counted on
behalf of the application running in user mode, while cpc_count_sys_events() can be used
to control whether events are counted on behalf of the application while it is running in the
kernel, without otherwise disturbing the binding of events to the invoking LWP. If the enable
argument is non-zero, counting of events is enabled, otherwise they are disabled.

Upon successful completion, cpc_count_usr_events() and cpc_count_sys_events()

return 0. Otherwise, the functions return −1 and set errno to indicate the error.

The cpc_count_usr_events() and cpc_count_sys_events() functions will fail if:

EAGAIN The associated performance counter context has been invalidated by another
process.

EINVAL No performance counter context has been created, or an attempt was made to
enable system events while delivering counter overflow signals.

EXAMPLE 1 Use cpc_count_usr_events() to minimize code needed by application.

In this example, the routine cpc_count_usr_events() is used to minimize the amount of
code that needs to be added to the application. The cputrack(1) command can be used in
conjunction with these interfaces to provide event programming, sampling, and reporting
facilities.

If the application is instrumented in this way and then started by cputrack with the nouser
flag set in the event specification, counting of user events will only be enabled around the
critical code section of interest. If the program is run normally, no harm will ensue.

int have_counters = 0;

int

main(int argc, char *argv[])

{

if (cpc_version(CPC_VER_CURRENT) == CPC_VER_CURRENT &&

cpc_getcpuver() != -1 && cpc_access() == 0)

have_counters = 1;

/* ... other application code */

Name

Synopsis

Description

Return Values

Errors

Examples

cpc_count_usr_events(3CPC)

Extended Library Functions, Volume 1 47

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1cputrack-1

EXAMPLE 1 Use cpc_count_usr_events() to minimize code needed by application. (Continued)

if (have_counters)

(void) cpc_count_usr_events(1);

/* ==> Code to be measured goes here <== */

if (have_counters)

(void) cpc_count_usr_events(0);

/* ... other application code */

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Obsolete

cputrack(1), cpc(3CPC), cpc_access(3CPC), cpc_bind_event(3CPC), cpc_enable(3CPC),
cpc_getcpuver(3CPC), cpc_pctx_bind_event(3CPC), cpc_version(3CPC), libcpc(3LIB),
attributes(5)

The cpc_count_usr_events() and cpc_count_sys_events() functions exist for binary
compatibility only. Source containing these functions will not compile. These functions are
obsolete and might be removed in a future release. Applications should use
cpc_enable(3CPC) instead.

Attributes

See Also

Notes

cpc_count_usr_events(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 28 Mar 200548

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1cputrack-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcpc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

cpc_enable, cpc_disable – enable and disable performance counters

cc [flag...] file... -lcpc [library...]

#include <libcpc.h>

int cpc_enable(cpc_t *cpc);

int cpc_disable(cpc_t *cpc);

In certain applications, it can be useful to explicitly enable and disable performance counters
at different times so that the performance of a critical algorithm can be examined. The
cpc_enable() and cpc_disable() functions can be used to enable and disable the
performance counters without otherwise disturbing the invoking LWP's performance
hardware configuration.

Upon successful completion, cpc_enable() and cpc_disable() return 0. Otherwise, they
return -1 and set errno to indicate the error.

These functions will fail if:

EAGAIN The associated performance counter context has been invalidated by another
process.

EINVAL No performance counter context has been created for the calling LWP.

EXAMPLE 1 Use cpc_enable and cpc_disable to minimize code needed by application.

In the following example, the cpc_enable() and cpc_disable() functions are used to
minimize the amount of code that needs to be added to the application. The cputrack(1)
command can be used in conjunction with these functions to provide event programming,
sampling, and reporting facilities.

If the application is instrumented in this way and then started by cputrack with the nouser
flag set in the event specification, counting of user events will only be enabled around the
critical code section of interest. If the program is run normally, no harm will ensue.

int

main(int argc, char *argv[])

{

cpc_t *cpc = cpc_open(CPC_VER_CURRENT);

/* ... application code ... */

if (cpc != NULL)

(void) cpc_enable(cpc);

/* ==> Code to be measured goes here <== */

if (cpc != NULL)

(void) cpc_disable(cpc);

Name

Synopsis

Description

Return Values

Errors

Examples

cpc_enable(3CPC)

Extended Library Functions, Volume 1 49

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1cputrack-1

EXAMPLE 1 Use cpc_enable and cpc_disable to minimize code needed by application. (Continued)

/* ... other application code */

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

cputrack(1), cpc(3CPC), cpc_open(3CPC), libcpc(3LIB), attributes(5)

Attributes

See Also

cpc_enable(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 31 Jan 200550

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1cputrack-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcpc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

cpc_event – data structure to describe CPU performance counters

#include <libcpc.h>

The libcpc interfaces manipulate CPU performance counters using the cpc_event_t data
structure. This structure contains several fields that are common to all processors, and some
that are processor-dependent. These structures can be declared by a consumer of the API, thus
the size and offsets of the fields and the entire data structure are fixed per processor for any
particular version of the library. See cpc_version(3CPC) for details of library versioning.

For UltraSPARC, the structure contains the following members:

typedef struct {

int ce_cpuver;

hrtime_t ce_hrt;

uint64_t ce_tick;

uint64_t ce_pic[2];

uint64_t ce_pcr;

} cpc_event_t;

For Pentium, the structure contains the following members:

typedef struct {

int ce_cpuver;

hrtime_t ce_hrt;

uint64_t ce_tsc;

uint64_t ce_pic[2];

uint32_t ce_pes[2];

#define ce_cesr ce_pes[0]

} cpc_event_t;

The APIs are used to manipulate the highly processor-dependent control registers (the
ce_pcr, ce_cesr, and ce_pes fields); the programmer is strongly advised not to reference
those fields directly in portable code. The ce_pic array elements contain 64-bit accumulated
counter values. The hardware registers are virtualized to 64-bit quantities even though the
underlying hardware only supports 32-bits (UltraSPARC) or 40-bits (Pentium) before
overflow.

The ce_hrt field is a high resolution timestamp taken at the time the counters were sampled
by the kernel. This uses the same timebase as gethrtime(3C).

On SPARC V9 machines, the number of cycles spent running on the processor is computed
from samples of the processor-dependent %tick register, and placed in the ce_tick field. On
Pentium processors, the processor-dependent time-stamp counter register is similarly
sampled and placed in the ce_tsc field.

Name

Synopsis

Description

SPARC

x86

cpc_event(3CPC)

Extended Library Functions, Volume 1 51

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agethrtime-3c

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

gethrtime(3C), cpc(3CPC), cpc_version(3CPC), libcpc(3LIB), attributes(5)

Attributes

See Also

cpc_event(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 12 May 200352

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agethrtime-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcpc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

cpc_event_diff, cpc_event_accum – simple difference and accumulate operations

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

void cpc_event_accum(cpc_event_t *accum, cpc_event_t *event);

void cpc_event_diff(cpc_event_t *diff, cpc_event_t *after,
cpc_event_t *before);

The cpc_event_accum() and cpc_event_diff() functions perform common accumulate
and difference operations on cpc_event(3CPC) data structures. Use of these functions
increases program portability, since structure members are not referenced directly .

The cpc_event_accum() function adds the ce_pic fields of event into the corresponding
fields of accum. The ce_hrt field of accum is set to the later of the times in event and accum.

SPARC:

The function adds the contents of the ce_tick field of event into the corresponding field of
accum.

x86:

The function adds the contents of the ce_tsc field of event into the corresponding field of
accum.

The cpc_event_diff() function places the difference between the ce_pic fields of after and
before and places them in the corresponding field of diff. The ce_hrt field of diff is set to the
ce_hrt field of after.

SPARC:

Additionally, the function computes the difference between the ce_tick fields of after and
before, and places it in the corresponding field of diff.

x86:

Additionally, the function computes the difference between the ce_tsc fields of after and
before, and places it in the corresponding field of diff.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

MT-Level MT-Safe

Name

Synopsis

Description

cpc_event_accum()

cpc_event_diff()

Attributes

cpc_event_diff(3CPC)

Extended Library Functions, Volume 1 53

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

cpc(3CPC), cpc_buf_add(3CPC), cpc_buf_sub(3CPC), cpc_event(3CPC), libcpc(3LIB),
attributes(5)

The cpc_event_accum() and cpc_event_diff() functions exist for binary compatibility
only. Source containing these functions will not compile. These functions are obsolete and
might be removed in a future release. Applications should use cpc_buf_add(3CPC) and
cpc_buf_sub(3CPC) instead.

See Also

Notes

cpc_event_diff(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 28 Mar 200554

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcpc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

cpc_getcpuver, cpc_getcciname, cpc_getcpuref, cpc_getusage, cpc_getnpic, cpc_walk_names
– determine CPU performance counter configuration

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

int cpc_getcpuver(void);

const char *cpc_getcciname(int cpuver);

const char *cpc_getcpuref(int cpuver);

const char *cpc_getusage(int cpuver);

uint_t cpc_getnpic(int cpuver);

void cpc_walk_names(int cpuver, int regno, void *arg,
void (*action)(void *arg, int regno, const char *name,
uint8_t bits));

The cpc_getcpuver() function returns an abstract integer that corresponds to the
distinguished version of the underlying processor. The library distinguishes between
processors solely on the basis of their support for performance counters, so the version
returned should not be interpreted in any other way. The set of values returned by the library
is unique across all processor implementations.

The cpc_getcpuver() function returns −1 if the library cannot support CPU performance
counters on the current architecture. This may be because the processor has no such counter
hardware, or because the library is unable to recognize it. Either way, such a return value
indicates that the configuration functions described on this manual page cannot be used.

The cpc_getcciname() function returns a printable description of the processor performance
counter interfaces-for example, the string UltraSPARC I&II. Note that this name should not
be assumed to be the same as the name the manufacturer might otherwise ascribe to the
processor. It simply names the performance counter interfaces as understood by the library,
and thus names the set of performance counter events that can be described by that interface.
If the cpuver argument is unrecognized, the function returns NULL.

The cpc_getcpuref() function returns a string that describes a reference work that should be
consulted to (allow a human to) understand the semantics of the performance counter events
that are known to the library. If the cpuver argument is unrecognized, the function returns
NULL. The string returned might be substantially longer than 80 characters. Callers printing to
a terminal might want to insert line breaks as appropriate.

The cpc_getusage() function returns a compact description of the getsubopt()-oriented
syntax that is consumed by cpc_strtoevent(3CPC). It is returned as a space-separated set of
tokens to allow the caller to wrap lines at convenient boundaries. If the cpuver argument is
unrecognized, the function returns NULL.

The cpc_getnpic() function returns the number of valid fields in the ce_pic[] array of a
cpc_event_t data structure.

Name

Synopsis

Description

cpc_getcpuver(3CPC)

Extended Library Functions, Volume 1 55

The library maintains a list of events that it believes the processor capable of measuring, along
with the bit patterns that must be set in the corresponding control register, and which counter
the result will appear in. The cpc_walk_names() function calls the action() function on each
element of the list so that an application can print appropriate help on the set of events known
to the library. The arg parameter is passed uninterpreted from the caller on each invocation of
the action() function.

If the parameters specify an invalid or unknown CPU or register number, the function silently
returns without invoking the action function.

Prior to calling any of these functions, applications should call cpc_access(3CPC) to
determine if the counters are accessible on the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Obsolete

cpc(3CPC), cpc_access(3CPC), cpc_cciname(3CPC), cpc_cpuref(3CPC),
cpc_npic(3CPC), cpc_walk_events_all(3CPC)libcpc(3LIB), attributes(5)

The cpc_getcpuver(), cpc_getcciname(), cpc_getcpuref(), cpc_getusage(),
cpc_getnpic(), and cpc_walk_names() functions exist for binary compatibility only. Source
containing these functions will not compile. These functions are obsolete and might be
removed in a future release. Applications should use cpc_cciname(3CPC),
cpc_cpuref(3CPC), cpc_npic(3CPC), and cpc_npic(3CPC) instead.

Only SPARC processors are described by the SPARC version of the library, and only x86
processors are described by the x86 version of the library.

Usage

Attributes

See Also

Notes

cpc_getcpuver(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 28 Mar 200556

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcpc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

cpc_npic, cpc_caps, cpc_cciname, cpc_cpuref, cpc_walk_events_all,
cpc_walk_generic_events_all, cpc_walk_events_pic, cpc_walk_generic_events_pic,
cpc_walk_attrs – determine CPU performance counter configuration

cc [flag...] file... -lcpc [library...]

#include <libcpc.h>

uint_t cpc_npic(cpc_t *cpc);

uint_t cpc_caps(cpc_t *cpc);

const char *cpc_cciname(cpc_t *cpc);

const char *cpc_cpuref(cpc_t *cpc);

void cpc_walk_events_all(cpc_t *cpc, void *arg,
void (*action)(void *arg, const char *event));

void cpc_walk_generic_events_all(cpc_t *cpc, void *arg,
void (*action)(void *arg, const char *event));

void cpc_walk_events_pic(cpc_t *cpc, uint_t picno, void *arg,
void (*action)(void *arg, uint_t picno, const char *event));

void cpc_walk_generic_events_pic(cpc_t *cpc, uint_t picno,
void *arg, void (*action)(void *arg, uint_t picno,
const char *event));

void cpc_walk_attrs(cpc_t *cpc, void *arg,
void (*action)(void *arg, const char *attr));

The cpc_cciname() function returns a printable description of the processor performance
counter interfaces, for example, the string UltraSPARC III+ & IV. This name should not be
assumed to be the same as the name the manufacturer might otherwise ascribe to the
processor. It simply names the performance counter interfaces as understood by the system,
and thus names the set of performance counter events that can be described by that interface.

The cpc_cpuref() function returns a string that describes a reference work that should be
consulted to (allow a human to) understand the semantics of the performance counter events
that are known to the system. The string returned might be substantially longer than 80
characters. Callers printing to a terminal might want to insert line breaks as appropriate.

The cpc_npic() function returns the number of performance counters accessible on the
processor.

The cpc_caps() function returns a bitmap containing the bitwise inclusive-OR of zero or
more flags that describe the capabilities of the processor. If CPC_CAP_OVERFLOW_INTERRUPT is
present, the processor can generate an interrupt when a hardware performance counter
overflows. If CPC_CAP_OVERFLOW_PRECISE is present, the processor can determine precisely
which counter overflowed, thereby affecting the behavior of the overflow notification
mechanism described in cpc_bind_curlwp(3CPC).

Name

Synopsis

Description

cpc_npic(3CPC)

Extended Library Functions, Volume 1 57

The system maintains a list of performance counter events supported by the underlying
processor. Some processors are able to count all events on all hardware counters, while other
processors restrict certain events to be counted only on specific hardware counters. The
system also maintains a list of processor-specific attributes that can be used for advanced
configuration of the performance counter hardware. These functions allow applications to
determine what events and attributes are supported by the underlying processor. The
reference work pointed to by cpc_cpuref() should be consulted to understand the reasons for
and use of the attributes.

The cpc_walk_events_all() function calls the action function on each element of a global
event list. The action function is called with each event supported by the processor, regardless
of which counter is capable of counting it. The action function is called only once for each
event, even if that event can be counted on more than one counter.

The cpc_walk_events_pic() function calls the action function with each event supported by
the counter indicated by the picno argument, where picno ranges from 0 to the value returned
by cpc_npic().

The system maintains a list of platform independent performance counter events known as
generic events (see generic_events(3CPC)).

The cpc_walk_generic_events_all() function calls the action function on each generic
event available on the processor. The action function is called for each generic event,
regardless of which counter is capable of counting it. The action function is called only once
for each event, even if that event can be counted on more than one counter.

The cpc_walk_generic_events_pic() function calls the action function with each generic
event supported by the counter indicated by the picno argument, where picno ranges from 0 to
the value returned by cpc_npic().

The system maintains a list of attributes that can be used to enable advanced features of the
performance counters on the underlying processor. The cpc_walk_attrs() function calls the
action function for each supported attribute name. See the reference material as returned by
cpc_cpuref(3CPC) for the semantics use of attributes.

The cpc_cciname() function always returns a printable description of the processor
performance counter interfaces.

The cpc_cpuref() function always returns a string that describes a reference work.

The cpc_npic() function always returns the number of performance counters accessible on
the processor.

The cpc_caps() function always returns a bitmap containing the bitwise inclusive-OR of zero
or more flags that describe the capabilities of the processor.

If the user-defined function specified by action is not called, the cpc_walk_events_all(),
cpc_walk_events_pic(), cpc_walk_attrs(), cpc_walk_generic_events_pic(), and
cpc_walk_generic_events_pic() functions set errno to indicate the error.

Return Values

cpc_npic(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 8 Oct 200858

The cpc_walk_events_all(), cpc_walk_events_pic(), cpc_walk_attrs(),
cpc_walk_generic_events_pic(), and cpc_walk_generic_events_pic() functions will fail
if:

ENOMEM There is not enough memory available.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

cpc_bind_curlwp(3CPC), generic_events(3CPC), libcpc(3LIB), attributes(5)

Errors

Attributes

See Also

cpc_npic(3CPC)

Extended Library Functions, Volume 1 59

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcpc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

cpc_open, cpc_close – initialize the CPU Performance Counter library

cc [flag...] file... -lcpc [library...]

#include <libcpc.h>

cpc_t *cpc_open(int vers);

int cpc_close(cpc_t *cpc);

The cpc_open() function initializes libcpc(3LIB) and returns an identifier that must be used
as the cpc argument in subsequent libcpc function calls. The cpc_open() function takes an
interface version as an argument and returns NULL if that version of the interface is
incompatible with the libcpc implementation present on the system. Usually, the argument
has the value of CPC_VER_CURRENT bound to the application when it was compiled.

The cpc_close() function releases all resources associated with the cpc argument. Any bound
counters utilized by the process are unbound. All entities of type cpc_set_t and cpc_buf_t

are invalidated and destroyed.

If the version requested is supported by the implementation, cpc_open() returns a cpc_t
handle for use in all subsequent libcpc operations. If the implementation cannot support the
version needed by the application, cpc_open() returns NULL, indicating that the application at
least needs to be recompiled to operate correctly on the new platform and might require
further changes.

The cpc_close() function always returns 0.

These functions will fail if:

EINVAL The version requested by the client is incompatible with the implementation.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libcpc(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

cpc_open(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 30 Jan 200460

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcpc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcpc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

cpc_pctx_bind_event, cpc_pctx_take_sample, cpc_pctx_rele, cpc_pctx_invalidate – access
CPU performance counters in other processes

cc [flag...] file... −lcpc −lpctx [library...]

#include <libpctx.h>

#include <libcpc.h>

int cpc_pctx_bind_event(pctx_t *pctx, id_t lwpid, cpc_event_t *event,
int flags);

int cpc_pctx_take_sample(pctx_t *pctx, id_t lwpid, cpc_event_t *event);

int cpc_pctx_rele(pctx_t *pctx, id_t lwpid);

int cpc_pctx_invalidate(pctx_t *pctx, id_t lwpid);

These functions are designed to be run in the context of an event handler created using the
libpctx(3LIB) family of functions that allow the caller, also known as the controlling process,
to manipulate the performance counters in the context of a controlled process. The controlled
process is described by the pctx argument, which must be obtained from an invocation of
pctx_capture(3CPC) or pctx_create(3CPC) and passed to the functions described on this
page in the context of an event handler.

The semantics of the functions cpc_pctx_bind_event(), cpc_pctx_take_sample(), and
cpc_pctx_rele() are directly analogous to those of cpc_bind_event(), cpc_take_sample(),
and cpc_rele() described on the cpc_bind_event(3CPC) manual page.

The cpc_pctx_invalidate() function allows the performance context to be invalidated in an
LWP in the controlled process.

These functions return 0 on success. On failure, they return −1 and set errno to indicate the
error.

The cpc_pctx_bind_event(), cpc_pctx_take_sample(), and cpc_pctx_rele() functions
return the same errno values the analogous functions described on the
cpc_bind_event(3CPC) manual page. In addition, these function may fail if:

EACCES For cpc_pctx_bind_event(), access to the requested hypervisor event was
denied.

ESRCH The value of the lwpid argument is invalid in the context of the controlled process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

Interface Stability Committed

Name

Synopsis

Description

Return Values

Errors

Attributes

cpc_pctx_bind_event(3CPC)

Extended Library Functions, Volume 1 61

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibpctx-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

cpc(3CPC), cpc_bind_event(3CPC), libcpc(3LIB), pctx_capture(3CPC),
pctx_create(3CPC), attributes(5)

The cpc_pctx_bind_event(), cpc_pctx_invalidate(), cpc_pctx_rele(), and
cpc_pctx_take_sample() functions exist for binary compatibility only. Source containing
these functions will not compile. These functions are obsolete and might be removed in a
future release. Applications should use cpc_bind_pctx(3CPC), cpc_unbind(3CPC), and
cpc_set_sample(3CPC) instead.

The capability to create and analyze overflow events in other processes is not available, though
it may be made available in a future version of this API. In the current implementation, the
flags field must be specified as 0.

See Also

Notes

cpc_pctx_bind_event(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 05 Mar 200762

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcpc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

cpc_set_create, cpc_set_destroy, cpc_set_add_request, cpc_walk_requests – manage sets of
counter requests

cc [flag...] file... -lcpc [library...]

#include <libcpc.h>

cpc_set_t *cpc_set_create(cpc_t *cpc);

int cpc_set_destroy(cpc_t *cpc, cpc_set_t *set);

int cpc_set_add_request(cpc_t *cpc, cpc_set_t *set,
const char *event, uint64_t preset, uint_t flags,
uint_t nattrs, const cpc_attr_t *attrs);

void cpc_walk_requests(cpc_t *cpc, cpc_set_t *set, void *arg,
void (*action)(void *arg, int index, const char *event,
uint64_t preset, uint_t flags, int nattrs,
const cpc_attr_t *attrs));

The cpc_set_create() function returns an initialized and empty CPC set. A CPC set
contains some number of requests, where a request represents a specific configuration of a
hardware performance instrumentation counter present on the processor. The cpc_set_t
data structure is opaque and must not be accessed directly by the application.

Applications wanting to program one or more performance counters must create an empty set
with cpc_set_create() and add requests to the set with cpc_set_add_request(). Once all
requests have been added to a set, the set must be bound to the hardware performance
counters (see cpc_bind_curlwp(), cpc_bind_pctx(), and cpc_bind_cpu(), all described on
cpc_bind_curlwp(3CPC)) before counting events. At bind time, the system attempts to match
each request with an available physical counter capable of counting the event specified in the
request. If the bind is successful, a 64-bit virtualized counter is created to store the counts
accumulated by the hardware counter. These counts are stored and managed in CPC buffers
separate from the CPC set whose requests are being counted. See cpc_buf_create(3CPC) and
cpc_set_sample(3CPC).

The cpc_set_add_request() function specifies a configuration of a hardware counter. The
arguments to cpc_set_add_request() are:

event A string containing the name of an event supported by the system's processor.
The cpc_walk_events_all() and cpc_walk_events_pic() functions (both
described on cpc_npic(3CPC)) can be used to query the processor for the
names of available events. Certain processors allow the use of raw event codes,
in which case a string representation of an event code in a form acceptable to
strtol(3C) can be used as the event argument.

preset The value with which the system initializes the counter.

flags Three flags are defined that modify the behavior of the counter acting on
behalf of this request:

Name

Synopsis

Description

cpc_set_create(3CPC)

Extended Library Functions, Volume 1 63

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Astrtol-3c

CPC_COUNT_USER

The counter should count events that occur while the processor is in user
mode.

CPC_COUNT_SYSTEM

The counter should count events that occur while the processor is in
privileged mode.

CPC_OVF_NOTIFY_EMT

Request a signal to be sent to the application when the physical counter
overflows. A SIGEMT signal is delivered if the processor is capable of
delivering an interrupt when the counter counts past its maximum value.
All requests in the set containing the counter that overflowed are stopped
until the set is rebound.

At least one of CPC_COUNT_USER or CPC_COUNT_SYSTEM must be specified to
program the hardware for counting.

nattrs, attrs The nattrs argument specifies the number of attributes pointed to by the attrs
argument, which is an array of cpc_attr_t structures containing
processor-specific attributes that modify the request's configuration. The
cpc_walk_attrs() function (see cpc_npic(3CPC)) can be used to query the
processor for the list of attributes it accepts. The library makes a private copy
of the attrs array, allowing the application to dispose of it immediately after
calling cpc_set_add_request().

The cpc_walk_requests() function calls the action function on each request that has been
added to the set. The arg argument is passed unmodified to the action function with each call.

Upon successful completion, cpc_set_create() returns a handle to the opaque cpc_set_t
data structure. Otherwise, NULL is returned and errno is set to indicate the error.

Upon successful completion, cpc_set_destroy() returns 0. Otherwise, -1 is returned and
errno is set to indicate the error.

Upon successful completion, cpc_set_add_request() returns an integer index used to refer
to the data generated by that request during data retrieval. Otherwise, -1 is returned and errno

is set to indicate the error.

These functions will fail if:

EINVAL An event, attribute, or flag passed to cpc_set_add_request() was invalid.

For cpc_set_destroy() and cpc_set_add_request(), the set parameter was not
created with the given cpc_t.

ENOMEM There was not enough memory available to the process to create the library's data
structures.

Return Values

Errors

cpc_set_create(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 20 Aug 200764

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

cpc_bind_curlwp(3CPC), cpc_buf_create(3CPC), cpc_npic(3CPC),
cpc_seterrhndlr(3CPC), libcpc(3LIB), strtol(3C), attributes(5)

The system automatically determines which particular physical counter to use to count the
events specified by each request. Applications can force the system to use a particular counter
by specifying the counter number in an attribute named picnum that is passed to
cpc_set_add_request(). Counters are numbered from 0 to n - 1, where n is the number of
counters in the processor as returned by cpc_npic(3CPC).

Some processors, such as UltraSPARC, do not allow the hardware counters to be programmed
differently. In this case, all requests in the set must have the same configuration, or an attempt
to bind the set will return EINVAL. If a cpc_errhndlr_t has been registered with
cpc_seterrhndlr(3CPC), the error handler is called with subcode CPC_CONFLICTING_REQS.
For example, on UltraSPARC pic0 and pic1 must both program events in the same processor
mode (user mode, kernel mode, or both). For example, pic0 cannot be programmed with
CPC_COUNT_USER while pic1 is programmed with CPC_COUNT_SYSTEM. Refer to the hardware
documentation referenced by cpc_cpuref(3CPC) for details about a particular processor's
performance instrumentation hardware.

Attributes

See Also

Notes

cpc_set_create(3CPC)

Extended Library Functions, Volume 1 65

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcpc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Astrtol-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

cpc_seterrfn – control libcpc error reporting

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

typedef void (cpc_errfn_t)(const char *fn, const char *fmt, va_list ap);

void cpc_seterrfn(cpc_errfn_t *errfn);

For the convenience of programmers instrumenting their code, several libcpc(3LIB)
functions automatically emit to stderr error messages that attempt to provide a more detailed
explanation of their error return values. While this can be useful for simple programs, some
applications may wish to report their errors differently—for example, to a window or to a log
file.

The cpc_seterrfn() function allows the caller to provide an alternate function for reporting
errors; the type signature is shown above. The fn argument is passed the library function name
that detected the error, the format string fmt and argument pointer ap can be passed directly
to vsnprintf(3C) or similar varargs-based routine for formatting.

The default printing routine can be restored by calling the routine with an errfn argument of
NULL.

EXAMPLE 1 Debugging example.

This example produces error messages only when debugging the program containing it, or
when the cpc_strtoevent() function is reporting an error when parsing an event
specification

int debugging;

void

myapp_errfn(const char *fn, const char *fmt, va_list ap)

{

if (strcmp(fn, "strtoevent") != 0 && !debugging)

return;

(void) fprintf(stderr, "myapp: cpc_%s(): ", fn);

(void) vfprintf(stderr, fmt, ap);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

Interface Stability Obsolete

Name

Synopsis

Description

Examples

Attributes

cpc_seterrfn(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 28 Mar 200566

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcpc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Avsnprintf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

cpc(3CPC), cpc_seterrhndlr(3CPC), libcpc(3LIB), vsnprintf(3C), attributes(5)

The cpc_seterrfn() function exists for binary compatibility only. Source containing this
function will not compile. This function is obsolete and might be removed in a future release.
Applications should use cpc_seterrhndlr(3CPC) instead.

See Also

Notes

cpc_seterrfn(3CPC)

Extended Library Functions, Volume 1 67

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcpc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Avsnprintf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

cpc_seterrhndlr – control libcpc error reporting

cc [flag...] file... -lcpc [library...]

#include <libcpc.h>

typedef void(cpc_errhndlr_t)(cpc_t *cpc, const char *fn, int subcode,
const char *fmt, va_list ap);

void cpc_seterrhndlr(cpc_t *cpc, cpc_errhndlr_t *errfn);

For the convenience of programmers instrumenting their code, several libcpc(3LIB)
functions automatically emit to stderr error messages that attempt to provide a more detailed
explanation of their error return values. While this can be useful for simple programs, some
applications might wanat to report their errors differently, for example, to a window or to a log
file.

The cpc_seterrhndlr() function allows the caller to provide an alternate function for
reporting errors. The type signature is shown in the SYNOPSIS. The fn argument is passed the
library function name that detected the error, an integer subcode indicating the specific error
condidtion that has occurred, and the format string fmt that contains a textual description of
the integer subcode. The format string fmt and argument pointer ap can be passed directly to
vsnprintf(3C) or similar varargs-based function for formatting.

The integer subcodes are provided to allow programs to recognize error conditions while
using libcpc. The fmt string is provided as a convenience for easy printing. The error
subcodes are:

CPC_INVALID_EVENT A specified event is not supported by the processor.

CPC_INVALID_PICNUM The counter number does not fall in the range of
available counters.

CPC_INVALID_ATTRIBUTE A specified attribute is not supported by the processor.

CPC_ATTRIBUTE_OUT_OF_RANGE The value of an attribute is outside the range supported
by the processor.

CPC_RESOURCE_UNAVAIL A hardware resource necessary for completing an
operation was unavailable.

CPC_PIC_NOT_CAPABLE The requested counter cannot count an assigned event.

CPC_REQ_INVALID_FLAGS One or more requests has invalid flags.

CPC_CONFLICTING_REQS The requests in a set cannot be programmed onto the
hardware at the same time.

CPC_ATTR_REQUIRES_PRIVILEGE A request contains an attribute which requires the
cpc_cpu privilege, which the process does not have.

Name

Synopsis

Description

cpc_seterrhndlr(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 30 Jan 200468

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcpc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Avsnprintf-3c

The default printing routine can be restored by calling the routine with an errfn argument of
NULL.

EXAMPLE 1 Debugging example.

The following example produces error messages only when debugging the program
containing it, or when the cpc_bind_curlwp(), cpc_bind_cpu(), or cpc_bind_pctx()
functions are reporting an error when binding a cpc_set_t.

int debugging;

void

myapp_errfn(const char *fn, int subcode, const char *fmt, va_list ap)

{

if (strncmp(fn, "cpc_bind", 8) != 0 && !debugging)

return;

(void) fprintf(stderr, "myapp: cpc_%s(): ", fn);

(void) vfprintf(stderr, fmt, ap);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

cpc_bind_curlwp(3CPC), libcpc(3LIB), vsnprintf(3C), attributes(5)

Examples

Attributes

See Also

cpc_seterrhndlr(3CPC)

Extended Library Functions, Volume 1 69

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcpc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Avsnprintf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

cpc_shared_open, cpc_shared_bind_event, cpc_shared_take_sample, cpc_shared_rele,
cpc_shared_close – use CPU performance counters on processors

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

int cpc_shared_open(void);

int cpc_shared_bind_event(int fd, cpc_event_t *event, int flags);

int cpc_shared_take_sample(int fd, cpc_event_t *event);

int cpc_shared_rele(int fd);

void cpc_shared_close(int fd);

The cpc_shared_open() function allows the caller to access the hardware counters in such a
way that the performance of the currently bound CPU can be measured. The function returns
a file descriptor if successful. Only one such open can be active at a time on any CPU.

The cpc_shared_bind_event(), cpc_shared_take_sample(), and cpc_shared_rele()

functions are directly analogous to the corresponding cpc_bind_event(),
cpc_take_sample(), and cpc_rele() functions described on the
cpc_bind_event(3CPC)manual page, except that they operate on the counters of a particular
processor.

If a thread wishes to access the counters using this interface, it must do so using a thread
bound to an lwp, (see the THR_BOUND flag to thr_create(3C)), that has in turn bound itself to a
processor using processor_bind(2).

Unlike the cpc_bind_event(3CPC) family of functions, no counter context is attached to
those lwps, so the performance counter samples from the processors reflects the system-wide
usage, instead of per-lwp usage.

The first successful invocation of cpc_shared_open() will immediately invalidate all
existing performance counter context on the system, and prevent all subsequent attempts to
bind counter context to lwps from succeeding anywhere on the system until the last caller
invokes cpc_shared_close().

This is because it is impossible to simultaneously use the counters to accurately measure
per-lwp and system-wide events, so there is an exclusive interlock between these uses.

Access to the shared counters is mediated by file permissions on a cpc pseudo device. Only a
user with the {PRIV_SYS_CONFIG} privilege is allowed to access the shared device. This control
prevents use of the counters on a per-lwp basis to other users.

The CPC_BIND_LWP_INHERIT and CPC_BIND_EMT_OVF flags are invalid for the shared interface.

Name

Synopsis

Description

Usage

cpc_shared_open(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 28 Mar 200570

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Athr-create-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2processor-bind-2

On success, the functions (except for cpc_shared_close()) return 0. On failure, the functions
return –1 and set errno to indicate the reason.

EACCES The caller does not have appropriate privilege to access the CPU performance
counters system-wide.

EAGAIN For cpc_shared_open(), this value implies that the counters on the bound cpu
are busy because they are already being used to measure system-wide events by
some other caller.

EAGAIN Otherwise, this return value implies that the counters are not available because
the thread has been unbound from the processor it was bound to at open time.
Robust programs should be coded to expect this behavior, and should invoke
cpc_shared_close(), before retrying the operation.

EINVAL The counters cannot be accessed on the current CPU because the calling thread
is not bound to that CPU using processor_bind(2).

ENOTSUP The caller has attempted an operation that is illegal or not supported on the
current platform.

ENXIO The current machine either has no performance counters, or has been
configured to disallow access to them system-wide.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Obsolete

processor_bind(2), cpc(3CPC), cpc_bind_cpu(3CPC), cpc_bind_event(3CPC),
cpc_set_sample(3CPC), cpc_unbind(3CPC), libcpc(3LIB), thr_create(3C),
attributes(5)

The cpc_shared_open(), cpc_shared_bind_event(), cpc_shared_take_sample(),
cpc_shared_rele(), and cpc_shared_close() functions exist for binary compatibility only.
Source containing these functions will not compile. These functions are obsolete and might be
removed in a future release. Applications should use cpc_bind_cpu(3CPC),
cpc_set_sample(3CPC), and cpc_unbind(3CPC) instead.

Return Values

Errors

Attributes

See Also

Notes

cpc_shared_open(3CPC)

Extended Library Functions, Volume 1 71

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2processor-bind-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2processor-bind-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcpc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Athr-create-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

cpc_strtoevent, cpc_eventtostr – translate strings to and from events

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

int cpc_strtoevent(int cpuver, const char *spec, cpc_event_t *event);

char *cpc_eventtostr(cpc_event_t *event);

The cpc_strtoevent() function translates an event specification to the appropriate
collection of control bits in a cpc_event_t structure pointed to by the event argument. The
event specification is a getsubopt(3C)–style string that describes the event and any attributes
that the processor can apply to the event or events. If successful, the funciton returns 0, the
ce_cpuver field and the ISA-dependent control registers of event are initialized appropriately,
and the rest of the cpc_event_t structure is initialized to 0.

The cpc_eventtostr() function takes an event and constructs a compact canonical string
representation for that event.

Upon successful completion, cpc_strtoevent() returns 0. If the string cannot be decoded, a
non-zero value is returned and a message is printed using the library's error-reporting
mechanism (see cpc_seterrfn(3CPC)).

Upon successful completion, cpc_eventtostr() returns a pointer to a string. The string
returned must be freed by the caller using free(3C). If cpc_eventtostr() fails, a null pointer
is returned.

The event selection syntax used is processor architecture-dependent. The supported
processor families allow variations on how events are counted as well as what events can be
counted. This information is available in compact form from the cpc_getusage() function
(see cpc_getcpuver(3CPC)), but is explained in further detail below.

On UltraSPARC processors, the syntax for setting options is as follows:

pic0=<eventspec>,pic1=<eventspec> [,sys] [,nouser]

This syntax, which reflects the simplicity of the options available using the %pcr register,
forces both counter events to be selected. By default only user events are counted; however, the
sys keyword allows system (kernel) events to be counted as well. User event counting can be
disabled by specifying the nouser keyword.

The keywords pic0 and pic1 may be omitted; they can be used to resolve ambiguities if they
exist.

On Pentium processors, the syntax for setting counter options is as follows:

pic0=<eventspec>,pic1=<eventspec> [,sys[[0|1]]] [,nouser[[0|1]]]

[,noedge[[0|1]]] [,pc[[0|1]]]

Name

Synopsis

Description

Return Values

Usage

UltraSPARC

Pentium I

cpc_strtoevent(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 28 Mar 200572

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agetsubopt-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afree-3c

The syntax and semantics are the same as UltraSPARC, except that is possible to specify
whether a particular counter counts user or system events. If unspecified, the specification is
presumed to apply to both counters.

There are some additional keywords. The noedge keyword specifies that the counter should
count clocks (duration) instead of events. The pc keyword allows the external pin control pins
to be set high (defaults to low). When the pin control register is set high, the external pin will
be asserted when the associated register overflows. When the pin control register is set low, the
external pin will be asserted when the counter has been incremented. The electrical effect of
driving the pin is dependent uptoon how the motherboard manufacturer has chosen to
connect it, if it is connected at all.

For Pentium II processors, the syntax is substantially more complex, reflecting the complex
configuration options available:

pic0=<eventspec>,pic1=<eventspec> [,sys[[0|1]]]

[,nouser[[0|1]]] [,noedge[[0|1]]] [,pc[[0|1]]] [,inv[[0|1]]] [,int[[0|1]]]

[,cmask[0|1]=<maskspec>] [,umask[0|1]=<maskspec>]

This syntax is a straightforward extension of the earlier syntax. The additional inv, int,
cmask0, cmask1, umask0, and umask1 keywords allow extended counting semantics. The mask
specification is a number between 0 and 255, expressed in hexadecimal, octal or decimal
notation.

EXAMPLE 1 SPARC Example.

cpc_event_t event;

char *setting = "pic0=EC_ref,pic1=EC_hit"; /* UltraSPARC-specific */

if (cpc_strtoevent(cpuver, setting, &event) != 0)

/* can’t measure ’setting’ on this processor */

else

setting = cpc_eventtostr(&event);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

MT-Level MT-Safe

cpc(3CPC), cpc_getcpuver(3CPC), cpc_set_add_request(3CPC), cpc_seterrfn(3CPC),
free(3C), getsubopt(3C), libcpc(3LIB), attributes(5)

Pentium II

Examples

SPARC

Attributes

See Also

cpc_strtoevent(3CPC)

Extended Library Functions, Volume 1 73

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afree-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agetsubopt-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcpc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

The cpc_strtoevent() and cpc_eventtostr() functions exist for binary compatibility only.
Source containing these functions will not compile. These functions are obsolete and might be
removed in a future release. Applications should use cpc_set_add_request(3CPC) instead.

These functions are provided as a convenience only. As new processors are usually released
asynchronously with software, the library allows the pic0 and pic1 keywords to interpret
numeric values specified directly in hexadecimal, octal, or decimal.

Notes

cpc_strtoevent(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 28 Mar 200574

cpc_version – coordinate CPC library and application versions

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

uint_t cpc_version(uint_t version);

The cpc_version() function takes an interface version as an argument and returns an
interface version as a result. Usually, the argument will be the value of CPC_VER_CURRENT
bound to the application when it was compiled.

If the version requested is still supported by the implementation, cpc_version() returns the
requested version number and the application can use the facilities of the library on that
platform. If the implementation cannot support the version needed by the application,
cpc_version() returns CPC_VER_NONE, indicating that the application will at least need to be
recompiled to operate correctly on the new platform, and may require further changes.

If version is CPC_VER_NONE, cpc_version() returns the most current version of the library.

EXAMPLE 1 Protect an application from using an incompatible library.

The following lines of code protect an application from using an incompatible library:

if (cpc_version(CPC_VER_CURRENT) == CPC_VER_NONE) {

/* version mismatch - library cannot translate */

exit(1);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

cpc(3CPC), cpc_open(3CPC), libcpc(3LIB), attributes(5)

The cpc_version() function exists for binary compatibility only. Source containing this
function will not compile. This function is obsolete and might be removed in a future release.
Applications should use cpc_open(3CPC) instead.

The version number is used only to express incompatible semantic changes in the
performance counter interfaces on the given platform within a single instruction set
architecture, for example, when a new set of performance counter registers are added to an
existing processor family that cannot be specified in the existing cpc_event_t data structure.

Name

Synopsis

Description

Return Values

Examples

Attributes

See Also

Notes

cpc_version(3CPC)

Extended Library Functions, Volume 1 75

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcpc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

crypt, setkey, encrypt, des_crypt, des_setkey, des_encrypt, run_setkey, run_crypt, crypt_close
– password and file encryption functions

cc [flag ...] file ... -lcrypt [library ...]

#include <crypt.h>

char *crypt(const char *key, const char *salt);

void setkey(const char *key);

void encrypt(char *block, int flag);

char *des_crypt(const char *key, const char *salt);

void des_setkey(const char *key);

void des_encrypt(char *block, int flag);

int run_setkey(int *p, const char *key);

int run_crypt(long offset, char *buffer, unsigned int count,
int *p);

int crypt_close(int *p);

des_crypt() is the password encryption function. It is based on a one-way hashing
encryption algorithm with variations intended (among other things) to frustrate use of
hardware implementations of a key search.

key is a user's typed password. salt is a two-character string chosen from the set
[a-zA-Z0-9./]; this string is used to perturb the hashing algorithm in one of 4096 different
ways, after which the password is used as the key to encrypt repeatedly a constant string. The
returned value points to the encrypted password. The first two characters are the salt itself.

The des_setkey() and des_encrypt() entries provide (rather primitive) access to the actual
hashing algorithm. The argument of des_setkey() is a character array of length 64
containing only the characters with numerical value 0 and 1. If this string is divided into
groups of 8, the low-order bit in each group is ignored, thereby creating a 56-bit key that is set
into the machine. This key is the key that will be used with the hashing algorithm to encrypt
the string block with the function des_encrypt().

The argument to the des_encrypt() entry is a character array of length 64 containing only the
characters with numerical value 0 and 1. The argument array is modified in place to a similar
array representing the bits of the argument after having been subjected to the hashing
algorithm using the key set by des_setkey(). If flag is zero, the argument is encrypted; if
non-zero, it is decrypted.

Note that decryption is not provided in the international version of crypt(). The
international version is part of the C Development Set, and the domestic version is part of the
Security Administration Utilities. If decryption is attempted with the international version of
des_encrypt(), an error message is printed.

Name

Synopsis

Description

crypt(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 3 Mar 200876

crypt(), setkey(), and encrypt() are front-end routines that invoke des_crypt(),
des_setkey(), and des_encrypt() respectively.

The routines run_setkey() and run_crypt() are designed for use by applications that need
cryptographic capabilities, such as ed(1) and vi(1). run_setkey() establishes a two-way pipe
connection with the crypt utility, using key as the password argument. run_crypt() takes a
block of characters and transforms the cleartext or ciphertext into their ciphertext or cleartext
using the crypt utility. offset is the relative byte position from the beginning of the file that the
block of text provided in block is coming from. count is the number of characters in block, and
connection is an array containing indices to a table of input and output file streams. When
encryption is finished, crypt_close() is used to terminate the connection with the crypt
utility.

run_setkey() returns −1 if a connection with the crypt utility cannot be established. This
result will occur in international versions of the UNIX system in which the crypt utility is not
available. If a null key is passed to run_setkey(), 0 is returned. Otherwise, 1 is returned.
run_crypt() returns −1 if it cannot write output or read input from the pipe attached to
crypt(). Otherwise it returns 0.

The program must be linked with the object file access routine library libcrypt.a.

In the international version of crypt(), a flag argument of 1 to encrypt() or des_encrypt()
is not accepted, and errno is set to ENOSYS to indicate that the functionality is not available.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

ed(1), login(1), passwd(1), vi(1), getpass(3C), passwd(4), attributes(5)

The return value in crypt() points to static data that are overwritten by each call.

Return Values

Attributes

See Also

Notes

crypt(3EXT)

Extended Library Functions, Volume 1 77

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ed-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1vi-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ed-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1login-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1passwd-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1vi-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agetpass-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ct_ctl_adopt, ct_ctl_abandon, ct_ctl_newct, ct_ctl_ack, ct_ctl_nack, ct_ctl_qack – common
contract control functions

cc [flag...] file... -D_LARGEFILE64_SOURCE -lcontract [library...]

#include <libcontract.h>

int ct_ctl_adopt(int fd);

int ct_ctl_abandon(int fd);

int ct_ctl_newct(int fd, uint64_t evid, int templatefd);

int ct_ctl_ack(int fd, uint64_t evid);

int ct_ctl_nack(int fd, uint64_t evid);

int ct_ctl_qack(int fd, uint64_t evid);

These functions operate on contract control file descriptors obtained from the contract(4)
file system.

The ct_ctl_adopt() function adopts the contract referenced by the file descriptor fd. After a
successful call to ct_ctl_adopt(), the contract is owned by the calling process and any events
in that contract's event queue are appended to the process's bundle of the appropriate type.

The ct_ctl_abandon() function abandons the contract referenced by the file descriptor fd.
After a successful call to ct_ctl_abandon() the process no longer owns the contract, any
events sent by that contract are automatically removed from the process's bundle, and any
critical events on the contract's event queue are automatically acknowledged. Depending on
its type and terms, the contract will either be orphaned or destroyed.

The ct_ctl_ack() function acknowledges the critical event specified byevid. If the event
corresponds to an exit negotiation, ct_ctl_ack() also indicates that the caller is prepared for
the system to proceed with the referenced reconfiguration.

The ct_ctl_nack() function acknowledges the critical negotiation event specified by evid.
The ct_ctl_nack() function also indicates that the caller wishes to block the proposed
reconfiguration indicated by event evid. Depending on the contract type, this function might
require certain privileges to be asserted in the process's effective set. This function will fail and
return an error if the event represented by evid is not a negotiation event.

The ct_ctl_qack() function requests a new quantum of time for the negotiation specified by
the event ID evid.

The ct_ctl_newct() function instructs the contract specified by the file descriptor fd that
when the current exit negotiation completes, another contract with the terms provided by the
template specified by templatefd should be automatically written.

Name

Synopsis

Description

ct_ctl_adopt(3CONTRACT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 9 Aug 200778

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4contract-4

Upon successful completion, ct_ctl_adopt(), ct_ctl_abandon(), ct_ctl_newct(),
ct_ctl_ack(), and ct_ctl_qack() return 0. Otherwise, they return a non-zero error value.

The ct_ctl_adopt() function will fail if:

EBUSY The contract is in the owned state.

EINVAL The contract was not inherited by the caller's process contract or was created by a
process in a different zone.

The ct_ctl_abandon(), ct_ctl_newct(), ct_ctl_ack(), ct_ctl_nack(), and
ct_ctl_qack() functions will fail if:

EBUSY The contract does not belong to the calling process.

The ct_ctl_newct() and ct_ctl_qack() functions will fail if:

ESRCH The event ID specified by evid does not correspond to an unacknowledged
negotiation event.

The ct_ctl_newct() function will fail if:

EINVAL The file descriptor specified by fd was not a valid template file descriptor.

The ct_ctl_ack() and ct_ctl_nack() functions will fail if:

ESRCH The event ID specified by evid does not correspond to an unacknowledged
negotiation event.

The ct_ctl_nack() function will fail if:

EPERM The calling process lacks the appropriate privileges required to block the
reconfiguration.

The ct_ctl_qack() function will fail if:

ERANGE The maximum amount of time has been requested.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libcontract(3LIB), contract(4), attributes(5), lfcompile(5)

Return Values

Errors

Attributes

See Also

ct_ctl_adopt(3CONTRACT)

Extended Library Functions, Volume 1 79

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcontract-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4contract-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lfcompile-5

ct_dev_status_get_dev_state, ct_dev_status_get_aset, ct_dev_status_get_minor,
ct_dev_status_get_noneg – read contract status information from a status object

cc [flag...] file... -D_LARGEFILE64_SOURCE -lcontract [library...]

#include <libcontract.h>

#include <sys/contract/device.h>

int ct_dev_status_get_dev_state(ct_stathdl_t stathdl,
uint_t *statep);

int ct_dev_status_get_aset(ct_stathdl_t stathdl,
uint_t *asetp);

int ct_dev_status_get_minor(ct_stathdl_t stathdl, char *buf,
size_t *buflenp);

int ct_dev_status_get_noneg(ct_stathdl_t stathdl,
uint_t *nonegp);

asetp a pointer to a uint_t variable for receiving the acceptable state set (such as A-set)
for the contract

buf a buffer for receiving the devfs path of a minor in a contract

buflenp a pointer to a variable of type size_t for passing the size of the buffer buf. If the
buffer is too small (< PATH_MAX), the minimum size of the buffer needed
(PATH_MAX) is passed back to the caller with this argument.

nonegp a pointer to a uint_t variable for receiving the setting of the “noneg” term

stathdl a status object returned by ct_status_read(3CONTRACT)

statep a pointer to a uint_t variable for receiving the current state of the device which is
the subject of the contract

These functions read contract status information from a status object stathdl returned by
ct_status_read(). The detail level in the call to ct_status_read() needs to be at least
CTD_FIXED for the following calls to be successful. The one exception is
ct_dev_status_get_minor(), which requires a detail level of CTD_ALL.

The ct_dev_status_get_dev_state() function returns the current state of the device which
is the subject of the contract. This can be one of the following:

CT_DEV_EV_ONLINE The device is online and functioning normally.

CT_DEV_EV_DEGRADED The device is online but degraded.

CT_DEV_EV_OFFLINE The device is offline and not configured.

The ct_dev_status_get_aset() function returns the A-set of the contract. This can be the
bitset of one or more of the following states: CT_DEV_EV_ONLINE, CT_DEV_EV_DEGRADED, or
CT_DEV_EV_OFFLINE.

Name

Synopsis

Parameters

Description

ct_dev_status_get_dev_state(3CONTRACT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 9 Aug 200780

The ct_dev_status_get_minor() function reads the devfs path of the minor participating in
the contract. The devfs path returned does not include the /devices prefix. If the buffer
passed in by the caller is too small (< PATH_MAX), the minimum size of the buffer required (
PATH_MAX) is returned to the caller via the buflenp argument.

The ct_dev_status_get_noneg() function returns the “noneg” setting for the contract. A
value of 1 is returned in the nonegp argument if NONEG is set, else 0 is returned.

Upon successful completion, these functions return 0. Otherwise, they return a non-zero error
value.

The ct_dev_status_get_minor() function will fail if:

EOVERFLOW The buffer size is too small to hold the result.

The ct_dev_status_get_dev_state(), ct_dev_status_get_aset(),
ct_dev_status_get_minor() and ct_dev_status_get_noneg() functions will fail if:

EINVAL An invalid argument was specified.

ENOENT The requested data is not present in the status object.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

ct_status_free(3CONTRACT), ct_status_read(3CONTRACT), libcontract(3LIB),
contract(4), devices(4), attributes(5), lfcompile(5)

Return Values

Errors

Attributes

See Also

ct_dev_status_get_dev_state(3CONTRACT)

Extended Library Functions, Volume 1 81

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcontract-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4contract-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4devices-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lfcompile-5

ct_dev_tmpl_set_aset, ct_dev_tmpl_get_aset, ct_dev_tmpl_set_minor,
ct_dev_tmpl_get_minor, ct_dev_tmpl_set_noneg, ct_dev_tmpl_clear_noneg,
ct_dev_tmpl_get_noneg – device contract template functions

cc [flag...] file... -D_LARGEFILE64_SOURCE -lcontract [library...]

#include <libcontract.h>

#include <sys/contract/device.h>

int ct_dev_tmpl_set_aset(int fd, uint_t aset);

int ct_dev_tmpl_get_aset(int fd, uint_t *asetp);

int ct_dev_tmpl_set_minor(int fd, char *minor);

int ct_dev_tmpl_get_minor(int fd, char *buf, size_t *buflenp);

int ct_dev_tmpl_set_noneg(int fd);

int ct_dev_tmpl_clear_noneg(int fd);

int ct_dev_tmpl_get_noneg(int fd, uint_t *nonegp);

aset a bitset of one or more of device states

asetp a pointer to a variable into which the current A-set is to be returned

buf a buffer into which the minor path is to be returned

buflenp a pointer to variable of type size_t in which the size of the buffer buf is passed in.
If the buffer is too small the size of the buffer needed for a successful call is passed
back to the caller.

fd a file descriptor from an open of the device contract template file in the contract
filesystem (ctfs)

minor the devfs path (the /devices path without the “/devices” prefix) of a minor
which is to be the subject of a contract

nonegp a pointer to a uint_t variable for receiving the current setting of the
“nonnegotiable” term in the template

These functions read and write device contract terms and operate on device contract template
file descriptors obtained from the contract(4) filesystem (ctfs).

The ct_dev_tmpl_set_aset() and ct_dev_tmpl_get_aset() functions write and read the
“acceptable states” set (or A-set for short). This is the set of device states guaranteed by the
contract. Any departure from these states will result in the breaking of the contract and a
delivery of a critical contract event to the contract holder. The A-set value is a bitset of one or
more of the following device states: CT_DEV_EV_ONLINE, CT_DEV_EV_DEGRADED, and
CT_DEV_EV_OFFLINE.

Name

Synopsis

Parameters

Description

ct_dev_tmpl_set_aset(3CONTRACT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 9 Aug 200782

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4contract-4

The ct_dev_tmpl_set_minor() and ct_dev_tmpl_get_minor() functions write and read the
minor term (the device resource that is to be the subject of the contract.) The value is a devfs
path to a device minor node (minus the “/devices” prefix). For the
ct_dev_tmpl_get_minor() function, a buffer at least PATH_MAX in size must be passed in. If
the buffer is smaller than PATH_MAX, then the minimum size of the buffer required (PATH_MAX)
for this function is passed back to the caller via the buflenp argument.

The ct_dev_tmpl_set_noneg() and ct_dev_tmpl_get_noneg() functions write and read the
nonnegotiable term. If this term is set, synchronous negotiation events are automatically
NACKed on behalf of the contract holder. For ct_dev_tmpl_get_noneg(), the variable
pointed to by nonegp is set to 1 if the “noneg” term is set or to 0 otherwise. The
ct_dev_tmpl_clear_noneg() term clears the nonnegotiable term from a template.

Upon successful completion, these functions return 0. Otherwise, they return a non-zero error
value.

The ct_dev_tmpl_set_aset() function will fail if:

EINVAL A template file descriptor or A-set is invalid

The ct_dev_tmpl_set_minor() function will fail if:

EINVAL One or more arguments is invalid.

ENXIO The minor named by minor path does not exist.

The ct_dev_tmpl_set_noneg() function will fail if:

EPERM A process lacks sufficient privilege to NACK a device state change.

The ct_dev_tmpl_get_aset() and ct_dev_tmpl_get_minor() functions will fail if:

EINVAL One or more arguments is invalid.

ENOENT The requested term is not set.

The ct_dev_tmpl_get_noneg() function will fail if:

EINVAL One or more arguments is invalid.

The ct_dev_tmpl_get_minor() function will fail if:

EOVEFLOW The supplied buffer is too small.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Return Values

Errors

Attributes

ct_dev_tmpl_set_aset(3CONTRACT)

Extended Library Functions, Volume 1 83

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libcontract(3LIB), contract(4), devices(4), attributes(5), lfcompile(5)See Also

ct_dev_tmpl_set_aset(3CONTRACT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 9 Aug 200784

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcontract-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4contract-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4devices-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lfcompile-5

ct_event_read, ct_event_read_critical, ct_event_reset, ct_event_reliable, ct_event_free,
ct_event_get_flags, ct_event_get_ctid, ct_event_get_evid, ct_event_get_type,
ct_event_get_nevid, ct_event_get_newct – common contract event functions

cc [flag...] file... -D_LARGEFILE64_SOURCE -lcontract [library...]

#include <libcontract.h>

int ct_event_read(int fd, ct_evthdl_t *evthndlp);

int ct_event_read_critical(int fd, ct_evthdl_t *evthndlp);

int ct_event_reset(int fd);

int ct_event_reliable(int fd);

void ct_event_free(ct_evthdl_t evthndl);

ctid_t ct_event_get_ctid(ct_evthdl_t evthndl);

ctevid_t ct_event_get_evid(ct_evthdl_t evthndl);

uint_t ct_event_get_flags(ct_evthdl_t evthndl);

uint_t ct_event_get_type(ct_evthdl_t evthndl);

int ct_event_get_nevid(ct_evthdl_t evthndl, ctevid_t *evidp);

int ct_event_get_newct(ct_evthdl_t evthndl, ctid_t *ctidp);

These functions operate on contract event endpoint file descriptors obtained from the
contract(4) file system and event object handles returned by ct_event_read() and
ct_event_read_critical().

The ct_event_read() function reads the next event from the queue referenced by the file
descriptor fd and initializes the event object handle pointed to by evthndlp. After a successful
call to ct_event_read(), the caller is responsible for calling ct_event_free() on this event
object handle when it has finished using it.

The ct_event_read_critical() function behaves like ct_event_read() except that it reads
the next critical event from the queue, skipping any intermediate events.

The ct_event_reset() function resets the location of the listener to the beginning of the
queue. This function can be used to re-read events, or read events that were sent before the
event endpoint was opened. Informative and acknowledged critical events, however, might
have been removed from the queue.

The ct_event_reliable() function indicates that no event published to the specified event
queue should be dropped by the system until the specified listener has read the event. This
function requires that the caller have the {PRIV_CONTRACT_EVENT} privilege in its effective set.

The ct_event_free() function frees any storage associated with the event object handle
specified by evthndl.

Name

Synopsis

Description

ct_event_read(3CONTRACT)

Extended Library Functions, Volume 1 85

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4contract-4

The ct_event_get_ctid() function returns the ID of the contract that sent the specified
event.

The ct_event_get_evid() function returns the ID of the specified event.

The ct_event_get_flags() function returns the event flags for the specified event. Valid
event flags are:

CTE_INFO The event is an informative event.

CTE_ACK The event has been acknowledged (for critical and negotiation messages).

CTE_NEG The message represents an exit negotiation.

The ct_event_get_type() function reads the event type. The value is one of the event types
described in contract(4) or the contract type's manual page.

The ct_event_get_nevid() function reads the negotiation ID from an CT_EV_NEGEND event.

The ct_event_get_newct() function obtains the ID of the contract created when the
negotiation referenced by the CT_EV_NEGEND event succeeded. If no contract was created, ctidp
will be 0. If the operation was cancelled, *ctidp will equal the ID of the existing contract.

Upon successful completion, ct_event_read(), ct_event_read_critical(),
ct_event_reset(), ct_event_reliable(), ct_event_get_nevid(), and
ct_event_get_newct() return 0. Otherwise, they return a non-zero error value.

The ct_event_get_flags(), ct_event_get_ctid(), ct_event_get_evid(), and
ct_event_get_type() functions return data as described in the DESCRIPTION.

The ct_event_reliable() function will fail if:

EPERM The caller does not have {PRIV_CONTRACT_EVENT} in its effective set.

The ct_event_read() and ct_event_read_critical() functions will fail if:

EAGAIN The event endpoint was opened O_NONBLOCK and no applicable events were
available to be read.

The The ct_event_get_nevid() and ct_event_get_newct() functions will fail if:

EINVAL The evthndl argument is not a CT_EV_NEGEND event object.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Return Values

Errors

Attributes

ct_event_read(3CONTRACT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 1 Apr 200486

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4contract-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libcontract(3LIB), contract(4), attributes(5), lfcompile(5)See Also

ct_event_read(3CONTRACT)

Extended Library Functions, Volume 1 87

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcontract-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4contract-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lfcompile-5

ct_pr_event_get_pid, ct_pr_event_get_ppid, ct_pr_event_get_signal,
ct_pr_event_get_sender, ct_pr_event_get_senderct, ct_pr_event_get_exitstatus,
ct_pr_event_get_pcorefile, ct_pr_event_get_gcorefile, ct_pr_event_get_zcorefile – process
contract event functions

cc [flag...] file... -D_LARGEFILE64_SOURCE -lcontract [library...]

#include <libcontract.h>

#include <sys/contract/process.h>

int ct_pr_event_get_pid(ct_evthdl_t evthdl, pid_t *pidp);

int ct_pr_event_get_ppid(ct_evthdl_t evthdl, pid_t *pidp);

int ct_pr_event_get_signal(ct_evthdl_t evthdl, int *signalp);

int ct_pr_event_get_sender(ct_evthdl_t evthdl, pid_t *pidp);

int ct_pr_event_get_senderct(ct_evthdl_t evthdl, ctid_t *pidp);

int ct_pr_event_get_exitstatus(ct_evthdl_t evthdl, int *statusp);

int ct_pr_event_get_pcorefile(ct_evthdl_t evthdl, char **namep);

int ct_pr_event_get_gcorefile(ct_evthdl_t evthdl, char **namep);

int ct_pr_event_get_zcorefile(ct_evthdl_t evthdl, char **namep);

These functions read process contract event information from an event object returned by
ct_event_read(3CONTRACT) or ct_event_read_critical(3CONTRACT).

The ct_pr_event_get_pid() function reads the process ID of the process generating the
event.

The ct_pr_event_get_ppid() function reads the process ID of the process that forked the
new process causing the CT_PR_EV_FORK event.

The ct_pr_event_get_signal() function reads the signal number of the signal that caused
the CT_PR_EV_SIGNAL event.

The ct_pr_event_get_sender() function reads the process ID of the process that sent the
signal that caused the CT_PR_EV_SIGNAL event. If the signal's sender was not in the same zone
as the signal's recipient, this information is available only to event consumers in the global
zone.

The ct_pr_event_get_senderct function reads the contract ID of the process that sent the
signal that caused the CT_PR_EV_SIGNAL event. If the signal's sender was not in the same
zone as the signal's recipient, this information is available only

The ct_pr_event_get_exitstatus() function reads the exit status of the process generating
a CT_PR_EV_EXIT event.

Name

Synopsis

Description

ct_pr_event_get_pid(3CONTRACT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 19 Jul 200488

The ct_pr_event_get_pcorefile() function reads the name of the process core file if one
was created when the CT_PR_EV_CORE event was generated. A pointer to a character array is
stored in *namep and is freed when ct_event_free(3CONTRACT) is called on the event
handle.

The ct_pr_event_get_gcorefile() function reads the name of the zone's global core file if
one was created when the CT_PR_EV_CORE event was generated. A pointer to a character array
is stored in *namep and is freed when ct_event_free() is called on the event handle.

The ct_pr_event_get_zcorefile() function reads the name of the system-wide core file in
the global zone if one was created when the CT_PR_EV_CORE event was generated. This
information is available only to event consumers in the global zone. A pointer to a character
array is stored in *namep and is freed when ct_event_free() is called on the event handle.

Upon successful completion, ct_pr_event_get_pid(), ct_pr_event_get_ppid(),
ct_pr_event_get_signal(), ct_pr_event_get_sender(), ct_pr_event_get_senderct(),
ct_pr_event_get_exitstatus(), ct_pr_event_get_pcorefile(),
ct_pr_event_get_gcorefile(), and ct_pr_event_get_zcorefile() return 0. Otherwise,
they return a non-zero error value.

The ct_pr_event_get_pid(), ct_pr_event_get_ppid(), ct_pr_event_get_signal(),
ct_pr_event_get_sender(), ct_pr_event_get_senderct(),
ct_pr_event_get_exitstatus(), ct_pr_event_get_pcorefile(),
ct_pr_event_get_gcorefile(), and ct_pr_event_get_zcorefile() functions will fail if:

EINVAL The evthdl argument is not a process contract event object.

The ct_pr_event_get_ppid(), ct_pr_event_get_signal(), ct_pr_event_get_sender(),
ct_pr_event_get_senderct(), ct_pr_event_get_exitstatus(),
ct_pr_event_get_pcorefile(), ct_pr_event_get_gcorefile(), and
ct_pr_event_get_zcorefile() functions will fail if:

EINVAL The requested data do not match the event type.

The ct_pr_event_get_sender()a functions will fail if:

ENOENT The process ID of the sender was not available, or the event object was read by a
process running in a non-global zone and the sender was in a different zone.

The ct_pr_event_get_pcorefile(), ct_pr_event_get_gcorefile(), and
ct_pr_event_get_zcorefile() functions will fail if:

ENOENT The requested core file was not created.

The ct_pr_event_get_zcorefile() function will fail if:

ENOENT The event object was read by a process running in a non-global zone.

Return Values

Errors

ct_pr_event_get_pid(3CONTRACT)

Extended Library Functions, Volume 1 89

EXAMPLE 1 Print the instigator of all CT_PR_EV_SIGNAL events.

Open the process contract bundle. Loop reading events. Fetch and display the signalled pid
and signalling pid for each CT_PR_EV_SIGNAL event encountered.

#include <sys/types.h>

#include <fcntl.h>

#include <stdio.h>

#include <libcontract.h>

...

int fd;

ct_evthdl_t event;

pid_t pid, sender;

fd = open("/system/contract/process/bundle", O_RDONLY);

for (;;) {

ct_event_read(fd, &event);

if (ct_event_get_type(event) != CT_PR_EV_SIGNAL) {

ct_event_free(event);

continue;

}

ct_pr_event_get_pid(event, &pid);

if (ct_pr_event_get_sender(event, &sender) == ENOENT)

printf("process %ld killed by unknown process\n",
(long)pid);

else

printf("process %ld killed by process %ld\n",
(long)pid, (long)sender);

ct_event_free(event);

}

...

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

ct_event_free(3CONTRACT), ct_event_read(3CONTRACT),
ct_event_read_critical(3CONTRACT), libcontract(3LIB), contract(4), process(4),
attributes(5), lfcompile(5)

Examples

Attributes

See Also

ct_pr_event_get_pid(3CONTRACT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 19 Jul 200490

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcontract-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4contract-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4process-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lfcompile-5

ct_pr_status_get_param, ct_pr_status_get_fatal, ct_pr_status_get_members,
ct_pr_status_get_contracts, ct_pr_status_get_svc_fmri, ct_pr_status_get_svc_aux,
ct_pr_status_get_svc_ctid, ct_pr_status_get_svc_creator – process contract status functions

cc [flag...] file... -D_LARGEFILE64_SOURCE -lcontract [library...]

#include <libcontract.h>

#include <sys/contract/process.h>

int ct_pr_status_get_param(ct_stathdl_t stathdl, uint_t *paramp);

int ct_pr_status_get_fatal(ct_stathdl_t stathdl, uint_t *eventsp);

int ct_pr_status_get_members(ct_stathdl_t stathdl,
pid_t **pidpp, uint_t *n);

int ct_pr_status_get_contracts(ct_stathdl_t stathdl,
ctid_t **idpp, uint_t *n);

int ct_pr_status_get_svc_fmri(ct_stathdl_t stathdl, char **fmri);

int ct_pr_status_get_svc_aux(ct_stathdl_t stathdl, char **aux);

int ct_pr_status_get_svc_ctid(ct_stathdl_t stathdl, ctid_t *ctid);

int ct_pr_status_get_svc_creator(ct_stathdl_t stathdl,
char **creator);

These functions read process contract status information from a status object returned by
ct_status_read(3CONTRACT).

The ct_pr_status_get_param() function reads the parameter set term. The value is a
collection of bits as described in process(4).

The ct_pr_status_get_fatal() function reads the fatal event set term. The value is a
collection of bits as described in process(4).

The ct_pr_status_get_members() function obtains a list of the process IDs of the members
of the process contract. A pointer to an array of process IDs is stored in *pidpp. The number of
elements in this array is stored in *n. These data are freed when the status object is freed by a
call to ct_status_free(3CONTRACT).

The ct_pr_status_get_contracts() function obtains a list of IDs of contracts that have
been inherited by the contract. A pointer to an array of IDs is stored in *idpp. The number of
elements in this array is stored in *n. These data are freed when the status object is freed by a
call to ct_status_free().

The ct_pr_status_get_svc_fmri(), ct_pr_status_get_svc_creator(), and
ct_pr_status_get_svc_aux() functions read, respectively, the service FMRI, the contract's
creator execname and the creator's auxiliary field. The buffer pointed to by fmri, aux or
creator, is freed by a call to ct_status_free() and should not be modified.

Name

Synopsis

Description

ct_pr_status_get_param(3CONTRACT)

Extended Library Functions, Volume 1 91

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4process-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4process-4

The ct_pr_status_get_svc_ctid() function reads the process contract id for which the
service FMRI was first set.

Upon successful completion, ct_pr_status_get_param(), ct_pr_status_get_fatal(),
ct_pr_status_get_members(), ct_pr_status_get_contracts(),
ct_pr_status_get_svc_fmri(), ct_pr_status_get_svc_creator(),
ct_pr_status_get_svc_aux(), and ct_pr_status_get_svc_ctid() return 0. Otherwise,
they return a non-zero error value.

The ct_pr_status_get_param(), ct_pr_status_get_fatal(),
ct_pr_status_get_members(), ct_pr_status_get_contracts(),
ct_pr_status_get_svc_fmri(), ct_pr_status_get_svc_creator(),
ct_pr_status_get_svc_aux(), and ct_pr_status_get_svc_ctid() functions will fail if:

EINVAL The stathdl argument is not a process contract status object.

The ct_pr_status_get_param(), ct_pr_status_get_fatal(),
ct_pr_status_get_members(), ct_r_status_get_contracts(),
ct_pr_status_get_svc_fmri(), ct_pr_status_get_svc_creator(),
ct_pr_status_get_svc_aux(), and ct_pr_status_get_svc_ctid() functions will fail if:

ENOENT The requested data were not available in the status object.

EXAMPLE 1 Print members of process contract 1.

Open the status file for contract 1, read the contract's status, obtain the list of processes, print
them, and free the status object.

#include <sys/types.h>

#include <fcntl.h>

#include <libcontract.h>

#include <stdio.h>

...

int fd;

uint_t i, n;

pid_t *procs;

ct_stathdl_t st;

fd = open("/system/contract/process/1/status");
ct_status_read(fd, &st);

ct_pr_status_get_members(st, &procs, &n);

for (i = 0 ; i < n; i++)

printf("%ld\n", (long)procs[i]);

ct_status_free(stat);

close(fd);

...

Return Values

Errors

Examples

ct_pr_status_get_param(3CONTRACT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 25 Feb 200892

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

ct_status_free(3CONTRACT), ct_status_read(3CONTRACT), libcontract(3LIB),
contract(4), process(4), attributes(5), lfcompile(5)

Attributes

See Also

ct_pr_status_get_param(3CONTRACT)

Extended Library Functions, Volume 1 93

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcontract-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4contract-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4process-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lfcompile-5

ct_pr_tmpl_set_transfer, ct_pr_tmpl_set_fatal, ct_pr_tmpl_set_param,
ct_pr_tmpl_set_svc_fmri, ct_pr_tmpl_set_svc_aux, ct_pr_tmpl_get_transfer,
ct_pr_tmpl_get_fatal, ct_pr_tmpl_get_param, ct_pr_tmpl_get_svc_fmri,
ct_pr_tmpl_get_svc_aux – process contract template functions

cc [flag...] file... -D_LARGEFILE64_SOURCE -lcontract [library...]

#include <libcontract.h>

#include <sys/contract/process.h>

int ct_pr_tmpl_set_transfer(int fd, ctid_t ctid);

int ct_pr_tmpl_set_fatal(int fd, uint_t events);

int ct_pr_tmpl_set_param(int fd, uint_t params);

int ct_pr_tmpl_set_svc_fmri(int fd, const char *fmri);

int ct_pr_tmpl_set_svc_aux(int fd, const char *aux);

int ct_pr_tmpl_get_transfer(int fd, ctid_t *ctidp);

int ct_pr_tmpl_get_fatal(int fd, uint_t *eventsp);

int ct_pr_tmpl_get_param(int fd, uint_t *paramsp);

int ct_pr_tmpl_get_svc_fmri(int fd, char *fmri, size_t size);

int ct_pr_tmpl_get_svc_aux(int fd, char *aux, size_t size);

These functions read and write process contract terms and operate on process contract
template file descriptors obtained from the contract(4) file system.

The ct_pr_tmpl_set_transfer() and ct_pr_tmpl_get_transfer() functions write and
read the transfer contract term. The value is the ID of an empty regent process contract owned
by the caller whose inherited contracts are to be transferred to a newly created contract.

The ct_pr_tmpl_set_fatal() and ct_pr_tmpl_get_fatal() functions write and read the
fatal event set term. The value is a collection of bits as described in process(4).

The ct_pr_tmpl_set_param() and ct_pr_tmpl_get_param() functions write and read the
parameter set term. The value is a collection of bits as described in process(4).

The ct_pr_tmpl_set_svc_fmri() and ct_pr_tmpl_get_svc_fmri() functions write and
read the service FMRI value of a process contract template. The ct_pr_tmpl_set_svc_fmri()
function requires the caller to have the {PRIV_CONTRACT_IDENTITY} privilege in its effective
set.

The ct_pr_tmpl_set_svc_aux() and ct_pr_tmpl_get_svc_aux() functions write and read
the creator's auxiliary value of a process contract template.

Name

Synopsis

Description

ct_pr_tmpl_set_transfer(3CONTRACT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 25 Feb 200894

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4contract-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4process-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4process-4

Upon successful completion, ct_pr_tmpl_set_transfer(), ct_pr_tmpl_set_fatal(),
ct_pr_tmpl_set_param(), ct_pr_tmpl_set_svc_fmri(), ct_pr_tmpl_set_svc_aux(),
ct_pr_tmpl_get_transfer(), ct_pr_tmpl_get_fatal(), and ct_pr_tmpl_get_param()

return 0. Otherwise, they return a non-zero error value.

Upon successful completion, ct_pr_tmpl_get_svc_fmri() and ct_pr_tmpl_get_svc_aux()

return the size required to store the value, which is the same value return by strcpy(3C) + 1.
Insufficient buffer size can be checked by:

if (ct_pr_tmpl_get_svc_fmri(fd, fmri, size) > size)

/* buffer is too small */

Otherwise, ct_pr_tmpl_get_svc_fmri() and ct_pr_tmpl_get_svc_aux() return -1 and set
errno to indicate the error.

The ct_pr_tmpl_set_param(), ct_pr_tmpl_set_svc_fmri(), ct_pr_tmpl_set_svc_aux(),
ct_pr_tmpl_get_svc_fmri() and ct_pr_tmpl_get_svc_aux() functions will fail if:

EINVAL An invalid parameter was specified.

The ct_pr_tmpl_set_fatal() function will fail if:

EINVAL An invalid event was specified.

The ct_pr_tmpl_set_transfer() function will fail if:

ESRCH The ID specified by ctid does not correspond to a process contract.

EACCES The ID specified by ctid does not correspond to a process contract owned by
the calling process.

ENOTEMPTY The ID specified by ctid does not correspond to an empty process contract.

The ct_pr_tmpl_set_svc_fmri() function will fail if:

EPERM The calling process does not have {PRIV_CONTRACT_IDENTITY} in its effective set.

EXAMPLE 1 Create and activate a process contract template.

The following example opens a new template, makes hardware errors and signals fatal events,
makes hardware errors critical events, and activates the template. It then forks a process in the
new contract using the requested terms.

#include <libcontract.h>

#include <fcntl.h>

#include <unistd.h>

...

int fd;

fd = open("/system/contract/process/template", O_RDWR);

Return Values

Errors

Examples

ct_pr_tmpl_set_transfer(3CONTRACT)

Extended Library Functions, Volume 1 95

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Astrcpy-3c

EXAMPLE 1 Create and activate a process contract template. (Continued)

(void) ct_pr_tmpl_set_fatal(fd, CT_PR_EV_HWERR|CT_PR_EV_SIGNAL);

(void) ct_tmpl_set_critical(fd, CT_PR_EV_HWERR);

(void) ct_tmpl_activate(fd);

close(fd);

if (fork()) {

/* parent - owns new process contract */

...

} else {

/* child - in new process contract */

...

}

...

EXAMPLE 2 Clear the process contract template.

The following example opens the template file and requests that the active template be cleared.

#include <libcontract.h>

#include <fcntl.h>

...

int fd;

fd = open("/system/contract/process/template", O_RDWR);

(void) ct_tmpl_clear(fd);

close(fd);

...

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libcontract(3LIB), strcpy(3C), contract(4), process(4), attributes(5), lfcompile(5)

Attributes

See Also

ct_pr_tmpl_set_transfer(3CONTRACT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 25 Feb 200896

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcontract-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Astrcpy-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4contract-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4process-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lfcompile-5

ct_status_read, ct_status_free, ct_status_get_id, ct_status_get_zoneid, ct_status_get_type,
ct_status_get_state, ct_status_get_holder, ct_status_get_nevents, ct_status_get_ntime,
ct_status_get_qtime, ct_status_get_nevid, ct_status_get_cookie, ct_status_get_informative,
ct_status_get_critical – common contract status functions

cc [flag...] file... -D_LARGEFILE64_SOURCE -lcontract [library...]

#include <libcontract.h>

int ct_status_read(int fd, int detail, ct_stathdl_t *stathdlp);

void ct_status_free(ct_stathdl_t stathdl);

ctid_t ct_status_get_id(ct_stathdl_t stathdl);

zoneid_t ct_status_get_zoneid(ct_stathdl_t stathdl);

char *ct_status_get_type(ct_stathdl_t stathdl);

uint_t ct_status_get_state(ct_stathdl_t stathdl);

pid_t ct_status_get_holder(ct_stathdl_t stathdl);

int ct_status_get_nevents(ct_stathdl_t stathdl);

int ct_status_get_ntime(ct_stathdl_t stathdl);

int ct_status_get_qtime(ct_stathdl_t stathdl);

ctevid_t ct_status_get_nevid(ct_stathdl_t stathdl);

uint64_t ct_status_get_cookie(ct_stathdl_t stathdl);

ctevid_t ct_status_get_informative(ct_stathdl_t stathdl);

uint_t ct_status_get_critical(ct_stathdl_t stathdl);

These functions operate on contract status file descriptors obtained from the contract(4) file
system and status object handles returned by ct_status_read().

The ct_status_read() function reads the contract's status and initializes the status object
handle pointed to by stathdlp. After a successful call to ct_status_read(), the caller is
responsible for calling ct_status_free() on this status object handle when it has finished
using it. Because the amount of information available for a contract might be large, the detail
argument allows the caller to specify how much information ct_status_read() should
obtain. A value of CTD_COMMON fetches only those data accessible by the functions on this
manual page. CTD_FIXED fetches CTD_COMMON data as well as fixed-size contract type-specific
data. CTD_ALL fetches CTD_FIXED data as well as variable lengthed data, such as arrays. See the
manual pages for contract type-specific status accessor functions for information concerning
which data are fetched by CTD_FIXED and CTD_ALL.

The ct_status_free() function frees any storage associated with the specified status object
handle.

The remaining functions all return contract information obtained from a status object.

Name

Synopsis

Description

ct_status_read(3CONTRACT)

Extended Library Functions, Volume 1 97

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4contract-4

The ct_status_get_id() function returns the contract's ID.

The ct_status_get_zoneid() function returns the contract's creator's zone ID, or −1 if the
creator's zone no longer exists.

The ct_status_get_type() function returns the contract's type. The string should be neither
modified nor freed.

The ct_status_get_state() function returns the state of the contract. Valid state values are:

CTS_OWNED a contract that is currently owned by a process

CTS_INHERITED a contract that has been inherited by a regent process contract

CTS_ORPHAN a contract that has no owner and has not been inherited

CTS_DEAD a contract that is no longer in effect and will be automatically removed
from the system as soon as the last reference to it is release (for example,
an open status file descriptor)

The ct_status_get_holder() function returns the process ID of the contract's owner if the
contract is in the CTS_OWNED state, or the ID of the regent process contract if the contract is in
the CTS_INHERITED state.

The ct_status_get_nevents() function returns the number of unacknowledged critical
events on the contract's event queue.

The ct_status_get_ntime() function returns the amount of time remaining (in seconds)
before the ongoing exit negotiation times out, or -1 if there is no negotiation ongoing.

The ct_status_get_qtime() function returns the amount of time remaining (in seconds) in
the quantum before the ongoing exit negotiation times out, or -1 if there is no negotiation
ongoing.

The ct_status_get_nevid() function returns the event ID of the ongoing negotiation, or 0 if
there are none.

The ct_status_get_cookie() function returns the cookie term of the contract.

The ct_status_get_critical() function is used to read the critical event set term. The value
is a collection of bits as described in the contract type's manual page.

The ct_status_get_informative() function is used to read the informative event set term.
The value is a collection of bits as described in the contract type's manual page.

Upon successful completion, ct_status_read() returns 0. Otherwise, it returns a non-zero
error value.

Return Values

ct_status_read(3CONTRACT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 1 Apr 200498

Upon successful completion, ct_status_get_id(), ct_status_get_type(),
ct_status_get_holder(), ct_status_get_state(), ct_status_get_nevents(),
ct_status_get_ntime(), ct_status_get_qtime(), ct_status_get_nevid(),
ct_status_get_cookie(), ct_status_get_critical(), and
ct_status_get_informative() return the data described in the DESCRIPTION.

The ct_status_read() function will fail if:

EINVAL The detail level specified is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libcontract(3LIB), contract(4), attributes(5), lfcompile(5)

Errors

Attributes

See Also

ct_status_read(3CONTRACT)

Extended Library Functions, Volume 1 99

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcontract-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4contract-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lfcompile-5

ct_tmpl_activate, ct_tmpl_clear, ct_tmpl_create, ct_tmpl_set_cookie, ct_tmpl_set_critical,
ct_tmpl_set_informative, ct_tmpl_get_cookie, ct_tmpl_get_critical,
ct_tmpl_get_informative – common contract template functions

cc [flag...] file... -D_LARGEFILE64_SOURCE -lcontract [library...]

#include <libcontract.h>

int ct_tmpl_activate(int fd);

int ct_tmpl_clear(int fd);

int ct_tmpl_create(int fd, ctid_t *idp);

int ct_tmpl_set_cookie(int fd, uint64_t cookie);

int ct_tmpl_set_critical(int fd, uint_t events);

int ct_tmpl_set_informative(int fd, uint_t events);

int ct_tmpl_get_cookie(int fd, uint64_t *cookiep);

int ct_tmpl_get_critical(int fd, uint_t *eventsp);

int ct_tmpl_get_informative(int fd, uint_t *eventsp);

These functions operate on contract template file descriptors obtained from the contract(4)
file system.

The ct_tmpl_activate() function makes the template referenced by the file descriptor fd the
active template for the calling thread.

The ct_tmpl_clear() function clears calling thread's active template.

The ct_tmpl_create() function uses the template referenced by the file descriptor fd to
create a new contract. If successful, the ID of the newly created contract is placed in *idp.

The ct_tmpl_set_cookie() and ct_tmpl_get_cookie() functions write and read the cookie
term of a contract template. The cookie term is ignored by the system, except to include its
value in a resulting contract's status object. The default cookie term is 0.

The ct_tmpl_set_critical() and ct_tmpl_get_critical() functions write and read the
critical event set term. The value is a collection of bits as described in the contract type's
manual page.

The ct_tmpl_set_informative() and ct_tmpl_get_informative() functions write and
read the informative event set term. The value is a collection of bits as described in the
contract type's manual page.

Upon successful completion, ct_tmpl_activate(), ct_tmpl_create(),
ct_tmpl_set_cookie(), ct_tmpl_get_cookie(), ct_tmpl_set_critical(),
ct_tmpl_get_critical(), ct_tmpl_set_informative(), and ct_tmpl_get_informative()

return 0. Otherwise, they return a non-zero error value.

Name

Synopsis

Description

Return Values

ct_tmpl_activate(3CONTRACT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 1 Apr 2004100

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4contract-4

The ct_tmpl_create() function will fail if:

ERANGE The terms specified in the template were unsatisfied at the time of the call.

EAGAIN The project.max-contracts resource control would have been exceeded.

The ct_tmpl_set_critical() and ct_tmpl_set_informative() functions will fail if:

EINVAL An invalid event was specified.

The ct_tmpl_set_critical() function will fail if:

EPERM One of the specified events was disallowed given other contract terms (see
contract(4)) and {PRIV_CONTRACT_EVENT} was not in the effective set for the
calling process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libcontract(3LIB), contract(4), attributes(5), lfcompile(5)

Errors

Attributes

See Also

ct_tmpl_activate(3CONTRACT)

Extended Library Functions, Volume 1 101

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4contract-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibcontract-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4contract-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lfcompile-5

dat_cno_create – create a CNO instance

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_cno_create (

IN DAT_IA_HANDLE ia_handle,
IN DAT_OS_WAIT_PROXY_AGENT agent,
OUT DAT_CNO_HANDLE *cno_handle
)

ia_handle Handle for an instance of DAT IA.

agent An optional OS Wait Proxy Agent that is to be invoked whenever CNO is
invoked. DAT_OS_WAIT_PROXY_AGENT_NULL indicates that there is no proxy
agent

cno_handle Handle for the created instance of CNO.

The dat_cno_create() function creates a CNO instance. Upon creation, there are no Event
Dispatchers feeding it.

The agent parameter specifies the proxy agent, which is OS-dependent and which is invoked
when the CNO is triggered. After it is invoked, it is no longer associated with the CNO. The
value of DAT_OS_WAIT_PROXY_AGENT_NULL specifies that no OS Wait Proxy Agent is associated
with the created CNO.

Upon creation, the CNO is not associated with any EVDs, has no waiters and has, at most, one
OS Wait Proxy Agent.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations.

DAT_INVALID_HANDLE The ia_handle parameter is invalid.

DAT_INVALID_PARAMETER One of the parameters was invalid, out of range, or a
combination of parameters was invalid, or the agent
parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard uDAPL, 1.1, 1.2

Name

Synopsis

Parameters

Description

Return Values

Attributes

dat_cno_create(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004102

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

libdat(3LIB), attributes(5)See Also

dat_cno_create(3DAT)

Extended Library Functions, Volume 1 103

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_cno_free – destroy an instance of the CNO

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_cno_free (

IN DAT_CNO_HANDLE cno_handle
)

cno_handle Handle for an instance of the CNO

The dat_cno_free() function destroys a specified instance of the CNO.

A CNO cannot be deleted while it is referenced by an Event Dispatcher or while a thread is
blocked on it.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The cno_handle() parameter is invalid.

DAT_INVALID_STATE Parameter in an invalid state. CNO is in use by an EVD instance or
there is a thread blocked on it.

If there is a thread blocked in dat_cno_wait(3DAT), the Consumer can do the following steps
to unblock the waiter:

■ Create a temporary EVD that accepts software events. It can be created in advance.
■ For a CNO with the waiter, attach that EVD to the CNO and post the software event on the

EVD.
■ This unblocks the CNO.
■ Repeat for other CNOs that have blocked waiters.
■ Destroy the temporary EVD after all CNOs are destroyed and the EVD is no longer

needed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

dat_cno_wait(3DAT), libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Usage

Attributes

See Also

dat_cno_free(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004104

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_cno_modify_agent – modify the OS Wait Proxy Agent

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_cno_modify_agent (

IN DAT_CNO_HANDLE cno_handle,
IN DAT_OS_WAIT_PROXY_AGENT agent
)

cno_handle Handle for an instance of CNO

agent Pointer to an optional OS Wait Proxy Agent to invoke whenever CNO is
invoked. DAT_OS_WAIT_PROXY_AGENT_NULL indicates that there is no proxy
agent.

The dat_cno_modify_agent() function modifies the OS Wait Proxy Agent associated with a
CNO. If non-null, any trigger received by the CNO is also passed to the OS Wait Proxy Agent.
This is in addition to any local delivery through the CNO. The Consumer can pass the value of
DAT_OS_WAIT_PROXY_AGENT_NULL to disassociate the current Proxy agent from the CNO

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The cno_handle parameter is invalid.

DAT_INVALID_PARAMETER One of the parameters was invalid, out of range, or a
combination of parameters was invalid, or the agent parameter
is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_cno_modify_agent(3DAT)

Extended Library Functions, Volume 1 105

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_cno_query – provide the Consumer parameters of the CNO

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_cno_query (

IN DAT_CNO_HANDLE cno_handle,
IN DAT_CNO_PARAM_MASK cno_param_mask,
OUT DAT_CNO_PARAM *cno_param
)

cno_handle Handle for the created instance of the Consumer Notification Object

cno_param_mask Mask for CNO parameters

cno_param Pointer to a Consumer-allocated structure that the Provider fills with
CNO parameters

The dat_cno_query() function provides the Consumer parameters of the CNO. The
Consumer passes in a pointer to the Consumer-allocated structures for CNO parameters that
the Provider fills.

The cno_param_mask parameter allows Consumers to specify which parameters to query.
The Provider returns values for cno_param_mask requested parameters. The Provider can
return values for any other parameters.

A value of DAT_OS_WAIT_PROXY_AGENT_NULL in cno_param indicates that there are no Proxy
Agent associated with the CNO.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER The cno_param_mask parameter is invalid.

DAT_INVALID_HANDLE The cno_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_cno_query(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004106

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_cno_wait – wait for notification events

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_cno_wait (

IN DAT_CNO_HANDLE cno_handle,
IN DAT_TIMEOUT timeout,
OUT DAT_EVD_HANDLE *evd_handle
)

cno_handle Handle for an instance of CNO

timeout The duration to wait for a notification. The value DAT_TIMEOUT_INFINITE can
be used to wait indefinitely.

evd_handle Handle for an instance of EVD

The dat_cno_wait() function allows the Consumer to wait for notification events from a set
of Event Dispatchers all from the same Interface Adapter. The Consumer blocks until notified
or the timeout period expires.

An Event Dispatcher that is disabled or in the "Waited" state does not deliver notifications. A
uDAPL Consumer waiting directly upon an Event Dispatcher preempts the CNO.

The consumer can optionally specify a timeout, after which it is unblocked even if there are no
notification events. On a timeout, evd_handle is explicitly set to a null handle.

The returned evd_handle is only a hint. Another Consumer can reap the Event before this
Consumer can get around to checking the Event Dispatcher. Additionally, other Event
Dispatchers feeding this CNO might have been notified. The Consumer is responsible for
ensuring that all EVDs feeding this CNO are polled regardless of whether they are identified as
the immediate cause of the CNO unblocking.

All the waiters on the CNO, including the OS Wait Proxy Agent if it is associated with the
CNO, are unblocked with the NULL handle returns for an unblocking EVD evd_handle when
the IA instance is destroyed or when all EVDs the CNO is associated with are freed.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The cno_handle parameter is invalid.

DAT_QUEUE_EMPTY The operation timed out without a notification.

DAT_INVALID_PARAMETER One of the parameters was invalid or out of range, a
combination of parameters was invalid, or the timeout
parameter is invalid.

DAT_INTERRUPTED_CALL The operation was interrupted by a signal.

Name

Synopsis

Parameters

Description

Return Values

dat_cno_wait(3DAT)

Extended Library Functions, Volume 1 107

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Attributes

See Also

dat_cno_wait(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004108

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_cr_accept – establishes a Connection between the active remote side requesting Endpoint
and the passive side local Endpoint

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_cr_accept (

IN DAT_CR_HANDLE cr_handle,

IN DAT_EP_HANDLE ep_handle,

IN DAT_COUNT private_data_size,

IN const DAT_PVOID private_data

)

cr_handle Handle to an instance of a Connection Request that the Consumer is
accepting.

ep_handle Handle for an instance of a local Endpoint that the Consumer is
accepting the Connection Request on. If the local Endpoint is specified
by the Connection Request, the ep_handle shall be DAT_HANDLE_NULL.

private_data_size Size of the private_data, which must be nonnegative.

private_data Pointer to the private data that should be provided to the remote
Consumer when the Connection is established. If private_data_size is
zero, then private_data can be NULL.

The dat_cr_accept() function establishes a Connection between the active remote side
requesting Endpoint and the passive side local Endpoint. The local Endpoint is either specified
explicitly by ep_handle or implicitly by a Connection Request. In the second case, ep_handle is
DAT_HANDLE_NULL.

Consumers can specify private data that is provided to the remote side upon Connection
establishment.

If the provided local Endpoint does not satisfy the requested Connection Request, the
operation fails without any effect on the local Endpoint, Pending Connection Request, private
data, or remote Endpoint.

The operation is asynchronous. The successful completion of the operation is reported
through a Connection Event of type DAT_CONNECTION_EVENT_ESTABLISHED on the
connect_evd of the local Endpoint.

If the Provider cannot complete the Connection establishment, the connection is not
established and the Consumer is notified through a Connection Event of type
DAT_CONNECTION_EVENT_ACCEPT_COMPLETION_ERROR on the connect_evd of the local
Endpoint. It can be caused by the active side timeout expiration, transport error, or any other

Name

Synopsis

Parameters

Description

dat_cr_accept(3DAT)

Extended Library Functions, Volume 1 109

reason. If Connection is not established, Endpoint transitions into Disconnected state and all
posted Recv DTOs are flushed to its recv_evd_handle.

This operation, if successful, also destroys the Connection Request instance. Use of the handle
of the destroyed cr_handle in any consequent operation fails.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The cr_handle or ep_handle parameter is invalid.

DAT_INVALID_PARAMETER The private_data_size or private_data parameter is invalid, out
of range, or a combination of parameters was invalid

Consumers should be aware that Connection establishment might fail in the following cases:
If the accepting Endpoint has an outstanding RDMA Read outgoing attribute larger than the
requesting remote Endpoint or outstanding RDMA Read incoming attribute, or if the
outstanding RDMA Read incoming attribute is smaller than the requesting remote Endpoint
or outstanding RDMA Read outgoing attribute.

Consumers should set the accepting Endpoint RDMA Reads as the target (incoming) to a
number larger than or equal to the remote Endpoint RDMA Read outstanding as the
originator (outgoing), and the accepting Endpoint RDMA Reads as the originator to a
number smaller than or equal to the remote Endpoint RDMA Read outstanding as the target.
DAT API does not define a protocol on how remote peers exchange Endpoint attributes. The
exchange of outstanding RDMA Read incoming and outgoing attributes of EPs is left to the
Consumer ULP. Consumer can use Private Data for it.

If the Consumer does not care about posting RDMA Read operations or remote RDMA Read
operations on the connection, it can set the two outstanding RDMA Read attribute values to 0.

If the Consumer does not set the two outstanding RDMA Read attributes of the Endpoint, the
Provider is free to pick up any value for default. The Provider can change these default values
during connection setup.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Return Values

Usage

Attributes

See Also

dat_cr_accept(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004110

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_cr_handoff – hand off the Connection Request to another Service Point

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_cr_handoff (

IN DAT_CR_HANDLE cr_handle,

IN DAT_CONN_QUAL handoff

)

cr_handle Handle to an instance of a Connection Request that the Consumer is handing
off.

handoff Indicator of another Connection Qualifier on the same IA to which this
Connection Request should be handed off.

The dat_cr_handoff() function hands off the Connection Request to another Service Point
specified by the Connection Qualifier handoff.

The operation is synchronous. This operation also destroys the Connection Request instance.
Use of the handle of the destroyed Connection Request in any consequent operation fails.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The cr_handle parameter is invalid.

DAT_INVALID_PARAMETER The handoff parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_cr_handoff(3DAT)

Extended Library Functions, Volume 1 111

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_cr_query – provide parameters of the Connection Request

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_cr_query (

IN DAT_CR_HANDLE cr_handle,

IN DAT_CR_PARAM_MASK cr_param_mask,

OUT DAT_CR_PARAM *cr_param

)

cr_handle Handle for an instance of a Connection Request.

cr_param_mask Mask for Connection Request parameters.

cr_param Pointer to a Consumer-allocated structure that the Provider fills for
Consumer-requested parameters.

The dat_cr_query() function provides to the Consumer parameters of the Connection
Request. The Consumer passes in a pointer to the Consumer-allocated structures for
Connection Request parameters that the Provider fills.

The cr_param_mask parameter allows Consumers to specify which parameters to query. The
Provider returns values for cr_param_mask requested parameters. The Provider can return
values for any other parameters.

DAT_SUCCESS The operation was successful

DAT_INVALID_HANDLE The cr_handle handle is invalid.

DAT_INVALID_PARAMETER The cr_param_mask parameter is invalid.

The Consumer uses dat_cr_query() to get information about requesting a remote Endpoint
as well as a local Endpoint if it was allocated by the Provider for the arrived Connection
Request. The local Endpoint is created if the Consumer used PSP with DAT_PSP_PROVIDER as
the value for psp_flags. For the remote Endpoint, dat_cr_query() provides
remote_ia_address and remote_port_qual. It also provides remote peer private_data and its
size.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard uDAPL, 1.1, 1.2

Name

Synopsis

Parameters

Description

Return Values

Usage

Attributes

dat_cr_query(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004112

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

libdat(3LIB), attributes(5)See Also

dat_cr_query(3DAT)

Extended Library Functions, Volume 1 113

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_cr_reject – reject a Connection Request from the Active remote side requesting Endpoint

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_cr_reject (

IN DAT_CR_HANDLE cr_handle

)

cr_handle Handle to an instance of a Connection Request that the Consumer is rejecting.

The dat_cr_reject() function rejects a Connection Request from the Active remote side
requesting Endpoint. If the Provider passed a local Endpoint into a Consumer for the Public
Service Point-created Connection Request, that Endpoint reverts to Provider Control. The
behavior of an operation on that Endpoint is undefined. The local Endpoint that the
Consumer provided for Reserved Service Point reverts to Consumer control, and the
Consumer is free to use in any way it wants.

The operation is synchronous. This operation also destroys the Connection Request instance.
Use of the handle of the destroyed Connection Request in any consequent operation fails.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The cr_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_cr_reject(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004114

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_ep_connect – establish a connection between the local Endpoint and a remote Endpoint

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_ep_connect (

IN DAT_EP_HANDLE ep_handle,

IN DAT_IA_ADDRESS_PTR remote_ia_address,

IN DAT_CONN_QUAL remote_conn_qual,

IN DAT_TIMEOUT timeout,

IN DAT_COUNT private_data_size,

IN const DAT_PVOID private_data,

IN DAT_QOS qos,

IN DAT_CONNECT_FLAGS connect_flags

)

ep_handle Handle for an instance of an Endpoint.

remote_ia_address The Address of the remote IA to which an Endpoint is requesting a
connection.

remote_conn_qual Connection Qualifier of the remote IA from which an Endpoint
requests a connection.

timeout Duration of time, in microseconds, that a Consumer waits for
Connection establishment. The value of DAT_TIMEOUT_INFINITE
represents no timeout, indefinite wait. Values must be positive.

private_data_size Size of the private_data. Must be nonnegative.

private_data Pointer to the private data that should be provided to the remote
Consumer as part of the Connection Request. If private_data_size is
zero, then private_data can be NULL.

qos Requested quality of service of the connection.

connect_flags Flags for the requested connection. If the least significant bit of
DAT_MULTIPATH_FLAG is 0, the Consumer does not request
multipathing. If the least significant bit of DAT__MULTIPATH_FLAG is 1,
the Consumer requests multipathing. The default value is
DAT_CONNECT_DEFAULT_FLAG, which is 0.

The dat_ep_connect() function requests that a connection be established between the local
Endpoint and a remote Endpoint. This operation is used by the active/client side Consumer of
the Connection establishment model. The remote Endpoint is identified by Remote IA and
Remote Connection Qualifier.

Name

Synopsis

Parameters

Description

dat_ep_connect(3DAT)

Extended Library Functions, Volume 1 115

As part of the successful completion of this operation, the local Endpoint is bound to a Port
Qualifier of the local IA. The Port Qualifier is passed to the remote side of the requested
connection and is available to the remote Consumer in the Connection Request of the
DAT_CONNECTION_REQUEST_EVENT.

The Consumer-provided private_data is passed to the remote side and is provided to the
remote Consumer in the Connection Request. Consumers can encapsulate any local Endpoint
attributes that remote Consumers need to know as part of an upper-level protocol. Providers
can also provide a Provider on the remote side any local Endpoint attributes and
Transport-specific information needed for Connection establishment by the Transport.

Upon successful completion of this operation, the local Endpoint is transferred into
DAT_EP_STATE_ACTIVE_CONNECTION_PENDING.

Consumers can request a specific value of qos. The Provider specifies which quality of service
it supports in documentation and in the Provider attributes. If the local Provider or Transport
does not support the requested qos, the operation fails and DAT_MODEL_NOT_SUPPORTED is
returned synchronously. If the remote Provider does not support the requested qos, the local
Endpoint is automatically transitioned into the DAT_EP_STATE_DISCONNECTED state, the
connection is not established, and the event returned on the connect_evd_handle is
DAT_CONNECTION_EVENT_NON_PEER_REJECTED. The same
DAT_CONNECTION_EVENT_NON_PEER_REJECTED event is returned if the connection cannot be
established for all reasons of not establishing the connection, except timeout, remote host not
reachable, and remote peer reject. For example, remote Consumer is not listening on the
requested Connection Qualifier, Backlog of the requested Service Point is full, and Transport
errors. In this case, the local Endpoint is automatically transitioned into
DAT_EP_STATE_DISCONNECTED state.

The acceptance of the requested connection by the remote Consumer is reported to the local
Consumer through a DAT_CONNECTION_EVENT_ESTABLISHED event on the connect_evd_handle
of the local Endpoint and the local Endpoint is automatically transitioned into a
DAT_EP_STATE_CONNECTED state.

The rejection of the connection by the remote Consumer is reported to the local Consumer
through a DAT_CONNECTION_EVENT_PEER_REJECTED event on the connect_evd_handle of the
local Endpoint and the local Endpoint is automatically transitioned into a
DAT_EP_STATE_DISCONNECTED state.

When the Provider cannot reach the remote host or the remote host does not respond within
the Consumer requested Timeout, a DAT_CONNECTION_EVENT_UNREACHABLE event is generated
on the connect_evd_handle of the Endpoint. The Endpoint transitions into a
DAT_EP_STATE_DISCONNECTED state.

dat_ep_connect(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004116

If the Provider can locally determine that the remote_ia_address is invalid, or that the
remote_ia_address cannot be converted to a Transport-specific address, the operation can fail
synchronously with a DAT_INVALID_ADDRESS return.

The local Endpoint is automatically transitioned into a DAT_EP_STATE_CONNECTED state when
a Connection Request accepted by the remote Consumer and the Provider completes the
Transport-specific Connection establishment. The local Consumer is notified of the
established connection through a DAT_CONNECTION_EVENT_ESTABLISHED event on the
connect_evd_handle of the local Endpoint.

When the timeout expired prior to completion of the Connection establishment, the local
Endpoint is automatically transitioned into a DAT_EP_STATE_DISCONNECTED state and the local
Consumer through a DAT_CONNECTION_EVENT_TIMED_OUT event on the connect_evd_handle of
the local Endpoint.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations.

DAT_INVALID_PARAMETER Invalid parameter.

DAT_INVALID_ADDRESS Invalid address.

DAT_INVALID_HANDLE Invalid DAT handle; Invalid Endpoint handle.

DAT_INVALID_STATE Parameter in an invalid state. Endpoint was not in
DAT_EP_STATE_UNCONNECTED state.

DAT_MODEL_NOT_SUPPORTED The requested Model was not supported by the Provider.
For example, the requested qos was not supported by the
local Provider.

It is up to the Consumer to negotiate outstanding RDMA Read incoming and outgoing with a
remote peer. The outstanding RDMA Read outgoing attribute should be smaller than the
remote Endpoint outstanding RDMA Read incoming attribute. If this is not the case,
Connection establishment might fail.

DAT API does not define a protocol on how remote peers exchange Endpoint attributes. The
exchange of outstanding RDMA Read incoming and outgoing attributes of EPs is left to the
Consumer ULP. The Consumer can use Private Data for it.

If the Consumer does not care about posting RDMA Read operations or remote RDMA Read
operations on the connection, it can set the two outstanding RDMA Read attribute values to 0.

If the Consumer does not set the two outstanding RDMA Read attributes of the Endpoint, the
Provider is free to pick up any value for default. The Provider is allowed to change these
default values during connection setup.

Return Values

Usage

dat_ep_connect(3DAT)

Extended Library Functions, Volume 1 117

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Attributes

See Also

dat_ep_connect(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004118

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_ep_create – create an instance of an Endpoint

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_ep_create (

IN DAT_IA_HANDLE ia_handle,

IN DAT_PZ_HANDLE pz_handle,

IN DAT_EVD_HANDLE recv_evd_handle,

IN DAT_EVD_HANDLE request_evd_handle,

IN DAT_EVD_HANDLE connect_evd_handle,

IN DAT_EP_ATTR *ep_attributes,

OUT DAT_EP_HANDLE *ep_handle

)

ia_handle Handle for an open instance of the IA to which the created Endpoint
belongs.

pz_handle Handle for an instance of the Protection Zone.

recv_evd_handle Handle for the Event Dispatcher where events for completions of
incoming (receive) DTOs are reported. DAT_HANDLE_NULL specifies
that the Consumer is not interested in events for completions of
receives.

request_evd_handle Handle for the Event Dispatcher where events for completions of
outgoing (Send, RDMA Write, RDMA Read, and RMR Bind) DTOs
are reported. DAT_HANDLE_NULL specifies that the Consumer is not
interested in events for completions of requests.

connect_evd_handle Handle for the Event Dispatcher where Connection events are
reported. DAT_HANDLE_NULL specifies that the Consumer is not
interested in connection events for now.

ep_attributes Pointer to a structure that contains Consumer-requested Endpoint
attributes. Can be NULL.

ep_handle Handle for the created instance of an Endpoint.

The dat_ep_create() function creates an instance of an Endpoint that is provided to the
Consumer as ep_handle. The value of ep_handle is not defined if the DAT_RETURN is not
DAT_SUCCESS.

The Endpoint is created in the Unconnected state.

Protection Zone pz_handle allows Consumers to control what local memory the Endpoint can
access for DTOs and what memory remote RDMA operations can access over the connection
of a created Endpoint. Only memory referred to by LMRs and RMRs that match the Endpoint
Protection Zone can be accessed by the Endpoint.

Name

Synopsis

Parameters

Description

dat_ep_create(3DAT)

Extended Library Functions, Volume 1 119

The recv_evd_handle and request_evd_handle parameters are Event Dispatcher instances
where the Consumer collects completion notifications of DTOs. Completions of Receive
DTOs are reported in recv_evd_handle Event Dispatcher, and completions of Send, RDMA
Read, and RDMA Write DTOs are reported in request_evd_handle Event Dispatcher. All
completion notifications of RMR bindings are reported to a Consumer in request_evd_handle
Event Dispatcher.

All Connection events for the connected Endpoint are reported to the Consumer through
connect_evd_handle Event Dispatcher.

The ep_attributes parameter specifies the initial attributes of the created Endpoint. If the
Consumer specifies NULL, the Provider fills it with its default Endpoint attributes. The
Consumer might not be able to do any posts to the Endpoint or use the Endpoint in
connection establishment until certain Endpoint attributes are set. Maximum Message Size
and Maximum Recv DTOs are examples of such attributes.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations.

DAT_INVALID_HANDLE Invalid DAT handle.

DAT_INVALID_PARAMETER Invalid parameter. One of the requested EP parameters or
attributes was invalid or a combination of attributes or
parameters is invalid.

DAT_MODEL_NOT_SUPPORTED The requested Provider Model was not supported.

The Consumer creates an Endpoint prior to the establishment of a connection. The created
Endpoint is in DAT_EP_STATE_UNCONNECTED. Consumers can do the following:

1. Request a connection on the Endpoint through dat_ep_connect(3DAT) or
dat_ep_dup_connect(3DAT) for the active side of the connection model.

2. Associate the Endpoint with the Pending Connection Request that does not have an
associated local Endpoint for accepting the Pending Connection Request for the
passive/server side of the connection model.

3. Create a Reserved Service Point with the Endpoint for the passive/server side of the
connection model. Upon arrival of a Connection Request on the Service Point, the
Consumer accepts the Pending Connection Request that has the Endpoint associated with
it

The Consumer cannot specify a request_evd_handle (recv_evd_handle) with Request
Completion Flags (Recv Completion Flags) that do not match the other Endpoint Completion
Flags for the DTO/RMR completion streams that use the same EVD. If request_evd_handle
(recv_evd_handle) is used for an EVD that is fed by any event stream other than DTO or RMR
completion event streams, only DAT_COMPLETION_THRESHOLD is valid for Request/Recv
Completion Flags for the Endpoint completion streams that use that EVD. If

Return Values

Usage

dat_ep_create(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004120

request_evd_handle (recv_evd_handle) is used for request (recv) completions of an Endpoint
whose associated Request (Recv) Completion Flag attribute is
DAT_COMPLETION_UNSIGNALLED_FLAG, the Request Completion Flags and Recv Completion
Flags for all Endpoint completion streams that use the EVD must specify the same.
Analogously, if recv_evd_handle is used for recv completions of an Endpoint whose associated
Recv Completion Flags attribute is DAT_COMPLETION_SOLICITED_WAIT, the Recv Completion
Flags for all Endpoint Recv completion streams that use the same EVD must specify the same
Recv Completion Flags attribute value and the EVD cannot be used for any other event stream
types.

If EP is created with NULL attributes, Provider can fill them with its own default values. The
Consumer should not rely on the Provider-filled attribute defaults, especially for portable
applications. The Consumer cannot do any operations on the created Endpoint except for
dat_ep_query(3DAT), dat_ep_get_status(3DAT), dat_ep_modify(3DAT), and
dat_ep_free(3DAT), depending on the values that the Provider picks.

The Provider is encouraged to pick up reasonable defaults because unreasonable values might
restrict Consumers to the dat_ep_query(), dat_ep_get_status(), dat_ep_modify(), and
dat_ep_free() operations. The Consumer should check what values the Provider picked up
for the attributes. It is especially important to make sure that the number of posted operations
is not too large to avoid EVD overflow. Depending on the values picked up by the Provider,
the Consumer might not be able to do any RDMA operations; it might only be able to send or
receive messages of very small sizes, or it might not be able to have more than one segment in a
buffer. Before doing any operations, except the ones listed above, the Consumer can configure
the Endpoint using dat_ep_modify() to the attributes they want.

One reason the Consumer might still want to create an Endpoint with Null attributes is for the
Passive side of the connection establishment, where the Consumer sets up Endpoint attributes
based on the connection request of the remote side.

Consumers might want to create Endpoints with NULL attributes if Endpoint properties are
negotiated as part the Consumer connection establishment protocol.

Consumers that create Endpoints with Provider default attributes should always verify that
the Provider default attributes meet their application's requirements with regard to the
number of request/receive DTOs that can be posted, maximum message sizes, maximum
request/receive IOV sizes, and maximum RDMA sizes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Attributes

dat_ep_create(3DAT)

Extended Library Functions, Volume 1 121

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Standard uDAPL, 1.1, 1.2

dat_ep_connect(3DAT), dat_ep_dup_connect(3DAT), dat_ep_free(3DAT),
dat_ep_get_status(3DAT), dat_ep_modify(3DAT), dat_ep_query(3DAT), libdat(3LIB),
attributes(5)

See Also

dat_ep_create(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004122

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_ep_create_with_srq – create an instance of End Point with Shared Receive Queue

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_ep_create_with_srq (

IN DAT_IA_HANDLE ia_handle,

IN DAT_PZ_HANDLE pz_handle,

IN DAT_EVD_HANDLE recv_evd_handle,

IN DAT_EVD_HANDLE request_evd_handle,

IN DAT_EVD_HANDLE connect_evd_handle,

IN DAT_SRQ_HANDLE srq_handle,

IN DAT_EP_ATTR *ep_attributes,

OUT DAT_EP_HANDLE *ep_handle

)

ia_handle Handle for an open instance of the IA to which the created Endpoint
belongs.

pz_handle Handle for an instance of the Protection Zone.

recv_evd_handle Handle for the Event Dispatcher where events for completions of
incoming (receive) DTOs are reported. DAT_HANDLE_NULL specifies
that the Consumer is not interested in events for completions of
receives.

request_evd_handle Handle for the Event Dispatcher where events for completions of
outgoing (Send, RDMA Write, RDMA Read, and RMR Bind) DTOs
are reported. DAT_HANDLE_NULL specifies that the Consumer is not
interested in events for completions of requests.

connect_evd_handle Handle for the Event Dispatcher where Connection events are
reported. DAT_HANDLE_NULL specifies that the Consumer is not
interested in connection events for now.

srq_handle Handle for an instance of the Shared Receive Queue.

ep_attributes Pointer to a structure that contains Consumer-requested Endpoint
attributes. Cannot be NULL.

ep_handle Handle for the created instance of an Endpoint.

The dat_ep_create_with_srq() function creates an instance of an Endpoint that is using
SRQ for Recv buffers is provided to the Consumer as ep_handle. The value of ep_handle is not
defined if the DAT_RETURN is not DAT_SUCCESS.

The Endpoint is created in the Unconnected state.

Name

Synopsis

Parameters

Description

dat_ep_create_with_srq(3DAT)

Extended Library Functions, Volume 1 123

Protection Zone pz_handle allows Consumers to control what local memory the Endpoint can
access for DTOs except Recv and what memory remote RDMA operations can access over the
connection of a created Endpoint. Only memory referred to by LMRs and RMRs that match
the Endpoint Protection Zone can be accessed by the Endpoint. The Recv DTO buffers PZ
must match the SRQ PZ. The SRQ PZ might or might not be the same as the EP one. Check
Provider attribute for the support of different PZs between SRQ and its EPs.

The recv_evd_handle and request_evd_handle arguments are Event Dispatcher instances
where the Consumer collects completion notifications of DTOs. Completions of Receive
DTOs are reported in recv_evd_handle Event Dispatcher, and completions of Send, RDMA
Read, and RDMA Write DTOs are reported in request_evd_handle Event Dispatcher. All
completion notifications of RMR bindings are reported to a Consumer in request_evd_handle
Event Dispatcher.

All Connection events for the connected Endpoint are reported to the Consumer through
connect_evd_handle Event Dispatcher.

Shared Receive Queue srq_handle specifies where the EP will dequeue Recv DTO buffers.

The created EP can be reset. The relationship between SRQ and EP is not effected by
dat_ep_reset(3DAT).

SRQ can not be disassociated or replaced from created EP. The only way to disassociate SRQ
from EP is to destroy EP.

Receive buffers cannot be posted to the created Endpoint. Receive buffers must be posted to
the SRQ to be used for the created Endpoint.

The ep_attributes parameter specifies the initial attributes of the created Endpoint. Consumer
can not specify NULL for ep_attributes but can specify values only for the parameters needed
and default for the rest.

For max_request_dtos and max_request_iov, the created Endpoint will have at least the
Consumer requested values but might have larger values. Consumer can query the created
Endpoint to find out the actual values for these attributes. Created Endpoint has the exact
Consumer requested values for max_recv_dtos, max_message_size, max_rdma_size,
max_ rdma_read_in, and max_rdma_read_out. For all other attributes, except max_recv_iov
that is ignored, the created Endpoint has the exact values requested by Consumer. If Provider
cannot satisfy the Consumer requested attribute values the operation fails.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations.

DAT_INVALID_HANDLE Invalid DAT handle.

Return Values

dat_ep_create_with_srq(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004124

DAT_INVALID_PARAMETER Invalid parameter. One of the requested EP parameters or
attributes was invalid or a combination of attributes or
parameters is invalid. For example, pz_handle specified
does not match the one for SRQ or the requested
maximum RDMA Read IOV exceeds IA capabilities..

DAT_MODEL_NOT_SUPPORTED The requested Provider Model was not supported.

The Consumer creates an Endpoint prior to the establishment of a connection. The created
Endpoint is in DAT_EP_STATE_UNCONNECTED. Consumers can do the following:

1. Request a connection on the Endpoint through dat_ep_connect(3DAT) or
dat_ep_dup_connect(3DAT) for the active side of the connection model.

2. Associate the Endpoint with the Pending Connection Request that does not have an
associated local Endpoint for accepting the Pending Connection Request for the
passive/server side of the con-nection model.

3. Create a Reserved Service Point with the Endpoint for the passive/server side of the
connection model. Upon arrival of a Connection Request on the Service Point, the
Consumer accepts the Pending Connection Request that has the Endpoint associated with
it.

The Consumer cannot specify a request_evd_handle (recv_evd_handle) with Request
Completion Flags (Recv Completion Flags) that do not match the other Endpoint Completion
Flags for the DTO/RMR completion streams that use the same EVD. If request_evd_handle
(recv_evd_ handle) is used for request (recv) completions of an Endpoint whose associated
Request (Recv) Completion Flag attribute is DAT_COMPLETION_UNSIGNALLED_FLAG, the
Request Completion Flags and Recv Completion Flags for all Endpoint completion streams
that use the EVD must specify the same. By definition, completions of all Recv DTO posted to
SRQ complete with Signal. Analogously, if recv_evd_handle is used for recv completions of an
Endpoint whose associated Recv Completion Flag attribute is
DAT_COMPLETION_SOLICITED_WAIT, the Recv Completion Flags for all Endpoint Recv
completion streams that use the same EVD must specify the same Recv Completion Flags
attribute value and the EVD cannot be used for any other event stream types. If
recv_evd_handle is used for Recv completions of an Endpoint that uses SRQ and whose Recv
Completion Flag attribute is DAT_COMPLETION_EVD_THRESHOLD then all Endpoint DTO
completion streams (request and/or recv completion streams) that use that recv_evd_handle
must specify DAT_COMPLETION_EVD_THRESHOLD. Other event stream types can also use the
same EVD.

Consumers might want to use DAT_COMPLETION_UNSIGNALLED_FLAG for Request and/or Recv
completions when they control locally with posted DTO/RMR completion flag (not needed
for Recv posted to SRQ) whether posted DTO/RMR completes with Signal or not. Consumers
might want to use DAT_COMPLETION_SOLICITED_WAIT for Recv completions when the remote
sender side control whether posted Recv competes with Signal or not or not. uDAPL

Usage

dat_ep_create_with_srq(3DAT)

Extended Library Functions, Volume 1 125

Consumers might want to use DAT_COMPLETION_EVD_THRESHOLD for Request and/or Recv
completions when they control waiter unblocking with the threshold parameter of the
dat_evd_wait(3DAT).

Some Providers might restrict whether multiple EPs that share a SRQ can have different
Protection Zones. Check the srq_ep_pz_difference_support Provider attribute for it.

Consumers might want to have a different PZ between EP and SRQ. This allows incoming
RDMA operations to be specific to this EP PZ and not the same for all EPs that share SRQ.
This is critical for servers that supports multiple independent clients.

The Provider is strongly encouraged to create an EP that is ready to be connected. Any effects
of previous connections or connection establishment attempts on the underlying
Transport-specific Endpoint to which the DAT Endpoint is mapped to should be hidden from
the Consumer. The methods described below are examples:

■ The Provider does not create an underlying Transport Endpoint until the Consumer is
connecting the Endpoint or accepting a connection request on it. This allows the Provider
to accumulate Consumer requests for attribute settings even for attributes that the
underlying transport does not allow to change after the Transport Endpoint is created.

■ The Provider creates the underlying Transport Endpoint or chooses one from a pool of
Provider-controlled Transport Endpoints when the Consumer creates the Endpoint. The
Provider chooses the Transport Endpoint that is free from any underlying internal
attributes that might prevent the Endpoint from being connected. For IB and IP, that
means that the Endpoint is not in the TimeWait state. Changing of some of the Endpoint
attributes becomes hard and might potentially require mapping the Endpoint to another
underlying Transport Endpoint that might not be feasible for all transports.

■ The Provider allocates a Transport-specific Endpoint without worrying about impact on it
from previous connections or connection establishment attempts. Hide the
Transport-specific TimeWait state or CM timeout of the underlying transport Endpoint
within dat_ep_connect(3DAT), dat_ep_dup_connect(3DAT), or
dat_cr_accept(3DAT). On the Active side of the connection establishment, if the
remnants of a previous connection for Transport-specific Endpoint can be hidden within
the Timeout parameter, do so. If not, generating DAT_CONNECTION_
EVENT_NON_PEER_REJECTED is an option. For the Passive side, generating a
DAT_CONNECTION_COMPLETION_ERROR event locally, while sending a non-peer-reject
message to the active side, is a way of handling it.

Any transitions of an Endpoint into an Unconnected state can be handled similarly. One
transition from a Disconnected to an Unconnected state is a special case.

For dat_ep_reset(3DAT), the Provider can hide any remnants of the previous connection or
failed connection establishment in the operation itself. Because the operation is synchronous,
the Provider can block in it until the TimeWait state effect of the previous connection or
connection setup is expired, or until the Connection Manager timeout of an unsuccessful

dat_ep_create_with_srq(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004126

connection establishment attempt is expired. Alternatively, the Provider can create a new
Endpoint for the Consumer that uses the same handle.

DAT Providers are required not to change any Consumer-specified Endpoint attributes
during connection establishment. If the Consumer does not specify an attribute, the Provider
can set it to its own default. Some EP attributes, like outstanding RDMA Read incoming or
outgoing, if not set up by the Consumer, can be changed by Providers to establish connection.
It is recommended that the Provider pick the default for outstanding RDMA Read attributes
as 0 if the Consumer has not specified them. This ensures that connection establishment does
not fail due to insufficient outstanding RDMA Read resources, which is a requirement for the
Provider.

The Provider is not required to check for a mismatch between the maximum RDMA Read
IOV and maximum RDMA Read outgoing attributes, but is allowed to do so. In the later case
it is allowed to return DAT_INVALID_ PARAMETER when a mismatch is detected. Provider must
allocate resources to satisfy the combination of these two EP attributes for local RDMA Read
DTOs.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard uDAPL, 1.2

dat_ep_create(3DAT), dat_srq_create(3DAT), dat_srq_free(3DAT),
dat_srq_query(3DAT), libdat(3LIB), attributes(5)

Attributes

See Also

dat_ep_create_with_srq(3DAT)

Extended Library Functions, Volume 1 127

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_ep_disconnect – terminate a connection or a connection establishment

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_ep_disconnect (

IN DAT_EP_HANDLE ep_handle,

IN DAT_CLOSE_FLAGS disconnect_flags

)

ep_handle Handle for an instance of Endpoint.

disconnect_flags Flags for disconnect. Flag values are as follows:

DAT_CLOSE_ABRUPT_FLAG Abrupt close. This is the default value.

DAT_CLOSE_GRACEFUL_FLAG Graceful close.

The dat_ep_disconnect() function requests a termination of a connection or connection
establishment. This operation is used by the active/client or a passive/server side Consumer of
the connection model.

The disconnect_flags parameter allows Consumers to specify whether they want graceful or
abrupt disconnect. Upon disconnect, all outstanding and in-progress DTOs and RMR Binds
must be completed.

For abrupt disconnect, all outstanding DTOs and RMR Binds are completed unsuccessfully,
and in-progress DTOs and RMR Binds can be completed successfully or unsuccessfully. If an
in-progress DTO is completed unsuccessfully, all follow on in-progress DTOs in the same
direction also must be completed unsuccessfully. This order is presented to the Consumer
through a DTO completion Event Stream of the recv_evd_handle and and request_evd_handle
of the Endpoint.

For graceful disconnect, all outstanding and in-progress request DTOs and RMR Binds must
try to be completed successfully first, before disconnect proceeds. During that time, the local
Endpoint is in a DAT_EP_DISCONNECT_PENDING state.

The Consumer can call abrupt dat_ep_disconnect() when the local Endpoint is in the
DAT_EP_DISCONNECT_PENDING state. This causes the Endpoint to transition into
DAT_EP_STATE_DISCONNECTED without waiting for outstanding and in-progress request DTOs
and RMR Binds to successfully complete. The graceful dat_ep_disconnect() call when the
local Endpoint is in the DAT_EP_DISCONNECT_PENDING state has no effect.

If the Endpoint is not in DAT_EP_STATE_CONNECTED, the semantic of the operation is the same
for graceful or abrupt disconnect_flags value.

No new Send, RDMA Read, and RDMA Write DTOs, or RMR Binds can be posted to the
Endpoint when the local Endpoint is in the DAT_EP_DISCONNECT_PENDING state.

Name

Synopsis

Parameters

Description

dat_ep_disconnect(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004128

The successful completion of the disconnect is reported to the Consumer through a
DAT_CONNECTION_EVENT_DISCONNECTED event on connect_evd_handle of the Endpoint. The
Endpoint is automatically transitioned into a DAT_EP_STATE_DISCONNECTED state upon
successful asynchronous completion. If the same EVD is used for connect_evd_handle and any
recv_evd_handle and request_evd_handle, all successful Completion events of in-progress
DTOs precede the Disconnect Completion event.

Disconnecting an unconnected Disconnected Endpoint is no-op. Disconnecting an Endpoint
in DAT_EP_STATE_UNCONNECTED, DAT_EP_STATE_RESERVED,
DAT_EP_STATE_PASSIVE_CONNECTION_PENDING, and
DAT_EP_STATE_TENTATIVE_CONNECTION_PENDING is disallowed.

Both abrupt and graceful disconnect of the Endpoint during connection establishment,
DAT_EP_STATE_ACTIVE_CONNECTION_PENDING and DAT_EP_STATE_COMPLETION_PENDING,
"aborts" the connection establishment and transitions the local Endpoint into
DAT_EP_STATE_DISCONNECTED. That causes preposted Recv DTOs to be flushed to
recv_evd_handle.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The ep_handle parameter is invalid.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations.

DAT_INVALID_PARAMETER The disconnect_flags parameter is invalid.

DAT_INVALID_STATE A parameter is in an invalid state. Endpoint is not in the
valid state for disconnect.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Return Values

Attributes

See Also

dat_ep_disconnect(3DAT)

Extended Library Functions, Volume 1 129

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_ep_dup_connect – establish a connection between the local Endpoint and a remote
Endpoint

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_ep_dup_connect (

IN DAT_EP_HANDLE ep_handle,

IN DAT_EP_HANDLE dup_ep_handle,

IN DAT_TIMEOUT timeout,

IN DAT_COUNT private_data_size,

IN const DAT_PVOID private_data,

IN DAT_QOS qos

)

ep_handle Handle for an instance of an Endpoint.

dup_ep_handle Connected local Endpoint that specifies a requested connection remote
end.

timeout: Duration of time, in microseconds, that Consumers wait for
Connection establishment. The value of DAT_TIMEOUT_INFINITE
represents no timeout, indefinite wait. Values must be positive.

private_data_size Size of private_data. Must be nonnegative.

private_data Pointer to the private data that should be provided to the remote
Consumer as part of the Connection Request. If private_data_size is
zero, then private_data can be NULL.

qos Requested Quality of Service of the connection.

The dat_ep_dup_connect() function requests that a connection be established between the
local Endpoint and a remote Endpoint. This operation is used by the active/client side
Consumer of the connection model. The remote Endpoint is identified by the dup_ep_handle.
The remote end of the requested connection shall be the same as the remote end of the
dup_ep_handle. This is equivalent to requesting a connection to the same remote IA,
Connection Qualifier, and connect_flags as used for establishing the connection on duplicated
Endpoints and following the same redirections.

Upon establishing the requested connection as part of the successful completion of this
operation, the local Endpoint is bound to a Port Qualifier of the local IA. The Port Qualifier is
passed to the remote side of the requested connection and is available to the remote Consumer
in the Connection Request of the DAT_CONNECTION_REQUEST_EVENT.

The Consumer-provided private_data is passed to the remote side and is provided to the
remote Consumer in the Connection Request. Consumers can encapsulate any local Endpoint
attributes that remote Consumers need to know as part of an upper-level protocol. Providers

Name

Synopsis

Parameters

Description

dat_ep_dup_connect(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004130

can also provide a Provider on the remote side any local Endpoint attributes and
Transport-specific information needed for Connection establishment by the Transport.

Upon successful completion of this operation, the local Endpoint is transferred into
DAT_EP_STATE_ACTIVE_CONNECTION_PENDING.

Consumers can request a specific value of qos. The Provider specifies which Quality of Service
it supports in documentation and in the Provider attributes. If the local Provider or Transport
does not support the requested qos, the operation fails and DAT_MODEL_NOT_SUPPORTED is
returned synchronously. If the remote Provider does not support the requested qos, the local
Endpoint is automatically transitioned into a DAT_EP_STATE_UNDISCONNECTED state, the
connection is not established, and the event returned on the connect_evd_handle is
DAT_CONNECTION_EVENT_NON_PEER_REJECTED. The same
DAT_CONNECTION_EVENT_NON_PEER_REJECTED event is returned if connection cannot be
established for all reasons for not establishing the connection, except timeout, remote host not
reachable, and remote peer reject. For example, remote host is not reachable, remote
Consumer is not listening on the requested Connection Qualifier, Backlog of the requested
Service Point is full, and Transport errors. In this case, the local Endpoint is automatically
transitioned into a DAT_EP_STATE_UNDISCONNECTED state.

The acceptance of the requested connection by the remote Consumer is reported to the local
Consumer through a DAT_CONNECTION_EVENT_ESTABLISHED event on the connect_evd_handle
of the local Endpoint.

The rejection of the connection by the remote Consumer is reported to the local Consumer
through a DAT_CONNECTION_EVENT_PEER_REJECTED event on the connect_evd_handle of the
local Endpoint and the local Endpoint is automatically transitioned into a
DAT_EP_STATE_UNDISCONNECTED state.

When the Provider cannot reach the remote host or the remote host does not respond within
the Consumer-requested timeout, a DAT_CONNECTION_EVENT_UNREACHABLE is generated on
the connect_evd_handle of the Endpoint. The Endpoint transitions into a
DAT_EP_STATE_DISCONNECTED state.

The local Endpoint is automatically transitioned into a DAT_EP_STATE_CONNECTED state when
a Connection Request is accepted by the remote Consumer and the Provider completes the
Transport-specific Connection establishment. The local Consumer is notified of the
established connection through a DAT_CONNECTION_EVENT_ESTABLISHED event on the
connect_evd_handle of the local Endpoint.

When the timeout expired prior to completion of the Connection establishment, the local
Endpoint is automatically transitioned into a DAT_EP_STATE_UNDISCONNECTED state and the
local Consumer through a DAT_CONNECTION_EVENT_TIMED_OUT event on the
connect_evd_handle of the local Endpoint.

dat_ep_dup_connect(3DAT)

Extended Library Functions, Volume 1 131

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations.

DAT_INVALID_PARAMETER Invalid parameter.

DAT_INVALID_HANDLE The ep_handle or dup_ep_handle parameter is invalid.

DAT_INVALID_STATE A parameter is in an invalid state.

DAT_MODEL_NOT_SUPPORTED The requested Model is not supported by the Provider.
For example, requested qos was not supported by the local
Provider.

It is up to the Consumer to negotiate outstanding RDMA Read incoming and outgoing with a
remote peer. The outstanding RDMA Read outgoing attribute should be smaller than the
remote Endpoint outstanding RDMA Read incoming attribute. If this is not the case,
connection establishment might fail.

DAT API does not define a protocol on how remote peers exchange Endpoint attributes. The
exchange of outstanding RDMA Read incoming and outgoing attributes of EPs is left to the
Consumer ULP. The Consumer can use Private Data for it.

If the Consumer does not care about posting RDMA Read operations or remote RDMA Read
operations on the connection, it can set the two outstanding RDMA Read attribute values to 0.

If the Consumer does not set the two outstanding RDMA Read attributes of the Endpoint, the
Provider is free to pick up any values as a default. The Provider is allowed to change these
default values during connection setup.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Return Values

Usage

Attributes

See Also

dat_ep_dup_connect(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004132

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_ep_free – destroy an instance of the Endpoint

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_ep_free (

IN DAT_EP_HANDLE ep_handle

)

ep_handle Handle for an instance of the Endpoint.

The dat_ep_free() function destroys an instance of the Endpoint.

The Endpoint can be destroyed in any Endpoint state except Reserved, Passive Connection
Pending, and Tentative Connection Pending. The destruction of the Endpoint can also cause
the destruction of DTOs and RMRs posted to the Endpoint and not dequeued yet. This
includes completions for all outstanding and in-progress DTOs/RMRs. The Consumer must
be ready for all completions that are not dequeued yet either still being on the Endpoint
recv_evd_handle and request_evd_handle or not being there.

The destruction of the Endpoint during connection setup aborts connection establishment.

If the Endpoint is in the Reserved state, the Consumer shall first destroy the associated
Reserved Service Point that transitions the Endpoint into the Unconnected state where the
Endpoint can be destroyed. If the Endpoint is in the Passive Connection Pending state, the
Consumer shall first reject the associated Connection Request that transitions the Endpoint
into the Unconnected state where the Endpoint can be destroyed. If the Endpoint is in the
Tentative Connection Pending state, the Consumer shall reject the associated Connection
Request that transitions the Endpoint back to Provider control, and the Endpoint is destroyed
as far as the Consumer is concerned.

The freeing of an Endpoint also destroys an Event Stream for each of the associated Event
Dispatchers.

Use of the handle of the destroyed Endpoint in any subsequent operation except for the
dat_ep_free() fails.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The ep_handle parameter is invalid.

DAT_INVALID_STATE Parameter in an invalid state. The Endpoint is in
DAT_EP_STATE_RESERVED,
DAT_EP_STATE_PASSIVE_CONNECTION_PENDING, or
DAT_EP_STATE_TENTATIVE_CONNECTION_PENDING.

Name

Synopsis

Parameters

Description

Return Values

dat_ep_free(3DAT)

Extended Library Functions, Volume 1 133

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Attributes

See Also

dat_ep_free(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004134

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_ep_get_status – provide a quick snapshot of the Endpoint

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_ep_get_status (

IN DAT_EP_HANDLE ep_handle,

OUT DAT_EP_STATE *ep_state,

OUT DAT_BOOLEAN *recv_idle,

OUT DAT_BOOLEAN *request_idle

)

ep_handle Handle for an instance of the Endpoint.

ep_state Current state of the Endpoint.

recv_idle Status of the incoming DTOs on the Endpoint.

request_idle Status of the outgoing DTOs and RMR Bind operations on the Endpoint.

the dat_ep_get_status() function provides the Consumer a quick snapshot of the Endpoint.
The snapshot consists of the Endpoint state and whether there are outstanding or in-progress,
incoming or outgoing DTOs. Incoming DTOs consist of Receives. Outgoing DTOs consist of
the Requests, Send, RDMA Read, RDMA Write, and RMR Bind.

The ep_state parameter returns the value of the current state of the Endpoint ep_handle. State
value is one of the following: DAT_EP_STATE_UNCONNECTED, DAT_EP_STATE_RESERVED,
DAT_EP_STATE_PASSIVE_CONNECTION_PENDING,
DAT_EP_STATE_ACTIVE_CONNECTION_PENDING,
DAT_EP_STATE_TENTATIVE_CONNECTION_PENDING, DAT_EP_STATE_CONNECTED,
DAT_EP_STATE_DISCONNECT_PENDING, or DAT_EP_STATE_DISCONNECTED.

A recv_idle value of DAT_TRUE specifies that there are no outstanding or in-progress Receive
DTOs at the Endpoint, and DAT_FALSE otherwise.

A request_idle value of DAT_TRUE specifies that there are no outstanding or in-progress Send,
RDMA Read, and RDMA Write DTOs, and RMR Binds at the Endpoint, and DAT_FALSE

otherwise.

This call provides a snapshot of the Endpoint status only. No heroic synchronization with
DTO queuing or processing is implied.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The ep_handle parameter is invalid.

Name

Synopsis

Parameters

Description

Return Values

dat_ep_get_status(3DAT)

Extended Library Functions, Volume 1 135

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Attributes

See Also

dat_ep_get_status(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004136

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_ep_modify – change parameters of an Endpoint

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_ep_modify (

IN DAT_EP_HANDLE ep_handle,

IN DAT_EP_PARAM_MASK ep_param_mask,

IN DAT_EP_PARAM *ep_param

)

ep_handle Handle for an instance of the Endpoint.

ep_param_mask Mask for Endpoint parameters.

ep_param Pointer to the Consumer-allocated structure that contains
Consumer-requested Endpoint parameters.

The dat_ep_modify() function provides the Consumer a way to change parameters of an
Endpoint.

The ep_param_mask parameter allows Consumers to specify which parameters to modify.
Providers modify values for ep_param_mask requested parameters only.

Not all the parameters of the Endpoint can be modified. Some can be modified only when the
Endpoint is in a specific state. The following list specifies which parameters can be modified
and when they can be modified.

Interface Adapter
Cannot be modified.

Endpoint belongs to an open instance of IA and that association cannot be changed.

Endpoint State
Cannot be modified.

State of Endpoint cannot be changed by a dat_ep_modify() operation.

Local IA Address
Cannot be modified.

Local IA Address cannot be changed by a dat_ep_modify() operation.

Local Port Qualifier
Cannot be modified.

Local port qualifier cannot be changed by a dat_ep_modify() operation.

Remote IA Address
Cannot be modified.

Name

Synopsis

Parameters

Description

dat_ep_modify(3DAT)

Extended Library Functions, Volume 1 137

Remote IA Address cannot be changed by a dat_ep_modify() operation.

Remote Port Qualifier
Cannot be modified.

Remote port qualifier cannot be changed by a dat_ep_modify() operation

Protection Zone
Can be modified when in Quiescent, Unconnected, and Tentative Connection Pending
states.

Protection Zone can be changed only when the Endpoint is in quiescent state. The only
Endpoint states that isare quiescent isare DAT_EP_STATE_UNCONNECTED and
DAT_EP_STATE_TENTATIVE_CONNECTION_PENDING. Consumers should be aware that any
Receive DTOs currently posted to the Endpoint that do not match the new Protection Zone
fail with a DAT_PROTECTION_VIOLATION return.

In DTO Event Dispatcher
Can be modified when in Unconnected, Reserved, Passive Connection Request Pending,
and Tentative Connection Pending states.

Event Dispatcher for incoming DTOs (Receive) can be changed only prior to a request for a
connection for an Active side or prior to accepting a Connection Request for a Passive side.

Out DTO Event Dispatcher
Can be modified when in Unconnected, Reserved, Passive Connection Pending, and
Tentative Connection Pending states.

Event Dispatcher for outgoing DTOs (Send, RDMA Read, and RDMA Write) can be
changed only prior to a request for a connection for an Active side or prior to accepting a
Connection Request for a Passive side.

Connection Event Dispatcher
Can be modified when in Unconnected, Reserved, Passive Connection Pending, and
Tentative Connection Pending states.

Event Dispatcher for the Endpoint Connection events can be changed only prior to a
request for a connection for an Active side or accepting a Connection Request for a Passive
side.

Service Type
Can be modified when in Unconnected, Reserved, Passive Connection Pending, and
Tentative Connection Pending states.

Service Type can be changed only prior to a request for a connection for an Active side or
accepting a Connection Request for a Passive side.

Maximum Message Size
Can be modified when in Unconnected, Reserved, Passive Connection Request Pending,
and Tentative Connection Pending states.

dat_ep_modify(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004138

Maximum Message Size can be changed only prior to a request for a connection for an
Active side or accepting a Connection Request for a Passive side.

Maximum RDMA Size
Can be modified when in Unconnected, Reserved, Passive Connection Pending, and
Tentative Connection Pending states.

Maximum RDMA Size can be changed only prior to a request for a connection for an
Active side or accepting a Connection Request for a Passive side.

Quality of Service
Can be modified when in Unconnected, Reserved, Passive Connection Pending, and
Tentative Connection Pending states.

QoS can be changed only prior to a request for a connection for an Active side or accepting
a Connection Request for a Passive side.

Recv Completion Flags
Can be modified when in Unconnected, Reserved, Passive Connection Pending, and
Tentative Connection Pending states.

Recv Completion Flags specifies what DTO flags the Endpoint should support for Receive
DTO operations. The value can be DAT_COMPLETION_NOTIFICATION_SUPPRESS_FLAG,
DAT_COMPLETION_SOLICITED_WAIT_FLAG, or DAT_COMPLETION_EVD_THRESHOLD_FLAG.
Recv posting does not support DAT_COMPLETION_SUPPRESS_FLAG or
DAT_COMPLETION_BARRIER_FENCE_FLAG dat_completion_flags values that are only
applicable to Request postings. Recv Completion Flags can be changed only prior to a
request for a connection for an Active side or accepting a Connection Request for a Passive
side, but before posting of any Recvs.

Request Completion Flags
Can be modified when in Unconnected, Reserved, Passive Connection Request Pending,
and Tentative Connection Pending states.

Request Completion Flags specifies what DTO flags the Endpoint should support for Send,
RDMA Read, RDMA Write, and RMR Bind operations. The value can be:
DAT_COMPLETION_UNSIGNALLED_FLAG or DAT_COMPLETION_EVD_THRESHOLD_FLAG. Request
postings always support DAT_COMPLETION_SUPPRESS_FLAG,
DAT_COMPLETION_SOLICITED_WAIT_FLAG, or DAT_COMPLETION_BARRIER_FENCE_FLAG
completion_flags values. Request Completion Flags can be changed only prior to a request
for a connection for an Active side or accepting a Connection Request for a Passive side.

Maximum Recv DTO
Can be modified when in Unconnected, Reserved, Passive Connection Pending, and
Tentative Connection Pending states.

Maximum Recv DTO specifies the maximum number of outstanding
Consumer-submitted Receive DTOs that a Consumer expects at any time at the Endpoint.

dat_ep_modify(3DAT)

Extended Library Functions, Volume 1 139

Maximum Recv DTO can be changed only prior to a request for a connection for an Active
side or accepting a Connection Request for a Passive side.

Maximum Request DTO
Can be modified when in Unconnected, Reserved, Passive Connection Pending, and
Tentative Connection Pending states.

Maximum Request DTO specifies the maximum number of outstanding
Consumer-submitted send and RDMA DTOs and RMR Binds that a Consumer expects at
any time at the Endpoint. Maximum Out DTO can be changed only prior to a request for a
connection for an Active side or accepting a Connection Request for a Passive side.

Maximum Recv IOV
Can be modified when in Unconnected, Reserved, Passive Connection Pending, and
Tentative Connection Pending states.

Maximum Recv IOV specifies the maximum number of elements in IOV that a Consumer
specifies for posting a Receive DTO for the Endpoint. Maximum Recv IOV can be changed
only prior to a request for a connection for an Active side or accepting a Connection
Request for a Passive side.

Maximum Request IOV
Can be modified when in Unconnected, Reserved, Passive Connection Pending, and
Tentative Connection Pending states.

Maximum Request IOV specifies the maximum number of elements in IOV that a
Consumer specifies for posting a Send, RDMA Read, or RDMA Write DTO for the
Endpoint. Maximum Request IOV can be changed only prior to a request for a connection
for an Active side or accepting a Connection Request for a Passive side.

Maximum outstanding RDMA Read as target
Can be modified when in Unconnected, Reserved, Passive Connection Pending, and
Tentative Connection Pending states.

Maximum number of outstanding RDMA Reads for which the Endpoint is the target.

Maximum outstanding RDMA Read as originator
Can be modified when in Unconnected, Reserved, Passive Connection Pending, and
Tentative Connection Pending states.

Maximum number of outstanding RDMA Reads for which the Endpoint is the originator.

Num transport-specific attributes
Can be modified when in Quiescent (unconnected) state.

Number of transport-specific attributes to be modified.

Transport-specific endpoint attributes
Can be modified when in Quiescent (unconnected) state.

dat_ep_modify(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004140

Transport-specific attributes can be modified only in the transport-defined Endpoint state.
The only guaranteed safe state in which to modify transport-specific Endpoint attributes is
the quiescent state DAT_EP_STATE_UNCONNECTED.

Num provider-specific attributes
Can be modified when in Quiescent (unconnected) state.

Number of Provider-specific attributes to be modified.

Provider-specific endpoint attributes
Can be modified when in Quiescent (unconnected) state.

Provider-specific attributes can be modified only in the Provider-defined Endpoint state.
The only guaranteed safe state in which to modify Provider-specific Endpoint attributes is
the quiescent state DAT_EP_STATE_UNCONNECTED.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The ep_handle parameter is invalid.

DAT_INVALID_PARAMETER The ep_param_mask parameter is invalid, or one of the
requested Endpoint parameters or attributes was invalid, not
supported, or cannot be modified.

DAT_INVALID_STATE Parameter in an invalid state. The Endpoint was not in the state
that allows one of the parameters or attributes to be modified.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Return Values

Attributes

See Also

dat_ep_modify(3DAT)

Extended Library Functions, Volume 1 141

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_ep_post_rdma_read – transfer all data to the local data buffer

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_ep_post_rdma_read (

IN DAT_EP_HANDLE ep_handle,

IN DAT_COUNT num_segments,

IN DAT_LMR_TRIPLET *local_iov,

IN DAT_DTO_COOKIE user_cookie,

IN DAT_RMR_TRIPLET *remote_buffer,

IN DAT_COMPLETION_FLAGS completion_flags

)

ep_handle Handle for an instance of the Endpoint.

num_segments Number of lmr_triplets in local_iov.

local_iov I/O Vector that specifies the local buffer to fill.

user_cookie User-provided cookie that is returned to the Consumer at the
completion of the RDMA Read. Can be NULL.

remote_buffer A pointer to an RMR Triplet that specifies the remote buffer from which
the data is read.

completion_flags Flags for posted RDMA Read. The default
DAT_COMPLETION_DEFAULT_FLAG is 0x00. Other values are as follows:

Completion Suppression DAT_COMPLETION_SUPPRESS_FLAG

0x01 Suppress successful
Completion.

Notification of Completion DAT_COMPLETION_UNSIGNALLED_FLAG

0x04 Non-notification completion.
Local Endpoint must be
configured for Notification
Suppression.

Barrier Fence DAT_COMPLETION_BARRIER_FENCE_FLAG

0x08 Request for Barrier Fence.

The dat_ep_post_rdma_read() function requests the transfer of all the data specified by the
remote_buffer over the connection of the ep_handle Endpoint into the local_iov.

The num_segments parameter specifies the number of segments in the local_iov. The local_iov
segments are filled in the I/O Vector order until the whole message is received. This ensures

Name

Synopsis

Parameters

Description

dat_ep_post_rdma_read(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004142

that all the "front" segments of the local_iov I/O Vector are completely filled, only one
segment is partially filled, if needed, and all segments that follow it are not filled at all.

The user_cookie allows Consumers to have unique identifiers for each DTO. These identifiers
are completely under user control and are opaque to the Provider. There is no requirement on
the Consumer that the value user_cookie should be unique for each DTO. The user_cookie is
returned to the Consumer in the Completion event for the posted RDMA Read.

A Consumer must not modify the local_iov or its content until the DTO is completed. When a
Consumer does not adhere to this rule, the behavior of the Provider and the underlying
Transport is not defined. Providers that allow Consumers to get ownership of the local_iov but
not the memory it specifies back after the dat_ep_post_rdma_read() returns should
document this behavior and also specify its support in Provider attributes. This behavior
allows Consumers full control of the local_iov after dat_ep_post_rdma_read() returns.
Because this behavior is not guaranteed by all Providers, portable Consumers should not rely
on this behavior. Consumers should not rely on the Provider copying local_iov information.

The completion of the posted RDMA Read is reported to the Consumer asynchronously
through a DTO Completion event based on the specified completion_flags value. The value of
DAT_COMPLETION_UNSIGNALLED_FLAG is only valid if the Endpoint Request Completion Flags
DAT_COMPLETION_UNSIGNALLED_FLAG. Otherwise, DAT_INVALID_PARAMETER is returned.

The DAT_SUCCESS return of the dat_ep_post_rdma_read() is at least the equivalent of posting
an RDMA Read operation directly by native Transport. Providers should avoid resource
allocation as part of dat_ep_post_rdma_read() to ensure that this operation is nonblocking
and thread safe for an UpCall.

The operation is valid for the Endpoint in the DAT_EP_STATE_CONNECTED and
DAT_EP_STATE_DISCONNECTED states. If the operation returns successfully for the Endpoint in
the DAT_EP_STATE_DISCONNECTED state, the posted RDMA Read is immediately flushed to
request_evd_handle.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations.

DAT_INVALID_PARAMETER Invalid parameter. For example, one of the IOV segments
pointed to a memory outside its LMR.

DAT_INVALID_HANDLE The ep_handle parameter is invalid.

DAT_INVALID_STATE A parameter is in an invalid state. Endpoint was not in the
DAT_EP_STATE_CONNECTED or
DAT_EP_STATE_DISCONNECTED state.

DAT_LENGTH_ERROR The size of the receiving buffer is too small for sending
buffer data. The size of the local buffer is too small for the
data of the remote buffer.

Return Values

dat_ep_post_rdma_read(3DAT)

Extended Library Functions, Volume 1 143

DAT_PROTECTION_VIOLATION Protection violation for local or remote memory access.
Protection Zone mismatch between either an LMR of one
of the local_iov segments and the local Endpoint or the
rmr_context and the remote Endpoint.

DAT_PRIVILEGES_VIOLATION Privileges violation for local or remote memory access.
Either one of the LMRs used in local_iov is invalid or does
not have the local write privileges, or rmr_context does
not have the remote read privileges.

For best RDMA Read operation performance, the Consumer should align each buffer segment
of local_iov to the Optimal Buffer Alignment attribute of the Provider. For portable
applications, the Consumer should align each buffer segment of local_iov to the
DAT_OPTIMAL_ALIGNMENT.

If connection was established without outstanding RDMA Read attributes matching on
Endpoints on both sides (outstanding RDMA Read outgoing on one end is larger than the
outstanding RDMA Read incoming on the other end), connection is broken when the number
of incoming RDMA Read exceeds the outstanding RDMA Read incoming attribute of the
Endpoint. The Consumer can use its own flow control to ensure that it does not post more
RDMA Reads then the remote EP outstanding RDMA Read incoming attribute is. Thus, they
do not rely on the underlying Transport enforcing it.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Usage

Attributes

See Also

dat_ep_post_rdma_read(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004144

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_ep_post_rdma_write – write all data to the remote data buffer

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_ep_post_rdma_read (

IN DAT_EP_HANDLE ep_handle,

IN DAT_COUNT num_segments,

IN DAT_LMR_TRIPLET *local_iov,

IN DAT_DTO_COOKIE user_cookie,

IN DAT_RMR_TRIPLET *remote_buffer,

IN DAT_COMPLETION_FLAGS completion_flags

)

ep_handle Handle for an instance of the Endpoint.

num_segments Number of lmr_triplets in local_iov.

local_iov I/O Vector that specifies the local buffer from which the data is
transferred.

user_cookie User-provided cookie that is returned to the Consumer at the
completion of the RDMA Write.

remote_buffer A pointer to an RMR Triplet that specifies the remote buffer from which
the data is read.

completion_flags Flags for posted RDMA read. The default
DAT_COMPLETION_DEFAULT_FLAG is 0x00. Other values are as follows:

Completion Suppression DAT_COMPLETION_SUPPRESS_FLAG

0x01 Suppress successful
Completion.

Notification of Completion DAT_COMPLETION_UNSIGNALLED_FLAG

0x04 Non-notification completion.
Local Endpoint must be
configured for Notification
Suppression.

Barrier Fence DAT_COMPLETION_BARRIER_FENCE_FLAG

0x08 Request for Barrier Fence.

The dat_ep_post_rdma_write() function requests the transfer of all the data specified by the
local_iov over the connection of the ep_handle Endpoint into the remote_buffer.

The num_segments parameter specifies the number of segments in the local_iov. The local_iov
segments are traversed in the I/O Vector order until all the data is transferred.

Name

Synopsis

Parameters

Description

dat_ep_post_rdma_write(3DAT)

Extended Library Functions, Volume 1 145

A Consumer must not modify the local_iov or its content until the DTO is completed. When a
Consumer does not adhere to this rule, the behavior of the Provider and the underlying
Transport is not defined. Providers that allow Consumers to get ownership of the local_iov but
not the memory it specifies back after the dat_ep_post_rdma_write() returns should
document this behavior and also specify its support in Provider attributes. This behavior
allows Consumers full control of the local_iov after dat_ep_post_rdma_write() returns.
Because this behavior is not guaranteed by all Providers, portable Consumers should not rely
on this behavior. Consumers should not rely on the Provider copying local_iov information.

The DAT_SUCCESS return of the dat_ep_post_rdma_write() is at least the equivalent of
posting an RDMA Write operation directly by native Transport. Providers should avoid
resource allocation as part of dat_ep_post_rdma_write() to ensure that this operation is
nonblocking and thread safe for an UpCall.

The completion of the posted RDMA Write is reported to the Consumer asynchronously
through a DTO Completion event based on the specified completion_flags value. The value of
DAT_COMPLETION_UNSIGNALLED_FLAG is only valid if the Endpoint Request Completion Flags
DAT_COMPLETION_UNSIGNALLED_FLAG. Otherwise, DAT_INVALID_PARAMETER is returned.

The user_cookie allows Consumers to have unique identifiers for each DTO. These identifiers
are completely under user control and are opaque to the Provider. There is no requirement on
the Consumer that the value user_cookie should be unique for each DTO. The user_cookie is
returned to the Consumer in the Completion event for the posted RDMA Write.

The operation is valid for the Endpoint in the DAT_EP_STATE_CONNECTED and
DAT_EP_STATE_DISCONNECTED states. If the operation returns successfully for the Endpoint in
the DAT_EP_STATE_DISCONNECTED state, the posted RDMA Write is immediately flushed to
request_evd_handle.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations.

DAT_INVALID_PARAMETER Invalid parameter. For example, one of the IOV segments
pointed to a memory outside its LMR.

DAT_INVALID_HANDLE The ep_handle parameter is invalid.

DAT_INVALID_STATE A parameter is in an invalid state. Endpoint was not in the
DAT_EP_STATE_CONNECTED or
DAT_EP_STATE_DISCONNECTED state.

DAT_LENGTH_ERROR The size of the receiving buffer is too small for sending
buffer data. The size of the remote buffer is too small for
the data of the local buffer.

DAT_PROTECTION_VIOLATION Protection violation for local or remote memory access.
Protection Zone mismatch between either an LMR of one

Return Values

dat_ep_post_rdma_write(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004146

of the local_iov segments and the local Endpoint or the
rmr_context and the remote Endpoint.

DAT_PRIVILEGES_VIOLATION Privileges violation for local or remote memory access.
Either one of the LMRs used in local_iov is invalid or does
not have the local read privileges, or rmr_context does not
have the remote write privileges.

For best RDMA Write operation performance, the Consumer should align each buffer
segment of local_iov to the Optimal Buffer Alignment attribute of the Provider. For portable
applications, the Consumer should align each buffer segment of local_iov to the
DAT_OPTIMAL_ALIGNMENT.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Usage

Attributes

See Also

dat_ep_post_rdma_write(3DAT)

Extended Library Functions, Volume 1 147

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_ep_post_recv – receive data over the connection of the Endpoint

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_ep_post_recv (

IN DAT_EP_HANDLE ep_handle,

IN DAT_COUNT num_segments,

IN DAT_LMR_TRIPLET *local_iov,

IN DAT_DTO_COOKIE user_cookie,

IN DAT_COMPLETION_FLAGS completion_flags

)

ep_handle Handle for an instance of the Endpoint.

num_segments Number of lmr_triplets in local_iov. Can be 0 for receiving a 0 size
message.

local_iov I/O Vector that specifies the local buffer to be filled. Can be NULL for
receiving a 0 size message.

user_cookie: User-provided cookie that is returned to the Consumer at the
completion of the Receive DTO. Can be NULL.

completion_flags Flags for posted Receive. The default DAT_COMPLETION_DEFAULT_FLAG is
0x00. Other values are as follows:

Notification of Completion DAT_COMPLETION_UNSIGNALLED_FLAG

0x04 Non-notification completion.
Local Endpoint must be
configured for Unsignaled
CompletionNotification
Suppression.

The dat_ep_post_recv() function requests the receive of the data over the connection of the
ep_handle Endpoint of the incoming message into the local_iov.

The num_segments parameter specifies the number of segments in the local_iov. The local_iov
segments are filled in the I/O Vector order until the whole message is received. This ensures
that all the "front" segments of the local_iov I/O Vector are completely filled, only one
segment is partially filled, if needed, and all segments that follow it are not filled at all.

The user_cookie allows Consumers to have unique identifiers for each DTO. These identifiers
are completely under user control and are opaque to the Provider. There is no requirement on
the Consumer that the value user_cookie should be unique for each DTO. The user_cookie is
returned to the Consumer in the Completion event for the posted Receive.

Name

Synopsis

Parameters

Description

dat_ep_post_recv(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004148

The completion of the posted Receive is reported to the Consumer asynchronously through a
DTO Completion event based on the configuration of the connection for Solicited Wait and
the specified completion_flags value for the matching Send. The value of DAT_COMPLETION
_UNSIGNALLED_FLAG is only valid if the Endpoint Recv Completion Flags
DAT_COMPLETION_UNSIGNALLED_FLAG. Otherwise, DAT_INVALID_PARAMETER is returned.

A Consumer must not modify the local_iov or its content until the DTO is completed. When a
Consumer does not adhere to this rule, the behavior of the Provider and the underlying
Transport is not defined. Providers that allow Consumers to get ownership of the local_iov but
not the memory it specified back after the dat_ep_post_recv() returns should document this
behavior and also specify its support in Provider attributes. This behavior allows Consumer
full control of the local_iov content after dat_ep_post_recv() returns. Because this behavior
is not guaranteed by all Providers, portable Consumers should not rely on this behavior.
Consumers shouldnot rely on the Provider copying local_iov information.

The DAT_SUCCESS return of the dat_ep_post_recv() is at least the equivalent of posting a
Receive operation directly by native Transport. Providers should avoid resource allocation as
part of dat_ep_post_recv() to ensure that this operation is nonblocking and thread safe for
an UpCall.

If the size of an incoming message is larger than the size of the local_iov, the reported status of
the posted Receive DTO in the corresponding Completion DTO event is
DAT_DTO_LENGTH_ERROR. If the reported status of the Completion DTO event corresponding
to the posted Receive DTO is not DAT_DTO_SUCCESS, the content of the local_iov is not defined.

The operation is valid for all states of the Endpoint. The actual data transfer does not take
place until the Endpoint is in the DAT_EP_STATE_CONNECTED state. The operation on the
Endpoint in DAT_EP_STATE_DISCONNECTED is allowed. If the operation returns successfully,
the posted Recv is immediately flushed to recv_evd_handle.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations.

DAT_INVALID_PARAMETER Invalid parameter. For example, one of the IOV segments
pointed to a memory outside its LMR.

DAT_INVALID_HANDLE The ep_handle parameter is invalid.

DAT_PROTECTION_VIOLATION Protection violation for local or remote memory access.
Protection Zone mismatch between an LMR of one of the
local_iov segments and the local Endpoint.

DAT_PRIVILEGES_VIOLATION Privileges violation for local or remote memory access.
One of the LMRs used in local_iov was either invalid or
did not have the local read privileges.

Return Values

dat_ep_post_recv(3DAT)

Extended Library Functions, Volume 1 149

For best Recv operation performance, the Consumer should align each buffer segment of
local_iov to the Optimal Buffer Alignment attribute of the Provider. For portable applications,
the Consumer should align each buffer segment of local_iov to the DAT_OPTIMAL_ALIGNMENT.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Usage

Attributes

See Also

dat_ep_post_recv(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004150

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_ep_post_send – transfer data to the remote side

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_ep_post_send (

IN DAT_EP_HANDLE ep_handle,

IN DAT_COUNT num_segments,

IN DAT_LMR_TRIPLET *local_iov,

IN DAT_DTO_COOKIE user_cookie,

IN DAT_COMPLETION_FLAGS completion_flags

)

ep_handle Handle for an instance of the Endpoint.

num_segments Number of lmr_triplets in local_iov. Can be 0 for 0 size message.

local_iov I/O Vector that specifies the local buffer that contains data to be
transferred. Can be NULL for 0 size message.

user_cookie: User-provided cookie that is returned to the Consumer at the
completion of the send. Can be NULL.

completion_flags Flags for posted Send. The default DAT_COMPLETION_DEFAULT_FLAG is
0x00. Other values are as follows:

Completion Suppression DAT_COMPLETION_SUPPRESS_FLAG

0x01 Suppress successful
Completion.

Solicited Wait DAT_COMPLETION_SOLICITED_WAIT_FLAG

0x02 Request for notification
completion for matching
receive on the other side of the
connection.

Notification of Completion DAT_COMPLETION_UNSIGNALLED_FLAG

0x04 Non-notification completion.
Local Endpoint must be
configured for Notification
Suppression.

Barrier Fence DAT_COMPLETION_BARRIER_FENCE_FLAG

0x08 Request for Barrier Fence.

Name

Synopsis

Parameters

dat_ep_post_send(3DAT)

Extended Library Functions, Volume 1 151

The dat_ep_post_send() function requests a transfer of all the data from the local_iov over
the connection of the ep_handle Endpoint to the remote side.

The num_segments parameter specifies the number of segments in the local_iov. The local_iov
segments are traversed in the I/O Vector order until all the data is transferred.

A Consumer cannot modify the local_iov or its content until the DTO is completed. When a
Consumer does not adhere to this rule, the behavior of the Provider and the underlying
Transport is not defined. Providers that allow Consumers to get ownership of the local_iov
back after the dat_ep_post_send() returns should document this behavior and also specify
its support in Provider attributes. This behavior allows Consumers full control of the
local_iov, but not the memory it specifies after dat_ep_post_send() returns. Because this
behavior is not guaranteed by all Providers, portable Consumers should not rely on this
behavior. Consumers should not rely on the Provider copying local_iov information.

The DAT_SUCCESS return of the dat_ep_post_send() is at least the equivalent of posting a
Send operation directly by native Transport. Providers should avoid resource allocation as
part of dat_ep_post_send() to ensure that this operation is nonblocking and thread safe for
an UpCall.

The completion of the posted Send is reported to the Consumer asynchronously through a
DTO Completion event based on the specified completion_flags value. The value of
DAT_COMPLETION _UNSIGNALLED_FLAG is only valid if the Endpoint Request Completion Flags
DAT_COMPLETION_UNSIGNALLED_FLAG. Otherwise, DAT_INVALID_PARAMETER is returned.

The user_cookie allows Consumers to have unique identifiers for each DTO. These identifiers
are completely under user control and are opaque to the Provider. There is no requirement on
the Consumer that the value user_cookie should be unique for each DTO. The user_cookie is
returned to the Consumer in the Completion event for the posted Send.

The operation is valid for the Endpoint in the DAT_EP_STATE_CONNECTED and
DAT_EP_STATE_DISCONNECTED states. If the operation returns successfully for the Endpoint in
the DAT_EP_STATE_DISCONNECTED state, the posted Send is immediately flushed to
request_evd_handle.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations.

DAT_INVALID_PARAMETER Invalid parameter. For example, one of the IOV segments
pointed to a memory outside its LMR.

DAT_INVALID_HANDLE The ep_handle parameter is invalid.

DAT_INVALID_STATE A parameter is in an invalid state. Endpoint was not in the
DAT_EP_STATE_CONNECTED or
DAT_EP_STATE_DISCONNECTED state.

Description

Return Values

dat_ep_post_send(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004152

DAT_PROTECTION_VIOLATION Protection violation for local or remote memory access.
Protection Zone mismatch between an LMR of one of the
local_iov segments and the local Endpoint.

DAT_PRIVILEGES_VIOLATION Privileges violation for local or remote memory access.
One of the LMRs used in local_iov was either invalid or
did not have the local read privileges.

For best Send operation performance, the Consumer should align each buffer segment of
local_iov to the Optimal Buffer Alignment attribute of the Provider. For portable applications,
the Consumer should align each buffer segment of local_iov to the DAT_OPTIMAL_ALIGNMENT.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Usage

Attributes

See Also

dat_ep_post_send(3DAT)

Extended Library Functions, Volume 1 153

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_ep_query – provide parameters of the Endpoint

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_ep_query (

IN DAT_EP_HANDLE ep_handle,

IN DAT_EP_PARAM_MASK ep_param_mask,

OUT DAT_EP_PARAM *ep_param

)

ep_handle Handle for an instance of the Endpoint.

ep_param_mask Mask for Endpoint parameters.

ep_param Pointer to a Consumer-allocated structure that the Provider fills with
Endpoint parameters.

The dat_ep_query() function provides the Consumer parameters, including attributes and
status, of the Endpoint. Consumers pass in a pointer to Consumer-allocated structures for
Endpoint parameters that the Provider fills.

The ep_param_mask parameter allows Consumers to specify which parameters to query. The
Provider returns values for ep_param_mask requested parameters. The Provider can return
values for any other parameters.

Some of the parameters only have values for certain Endpoint states. Specifically, the values
for remote_ia_address and remote_port_qual are valid only for Endpoints in the
DAT_EP_STATE_PASSIVE_CONNECTION_PENDING,
DAT_EP_STATE_ACTIVE_CONNECTION_PENDING,
DAT_EP_STATE_TENTATIVE_CONNECTION_PENDING, DAT_EP_STATE_DISCONNECT_PENDING,
DAT_EP_STATE_COMPLETION_PENDING, or DAT_EP_STATE_CONNECTED states. The values of
local_port_qual is valid only for Endpoints in the
DAT_EP_STATE_PASSIVE_CONNECTION_PENDING,
DAT_EP_STATE_ACTIVE_CONNECTION_PENDING, DAT_EP_STATE_DISCONNECT_PENDING,
DAT_EP_STATE_COMPLETION_PENDING, or DAT_EP_STATE_CONNECTED states, and might be valid
for DAT_EP_STATE_UNCONNECTED, DAT_EP_STATE_RESERVED,
DAT_EP_STATE_TENTATIVE_CONNECTION_PENDING,
DAT_EP_STATE_PASSIVE_CONNECTION_PENDING, and DAT_EP_STATE_UNCONNECTED states.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The ep_handle parameter is invalid.

DAT_INVALID_PARAMETER The ep_param_mask parameter is invalid.

Name

Synopsis

Parameters

Description

Return Values

dat_ep_query(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004154

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Attributes

See Also

dat_ep_query(3DAT)

Extended Library Functions, Volume 1 155

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_ep_recv_query – provide Endpoint receive queue consumption on SRQ

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_ep_recv_query (

IN DAT_EP_HANDLE ep_handle,

OUT DAT_COUNT *nbufs_allocated,

OUT DAT_COUNT *bufs_alloc_span

)

ep_handle Handle for an instance of the EP.

nbufs_allocated The number of buffers at the EP for which completions have not yet been
generated.

bufs_alloc_span The span of buffers that EP needs to complete arriving messages.

The dat_ep_recv_query() function provides to the Consumer a snapshot for Recv buffers on
EP. The values for nbufs_allocated and bufs_alloc_span are not defined when DAT_RETURN is
not DAT_SUCCESS.

The Provider might not support nbufs_allocated, bufs_alloc_span or both. Check the Provider
attribute for EP Recv info support. When the Provider does not support both of these counts,
the return value for the operation can be DAT_MODEL_NOT_SUPPORTED.

If nbufs_allocated is not NULL, the count pointed to by nbufs_allocated will return a snapshot
count of the number of buffers allocated to ep_handle but not yet completed.

Once a buffer has been allocated to an EP, it will be completed to the EP recv_evd if the EVD
has not overflowed. When an EP does not use SRQ, a buffer is allocated as soon as it is posted
to the EP. For EP that uses SRQ, a buffer is allocated to the EP when EP removes it from SRQ.

If bufs_alloc_span is not NULL, then the count to which bufs_alloc_span pointed will return the
span of buffers allocated to the ep_handle. The span is the number of additional successful
Recv completions that EP can generate if all the messages it is currently receiving will
complete successfully.

If a message sequence number is assigned to all received messages, the buffer span is the
difference between the latest message sequence number of an allocated buffer minus the latest
message sequence number for which completion has been generated. This sequence number
only counts Send messages of remote Endpoint of the connection.

The Message Sequence Number (MSN) represents the order that Send messages were
submitted by the remote Consumer. The ordering of sends is intrinsic to the definition of a
reliable service. Therefore every send message does have a MSN whether or not the native
transport has a field with that name.

Name

Synopsis

Parameters

Description

dat_ep_recv_query(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004156

For both nbufs_allocated and bufs_alloc_span, the Provider can return the reserved value
DAT_VALUE_UNKNOWN if it cannot obtain the requested count at a reasonable cost.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER Invalid parameter.

DAT_INVALID_HANDLE The DAT handle ep_handle is invalid.

DAT_MODEL_NOT_SUPPORTED The requested Model was not supported by the Provider.

If the Provider cannot support the query for nbufs_allocated or bufs_alloc_span, the value
returned for that attribute must be DAT_VALUE_UNKNOWN.

An implementation that processes incoming packets out of order and allocates from SRQs on
an arrival basis can have gaps in the MSNs associated with buffers allocated to an Endpoint.

For example, suppose Endpoint X has received buffer fragments for MSNs 19, 22, and 23.
With arrival ordering, the EP would have allocated three buffers from the SRQ for messages
19, 22, and 23. The number allocated would be 3, but the span would be 5. The difference of
two represents the buffers that will have to be allocated for messages 20 and 21. They have not
yet been allocated, but messages 22 and 23 will not be delivered until after messages 20 and 21
have not only had their buffers allocated but have also completed.

An implementation can choose to allocate 20 and 21 as soon as any higher buffer is allocated.
This makes sense if you presume that this is a valid connection, because obviously 20 and 21
are in flight. However, it creates a greater vulnerability to Denial Of Service attacks. There are
also other implementation tradeoffs, so the Consumer should accept that different RNICs for
iWARP will employ different strategies on when to perform these allocations.

Each implementation will have some method of tracking the receive buffers already associated
with an EP and knowing which buffer matches which incoming message, though those
methods might vary. In particular, there are valid implementations such as linked lists, where
a count of the outstanding buffers is not instantly available. Such implementations would have
to scan the allocated list to determine both the number of buffers and their span. If such a scan
is necessary, it is important that it be only a single scan. The set of buffers that was counted
must be the same set of buffers for which the span is reported.

The implementation should not scan twice, once to count the buffers and then again to
determine their span. Not only is it inefficient, but it might produce inconsistent results if
buffers were completed or arrived between the two scans.

Other implementations can simply maintain counts of these values to easily filter invalid
packets. If so, these status counters should be updated and referenced atomically.

The implementation must never report n buffers in a span that is less than n.

Return Values

Usage

dat_ep_recv_query(3DAT)

Extended Library Functions, Volume 1 157

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.2

dat_ep_create(3DAT), dat_srq_create(3DAT), dat_srq_free(3DAT),
dat_srq_query(3DAT), dat_ep_set_watermark(3DAT), libdat(3LIB), attributes(5)

Attributes

See Also

dat_ep_recv_query(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004158

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_ep_reset – transition the local Endpoint from a Disconnected to an Unconnected state

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_ep_reset (

IN DAT_EP_HANDLE ep_handle

)

ep_handle Handle for an instance of Endpoint.

The dat_ep_reset() function transitions the local Endpoint from a Disconnected to an
Unconnected state.

The operation might cause the loss of any completions of previously posted DTOs and RMRs
that were not dequeued yet.

The dat_ep_reset() function is valid for both Disconnected and Unconnected states. For
Unconnected state, the operation is no-op because the Endpoint is already in an Unconnected
state. For an Unconnected state, the preposted Recvs are not affected by the call.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE ep_handle is invalid.

DAT_INVALID_STATE Parameter in an invalid state. Endpoint is not in the valid state for
reset.

If the Consumer wants to ensure that all Completions are dequeued, the Consumer can post
DTO or RMR operations as a "marker" that are flushed to recv_evd_handle or
request_evd_handle. Now, when the Consumer dequeues the completion of the "marker"
from the EVD, it is guaranteed that all previously posted DTO and RMR completions for the
Endpoint were dequeued for that EVD. Now, it is safe to reset the Endpoint without losing any
completions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Usage

Attributes

See Also

dat_ep_reset(3DAT)

Extended Library Functions, Volume 1 159

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_ep_set_watermark – set high watermark on Endpoint

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_ep_set_watermark (

IN DAT_EP_HANDLE ep_handle,

IN DAT_COUNT soft_high_watermark,

IN DAT_COUNT hard_high_watermark

)

ep_handle The handle for an instance of an Endpoint.

soft_high_watermark The soft high watermark for the number of Recv buffers consumed
by the Endpoint.

hard_high_watermark The hard high watermark for the number of Recv buffers consumed
by the Endpoint.

The dat_ep_set_watermark() function sets the soft and hard high watermark values for EP
and arms EP for generating asynchronous events for high watermarks. An asynchronous
event will be generated for IA async_evd when the number of Recv buffers at EP exceeds the
soft high watermark for the first time. A connection broken event will be generated for EP
connect_evd when the number of Recv buffers at EP exceeds the hard high watermark. These
can occur during this call or when EP takes a buffer from the SRQ or EP RQ. The soft and hard
high watermark asynchronous event generation and setting are independent of each other.

The asynchronous event for a soft high watermark is generated only once per setting. Once an
event is generated, no new asynchronous events for the soft high watermark is generated until
the EP is again set for the soft high watermark. If the Consumer is once again interested in the
event, the Consumer should again set the soft high watermark.

If the Consumer is not interested in a soft or hard high watermark, the value of
DAT_WATERMARK_INFINITE can be specified for the case that is the default value. This value
specifies that a non-asynchronous event will be generated for a high watermark EP attribute
for which this value is set. It does not prevent generation of a connection broken event for EP
when no Recv buffer is available for a message arrived on the EP connection.

The operation is supported for all states of Endpoint.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The ep_handle argument is an invalid DAT handle.

DAT_INVALID_PARAMETER One of the parameters is invalid.

DAT_MODEL_NOT_SUPPORTED The requested Model was not supported by the Provider. The
Provider does not support EP Soft or Hard High

Name

Synopsis

Parameters

Description

Return Values

dat_ep_set_watermark(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004160

Watermarks.

For a hard high watermark, the Provider is ready to generate a connection broken event as
soon as the connection is established.

If the asynchronous event for a soft or hard high watermark has not yet been generated, this
call simply modifies the values for these attributes. The Provider remains armed for
generation of these asynchronous events.

Regardless of whether an asynchronous event for the soft and hard high watermark has been
generated, this operation will set the generation of an asynchronous event with the
Consumer-provided high watermark values. If the new high watermark values are below the
current number of Receive DTOs at EP, an asynchronous event will be generated immediately.
Otherwise the old soft or hard (or both) high watermark values are simply replaced with the
new ones.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.2

dat_ep_create(3DAT), dat_ep_recv_query(3DAT), dat_srq_create(3DAT),
dat_srq_free(3DAT), dat_srq_post_recv(3DAT), dat_srq_query(3DAT),
dat_srq_resize(3DAT), dat_srq_set_lw(3DAT), libdat(3LIB), attributes(5)

Usage

Attributes

See Also

dat_ep_set_watermark(3DAT)

Extended Library Functions, Volume 1 161

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_evd_clear_unwaitable – transition the Event Dispatcher into a waitable state

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_evd_clear_unwaitable(

IN DAT_EVD_HANDLE evd_handle
)

evd_handle Handle for an instance of Event Dispatcher.

The dat_evd_clear_unwaitable() transitions the Event Dispatcher into a waitable state. In
this state, calls to dat_evd_wait(3DAT) are permitted on the EVD. The actual state of the
Event Dispatcher is accessible through dat_evd_query(3DAT) and is DAT_EVD_WAITABLE after
the return of this operation.

This call does not affect a CNO associated with this EVD at all. Events arriving on the EVD
after it is set waitable still trigger the CNO (if appropriate), and can be retrieved with
dat_evd_dequeue(3DAT).

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The evd_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard uDAPL, 1.1, 1.2

dat_evd_dequeue(3DAT), dat_evd_query(3DAT), dat_evd_set_unwaitable(3DAT),
dat_evd_wait(3DAT), libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_evd_clear_unwaitable(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004162

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_evd_dequeue – remove the first event from the Event Dispatcher event queue

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_evd_dequeue(

IN DAT_EVD_HANDLE evd_handle,
OUT DAT_EVENT *event
)

evd_handle Handle for an instance of the Event Dispatcher.

event Pointer to the Consumer-allocated structure that Provider fills with the event
data.

The dat_evd_dequeue() function removes the first event from the Event Dispatcher event
queue and fills the Consumer allocated event structure with event data. The first element in
this structure provides the type of the event; the rest provides the event-type-specific
parameters. The Consumer should allocate an event structure big enough to hold any event
that the Event Dispatcher can deliver.

For all events the Provider fills the dat_event that the Consumer allocates. So for all events, all
fields of dat_event are OUT from the Consumer point of view. For
DAT_CONNECTION_REQUEST_EVENT, the Provider creates a Connection Request whose
cr_handle is returned to the Consumer in DAT_CR_ARRIVAL_EVENT_DATA. That object is
destroyed by the Provider as part of dat_cr_accept(3DAT), dat_cr_reject(3DAT), or
dat_cr_handoff(3DAT). The Consumer should not use cr_handle or any of its parameters,
including private_data, after one of these operations destroys the Connection Request.

For DAT_CONNECTION_EVENT_ESTABLISHED for the Active side of connection establishment,
the Provider returns the pointer for private_data and the private_data_size. For the Passive
side, DAT_CONNECTION_EVENT_ESTABLISHED event private_data is not defined and
private_data_size returns zero. The Provider is responsible for the memory allocation and
deallocation for private_data. The private_data is valid until the Active side Consumer
destroys the connected Endpoint (dat_ep_free(3DAT)), or transitions the Endpoint into
Unconnected state so it is ready for the next connection. So while the Endpoint is in
Connected, Disconnect Pending, or Disconnected state, the private_data of
DAT_CONNECTION_REQUEST_EVENT is still valid for Active side Consumers.

Provider must pass to the Consumer the entire Private Data that the remote Consumer
provided for dat_ep_connect(3DAT), dat_ep_dup_connect(3DAT), and dat_cr_accept().
If the Consumer provides more data than the Provider and Transport can support (larger than
IA Attribute of max_private_data_size), DAT_INVALID_PARAMETER is returned for that
operation.

Name

Synopsis

Parameters

Description

dat_evd_dequeue(3DAT)

Extended Library Functions, Volume 1 163

The returned event that was posted from an Event Stream guarantees Consumers that all
events that were posted from the same Event Stream prior to the returned event were already
returned to a Consumer directly through a dat_evd_dequeue() or dat_evd_wait(3DAT)
operation.

The ordering of events dequeued by overlapping calls to dat_evd_wait() or
dat_evd_dequeue() is not specified.

DAT_SUCCESS The operation was successful. An event was returned to a
Consumer.

DAT_INVALID_HANDLE Invalid DAT handle; evd_handle is invalid.

DAT_QUEUE_EMPTY There are no entries on the Event Dispatcher queue.

DAT_INVALID_STATE One of the parameters was invalid for this operation. There is
already a waiter on the EVD.

No matter how many contexts attempt to dequeue from an Event Dispatcher, each event is
delivered exactly once. However, which Consumer receives which event is not defined. The
Provider is not obligated to provide the first caller the first event unless it is the only caller. The
Provider is not obligated to ensure that the caller receiving the first event executes earlier than
contexts receiving later events.

Preservation of event ordering within an Event Stream is an important feature of the DAT
Event Model. Consumers are cautioned that overlapping or concurrent calls to
dat_evd_dequeue() from multiple contexts can undermine this ordering information. After
multiple contexts are involved, the Provider can only guarantee the order that it delivers
events into the EVD. The Provider cannot guarantee that they are processed in the correct
order.

Although calling dat_evd_dequeue() does not cause a context switch, the Provider is under
no obligation to prevent one. A context could successfully complete a dequeue, and then reach
the end of its timeslice, before returning control to the Consumer code. Meanwhile, a context
receiving a later event could be executing.

The Event ordering is preserved when dequeueing is serialized. Potential Consumer
serialization methods include, but are not limited to, performing all dequeueing from a single
context or protecting dequeueing by way of lock or semaphore.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Return Values

Usage

Attributes

dat_evd_dequeue(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004164

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Standard uDAPL, 1.1, 1.2

dat_cr_accept(3DAT), dat_cr_handoff(3DAT), dat_cr_reject(3DAT),
dat_ep_connect(3DAT), dat_ep_dup_connect(3DAT), dat_ep_free(3DAT),
dat_evd_wait(3DAT)libdat(3LIB), attributes(5)

See Also

dat_evd_dequeue(3DAT)

Extended Library Functions, Volume 1 165

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_evd_disable – disable the Event Dispatcher

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_evd_disable(

IN DAT_EVD_HANDLE evd_handle
)

evd_handle Handle for an instance of Event Dispatcher.

The dat_evd_disable() function disables the Event Dispatcher so that the arrival of an event
does not affect the associated CNO.

If the Event Dispatcher is already disabled, this operation is no-op.

Events arriving on this EVD might cause waiters on the associated CNO to be awakened after
the return of this routine because an unblocking a CNO waiter is already "in progress" at the
time this routine is called or returned.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The evd_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard uDAPL, 1.1, 1.2

dat_evd_enable(3DAT), libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_evd_disable(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004166

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_evd_enable – enable the Event Dispatcher

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_evd_enable(

IN DAT_EVD_HANDLE evd_handle
)

evd_handle Handle for an instance of Event Dispatcher.

The dat_evd_enable() function enables the Event Dispatcher so that the arrival of an event
can trigger the associated CNO. The enabling and disabling EVD has no effect on direct
waiters on the EVD. However, direct waiters effectively take ownership of the EVD, so that the
specified CNO is not triggered even if is enabled.

If the Event Dispatcher is already enabled, this operation is no-op.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The evd_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard uDAPL, 1.1, 1.2

dat_evd_disable(3DAT), libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_evd_enable(3DAT)

Extended Library Functions, Volume 1 167

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_evd_free – destroy an instance of the Event Dispatcher

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_evd_free (

IN DAT_EVD_HANDLE evd_handle
)

evd_handle Handle for an instance of the Event Dispatcher.

The dat_evd_free() function destroys a specified instance of the Event Dispatcher.

All events on the queue of the specified Event Dispatcher are lost. The destruction of the Event
Dispatcher instance does not have any effect on any DAT Objects that originated an Event
Stream that had fed events to the Event Dispatcher instance. There should be no event streams
feeding the Event Dispatcher and no threads blocked on the Event Dispatcher when the EVD
is being closed as at the time when it was created.

Use of the handle of the destroyed Event Dispatcher in any consequent operation fails.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The evd_handle parameter is invalid

DAT_INVALID_STATE Invalid parameter. There are Event Streams associated with the
Event Dispatcher feeding it.

Consumers are advised to destroy all Objects that originate Event Streams that feed an
instance of the Event Dispatcher before destroying it. An exception to this rule is Event
Dispatchers of an IA.

Freeing an IA automatically destroys all Objects associated with it directly and indirectly,
including Event Dispatchers.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Usage

Attributes

See Also

dat_evd_free(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004168

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_evd_modify_cno – change the associated CNO for the Event Dispatcher

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_evd_modify_cno (

IN DAT_EVD_HANDLE evd_handle,
IN DAT_CNO_HANDLE cno_handle
)

evd_handle Handle for an instance of the Event Dispatcher.

cno_handle Handle for a CNO. The value of DAT_NULL_HANDLE specifies no CNO.

The dat_evd_modify_cno() function changes the associated CNO for the Event Dispatcher.

A Consumer can specify the value of DAT_HANDLE_NULL for cno_handle to associate not CNO
with the Event Dispatcher instance.

Upon completion of the dat_evd_modify_cno() operation, the passed IN new CNO is used
for notification. During the operation, an event arrival can be delivered to the old or new
CNO. If Notification is generated by EVD, it is delivered to the new or old CNO.

If the EVD is enabled at the time dat_evd_modify_cno() is called, the Consumer must be
prepared to collect a notification event on the EVD's old CNO as well as the new one.
Checking immediately prior to calling dat_evd_modify_cno() is not adequate. A notification
could have been generated after the prior check and before the completion of the change.

The Consumer can avoid the risk of missed notifications either by temporarily disabling the
EVD, or by checking the prior CNO after invoking this operation. The Consumer can disable
EVD before a dat_evd_modify_cno() call and enable it afterwards. This ensures that any
notifications from the EVD are delivered to the new CNO only.

If this function is used to disassociate a CNO from the EVD, events arriving on this EVD
might cause waiters on that CNO to awaken after returning from this routine because of
unblocking a CNO waiter already "in progress" at the time this routine is called. If this is the
case, the events causing that unblocking are present on the EVD upon return from the
dat_evd_modify_cno() call and can be dequeued at that time

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle.

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Parameters

Description

Return Values

Attributes

dat_evd_modify_cno(3DAT)

Extended Library Functions, Volume 1 169

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)See Also

dat_evd_modify_cno(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004170

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_evd_post_se – post Software event to the Event Dispatcher event queue

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_evd_post_se(

IN DAT_EVD_HANDLE evd_handle,
IN const DAT_EVENT *event
)

evd_handle Handle for an instance of the Event Dispatcher

event A pointer to a Consumer created Software Event.

The dat_evd_post_se() function posts Software events to the Event Dispatcher event queue.
This is analogous to event arrival on the Event Dispatcher software Event Stream. The event
that the Consumer provides adheres to the event format as defined in <dat.h>. The first
element in the event provides the type of the event (DAT_EVENT_TYPE_SOFTWARE); the rest
provide the event-type-specific parameters. These parameters are opaque to a Provider.
Allocation and release of the memory referenced by the event pointer in a software event are
the Consumer's responsibility.

There is no ordering between events from different Event Streams. All the synchronization
issues between multiple Consumer contexts trying to post events to an Event Dispatcher
instance simultaneously are left to a Consumer.

If the event queue is full, the operation is completed unsuccessfully and returns
DAT_QUEUE_FULL. The event is not queued. The queue overflow condition does takes place
and, therefore, the asynchronous Event Dispatcher is not effected.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The evd_handle parameter is invalid.

DAT_INVALID_PARAMETER The event parameter is invalid.

DAT_QUEUE_FULL The Event Dispatcher queue is full.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

Name

Synopsis

Parameters

Description

Return Values

Attributes

dat_evd_post_se(3DAT)

Extended Library Functions, Volume 1 171

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

libdat(3LIB), attributes(5)See Also

dat_evd_post_se(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004172

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_evd_query – provide parameters of the Event Dispatcher,

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_evd_query (

IN DAT_EVD_HANDLE evd_handle,
IN DAT_EVD_PARAM_MASK evd_param_mask,
OUT DAT_EVD_PARAM *evd_param
)

evd_handle Handle for an instance of Event Dispatcher.

evd_param_mask Mask for EVD parameters

evd_param Pointer to a Consumer-allocated structure that the Provider fills for
Consumer-requested parameters.

The dat_evd_query() function provides to the Consumer parameters of the Event
Dispatcher, including the state of the EVD (enabled/disabled). The Consumer passes in a
pointer to the Consumer-allocated structures for EVD parameters that the Provider fills.

The evd_param_mask parameter allows Consumers to specify which parameters to query.
The Provider returns values for evd_param_mask requested parameters. The Provider can
return values for any of the other parameters.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The evd_handle parameter is invalid.

DAT_INVALID_PARAMETER The evd_param_mask parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_evd_query(3DAT)

Extended Library Functions, Volume 1 173

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_evd_resize – modify the size of the event queue of Event Dispatcher

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_evd_resize(

IN DAT_EVD_HANDLE evd_handle,
IN DAT_COUNT evd_min_qlen
)

evd_handle Handle for an instance of Event Dispatcher.

evd_min_qlen New number of events the Event Dispatcher event queue must hold.

The dat_evd_resize() function modifies the size of the event queue of Event Dispatcher.

Resizing of Event Dispatcher event queue should not cause any incoming or current events on
the event queue to be lost. If the number of entries on the event queue is larger then the
requested evd_min_qlen, the operation can return DAT_INVALID_STATE and not change an
instance of Event Dispatcher

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The evd_handle parameter is invalid.

DAT_INVALID_PARAMETER The evd_min_qlen parameter is invalid

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations

DAT_INVALID_STATE Invalid parameter. The number of entries on the event
queue of the Event Dispatcher exceeds the requested
event queue length.

This operation is useful when the potential number of events that could be placed on the event
queue changes dynamically.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Usage

Attributes

See Also

dat_evd_resize(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004174

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_evd_set_unwaitable – transition the Event Dispatcher into an unwaitable state

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_evd_set_unwaitable(

IN DAT_EVD_HANDLE evd_handle
)

evd_handle Handle for an instance of Event Dispatcher.

The dat_evd_set_unwaitable() transitions the Event Dispatcher into an unwaitable state. In
this state, calls to dat_evd_wait(3DAT) return synchronously with a DAT_INVALID_STATE
error, and threads already blocked in dat_evd_wait() are awakened and return with a
DAT_INVALID_STATE error without any further action by the Consumer. The actual state of the
Event Dispatcher is accessible through dat_evd_query(3DAT) and is DAT_EVD_UNWAITABLE
after the return of this operation.

This call does not affect a CNO associated with this EVD at all. Events arriving on the EVD
after it is set unwaitable still trigger the CNO (if appropriate), and can be retrieved with
dat_evd_dequeue(3DAT). Because events can arrive normally on the EVD, the EVD might
overflow; the Consumer is expected to protect against this possibility.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The evd_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard uDAPL, 1.1, 1.2

dat_evd_clear_unwaitable(3DAT), dat_evd_dequeue(3DAT), dat_evd_query(3DAT),
dat_evd_wait(3DAT), libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_evd_set_unwaitable(3DAT)

Extended Library Functions, Volume 1 175

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_evd_wait – remove first event from the Event Dispatcher event queue

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_evd_wait(

IN DAT_EVD_HANDLE evd_handle,
IN DAT_TIMEOUT timeout,
IN DAT_COUNT threshold,
OUT DAT_EVENT *event,
OUT DAT_COUNT *nmore
)

evd_handle Handle for an instance of the Event Dispatcher.

timeout The duration of time, in microseconds, that the Consumer is willing to wait
for the event.

threshold The number of events that should be on the EVD queue before the operation
should return with DAT_SUCCESS. The threshold must be at least 1.

event Pointer to the Consumer-allocated structure that the Provider fills with the
event data.

nmore The snapshot of the queue size at the time of the operation return.

The dat_evd_wait() function removes the first event from the Event Dispatcher event queue
and fills the Consumer-allocated event structure with event data. The first element in this
structure provides the type of the event; the rest provides the event type-specific parameters.
The Consumer should allocate an event structure big enough to hold any event that the Event
Dispatcher can deliver.

For all events, the Provider fills the dat_event that the Consumer allocates. Therefore, for all
events, all fields of dat_event are OUT from the Consumer point of view. For
DAT_CONNECTION_REQUEST_EVENT, the Provider creates a Connection Request whose
cr_handle is returned to the Consumer in DAT_CR_ARRIVAL_EVENT_DATA. That object is
destroyed by the Provider as part of dat_cr_accept(3DAT), dat_cr_reject(3DAT), or
dat_cr_handoff(3DAT). The Consumer should not use cr_handle or any of its parameters,
including private_data, after one of these operations destroys the Connection Request.

For DAT_CONNECTION_EVENT_ESTABLISHED for the Active side of connection establishment,
the Provider returns the pointer for private_data and the private_data_size. For the Passive
side, DAT_CONNECTION_EVENT_ESTABLISHED event private_data is not defined and
private_data_size returns zero. The Provider is responsible for the memory allocation and
deallocation for private_data. The private_data is valid until the Active side Consumer
destroys the connected Endpoint (dat_ep_free(3DAT)), or transitions the Endpoint into
Unconnected state so it is ready for the next connection. So, while the Endpoint is in

Name

Synopsis

Parameters

Description

dat_evd_wait(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004176

Connected, Disconnect Pending, or Disconnected state, the private_data of
DAT_CONNECTION_REQUEST_EVENT is still valid for Active side Consumers.

Provider must pass to the Consumer the entire Private Data that the remote Consumer
provided for dat_ep_connect(3DAT), dat_ep_dup_connect(3DAT), and dat_cr_accept().
If the Consumer provides more data than the Provider and Transport can support (larger than
IA Attribute of max_private_data_size), DAT_INVALID_PARAMETER is returned for that
operation.

A Consumer that blocks performing a dat_evd_wait() on an Event Dispatcher effectively
takes exclusive ownership of that Event Dispatcher. Any other dequeue operation
(dat_evd_wait() or dat_evd_dequeue(3DAT)) on the Event Dispatcher is rejected with a
DAT_INVALID_STATE error code.

The CNO associated with the evd_handle() is not triggered upon event arrival if there is a
Consumer blocked on dat_evd_wait() on this Event Dispatcher.

The timeout allows the Consumer to restrict the amount of time it is blocked waiting for the
event arrival. The value of DAT_TIMEOUT_INFINITE indicates that the Consumer waits
indefinitely for an event arrival. Consumers should use extreme caution in using this value.

When timeout value is reached and the number of events on the EVD queue is below the
threshold value, the operation fails and returns DAT_TIMEOUT_EXPIRED. In this case, no event is
dequeued from the EVD and the return value for the event argument is undefined. However,
an nmore value is returned that specifies the snapshot of the number of the events on the EVD
queue that is returned.

The threshold allows the Consumer to wait for a requested number of event arrivals prior to
waking the Consumer. If the value of the threshold is larger than the Event Dispatcher queue
length, the operation fails with the return DAT_INVALID_PARAMETER. If a non-positive value is
specified for threshold, the operation fails and returns DAT_INVALID_PARAMETER.

If EVD is used by an Endpoint for a DTO completion stream that is configured for a
Consumer-controlled event Notification (DAT_COMPLETION_UNSIGNALLED_FLAG or
DAT_COMPLETION_SOLICITED_WAIT_FLAG for Receive Completion Type for Receives;
DAT_COMPLETION_UNSIGNALLED_FLAG for Request Completion Type for Send, RDMA Read,
RDMA Write and RMR Bind), the threshold value must be 1. An attempt to specify some
other value for threshold for this case results in DAT_INVALID_STATE.

The returned value of nmore indicates the number of events left on the Event Dispatcher
queue after the dat_evd_wait() returns. If the operation return value is DAT_SUCCESS, the
nmore value is at least the value of (threshold -1). Notice that nmore is only a snapshot and the
number of events can be changed by the time the Consumer tries to dequeue events with
dat_evd_wait() with timeout of zero or with dat_evd_dequeue().

dat_evd_wait(3DAT)

Extended Library Functions, Volume 1 177

For returns other than DAT_SUCCESS, DAT_TIMEOUT_EXPIRED, and DAT_INTERRUPTED_CALL,
the returned value of nmore is undefined.

The returned event that was posted from an Event Stream guarantees Consumers that all
events that were posted from the same Event Stream prior to the returned event were already
returned to a Consumer directly through a dat_evd_dequeue() or dat_evd_wait()
operation.

If the return value is neither DAT_SUCCESS nor DAT_TIMEOUT_EXPIRED, then returned values of
nmore and event are undefined. If the return value is DAT_TIMEOUT_EXPIRED, then the return
value of event is undefined, but the return value of nmore is defined. If the return value is
DAT_SUCCESS, then the return values of nmore and event are defined.

If this function is called on an EVD in an unwaitable state, or if
dat_evd_set_unwaitable(3DAT) is called on an EVD on which a thread is blocked in this
function, the function returns with DAT_INVALID_STATE.

The ordering of events dequeued by overlapping calls to dat_evd_wait() or
dat_evd_dequeue() is not specified.

DAT_SUCCESS The operation was successful. An event was returned to a
Consumer.

DAT_INVALID_HANDLE The evd_handle parameter is invalid.

DAT_INVALID_PARAMETER The timeout or threshold parameter is invalid. For example,
threshold is larger than the EVD's evd_min_qlen.

DAT_ABORT The operation was aborted because IA was closed or EVD was
destroyed

DAT_INVALID_STATE One of the parameters was invalid for this operation. There is
already a waiter on the EVD, or the EVD is in an unwaitable
state.

DAT_TIMEOUT_EXPIRED The operation timed out.

DAT_INTERRUPTED_CALL The operation was interrupted by a signal.

Consumers should be cautioned against using threshold combined with infinite timeout.

Consumers should not mix different models for control of unblocking a waiter. If the
Consumer uses Notification Suppression or Solicited Wait to control the Notification events
for unblocking a waiter, the threshold must be set to 1. If the Consumer uses threshold to
control when a waiter is unblocked, DAT_COMPLETION_UNSIGNALLED_FLAG locally and
DAT_COMPLETION_SOLICITED_WAIT remotely shall not be used. By default, all completions are
Notification events.

Return Values

Usage

dat_evd_wait(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004178

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard uDAPL, 1.1, 1.2

dat_cr_accept(3DAT), dat_cr_handoff(3DAT), dat_cr_reject(3DAT),
dat_ep_connect(3DAT), dat_ep_dup_connect(3DAT),dat_ep_free(3DAT),
dat_evd_dequeue(3DAT), dat_evd_set_unwaitable(3DAT), libdat(3LIB), attributes(5)

Attributes

See Also

dat_evd_wait(3DAT)

Extended Library Functions, Volume 1 179

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_get_consumer_context – get Consumer context

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_get_consumer_context (

IN DAT_HANDLE dat_handle,
OUT DAT_CONTEXT *context
)

dat_handle Handle for a DAT Object associated with context.

context Pointer to Consumer-allocated storage where the current value of the
dat_handle context will be stored.

The dat_get_consumer_context() function gets the Consumer context from the specified
dat_handle. The dat_handle can be one of the following handle types: DAT_IA_HANDLE,
DAT_EP_HANDLE, DAT_EVD_HANDLE, DAT_CR_HANDLE, DAT_RSP_HANDLE, DAT_PSP_HANDLE,
DAT_PZ_HANDLE, DAT_LMR_HANDLE, DAT_RMR_HANDLE, or DAT_CNO_HANDLE.

DAT_SUCCESS The operation was successful. The Consumer context was
successfully retrieved from the specified handle.

DAT_INVALID_HANDLE The dat_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

dat_set_consumer_context(3DAT), libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_get_consumer_context(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004180

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_get_handle_type – get handle type

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_get_handle_typet (

IN DAT_HANDLE dat_handle,
OUT DAT_HANDLE_TYPE *handle_type
)

dat_handle Handle for a DAT Object.

handle_type Type of the handle of dat_handle.

The dat_get_handle_type() function allows the Consumer to discover the type of a DAT
Object using its handle.

The dat_handle can be one of the following handle types: DAT_IA_HANDLE, DAT_EP_HANDLE,
DAT_EVD_HANDLE, DAT_CR_HANDLE, DAT_RSP_HANDLE, DAT_PSP_HANDLE, DAT_PZ_HANDLE,
DAT_LMR_HANDLE, or DAT_RMR_HANDLE.

The handle_type is one of the following handle types: DAT_HANDLE_TYPE_IA,
DAT_HANDLE_TYPE_EP, DAT_HANDLE_TYPE_EVD, DAT_HANDLE_TYPE_CR, DAT_HANDLE_TYPE_PSP,
DAT_HANDLE_TYPE_RSP, DAT_HANDLE_TYPE_PZ, DAT_HANDLE_TYPE_LMR,
DAT_HANDLE_TYPE_RMR, or DAT_HANDLE_TYPE_CNO.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The dat_handle parameter is invalid.

Consumers can use this operation to determine the type of Object being returned. This is
needed for calling an appropriate query or any other operation on the Object handle.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Usage

Attributes

See Also

dat_get_handle_type(3DAT)

Extended Library Functions, Volume 1 181

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_ia_close – close an IA

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_ia_close (

IN DAT_IA_HANDLE ia_handle,
IN DAT_CLOSE_FLAGS ia_flags
)

ia_handle Handle for an instance of a DAT IA.

ia_flags Flags for IA closure. Flag definitions are:

DAT_CLOSE_ABRUPT_FLAG Abrupt close. Abrupt cascading close of IA
including all Consumer created DAT objects.

DAT_CLOSE_GRACEFUL_FLAG Graceful close. Closure is successful only if all
DAT objects created by the Consumer have
been freed before the graceful closure call.

Default value of DAT_CLOSE_DEFAULT = DAT_CLOSE_ABRUPT_FLAG represents
abrupt closure of IA.

The dat_ia_close() function closes an IA (destroys an instance of the Interface Adapter).

The ia_flags specify whether the Consumer wants abrupt or graceful close.

The abrupt close does a phased, cascading destroy. All DAT Objects associated with an IA
instance are destroyed. These include all the connection oriented Objects: public and reserved
Service Points; Endpoints, Connection Requests, LMRs (including lmr_contexts), RMRs
(including rmr_contexts), Event Dispatchers, CNOs, and Protection Zones. All the waiters on
all CNOs, including the OS Wait Proxy Agents, are unblocked with the
DAT_HANDLE_NULL handle returns for an unblocking EVD. All direct waiters on all EVDs
are also unblocked and return with DAT_ABORT.

The graceful close does a destroy only if the Consumer has done a cleanup of all DAT objects
created by the Consumer with the exception of the asynchronous EVD. Otherwise, the
operation does not destroy the IA instance and returns the DAT_INVALID_STATE.

If async EVD was created as part of the of dat_ia_open(3DAT), dat_ia_close() must
destroy it. If async_evd_handle was passed in by the Consumer at dat_ia_open(), this handle
is not destroyed. This is applicable to both abrupt and graceful ia_flags values.

Because the Consumer did not create async EVD explicitly, the Consumer does not need to
destroy it for graceful close to succeed.

Name

Synopsis

Parameters

Description

dat_ia_close(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004182

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations. This is a
catastrophic error.

DAT_INVALID_HANDLE Invalid DAT handle; ia_handle is invalid.

DAT_INVALID_PARAMETER Invalid parameter; ia_flags is invalid.

DAT_INVALID_STATE Parameter in an invalid state. IA instance has
Consumer-created objects associated with it.

The dat_ia_close() function is the root cleanup method for the Provider, and, thus, all
Objects.

Consumers are advised to explicitly destroy all Objects they created prior to closing the IA
instance, but can use this function to clean up everything associated with an open instance of
IA. This allows the Consumer to clean up in case of errors.

Note that an abrupt close implies destruction of EVDs and CNOs. Just as with explicit
destruction of an EVD or CNO, the Consumer should take care to avoid a race condition
where a Consumer ends up attempting to wait on an EVD or CNO that has just been deleted.

The techniques described in dat_cno_free(3DAT) and dat_evd_free(3DAT) can be used for
these purposes.

If the Consumer desires to shut down the IA as quickly as possible, the Consumer can call
dat_ia_close(abrupt) without unblocking CNO and EVD waiters in an orderly fashion. There
is a slight chance that an invalidated DAT handle will cause a memory fault for a waiter. But
this might be an acceptable behavior, especially if the Consumer is shutting down the process.

No provision is made for blocking on event completion or pulling events from queues.

This is the general cleanup and last resort method for Consumer recovery. An
implementation must provide for successful completion under all conditions, avoiding
hidden resource leakage (dangling memory, zombie processes, and so on) eventually leading
to a reboot of the operating system.

The dat_ia_close() function deletes all Objects that were created using the IA handle.

The dat_ia_close() function can decrement a reference count for the Provider Library that
is incremented by dat_ia_open() to ensure that the Provider Library cannot be removed
when it is in use by a DAT Consumer.

See attributes(5) for descriptions of the following attributes:

Return Values

Usage

Attributes

dat_ia_close(3DAT)

Extended Library Functions, Volume 1 183

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

dat_cno_free(3DAT), dat_evd_free(3DAT), dat_ia_open(3DAT), libdat(3LIB),
attributes(5)

See Also

dat_ia_close(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004184

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_ia_open – open an Interface Adapter (IA)

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_ia_open (

IN const DAT_NAME_PTR ia_name_ptr,
IN DAT_COUNT async_evd_min_qlen,
INOUT DAT_EVD_HANDLE *async_evd_handle,
OUT DAT_IA_HANDLE *ia_handle
)

ia_name_ptr Symbolic name for the IA to be opened. The name should be defined
by the Provider registration.

If the name is prefixed by the string RO_AWARE_, then the prefix is
removed prior to being passed down and the existence of the prefix
indicates that the application has been coded to correctly deal with
relaxed ordering constraints. If the prefix is not present and the
platform on which the application is running is utilizing relaxed
ordering, the open will fail with DAT_INVALID_PARAMETER (with
DAT_SUBTYPE_STATUS of DAT_INVALID_RO_COOKIE). This setting also
affects dat_lmr_create(3DAT).

async_evd_min_qlen Minimum length of the Asynchronous Event Dispatcher queue.

async_evd_handle Pointer to a handle for an Event Dispatcher for asynchronous events
generated by the IA. This parameter can be DAT_EVD_ASYNC_EXISTS
to indicate that there is already EVD for asynchronous events for
this Interface Adapter or DAT_HANDLE_NULL for a Provider to
generate EVD for it.

ia_handle Handle for an open instance of a DAT IA. This handle is used with
other functions to specify a particular instance of the IA.

The dat_ia_open() function opens an IA by creating an IA instance. Multiple instances
(opens) of an IA can exist.

The value of DAT_HANDLE_NULL for async_evd_handle (*async_evd_handle ==
DAT_HANDLE_NULL) indicates that the default Event Dispatcher is created with the requested
async_evd_min_qlen. The async_evd_handle returns the handle of the created Asynchronous
Event Dispatcher. The first Consumer that opens an IA must use DAT_HANDLE_NULL because
no EVD can yet exist for the requested ia_name_ptr.

Name

Synopsis

Parameters

Description

dat_ia_open(3DAT)

Extended Library Functions, Volume 1 185

The Asynchronous Event Dispatcher (async_evd_handle) is created with no CNO
(DAT_HANDLE_NULL). Consumers can change these values using dat_evd_modify_cno(3DAT).
The Consumer can modify parameters of the Event Dispatcher using dat_evd_resize(3DAT)
and dat_evd_modify_cno().

The Provider is required to provide a queue size at least equal to async_evd_min_qlen, but is
free to provide a larger queue size or dynamically enlarge the queue when needed. The
Consumer can determine the actual queue size by querying the created Event Dispatcher
instance.

If async_evd_handle is not DAT_HANDLE_NULL, the Provider does not create an Event
Dispatcher for an asynchronous event and the Provider ignores the async_evd_min_qlen
value. The async_evd_handle value passed in by the Consumer must be an asynchronous
Event Dispatcher created for the same Provider (ia_name_ptr). The Provider does not have to
check for the validity of the Consumer passed in async_evd_handle. It is the Consumer
responsibility to guarantee that async_evd_handle is valid and for this Provider. How the
async_evd_handle is passed between DAT Consumers is out of scope of the DAT specification.
If the Provider determines that the Consumer-provided async_evd_handle is invalid, the
operation fails and returns DAT_INVALID_HANDLE. The async_evd_handle remains unchanged,
so the returned async_evd_handle is the same the Consumer passed in. All asynchronous
notifications for the open instance of the IA are directed by the Provider to the Consumer
passed in Asynchronous Event Dispatcher specified by async_evd_handle.

Consumer can specify the value of DAT_EVD_ASYNC_EXISTS to indicate that there exists an
event dispatcher somewhere else on the host, in user or kernel space, for asynchronous event
notifications. It is up to the Consumer to ensure that this event dispatcher is unique and
unambiguous. A special handle may be returned for the Asynchronous Event Dispatcher for
this scenario, DAT_EVD_OUT_OF_SCOPE, to indicate that there is a default Event Dispatcher
assigned for this Interface Adapter, but that it is not in a scope where this Consumer may
directly invoke it.

The Asynchronous Event Dispatcher is an Object of both the Provider and IA. Each
Asynchronous Event Dispatcher bound to an IA instance is notified of all asynchronous
events, such that binding multiple Asynchronous Event Dispatchers degrades performance by
duplicating asynchronous event notifications for all Asynchronous Event Dispatchers. Also,
transport and memory resources can be consumed per Event Dispatcher bound to an IA

As with all Event Dispatchers, the Consumer is responsible for synchronizing access to the
event queue.

Valid IA names are obtained from dat_registry_list_providers(3DAT).

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations.

Return Values

dat_ia_open(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 28 Jan 2009186

DAT_INVALID_PARAMETER Invalid parameter.

DAT_PROVIDER_NOT_FOUND The specified provider was not registered in the registry.

DAT_INVALID_HANDLE Invalid DAT handle; async_evd_handle is invalid.

The dat_ia_open() function is the root method for the Provider, and, thus, all Objects. It is
the root handle through which the Consumer obtains all other DAT handles. When the
Consumer closes its handle, all its DAT Objects are released.

The dat_ia_open() function is the workhorse method that provides an IA instance. It can
also initialize the Provider library or do any other registry-specific functions.

The dat_ia_open() function creates a unique handle for the IA to the Consumer. All further
DAT Objects created for this Consumer reference this handle as their owner.

The dat_ia_open() function can use a reference count for the Provider Library to ensure that
the Provider Library cannot be removed when it is in use by a DAT Consumer.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard uDAPL, 1.1, 1.2 (except RO_AWARE_)

dat_evd_modify_cno(3DAT), dat_evd_resize(3DAT), dat_ia_close(3DAT),
dat_registry_list_providers(3DAT), libdat(3LIB), attributes(5)

Usage

Attributes

See Also

dat_ia_open(3DAT)

Extended Library Functions, Volume 1 187

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_ia_query – query an IA

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_ia_query (

IN DAT_IA_HANDLE ia_handle,
OUT DAT_EVD_HANDLE *async_evd_handle,
IN DAT_IA_ATTR_MASK ia_attr_mask,
OUT DAT_IA_ATTR *ia_attributes,
IN DAT_PROVIDER_ATTR_MASK provider_attr_mask,
OUT DAT_PROVIDER_ATTR *provider_attributes
)

ia_handle Handle for an open instance of an IA.

async_evd_handle Handle for an Event Dispatcher for asynchronous events generated by
the IA.

ia_attr_mask Mask for the ia_attributes.

ia_attributes Pointer to a Consumer-allocated structure that the Provider fills with
IA attributes.

provider_attr_mask Mask for the provider_attributes.

provider_attributes Pointer to a Consumer-allocated structure that the Provider fills with
Provider attributes.

The dat_ia_query() functions provides the Consumer with the IA parameters, as well as the
IA and Provider attributes. Consumers pass in pointers to Consumer-allocated structures for
the IA and Provider attributes that the Provider fills.

The ia_attr_mask and provider_attr_mask parameters allow the Consumer to specify which
attributes to query. The Provider returns values for requested attributes. The Provider can also
return values for any of the other attributes.

The IA attributes are common to all open instances of the IA. DAT defines a method to query
the IA attributes but does not define a method to modify them.

If IA is multiported, each port is presented to a Consumer as a separate IA.

Adapter name:
The name of the IA controlled by the Provider. The
same as ia_name_ptr.

Vendor name: Vendor if IA hardware.

HW version major: Major version of IA hardware.

Name

Synopsis

Parameters

Description

Interface Adapter
Attributes

dat_ia_query(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004188

HW version minor: Minor version of IA hardware.

Firmware version major: Major version of IA firmware.

Firmware version minor: Minor version of IA firmware.

IA_address_ptr: An address of the interface Adapter.

Max EPs: Maximum number of Endpoints that the IA can
support. This covers all Endpoints in all states,
including the ones used by the Providers, zero or
more applications, and management.

Max DTOs per EP: Maximum number of DTOs and RMR_binds that
any Endpoint can support for a single direction. This
means the maximum number of outstanding and
in-progress Send, RDMA Read, RDMA Write
DTOs, and RMR Binds at any one time for any
Endpoint; and maximum number of outstanding
and in-progress Receive DTOs at any one time for
any Endpoint.

Max incoming RDMA Reads per EP: Maximum number of RDMA Reads that can be
outstanding per (connected) Endpoint with the IA as
the target.

Max outgoing RDMA Reads per EP: Maximum number of RDMA Reads that can be
outstanding per (connected) Endpoint with the IA as
the originator.

Max EVDs: Maximum number of Event Dispatchers that an IA
can support. An IA cannot support an Event
Dispatcher directly, but indirectly by
Transport-specific Objects, for example,
Completion Queues for InfinibandTM and VI. The
Event Dispatcher Objects can be shared among
multiple Providers and similar Objects from other
APIs, for example, Event Queues for uDAPL.

Max EVD queue size: Maximum size of the EVD queue supported by an
IA.

Max IOV segments per DTO: Maximum entries in an IOV list that an IA supports.
Notice that this number cannot be explicit but must
be implicit to transport-specific Object entries. For
example, for IB, it is the maximum number of

dat_ia_query(3DAT)

Extended Library Functions, Volume 1 189

scatter/gather entries per Work Request, and for VI
it is the maximum number of data segments per VI
Descriptor.

Max LMRs: Maximum number of Local Memory Regions IA
supports among all Providers and applications of
this IA.

Max LMR block size: Maximum contiguous block that can be registered
by the IA.

Mac LMR VA: Highest valid virtual address within the context of an
LMR. Frequently, IAs on 32–bit architectures
support only 32–bit local virtual addresses.

Max PZs: Maximum number of Protection Zones that the IA
supports.

Max MTU size: Maximum message size supported by the IA

Max RDMA size: Maximum RDMA size supported by the IA

Max RMRs: Maximum number of RMRs an IA supports among
all Providers and applications of this IA.

Max RMR target address: Highest valid target address with the context of a
local RMR. Frequently, IAs on 32–bit architectures
support only 32–bit local virtual addresses.

Num transport attributes: Number of transport-specific attributes.

Transport-specific attributes: Array of transport-specific attributes. Each entry has
the format of DAT_NAMED_ATTR, which is a structure
with two elements. The first element is the name of
the attribute. The second element is the value of the
attribute as a string.

Num vendor attributes: Number of vendor-specific attributes.

Vendor-specific attributes: Array of vendor-specific attributes. Each entry has
the format of DAT_NAMED_ATTR, which is a structure
with two elements. The first element is the name of
the attribute. The second element is the value of the
attribute as a string.

The provider attributes are specific to the open instance of the IA. DAT defines a method to
query Provider attributes but does not define a method to modify them.

Provider name: Name of the Provider vendor.

Provider version major: Major Version of uDAPL Provider.

DAPL Provider
Attributes

dat_ia_query(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004190

Provider version minor: Minor Version of uDAPL Provider.

DAPL API version major: Major Version of uDAPL API supported.

DAPL API version minor: Minor Version of uDAPL API supported.

LMR memory types
supported:

Memory types that LMR Create supports for memory
registration. This value is a union of LMR Memory Types
DAT_MEM_TYPE_VIRTUAL, DAT_MEM_TYPE_LMR, and
DAT_MEM_TYPE_SHARED_VIRTUAL that the Provider supports.
All Providers must support the following Memory Types:
DAT_MEM_TYPE_VIRTUAL, DAT_MEM_TYPE_LMR, and
DAT_MEM_TYPE_SHARED_VIRTUAL.

IOV ownership: An enumeration flag that specifies the ownership of the local
buffer description (IOV list) after post DTO returns. The
three values are as follows:
■ DAT_IOV_CONSUMER indicates that the Consumer has the

ownership of the local buffer description after a post
returns.

■ DAT_IOV_PROVIDER_NOMOD indicates that the Provider still
has ownership of the local buffer description of the DTO
when the post DTO returns, but the Provider does not
modify the buffer description.

■ DAT_IOV_PROVIDER_MOD indicates that the Provider still
has ownership of the local buffer description of the DTO
when the post DTO returns and can modify the buffer
description.

In any case, the Consumer obtains ownership of the local
buffer description after the DTO transfer is completed and
the Consumer is notified through a DTO completion event.

QOS supported: The union of the connection QOS supported by the Provider.

Completion flags supported: The following values for the completion flag
DAT_COMPLETION_FLAGS are supported by the Provider:
DAT_COMPLETION_SUPPRESS_FLAG,
DAT_COMPLETION_UNSIGNALLED_FLAG,
DAT_COMPLETION_SOLICITED_WAIT_FLAG, and
DAT_COMPLETION_BARRIER_FENCE_FLAG.

Thread safety: Provider Library thread safe or not. The Provider Library is
not required to be thread safe.

Max private data size: Maximum size of private data the Provider supports. This
value is at least 64 bytes.

dat_ia_query(3DAT)

Extended Library Functions, Volume 1 191

Multipathing support: Capability of the Provider to support Multipathing for
connection establishment.

EP creator for PSP: Indicator for who can create an Endpoint for a Connection
Request. For the Consumer it is
DAT_PSP_CREATES_EP_NEVER. For the Provider it is
DAT_PSP_CREATES_EP_ALWAYS. For both it is
DAT_PSP_CREATES_EP_IFASKED. This attribute is used for
Public Service Point creation.

PZ support: Indicator of what kind of protection the Provider's PZ
provides.

Optimal Buffer Alignment: Local and remote DTO buffer alignment for optimal
performance on the Platform. The DAT_OPTIMAL_ALIGMNEMT
must be divisible by this attribute value. The maximum
allowed value is DAT_OPTIMAL_ALIGMNEMT, or 256.

EVD stream merging support: A 2D binary matrix where each row and column represent an
event stream type. Each binary entry is 1 if the event streams
of its row and column can be fed to the same EVD, and 0
otherwise.

More than two different event stream types can feed the same
EVD if for each pair of the event stream types the entry is 1.

The Provider should support merging of all event stream
types.

The Consumer should check this attribute before requesting
an EVD that merges multiple event stream types.

Num provider attributes: Number of Provider-specific attributes.

Provider-specific attributes: Array of Provider-specific attributes. Each entry has the
format of DAT_NAMED_ATTR, which is a structure with two
elements. The first element is the name of the attribute. The
second element is the value of the attribute as a string.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER Invalid parameter;

DAT_INVALID_HANDLE Invalid DAT handle; ia_handle is invalid.

See attributes(5) for descriptions of the following attributes:

Return Values

Attributes

dat_ia_query(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004192

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)See Also

dat_ia_query(3DAT)

Extended Library Functions, Volume 1 193

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_lmr_create – register a memory region with an IA

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_lmr_create (

IN DAT_IA_HANDLE ia_handle,

IN DAT_MEM_TYPE mem_type,

IN DAT_REGION_DESCRIPTION region_description,

IN DAT_VLEN length,

IN DAT_PZ_HANDLE pz_handle,

IN DAT_MEM_PRIV_FLAGS mem_privileges,

OUT DAT_LMR_HANDLE *lmr_handle,

OUT DAT_LMR_CONTEXT *lmr_context,

OUT DAT_RMR_CONTEXT *rmr_context,

OUT DAT_VLEN *registered_size,

OUT DAT_VADDR *registered_address

)

ia_handle
Handle for an open instance of the IA.

mem_type
Type of memory to be registered. The following list outlines the memory type
specifications.

DAT_MEM_TYPE_VIRTUAL

Consumer virtual memory.

Region description: A pointer to a contiguous user virtual range.

Length: Length of the Memory Region.

DAT_MEM_TYPE_SO_VIRTUAL

Consumer virtual memory with strong memory ordering. This type is a Solaris specific
addition. If the ia_handle was opened without RO_AWARE_ (see dat_ia_open(3DAT)),
then type DAT_MEM_TYPE_VIRTUAL is implicitly converted to this type.

Region description: A pointer to a contiguous user virtual range.

Length: Length of the Memory Region.

DAT_MEM_TYPE_LMR

LMR.

Region description: An LMR_handle.

Length: Length parameter is ignored.

Name

Synopsis

Parameters

dat_lmr_create(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 28 Jan 2009194

DAT_MEM_TYPE_SHARED_VIRTUAL

Shared memory region. All DAT Consumers of the same uDAPL Provider specify the
same Consumer cookie to indicate who is sharing the shared memory region. This
supports a peer-to-peer model of shared memory. All DAT Consumers of the shared
memory must allocate the memory region as shared memory using Platform-specific
primitives.

Region description: A structure with 2 elements, where the first one is of type
DAT_LMR_COOKIE and is a unique identifier of the shared memory region, and the second
one is a pointer to a contiguous user virtual range.

Length: Length of the Memory Region

region_description
Pointer to type-specific data describing the memory in the region to be registered. The type
is derived from the mem_type parameter.

length
Length parameter accompanying the region_description.

pz_handle
Handle for an instance of the Protection Zone.

mem_privileges:
Consumer-requested memory access privileges for the registered local memory region.
The Default value is DAT_MEM_PRIV_NONE_FLAG. The constant value
DAT_MEM_PRIV_ALL_FLAG = 0x33, which specifies both Read and Write privileges, is also
defined. Memory privilege definitions are as follows:

Local Read DAT_MEM_PRIV_LOCAL_READ_FLAG

0x01 Local read access requested.

Local Write DAT_MEM_PRIV_LOCAL_WRITE_FLAG

0x10 Local write access requested.

Remote Read DAT_MEM_PRIV_REMOTE_READ_FLAG

0x02 Remote read access requested.

Remote Write DAT_MEM_PRIV_REMOTE_WRITE_FLAG

0x20 Remote write access requested.

lmr_handle
Handle for the created instance of the LMR.

lmr_context
Context for the created instance of the LMR to use for DTO local buffers.

dat_lmr_create(3DAT)

Extended Library Functions, Volume 1 195

registered_size
Actual memory size registered by the Provider.

registered_address
Actual base address of the memory registered by the Provider.

The dat_lmr_create() function registers a memory region with an IA. The specified buffer
must have been previously allocated and pinned by the uDAPL Consumer on the platform.
The Provider must do memory pinning if needed, which includes whatever OS-dependent
steps are required to ensure that the memory is available on demand for the Interface Adapter.
uDAPL does not require that the memory never be swapped out; just that neither the
hardware nor the Consumer ever has to deal with it not being there. The created lmr_context
can be used for local buffers of DTOs and for binding RMRs, and lmr_handle can be used for
creating other LMRs. For uDAPL the scope of the lmr_context is the address space of the DAT
Consumer.

The return values of registered_size and registered_address indicate to the Consumer how
much the contiguous region of Consumer virtual memory was registered by the Provider and
where the region starts in the Consumer virtual address.

The mem_type parameter indicates to the Provider the kind of memory to be registered, and
can take on any of the values defined in the table in the PARAMETERS section.

The pz_handle parameter allows Consumers to restrict local accesses to the registered LMR by
DTOs.

DAT_LMR_COOKIE is a pointer to a unique identifier of the shared memory region of the
DAT_MEM_TYPE_SHARED_VIRTUAL DAT memory type. The identifier is an array of 40 bytes
allocated by the Consumer. The Provider must check the entire 40 bytes and shall not
interpret it as a null-terminated string.

The return value of rmr_context can be transferred by the local Consumer to a Consumer on a
remote host to be used for an RDMA DTO.

If mem_privileges does not specify remote Read and Write privileges, rmr_context is not
generated and NULL is returned. No remote privileges are given for Memory Region unless
explicitly asked for by the Consumer.

DAT_SUCCESS The operation was successful.

DAT_UNSUFFICIENT_RESOURCES The operation failed due to resource limitations.

DAT_INVALID_PARAMETER Invalid parameter.

DAT_INVALID_HANDLE Invalid DAT handle.

DAT_INVALID_STATE Parameter in an invalid state. For example, shared virtual
buffer was not created shared by the platform.

Description

Return Values

dat_lmr_create(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 28 Jan 2009196

DAT_MODEL_NOT_SUPPORTED The requested Model was not supported by the Provider.
For example, requested Memory Type was not supported
by the Provider.

Consumers can create an LMR over the existing LMR memory with different Protection
Zones and privileges using previously created IA translation table entries.

The Consumer should use rmr_context with caution. Once advertised to a remote peer, the
rmr_context of the LMR cannot be invalidated. The only way to invalidate it is to destroy the
LMR with dat_lmr_free(3DAT).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard uDAPL, 1.1, 1.2 (except DAT_MEM_TYPE_SO_VIRTUAL)

dat_lmr_free(3DAT), libdat(3LIB), attributes(5)

Usage

Attributes

See Also

dat_lmr_create(3DAT)

Extended Library Functions, Volume 1 197

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_lmr_free – destroy an instance of the LMR

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_lmr_free (

IN DAT_LMR_HANDLE lmr_handle

)

lmr_handle: Handle for an instance of LMR to be destroyed.

The dat_lmr_free() function destroys an instance of the LMR. The LMR cannot be
destroyed if it is in use by an RMR. The operation does not deallocate the memory region or
unpin memory on a host.

Use of the handle of the destroyed LMR in any subsequent operation except for
dat_lmr_free() fails. Any DTO operation that uses the destroyed LMR after the
dat_lmr_free() is completed shall fail and report a protection violation. The use of
rmr_context of the destroyed LMR by a remote peer for an RDMA DTO results in an error and
broken connection on which it was used. Any remote RDMA operation that uses the
destroyed LMR rmr_context, whose Transport-specific request arrived to the local host after
the dat_lmr_free() has completed, fails and reports a protection violation. Remote RDMA
operation that uses the destroyed LMR rmr_context, whose Transport-specific request arrived
to the local host prior to the dat_lmr_free() returns, might or might not complete
successfully. If it fails, DAT_DTO_ERR_REMOTE_ACCESS is reported in
DAT_DTO_COMPLETION_STATUS for the remote RDMA DTO and the connection is broken.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The lmr_handle parameter is invalid.

DAT_INVALID_STATE Parameter in an invalid state; LMR is in use by an RMR instance.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_lmr_free(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004198

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_lmr_query – provide LMR parameters

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_lmr_query (

IN DAT_LMR_HANDLE lmr_handle,

IN DAT_LMR_PARAM_MASK lmr_param_mask,

OUT DAT_LMR_PARAM *lmr_param

)

lmr_handle Handle for an instance of the LMR.

lmr_param_mask Mask for LMR parameters.

lmr_param Pointer to a Consumer-allocated structure that the Provider fills with
LMR parameters.

The dat_lmr_query() function provides the Consumer LMR parameters. The Consumer
passes in a pointer to the Consumer-allocated structures for LMR parameters that the
Provider fills.

The lmr_param_mask parameter allows Consumers to specify which parameters to query.
The Provider returns values for lmr_param_mask requested parameters. The Provider can
return values for any other parameters.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER The lmr_param_mask function is invalid.

DAT_INVALID_HANDLE The lmr_handle function is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_lmr_query(3DAT)

Extended Library Functions, Volume 1 199

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_lmr_sync_rdma_read – synchronize local memory with RDMA read on non-coherent
memory

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_lmr_sync_rdma_read (

IN DAT_IA_HANDLE ia_handle,

IN const DAT_LMR_TRIPLET *local_segments,

IN DAT_VLEN num_segments

)

ia_handle A handle for an open instance of the IA.

local_segments An array of buffer segments.

num_segments The number of segments in the local_segments argument.

The dat_lmr_sync_rdma_read() function makes memory changes visible to an incoming
RDMA Read operation. This operation guarantees consistency by locally flushing the
non-coherent cache prior to it being retrieved by remote peer RDMA read operations.

The dat_lmr_sync_rdma_read() function is needed if and only if the Provider attribute
specifies that this operation is needed prior to an incoming RDMA Read operation. The
Consumer must call dat_lmr_sync_rdma_read() after modifying data in a memory range in
this region that will be the target of an incoming RDMA Read operation. The
dat_lmr_sync_rdma_read() function must be called after the Consumer has modified the
memory range but before the RDMA Read operation begins. The memory range that will be
accessed by the RDMA read operation must be supplied by the caller in the local_segments
array. After this call returns, the RDMA Read operation can safely see the modified contents of
the memory range. It is permissible to batch synchronizations for multiple RDMA Read
operations in a single call by passing a local_segments array that includes all modified memory
ranges. The local_segments entries need not contain the same LMR and need not be in the
same Protection Zone.

If the Provider attribute specifying that this operation is required attempts to read from a
memory range that is not properly synchronized using dat_lmr_sync_rdma_read(), the
returned contents are undefined.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The DAT handle is invalid.

DAT_INVALID_PARAMETER One of the parameters is invalid. For example, the address range
for a local segment fell outside the boundaries of the
corresponding Local Memory Region or the LMR handle was
invalid.

Name

Synopsis

Parameters

Description

Return Values

dat_lmr_sync_rdma_read(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004200

Determining when an RDMA Read will start and what memory range it will read is the
Consumer's responsibility. One possibility is to have the Consumer that is modifying memory
call dat_lmr_sync_rdma_read() and then post a Send DTO message that identifies the range
in the body of the Send. The Consumer wanting to perform the RDMA Read can receive this
message and know when it is safe to initiate the RDMA Read operation.

This call ensures that the Provider receives a coherent view of the buffer contents upon a
subsequent remote RDMA Read operation. After the call completes, the Consumer can be
assured that all platform-specific buffer and cache updates have been performed, and that the
LMR range has consistency with the Provider hardware. Any subsequent write by the
Consumer can void this consistency. The Provider is not required to detect such access.

The action performed on the cache before the RDMA Read depends on the cache type:

■ I/O noncoherent cache will be invalidated.
■ CPU noncoherent cache will be flushed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.2

dat_lmr_sync_rdma_write(3DAT), libdat(3LIB), attributes(5)

Usage

Attributes

See Also

dat_lmr_sync_rdma_read(3DAT)

Extended Library Functions, Volume 1 201

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_lmr_sync_rdma_write – synchronize local memory with RDMA write on non-coherent
memory

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_lmr_sync_rdma_write (

IN DAT_IA_HANDLE ia_handle,

IN const DAT_LMR_TRIPLET *local_segments,

IN DAT_VLEN num_segments

)

ia_handle A handle for an open instance of the IA.

local_segments An array of buffer segments.

num_segments The number of segments in the local_segments argument.

The dat_lmr_sync_rdma_write() function makes effects of an incoming RDMA Write
operation visible to the Consumer. This operation guarantees consistency by locally
invalidating the non-coherent cache whose buffer has been populated by remote peer RDMA
write operations.

The dat_lmr_sync_rdma_write() function is needed if and only if the Provider attribute
specifies that this operation is needed after an incoming RDMA Write operation. The
Consumer must call dat_lmr_sync_rdma_write() before reading data from a memory range
in this region that was the target of an incoming RDMA Write operation. The
dat_lmr_sync_rdma_write() function must be called after the RDMA Write operation
completes, and the memory range that was modified by the RDMA Write must be supplied by
the caller in the local_ segments array. After this call returns, the Consumer may safely see the
modified contents of the memory range. It is permissible to batch synchronizations of
multiple RDMA Write operations in a single call by passing a local_segments array that
includes all modified memory ranges. The local_segments entries need not contain the same
LMR and need not be in the same Protection Zone.

The Consumer must also use dat_lmr_sync_rdma_write() when performing local writes to a
memory range that was or will be the target of incoming RDMA writes. After performing the
local write, the Consumer must call dat_lmr_sync_rdma_write() before the RDMA Write is
initiated. Conversely, after an RDMA Write completes, the Consumer must call
dat_lmr_sync_rdma_write() before performing a local write to the same range.

If the Provider attribute specifies that this operation is needed and the Consumer attempts to
read from a memory range in an LMR without properly synchronizing using
dat_lmr_sync_rdma_write(), the returned contents are undefined. If the Consumer
attempts to write to a memory range without properly synchronizing, the contents of the
memory range become undefined.

Name

Synopsis

Parameters

Description

dat_lmr_sync_rdma_write(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004202

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The DAT handle is invalid.

DAT_INVALID_PARAMETER One of the parameters is invalid. For example, the address range
for a local segment fell outside the boundaries of the
corresponding Local Memory Region or the LMR handle was
invalid.

Determining when an RDMA Write completes and determining which memory range was
modified is the Consumer's responsibility. One possibility is for the RDMA Write initiator to
post a Send DTO message after each RDMA Write that identifies the range in the body of the
Send. The Consumer at the target of the RDMA Write can receive the message and know
when and how to call dat_lmr_sync_rdma_write().

This call ensures that the Provider receives a coherent view of the buffer contents after a
subsequent remote RDMA Write operation. After the call completes, the Consumer can be
assured that all platform-specific buffer and cache updates have been performed, and that the
LMR range has consistency with the Provider hardware. Any subsequent read by the
Consumer can void this consistency. The Provider is not required to detect such access.

The action performed on the cache before the RDMA Write depends on the cache type:

■ I/O noncoherent cache will be flushed.
■ CPU noncoherent cache will be invalidated.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.2

dat_lmr_sync_rdma_read(3DAT), libdat(3LIB), attributes(5)

Return Values

Usage

Attributes

See Also

dat_lmr_sync_rdma_write(3DAT)

Extended Library Functions, Volume 1 203

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_provider_fini – disassociate the Provider from a given IA name

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

void

dat_provider_fini (

IN const DAT_PROVIDER_INFO *provider_info

)

provider_info The information that was provided when dat_provider_init was called.

A destructor the Registry calls on a Provider before it disassociates the Provider from a given
IA name.

The Provider can use this method to undo any initialization it performed when
dat_provider_init(3DAT) was called for the same IA name. The Provider's implementation
of this method should call dat_registry_remove_provider(3DAT) to unregister its IA
Name. If it does not, the Registry might remove the entry itself.

This method can be called for a given IA name at any time after all open instances of that IA
are closed, and is certainly called before the Registry unloads the Provider library. However, it
is not called more than once without an intervening call to dat_provider_init() for that IA
name.

No values are returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level

Standard uDAPL, 1.1, 1.2

dat_provider_init(3DAT), dat_registry_remove_provider(3DAT), libdat(3LIB),
attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_provider_fini(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004204

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_provider_init – locate the Provider in the Static Registry

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

void

dat_provider_init (

IN const DAT_PROVIDER_INFO *provider_info,

IN const char * instance_data

)

provider_info The information that was provided by the Consumer to locate the Provider
in the Static Registry.

instance_data The instance data string obtained from the entry found in the Static Registry
for the Provider.

A constructor the Registry calls on a Provider before the first call to dat_ia_open(3DAT) for a
given IA name when the Provider is auto-loaded. An application that explicitly loads a
Provider on its own can choose to use dat_provider_init() just as the Registry would have
done for an auto-loaded Provider.

The Provider's implementation of this method must call
dat_registry_add_provider(3DAT), using the IA name in the provider_info.ia_name
field, to register itself with the Dynamic Registry. The implementation must not register other
IA names at this time. Otherwise, the Provider is free to perform any initialization it finds
useful within this method.

This method is called before the first call to dat_ia_open() for a given IA name after one of
the following has occurred:

■ The Provider library was loaded into memory.
■ The Registry called dat_provider_fini(3DAT) for that IA name.
■ The Provider called dat_registry_remove_provider(3DAT) for that IA name (but it is

still the Provider indicated in the Static Registry).

If this method fails, it should ensure that it does not leave its entry in the Dynamic Registry.

No values are returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level

Name

Synopsis

Parameters

Description

Return Values

Attributes

dat_provider_init(3DAT)

Extended Library Functions, Volume 1 205

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Standard uDAPL, 1.1, 1.2

dat_ia_open(3DAT), dat_provider_fini(3DAT), dat_registry_add_provider(3DAT),
dat_registry_remove_provider(3DAT), libdat(3LIB), attributes(5)

See Also

dat_provider_init(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004206

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_psp_create – create a persistent Public Service Point

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_psp_create(

IN DAT_IA_HANDLE ia_handle,
IN DAT_CONN_QUAL conn_qual,
IN DAT_EVD_HANDLE evd_handle,
IN DAT_PSP_FLAGS psp_flags,
OUT DAT_PSP_HANDLE *psp_handle
)

ia_handle Handle for an instance of DAT IA.

conn_qual Connection Qualifier of the IA on which the Public Service Point is listening.

evd_handle Event Dispatcher that provides the Connection Requested Events to the
Consumer. The size of the event queue for the Event Dispatcher controls the
size of the backlog for the created Public Service Point.

psp_flags Flag that indicates whether the Provider or Consumer creates an Endpoint per
arrived Connection Request. The value of DAT_PSP_PROVIDER indicates that
the Consumer wants to get an Endpoint from the Provider; a value of
DAT_PSP_CONSUMER means the Consumer does not want the Provider to
provide an Endpoint for each arrived Connection Request.

psp_handle Handle to an opaque Public Service Point.

The dat_psp_create() function creates a persistent Public Service Point that can receive
multiple requests for connection and generate multiple Connection Request instances that are
delivered through the specified Event Dispatcher in Notification events.

The dat_psp_create() function is blocking. When the Public Service Point is created,
DAT_SUCCESS is returned and psp_handle contains a handle to an opaque Public Service Point
Object.

There is no explicit backlog for a Public Service Point. Instead, Consumers can control the size
of backlog through the queue size of the associated Event Dispatcher.

The psp_flags parameter allows Consumers to request that the Provider create an implicit
Endpoint for each incoming Connection Request, or request that the Provider should not
create one per Connection Request. If the Provider cannot satisfy the request, the operation
shall fail and DAT_MODEL_NOT_SUPPORTED is returned.

All Endpoints created by the Provider have DAT_HANDLE_NULL for the Protection Zone and all
Event Dispatchers. The Provider sets up Endpoint attributes to match the Active side
connection request. The Consumer can change Endpoint parameters. Consumers should

Name

Synopsis

Parameters

Description

dat_psp_create(3DAT)

Extended Library Functions, Volume 1 207

change Endpoint parameters, especially PZ and EVD, and are advised to change parameters
for local accesses prior to the connection request acceptance with the Endpoint.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations.

DAT_INVALID_HANDLE The ia_handle or evd_handle parameter is invalid.

DAT_INVALID_PARAMETER The conn_qual or psp_flags parameter is invalid.

DAT_CONN_QUAL_IN_USE The specified Connection Qualifier was in use.

DAT_MODEL_NOT_SUPPORTED The requested Model was not supported by the Provider.

Two uses of a Public Service Point are as follows:

Model 1 For this model, the Provider manipulates a pool of Endpoints for a Public Service
Point. The Provider can use the same pool for more than one Public Service
Point.
■ The DAT Consumer creates a Public Service Point with a flag set to

DAT_PSP_PROVIDER.
■ The Public Service Point does the following:

■ Collects native transport information reflecting a received Connection
Reques

■ Creates an instance of Connection Reques
■ Creates a Connection Request Notice (event) that includes the

Connection Request instance (thatwhich includes, among others, Public
Service Point, its Connection Qualifier, Provider-generated Local
Endpoint, and information about remote Endpoint)

■ Delivers the Connection Request Notice to the Consumer-specified target
(CNO) evd_handle

The Public Service Point is persistent and continues to listen for incoming
requests for connection.

■ Upon receiving a connection request, or at some time subsequent to that, the
DAT Consumer can modify the provided local Endpoint to match the
Connection Request and must either accept() or reject() the pending
Connection Request.

■ If accepted, the provided Local Endpoint is now in a "connected" state and is
fully usable for this connection, pending only any native transport mandated
RTU (ready-to-use) messages. This includes binding it to the IA port if that
was not done previously. The Consumer is notified that the Endpoint is in
Connected state by a Connection Established Event on the Endpoint
connect_evd_handle.

Return Values

Usage

dat_psp_create(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004208

■ If rejected, control of the Local Endpoint point is returned back to the
Provider and its ep_handle is no longer usable by the Consumer.

Model 2 For this model, the Consumer manipulates a pool of Endpoints. Consumers can
use the same pool for more than one Service Point.
■ DAT Consumer creates a Public Service Point with a flag set to

DAT_PSP_CONSUMER.
■ Public Service Point:

■ Collects native transport information reflecting a received Connection
Request

■ Creates an instance of Connection Request
■ Creates a Connection Request Notice (event) that includes the

Connection Request instance (which includes, among others, Public
Service Point, its Connection Qualifier, Provider-generated Local
Endpoint and information about remote Endpoint)

■ Delivers the Connection Request Notice to the Consumer-specified target
(CNO) evd_handle

The Public Service Point is persistent and continues to listen for incoming
requests for connection.

■ The Consumer creates a pool of Endpoints that it uses for accepting
Connection Requests. Endpoints can be created and modified at any time
prior to accepting a Connection Request with that Endpoint.

■ Upon receiving a connection request or at some time subsequent to that, the
DAT Consumer can modify its local Endpoint to match the Connection
Request and must either accept() or reject() the pending Connection
Request.

■ If accepted, the provided Local Endpoint is now in a "connected" state and is
fully usable for this connection, pending only any native transport mandated
RTU messages. This includes binding it to the IA port if that was not done
previously. The Consumer is notified that the Endpoint is in Connected state
by a Connection Established Event on the Endpoint connect_evd_handle.

■ If rejected, the Consumer does not have to provide any Endpoint for
dat_cr_reject(3DAT).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Attributes

dat_psp_create(3DAT)

Extended Library Functions, Volume 1 209

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

Standard uDAPL, 1.1, 1.2

dat_cr_reject(3DAT), libdat(3LIB), attributes(5)See Also

dat_psp_create(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004210

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_psp_create_any – create a persistent Public Service Point

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_psp_create_any(

IN DAT_IA_HANDLE ia_handle,
IN DAT_CONN_QUAL conn_qual,
IN DAT_EVD_HANDLE evd_handle,
IN DAT_PSP_FLAGS psp_flags,
OUT DAT_PSP_HANDLE *psp_handle
)

ia_handle Handle for an instance of DAT IA.

conn_qual Connection Qualifier of the IA on which the Public Service Point is listening.

evd_handle Event Dispatcher that provides the Connection Requested Events to the
Consumer. The size of the event queue for the Event Dispatcher controls the
size of the backlog for the created Public Service Point.

psp_flags Flag that indicates whether the Provider or Consumer creates an Endpoint per
arrived Connection Request. The value of DAT_PSP_PROVIDER indicates that
the Consumer wants to get an Endpoint from the Provider; a value of
DAT_PSP_CONSUMER means the Consumer does not want the Provider to
provide an Endpoint for each arrived Connection Request.

psp_handle Handle to an opaque Public Service Point.

The dat_psp_create_any() function creates a persistent Public Service Point that can receive
multiple requests for connection and generate multiple Connection Request instances that are
delivered through the specified Event Dispatcher in Notification events.

The dat_psp_create_any() function allocates an unused Connection Qualifier, creates a
Public Service point for it, and returns both the allocated Connection Qualifier and the
created Public Service Point to the Consumer.

The allocated Connection Qualifier should be chosen from "nonprivileged" ports that are not
currently used or reserved by any user or kernel Consumer or host ULP of the IA. The format
of allocated Connection Qualifier returned is specific to IA transport type.

The dat_psp_create_any() function is blocking. When the Public Service Point is created,
DAT_SUCCESS is returned, psp_handle contains a handle to an opaque Public Service Point
Object, and conn_qual contains the allocated Connection Qualifier. When return is not
DAT_SUCCESS, psp_handle and conn_qual return values are undefined.

There is no explicit backlog for a Public Service Point. Instead, Consumers can control the size
of backlog through the queue size of the associated Event Dispatcher.

Name

Synopsis

Parameters

Description

dat_psp_create_any(3DAT)

Extended Library Functions, Volume 1 211

The psp_flags parameter allows Consumers to request that the Provider create an implicit
Endpoint for each incoming Connection Request, or request that the Provider should not
create one per Connection Request. If the Provider cannot satisfy the request, the operation
shall fail and DAT_MODEL_NOT_SUPPORTED is returned.

All Endpoints created by the Provider have DAT_HANDLE_NULL for the Protection Zone and all
Event Dispatchers. The Provider sets up Endpoint attributes to match the Active side
connection request. The Consumer can change Endpoint parameters. Consumers should
change Endpoint parameters, especially PZ and EVD, and are advised to change parameters
for local accesses prior to the connection request acceptance with the Endpoint.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations.

DAT_INVALID_HANDLE The ia_handle or evd_handle parameter is invalid.

DAT_INVALID_PARAMETER The conn_qual or psp_flags parameter is invalid.

DAT_CONN_QUAL_UNAVAILABLE No Connection Qualifiers available.

DAT_MODEL_NOT_SUPPORTED The requested Model was not supported by the Provider.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Return Values

Attributes

See Also

dat_psp_create_any(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004212

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_psp_free – destroy an instance of the Public Service Point

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_psp_free (

IN DAT_PSP_HANDLE psp_handle

)

psp_handle Handle for an instance of the Public Service Point.

The dat_psp_free() function destroys a specified instance of the Public Service Point.

Any incoming Connection Requests for the Connection Qualifier on the destroyed Service
Point it had been listening on are automatically rejected by the Provider with the return
analogous to the no listening Service Point.

The behavior of the Connection Requests in progress is undefined and left to an
implementation. But it must be consistent. This means that either a Connection Requested
Event has been generated for the Event Dispatcher associated with the Service Point, including
the creation of the Connection Request instance, or the Connection Request is rejected by the
Provider without any local notification.

This operation shall have no effect on previously generated Connection Requested Events.
This includes Connection Request instances and, potentially, Endpoint instances created by
the Provider.

The behavior of this operation with creation of a Service Point on the same Connection
Qualifier at the same time is not defined. Consumers are advised to avoid this scenario.

Use of the handle of the destroyed Public Service Point in any consequent operation fails.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The psp_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

Name

Synopsis

Parameters

Description

Return Values

Attributes

dat_psp_free(3DAT)

Extended Library Functions, Volume 1 213

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

libdat(3LIB), attributes(5)See Also

dat_psp_free(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004214

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_psp_query – provide parameters of the Public Service Point

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_psp_query (

IN DAT_PSP_HANDLE psp_handle,

IN DAT_PSP_PARAM_MASK psp_param_mask,

OUT DAT_PSP_PARAM *psp_param

)

psp_handle Handle for an instance of Public Service Point.

psp_param_mask Mask for PSP parameters.

psp_param Pointer to a Consumer-allocated structure that Provider fills for
Consumer-requested parameters.

The dat_psp_query() function provides to the Consumer parameters of the Public Service
Point. Consumer passes in a pointer to the Consumer allocated structures for PSP parameters
that Provider fills.

The psp_param_mask parameter allows Consumers to specify which parameters they would
like to query. The Provider will return values for psp_param_mask requested parameters. The
Provider may return the value for any of the other parameters.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The psp_handle parameter is invalid.

DAT_INVALID_PARAMETER The psp_param_mask parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_psp_query(3DAT)

Extended Library Functions, Volume 1 215

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_pz_create – create an instance of the Protection Zone

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_pz_create (

IN DAT_IA_HANDLE ia_handle,

OUT DAT_PZ_HANDLE *pz_handle

)

ia_handle Handle for an open instance of the IA.

pz_handle Handle for the created instance of Protection Zone.

The dat_pz_create() function creates an instance of the Protection Zone. The Protection
Zone provides Consumers a mechanism for association Endpoints with LMRs and RMRs to
provide protection for local and remote memory accesses by DTOs.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations.

DAT_INVALID_PARAMETER Invalid parameter.

DAT_INVALID_HANDLE The ia_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_pz_create(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004216

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_pz_free – destroy an instance of the Protection Zone

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_pz_free (

IN DAT_PZ_HANDLE pz_handle

)

pz_handle Handle for an instance of Protection Zone to be destroyed.

The dat_pz_free() function destroys an instance of the Protection Zone. The Protection
Zone cannot be destroyed if it is in use by an Endpoint, LMR, or RMR.

Use of the handle of the destroyed Protection Zone in any subsequent operation except for
dat_pz_free() fails.

DAT_SUCCESS The operation was successful.

DAT_INVALID_STATE Parameter in an invalid state. The Protection Zone was in use by
Endpoint, LMR, or RMR instances.

DAT_INVALID_HANDLE The pz_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_pz_free(3DAT)

Extended Library Functions, Volume 1 217

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_pz_query – provides parameters of the Protection Zone

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_pz_query (

IN DAT_PZ_HANDLE pz_handle,

IN DAT_PZ_PARAM_MASK pz_param_mask,

OUT DAT_PZ_PARAM *pz_param

)

pz_handle: Handle for the created instance of the Protection Zone.

pz_param_mask: Mask for Protection Zone parameters.

pz_param: Pointer to a Consumer-allocated structure that the Provider fills with
Protection Zone parameters.

The dat_pz_query() function provides the Consumer parameters of the Protection Zone.
The Consumer passes in a pointer to the Consumer-allocated structures for Protection Zone
parameters that the Provider fills.

The pz_param_mask parameter allows Consumers to specify which parameters to query. The
Provider returns values for pz_param_mask requested parameters. The Provider can return
values for any other parameters.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER The pz_param_mask parameter is invalid.

DAT_INVALID_HANDLE The pz_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_pz_query(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004218

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_registry_add_provider – declare the Provider with the Dynamic Registry

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_registry_add_provider (

IN const DAT_PROVIDER *provider,

IN const DAT_PROVIDER_INFO *provider_info

)

provider Self-description of a Provider.

provider_info Attributes of the Provider.

The Provider declares itself with the Dynamic Registry. Note that the caller can choose to
register itself multiple times, for example once for each port. The choice of what to virtualize is
up to the Provider. Each registration provides an Interface Adapter to DAT. Each Provider
must have a unique name.

The same IA Name cannot be added multiple times. An attempt to register the same IA Name
again results in an error with the return value DAT_PROVIDER_ALREADY_REGISTERED.

The contents of provider_info must be the same as those the Consumer uses in the call to
dat_ia_open(3DAT) directly, or the ones provided indirectly defined by the header files with
which the Consumer compiled.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The maximum number of Providers was already
registered.

DAT_INVALID_PARAMETER Invalid parameter.

DAT_PROVIDER_ALREADY_REGISTERED Invalid or nonunique name.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level

Standard uDAPL, 1.1, 1.2

dat_ia_open(3DAT), libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_registry_add_provider(3DAT)

Extended Library Functions, Volume 1 219

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_registry_list_providers – obtain a list of available pProviders from the Static Registry

typedef struct dat_provider_info {

char ia_name[DAT_NAME_MAX_LENGTH];

DAT_UINT32 dapl_version_major;

DAT_UINT32 dapl_version_minor;

DAT_BOOLEAN is_thread_safe;

} DAT_PROVIDER_INFO;

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_registry_list_providers (

IN DAT_COUNT max_to_return,

OUT DAT_COUNT *number_entries,

OUT DAT_PROVIDER_INFO *(dat_provider_list[])

)

max_to_return Maximum number of entries that can be returned to the Consumer in
the dat_provider_list.

number_entries The actual number of entries returned to the Consumer in the
dat_provider_list if successful or the number of Providers available.

dat_provider_list Points to an array of DAT_PROVIDER_INFO pointers supplied by the
Consumer. Each Provider's information will be copied to the
destination specified.

The dat_registry_list_providers() function allows the Consumer to obtain a list of
available Providers from the Static Registry. The information provided is the Interface
Adapter name, the uDAPL/kDAPL API version supported, and whether the provided version
is thread-safe. The Consumer can examine the attributes to determine which (if any) Interface
Adapters it wants to open. This operation has no effect on the Registry itself.

The Registry can open an IA using a Provider whose dapl_version_minor is larger than the one
the Consumer requests if no Provider entry matches exactly. Therefore, Consumers should
expect that an IA can be opened successfully as long as at least one Provider entry returned by
dat_registry_list_providers() matches the ia_name, dapl_version_major, and
is_thread_safe fields exactly, and has a dapl_version_minor that is equal to or greater than the
version requested.

If the operation is successful, the returned value is DAT_SUCCESS and number_entries indicates
the number of entries filled by the registry in dat_provider_list.

If the operation is not successful, then number_entries returns the number of entries in the
registry. Consumers can use this return to allocate dat_provider_list large enough for the

Name

Synopsis

Parameters

Description

dat_registry_list_providers(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004220

registry entries. This number is just a snapshot at the time of the call and may be changed by
the time of the next call. If the operation is not successful, then the content of dat_provider_list
is not defined.

If dat_provider_list is too small, including pointing to NULL for the registry entries, then the
operation fails with the return DAT_INVALID_PARAMETER.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER Invalid parameter. For example, dat_provider_list is too small
or NULL.

DAT_INTERNAL_ERROR Internal error. The DAT static registry is missing.

DAT_NAME_MAX_LENGTH includes the null character for string termination.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Return Values

Usage

Attributes

See Also

dat_registry_list_providers(3DAT)

Extended Library Functions, Volume 1 221

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_registry_remove_provider – unregister the Provider from the Dynamic Registry

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_registry_remove_provider (

IN DAT_PROVIDER *provider

IN const DAT_PROVIDER_INFO *provider_info

)

provider Self-description of a Provider.

provider_info Attributes of the Provider.

The Provider removes itself from the Dynamic Registry. It is the Provider's responsibility to
complete its sessions. Removal of the registration only prevents new sessions.

The Provider cannot be removed while it is in use. An attempt to remove the Provider while it
is in use results in an error with the return code DAT_PROVIDER_IN_USE.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER Invalid parameter. The Provider was not found.

DAT_PROVIDER_IN_USE The Provider was in use.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_registry_remove_provider(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004222

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_rmr_bind – bind the RMR to the specified memory region within an LMR

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_rmr_bind(

IN DAT_RMR_HANDLE rmr_handle,

IN DAT_LMR_TRIPLET *lmr_triplet,

IN DAT_MEM_PRIV_FLAGS mem_privileges,

IN DAT_EP_HANDLE ep_handle,

IN DAT_RMR_COOKIE user_cookie,

IN DAT_COMPLETION_FLAGS completion_flags,

OUT DAT_RMR_CONTEXT *rmr_context

)

rmr_handle Handle for an RMR instance.

lmr_triplet A pointer to an lmr_triplet that defines the memory region of the LMR.

mem_privileges Consumer-requested memory access privileges for the registered remote
memory region. The Default value is DAT_MEM_PRIV_NONE_FLAG. The
constant value DAT_MEM_PRIV_ALL_FLAG = 0x33, which specifies both
Read and Write privileges, is also defined. Memory privilege definitions
are as follows:

Remote Read DAT_MEM_PRIV_REMOTE_READ_FLAG

0x02 Remote read access requested.

Remote Write DAT_MEM_PRIV_REMOTE_WRITE_FLAG

0x20 Remote write access requested.

ep_handle Endpoint to which dat_rmr_bind() is posted.

user_cookie User-provided cookie that is returned to a Consumer at the completion
of the dat_rmr_bind(). Can be NULL.

completion_flags Flags for RMR Bind. The default DAT_COMPLETION_DEFAULT_FLAG is 0.
Flag definitions are as follows:

Completion Suppression DAT_COMPLETION_SUPPRESS_FLAG

0x01 Suppress successful
Completion.

Notification of Completion DAT_COMPLETION_UNSIGNALLED_FLAG

0x04 Non-notification completion.
Local Endpoint must be
configured for Notification

Name

Synopsis

Parameters

dat_rmr_bind(3DAT)

Extended Library Functions, Volume 1 223

Suppression.

Barrier Fence DAT_COMPLETION_BARRIER_FENCE_FLAG

0x08 Request for Barrier Fence.

rmr_context New rmr_context for the bound RMR suitable to be shared with a remote
host.

The dat_rmr_bind() function binds the RMR to the specified memory region within an LMR
and provides the new rmr_context value. The dat_rmr_bind() operation is a lightweight
asynchronous operation that generates a new rmr_context. The Consumer is notified of the
completion of this operation through a rmr_bind Completion event on the
request_evd_handle of the specified Endpoint ep_handle.

The return value of rmr_context can be transferred by local Consumer to a Consumer on a
remote host to be used for an RDMA DTO. The use of rmr_context by a remote host for an
RDMA DTO prior to the completion of the dat_rmr_bind() can result in an error and a
broken connection. The local Consumer can ensure that the remote Consumer does not have
rmr_context before dat_rmr_bind() is completed. One way is to "wait" for the completion
dat_rmr_bind() on the rmr_bind Event Dispatcher of the specified Endpoint ep_handle.
Another way is to send rmr_context in a Send DTO over the connection of the Endpoint
ep_handle. The barrier-fencing behavior of the dat_rmr_bind() with respect to Send and
RDMA DTOs ensures that a Send DTO does not start until dat_rmr_bind() completed.

The dat_rmr_bind() function automatically fences all Send, RDMA Read, and RDMA Write
DTOs and dat_rmr_bind() operations submitted on the Endpoint ep_handle after the
dat_rmr_bind(). Therefore, none of these operations starts until dat_rmr_bind() is
completed.

If the RMR Bind fails after dat_rmr_bind() returns, connection of ep_handle is broken. The
Endpoint transitions into a DAT_EP_STATE_DISCONNECTED state and the
DAT_CONNECTION_EVENT_BROKEN event is delivered to the connect_evd_handle of the
Endpoint.

The dat_rmr_bind() function employs fencing to ensure that operations sending the RMR
Context on the same Endpoint as the bind specified cannot result in an error from the peer
side using the delivered RMR Context too soon. One method, used by InfiniBand, is to ensure
that none of these operations start on the Endpoint until after the bind is completed. Other
transports can employ different methods to achieve the same goal.

Any RDMA DTO that uses the previous value of rmr_context after the dat_rmr_bind() is
completed fail and report a protection violation.

By default, dat_rmr_bind() generates notification completions.

Description

dat_rmr_bind(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004224

The mem_privileges parameter allows Consumers to restrict the type of remote accesses to the
registered RMR by RDMA DTOs. Providers whose underlying Transports require that
privileges of the requested RMR and the associated LMR match, that is

■ Set RMR's DAT_MEM_PRIV_REMOTE_READ_FLAG requires that LMR's
DAT_MEM_PRIV_LOCAL_READ_FLAG is also set,

■ Set RMR's DAT_MEM_PRIV_REMOTE_WRITE_FLAG requires that LMR's
DAT_MEM_PRIV_LOCAL_WRITE_FLAG is also set,

or the operation fails and returns DAT_PRIVILEGES_VIOLATION.

In the lmr_triplet, the value of length of zero means that the Consumer does not want to
associate an RMR with any memory region within the LMR and the return value of
rmr_context for that case is undefined.

The completion of the posted RMR Bind is reported to the Consumer asynchronously
through a DTO Completion event based on the specified completion_flags value. The value of
DAT_COMPLETION_UNSIGNALLED_FLAG is only valid if the Endpoint Request Completion Flags
DAT_COMPLETION_UNSIGNALLED_FLAG. Otherwise, DAT_INVALID_PARAMETER is returned.

The user_cookie parameter allows Consumers to have unique identifiers for each
dat_rmr_bind(). These identifiers are completely under user control and are opaque to the
Provider. The Consumer is not required to ensure the uniqueness of the user_cookie value.
The user_cookie is returned to the Consumer in the rmr_bind Completion event for this
operation.

The operation is valid for the Endpoint in the DAT_EP_STATE_CONNECTED and
DAT_EP_STATE_DISCONNECTED states. If the operation returns successfully for the Endpoint in
DAT_EP_STATE_DISCONNECTED state, the posted RMR Bind is immediately flushed to
request_evd_handle.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations.

DAT_INVALID_PARAMETER Invalid parameter. For example, the target_address or
segment_length exceeded the limits of the existing LMR.

DAT_INVALID_HANDLE Invalid DAT handle.

DAT_INVALID_STATE Parameter in an invalid state. Endpoint was not in the a
DAT_EP_STATE_CONNECTED or
DAT_EP_STATE_DISCONNECTED state.

DAT_MODEL_NOT_SUPPORTED The requested Model was not supported by the Provider.

DAT_PRIVILEGES_VIOLATION Privileges violation for local or remote memory access.

DAT_PROTECTION_VIOLATION Protection violation for local or remote memory access.

Return Values

dat_rmr_bind(3DAT)

Extended Library Functions, Volume 1 225

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Attributes

See Also

dat_rmr_bind(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004226

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_rmr_create – create an RMR for the specified Protection Zone

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_rmr_create(

IN DAT_PZ_HANDLE pz_handle,

OUT DAT_RMR_HANDLE *rmr_handle

)

pz_handle Handle for an instance of the Protection Zone.

rmr_handle Handle for the created instance of an RMR.

The dat_rmr_create() function creates an RMR for the specified Protection Zone. This
operation is relatively heavy. The created RMR can be bound to a memory region within the
LMR through a lightweight dat_rmr_bind(3DAT) operation that generates rmr_context.

If the operation fails (does not return DAT_SUCCESS), the return values of rmr_handle are
undefined and Consumers should not use them.

The pz_handle parameter provide Consumers a way to restrict access to an RMR by
authorized connection only.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations.

DAT_INVALID_HANDLE The pz_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard uDAPL, 1.1, 1.2

dat_rmr_bind(3DAT) , libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_rmr_create(3DAT)

Extended Library Functions, Volume 1 227

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_rmr_free – destroy an instance of the RMR

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_rmr_free (

IN DAT_RMR_HANDLE rmr_handle

)

rmr_handle Handle for an instance of the RMR to be destroyed.

The dat_rmr_free() function destroys an instance of the RMR.

Use of the handle of the destroyed RMR in any subsequent operation except for the
dat_rmr_free() fails. Any remote RDMA operation that uses the destroyed RMR
rmr_context, whose Transport-specific request arrived to the local host after the
dat_rmr_free() has completed, fails and reports a protection violation. Remote RDMA
operation that uses the destroyed RMR rmr_context, whose Transport-specific request arrived
to the local host prior to the dat_rmr_free() return, might or might not complete
successfully. If it fails, DAT_DTO_ERR_REMOTE_ACCESS is reported in
DAT_DTO_COMPLETION_STATUS for the remote RDMA DTO and the connection is broken.

The dat_rmr_free() function is allowed on either bound or unbound RMR. If RMR is bound,
dat_rmr_free() unbinds (free HCA TPT and other resources and whatever else binds with
length of 0 should do), and then free RMR.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The rmr_handle handle is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_rmr_free(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004228

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_rmr_query – provide RMR parameters

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_rmr_query (

IN DAT_RMR_HANDLE rmr_handle,

IN DAT_RMR_PARAM_MASK rmr_param_mask,

OUT DAT_RMR_PARAM *rmr_param

)

rmr_handle Handle for an instance of the RMR.

rmr_param_mask Mask for RMR parameters.

rmr_param Pointer to a Consumer-allocated structure that the Provider fills with
RMR parameters.

The dat_rmr_query() function provides RMR parameters to the Consumer. The Consumer
passes in a pointer to the Consumer-allocated structures for RMR parameters that the
Provider fills.

The rmr_param_mask parameter allows Consumers to specify which parameters to query.
The Provider returns values for rmr_param_mask requested parameters. The Provider can
return values for any other parameters.

Not all parameters can have a value at all times. For example, lmr_handle, target_address,
segment_length, mem_privileges, and rmr_context are not defined for an unbound RMR.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER The rmr_param_mask parameter is invalid.

DAT_INVALID_HANDLE The mr_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_rmr_query(3DAT)

Extended Library Functions, Volume 1 229

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_rsp_create – create a Reserved Service Point

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_rsp_create (

IN DAT_IA_HANDLE ia_handle,

IN DAT_CONN_QUAL conn_qual,

IN DAT_EP_HANDLE ep_handle,

IN DAT_EVD_HANDLE evd_handle,

OUT DAT_RSP_HANDLE *rsp_handle

)

ia_handle Handle for an instance of DAT IA.

conn_qual Connection Qualifier of the IA the Reserved Service Point listens to.

ep_handle Handle for the Endpoint associated with the Reserved Service Point that is the
only Endpoint that can accept a Connection Request on this Service Point.
The value DAT_HANDLE_NULL requests the Provider to associate a
Provider-created Endpoint with this Service Point.

evd_handle The Event Dispatcher to which an event of Connection Request arrival is
generated.

rsp_handle Handle to an opaque Reserved Service Point.

The dat_rsp_create() function creates a Reserved Service Point with the specified Endpoint
that generates, at most, one Connection Request that is delivered to the specified Event
Dispatcher in a Notification event.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations.

DAT_INVALID_HANDLE The ia_handle, evd_handle, or ep_handle parameter is
invalid.

DAT_INVALID_PARAMETER The conn_qual parameter is invalid.

DAT_INVALID_STATE Parameter in an invalid state. For example, an Endpoint
was not in the Idle state.

DAT_CONN_QUAL_IN_USE Specified Connection Qualifier is in use.

The usage of a Reserve Service Point is as follows:

■ The DAT Consumer creates a Local Endpoint and configures it appropriately.
■ The DAT Consumer creates a Reserved Service Point specifying the Local Endpoint.
■ The Reserved Service Point performs the following:

Name

Synopsis

Parameters

Description

Return Values

Usage

dat_rsp_create(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004230

■ Collects native transport information reflecting a received Connection Request.
■ Creates a Pending Connection Request.
■ Creates a Connection Request Notice (event) that includes the Pending Connection

Request (which includes, among others, Reserved Service Point Connection Qualifier,
its Local Endpoint, and information about remote Endpoint).

■ Delivers the Connection Request Notice to the Consumer-specified target (CNO)
evd_handle. The Local Endpoint is transitioned from Reserved to Passive Connection
Pending state.

■ Upon receiving a connection request, or at some time subsequent to that, the DAT
Consumer must either accept() or reject() the Pending Connection Request.

■ If accepted, the original Local Endpoint is now in a Connected state and fully usable for this
connection, pending only native transport mandated RTU messages. This includes
binding it to the IA port if that was not done previously. The Consumer is notified that the
Endpoint is in a Connected state by a Connection Established Event on the Endpoint
connect_evd_handle.

■ If rejected, the Local Endpoint point transitions into Unconnected state. The DAT
Consumer can elect to destroy it or reuse it for other purposes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Attributes

See Also

dat_rsp_create(3DAT)

Extended Library Functions, Volume 1 231

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_rsp_free – destroy an instance of the Reserved Service Point

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_rsp_free (

IN DAT_RSP_HANDLE rsp_handle

)

rsp_handle Handle for an instance of the Reserved Service Point.

The dat_rsp_free() function destroys a specified instance of the Reserved Service Point.

Any incoming Connection Requests for the Connection Qualifier on the destroyed Service
Point was listening on are automatically rejected by the Provider with the return analogous to
the no listening Service Point.

The behavior of the Connection Requests in progress is undefined and left to an
implementation, but it must be consistent. This means that either a Connection Requested
Event was generated for the Event Dispatcher associated with the Service Point, including the
creation of the Connection Request instance, or the Connection Request is rejected by the
Provider without any local notification.

This operation has no effect on previously generated Connection Request Event and
Connection Request.

The behavior of this operation with creation of a Service Point on the same Connection
Qualifier at the same time is not defined. Consumers are advised to avoid this scenario.

For the Reserved Service Point, the Consumer-provided Endpoint reverts to Consumer
control. Consumers shall be aware that due to a race condition, this Reserved Service Point
might have generated a Connection Request Event and passed the associated Endpoint to a
Consumer in it.

Use of the handle of the destroyed Service Point in any consequent operation fails.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The rsp_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Name

Synopsis

Parameters

Description

Return Values

Attributes

dat_rsp_free(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004232

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)See Also

dat_rsp_free(3DAT)

Extended Library Functions, Volume 1 233

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_rsp_query – provide parameters of the Reserved Service Point

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_rsp_query (

IN DAT_RSP_HANDLE rsp_handle,

IN DAT_RSP_PARAM_MASK rsp_param_mask,

OUT DAT_RSP_PARAM *rsp_param

)

rsp_handle Handle for an instance of Reserved Service Point

rsp_param_mask Mask for RSP parameters.

rsp_param Pointer to a Consumer-allocated structure that the Provider fills for
Consumer-requested parameters.

The dat_rsp_query() function provides to the Consumer parameters of the Reserved Service
Point. The Consumer passes in a pointer to the Consumer-allocated structures for RSP
parameters that the Provider fills.

The rsp_param_mask parameter allows Consumers to specify which parameters to query. The
Provider returns values for rsp_param_mask requested parameters. The Provider can return
values for any other parameters.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The rsp_handle parameter is invalid.

DAT_INVALID_PARAMETER The rsp_param_mask parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_rsp_query(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004234

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_set_consumer_context – set Consumer context

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_set_consumer_context (

IN DAT_HANDLE dat_handle,
IN DAT_CONTEXT context
)

dat_handle Handle for a DAT Object associated with context.

context Consumer context to be stored within the associated dat_handle. The
Consumer context is opaque to the uDAPL Provider. NULL represents no
context.

The dat_set_consumer_context() function associates a Consumer context with the
specified dat_handle. The dat_handle can be one of the following handle types:
DAT_IA_HANDLE, DAT_EP_HANDLE, DAT_EVD_HANDLE, DAT_CR_HANDLE, DAT_RSP_HANDLE,
DAT_PSP_HANDLE, DAT_PZ_HANDLE, DAT_LMR_HANDLE, DAT_RMR_HANDLE, or DAT_CNO_HANDLE.

Only a single Consumer context is provided for any dat_handle. If there is a previous
Consumer context associated with the specified handle, the new context replaces the old one.
The Consumer can disassociate the existing context by providing a NULL pointer for the
context. The Provider makes no assumptions about the contents of context; no check is made
on its value. Furthermore, the Provider makes no attempt to provide any synchronization for
access or modification of the context.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER The context parameter is invalid.

DAT_INVALID_HANDLE The dat_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.1, 1.2

dat_get_consumer_context(3DAT), libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_set_consumer_context(3DAT)

Extended Library Functions, Volume 1 235

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_srq_create – create an instance of a shared receive queue

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_srq_create (

IN DAT_IA_HANDLE ia_handle,

IN DAT_PZ_HANDLE pz_handle,

IN DAT_SRQ_ATTR *srq_attr,

OUT DAT_SRQ_HANDLE *srq_handle

)

ia_handle A handle for an open instance of the IA to which the created SRQ belongs.

pz_handle A handle for an instance of the Protection Zone.

srq_attr A pointer to a structure that contains Consumer-requested SRQ attributes.

srq_handle A handle for the created instance of a Shared Receive Queue.

The dat_srq_create() function creates an instance of a Shared Receive Queue (SRQ) that is
provided to the Consumer as srq_handle. If the value of DAT_RETURN is not DAT_SUCCESS, the
value of srq_handle is not defined.

The created SRQ is unattached to any Endpoints.

The Protection Zone pz_handle allows Consumers to control what local memory can be used
for the Recv DTO buffers posted to the SRQ. Only memory referred to by LMRs of the posted
Recv buffers that match the SRQ Protection Zone can be accessed by the SRQ.

The srq_attributes argument specifies the initial attributes of the created SRQ. If the operation
is successful, the created SRQ will have the queue size at least max_recv_dtos and the number
of entries on the posted Recv scatter list of at lease max_recv_iov. The created SRQ can have
the queue size and support number of entries on post Recv buffers larger than requested.
Consumer can query SRQ to find out the actual supported queue size and maximum Recv
IOV.

The Consumer must set low_watermark to DAT_SRQ_LW_DEFAULT to ensure that an
asynchronous event will not be generated immediately, since there are no buffers in the
created SRQ. The Consumer should set the Maximum Receive DTO attribute and the
Maximum number of elements in IOV for posted buffers as needed.

When an associated EP tries to get a buffer from SRQ and there are no buffers available, the
behavior of the EP is the same as when there are no buffers on the EP Recv Work Queue.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations.

Name

Synopsis

Parameters

Description

Return Values

dat_srq_create(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 11 Sep 2006236

DAT_INVALID_HANDLE Either ia_handle or pz_handle is an invalid DAT handle.

DAT_INVALID_PARAMETER One of the parameters is invalid. Either one of the
requested SRQ attributes was invalid or a combination of
attributes is invalid.

DAT_MODEL_NOT_SUPPORTED The requested Model was not supported by the Provider.

SRQ is created by the Consumer prior to creation of the EPs that will be using it. Some
Providers might restrict whether multiple EPs that share a SRQ can have different Protection
Zones. Check the srq_ep_pz_difference_support Provider attribute. The EPs that use SRQ
might or might not use the same recv_evd.

Since a Recv buffer of SRQ can be used by any EP that is using SRQ, the Consumer should
ensure that the posted Recv buffers are large enough to receive an incoming message on any of
the EPs.

If Consumers do not want to receive an asynchronous event when the number of buffers in
SRQ falls below the Low Watermark, they should leave its value as DAT_SRQ_LW_DEFAULT. If
Consumers do want to receive a notification, they can set the value to the desired one by
calling dat_srq_set_lw(3DAT).

SRQ allows the Consumer to use fewer Recv buffers then posting the maximum number of
buffers for each connection. If the Consumer can upper bound the number of incoming
messages over all connections whose local EP is using SRQ, then instead of posting this
maximum for each connection the Consumer can post them for all connections on SRQ. For
example, the maximum utilized link bandwidth divided over the message size can be used for
an upper bound.

Depending on the underlying Transport, one or more messages can arrive simultaneously on
an EP that is using SRQ. Thus, the same EP can have multiple Recv buffers in its possession
without these buffers being on SRQ or recv_evd.

Since Recv buffers can be used by multiple connections of the local EPs that are using SRQ, the
completion order of the Recv buffers is no longer guaranteed even when they use of the same
recv_evd. For each connection the Recv buffers completion order is guaranteed to be in the
order of the posted matching Sends to the other end of the connection. There is no ordering
guarantee that Receive buffers will be returned in the order they were posted even if there is
only a single connection (Endpoint) associated with the SRQ. There is no ordering guarantee
between different connections or between different recv_evds.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Usage

Attributes

dat_srq_create(3DAT)

Extended Library Functions, Volume 1 237

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

Standard uDAPL, 1.2

dat_srq_free(3DAT), dat_srq_post_recv(3DAT), dat_srq_query(3DAT),
dat_srq_resize(3DAT), dat_srq_set_lw(3DAT), libdat(3LIB), attributes(5)

See Also

dat_srq_create(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 11 Sep 2006238

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_srq_free – destroy an instance of the shared receive queue

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_srq_free (

IN DAT_SRQ_HANDLE srq_handle

)

srq_handle A handle for an instance of SRQ to be destroyed.

The dat_srq_free() function destroys an instance of the SRQ. The SRQ cannot be destroyed
if it is in use by an EP.

It is illegal to use the destroyed handle in any consequent operation.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The srq_handle argument is an invalid DAT handle.

DAT_SRQ_IN_USE The Shared Receive Queue can not be destroyed because it is in still
associated with an EP instance.

If the Provider detects the use of a deleted object handle, it should return
DAT_INVALID_HANDLE. The Provider should avoid assigning the used handle as long as
possible. Once reassigned the handle is no longer a handle of a destroyed object.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.2

dat_srq_create(3DAT), dat_srq_post_recv(3DAT), dat_srq_query(3DAT),
dat_srq_resize(3DAT), dat_srq_set_lw(3DAT), libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Usage

Attributes

See Also

dat_srq_free(3DAT)

Extended Library Functions, Volume 1 239

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_srq_post_recv – add receive buffers to shared receive queue

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_srq_post_recv (

IN DAT_SRQ_HANDLE srq_handle,

IN DAT_COUNT num_segments,

IN DAT_LMR_TRIPLET *local_iov,

IN DAT_DTO_COOKIE user_cookie

)

srq_handle A handle for an instance of the SRQ.

num_segments The number of lmr_triplets in local_iov. Can be 0 for receiving a zero-size
message.

local_iov An I/O Vector that specifies the local buffer to be filled. Can be NULL for
receiving a zero-size message.

user_cookie A user-provided cookie that is returned to the Consumer at the
completion of the Receive DTO. Can be NULL.

The dat_srq_post_recv() function posts the receive buffer that can be used for the incoming
message into the local_iov by any connected EP that uses SRQ.

The num_segments argument specifies the number of segments in the local_iov. The local_iov
segments are filled in the I/O Vector order until the whole message is received. This ensures
that all the front segments of the local_iov I/O Vector are completely filled, only one segment
is partially filled, if needed, and all segments that follow it are not filled at all. The actual order
of segment fillings is left to the implementation.

The user_cookie argument allows Consumers to have unique identifiers for each DTO. These
identifiers are completely under user control and are opaque to the Provider. There is no
requirement on the Consumer that the value user_cookie should be unique for each DTO. The
user_cookie is returned to the Consumer in the Completion event for the posted Receive.

The completion of the posted Receive is reported to the Consumer asynchronously through a
DTO Completion event based on the configuration of the EP that dequeues the posted buffer
and the specified completion_flags value for Solicited Wait for the matching Send. If EP Recv
Completion Flag is DAT_COMPLETION_UNSIGNALLED_FLAG, which is the default value for SRQ
EP, then all posted Recvs will generate completions with Signal Notifications.

A Consumer should not modify the local_iov or its content until the DTO is completed. When
a Consumer does not adhere to this rule, the behavior of the Provider and the underlying
Transport is not defined. Providers that allow Consumers to get ownership of the local_iov but
not the memory it specified back after the dat_srq_post_recv() returns should document

Name

Synopsis

Parameters

Description

dat_srq_post_recv(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004240

this behavior and also specify its support in Provider attributes. This behavior allows
Consumer full control of the local_iov content after dat_srq_post_recv() returns. Because
this behavior is not guaranteed by all Providers, portable Consumers shall not rely on this
behavior. Consumers shall not rely on the Provider copying local_iov information.

The DAT_SUCCESS return of the dat_srq_post_recv() is at least the equivalent of posting a
Receive operation directly by native Transport. Providers shall avoid resource allocation as
part of dat_srq_post_recv() to ensure that this operation is nonblocking.

The completion of the Receive posted to the SRQ is equivalent to what happened to the
Receive posted to the Endpoint for the Endpoint that dequeued the Receive buffer from the
Shared Receive queue.

The posted Recv DTO will complete with signal, equivalently to the completion of Recv
posted directly to the Endpoint that dequeued the Recv buffer from SRQ with
DAT_COMPLETION_UNSIGNALLED_FLAG value not set for it.

The posted Recv DTOs will complete in the order of Send postings to the other endpoint of
each connection whose local EP uses SRQ. There is no ordering among different connections
regardless if they share SRQ and recv_evd or not.

If the reported status of the Completion DTO event corresponding to the posted RDMA Read
DTO is not DAT_DTO_SUCCESS, the content of the local_iov is not defined and the
transfered_length in the DTO Completion event is not defined.

The operation is valid for all states of the Shared Receive Queue.

The dat_srq_post_recv() function is asynchronous, nonblocking, and its thread safety is
Provider-dependent.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The srq_handle argument is an invalid DAT handle.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations.

DAT_INVALID_PARAMETER Invalid parameter. For example, one of the IOV segments
pointed to a memory outside its LMR.

DAT_PROTECTION_VIOLATION Protection violation for local or remote memory access.

Protection Zone mismatch between an LMR of one of the
local_iov segments and the SRQ.

DAT_PRIVILEGES_VIOLATION Privileges violation for local or remote memory access.
One of the LMRs used in local_iov was either invalid or
did not have the local write privileges.

Return Values

dat_srq_post_recv(3DAT)

Extended Library Functions, Volume 1 241

For the best Recv operation performance, the Consumer should align each buffer segment of
local_iov to the Optimal Buffer Alignment attribute of the Provider. For portable applications,
the Consumer should align each buffer segment of local_iov to the DAT_OPTIMAL_ALIGNMENT.

Since any of the Endpoints that use the SRQ can dequeue the posted buffer from SRQ,
Consumers should post a buffer large enough to handle incoming message on any of these
Endpoint connections.

The buffer posted to SRQ does not have a DTO completion flag value. Posting Recv buffer to
SRQ is semantically equivalent to posting to EP with DAT_COMPLETION_UNSIGNALLED_FLAG is
not set. The configuration of the Recv Completion flag of an Endpoint that dequeues the
posted buffer defines how DTO completion is generated. If the Endpoint Recv Completion
flag is DAT_COMPLETION_SOLICITED_WAIT_FLAG then matching Send DTO completion flag
value for Solicited Wait determines if the completion will be Signalled or not. If the Endpoint
Recv Completion flag is not DAT_COMPLETION_SOLICITED_WAIT_FLAG, the posted Recv
completion will be generated with Signal. If the Endpoint Recv Completion flag is
DAT_COMPLETION_EVD_THRESHOLD_FLAG, the posted Recv completion will be generated with
Signal and dat_evd_wait threshold value controls if the waiter will be unblocked or not.

Only the Endpoint that is in Connected or Disconnect Pending states can dequeue buffers
from SRQ. When an Endpoint is transitioned into Disconnected state, all the buffers that it
dequeued from SRQ are queued on the Endpoint recv_evd. All the buffers that the Endpoint
has not completed by the time of transition into Disconnected state and that have not
completed message reception will be flushed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.2

dat_srq_create(3DAT), dat_srq_free(3DAT), dat_srq_query(3DAT),
dat_srq_resize(3DAT), dat_srq_set_lw(3DAT), libdat(3LIB), attributes(5)

Usage

Attributes

See Also

dat_srq_post_recv(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004242

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_srq_query – provide parameters of the shared receive queue

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_srq_query (

IN DAT_SRQ_HANDLE srq_handle,

IN DAT_SRQ_PARAM_MASK srq_param_mask,

OUT DAT_SRQ_PARAM *srq_param

)

srq_handle A handle for an instance of the SRQ.

srq_param_mask The mask for SRQ parameters.

srq_param A pointer to a Consumer-allocated structure that the Provider fills with
SRQ parameters.

The dat_srq_query() function provides to the Consumer SRQ parameters. The Consumer
passes a pointer to the Consumer-allocated structures for SRQ parameters that the Provider
fills.

The srq_param_mask argument allows Consumers to specify which parameters to query. The
Provider returns values for the requested srq_param_mask parameters. The Provider can
return values for any other parameters.

In addition to the elements in SRQ attribute, dat_srq_query() provides additional
information in the srq_param structure if Consumer requests it with srq_param_mask
settings. The two that are related to entry counts on SRQ are the number of Receive buffers
(available_dto_count) available for EPs to dequeue and the number of occupied SRQ entries
(outstanding_dto_count) not available for new Recv buffer postings.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER The srq_param_mask argument is invalid.

DAT_INVALID_HANDLE The srq_handle argument is an invalid DAT handle.

The Provider might not be able to provide the number of outstanding Recv of SRQ or
available Recvs of SRQ. The Provider attribute indicates if the Provider does not support the
query for one or these values. Even when the Provider supports the query for one or both of
these values, it might not be able to provide this value at this moment. In either case, the return
value for the attribute that cannot be provided will be DAT_VALUE_UNKNOWN.

Example: Consumer created SRQ with 10 entries and associated 1 EP with it. 3 Recv buffers
have been posted to it. The query will report:

Name

Synopsis

Parameters

Description

Return Values

Usage

dat_srq_query(3DAT)

Extended Library Functions, Volume 1 243

max_recv_dtos=10,

available_dto_count=3,

outstanding_dto_count=3.

After a Send message arrival the query will report:

max_recv_dtos=10,

available_dto_count=2,

outstanding_dto_count=3.

After Consumer dequeues Recv completion the query will report:

max_recv_dtos=10,

available_dto_count=2,

outstanding_dto_count=2.

In general, each EP associated with SRQ can have multiple buffers in progress of receiving
messages as well completed Recv on EVDs. The watermark setting helps to control how many
Recv buffers posted to SRQ an Endpoint can own.

If the Provider cannot support the query for the number of outstanding Recv of SRQ or
available Recvs of SRQ, the value return for that attribute should be DAT_VALUE_UNKNOWN.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.2

dat_srq_create(3DAT), dat_srq_free(3DAT), dat_srq_post_recv(3DAT),
dat_srq_resize(3DAT), dat_srq_set_lw(3DAT), libdat(3LIB), attributes(5)

Attributes

See Also

dat_srq_query(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004244

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_srq_resize – modify the size of the shared receive queue

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_srq_resize (

IN DAT_SRQ_HANDLE srq_handle,

IN DAT_COUNT srq_max_recv_dto

)

srq_handle A handle for an instance of the SRQ.

srq_max_recv_dto The new maximum number of Recv DTOs that Shared Receive Queue
must hold.

The dat_srq_resize() function modifies the size of the queue of SRQ.

Resizing of Shared Receive Queue should not cause any incoming messages on any of the EPs
that use the SRQ to be lost. If the number of outstanding Recv buffers on the SRQ is larger then
the requested srq_max_recv_dto, the operation returns DAT_INVALID_STATE and do not
change SRQ. This includes not just the buffers on the SRQ but all outstanding Receive buffers
that had been posted to the SRQ and whose completions have not reaped yet. Thus, the
outstanding buffers include the buffers on SRQ, the buffers posted to SRQ at are at SRQ
associated EPs, and the buffers posted to SRQ for which completions have been generated but
not yet reaped by Consumer from recv_evds of the EPs that use the SRQ.

If the requested srq_max_recv_dto is below the SRQ low watermark, the operation returns
DAT_INVALID_STATE and does not change SRQ.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The srq_handle argument is an invalid DAT handle.

DAT_INVALID_PARAMETER The srq_max_recv_dto argument is invalid.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource limitations.

DAT_INVALID_STATE Invalid state. Either the number of entries on the SRQ
exceeds the requested SRQ queue length or the requested
SRQ queue length is smaller than the SRQ low
watermark.

The dat_srq_resize() function is required not to lose any buffers. Thus, it cannot shrink
below the outstanding number of Recv buffers on SRQ. There is no requirement to shrink the
SRQ to return DAT_SUCCESS.

The quality of the implementation determines how closely to the Consumer-requested value
the Provider shrinks the SRQ. For example, the Provider can shrink the SRQ to the
Consumer-requested value and if the requested value is smaller than the outstanding buffers

Name

Synopsis

Parameters

Description

Return Values

Usage

dat_srq_resize(3DAT)

Extended Library Functions, Volume 1 245

on SRQ, return DAT_INVALID_STATE; or the Provider can shrink to some value larger than that
requested by the Consumer but below current SRQ size; or the Provider does not change the
SRQ size and still returns DAT_SUCCESS.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.2

dat_srq_create(3DAT), dat_srq_free(3DAT), dat_srq_post_recv(3DAT),
dat_srq_query(3DAT), dat_srq_set_lw(3DAT), libdat(3LIB), attributes(5)

Attributes

See Also

dat_srq_resize(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004246

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_srq_set_lw – set low watermark on shared receive queue

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_srq_set_lw (

IN DAT_SRQ_HANDLE srq_handle,

IN DAT_COUNT low_watermark

)

srq_handle A handle for an instance of a Shared Receive Queue.

low_watermark The low watermark for the number of Recv buffers on SRQ.

The dat_srq_set_lw() function sets the low watermark value for the SRQ and arms the SRQ
for generating an asynchronous event for the low watermark. An asynchronous event will be
generated when the number of buffers on the SRQ is below the low watermark for the first
time. This can occur during the current call or when an associated EP takes a buffer from the
SRQ.

The asynchronous event will be generated only once per setting of the low watermark. Once
an event is generated, no new asynchronous events for the number of buffers inthe SRQ below
the specified value will be generated until the SRQ is again set for the Low Watermark. If the
Consumer is again interested in the event, the Consumer should set the low watermark again.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The srq_handle argument is an invalid DAT handle.

DAT_INVALID_PARAMETER Invalid parameter; the value of low_watermark is exceeds the
value of max_recv_dtos.

DAT_MODEL_NOT_SUPPORTED The requested Model was not supported by the Provider. The
Provider does not support SRQ Low Watermark.

Upon receiving the asynchronous event for the SRQ low watermark, the Consumer can
replenish Recv buffers on the SRQ or take any other action that is appropriate.

Regardless of whether an asynchronous event for the low watermark has been generated, this
operation will set the generation of an asynchronous event with the Consumer-provided low
watermark value. If the new low watermark value is below the current number of free Receive
DTOs posted to the SRQ, an asynchronous event will be generated immediately. Otherwise
the old low watermark value is simply replaced with the new one.

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Parameters

Description

Return Values

Usage

Attributes

dat_srq_set_lw(3DAT)

Extended Library Functions, Volume 1 247

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard uDAPL, 1.2

dat_srq_create(3DAT), dat_srq_free(3DAT), dat_srq_post_recv(3DAT),
dat_srq_query(3DAT), dat_srq_resize(3DAT), libdat(3LIB), attributes(5)

See Also

dat_srq_set_lw(3DAT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jul 2004248

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dat_strerror – convert a DAT return code into human readable strings

cc [flag...] file... -ldat [library...]

#include <dat/udat.h>

DAT_RETURN

dat_strerror(

IN DAT_RETURN return,

OUT const char **major_message,

OUT const char **minor_message

)

return DAT function return value.

message A pointer to a character string for the return.

The dat_strerror() function converts a DAT return code into human readable strings. The
major_message is a string-converted DAT_TYPE_STATUS, while minor_message is a
string-converted DAT_SUBTYPE_STATUS. If the return of this function is not DAT_SUCCESS, the
values of major_message and minor_message are not defined.

If an undefined DAT_RETURN value was passed as the return parameter, the operation fails with
DAT_INVALID_PARAMETER returned. The operation succeeds when DAT_SUCCESS is passed in as
the return parameter.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER Invalid parameter. The return value is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard uDAPL, 1.1, 1.2

libdat(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

dat_strerror(3DAT)

Extended Library Functions, Volume 1 249

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdat-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

demangle, cplus_demangle – decode a C++ encoded symbol name

cc [flag ...] file[library ...] -ldemangle

#include <demangle.h>

int cplus_demangle(const char *symbol, char *prototype, size_t size);

The cplus_demangle() function decodes (demangles) a C++ linker symbol name (mangled
name) into a (partial) C++ prototype, if possible. C++ mangled names may not have enough
information to form a complete prototype.

The symbol string argument points to the input mangled name.

The prototype argument points to a user-specified output string buffer, of size bytes.

The cplus_demangle() function operates on mangled names generated by SPARCompilers
C++ 3.0.1, 4.0.1, 4.1 and 4.2.

The cplus_demangle() function improves and replaces the demangle() function.

Refer to the CC.1, dem.1, and c++filt.1 manual pages in the /opt/SUNWspro/man/man1
directory. These pages are only available with the SPROcc package.

The cplus_demangle() function returns the following values:

0 The symbol argument is a valid mangled name and prototype contains a
(partial) prototype for the symbol.

DEMANGLE_ENAME The symbol argument is not a valid mangled name and the content of
prototype is a copy of the symbol.

DEMANGLE_ESPACE The prototype output buffer is too small to contain the prototype (or
the symbol), and the content of prototype is undefined.

Name

Synopsis

Description

Return Values

demangle(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 11 Mar 1997250

devid_get, devid_compare, devid_deviceid_to_nmlist, devid_free, devid_free_nmlist,
devid_get_minor_name, devid_sizeof, devid_str_decode, devid_str_free, devid_str_encode,
devid_valid – device ID interfaces for user applications

cc [flag...] file... -ldevid [library...]

#include <devid.h>

int devid_get(int fd, ddi_devid_t *retdevid);

void devid_free(ddi_devid_t devid);

int devid_get_minor_name(int fd, char **retminor_name);

int devid_deviceid_to_nmlist(char *search_path, ddi_devid_t devid,
char *minor_name, devid_nmlist_t **retlist);

void devid_free_nmlist(devid_nmlist_t *list);

int devid_compare(ddi_devid_t devid1, ddi_devid_t devid2);

size_t devid_sizeof(ddi_devid_t devid);

int devid_valid(ddi_devid_t devid);

char *devid_str_encode(ddi_devid_t devid, char *minor_name);

int devid_str_decode(char *devidstr, ddi_devid_t *retdevid,
char **retminor_name);

void devid_str_free(char *str);

These functions provide unique identifiers (device IDs) for devices. Applications and device
drivers use these functions to identify and locate devices, independent of the device's physical
connection or its logical device name or number.

The devid_get() function returns in retdevid the device ID for the device associated with the
open file descriptor fd, which refers to any device. It returns an error if the device does not
have an associated device ID. The caller must free the memory allocated for retdevid using the
devid_free() function.

The devid_free() function frees the space that was allocated for the returned devid by
devid_get() and devid_str_decode().

The devid_get_minor_name() function returns the minor name, in retminor_name, for the
device associated with the open file descriptor fd. This name is specific to the particular minor
number, but is “instance number” specific. The caller of this function must free the memory
allocated for the returned retminor_name string using devid_str_free().

The devid_deviceid_to_nmlist() function returns an array of devid_nmlist structures,
where each entry matches the devid and minor_name passed in. If the minor_name specified is
one of the special values (DEVID_MINOR_NAME_ALL, DEVID_MINOR_NAME_ALL_CHR, or
DEVID_MINOR_NAME_ALL_BLK) , then all minor names associated with devid which also meet

Name

Synopsis

Description

devid_get(3DEVID)

Extended Library Functions, Volume 1 251

the special minor_name filtering requirements are returned. The devid_nmlist structure
contains the device name and device number. The last entry of the array contains a null
pointer for the devname and NODEV for the device number. This function traverses the file tree,
starting at search_path. For each device with a matching device ID and minor name tuple, a
device name and device number are added to the retlist. If no matches are found, an error is
returned. The caller of this function must free the memory allocated for the returned array
with the devid_free_nmlist() function. This function may take a long time to complete if
called with the device ID of an unattached device.

The devid_free_nmlist() function frees the memory allocated by the
devid_deviceid_to_nmlist() function.

The devid_compare() function compares two device IDs and determines both equality and
sort order. The function returns an integer greater than 0 if the device ID pointed to by devid1
is greater than the device ID pointed to by devid2. It returns 0 if the device ID pointed to by
devid1 is equal to the device ID pointed to by devid2. It returns an integer less than 0 if the
device ID pointed to by devid1 is less than the device ID pointed to by devid2. This function is
the only valid mechanism to determine the equality of two devids. This function may indicate
equality for arguments which by simple inspection appear different.

The devid_sizeof() function returns the size of devid in bytes.

The devid_valid() function validates the format of a devid. It returns 1 if the format is valid,
and 0 if invalid. This check may not be as complete as the corresponding kernel function
ddi_devid_valid() (see ddi_devid_compare(9F)).

The devid_str_encode() function encodes a devid and minor_name into a null-terminated
ASCII string, returning a pointer to that string. To avoid shell conflicts, the devid portion of
the string is limited to uppercase and lowercase letters, digits, and the plus (+), minus (-),
period (.), equals (=), underscore (_), tilde (~), and comma (,) characters. If there is an ASCII
quote character in the binary form of a devid, the string representation will be in hex_id form,
not ascii_id form. The comma (,) character is added for "id1," at the head of the string devid.
If both a devid and a minor_name are non-null, a slash (/)is used to separate the devid from the
minor_name in the encoded string. If minor_name is null, only the devid is encoded. If the
devid is null then the special string "id0" is returned. Note that you cannot compare the
returned string against another string with strcmp(3C) to determine devid equality. The
string returned must be freed by calling devid_str_free().

The devid_str_decode() function takes a string previously produced by the
devid_str_encode() or ddi_devid_str_encode() (see ddi_devid_compare(9F)) function
and decodes the contained device ID and minor name, allocating and returning pointers to
the extracted parts via the retdevid and retminor_name arguments. If the special devidstr "id0"
was specified, the returned device ID and minor name will both be null. A non-null returned
devid must be freed by the caller by the devid_free() function. A non-null returned minor
name must be freed by calling devid_str_free().

devid_get(3DEVID)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 30 Nov 2001252

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-devid-compare-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Astrcmp-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-devid-compare-9f

The devid_str_free() function frees the character string returned by devid_str_encode()
and the retminor_name argument returned by devid_str_decode().

Upon successful completion, the devid_get(), devid_get_minor_name(),
devid_str_decode(), and devid_deviceid_to_nmlist() functions return 0. Otherwise,
they return −1.

The devid_compare() function returns the following values:

−1 The device ID pointed to by devid1 is less than the device ID pointed to by devid2.

0 The device ID pointed to by devid1 is equal to the device ID pointed to by devid2.

1 The device ID pointed to by devid1 is greater than the device ID pointed to by devid2.

The devid_sizeof() function returns the size of devid in bytes. If devid is null, the number of
bytes that must be allocated and initialized to determine the size of a complete device ID is
returned.

The devid_valid() function returns 1 if the devid is valid and 0 if the devid is invalid.

The devid_str_encode() function returns NULL to indicate failure. Failure may be caused by
attempting to encode an invalid string. If the return value is non-null, the caller must free the
returned string by using the devid_str_free() function.

EXAMPLE 1 Using devid_get(), devid_get_minor_name(), and devid_str_encode()

The following example shows the proper use of devid_get(), devid_get_minor_name(), and
devid_str_encode() to free the space allocated for devid, minor_name and encoded devid.

int fd;

ddi_devid_t devid;

char *minor_name, *devidstr;

if ((fd = open("/dev/dsk/c0t3d0s0", O_RDONLY|O_NDELAY)) < 0) {

...

}

if (devid_get(fd, &devid) != 0) {

...

}

if (devid_get_minor_name(fd, &minor_name) != 0) {

...

}

if ((devidstr = devid_str_encode(devid, minor_name)) == 0) {

...

}

printf("devid %s\n", devidstr);

devid_str_free(devidstr);

devid_free(devid);

devid_str_free(minor_name);

Return Values

Examples

devid_get(3DEVID)

Extended Library Functions, Volume 1 253

EXAMPLE 2 Using devid_deviceid_to_nmlist() and devid_free_nmlist()

The following example shows the proper use of devid_deviceid_to_nmlist() and
devid_free_nmlist():

devid_nmlist_t *list = NULL;

int err;

if (devid_deviceid_to_nmlist("/dev/rdsk", devid,

minor_name, &list))

return (-1);

/* loop through list and process device names and numbers */

devid_free_nmlist(list);

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT−Safe

Interface Stability Committed

free(3C), libdevid(3LIB), attributes(5), ddi_devid_compare(9F)

Attributes

See Also

devid_get(3DEVID)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 30 Nov 2001254

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afree-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevid-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-devid-compare-9f

di_binding_name, di_bus_addr, di_compatible_names, di_devid, di_driver_name,
di_driver_ops, di_driver_major, di_instance, di_nodeid, di_node_name – return libdevinfo
node information

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

char *di_binding_name(di_node_t node);

char *di_bus_addr(di_node_t node);

int di_compatible_names(di_node_t node, char **names);

ddi_devid_t di_devid(di_node_t node);

char *di_driver_name(di_node_t node);

uint_t di_driver_ops(di_node_t node);

int di_driver_major(di_node_t node);

int di_instance(di_node_t node);

int di_nodeid(di_node_t node);

char *di_node_name(di_node_t node);

names The address of a pointer.

node A handle to a device node.

These functions extract information associated with a device node.

The di_binding_name() function returns a pointer to the binding name. The binding name is
the name used by the system to select a driver for the device.

The di_bus_addr() function returns a pointer to a null-terminated string containing the
assigned bus address for the device. NULL is returned if a bus address has not been assigned to
the device. A zero-length string may be returned and is considered a valid bus address.

The return value of di_compatible_names() is the number of compatible names. names is
updated to point to a buffer contained within the snapshot. The buffer contains a
concatenation of null-terminated strings, for example:

<name1>/0<name2>/0...<namen>/0

See the discussion of generic names in Writing Device Drivers for a description of how
compatible names are used by Solaris to achieve driver binding for the node.

The di_devid() function returns the device ID for node, if it is registered. Otherwise, a null
pointer is returned. Interfaces in the libdevid(3LIB) library may be used to manipulate the
handle to the device id. This function is obsolete and might be removed from a future Solaris
release. Applications should use the “devid” property instead.

Name

Synopsis

Parameters

Description

Return Values

di_binding_name(3DEVINFO)

Extended Library Functions, Volume 1 255

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=DRIVER
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevid-3lib

The di_driver_name() function returns the name of the driver bound to the node. A null
pointer is returned if node is not bound to any driver.

The di_driver_ops() function returns a bit array of device driver entry points that are
supported by the driver bound to this node. Possible bit fields supported by the driver are
DI_CB_OPS, DI_BUS_OPS, DI_STREAM_OPS.

The di_driver_major() function returns the major number associated with the driver bound
to node. If there is no driver bound to the node, this function returns −1.

The di_instance() function returns the instance number of the device. A value of -1
indicates an instance number has not been assigned to the device by the system.

The di_nodeid() function returns the type of device, which may be one of the following
possible values: DI_PSEUDO_NODEID, DI_PROM_NODEID, and DI_SID_NODEID. Devices of type
DI_PROM_NODEID may have additional properties that are defined by the PROM. See
di_prom_prop_data(3DEVINFO) and di_prom_prop_lookup_bytes(3DEVINFO).

The di_node_name() function returns a pointer to a null-terminated string containing the
node name.

See di_init(3DEVINFO) for an example demonstrating typical use of these functions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed (di_devid() is obsolete)

MT-Level Safe

di_init(3DEVINFO), di_prom_init(3DEVINFO), di_prom_prop_data(3DEVINFO),
di_prom_prop_lookup_bytes(3DEVINFO), libdevid(3LIB), libdevinfo(3LIB),
attributes(5)

Writing Device Drivers

Examples

Attributes

See Also

di_binding_name(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 22 Mar 2004256

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevid-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=DRIVER

di_child_node, di_parent_node, di_sibling_node, di_drv_first_node, di_drv_next_node –
libdevinfo node traversal functions

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

di_node_t di_child_node(di_node_t node);

di_node_t di_parent_node(di_node_t node);

di_node_t di_sibling_node(di_node_t node);

di_node_t di_drv_first_node(const char *drv_name, di_node_t root);

di_node_t di_drv_next_node(di_node_t node);

drv_name The name of the driver of interest.

node A handle to any node in the snapshot.

root The handle of the root node for the snapshot returned by
di_init(3DEVINFO).

The kernel device configuration data may be viewed in two ways, either as a tree of device
configuration nodes or as a list of nodes associated with each driver. In the tree view, each
node may contain references to its parent, the next sibling in a list of siblings, and the first
child of a list of children. In the per-driver view, each node contains a reference to the next
node associated with the same driver. Both views are captured in the snapshot, and the
interfaces are provided for node access.

The di_child_node() function obtains a handle to the first child of node. If no child node
exists in the snapshot, DI_NODE_NIL is returned and errno is set to ENXIO or ENOTSUP.

The di_parent_node() function obtains a handle to the parent node of node. If no parent
node exists in the snapshot, DI_NODE_NIL is returned and errno is set to ENXIO or ENOTSUP.

The di_sibling_node() function obtains a handle to the next sibling node of node. If no next
sibling node exists in the snapshot, DI_NODE_NIL is returned and errno is set to ENXIO or
ENOTSUP.

The di_drv_first_node() function obtains a handle to the first node associated with the
driver specified by drv_name. If there is no such driver, DI_NODE_NIL is returned with errno is
set to EINVAL. If the driver exists but there is no node associated with this driver, DI_NODE_NIL
is returned and errno is set to ENXIO or ENOTSUP.

The di_drv_next_node() function returns a handle to the next node bound to the same
driver. If no more nodes exist, DI_NODE_NIL is returned.

Name

Synopsis

Parameters

Description

di_child_node(3DEVINFO)

Extended Library Functions, Volume 1 257

Upon successful completion, a handle is returned. Otherwise, DI_NODE_NIL is returned and
errno is set to indicate the error.

These functions will fail if:

EINVAL The argument is invalid.

ENXIO The requested node does not exist.

ENOTSUP The node was not found in the snapshot, but it may exist in the kernel. This error
may occur if the snapshot contains a partial device tree.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

di_init(3DEVINFO), libdevinfo(3LIB), attributes(5)

Writing Device Drivers

Return Values

Errors

Attributes

See Also

di_child_node(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 1 Dec 1998258

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=DRIVER

di_devfs_path, di_devfs_minor_path, di_path_devfs_path, di_path_client_devfs_path,
di_devfs_path_free – generate and free path names

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

char *di_devfs_path(di_node_t node);

char *di_devfs_minor_path(di_minor_t minor);

char *di_path_devfs_path(di_path_t path);

char *di_path_client_devfs_path(di_path_t path);

void di_devfs_path_free(char *path_buf);

node The handle to a device node in a di_init(3DEVINFO) snapshot.

minor The handle to a device minor node in a snapshot.

path The handle to a device path node in a snapshot.

path_buf A pointer returned by di_devfs_path(), di_devfs_minor_path(),
di_path_devfs_path(), or di_path_client_devfs_path().

The di_devfs_path() function generates the physical path of the device node specified by
node.

The di_devfs_minor_path() function generates the physical path of the device minor node
specified by minor.

The di_path_devfs_path() function generates the pHCI physical path to the device
associated with the specified path node. The returned string is identical to the
di_devfs_path() for the device had the device not been supported by multipath.

The di_path_client_devfs_path() function generates the vHCI physical path of the
multipath client device node associated with the device identity of the specified path node.
The returned string is identical to the di_devfs_path() of the multipath client device node.

The di_devfs_path_free() function frees memory that was allocated to store the path
returned by di_devfs_path(), di_devfs_minor_path(), di_path_devfs_path(), and
di_path_client_devfs_path(). The caller is responsible for freeing this memory by calling
di_devfs_path_free().

Upon successful completion, the di_devfs_path(), di_devfs_minor_path(),
di_path_devfs_path(), and di_path_client_devfs_path() functions return a pointer to
the string containing the path to a device node, a device minor node, or a device path node,
respectively. Otherwise, they return NULL and errno is set to indicate the error. For a
non-NULL return, the path will not have a “/devices” prefix.

Name

Synopsis

Parameters

Description

Return Values

di_devfs_path(3DEVINFO)

Extended Library Functions, Volume 1 259

The di_devfs_path(), di_devfs_minor_path(), di_path_devfs_path(), and
di_path_client_devfs_path() functions will fail if:

EINVAL The node, minor, or path argument is not a valid handle.

The di_devfs_path(), di_devfs_minor_path(), di_path_devfs_path(), and
di_path_client_devfs_path() functions can also return any error value returned by
malloc(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

di_init(3DEVINFO), libdevinfo(3LIB), malloc(3C), attributes(5)

Writing Device Drivers

Errors

Attributes

See Also

di_devfs_path(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 15 May 2008260

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=DRIVER

di_devlink_dup, di_devlink_free – copy and free a devlink object

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

di_devlink_t di_devlink_dup(di_devlink_t devlink);

int di_devlink_free(di_devlink_t devlink);

devlink An opaque handle to a devlink.

Typically, a di_devlink_t object is only accessible from within the scope of the
di_devlink_walk(3DEVINFO) callback function. The di_devlink_dup() function allows
the callback function implementation to make a duplicate copy of the di_devlink_t object.
The duplicate copy is valid and accessible until di_devlink_free() is called.

The di_devlink_dup() function returns a copy of a devlink object. The di_devlink_free()
function frees this copy.

Upon successful completion, di_devlink_dup() returns a copy of the devlink object passed
in. Otherwise, NULL is returned and errno is set to indicate the error.

Upon successful completion, di_devlink_free() returns 0. Otherwise, -1 is returned and
errno is set to indicate the error.

The di_devlink_dup() and di_devlink_free() functions will fail if:

EINVAL The devlink argument is not a valid handle.

The di_devlink_dup() function can set errno to any error value that can also be set by
malloc(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

di_devlink_init(3DEVINFO), di_devlink_path(3DEVINFO),
di_devlink_walk(3DEVINFO), libdevinfo(3LIB), malloc(3C), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

di_devlink_dup(3DEVINFO)

Extended Library Functions, Volume 1 261

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

di_devlink_init, di_devlink_fini – create and destroy a snapshot of devlinks

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

di_devlink_handle_t di_devlink_init(const char *name,
uint_t flags);

int di_devlink_fini(di_devlink_handle_t *hdlp);

flags The following values are supported:

DI_MAKE_LINK Synchronize with devlink management before taking the
snapshot. The name argument determines which devlink
management activities must complete before taking a devlink
snapshot. Appropriate privileges are required to use this flag.

name If flags is DI_MAKE_LINK, name determines which devlink management activity must
complete prior to snapshot.
■ If name is NULL then all devlink management activities must complete. The

devlink snapshot returned accurately reflects the entire kernel device tree.
■ If name is a driver name, devlink management activities associated with nodes

bound to that driver must complete.
■ If name is a path to a node in the kernel device tree (no “/devices” prefix),

devlink management activities below node must complete.
■ If name is a path to a minor node in the kernel device tree (no “/devices”prefix),

devlink management activities on that minor node must complete.

hdlp The handle to the snapshot obtained by calling di_devlink_init().

System management applications often need to map a “/devices” path to a minor node to a
public “/dev” device name. The di_devlink_*() functions provide an efficient way to
accomplish this.

The di_devlink_init() function takes a snapshot of devlinks and returns a handle to this
snapshot.

The di_devlink_fini() function destroys the devlink snapshot and frees the associated
memory.

Upon successful completion, di_devlink_init() returns a handle to a devlink snapshot.
Otherwise, DI_LINK_NIL is returned and errno is set to indicate the error.

Upon successful completion, di_devlink_fini() returns 0. Otherwise, -1 is returned and
errno is set to indicate the error.

Name

Synopsis

Parameters

Description

Return Values

di_devlink_init(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 21 Jul 2008262

The di_devlink_init() function will fail if:

EINVAL One or more arguments is invalid.

The di_devlink_init() function with DI_MAKE_LINK can also fail if:

EPERM The user does no have appropriate privileges.

The di_devlink_init() function can set errno to any error value that can also be set by
malloc(3C), open(2), ioctl(2), or mmap(2).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

ioctl(2), mmap(2), open(2), di_devlink_path(3DEVINFO), di_devlink_walk(3DEVINFO),
libdevinfo(3LIB), malloc(3C), attributes(5)

Errors

Attributes

See Also

di_devlink_init(3DEVINFO)

Extended Library Functions, Volume 1 263

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

di_devlink_path, di_devlink_content, di_devlink_type – get devlink attributes

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

const char *di_devlink_path(di_devlink_t devlink);

const char *di_devlink_content(di_devlink_t devlink);

int di_devlink_type(di_devlink_t devlink);

devlink An opaque handle to a devlink.

These functions return various attributes of a devlink.

The di_devlink_path() function returns the absolute path of a devlink. On error, NULL is
returned and errno is set to indicate the error.

The di_devlink_content() function returns the content of the symbolic link represented by
devlink. On error, NULL is returned and errno is set to indicate the error.

The di_devlink_type() function returns the devlink type, either DI_PRIMARY_LINK or
DI_SECONDARY_LINK. On error, -1 is returned and errno is set to indicate the error.

These functions will fail if:

EINVAL The devlink argument is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

di_devlink_init(3DEVINFO), di_devlink_walk(3DEVINFO), libdevinfo(3LIB),
malloc(3C), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

di_devlink_path(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 15 May 2008264

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

di_devlink_walk – walk through links in a devlink snapshot

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

int di_devlink_walk(di_devlink_handle_t hdl, const char *re,
const char *mpath, uint_t flags, void *arg,
int (*devlink_callback)(di_devlink_t devlink, void *arg));

hdl A handle to a snapshot of devlinks in “/dev”.

re An extended regular expression as specified in regex(5) describing the paths of
devlinks to visit. A null value matches all devlinks. The expression should not
involve the “/dev” prefix. For example, the “^dsk/” will invoke devlink_callback()
for all “/dev/dsk/” links.

mpath A path to a minor node below “/devices” for which “/dev” links are to be looked
up. A null value selects all devlinks. This path should not have a “/devices” prefix.

flags Specify the type of devlinks to be selected. If DI_PRIMARY_LINK is used, only
primary links (for instance, links which point only to “/devices” entries) are
selected. If DI_SECONDARY_LINK is specified, only secondary links (for instance,
devlinks which point to other devlinks) are selected. If neither flag is specified, all
devlinks are selected.

arg A pointer to caller private data.

devlink The devlink being visited.

The di_devlink_walk() function visits every link in the snapshot that meets the criteria
specified by the caller. For each such devlink, the caller-supplied function devlink_callback() is
invoked. The return value of devlink_callback() determines subsequent walk behavior.

Upon success, the di_devlink_walk() function returns 0. Otherwise, -1 is returned and
errno is set to indicate the error.

The devlink_callback() function can return the following values:

DI_WALK_CONTINUE Continue walking.

DI_WALK_TERMINATE Terminate the walk immediately.

The devlink_callback() function will fail if:

EINVAL One or more arguments is invalid.

ENOMEM Insufficient memory is available.

Name

Synopsis

Parameters

Description

Return Values

Errors

di_devlink_walk(3DEVINFO)

Extended Library Functions, Volume 1 265

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5regex-5

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

di_devlink_init(3DEVINFO), di_devlink_path(3DEVINFO), libdevinfo(3LIB),
malloc(3C), attributes(5), regex(5)

Attributes

See Also

di_devlink_walk(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 15 May 2008266

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5regex-5

di_init, di_fini – create and destroy a snapshot of kernel device tree

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

di_node_t di_init(const char *phys_path, uint_t flags);

void di_fini(di_node_t root);

flags Snapshot content specification. The possible values can be a bitwise OR of at
least one of the following:

DINFOSUBTREE Include subtree.

DINFOPROP Include properties.

DINFOMINOR Include minor node data.

DINFOCPYALL Include all of the above.

DINFOPATH Include multipath path node data.

DINFOLYR Include device layering data.

DINFOCPYONE Include only a single node without properties, minor nodes,
or path nodes.

phys_path Physical path of the root device node of the snapshot. See
di_devfs_path(3DEVINFO).

root Handle obtained by calling di_init().

The di_init() function creates a snapshot of the kernel device tree and returns a handle of
the root device node. The caller specifies the contents of the snapshot by providing flag and
phys_path.

The di_fini() function destroys the snapshot of the kernel device tree and frees the
associated memory. All handles associated with this snapshot become invalid after the call to
di_fini().

Upon success, di_init() returns a handle. Otherwise, DI_NODE_NIL is returned and errno is
set to indicate the error.

The di_init() function can set errno to any error code that can also be set by open(2),
ioctl(2) or mmap(2). The most common error codes include:

EACCES Insufficient privilege for accessing device configuration data.

ENXIO Either the device named by phys_path is not present in the system, or the
devinfo(7D) driver is not installed properly.

EINVAL Either phys_path is incorrectly formed or the flags argument is invalid.

Name

Synopsis

Parameters

Description

Return Values

Errors

di_init(3DEVINFO)

Extended Library Functions, Volume 1 267

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7devinfo-7d

EXAMPLE 1 Using the libdevinfo Interfaces To Print All Device Tree Node Names

The following is an example using the libdevinfo interfaces to print all device tree device
node names:

/*

* Code to print all device tree device node names

*/

#include <stdio.h>

#include <libdevinfo.h>

int

prt_nodename(di_node_t node, void *arg)

{

printf("%s\n", di_node_name(node));

return (DI_WALK_CONTINUE);

}

main()

{

di_node_t root_node;

if((root_node = di_init("/", DINFOSUBTREE)) == DI_NODE_NIL) {

fprintf(stderr, "di_init() failed\n");
exit(1);

}

di_walk_node(root_node, DI_WALK_CLDFIRST, NULL, prt_nodename);

di_fini(root_node);

}

EXAMPLE 2 Using the libdevinfo Interfaces To Print The Physical Path Of SCSI Disks

The following example uses the libdevinfo interfaces to print the physical path of SCSI disks:

/*

* Code to print physical path of scsi disks

*/

#include <stdio.h>

#include <libdevinfo.h>

#define DISK_DRIVER "sd" /* driver name */

void

prt_diskinfo(di_node_t node)

{

int instance;

char *phys_path;

/*

Examples

di_init(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 15 May 2008268

EXAMPLE 2 Using the libdevinfo Interfaces To Print The Physical Path Of SCSI Disks (Continued)

* If the device node exports no minor nodes,

* there is no physical disk.

*/

if (di_minor_next(node, DI_MINOR_NIL) == DI_MINOR_NIL) {

return;

}

instance = di_instance(node);

phys_path = di_devfs_path(node);

printf("%s%d: %s\n", DISK_DRIVER, instance, phys_path);

di_devfs_path_free(phys_path);

}

void

walk_disknodes(di_node_t node)

{

node = di_drv_first_node(DISK_DRIVER, node);

while (node != DI_NODE_NIL) {

prt_diskinfo(node);

node = di_drv_next_node(node);

}

}

main()

{

di_node_t root_node;

if ((root_node = di_init("/", DINFOCPYALL)) == DI_NODE_NIL) {

fprintf(stderr, "di_init() failed\n");
exit(1);

}

walk_disknodes(root_node);

di_fini(root_node);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

open(2), ioctl(2), mmap(2), libdevinfo(3LIB), attributes(5)

Writing Device Drivers

Attributes

See Also

di_init(3DEVINFO)

Extended Library Functions, Volume 1 269

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=DRIVER

di_link_next_by_node, di_link_next_by_lnode – libdevinfo link traversal functions

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

di_link_t di_link_next_by_node(di_lnode_t node, di_link_t link,
uint_t endpoint);

di_link_t di_link_next_by_lnode(di_node_t lnode, di_link_t link,
uint_t endpoint);

link The handle to the current the link or DI_LINK_NIL.

endpoint Specify which endpoint of the link the node or lnode should correspond to,
either DI_LINK_TGT or DI_LINK_SRC.

node The device node with which the link is associated.

lnode The lnode with which the link is associated.

The di_link_next_by_node() function returns a handle to the next link that has the same
endpoint node as link. If link is DI_LINK_NIL, a handle is returned to the first link whose
endpoint specified by endpoint matches the node specified by node.

The di_link_next_by_lnode() function returns a handle to the next link that has the same
endpoint lnode as link. If link is DI_LINK_NIL, a handle is returned to the first link whose
endpoint specified by endpoint matches the lnode specified by lnode.

Upon successful completion, a handle to the next link is returned. Otherwise, DI_LINK_NIL is
returned and errno is set to indicate the error.

The di_link_next_by_node() and di_link_next_by_lnode() functions will fail if:

EINVAL An argument is invalid.

ENXIO The end of the link list has been reached.

The di_link_next_by_node() function will fail if:

ENOTSUP Device usage information is not available in snapshot.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

di_link_next_by_node(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 12 Jul 2004270

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

di_init(3DEVINFO), libdevinfo(3LIB), attributes(5)See Also

di_link_next_by_node(3DEVINFO)

Extended Library Functions, Volume 1 271

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

di_link_spectype, di_link_to_lnode – return libdevinfo link information

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

int di_link_spectype(di_link_t link);

di_lnode_t di_link_to_lnode(di_link_t link, uint_t endpoint);

link A handle to a link.

endpoint specifies the endpoint of the link, which should correspond to either
DI_LINK_TGT or DI_LINK_SRC

The di_link_spectype() function returns libdevinfo link information.

The di_link_to_lnode() function takes a link specified by link and returns the lnode
corresponding to the link endpoint specified by endpoint.

The di_link_spectype() function returns the spectype parameter flag that was used to open
the target device of a link, either S_IFCHR or S_IFBLK.

Upon successful completion, di_link_to_lnode() returns a handle to an lnode. Otherwise,
DI_LINK_NIL is returned and errno is set to indicate the error.

The di_link_to_lnode() function will fail if:

EINVAL An argument is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

di_init(3DEVINFO), libdevinfo(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

di_link_spectype(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 22 Mar 2004272

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

di_lnode_name, di_lnode_devinfo, di_lnode_devt – return libdevinfo lnode information

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

char *di_lnode_name(di_lnode_t lnode);

di_node_t di_lnode_devinfo(di_lnode_t lnode);

int di_lnode_devt(di_lnode_t lnode, dev_t *devt);

lnode A handle to an lnode.

devt A pointer to a dev_t that can be returned.

These functions return libdevinfo lnode information.

The di_lnode_name() function returns a pointer to the name associated with lnode.

The di_lnode_devinfo() function returns a handle to the device node associated with lnode.

The di_lnode_devt() function sets the dev_t pointed to by the devt parameter to the dev_t
associated with lnode.

The di_lnode_name() function returns a pointer to the name associated with lnode.

The di_lnode_devinfo() function returns a handle to the device node associated with lnode.

The di_lnode_devt() function returns 0 if the requested attribute exists in lnode and was
returned. It returns −1 if the requested attribute does not exist and sets errno to indicate the
error.

The di_lnode_devt() function will fail if:

EINVAL An argument was invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

di_init(3DEVINFO), libdevinfo(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

di_lnode_name(3DEVINFO)

Extended Library Functions, Volume 1 273

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

di_lnode_next – libdevinfo lnode traversal function

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

di_lnode_t di_lnode_next(di_node_t node, di_lnode_t lnode);

node A handle to a di_node.

lnode A handle to an lnode.

The di_lnode_next() function returns a handle to the next lnode for the device node
specified by node. If lnode is DI_LNODE_NIL, a handle to the first lnode is returned.

Upon successful completion, a handle to an lnode is returned. Otherwise, DI_LNODE_NIL is
returned and errno is set to indicate the error.

The di_lnode_next() function will fail if:

EINVAL An argument is invalid.

ENOTSUP Device usage information is not available in snapshot.

ENXIO The end of the lnode list has been reached.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

di_init(3DEVINFO), libdevinfo(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

di_lnode_next(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 22 Mar 2004274

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

di_minor_devt, di_minor_name, di_minor_nodetype, di_minor_spectype – return
libdevinfo minor node information

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

dev_t di_minor_devt(di_minor_t minor);

char *di_minor_name(di_minor_t minor);

char *di_minor_nodetype(di_minor_t minor);

int di_minor_spectype(di_minor_t minor);

minor A handle to minor data node.

These functions return libdevinfo minor node information.

The di_minor_name() function returns the minor name. See ddi_create_minor_node(9F)
for a description of the name parameter.

The di_minor_devt() function returns the dev_t value of the minor node that is specified by
SYS V ABI. See getmajor(9F), getminor(9F), and ddi_create_minor_node(9F) for more
information.

The di_minor_spectype() function returns the spec_type of the file, either S_IFCHR or
S_IFBLK. See ddi_create_minor_node(9F) for a description of the spec_type parameter.

The di_minor_nodetype() function returns the minor node_type of the minor node. See
ddi_create_minor_node(9F) for a description of the node_type parameter.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

attributes(5), ddi_create_minor_node(9F), getmajor(9F), getminor(9F)

Writing Device Drivers

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

di_minor_devt(3DEVINFO)

Extended Library Functions, Volume 1 275

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fgetmajor-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fgetminor-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fgetmajor-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fgetminor-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=DRIVER

di_minor_next – libdevinfo minor node traversal functions

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

di_minor_t di_minor_next(di_node_t node, di_minor_t minor);

minor Handle to the current minor node or DI_MINOR_NIL.

node Device node with which the minor node is associated.

The di_minor_next() function returns a handle to the next minor node for the device node
node. If minor is DI_MINOR_NIL, a handle to the first minor node is returned.

Upon successful completion, a handle to the next minor node is returned. Otherwise,
DI_MINOR_NIL is returned and errno is set to indicate the error.

The di_minor_next() function will fail if:

EINVAL Invalid argument.

ENOTSUP Minor node information is not available in snapshot.

ENXIO End of minor node list.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libdevinfo(3LIB), attributes(5)

Writing Device Drivers

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

di_minor_next(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 1 Dec 1998276

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=DRIVER

di_node_private_set, di_node_private_get, di_path_private_set, di_path_private_get,
di_minor_private_set, di_minor_private_get, di_link_private_set, di_link_private_get,
di_lnode_private_set, di_lnode_private_get – manipulate libdevinfo user traversal pointers

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

void di_node_private_set(di_node_t node, void *data);

void *di_node_private_get(di_node_t node);

void di_path_private_set(di_path_t path, void *data);

void *di_path_private_get(di_path_t path);

void di_minor_private_set(di_minor_t minor, void *data);

void *di_minor_private_get(di_minor_t minor);

void di_link_private_set(di_link_t link, void *data);

void *di_link_private_get(di_link_t link);

void di_lnode_private_set(di_lnode_t lnode, void *data);

void *di_lnode_private_get(di_lnode_t lnode);

node The handle to a devinfo node in a di_init(3DEVINFO) snapshot.

path The handle to a path node in a snapshot.

minor The handle to a minor node in a snapshot.

link The handle to a link in a snapshot.

lnode The handle to an lnode in a snapshot.

data A pointer to caller-specific data.

The di_node_private_set() function allows a caller to associate caller-specific data pointed
to by data with a devinfo node, thereby facilitating traversal of devinfo nodes in the snapshot.

The di_node_private_get() function allows a caller to retrieve a data pointer that was
associated with a devinfo node obtained by a call to di_node_private_set().

The di_path_private_set() function allows a caller to associate caller-specific data pointed
to by data with a devinfo path node, thereby facilitating traversal of path nodes in the
snapshot.

The di_path_private_get()function allows a caller to retrieve a data pointer that was
associated with a path node obtained by a call to di_path_private_set().

Name

Synopsis

Parameters

Description

di_node_private_set(3DEVINFO)

Extended Library Functions, Volume 1 277

The di_minor_private_set() function allows a caller to associate caller-specific data pointed
to by data with a minor node specified by minor, thereby facilitating traversal of minor nodes
in the snapshot.

The di_minor_private_get() function allows a caller to retrieve a data pointer that was
associated with a minor node obtained by a call to di_minor_private_set().

The di_link_private_set() function allows a caller to associate caller-specific data pointed
to by data with a link, thereby facilitating traversal of links in the snapshot.

The di_link_private_get() function allows a caller to retrieve a data pointer that was
associated with a link obtained by a call to di_link_private_set().

The di_lnode_private_set() function allows a caller to associate caller-specific data pointed
to by data with an lnode specified by lnode, thereby facilitating traversal of lnodes in the
snapshot.

The di_lnode_private_get() function allows a caller to retrieve a data pointer that was
associated with an lnode by a call to di_lnode_private_set().

These functions do not perform any type of locking. It is up to the caller to satisfy any locking
needs.

The di_node_private_set(), di_path_private_set(), di_minor_private_set(),
di_link_private_set(), and di_lnode_private_set() functions do not return values.

The di_node_private_get(), di_path_private_get(), di_minor_private_get(),
di_link_private_get(), and di_lnode_private_get() functions return a pointer to
caller-specific data that was initialized with their corresponding *_set() function. If no
caller-specific data was assigned with a *_set() function, the results are undefined.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

di_init(3DEVINFO), libdevinfo(3LIB), attributes(5)

Return Values

Errors

Attributes

See Also

di_node_private_set(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 15 May 2008278

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

di_path_bus_addr, di_path_client_node, di_path_instance, di_path_node_name,
di_path_phci_node, di_path_state – return libdevinfo path node information

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

char *di_path_bus_addr(di_path_t path);

di_node_t di_path_client_node(di_path_t path);

int di_path_instance(di_path_t path);

char *di_path_node_name(di_path_t path);

di_node_t di_path_phci_node(di_path_t path);

di_path_state_t di_path_state(di_path_t path);

path The handle to a path node in a di_init(3DEVINFO) snapshot.

These functions extract information associated with a path node.

The di_path_bus_addr() function returns a string representing the pHCI child path node's
unit-address. This function is the di_path_t peer of di_bus_addr(3DEVINFO).

The di_path_client_node() function returns the di_node_t of the 'client' device node
associated with the given path node. If the client device node is not present in the current
device tree snapshot, DI_NODE_NIL is returned and errno is set to ENOTSUP.

The di_path_node_name() function returns a pointer to a null-terminated string containing
the path node name. This function is the di_path_t peer of di_node_name(3DEVINFO).

The di_path_instance() function returns the instance number associated with the given
path node. A path node instance is persistent across attach(9E)/detach(9E) and device
reconfigurations, but not across reboot. A path node instance is unrelated to a device node
di_instance(3DEVINFO).

The di_path_phci_node() function returns the di_node_t of the pHCI host adapter
associated with the given path node. If the pHCI device node is not present in the current
device tree snapshot, DI_NODE_NIL is returned and errno is set to ENOTSUP.

The di_path_state() function returns the state of an I/O path. This function may return one
of the following values:

DI_PATH_STATE_ONLINE

Identifies that the path_info node is online and I/O requests can be routed through this
path.

DI_PATH_STATE_OFFLINE

Identifies that the path_info node is in offline state.

Name

Synopsis

Parameters

Description

Return Values

di_path_bus_addr(3DEVINFO)

Extended Library Functions, Volume 1 279

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e

DI_PATH_STATE_FAULT

Identifies that the path_info node is in faulted state and not ready for I/O operations.

DI_PATH_STATE_STANDBY

Identifies that the path_info node is in standby state and not ready for I/O operations.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

di_bus_addr(3DEVINFO), di_devfs_path(3DEVINFO), di_init(3DEVINFO),
di_instance(3DEVINFO), di_node_name(3DEVINFO),
di_path_client_next_path(3DEVINFO), di_path_prop_next(3DEVINFO),
di_path_prop_bytes(3DEVINFO), di_path_prop_lookup_bytes(3DEVINFO),
di_path_prop_next(3DEVINFO), libdevinfo(3LIB), attributes(5)

Writing Device Drivers

Attributes

See Also

di_path_bus_addr(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 10 Jul 2012280

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=DRIVER

di_path_client_next_path, di_path_phci_next_path – libdevinfo path node traversal
functions

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

di_path_t di_path_client_next_path(di_node_t node node,
di_path_t path);

di_path_t di_path_phci_next_path(di_node_t node node,
di_path_t path);

node The handle to a device node in a di_init(3DEVINFO) snapshot. For
di_path_client_next_path(), node must be a client device node. For
di_path_phci_next_path(), node must be a pHCI device node.

path DI_PATH_NIL, or the handle to a path node in a snapshot.

Each path node is an element in a pHCI-client matrix. The matrix is implemented by dual
linked lists: one list links path nodes related to a common client head, and the other links path
nodes related to a common pHCI head.

The di_path_client_next_path() function is called on a multipathing 'client' device node,
where a 'client' is the child of a vHCI device node, and is associated with a specific endpoint
device identity (independent of physical paths). If the path argument is NULL,
di_path_client_next_path() returns the first path node associated with the client. To walk
all path nodes associated with a client, returned di_path_t values are fed back into
di_path_client_next_path(), via the path argument, until a null path node is returned. For
each path node, di_path_bus_addr(3DEVINFO) returns the pHCI child path node
unit-address.

The di_path_phci_next_path() function is called on a multipathing pHCI device node. If
the path argument is NULL, di_path_phci_next_path() returns the first path node associated
with the pHCI. To walk all path nodes associated with a pHCI, returned di_path_t values are
fed back into di_path_phci_next_path(), via the path argument, until a null path node is
returned. For each path node, di_path_client_node(3DEVINFO) provides a pointer to the
associated client device node.

A device node can be a client device node of one multipathing class and a pHCI device node of
another class.

Upon successful completion, a handle to the next path node is returned. Otherwise,
DI_PATH_NIL is returned and errno is set to indicate the error.

These functions will fail if:

EINVAL One or more argument was invalid.

ENOTSUP Path node information is not available in the snapshot.

Name

Synopsis

Parameters

Description

Return Values

Errors

di_path_client_next_path(3DEVINFO)

Extended Library Functions, Volume 1 281

ENXIO The end of the path node list was reached.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

di_init(3DEVINFO), di_path_bus_addr(3DEVINFO),
di_path_client_node(3DEVINFO), libdevinfo(3LIB), attributes(5)

Writing Device Drivers

Attributes

See Also

di_path_client_next_path(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 15 May 2008282

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=DRIVER

di_path_prop_bytes, di_path_prop_ints, di_path_prop_int64s, di_path_prop_name,
di_path_prop_strings, di_path_prop_type – access path property information

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

int di_path_prop_bytes(di_path_prop_t prop, uchar_t **prop_data);

int di_path_prop_ints(di_path_prop_t prop, int **prop_data);

int di_path_prop_int64s(di_path_prop_t prop, int64_t **prop_data);

char *di_path_prop_name(di_path_prop_t prop);

int di_path_prop_strings(di_path_prop_t prop, char **prop_data);

int di_path_prop_type(di_path_prop_t prop);

prop A handle to a property returned by di_path_prop_next(3DEVINFO).

prop_data For di_path_prop_bytes(), the address of a pointer to an unsigned character.

For di_path_prop_ints(), the address of a pointer to an integer.

For di_path_prop_int64(), the address of a pointer to a 64-bit integer.

For di_path_prop_strings(), the address of pointer to a character.

These functions access information associated with path property values and attributes such
as the property name or data type.

The di_path_prop_name() function returns a pointer to a string containing the name of the
property.

The di_path_prop_type() function returns the type of the path property. The type
determines the appropriate interface to access property values. Possible property types are the
same as for di_prop_type(3DEVINFO), excluding DI_PROP_TYPE_UNKNOWN and
DI_PROP_UNDEFINED. Thus, di_path_prop_type() can return one of the following constants:

DI_PROP_TYPE_INT Use di_path_prop_ints() to access property data.

DI_PROP_TYPE_INT64 Use di_path_prop_int64s() to access property data.

DI_PROP_TYPE_STRING Use di_path_prop_strings() to access property data.

DI_PROP_TYPE_BYTE Use di_path_prop_bytes() to access property data.

The di_path_prop_bytes() function returns the property data as a series of unsigned
characters.

The di_path_prop_ints() function returns the property data as a series of integers.

The di_path_prop_int64s() function returns the property data as a series of integers.

Name

Synopsis

Parameters

Description

di_path_prop_bytes(3DEVINFO)

Extended Library Functions, Volume 1 283

The di_path_prop_strings() function returns the property data as a concatenation of
null-terminated strings.

Upon successful completion, di_path_prop_bytes(), di_path_prop_ints(),
di_path_prop_int64s(), and di_path_prop_strings() return a non-negative value,
indicating the number of entries in the property value buffer. If the property is found, the
number of entries in prop_data is returned. Otherwise, -1 is returned and errno is set to
indicate the error.

For di_path_prop_bytes(), the number of entries is the number of unsigned characters
contained in the buffer pointed to by prop_data.

For di_path_prop_ints(), the number of entries is the number of integers contained in the
buffer pointed to by prop_data.

For di_path_prop_int64s(), the number of entries is the number of 64-bit integers
contained in the buffer pointed to by prop_data.

For di_path_prop_strings(), the number of entries is the number of null-terminated strings
contained in the buffer. The strings are stored in a concatenated format in the buffer.

The di_path_prop_name() function returns the name of the property.

The di_path_prop_type() function can return one of types described in the Description.

These functions will fail if:

EINVAL One of the arguments is invalid. For example, the property type does not match
the interface.

ENOTSUP The snapshot contains no property information.

ENXIO The path property does not exist.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

di_path_prop_next(3DEVINFO), di_prop_type(3DEVINFO), libdevinfo(3LIB),
attributes(5)

Writing Device Drivers

Return Values

Errors

Attributes

See Also

di_path_prop_bytes(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 15 Mar 2012284

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=DRIVER

di_path_prop_lookup_bytes, di_path_prop_lookup_int64s, di_path_prop_lookup_ints,
di_path_prop_lookup_strings – search for a path property

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

int di_path_prop_lookup_bytes(di_path_t path,
const char *prop_name);

int di_path_prop_lookup_int64s(di_path_t path,
const char *prop_name);

int di_path_prop_lookup_ints(di_path_t path,
const char *prop_name, char **prop_data);

int di_path_prop_lookup_strings(di_path_t path,
const char *prop_name, char **prop_data);

path The handle to a path node in a di_init(3DEVINFO).

prop_name The name of property for which to search.

prop_data For di_path_prop_lookup_bytes(), the address to a pointer to an array of
unsigned characters containing the property data.

For di_path_prop_lookup_int64(), the address to a pointer to an array of
64-bit integers containing the property data.

For di_path_prop_lookup_ints(), the address to a pointer to an array of
integers containing the property data.

For di_path_prop_lookup_strings(), the address to a pointer to a buffer
containing a concatenation of null-terminated strings containing the property
data.

These functions return the value of a known property name and type.

All memory allocated by these functions is managed by the library and must not be freed by
the caller.

If the property is found, the number of entries in prop_data is returned. Otherwise, -1 is
returned and errno is set to indicate the error.

These functions will fail if:

EINVAL One of the arguments is invalid.

ENOTSUP The snapshot contains no property information.

ENXIO The path property does not exist.

Name

Synopsis

Parameters

Description

Return Values

Errors

di_path_prop_lookup_bytes(3DEVINFO)

Extended Library Functions, Volume 1 285

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

di_init(3DEVINFO), libdevinfo(3LIB), attributes(5)

Writing Device Drivers

Attributes

See Also

di_path_prop_lookup_bytes(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 15 May 2008286

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=DRIVER

di_path_prop_next – libdevinfo path property traversal function

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

di_path_prop_t di_path_prop_next(di_path_t path,
di_path_prop_t prop);

path The handle to a path node in a di_init(3DEVINFO).

prop The handle to a property.

The di_prop_next() function returns a handle to the next property on the property list. If
prop is DI_PROP_NIL, the handle to the first property is returned.

Upon successful completion, di_path_prop_next() returns a handle to a path property
object. Otherwise DI_PROP_NIL is returned, and errno is set to indicate the error.

The di_prop_next() function will fail if:

EINVAL An argument is invalid.

ENOTSUP The snapshot does not contain path property information (DINFOPROP was not
passed to di_init()).

ENXIO There are no more properties.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libdevinfo(3LIB), attributes(5)

Writing Device Drivers

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

di_path_prop_next(3DEVINFO)

Extended Library Functions, Volume 1 287

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=DRIVER

di_prom_init, di_prom_fini – create and destroy a handle to the PROM device information

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

di_prom_handle_t di_prom_init(void);

void di_prom_fini(di_prom_handle_t ph);

ph Handle to prom returned by di_prom_init().

For device nodes whose nodeid value is DI_PROM_NODEID (see di_nodeid(3DEVINFO)),
additional properties can be retrieved from the PROM. The di_prom_init() function returns
a handle that is used to retrieve such properties. This handle is passed to
di_prom_prop_lookup_bytes(3DEVINFO) and di_prom_prop_next(3DEVINFO).

The di_prom_fini() function destroys the handle and all handles to the PROM device
information obtained from that handle.

Upon successful completion, di_prom_init() returns a handle. Otherwise,
DI_PROM_HANDLE_NIL is returned and errno is set to indicate the error.

The di_prom_init() sets errno function to any error code that can also be set by
openprom(7D) or malloc(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

di_nodeid(3DEVINFO), di_prom_prop_next(3DEVINFO),
di_prom_prop_lookup_bytes(3DEVINFO), libdevinfo(3LIB), malloc(3C), attributes(5),
openprom(7D)

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

di_prom_init(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 1 Dec 1998288

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7openprom-7d
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7openprom-7d

di_prom_prop_data, di_prom_prop_next, di_prom_prop_name – access PROM device
information

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

di_prom_prop_t di_prom_prop_next(di_prom_handle_t ph, di_node_t node,
di_prom_prop_t prom_prop);

char *di_prom_prop_name(di_prom_prop_t prom_prop);

int di_prom_prop_data(di_prom_prop_t prom_prop, uchar_t **prop_data);

node Handle to a device node in the snapshot of kernel device tree.

ph PROM handle

prom_prop Handle to a PROM property.

prop_data Address of a pointer.

The di_prom_prop_next() function obtains a handle to the next property on the PROM
property list associated with node. If prom_prop is DI_PROM_PROP_NIL, the first property
associated with node is returned.

The di_prom_prop_name() function returns the name of the prom_prop property.

The di_prom_prop_data() function returns the value of the prom_prop property. The return
value is a non-negative integer specifying the size in number of bytes in prop_data.

All memory allocated by these functions is managed by the library and must not be freed by
the caller.

The di_prom_prop_data() function returns the number of bytes in prop_data and prop_data
is updated to point to a byte array containing the property value. If 0 is returned, the property
is a boolean property and the existence of this property indicates the value is true.

The di_prom_prop_name() function returns a pointer to a string that contains the name of
prom_prop.

The di_prom_prop_next() function returns a handle to the next PROM property.
DI_PROM_PROP_NIL is returned if no additional properties exist.

See openprom(7D) for a description of possible errors.

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

di_prom_prop_data(3DEVINFO)

Extended Library Functions, Volume 1 289

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7openprom-7d
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

attributes(5), openprom(7D)

Writing Device Drivers

See Also

di_prom_prop_data(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 1 Dec 1998290

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7openprom-7d
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=DRIVER

di_prom_prop_lookup_bytes, di_prom_prop_lookup_ints, di_prom_prop_lookup_strings –
search for a PROM property

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

int di_prom_prop_lookup_bytes(di_prom_handle_t ph, di_node_t node,
const char *prop_name, uchar_t **prop_data);

int di_prom_prop_lookup_ints(di_prom_handle_t ph, di_node_t node,
const char *prop_name, int **prop_data);

int di_prom_prop_lookup_strings(di_prom_handle_t ph, di_node_t node,
const char *prop_name, char **prop_data);

node Handle to device node in snapshot created by di_init(3DEVINFO).

ph Handle returned by di_prom_init(3DEVINFO).

prop_data For di_prom_prop_lookup_bytes(), the address of a pointer to an array of
unsigned characters.

For di_prom_prop_lookup_ints(), the address of a pointer to an integer.

For di_prom_prop_lookup_strings(), the address of pointer to a buffer.

prop_name The name of the property being searched.

These functions return the value of a known PROM property name and value type and update
the prop_data pointer to reference memory that contains the property value. All memory
allocated by these functions is managed by the library and must not be freed by the caller.

If the property is found, the number of entries in prop_data is returned. If the property is a
boolean type, 0 is returned and the existence of this property indicates the value is true.
Otherwise, -1 is returned and errno is set to indicate the error.

For di_prom_prop_lookup_bytes(), the number of entries is the number of unsigned
characters contained in the buffer pointed to by prop_data.

For di_prom_prop_lookup_ints(), the number of entries is the number of integers contained
in the buffer pointed to by prop_data.

For di_prom_prop_lookup_strings(), the number of entries is the number of
null-terminated strings contained in the buffer. The strings are stored in a concatenated
format in the buffer.

These functions will fail if::

EINVAL Invalid argument.

ENXIO The property does not exist.

Name

Synopsis

Parameters

Description

Return Values

Errors

di_prom_prop_lookup_bytes(3DEVINFO)

Extended Library Functions, Volume 1 291

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

di_init(3DEVINFO), di_prom_prop_next(3DEVINFO), libdevinfo(3LIB),
attributes(5), openprom(7D)

Writing Device Drivers

Attributes

See Also

di_prom_prop_lookup_bytes(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 1 Dec 1998292

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7openprom-7d
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=DRIVER

di_prop_bytes, di_prop_devt, di_prop_ints, di_prop_name, di_prop_strings, di_prop_type,
di_prop_int64 – access property values and attributes

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

int di_prop_bytes(di_prop_t prop, uchar_t **prop_data);

dev_t di_prop_devt(di_prop_t prop);

int di_prop_ints(di_prop_t prop, int **prop_data);

int di_prop_int64(di_prop_t prop, int64_t **prop_data);

char *di_prop_name(di_prop_t prop);

int di_prop_strings(di_prop_t prop, char **prop_data);

int di_prop_type(di_prop_t prop);

prop Handle to a property returned by di_prop_next(3DEVINFO).

prop_data For di_prop_bytes(), the address of a pointer to an unsigned character.

For di_prop_ints(), the address of a pointer to an integer.

For di_prop_int64(), the address of a pointer to a 64–bit integer.

For di_prop_strings(), the address of pointer to a character.

These functions access information associated with property values and attributes. All
memory allocated by these functions is managed by the library and must not be freed by the
caller.

The di_prop_bytes() function returns the property data as a series of unsigned characters.

The di_prop_devt() function returns the dev_t with which this property is associated. If the
value is DDI_DEV_T_NONE, the property is not associated with any specific minor node.

The di_prop_ints() function returns the property data as a series of integers.

The di_prop_int64() function returns the property data as a series of 64–bit integers.

The di_prop_name() function returns the name of the property.

The di_prop_strings() function returns the property data as a concatenation of
null-terminated strings.

The di_prop_type() function returns the type of the property. The type determines the
appropriate interface to access property values. The following is a list of possible types:

Name

Synopsis

Parameters

Description

di_prop_bytes(3DEVINFO)

Extended Library Functions, Volume 1 293

DI_PROP_TYPE_BOOLEAN There is no interface to call since there is no property data
associated with boolean properties. The existence of the
property defines a TRUE value.

DI_PROP_TYPE_INT Use di_prop_ints() to access property data.

DI_PROP_TYPE_INT64 Use di_prop_int64() to access property data.

DI_PROP_TYPE_STRING Use di_prop_strings() to access property data.

DI_PROP_TYPE_BYTE Use di_prop_bytes() to access property data.

DI_PROP_TYPE_UNKNOWN Use di_prop_bytes() to access property data. Since the type of
property is unknown, the caller is responsible for interpreting
the contents of the data.

DI_PROP_TYPE_UNDEF_IT The property has been undefined by the driver. No property
data is available.

Upon successful completion, di_prop_bytes(), di_prop_ints(), di_prop_int64(), and
di_prop_strings() return a non-negative value, indicating the number of entries in the
property value buffer. See di_prom_prop_lookup_bytes(3DEVINFO) for a description of the
return values. Otherwise, -1 is returned and errno is set to indicate the error.

The di_prop_devt() function returns the dev_t value associated with the property.

The di_prop_name() function returns a pointer to a string containing the name of the
property.

The di_prop_type() function can return one of types described in the DESCRIPTION
section.

These functions will fail if:

EINVAL Invalid argument. For example, the property type does not match the interface.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

di_prom_prop_lookup_bytes(3DEVINFO), di_prop_next(3DEVINFO),
libdevinfo(3LIB), attributes(5)

Writing Device Drivers

Return Values

Errors

Attributes

See Also

di_prop_bytes(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 27 Mar 2001294

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=DRIVER

di_prop_lookup_bytes, di_prop_lookup_ints, di_prop_lookup_int64,
di_prop_lookup_strings, di_prop_exists – search for a property

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

int di_prop_lookup_bytes(dev_t dev, di_node_t node,
const char *prop_name, uchar_t **prop_data);

int di_prop_lookup_ints(dev_t dev, di_node_t node,
const char *prop_name, int **prop_data);

int di_prop_lookup_int64(dev_t dev, di_node_t node,
const char *prop_name, int64_t **prop_data);

int di_prop_lookup_strings(dev_t dev, di_node_t node,
const char *prop_name, char **prop_data);

int di_prop_exists(dev_t dev, di_node_t node,
const char *prop_name);

dev dev_t of minor node with which the property is associated. DDI_DEV_T_ANY is a
wild card that matches all dev_t's, including DDI_DEV_T_NONE.

node Handle to the device node with which the property is associated.

prop_data For di_prop_lookup_bytes(), the address to a pointer to an array of unsigned
characters containing the property data.

For di_prop_lookup_ints(), the address to a pointer to an array of integers
containing the property data.

For di_prop_lookup_int64(), the address to a pointer to an array of 64–bit
integers containing the property data.

For di_prop_lookup_strings(), the address to a pointer to a buffer
containing a concatenation of null-terminated strings containing the property
data.

prop_name Name of the property for which to search.

These functions return the value of a known property name type and dev_t value. All memory
allocated by these functions is managed by the library and must not be freed by the caller.

If the property is found, the number of entries in prop_data is returned. If the property is a
boolean type, 0 is returned and the existence of this property indicates the value is true.
Otherwise, -1 is returned and errno is set to indicate the error.

The ddi_prop_exists() returns 1 if a property, including a boolean property, exists, and 0
otherwise.

Name

Synopsis

Parameters

Description

Return Values

di_prop_lookup_bytes(3DEVINFO)

Extended Library Functions, Volume 1 295

These functions will fail if:

EINVAL Invalid argument.

ENOTSUP The snapshot contains no property information.

ENXIO The property does not exist; try di_prom_prop_lookup_*().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

di_init(3DEVINFO), di_prom_prop_lookup_bytes(3DEVINFO), libdevinfo(3LIB),
attributes(5)

Writing Device Drivers

Errors

Attributes

See Also

di_prop_lookup_bytes(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 3 Jul 2012296

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=DRIVER

di_prop_next – libdevinfo property traversal function

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

di_prop_t di_prop_next(di_node_t node, di_prop_t prop);

node Handle to a device node.

prop Handle to a property.

The di_prop_next() function returns a handle to the next property on the property list. If
prop is DI_PROP_NIL, the handle to the first property is returned.

Upon successful completion, di_prop_next() returns a handle. Otherwise DI_PROP_NIL is
returned and errno is set to indicate the error.

The di_prop_next() function will fail if:

EINVAL Invalid argument.

ENOTSUP The snapshot does not contain property information.

ENXIO There are no more properties.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

di_init(3DEVINFO), libdevinfo(3LIB), attributes(5)

Writing Device Drivers

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

di_prop_next(3DEVINFO)

Extended Library Functions, Volume 1 297

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=DRIVER

di_walk_link – traverse libdevinfo links

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

int di_walk_link(di_node_t root, uint_t flag, uint_t endpoint, void *arg,
int (*link_callback)(di_link_t link, void *arg));

root The handle to the root node of the subtree to visit.

flag Specify 0. Reserved for future use.

endpoint Specify if the current node being visited should be the target or source of an
link, either DI_LINK_TGT or DI_LINK_SRC

arg A pointer to caller-specific data.

link_callback The caller-supplied callback function.

The di_walk_link() function visits all nodes in the subtree rooted at root. For each node
found, the caller-supplied function link_callback() is invoked for each link associated with
that node where that node is the specified endpoint of the link. The return value of
link_callback() specifies subsequent walking behavior. See RETURN VALUES.

Upon successful completion, di_walk_link() returns 0. Otherwise, -1 is returned and errno

is set to indicate the error.

The callback function, link_callback(), can return one of the following:

DI_WALK_CONTINUE Continue walking.

DI_WALK_TERMINATE Terminate the walk immediately.

The di_walk_link() function will fail if:

EINVAL An argument is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

di_init(3DEVINFO), libdevinfo(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

di_walk_link(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 22 Mar 2004298

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

di_walk_lnode – traverse libdevinfo lnodes

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

int di_walk_lnode(di_node_t root, uint_t flag, void *arg,
int (*lnode_callback)(di_lnode_t link, void *arg));

root The handle to the root node of the subtree to visit.

flag Specify 0. Reserved for future use.

arg A pointer to caller-specific data.

lnode_callback The caller-supplied callback function.

The di_walk_lnode() function visits all nodes in the subtree rooted at root. For each node
found, the caller-supplied function lnode_callback() is invoked for each lnode associated with
that node. The return value of lnode_callback() specifies subsequent walking behavior where
that node is the specified endpoint of the link.

Upon successful completion, di_walk_lnode() returns 0. Otherwise, -1 is returned and errno

is set to indicate the error.

The callback function lnode_callback() can return one of the following:

DI_WALK_CONTINUE Continue walking.

DI_WALK_TERMINATE Terminate the walk immediately.

The di_walk_lnode() function will fail if:

EINVAL An argument is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

di_init(3DEVINFO), libdevinfo(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

See Also

di_walk_lnode(3DEVINFO)

Extended Library Functions, Volume 1 299

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

di_walk_minor – traverse libdevinfo minor nodes

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

int di_walk_minor(di_node_t root, const char *minor_nodetype,
uint_t flag, void *arg, int (*minor_callback)(di_node_t node,
di_minor_t minor, void *arg));

arg Pointer to caller– specific user data.

flag Specify 0. Reserved for future use.

minor The minor node visited.

minor_nodetype A character string specifying the minor data type, which may be one of
the types defined by the Solaris DDI framework, for example,
DDI_NT_BLOCK. NULL matches all minor_node types. See
ddi_create_minor_node(9F).

node The device node with which to the minor node is associated.

root Root of subtree to visit.

The di_walk_minor() function visits all minor nodes attached to device nodes in a subtree
rooted at root. For each minor node that matches minor_nodetype, the caller-supplied
function minor_callback() is invoked. The walk terminates immediately when
minor_callback() returns DI_WALK_TERMINATE.

Upon successful completion, di_walk_minor() returns 0. Otherwise, -1 is returned and errno
is set to indicate the error.

The minor_callback() function returns one of the following:

DI_WALK_CONTINUE Continue to visit subsequent minor data nodes.

DI_WALK_TERMINATE Terminate the walk immediately.

The di_walk_minor() function will fail if:

EINVAL Invalid argument.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Name

Synopsis

Parameters

Description

Return Values

Errors

Attributes

di_walk_minor(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 14 Jan 2009300

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

dladm(1M), di_minor_nodetype(3DEVINFO), dlpi_walk(3DLPI), libdevinfo(3LIB),
attributes(5), filesystem(5), ddi_create_minor_node(9F)

Writing Device Drivers

The di_walk_minor() function is no longer an accurate method for walking network datalink
interfaces on the system. Applications should use dlpi_walk(3DLPI) instead. It has been
common for applications to use di_walk_minor() to walk networking devices by passing in a
minor_nodetype of DDI_NT_NET, in most cases to discover the set of DLPI devices on the
system. Solaris now makes a layering distinction between networking devices (the objects
displayed in the DEVICE field by dladm show-phys) and network datalink interfaces (the
objects displayed by dladm show-link). Datalink interfaces are represented as the set of DLPI
device nodes that applications can open by using dlpi_open(3DLPI) or by opening DLPI
nodes out of the /dev/net filesystem (see filesystem(5)). The dlpi_walk(3DLPI) function is
the proper function to walk these nodes.

See Also

Notes

di_walk_minor(3DEVINFO)

Extended Library Functions, Volume 1 301

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mdladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5filesystem-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=DRIVER
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Bdlpi-walk-3dlpi
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Bdlpi-open-3dlpi
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5filesystem-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Bdlpi-walk-3dlpi

di_walk_node – traverse libdevinfo device nodes

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

int di_walk_node(di_node_t root, uint_t flag, void *arg,
int (*node_callback)(di_node_t node, void *arg));

The di_walk_node() function visits all nodes in the subtree rooted at root. For each node
found, the caller-supplied function node_callback() is invoked. The return value of
node_callback() specifies subsequent walking behavior.

arg Pointer to caller–specific data.

flag Specifies walking order, either DI_WALK_CLDFIRST (depth first) or DI_WALK_SIBFIRST
(breadth first). DI_WALK_CLDFIRST is the default.

node The node being visited.

root The handle to the root node of the subtree to visit.

Upon successful completion, di_walk_node() returns 0. Otherwise, -1 is returned and errno

is set to indicate the error.

The node_callback() function can return one of the following:

DI_WALK_CONTINUE Continue walking.

DI_WALK_PRUNESIB Continue walking, but skip siblings and their child nodes.

DI_WALK_PRUNECHILD Continue walking, but skip subtree rooted at current node.

DI_WALK_TERMINATE Terminate the walk immediately.

The di_walk_node() function will fail if:

EINVAL Invalid argument.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

di_init(3DEVINFO), libdevinfo(3LIB), attributes(5)

Writing Device Drivers

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

di_walk_node(3DEVINFO)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 16 Jan 2009302

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=DRIVER

ea_error – error interface to extended accounting library

cc [flag...] file... -lexacct [library ...]

#include <exacct.h>

int ea_error(void);

The ea_error() function returns the error value of the last failure recorded by the invocation
of one of the functions of the extended accounting library, libexacct.

EXR_CORRUPT_FILE A function failed because the file was not a valid exacct file.

EXR_EOF A function detected the end of the file, either when reading forwards
or backwards through the file.

EXR_INVALID_BUF When unpacking an object, an invalid unpack buffer was specified.

EXR_INVALID_OBJ The object type passed to the function is not valid for the requested
operation, for example passing a group object to
ea_set_item(3EXACCT).

EXR_NO_CREATOR When creating a new file no creator was specified, or when opening a
file for reading the creator value did not match the value in the file.

EXR_NOTSUPP An unsupported type of access was attempted, for example
attempting to write to a file that was opened read-only.

EXR_OK The function completed successfully.

EXR_SYSCALL_FAIL A system call invoked by the function failed. The errno variable
contains the error value set by the underlying call.

EXR_UNKN_VERSION The file referred to by name uses an exacct file version that cannot be
processed by this library.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

read(2), libexacct(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

ea_error(3EXACCT)

Extended Library Functions, Volume 1 303

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibexacct-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ea_open, ea_close – open or close exacct files

cc [flag...] file... -lexacct [library...]

#include <exacct.h>

int ea_open(ea_file_t *ef, char *name, char *creator, int aflags,
int oflags, mode_t mode);

int ea_close(ea_file_t *ef);

The ea_open() function provides structured access to exacct files. The aflags argument
contains the appropriate exacct flags necessary to describe the file. The oflags and mode
arguments contain the appropriate flags and mode to open the file; see <fcntl.h>. If
ea_open() is invoked with EO_HEAD specified in aflags, the resulting file is opened with the
object cursor located at the first object of the file. If ea_open() is invoked with EO_TAIL

specified in aflags, the resulting file is opened with the object cursor positioned beyond the last
object in the file. If EO_NO_VALID_HDR is set in aflags along with EO_HEAD, the initial header
record will be returned as the first item read from the file. When creating a file, the creator
argument should be set (system generated files use the value “SunOS”); when reading a file,
this argument should be set to NULL if no validation is required; otherwise it should be set to
the expected value in the file.

The ea_close() function closes an open exacct file.

Upon successful completion, ea_open() and ea_close() return 0. Otherwise they return −1
and call ea_error(3EXACCT) to return the extended accounting error value describing the
error.

The ea_open() and ea_close() functions may fail if:

EXR_SYSCALL_FAIL A system call invoked by the function failed. The errno variable
contains the error value set by the underlying call.

The ea_open() function may fail if:

EXR_CORRUPT_FILE The file referred to by name is not a valid exacct file.

EXR_NO_CREATOR In the case of file creation, the creator argument was NULL. In the case
of opening an existing file, a creator argument was not NULL and does
not match the creator item of the exacct file.

EXR_UNKN_VERSION The file referred to by name uses an exacct file version that cannot be
processed by this library.

The exacct file format can be used to represent data other than that in the extended
accounting format. By using a unique creator type in the file header, application writers can
develop their own format suited to the needs of their application.

Name

Synopsis

Description

Return Values

Errors

Usage

ea_open(3EXACCT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 29 Nov 2001304

EXAMPLE 1 Open and close exacct file.

The following example opens the extended accounting data file for processes. The exacct file
is then closed.

#include <exacct.h>

ea_file_t ef;

if (ea_open(&ef, "/var/adm/exacct/proc", NULL, EO_HEAD,

O_RDONLY, 0) == -1)

exit(1);

(void) ea_close(&ef);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

ea_error(3EXACCT), ea_pack_object(3EXACCT), ea_set_item(3EXACCT),
libexacct(3LIB), attributes(5)

Examples

Attributes

See Also

ea_open(3EXACCT)

Extended Library Functions, Volume 1 305

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibexacct-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ea_pack_object, ea_unpack_object, ea_get_creator, ea_get_hostname, ea_next_object,
ea_previous_object, ea_get_object, ea_write_object, ea_copy_object, ea_copy_object_tree,
ea_get_object_tree – construct, read, and write extended accounting records

cc [flag...] file... -lexacct [library...]

#include <exacct.h>

size_t ea_pack_object(ea_object_t *obj, void *buf,
size_t bufsize);

ea_object_type_t ea_unpack_object(ea_object_t **objp, int flag,
void *buf, size_t bufsize);

const char *ea_get_creator(ea_file_t *ef);

const char *ea_get_hostname(ea_file_t *ef);

ea_object_type_t ea_next_object(ea_file_t *ef, ea_object_t *obj);

ea_object_type_t ea_previous_object(ea_file_t *ef,
ea_object_t *obj);

ea_object_type_t ea_get_object(ea_file_t *ef, ea_object_t *obj);

int ea_write_object(ea_file_t *ef, ea_object_t *obj);

ea_object_type_t *ea_copy_object(const ea_object_t *src);

ea_object_type_t *ea_copy_object_tree(const ea_object_t *src);

ea_object_type_t *ea_get_object_tree(ea_file_t *ef,
uint32_tnobj);

The ea_pack_object() function converts exacct objects from their in-memory
representation to their file representation. It is passed an object pointer that points to the top
of an exacct object hierarchy representing one or more exacct records. It returns the size of
the buffer required to contain the packed buffer representing the object hierarchy. To obtain
the correct size of the required buffer, the buf and bufsize parameters can be set to NULL and 0
respectively, and the required buffer size will be returned. The resulting packed record can be
passed to putacct(2) or to ea_set_item(3EXACCT) when constructing an object of type
EXT_EXACCT_OBJECT.

The ea_unpack_object() function reverses the packing process performed by
ea_pack_object(). A packed buffer passed to ea_unpack_object() is unpacked into the
original hierarchy of objects. If the unpack operation fails (for example, due to a corrupted or
incomplete buffer), it returns EO_ERROR; otherwise, the object type of the first object in the
hierarchy is returned. If ea_unpack_object() is invoked with flag equal to EUP_ALLOC, it
allocates memory for the variable-length data in the included objects. Otherwise, with flag
equal to EUP_NOALLOC, it sets the variable length data pointers within the unpacked object
structures to point within the buffer indicated by buf. In both cases, ea_unpack_object()
allocates all the necessary exacct objects to represent the unpacked record. The resulting
object hierarchy can be freed using ea_free_object(3EXACCT) with the same flag value.

Name

Synopsis

Description

ea_pack_object(3EXACCT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 4 Oct 2007306

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2putacct-2

The ea_get_creator() function returns a pointer to a string representing the recorded
creator of the exacct file. The ea_get_hostname() function returns a pointer to a string
representing the recorded hostname on which the exacct file was created. These functions
will return NULL if their respective field was not recorded in the exacct file header.

The ea_next_object() function reads the basic fields (eo_catalog and eo_type) into the
ea_object_t indicated by obj from the exacct file referred to by ef and rewinds to the head of
the record. If the read object is corrupted, ea_next_object() returns EO_ERROR and records
the extended accounting error code, accessible with ea_error(3EXACCT). If end-of-file is
reached, EO_ERROR is returned and the extended accounting error code is set to EXR_EOF.

The ea_previous_object() function skips back one object in the file and reads its basic fields
(eo_catalog and eo_type) into the indicated ea_object_t. If the read object is corrupted,
ea_previous_object() returns EO_ERROR and records the extended accounting error code,
accessible with ea_error(3EXACCT). If end-of-file is reached, EO_ERROR is returned and the
extended accounting error code is set to EXR_EOF.

The ea_get_object() function reads the value fields into the ea_object_t indicated by obj,
allocating memory as necessary, and advances to the head of the next record. Once a record
group object is retrieved using ea_get_object(), subsequent calls to ea_get_object() and
ea_next_object() will track through the objects within the record group, and on reaching
the end of the group, will return the next object at the same level as the group from the file. If
the read object is corrupted, ea_get_object() returns EO_ERROR and records the extended
accounting error code, accessible with ea_error(3EXACCT). If end-of-file is reached,
EO_ERROR is returned and the extended accounting error code is set to EXR_EOF.

The ea_write_object() function appends the given object to the open exacct file indicated
by ef and returns 0. If the write fails, ea_write_object() returns −1 and sets the extended
accounting error code to indicate the error, accessible with ea_error(3EXACCT).

The ea_copy_object() function copies an ea_object_t. If the source object is part of a chain,
only the current object is copied. If the source object is a group, only the group object is copied
without its list of members and the eg_nobjs and eg_objs fields are set to 0 and NULL,
respectively. Use ea_copy_tree() to copy recursively a group or a list of items.

The ea_copy_object_tree() function recursively copies an ea_object_t. All elements in the
eo_next list are copied, and any group objects are recursively copied. The returned object can
be completely freed with ea_free_object(3EXACCT) by specifying the EUP_ALLOC flag.

The ea_get_object_tree() function reads in nobj top-level objects from the file, returning
the same data structure that would have originally been passed to ea_write_object(). On
encountering a group object, the ea_get_object() function reads only the group header part
of the group, whereas ea_get_object_tree() reads the group and all its member items,
recursing into sub-records if necessary. The returned object data structure can be completely
freed with ea_free_object() by specifying the EUP_ALLOC flag.

ea_pack_object(3EXACCT)

Extended Library Functions, Volume 1 307

The ea_pack_object() function returns the number of bytes required to hold the exacct
object being operated upon. If the returned size exceeds bufsize, the pack operation does not
complete and the function returns (size_t) –1 and sets the extended accounting error code to
indicate the error.

The ea_get_object() function returns the ea_object_type of the object if the object was
retrieved successfully. Otherwise, it returns EO_ERROR and sets the extended accounting error
code to indicate the error.

The ea_next_object() function returns the ea_object_type of the next exacct object in the
file. It returns EO_ERROR if the exacct file is corrupted sets the extended accounting error code
to indicate the error.

The ea_unpack_object() function returns the ea_object_type of the first exacct object
unpacked from the buffer. It returns EO_ERROR if the exacct file is corrupted, and sets the
extended accounting error code to indicate the error.

The ea_write_object() function returns 0 on success. Otherwise it returns −1 and sets the
extended accounting error code to indicate the error.

The ea_copy_object() and ea_copy_object_tree() functions return the copied object on
success. Otherwise they return NULL and set the extended accounting error code to indicate
the error.

The ea_get_object_tree() function returns the list of objects read from the file on success.
Otherwise it returns NULL and sets the extended accounting error code to indicate the error.

The extended account error code can be retrieved using ea_error(3EXACCT).

These functions may fail if:

EXR_SYSCALL_FAIL

A system call invoked by the function failed. The errno variable contains the error value set
by the underlying call. On memory allocation failure, errno will be set to ENOMEM.

EXR_CORRUPT_FILE

The file referred to by name is not a valid exacct file, or is unparsable, and therefore
appears corrupted. This error is also used by ea_unpack_buffer() to indicate a corrupted
buffer.

EXR_EOF

The end of the file has been reached. In the case of ea_previous_record(), the previous
record could not be reached, either because the head of the file was encountered or because
the previous record could not be skipped over.

The exacct file format can be used to represent data other than that in the extended
accounting format. By using a unique creator type in the file header, application writers can
develop their own format suited to the needs of their application.

Return Values

Errors

Usage

ea_pack_object(3EXACCT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 4 Oct 2007308

EXAMPLE 1 Open and close exacct file.

The following example opens the extended accounting data file for processes. The exacct file
is then closed.

#include <stdio.h>

#include <exacct.h>

ea_file_t ef;

ea_object_t *obj;

...

ea_open(&ef, "foo", O_RDONLY, ...);

while ((obj = ea_get_object_tree(&ef, 1)) != NULL) {

if (obj->eo_type == EO_ITEM) {

/* handle item */

} else {

/* handle group */

}

ea_free_object(obj, EUP_ALLOC);

}

if (ea_error() != EXR_EOF) {

/* handle error */

}

ea_close(&ef);

EXAMPLE 2 Construct an exacct file consisting of a single object containing the current process ID.

#include <sys/types.h>

#include <unistd.h>

#include <exacct.h>

...

ea_file_t ef;

ea_object_t obj;

pid_t my_pid;

ea_open(&ef, "foo", O_CREAT | O_WRONLY, ...);

my_pid = getpid();

ea_set_item(&obj, EXT_UINT32 | EXC_DEFAULT | EXT_PROC_PID, &my_pid, 0);

(void) ea_write_object(&ef, &obj);

ea_close(&ef);

Examples

ea_pack_object(3EXACCT)

Extended Library Functions, Volume 1 309

EXAMPLE 2 Construct an exacct file consisting of a single object containing the current process ID.
(Continued)

...

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

read(2), ea_error(3EXACCT), ea_open(3EXACCT), ea_set_item(3EXACCT),
libexacct(3LIB), attributes(5)

Attributes

See Also

ea_pack_object(3EXACCT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 4 Oct 2007310

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibexacct-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ea_set_item, ea_alloc, ea_strdup, ea_set_group, ea_match_object_catalog,
ea_attach_to_object, ea_attach_to_group, ea_free, ea_strfree, ea_free_item, ea_free_object –
create, destroy and manipulate exacct objects

cc [flag...] file... -lexacct [library...]

#include <exacct.h>

int ea_set_item(ea_object_t *obj, ea_catalog_t tag, void *value,
size_t valsize);

void *ea_alloc(size_t size);

char *ea_strdup(char *ptr);

int ea_set_group(ea_object_t *obj, ea_catalog_t tag);

int ea_match_object_catalog(ea_object_t *obj, ea_catalog_t catmask);

void ea_attach_to_object(ea_object_t *head_obj, ea_object_t *obj);

void ea_attach_to_group(ea_object_t *group_obj, ea_object_t *obj);

void ea_free(void *ptr, size_t size);

void ea_strfree(char *ptr);

int ea_free_item(ea_object_t *obj, int flag);

void ea_free_object(ea_object_t *obj, int flag);

The ea_alloc() function allocates a block of memory of the requested size. This block can be
safely passed to libexacct functions, and can be safely freed by any of the ea_free()
functions.

The ea_strdup() function can be used to duplicate a string that is to be stored inside an
ea_object_t structure.

The ea_set_item() function assigns the given exacct object to be a data item with value set
according to the remaining arguments. For buffer-based data values (EXT_STRING,
EXT_EXACCT_OBJECT, and EXT_RAW), a copy of the passed buffer is taken. In the case of
EXT_EXACCT_OBJECT, the passed buffer should be a packed exacct object as returned by
ea_pack_object(3EXACCT). Any item assigned with ea_set_item() should be freed with
ea_free_item() specifying a flag value of EUP_ALLOC when the item is no longer needed.

The ea_match_object_catalog() function returns TRUE if the exacct object specified by obj
has a catalog tag that matches the mask specified by catmask.

The ea_attach_to_object() function attaches an object to the given object. The
ea_attach_to_group() function attaches a chain of objects as member items of the given
group. Objects are inserted at the end of the list of any previously attached objects.

The ea_free() function frees a block of memory previously allocated by ea_alloc().

The ea_strfree() function frees a string previously copied by ea_strdup().

Name

Synopsis

Description

ea_set_item(3EXACCT)

Extended Library Functions, Volume 1 311

The ea_free_item() function frees the value fields in the ea_object_t indicated by obj, if
EUP_ALLOC is specified. The object itself is not freed. The ea_free_object() function frees the
specified object and any attached hierarchy of objects. If the flag argument is set to EUP_ALLOC,
ea_free_object() will also free any variable-length data in the object hierarchy; if set to
EUP_NOALLOC, ea_free_object() will not free variable-length data. In particular, these flags
should correspond to those specified in calls to ea_unpack_object(3EXACCT).

The ea_match_object_catalog() function returns 0 if the object's catalog tag does not match
the given mask, and 1 if there is a match.

Other integer-valued functions return 0 if successful. Otherwise these functions return -1 and
set the extended accounting error code appropriately. Pointer-valued functions return a valid
pointer if successful and NULL otherwise, setting the extended accounting error code
appropriately. The extended accounting error code can be examined with
ea_error(3EXACCT).

The ea_set_item(), ea_set_group(), and ea_match_object_catalog() functions may fail
if:

EXR_SYSCALL_FAIL A system call invoked by the function failed. The errno variable
contains the error value set by the underlying call.

EXR_INVALID_OBJECT The passed object is of an incorrect type, for example passing a
group object to ea_set_item().

The exacct file format can be used to represent data other than that in the extended
accounting format. By using a unique creator type in the file header, application writers can
develop their own format suited to the needs of their application.

EXAMPLE 1 Open and close exacct file.

Construct an exacct file consisting of a single object containing the current process ID.

#include <sys/types.h>

#include <unistd.h>

#include <exacct.h>

...

ea_file_t ef;

ea_object_t obj;

pid_t my_pid;

my_pid = getpid();

ea_set_item(&obj, EXT_UINT32 | EXC_DEFAULT | EXT_PROC_PID,

&my_pid, sizeof(my_pid));

...

Return Values

Errors

Usage

Examples

ea_set_item(3EXACCT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 28 Nov 2001312

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

read(2), ea_error(3EXACCT), ea_open(3EXACCT), ea_pack_object(3EXACCT),
libexacct(3LIB), attributes(5)

Attributes

See Also

ea_set_item(3EXACCT)

Extended Library Functions, Volume 1 313

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibexacct-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ecb_crypt, cbc_crypt, des_setparity, DES_FAILED – fast DES encryption

#include <rpc/des_crypt.h>

int ecb_crypt(char *key, char *data, unsigned datalen,
unsigned mode);

int cbc_crypt(char *key, char *data, unsigned datalen,
unsigned mode, char *ivec);

void des_setparity(char *key);

int DES_FAILED(int stat);

ecb_crypt() and cbc_crypt() implement the NBS DES (Data Encryption Standard). These
routines are faster and more general purpose than crypt(3C). They also are able to utilize DES
hardware if it is available. ecb_crypt() encrypts in ECB (Electronic Code Book) mode, which
encrypts blocks of data independently. cbc_crypt() encrypts in CBC (Cipher Block
Chaining) mode, which chains together successive blocks. CBC mode protects against
insertions, deletions, and substitutions of blocks. Also, regularities in the clear text will not
appear in the cipher text.

The first parameter, key, is the 8-byte encryption key with parity. To set the key's parity, which
for DES is in the low bit of each byte, use des_setparity(). The second parameter, data,
contains the data to be encrypted or decrypted. The third parameter, datalen, is the length in
bytes of data, which must be a multiple of 8. The fourth parameter, mode, is formed by OR'ing
together the DES_ENCRYPT or DES_DECRYPT to specify the encryption direction and
DES_HW or DES_SW to specify software or hardware encryption. If DES_HW is specified,
and there is no hardware, then the encryption is performed in software and the routine
returns DESERR_NOHWDEVICE.

For cbc_crypt(), the parameter ivec is the 8-byte initialization vector for the chaining. It is
updated to the next initialization vector upon successful return.

Given a result status stat, the macro DES_FAILED is false only for the first two statuses.

DESERR_NONE No error.

DESERR_NOHWDEVICE Encryption succeeded, but done in software instead of the requested
hardware.

DESERR_HWERROR An error occurred in the hardware or driver.

DESERR_BADPARAM Bad parameter to routine.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Name

Synopsis

Description

Return Values

Attributes

ecb_crypt(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 3 Mar 2008314

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Acrypt-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

crypt(3C), attributes(5)

When compiling multi-thread applications, the _REENTRANT flag must be defined on the
compile line. This flag should only be used in multi-thread applications.

See Also

Notes

ecb_crypt(3EXT)

Extended Library Functions, Volume 1 315

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Acrypt-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

efi_alloc_and_init, efi_alloc_and_read, efi_free, efi_write, efi_use_whole_disk – manipulate a
disk's EFI Partition Table

cc [flag ...] file... -lefi [library ...]

#include <sys/vtoc.h>

#include <sys/efi_partition.h>

int efi_alloc_and_init(int fd, uint32_t nparts, dk_gpt_t **vtoc);

int efi_alloc_and_read(int fd, dk_gpt_t **vtoc);

void efi_free(dk_gpt_t *vtoc);

int efi_write(int fd, dk_gpt_t *vtoc);

int efi_use_whole_disk(int fd);

The efi_alloc_and_init() function initializes the dk_gpt_t structure specified by vtoc in
preparation for a call to efi_write(). It calculates and initializes the efi_version,
efi_lbasize, efi_nparts, efi_first_u_lba, efi_last_lba, and efi_last_u_lba members
of this sturcture. The caller can then set the efi_nparts member.

The efi_alloc_and_read() function allocates memory and returns the partition table.

The efi_free() function frees the memory allocated by efi_alloc_and_init() and
efi_alloc_and_read().

The efi_write() function writes the EFI partition table.

The efi_use_whole_disk() function takes any space that is not contained in the disk label
and adds it into the EFI label. If the reserved partition is right before the backup label, add the
space to the last physically non-zero area before the reserved partition. Otherwise, add the
space to the last physically non-zero area before the backup label.

The fd argument refers to any partition on a raw disk, opened with O_NDELAY. See open(2).

The nparts argument specifies the number of desired partitions.

The vtoc argument is a dk_gpt_t structure that describes an EFI partition table and contains at
least the following members:

uint_t efi_version; /* set to EFI_VERSION_CURRENT */

uint_t efi_nparts; /* index of last user-defined */

/* (non-zero) partition in efi_parts */

/* plus one */

uint_t efi_lbasize; /* size of block in bytes */

diskaddr_t efi_last_lba; /* last block on the disk */

diskaddr_t efi_first_u_lba; /* first block after labels */

diskaddr_t efi_last_u_lba; /* last block before backup labels */

uint_t efi_num_of_partition_entries /* number of partitions */

/* in efi_parts, representing actual */

Name

Synopsis

Description

efi_alloc_and_init(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 28 Jun 2012316

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2open-2

/* GUID partition entries allocated */

/* on disk */

struct dk_part efi_parts[]; /* array of partitions */

Upon successful completion, efi_alloc_and_init() returns 0. Otherwise it returns VT_EIO
if an I/O operation to the disk fails.

Upon successful completion, efi_alloc_and_read() returns a positive integer indicating the
partition index associated with the open file descriptor. Otherwise, it returns a negative
integer to indicate one of the following:

VT_EIO An I/O error occurred.

VT_ERROR An unknown error occurred.

VT_EINVAL An EFI label was not found.

Upon successful completion, efi_write() returns 0. Otherwise, it returns a negative integer
to indicate one of the following:

VT_EIO An I/O error occurred.

VT_ERROR An unknown error occurred.

VT_EINVAL The label contains incorrect data.

Upon successful completion, efi_use_whole_disk() returns 0. Otherwise, it returns a
negative integer to indicate one of the following:

VT_EIO An I/O error occurred.

VT_ERROR An unknown error occurred.

VT_EINVAL The label contains incorrect data.

VT_ENOSPC Space out of label was not found.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

fmthard(1M), format(1M), prtvtoc(1M), ioctl(2), open(2), libefi(3LIB),
read_vtoc(3EXT), attributes(5), dkio(7I)

Return Values

Attributes

See Also

efi_alloc_and_init(3EXT)

Extended Library Functions, Volume 1 317

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mfmthard-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mformat-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mprtvtoc-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibefi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7dkio-7i

elf32_checksum, elf64_checksum – return checksum of elf image

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

long elf32_checksum(Elf *elf);

long elf64_checksum(Elf *elf);

The elf32_checksum() function returns a simple checksum of selected sections of the image
identified by elf. The value is typically used as the .dynamic tag DT_CHECKSUM, recorded in
dynamic executables and shared objects.

Selected sections of the image are used to calcluate the checksum in order that its value is not
affected by utilities such as strip(1).

For the 64−bit class, replace 32 with 64 as appropriate.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

elf(3ELF), elf_version(3ELF), gelf(3ELF), libelf(3LIB), attributes(5)

Name

Synopsis

Description

Attributes

See Also

elf32_checksum(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 11 Jul 2001318

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1strip-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

elf32_fsize, elf64_fsize – return the size of an object file type

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

size_t elf32_fsize(Elf_Type type, size_t count, unsigned ver);

size_t elf64_fsize(Elf_Type type, size_t count, unsigned ver);

elf32_fsize() gives the size in bytes of the 32-bit file representation of count data objects
with the given type. The library uses version ver to calculate the size. See elf(3ELF) and
elf_version(3ELF).

Constant values are available for the sizes of fundamental types:

Elf_Type File Size Memory Size

ELF_T_ADDR ELF32_FSZ_ADDR sizeof(Elf32_Addr)

ELF_T_BYTE 1 sizeof(unsigned char)

ELF_T_HALF ELF32_FSZ_HALF sizeof(Elf32_Half)

ELT_T_OFF ELF32_FSZ_OFF sizeof(Elf32_Off)

ELF_T_SWORD ELF32_FSZ_SWORD sizeof(Elf32_Sword)

ELF_T_WORD ELF32_FSZ_WORD sizeof(Elf32_Word)

elf32_fsize() returns 0 if the value of type or ver is unknown. See elf32_xlatetof(3ELF)
for a list of the type values.

For the 64−bit class, replace 32 with 64 as appropriate.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

elf(3ELF), elf32_xlatetof(3ELF), elf_version(3ELF), libelf(3LIB), attributes(5)

Name

Synopsis

Description

Attributes

See Also

elf32_fsize(3ELF)

Extended Library Functions, Volume 1 319

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

elf32_getehdr, elf32_newehdr, elf64_getehdr, elf64_newehdr – retrieve class-dependent
object file header

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Elf32_Ehdr *elf32_getehdr(Elf *elf);

Elf32_Ehdr *elf32_newehdr(Elf *elf);

Elf64_Ehdr *elf64_getehdr(Elf *elf);

Elf64_Ehdr *elf64_newehdr(Elf *elf);

For a 32-bit class file, elf32_getehdr() returns a pointer to an ELF header, if one is available
for the ELF descriptor elf. If no header exists for the descriptor, elf32_newehdr() allocates a
clean one, but it otherwise behaves the same as elf32_getehdr(). It does not allocate a new
header if one exists already. If no header exists for elf32_getehdr(), one cannot be created
for elf32_newehdr(), a system error occurs, the file is not a 32-bit class file, or elf is NULL, both
functions return a null pointer.

For the 64−bit class, replace 32 with 64 as appropriate.

The header includes the following members:

unsigned char e_ident[EI_NIDENT];

Elf32_Half e_type;

Elf32_Half e_machine;

Elf32_Word e_version;

Elf32_Addr e_entry;

Elf32_Off e_phoff;

Elf32_Off e_shoff;

Elf32_Word e_flags;

Elf32_Half e_ehsize;

Elf32_Half e_phentsize;

Elf32_Half e_phnum;

Elf32_Half e_shentsize;

Elf32_Half e_shnum;

Elf32_Half e_shstrndx;

The elf32_newehdr() function automatically sets the ELF_F_DIRTY bit. See
elf_flagdata(3ELF).

An application can use elf_getident() to inspect the identification bytes from a file.

An application can use elf_getshnum() and elf_getshstrndx() to obtain section header
information. The location of this section header information differs between standard ELF
files to those that require Extended Sections.

Name

Synopsis

Description

elf32_getehdr(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 19 Jun 2002320

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

elf(3ELF), elf_begin(3ELF), elf_flagdata(3ELF), elf_getident(3ELF),
elf_getshnum(3ELF), elf_getshstrndx(3ELF), libelf(3LIB), attributes(5)

Attributes

See Also

elf32_getehdr(3ELF)

Extended Library Functions, Volume 1 321

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

elf32_getphdr, elf32_newphdr, elf64_getphdr, elf64_newphdr – retrieve class-dependent
program header table

cc [flag ...] file... -lelf [library ...]

#include <libelf.h>

Elf32_Phdr *elf32_getphdr(Elf *elf);

Elf32_Phdr *elf32_newphdr(Elf *elf, size_t count);

Elf64_Phdr *elf64_getphdr(Elf *elf);

Elf64_Phdr *elf64_newphdr(Elf *elf, size_t count);

For a 32-bit class file, elf32_getphdr() returns a pointer to the program execution header
table, if one is available for the ELF descriptor elf.

elf32_newphdr() allocates a new table with count entries, regardless of whether one existed
previously, and sets the ELF_F_DIRTY bit for the table. See elf_flagdata(3ELF). Specifying a
zero count deletes an existing table. Note this behavior differs from that of elf32_newehdr()
allowing a program to replace or delete the program header table, changing its size if
necessary. See elf32_getehdr(3ELF).

If no program header table exists, the file is not a 32-bit class file, an error occurs, or elf is
NULL, both functions return a null pointer. Additionally, elf32_newphdr() returns a null
pointer if count is 0.

The table is an array of Elf32_Phdr structures, each of which includes the following members:

Elf32_Word p_type;

Elf32_Off p_offset;

Elf32_Addr p_vaddr;

Elf32_Addr p_paddr;

Elf32_Word p_filesz;

Elf32_Word p_memsz;

Elf32_Word p_flags;

Elf32_Word p_align;

The Elf64_Phdr structures include the following members:

Elf64_Word p_type;

Elf64_Word p_flags;

Elf64_Off p_offset;

Elf64_Addr p_vaddr;

Elf64_Addr p_paddr;

Elf64_Xword p_filesz;

Elf64_Xword p_memsz;

Elf64_Xword p_align;

For the 64−bit class, replace 32 with 64 as appropriate.

Name

Synopsis

Description

elf32_getphdr(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 11 Jul 2001322

The ELF header's e_phnum member tells how many entries the program header table has. See
elf32_getehdr(3ELF). A program may inspect this value to determine the size of an existing
table; elf32_newphdr() automatically sets the member's value to count. If the program is
building a new file, it is responsible for creating the file's ELF header before creating the
program header table.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

elf(3ELF), elf32_getehdr(3ELF), elf_begin(3ELF), elf_flagdata(3ELF), libelf(3LIB),
attributes(5)

Attributes

See Also

elf32_getphdr(3ELF)

Extended Library Functions, Volume 1 323

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

elf32_getshdr, elf64_getshdr – retrieve class-dependent section header

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Elf32_Shdr *elf32_getshdr(Elf_Scn *scn);

Elf64_Shdr *elf64_getshdr(Elf_Scn *scn);

For a 32-bit class file, elf32_getshdr() returns a pointer to a section header for the section
descriptor scn. Otherwise, the file is not a 32-bit class file, scn was NULL, or an error occurred;
elf32_getshdr() then returns NULL.

The elf32_getshdr header includes the following members:

Elf32_Word sh_name;

Elf32_Word sh_type;

Elf32_Word sh_flags;

Elf32_Addr sh_addr;

Elf32_Off sh_offset;

Elf32_Word sh_size;

Elf32_Word sh_link;

Elf32_Word sh_info;

Elf32_Word sh_addralign;

Elf32_Word sh_entsize;

while the elf64_getshdr header includes the following members:

Elf64_Word sh_name;

Elf64_Word sh_type;

Elf64_Xword sh_flags;

Elf64_Addr sh_addr;

Elf64_Off sh_offset;

Elf64_Xword sh_size;

Elf64_Word sh_link;

Elf64_Word sh_info;

Elf64_Xword sh_addralign;

Elf64_Xword sh_entsize;

For the 64−bit class, replace 32 with 64 as appropriate.

If the program is building a new file, it is responsible for creating the file's ELF header before
creating sections.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Name

Synopsis

Description

Attributes

elf32_getshdr(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 11 Jul 2001324

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

elf(3ELF), elf_flagdata(3ELF), elf_getscn(3ELF), elf_strptr(3ELF), libelf(3LIB),
attributes(5)

See Also

elf32_getshdr(3ELF)

Extended Library Functions, Volume 1 325

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

elf32_xlatetof, elf32_xlatetom, elf64_xlatetof, elf64_xlatetom – class-dependent data
translation

cc [flag ...] file... -lelf [library ...]

#include <libelf.h>

Elf_Data *elf32_xlatetof(Elf_Data *dst, const Elf_Data *src,
unsigned encode);

Elf_Data *elf32_xlatetom(Elf_Data *dst, const Elf_Data *src,
unsigned encode);

Elf_Data *elf64_xlatetof(Elf_Data *dst, const Elf_Data *src,
unsigned encode);

Elf_Data *elf64_xlatetom(Elf_Data *dst, const Elf_Data *src,
unsigned encode);

elf32_xlatetom() translates various data structures from their 32-bit class file
representations to their memory representations; elf32_xlatetof() provides the inverse.
This conversion is particularly important for cross development environments. src is a pointer
to the source buffer that holds the original data; dst is a pointer to a destination buffer that will
hold the translated copy. encode gives the byte encoding in which the file objects are to be
represented and must have one of the encoding values defined for the ELF header's
e_ident[EI_DATA] entry (see elf_getident(3ELF)). If the data can be translated, the
functions return dst. Otherwise, they return NULL because an error occurred, such as
incompatible types, destination buffer overflow, etc.

elf_getdata(3ELF) describes the Elf_Data descriptor, which the translation routines use as
follows:

d_buf Both the source and destination must have valid buffer pointers.

d_type This member's value specifies the type of the data to which d_buf points and
the type of data to be created in the destination. The program supplies a
d_type value in the source; the library sets the destination's d_type to the same
value. These values are summarized below.

d_size This member holds the total size, in bytes, of the memory occupied by the
source data and the size allocated for the destination data. If the destination
buffer is not large enough, the routines do not change its original contents. The
translation routines reset the destination's d_size member to the actual size
required, after the translation occurs. The source and destination sizes may
differ.

d_version This member holds the version number of the objects (desired) in the buffer.
The source and destination versions are independent.

Name

Synopsis

Description

elf32_xlatetof(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 11 Jul 2001326

Translation routines allow the source and destination buffers to coincide. That is, dst→d_buf

may equal src→d_buf. Other cases where the source and destination buffers overlap give
undefined behavior.

Elf_Type 32-Bit Memory Type

ELF_T_ADDR Elf32_Addr

ELF_T_BYTE unsigned char

ELF_T_DYN Elf32_Dyn

ELF_T_EHDR Elf32_Ehdr

ELF_T_HALF Elf32_Half

ELT_T_OFF Elf32_Off

ELF_T_PHDR Elf32_Phdr

ELF_T_REL Elf32_Rel

ELF_T_RELA Elf32_Rela

ELF_T_SHDR Elf32_Shdr

ELF_T_SWORD Elf32_Sword

ELF_T_SYM Elf32_Sym

ELF_T_WORD Elf32_Word

Translating buffers of type ELF_T_BYTE does not change the byte order.

For the 64−bit class, replace 32 with 64 as appropriate.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

elf(3ELF), elf32_fsize(3ELF), elf_getdata(3ELF), elf_getident(3ELF), libelf(3LIB),
attributes(5)

Attributes

See Also

elf32_xlatetof(3ELF)

Extended Library Functions, Volume 1 327

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

elf – object file access library

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Functions in the ELF access library let a program manipulate ELF (Executable and Linking
Format) object files, archive files, and archive members. The header provides type and
function declarations for all library services.

Programs communicate with many of the higher-level routines using an ELF descriptor. That
is, when the program starts working with a file, elf_begin(3ELF) creates an ELF descriptor
through which the program manipulates the structures and information in the file. These ELF
descriptors can be used both to read and to write files. After the program establishes an ELF
descriptor for a file, it may then obtain section descriptors to manipulate the sections of the file
(see elf_getscn(3ELF)). Sections hold the bulk of an object file's real information, such as
text, data, the symbol table, and so on. A section descriptor ‘‘belongs'' to a particular ELF
descriptor, just as a section belongs to a file. Finally, data descriptors are available through
section descriptors, allowing the program to manipulate the information associated with a
section. A data descriptor ‘‘belongs'' to a section descriptor.

Descriptors provide private handles to a file and its pieces. In other words, a data descriptor is
associated with one section descriptor, which is associated with one ELF descriptor, which is
associated with one file. Although descriptors are private, they give access to data that may be
shared. Consider programs that combine input files, using incoming data to create or update
another file. Such a program might get data descriptors for an input and an output section. It
then could update the output descriptor to reuse the input descriptor's data. That is, the
descriptors are distinct, but they could share the associated data bytes. This sharing avoids the
space overhead for duplicate buffers and the performance overhead for copying data
unnecessarily.

ELF provides a framework in which to define a family of object files, supporting multiple
processors and architectures. An important distinction among object files is the class, or
capacity, of the file. The 32-bit class supports architectures in which a 32-bit object can
represent addresses, file sizes, and so on, as in the following:

Name Purpose

Elf32_Addr Unsigned address

Elf32_Half Unsigned medium integer

Elf32_Off Unsigned file offset

Elf32_Sword Signed large integer

Elf32_Word Unsigned large integer

unsigned char Unsigned small integer

Name

Synopsis

Description

File Classes

elf(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 23 Jul 2001328

The 64−bit class works the same as the 32−bit class, substituting 64 for 32 as necessary. Other
classes will be defined as necessary, to support larger (or smaller) machines. Some library
services deal only with data objects for a specific class, while others are class-independent. To
make this distinction clear, library function names reflect their status, as described below.

Conceptually, two parallel sets of objects support cross compilation environments. One set
corresponds to file contents, while the other set corresponds to the native memory image of
the program manipulating the file. Type definitions supplied by the headers work on the
native machine, which may have different data encodings (size, byte order, and so on) than the
target machine. Although native memory objects should be at least as big as the file objects (to
avoid information loss), they may be bigger if that is more natural for the host machine.

Translation facilities exist to convert between file and memory representations. Some library
routines convert data automatically, while others leave conversion as the program's
responsibility. Either way, programs that create object files must write file-typed objects to
those files; programs that read object files must take a similar view. See
elf32_xlatetof(3ELF) and elf32_fsize(3ELF) for more information.

Programs may translate data explicitly, taking full control over the object file layout and
semantics. If the program prefers not to have and exercise complete control, the library
provides a higher-level interface that hides many object file details. elf_begin() and related
functions let a program deal with the native memory types, converting between memory
objects and their file equivalents automatically when reading or writing an object file.

Object file versions allow ELF to adapt to new requirements. Three independent versions can
be important to a program. First, an application program knows about a particular version by
virtue of being compiled with certain headers. Second, the access library similarly is compiled
with header files that control what versions it understands. Third, an ELF object file holds a
value identifying its version, determined by the ELF version known by the file's creator.
Ideally, all three versions would be the same, but they may differ.

If a program's version is newer than the access library, the program might use information
unknown to the library. Translation routines might not work properly, leading to undefined
behavior. This condition merits installing a new library.

The library's version might be newer than the program's and the file's. The library understands
old versions, thus avoiding compatibility problems in this case.

Finally, a file's version might be newer than either the program or the library understands. The
program might or might not be able to process the file properly, depending on whether the file
has extra information and whether that information can be safely ignored. Again, the safe
alternative is to install a new library that understands the file's version.

To accommodate these differences, a program must use elf_version(3ELF) to pass its
version to the library, thus establishing the working version for the process. Using this, the
library accepts data from and presents data to the program in the proper representations.

Data Representation

ELF Versions

elf(3ELF)

Extended Library Functions, Volume 1 329

When the library reads object files, it uses each file's version to interpret the data. When
writing files or converting memory types to the file equivalents, the library uses the program's
working version for the file data.

As mentioned above, elf_begin() and related routines provide a higher-level interface to
ELF files, performing input and output on behalf of the application program. These routines
assume a program can hold entire files in memory, without explicitly using temporary files.
When reading a file, the library routines bring the data into memory and perform subsequent
operations on the memory copy. Programs that wish to read or write large object files with this
model must execute on a machine with a large process virtual address space. If the underlying
operating system limits the number of open files, a program can use elf_cntl(3ELF) to
retrieve all necessary data from the file, allowing the program to close the file descriptor and
reuse it.

Although the elf_begin() interfaces are convenient and efficient for many programs, they
might be inappropriate for some. In those cases, an application may invoke the
elf32_xlatetom(3ELF) or elf32_xlatetof(3ELF) data translation routines directly. These
routines perform no input or output, leaving that as the application's responsibility. By
assuming a larger share of the job, an application controls its input and output model.

Names associated with the library take several forms.

elf_name These class-independent names perform some service, name, for the
program.

elf32_name Service names with an embedded class, 32 here, indicate they work only
for the designated class of files.

Elf_Type Data types can be class-independent as well, distinguished by Type.

Elf32_Type Class-dependent data types have an embedded class name, 32 here.

ELF_C_CMD Several functions take commands that control their actions. These
values are members of the Elf_Cmd enumeration; they range from zero
through ELF_C_NUM−1.

ELF_F_FLAG Several functions take flags that control library status and/or actions.
Flags are bits that may be combined.

ELF32_FSZ_TYPE These constants give the file sizes in bytes of the basic ELF types for the
32-bit class of files. See elf32_fsize() for more information.

ELF_K_KIND The function elf_kind() identifies the KIND of file associated with an
ELF descriptor. These values are members of the Elf_Kind
enumeration; they range from zero through ELF_K_NUM−1.

ELF_T_TYPE When a service function, such as elf32_xlatetom() or
elf32_xlatetof(), deals with multiple types, names of this form
specify the desired TYPE. Thus, for example, ELF_T_EHDR is directly

System Services

Library Names

elf(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 23 Jul 2001330

related to Elf32_Ehdr. These values are members of the Elf_Type
enumeration; they range from zero through ELF_T_NUM−1.

EXAMPLE 1 An interpretation of elf file.

The basic interpretation of an ELF file consists of:

■ opening an ELF object file
■ obtaining an ELF descriptor
■ analyzing the file using the descriptor.

The following example opens the file, obtains the ELF descriptor, and prints out the names of
each section in the file.

#include <fcntl.h>

#include <stdio.h>

#include <libelf.h>

#include <stdlib.h>

#include <string.h>

static void failure(void);

void

main(int argc, char ** argv)

{

Elf32_Shdr * shdr;

Elf32_Ehdr * ehdr;

Elf * elf;

Elf_Scn * scn;

Elf_Data * data;

int fd;

unsigned int cnt;

/* Open the input file */

if ((fd = open(argv[1], O_RDONLY)) == -1)

exit(1);

/* Obtain the ELF descriptor */

(void) elf_version(EV_CURRENT);

if ((elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL)

failure();

/* Obtain the .shstrtab data buffer */

if (((ehdr = elf32_getehdr(elf)) == NULL) ||

((scn = elf_getscn(elf, ehdr->e_shstrndx)) == NULL) ||

((data = elf_getdata(scn, NULL)) == NULL))

failure();

/* Traverse input filename, printing each section */

for (cnt = 1, scn = NULL; scn = elf_nextscn(elf, scn); cnt++) {

Examples

elf(3ELF)

Extended Library Functions, Volume 1 331

EXAMPLE 1 An interpretation of elf file. (Continued)

if ((shdr = elf32_getshdr(scn)) == NULL)

failure();

(void) printf("[%d] %s\n", cnt,

(char *)data->d_buf + shdr->sh_name);

}

} /* end main */

static void

failure()

{

(void) fprintf(stderr, "%s\n", elf_errmsg(elf_errno()));

exit(1);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

ar.h(3HEAD), elf32_checksum(3ELF), elf32_fsize(3ELF), elf32_getshdr(3ELF),
elf32_xlatetof(3ELF), elf_begin(3ELF), elf_cntl(3ELF), elf_errmsg(3ELF),
elf_fill(3ELF), elf_getarhdr(3ELF), elf_getarsym(3ELF), elf_getbase(3ELF),
elf_getdata(3ELF), elf_getident(3ELF), elf_getscn(3ELF), elf_hash(3ELF),
elf_kind(3ELF), elf_memory(3ELF), elf_rawfile(3ELF), elf_strptr(3ELF),
elf_update(3ELF), elf_version(3ELF), gelf(3ELF), libelf(3LIB), attributes(5),
lfcompile(5)

ANSI C Programmer's Guide

a.out(4)

Information in the ELF headers is separated into common parts and processor-specific parts.
A program can make a processor's information available by including the appropriate header:
<sys/elf_NAME.h> where NAME matches the processor name as used in the ELF file
header.

Name Processor

M32 AT&T WE 32100

SPARC SPARC

Attributes

See Also

SPARC only

Notes

elf(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 23 Jul 2001332

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Far.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lfcompile-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4a.out-4

Name Processor

386 Intel 80386, 80486, Pentium

Other processors will be added to the table as necessary.

To illustrate, a program could use the following code to ‘‘see'' the processor-specific
information for the SPARC based system.

#include <libelf.h>

#include <sys/elf_SPARC.h>

Without the <sys/elf_SPARC.h> definition, only the common ELF information would be
visible.

A program could use the following code to ‘‘see'' the processor-specific information for the
Intel 80386:

#include <libelf.h>

#include <sys/elf_386.h>

Without the <sys/elf_386.h> definition, only the common ELF information would be
visible.

Although reading the objects is rather straightforward, writing/updating them can corrupt the
shared offsets among sections. Upon creation, relationships are established among the
sections that must be maintained even if the object's size is changed.

elf(3ELF)

Extended Library Functions, Volume 1 333

elf_begin, elf_end, elf_memory, elf_next, elf_rand – process ELF object files

cc [flag...] file ... -lelf [library ...]

#include <libelf.h>

Elf *elf_begin(int fildes, Elf_Cmd cmd, Elf *ref);

int elf_end(Elf *elf);

Elf *elf_memory(char *image, size_t sz);

Elf_Cmd elf_next(Elf *elf);

size_t elf_rand(Elf *elf, size_t offset);

The elf_begin(), elf_end(), elf_memory(), elf_next(), and elf_rand() functions work
together to process Executable and Linking Format (ELF) object files, either individually or as
members of archives. After obtaining an ELF descriptor from elf_begin() or elf_memory(),
the program can read an existing file, update an existing file, or create a new file. The fildes
argument is an open file descriptor that elf_begin() uses for reading or writing. The elf
argument is an ELF descriptor previously returned from elf_begin(). The initial file offset
(see lseek(2)) is unconstrained, and the resulting file offset is undefined.

The cmd argument can take the following values:

ELF_C_NULL When a program sets cmd to this value, elf_begin() returns a null pointer,
without opening a new descriptor. ref is ignored for this command. See the
examples below for more information.

ELF_C_READ When a program wants to examine the contents of an existing file, it should
set cmd to this value. Depending on the value of ref, this command examines
archive members or entire files. Three cases can occur.
■ If ref is a null pointer, elf_begin() allocates a new ELF descriptor and

prepares to process the entire file. If the file being read is an archive,
elf_begin() also prepares the resulting descriptor to examine the initial
archive member on the next call to elf_begin(), as if the program had
used elf_next() or elf_rand() to ‘‘move'' to the initial member.

■ If ref is a non-null descriptor associated with an archive file,
elf_begin() lets a program obtain a separate ELF descriptor associated
with an individual member. The program should have used elf_next()

or elf_rand() to position ref appropriately (except for the initial
member, which elf_begin() prepares; see the example below). In this
case, fildes should be the same file descriptor used for the parent archive.

■ If ref is a non-null ELF descriptor that is not an archive, elf_begin()
increments the number of activations for the descriptor and returns ref,
without allocating a new descriptor and without changing the
descriptor's read/write permissions. To terminate the descriptor for ref,

Name

Synopsis

Description

elf_begin(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 11 Jul 2001334

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2lseek-2

the program must call elf_end() once for each activation. See the
examples below for more information.

ELF_C_RDWR This command duplicates the actions of ELF_C_READ and additionally
allows the program to update the file image (see elf_update(3ELF)). Using
ELF_C_READ gives a read-only view of the file, while ELF_C_RDWR lets the
program read and write the file. ELF_C_RDWR is not valid for archive
members. If ref is non-null, it must have been created with the ELF_C_RDWR
command.

ELF_C_WRITE If the program wants to ignore previous file contents, presumably to create a
new file, it should set cmd to this value. ref is ignored for this command.

The elf_begin() function operates on all files (including files with zero bytes), providing it
can allocate memory for its internal structures and read any necessary information from the
file. Programs reading object files can call elf_kind(3ELF) or elf32_getehdr(3ELF) to
determine the file type (only object files have an ELF header). If the file is an archive with no
more members to process, or an error occurs, elf_begin() returns a null pointer. Otherwise,
the return value is a non-null ELF descriptor.

Before the first call to elf_begin(), a program must call elf_version() to coordinate
versions.

The elf_end() function is used to terminate an ELF descriptor, elf, and to deallocate data
associated with the descriptor. Until the program terminates a descriptor, the data remain
allocated. A null pointer is allowed as an argument, to simplify error handling. If the program
wants to write data associated with the ELF descriptor to the file, it must use elf_update()
before calling elf_end().

Calling elf_end() removes one activation and returns the remaining activation count. The
library does not terminate the descriptor until the activation count reaches 0. Consequently, a
0 return value indicates the ELF descriptor is no longer valid.

The elf_memory() function returns a pointer to an ELF descriptor. The ELF image has read
operations enabled (ELF_C_READ). The image argument is a pointer to an image of the Elf file
mapped into memory. The sz argument is the size of the ELF image. An ELF image that is
mapped in with elf_memory() can be read and modified, but the ELF image size cannot be
changed.

The elf_next() function provides sequential access to the next archive member. Having an
ELF descriptor, elf, associated with an archive member, elf_next() prepares the containing
archive to access the following member when the program calls elf_begin(). After
successfully positioning an archive for the next member, elf_next() returns the value
ELF_C_READ. Otherwise, the open file was not an archive, elf was NULL, or an error occurred,
and the return value is ELF_C_NULL. In either case, the return value can be passed as an
argument to elf_begin(), specifying the appropriate action.

elf_begin(3ELF)

Extended Library Functions, Volume 1 335

The elf_rand() function provides random archive processing, preparing elf to access an
arbitrary archive member. The elf argument must be a descriptor for the archive itself, not a
member within the archive. The offset argument specifies the byte offset from the beginning of
the archive to the archive header of the desired member. See elf_getarsym(3ELF) for more
information about archive member offsets. When elf_rand() works, it returns offset.
Otherwise, it returns 0, because an error occurred, elf was NULL, or the file was not an archive
(no archive member can have a zero offset). A program can mix random and sequential
archive processing.

When processing a file, the library decides when to read or write the file, depending on the
program's requests. Normally, the library assumes the file descriptor remains usable for the
life of the ELF descriptor. If, however, a program must process many files simultaneously and
the underlying operating system limits the number of open files, the program can use
elf_cntl() to let it reuse file descriptors. After calling elf_cntl() with appropriate
arguments, the program can close the file descriptor without interfering with the library.

All data associated with an ELF descriptor remain allocated until elf_end() terminates the
descriptor's last activation. After the descriptors have been terminated, the storage is released;
attempting to reference such data gives undefined behavior. Consequently, a program that
deals with multiple input (or output) files must keep the ELF descriptors active until it finishes
with them.

EXAMPLE 1 A sample program of calling the elf_begin() function.

A prototype for reading a file appears on the next page. If the file is a simple object file, the
program executes the loop one time, receiving a null descriptor in the second iteration. In this
case, both elf and arf will have the same value, the activation count will be 2, and the
program calls elf_end() twice to terminate the descriptor. If the file is an archive, the loop
processes each archive member in turn, ignoring those that are not object files.

if (elf_version(EV_CURRENT) == EV_NONE)

{

/* library out of date */

/* recover from error */

}

cmd = ELF_C_READ;

arf = elf_begin(fildes, cmd, (Elf *)0);

while ((elf = elf_begin(fildes, cmd, arf)) != 0)

{

if ((ehdr = elf32_getehdr(elf)) != 0)

{

/* process the file . . . */

}

cmd = elf_next(elf);

elf_end(elf);

}

elf_end(arf);

System Services

Examples

elf_begin(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 11 Jul 2001336

EXAMPLE 1 A sample program of calling the elf_begin() function. (Continued)

Alternatively, the next example illustrates random archive processing. After identifying the
file as an archive, the program repeatedly processes archive members of interest. For clarity,
this example omits error checking and ignores simple object files. Additionally, this fragment
preserves the ELF descriptors for all archive members, because it does not call elf_end() to
terminate them.

elf_version(EV_CURRENT);

arf = elf_begin(fildes, ELF_C_READ, (Elf *)0);

if (elf_kind(arf) != ELF_K_AR)

{

/* not an archive */

}

/* initial processing */

/* set offset = . . . for desired member header */

while (elf_rand(arf, offset) == offset)

{

if ((elf = elf_begin(fildes, ELF_C_READ, arf)) == 0)

break;

if ((ehdr = elf32_getehdr(elf)) != 0)

{

/* process archive member . . . */

}

/* set offset = . . . for desired member header */

}

An archive starts with a ‘‘magic string'' that has SARMAG bytes; the initial archive member
follows immediately. An application could thus provide the following function to rewind an
archive (the function returns −1 for errors and 0 otherwise).

#include <ar.h>

#include <libelf.h>

int

rewindelf(Elf *elf)

{

if (elf_rand(elf, (size_t)SARMAG) == SARMAG)

return 0;

return −1;
}

The following outline shows how one might create a new ELF file. This example is simplified
to show the overall flow.

elf_version(EV_CURRENT);

fildes = open("path/name", O_RDWR|O_TRUNC|O_CREAT, 0666);

if ((elf = elf_begin(fildes, ELF_C_WRITE, (Elf *)0)) == 0)

return;

elf_begin(3ELF)

Extended Library Functions, Volume 1 337

EXAMPLE 1 A sample program of calling the elf_begin() function. (Continued)

ehdr = elf32_newehdr(elf);

phdr = elf32_newphdr(elf, count);

scn = elf_newscn(elf);

shdr = elf32_getshdr(scn);

data = elf_newdata(scn);

elf_update(elf, ELF_C_WRITE);

elf_end(elf);

Finally, the following outline shows how one might update an existing ELF file. Again, this
example is simplified to show the overall flow.

elf_version(EV_CURRENT);

fildes = open("path/name", O_RDWR);

elf = elf_begin(fildes, ELF_C_RDWR, (Elf *)0);

/* add new or delete old information */

. . .

/* ensure that the memory image of the file is complete */

elf_update(elf, ELF_C_NULL);

elf_update(elf, ELF_C_WRITE); /* update file */

elf_end(elf);

Notice that both file creation examples open the file with write and read permissions. On
systems that support mmap(2), the library uses it to enhance performance, and mmap(2) requires
a readable file descriptor. Although the library can use a write-only file descriptor, the
application will not obtain the performance advantages of mmap(2).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

creat(2), lseek(2), mmap(2), open(2), ar.h(3HEAD), elf(3ELF), elf32_getehdr(3ELF),
elf_cntl(3ELF), elf_getarhdr(3ELF), elf_getarsym(3ELF), elf_getbase(3ELF),
elf_getdata(3ELF), elf_getscn(3ELF), elf_kind(3ELF), elf_rawfile(3ELF),
elf_update(3ELF), elf_version(3ELF), libelf(3LIB), attributes(5)

Attributes

See Also

elf_begin(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 11 Jul 2001338

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2creat-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Far.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

elf_cntl – control an elf file descriptor

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

int elf_cntl(Elf *elf, Elf_Cmd cmd);

elf_cntl() instructs the library to modify its behavior with respect to an ELF descriptor, elf.
As elf_begin(3ELF) describes, an ELF descriptor can have multiple activations, and multiple
ELF descriptors may share a single file descriptor. Generally, elf_cntl() commands apply to
all activations of elf. Moreover, if the ELF descriptor is associated with an archive file,
descriptors for members within the archive will also be affected as described below. Unless
stated otherwise, operations on archive members do not affect the descriptor for the
containing archive.

The cmd argument tells what actions to take and may have the following values:

ELF_C_FDDONE This value tells the library not to use the file descriptor associated with elf.
A program should use this command when it has requested all the
information it cares to use and wishes to avoid the overhead of reading the
rest of the file. The memory for all completed operations remains valid, but
later file operations, such as the initial elf_getdata() for a section, will fail
if the data are not in memory already.

ELF_C_FDREAD This command is similar to ELF_C_FDDONE, except it forces the library to
read the rest of the file. A program should use this command when it must
close the file descriptor but has not yet read everything it needs from the
file. After elf_cntl() completes the ELF_C_FDREAD command, future
operations, such as elf_getdata(), will use the memory version of the file
without needing to use the file descriptor.

If elf_cntl() succeeds, it returns 0. Otherwise elf was NULL or an error occurred, and the
function returns −1.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

elf(3ELF), elf_begin(3ELF), elf_getdata(3ELF), elf_rawfile(3ELF), libelf(3LIB),
attributes(5)

Name

Synopsis

Description

Attributes

See Also

elf_cntl(3ELF)

Extended Library Functions, Volume 1 339

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

If the program wishes to use the ‘‘raw'' operations (see elf_rawdata(), which
elf_getdata(3ELF) describes, and elf_rawfile(3ELF)) after disabling the file descriptor
with ELF_C_FDDONE or ELF_C_FDREAD, it must execute the raw operations explicitly
beforehand. Otherwise, the raw file operations will fail. Calling elf_rawfile() makes the
entire image available, thus supporting subsequent elf_rawdata() calls.

Notes

elf_cntl(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 11 Jul 2001340

elf_errmsg, elf_errno – error handling

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

const char *elf_errmsg(int err);

int elf_errno(void);

If an ELF library function fails, a program can call elf_errno() to retrieve the library's
internal error number. As a side effect, this function resets the internal error number to 0,
which indicates no error.

The elf_errmsg() function takes an error number, err, and returns a null-terminated error
message (with no trailing new-line) that describes the problem. A zero err retrieves a message
for the most recent error. If no error has occurred, the return value is a null pointer (not a
pointer to the null string). Using err of −1 also retrieves the most recent error, except it
guarantees a non-null return value, even when no error has occurred. If no message is
available for the given number, elf_errmsg() returns a pointer to an appropriate message.
This function does not have the side effect of clearing the internal error number.

EXAMPLE 1 A sample program of calling the elf_errmsg() function.

The following fragment clears the internal error number and checks it later for errors. Unless
an error occurs after the first call to elf_errno(), the next call will return 0.

(void)elf_errno();

/* processing . . . */

while (more_to_do)

{

if ((err = elf_errno()) != 0)

{

/* print msg */

msg = elf_errmsg(err);

}

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

elf(3ELF), libelf(3LIB), attributes(5)

Name

Synopsis

Description

Examples

Attributes

See Also

elf_errmsg(3ELF)

Extended Library Functions, Volume 1 341

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

elf_fill – set fill byte

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

void elf_fill(int fill);

Alignment constraints for ELF files sometimes require the presence of ‘‘holes.'' For example, if
the data for one section are required to begin on an eight-byte boundary, but the preceding
section is too ‘‘short,'' the library must fill the intervening bytes. These bytes are set to the fill
character. The library uses zero bytes unless the application supplies a value. See
elf_getdata(3ELF) for more information about these holes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

elf(3ELF), elf_flagdata(3ELF), elf_getdata(3ELF), elf_update(3ELF), libelf(3LIB),
attributes(5)

An application can assume control of the object file organization by setting the ELF_F_LAYOUT
bit (see elf_flagdata(3ELF)). When this is done, the library does not fill holes.

Name

Synopsis

Description

Attributes

See Also

Notes

elf_fill(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 11 Jul 2001342

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

elf_flagdata, elf_flagehdr, elf_flagelf, elf_flagphdr, elf_flagscn, elf_flagshdr – manipulate flags

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

unsigned elf_flagdata(Elf_Data *data, Elf_Cmd cmd, unsigned flags);

unsigned elf_flagehdr(Elf *elf, Elf_Cmd cmd, unsigned flags);

unsigned elf_flagelf(Elf *elf, Elf_Cmd cmd, unsigned flags);

unsigned elf_flagphdr(Elf *elf, Elf_Cmd cmd, unsigned flags);

unsigned elf_flagscn(Elf_Scn *scn, Elf_Cmd cmd, unsigned flags);

unsigned elf_flagshdr(Elf_Scn *scn, Elf_Cmd cmd, unsigned flags);

These functions manipulate the flags associated with various structures of an ELF file. Given
an ELF descriptor (elf), a data descriptor (data), or a section descriptor (scn), the functions
may set or clear the associated status bits, returning the updated bits. A null descriptor is
allowed, to simplify error handling; all functions return 0 for this degenerate case.

cmd may have the following values:

ELF_C_CLR The functions clear the bits that are asserted in flags. Only the non-zero bits in
flags are cleared; zero bits do not change the status of the descriptor.

ELF_C_SET The functions set the bits that are asserted in flags. Only the non-zero bits in
flags are set; zero bits do not change the status of the descriptor.

Descriptions of the defined flags bits appear below:

ELF_F_DIRTY When the program intends to write an ELF file, this flag asserts the
associated information needs to be written to the file. Thus, for example, a
program that wished to update the ELF header of an existing file would call
elf_flagehdr() with this bit set in flags and cmd equal to ELF_C_SET. A
later call to elf_update() would write the marked header to the file.

ELF_F_LAYOUT Normally, the library decides how to arrange an output file. That is, it
automatically decides where to place sections, how to align them in the file,
etc. If this bit is set for an ELF descriptor, the program assumes
responsibility for determining all file positions. This bit is meaningful only
for elf_flagelf() and applies to the entire file associated with the
descriptor.

When a flag bit is set for an item, it affects all the subitems as well. Thus, for example, if the
program sets the ELF_F_DIRTY bit with elf_flagelf(), the entire logical file is ‘‘dirty.''

Name

Synopsis

Description

elf_flagdata(3ELF)

Extended Library Functions, Volume 1 343

EXAMPLE 1 A sample display of calling the elf_flagdata() function.

The following fragment shows how one might mark the ELF header to be written to the output
file:

/* dirty ehdr . . . */

ehdr = elf32_getehdr(elf);

elf_flagehdr(elf, ELF_C_SET, ELF_F_DIRTY);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

elf(3ELF), elf32_getehdr(3ELF), elf_getdata(3ELF), elf_update(3ELF), attributes(5)

Examples

Attributes

See Also

elf_flagdata(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 11 Jul 2001344

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

elf_getarhdr – retrieve archive member header

cc [flag ...] file ... -lelf [library...]

#include <libelf.h>

Elf_Arhdr *elf_getarhdr(Elf *elf);

elf_getarhdr() returns a pointer to an archive member header, if one is available for the ELF
descriptor elf. Otherwise, no archive member header exists, an error occurred, or elf was null;
elf_getarhdr() then returns a null value. The header includes the following members.

char *ar_name;

time_t ar_date;

uid_t ar_uid;

gid_t ar_gid;

mode_t ar_mode;

off_t ar_size;

char *ar_rawname;

An archive member name, available through ar_name, is a null-terminated string, with the ar
format control characters removed. The ar_rawname member holds a null-terminated string
that represents the original name bytes in the file, including the terminating slash and trailing
blanks as specified in the archive format.

In addition to ‘‘regular'' archive members, the archive format defines some special members.
All special member names begin with a slash (/), distinguishing them from regular members
(whose names may not contain a slash). These special members have the names (ar_name)
defined below.

/ This is the archive symbol table. If present, it will be the first archive member. A
program may access the archive symbol table through elf_getarsym(). The
information in the symbol table is useful for random archive processing (see
elf_rand() on elf_begin(3ELF)).

// This member, if present, holds a string table for long archive member names. An
archive member's header contains a 16-byte area for the name, which may be exceeded
in some file systems. The library automatically retrieves long member names from the
string table, setting ar_name to the appropriate value.

Under some error conditions, a member's name might not be available. Although this causes
the library to set ar_name to a null pointer, the ar_rawname member will be set as usual.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Name

Synopsis

Description

Attributes

elf_getarhdr(3ELF)

Extended Library Functions, Volume 1 345

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ar.h(3HEAD), elf(3ELF), elf_begin(3ELF), elf_getarsym(3ELF), libelf(3LIB),
attributes(5)

See Also

elf_getarhdr(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 11 Jul 2001346

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Far.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

elf_getarsym – retrieve archive symbol table

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Elf_Arsym *elf_getarsym(Elf *elf, size_t *ptr);

The elf_getarsym() function returns a pointer to the archive symbol table, if one is available
for the ELF descriptor elf. Otherwise, the archive doesn't have a symbol table, an error
occurred, or elf was null; elf_getarsym() then returns a null value. The symbol table is an
array of structures that include the following members.

char *as_name;

size_t as_off;

unsigned long as_hash;

These members have the following semantics:

as_name A pointer to a null-terminated symbol name resides here.

as_off This value is a byte offset from the beginning of the archive to the member's
header. The archive member residing at the given offset defines the associated
symbol. Values in as_off may be passed as arguments to elf_rand(). See
elf_begin(3ELF) to access the desired archive member.

as_hash This is a hash value for the name, as computed by elf_hash().

If ptr is non-null, the library stores the number of table entries in the location to which ptr
points. This value is set to 0 when the return value is NULL. The table's last entry, which is
included in the count, has a null as_name, a zero value for as_off, and ~0UL for as_hash.

The hash value returned is guaranteed not to be the bit pattern of all ones (~0UL).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

ar.h(3HEAD), elf(3ELF), elf_begin(3ELF), elf_getarhdr(3ELF), elf_hash(3ELF),
libelf(3LIB), attributes(5)

Name

Synopsis

Description

Attributes

See Also

elf_getarsym(3ELF)

Extended Library Functions, Volume 1 347

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Far.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

elf_getbase – get the base offset for an object file

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

off_t elf_getbase(Elf *elf);

The elf_getbase() function returns the file offset of the first byte of the file or archive
member associated with elf, if it is known or obtainable, and −1 otherwise. A null elf is allowed,
to simplify error handling; the return value in this case is −1. The base offset of an archive
member is the beginning of the member's information, not the beginning of the archive
member header.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

ar.h(3HEAD), elf(3ELF), elf_begin(3ELF), libelf(3LIB), attributes(5)

Name

Synopsis

Description

Attributes

See Also

elf_getbase(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 11 Jul 2001348

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Far.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

elf_getdata, elf_newdata, elf_rawdata – get section data

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Elf_Data *elf_getdata(Elf_Scn *scn, Elf_Data *data);

Elf_Data *elf_newdata(Elf_Scn *scn);

Elf_Data *elf_rawdata(Elf_Scn *scn, Elf_Data *data);

These functions access and manipulate the data associated with a section descriptor, scn.
When reading an existing file, a section will have a single data buffer associated with it. A
program may build a new section in pieces, however, composing the new data from multiple
data buffers. For this reason, the data for a section should be viewed as a list of buffers, each of
which is available through a data descriptor.

The elf_getdata() function lets a program step through a section's data list. If the incoming
data descriptor, data, is null, the function returns the first buffer associated with the section.
Otherwise, data should be a data descriptor associated with scn, and the function gives the
program access to the next data element for the section. If scn is null or an error occurs,
elf_getdata() returns a null pointer.

The elf_getdata() function translates the data from file representations into memory
representations (see elf32_xlatetof(3ELF)) and presents objects with memory data types to
the program, based on the file's class (see elf(3ELF)). The working library version (see
elf_version(3ELF)) specifies what version of the memory structures the program wishes
elf_getdata() to present.

The elf_newdata() function creates a new data descriptor for a section, appending it to any
data elements already associated with the section. As described below, the new data descriptor
appears empty, indicating the element holds no data. For convenience, the descriptor's type
(d_type below) is set to ELF_T_BYTE, and the version (d_version below) is set to the working
version. The program is responsible for setting (or changing) the descriptor members as
needed. This function implicitly sets the ELF_F_DIRTY bit for the section's data (see
elf_flagdata(3ELF)). If scn is null or an error occurs, elf_newdata() returns a null pointer.

The elf_rawdata() function differs from elf_getdata() by returning only uninterpreted
bytes, regardless of the section type. This function typically should be used only to retrieve a
section image from a file being read, and then only when a program must avoid the automatic
data translation described below. Moreover, a program may not close or disable (see
elf_cntl(3ELF)) the file descriptor associated with elf before the initial raw operation,
because elf_rawdata() might read the data from the file to ensure it doesn't interfere with
elf_getdata(). See elf_rawfile(3ELF) for a related facility that applies to the entire file.
When elf_getdata() provides the right translation, its use is recommended over
elf_rawdata(). If scn is null or an error occurs, elf_rawdata() returns a null pointer.

The Elf_Data structure includes the following members:

Name

Synopsis

Description

elf_getdata(3ELF)

Extended Library Functions, Volume 1 349

void *d_buf;

Elf_Type d_type;

size_t d_size;

off_t d_off;

size_t d_align;

unsigned d_version;

These members are available for direct manipulation by the program. Descriptions appear
below.

d_buf A pointer to the data buffer resides here. A data element with no data has a null
pointer.

d_type This member's value specifies the type of the data to which d_buf points. A
section's type determines how to interpret the section contents, as summarized
below.

d_size This member holds the total size, in bytes, of the memory occupied by the data.
This may differ from the size as represented in the file. The size will be zero if
no data exist. (See the discussion of SHT_NOBITS below for more information.)

d_off This member gives the offset, within the section, at which the buffer resides.
This offset is relative to the file's section, not the memory object's.

d_align This member holds the buffer's required alignment, from the beginning of the
section. That is, d_off will be a multiple of this member's value. For example, if
this member's value is 4, the beginning of the buffer will be four-byte aligned
within the section. Moreover, the entire section will be aligned to the
maximum of its constituents, thus ensuring appropriate alignment for a buffer
within the section and within the file.

d_version This member holds the version number of the objects in the buffer. When the
library originally read the data from the object file, it used the working version
to control the translation to memory objects.

As mentioned above, data buffers within a section have explicit alignment constraints.
Consequently, adjacent buffers sometimes will not abut, causing ‘‘holes'' within a section.
Programs that create output files have two ways of dealing with these holes.

First, the program can use elf_fill() to tell the library how to set the intervening bytes.
When the library must generate gaps in the file, it uses the fill byte to initialize the data there.
The library's initial fill value is 0, and elf_fill() lets the application change that.

Second, the application can generate its own data buffers to occupy the gaps, filling the gaps
with values appropriate for the section being created. A program might even use different fill
values for different sections. For example, it could set text sections' bytes to no-operation
instructions, while filling data section holes with zero. Using this technique, the library finds
no holes to fill, because the application eliminated them.

Data Alignment

elf_getdata(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 11 Jul 2001350

The elf_getdata() function interprets sections' data according to the section type, as noted
in the section header available through elf32_getshdr(). The following table shows the
section types and how the library represents them with memory data types for the 32-bit file
class. Other classes would have similar tables. By implication, the memory data types control
translation by elf32_xlatetof(3ELF)

Section Type Elf_Type 32-bit Type

SHT_DYNAMIC ELF_T_DYN Elf32_Dyn

SHT_DYNSYM ELF_T_SYM Elf32_Sym

SHT_FINI_ARRAY ELF_T_ADDR Elf32_Addr

SHT_GROUP ELF_T_WORD Elf32_Word

SHT_HASH ELF_T_WORD Elf32_Word

SHT_INIT_ARRAY ELF_T_ADDR Elf32_Addr

SHT_NOBITS ELF_T_BYTE unsigned char

SHT_NOTE ELF_T_NOTE unsigned char

SHT_NULL none none

SHT_PREINIT_ARRAY ELF_T_ADDR Elf32_Addr

SHT_PROGBITS ELF_T_BYTE unsigned char

SHT_REL ELF_T_REL Elf32_Rel

SHT_RELA ELF_T_RELA Elf32_Rela

SHT_STRTAB ELF_T_BYTE unsigned char

SHT_SYMTAB ELF_T_SYM Elf32_Sym

SHT_SUNW_comdat ELF_T_BYTE unsigned char

SHT_SUNW_move ELF_T_MOVE Elf32_Move (sparc)

SHT_SUNW_move ELF_T_MOVEP Elf32_Move (ia32)

SHT_SUNW_syminfo ELF_T_SYMINFO Elf32_Syminfo

SHT_SUNW_verdef ELF_T_VDEF Elf32_Verdef

SHT_SUNW_verneed ELF_T_VNEED Elf32_Verneed

SHT_SUNW_versym ELF_T_HALF Elf32_Versym

other ELF_T_BYTE unsigned char

The elf_rawdata() function creates a buffer with type ELF_T_BYTE.

Section and Memory
Types

elf_getdata(3ELF)

Extended Library Functions, Volume 1 351

As mentioned above, the program's working version controls what structures the library
creates for the application. The library similarly interprets section types according to the
versions. If a section type belongs to a version newer than the application's working version,
the library does not translate the section data. Because the application cannot know the data
format in this case, the library presents an untranslated buffer of type ELF_T_BYTE, just as it
would for an unrecognized section type.

A section with a special type, SHT_NOBITS, occupies no space in an object file, even when the
section header indicates a non-zero size. elf_getdata() and elf_rawdata() work on such a
section, setting the data structure to have a null buffer pointer and the type indicated above.
Although no data are present, the d_size value is set to the size from the section header. When
a program is creating a new section of type SHT_NOBITS, it should use elf_newdata() to add
data buffers to the section. These empty data buffers should have the d_size members set to
the desired size and the d_buf members set to NULL.

EXAMPLE 1 A sample program of calling elf_getdata().

The following fragment obtains the string table that holds section names (ignoring error
checking). See elf_strptr(3ELF) for a variation of string table handling.

ehdr = elf32_getehdr(elf);

scn = elf_getscn(elf, (size_t)ehdr->e_shstrndx);

shdr = elf32_getshdr(scn);

if (shdr->sh_type != SHT_STRTAB)

{

/* not a string table */

}

data = 0;

if ((data = elf_getdata(scn, data)) == 0 || data->d_size == 0)

{

/* error or no data */

}

The e_shstrndx member in an ELF header holds the section table index of the string table.
The program gets a section descriptor for that section, verifies it is a string table, and then
retrieves the data. When this fragment finishes, data->d_buf points at the first byte of the
string table, and data->d_size holds the string table's size in bytes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Examples

Attributes

elf_getdata(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 11 Jul 2001352

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

elf(3ELF), elf32_getehdr(3ELF), elf64_getehdr(3ELF), elf32_getshdr(3ELF),
elf64_getshdr(3ELF), elf32_xlatetof(3ELF), elf64_xlatetof(3ELF), elf_cntl(3ELF),
elf_fill(3ELF), elf_flagdata(3ELF), elf_getscn(3ELF), elf_rawfile(3ELF),
elf_strptr(3ELF), elf_version(3ELF), libelf(3LIB), attributes(5)

See Also

elf_getdata(3ELF)

Extended Library Functions, Volume 1 353

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

elf_getident, elf_getphdrnum, elf_getshdrnum, elf_getshdrstrndx, elf_getphnum,
elf_getshnum, elf_getshstrndx – retrieve ELF header data

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

char *elf_getident(Elf *elf, size_t *dst);

int elf_getphdrnum(Elf *elf, size_t *dst);

int elf_getshdrnum(Elf *elf, size_t *dst);

int elf_getshdrstrndx(Elf *elf, size_t *dst);

int elf_getphnum(Elf *elf, size_t *dst);

int elf_getshnum(Elf *elf, size_t *dst);

int elf_getshstrndx(Elf *elf, size_t *dst);

As elf(3ELF) explains, ELF provides a framework for various classes of files, where basic
objects might have 32 or 64 bits. To accommodate these differences, without forcing the larger
sizes on smaller machines, the initial bytes in an ELF file hold identification information
common to all file classes. The e_ident of every ELF header has EI_NIDENT bytes with
interpretations described in the following table.

e_ident Index Value Purpose

EI_MAG0 ELFMAG0 File identification

EI_MAG1 ELFMAG1

EI_MAG2 ELFMAG2

EI_MAG3 ELFMAG3

EI_CLASS ELFCLASSNONE File class

ELFCLASS32

ELFCLASS64

EI_DATA ELFDATANONE Data encoding

ELFDATA2LSB

ELFDATA2MSB

Name

Synopsis

Obsolete Interfaces

Description

elf_getident(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 18 Jun 2009354

EI_VERSION EV_CURRENT File version

7-15 0 Unused, set to zero

Other kinds of files might have identification data, though they would not conform to
e_ident. See elf_kind(3ELF) for information on other kinds of files.

The elf_getident() function returns a pointer to the initial bytes of the file. If the library
recognizes the file, a conversion from the file image to the memory image can occur. The
identification bytes are guaranteed to be unmodified, though the size of the unmodified area
depends on the file type. If the dst argument is non-null, the library stores the number of
identification bytes in the location to which dst points. If no data are present, elf is NULL, or an
error occurs, the return value is a null pointer, with 0 stored through dst, if dst is non-null.

The elf_getphdrnum() function obtains the number of program headers recorded in the ELF
file. The number of sections in a file is typically recorded in the e_phnum field of the ELF
header. A file that requires the ELF extended program header records the value PN_XNUM in the
e_phnum field and records the number of sections in the sh_info field of section header 0. See
USAGE. The dst argument points to the location where the number of sections is stored. If elf
is NULL or an error occurs, elf_getphdrnum() returns −1.

The elf_getshdrnum() function obtains the number of sections recorded in the ELF file. The
number of sections in a file is typically recorded in the e_shnum field of the ELF header. A file
that requires ELF extended section records the value 0 in the e_shnum field and records the
number of sections in the sh_size field of section header 0. See USAGE. The dst argument
points to the location where the number of sections is stored. If a call to elf_newscn(3ELF)
that uses the same elf descriptor is performed, the value obtained by elf_getshnum() is valid
only after a successful call to elf_update(3ELF). If elf is NULL or an error occurs,
elf_getshdrnum() returns −1.

The elf_getshdrstrndx() function obtains the section index of the string table associated
with the section headers in the ELF file. The section header string table index is typically
recorded in the e_shstrndx field of the ELF header. A file that requires ELF extended section
records the value SHN_XINDEX in the e_shstrndx field and records the string table index in the
sh_link field of section header 0. See USAGE. The dst argument points to the location where
the section header string table index is stored. If elf is NULL or an error occurs,
elf_getshdrstrndx() returns −1.

The elf_getphnum(), elf_getshnum(), and elf_getshstrndx() functions behave in a
manner similar to elf_getphdrnum(), elf_getshdrnum(), and elf_getshdrstrndx(),
respectively, except that they return 0 if elf is NULL or an error occurs. Because these return
values differ from those used by some other systems, they are therefore non-portable and their
use is discouraged. The elf_getphdrnum(), elf_getshdrnum(), and elf_getshdrstrndx()

functions should be used instead.

elf_getident(3ELF)

Extended Library Functions, Volume 1 355

ELF extended sections allow an ELF file to contain more than 0xff00 (SHN_LORESERVE)
section. ELF extended program headers allow an ELF file to contain 0xffff (PN_XNUM) or
more program headers. See the Linker and Libraries Guide for more information.

Upon successful completion, the elf_getident() function returns 1. Otherwise, it return 0.

Upon successful completion, the elf_getphdrnum(), elf_getshdrnum(), and
elf_getshdrstrndx() functions return 0. Otherwise, they return -1.

Upon successful completion, the elf_getphnum(), elf_getshnum(), and
elf_getshstrndx() functions return 1. Otherwise, they return 0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below.

MT-Level MT-Safe

The elf_getident(), elf_getphdrnum(), elf_getshdrnum(), and elf_getshdrstrndx()

functions are Committed. The elf_getphnum(), elf_getshnum(), and elf_getshstrndx()

functions are Committed (Obsolete).

elf(3ELF), elf32_getehdr(3ELF), elf_begin(3ELF), elf_kind(3ELF), elf_newscn(3ELF),
elf_rawfile(3ELF), elf_update(3ELF), libelf(3LIB), attributes(5)

Linker and Libraries Guide

Usage

Return Values

Attributes

See Also

elf_getident(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 18 Jun 2009356

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=LLM

elf_getscn, elf_ndxscn, elf_newscn, elf_nextscn – get section information

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Elf_Scn *elf_getscn(Elf *elf, size_t index);

size_t elf_ndxscn(Elf_Scn *scn);

Elf_Scn *elf_newscn(Elf *elf);

Elf_Scn *elf_nextscn(Elf *elf, Elf_Scn *scn);

These functions provide indexed and sequential access to the sections associated with the ELF
descriptor elf. If the program is building a new file, it is responsible for creating the file's ELF
header before creating sections; see elf32_getehdr(3ELF).

The elf_getscn() function returns a section descriptor, given an index into the file's section
header table. Note that the first ‘‘real'' section has an index of 1. Although a program can get a
section descriptor for the section whose index is 0 (SHN_UNDEF, the undefined section), the
section has no data and the section header is ‘‘empty'' (though present). If the specified section
does not exist, an error occurs, or elf is NULL, elf_getscn() returns a null pointer.

The elf_newscn() function creates a new section and appends it to the list for elf. Because the
SHN_UNDEF section is required and not ‘‘interesting'' to applications, the library creates it
automatically. Thus the first call to elf_newscn() for an ELF descriptor with no existing
sections returns a descriptor for section 1. If an error occurs or elf is NULL, elf_newscn()
returns a null pointer.

After creating a new section descriptor, the program can use elf32_getshdr() to retrieve the
newly created, ‘‘clean'' section header. The new section descriptor will have no associated data
(see elf_getdata(3ELF)). When creating a new section in this way, the library updates the
e_shnum member of the ELF header and sets the ELF_F_DIRTY bit for the section (see
elf_flagdata(3ELF)). If the program is building a new file, it is responsible for creating the
file's ELF header (see elf32_getehdr(3ELF)) before creating new sections.

The elf_nextscn() function takes an existing section descriptor, scn, and returns a section
descriptor for the next higher section. One may use a null scn to obtain a section descriptor for
the section whose index is 1 (skipping the section whose index is SHN_UNDEF). If no further
sections are present or an error occurs, elf_nextscn() returns a null pointer.

The elf_ndxscn() function takes an existing section descriptor, scn, and returns its section
table index. If scn is null or an error occurs, elf_ndxscn() returns SHN_UNDEF.

EXAMPLE 1 A sample of calling elf_getscn() function.

An example of sequential access appears below. Each pass through the loop processes the next
section in the file; the loop terminates when all sections have been processed.

Name

Synopsis

Description

Examples

elf_getscn(3ELF)

Extended Library Functions, Volume 1 357

EXAMPLE 1 A sample of calling elf_getscn() function. (Continued)

scn = 0;

while ((scn = elf_nextscn(elf, scn)) != 0)

{

/* process section */

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

elf(3ELF), elf32_getehdr(3ELF), elf32_getshdr(3ELF), elf_begin(3ELF),
elf_flagdata(3ELF), elf_getdata(3ELF), libelf(3LIB), attributes(5)

Attributes

See Also

elf_getscn(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 11 Jul 2001358

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

elf_hash – compute hash value

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

unsigned long elf_hash(const char *name);

The elf_hash() function computes a hash value, given a null terminated string, name. The
returned hash value, h, can be used as a bucket index, typically after computing h mod x to
ensure appropriate bounds.

Hash tables may be built on one machine and used on another because elf_hash() uses
unsigned arithmetic to avoid possible differences in various machines' signed arithmetic.
Although name is shown as char* above, elf_hash() treats it as unsigned char* to avoid
sign extension differences. Using char* eliminates type conflicts with expressions such as
elf_hash(name).

ELF files' symbol hash tables are computed using this function (see elf_getdata(3ELF) and
elf32_xlatetof(3ELF)). The hash value returned is guaranteed not to be the bit pattern of all
ones (~0UL).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

elf(3ELF), elf32_xlatetof(3ELF), elf_getdata(3ELF), libelf(3LIB), attributes(5)

Name

Synopsis

Description

Attributes

See Also

elf_hash(3ELF)

Extended Library Functions, Volume 1 359

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

elf_kind – determine file type

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Elf_Kind elf_kind(Elf *elf);

This function returns a value identifying the kind of file associated with an ELF descriptor
(elf). Defined values are below:

ELF_K_AR The file is an archive (see ar.h(3HEAD)). An ELF descriptor may also be
associated with an archive member, not the archive itself, and then
elf_kind() identifies the member's type.

ELF_K_ELF The file is an ELF file. The program may use elf_getident() to determine
the class. Other functions, such as elf32_getehdr(), are available to retrieve
other file information.

ELF_K_NONE This indicates a kind of file unknown to the library.

Other values are reserved, to be assigned as needed to new kinds of files. elf should be a value
previously returned by elf_begin(). A null pointer is allowed, to simplify error handling, and
causes elf_kind() to return ELF_K_NONE.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

ar.h(3HEAD), elf(3ELF), elf32_getehdr(3ELF), elf_begin(3ELF), elf_getident(3ELF),
libelf(3LIB), attributes(5)

Name

Synopsis

Description

Attributes

See Also

elf_kind(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 13 Aug 2010360

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Far.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Far.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

elf_rawfile – retrieve uninterpreted file contents

cc [flag...] file ... -lelf [library ...]

#include <libelf.h>

char *elf_rawfile(Elf *elf, size_t *ptr);

The elf_rawfile() function returns a pointer to an uninterpreted byte image of the file. This
function should be used only to retrieve a file being read. For example, a program might use
elf_rawfile() to retrieve the bytes for an archive member.

A program may not close or disable (see elf_cntl(3ELF)) the file descriptor associated with
elf before the initial call to elf_rawfile() , because elf_rawfile() might have to read the
data from the file if it does not already have the original bytes in memory. Generally, this
function is more efficient for unknown file types than for object files. The library implicitly
translates object files in memory, while it leaves unknown files unmodified. Thus, asking for
the uninterpreted image of an object file may create a duplicate copy in memory.

elf_rawdata() is a related function, providing access to sections within a file. See
elf_getdata(3ELF).

If ptr is non-null, the library also stores the file's size, in bytes, in the location to which ptr
points. If no data are present, elf is null, or an error occurs, the return value is a null pointer,
with 0 stored through ptr, if ptr is non-null.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

elf(3ELF), elf32_getehdr(3ELF), elf_begin(3ELF), elf_cntl(3ELF), elf_getdata(3ELF),
elf_getident(3ELF), elf_kind(3ELF), libelf(3LIB), attributes(5)

A program that uses elf_rawfile() and that also interprets the same file as an object file
potentially has two copies of the bytes in memory. If such a program requests the raw image
first, before it asks for translated information (through such functions as elf32_getehdr(),
elf_getdata(), and so on), the library ‘‘freezes'' its original memory copy for the raw image.
It then uses this frozen copy as the source for creating translated objects, without reading the
file again. Consequently, the application should view the raw file image returned by
elf_rawfile() as a read-only buffer, unless it wants to alter its own view of data subsequently
translated. In any case, the application may alter the translated objects without changing bytes
visible in the raw image.

Multiple calls to elf_rawfile() with the same ELF descriptor return the same value; the
library does not create duplicate copies of the file.

Name

Synopsis

Description

Attributes

See Also

Notes

elf_rawfile(3ELF)

Extended Library Functions, Volume 1 361

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

elf_strptr – make a string pointer

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

char *elf_strptr(Elf *elf, size_t section, size_t offset);

The elf_strptr() function converts a string section offset to a string pointer. elf identifies the
file in which the string section resides, and section identifies the section table index for the
strings. elf_strptr() normally returns a pointer to a string, but it returns a null pointer when
elf is null, section is invalid or is not a section of type SHT_STRTAB, the section data cannot be
obtained, offset is invalid, or an error occurs.

EXAMPLE 1 A sample program of calling elf_strptr() function.

A prototype for retrieving section names appears below. The file header specifies the section
name string table in the e_shstrndx member. The following code loops through the sections,
printing their names.

/* handle the error */

if ((ehdr = elf32_getehdr(elf)) == 0) {

return;

}

ndx = ehdr->e_shstrndx;

scn = 0;

while ((scn = elf_nextscn(elf, scn)) != 0) {

char *name = 0;

if ((shdr = elf32_getshdr(scn)) != 0)

name = elf_strptr(elf, ndx, (size_t)shdr->sh_name);

printf("’%s’\n", name? name: "(null)");
}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

elf(3ELF), elf32_getshdr(3ELF), elf32_xlatetof(3ELF), elf_getdata(3ELF),
libelf(3LIB), attributes(5)

A program may call elf_getdata() to retrieve an entire string table section. For some
applications, that would be both more efficient and more convenient than using
elf_strptr().

Name

Synopsis

Description

Examples

Attributes

See Also

Notes

elf_strptr(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 11 Jul 2001362

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

elf_update – update an ELF descriptor

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

off_t elf_update(Elf *elf, Elf_Cmd cmd);

The elf_update() function causes the library to examine the information associated with an
ELF descriptor, elf, and to recalculate the structural data needed to generate the file's image.

The cmd argument can have the following values:

ELF_C_NULL This value tells elf_update() to recalculate various values, updating only
the ELF descriptor's memory structures. Any modified structures are
flagged with the ELF_F_DIRTY bit. A program thus can update the structural
information and then reexamine them without changing the file associated
with the ELF descriptor. Because this does not change the file, the ELF
descriptor may allow reading, writing, or both reading and writing (see
elf_begin(3ELF)).

ELF_C_WRITE If cmd has this value, elf_update() duplicates its ELF_C_NULL actions and
also writes any ‘‘dirty'' information associated with the ELF descriptor to the
file. That is, when a program has used elf_getdata(3ELF) or the
elf_flagdata(3ELF) facilities to supply new (or update existing)
information for an ELF descriptor, those data will be examined,
coordinated, translated if necessary (see elf32_xlatetof(3ELF)), and
written to the file. When portions of the file are written, any ELF_F_DIRTY
bits are reset, indicating those items no longer need to be written to the file
(see elf_flagdata(3ELF)). The sections' data are written in the order of
their section header entries, and the section header table is written to the
end of the file. When the ELF descriptor was created with elf_begin(), it
must have allowed writing the file. That is, the elf_begin() command must
have been either ELF_C_RDWR or ELF_C_WRITE.

If elf_update() succeeds, it returns the total size of the file image (not the memory image), in
bytes. Otherwise an error occurred, and the function returns −1.

When updating the internal structures, elf_update() sets some members itself. Members
listed below are the application's responsibility and retain the values given by the program.

The following table shows ELF Header members:

Member Notes

e_ident[EI_DATA] Library controls other e_ident values

Name

Synopsis

Description

elf_update(3ELF)

Extended Library Functions, Volume 1 363

e_type

e_machine

e_version

e_entry

e_phoff Only when ELF_F_LAYOUT asserted

e_shoff Only when ELF_F_LAYOUT asserted

e_flags

e_shstrndx

The following table shows the Program Header members:

Member Notes

p_type The application controls all

p_offset program header entries

p_vaddr

p_paddr

p_filesz

p_memsz

p_flags

p_align

The following table shows the Section Header members:

Member Notes

sh_name

sh_type

sh_flags

sh_addr

elf_update(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 11 Jul 2001364

sh_offset Only when ELF_F_LAYOUT asserted

sh_size Only when ELF_F_LAYOUT asserted

sh_link

sh_info

sh_addralign Only when ELF_F_LAYOUT asserted

sh_entsize

The following table shows the Data Descriptor members:

Member Notes

d_buf

d_type

d_size

d_off Only when ELF_F_LAYOUT asserted

d_align

d_version

Note that the program is responsible for two particularly important members (among others)
in the ELF header. The e_version member controls the version of data structures written to
the file. If the version is EV_NONE, the library uses its own internal version. The
e_ident[EI_DATA] entry controls the data encoding used in the file. As a special case, the
value may be ELFDATANONE to request the native data encoding for the host machine. An error
occurs in this case if the native encoding doesn't match a file encoding known by the library.

Further note that the program is responsible for the sh_entsize section header member.
Although the library sets it for sections with known types, it cannot reliably know the correct
value for all sections. Consequently, the library relies on the program to provide the values for
unknown section types. If the entry size is unknown or not applicable, the value should be set
to 0.

When deciding how to build the output file, elf_update() obeys the alignments of individual
data buffers to create output sections. A section's most strictly aligned data buffer controls the
section's alignment. The library also inserts padding between buffers, as necessary, to ensure
the proper alignment of each buffer.

elf_update(3ELF)

Extended Library Functions, Volume 1 365

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

elf(3ELF), elf32_fsize(3ELF), elf32_getehdr(3ELF), elf32_getshdr(3ELF),
elf32_xlatetof(3ELF), elf_begin(3ELF), elf_flagdata(3ELF), elf_getdata(3ELF),
libelf(3LIB), attributes(5)

As mentioned above, the ELF_C_WRITE command translates data as necessary, before writing
them to the file. This translation is not always transparent to the application program. If a
program has obtained pointers to data associated with a file (for example, see
elf32_getehdr(3ELF) and elf_getdata(3ELF)), the program should reestablish the pointers
after calling elf_update().

Attributes

See Also

Notes

elf_update(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 11 Jul 2001366

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

elf_version – coordinate ELF library and application versions

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

unsigned elf_version(unsigned ver);

As elf(3ELF) explains, the program, the library, and an object file have independent notions
of the latest ELF version. elf_version() lets a program query the ELF library's internal
version. It further lets the program specify what memory types it uses by giving its own
working version, ver, to the library. Every program that uses the ELF library must coordinate
versions as described below.

The header <libelf.h> supplies the version to the program with the macro EV_CURRENT. If
the library's internal version (the highest version known to the library) is lower than that
known by the program itself, the library may lack semantic knowledge assumed by the
program. Accordingly, elf_version() will not accept a working version unknown to the
library.

Passing ver equal to EV_NONE causes elf_version() to return the library's internal version,
without altering the working version. If ver is a version known to the library, elf_version()
returns the previous (or initial) working version number. Otherwise, the working version
remains unchanged and elf_version() returns EV_NONE.

EXAMPLE 1 A sample display of using the elf_version() function.

The following excerpt from an application program protects itself from using an older library:

if (elf_version(EV_CURRENT) == EV_NONE) {

/* library out of date */

/* recover from error */

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

elf(3ELF), elf32_xlatetof(3ELF), elf_begin(3ELF), libelf(3LIB), attributes(5)

The working version should be the same for all operations on a particular ELF descriptor.
Changing the version between operations on a descriptor will probably not give the expected
results.

Name

Synopsis

Description

Examples

Attributes

See Also

Notes

elf_version(3ELF)

Extended Library Functions, Volume 1 367

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

FCOE_CreatePort – create an FCoE port

cc [flag...] file... -lfcoe [library...]

#include <libfcoe.h>

int FCOE_CreatePort(const char *macLinkName, int portType,
struct fcoe_port_wwn pwwn, struct fcoe_port_wwn nwwn,
int promiscuous);

macLinkName The name of the MAC link on which to create the FCoE port.

portType This parameter should always be FCOE_PORTTYPE_TARGET.

pwwn The Port WorldWideName to be used for the FCoE port. Fill the structure
with zeros to let the fcoe driver generate a valid Port WWN from the MAC
address of the underlying NIC hardware.

nwwn The Node WorldWideName to be used for the FCoE port. Fill the structure
with zeros to let the fcoe driver generate a valid Node WWN from the
MAC address of the underlying NIC hardware.

promiscuous A non-zero value to enable promiscuous mode on the underlying NIC
hardware. A value of 0 indicates use of the multiple unicast address feature
of the underlying NIC hardware.

The FCOE_CreatePort() function creates an FCoE port over the specified MAC link.

The following values are returned:

FCOE_STATUS_ERROR_BUSY

The fcoe driver is busy and cannot complete the operation.

FCOE_STATUS_ERROR_ALREADY

An existing FCoE port was found over the specified MAC link.

FCOE_STATUS_ERROR_OPEN_DEV

Failed to open fcoe device.

FCOE_STATUS_ERROR_WWN_SAME

The specified Port WWN is same as the specified Node WWN.

FCOE_STATUS_ERROR_MAC_LEN

MAC link name exceeds the maximum length.

FCOE_STATUS_ERROR_PWWN_CONFLICTED

The specified Port WWN is already in use.

FCOE_STATUS_ERROR_NWWN_CONFLICTED

The specified Node WWN is already in use.

FCOE_STATUS_ERROR_NEED_JUMBO_FRAME

The MTU size of the specified MAC link needs to be increased to 2500 or above.

Name

Synopsis

Parameters

Description

Return Values

FCOE_CreatePort(3FCOE)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 1 Apr 2009368

FCOE_STATUS_ERROR_OPEN_MAC

Failed to open the specified MAC link.

FCOE_STATUS_ERROR_CREATE_PORT

Failed to create FCoE port on the specified MAC link.

FCOE_STATUS_OK

The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libfcoe(3LIB), attributes(5)

Attributes

See Also

FCOE_CreatePort(3FCOE)

Extended Library Functions, Volume 1 369

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibfcoe-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

FCOE_DeletePort – delete an FCoE port

cc [flag...] file... -lfcoe [library...]

#include <libfcoe.h>

int FCOE_DeletePort(const char *macLinkName);

macLinkName The name of the MAC link from which to delete the FCoE port.

The FCOE_DeletePort() function deletes an FCoE port from the specified MAC link.

The following values are returned:

FCOE_STATUS_ERROR_BUSY

The fcoe driver is busy and cannot complete the operation.

FCOE_STATUS_ERROR_MAC_LEN

The MAC link name exceeds the maximum length.

FCOE_STATUS_MAC_NOT_FOUND

The FCoE port was not found on the specified MAC link.

FCOE_STATUS_OK

The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libfcoe(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

FCOE_DeletePort(3FCOE)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 1 Apr 2009370

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibfcoe-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

FCOE_GetPortList – get a list of FCoE ports

cc [flag...] file... -lfcoe [library...]

#include <libfcoe.h>

int FCOE_GetPortList(unsigned int *port_num,

struct fcoe_port_attr **portlist);

port_num A pointer to an integer that, on successful return, contains the number of FCoE
ports in the system.

portlist A pointer to a pointer to an fcoe_port_attr structure that, on successful
return, contains a list of the FCoE ports in the system.

The FCOE_GetPortList() function retrieves a list of FCoE ports. When the caller is finished
using the list, it must free the memory used by the list by calling free(3C).

The following values are returned:

FCOE_STATUS_ERROR_BUSY

The fcoe driver is busy and cannot complete the operation.

FCOE_STATUS_ERROR_INVAL_ARG

The value specified for port_num or portlist was not valid.

FCOE_STATUS_ERROR_OPEN_DEV

Failed to open fcoe device.

FCOE_STATUS_OK

The API call was successful.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

free(3C), libfcoe(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

FCOE_GetPortList(3FCOE)

Extended Library Functions, Volume 1 371

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afree-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afree-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibfcoe-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

fmev_shdl_init, fmev_shdl_fini, fmev_shdl_subscribe, fmev_shdl_unsubscribe,
fmev_shdl_getauthority, fmev_errno, fmev_strerror, fmev_attr_list, fmev_class,
fmev_timespec, fmev_time_sec, fmev_time_nsec, fmev_localtime, fmev_hold, fmev_hrtime,
fmev_rele, fmev_dup, fmev_ev2shdl, fmev_shdl_alloc, fmev_shdl_zalloc, fmev_shdl_free,
fmev_shdl_strdup, fmev_shdl_strfree, fmev_shdl_nvl2str, fmev_shdlctl_serialize,
fmev_shdlctl_thrattr, fmev_shdlctl_sigmask, fmev_shdlctl_thrsetup, fmev_shdlctl_thrcreate
– subscription to fault management events from an external process

cc [flag...] file... −L/usr/lib/fm −lfmevent −lnvpair [library...]

#include <fm/libfmevent.h>

#include <libnvpair.h>

typedef enum fmev_err_t;

extern fmev_err_t fmev_errno;

const char *fmev_strerror(fmev_err_t err);

typedef struct fmev_shdl *fmev_shdl_t;

typedef void fmev_cbfunc_t(fmev_t, const char *, nvlist_t *, void *);

fmev_shdl_t fmev_shdl_init(uint32_t api_version,
void *(*alloc)(size_t), void *(*zalloc)(size_t),

void (*free)(void *, size_t));

fmev_err_t fmev_shdl_fini(fmev_shdl_t hdl);

fmev_err_t fmev_shdl_subscribe(fmev_shdl_t hdl, const char *classpat,
fmev_cbfunc_t callback, void *cookie);

fmev_err_t fmev_shdl_unsubscribe(fmev_shdl_t hdl,
const char *classpat);

fmev_err_t fmev_shdl_getauthority(fmev_shdl_t hdl, nvlist_t **authp);

fmev_err_t fmev_shdlctl_serialize(fmev_shdl_t hdl);

fmev_err_t fmev_shdlctl_thrattr(fmev_shdl_t hdl, pthread_attr_t *attr);

fmev_err_t fmev_shdlctl_sigmask(fmev_shdl_t hdl, sigset_t *set);

fmev_err_t fmev_shdlctl_thrsetup(fmev_shdl_t hdl,
door_xcreate_thrsetup_func_t *setupfunc, void *cookie);

fmev_err_t fmev_shdlctl_thrcreate(fmev_shdl_t hdl,
door_xcreate_server_func_t *createfunc, void *cookie);

typedef struct fmev *fmev_t;

nvlist_t *fmev_attr_list(fmev_t ev);

const char *fmev_class(fmev_t ev);

fmev_err_t fmev_timespec(fmev_t ev, struct timespec *res);

uint64_t fmev_time_sec(fmev_t ev);

Name

Synopsis

fmev_shdl_init(3FM)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 6 Jul 2012372

uint64_t fmev_time_nsec(fmev_t ev);

struct tm *fmev_localtime(fmev_t ev, struct tm *res);

hrtime_t fmev_hrtime(fmev_t ev);

void fmev_hold(fmev_t ev);

void fmev_rele(fmev_t ev);

fmev_t fmev_dup(fmev_t ev);

fmev_shdl_t fmev_ev2shdl(fmev_t ev);

void *fmev_shdl_alloc(fmev_shdl_t hdl, size_t sz);

void *fmev_shdl_zalloc(fmev_shdl_t hdl, size_t sz);

void fmev_shdl_free(fmev_shdl_t hdl, void *buf, size_t sz);

char *fmev_shdl_strdup(fmev_shdl_t hdl, char *str);

void fmev_shdl_strfree(fmev_shdl_t hdl, char *str);

char *fmev_shdl_nvl2str(fmev_shdl_t hdl, nvlist_t *fmri);

The Solaris fault management daemon (fmd) is the central point in Solaris for fault
management. It receives observations from various sources and delivers them to subscribing
diagnosis engines; if those diagnosis engines diagnose a problem, the fault manager publishes
additional protocol events to track the problem lifecycle from initial diagnosis through repair
and final problem resolution. The event protocol is specified in the Sun Fault Management
Event Protocol Specification. The interfaces described here allow an external process to
subscribe to protocol events. See the Fault Management Daemon Programmer's Reference
Guide for additional information on fmd.

The fmd module API (not a Committed interface) allows plugin modules to load within the
fmd process, subscribe to events of interest, and participate in various diagnosis and response
activities. Of those modules, some are notification agents and will subscribe to events
describing diagnoses and their subsequent lifecycle and render these to console/syslog (for the
syslog-msgs agent) and via SNMP trap and browsable MIB (for the snmp-trapgen module
and the corresponding dlmod for the SNMP daemon). It has not been possible to subscribe to
protocol events outside of the context of an fmd plugin. The libfmevent interface provides
this external subscription mechanism. External subscribers may receive protocol events as
fmd modules do, but they cannot participate in other aspects of the fmd module API such as
diagnosis. External subscribers are therefore suitable as notification agents and for
transporting fault management events.

This protocol is defined in the Sun Fault Management Event Protocol Specification. Note that
while the API described on this manual page are Committed, the protocol events themselves
(in class names and all event payload) are not Committed along with this API. The protocol
specification document describes the commitment level of individual event classes and their
payload content. In broad terms, the list.* events are Committed in most of their content and
semantics while events of other classes are generally Uncommitted with a few exceptions.

Description

Fault Management
Protocol Events

fmev_shdl_init(3FM)

Extended Library Functions, Volume 1 373

All protocol events include an identifying class string, with the hierarchies defined in the
protocol document and individual events registered in the Events Registry. The libfmevent
mechanism will permit subscription to events with Category 1 class of “list” and “swevent”,
that is, to classes matching patterns “list.*” and “swevent.*”.

All protocol events consist of a number of (name, datatype, value) tuples (“nvpairs”).
Depending on the event class various nvpairs are required and have well-defined meanings. In
Solaris fmd protocol events are represented as name-value lists using the libnvpair(3LIB)
interfaces.

The API is simple to use in the common case (see Examples), but provides substantial control
to cater for more-complex scenarios.

We obtain an opaque subscription handle using fmev_shdl_init(), quoting the ABI version
and optionally nominating alloc(), zalloc() and free() functions (the defaults use the
umem family). More than one handle may be opened if desired. Each handle opened establishes
a communication channel with fmd, the implementation of which is opaque to the
libfmevent mechanism.

On a handle we may establish one or more subscriptions using fmev_shdl_subscribe().
Events of interest are specified using a simple wildcarded pattern which is matched against the
event class of incoming events. For each match that is made a callback is performed to a
function we associate with the subscription, passing a nominated cookie to that function.
Subscriptions may be dropped using fmev_shdl_unsubscribe() quoting exactly the same
class or class pattern as was used to establish the subscription.

Each call to fmev_shdl_subscribe() creates a single thread dedicated to serving callback
requests arising from this subscription.

An event callback handler has as arguments an opaque event handle, the event class, the event
nvlist, and the cookie it was registered with in fmev_shdl_subscribe(). The timestamp for
when the event was generated (not when it was received) is available as a struct timespec
with fmev_timespec(), or more directly with fmev_time_sec() and fmev_time_nsec(); an
event handle and struct tm can also be passed to fmev_localtime() to fill the struct tm. A
high-resolution timestamp for an event may be retrieved using fmev_hrtime(); this value has
the semantics described in gethrtime(3C).

The event handle, class string pointer, and nvlist_t pointer passed as arguments to a callback
are valid for the duration of the callback. If the application wants to continue to process the
event beyond the duration of the callback then it can hold the event with fmev_hold(), and
later release it with fmev_rele(). When the reference count drops to zero the event is freed.

In <libfmevent.h> an enumeration fmev_err_t of error types is defined. To render an error
message string from an fmev_err_t use fmev_strerror(). An fmev_errno is defined which
returns the error number for the last failed libfmevent API call made by the current thread.
You may not assign to fmev_errno.

API Overview

Error Handling

fmev_shdl_init(3FM)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 6 Jul 2012374

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibnvpair-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agethrtime-3c

If a function returns type fmev_err_t, then success is indicated by FMEV_SUCCESS (or FMEV_OK
as an alias); on failure a FMEVERR_* value is returned (see <fm/libfmevent.h>).

If a function returns a pointer type then failure is indicated by a NULL return, and fmev_errno

will record the error type.

A subscription handle is required in order to establish and manage subscriptions. This handle
represents the abstract communication mechanism between the application and the fault
management daemon running in the current zone.

A subscription handle is represented by the opaque fmev_shdl_t datatype. A handle is
initialized with fmev_shdl_init() and quoted to subsequent API members.

To simplify usage of the API, subscription attributes for all subscriptions established on a
handle are a property of the handle itself ; they cannot be varied per-subscription. In such use
cases multiple handles will need to be used.

The first argument to fmev_shdl_init() indicates the libfmevent ABI version with which
the handle is being opened. Specify either LIBFMEVENT_VERSION_LATEST to indicate the most
recent version available at compile time or LIBFMEVENT_VERSION_1 (_2, etc. as the interface
evolves) for an explicit choice.

Interfaces present in an earlier version of the interface will continue to be present with the
same or compatible semantics in all subsequent versions. When additional interfaces and
functionality are introduced the ABI version will be incremented. When an ABI version is
chosen in fmev_shdl_init(), only interfaces introduced in or before that version will be
available to the application via that handle. Attempts to use later API members will fail with
FMEVERR_VERSION_MISMATCH.

This manual page describes LIBFMEVENT_VERSION_1.

The libfmevent API is not least-privilege aware; you need to have all privileges to call
fmev_shdl_init(). Once a handle has been initialized with fmev_shdl_init() a process can
drop privileges down to the basic set and continue to use fmev_shdl_subscribe() and other
libfmevent interfaces on that handle.

The implementation of the event transport by which events are published from the fault
manager and multiplexed out to libfmevent consumers is strictly private. It is subject to
change at any time, and you should not encode any dependency on the underlying mechanism
into your application. Use only the API described on this manual page and in
<libfmevent.h>.

The underlying transport mechanism is guaranteed to have the property that a subscriber may
attach to it even before the fault manager is running. If the fault manager starts first then any
events published before the first consumer subscribes will wait in the transport until a
consumer appears.

Subscription Handles

libfmevent ABI version

Privileges

Underlying Event
Transport

fmev_shdl_init(3FM)

Extended Library Functions, Volume 1 375

The underlying transport will also have some maximum depth to the queue of events pending
delivery. This may be hit if there are no consumers, or if consumers are not processing events
quickly enough. In practice the rate of events is small. When this maximum depth is reached
additional events will be dropped.

The underlying transport has no concept of priority delivery; all events are treated equally.

Obtain a new subscription handle with fmev_shdl_init(). The first argument is the
libfmevent ABI version to be used (see above). The remaining three arguments should be all
NULL to leave the library to use its default allocator functions (the libumem family), or all
non-NULL to appoint wrappers to custom allocation functions if required.

FMEVERR_VERSION_MISMATCH

The library does not support the version requested.

FMEVERR_ALLOC

An error occurred in trying to allocate data structures.

FMEVERR_API

The alloc(), zalloc(), or free() arguments must either be all NULL or all non-NULL.

FMEVERR_NOPRIV

Insufficient privilege to perform operation. In version 1 root privilege is required.

FMEVERR_INTERNAL

Internal library error.

Once a subscription handle has been initialized, authority information for the fault manager
to which the client is connected may be retrieved with fmev_shdl_getauthority(). The
caller is responsible for freeing the returned nvlist using nvlist_free(3NVPAIR).

Close a subscription handle with fmev_shdl_fini(). This call must not be performed from
within the context of an event callback handler, else it will fail with FMEVERR_API.

The fmev_shdl_fini() call will remove all active subscriptions on the handle and free
resources used in managing the handle.

FMEVERR_API

May not be called from event delivery context for a subscription on the same handle.

To establish a new subscription on a handle, use fmev_shdl_subscribe(). Besides the handle
argument you provide the class or class pattern to subscribe to (the latter permitting simple
wildcarding using '*'), a callback function pointer for a function to be called for all matching
events, and a cookie to pass to that callback function.

The class pattern must match events per the fault management protocol specification, such as
“list.suspect” or “list.*”. Patterns that do not map onto existing events will not be rejected -
they just won't result in any callbacks.

Subscription Handle
Initialization

Fault Manager
Authority Information

Subscription Handle
Finalization

Subscribing To Events

fmev_shdl_init(3FM)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 6 Jul 2012376

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Hnvlist-free-3nvpair

A callback function has type fmev_cbfunc_t. The first argument is an opaque event handle for
use in event access functions described below. The second argument is the event class string,
and the third argument is the event nvlist; these could be retrieved using fmev_class() and
fmev_attr_list() on the event handle, but they are supplied as arguments for convenience.
The final argument is the cookie requested when the subscription was established in
fmev_shdl_subscribe().

Each call to fmev_shdl_subscribe() opens a new door into the process that the kernel uses
for event delivery. Each subscription therefore uses one file descriptor in the process.

See below for more detail on event callback context.

FMEVERR_API

Class pattern is NULL or callback function is NULL.

FMEVERR_BADCLASS

Class pattern is the empty string, or exceeds the maximum length of FMEV_MAX_CLASS.

FMEVERR_ALLOC

An attempt to fmev_shdl_zalloc() additional memory failed.

FMEVERR_DUPLICATE

Duplicate subscription request. Only one subscription for a given class pattern may exist
on a handle.

FMEVERR_MAX_SUBSCRIBERS

A system-imposed limit on the maximum number of subscribers to the underlying
transport mechanism has been reached.

FMEVERR_INTERNAL

An unknown error occurred in trying to establish the subscription.

An unsubscribe request using fmev_shdl_unsubscribe() must exactly match a previous
subscription request or it will fail with FMEVERR_NOMATCH. The request stops further callbacks
for this subscription, waits for any existing active callbacks to complete, and drops the
subscription.

Do not call fmev_shdl_unsubscribe from event callback context, else it will fail with
FMEVERR_API.

FMEVERR_API

A NULL pattern was specified, or the call was attempted from callback context.

FMEVERR_NOMATCH

The pattern provided does not match any open subscription. The pattern must be an exact
match.

FMEVERR_BADCLASS

The class pattern is the empty string or exceeds FMEV_MAX_CLASS.

Unsubscribing

fmev_shdl_init(3FM)

Extended Library Functions, Volume 1 377

Event callback context is defined as the duration of a callback event, from the moment we
enter the registered callback function to the moment it returns. There are a few restrictions on
actions that may be performed from callback context:
■ You can perform long-running actions, but this thread will not be available to service other

event deliveries until you return.
■ You must not cause the current thread to exit.
■ You must not call either fmev_shdl_unsubscribe() or fmev_shdl_fini() for the

subscription handle on which this callback has been made.
■ You can invoke fork(), popen(), etc.

A callback receives an fmev_t as a handle on the associated event. The callback may use the
access functions described below to retrieve various event attributes.

By default, an event handle fmev_t is valid for the duration of the callback context. You cannot
access the event outside of callback context.

If you need to continue to work with an event beyond the initial callback context in which it is
received, you may place a “hold” on the event with fmev_hold(). When finished with the
event, release it with fmev_rele(). These calls increment and decrement a reference count on
the event; when it drops to zero the event is freed. On initial entry to a callback the reference
count is 1, and this is always decremented when the callback returns.

An alternative to fmev_hold() is fmev_dup(), which duplicates the event and returns a new
event handle with a reference count of 1. When fmev_rele() is applied to the new handle and
reduces the reference count to 0, the event is freed. The advantage of fmev_dup() is that it
allocates new memory to hold the event rather than continuing to hold a buffer provided by
the underlying delivery mechanism. If your operation is going to be long-running, you may
want to use fmev_dup() to avoid starving the underlying mechanism of event buffers.

Given an fmev_t, a callback function can use fmev_ev2shdl() to retrieve the subscription
handle on which the subscription was made that resulted in this event delivery.

The fmev_hold() and fmev_rele() functions always succeed.

The fmev_dup() function may fail and return NULL with fmev_errno of:

FMEVERR_API A NULL event handle was passed.

FMEVERR_ALLOC The fmev_shdl_alloc() call failed.

A delivery callback already receives the event class as an argument, so fmev_class() will only
be of use outside of callback context (that is, for an event that was held or duped in callback
context and is now being processed in an asynchronous handler). This is a convenience
function that returns the same result as accessing the event attributes with fmev_attr_list()

and using nvlist_lookup_string(3NVPAIR) to lookup a string member of name “class”.

The string returned by fmev_class() is valid for as long as the event handle itself.

Event Callback Context

Event Handles

Event Class

fmev_shdl_init(3FM)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 6 Jul 2012378

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Hnvlist-lookup-string-3nvpair

The fmev_class() function may fail and return NULL with fmev_errno of:

FMEVERR_API A NULL event handle was passed.

FMEVERR_MALFORMED_EVENT The event appears corrupted.

All events are defined as a series of (name, type) pairs. An instance of an event is therefore a
series of tuples (name, type, value). Allowed types are defined in the protocol specification. In
Solaris, and in libfmevent, an event is represented as an nvlist_t using the libnvpair(3LIB)
library.

The nvlist of event attributes can be accessed using fmev_attr_list(). The resulting
nvlist_t pointer is valid for the same duration as the underlying event handle. Do not use
nvlist_free() to free the nvlist. You may then lookup members, iterate over members, and
so on using the libnvpair interfaces.

The fmev_attr_list() function may fail and return NULL with fmev_errno of:

FMEVERR_API A NULL event handle was passed.

FMEVERR_MALFORMED_EVENT The event appears corrupted.

These functions refer to the time at which the event was originally produced, not the time at
which it was forwarded to libfmevent or delivered to the callback.

Use fmev_timespec() to fill a struct timespec with the event time in seconds since the
Epoch (tv_sec, signed integer) and nanoseconds past that second (tv_nsec, a signed long).
This call can fail and return FMEVERR_OVERFLOW if the seconds value will not fit in a signed
32-bit integer (as used in struct timespec tv_sec).

You can use fmev_time_sec() and fmev_time_nsec() to retrieve the same second and
nanosecond values as uint64_t quantities.

The fmev_localtime function takes an event handle and a struct tm pointer and fills that
structure according to the timestamp. The result is suitable for use with strftime(3C). This
call will return NULL and fmev_errno of FMEVERR_OVERFLOW under the same conditions as
above.

FMEVERR_OVERFLOW The fmev_timespec() function cannot fit the seconds value into the
signed long integer tv_sec member of a struct timespec.

A string can be duplicated using fmev_shdl_strdup(); this will allocate memory for the copy
using the allocator nominated in fmev_shdl_init(). The caller is responsible for freeing the
buffer using fmev_shdl_strfree(); the caller can modify the duplicated string but must not
change the string length.

An FMRI retrieved from a received event as an nvlist_t may be rendered as a string using
fmev_shdl_nvl2str(). The nvlist must be a legal FMRI (recognized class, version and

Event Attribute List

Event Timestamp

String Functions

fmev_shdl_init(3FM)

Extended Library Functions, Volume 1 379

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibnvpair-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Astrftime-3c

payload), or NULL is returned with fmev_errno() of FMEVERR_INVALIDARG. The formatted
string is rendered into a buffer allocated using the memory allocation functions nominated in
fmev_shdl_init(), and the caller is responsible for freeing that buffer using
fmev_shdl_strfree().

The fmev_shdl_alloc(), fmev_shdl_zalloc(), and fmev_shdl_free() functions allocate
and free memory using the choices made for the given handle when it was initialized, typically
the libumem(3LIB) family if all were specified NULL.

The fmev_shdlctl_*() interfaces offer control over various properties of the subscription
handle, allowing fine-tuning for particular applications. In the common case the default
handle properties will suffice.

These properties apply to the handle and uniformly to all subscriptions made on that handle.
The properties may only be changed when there are no subscriptions in place on the handle,
otherwise FMEVERR_BUSY is returned.

Event delivery is performed through invocations of a private door. A new door is opened for
each fmev_shdl_subscribe() call. These invocations occur in the context of a single private
thread associated with the door for a subscription. Many of the fmev_shdlctl_*() interfaces
are concerned with controlling various aspects of this delivery thread.

If you have applied fmev_shdlctl_thrcreate(), “custom thread creation semantics” apply
on the handle; otherwise “default thread creation semantics” are in force. Some
fmev_shdlctl_*() interfaces apply only to default thread creation semantics.

The fmev_shdlctl_serialize() control requests that all deliveries on a handle, regardless of
which subscription request they are for, be serialized - no concurrent deliveries on this handle.
Without this control applied deliveries arising from each subscription established with
fmev_shdl_subscribe() are individually single-threaded, but if multiple subscriptions have
been established then deliveries arising from separate subscriptions may be concurrent. This
control applies to both custom and default thread creation semantics.

The fmev_shdlctl_thrattr() control applies only to default thread creation semantics.
Threads that are created to service subscriptions will be created with pthread_create(3C)
using the pthread_attr_t provided by this interface. The attribute structure is not copied and
so must persist for as long as it is in force on the handle.

The default thread attributes are also the minimum requirement: threads must be created
PTHREAD_CREATE_DETACHED and PTHREAD_SCOPE_SYSTEM. A NULL pointer for the
pthread_attr_t will reinstate these default attributes.

The fmev_shdlctl_sigmask() control applies only to default thread creation semantics.
Threads that are created to service subscriptions will be created with the requested signal set
masked - a pthread_sigmask(3C) request to SIG_SETMASK to this mask prior to
pthread_create(). The default is to mask all signals except SIGABRT.

Memory Allocation

Subscription Handle
Control

fmev_shdl_init(3FM)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 6 Jul 2012380

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibumem-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-create-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-sigmask-3c

See door_xcreate(3C) for a detailed description of thread setup and creation functions for
door server threads.

The fmev_shdlctl_thrsetup() function runs in the context of the newly-created thread
before it binds to the door created to service the subscription. It is therefore a suitable place to
perform any thread-specific operations the application may require. This control applies to
both custom and default thread creation semantics.

Using fmev_shdlctl_thrcreate() forfeits the default thread creation semantics described
above. The function appointed is responsible for all of the tasks required of a
door_xcreate_server_func_t in door_xcreate().

The fmev_shdlctl_*() functions may fail and return NULL with fmev_errno of:

FMEVERR_BUSY Subscriptions are in place on this handle.

EXAMPLE 1 Subscription example

The following example subscribes to list.suspect events and prints out a simple message for
each one that is received. It foregoes most error checking for the sake of clarity.

#include <fm/libfmevent.h>

#include <libnvpair.h>

/*

* Callback to receive list.suspect events

*/

void

mycb(fmev_t ev, const char *class, nvlist_t *attr, void *cookie)

{

struct tm tm;

char buf[64];

char *evcode;

if (strcmp(class, "list.suspect") != 0)

return; /* only happens if this code has a bug! */

(void) strftime(buf, sizeof (buf), NULL,

fmev_localtime(ev, &tm));

(void) nvlist_lookup_string(attr, "code", &evcode);

(void) fprintf(stderr, "Event class %s published at %s, "
"event code %s\n", class, buf, evcode);

}

int

main(int argc, char *argv[])

Examples

fmev_shdl_init(3FM)

Extended Library Functions, Volume 1 381

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Adoor-xcreate-3c

EXAMPLE 1 Subscription example (Continued)

{

fmev_shdl_t hdl;

sigset_t set;

hdl = fmev_shdl_init(LIBFMEVENT_VERSION_LATEST,

NULL, NULL, NULL);

(void) fmev_shdl_subscribe(hdl, "list.suspect", mycb, NULL);

/* Wait here until signalled with SIGTERM to finish */

(void) sigemptyset(&set);

(void) sigaddset(&set, SIGTERM);

(void) sigwait(&set);

/* fmev_shdl_fini would do this for us if we skipped it */

(void) fmev_shdl_unsubscribe(hdl, "list.suspect");

(void) fmev_shdl_fini(hdl);

return (0);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Interface Stability Committed

MT-Level Safe

door_xcreate(3C), gethrtime(3C), libnvpair(3LIB), libumem(3LIB),
nvlist_lookup_string(3NVPAIR), pthread_create(3C), pthread_sigmask(3C),
strftime(3C), attributes(5), privileges(5)

Attributes

See Also

fmev_shdl_init(3FM)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 6 Jul 2012382

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Adoor-xcreate-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agethrtime-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibnvpair-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibumem-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Hnvlist-lookup-string-3nvpair
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-create-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-sigmask-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Astrftime-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

fstyp_get_attr – get file system attributes

cc [flag...] file... -lfstyp -lnvpair [library...]

#include <libnvpair.h>

#include <libfstyp.h>

int fstyp_get_attr(fstyp_handle_t handle, nvlist_t **attrp);

handle Opaque handle returned by fstyp_ident(3FSTYP).

attrp Address to which the name-pair list is returned.

The fstyp_get_attr() function returns a name-value pair list of various attributes for an
identified file system. This function can be called only after a successful call to fstyp_ident().

Each file system has its own set of attributes. The following attributes are generic and are
returned when appropriate for a particular file system type:

gen_clean (DATA_TYPE_BOOLEAN_VALUE) Attribute for which true and false values are
allowed. A false value is returned if the file
system is damaged or if the file system is not
cleanly unmounted. In the latter case,
fsck(1M) is required before the file system can
be mounted.

gen_guid (DATA_TYPE_STRING) Globally unique string identifier used to
establish the identity of the file system.

gen_version (DATA_TYPE_STRING) String that specifes the file system version.

gen_volume_label (DATA_TYPE_STRING) Human-readable volume label string used to
describe and/or identify the file system.

Attribute names associated with specific file
systems should not start with gen_.

The fstyp_get_attr() function returns 0 on success and an error value on failure. See
fstyp_strerror(3FSTYP).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Name

Synopsis

Parameters

Description

Return Values

Attributes

fstyp_get_attr(3FSTYP)

Extended Library Functions, Volume 1 383

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mfsck-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

fstyp_ident(3FSTYP), fstyp_mod_init(3FSTYP), fstyp_strerror(3FSTYP),
libfstyp(3LIB), attributes(5)

See Also

fstyp_get_attr(3FSTYP)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 20 Jun 2006384

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibfstyp-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

fstyp_ident – identify file system attributes

cc [flag...] file... -lfstyp -lnvpair [library...]

#include <libnvpair.h>

#include <libfstyp.h>

int fstyp_ident(fstyp_handle_t handle, const char *fstyp,
const char **ident);

handle Opaque handle returned by fstyp_init(3FSTYP).

fstype Opaque argument that specifies the file system type to be identified.

ident File system type returned if identification succeeds.

The fstyp_ident() function attempts to identify a file system associated with the handle. If
the function succeeds, the file system name is returned in the ident pointer.

If fstype is NULL, the fstyp_ident() function tries all available identification modules. If fstype
is other than NULL, fstyp_ident() tries only the module for the file system type which is
specified.

The fstyp_ident() function returns 0 on success and an error value on failure. See
fstyp_strerror(3FSTYP).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

fstyp_init(3FSTYP), fstyp_mod_init(3FSTYP), fstyp_strerror(3FSTYP),
libfstyp(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

fstyp_ident(3FSTYP)

Extended Library Functions, Volume 1 385

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibfstyp-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

fstyp_init, fstyp_fini – initialize and finalize libfstyp handle

cc [flag...] file... -lfstyp -lnvpair [library...]

#include <libnvpair.h>

#include <libfstyp.h>

int fstyp_init(int fd, off64_t **offset, char *module_dir,
fstyp_handle_t *handle);

void fstyp_fini(fstyp_handle_t handle);

fd Open file descriptor of a block or a raw device that contains the file system to
be identified.

offset Offset from the beginning of the device where the file system is located.

module_dir Optional location of the libfstyp modules.

handle Opaque handle to be used with libfstyp functions.

The fstyp_init() function returns a handle associated with the specified parameters. This
handle should be used with all other libfstyp functions.

If module_dir is NULL, fstyp_init() looks for modules in the default location: /usr/lib/fs
subdirectories. The fstyp_init() function locates libfstyp modules, but might defer
loading the modules until the subsequent fstyp_ident() call.

If module_dir is other than NULL, the fstyp_init() function locates a module in the directory
that is specified. If no module is found, fstyp_init fails with FSTYP_ERR_MOD_NOT_FOUND.

Modules that do not support non-zero offset can fail fstyp_init() with FSTYP_ERR_OFFSET.

The fstyp_fini() function releases all resources associated with a handle and invalidates the
handle.

The fstyp_init() function returns 0 on success and an error value on failure. See
fstyp_strerror(3FSTYP).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

fstyp_ident(3FSTYP), fstyp_mod_init(3FSTYP), fstyp_strerror(3FSTYP),
libfstyp(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Return Values

Attributes

See Also

fstyp_init(3FSTYP)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 22 Oct 2010386

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibfstyp-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

fstyp_mod_init, fstyp_mod_fini, fstyp_mod_ident, fstyp_mod_get_attr, fstyp_mod_dump –
libfstyp module interface

cc [flag...] file... -lfstyp -lnvpair [library...]

#include <libnvpair.h>

#include <libfstyp.h>

int fstyp_mod_init(int fd, off64_t **offset, fstyp_mod_handle_t *handle);

void fstyp_mod_fini(fstyp_mod_handle_t handle);

int fstyp_mod_ident(fstyp_mod_handle_t handle);

int fstyp_mod_get_attr(fstyp_mod_handle_t handle, nvlist_t **attr);

int fstyp_mod_dump(fstyp_mod_handle_t handle, FILE *fout, FILE *ferr);

fd Open file descriptor of a block or a raw device that contains the file system to be
identified.

offset Offset from the beginning of the device where the file system is located.

handle Opaque handle that the module returns in fstyp_mod_init() and is used with other
module functions.

fout Output stream.

ferr Error stream.

A libfstyp module implements heuristics required to identify a file system type. The
modules are shared objects loaded by libfstyp. The libfstyp modules are located in
/usr/lib/fs subdirectories. A subdirectory name defines the name of the file system.

Each module exports the fstyp_mod_init(), fstyp_mod_fini(), fstyp_mod_ident(), and
fstyp_mod_get_attr() functions. All of these functions map directly to the respective
libfstyp interfaces.

The fstyp_mod_dump() function is optional. It can be used to output unformatted
information about the file system. This function is used by the fstyp(1M) command when the
-v option is specified. The fstyp_mod_dump() function is not recommended and should be
used only in legacy modules.

/usr/lib/fs/ Default module directory.

/usr/lib/fs/fstype/fstyp.so.1 Default path to a libfstyp module for an fstype file
system.

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Parameters

Description

Files

Attributes

fstyp_mod_init(3FSTYP)

Extended Library Functions, Volume 1 387

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mfstyp-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

fstyp(1M), fstyp_strerror(3FSTYP), libfstyp(3LIB), attributes(5)See Also

fstyp_mod_init(3FSTYP)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 29 Jun 2006388

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mfstyp-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibfstyp-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

fstyp_strerror – get error message string

cc [flag...] file... -lfstyp -lnvpair [library...]

#include <libnvpair.h>

#include <libfstyp.h>

const char *fstyp_strerror(fstyp_handle_t handle, int error);

handle Opaque handle returned by fstyp_init(3FSTYP). This argument is optional and
can be 0.

error Error value returned by a libfstyp function.

The fstyp_strerror() function maps the error value to an error message string and returns a
pointer to that string. The returned string should not be overwritten.

The following error values are defined:

FSTYP_ERR_NO_MATCH No file system match.

FSTYP_ERR_MULT_MATCH Multiple file system matches.

FSTYP_ERR_HANDLE Invalid handle.

FSTYP_ERR_OFFSET Supplied offset is invalid or unsupported by the module.

FSTYP_ERR_NO_PARTITION Specified partition not found.

FSTYP_ERR_NOP No such operation.

FSTYP_ERR_DEV_OPEN Device cannot be opened.

FSTYP_ERR_IO I/O error.

FSTYP_ERR_NOMEM Out of memory.

FSTYP_ERR_MOD_NOT_FOUND Requested file system module not found.

FSTYP_ERR_MOD_DIR_OPEN Directory cannot be opened.

FSTYP_ERR_MOD_OPEN Module cannot be opened.

FSTYP_ERR_MOD_INVALID Invalid module version.

FSTYP_ERR_NAME_TOO_LONG File system name length exceeds system limit.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Name

Synopsis

Parameters

Description

Attributes

fstyp_strerror(3FSTYP)

Extended Library Functions, Volume 1 389

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

fstyp_init(3FSTYP), libfstyp(3LIB), attributes(5)See Also

fstyp_strerror(3FSTYP)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 20 Jun 2006390

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibfstyp-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

gelf, gelf_checksum, gelf_fsize, gelf_getcap, gelf_getclass, gelf_getdyn, gelf_getehdr,
gelf_getmove, gelf_getphdr, gelf_getrel, gelf_getrela, gelf_getshdr, gelf_getsym,
gelf_getsyminfo, gelf_getsymshndx, gelf_newehdr, gelf_newphdr, gelf_update_cap,
gelf_update_dyn, gelf_update_ehdr, gelf_update_getmove, gelf_update_move,
gelf_update_phdr, gelf_update_rel, gelf_update_rela, gelf_update_shdr, gelf_update_sym,
gelf_update_symshndx, gelf_update_syminfo, gelf_xlatetof, gelf_xlatetom – generic
class-independent ELF interface

cc [flag...] file... −lelf [library...]

#include <gelf.h>

long gelf_checksum(Elf *elf);

size_t gelf_fsize(Elf *elf, Elf_Type type, size_t cnt, unsigned ver);

int gelf_getcap(Elf_Data *src, int ndx, GElf_Cap *dst);

int gelf_getclass(Elf *elf);

GElf_Dyn *gelf_getdyn(Elf_Data *src, int ndx, GElf_Dyn *dst);

GElf_Ehdr *gelf_getehdr(Elf *elf, GElf_Ehdr *dst);

GElf_Move *gelf_getmove(Elf_Data *src, int ndx, GElf_Move *dst);

GElf_Phdr *gelf_getphdr(Elf *elf, int ndx, GElf_Phdr *dst);

GElf_Rel *gelf_getrel(Elf_Data *src, int ndx, GElf_Rel *dst);

GElf_Rela *gelf_getrela(Elf_Data *src, int ndx, GElf_Rela *dst);

GElf_Shdr *gelf_getshdr(Elf_Scn *scn, GElf_Shdr *dst);

GElf_Sym *gelf_getsym(Elf_Data *src, int ndx, GElf_Sym *dst);

GElf_Syminfo *gelf_getsyminfo(Elf_Data *src, int ndx, GElf_Syminfo *dst);

GElf_Sym *gelf_getsymshndx(Elf_Data *symsrc, Elf_Data *shndxsrc,
int ndx, GElf_Sym *symdst, Elf32_Word *shndxdst);

unsigned long gelf_newehdr(Elf *elf, int class);

unsigned long gelf_newphdr(Elf *elf, size_t phnum);

int gelf_update_cap(Elf_Data *dst, int ndx, GElf_Cap *src);

int gelf_update_dyn(Elf_Data *dst, int ndx, GElf_Dyn *src);

int gelf_update_ehdr(Elf *elf, GElf_Ehdr *src);

int gelf_update_move(Elf_Data *dst, int ndx, GElf_Move *src);

int gelf_update_phdr(Elf *elf, int ndx, GElf_Phdr *src);

int gelf_update_rel(Elf_Data *dst, int ndx, GElf_Rel *src);

int gelf_update_rela(Elf_Data *dst, int ndx, GElf_Rela *src);

int gelf_update_shdr(Elf_Scn *dst, GElf_Shdr *src);

Name

Synopsis

gelf(3ELF)

Extended Library Functions, Volume 1 391

int gelf_update_sym(Elf_Data *dst, int ndx, GElf_Sym *src);

int gelf_update_syminfo(Elf_Data *dst, int ndx, GElf_Syminfo *src);

int gelf_update_symshndx(Elf_Data *symdst, Elf_Data *shndxdst, int ndx,
GElf_Sym *symsrc, Elf32_Word shndxsrc);

Elf_Data *gelf_xlatetof(Elf *elf, Elf_Data *dst, const Elf_Data *src,
unsigned encode);

Elf_Data *gelf_xlatetom(Elf *elf, Elf_Data *dst, const Elf_Data *src,
unsigned encode);

GElf is a generic, ELF class-independent API for manipulating ELF object files. GElf provides a
single, common interface for handling 32–bit and 64–bit ELF format object files. GElf is a
translation layer between the application and the class-dependent parts of the ELF library.
Thus, the application can use GElf, which in turn, will call the corresponding elf32_ or
elf64_ functions on behalf of the application. The data structures returned are all large
enough to hold 32–bit and 64–bit data.

GElf provides a simple, class-independent layer of indirection over the class-dependent ELF32
and ELF64 API's. GElf is stateless, and may be used along side the ELF32 and ELF64 API's.

GElf always returns a copy of the underlying ELF32 or ELF64 structure, and therefore the
programming practice of using the address of an ELF header as the base offset for the ELF's
mapping into memory should be avoided. Also, data accessed by type-casting the Elf_Data
buffer to a class-dependent type and treating it like an array, for example, a symbol table, will
not work under GElf, and the gelf_get functions must be used instead. See the EXAMPLE
section.

Programs that create or modify ELF files using libelf(3LIB) need to perform an extra step
when using GElf. Modifications to GElf values must be explicitly flushed to the underlying
ELF32 or ELF64 structures by way of the gelf_update_ interfaces. Use of elf_update or
elf_flagelf and the like remains the same.

The sizes of versioning structures remain the same between ELF32 and ELF64. The GElf API
only defines types for versioning, rather than a functional API. The processing of versioning
information will stay the same in the GElf environment as it was in the class-dependent ELF
environment.

gelf_checksum() An analog to elf32_checksum(3ELF) and
elf64_checksum(3ELF).

gelf_fsize() An analog to elf32_fsize(3ELF) and elf64_fsize(3ELF).

gelf_getcap() Retrieves the Elf32_Cap or Elf64_Cap information from the
capability table at the given index. dst points to the location
where the GElf_Cap capability entry is stored.

gelf_getclass() Returns one of the constants ELFCLASS32, ELFCLASS64 or
ELFCLASSNONE.

Description

List of Functions

gelf(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 8 June 2004392

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib

gelf_getdyn() Retrieves the Elf32_Dyn or Elf64_Dyn information from the
dynamic table at the given index. dst points to the location
where the GElf_Dyn dynamic entry is stored.

gelf_getehdr() An analog to elf32_getehdr(3ELF) and
elf64_getehdr(3ELF). dst points to the location where the
GElf_Ehdr header is stored.

gelf_getmove() Retrieves the Elf32_Move or Elf64_Move information from
the move table at the given index. dst points to the location
where the GElf_Move move entry is stored.

gelf_getphdr() An analog toelf32_getphdr(3ELF) and
elf64_getphdr(3ELF). dst points to the location where the
GElf_Phdr program header is stored.

gelf_getrel() Retrieves the Elf32_Rel or Elf64_Rel information from the
relocation table at the given index. dst points to the location
where the GElf_Rel relocation entry is stored.

gelf_getrela() Retrieves the Elf32_Rela or Elf64_Rela information from
the relocation table at the given index. dst points to the
location where the GElf_Rela relocation entry is stored.

gelf_getshdr() An analog to elf32_getshdr(3ELF) and
elf64_getshdr(3ELF). dst points to the location where the
GElf_Shdr section header is stored.

gelf_getsym() Retrieves the Elf32_Sym or Elf64_Sym information from the
symbol table at the given index. dst points to the location
where the GElf_Sym symbol entry is stored.

gelf_getsyminfo() Retrieves the Elf32_Syminfo or Elf64_Syminfo information
from the relocation table at the given index. dst points to the
location where the GElf_Syminfo symbol information entry is
stored.

gelf_getsymshndx() Provides an extension to gelf_getsym() that retrieves the
Elf32_Sym or Elf64_Sym information, and the section index
from the symbol table at the given index ndx.

The symbols section index is typically recorded in the
st_shndx field of the symbols structure. However, a file that
requires ELF Extended Sections may record an st_shndx of
SHN_XINDEX indicating that the section index must be obtained
from an associated SHT_SYMTAB_SHNDX section entry. If xshndx
and shndxdata are non-null, the value recorded at index ndx of

gelf(3ELF)

Extended Library Functions, Volume 1 393

the SHT_SYMTAB_SHNDX table pointed to by shndxdata is
returned in xshndx. See USAGE.

gelf_newehdr() An analog to elf32_newehdr(3ELF) and
elf64_newehdr(3ELF).

gelf_newphdr() An analog to elf32_newphdr(3ELF) and
elf64_newphdr(3ELF).

gelf_update_cap() Copies the GElf_Cap information back into the underlying
Elf32_Cap or Elf64_Cap structure at the given index.

gelf_update_dyn() Copies the GElf_Dyn information back into the underlying
Elf32_Dyn or Elf64_Dyn structure at the given index.

gelf_update_ehdr() Copies the contents of the GElf_Ehdr ELF header to the
underlying Elf32_Ehdr or Elf64_Ehdr structure.

gelf_update_move() Copies the GElf_Move information back into the underlying
Elf32_Move or Elf64_Move structure at the given index.

gelf_update_phdr() Copies of the contents of GElf_Phdr program header to
underlying the Elf32_Phdr or Elf64_Phdr structure.

gelf_update_rel() Copies the GElf_Rel information back into the underlying
Elf32_Rel or Elf64_Rel structure at the given index.

gelf_update_rela() Copies the GElf_Rela information back into the underlying
Elf32_Rela or Elf64_Rela structure at the given index.

gelf_update_shdr() Copies of the contents of GElf_Shdr section header to
underlying the Elf32_Shdr or Elf64_Shdr structure.

gelf_update_sym() Copies the GElf_Sym information back into the underlying
Elf32_Sym or Elf64_Sym structure at the given index.

gelf_update_syminfo() Copies the GElf_Syminfo information back into the
underlying Elf32_Syminfo or Elf64_Syminfo structure at the
given index.

gelf_update_symshndx() Provides an extension to gelf_update_sym() that copies the
GElf_Sym information back into the Elf32_Sym or Elf64_Sym
structure at the given index ndx, and copies the extended
xshndx section index into the Elf32_Word at the given index
ndx in the buffer described by shndxdata. See USAGE.

gelf_xlatetof() An analog to elf32_xlatetof(3ELF) and
elf64_xlatetof(3ELF)

gelf_xlatetom() An analog to elf32_xlatetom(3ELF) and
elf64_xlatetom(3ELF)

gelf(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 8 June 2004394

Upon failure, all GElf functions return 0 and set elf_errno. See elf_errno(3ELF)

EXAMPLE 1 Printing the ELF Symbol Table

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <libelf.h>

#include <gelf.h>

void

main(int argc, char **argv)

{

Elf *elf;

Elf_Scn *scn = NULL;

GElf_Shdr shdr;

Elf_Data *data;

int fd, ii, count;

elf_version(EV_CURRENT);

fd = open(argv[1], O_RDONLY);

elf = elf_begin(fd, ELF_C_READ, NULL);

while ((scn = elf_nextscn(elf, scn)) != NULL) {

gelf_getshdr(scn, &shdr);

if (shdr.sh_type == SHT_SYMTAB) {

/* found a symbol table, go print it. */

break;

}

}

data = elf_getdata(scn, NULL);

count = shdr.sh_size / shdr.sh_entsize;

/* print the symbol names */

for (ii = 0; ii < count; ++ii) {

GElf_Sym sym;

gelf_getsym(data, ii, &sym);

printf("%s\n", elf_strptr(elf, shdr.sh_link, sym.st_name));

}

elf_end(elf);

close(fd);

}

Return Values

Examples

gelf(3ELF)

Extended Library Functions, Volume 1 395

ELF Extended Sections are employed to allow an ELF file to contain more than 0xff00

(SHN_LORESERVE) section. See the Linker and Libraries Guide for more information.

/lib/libelf.so.1 shared object

/lib/64/libelf.so.1 64–bit shared object

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT Level MT-Safe

elf(3ELF), elf32_checksum(3ELF), elf32_fsize(3ELF), elf32_getehdr(3ELF),
elf32_newehdr(3ELF), elf32_getphdr(3ELF), elf32_newphdr(3ELF),
elf32_getshdr(3ELF), elf32_xlatetof(3ELF), elf32_xlatetom(3ELF), elf_errno(3ELF),
libelf(3LIB), attributes(5)

Linker and Libraries Guide

Usage

Files

Attributes

See Also

gelf(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 8 June 2004396

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=LLM

generic_events – generic performance counter events

The Solaris cpc(3CPC) subsystem implements a number of predefined, generic performance
counter events. Each generic event maps onto a single platform specific event and one or more
optional attributes. Each hardware platform only need support a subset of the total set of
generic events.

The defined generic events are:

PAPI_br_cn Conditional branch instructions

PAPI_br_ins Branch instructions

PAPI_br_msp Conditional branch instructions mispredicted

PAPI_br_ntk Conditional branch instructions not taken

PAPI_br_prc Conditional branch instructions correctly predicted

PAPI_br_tkn Conditional branch instructions taken

PAPI_br_ucn Unconditional branch instructions

PAPI_bru_idl Cycles branch units are idle

PAPI_btac_m Branch target address cache misses

PAPI_ca_cln Requests for exclusive access to clean cache line

PAPI_ca_inv Requests for cache invalidation

PAPI_ca_itv Requests for cache line intervention

PAPI_ca_shr Request for exclusive access to shared cache line

PAPI_ca_snp Request for cache snoop

PAPI_csr_fal Failed conditional store instructions

PAPI_csr_suc Successful conditional store instructions

PAPI_csr_tot Total conditional store instructions

PAPI_fad_ins Floating point add instructions

PAPI_fdv_ins Floating point divide instructions

PAPI_fma_ins Floating point multiply and add instructions

PAPI_fml_ins Floating point multiply instructions

PAPI_fnv_ins Floating point inverse instructions

PAPI_fp_ins Floating point instructions

PAPI_fp_ops Floating point operations

Name

Description

generic_events(3CPC)

Extended Library Functions, Volume 1 397

PAPI_fp_stal Cycles the floating point unit stalled

PAPI_fpu_idl Cycles the floating point units are idle

PAPI_fsq_ins Floating point sqrt instructions

PAPI_ful_ccy Cycles with maximum instructions completed

PAPI_ful_icy Cycles with maximum instruction issue

PAPI_fxu_idl Cycles when units are idle

PAPI_hw_int Hardware interrupts

PAPI_int_ins Integer instructions

PAPI_tot_cyc Total cycles

PAPI_tot_iis Instructions issued

PAPI_tot_ins Instructions completed

PAPI_vec_ins VectorSIMD instructions

PAPI_l1_dca Level 1 data cache accesses

PAPI_l1_dch Level 1 data cache hits

PAPI_l1_dcm Level 1 data cache misses

PAPI_l1_dcr Level 1 data cache reads

PAPI_l1_dcw Level 1 data cache writes

PAPI_l1_ica Level 1 instruction cache accesses

PAPI_l1_ich Level 1 instruction cache hits

PAPI_l1_icm Level 1 instruction cache misses

PAPI_l1_icr Level 1 instruction cache reads

PAPI_l1_icw Level 1 instruction cache writes

PAPI_l1_ldm Level 1 cache load misses

PAPI_l1_stm Level 1 cache store misses

PAPI_l1_tca Level 1 cache accesses

PAPI_l1_tch Level 1 cache hits

PAPI_l1_tcm Level 1 cache misses

PAPI_l1_tcr Level 1 cache reads

PAPI_l1_tcw Level 1 cache writes

generic_events(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 14 Jun 2012398

PAPI_l2_dca Level 2 data cache accesses

PAPI_l2_dch Level 2 data cache hits

PAPI_l2_dcm Level 2 data cache misses

PAPI_l2_dcr Level 2 data cache reads

PAPI_l2_dcw Level 2 data cache writes

PAPI_l2_ica Level 2 instruction cache accesses

PAPI_l2_ich Level 2 instruction cache hits

PAPI_l2_icm Level 2 instruction cache misses

PAPI_l2_icr Level 2 instruction cache reads

PAPI_l2_icw Level 2 instruction cache writes

PAPI_l2_ldm Level 2 cache load misses

PAPI_l2_stm Level 2 cache store misses

PAPI_l2_tca Level 2 cache accesses

PAPI_l2_tch Level 2 cache hits

PAPI_l2_tcm Level 2 cache misses

PAPI_l2_tcr Level 2 cache reads

PAPI_l2_tcw Level 2 cache writes

PAPI_l3_dca Level 3 data cache accesses

PAPI_l3_dch Level 3 data cache hits

PAPI_l3_dcm Level 3 data cache misses

PAPI_l3_dcr Level 3 data cache reads

PAPI_l3_dcw Level 3 data cache writes

PAPI_l3_ica Level 3 instruction cache accesses

PAPI_l3_ich Level 3 instruction cache hits

PAPI_l3_icm Level 3 instruction cache misses

PAPI_l3_icr Level 3 instruction cache reads

PAPI_l3_icw Level 3 instruction cache writes

PAPI_l3_ldm Level 3 cache load misses

PAPI_l3_stm Level 3 cache store misses

generic_events(3CPC)

Extended Library Functions, Volume 1 399

PAPI_l3_tca Level 3 cache accesses

PAPI_l3_tch Level 3 cache hits

PAPI_l3_tcm Level 3 cache misses

PAPI_l3_tcr Level 3 cache reads

PAPI_l3_tcw Level 3 cache writes

PAPI_ld_ins Load Instructions

PAPI_lst_ins Loadstore Instructions

PAPI_lsu_idl Cycles load store units are idle

PAPI_mem_rcy Cycles stalled waiting for memory reads

PAPI_mem_scy Cycles stalled waiting for memory accesses

PAPI_mem_wcy Cycles stalled waiting for memory writes

PAPI_prf_dm Data prefetch cache misses

PAPI_res_stl Cycles stalled on any resource

PAPI_sr_ins Store Instructions

PAPI_stl_ccy Cycles with no instructions completed

PAPI_syc_ins Synchronization instructions completed

PAPI_tlb_dm Data TLB misses

PAPI_tlb_im Instruction TLB misses

PAPI_tlb_sd TLB shootdowns

PAPI_tlb_tl Total TLB misses

The tables below define mappings of generic events to platform events and any associated
attribute for all supported platforms.

Generic Event Event Code/Unit Mask Platform Event

PAPI_tot_cyc 0x3c/0x00 cpu_clk_unhalted.thread_p/core

PAPI_tot_ins 0xc0/0x00 inst_retired.any_p

PAPI_br_ins 0xc4/0x0c br_inst_retired.taken

PAPI_br_msp 0xc5/0x00 br_inst_retired.mispred

PAPI_br_ntk 0xc4/0x03 br_inst_retired.pred_not_taken

| pred_taken

Intel Core2 Processors

generic_events(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 14 Jun 2012400

Generic Event Event Code/Unit Mask Platform Event

PAPI_br_prc 0xc4/0x05 br_inst_retired.pred_not_taken

| pred_taken

PAPI_hw_int 0xc8/0x00 hw_int_rvc

PAPI_tot_iis 0xaa/0x01 macro_insts.decoded

PAPI_l1_dca 0x43/0x01 l1d_all_ref

PAPI_l1_icm 0x81/0x00 l1i_misses

PAPI_l1_icr 0x80/0x00 l1i_reads

PAPI_l1_tcw 0x41/0x0f l1d_cache_st.mesi

PAPI_l2_stm 0x2a/0x41 l2_st.self.i_state

PAPI_l2_tca 0x2e/0x4f l2_rqsts.self.demand.mesi

PAPI_l2_tch 0x2e/0x4e l2_rqsts.mes

PAPI_l2_tcm 0x2e/0x41 l2_rqsts.self.demand.i_state

PAPI_l2_tcw 0x2a/0x4f l2_st.self.mesi

PAPI_ld_ins 0xc0/0x01 inst_retired.loads

PAPI_lst_ins 0xc0/0x03 inst_retired.loads | stores

PAPI_sr_ins 0xc0/0x02 inst_retired.stores

PAPI_tlb_dm 0x08/0x01 dtlb_misses.any

PAPI_tlb_im 0x82/0x12 itlb.small_miss | large_miss

PAPI_tlb_tl 0x0c/0x03 page_walks

PAPI_l1_dcm 0xcb/0x01 mem_load_retired.l1d_miss

Fixed-function counters do not require Event Code and Unit Mask. The generic event to
fixed-function counter event mappings available are:

Generic Event Platform Fixed-function Event

PAPI_tot_ins instr_retired.any

PAPI_tot_cyc cpu_clk_unhalted.core/thread

Generic Event Event Code/Unit Mask Platform Event

PAPI_tot_cyc 0x3c/0x00 cpu_clk_unhalted.thread_p

Intel Processor 5500
Family (Core i7)

generic_events(3CPC)

Extended Library Functions, Volume 1 401

Generic Event Event Code/Unit Mask Platform Event

PAPI_tot_ins 0xc0/0x00 inst_retired.any_p

PAPI_br_cn 0xc4/0x01 br_inst_retired.conditional

PAPI_hw_int 0x1d/0x01 hw_int.rcx

PAPI_tot_iis 0x17/0x01 inst_queue_writes

PAPI_l1_dca 0x43/0x01 l1d_all_ref.any

PAPI_l1_dcm 0x24/0x03 l2_rqsts.loads | rfos

PAPI_l1_dcr 0x40/0x0f l1d_cache_ld.mesi

PAPI_l1_dcw 0x41/0x0f l1d_cache_st.mesi

PAPI_l1_ica 0x80/0x03 l1i.reads

PAPI_l1_ich 0x80/0x01 l1i.hits

PAPI_l1_icm 0x80/0x02 l1i.misses

PAPI_l1_icr 0x80/0x03 l1i.reads

PAPI_l1_ldm 0x24/0x33 l2_rqsts.loads | ifetches

PAPI_l1_tcm 0x24/0xff l2_rqsts.references

PAPI_l2_ldm 0x24/0x02 l2_rqsts.ld_miss

PAPI_l2_stm 0x24/0x08 l2_rqsts.rfo_miss

PAPI_l2_tca 0x24/0x3f l2_rqsts.loads|rfos|ifetches

PAPI_l2_tch 0x24/0x15 l2_rqsts.ld_hit,rfo_hit|ifetch_hit

PAPI_l2_tcm 0x24/0x2a l2_rqsts.ld_miss,rfo_miss|ifetch_miss

PAPI_l2_tcr 0x24/0x33 l2_rqsts.loads|ifetches

PAPI_l2_tcw 0x24/0x0c l2_rqsts.rfos

PAPI_l3_tca 0x2e/0x4f l3_lat_cache.reference

PAPI_l3_tcm 0x2e/0x41 l3_lat_cache.misses

PAPI_ld_ins 0x0b/0x01 mem_inst_retired.loads

PAPI_lst_ins 0x0b/0x03 mem_inst_retired.loads|stores

PAPI_prf_dm 0x26/0xf0 l2_data_rqsts.prefetch.mesi

PAPI_sr_ins 0x0b/0x02 mem_inst_retired.stores

PAPI_tlb_dm 0x49/0x01 dtlb_misses.any

generic_events(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 14 Jun 2012402

Generic Event Event Code/Unit Mask Platform Event

PAPI_tlb_im 0x85/0x01 itlb_misses.any

For fixed-function counter mappings refer to the Intel Core2 listing above.

Generic Event Event Code/Unit Mask Platform Event

PAPI_br_ins 0xc4/0x00 br_inst_retired.any

PAPI_br_msp 0xc5/0x00 br_inst_retired.mispred

PAPI_br_ntk 0xc4/0x03 br_inst_retired.pred_not_taken

| mispred_not_taken

PAPI_br_prc 0xc4/0x05 br_inst_retired.pred_not_taken

| pred_taken

PAPI_hw_int 0xc8/0x00 hw_int_rcv

PAPI_tot_iis 0xaa/0x03 macro_insts.all_decoded

PAPI_l1_dca 0x40/0x23 l1d_cache.l1 | st

PAPI_l2_stm 0x2a/0x41 l2_st.self.i_state

PAPI_l2_tca 0x2e/0x4f longest_lat_cache.reference

PAPI_l2_tch 0x2e/0x4e l2_rqsts.mes

PAPI_l2_tcm 0x2e/0x41 longest_lat_cache.miss

PAPI_l2_tcw 0x2a/0x4f l2_st.self.mesi

PAPI_tlb_dm 0x08/0x07 data_tlb_misses.dtlb.miss

PAPI_tlb_im 0x82/0x02 itlb.misses

For fixed-function counter mappings refer to the Intel Core2 listing above.

Generic Event Platform Event Unit Mask

PAPI_br_ins FR_retired_branches_w_excp_intr 0x0

PAPI_br_msp FR_retired_branches_mispred 0x0

PAPI_br_tkn FR_retired_taken_branches 0x0

PAPI_fp_ops FP_dispatched_fpu_ops 0x3

PAPI_fad_ins FP_dispatched_fpu_ops 0x1

Intel Atom Processors

AMD Opteron Family
0xF Processor

generic_events(3CPC)

Extended Library Functions, Volume 1 403

Generic Event Platform Event Unit Mask

PAPI_fml_ins FP_dispatched_fpu_ops 0x2

PAPI_fpu_idl FP_cycles_no_fpu_ops_retired 0x0

PAPI_tot_cyc BU_cpu_clk_unhalted 0x0

PAPI_tot_ins FR_retired_x86_instr_w_excp_intr 0x0

PAPI_l1_dca DC_access 0x0

PAPI_l1_dcm DC_miss 0x0

PAPI_l1_ldm DC_refill_from_L2 0xe

PAPI_l1_stm DC_refill_from_L2 0x10

PAPI_l1_ica IC_fetch 0x0

PAPI_l1_icm IC_miss 0x0

PAPI_l1_icr IC_fetch 0x0

PAPI_l2_dch DC_refill_from_L2 0x1e

PAPI_l2_dcm DC_refill_from_system 0x1e

PAPI_l2_dcr DC_refill_from_L2 0xe

PAPI_l2_dcw DC_refill_from_L2 0x10

PAPI_l2_ich IC_refill_from_L2 0x0

PAPI_l2_icm IC_refill_from_system 0x0

PAPI_l2_ldm DC_refill_from_system 0xe

PAPI_l2_stm DC_refill_from_system 0x10

PAPI_res_stl FR_dispatch_stalls 0x0

PAPI_stl_icy FR_nothing_to_dispatch 0x0

PAPI_hw_int FR_taken_hardware_intrs 0x0

PAPI_tlb_dm DC_dtlb_L1_miss_L2_miss 0x0

PAPI_tlb_im IC_itlb_L1_miss_L2_miss 0x0

PAPI_fp_ins FR_retired_fpu_instr 0xd

PAPI_vec_ins FR_retired_fpu_instr 0x4

generic_events(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 14 Jun 2012404

Generic Event Platform Event Event Mask

PAPI_br_ins FR_retired_branches_w_excp_intr 0x0

PAPI_br_msp FR_retired_branches_mispred 0x0

PAPI_br_tkn FR_retired_taken_branches 0x0

PAPI_fp_ops FP_dispatched_fpu_ops 0x3

PAPI_fad_ins FP_dispatched_fpu_ops 0x1

PAPI_fml_ins FP_dispatched_fpu_ops 0x2

PAPI_fpu_idl FP_cycles_no_fpu_ops_retired 0x0

PAPI_tot_cyc BU_cpu_clk_unhalted 0x0

PAPI_tot_ins FR_retired_x86_instr_w_excp_intr 0x0

PAPI_l1_dca DC_access 0x0

PAPI_l1_dcm DC_miss 0x0

PAPI_l1_ldm DC_refill_from_L2 0xe

PAPI_l1_stm DC_refill_from_L2 0x10

PAPI_l1_ica IC_fetch 0x0

PAPI_l1_icm IC_miss 0x0

PAPI_l1_icr IC_fetch 0x0

PAPI_l2_dch DC_refill_from_L2 0x1e

PAPI_l2_dcm DC_refill_from_system 0x1e

PAPI_l2_dcr DC_refill_from_L2 0xe

PAPI_l2_dcw DC_refill_from_L2 0x10

PAPI_l2_ich IC_refill_from_L2 0x0

PAPI_l2_icm IC_refill_from_system 0x0

PAPI_l2_ldm DC_refill_from_system 0xe

PAPI_l2_stm DC_refill_from_system 0x10

PAPI_res_stl FR_dispatch_stalls 0x0

PAPI_stl_icy FR_nothing_to_dispatch 0x0

PAPI_hw_int FR_taken_hardware_intrs 0x0

PAPI_tlb_dm DC_dtlb_L1_miss_L2_miss 0x7

AMD Opteron Family
0x10 Processors

generic_events(3CPC)

Extended Library Functions, Volume 1 405

Generic Event Platform Event Event Mask

PAPI_tlb_im IC_itlb_L1_miss_L2_miss 0x3

PAPI_fp_ins FR_retired_fpu_instr 0xd

PAPI_vec_ins FR_retired_fpu_instr 0x4

PAPI_l3_dcr L3_read_req 0xf1

PAPI_l3_icr L3_read_req 0xf2

PAPI_l3_tcr L3_read_req 0xf7

PAPI_l3_stm L3_miss 0xf4

PAPI_l3_ldm L3_miss 0xf3

PAPI_l3_tcm L3_miss 0xf7

Generic Event Platform Event Event Mask

PAPI_br_msp branch_retired 0xa

PAPI_br_ins branch_retired 0xf

PAPI_br_tkn branch_retired 0xc

PAPI_br_ntk branch_retired 0x3

PAPI_br_prc branch_retired 0x5

PAPI_tot_ins instr_retired 0x3

PAPI_tot_cyc global_power_events 0x1

PAPI_tlb_dm page_walk_type 0x1

PAPI_tlb_im page_walk_type 0x2

PAPI_tlb_tm page_walk_type 0x3

PAPI_l2_ldm BSQ_cache_reference 0x100

PAPI_l2_stm BSQ_cache_reference 0x400

PAPI_l2_tcm BSQ_cache_reference 0x500

Generic Event Platform Event Event Mask

PAPI_ca_shr l2_ifetch 0xf

PAPI_ca_cln bus_tran_rfo 0x0

Intel Pentium IV
Processor

Intel Pentium Pro/II/III
Processor

generic_events(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 14 Jun 2012406

Generic Event Platform Event Event Mask

PAPI_ca_itv bus_tran_inval 0x0

PAPI_tlb_im itlb_miss 0x0

PAPI_btac_m btb_misses 0x0

PAPI_hw_int hw_int_rx 0x0

PAPI_br_cn br_inst_retired 0x0

PAPI_br_tkn br_taken_retired 0x0

PAPI_br_msp br_miss_pred_taken_ret 0x0

PAPI_br_ins br_inst_retired 0x0

PAPI_res_stl resource_stalls 0x0

PAPI_tot_iis inst_decoder 0x0

PAPI_tot_ins inst_retired 0x0

PAPI_tot_cyc cpu_clk_unhalted 0x0

PAPI_l1_dcm dcu_lines_in 0x0

PAPI_l1_icm l2_ifetch 0xf

PAPI_l1_tcm l2_rqsts 0xf

PAPI_l1_dca data_mem_refs 0x0

PAPI_l1_ldm l2_ld 0xf

PAPI_l1_stm l2_st 0xf

PAPI_l2_icm bus_tran_ifetch 0x0

PAPI_l2_dcr l2_ld 0xf

PAPI_l2_dcw l2_st 0xf

PAPI_l2_tcm l2_lines_in 0x0

PAPI_l2_tca l2_rqsts 0xf

PAPI_l2_tcw l2_st 0xf

PAPI_l2_stm l2_m_lines_inm 0x0

PAPI_fp_ins flops 0x0

PAPI_fp_ops flops 0x0

PAPI_fml_ins mul 0x0

generic_events(3CPC)

Extended Library Functions, Volume 1 407

Generic Event Platform Event Event Mask

PAPI_fdv_ins div 0x0

Generic Event Platform Event

PAPI_tot_cyc Cycle_cnt

PAPI_l2_icm L2_imiss

PAPI_l2_ldm L2_dmiss_ld

PAPI_fp_ins FP_instr_cnt

PAPI_fp_ops FP_instr_cnt

PAPI_l1_icm IC_miss

PAPI_l1_dcm DC_miss

PAPI_tlb_im ITLB_miss

PAPI_tlb_dm DTLB_miss

Generic Event Platform Event

PAPI_tot_ins Instr_cnt

PAPI_fp_ins Instr_FGU_arithmetic

PAPI_fp_ops Instr_FGU_arithmetic

PAPI_l1_dcm DC_miss

PAPI_l1_icm IC_miss

PAPI_l2_icm L2_imiss

PAPI_l2_ldm L2_dmiss_ld

PAPI_tlb_dm DTLB_miss

PAPI_tlb_im ITLB_miss

PAPI_tlb_tm TLB_miss

PAPI_br_tkn Br_taken

PAPI_br_ins Br_completed

PAPI_ld_ins Instr_ld

PAPI_sr_ins Instr_st

Niagara T1 Processor

Niagara T2/T2+/T3
Processor

generic_events(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 14 Jun 2012408

Generic Event Platform Event

PAPI_tot_cyc cycle_counts

PAPI_tot_ins instruction_counts

PAPI_br_tkn branch_instructions

PAPI_fp_ops floating_instructions

PAPI_fma_ins impdep2_instructions

PAPI_l1_dcm op_r_iu_req_mi_go

PAPI_l1_icm if_r_iu_req_mi_go

PAPI_tlb_dm trap_DMMU_miss

PAPI_tlb_im trap_IMMU_miss

Generic Event Platform Event

PAPI_br_cn Branches

PAPI_br_ins Br_taken

PAPI_br_msp Br_mispred

PAPI_btac_m BTC_miss

PAPI_fp_ins Instr_FGU_crypto

PAPI_tot_ins Instr_all

PAPI_l1_dcm DC_miss

PAPI_l1_icm IC_miss

PAPI_ld_ins Instr_ld

PAPI_sr_ins Instr_st

PAPI_tlb_im ITLB_miss

PAPI_tlb_dm DTLB_miss_asynch

Generic Event Platform Event

PAPI_br_cn Branches

PAPI_br_ins Br_taken

PAPI_br_msp Br_mispred

SPARC64 VI/VII
Processor

SPARC T4 Processor

SPARC M5/T5 Processor

generic_events(3CPC)

Extended Library Functions, Volume 1 409

Generic Event Platform Event

PAPI_btac_m BTC_miss

PAPI_fp_ops Instr_FGU_crypto

PAPI_fp_ins Instr_FGU_crypto

PAPI_tot_ins Instr_all

PAPI_l1_dcm DC_miss

PAPI_l1_icm IC_miss

PAPI_ld_ins Instr_ld

PAPI_sr_ins Instr_st

PAPI_tlb_im ITLB_miss

PAPI_tlb_dm DTLB_miss_asynch

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Volatile

cpc(3CPC), attributes(5)

Generic names prefixed with “PAPI_” are taken from the University of Tennessee's PAPI
project, http://icl.cs.utk.edu/papi.

Attributes

See Also

Notes

generic_events(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 14 Jun 2012410

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://icl.cs.utk.edu/papi

ld_support, ld_atexit, ld_atexit64, ld_file, ld_file64, ld_input_done, ld_input_section,
ld_input_section64, ld_open, ld_open64, ld_section, ld_section64, ld_start, ld_start64,
ld_version – link-editor support functions

void ld_atexit(int status);

void ld_atexit64(int status);

void ld_file(const char *name, const Elf_Kind kind, int flags,
Elf *elf);

void ld_file64(const char *name, const Elf_Kind kind, int flags,
Elf *elf);

void ld_input_done(uint_t *flags);

void ld_input_section(const char *name, Elf32_Shdr **shdr,
Elf32_Word sndx, Elf_Data *data, Elf *elf, uint_t *flags);

void ld_input_section64(const char *name, Elf64_Shdr **shdr,
Elf64_Word sndx, Elf_Data *data, Elf *elf, uint_t *flags);

void ld_open(const char **pname, const char **fname, int *fd,
int flags, Elf **elf, Elf *ref, size_t off, Elf_kind kind);

void ld_open64(const char **pname, const char **fname, int *fd,
int flags, Elf **elf, Elf *ref, size_t off, Elf_kind kind);

void ld_section(const char *name, Elf32_Shdr shdr, Elf32_Word sndx,
Elf_Data *data, Elf *elf);

void ld_section64(const char *name, Elf64_Shdr shdr, Elf64_Word sndx,
Elf_Data *data, Elf *elf);

void ld_start(const char *name, const Elf32_Half type,
const char *caller);

void ld_start64(const char *name, const Elf64_Half type,
const char *caller);

void ld_version(uint_t version);

A link-editor support library is a user-created shared object offering one or more of these
interfaces. These interfaces are called by the link-editor ld(1) at various stages of the
link-editing process. See the Linker and Libraries Guide for a full description of the link-editor
support mechanism.

ld(1)

Linker and Libraries Guide

Name

Synopsis

Description

See Also

ld_support(3ext)

Extended Library Functions, Volume 1 411

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=LLM

md4, MD4Init, MD4Update, MD4Final – MD4 digest functions

cc [flag ...] file ... -lmd [library ...]

#include <md4.h>

void MD4Init(MD4_CTX *context);

void MD4Update(MD4_CTX *context, unsigned char *input,
unsigned int inlen);

void MD4Final(unsigned char *output, MD4_CTX *context);

The MD4 functions implement the MD4 message-digest algorithm. The algorithm takes as input
a message of arbitrary length and produces a “fingerprint” or “message digest” as output. The
MD4 message-digest algorithm is intended for digital signature applications in which large files
are “compressed” in a secure manner before being encrypted with a private (secret) key under
a public-key cryptosystem such as RSA.

The MD4Init(), MD4Update(), and MD4Final() functions allow an MD4 digest to be computed
over multiple message blocks. Between blocks, the state of the MD4 computation is held in an
MD4 context structure allocated by the caller. A complete digest computation consists of calls
to MD4 functions in the following order: one call to MD4Init(), one or more calls to
MD4Update(), and one call to MD4Final().

The MD4Init() function initializes the MD4 context structure pointed to by context.

The MD4Update() function computes a partial MD4 digest on the inlen-byte message block
pointed to by input, and updates the MD4 context structure pointed to by context accordingly.

The MD4Final() function generates the final MD4 digest, using the MD4 context structure
pointed to by context. The MD4 digest is written to output. After a call to MD4Final(), the state
of the context structure is undefined. It must be reinitialized with MD4Init() before it can be
used again.

These functions do not return a value.

The MD4 digest algorithm is not currently considered cryptographically secure. It is included in
libmd(3LIB) for use by legacy protocols and systems only. It should not be used by new
systems or protocols.

EXAMPLE 1 Authenticate a message found in multiple buffers

The following is a sample function that must authenticate a message that is found in multiple
buffers. The calling function provides an authentication buffer that will contain the result of
the MD4 digest.

#include <sys/types.h>

#include <sys/uio.h>

#include <md4.h>

Name

Synopsis

Description

MD4Init(),
MD4Update(),
MD4Final()

Return Values

Security

Examples

md4(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 13 Nov 2007412

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibmd-3lib

EXAMPLE 1 Authenticate a message found in multiple buffers (Continued)

int

AuthenticateMsg(unsigned char *auth_buffer, struct iovec

*messageIov, unsigned int num_buffers)

{

MD4_CTX ctx;

unsigned int i;

MD4Init(&ctx);

for(i=0; i<num_buffers; i++)

{

MD4Update(&ctx, messageIov->iov_base,

messageIov->iov_len);

messageIov += sizeof(struct iovec);

}

MD4Final(auth_buffer, &ctx);

return 0;

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libmd(3LIB)

RFC 1320

Attributes

See Also

md4(3EXT)

Extended Library Functions, Volume 1 413

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibmd-3lib

md5, md5_calc, MD5Init, MD5Update, MD5Final – MD5 digest functions

cc [flag ...] file ... -lmd5 [library ...]

#include <md5.h>

void md5_calc(unsigned char *output, unsigned char *input,
unsigned int inlen);

void MD5Init(MD5_CTX *context);

void MD5Update(MD5_CTX *context, unsigned char *input,
unsigned int inlen);

void MD5Final(unsigned char *output, MD5_CTX *context);

These functions implement the MD5 message-digest algorithm, which takes as input a
message of arbitrary length and produces as output a 128-bit “fingerprint” or “message digest”
of the input. It is intended for digital signature applications, where large file must be
“compressed” in a secure manner before being encrypted with a private (secret) key under a
public-key cryptosystem such as RSA.

The md5_calc() function computes an MD5 digest on a single message block. The inlen-byte
block is pointed to by input, and the 16-byte MD5 digest is written to output.

The MD5Init(), MD5Update(), and MD5Final() functions allow an MD5 digest to be
computed over multiple message blocks; between blocks, the state of the MD5 computation is
held in an MD5 context structure, allocated by the caller. A complete digest computation
consists of one call to MD5Init(), one or more calls to MD5Update(), and one call to
MD5Final(), in that order.

The MD5Init() function initializes the MD5 context structure pointed to by context.

The MD5Update() function computes a partial MD5 digest on the inlen-byte message block
pointed to by input, and updates the MD5 context structure pointed to by context accordingly.

The MD5Final() function generates the final MD5 digest, using the MD5 context structure
pointed to by context; the 16-byte MD5 digest is written to output. After calling MD5Final(),
the state of the context structure is undefined; it must be reinitialized with MD5Init() before
being used again.

These functions do not return a value.

EXAMPLE 1 Authenticate a message found in multiple buffers

The following is a sample function that must authenticate a message that is found in multiple
buffers. The calling function provides an authentication buffer that will contain the result of
the MD5 digest.

#include <sys/types.h>

#include <sys/uio.h>

#include <md5.h>

Name

Synopsis

Description

md5_calc()

MD5Init(),
MD5Update(),
MD5Final()

Return Values

Examples

md5(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 13 Nov 2007414

EXAMPLE 1 Authenticate a message found in multiple buffers (Continued)

int

AuthenticateMsg(unsigned char *auth_buffer, struct iovec

*messageIov, unsigned int num_buffers)

{

MD5_CTX md5_context;

unsigned int i;

MD5Init(&md5_context);

for(i=0; i<num_buffers; i++)

{

MD5Update(&md5_context, messageIov->iov_base,

messageIov->iov_len);

messageIov += sizeof(struct iovec);

}

MD5Final(auth_buffer, &md5_context);

return 0;

}

EXAMPLE 2 Use md5_calc() to generate the MD5 digest

Since the buffer to be computed is contiguous, the md5_calc() function can be used to
generate the MD5 digest.

int AuthenticateMsg(unsigned char *auth_buffer, unsigned

char *buffer, unsigned int length)

{

md5_calc(buffer, auth_buffer, length);

return (0);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libmd5(3LIB)

Rivest, R., The MD5 Message-Digest Algorithm, RFC 1321, April 1992.

Attributes

See Also

md5(3EXT)

Extended Library Functions, Volume 1 415

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibmd5-3lib

nlist – get entries from name list

cc [flag...] file ... -lelf [library ...]

#include <nlist.h>

int nlist(const char *filename, struct nlist *nl);

nlist() examines the name list in the executable file whose name is pointed to by filename,
and selectively extracts a list of values and puts them in the array of nlist() structures
pointed to by nl. The name list nl consists of an array of structures containing names of
variables, types, and values. The list is terminated with a null name, that is, a null string is in
the name position of the structure. Each variable name is looked up in the name list of the file.
If the name is found, the type, value, storage class, and section number of the name are
inserted in the other fields. The type field may be set to 0 if the file was not compiled with the
-g option to cc.

nlist() will always return the information for an external symbol of a given name if the name
exists in the file. If an external symbol does not exist, and there is more than one symbol with
the specified name in the file (such as static symbols defined in separate files), the values
returned will be for the last occurrence of that name in the file. If the name is not found, all
fields in the structure except n_name are set to 0.

This function is useful for examining the system name list kept in the file /dev/ksyms. In this
way programs can obtain system addresses that are up to date.

All value entries are set to 0 if the file cannot be read or if it does not contain a valid name list.

nlist() returns 0 on success, −1 on error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

elf(3ELF), kvm_nlist(3KVM), kvm_open(3KVM), libelf(3LIB), a.out(4), attributes(5),
ksyms(7D), mem(7D)

Name

Synopsis

Description

Return Values

Attributes

See Also

nlist(3ELF)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 11 Jul 2001416

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Ekvm-nlist-3kvm
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Ekvm-open-3kvm
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibelf-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4a.out-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7ksyms-7d
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7mem-7d

NOTE, _NOTE – annotate source code with info for tools

#include <note.h>

NOTE(NoteInfo)

#include<sys/note.h>

_NOTE(NoteInfo)

These macros are used to embed information for tools in program source. A use of one of
these macros is called an “annotation”. A tool may define a set of such annotations which can
then be used to provide the tool with information that would otherwise be unavailable from
the source code.

Annotations should, in general, provide documentation useful to the human reader. If
information is of no use to a human trying to understand the code but is necessary for proper
operation of a tool, use another mechanism for conveying that information to the tool (one
which does not involve adding to the source code), so as not to detract from the readability of
the source. The following is an example of an annotation which provides information of use to
a tool and to the human reader (in this case, which data are protected by a particular lock, an
annotation defined by the static lock analysis tool lock_lint).

NOTE(MUTEX_PROTECTS_DATA(foo_lock, foo_list Foo))

Such annotations do not represent executable code; they are neither statements nor
declarations. They should not be followed by a semicolon. If a compiler or tool that analyzes C
source does not understand this annotation scheme, then the tool will ignore the annotations.
(For such tools, NOTE(x) expands to nothing.)

Annotations may only be placed at particular places in the source.

These places are where the following C constructs would be allowed:

■ a top-level declaration (that is, a declaration not within a function or other construct)
■ a declaration or statement within a block (including the block which defines a function)
■ a member of a struct or union.

Annotations are not allowed in any other place. For example, the following are illegal:

x = y + NOTE(...) z ;

typedef NOTE(...) unsigned int uint ;

While NOTE and _NOTE may be used in the places described above, a particular type of
annotation may only be allowed in a subset of those places. For example, a particular
annotation may not be allowed inside a struct or union definition.

Name

Synopsis

Description

NOTE(3EXT)

Extended Library Functions, Volume 1 417

Ordinarily, NOTE should be used rather than _NOTE, since use of _NOTE technically makes a
program non-portable. However, it may be inconvenient to use NOTE for this purpose in
existing code if NOTE is already heavily used for another purpose. In this case one should use a
different macro and write a header file similar to /usr/include/note.h which maps that
macro to _NOTE in the same manner. For example, the following makes FOO such a macro:

#ifndef _FOO_H

#define _FOO_H

#define FOO _NOTE

#include <sys/note.h>

#endif

Public header files which span projects should use _NOTE rather than NOTE, since NOTE may
already be used by a program which needs to include such a header file.

The actual NoteInfo used in an annotation should be specified by a tool that deals with
program source (see the documentation for the tool to determine which annotations, if any, it
understands).

NoteInfo must have one of the following forms:

NoteName
NoteName(Args)

where NoteName is simply an identifier which indicates the type of annotation, and Args is
something defined by the tool that specifies the particular NoteName. The general restrictions
on Args are that it be compatible with an ANSI C tokenizer and that unquoted parentheses be
balanced (so that the end of the annotation can be determined without intimate knowledge of
any particular annotation).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

note(4), attributes(5)

NOTE vs _NOTE

NoteInfo Argument

Attributes

See Also

NOTE(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 12 Nov 2010418

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4note-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

pctx_capture, pctx_create, pctx_run, pctx_release – process context library

cc [flag...] file... −lpctx [library...]

#include <libpctx.h>

typedef void (pctx_errfn_t)(const char *fn, const char *fmt, va_list ap);

pctx_t *pctx_create(const char *filename, char *const *argv, void *arg,
int verbose, pctx_errfn_t *errfn);

pctx_t *pctx_capture(pid_t pid, void *arg, int verbose,
pctx_errfn_t *errfn);

int pctx_run(pctx_t *pctx, uint_t sample, uint_t nsamples,
int (*tick)(pctx *, pid_t, id_t, void *));

void pctx_release(pctx_t *pctx);

This family of functions allows a controlling process (the process that invokes them) to create
or capture controlled processes. The functions allow the occurrence of various events of
interest in the controlled process to cause the controlled process to be stopped, and to cause
callback routines to be invoked in the controlling process.

There are two ways a process can be acquired by the process context functions. First, a named
application can be invoked with the usual argv[] array using pctx_create(), which forks the
caller and execs the application in the child. Alternatively, an existing process can be captured
by its process ID using pctx_capture().

Both functions accept a pointer to an opaque handle, arg; this is saved and treated as a
caller-private handle that is passed to the other functions in the library. Both functions accept
a pointer to a printf(3C)-like error routine errfn; a default version is provided if NULL is
specified.

A freshly-created process is created stopped; similarly, a process that has been successfully
captured is stopped by the act of capturing it, thereby allowing the caller to specify the
handlers that should be called when various events occur in the controlled process. The set of
handlers is listed on the pctx_set_events(3CPC) manual page.

Once the callback handlers have been set with pctx_set_events(), the application can be set
running using pctx_run(). This function starts the event handling loop; it returns only when
either the process has exited, the number of time samples has expired, or an error has occurred
(for example, if the controlling process is not privileged, and the controlled process has
exec-ed a setuid program).

Every sample milliseconds the process is stopped and the tick() routine is called so that, for
example, the performance counters can be sampled by the caller. No periodic sampling is
performed if sample is 0.

Name

Synopsis

Description

pctx_create() and
pctx_capture()

pctx_run()

pctx_capture(3CPC)

Extended Library Functions, Volume 1 419

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aprintf-3c

Once pctx_run() has returned, the process can be released and the underlying storage freed
using pctx_release(). Releasing the process will either allow the controlled process to
continue (in the case of an existing captured process and its children) or kill the process (if it
and its children were created using pctx_create()).

Upon successful completion, pctx_capture() and pctx_create() return a valid handle.
Otherwise, the functions print a diagnostic message and return NULL.

Upon successful completion, pctx_run() returns 0 with the controlled process either stopped
or exited (if the controlled process has invoked exit(2).) If an error has occurred (for
example, if the controlled process has exec–ed a set-ID executable, if certain callbacks have
returned error indications, or if the process was unable to respond to proc(4) requests) an
error message is printed and the function returns −1.

Within an event handler in the controlling process, the controlled process can be made to
perform various system calls on its behalf. No system calls are directly supported in this
version of the API, though system calls are executed by the cpc_pctx family of interfaces in
libcpc such as cpc_pctx_bind_event(3CPC). A specially created agent LWP is used to
execute these system calls in the controlled process. See proc(4) for more details.

While executing the event handler functions, the library arranges for the signals SIGTERM,
SIGQUIT, SIGABRT, and SIGINT to be blocked to reduce the likelihood of a keyboard signal
killing the controlling process prematurely, thereby leaving the controlled process
permanently stopped while the agent LWP is still alive inside the controlled process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

fork(2), cpc(3CPC), pctx_set_events(3CPC), libpctx(3LIB), proc(4), attributes(5)

pctx_release()

Return Values

Usage

Attributes

See Also

pctx_capture(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 13 May 2003420

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4proc-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4proc-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibpctx-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4proc-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

pctx_set_events – associate callbacks with process events

cc [flag...] file... −lpctx [library...]

#include <libpctx.h>

typedef enum {

PCTX_NULL_EVENT = 0,

PCTX_SYSC_EXEC_EVENT,

PCTX_SYSC_FORK_EVENT,

PCTX_SYSC_EXIT_EVENT,

PCTX_SYSC_LWP_CREATE_EVENT,

PCTX_INIT_LWP_EVENT,

PCTX_FINI_LWP_EVENT,

PCTX_SYSC_LWP_EXIT_EVENT

} pctx_event_t;

typedef int pctx_sysc_execfn_t(pctx_t *pctx, pid_t pid, id_t lwpid,
char *cmd, void *arg);

typedef void pctx_sysc_forkfn_t(pctx_t *pctx,
pid_t pid, id_t lwpid, pid_t child, void *arg);

typedef void pctx_sysc_exitfn_t(pctx_t *pctx, pid_t pid, id_t lwpid,
void *arg);

typedef int pctx_sysc_lwp_createfn_t(pctx_t *pctx, pid_t pid, id_t lwpid,
void *arg);

typedef int pctx_init_lwpfn_t(pctx_t *pctx, pid_t pid, id_t lwpid,
void *arg);

typedef int pctx_fini_lwpfn_t(pctx_t *pctx, pid_t pid, id_t lwpid,
void *arg);

typedef int pctx_sysc_lwp_exitfn_t(pctx_t *pctx, pid_t pid, id_t lwpid,
void *arg);

int pctx_set_events(pctx_t *pctx...);

The pctx_set_events() function allows the caller (the controlling process) to express
interest in various events in the controlled process. See pctx_capture(3CPC) for information
about how the controlling process is able to create, capture and manipulate the controlled
process.

The pctx_set_events() function takes a pctx_t handle, followed by a variable length list of
pairs of pctx_event_t tags and their corresponding handlers, terminated by a
PCTX_NULL_EVENT tag.

Most of the events correspond closely to various classes of system calls, though two additional
pseudo-events (init_lwp and fini_lwp) are provided to allow callers to perform various
housekeeping tasks. The init_lwp handler is called as soon as the library identifies a new LWP,
while fini_lwp is called just before the LWP disappears. Thus the classic “hello world” program

Name

Synopsis

Description

pctx_set_events(3CPC)

Extended Library Functions, Volume 1 421

would see an init_lwp event, a fini_lwp event and (process) exit event, in that order. The table
below displays the interactions between the states of the controlled process and the handlers
executed by users of the library.

System Calls and pctx Handlers

System call Handler Comments

exec,execve fini_lwp Invoked serially on all lwps in the process.

exec Only invoked if the exec() system call succeeded.

init_lwp If the exec succeeds, only invoked on lwp 1. If the exec fails,
invoked serially on all lwps in the process.

fork, vfork, fork1 fork Only invoked if the fork() system call succeeded.

exit fini_lwp Invoked on all lwps in the process.

exit Invoked on the exiting lwp.

Each of the handlers is passed the caller's opaque handle, a pctx_t handle, the pid, and lwpid
of the process and lwp generating the event. The lwp_exit, and (process) exit events are
delivered before the underlying system calls begin, while the exec, fork, and lwp_create events
are only delivered after the relevant system calls complete successfully. The exec handler is
passed a string that describes the command being executed. Catching the fork event causes the
calling process to fork(2), then capture the child of the controlled process using
pctx_capture() before handing control to the fork handler. The process is released on return
from the handler.

Upon successful completion, pctx_set_events() returns 0. Otherwise, the function returns
–1.

EXAMPLE 1 HandleExec example.

This example captures an existing process whose process identifier is pid, and arranges to call
the HandleExec routine when the process performs an exec(2).

static void

HandleExec(pctx_t *pctx, pid_t pid, id_t lwpid, char *cmd, void *arg)

{

(void) printf("pid %d execed ’%s’\n", (int)pid, cmd);

}

int

main()

{

...

pctx = pctx_capture(pid, NULL, 1, NULL);

(void) pctx_set_events(pctx,

Return Values

Examples

pctx_set_events(3CPC)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 13 May 2003422

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2exec-2

EXAMPLE 1 HandleExec example. (Continued)

PCTX_SYSC_EXEC_EVENT, HandleExec,

...

PCTX_NULL_EVENT);

(void) pctx_run(pctx, 0, 0, NULL);

pctx_release(pctx);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

exec(2), exit(2), fork(2), vfork(2), fork1(2), cpc(3CPC), libpctx(3LIB), proc(4),
attributes(5)

Attributes

See Also

pctx_set_events(3CPC)

Extended Library Functions, Volume 1 423

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2vfork-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2fork1-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibpctx-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4proc-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

queue, SLIST_HEAD, SLIST_HEAD_INITIALIZER, SLIST_ENTRY, SLIST_INIT,
SLIST_INSERT_AFTER, SLIST_INSERT_HEAD, SLIST_REMOVE_HEAD,
SLIST_REMOVE, SLIST_FOREACH, SLIST_EMPTY, SLIST_FIRST, SLIST_NEXT,
SIMPLEQ_HEAD, SIMPLEQ_HEAD_INITIALIZER, SIMPLEQ_ENTRY, SIMPLEQ_INIT,
SIMPLEQ_INSERT_HEAD, SIMPLEQ_INSERT_TAIL, SIMPLEQ_INSERT_AFTER,
SIMPLEQ_REMOVE_HEAD, SIMPLEQ_REMOVE, SIMPLEQ_FOREACH,
SIMPLEQ_EMPTY, SIMPLEQ_FIRST, SIMPLEQ_NEXT, STAILQ_HEAD,
STAILQ_HEAD_INITIALIZER, STAILQ_ENTRY, STAILQ_INIT,
STAILQ_INSERT_HEAD, STAILQ_INSERT_TAIL, STAILQ_INSERT_AFTER,
STAILQ_REMOVE_HEAD, STAILQ_REMOVE, STAILQ_FOREACH, STAILQ_EMPTY,
STAILQ_FIRST, STAILQ_NEXT, STAILQ_CONCAT, LIST_HEAD,
LIST_HEAD_INITIALIZER, LIST_ENTRY, LIST_INIT, LIST_INSERT_AFTER,
LIST_INSERT_BEFORE, LIST_INSERT_HEAD, LIST_REMOVE, LIST_FOREACH,
LIST_EMPTY, LIST_FIRST, LIST_NEXT, TAILQ_HEAD, TAILQ_HEAD_INITIALIZER,
TAILQ_ENTRY, TAILQ_INIT, TAILQ_INSERT_HEAD, TAILQ_INSERT_TAIL,
TAILQ_INSERT_AFTER, TAILQ_INSERT_BEFORE, TAILQ_REMOVE,
TAILQ_FOREACH, TAILQ_FOREACH_REVERSE, TAILQ_EMPTY, TAILQ_FIRST,
TAILQ_NEXT, TAILQ_LAST, TAILQ_PREV, TAILQ_CONCAT, CIRCLEQ_HEAD,
CIRCLEQ_HEAD_INITIALIZER, CIRCLEQ_ENTRY, CIRCLEQ_INIT,
CIRCLEQ_INSERT_AFTER, CIRCLEQ_INSERT_BEFORE, CIRCLEQ_INSERT_HEAD,
CIRCLEQ_INSERT_TAIL, CIRCLEQ_REMOVE, CIRCLEQ_FOREACH,
CIRCLEQ_FOREACH_REVERSE, CIRCLEQ_EMPTY, CIRCLEQ_FIRST,
CIRCLEQ_LAST, CIRCLEQ_NEXT, CIRCLEQ_PREV, CIRCLEQ_LOOP_NEXT,
CIRCLEQ_LOOP_PREV – implementations of singly-linked lists, simple queues, lists, tail
queues, and circular queues

#include <sys/queue.h>

SLIST_HEAD(HEADNAME, TYPE);

SLIST_HEAD_INITIALIZER(head);

SLIST_ENTRY(TYPE);

SLIST_INIT(SLIST_HEAD *head)

SLIST_INSERT_AFTER(TYPE *listelm, TYPE *elm, SLIST_ENTRY NAME);

SLIST_INSERT_HEAD(SLIST_HEAD *head, TYPE *elm, SLIST_ENTRY NAME)

SLIST_REMOVE_HEAD(SLIST_HEAD *head, SLIST_ENTRY NAME);

SLIST_REMOVE(SLIST_HEAD *head, TYPE *elm, TYPE, SLIST_ENTRY NAME);

SLIST_FOREACH(TYPE *var, SLIST_HEAD *head, SLIST_ENTRY NAME);

int SLIST_EMPTY(SLIST_HEAD *head);

TYPE *SLIST_FIRST(SLIST_HEAD *head);

TYPE *SLIST_NEXT(TYPE *elm, SLIST_ENTRY NAME);

Name

Synopsis

queue(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 21 May 2010424

SIMPLEQ_HEAD(HEADNAME, TYPE);

SIMPLEQ_HEAD_INITIALIZER(head);

SIMPLEQ_ENTRY(TYPE);

SIMPLEQ_INIT(SIMPLEQ_HEAD *head);

SIMPLEQ_INSERT_HEAD(SIMPLEQ_HEAD *head, TYPE *elm, SIMPLEQ_ENTRY NAME);

SIMPLEQ_INSERT_TAIL(SIMPLEQ_HEAD *head, TYPE *elm, SIMPLEQ_ENTRY NAME);

SIMPLEQ_INSERT_AFTER(SIMPLEQ_HEAD *head, TYPE *listelm, TYPE *elm,

SIMPLEQ_ENTRY NAME);

SIMPLEQ_REMOVE_HEAD(SIMPLEQ_HEAD *head, SIMPLEQ_ENTRY NAME);

SIMPLEQ_REMOVE(SIMPLEQ_HEAD *head, TYPE *elm, TYPE, SIMPLEQ_ENTRY NAME);

SIMPLEQ_FOREACH(TYPE *var, SIMPLEQ_HEAD *head, SIMPLEQ_ENTRY NAME);

int SIMPLEQ_EMPTY(SIMPLEQ_HEAD *head)

TYPE *SIMPLEQ_FIRST(SIMPLEQ_HEAD *head);

TYPE *SIMPLEQ_NEXT(TYPE *elm, SIMPLEQ_ENTRY NAME);

STAILQ_HEAD(HEADNAME, TYPE);

STAILQ_HEAD_INITIALIZER(head);

STAILQ_ENTRY(TYPE);

STAILQ_INIT(STAILQ_HEAD *head);

STAILQ_INSERT_HEAD(STAILQ_HEAD *head, TYPE *elm, STAILQ_ENTRY NAME);

STAILQ_INSERT_TAIL(STAILQ_HEAD *head, TYPE *elm, STAILQ_ENTRY NAME);

STAILQ_INSERT_AFTER(STAILQ_HEAD *head, TYPE *listelm, TYPE *elm,

STAILQ_ENTRY NAME);

STAILQ_REMOVE_HEAD(STAILQ_HEAD *head, STAILQ_ENTRY NAME);

STAILQ_REMOVE(STAILQ_HEAD *head, TYPE *elm, TYPE, STAILQ_ENTRY NAME);

STAILQ_FOREACH(TYPE *var, STAILQ_HEAD *head, STAILQ_ENTRY NAME);

int STAILQ_EMPTY(STAILQ_HEAD *head);

TYPE *STAILQ_FIRST(STAILQ_HEAD *head);

TYPE *STAILQ_NEXT(TYPE *elm, STAILQ_ENTRY NAME);

STAILQ_CONCAT(STAILQ_HEAD *head1, STAILQ_HEAD *head2);

LIST_HEAD(HEADNAME, TYPE);

LIST_HEAD_INITIALIZER(head);

LIST_ENTRY(TYPE);

queue(3EXT)

Extended Library Functions, Volume 1 425

LIST_INIT(LIST_HEAD *head);

LIST_INSERT_AFTER(TYPE *listelm, TYPE *elm, LIST_ENTRY NAME);

LIST_INSERT_BEFORE(TYPE *listelm, TYPE *elm, LIST_ENTRY NAME);

LIST_INSERT_HEAD(LIST_HEAD *head, TYPE *elm, LIST_ENTRY NAME);

LIST_REMOVE(TYPE *elm, LIST_ENTRY NAME);

LIST_FOREACH(TYPE *var, LIST_HEAD *head, LIST_ENTRY NAME);

int LIST_EMPTY(LIST_HEAD *head);

TYPE *LIST_FIRST(LIST_HEAD *head);

TYPE *LIST_NEXT(TYPE *elm, LIST_ENTRY NAME);

TAILQ_HEAD(HEADNAME, TYPE);

TAILQ_HEAD_INITIALIZER(head);

TAILQ_ENTRY(TYPE);

TAILQ_INIT(TAILQ_HEAD *head);

TAILQ_INSERT_HEAD(TAILQ_HEAD *head, TYPE *elm, TAILQ_ENTRY NAME);

TAILQ_INSERT_TAIL(TAILQ_HEAD *head, TYPE *elm, TAILQ_ENTRY NAME)

TAILQ_INSERT_AFTER(TAILQ_HEAD *head, TYPE *listelm, TYPE *elm,

TAILQ_ENTRY NAME);

TAILQ_INSERT_BEFORE(TYPE *listelm, TYPE *elm, TAILQ_ENTRY NAME);

TAILQ_REMOVE(TAILQ_HEAD *head, TYPE *elm, TAILQ_ENTRY NAME);

TAILQ_FOREACH(TYPE *var, TAILQ_HEAD *head, TAILQ_ENTRY NAME);

TAILQ_FOREACH_REVERSE(TYPE *var, TAILQ_HEAD *head, HEADNAME,
TAILQ_ENTRY NAME);

int TAILQ_EMPTY(TAILQ_HEAD *head);

TYPE *TAILQ_FIRST(TAILQ_HEAD *head);

TYPE *TAILQ_NEXT(TYPE *elm, TAILQ_ENTRY NAME);

TYPE *TAILQ_LAST(TAILQ_HEAD *head, HEADNAME);

TYPE *TAILQ_PREV(TYPE *elm, HEADNAME, TAILQ_ENTRY NAME);

TAILQ_CONCAT(TAILQ_HEAD *head1, TAILQ_HEAD *head2, TAILQ_ENTRY NAME);

CIRCLEQ_HEAD(HEADNAME, TYPE);

CIRCLEQ_HEAD_INITIALIZER(head);

CIRCLEQ_ENTRY(TYPE);

CIRCLEQ_INIT(CIRCLEQ_HEAD *head);

queue(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 21 May 2010426

CIRCLEQ_INSERT_AFTER(CIRCLEQ_HEAD *head, TYPE *listelm, TYPE *elm,

CIRCLEQ_ENTRY NAME);

CIRCLEQ_INSERT_BEFORE(CIRCLEQ_HEAD *head, TYPE *listelm, TYPE *elm,

CIRCLEQ_ENTRY NAME);

CIRCLEQ_INSERT_HEAD(CIRCLEQ_HEAD *head, TYPE *elm, CIRCLEQ_ENTRY NAME);

CIRCLEQ_INSERT_TAIL(CIRCLEQ_HEAD *head, TYPE *elm, CIRCLEQ_ENTRY NAME);

CIRCLEQ_REMOVE(CIRCLEQ_HEAD *head, TYPE *elm, CIRCLEQ_ENTRY NAME);

CIRCLEQ_FOREACH(TYPE *var, CIRCLEQ_HEAD *head, CIRCLEQ_ENTRY NAME);

CIRCLEQ_FOREACH_REVERSE(TYPE *var, CIRCLEQ_HEAD *head,
CIRCLEQ_ENTRY NAME);

int CIRCLEQ_EMPTY(CIRCLEQ_HEAD *head);

TYPE *CIRCLEQ_FIRST(CIRCLEQ_HEAD *head);

TYPE *CIRCLEQ_LAST(CIRCLEQ_HEAD *head);

TYPE *CIRCLEQ_NEXT(TYPE *elm, CIRCLEQ_ENTRY NAME);

TYPE *CIRCLEQ_PREV(TYPE *elm, CIRCLEQ_ENTRY NAME);

TYPE *CIRCLEQ_LOOP_NEXT(CIRCLEQ_HEAD *head, TYPE *elm, CIRCLEQ_ENTRY NAME);

TYPE *CIRCLEQ_LOOP_PREV(CIRCLEQ_HEAD *head, TYPE *elm, CIRCLEQ_ENTRY NAME);

These macros define and operate on five types of data structures: singly- linked lists, simple
queues, lists, tail queues, and circular queues. All five structures support the following
functionality:

1. Insertion of a new entry at the head of the list.
2. Insertion of a new entry before or after any element in the list.
3. Removal of any entry in the list.
4. Forward traversal through the list.

Singly-linked lists are the simplest of the five data structures and support only the above
functionality. Singly-linked lists are ideal for applications with large datasets and few or no
removals, or for implementing a LIFO queue.

1. Entries can be added at the end of a list.
2. They may be concatenated.

However:

1. Entries may not be added before any element in the list.
2. All list insertions and removals must specify the head of the list.
3. Each head entry requires two pointers rather than one.

Simple queues are ideal for applications with large datasets and few or no removals, or for
implementing a FIFO queue.

Description

queue(3EXT)

Extended Library Functions, Volume 1 427

All doubly linked types of data structures (lists, tail queues, and circle queues) additionally
allow:

1. Insertion of a new entry before any element in the list.
2. O(1) removal of any entry in the list.

However:

1. Each element requires two pointers rather than one.
2. Code size and execution time of operations (except for removal) is about twice that of the

singly-linked data structures

Linked lists are the simplest of the doubly linked data structures and support only the above
functionality over singly-linked lists.

Tail queues add the following functionality:

1. Entries can be added at the end of a list.
2. They may be concatenated.

However:

1. All list insertions and removals, except insertion before another element, must specify the
head of the list.

2. Each head entry requires two pointers rather than one.
3. Code size is about 15% greater and operations run about 20% slower than lists.

Circular queues add the following functionality:

1. Entries can be added at the end of a list.
2. They may be traversed backwards, from tail to head.

However:

1. All list insertions and removals must specify the head of the list.
2. Each head entry requires two pointers rather than one.
3. The termination condition for traversal is more complex.
4. Code size is about 40% greater and operations run about 45% slower than lists.

In the macro definitions, TYPE is the name of a user defined structure, that must contain a
field of type LIST_ENTRY, SIMPLEQ_ENTRY, SLIST_ENTRY, TAILQ_ENTRY, or CIRCLEQ_ENTRY,
named NAME. The argument HEADNAME is the name of a user defined structure that must
be declared using the macros LIST_HEAD(), SIMPLEQ_HEAD(), SLIST_HEAD(), TAILQ_HEAD(),
or CIRCLEQ_HEAD(). See the examples below for further explanation of how these macros are
used.

queue(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 21 May 2010428

The following table summarizes the supported macros for each type of data structure.

+-----------------+-------+------+---------+--------+-------+---------+

| | SLIST | LIST | SIMPLEQ | STAILQ | TAILQ | CIRCLEQ |

+-----------------+-------+------+---------+--------+-------+---------+

|_EMPTY | + | + | + | + | + | + |

|_FIRST | + | + | + | + | + | + |

|_FOREACH | + | + | + | + | + | + |

|_FOREACH_REVERSE | - | - | - | - | + | + |

|_INSERT_AFTER | + | + | + | + | + | + |

|_INSERT_BEFORE | - | + | - | - | + | + |

|_INSERT_HEAD | + | + | + | + | + | + |

|_INSERT_TAIL | - | - | + | + | + | + |

|_LAST | - | - | - | - | + | + |

|_LOOP_NEXT | - | - | - | - | - | + |

|_LOOP_PREV | - | - | - | - | - | + |

|_NEXT | + | + | + | + | + | + |

|_PREV | - | - | - | - | + | + |

|_REMOVE | + | + | + | + | + | + |

|_REMOVE_HEAD | + | - | + | + | - | - |

|_CONCAT | - | - | - | + | + | - |

+-----------------+-------+------+---------+--------+-------+---------+

A singly-linked list is headed by a structure defined by the SLIST_HEAD() macro. This
structure contains a single pointer to the first element on the list. The elements are singly
linked for minimum space and pointer manipulation overhead at the expense of O(n) removal
for arbitrary elements. New elements can be added to the list after an existing element or at the
head of the list. An SLIST_HEAD structure is declared as follows:

SLIST_HEAD(HEADNAME, TYPE) head;

where HEADNAME is the name of the structure to be defined, and TYPE is the type of the
elements to be linked into the list. A pointer to the head of the list can later be declared as:

struct HEADNAME *headp;

The names head and headp are user selectable.

The macro SLIST_HEAD_INITIALIZER() evaluates to an initializer for the list head

The macro SLIST_EMPTY() evaluates to true if there are no elements in the list.

The macro SLIST_ENTRY() declares a structure that connects the elements in the list.

The macro SLIST_FIRST() returns the first element in the list or NULL if the list is empty.

The macro SLIST_FOREACH() traverses the list referenced by head in the forward direction,
assigning each element in turn to var.

The macro SLIST_INIT() initializes the list referenced by head.

Summary of
Operations

Singly-linked Lists

queue(3EXT)

Extended Library Functions, Volume 1 429

The macro SLIST_INSERT_HEAD() inserts the new element elm at the head of the list.

The macro SLIST_INSERT_AFTER() inserts the new element elm after the element listelm.

The macro SLIST_NEXT() returns the next element in the list.

The macro SLIST_REMOVE() removes the element elm from the list.

The macro SLIST_REMOVE_HEAD() removes the first element from the head of the list. For
optimum efficiency, elements being removed from the head of the list should explicitly use
this macro instead of the generic SLIST_REMOVE() macro.

SLIST_HEAD(slisthead, entry) head =

SLIST_HEAD_INITIALIZER(head);

struct slisthead *headp; /* Singly-linked List head. */

struct entry {

...

SLIST_ENTRY(entry) entries; /* Singly-linked List. */

...

} *n1, *n2, *n3, *np;

SLIST_INIT(&head); /* Initialize the list. */

n1 = malloc(sizeof(struct entry)); /* Insert at the head. */

SLIST_INSERT_HEAD(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after. */

SLIST_INSERT_AFTER(n1, n2, entries);

SLIST_REMOVE(&head, n2, entry, entries);/* Deletion. */

free(n2);

n3 = SLIST_FIRST(&head);

SLIST_REMOVE_HEAD(&head, entries); /* Deletion from the head. */

free(n3);

/* Forward traversal. */

SLIST_FOREACH(np, &head, entries)

np-> ...

while (!SLIST_EMPTY(&head)) { /* List Deletion. */

n1 = SLIST_FIRST(&head);

SLIST_REMOVE_HEAD(&head, entries);

free(n1);

}

A simple queue is headed by a structure defined by the SIMPLEQ_HEAD() macro. This structure
contains a pair of pointers, one to the first element in the simple queue and the other to the last
element in the simple queue. The elements are singly linked for minimum space and pointer
manipulation overhead at the expense of O(n) removal for arbitrary elements. New elements

Singly-linked List
Example

Simple Queues

queue(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 21 May 2010430

can be added to the queue after an existing element, at the head of the queue, or at the end of
the queue. A SIMPLEQ_HEAD structure is declared as follows:

SIMPLEQ_HEAD(HEADNAME, TYPE) head;

where HEADNAME is the name of the structure to be defined, and TYPE is the type of the
elements to be linked into the simple queue. A pointer to the head of the simple queue can
later be declared as:

struct HEADNAME *headp;

The names head and headp are user selectable.

The macro SIMPLEQ_ENTRY() declares a structure that connects the elements in the simple
queue.

The macro SIMPLEQ_HEAD_INITIALIZER() provides a value which can be used to initialize a
simple queue head at compile time, and is used at the point that the simple queue head
variable is declared, like:

struct HEADNAME head = SIMPLEQ_HEAD_INITIALIZER(head);

The macro SIMPLEQ_INIT() initializes the simple queue referenced by head.

The macro SIMPLEQ_INSERT_HEAD() inserts the new element elm at the head of the simple
queue.

The macro SIMPLEQ_INSERT_TAIL() inserts the new element elm at the end of the simple
queue.

The macro SIMPLEQ_INSERT_AFTER() inserts the new element elm after the element listelm.

The macro SIMPLEQ_REMOVE() removes elm from the simple queue.

The macro SIMPLEQ_REMOVE_HEAD() removes the first element from the head of the simple
queue. For optimum efficiency, elements being removed from the head of the queue should
explicitly use this macro instead of the generic SIMPLQ_REMOVE() macro.

The macro SIMPLEQ_EMPTY() return true if the simple queue head has no elements.

The macro SIMPLEQ_FIRST() returns the first element of the simple queue head.

The macro SIMPLEQ_FOREACH() traverses the tail queue referenced by head in the forward
direction, assigning each element in turn to var.

The macro SIMPLEQ_NEXT() returns the element after the element elm.

The macros prefixed with “STAILQ_” (STAILQ_HEAD(), STAILQ_HEAD_INITIALIZER(),
STAILQ_ENTRY(), STAILQ_INIT(), STAILQ_INSERT_HEAD(), STAILQ_INSERT_TAIL(),
STAILQ_INSERT_AFTER(), STAILQ_REMOVE_HEAD(), STAILQ_REMOVE(), STAILQ_FOREACH(),
STAILQ_EMPTY(), STAILQ_FIRST(), and STAILQ_NEXT()) are functionally identical to these
simple queue functions, and are provided for compatibility with FreeBSD.

queue(3EXT)

Extended Library Functions, Volume 1 431

SIMPLEQ_HEAD(simplehead, entry) head;

struct simplehead *headp; /* Simple queue head. */

struct entry {

...

SIMPLEQ_ENTRY(entry) entries; /* Simple queue. */

...

} *n1, *n2, *np;

SIMPLEQ_INIT(&head); /* Initialize the queue. */

n1 = malloc(sizeof(struct entry)); /* Insert at the head. */

SIMPLEQ_INSERT_HEAD(&head, n1, entries);

n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */

SIMPLEQ_INSERT_TAIL(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after. */

SIMPLEQ_INSERT_AFTER(&head, n1, n2, entries);

/* Forward traversal. */

SIMPLEQ_FOREACH(np, &head, entries)

np-> ...

/* Delete. */

while (SIMPLEQ_FIRST(&head) != NULL)

SIMPLEQ_REMOVE_HEAD(&head, entries);

if (SIMPLEQ_EMPTY(&head)) /* Test for emptiness. */

printf("nothing to do\n");

A list is headed by a structure defined by the LIST_HEAD() macro. This structure contains a
single pointer to the first element on the list. The elements are doubly linked so that an
arbitrary element can be removed without traversing the list. New elements can be added to
the list after an existing element, before an existing element, or at the head of the list. A
LIST_HEAD structure is declared as follows:

LIST_HEAD(HEADNAME, TYPE) head;

where HEADNAME is the name of the structure to be defined, and TYPE is the type of the
elements to be linked into the list. A pointer to the head of the list can later be declared as:

struct HEADNAME *headp;

The names head and headp are user selectable.

The macro LIST_ENTRY() declares a structure that connects the elements in the list.

The macro LIST_HEAD_INITIALIZER() provides a value which can be used to initialize a list
head at compile time, and is used at the point that the list head variable is declared, like:

struct HEADNAME head = LIST_HEAD_INITIALIZER(head);

The macro LIST_INIT() initializes the list referenced by head.

Simple Queue Example

Lists

queue(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 21 May 2010432

The macro LIST_INSERT_HEAD() inserts the new element elm at the head of the list.

The macro LIST_INSERT_AFTER() inserts the new element elm after the element listelm.

The macro LIST_INSERT_BEFORE() inserts the new element elm before the element listelm.

The macro LIST_REMOVE() removes the element elm from the list.

The macro LIST_EMPTY() returns true if the list head has no elements.

The macro LIST_FIRST() returns the first element of the list head.

The macro LIST_FOREACH() traverses the list referenced by head in the forward direction,
assigning each element in turn to var.

The macro LIST_NEXT() returns the element after the element elm.

LIST_HEAD(listhead, entry) head;

struct listhead *headp; /* List head. */

struct entry {

...

LIST_ENTRY(entry) entries; /* List. */

...

} *n1, *n2, *np;

LIST_INIT(&head); /* Initialize the list. */

n1 = malloc(sizeof(struct entry)); /* Insert at the head. */

LIST_INSERT_HEAD(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after. */

LIST_INSERT_AFTER(n1, n2, entries);

n2 = malloc(sizeof(struct entry)); /* Insert before. */

LIST_INSERT_BEFORE(n1, n2, entries);

/* Forward traversal. */

LIST_FOREACH(np, &head, entries)

np-> ...

/* Delete. */

while (LIST_FIRST(&head) != NULL)

LIST_REMOVE(LIST_FIRST(&head), entries);

if (LIST_EMPTY(&head)) /* Test for emptiness. */

printf("nothing to do\n");

A tail queue is headed by a structure defined by the TAILQ_HEAD() macro. This structure
contains a pair of pointers, one to the first element in the tail queue and the other to the last
element in the tail queue. The elements are doubly linked so that an arbitrary element can be
removed without traversing the tail queue. New elements can be added to the queue after an
existing element, before an existing element, at the head of the queue, or at the end the queue.
A TAILQ_HEAD structure is declared as follows:

List Example

Tail Queues

queue(3EXT)

Extended Library Functions, Volume 1 433

TAILQ_HEAD(HEADNAME, TYPE) head;

where HEADNAME is the name of the structure to be defined, and TYPE is the type of the
elements to be linked into the tail queue. A pointer to the head of the tail queue can later be
declared as:

struct HEADNAME *headp;

The names head and headp are user selectable.

The macro TAILQ_ENTRY() declares a structure that connects the elements in the tail queue.

The macro TAILQ_HEAD_INITIALIZER() provides a value which can be used to initialize a tail
queue head at compile time, and is used at the point that the tail queue head variable is
declared, like:

struct HEADNAME head = TAILQ_HEAD_INITIALIZER(head);

The macro TAILQ_INIT() initializes the tail queue referenced by head.

The macro TAILQ_INSERT_HEAD() inserts the new element elm at the head of the tail queue.

The macro TAILQ_INSERT_TAIL() inserts the new element elm at the end of the tail queue.

The macro TAILQ_INSERT_AFTER() inserts the new element elm after the element listelm.

The macro TAILQ_INSERT_BEFORE() inserts the new element elm before the element listelm.

The macro TAILQ_REMOVE() removes the element elm from the tail queue.

The macro TAILQ_EMPTY() return true if the tail queue head has no elements.

The macro TAILQ_FIRST() returns the first element of the tail queue head.

The macro TAILQ_FOREACH() traverses the tail queue referenced by head in the forward
direction, assigning each element in turn to var.

The macro TAILQ_FOREACH_REVERSE() traverses the tail queue referenced by head in the
reverse direction, assigning each element in turn to var.

The macro TAILQ_NEXT() returns the element after the element elm.

The macro TAILQ_CONCAT() concatenates the tail queue headed by head2 onto the end of the
one headed by head1 removing all entries from the former.

TAILQ_HEAD(tailhead, entry) head;

struct tailhead *headp; /* Tail queue head. */

struct entry {

...

TAILQ_ENTRY(entry) entries; /* Tail queue. */

...

Tail Queue Example

queue(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 21 May 2010434

} *n1, *n2, *np;

TAILQ_INIT(&head); /* Initialize the queue. */

n1 = malloc(sizeof(struct entry)); /* Insert at the head. */

TAILQ_INSERT_HEAD(&head, n1, entries);

n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */

TAILQ_INSERT_TAIL(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after. */

TAILQ_INSERT_AFTER(&head, n1, n2, entries);

n2 = malloc(sizeof(struct entry)); /* Insert before. */

TAILQ_INSERT_BEFORE(n1, n2, entries);

/* Forward traversal. */

TAILQ_FOREACH(np, &head, entries)

np-> ...

/* Reverse traversal. */

TAILQ_FOREACH_REVERSE(np, &head, tailhead, entries)

np-> ...

/* Delete. */

while (TAILQ_FIRST(&head) != NULL)

TAILQ_REMOVE(&head, TAILQ_FIRST(&head), entries);

if (TAILQ_EMPTY(&head)) /* Test for emptiness. */

printf("nothing to do\n");

A circular queue is headed by a structure defined by the CIRCLEQ_HEAD() macro. This
structure contains a pair of pointers, one to the first element in the circular queue and the
other to the last element in the circular queue. The elements are doubly linked so that an
arbitrary element can be removed without traversing the queue. New elements can be added
to the queue after an existing element, before an existing element, at the head of the queue, or
at the end of the queue. A CIRCLEQ_HEAD structure is declared as follows:

CIRCLEQ_HEAD(HEADNAME, TYPE) head;

where HEADNAME is the name of the structure to be defined, and TYPE is the type of the
elements to be linked into the circular queue. A pointer to the head of the circular queue can
later be declared as:

struct HEADNAME *headp;

The names head and headp are user selectable.

The macro CIRCLEQ_ENTRY() declares a structure that connects the elements in the circular
queue.

The macro CIRCLEQ_HEAD_INITIALIZER() provides a value which can be used to initialize a
circular queue head at compile time, and is used at the point that the circular queue head
variable is declared, like:

Circular Queues

queue(3EXT)

Extended Library Functions, Volume 1 435

struct HEADNAME() head() = CIRCLEQ_HEAD_INITIALIZER(head());

The macro CIRCLEQ_INIT() initializes the circular queue referenced by head.

The macro CIRCLEQ_INSERT_HEAD() inserts the new element elm at the head of the circular
queue.

The macro CIRCLEQ_INSERT_TAIL() inserts the new element elm at the end of the circular
queue.

The macro CIRCLEQ_INSERT_AFTER() inserts the new element elm after the element listelm.

The macro CIRCLEQ_INSERT_BEFORE() inserts the new element elm before the element
listelm.

The macro CIRCLEQ_REMOVE() removes the element elm from the circular queue.

The macro CIRCLEQ_EMPTY() return true if the circular queue head has no elements.

The macro CIRCLEQ_FIRST() returns the first element of the circular queue head.

The macro CIRCLEQ_FOREACH() traverses the circle queue referenced by head in the forward
direction, assigning each element in turn to var. Each element is assigned exactly once.

The macro CIRCLEQ_FOREACH_REVERSE() traverses the circle queue referenced by head in the
reverse direction, assigning each element in turn to var. Each element is assigned exactly once.

The macro CIRCLEQ_LAST() returns the last element of the circular queue head.

The macro CIRCLEQ_NEXT() returns the element after the element elm.

The macro CIRCLEQ_PREV() returns the element before the element elm.

The macro CIRCLEQ_LOOP_NEXT() returns the element after the element elm. If elm was the
last element in the queue, the first element is returned.

The macro CIRCLEQ_LOOP_PREV() returns the element before the element elm. If elm was the
first element in the queue, the last element is returned.

CIRCLEQ_HEAD(circleq, entry) head;

struct circleq *headp; /* Circular queue head. */

struct entry {

...

CIRCLEQ_ENTRY(entry) entries; /* Circular queue. */

...

} *n1, *n2, *np;

CIRCLEQ_INIT(&head); /* Initialize circular queue. */

Circular Queue
Example

queue(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 21 May 2010436

n1 = malloc(sizeof(struct entry)); /* Insert at the head. */

CIRCLEQ_INSERT_HEAD(&head, n1, entries);

n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */

CIRCLEQ_INSERT_TAIL(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after. */

CIRCLEQ_INSERT_AFTER(&head, n1, n2, entries);

n2 = malloc(sizeof(struct entry)); /* Insert before. */

CIRCLEQ_INSERT_BEFORE(&head, n1, n2, entries);

/* Forward traversal. */

CIRCLEQ_FOREACH(np, &head, entries)

np-> ...

/* Reverse traversal. */

CIRCLEQ_FOREACH_REVERSE(np, &head, entries)

np-> ...

/* Delete. */

while (CIRCLEQ_FIRST(&head) != (void *)&head)

CIRCLEQ_REMOVE(&head, CIRCLEQ_FIRST(&head), entries);

if (CIRCLEQ_EMPTY(&head)) /* Test for emptiness. */

printf("nothing to do\n");

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

attributes(5), queue(9F)

Some of these macros or functions perform no error checking, and invalid usage leads to
undefined behavior. In the case of macros or functions that expect their arguments to be
elements that are present in the list or queue, passing an element that is not present is invalid.

The queue functions first appeared in 4.4BSD. The SIMPLEQ functions first appeared in
NetBSD 1.2. The SLIST and STAILQ functions first appeared in FreeBSD 2.1.5. The
CIRCLEQ_LOOP functions first appeared in NetBSD 4.0.

Attributes

See Also

Notes

queue(3EXT)

Extended Library Functions, Volume 1 437

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fqueue-9f

read_vtoc, write_vtoc – read and write a disk's VTOC

cc [flag ...] file ... -ladm [library ...]

#include <sys/vtoc.h>

int read_vtoc(int fd, struct vtoc *vtoc);

int write_vtoc(int fd, struct vtoc *vtoc);

int read_extvtoc(int fd, struct extvtoc *extvtoc);

int write_extvtoc(int fd, struct extvtoc *extvtoc);

The read_vtoc() and read_extvtoc() functions return the VTOC (volume table of
contents) structure that is stored on the disk associated with the open file descriptor fd. On
disks larger than 1 TB read_extvtoc() must be used.

The write_vtoc() and write_extvtoc() function stores the VTOC structure on the disk
associated with the open file descriptor fd. On disks larger then 1TB write_extvtoc()

function must be used.

The fd argument refers to any slice on a raw disk.

Upon successful completion, read_vtoc() and read_extvtoc() return a positive integer
indicating the slice index associated with the open file descriptor. Otherwise, they return a
negative integer indicating one of the following errors:

VT_EIO An I/O error occurred.

VT_ENOTSUP This operation is not supported on this disk.

VT_ERROR An unknown error occurred.

VT_OVERFLOW The caller attempted an operation that is illegal on the disk and may
overflow the fields in the data structure.

Upon successful completion, write_vtoc() and write_extvtoc() return 0. Otherwise, they
return a negative integer indicating one of the following errors:

VT_EINVAL The VTOC contains an incorrect field.

VT_EIO An I/O error occurred.

VT_ENOTSUP This operation is not supported on this disk.

VT_ERROR An unknown error occurred.

VT_OVERFLOW The caller attempted an operation that is illegal on the disk and may
overflow the fields in the data structure.

Name

Synopsis

Description

Return Values

read_vtoc(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 7 Oct 2008438

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

fmthard(1M), format(1M), prtvtoc(1M), ioctl(2), efi_alloc_and_init(3EXT),
attributes(5), dkio(7I)

The write_vtoc() function cannot write a VTOC on an unlabeled disk. Use format(1M) for
this purpose.

Attributes

See Also

Bugs

read_vtoc(3EXT)

Extended Library Functions, Volume 1 439

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mfmthard-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mformat-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mprtvtoc-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7dkio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mformat-1m

rtld_audit, la_activity, la_i86_pltenter, la_objsearch, la_objopen, la_objfilter, la_pltexit,
la_pltexit64, la_preinit, la_sparcv8_pltenter, la_sparcv9_pltenter, la_amd64_pltenter,
la_symbind32, la_symbind64, la_version – runtime linker auditing functions

void la_activity(uintptr_t *cookie, uint_t flag);

uintptr_t la_i86_pltenter(Elf32_Sym *sym, uint_t ndx, uintptr_t *refcook,
uintptr_t *defcook, La_i86_regs *regs, uint_t *flags);

char *la_objsearch(const char *name, uintptr_t *cookie, uint_t flag);

uint_t la_objopen(Link_map *lmp, Lmid_t lmid, uintptr_t *cookie);

int la_objfilter(uintptr_t *fltrcook, uintptr_t *fltecook,
uint_t *flags);

uintptr_t la_pltexit(Elf32_Sym *sym, uint_t ndx, uintptr_t *refcook,
uintptr_t *defcook, uintptr_t retval);

uintptr_t la_pltexit64(Elf64_Sym *sym, uint_t ndx, uintptr_t *refcook,
uintptr_t *defcook, uintptr_t retval, const char *sym_name);

void la_preinit(uintptr_t *cookie);

uintptr_t la_sparcv8_pltenter(Elf32_Sym *sym, uint_t ndx,
uintptr_t *refcook, uintptr_t *defcook, La_amd64_regs *regs,
uint_t *flags);

uintptr_t la_sparcv9_pltenter(Elf64_Sym *sym, uint_t ndx,
uintptr_t *refcook, uintptr_t *defcook, La_sparcv8_regs *regs,
uint_t *flags, const char *sym_name);

uintptr_t la_amd64_pltenter(Elf32_Sym *sym, uint_t ndx,
uintptr_t *refcook, uintptr_t *defcook, La_sparcv8_regs *regs,
uint_t *flags, const char *sym_name);

uintptr_t la_symbind32(Elf32_Sym *sym, uint_t ndx, uintptr_t *refcook,
uintptr_t *defcook, uint_t *flags);

uintptr_t la_symbind64(Elf64_Sym *sym, uint_t ndx,
uintptr_t *refcook,uintptr_t *defcook, uint_t *flags,
const char *sym_name);

uint_t la_version(uint_t version);

A runtime linker auditing library is a user-created shared object offering one or more of these
interfaces. The runtime linker ld.so.1(1), calls these interfaces during process execution. See
the Linker and Libraries Guide for a full description of the link auditing mechanism.

ld.so.1(1)

Linker and Libraries Guide

Name

Synopsis

Description

See Also

rtld_audit(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 6 Oct 2004440

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=LLM

rtld_db, rd_delete, rd_errstr, rd_event_addr, rd_event_enable, rd_event_getmsg, rd_init,
rd_loadobj_iter, rd_log, rd_new, rd_objpad_enable, rd_plt_resolution, rd_reset – runtime
linker debugging functions

cc [flag ...] file ... -lrtld_db [library ...]

#include <proc_service.h>

#include <rtld_db.h>

void rd_delete(struct rd_agent *rdap);

char *rd_errstr(rd_err_e rderr);

rd_err_e rd_event_addr(rd_agent *rdap, rd_notify_t *notify);

rd_err_e rd_event_enable(struct rd_agent *rdap, int onoff);

rd_err_e rd_event_getmsg(struct rd_agent *rdap,
rd_event_msg_t *msg);

rd_err_e rd_init(int version);

typedef int rl_iter_f(const rd_loadobj_t *, void *);

rd_err_e rd_loadobj_iter(rd_agent_t *rap, rl_iter_f *cb,
void *clnt_data);

void rd_log(const int onoff);

rd_agent_t *rd_new(struct ps_prochandle *php);

rd_err_e rd_objpad_enable(struct rd_agent *rdap, size_t padsize);

rd_err_e rd_plt_resolution(rd_agent *rdap, paddr_t pc,
lwpid_t lwpid, paddr_t plt_base, rd_plt_info_t *rpi);

rd_err_e rd_reset(struct rd_agent *rdap);

The librtld_db library provides support for monitoring and manipulating runtime linking
aspects of a program. There are at least two processes involved, the controlling process and
one or more target processes. The controlling process is the librtld_db client that links with
librtld_db and uses librtld_db to inspect or modify runtime linking aspects of one or more
target processes. See the Linker and Libraries Guide for a full description of the runtime linker
debugger interface mechanism.

To use librtld_db, applications need to implement the interfaces documented in
ps_pread(3PROC) and proc_service(3PROC).

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Name

Synopsis

Description

Usage

Attributes

rtld_db(3EXT)

Extended Library Functions, Volume 1 441

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Hps-pread-3proc
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Hproc-service-3proc
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

ld.so.1(1), libc_db(3LIB), librtld_db(3LIB), proc_service(3PROC), ps_pread(3PROC),
attributes(5)

Linker and Libraries Guide

See Also

rtld_db(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 12 Oct 2007442

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibrtld-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Hproc-service-3proc
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Hps-pread-3proc
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=LLM

sendfile – send files over sockets or copy files to files

cc [flag...] file... -lsendfile [library...]

#include <sys/sendfile.h>

ssize_t sendfile(int out_fd, int in_fd, off_t *off, size_t len);

The sendfile() function copies data from in_fd to out_fd starting at offset off and of length
len bytes. The in_fd argument should be a file descriptor to a regular file opened for reading.
See open(2). The out_fd argument should be a file descriptor to a regular file opened for
writing or to a connected AF_INET or AF_INET6 socket of SOCK_STREAM type. See
socket(3SOCKET). The off argument is a pointer to a variable holding the input file pointer
position from which the data will be read. After sendfile() has completed, the variable will
be set to the offset of the byte following the last byte that was read. The sendfile() function
does not modify the current file pointer of in_fd, but does modify the file pointer for out_fd if
it is a regular file.

The sendfile() function can also be used to send buffers by pointing in_fd to SFV_FD_SELF.

Upon successful completion, sendfile() returns the total number of bytes written to out_fd
and also updates the offset to point to the byte that follows the last byte read. Otherwise, it
returns –1, and errno is set to indicate the error.

The sendfile() function will fail if:

EAFNOSUPPORT The implementation does not support the specified address family for
socket.

EAGAIN Mandatory file or record locking is set on either the file descriptor or
output file descriptor if it points at regular files. O_NDELAY or O_NONBLOCK is
set, and there is a blocking record lock. An attempt has been made to write
to a stream that cannot accept data with the O_NDELAY or the O_NONBLOCK
flag set.

EBADF The out_fd or in_fd argument is either not a valid file descriptor, out_fd is
not opened for writing. or in_fd is not opened for reading.

EINVAL The offset cannot be represented by the off_t structure, or the length is
negative when cast to ssize_t.

EIO An I/O error occurred while accessing the file system.

ENOMEM There is insufficient memory available. The offset parameter is updated by
the amount of data transferred so that the call may be retried.

ENOTCONN The socket is not connected.

EOPNOTSUPP The socket type is not supported.

EPIPE The out_fd argument is no longer connected to the peer endpoint.

Name

Synopsis

Description

Return Values

Errors

sendfile(3EXT)

Extended Library Functions, Volume 1 443

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Bsocket-3socket

EINTR A signal was caught during the write operation and no data was
transferred.

The sendfile() function has a transitional interface for 64-bit file offsets. See lf64(5).

EXAMPLE 1 Sending a Buffer Over a Socket

The following example demonstrates how to send the buffer buf over a socket. At the end, it
prints the number of bytes transferred over the socket from the buffer. It assumes that addr
will be filled up appropriately, depending upon where to send the buffer.

int tfd;

off_t baddr;

struct sockaddr_in sin;

char buf[64 * 1024];

in_addr_t addr;

size_t len;

tfd = socket(AF_INET, SOCK_STREAM, 0);

if (tfd == -1) {

perror("socket");
exit(1);

}

sin.sin_family = AF_INET;

sin.sin_addr.s_addr = addr; /* Fill in the appropriate address. */

sin.sin_port = htons(2345);

if (connect(tfd, (struct sockaddr *)&sin, sizeof(sin))<0) {

perror("connect");
exit(1);

}

baddr = (off_t)buf;

len = sizeof(buf);

while (len > 0) {

ssize_t res;

res = sendfile(tfd, SFV_FD_SELF, &baddr, len);

if (res == -1)

if (errno != EINTR) {

perror("sendfile");
exit(1);

} else continue;

len -= res;

}

EXAMPLE 2 Transferring Files to Sockets

The following program demonstrates a transfer of files to sockets:

Usage

Examples

sendfile(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 17 Jan 2012444

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lf64-5

EXAMPLE 2 Transferring Files to Sockets (Continued)

int ffd, tfd;

off_t off;

struct sockaddr_in sin;

in_addr_t addr;

int len;

struct stat stat_buf;

ssize_t len;

ffd = open("file", O_RDONLY);

if (ffd == -1) {

perror("open");
exit(1);

}

tfd = socket(AF_INET, SOCK_STREAM, 0);

if (tfd == -1) {

perror("socket");
exit(1);

}

sin.sin_family = AF_INET;

sin.sin_addr = addr; /* Fill in the appropriate address. */

sin.sin_port = htons(2345);

if (connect(tfd, (struct sockaddr *) &sin, sizeof(sin)) <0) {

perror("connect");
exit(1);

}

if (fstat(ffd, &stat_buf) == -1) {

perror("fstat");
exit(1);

}

len = stat_buf.st_size;

while (len > 0) {

ssize_t res;

res = sendfile(tfd, ffd, &off, len);

if (res == -1)

if (errno != EINTR) {

perror("sendfile");
exit(1);

} else continue;

len -= res;

}

sendfile(3EXT)

Extended Library Functions, Volume 1 445

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

open(2), libsendfile(3LIB), sendfilev(3EXT), socket(3SOCKET), attributes(5),
lf64(5)

Attributes

See Also

sendfile(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 17 Jan 2012446

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibsendfile-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Bsocket-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lf64-5

sendfilev – send a file

cc [flag...] file... -lsendfile [library...]

#include <sys/sendfile.h>

ssize_t sendfilev(int fildes, const struct sendfilevec *vec,
int sfvcnt, size_t *xferred);

The sendfilev() function supports the following parameters:

fildes A file descriptor to a regular file or to a AF_NCA, AF_INET, or AF_INET6 family type
SOCK_STREAM socket that is open for writing. For AF_NCA, the protocol type should
be zero.

vec An array of SENDFILEVEC_T, as defined in the sendfilevec structure above.

sfvcnt The number of members in vec.

xferred The total number of bytes written to out_fd.

The sendfilev() function attempts to write data from the sfvcnt buffers specified by the
members of vec array: vec[0], vec[1], ... , vec[sfvcnt–1]. The fildes argument is a file
descriptor to a regular file or to an AF_NCA, AF_INET, or AF_INET6 family type SOCK_STREAM
socket that is open for writing.

This function is analogous to writev(2), but can read from both buffers and file descriptors.
Unlike writev(), in the case of multiple writers to a file the effect of sendfilev() is not
necessarily atomic; the writes may be interleaved. Application-specific synchronization
methods must be employed if this causes problems.

The following is the sendfilevec structure:

typedef struct sendfilevec {

int sfv_fd; /* input fd */

uint_t sfv_flag; /* Flags. see below */

off_t sfv_off; /* offset to start reading from */

size_t sfv_len; /* amount of data */

} sendfilevec_t;

#define SFV_FD_SELF (-2)

To send a file, open the file for reading and point sfv_fd to the file descriptor returned as a
result. See open(2). sfv_off should contain the offset within the file. sfv_len should have the
length of the file to be transferred.

The xferred argument is updated to record the total number of bytes written to out_fd.

The sfv_flag field is reserved and should be set to zero.

Name

Synopsis

Parameters

Description

sendfilev(3EXT)

Extended Library Functions, Volume 1 447

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2writev-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2open-2

To send data directly from the address space of the process, set sfv_fd to SFV_FD_SELF.
sfv_off should point to the data, with sfv_len containing the length of the buffer.

Upon successful completion, the sendfilev() function returns total number of bytes written
to out_fd. Otherwise, it returns -1, and errno is set to indicate the error. The xferred
argument contains the amount of data successfuly transferred, which can be used to discover
the error vector.

EACCES The process does not have appropriate privileges or one of the files pointed
by sfv_fd does not have appropriate permissions.

EAFNOSUPPORT The implementation does not support the specified address family for
socket.

EAGAIN Mandatory file or record locking is set on either the file descriptor or
output file descriptor if it points at regular files. O_NDELAY or O_NONBLOCK is
set, and there is a blocking record lock. An attempt has been made to write
to a stream that cannot accept data with the O_NDELAY or the O_NONBLOCK
flag set.

EBADF The fildes argument is not a valid descriptor open for writing or an sfv_fd

is invalid or not open for reading.

EFAULT The vec argument points to an illegal address.

The xferred argument points to an illegal address.

EINTR A signal was caught during the write operation and no data was
transferred.

EINVAL The sfvcnt argument was less than or equal to 0. One of the sfv_len values
in vec array was less than or equal to 0, or greater than the file size. An
sfv_fd is not seekable.

Fewer bytes were transferred than were requested.

EIO An I/O error occurred while accessing the file system.

ENOMEM There is insufficient memory available. The offset parameter is updated by
the amount of data transferred so that the call may be retried.

EPIPE The fildes argument is a socket that has been shut down for writing.

EPROTOTYPE The socket type is not supported.

The sendfilev() function has a transitional interface for 64-bit file offsets. See lf64(5).

The following example sends 2 vectors, one of HEADER data and a file of length 100 over
sockfd. sockfd is in a connected state, that is, socket(), accept(), and bind() operation are
complete.

Return Values

Errors

Usage

Examples

sendfilev(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 17 Jan 2012448

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lf64-5

#include <sys/sendfile.h>

.

.

.

int

main (int argc, char *argv[]){

int sockfd;

ssize_t ret;

size_t xfer;

struct sendfilevec vec[2];

.

.

.

vec[0].sfv_fd = SFV_FD_SELF;

vec[0].sfv_flag = 0;

vec[0].sfv_off = "HEADER_DATA";
vec[0].sfv_len = strlen("HEADER_DATA");
vec[1].sfv_fd = open("input_file",....);

vec[1].sfv_flag = 0;

vec[1].sfv_off = 0;

vec[1].sfv_len = 100;

ret = sendfilev(sockfd, vec, 2, &xfer);

.

.

.

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

open(2), writev(2), libsendfile(3LIB), sendfile(3EXT), socket(3SOCKET),
attributes(5)

Attributes

See Also

sendfilev(3EXT)

Extended Library Functions, Volume 1 449

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2writev-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibsendfile-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Bsocket-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

sha1, SHA1Init, SHA1Update, SHA1Final – SHA1 digest functions

cc [flag ...] file ... -lmd [library ...]

#include <sha1.h>

void SHA1Init(SHA1_CTX *context);

void SHA1Update(SHA1_CTX *context, unsigned char *input,
unsigned int inlen);

void SHA1Final(unsigned char *output, SHA1_CTX *context);

The SHA1 functions implement the SHA1 message-digest algorithm. The algorithm takes as
input a message of arbitrary length and produces a 160-bit “fingerprint” or “message digest” as
output. The SHA1 message-digest algorithm is intended for digital signature applications in
which large files are “compressed” in a secure manner before being encrypted with a private
(secret) key under a public-key cryptosystem such as RSA.

SHA1Init(), SHA1Update(), SHA1Final() The SHA1Init(), SHA1Update(), and
SHA1Final() functions allow a SHA1 digest to
be computed over multiple message blocks.
Between blocks, the state of the SHA1
computation is held in an SHA1 context
structure allocated by the caller. A complete
digest computation consists of calls to SHA1

functions in the following order: one call to
SHA1Init(), one or more calls to
SHA1Update(), and one call to SHA1Final().

The SHA1Init() function initializes the SHA1
context structure pointed to by context.

The SHA1Update() function computes a partial
SHA1 digest on the inlen-byte message block
pointed to by input, and updates the SHA1
context structure pointed to by context
accordingly.

The SHA1Final() function generates the final
SHA1 digest, using the SHA1 context structure
pointed to by context. The 16-bit SHA1 digest is
written to output. After a call to SHA1Final(),
the state of the context structure is undefined.
It must be reinitialized with SHA1Init() before
it can be used again.

Name

Synopsis

Description

sha1(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 20 Feb 2012450

The SHA1 algorithm is also believed to have some weaknesses. Migration to one of the SHA2
algorithms–including SHA224, SHA256, SHA386 or SHA512–is highly recommended when
compatibility with data formats and on wire protocols is permitted.

These functions do not return a value.

EXAMPLE 1 Authenticate a message found in multiple buffers

The following is a sample function that authenticates a message found in multiple buffers. The
calling function provides an authentication buffer to contain the result of the SHA1 digest.

#include <sys/types.h>

#include <sys/uio.h>

#include <sha1.h>

int

AuthenticateMsg(unsigned char *auth_buffer, struct iovec

*messageIov, unsigned int num_buffers)

{

SHA1_CTX sha1_context;

unsigned int i;

SHA1Init(&sha1_context);

for(i=0; i<num_buffers; i++)

{

SHA1Update(&sha1_context, messageIov->iov_base,

messageIov->iov_len);

messageIov += sizeof(struct iovec);

}

SHA1Final(auth_buffer, &sha1_context);

return 0;

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

sha2(3EXT), libmd(3LIB)

RFC 1374

Security

Return Values

Examples

Attributes

See Also

sha1(3EXT)

Extended Library Functions, Volume 1 451

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibmd-3lib

sha2, SHA2Init, SHA2Update, SHA2Final, SHA224Init, SHA224Update, SHA224Final,
SHA256Init, SHA256Update, SHA256Final, SHA384Init, SHA384Update, SHA384Final,
SHA512Init, SHA512Update, SHA512Final – SHA2 digest functions

cc [flag ...] file ... -lmd [library ...]

#include <sha2.h>

void SHA2Init(uint64_t mech, SHA2_CTX *context);

void SHA2Update(SHA2_CTX *context, unsigned char *input,
unsigned int inlen);

void SHA2Final(unsigned char *output, SHA2_CTX *context);

void SHA224Init(SHA224_CTX *context);

void SHA224Update(SHA224_CTX *context, unsigned char *input,
unsigned int inlen);

void SHA224Final(unsigned char *output, SHA224_CTX *context);

void SHA256Init(SHA256_CTX *context);

void SHA256Update(SHA256_CTX *context, unsigned char *input,
unsigned int inlen);

void SHA256Final(unsigned char *output, SHA256_CTX *context);

void SHA384Init(SHA384_CTX *context);

void SHA384Update(SHA384_CTX *context, unsigned char *input,
unsigned int inlen);

void SHA384Final(unsigned char *output, SHA384_CTX *context);

void SHA512Init(SHA512_CTX *context);

void SHA512Update(SHA512_CTX *context, unsigned char *input,
unsigned int inlen);

void SHA512Final(unsigned char *output, SHA512_CTX *context);

The SHA2Init(), SHA2Update(), SHA2Final() functions implement the SHA224, SHA256,
SHA384 and SHA512 message-digest algorithms. The algorithms take as input a message of
arbitrary length and produces a 200-bit “fingerprint” or “message digest” as output. The SHA2
message-digest algorithms are intended for digital signature applications in which large files
are “compressed” in a secure manner before being encrypted with a private (secret) key under
a public-key cryptosystem such as RSA.

SHA2Init(), SHA2Update(), SHA2Final()
The SHA2Init(), SHA2Update(), and SHA2Final() functions allow an SHA2 digest to be
computed over multiple message blocks. Between blocks, the state of the SHA2 computation
is held in an SHA2 context structure allocated by the caller. A complete digest computation
consists of calls to SHA2 functions in the following order: one call to SHA2Init(), one or
more calls to SHA2Update(), and one call to SHA2Final().

Name

Synopsis

Description

sha2(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 20 Feb 2012452

The SHA2Init() function initializes the SHA2 context structure pointed to by context. The
mech argument is one of SHA224, SHA256, SHA512, and SHA384.

The SHA2Update() function computes a partial SHA2 digest on the inlen-byte message
block pointed to by input, and updates the SHA2 context structure pointed to by context
accordingly.

The SHA2Final() function generates the final SHA2Final digest, using the SHA2 context
structure pointed to by context. The SHA2 digest is written to output. After a call to
SHA2Final(), the state of the context structure is undefined. It must be reinitialized with
SHA2Init() before it can be used again.

SHA224Init(), SHA224Update(), SHA224Final(), SHA256Init(), SHA256Update(),
SHA256Final(), SHA384Init(), SHA384Update(), SHA384Final(), SHA512Init(),
SHA512Update(), SHA512Final()

Alternative APIs exist as named above. The Update() and Final() sets of functions
operate exactly as the previously described SHA2Update() and SHA2Final() functions. The
SHA224Init(), SHA256Init(), SHA384Init(), and SHA512Init() functions do not take
the mech argument as it is implicit in the function names.

These functions do not return a value.

EXAMPLE 1 Authenticate a message found in multiple buffers

The following is a sample function that authenticates a message found in multiple buffers. The
calling function provides an authentication buffer to contain the result of the SHA2 digest.

#include <sys/types.h>

#include <sys/uio.h>

#include <sha2.h>

int

AuthenticateMsg(unsigned char *auth_buffer, struct iovec

*messageIov, unsigned int num_buffers)

{

SHA2_CTX sha2_context;

unsigned int i;

SHA2Init(SHA384, &sha2_context);

for(i=0; i<num_buffers; i++)

{

SHA2Update(&sha2_context, messageIov->iov_base,

messageIov->iov_len);

messageIov += sizeof(struct iovec);

}

SHA2Final(auth_buffer, &sha2_context);

Return Values

Examples

sha2(3EXT)

Extended Library Functions, Volume 1 453

EXAMPLE 1 Authenticate a message found in multiple buffers (Continued)

return 0;

}

EXAMPLE 2 Authenticate a message found in multiple buffers

The following is a sample function that authenticates a message found in multiple buffers. The
calling function provides an authentication buffer that will contain the result of the SHA384
digest, using alternative interfaces.

int

AuthenticateMsg(unsigned char *auth_buffer, struct iovec

*messageIov, unsigned int num_buffers)

{

SHA384_CTX ctx;

unsigned int i;

SHA384Init(&ctx);

for(i=0, i<num_buffers; i++

{

SHA384Update(&ctx, messageIov->iov_base,

messageIov->iov_len);

messageIov += sizeof(struct iovec);

}

SHA384Final(auth_buffer, &ctx);

return 0;

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libmd(3LIB)

FIPS 180–2

Attributes

See Also

sha2(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 20 Feb 2012454

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibmd-3lib

stdarg – handle variable argument list

#include <stdarg.h>

va_list pvar;

void va_start(va_list pvar, void name);

(type *) va_arg(va_list pvar, type);

void va_copy(va_list dest, va_list src);

void va_end(va_list pvar);

This set of macros allows portable procedures that accept variable numbers of arguments of
variable types to be written. Routines that have variable argument lists (such as printf) but do
not use stdarg are inherently non-portable, as different machines use different
argument-passing conventions.

va_list is a type defined for the variable used to traverse the list.

The va_start macro is invoked before any access to the unnamed arguments and initializes
pvar for subsequent use by va_arg() and va_end(). The parameter name is the identifier of
the rightmost parameter in the variable parameter list in the function definition (the one just
before the , ...). If this parameter is declared with the register storage class or with a
function or array type, or with a type that is not compatible with the type that results after
application of the default argument promotions, the behavior is undefined.

The parameter name is required under strict ANSI C compilation. In other compilation
modes, name need not be supplied and the second parameter to the va_start() macro can be
left empty (for example, va_start(pvar,);). This allows for routines that contain no
parameters before the ... in the variable parameter list.

The va_arg() macro expands to an expression that has the type and value of the next
argument in the call. The parameter pvar should have been previously initialized by
va_start(). Each invocation of va_arg() modifies pvar so that the values of successive
arguments are returned in turn. The parameter type is the type name of the next argument to
be returned. The type name must be specified in such a way so that the type of a pointer to an
object that has the specified type can be obtained simply by postfixing a * to type. If there is no
actual next argument, or if type is not compatible with the type of the actual next argument (as
promoted according to the default argument promotions), the behavior is undefined.

The va_copy() macro saves the state represented by the va_listsrc in the va_list dest. The
va_list passed as dest should not be initialized by a previous call to va_start(), and must be
passed to va_end() before being reused as a parameter to va_start() or as the dest parameter
of a subsequent call to va_copy(). The behavior is undefined should any of these restrictions
not be met.

The va_end() macro is used to clean up.

Multiple traversals, each bracketed by va_start() and va_end(), are possible.

Name

Synopsis

Description

stdarg(3EXT)

Extended Library Functions, Volume 1 455

EXAMPLE 1 A sample program.

This example gathers into an array a list of arguments that are pointers to strings (but not
more than MAXARGS arguments) with function f1, then passes the array as a single argument to
function f2. The number of pointers is specified by the first argument to f1.

#include <stdarg.h>

#define MAXARGS 31

void f1(int n_ptrs, ...)

{

va_list ap;

char *array[MAXARGS];

int ptr_no = 0;

if (n_ptrs > MAXARGS)

n_ptrs = MAXARGS;

va_start(ap, n_ptrs);

while (ptr_no < n_ptrs)

array[ptr_no++] = va_arg(ap, char*);

va_end(ap);

f2(n_ptrs, array);

}

Each call to f1 shall have visible the definition of the function or a declaration such as

void f1(int, ...)

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

vprintf(3C), attributes(5), standards(5)

It is the responsibility of the calling routine to specify in some manner how many arguments
there are, since it is not always possible to determine the number of arguments from the stack
frame. For example, execl is passed a zero pointer to signal the end of the list. The printf
function can determine the number of arguments by the format. It is non-portable to specify a
second argument of char, short, or float to va_arg(), because arguments seen by the called
function are not char, short, or float. C converts char and short arguments to int and
converts float arguments to double before passing them to a function.

Examples

Attributes

See Also

Notes

stdarg(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 22 Mar 2006456

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Avprintf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

SUNW_C_GetMechSession, SUNW_C_KeyToObject – PKCS#11 Cryptographic Framework
functions

cc [flag ...] file... -lpkcs11 [library...]

#include <security/cryptoki.h>

#include <security/pkcs11.h>

CK_RV SUNW_C_GetMechSession(CK_MECHANISM_TYPE mech,
CK_SESSION_HANDLE_PTR hSession);

CK_RV SUNW_C_KeyToObject(CK_SESSION_HANDLE hSession,
CK_MECHANISM_TYPE mech, const void *rawkey, size_t rawkey_len,
CK_OBJECT_HANDLE_PTR obj);

These functions implement the RSA PKCS#11 v2.20 specification by using plug-ins to provide
the slots.

The SUNW_C_GetMechSession() function initializes the PKCS#11 cryptographic framework
and performs all necessary calls to Standard PKCS#11 functions (see libpkcs11(3LIB)) to
create a session capable of providing operations on the requested mechanism. It is not
neccessary to call C_Initalize() or C_GetSlotList() before the first call to
SUNW_C_GetMechSession().

If the SUNW_C_GetMechSession() function is called multiple times, it will return a new session
each time without re-initalizing the framework. If it is unable to return a new session,
CKR_SESSION_COUNT is returned.

The C_CloseSession() function should be called to release the session when it is no longer
required.

The SUNW_C_KeyToObject() function creates a key object for the specified mechanism from
the rawkey data. The object should be destroyed with C_DestroyObject() when it is no longer
required.

The SUNW_C_GetMechSession() function returns the following values:

CKR_OK The function completed successfully.

CKR_SESSION_COUNT No sessions are available.

CKR_ARGUMENTS_BAD A null pointer was passed for the return session handle.

CKR_MECHANISM_INVALID The requested mechanism is invalid or no available plug-in
provider supports it.

CKR_FUNCTION_FAILED The function failed.

CKR_GENERAL_ERROR A general error occurred.

The SUNW_C_KeyToObject() function returns the following values:

CKR_OK The function completed successfully.

Name

Synopsis

Description

Return Values

SUNW_C_GetMechSession(3EXT)

Extended Library Functions, Volume 1 457

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibpkcs11-3lib

CKR_ARGUMENTS_BAD A null pointer was passed for the session handle or the key
material.

CKR_MECHANISM_INVALID The requested mechanism is invalid or no available plug-in
provider supports it.

CKR_FUNCTION_FAILED The function failed.

CKR_GENERAL_ERROR A general error occurred.

The return values of each of the implemented functions are defined and listed in the RSA
PKCS#11 v2.20 specification. See http://www.rsasecurity.com.

These functions are not part of the RSA PKCS#11 v2.20 specification. They are not likely to
exist on non-Solaris systems. They are provided as a convenience to application
programmers. Use of these functions will make the application non-portable to other systems.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libpkcs11(3LIB), attributes(5)

http://www.rsasecurity.com

Usage

Attributes

See Also

SUNW_C_GetMechSession(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 27 Oct 2005458

http://www.rsasecurity.com
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibpkcs11-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.rsasecurity.com

tsalarm_get, tsalarm_set – get or set alarm relays

cc [flag...] file... -ltsalarm [library...]

#include <tsalarm.h>

int tsalarm_get(uint32_t alarm_type, uint32_t *alarm_state);

int tsalarm_set(uint32_t alarm_type, uint32_t alarm_state);

alarm_type
The alarm type whose state is retrieved or set. Valid settings are:

TSALARM_CRITICAL critical

TSALARM_MAJOR major

TSALARM_MINOR minor

TSALARM_USER user

alarm_state
The state of the alarm. Valid settings are:

TSALARM_STATE_ON The alarm state needs to be changed to “on”, or is returned as
“on”.

TSALARM_STATE_OFF The alarm state needs to be changed to “off”, or is returned as
“off”.

TSALARM_STATE_UNKNOWN The alarm state is returned as unknown.

The TSALARM interface provides functions through which alarm relays can be controlled.
The set of functions and data structures of this interface are defined in the <tsalarm.h>
header.

There are four alarm relays that are controlled by ILOM. Each alarm can be set to “on” or “off”
by using tsalarm interfaces provided from the host. The four alarms are labeled as critical,
major, minor, and user. The user alarm is set by a user application depending on system
condition. LEDs in front of the box provide a visual indication of the four alarms. The number
of alarms and their meanings and labels can vary across platforms.

The tsalarm_get() function gets the state of alarm_type and returnsit in alarm_state. If
successful, the function returns 0.

The tsalarm_set() function sets the state of alarm_type to the value in alarm_state. If
successful, the function returns 0.

The following structures are defined in <tsalarm.h>:

typedef struct tsalarm_req {

uint32_t alarm_id;

Name

Synopsis

Parameters

Description

tsalarm_get(3EXT)

Extended Library Functions, Volume 1 459

uint32_t alarm_action;

} tsalarm_req_t;

typedef struct tsalarm_resp {

uint32_t status;

uint32_t alarm_id;

uint32_t alarm_state;

} tsalarm_resp_t;

The tsalarm_get() and tsalarm_set() functions return the following values:

TSALARM_CHANNEL_INIT_FAILURE Channel initialization failed.

TSALARM_COMM_FAILURE Channel communication failed.

TSALARM_NULL_REQ_DATA Allocating memory for request data failed.

TSALARM_SUCCESS Successful completion.

TSALARM_UNBOUND_PACKET_RECVD An incorrect packet was received.

The tsalarm_get() function returns the following value:

TSALARM_GET_ERROR An error occurred while getting the alarm state.

The tsalarm_set() function returns the following value:

TSALARM_SET_ERROR An error occurred while setting the alarm state.

EXAMPLE 1 Get and set an alarm state.

The following example demonstrates how to get and set an alarm state.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <tsalarm.h>

void help(char *name) {

printf("Syntax: %s [get <type> | set <type> <state>]\n\n", name);

printf(" type = { critical, major, minor, user }\n");
printf(" state = { on, off }\n\n");

exit(0);

}

int main(int argc, char **argv) {

uint32_t alarm_type, alarm_state;

if (argc < 3)

Return Values

Examples

tsalarm_get(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 4 Sep 2007460

EXAMPLE 1 Get and set an alarm state. (Continued)

help(argv[0]);

if (strncmp(argv[2], "critical", 1) == 0)

alarm_type = TSALARM_CRITICAL;

else if (strncmp(argv[2], "major", 2) == 0)

alarm_type = TSALARM_MAJOR;

else if (strncmp(argv[2], "minor", 2) == 0)

alarm_type = TSALARM_MINOR;

else if (strncmp(argv[2], "user", 1) == 0)

alarm_type = TSALARM_USER;

else

help(argv[0]);

if (strncmp(argv[1], "get", 1) == 0) {

tsalarm_get(alarm_type, &alarm_state);

printf("alarm = %d\tstate = %d\n", alarm_type, alarm_state);

}

else if (strncmp(argv[1], "set", 1) == 0) {

if (strncmp(argv[3], "on", 2) == 0)

alarm_state = TSALARM_STATE_ON;

else if (strncmp(argv[3], "off", 2) == 0)

alarm_state = TSALARM_STATE_OFF;

else

help(argv[0]);

tsalarm_set(alarm_type, alarm_state);

}

else {

help(argv[0]);

}

return 0;

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Uncommitted

MT-Level Safe

libtsalarm(3LIB), attributes(5)

Attributes

See Also

tsalarm_get(3EXT)

Extended Library Functions, Volume 1 461

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibtsalarm-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

v12n, v12n_capabilities, v12n_domain_roles, v12n_domain_name, v12n_domain_uuid,
v12n_ctrl_domain, v12n_chassis_serialno – return virtualization environment domain
parameters

cc [flag...] file... -lv12n [library...]

#include <libv12n.h>

int v12n_capabilities();

int v12n_domain_roles();

int v12n_domain_uuid(uuid_t uuid);

size_t v12n_domain_name(char *buf, size_t buflen);

size_t v12n_ctrl_domain(char *buf, size_t buflen);

size_t v12n_chassis_serialno(char *buf, size_t buflen);

The v12n_capabilities() function returns the virtualization capabilities mask of the current
domain. The virtualization capabilities bit mask consists of the following values:

V12N_CAP_SUPPORTED Virtualization is supported on this domain.

V12N_CAP_ENABLED Virtualization is enabled on this domain.

V12N_CAP_IMPL_LDOMS Logical Domains is the supported virtualization implementation.

The v12n_domain_roles() function returns the virtualization domain role mask. The
virtualization domain role mask consists of the following values:

V12N_ROLE_CONTROL If the virtualization implementation is Logical Domains, and this bit
is one, the current domain is a control domain. If this bit is zero, the
current domain is a guest domain.

V12N_ROLE_IO Current domain is an I/O domain.

V12N_ROLE_SERVICE Current domain is a service domain.

V12N_ROLE_ROOT Current domain is an root I/O domain.

The v12n_domain_uuid() function stores the universally unique identifier (UUID) for the
current virtualization domain in the uuid argument. See the libuuid(3LIB) manual page.

The v12n_domain_name() function stores the name of the current virtualization domain in
the location specified by buf. buflen specifies the size in bytes of the buffer. If the buffer is too
small to hold the complete null-terminated name, the first buflen bytes of the name are stored
in the buffer. A buffer of size V12N_NAME_MAX is sufficient to hold any domain name. If buf is
NULL or buflen is 0, the name is not copied into the buffer.

The v12n_ctrl_domain() function stores the control domain or dom0 network node name of
the current domain in the location specified by buf. Note that a domain's control domain is

Name

Synopsis

Description

v12n(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 14 Jul 2010462

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibuuid-3lib

volatile during a domain migration. The information returned by this function might be stale
if the domain was in the process of migrating. buflen specifies the size in bytes of the buffer. If
the buffer is too small to hold the complete null-terminated name, the first buflen bytes of the
name are stored in the buffer. A buffer of size V12N_NAME_MAX is sufficient to hold the control
domain node name string. If buf is NULL or buflen is 0, the name is not copied into the buffer.

The v12n_chassis_serialno() function stores the chassis serial number of the platform on
which the current domain is running in the location specified by buf. Note that the chassis
serial number is volatile during a domain migration. The information returned by this
function might be stale if the domain was in the process of migrating. buflen specifies the size
in bytes of the buffer. If the buffer is too small to hold the complete null-terminated name, the
first buflen bytes of the name are stored in the buffer. A buffer of size V12N_NAME_MAX is
sufficient to hold any chassis serial number string. If buf is NULL or buflen is 0, the name is not
copied into the buffer.

On successful completion, the v12n_capabilties() and v12n_domain_roles() functions
return a non-negative bit mask. Otherwise, the v12n_domain_roles() function returns -1 and
sets errno to indicate the error.

On successful completion, the v12n_domain_uuid() function returns 0. Otherwise, the
v12n_domain_uuid() function returns -1 and sets errno to indicate the error.

On successful completion, the v12n_domain_name(), v12n_ctrl_domain(), and
v12n_chassis_serialno() functions return the buffer size required to hold the full
non-terminated string. Otherwise, these functions return -1 and set errno to indicate the
error.

The v12n_domain_roles() function fails with EPERM when the calling process has an ID other
than the privileged user.

The v12n_domain_name() function will fail if:

EPERM The calling process has an ID other than the privileged user.

ENOTSUP Virtualization is not supported or enabled on this domain.

EFAULT buf points to an illegal address.

ENOENT The sun4v machine description is inaccessible or has no uuid node.

The v12n_domain_uuid() function will fail if:

EPERM The calling process has an ID other than the privileged user.

ENOTSUP Virtualization is not supported or enabled on this domain.

EFAULT buf points to an illegal address.

ENOENT The sun4v machine description is inaccessible or has no uuid node.

Return Values

Errors

v12n(3EXT)

Extended Library Functions, Volume 1 463

The v12n_ctrl_domain() function will fail if:

EPERM The calling process has an ID other than the privileged user.

ENOTSUP Virtualization is not supported or enabled on this domain.

EFAULT buf points to an illegal address.

ETIME The domain service on the control domain did not respond within the timeout
value.

The v12n_chassis_serialno() function will fail if:

EPERM The calling process has an ID other than the privileged user.

ENOTSUP Virtualization is not supported or enabled on this domain.

EFAULT buf points to an illegal address.

ETIME The domain service on the control domain did not respond within the timeout
value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

virtinfo(1M), libuuid(3LIB), libv12n(3LIB), attributes(5)

Attributes

See Also

v12n(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 14 Jul 2010464

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mvirtinfo-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibuuid-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibv12n-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

varargs – handle variable argument list

#include <varargs.h>

va_alist

va_dcl

va_list pvar;

void va_start(va_listpvar);

type va_arg(va_list pvar, type);

void va_end(va_list pvar);

This set of macros allows portable procedures that accept variable argument lists to be written.
Routines that have variable argument lists (such as printf(3C)) but do not use varargs are
inherently non-portable, as different machines use different argument-passing conventions.

va_alist is used as the parameter list in a function header.

va_dcl is a declaration for va_alist. No semicolon should follow va_dcl.

va_list is a type defined for the variable used to traverse the list.

va_start is called to initialize pvar to the beginning of the list.

va_arg will return the next argument in the list pointed to by pvar. type is the type the
argument is expected to be. Different types can be mixed, but it is up to the routine to know
what type of argument is expected, as it cannot be determined at runtime.

va_end is used to clean up.

Multiple traversals, each bracketed by va_start and va_end, are possible.

EXAMPLE 1 A sample program.

This example is a possible implementation of execl (see exec(2)).

#include <unistd.h>

#include <varargs.h>

#define MAXARGS 100

/* execl is called by

execl(file, arg1, arg2, ..., NULL);

*/

execl(va_alist)

va_dcl

{

va_list ap;

char *file;

char *args[MAXARGS]; /* assumed big enough*/

int argno = 0;

Name

Synopsis

Description

Examples

varargs(3EXT)

Extended Library Functions, Volume 1 465

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aprintf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2exec-2

EXAMPLE 1 A sample program. (Continued)

va_start(ap);

file = va_arg(ap, char *);

while ((args[argno++] = va_arg(ap, char *)) != 0)

;

va_end(ap);

return execv(file, args);

}

exec(2), printf(3C), vprintf(3C), stdarg(3EXT)

It is up to the calling routine to specify in some manner how many arguments there are, since
it is not always possible to determine the number of arguments from the stack frame. For
example, execl is passed a zero pointer to signal the end of the list. printf can tell how many
arguments are there by the format.

It is non-portable to specify a second argument of char, short, or float to va_arg, since
arguments seen by the called function are not char, short, or float. C converts char and
short arguments to int and converts float arguments to double before passing them to a
function.

stdarg is the preferred interface.

See Also

Notes

varargs(3EXT)

man pages section 3: Extended Library Functions, Volume 1 • Last Revised 10 May 2002466

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aprintf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Avprintf-3c

	man pages section 3: Extended Library Functions, Volume 1
	Preface
	Overview

	Extended Library Functions, Volume 1
	auto_ef(3EXT)
	config_admin(3CFGADM)
	cpc(3CPC)
	cpc_access(3CPC)
	cpc_bind_curlwp(3CPC)
	cpc_bind_event(3CPC)
	cpc_buf_create(3CPC)
	cpc_count_usr_events(3CPC)
	cpc_enable(3CPC)
	cpc_event(3CPC)
	cpc_event_diff(3CPC)
	cpc_getcpuver(3CPC)
	cpc_npic(3CPC)
	cpc_open(3CPC)
	cpc_pctx_bind_event(3CPC)
	cpc_set_create(3CPC)
	cpc_seterrfn(3CPC)
	cpc_seterrhndlr(3CPC)
	cpc_shared_open(3CPC)
	cpc_strtoevent(3CPC)
	cpc_version(3CPC)
	crypt(3EXT)
	ct_ctl_adopt(3CONTRACT)
	ct_dev_status_get_dev_state(3CONTRACT)
	ct_dev_tmpl_set_aset(3CONTRACT)
	ct_event_read(3CONTRACT)
	ct_pr_event_get_pid(3CONTRACT)
	ct_pr_status_get_param(3CONTRACT)
	ct_pr_tmpl_set_transfer(3CONTRACT)
	ct_status_read(3CONTRACT)
	ct_tmpl_activate(3CONTRACT)
	dat_cno_create(3DAT)
	dat_cno_free(3DAT)
	dat_cno_modify_agent(3DAT)
	dat_cno_query(3DAT)
	dat_cno_wait(3DAT)
	dat_cr_accept(3DAT)
	dat_cr_handoff(3DAT)
	dat_cr_query(3DAT)
	dat_cr_reject(3DAT)
	dat_ep_connect(3DAT)
	dat_ep_create(3DAT)
	dat_ep_create_with_srq(3DAT)
	dat_ep_disconnect(3DAT)
	dat_ep_dup_connect(3DAT)
	dat_ep_free(3DAT)
	dat_ep_get_status(3DAT)
	dat_ep_modify(3DAT)
	dat_ep_post_rdma_read(3DAT)
	dat_ep_post_rdma_write(3DAT)
	dat_ep_post_recv(3DAT)
	dat_ep_post_send(3DAT)
	dat_ep_query(3DAT)
	dat_ep_recv_query(3DAT)
	dat_ep_reset(3DAT)
	dat_ep_set_watermark(3DAT)
	dat_evd_clear_unwaitable(3DAT)
	dat_evd_dequeue(3DAT)
	dat_evd_disable(3DAT)
	dat_evd_enable(3DAT)
	dat_evd_free(3DAT)
	dat_evd_modify_cno(3DAT)
	dat_evd_post_se(3DAT)
	dat_evd_query(3DAT)
	dat_evd_resize(3DAT)
	dat_evd_set_unwaitable(3DAT)
	dat_evd_wait(3DAT)
	dat_get_consumer_context(3DAT)
	dat_get_handle_type(3DAT)
	dat_ia_close(3DAT)
	dat_ia_open(3DAT)
	dat_ia_query(3DAT)
	dat_lmr_create(3DAT)
	dat_lmr_free(3DAT)
	dat_lmr_query(3DAT)
	dat_lmr_sync_rdma_read(3DAT)
	dat_lmr_sync_rdma_write(3DAT)
	dat_provider_fini(3DAT)
	dat_provider_init(3DAT)
	dat_psp_create(3DAT)
	dat_psp_create_any(3DAT)
	dat_psp_free(3DAT)
	dat_psp_query(3DAT)
	dat_pz_create(3DAT)
	dat_pz_free(3DAT)
	dat_pz_query(3DAT)
	dat_registry_add_provider(3DAT)
	dat_registry_list_providers(3DAT)
	dat_registry_remove_provider(3DAT)
	dat_rmr_bind(3DAT)
	dat_rmr_create(3DAT)
	dat_rmr_free(3DAT)
	dat_rmr_query(3DAT)
	dat_rsp_create(3DAT)
	dat_rsp_free(3DAT)
	dat_rsp_query(3DAT)
	dat_set_consumer_context(3DAT)
	dat_srq_create(3DAT)
	dat_srq_free(3DAT)
	dat_srq_post_recv(3DAT)
	dat_srq_query(3DAT)
	dat_srq_resize(3DAT)
	dat_srq_set_lw(3DAT)
	dat_strerror(3DAT)
	demangle(3EXT)
	devid_get(3DEVID)
	di_binding_name(3DEVINFO)
	di_child_node(3DEVINFO)
	di_devfs_path(3DEVINFO)
	di_devlink_dup(3DEVINFO)
	di_devlink_init(3DEVINFO)
	di_devlink_path(3DEVINFO)
	di_devlink_walk(3DEVINFO)
	di_init(3DEVINFO)
	di_link_next_by_node(3DEVINFO)
	di_link_spectype(3DEVINFO)
	di_lnode_name(3DEVINFO)
	di_lnode_next(3DEVINFO)
	di_minor_devt(3DEVINFO)
	di_minor_next(3DEVINFO)
	di_node_private_set(3DEVINFO)
	di_path_bus_addr(3DEVINFO)
	di_path_client_next_path(3DEVINFO)
	di_path_prop_bytes(3DEVINFO)
	di_path_prop_lookup_bytes(3DEVINFO)
	di_path_prop_next(3DEVINFO)
	di_prom_init(3DEVINFO)
	di_prom_prop_data(3DEVINFO)
	di_prom_prop_lookup_bytes(3DEVINFO)
	di_prop_bytes(3DEVINFO)
	di_prop_lookup_bytes(3DEVINFO)
	di_prop_next(3DEVINFO)
	di_walk_link(3DEVINFO)
	di_walk_lnode(3DEVINFO)
	di_walk_minor(3DEVINFO)
	di_walk_node(3DEVINFO)
	ea_error(3EXACCT)
	ea_open(3EXACCT)
	ea_pack_object(3EXACCT)
	ea_set_item(3EXACCT)
	ecb_crypt(3EXT)
	efi_alloc_and_init(3EXT)
	elf32_checksum(3ELF)
	elf32_fsize(3ELF)
	elf32_getehdr(3ELF)
	elf32_getphdr(3ELF)
	elf32_getshdr(3ELF)
	elf32_xlatetof(3ELF)
	elf(3ELF)
	elf_begin(3ELF)
	elf_cntl(3ELF)
	elf_errmsg(3ELF)
	elf_fill(3ELF)
	elf_flagdata(3ELF)
	elf_getarhdr(3ELF)
	elf_getarsym(3ELF)
	elf_getbase(3ELF)
	elf_getdata(3ELF)
	elf_getident(3ELF)
	elf_getscn(3ELF)
	elf_hash(3ELF)
	elf_kind(3ELF)
	elf_rawfile(3ELF)
	elf_strptr(3ELF)
	elf_update(3ELF)
	elf_version(3ELF)
	FCOE_CreatePort(3FCOE)
	FCOE_DeletePort(3FCOE)
	FCOE_GetPortList(3FCOE)
	fmev_shdl_init(3FM)
	fstyp_get_attr(3FSTYP)
	fstyp_ident(3FSTYP)
	fstyp_init(3FSTYP)
	fstyp_mod_init(3FSTYP)
	fstyp_strerror(3FSTYP)
	gelf(3ELF)
	generic_events(3CPC)
	ld_support(3ext)
	md4(3EXT)
	md5(3EXT)
	nlist(3ELF)
	NOTE(3EXT)
	pctx_capture(3CPC)
	pctx_set_events(3CPC)
	queue(3EXT)
	read_vtoc(3EXT)
	rtld_audit(3EXT)
	rtld_db(3EXT)
	sendfile(3EXT)
	sendfilev(3EXT)
	sha1(3EXT)
	sha2(3EXT)
	stdarg(3EXT)
	SUNW_C_GetMechSession(3EXT)
	tsalarm_get(3EXT)
	v12n(3EXT)
	varargs(3EXT)

