
man pages section 2: System Calls

Part No: E29032
October 2012

Copyright © 1993, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions
d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est
interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que
prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes
d’erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel
ou l’utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est
destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel
dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures
nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés
par l’utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à
d’autres propriétaires qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des
marques déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro
Devices. UNIX est une marque déposée d’The Open Group.

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services
émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En
aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l’accès à
des contenus, produits ou services tiers, ou à leur utilisation.

121010@25097

Contents

Preface ...9

Introduction ...13
Intro(2) .. 14

System Calls ..37
access(2) .. 38
acct(2) .. 41
acl(2) .. 42
adjtime(2) .. 44
alarm(2) .. 46
brk(2) .. 47
chdir(2) .. 49
chmod(2) .. 51
chown(2) .. 57
chroot(2) .. 60
close(2) .. 62
creat(2) .. 65
dup(2) .. 66
exec(2) .. 67
execvex(2) .. 75
exit(2) .. 77
fcntl(2) .. 80
fork(2) .. 89
fpathconf(2) ... 94
futimens(2) ... 98
getacct(2) .. 101

3

getcontext(2) ... 103
getdents(2) ... 104
getgroups(2) ... 105
getisax(2) .. 107
getitimer(2) ... 108
getlabel(2) ... 111
getmsg(2) .. 113
getpflags(2) ... 116
getpid(2) .. 118
getppriv(2) ... 120
getrlimit(2) ... 122
getsid(2) .. 126
getuid(2) .. 127
getustack(2) ... 128
ioctl(2) .. 129
issetugid(2) ... 131
kill(2) .. 132
link(2) .. 134
llseek(2) .. 137
lseek(2) .. 139
_lwp_cond_signal(2) ... 141
_lwp_cond_wait(2) ... 142
_lwp_info(2) ... 145
_lwp_kill(2) ... 146
_lwp_mutex_lock(2) ... 147
_lwp_self(2) ... 148
_lwp_sema_wait(2) ... 149
_lwp_suspend(2) ... 150
memcntl(2) .. 151
meminfo(2) .. 156
mincore(2) .. 159
mkdir(2) .. 160
mknod(2) .. 163
mmap(2) .. 167
mmapobj(2) .. 175
mount(2) .. 179

Contents

man pages section 2: System Calls • October 20124

mprotect(2) ... 183
msgctl(2) .. 185
msgget(2) .. 187
msgids(2) .. 189
msgrcv(2) .. 191
msgsnap(2) .. 193
msgsnd(2) .. 196
munmap(2) .. 198
nice(2) .. 199
ntp_adjtime(2) ... 201
ntp_gettime(2) ... 203
open(2) .. 204
pause(2) .. 213
pcsample(2) ... 214
pipe(2) .. 215
poll(2) .. 216
p_online(2) ... 220
priocntl(2) ... 223
priocntlset(2) ... 242
processor_bind(2) ... 244
processor_info(2) ... 246
profil(2) .. 247
pset_bind(2) ... 249
pset_create(2) ... 251
pset_info(2) ... 253
pset_list(2) ... 255
pset_setattr(2) ... 256
putmsg(2) .. 258
read(2) .. 261
readlink(2) ... 266
rename(2) .. 268
resolvepath(2) ... 272
rmdir(2) .. 273
semctl(2) .. 275
semget(2) .. 278
semids(2) .. 280

Contents

5

semop(2) .. 282
setpgid(2) .. 286
setpgrp(2) .. 288
setrctl(2) .. 289
setregid(2) ... 293
setreuid(2) ... 294
setsid(2) .. 296
settaskid(2) ... 297
setuid(2) .. 299
shmadv(2) .. 301
shmctl(2) .. 303
shmget(2) .. 305
shmids(2) .. 307
shmop(2) .. 309
sigaction(2) ... 312
sigaltstack(2) ... 315
sigpending(2) ... 317
sigprocmask(2) ... 318
sigsend(2) .. 320
sigsuspend(2) ... 322
sigwait(2) .. 324
__sparc_utrap_install(2) .. 328
stat(2) .. 333
statvfs(2) .. 340
stime(2) .. 343
swapctl(2) .. 344
symlink(2) .. 348
sync(2) .. 351
sysfs(2) .. 352
sysinfo(2) .. 353
time(2) .. 357
times(2) .. 358
uadmin(2) .. 360
ulimit(2) .. 363
umask(2) .. 365
umount(2) .. 366

Contents

man pages section 2: System Calls • October 20126

uname(2) .. 368
unlink(2) .. 369
ustat(2) .. 372
utime(2) .. 373
utimes(2) .. 375
uucopy(2) .. 377
vfork(2) .. 378
vhangup(2) .. 380
waitid(2) .. 381
write(2) .. 383
yield(2) .. 389

Contents

7

8

Preface

Both novice users and those familar with the SunOS operating system can use online man pages
to obtain information about the system and its features. A man page is intended to answer
concisely the question “What does it do?” The man pages in general comprise a reference
manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the information it
references:

■ Section 1 describes, in alphabetical order, commands available with the operating system.
■ Section 1M describes, in alphabetical order, commands that are used chiefly for system

maintenance and administration purposes.
■ Section 2 describes all of the system calls. Most of these calls have one or more error returns.

An error condition is indicated by an otherwise impossible returned value.
■ Section 3 describes functions found in various libraries, other than those functions that

directly invoke UNIX system primitives, which are described in Section 2.
■ Section 4 outlines the formats of various files. The C structure declarations for the file

formats are given where applicable.
■ Section 5 contains miscellaneous documentation such as character-set tables.
■ Section 7 describes various special files that refer to specific hardware peripherals and device

drivers. STREAMS software drivers, modules and the STREAMS-generic set of system calls
are also described.

■ Section 9E describes the DDI (Device Driver Interface)/DKI (Driver/Kernel Interface),
DDI-only, and DKI-only entry-point routines a developer can include in a device driver.

■ Section 9F describes the kernel functions available for use by device drivers.
■ Section 9S describes the data structures used by drivers to share information between the

driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section generally
follow this order, but include only needed headings. For example, if there are no bugs to report,

9

there is no BUGS section. See the intro pages for more information and detail about each
section, and man(1) for more information about man pages in general.

NAME This section gives the names of the commands or functions
documented, followed by a brief description of what they
do.

SYNOPSIS This section shows the syntax of commands or functions.
When a command or file does not exist in the standard
path, its full path name is shown. Options and arguments
are alphabetized, with single letter arguments first, and
options with arguments next, unless a different argument
order is required.

The following special characters are used in this section:

[] Brackets. The option or argument enclosed in
these brackets is optional. If the brackets are
omitted, the argument must be specified.

. . . Ellipses. Several values can be provided for the
previous argument, or the previous argument
can be specified multiple times, for example,
“filename . . .” .

| Separator. Only one of the arguments
separated by this character can be specified at a
time.

{ } Braces. The options and/or arguments
enclosed within braces are interdependent,
such that everything enclosed must be treated
as a unit.

PROTOCOL This section occurs only in subsection 3R to indicate the
protocol description file.

DESCRIPTION This section defines the functionality and behavior of the
service. Thus it describes concisely what the command
does. It does not discuss OPTIONS or cite EXAMPLES.
Interactive commands, subcommands, requests, macros,
and functions are described under USAGE.

IOCTL This section appears on pages in Section 7 only. Only the
device class that supplies appropriate parameters to the
ioctl(2) system call is called ioctl and generates its own
heading. ioctl calls for a specific device are listed
alphabetically (on the man page for that specific device).

Preface

man pages section 2: System Calls • October 201210

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1man-1

ioctl calls are used for a particular class of devices all of
which have an io ending, such as mtio(7I).

OPTIONS This section lists the command options with a concise
summary of what each option does. The options are listed
literally and in the order they appear in the SYNOPSIS
section. Possible arguments to options are discussed under
the option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and describes
how they affect the actions of the command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

RETURN VALUES If the man page documents functions that return values,
this section lists these values and describes the conditions
under which they are returned. If a function can return
only constant values, such as 0 or –1, these values are listed
in tagged paragraphs. Otherwise, a single paragraph
describes the return values of each function. Functions
declared void do not return values, so they are not
discussed in RETURN VALUES.

ERRORS On failure, most functions place an error code in the global
variable errno indicating why they failed. This section lists
alphabetically all error codes a function can generate and
describes the conditions that cause each error. When more
than one condition can cause the same error, each
condition is described in a separate paragraph under the
error code.

USAGE This section lists special rules, features, and commands
that require in-depth explanations. The subsections listed
here are used to explain built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of how to use a
command or function. Wherever possible a complete

Preface

11

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7mtio-7i

example including command-line entry and machine
response is shown. Whenever an example is given, the
prompt is shown as example%, or if the user must be
superuser, example#. Examples are followed by
explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the
SYNOPSIS, DESCRIPTION, OPTIONS, and USAGE
sections.

ENVIRONMENT VARIABLES This section lists any environment variables that the
command or function affects, followed by a brief
description of the effect.

EXIT STATUS This section lists the values the command returns to the
calling program or shell and the conditions that cause these
values to be returned. Usually, zero is returned for
successful completion, and values other than zero for
various error conditions.

FILES This section lists all file names referred to by the man page,
files of interest, and files created or required by commands.
Each is followed by a descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands, utilities,
and device drivers by defining the attribute type and its
corresponding value. See attributes(5) for more
information.

SEE ALSO This section lists references to other man pages, in-house
documentation, and outside publications.

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions which
could seriously affect your working conditions. This is not
a list of diagnostics.

NOTES This section lists additional information that does not
belong anywhere else on the page. It takes the form of an
aside to the user, covering points of special interest.
Critical information is never covered here.

BUGS This section describes known bugs and, wherever possible,
suggests workarounds.

Preface

man pages section 2: System Calls • October 201212

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

Introduction

R E F E R E N C E

13

Intro – introduction to system calls and error numbers

#include <errno.h>

A system call is a C library function that requests a service from the system, such as getting the
time of day. This request is performed in the kernel. The library interface executes a trap into
the kernel, which actually executes the system call code.

Most system calls return one or more error conditions. An error condition is indicated by an
otherwise impossible return value. This is almost always −1 or the null pointer; the individual
descriptions specify the details. An error number is also made available in the external variable
errno, which is not cleared on successful calls, so it should be tested only after an error has
been indicated.

In the case of multithreaded applications, the -mt option must be specified on the command
line at compilation time (see threads(5)). When the -mt option is specified, errno becomes a
macro that enables each thread to have its own errno. This errno macro can be used on either
side of the assignment as though it were a variable.

An error value listed as “will fail” describes a condition whose detection and reporting is
mandatory for an implementation that conforms to the Single UNIX Specification (SUS). An
application can rely on this condition being detected and reported. An error value listed as
“may fail” describes a condition whose detection and reporting is optional for an
implementation that conforms to the SUS. An application should not rely this condition being
detected and reported. An application that relies on such behavior cannot be assured to be
portable across conforming implementations. If more than one error occurs in processing a
function call, any one of the possible errors might may be returned, as the order of detection is
undefined. See standards(5) for additional information regarding the Single UNIX
Specification.

Each system call description attempts to list all possible error numbers. The following is a
complete list of the error numbers and their names as defined in <errno.h>.

1 EPERM Lacking appropriate privileges

Typically this error indicates an attempt to modify a file in
some way forbidden except to its owner or an appropriately
privileged process. It is also returned for attempts by
ordinary users to perform operations allowed only to
processes with certain privileges.

The manual pages for individual functions document which
privileges are needed to override the restriction.

2 ENOENT No such file or directory

A file name is specified and the file should exist but doesn't,
or one of the directories in a path name does not exist.

Name

Synopsis

Description

Intro(2)

man pages section 2: System Calls • Last Revised 17 Nov 200814

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5threads-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

3 ESRCH No such process, LWP, or thread

No process can be found in the system that corresponds to
the specified PID, LWPID_t, or thread_t.

4 EINTR Interrupted system call

An asynchronous signal (such as interrupt or quit), which
the user has elected to catch, occurred during a system
service function. If execution is resumed after processing the
signal, it will appear as if the interrupted function call
returned this error condition.

In a multithreaded application, EINTR may be returned
whenever another thread or LWP calls fork(2).

5 EIO I/O error

Some physical I/O error has occurred. This error may in
some cases occur on a call following the one to which it
actually applies.

6 ENXIO No such device or address

I/O on a special file refers to a subdevice which does not exist,
or exists beyond the limit of the device. It may also occur
when, for example, a tape drive is not on-line or no disk pack
is loaded on a drive.

7 E2BIG Arg list too long

An argument list longer than ARG_MAX bytes is presented to a
member of the exec family of functions (see exec(2)). The
argument list limit is the sum of the size of the argument list
plus the size of the environment's exported shell variables.

8 ENOEXEC Exec format error

A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid format
(see a.out(4)).

9 EBADF Bad file number

Either a file descriptor refers to no open file, or a read(2)
(respectively, write(2)) request is made to a file that is open
only for writing (respectively, reading).

10 ECHILD No child processes

Intro(2)

Introduction 15

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4a.out-4

A wait(3C) function call was executed by a process that had
no existing or unwaited-for child processes.

11 EAGAIN No more processes, or no more LWPs

For example, the fork(2) function failed because the system's
process table is full or the user is not allowed to create any
more processes, or a call failed because of insufficient
memory or swap space.

12 ENOMEM Not enough space

During execution of brk() or sbrk() (see brk(2)), or one of
the exec family of functions, a program asks for more space
than the system is able to supply. This is not a temporary
condition; the maximum size is a system parameter. On
some architectures, the error may also occur if the
arrangement of text, data, and stack segments requires too
many segmentation registers, or if there is not enough swap
space during the fork(2) function.

13 EACCES Permission denied

An attempt was made to access a file in a way forbidden by
the protection system.

The manual pages for individual functions document which
privileges are needed to override the protection system.

14 EFAULT Bad address

The system encountered a hardware fault in attempting to
use an argument of a routine. For example, errno potentially
may be set to EFAULT any time a routine that takes a pointer
argument is passed an invalid address, if the system can
detect the condition. Because systems will differ in their
ability to reliably detect a bad address, on some
implementations passing a bad address to a routine will
result in undefined behavior.

15 ENOTBLK Block device required

A non-block device or file was mentioned where a block
device was required (for example, in a call to the mount(2)
function).

16 EBUSY Device busy

Intro(2)

man pages section 2: System Calls • Last Revised 17 Nov 200816

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Await-3c

An attempt was made to mount a device that was already
mounted or an attempt was made to unmount a device on
which there is an active file (open file, current directory,
mounted-on file, active text segment). It will also occur if an
attempt is made to enable accounting when it is already
enabled. The device or resource is currently unavailable.
EBUSY is also used by mutexes, semaphores, condition
variables, and r/w locks, to indicate that a lock is held, and by
the processor control function P_ONLINE.

17 EEXIST File exists

An existing file was mentioned in an inappropriate context
(for example, call to the link(2) function).

18 EXDEV Cross-device link

A hard link to a file on another device was attempted.

19 ENODEV No such device

An attempt was made to apply an inappropriate operation to
a device (for example, read a write-only device).

20 ENOTDIR Not a directory

A non-directory was specified where a directory is required
(for example, in a path prefix or as an argument to the
chdir(2) function).

21 EISDIR Is a directory

An attempt was made to write on a directory.

22 EINVAL Invalid argument

An invalid argument was specified (for example,
unmounting a non-mounted device), mentioning an
undefined signal in a call to the signal(3C) or kill(2)
function, or an unsupported operation related to extended
attributes was attempted.

23 ENFILE File table overflow

The system file table is full (that is, SYS_OPEN files are open,
and temporarily no more files can be opened).

24 EMFILE Too many open files

Intro(2)

Introduction 17

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asignal-3c

No process may have more than OPEN_MAX file descriptors
open at a time.

25 ENOTTY Inappropriate ioctl for device

A call was made to the ioctl(2) function specifying a file that
is not a special character device.

26 ETXTBSY Text file busy (obsolete)

An attempt was made to execute a pure-procedure program
that is currently open for writing. Also an attempt to open for
writing or to remove a pure-procedure program that is being
executed. (This message is obsolete.)

27 EFBIG File too large

The size of the file exceeded the limit specified by resource
RLIMIT_FSIZEn; the file size exceeds the maximum
supported by the file system; or the file size exceeds the offset
maximum of the file descriptor. See the File Descriptor
subsection of the DEFINITIONS section below.

28 ENOSPC No space left on device

While writing an ordinary file or creating a directory entry,
there is no free space left on the device. In the fcntl(2)
function, the setting or removing of record locks on a file
cannot be accomplished because there are no more record
entries left on the system.

29 ESPIPE Illegal seek

A call to the lseek(2) function was issued to a pipe.

30 EROFS Read-only file system

An attempt to modify a file or directory was made on a
device mounted read-only.

31 EMLINK Too many links

An attempt to make more than the maximum number of
links, LINK_MAX, to a file.

32 EPIPE Broken pipe

Intro(2)

man pages section 2: System Calls • Last Revised 17 Nov 200818

A write on a pipe for which there is no process to read the
data. This condition normally generates a signal; the error is
returned if the signal is ignored.

33 EDOM Math argument out of domain of function

The argument of a function in the math package (3M) is out
of the domain of the function.

34 ERANGE Math result not representable

The value of a function in the math package (3M) is not
representable within machine precision.

35 ENOMSG No message of desired type

An attempt was made to receive a message of a type that does
not exist on the specified message queue (see msgrcv(2)).

36 EIDRM Identifier removed

This error is returned to processes that resume execution due
to the removal of an identifier from the file system's name
space (see msgctl(2), semctl(2), and shmctl(2)).

37 ECHRNG Channel number out of range

38 EL2NSYNC Level 2 not synchronized

39 EL3HLT Level 3 halted

40 EL3RST Level 3 reset

41 ELNRNG Link number out of range

42 EUNATCH Protocol driver not attached

43 ENOCSI No CSI structure available

44 EL2HLT Level 2 halted

45 EDEADLK Deadlock condition

A deadlock situation was detected and avoided. This error
pertains to file and record locking, and also applies to
mutexes, semaphores, condition variables, and r/w locks.

46 ENOLCK No record locks available

There are no more locks available. The system lock table is
full (see fcntl(2)).

Intro(2)

Introduction 19

47 ECANCELED Operation canceled

The associated asynchronous operation was canceled before
completion.

48 ENOTSUP Not supported

This version of the system does not support this feature.
Future versions of the system may provide support.

49 EDQUOT Disc quota exceeded

A write(2) to an ordinary file, the creation of a directory or
symbolic link, or the creation of a directory entry failed
because the user's quota of disk blocks was exhausted, or the
allocation of an inode for a newly created file failed because
the user's quota of inodes was exhausted.

58-59 Reserved

60 ENOSTR Device not a stream

A putmsg(2) or getmsg(2) call was attempted on a file
descriptor that is not a STREAMS device.

61 ENODATA No data available

62 ETIME Timer expired

The timer set for a STREAMS ioctl(2) call has expired. The
cause of this error is device-specific and could indicate either
a hardware or software failure, or perhaps a timeout value
that is too short for the specific operation. The status of the
ioctl() operation is indeterminate. This is also returned in
the case of _lwp_cond_timedwait(2) or
cond_timedwait(3C).

63 ENOSR Out of stream resources

During a STREAMS open(2) call, either no STREAMS
queues or no STREAMS head data structures were available.
This is a temporary condition; one may recover from it if
other processes release resources.

65 ENOPKG Package not installed

This error occurs when users attempt to use a call from a
package which has not been installed.

71 EPROTO Protocol error

Intro(2)

man pages section 2: System Calls • Last Revised 17 Nov 200820

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Acond-timedwait-3c

Some protocol error occurred. This error is device-specific,
but is generally not related to a hardware failure.

77 EBADMSG Not a data message

During a read(2), getmsg(2), or ioctl(2) I_RECVFD call to a
STREAMS device, something has come to the head of the
queue that can not be processed. That something depends on
the call:

read(): control information or passed file descriptor.

getmsg(): passed file descriptor.

ioctl(): control or data information.

78 ENAMETOOLONG File name too long

The length of the path argument exceeds PATH_MAX, or the
length of a path component exceeds NAME_MAX while
_POSIX_NO_TRUNC is in effect; see limits.h(3HEAD).

79 EOVERFLOW Value too large for defined data type.

80 ENOTUNIQ Name not unique on network

Given log name not unique.

81 EBADFD File descriptor in bad state

Either a file descriptor refers to no open file or a read request
was made to a file that is open only for writing.

82 EREMCHG Remote address changed

83 ELIBACC Cannot access a needed share library

Trying to exec an a.out that requires a static shared library
and the static shared library does not exist or the user does
not have permission to use it.

84 ELIBBAD Accessing a corrupted shared library

Trying to exec an a.out that requires a static shared library
(to be linked in) and exec could not load the static shared
library. The static shared library is probably corrupted.

85 ELIBSCN .lib section in a.out corrupted

Trying to exec an a.out that requires a static shared library
(to be linked in) and there was erroneous data in the .lib

Intro(2)

Introduction 21

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flimits.h-3head

section of the a.out. The .lib section tells exec what static
shared libraries are needed. The a.out is probably corrupted.

86 ELIBMAX Attempting to link in more shared libraries than system limit

Trying to exec an a.out that requires more static shared
libraries than is allowed on the current configuration of the
system. See System Administration Guide: IP Services

87 ELIBEXEC Cannot exec a shared library directly

Attempting to exec a shared library directly.

88 EILSEQ Error 88

Illegal byte sequence. Handle multiple characters as a single
character.

89 ENOSYS Operation not applicable

90 ELOOP Number of symbolic links encountered during path name
traversal exceeds MAXSYMLINKS

91 ESTART Restartable system call

Interrupted system call should be restarted.

92 ESTRPIPE If pipe/FIFO, don't sleep in stream head

Streams pipe error (not externally visible).

93 ENOTEMPTY Directory not empty

94 EUSERS Too many users

95 ENOTSOCK Socket operation on non-socket

96 EDESTADDRREQ Destination address required

A required address was omitted from an operation on a
transport endpoint. Destination address required.

97 EMGSIZE Message too long

A message sent on a transport provider was larger than the
internal message buffer or some other network limit.

98 EPROTOTYPE Protocol wrong type for socket

A protocol was specified that does not support the semantics
of the socket type requested.

Intro(2)

man pages section 2: System Calls • Last Revised 17 Nov 200822

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SYSADV3

99 ENOPROTOOPT Protocol not available

A bad option or level was specified when getting or setting
options for a protocol.

120 EPROTONOSUPPORT Protocol not supported

The protocol has not been configured into the system or no
implementation for it exists.

121 ESOCKTNOSUPPORT Socket type not supported

The support for the socket type has not been configured into
the system or no implementation for it exists.

122 EOPNOTSUPP Operation not supported on transport endpoint

For example, trying to accept a connection on a datagram
transport endpoint.

123 EPFNOSUPPORT Protocol family not supported

The protocol family has not been configured into the system
or no implementation for it exists. Used for the Internet
protocols.

124 EAFNOSUPPORT Address family not supported by protocol family

An address incompatible with the requested protocol was
used.

125 EADDRINUSE Address already in use

User attempted to use an address already in use, and the
protocol does not allow this.

126 EADDRNOTAVAIL Cannot assign requested address

Results from an attempt to create a transport endpoint with
an address not on the current machine.

127 ENETDOWN Network is down

Operation encountered a dead network.

128 ENETUNREACH Network is unreachable

Operation was attempted to an unreachable network.

129 ENETRESET Network dropped connection because of reset

Intro(2)

Introduction 23

The host you were connected to crashed and rebooted.

130 ECONNABORTED Software caused connection abort

A connection abort was caused internal to your host
machine.

131 ECONNRESET Connection reset by peer

A connection was forcibly closed by a peer. This normally
results from a loss of the connection on the remote host due
to a timeout or a reboot.

132 ENOBUFS No buffer space available

An operation on a transport endpoint or pipe was not
performed because the system lacked sufficient buffer space
or because a queue was full.

133 EISCONN Transport endpoint is already connected

A connect request was made on an already connected
transport endpoint; or, a sendto(3SOCKET) or
sendmsg(3SOCKET) request on a connected transport
endpoint specified a destination when already connected.

134 ENOTCONN Transport endpoint is not connected

A request to send or receive data was disallowed because the
transport endpoint is not connected and (when sending a
datagram) no address was supplied.

143 ESHUTDOWN Cannot send after transport endpoint shutdown

A request to send data was disallowed because the transport
endpoint has already been shut down.

144 ETOOMANYREFS Too many references: cannot splice

145 ETIMEDOUT Connection timed out

A connect(3SOCKET) or send(3SOCKET) request failed
because the connected party did not properly respond after a
period of time; or a write(2) or fsync(3C) request failed
because a file is on an NFS file system mounted with the soft
option.

146 ECONNREFUSED Connection refused

Intro(2)

man pages section 2: System Calls • Last Revised 17 Nov 200824

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Bsendto-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Bsendmsg-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Bconnect-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Bsend-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afsync-3c

No connection could be made because the target machine
actively refused it. This usually results from trying to connect
to a service that is inactive on the remote host.

147 EHOSTDOWN Host is down

A transport provider operation failed because the
destination host was down.

148 EHOSTUNREACH No route to host

A transport provider operation was attempted to an
unreachable host.

149 EALREADY Operation already in progress

An operation was attempted on a non-blocking object that
already had an operation in progress.

150 EINPROGRESS Operation now in progress

An operation that takes a long time to complete (such as a
connect()) was attempted on a non-blocking object.

151 ESTALE Stale NFS file handle

Any process group that is not the foreground process group of a session that has established a
connection with a controlling terminal.

A session leader that established a connection to a controlling terminal.

A terminal that is associated with a session. Each session may have, at most, one controlling
terminal associated with it and a controlling terminal may be associated with only one session.
Certain input sequences from the controlling terminal cause signals to be sent to process
groups in the session associated with the controlling terminal; see termio(7I).

Directories organize files into a hierarchical system where directories are the nodes in the
hierarchy. A directory is a file that catalogs the list of files, including directories
(sub-directories), that are directly beneath it in the hierarchy. Entries in a directory file are
called links. A link associates a file identifier with a filename. By convention, a directory
contains at least two links, . (dot) and .. (dot-dot). The link called dot refers to the directory
itself while dot-dot refers to its parent directory. The root directory, which is the top-most
node of the hierarchy, has itself as its parent directory. The pathname of the root directory is /
and the parent directory of the root directory is /.

Definitions

Background Process
Group

Controlling Process

Controlling Terminal

Directory

Intro(2)

Introduction 25

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7termio-7i

In a stream, the direction from stream head to driver.

In a stream, the driver provides the interface between peripheral hardware and the stream. A
driver can also be a pseudo-driver, such as a multiplexor or log driver (see log(7D)), which is
not associated with a hardware device.

An active process has an effective user ID and an effective group ID that are used to determine
file access permissions (see below). The effective user ID and effective group ID are equal to
the process's real user ID and real group ID, respectively, unless the process or one of its
ancestors evolved from a file that had the set-user-ID bit or set-group-ID bit set (see exec(2)).

Read, write, and execute/search permissions for a file are granted to a process if one or more of
the following are true:

■ The effective user ID of the process matches the user ID of the owner of the file and the
appropriate access bit of the “owner” portion (0700) of the file mode is set.

■ The effective user ID of the process does not match the user ID of the owner of the file, but
either the effective group ID or one of the supplementary group IDs of the process match
the group ID of the file and the appropriate access bit of the “group” portion (0070) of the
file mode is set.

■ The effective user ID of the process does not match the user ID of the owner of the file, and
neither the effective group ID nor any of the supplementary group IDs of the process
match the group ID of the file, but the appropriate access bit of the “other” portion (0007)
of the file mode is set.

■ The read, write, or execute mode bit is not set but the process has the discretionary file
access override privilege for the corresponding mode bit: {PRIV_FILE_DAC_READ} for the
read bit {PRIV_FILE_DAC_WRITE} for the write bit, {PRIV_FILE_DAC_SEARCH} for the
execute bit on directories, and {PRIV_FILE_DAC_EXECUTE} for the executable bit on plain
files.

Otherwise, the corresponding permissions are denied.

A file descriptor is a small integer used to perform I/O on a file. The value of a file descriptor is
from 0 to (NOFILES−1). A process may have no more than NOFILES file descriptors open
simultaneously. A file descriptor is returned by calls such as open(2) or pipe(2). The file
descriptor is used as an argument by calls such as read(2), write(2), ioctl(2), and close(2).

Each file descriptor has a corresponding offset maximum. For regular files that were opened
without setting the O_LARGEFILE flag, the offset maximum is 2 Gbyte − 1 byte (231 −1 bytes).
For regular files that were opened with the O_LARGEFILE flag set, the offset maximum is 263 −1
bytes.

Names consisting of 1 to NAME_MAX characters may be used to name an ordinary file, special file
or directory.

Downstream

Driver

Effective User ID and
Effective Group ID

File Access Permissions

File Descriptor

File Name

Intro(2)

man pages section 2: System Calls • Last Revised 17 Nov 200826

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7log-7d

These characters may be selected from the set of all character values excluding \0 (null) and
the ASCII code for / (slash).

Note that it is generally unwise to use *, ?, [, or] as part of file names because of the special
meaning attached to these characters by the shell (see sh(1), csh(1), and ksh(1)). Although
permitted, the use of unprintable characters in file names should be avoided.

A file name is sometimes referred to as a pathname component. The interpretation of a
pathname component is dependent on the values of NAME_MAX and _POSIX_NO_TRUNC

associated with the path prefix of that component. If any pathname component is longer than
NAME_MAX and _POSIX_NO_TRUNC is in effect for the path prefix of that component (see
fpathconf(2) and limits.h(3HEAD)), it shall be considered an error condition in that
implementation. Otherwise, the implementation shall use the first NAME_MAX bytes of the
pathname component.

Each session that has established a connection with a controlling terminal will distinguish one
process group of the session as the foreground process group of the controlling terminal. This
group has certain privileges when accessing its controlling terminal that are denied to
background process groups.

Maximum number of entries in a struct iovec array.

The braces notation, {LIMIT}, is used to denote a magnitude limitation imposed by the
implementation. This indicates a value which may be defined by a header file (without the
braces), or the actual value may be obtained at runtime by a call to the configuration inquiry
pathconf(2) with the name argument _PC_LIMIT.

The file mode creation mask of the process used during any create function calls to turn off
permission bits in the mode argument supplied. Bit positions that are set in umask(cmask) are
cleared in the mode of the created file.

In a stream, one or more blocks of data or information, with associated STREAMS control
structures. Messages can be of several defined types, which identify the message contents.
Messages are the only means of transferring data and communicating within a stream.

In a stream, a linked list of messages awaiting processing by a module or driver.

A message queue identifier (msqid) is a unique positive integer created by a msgget(2) call.
Each msqid has a message queue and a data structure associated with it. The data structure is
referred to as msqid_ds and contains the following members:

struct ipc_perm msg_perm;

struct msg *msg_first;

struct msg *msg_last;

ulong_t msg_cbytes;

ulong_t msg_qnum;

ulong_t msg_qbytes;

Foreground Process
Group

{IOV_MAX}

{LIMIT}

Masks

Message

Message Queue

Message Queue
Identifier

Intro(2)

Introduction 27

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1sh-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1csh-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ksh-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flimits.h-3head

pid_t msg_lspid;

pid_t msg_lrpid;

time_t msg_stime;

time_t msg_rtime;

time_t msg_ctime;

The following are descriptions of the msqid_ds structure members:

The msg_perm member is an ipc_perm structure that specifies the message operation
permission (see below). This structure includes the following members:

uid_t cuid; /* creator user id */

gid_t cgid; /* creator group id */

uid_t uid; /* user id */

gid_t gid; /* group id */

mode_t mode; /* r/w permission */

ulong_t seq; /* slot usage sequence # */

key_t key; /* key */

The *msg_first member is a pointer to the first message on the queue.

The *msg_last member is a pointer to the last message on the queue.

The msg_cbytes member is the current number of bytes on the queue.

The msg_qnum member is the number of messages currently on the queue.

The msg_qbytes member is the maximum number of bytes allowed on the queue.

The msg_lspid member is the process ID of the last process that performed a msgsnd()
operation.

The msg_lrpid member is the process id of the last process that performed a msgrcv()
operation.

The msg_stime member is the time of the last msgsnd() operation.

The msg_rtime member is the time of the last msgrcv() operation.

The msg_ctime member is the time of the last msgctl() operation that changed a member of
the above structure.

In the msgctl(2), msgget(2), msgrcv(2), and msgsnd(2) function descriptions, the permission
required for an operation is given as {token}, where token is the type of permission needed,
interpreted as follows:

00400 READ by user

00200 WRITE by user

00040 READ by group

Message Operation
Permissions

Intro(2)

man pages section 2: System Calls • Last Revised 17 Nov 200828

00020 WRITE by group

00004 READ by others

00002 WRITE by others

Read and write permissions for a msqid are granted to a process if one or more of the following
are true:

■ The {PRIV_IPC_DAC_READ} or {PRIV_IPC_DAC_WRITE} privilege is present in the effective
set.

■ The effective user ID of the process matches msg_perm.cuid or msg_perm.uid in the data
structure associated with msqid and the appropriate bit of the “user” portion (0600) of
msg_perm.mode is set.

■ Any group ID in the process credentials from the set matches msg_perm.cgid or
msg_perm.gid and the appropriate bit of the “group” portion (060) of msg_perm.mode is
set.

■ The appropriate bit of the “other” portion (006) of msg_perm.mode is set.”

Otherwise, the corresponding permissions are denied.

A module is an entity containing processing routines for input and output data. It always
exists in the middle of a stream, between the stream's head and a driver. A module is the
STREAMS counterpart to the commands in a shell pipeline except that a module contains a
pair of functions which allow independent bidirectional (downstream and upstream) data
flow and processing.

A multiplexor is a driver that allows streams associated with several user processes to be
connected to a single driver, or several drivers to be connected to a single user process.
STREAMS does not provide a general multiplexing driver, but does provide the facilities for
constructing them and for connecting multiplexed configurations of streams.

An offset maximum is an attribute of an open file description representing the largest value
that can be used as a file offset.

A process group in which the parent of every member in the group is either itself a member of
the group, or is not a member of the process group's session.

A path name is a null-terminated character string starting with an optional slash (/), followed
by zero or more directory names separated by slashes, optionally followed by a file name.

If a path name begins with a slash, the path search begins at the root directory. Otherwise, the
search begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as if it named a non-existent
file.

Module

Multiplexor

Offset Maximum

Orphaned Process
Group

Path Name

Intro(2)

Introduction 29

Solaris software implements a set of privileges that provide fine-grained control over the
actions of processes. The possession of of a certain privilege allows a process to perform a
specific set of restricted operations. Prior to the Solaris 10 release, a process running with uid 0
was granted all privileges. See privileges(5) for the semantics and the degree of backward
compatibility awarded to processes with an effective uid of 0.

Each process in the system is uniquely identified during its lifetime by a positive integer called
a process ID. A process ID cannot be reused by the system until the process lifetime, process
group lifetime, and session lifetime ends for any process ID, process group ID, and session ID
equal to that process ID. There are threads within a process with thread IDs thread_t and
LWPID_t. These threads are not visible to the outside process.

A new process is created by a currently active process (see fork(2)). The parent process ID of a
process is the process ID of its creator.

Having appropriate privilege means having the capability to override system restrictions.

Each process in the system is a member of a process group that is identified by a process group
ID. Any process that is not a process group leader may create a new process group and become
its leader. Any process that is not a process group leader may join an existing process group
that shares the same session as the process. A newly created process joins the process group of
its parent.

A process group leader is a process whose process ID is the same as its process group ID.

Each active process is a member of a process group and is identified by a positive integer called
the process group ID. This ID is the process ID of the group leader. This grouping permits the
signaling of related processes (see kill(2)).

A process lifetime begins when the process is forked and ends after it exits, when its
termination has been acknowledged by its parent process. See wait(3C).

A process group lifetime begins when the process group is created by its process group leader,
and ends when the lifetime of the last process in the group ends or when the last process in the
group leaves the group.

The processors in a system may be divided into subsets, known as processor sets. A process
bound to one of these sets will run only on processors in that set, and the processors in the set
will normally run only processes that have been bound to the set. Each active processor set is
identified by a positive integer. See pset_create(2).

In a stream, the message queue in a module or driver containing messages moving upstream.

Each user allowed on the system is identified by a positive integer (0 to MAXUID) called a real
user ID.

Privileged User

Process ID

Parent Process ID

Privilege

Process Group

Process Group Leader

Process Group ID

Process Lifetime

Process Group Lifetime

Processor Set ID

Read Queue

Real User ID and Real
Group ID

Intro(2)

man pages section 2: System Calls • Last Revised 17 Nov 200830

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Await-3c

Each user is also a member of a group. The group is identified by a positive integer called the
real group ID.

An active process has a real user ID and real group ID that are set to the real user ID and real
group ID, respectively, of the user responsible for the creation of the process.

Each process has associated with it a concept of a root directory and a current working
directory for the purpose of resolving path name searches. The root directory of a process
need not be the root directory of the root file system.

Saved resource limits is an attribute of a process that provides some flexibility in the handling
of unrepresentable resource limits, as described in the exec family of functions and
setrlimit(2).

The saved user ID and saved group ID are the values of the effective user ID and effective
group ID just after an exec of a file whose set user or set group file mode bit has been set (see
exec(2)).

A semaphore identifier (semid) is a unique positive integer created by a semget(2) call. Each
semid has a set of semaphores and a data structure associated with it. The data structure is
referred to as semid_ds and contains the following members:

struct ipc_perm sem_perm; /* operation permission struct */

struct sem *sem_base; /* ptr to first semaphore in set */

ushort_t sem_nsems; /* number of sems in set */

time_t sem_otime; /* last operation time */

time_t sem_ctime; /* last change time */

/* Times measured in secs since */

/* 00:00:00 GMT, Jan. 1, 1970 */

The following are descriptions of the semid_ds structure members:

The sem_perm member is an ipc_perm structure that specifies the semaphore operation
permission (see below). This structure includes the following members:

uid_t uid; /* user id */

gid_t gid; /* group id */

uid_t cuid; /* creator user id */

gid_t cgid; /* creator group id */

mode_t mode; /* r/a permission */

ulong_t seq; /* slot usage sequence number */

key_t key; /* key */

The sem_nsems member is equal to the number of semaphores in the set. Each semaphore in
the set is referenced by a nonnegative integer referred to as a sem_num. sem_num values run
sequentially from 0 to the value of sem_nsems minus 1.

The sem_otime member is the time of the last semop(2) operation.

Root Directory and
Current Working

Directory

Saved Resource Limits

Saved User ID and
Saved Group ID

Semaphore Identifier

Intro(2)

Introduction 31

The sem_ctime member is the time of the last semctl(2) operation that changed a member of
the above structure.

A semaphore is a data structure called sem that contains the following members:

ushort_t semval; /* semaphore value */

pid_t sempid; /* pid of last operation */

ushort_t semncnt; /* # awaiting semval > cval */

ushort_t semzcnt; /* # awaiting semval = 0 */

The following are descriptions of the sem structure members:

The semval member is a non-negative integer that is the actual value of the semaphore.

The sempid member is equal to the process ID of the last process that performed a semaphore
operation on this semaphore.

The semncnt member is a count of the number of processes that are currently suspended
awaiting this semaphore's semval to become greater than its current value.

The semzcnt member is a count of the number of processes that are currently suspended
awaiting this semaphore's semval to become 0.

In the semop(2) and semctl(2) function descriptions, the permission required for an
operation is given as {token}, where token is the type of permission needed interpreted as
follows:

00400 READ by user

00200 ALTER by user

00040 READ by group

00020 ALTER by group

00004 READ by others

00002 ALTER by others

Read and alter permissions for a semid are granted to a process if one or more of the following
are true:

■ The {PRIV_IPC_DAC_READ} or {PRIV_IPC_DAC_WRITE} privilege is present in the effective
set.

■ The effective user ID of the process matches sem_perm.cuid or sem_perm.uid in the data
structure associated with semid and the appropriate bit of the “user” portion (0600) of
sem_perm.mode is set.

■ The effective group ID of the process matches sem_perm.cgid or sem_perm.gid and the
appropriate bit of the “group” portion (060) of sem_perm.mode is set.

■ The appropriate bit of the “other” portion (06) of sem_perm.mode is set.

Semaphore Operation
Permissions

Intro(2)

man pages section 2: System Calls • Last Revised 17 Nov 200832

Otherwise, the corresponding permissions are denied.

A session is a group of processes identified by a common ID called a session ID, capable of
establishing a connection with a controlling terminal. Any process that is not a process group
leader may create a new session and process group, becoming the session leader of the session
and process group leader of the process group. A newly created process joins the session of its
creator.

Each session in the system is uniquely identified during its lifetime by a positive integer called
a session ID, the process ID of its session leader.

A session leader is a process whose session ID is the same as its process and process group ID.

A session lifetime begins when the session is created by its session leader, and ends when the
lifetime of the last process that is a member of the session ends, or when the last process that is
a member in the session leaves the session.

A shared memory identifier (shmid) is a unique positive integer created by a shmget(2) call.
Each shmid has a segment of memory (referred to as a shared memory segment) and a data
structure associated with it. (Note that these shared memory segments must be explicitly
removed by the user after the last reference to them is removed.) The data structure is referred
to as shmid_ds and contains the following members:

struct ipc_perm shm_perm; /* operation permission struct */

size_t shm_segsz; /* size of segment */

struct anon_map *shm_amp; /* ptr to region structure */

char pad[4]; /* for swap compatibility */

pid_t shm_lpid; /* pid of last operation */

pid_t shm_cpid; /* creator pid */

shmatt_t shm_nattch; /* number of current attaches */

ulong_t shm_cnattch; /* used only for shminfo */

time_t shm_atime; /* last attach time */

time_t shm_dtime; /* last detach time */

time_t shm_ctime; /* last change time */

/* Times measured in secs since */

/* 00:00:00 GMT, Jan. 1, 1970 */

The following are descriptions of the shmid_ds structure members:

The shm_perm member is an ipc_perm structure that specifies the shared memory operation
permission (see below). This structure includes the following members:

uid_t cuid; /* creator user id */

gid_t cgid; /* creator group id */

uid_t uid; /* user id */

gid_t gid; /* group id */

mode_t mode; /* r/w permission */

Session

Session ID

Session Leader

Session Lifetime

Shared Memory
Identifier

Intro(2)

Introduction 33

ulong_t seq; /* slot usage sequence # */

key_t key; /* key */

The shm_segsz member specifies the size of the shared memory segment in bytes.

The shm_cpid member is the process ID of the process that created the shared memory
identifier.

The shm_lpid member is the process ID of the last process that performed a shmat() or
shmdt() operation (see shmop(2)).

The shm_nattch member is the number of processes that currently have this segment
attached.

The shm_atime member is the time of the last shmat() operation (see shmop(2)).

The shm_dtime member is the time of the last shmdt() operation (see shmop(2)).

The shm_ctime member is the time of the last shmctl(2) operation that changed one of the
members of the above structure.

In the shmctl(2), shmat(), and shmdt() (see shmop(2)) function descriptions, the permission
required for an operation is given as {token}, where token is the type of permission needed
interpreted as follows:

00400 READ by user

00200 WRITE by user

00040 READ by group

00020 WRITE by group

00004 READ by others

00002 WRITE by others

Read and write permissions for a shmid are granted to a process if one or more of the following
are true:

■ The {PRIV_IPC_DAC_READ} or {PRIV_IPC_DAC_WRITE} privilege is present in the effective
set.

■ The effective user ID of the process matches shm_perm.cuid or shm_perm.uid in the data
structure associated with shmid and the appropriate bit of the “user” portion (0600) of
shm_perm.mode is set.

■ The effective group ID of the process matches shm_perm.cgid or shm_perm.gid and the
appropriate bit of the “group” portion (060) of shm_perm.mode is set.

■ The appropriate bit of the “other” portion (06) of shm_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Shared Memory
Operation Permissions

Intro(2)

man pages section 2: System Calls • Last Revised 17 Nov 200834

The process with ID 0 and the process with ID 1 are special processes referred to as proc0 and
proc1; see kill(2). proc0 is the process scheduler. proc1 is the initialization process (init);
proc1 is the ancestor of every other process in the system and is used to control the process
structure.

A set of kernel mechanisms that support the development of network services and data
communication drivers. It defines interface standards for character input/output within the
kernel and between the kernel and user level processes. The STREAMS mechanism is
composed of utility routines, kernel facilities and a set of data structures.

A stream is a full-duplex data path within the kernel between a user process and driver
routines. The primary components are a stream head, a driver, and zero or more modules
between the stream head and driver. A stream is analogous to a shell pipeline, except that data
flow and processing are bidirectional.

In a stream, the stream head is the end of the stream that provides the interface between the
stream and a user process. The principal functions of the stream head are processing
STREAMS-related system calls and passing data and information between a user process and
the stream.

In a stream, the direction from driver to stream head.

In a stream, the message queue in a module or driver containing messages moving
downstream.

Oracle America, Inc. gratefully acknowledges The Open Group for permission to reproduce
portions of its copyrighted documentation. Original documentation from The Open Group
can be obtained online at http://www.opengroup.org/bookstore/.

The Institute of Electrical and Electronics Engineers and The Open Group, have given us
permission to reprint portions of their documentation.

In the following statement, the phrase ‘‘this text'' refers to portions of the system
documentation.

Portions of this text are reprinted and reproduced in electronic form in the SunOS Reference
Manual, from IEEE Std 1003.1, 2004 Edition, Standard for Information Technology --
Portable Operating System Interface (POSIX), The Open Group Base Specifications Issue 6,
Copyright (C) 2001-2004 by the Institute of Electrical and Electronics Engineers, Inc and The
Open Group. In the event of any discrepancy between these versions and the original IEEE
and The Open Group Standard, the original IEEE and The Open Group Standard is the
referee document. The original Standard can be obtained online at http://
www.opengroup.org/unix/online.html.

This notice shall appear on any product containing this material.

Special Processes

STREAMS

Stream

Stream Head

Upstream

Write Queue

Acknowledgments

Intro(2)

Introduction 35

http://www.opengroup.org/bookstore/
http://www.opengroup.org/unix/online.html
http://www.opengroup.org/unix/online.html

standards(5), threads(5)See Also

Intro(2)

man pages section 2: System Calls • Last Revised 17 Nov 200836

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5threads-5

System Calls

R E F E R E N C E

37

access, faccessat – determine accessibility of a file

#include <unistd.h>

#include <sys/fcntl.h>

int access(const char *path, int amode);

int faccessat(int fd, const char *path, int amode, int flag);

The access() function checks the file named by the pathname pointed to by the path
argument for accessibility according to the bit pattern contained in amode, using the real user
ID in place of the effective user ID and the real group ID in place of the effective group ID. This
allows a setuid process to verify that the user running it would have had permission to access
this file.

The value of amode is either the bitwise inclusive OR of the access permissions to be checked
(R_OK, W_OK, X_OK) or the existence test, F_OK.

These constants are defined in <unistd.h> as follows:

R_OK Test for read permission.

W_OK Test for write permission.

X_OK Test for execute or search permission.

F_OK Check existence of file

See Intro(2) for additional information about “File Access Permission”.

If any access permissions are to be checked, each will be checked individually, as described in
Intro(2). If the process has appropriate privileges, an implementation may indicate success
for X_OK even if none of the execute file permission bits are set.

The faccessat() function is equivalent to the access() function, except in the case where
path specifies a relative path. In this case the file whose accessibility is to be determined is
located relative to the directory associated with the file descriptor fd instead of the current
working directory.

If faccessat() is passed in the fd parameter the special value AT_FDCWD, defined in
<fcntl.h>, the current working directory is used and the behavior is identical to a call to
access().

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list,
defined in <fcntl.h>:

AT_EACCESS The checks for accessibility are performed using the effective user and group
IDs instead of the real user and group ID as required in a call to access().

Name

Synopsis

Description

access(2)

man pages section 2: System Calls • Last Revised 16 Jun 200938

If the requested access is permitted, access() and faccessat()succeed and return 0.
Otherwise, −1 is returned and errno is set to indicate the error.

The access() and faccessat() functions will fail if:

EACCES Permission bits of the file mode do not permit the requested access, or
search permission is denied on a component of the path prefix.

EFAULT The path argument points to an illegal address.

EINTR A signal was caught during the access() function.

ELOOP Too many symbolic links were encountered in resolving path, or loop
exists in symbolic links encountered during resolution of the path
argument.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or a pathname
component is longer than {NAME_MAX} while _POSIX_NO_TRUNC is in effect.

ENOENT A component of path does not name an existing file or path is an empty
string.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOTDIR A component of the path prefix is not a directory.

ENXIO The path argument points to a character or block device special file and the
corresponding device has been retired by the fault management
framework.

EROFS Write access is requested for a file on a read-only file system.

The faccessat() function will fail if:

EBADF The path argument does not specify an absolute path and the fd argument is neither
AT_FDCWD nor a valid file descriptor open for reading or searching.

The access() and faccessat() functions may fail if:

EINVAL The value of the amode argument is invalid.

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

ETXTBSY Write access is requested for a pure procedure (shared text) file that is
being executed.

The faccessat() function may fail if:

EINVAL The value of the flag argument is not valid.

Return Values

Errors

access(2)

System Calls 39

ENOTDIR The path argument is not an absolute path and fd is neither AT_FDCWD nor a file
descriptor associated with a directory.

Additional values of amode other than the set defined in the description might be valid, for
example, if a system has extended access controls.

The purpose of the faccessat() function is to enable the checking of the accessibility of files
in directories other than the current working directory without exposure to race conditions.
Any part of the path of a file could be changed in parallel to a call to access(), resulting in
unspecified behavior. By opening a file descriptor for the target directory and using the
faccessat() function, it can be guaranteed that the file tested for accessibility is located
relative to the desired directory.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See below.

For access(), see standards(5).

Intro(2), chmod(2), stat(2), attributes(5), standards(5)

Usage

Attributes

See Also

access(2)

man pages section 2: System Calls • Last Revised 16 Jun 200940

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

acct – enable or disable process accounting

#include <unistd.h>

int acct(const char *path);

The acct() function enables or disables the system process accounting routine. If the routine
is enabled, an accounting record will be written in an accounting file for each process that
terminates. The termination of a process can be caused by either an exit(2) call or a
signal(3C)). The effective user ID of the process calling acct() must have the appropriate
privileges.

The path argument points to the pathname of the accounting file, whose file format is
described on the acct.h(3HEAD) manual page.

The accounting routine is enabled if path is non-zero and no errors occur during the function.
It is disabled if path is (char *)NULL and no errors occur during the function.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The acct() function will fail if:

EACCES The file named by path is not an ordinary file.

EBUSY An attempt is being made to enable accounting using the same file that is
currently being used.

EFAULT The path argument points to an illegal address.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the length of a
path argument exceeds {NAME_MAX} while _POSIX_NO_TRUNC is in effect.

ENOENT One or more components of the accounting file pathname do not exist.

ENOTDIR A component of the path prefix is not a directory.

EPERM The {PRIV_SYS_ACCT} privilege is not asserted in the effective set of the
calling process.

EROFS The named file resides on a read-only file system.

exit(2), acct.h(3HEAD), signal(3C), privileges(5)

Name

Synopsis

Description

Return Values

Errors

See Also

acct(2)

System Calls 41

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Facct.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Facct.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

acl, facl – get or set a file's Access Control List (ACL)

#include <sys/acl.h>

int acl(char *pathp, int cmd, int nentries, void *aclbufp);

int facl(int fildes, int cmd, int nentries, void *aclbufp);

The acl() and facl() functions get or set the ACL of a file whose name is given by pathp or
referenced by the open file descriptor fildes. The nentries argument specifies how many ACL
entries fit into buffer aclbufp. The acl() function is used to manipulate ACL on file system
objects.

The following types are supported for aclbufp:

aclent_t Used by the UFS and NFS file systems.

ace_t Used by the ZFS and NFSv4 file systems.

The following values for cmd are supported:

SETACL nentries aclent_t ACL entries, specified in buffer aclbufp, are stored in
the file's ACL. All directories in the path name must be searchable.

GETACL Buffer aclbufp is filled with the file's aclent_t ACL entries. Read access to
the file is not required, but all directories in the path name must be
searchable.

GETACLCNT The number of entries in the file's aclent_t ACL is returned. Read access
to the file is not required, but all directories in the path name must be
searchable.

ACE_SETACL nentries ace_t ACL entries, specified in buffer aclbufp, are stored in the
file's ACL. All directories in the path name must be searchable. Write
ACL access is required to change the file's ACL.

ACE_GETACL Buffer aclbufp is filled with the file's ace_t ACL entries. Read access to the
file is required and all directories in the path name must be searchable.

ACE_GETACLCNT The number of entries in the file's ace_t ACL is returned. Read access to
the file is required and all directories in the path name must be searchable.

Upon successful completion, acl() and facl() return 0 if cmd is SETACL or ACE_SETACL. If
cmd is GETACL, GETACLCNT, ACE_GETACL or ACE_GETACLCNT, the number of ACL entries is
returned. Otherwise, −1 is returned and errno is set to indicate the error.

The acl() function will fail if:

EACCES The caller does not have access to a component of the pathname.

EFAULT The pathp or aclbufp argument points to an illegal address.

Name

Synopsis

Description

Return Values

Errors

acl(2)

man pages section 2: System Calls • Last Revised 10 Jan 200742

EINVAL The cmd argument is not GETACL, SETACL, ACE_GETACL, GETACLCNT, or
ACE_GETACLCNT; the cmd argument is SETACL and nentries is less than 3; or the
cmd argument is SETACL or ACE_SETACL and the ACL specified in aclbufp is not
valid.

EIO A disk I/O error has occurred while storing or retrieving the ACL.

ENOENT A component of the path does not exist.

ENOSPC The cmd argument is GETACL and nentries is less than the number of entries in the
file's ACL, or the cmd argument is SETACL and there is insufficient space in the file
system to store the ACL.

ENOSYS The cmd argument is SETACL or ACE_SETACL and the file specified by pathp
resides on a file system that does not support ACLs, or the acl() function is not
supported by this implementation.

ENOTDIR A component of the path specified by pathp is not a directory, or the cmd
argument is SETACL or ACE_SETACL and an attempt is made to set a default ACL
on a file type other than a directory.

ENOTSUP The cmd argument is GETACL, but the ACL is composed of ace_t entries, and the
ACL cannot be translated into aclent_t form.

The cmd argument is ACE_SETACL, but the underlying filesystem only supports
ACLs composed of aclent_t entries and the ACL could not be translated into
aclent_t form.

EPERM The effective user ID does not match the owner of the file and the process does
not have appropriate privilege.

EROFS The cmd argument is SETACL or ACE_SETACL and the file specified by pathp
resides on a file system that is mounted read-only.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

getfacl(1), setfacl(1), aclcheck(3SEC), aclsort(3SEC)

Attributes

See Also

acl(2)

System Calls 43

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1getfacl-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1setfacl-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Iaclcheck-3sec
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Iaclsort-3sec

adjtime – correct the time to allow synchronization of the system clock

#include <sys/time.h>

int adjtime(struct timeval *delta, struct timeval *olddelta);

The adjtime() function adjusts the system's notion of the current time as returned by
gettimeofday(3C), advancing or retarding it by the amount of time specified in the struct
timeval pointed to by delta.

The adjustment is effected by speeding up (if that amount of time is positive) or slowing down
(if that amount of time is negative) the system's clock by some small percentage, generally a
fraction of one percent. The time is always a monotonically increasing function. A time
correction from an earlier call to adjtime() may not be finished when adjtime() is called
again.

If delta is 0, then olddelta returns the status of the effects of the previous adjtime() call with
no effect on the time correction as a result of this call. If olddelta is not a null pointer, then the
structure it points to will contain, upon successful return, the number of seconds and/or
microseconds still to be corrected from the earlier call. If olddelta is a null pointer, the
corresponding information will not be returned.

This call may be used in time servers that synchronize the clocks of computers in a local area
network. Such time servers would slow down the clocks of some machines and speed up the
clocks of others to bring them to the average network time.

Only a processes with appropriate privileges can adjust the time of day.

The adjustment value will be silently rounded to the resolution of the system clock.

Upon successful completion, adjtime() returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

The adjtime() function will fail if:

EFAULT The delta or olddelta argument points outside the process's allocated address
space, or olddelta points to a region of the process's allocated address space that is
not writable.

EINVAL The tv_usec member of delta is not within valid range (−1000000 to 1000000).

EPERM The {PRIV_SYS_TIME} privilege is not asserted in the effective set of the calling
process.

Additionally, the adjtime() function will fail for 32-bit interfaces if:

EOVERFLOW The size of the tv_sec member of the timeval structure pointed to by olddelta
is too small to contain the correct number of seconds.

Name

Synopsis

Description

Return Values

Errors

adjtime(2)

man pages section 2: System Calls • Last Revised 20 Jan 200344

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agettimeofday-3c

date(1), gettimeofday(3C), privileges(5)See Also

adjtime(2)

System Calls 45

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1date-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agettimeofday-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

alarm – schedule an alarm signal

#include <unistd.h>

unsigned int alarm(unsigned int seconds);

The alarm() function causes the system to generate a SIGALRM signal for the process after the
number of real-time seconds specified by seconds have elapsed (see signal.h(3HEAD)).
Processor scheduling delays may prevent the process from handling the signal as soon as it is
generated.

If seconds is 0, a pending alarm request, if any, is cancelled. If seconds is greater than
LONG_MAX/hz, seconds is rounded down to LONG_MAX/hz. The value of hz is normally 100.

Alarm requests are not stacked; only one SIGALRM generation can be scheduled in this manner;
if the SIGALRM signal has not yet been generated, the call will result in rescheduling the time at
which the SIGALRM signal will be generated.

The fork(2) function clears pending alarms in the child process. A new process image created
by one of the exec(2) functions inherits the time left to an alarm signal in the old process's
image.

If there is a previous alarm request with time remaining, alarm() returns a non-zero value
that is the number of seconds until the previous request would have generated a SIGALRM
signal. Otherwise, alarm() returns 0.

The alarm() function is always successful; no return value is reserved to indicate an error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

exec(2), fork(2), signal.h(3HEAD), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

alarm(2)

man pages section 2: System Calls • Last Revised 6 Jun 200746

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

brk, sbrk – change the amount of space allocated for the calling process's data segment

#include <unistd.h>

int brk(void *endds);

void *sbrk(intptr_t incr);

The brk() and sbrk() functions are used to change dynamically the amount of space
allocated for the calling process's data segment (see exec(2)). The change is made by resetting
the process's break value and allocating the appropriate amount of space. The break value is
the address of the first location beyond the end of the data segment. The amount of allocated
space increases as the break value increases. Newly allocated space is set to zero. If, however,
the same memory space is reallocated to the same process its contents are undefined.

When a program begins execution using execve() the break is set at the highest location
defined by the program and data storage areas.

The getrlimit(2) function may be used to determine the maximum permissible size of the
data segment; it is not possible to set the break beyond the rlim_max value returned from a call
to getrlimit(), that is to say, “end + rlim.rlim_max.” See end(3C).

The brk() function sets the break value to endds and changes the allocated space accordingly.

The sbrk() function adds incr function bytes to the break value and changes the allocated
space accordingly. The incr function can be negative, in which case the amount of allocated
space is decreased.

Upon successful completion, brk() returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

Upon successful completion, sbrk() returns the prior break value. Otherwise, it returns
(void *)−1 and sets errno to indicate the error.

The brk() and sbrk() functions will fail and no additional memory will be allocated if:

ENOMEM The data segment size limit as set by setrlimit() (see getrlimit(2)) would be
exceeded; the maximum possible size of a data segment (compiled into the
system) would be exceeded; insufficient space exists in the swap area to support
the expansion; or the new break value would extend into an area of the address
space defined by some previously established mapping (see mmap(2)).

EAGAIN Total amount of system memory available for private pages is temporarily
insufficient. This may occur even though the space requested was less than the
maximum data segment size (see ulimit(2)).

Name

Synopsis

Description

Return Values

Errors

brk(2)

System Calls 47

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aend-3c

The behavior of brk() and sbrk() is unspecified if an application also uses any other memory
functions (such as malloc(3C), mmap(2), free(3C)). The brk() and sbrk() functions have
been used in specialized cases where no other memory allocation function provided the same
capability. The use of mmap(2) is now preferred because it can be used portably with all other
memory allocation functions and with any function that uses other allocation functions.

It is unspecified whether the pointer returned by sbrk() is aligned suitably for any purpose.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

exec(2), getrlimit(2), mmap(2), shmop(2), ulimit(2), end(3C), free(3C), malloc(3C)

The value of incr may be adjusted by the system before setting the new break value. Upon
successful completion, the implementation guarantees a minimum of incr bytes will be added
to the data segment if incr is a positive value. If incr is a negative value, a maximum of incr
bytes will be removed from the data segment. This adjustment may not be necessary for all
machine architectures.

The value of the arguments to both brk() and sbrk() are rounded up for alignment with
eight-byte boundaries.

Setting the break may fail due to a temporary lack of swap space. It is not possible to
distinguish this from a failure caused by exceeding the maximum size of the data segment
without consulting getrlimit().

Usage

Attributes

See Also

Notes

Bugs

brk(2)

man pages section 2: System Calls • Last Revised 14 Jan 199748

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afree-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aend-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afree-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amalloc-3c

chdir, fchdir – change working directory

#include <unistd.h>

int chdir(const char *path);

int fchdir(int fildes);

The chdir() and fchdir() functions cause a directory pointed to by path or fildes to become
the current working directory. The starting point for path searches for path names not
beginning with / (slash). The path argument points to the path name of a directory. The fildes
argument is an open file descriptor of a directory.

For a directory to become the current directory, a process must have execute (search) access to
the directory.

Upon successful completion, 0 is returned. Otherwise, −1 is returned, the current working
directory is unchanged, and errno is set to indicate the error.

The chdir() function will fail if:

EACCES Search permission is denied for any component of the path name.

EFAULT The path argument points to an illegal address.

EINTR A signal was caught during the execution of the chdir() function.

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length of a path
component exceeds NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENOENT Either a component of the path prefix or the directory named by path does
not exist or is a null pathname.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOTDIR A component of the path name is not a directory.

The fchdir() function will fail if:

EACCES Search permission is denied for fildes.

EBADF The fildes argument is not an open file descriptor.

EINTR A signal was caught during the execution of the fchdir() function.

EIO An I/O error occurred while reading from or writing to the file system.

ENOLINK The fildes argument points to a remote machine and the link to that machine is
no longer active.

Name

Synopsis

Description

Return Values

Errors

chdir(2)

System Calls 49

ENOTDIR The open file descriptor fildes does not refer to a directory.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

chroot(2), attributes(5), standards(5)

Attributes

See Also

chdir(2)

man pages section 2: System Calls • Last Revised 28 Dec 199650

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

chmod, fchmod, fchmodat – change access permission mode of file

#include <sys/stat.h>

int chmod(const char *path, mode_t mode);

int fchmod(int fildes, mode_t mode);

int fchmodat(int fd, const char *path, mode_t mode, int flag);

The chmod() and fchmod() functions set the access permission portion of the mode of the file
whose name is given by path or referenced by the open file descriptor fildes to the bit pattern
contained in mode. Access permission bits are interpreted as follows:

S_ISUID 04000 Set user ID on execution.

S_ISGID 020#0 Set group ID on execution if # is 7, 5, 3, or 1. Enable mandatory
file/record locking if # is 6, 4, 2, or 0.

S_ISVTX 01000 Sticky bit.

S_IRWXU 00700 Read, write, execute by owner.

S_IRUSR 00400 Read by owner.

S_IWUSR 00200 Write by owner.

S_IXUSR 00100 Execute (search if a directory) by owner.

S_IRWXG 00070 Read, write, execute by group.

S_IRGRP 00040 Read by group.

S_IWGRP 00020 Write by group.

S_IXGRP 00010 Execute by group.

S_IRWXO 00007 Read, write, execute (search) by others.

S_IROTH 00004 Read by others.

S_IWOTH 00002 Write by others.

S_IXOTH 00001 Execute by others.

Modes are constructed by the bitwise OR operation of the access permission bits.

The effective user ID of the process must match the owner of the file or the process must have
the appropriate privilege to change the mode of a file.

If the process is not a privileged process and the file is not a directory, mode bit 01000 (save
text image on execution) is cleared.

Name

Synopsis

Description

chmod(2)

System Calls 51

If neither the process is privileged nor the file's group is a member of the process's
supplementary group list, and the effective group ID of the process does not match the group
ID of the file, mode bit 02000 (set group ID on execution) is cleared.

If a directory is writable and has S_ISVTX (the sticky bit) set, files within that directory can be
removed or renamed only if one or more of the following is true (see unlink(2) and
rename(2)):
■ the user owns the file
■ the user owns the directory
■ the file is writable by the user
■ the user is a privileged user

If a regular file is not executable and has S_ISVTX set, the file is assumed to be a swap file. In
this case, the system's page cache will not be used to hold the file's data. If the S_ISVTX bit is set
on any other file, the results are unspecified.

If a directory has the set group ID bit set, a given file created within that directory will have the
same group ID as the directory. Otherwise, the newly created file's group ID will be set to the
effective group ID of the creating process.

If the mode bit 02000 (set group ID on execution) is set and the mode bit 00010 (execute or
search by group) is not set, mandatory file/record locking will exist on a regular file, possibly
affecting future calls to open(2), creat(2), read(2), and write(2) on this file.

If fildes references a shared memory object, fchmod() need only affect the S_IRUSR, S_IRGRP,
S_IROTH, S_IWUSR, S_IWGRP, S_IWOTH, S_IXUSR, S_IXGRP, and S_IXOTH file permission bits.

If fildes refers to a socket, fchmod() does not fail but no action is taken.

If fildes refers to a stream that is attached to an object in the file system name space with
fattach(3C), the fchmod() call performs no action and returns successfully.

Upon successful completion, chmod() and fchmod() mark for update the st_ctime field of the
file.

The fchmodat() function is equivalent to chmod() except in the case where path specifies a
relative path. In this case the file to be changed is determined relative to the directory
associated with the file descriptor fd instead of the current working directory. If the file
descriptor was opened without O_SEARCH, the function checks whether directory searches are
permitted using the current permissions of the directory underlying the file descriptor. If the
file descriptor was opened with O_SEARCH, the function does notperform the check.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list,
defined in <fcntl.h>

AT_SYMLINK_NOFOLLOW If path names a symbolic link, then the mode of the symbolic link
is changed.

chmod(2)

man pages section 2: System Calls • Last Revised 6 Jul 201052

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afattach-3c

If fchmodat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used. If flag is also 0, the behavior shall be identical to a call to chmod().

Upon successful completion, 0 is returned. Otherwise, −1 is returned, the file mode is
unchanged, and errno is set to indicate the error.

The chmod(), fchmod(), and fchmodat() functions will fail if:

EPERM The effective user ID does not match the owner of the file and the process does not
have appropriate privilege.

The {PRIV_FILE_OWNER} privilege overrides constraints on ownership when
changing permissions on a file.

The {PRIV_FILE_SETID} privilege overrides constraints on ownership when adding
the setuid or setgid bits to an executable file or a directory. When adding the setuid
bit to a root owned executable, additional restrictions apply. See privileges(5).

EROFS The file referred to by path resides on a read-only file system.

The chmod() and fchmod() functions will fail if:

EIO An I/O error occurred while reading from or writing to the file system.

The chmod() and fchmodat()functions will fail if:

EACCES Search permission is denied on a component of the path prefix of path. The
privilege {FILE_DAC_SEARCH} overrides file permissions restrictions in that
case.

ELOOP A loop exists in symbolic links encountered during the resolution of the
path argument.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length of a path
component exceeds NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENOENT Either a component of the path prefix or the file referred to by path does
not exist or is a null pathname.

ENOTDIR A component of the prefix of path is not a directory.

The chmod() function will fail if:

EFAULT The path argument points to an illegal address.

ENOLINK The fildes argument points to a remote machine and the link to that machine is
no longer active.

The fchmod() function will fail if:

EBADF The fildes argument is not an open file descriptor

Return Values

Errors

chmod(2)

System Calls 53

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

ENOLINK The path argument points to a remote machine and the link to that machine is no
longer active.

The fchmodat() function will fail if:

EACCES fd was not opened with O_SEARCH and the permissions of the directory underlying
fd do not permit directory searches.

EBADF The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

The chmod(), fchmod(), and fchmodat() functions may fail if:

EINTR A signal was caught during execution of the function.

EINVAL The value of the mode argument is invalid.

The chmod() and fchmodat() functions may fail if:

ELOOP More than {SYMLOOP_MAX} symbolic links were encountered during the
resolution of the path argument.

ENAMETOOLONG As a result of encountering a symbolic link in resolution of thepath
argument, the length of the substituted pathname strings exceeds
{PATH_MAX}.

The fchmod() function may fail if:

EINVAL The fildes argument refers to a pipe and the system disallows execution of this
function on a pipe.

The fchmodat() function may fail if:

EINVAL The value of the flag argument is invalid

ENOTDIR The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory

EOPNOTSUPP The AT_SYMLINK_NOFOLLOW bit is set in the flag argument, path names a
symbolic link, and the system does not support changing the mode of a
symbolic link.

EXAMPLE 1 Set Read Permissions for User, Group, and Others

The following example sets read permissions for the owner, group, and others.

#include <sys/stat.h>

const char *path;

...

chmod(path, S_IRUSR|S_IRGRP|S_IROTH);

Examples

chmod(2)

man pages section 2: System Calls • Last Revised 6 Jul 201054

EXAMPLE 2 Set Read, Write, and Execute Permissions for the Owner Only

The following example sets read, write, and execute permissions for the owner, and no
permissions for group and others.

#include <sys/stat.h>

const char *path;

...

chmod(path, S_IRWXU);

EXAMPLE 3 Set Different Permissions for Owner, Group, and Other

The following example sets owner permissions for CHANGEFILE to read, write, and execute,
group permissions to read and execute, and other permissions to read.

#include <sys/stat.h>

#define CHANGEFILE "/etc/myfile"
...

chmod(CHANGEFILE, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH);

EXAMPLE 4 Set and Checking File Permissions

The following example sets the file permission bits for a file named /home/cnd/mod1, then
calls the stat(2) function to verify the permissions.

#include <sys/stat.h>

int status;

struct stat buffer

...

chmod("home/cnd/mod1", S_IRWXU|S_IRWXG|S_IROTH|S_IWOTH);

status = stat("home/cnd/mod1", &buffer;);

If chmod() or fchmod() is used to change the file group owner permissions on a file with
non-trivial ACL entries, only the ACL mask is set to the new permissions and the group owner
permission bits in the file's mode field (defined in mknod(2)) are unchanged. A non-trivial ACL
entry is one whose meaning cannot be represented in the file's mode field alone. The new ACL
mask permissions might change the effective permissions for additional users and groups that
have ACL entries on the file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

Usage

Attributes

chmod(2)

System Calls 55

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

chmod(1), chown(2), creat(2), fcntl(2), mknod(2), open(2), read(2), rename(2), stat(2),
write(2), fattach(3C), mkfifo(3C), stat.h(3HEAD), attributes(5), privileges(5),
standards(5)

Programming Interfaces Guide

See Also

chmod(2)

man pages section 2: System Calls • Last Revised 6 Jul 201056

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1chmod-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afattach-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amkfifo-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fstat.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=NETPROTO

chown, lchown, fchown, fchownat – change owner and group of a file

#include <unistd.h>

#include <sys/types.h>

int chown(const char *path, uid_t owner, gid_t group);

int lchown(const char *path, uid_t owner, gid_t group);

int fchown(int fildes, uid_t owner, gid_t group);

int fchownat(int fildes, const char *path, uid_t owner,
gid_t group, int flag);

The chown() function sets the owner ID and group ID of the file specified by path or
referenced by the open file descriptor fildes to owner and group respectively. If owner or group
is specified as −1, chown() does not change the corresponding ID of the file.

The lchown() function sets the owner ID and group ID of the named file in the same manner
as chown(), unless the named file is a symbolic link. In this case, lchown() changes the
ownership of the symbolic link file itself, while chown() changes the ownership of the file or
directory to which the symbolic link refers.

The fchownat() function sets the owner ID and group ID of the named file in the same
manner as chown(). If, however, the path argument is relative, the path is resolved relative to
the fildes argument rather than the current working directory. If the fildes argument has the
special value AT_FDCWD, the path resolution reverts back to current working directory relative.
If the flag argument is set to SYMLNK, the function behaves like lchown() with respect to
symbolic links. If the path argument is absolute, the fildes argument is ignored. If the path
argument is a null pointer, the function behaves like fchown().

If chown(), lchown(), fchown(), or fchownat() is invoked by a process that does not have
{PRIV_FILE_SETID} asserted in its effective set, the set-user-ID and set-group-ID bits of the
file mode, S_ISUID and S_ISGID respectively, are cleared (see chmod(2)). Additional
restrictions apply when changing the ownership to uid 0.

The operating system defines several privileges to override restrictions on the chown() family
of functions. When the {PRIV_FILE_CHOWN} privilege is asserted in the effective set of the
current process, there are no restrictions except in the special circumstances of changing
ownership to or from uid 0. When the {PRIV_FILE_CHOWN_SELF} privilege is asserted,
ownership changes are restricted to the files of which the ownership matches the effective user
ID of the current process. If neither privilege is asserted in the effective set of the calling
process, ownership changes are limited to changes of the group of the file to the list of
supplementary group IDs and the effective group ID.

The file system provides mount options rstchown and norstchown to control the default
chown() behavior of the file system and NFS server. If rstchown is not in effect, the privilege
{PRIV_FILE_CHOWN_SELF} is implicitly granted to the user when attempting to give away files,
except for files owned by uid 0.

Name

Synopsis

Description

chown(2)

System Calls 57

Upon successful completion, chown(), fchown() and lchown() mark for update the st_ctime
field of the file.

Upon successful completion, 0 is returned. Otherwise, −1 is returned, the owner and group of
the named file remain unchanged, and errno is set to indicate the error.

All of these functions will fail if:

EPERM The effective user ID does not match the owner of the file and the
{PRIV_FILE_CHOWN} privilege is not asserted in the effective set of the calling
process, or the {PRIV_FILE_CHOWN_SELF} privilege is not asserted in the effective set
of the calling process.

The chown(), lchown(), and fchownat() functions will fail if:

EACCES Search permission is denied on a component of the path prefix of path.

EFAULT The path argument points to an illegal address and for fchownat(), the file
descriptor has the value AT_FDCWD.

EINTR A signal was caught during the execution of the chown() or lchown()
function.

EINVAL The group or owner argument is out of range.

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the length of a
path component exceeds {NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOENT Either a component of the path prefix or the file referred to by path does
not exist or is a null pathname.

ENOTDIR A component of the path prefix of path is not a directory, or the path
supplied to fchownat() is relative and the file descriptor provided does not
refer to a valid directory.

EROFS The named file resides on a read-only file system.

The fchown() and fchownat() functions will fail if:

EBADF For fchown() the fildes argument is not an open file descriptor and.

For fchownat(), the path argument is not absolute and the fildes argument is not
AT_FDCWD or an open file descriptor.

EIO An I/O error occurred while reading from or writing to the file system.

Return Values

Errors

chown(2)

man pages section 2: System Calls • Last Revised 15 Sep 201058

EINTR A signal was caught during execution of the function.

ENOLINK The fildes argument points to a remote machine and the link to that machine is
no longer active.

EINVAL The group or owner argument is out of range.

EROFS The named file referred to by fildes resides on a read-only file system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level See below.

Standard See below.

The chown() and fchownat() functions are Async-Signal-Safe.

For chown(), fchown(), and lchown(), see standards(5).

chgrp(1), chown(1), chmod(2), fpathconf(2), system(4), attributes(5), standards(5)

Attributes

See Also

chown(2)

System Calls 59

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1chgrp-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1chown-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4system-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

chroot, fchroot – change root directory

#include <unistd.h>

int chroot(const char *path);

int fchroot(int fildes);

The chroot() and fchroot() functions cause a directory to become the root directory, the
starting point for path searches for path names beginning with / (slash). The user's working
directory is unaffected by the chroot() and fchroot() functions.

The path argument points to a path name naming a directory. The fildes argument to
fchroot() is the open file descriptor of the directory which is to become the root.

The privilege {PRIV_PROC_CHROOT} must be asserted in the effective set of the process to
change the root directory. While it is always possible to change to the system root using the
fchroot() function, it is not guaranteed to succeed in any other case, even if fildes is valid in
all respects.

The “. .” entry in the root directory is interpreted to mean the root directory itself. Therefore,
“. .” cannot be used to access files outside the subtree rooted at the root directory. Instead,
fchroot() can be used to reset the root to a directory that was opened before the root
directory was changed.

Upon successful completion, 0 is returned. Otherwise, −1 is returned, the root directory
remains unchanged, and errno is set to indicate the error.

The chroot() function will fail if:

EACCES Search permission is denied for a component of the path prefix of dirname,
or search permission is denied for the directory referred to by dirname.

EBADF The descriptor is not valid.

EFAULT The path argument points to an illegal address.

EINVAL The fchroot() function attempted to change to a directory the is not the
system root and external circumstances do not allow this.

EINTR A signal was caught during the execution of the chroot() function.

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length of a path
component exceeds NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENOENT The named directory does not exist or is a null pathname.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

Name

Synopsis

Description

Return Values

Errors

chroot(2)

man pages section 2: System Calls • Last Revised 20 Jan 200360

ENOTDIR Any component of the path name is not a directory.

EPERM The {PRIV_PROC_CHROOT} privilege is not asserted in the effective set of the
calling process.

chroot(1M), chdir(2), privileges(5)

The only use of fchroot() that is appropriate is to change back to the system root.

See Also

Warnings

chroot(2)

System Calls 61

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mchroot-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

close – close a file descriptor

#include <unistd.h>

int close(int fildes);

The close() function deallocates the file descriptor indicated by fildes. To deallocate means to
make the file descriptor available for return by subsequent calls to open(2) or other functions
that allocate file descriptors. All outstanding record locks owned by the process on the file
associated with the file descriptor will be removed (that is, unlocked).

If close() is interrupted by a signal that is to be caught, it will return −1 with errno set to
EINTR and the state of fildes is unspecified. If an I/O error occurred while reading from or
writing to the file system during close(), it returns -1, sets errno to EIO, and the state of fildes
is unspecified.

When all file descriptors associated with a pipe or FIFO special file are closed, any data
remaining in the pipe or FIFO will be discarded.

When all file descriptors associated with an open file description have been closed the open file
description will be freed.

If the link count of the file is 0, when all file descriptors associated with the file are closed, the
space occupied by the file will be freed and the file will no longer be accessible.

If a streams-based (see Intro(2)) fildes is closed and the calling process was previously
registered to receive a SIGPOLL signal (see signal(3C)) for events associated with that stream
(see I_SETSIG in streamio(7I)), the calling process will be unregistered for events associated
with the stream. The last close() for a stream causes the stream associated with fildes to be
dismantled. If O_NONBLOCK and O_NDELAY are not set and there have been no signals posted for
the stream, and if there is data on the module's write queue, close() waits up to 15 seconds
(for each module and driver) for any output to drain before dismantling the stream. The time
delay can be changed via an I_SETCLTIME ioctl(2) request (see streamio(7I)). If the
O_NONBLOCK or O_NDELAY flag is set, or if there are any pending signals, close() does not wait
for output to drain, and dismantles the stream immediately.

If fildes is associated with one end of a pipe, the last close() causes a hangup to occur on the
other end of the pipe. In addition, if the other end of the pipe has been named by fattach(3C),
then the last close() forces the named end to be detached by fdetach(3C). If the named end
has no open file descriptors associated with it and gets detached, the stream associated with
that end is also dismantled.

If fildes refers to the master side of a pseudo-terminal, a SIGHUP signal is sent to the session
leader, if any, for which the slave side of the pseudo-terminal is the controlling terminal. It is
unspecified whether closing the master side of the pseudo-terminal flushes all queued input
and output.

Name

Synopsis

Description

close(2)

man pages section 2: System Calls • Last Revised 18 Oct 200562

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7streamio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7streamio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afattach-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afdetach-3c

If fildes refers to the slave side of a streams-based pseudo-terminal, a zero-length message may
be sent to the master.

When there is an outstanding cancelable asynchronous I/O operation against fildes when
close() is called, that I/O operation is canceled. An I/O operation that is not canceled
completes as if the close() operation had not yet occurred. All operations that are not
canceled will complete as if the close() blocked until the operations completed.

If a shared memory object or a memory mapped file remains referenced at the last close (that
is, a process has it mapped), then the entire contents of the memory object will persist until the
memory object becomes unreferenced. If this is the last close of a shared memory object or a
memory mapped file and the close results in the memory object becoming unreferenced, and
the memory object has been unlinked, then the memory object will be removed.

If fildes refers to a socket, close() causes the socket to be destroyed. If the socket is
connection-mode, and the SO_LINGER option is set for the socket with non-zero linger time,
and the socket has untransmitted data, then close() will block for up to the current linger
interval until all data is transmitted.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The close() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

EINTR The close() function was interrupted by a signal.

ENOLINK The fildes argument is on a remote machine and the link to that machine is no
longer active.

ENOSPC There was no free space remaining on the device containing the file.

The close() function may fail if:

EIO An I/O error occurred while reading from or writing to the file system.

EXAMPLE 1 Reassign a file descriptor.

The following example closes the file descriptor associated with standard output for the
current process, re-assigns standard output to a new file descriptor, and closes the original file
descriptor to clean up. This example assumes that the file descriptor 0, which is the descriptor
for standard input, is not closed.

#include <unistd.h>

...

int pfd;

...

close(1);

Return Values

Errors

Examples

close(2)

System Calls 63

EXAMPLE 1 Reassign a file descriptor. (Continued)

dup(pfd);

close(pfd);

...

Incidentally, this is exactly what could be achieved using:

dup2(pfd, 1);

close(pfd);

EXAMPLE 2 Close a file descriptor.

In the following example, close() is used to close a file descriptor after an unsuccessful
attempt is made to associate that file descriptor with a stream.

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#define LOCKFILE "/etc/ptmp"
...

int pfd;

FILE *fpfd;

...

if ((fpfd = fdopen (pfd, "w")) == NULL) {

close(pfd);

unlink(LOCKFILE);

exit(1);

}

...

An application that used the stdio function fopen(3C) to open a file should use the
corresponding fclose(3C) function rather than close().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

Intro(2), creat(2), dup(2), exec(2), fcntl(2), ioctl(2), open(2) pipe(2), fattach(3C),
fclose(3C), fdetach(3C), fopen(3C), signal(3C), signal.h(3HEAD), attributes(5),
standards(5), streamio(7I)

Usage

Attributes

See Also

close(2)

man pages section 2: System Calls • Last Revised 18 Oct 200564

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afclose-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afattach-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afclose-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afdetach-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7streamio-7i

creat – create a new file or rewrite an existing one

#include <sys/stat.h>

#include <fcntl.h>

int creat(const char *path, mode_t mode);

The function call

creat(path, mode)

is equivalent to:

open(path, O_WRONLY | O_CREAT | O_TRUNC, mode)

Refer to open(2).

Refer to open(2).

EXAMPLE 1 Creating a File

The following example creates the file /tmp/file with read and write permissions for the file
owner and read permission for group and others. The resulting file descriptor is assigned to
the fd variable.

#include <fcntl.h>

...

int fd;

mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;

char *filename = "/tmp/file";
...

fd = creat(filename, mode);

...

The creat() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

open(2), attributes(5), largefile(5), lf64(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Examples

Usage

Attributes

See Also

creat(2)

System Calls 65

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5largefile-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

dup – duplicate an open file descriptor

#include <unistd.h>

int dup(int fildes);

The dup() function returns a new file descriptor having the following in common with the
original open file descriptor fildes:

■ same open file (or pipe)
■ same file pointer (that is, both file descriptors share one file pointer)
■ same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec functions (see fcntl(2)).

The file descriptor returned is the lowest one available.

The dup(fildes) function call is equivalent to:

fcntl(fildes, F_DUPFD, 0)

Upon successful completion, a non-negative integer representing the file descriptor is
returned. Otherwise, −1 is returned and errno is set to indicate the error.

The dup() function will fail if:

EBADF The fildes argument is not a valid open file descriptor.

EINTR A signal was caught during the execution of the dup() function.

EMFILE The process has too many open files (see getrlimit(2)).

ENOLINK The fildes argument is on a remote machine and the link to that machine is no
longer active.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

close(2), creat(2), exec(2), fcntl(2), getrlimit(2), open(2), pipe(2), dup2(3C), lockf(3C),
attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

dup(2)

man pages section 2: System Calls • Last Revised 28 Dec 199666

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Adup2-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Alockf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

exec, execl, execle, execlp, execv, execve, execvp, fexecve – execute a file

#include <unistd.h>

int execl(const char *path, const char *arg0,
... /* const char *argn, NULL */);

int execv(const char *path, char *const argv[]);

int execle(const char *path, const char *arg0,
... /* const char *argn, NULL, char *const envp[] */);

int execve(const char *path, char *const argv[],
char *const envp[]);

int execlp(const char *file, const char *arg0,
... /* const char *argn, NULL */);

int execvp(const char *file, char *const argv[]);

int fexecve(int fd, char *const argv[], char *const envp[]);

Each of the functions in the exec family replaces the current process image with a new process
image. The new image is constructed from a regular, executable file called the new process
image file. This file is either an executable object file or a file of data for an interpreter. There is
no return from a successful call to one of these functions because the calling process image is
overlaid by the new process image.

The fexecve() function behaves like execve(), except that the file to be executed is specified
by the file descriptor fd rather than by a pathname. The file offset of fd is ignored.

An interpreter file begins with a line of the form

#! pathname [arg]

where pathname is the path of the interpreter, and arg is an optional argument. When an
interpreter file is executed, the system invokes the specified interpreter. The pathname
specified in the interpreter file is passed as arg0 to the interpreter. If arg was specified in the
interpreter file, it is passed as arg1 to the interpreter. The remaining arguments to the
interpreter are arg0 through argn of the originally exec'd file. The interpreter named by
pathname must not be an interpreter file.

When a C-language program is executed as a result of this call, it is entered as a C-language
function call as follows:

int main (int argc, char *argv[]);

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. In addition, the following variable:

extern char **environ;

Name

Synopsis

Description

exec(2)

System Calls 67

is initialized as a pointer to an array of character pointers to the environment strings. The argv
and environ arrays are each terminated by a null pointer. The null pointer terminating the
argv array is not counted in argc.

The value of argc is non-negative, and if greater than 0, argv[0] points to a string containing
the name of the file. If argc is 0, argv[0] is a null pointer, in which case there are no arguments.
Applications should verify that argc is greater than 0 or that argv[0] is not a null pointer before
dereferencing argv[0].

The arguments specified by a program with one of the exec functions are passed on to the new
process image in the main() arguments.

The path argument points to a path name that identifies the new process image file.

The file argument is used to construct a pathname that identifies the new process image file. If
the file argument contains a slash character, it is used as the pathname for this file. Otherwise,
the path prefix for this file is obtained by a search of the directories passed in the PATH
environment variable (see environ(5)). The environment is supplied typically by the shell. If
the process image file is not a valid executable object file, execlp() and execvp() use the
contents of that file as standard input to the shell. In this case, the shell becomes the new
process image. The standard to which the caller conforms determines which shell is used. See
standards(5).

The arguments represented by arg0… are pointers to null-terminated character strings. These
strings constitute the argument list available to the new process image. The list is terminated
by a null pointer. The arg0 argument should point to a filename that is associated with the
process being started by one of the exec functions.

The argv argument is an array of character pointers to null-terminated strings. The last
member of this array must be a null pointer. These strings constitute the argument list
available to the new process image. The value in argv[0] should point to a filename that is
associated with the process being started by one of the exec functions.

The envp argument is an array of character pointers to null-terminated strings. These strings
constitute the environment for the new process image. The envp array is terminated by a null
pointer. For execl(), execv(), execvp(), and execlp(), the C-language run-time start-off
routine places a pointer to the environment of the calling process in the global object extern
char **environ, and it is used to pass the environment of the calling process to the new
process image.

The number of bytes available for the new process's combined argument and environment
lists is ARG_MAX. It is implementation-dependent whether null terminators, pointers, and/or
any alignment bytes are included in this total.

File descriptors open in the calling process image remain open in the new process image,
except for those whose close-on-exec flag FD_CLOEXEC is set; see fcntl(2). For those file
descriptors that remain open, all attributes of the open file description, including file locks,
remain unchanged.

exec(2)

man pages section 2: System Calls • Last Revised 1 Jun 201268

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

The preferred hardware address translation size (see memcntl(2)) for the stack and heap of the
new process image are set to the default system page size.

Directory streams open in the calling process image are closed in the new process image.

The state of conversion descriptors and message catalogue descriptors in the new process
image is undefined. For the new process, the equivalent of:

setlocale(LC_ALL, "C")

is executed at startup.

Signals set to the default action (SIG_DFL) in the calling process image are set to the default
action in the new process image (see signal(3C)). Signals set to be ignored (SIG_IGN) by the
calling process image are set to be ignored by the new process image. Signals set to be caught
by the calling process image are set to the default action in the new process image (see
signal.h(3HEAD)). After a successful call to any of the exec functions, alternate signal stacks
are not preserved and the SA_ONSTACK flag is cleared for all signals.

After a successful call to any of the exec functions, any functions previously registered by
atexit(3C) are no longer registered.

The saved resource limits in the new process image are set to be a copy of the process's
corresponding hard and soft resource limits.

If the ST_NOSUID bit is set for the file system containing the new process image file, then the
effective user ID and effective group ID are unchanged in the new process image. If the
set-user-ID mode bit of the new process image file is set (see chmod(2)), the effective user ID of
the new process image is set to the owner ID of the new process image file. Similarly, if the
set-group-ID mode bit of the new process image file is set, the effective group ID of the new
process image is set to the group ID of the new process image file. The real user ID and real
group ID of the new process image remain the same as those of the calling process image. The
effective user ID and effective group ID of the new process image are saved (as the saved
set-user-ID and the saved set-group-ID for use by setuid(2).

The privilege sets are changed according to the following rules:

1. The inheritable set, I, is intersected with the limit set, L. This mechanism enforces the limit
set for processes.

2. The effective set, E, and the permitted set, P, are made equal to the new inheritable set.

The system attempts to set the privilege-aware state to non-PA both before performing any
modifications to the process IDs and privilege sets as well as after completing the transition to
new UIDs and privilege sets, following the rules outlined in privileges(5).

If the {PRIV_PROC_OWNER} privilege is asserted in the effective set, the set-user-ID and
set-group-ID bits will be honored when the process is being controlled by ptrace(3C).
Additional restriction can apply when the traced process has an effective UID of 0. See
privileges(5).

exec(2)

System Calls 69

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aatexit-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aptrace-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

Any shared memory segments attached to the calling process image will not be attached to the
new process image (see shmop(2)). Any mappings established through mmap() are not
preserved across an exec. Memory mappings created in the process are unmapped before the
address space is rebuilt for the new process image. See mmap(2).

Memory locks established by the calling process via calls to mlockall(3C) or mlock(3C) are
removed. If locked pages in the address space of the calling process are also mapped into the
address spaces the locks established by the other processes will be unaffected by the call by this
process to the exec function. If the exec function fails, the effect on memory locks is
unspecified.

If _XOPEN_REALTIME is defined and has a value other than −1, any named semaphores open in
the calling process are closed as if by appropriate calls to sem_close(3C)

Profiling is disabled for the new process; see profil(2).

Timers created by the calling process with timer_create(3C) are deleted before replacing the
current process image with the new process image.

For the SCHED_FIFO and SCHED_RR scheduling policies, the policy and priority settings are not
changed by a call to an exec function.

All open message queue descriptors in the calling process are closed, as described in
mq_close(3C).

Any outstanding asynchronous I/O operations may be cancelled. Those asynchronous I/O
operations that are not canceled will complete as if the exec function had not yet occurred, but
any associated signal notifications are suppressed. It is unspecified whether the exec function
itself blocks awaiting such I/O completion. In no event, however, will the new process image
created by the exec function be affected by the presence of outstanding asynchronous I/O
operations at the time the exec function is called.

All active contract templates are cleared (see contract(4)).

The new process also inherits the following attributes from the calling process:

■ controlling terminal
■ current working directory
■ extended policy and related flags (see privileges(5) and setpflags(2))
■ file-locks (see fcntl(2) and lockf(3C))
■ file mode creation mask (see umask(2))
■ file size limit (see ulimit(2))
■ limit privilege set
■ nice value (see nice(2))
■ parent process ID
■ pending signals (see sigpending(2))
■ privilege debugging flag (see privileges(5) and getpflags(2))

exec(2)

man pages section 2: System Calls • Last Revised 1 Jun 201270

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amlockall-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amlock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asem-close-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Atimer-create-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amq-close-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4contract-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Alockf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

■ process ID
■ process contract (see contract(4) and process(4))
■ process group ID
■ process signal mask (see sigprocmask(2))
■ processor bindings (see processor_bind(2))
■ processor set bindings (see pset_bind(2))
■ project ID
■ real group ID
■ real user ID
■ resource limits (see getrlimit(2))
■ root directory
■ scheduler class and priority (see priocntl(2))
■ semadj values (see semop(2))
■ session membership (see exit(2) and signal(3C))
■ supplementary group IDs
■ task ID
■ time left until an alarm clock signal (see alarm(2))
■ tms_utime, tms_stime, tms_cutime, and tms_cstime (see times(2))
■ trace flag (see ptrace(3C) request 0)

A call to any exec function from a process with more than one thread results in all threads
being terminated and the new executable image being loaded and executed. No destructor
functions will be called.

Upon successful completion, each of the functions in the exec family marks for update the
st_atime field of the file. If an exec function failed but was able to locate the process image file,
whether the st_atime field is marked for update is unspecified. Should the function succeed,
the process image file is considered to have been opened with open(2). The corresponding
close(2) is considered to occur at a time after this open, but before process termination or
successful completion of a subsequent call to one of the exec functions. The argv[] and
envp[] arrays of pointers and the strings to which those arrays point will not be modified by a
call to one of the exec functions, except as a consequence of replacing the process image.

The saved resource limits in the new process image are set to be a copy of the process's
corresponding hard and soft limits.

If a function in the exec family returns to the calling process image, an error has occurred; the
return value is −1 and errno is set to indicate the error.

The exec functions will fail if:

E2BIG The number of bytes in the new process's argument list is greater than the
system-imposed limit of {ARG_MAX} bytes. The argument list limit is sum of
the size of the argument list plus the size of the environment's exported
shell variables.

Return Values

Errors

exec(2)

System Calls 71

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4contract-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4process-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aptrace-3c

EACCES Search permission is denied for a directory listed in the new process file's
path prefix.

The new process file is not an ordinary file.

The new process file mode denies execute permission.

The {FILE_DAC_SEARCH} privilege overrides the restriction on directory
searches.

The {FILE_DAC_EXECUTE} privilege overrides the lack of execute
permission.

EAGAIN Total amount of system memory available when reading using raw I/O is
temporarily insufficient.

EFAULT An argument points to an illegal address.

EINVAL The new process image file has the appropriate permission and has a
recognized executable binary format, but the system does not support
execution of a file with this format.

EINTR A signal was caught during the execution of one of the functions in the exec
family.

ELOOP Too many symbolic links were encountered in translating path or file.

ENAMETOOLONG The length of the file or path argument exceeds {PATH_MAX}, or the length of
a file or path component exceeds {NAME_MAX} while {_POSIX_NO_TRUNC} is
in effect.

ENOENT One or more components of the new process path name of the file do not
exist or is a null pathname.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOTDIR A component of the new process path of the file prefix is not a directory.

The exec functions, except for execlp() and execvp(), will fail if:

ENOEXEC The new process image file has the appropriate access permission but is not in the
proper format.

The fexecve() function will fail if:

EBADF The fd argument is not a valid file descriptor.

The exec functions may fail if:

exec(2)

man pages section 2: System Calls • Last Revised 1 Jun 201272

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

ENOMEM The new process image requires more memory than is allowed by the
hardware or system-imposed by memory management constraints. See
brk(2).

ETXTBSY The new process image file is a pure procedure (shared text) file that is
currently open for writing by some process.

The file descriptor passed to the fexecve() function need not have been opened with the
O_EXEC flag. However, if the file to be executed denies read and write permission for the
process preparing to perform the exec, the only way to provide the file descriptor fd to
fexecve() is to specify the O_EXEC flag when opening fd.

The fexecve() function ignores the mode that was used when the file descriptor was opened
and the exec will fail if the mode of the file associated with fd does not grant execute
permission to the calling process at the time fexecve() is called.

As the state of conversion descriptors and message catalogue descriptors in the new process
image is undefined, portable applications should not rely on their use and should close them
prior to calling one of the exec functions.

Applications that require other than the default POSIX locale should call setlocale(3C) with
the appropriate parameters to establish the locale of the new process.

The environ array should not be accessed directly by the application.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level See below.

Standard See standards(5).

All of the members of exec family of functions are MT-Safe. In addition, the execl(),
excele(), execv(), execve() and fexecve() functions are Async-Signal-Safe.

ksh(1), ps(1), sh(1), alarm(2), brk(2), chmod(2), exit(2), execvex(2), fcntl(2), fork(2),
getpflags(2), getrlimit(2), memcntl(2), mmap(2), nice(2), priocntl(2), profil(2),
semop(2), shmop(2), sigpending(2), sigprocmask(2), times(2), umask(2), lockf(3C),
ptrace(3C), setlocale(3C), signal(3C), system(3C), timer_create(3C), a.out(4),
contract(4), process(4), attributes(5), environ(5), privileges(5), standards(5)

Usage

Attributes

See Also

exec(2)

System Calls 73

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asetlocale-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ksh-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ps-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1sh-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Alockf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aptrace-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asetlocale-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asystem-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Atimer-create-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4a.out-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4contract-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4process-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

If a program is setuid to a user ID other than the superuser, and the program is executed
when the real user ID is super-user, then the program has some of the powers of a super-user
as well.

Warnings

exec(2)

man pages section 2: System Calls • Last Revised 1 Jun 201274

execvex – execute a file

#include <sys/execx.h>

int execvex(uintptr_t file, char *const argv[], char *const envp[],
int flags);

All of the interfaces described in exec() are implemented using calls to the fundamental
execvex() system call described here. See exec(2) for details of process execution and return
values from the system call.

The interpretation of the file argument depends on the value of the flags argument. The value
of the flags argument must be an inclusive-OR of zero or more of these values:

EXEC_DESCRIPTOR

EXEC_RETAINNAME

EXEC_ARGVNAME

If EXEC_DESCRIPTOR is set in flags, the file argument must be an open file descriptor for a
regular file that is executable by the calling process. The file may have been opened with any of
these access modes (see open(2)):

O_RDONLY

O_WRONLY

O_RDWR

O_EXEC

If EXEC_DESCRIPTOR is not set in flags, the file argument must be a pointer to a pathname for a
file that is executable by the calling process.

If EXEC_RETAINNAME is set in flags, the process's name, contained in the kernel user structure
u_comm[] member, fetched in the /proc/pid/psinfo pr_fname[] member, reported by ps(1)
and interrogated by pgrep(1), remains unchanged across the exec() of the new image.

If EXEC_DESCRIPTOR or EXEC_ARGVNAME is set in flags and EXEC_RETAINNAME is not set, the
process's name becomes the last component of the pathname-like argv[0] argument.

If none of the EXEC_DESCRIPTOR, EXEC_RETAINNAME or EXEC_ARGVNAME flags are set in flags, the
name of the process becomes the last component of the pathname passed in the file argument.

A call to execvex() with no flags:

execvex((uintptr_t)pathname, argv, envp, 0);

is equivalent to a call to execve():

execve(pathname, argv, envp);

Name

Synopsis

Description

execvex(2)

System Calls 75

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ps-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pgrep-1

A call to execvex() with only the EXEC_DESCRIPTOR flag:

execvex(fd, argv, envp, EXEC_DESCRIPTOR);

is equivalent to a call to fexecve():

fexecve(fd, argv, envp);

If the execvex() function returns to the calling process image, an error has occurred; the
return value is -1 and errno is set to indicate the error.

In addition to the failures described in exec(2), the execvex() function will fail if:

EINVAL The flags argument is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

pgrep(1), ps(1), exec(2), open(2), proc(4), attributes(5)

Return Values

Errors

Attributes

See Also

execvex(2)

man pages section 2: System Calls • Last Revised 9 Nov 201076

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pgrep-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ps-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4proc-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

exit, _Exit, _exit – terminate process

#include <stdlib.h>

void exit(int status);

void _Exit(int status);

#include <unistd.h>

void _exit(int status);

The exit() function first calls all functions registered by atexit(3C), in the reverse order of
their registration, except that a function is called after any previously registered functions that
had already been called at the time it was registered. Each function is called as many times as it
was registered. If, during the call to any such function, a call to the longjmp(3C) function is
made that would terminate the call to the registered function, the behavior is undefined.

If a function registered by a call to atexit(3C) fails to return, the remaining registered
functions are not called and the rest of the exit() processing is not completed. If exit() is
called more than once, the effects are undefined.

The exit() function then flushes all open streams with unwritten buffered data, closes all
open streams, and removes all files created by tmpfile(3C).

The _Exit() and _exit() functions are functionally equivalent. They do not call functions
registered with atexit(), do not call any registered signal handlers, and do not flush open
streams.

The _exit(), _Exit(), and exit() functions terminate the calling process with the following
consequences:

■ All of the file descriptors, directory streams, conversion descriptors and message catalogue
descriptors open in the calling process are closed.

■ If the parent process of the calling process is executing a wait(3C), wait3(3C), waitid(2),
or waitpid(3C), and has neither set its SA_NOCLDWAIT flag nor set SIGCHLD to SIG_IGN, it is
notified of the calling process's termination and the low-order eight bits (that is, bits 0377)
of status are made available to it. If the parent is not waiting, the child's status will be made
available to it when the parent subsequently executes wait(), wait3(), waitid(), or
waitpid().

■ If the parent process of the calling process is not executing a wait(), wait3(), waitid(),
or waitpid(), and has not set its SA_NOCLDWAIT flag, or set SIGCHLD to SIG_IGN, the calling
process is transformed into a zombie process. A zombie process is an inactive process and it
will be deleted at some later time when its parent process executes wait(), wait3(),
waitid(), or waitpid(). A zombie process only occupies a slot in the process table; it has
no other space allocated either in user or kernel space. The process table slot that it
occupies is partially overlaid with time accounting information (see <sys/proc.h>) to be
used by the times(2) function.

Name

Synopsis

Description

exit(2)

System Calls 77

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aatexit-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Alongjmp-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aatexit-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Atmpfile-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Await-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Await3-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Awaitpid-3c

■ Termination of a process does not directly terminate its children. The sending of a SIGHUP
signal as described below indirectly terminates children in some circumstances.

■ A SIGCHLD will be sent to the parent process.
■ The parent process ID of all of the calling process's existing child processes and zombie

processes is set to 1. That is, these processes are inherited by the initialization process (see
Intro(2)).

■ Each mapped memory object is unmapped.
■ Each attached shared-memory segment is detached and the value of shm_nattch (see

shmget(2)) in the data structure associated with its shared memory ID is decremented by
1.

■ For each semaphore for which the calling process has set a semadj value (see semop(2)),
that value is added to the semval of the specified semaphore.

■ If the process is a controlling process, the SIGHUP signal will be sent to each process in the
foreground process group of the controlling terminal belonging to the calling process.

■ If the process is a controlling process, the controlling terminal associated with the session
is disassociated from the session, allowing it to be acquired by a new controlling process.

■ If the exit of the process causes a process group to become orphaned, and if any member of
the newly-orphaned process group is stopped, then a SIGHUP signal followed by a SIGCONT
signal will be sent to each process in the newly-orphaned process group.

■ If the parent process has set its SA_NOCLDWAIT flag, or set SIGCHLD to SIG_IGN, the status
will be discarded, and the lifetime of the calling process will end immediately.

■ If the process has process, text or data locks, an UNLOCK is performed (see plock(3C) and
memcntl(2)).

■ All open named semaphores in the process are closed as if by appropriate calls to
sem_close(3C). All open message queues in the process are closed as if by appropriate
calls to mq_close(3C). Any outstanding asynchronous I/O operations may be cancelled.

■ An accounting record is written on the accounting file if the system's accounting routine is
enabled (see acct(2)).

■ An extended accounting record is written to the extended process accounting file if the
system's extended process accounting facility is enabled (see acctadm(1M)).

■ If the current process is the last process within its task and if the system's extended task
accounting facility is enabled (see acctadm(1M)), an extended accounting record is written
to the extended task accounting file.

These functions do not return.

No errors are defined.

Return Values

Errors

exit(2)

man pages section 2: System Calls • Last Revised 5 Feb 200878

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aplock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asem-close-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amq-close-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Macctadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Macctadm-1m

Normally applications should use exit() rather than _exit().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level See below.

Standard See standards(5).

The _exit() and _Exit() functions are Async-Signal-Safe.

acctadm(1M), Intro(2), acct(2), close(2), memcntl(2), semop(2), shmget(2), sigaction(2),
times(2), waitid(2), atexit(3C), fclose(3C), mq_close(3C), plock(3C),
signal.h(3HEAD), tmpfile(3C), wait(3C), wait3(3C), waitpid(3C), attributes(5),
standards(5)

Usage

Attributes

See Also

exit(2)

System Calls 79

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Macctadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aatexit-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afclose-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amq-close-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aplock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Atmpfile-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Await-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Await3-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Awaitpid-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

fcntl – file control

#include <sys/types.h>

#include <unistd.h>

#include <fcntl.h>

int fcntl(int fildes, int cmd, /* arg */ ...);

The fcntl() function provides for control over open files. The fildes argument is an open file
descriptor.

The fcntl() function can take a third argument, arg, whose data type, value, and use depend
upon the value of cmd. The cmd argument specifies the operation to be performed by fcntl().

The values for cmd are defined in <fcntl.h> and include:

F_DUPFD

Return a new file descriptor which is the lowest numbered available (that is, not already
open) file descriptor greater than or equal to the third argument, arg, taken as an integer of
type int. The new file descriptor refers to the same open file description as the original file
descriptor, and shares any locks. The FD_CLOEXEC flag associated with the new file
descriptor is cleared to keep the file open across calls to one of the exec(2) functions.

F_DUPFD_CLOEXEC

Similar to F_DUPFD, except that the FD_CLOEXEC flag associated with the new file descriptor
is set.

F_DUP2FD

Similar to F_DUPFD, except that it always returns arg. F_DUP2FD closes arg if it is open and
not equal to fildes. If fildes is not equal to arg, the FD_CLOEXEC flag associated with the new
file descriptor is cleared. If fildes is equal to arg, the FD_CLOEXEC flag associated with the new
file descriptor is not changed. F_DUP2FD is equivalent to dup2(fildes, arg).

F_DUP2FD_CLOEXEC

Similar to F_DUP2FD, except that the FD_CLOEXEC flag associated with the new file descriptor
is set.

F_FREESP

Free storage space associated with a section of the ordinary file fildes. The section is
specified by a variable of data type struct flock pointed to by arg. The data type struct
flock is defined in the <fcntl.h> header (see fcntl.h(3HEAD)) and is described below.
Note that all file systems might not support all possible variations of F_FREESP arguments.
In particular, many file systems allow space to be freed only at the end of a file.

F_FREESP64

Equivalent to F_FREESP, but takes a struct flock64 argument rather than a struct flock
argument.

Name

Synopsis

Description

fcntl(2)

man pages section 2: System Calls • Last Revised 2 Nov 201080

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Ffcntl.h-3head

F_ALLOCSP

Allocate space for a section of the ordinary file fildes. The section is specified by a variable of
data type struct flock pointed to by arg. The data type struct flock is defined in the
<fcntl.h> header (see fcntl.h(3HEAD) and is described below.

F_ALLOCSP64

Equivalent to F_ALLOCSP, but takes a struct flock64 argument rather than a struct
flock argument.

F_GETFD

Get the file descriptor flags defined in <fcntl.h> that are associated with the file descriptor
fildes. File descriptor flags are associated with a single file descriptor and do not affect other
file descriptors that refer to the same file.

F_GETFL

Get the file status flags and file access modes, defined in <fcntl.h>, for the file descriptor
specified by fildes. The file access modes can be extracted from the return value using the
mask O_ACCMODE, which is defined in <fcntl.h>. File status flags and file access modes do
not affect other file descriptors that refer to the same file with different open file
descriptions.

F_GETOWN

If fildes refers to a socket, get the process or process group ID specified to receive SIGURG
signals when out-of-band data is available. Positive values indicate a process ID; negative
values, other than −1, indicate a process group ID. If fildes does not refer to a socket, the
results are unspecified.

F_GETXFL

Get the file status flags, file access modes, and file creation and assignment flags, defined in
<fcntl.h>, for the file descriptor specified by fildes. The file access modes can be extracted
from the return value using the mask O_ACCMODE, which is defined in <fcntl.h>. File status
flags, file access modes, and file creation and assignment flags do not affect other file
descriptors that refer to the same file with different open file descriptions.

F_SETFD

Set the file descriptor flags defined in <fcntl.h>, that are associated with fildes, to the third
argument, arg, taken as type int. If the FD_CLOEXEC flag in the third argument is 0, the file
will remain open across the exec() functions; otherwise the file will be closed upon
successful execution of one of the exec() functions.

F_SETFL

Set the file status flags, defined in <fcntl.h>, for the file descriptor specified by fildes from
the corresponding bits in the arg argument, taken as type int. Bits corresponding to the file
access mode and file creation and assignment flags that are set in arg are ignored. If any bits
in arg other than those mentioned here are changed by the application, the result is
unspecified.

fcntl(2)

System Calls 81

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Ffcntl.h-3head

F_SETOWN

If fildes refers to a socket, set the process or process group ID specified to receive SIGURG
signals when out-of-band data is available, using the value of the third argument, arg, taken
as type int. Positive values indicate a process ID; negative values, other than −1, indicate a
process group ID. If fildes does not refer to a socket, the results are unspecified.

The following commands are available for advisory record locking. Record locking is
supported for regular files, and may be supported for other files.

F_GETLK

Get the first lock which blocks the lock description pointed to by the third argument, arg,
taken as a pointer to type struct flock, defined in <fcntl.h>. The information retrieved
overwrites the information passed to fcntl() in the structure flock. If no lock is found
that would prevent this lock from being created, then the structure will be left unchanged
except for the lock type which will be set to F_UNLCK.

F_GETLK64

Equivalent to F_GETLK, but takes a struct flock64 argument rather than a struct flock
argument.

F_SETLK

Set or clear a file segment lock according to the lock description pointed to by the third
argument, arg, taken as a pointer to type struct flock, defined in <fcntl.h>. F_SETLK is
used to establish shared (or read) locks (F_RDLCK) or exclusive (or write) locks (F_WRLCK),
as well as to remove either type of lock (F_UNLCK). F_RDLCK, F_WRLCK and F_UNLCK are
defined in <fcntl.h>. If a shared or exclusive lock cannot be set, fcntl() will return
immediately with a return value of −1.

F_SETLK64

Equivalent to F_SETLK, but takes a struct flock64 argument rather than a struct flock
argument.

F_SETLKW

This command is the same as F_SETLK except that if a shared or exclusive lock is blocked by
other locks, the process will wait until the request can be satisfied. If a signal that is to be
caught is received while fcntl() is waiting for a region, fcntl() will be interrupted. Upon
return from the process' signal handler, fcntl() will return −1 with errno set to EINTR,
and the lock operation will not be done.

F_SETLKW64

Equivalent to F_SETLKW, but takes a struct flock64 argument rather than a struct flock
argument.

When a shared lock is set on a segment of a file, other processes will be able to set shared locks
on that segment or a portion of it. A shared lock prevents any other process from setting an
exclusive lock on any portion of the protected area. A request for a shared lock will fail if the
file descriptor was not opened with read access.

fcntl(2)

man pages section 2: System Calls • Last Revised 2 Nov 201082

An exclusive lock will prevent any other process from setting a shared lock or an exclusive lock
on any portion of the protected area. A request for an exclusive lock will fail if the file
descriptor was not opened with write access.

The flock structure contains at least the following elements:

short l_type; /* lock operation type */

short l_whence; /* lock base indicator */

off_t l_start; /* starting offset from base */

off_t l_len; /* lock length; l_len == 0 means

until end of file */

int l_sysid; /* system ID running process holding lock */

pid_t l_pid; /* process ID of process holding lock */

The value of l_whence is SEEK_SET, SEEK_CUR, or SEEK_END, to indicate that the relative offset
l_start bytes will be measured from the start of the file, current position or end of the file,
respectively. The value of l_len is the number of consecutive bytes to be locked. The value of
l_len may be negative (where the definition of off_t permits negative values of l_len). After
a successful F_GETLK or F_GETLK64 request, that is, one in which a lock was found, the value of
l_whence will be SEEK_SET.

The l_pid and l_sysid fields are used only with F_GETLK or F_GETLK64 to return the process
ID of the process holding a blocking lock and to indicate which system is running that process.

If l_len is positive, the area affected starts at l_start and ends at l_start + l_len − 1. If
l_len is negative, the area affected starts at l_start + l_len and ends at l_start − 1. Locks
may start and extend beyond the current end of a file, but must not be negative relative to the
beginning of the file. A lock will be set to extend to the largest possible value of the file offset
for that file by setting l_len to 0. If such a lock also has l_start set to 0 and l_whence is set to
SEEK_SET, the whole file will be locked.

If a process has an existing lock in which l_len is 0 and which includes the last byte of the
requested segment, and an unlock (F_UNLCK) request is made in which l_len is non-zero and
the offset of the last byte of the requested segment is the maximum value for an object of type
off_t, then the F_UNLCK request will be treated as a request to unlock from the start of the
requested segment with an l_len equal to 0. Otherwise, the request will attempt to unlock
only the requested segment.

There will be at most one type of lock set for each byte in the file. Before a successful return
from an F_SETLK, F_SETLK64, F_SETLKW, or F_SETLKW64 request when the calling process has
previously existing locks on bytes in the region specified by the request, the previous lock type
for each byte in the specified region will be replaced by the new lock type. As specified above
under the descriptions of shared locks and exclusive locks, an F_SETLK, F_SETLK64, F_SETLKW,
or F_SETLKW64 request will (respectively) fail or block when another process has existing locks
on bytes in the specified region and the type of any of those locks conflicts with the type
specified in the request.

fcntl(2)

System Calls 83

All locks associated with a file for a given process are removed when a file descriptor for that
file is closed by that process or the process holding that file descriptor terminates. Locks are
not inherited by a child process created using fork(2).

A potential for deadlock occurs if a process controlling a locked region is put to sleep by
attempting to lock another process' locked region. If the system detects that sleeping until a
locked region is unlocked would cause a deadlock, fcntl() will fail with an EDEADLK error.

The following values for cmd are used for file share reservations. A share reservation is placed
on an entire file to allow cooperating processes to control access to the file.

F_SHARE Sets a share reservation on a file with the specified access mode and designates
which types of access to deny.

F_UNSHARE Remove an existing share reservation.

File share reservations are an advisory form of access control among cooperating processes,
on both local and remote machines. They are most often used by DOS or Windows emulators
and DOS based NFS clients. However, native UNIX versions of DOS or Windows applications
may also choose to use this form of access control.

A share reservation is described by an fshare structure defined in <sys/fcntl.h>, which is
included in <fcntl.h> as follows:

typedef struct fshare {

short f_access;

short f_deny;

int f_id;

} fshare_t;

A share reservation specifies the type of access, f_access, to be requested on the open file
descriptor. If access is granted, it further specifies what type of access to deny other processes,
f_deny. A single process on the same file may hold multiple non-conflicting reservations by
specifying an identifier, f_id, unique to the process, with each request.

An F_UNSHARE request releases the reservation with the specified f_id. The f_access and
f_deny fields are ignored.

Valid f_access values are:

F_RDACC Set a file share reservation for read-only access.

F_WRACC Set a file share reservation for write-only access.

F_RWACC Set a file share reservation for read and write access.

Valid f_deny values are:

F_COMPAT Set a file share reservation to compatibility mode.

fcntl(2)

man pages section 2: System Calls • Last Revised 2 Nov 201084

F_RDDNY Set a file share reservation to deny read access to other processes.

F_WRDNY Set a file share reservation to deny write access to other processes.

F_RWDNY Set a file share reservation to deny read and write access to other processes.

F_NODNY Do not deny read or write access to any other process.

Upon successful completion, the value returned depends on cmd as follows:

F_DUPFD A new file descriptor.

F_DUPFD_CLOEXEC A new file descriptor.

F_DUP2FD A new file descriptor.

F_DUP2FD_CLOEXEC A new file descriptor.

F_FREESP Value of 0.

F_GETFD Value of flags defined in <fcntl.h>. The return value will not be
negative.

F_GETFL Value of file status flags and access modes. The return value will not be
negative.

F_GETLK Value other than −1.

F_GETLK64 Value other than −1.

F_GETOWN Value of the socket owner process or process group; this will not be
−1.

F_GETXFL Value of file status flags, access modes, and creation and assignment
flags. The return value will not be negative.

F_SETFD Value other than −1.

F_SETFL Value other than −1.

F_SETLK Value other than −1.

F_SETLK64 Value other than −1.

F_SETLKW Value other than −1.

F_SETLKW64 Value other than −1.

F_SETOWN Value other than −1.

F_SHARE Value other than −1.

F_UNSHARE Value other than −1.

Return Values

fcntl(2)

System Calls 85

Otherwise, −1 is returned and errno is set to indicate the error.

The fcntl() function will fail if:

EAGAIN

The cmd argument is F_SETLK or F_SETLK64, the type of lock (l_type) is a shared
(F_RDLCK) or exclusive (F_WRLCK) lock, and the segment of a file to be locked is already
exclusive-locked by another process; or the type is an exclusive lock and some portion of
the segment of a file to be locked is already shared-locked or exclusive-locked by another
process.

The cmd argument is F_FREESP, the file exists, mandatory file/record locking is set, and
there are outstanding record locks on the file; or the cmd argument is F_SETLK, F_SETLK64,
F_SETLKW, or F_SETLKW64, mandatory file/record locking is set, and the file is currently
being mapped to virtual memory using mmap(2).

The cmd argument is F_SHARE and f_access conflicts with an existing f_deny share
reservation.

EBADF

The fildes argument is not a valid open file descriptor; or the cmd argument is F_SETLK,
F_SETLK64, F_SETLKW, or F_SETLKW64, the type of lock, l_type, is a shared lock (F_RDLCK),
and fildes is not a valid file descriptor open for reading; or the type of lock l_type is an
exclusive lock (F_WRLCK) and fildes is not a valid file descriptor open for writing.

The cmd argument is F_FREESP and fildes is not a valid file descriptor open for writing.

The cmd argument is F_DUP2FD or F_DUP2FD_CLOEXEC and arg is negative or is not less than
the current resource limit for RLIMIT_NOFILE.

The cmd argument is F_SHARE, the f_access share reservation is for write access, and fildes
is not a valid file descriptor open for writing.

The cmd argument is F_SHARE, the f_access share reservation is for read access, and fildes
is not a valid file descriptor open for reading.

EFAULT

The cmd argument is F_GETLK, F_GETLK64, F_SETLK, F_SETLK64, F_SETLKW, F_SETLKW64, or
F_FREESP and the arg argument points to an illegal address.

The cmd argument is F_SHARE or F_UNSHARE and arg points to an illegal address.

EINTR

The cmd argument is F_SETLKW or F_SETLKW64 and the function was interrupted by a
signal.

EINVAL

The cmd argument is invalid or not supported by the file system; or the cmd argument is
F_DUPFD or F_DUPFD_CLOEXEC and arg is negative or greater than or equal to OPEN_MAX; or

Errors

fcntl(2)

man pages section 2: System Calls • Last Revised 2 Nov 201086

the cmd argument is F_GETLK, F_GETLK64, F_SETLK, F_SETLK64, F_SETLKW, or F_SETLKW64
and the data pointed to by arg is not valid; or fildes refers to a file that does not support
locking.

The cmd argument is F_UNSHARE and a reservation with this f_id for this process does not
exist.

EIO

An I/O error occurred while reading from or writing to the file system.

EMFILE

The cmd argument is F_DUPFD or F_DUPFD_CLOEXEC and either OPEN_MAX file descriptors
are currently open in the calling process, or no file descriptors greater than or equal to arg
are available.

ENOLCK

The cmd argument is F_SETLK, F_SETLK64, F_SETLKW, or F_SETLKW64 and satisfying the
lock or unlock request would result in the number of locked regions in the system
exceeding a system-imposed limit.

ENOLINK

Either the fildes argument is on a remote machine and the link to that machine is no longer
active; or the cmd argument is F_FREESP, the file is on a remote machine, and the link to
that machine is no longer active.

EOVERFLOW

One of the values to be returned cannot be represented correctly.

The cmd argument is F_GETLK, F_SETLK, or F_SETLKW and the smallest or, if l_len is
non-zero, the largest, offset of any byte in the requested segment cannot be represented
correctly in an object of type off_t.

The cmd argument is F_GETLK64, F_SETLK64, or F_SETLKW64 and the smallest or, if l_len is
non-zero, the largest, offset of any byte in the requested segment cannot be represented
correctly in an object of type off64_t.

The fcntl() function may fail if:

EAGAIN

The cmd argument is F_SETLK, F_SETLK64, F_SETLKW, or F_SETLKW64, and the file is
currently being mapped to virtual memory using mmap(2).

EDEADLK

The cmd argument is F_SETLKW or F_SETLKW64, the lock is blocked by some lock from
another process and putting the calling process to sleep, waiting for that lock to become
free would cause a deadlock.

The cmd argument is F_FREESP, mandatory record locking is enabled, O_NDELAY and
O_NONBLOCK are clear and a deadlock condition was detected.

fcntl(2)

System Calls 87

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal Safe

Standard See standards(5).

lockd(1M), chmod(2), close(2), creat(2), dup(2), exec(2), fork(2), mmap(2), open(2), pipe(2),
read(2), sigaction(2), write(2), dup2(3C), fcntl.h(3HEAD), attributes(5), standards(5)

Programming Interfaces Guide

In the past, the variable errno was set to EACCES rather than EAGAIN when a section of a file is
already locked by another process. Therefore, portable application programs should expect
and test for either value.

Advisory locks allow cooperating processes to perform consistent operations on files, but do
not guarantee exclusive access. Files can be accessed without advisory locks, but
inconsistencies may result. The network share locking protocol does not support the f_deny
value of F_COMPAT. For network file systems, if f_access is F_RDACC, f_deny is mapped to
F_RDDNY. Otherwise, it is mapped to F_RWDNY.

To prevent possible file corruption, the system may reject mmap() requests for advisory locked
files, or it may reject advisory locking requests for mapped files. Applications that require a file
be both locked and mapped should lock the entire file (l_start and l_len both set to 0). If a
file is mapped, the system may reject an unlock request, resulting in a lock that does not cover
the entire file.

The process ID returned for locked files on network file systems might not be meaningful.

If the file server crashes and has to be rebooted, the lock manager (see lockd(1M)) attempts to
recover all locks that were associated with that server. If a lock cannot be reclaimed, the
process that held the lock is issued a SIGLOST signal.

Attributes

See Also

Notes

fcntl(2)

man pages section 2: System Calls • Last Revised 2 Nov 201088

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mlockd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Adup2-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Ffcntl.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=NETPROTO
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mlockd-1m

fork, fork1, forkall, forkx, forkallx – create a new process

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

pid_t fork1(void);

pid_t forkall(void);

#include <sys/fork.h>

pid_t forkx(int flags);

pid_t forkallx(int flags);

The fork(), fork1(), forkall(), forkx(), and forkallx() functions create a new process.
The address space of the new process (child process) is an exact copy of the address space of
the calling process (parent process). The child process inherits the following attributes from
the parent process:

■ real user ID, real group ID, effective user ID, effective group ID
■ environment
■ open file descriptors
■ close-on-exec flags (see exec(2))
■ signal handling settings (that is, SIG_DFL, SIG_IGN, SIG_HOLD, function address)
■ supplementary group IDs
■ set-user-ID mode bit
■ set-group-ID mode bit
■ profiling on/off status
■ nice value (see nice(2))
■ scheduler class (see priocntl(2))
■ all attached shared memory segments (see shmop(2))
■ process group ID -- memory mappings (see mmap(2))
■ session ID (see exit(2))
■ current working directory
■ extended policy and related flags (see privileges(5) and setpflags(2))
■ root directory
■ file mode creation mask (see umask(2))
■ resource limits (see getrlimit(2))
■ controlling terminal

Name

Synopsis

Description

fork(2)

System Calls 89

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

■ saved user ID and group ID
■ task ID and project ID
■ processor bindings (see processor_bind(2))
■ processor set bindings (see pset_bind(2))
■ process privilege sets and the extended policy (see getppriv(2) and privileges(5))
■ process flags (see getpflags(2))
■ active contract templates (see contract(4))

Scheduling priority and any per-process scheduling parameters that are specific to a given
scheduling class might or might not be inherited according to the policy of that particular class
(see priocntl(2)). The child process might or might not be in the same process contract as the
parent (see process(4)). The child process differs from the parent process in the following
ways:

■ The child process has a unique process ID which does not match any active process group
ID.

■ The child process has a different parent process ID (that is, the process ID of the parent
process).

■ The child process has its own copy of the parent's file descriptors and directory streams.
Each of the child's file descriptors shares a common file pointer with the corresponding file
descriptor of the parent.

■ Each shared memory segment remains attached and the value of shm_nattach is
incremented by 1.

■ All semadj values are cleared (see semop(2)).
■ Process locks, text locks, data locks, and other memory locks are not inherited by the child

(see plock(3C) and memcntl(2)).
■ The child process's tms structure is cleared: tms_utime, stime, cutime, and cstime are set

to 0 (see times(2)).
■ The child processes resource utilizations are set to 0; see getrlimit(2). The it_value and

it_interval values for the ITIMER_REAL timer are reset to 0; see getitimer(2).
■ The set of signals pending for the child process is initialized to the empty set.
■ Timers created by timer_create(3C) are not inherited by the child process.
■ No asynchronous input or asynchronous output operations are inherited by the child.
■ Any preferred hardware address tranlsation sizes (see memcntl(2)) are inherited by the

child.
■ The child process holds no contracts (see contract(4)).

Record locks set by the parent process are not inherited by the child process (see fcntl(2)).

fork(2)

man pages section 2: System Calls • Last Revised 1 Jun 201290

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4contract-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4process-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aplock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Atimer-create-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4contract-4

Although any open door descriptors in the parent are shared by the child, only the parent will
receive a door invocation from clients even if the door descriptor is open in the child. If a
descriptor is closed in the parent, attempts to operate on the door descriptor will fail even if it
is still open in the child.

A call to forkall() or forkallx() replicates in the child process all of the threads (see
thr_create(3C) and pthread_create(3C)) in the parent process. A call to fork1() or
forkx() replicates only the calling thread in the child process.

A call to fork() is identical to a call to fork1(); only the calling thread is replicated in the
child process. This is the POSIX-specified behavior for fork().

In releases of Solaris prior to Solaris 10, the behavior of fork() depended on whether or not
the application was linked with the POSIX threads library. When linked with -lthread

(Solaris Threads) but not linked with -lpthread (POSIX Threads), fork() was the same as
forkall(). When linked with -lpthread, whether or not also linked with -lthread, fork()
was the same as fork1().

Prior to Solaris 10, either -lthread or -lpthread was required for multithreaded
applications. This is no longer the case. The standard C library provides all threading support
for both sets of application programming interfaces. Applications that require replicate-all
fork semantics must call forkall() or forkallx().

The forkx() and forkallx() functions accept a flags argument consisting of a bitwise
inclusive-OR of zero or more of the following flags, which are defined in the header
<sys/fork.h>:

FORK_NOSIGCHLD

Do not post a SIGCHLD signal to the parent process when the child process terminates,
regardless of the disposition of the SIGCHLD signal in the parent. SIGCHLD signals are still
possible for job control stop and continue actions if the parent has requested them.

FORK_WAITPID

Do not allow wait-for-multiple-pids by the parent, as in wait(), waitid(P_ALL), or
waitid(P_PGID), to reap the child and do not allow the child to be reaped automatically due
the disposition of the SIGCHLD signal being set to be ignored in the parent. Only a specific
wait for the child, as in waitid(P_PID, pid), is allowed and it is required, else when the child
exits it will remain a zombie until the parent exits.

If the flags argument is 0 forkx() is identical to fork() and forkallx() is identical to
forkall().

If a multithreaded application calls fork(), fork1(), or forkx(), and the child does more
than simply call one of the exec(2) functions, there is a possibility of deadlock occurring in the
child. The application should use pthread_atfork(3C) to ensure safety with respect to this
deadlock. Should there be any outstanding mutexes throughout the process, the application
should call pthread_atfork() to wait for and acquire those mutexes prior to calling fork(),
fork1(), or forkx(). See “MT-Level of Libraries” on the attributes(5) manual page.

Threads

Fork Extensions

fork() Safety

fork(2)

System Calls 91

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Athr-create-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-create-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-atfork-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

The pthread_atfork() mechanism is used to protect the locks that libc(3LIB) uses to
implement interfaces such as malloc(3C). All interfaces provided by libc are safe to use in a
child process following a fork(), except when fork() is executed within a signal handler.

The POSIX standard (see standards(5)) requires fork to be Async-Signal-Safe (see
attributes(5)). This cannot be made to happen with fork handlers in place, because they
acquire locks. To be in nominal compliance, no fork handlers are called when fork() is
executed within a signal context. This leaves the child process in a questionable state with
respect to its locks, but at least the calling thread will not deadlock itself attempting to acquire
a lock that it already owns. In this situation, the application should strictly adhere to the advice
given in the POSIX specification: “To avoid errors, the child process may only execute
Async-Signal-Safe operations until such time as one of the exec(2) functions is called.”

Upon successful completion, fork(), fork1(), forkall(), forkx(), and forkallx() return 0

to the child process and return the process ID of the child process to the parent process.
Otherwise, (pid_t)−1 is returned to the parent process, no child process is created, and errno

is set to indicate the error.

The fork(), fork1(), forkall(), forkx(), and forkallx() functions will fail if:

EAGAIN A resource control or limit on the total number of processes, tasks or LWPs under
execution by a single user, task, project, or zone has been exceeded, or the total
amount of system memory available is temporarily insufficient to duplicate this
process.

ENOMEM There is not enough swap space.

EPERM The {PRIV_PROC_FORK} privilege is not asserted in the effective set of the calling
process.

The forkx() and forkallx() functions will fail if:

EINVAL The flags argument is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe.

Standard See below.

For fork(), see standards(5).

Return Values

Errors

Attributes

fork(2)

man pages section 2: System Calls • Last Revised 1 Jun 201292

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

alarm(2), exec(2), exit(2), fcntl(2), getitimer(2), getrlimit(2), memcntl(2), mmap(2),
nice(2), priocntl(2), semop(2), shmop(2), times(2), umask(2), waitid(2), door_create(3C),
exit(3C), plock(3C), pthread_atfork(3C), pthread_create(3C), signal(3C), system(3C),
thr_create(3C) timer_create(3C), wait(3C), contract(4), process(4), attributes(5),
privileges(5), standards(5)

An application should call _exit() rather than exit(3C) if it cannot execve(), since exit()
will flush and close standard I/O channels and thereby corrupt the parent process's standard
I/O data structures. Using exit(3C) will flush buffered data twice. See exit(2).

The thread in the child that calls fork(), fork1(), or fork1x() must not depend on any
resources held by threads that no longer exist in the child. In particular, locks held by these
threads will not be released.

In a multithreaded process, forkall() in one thread can cause blocking system calls to be
interrupted and return with an EINTR error.

See Also

Notes

fork(2)

System Calls 93

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Adoor-create-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aexit-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aplock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-atfork-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-create-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asystem-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Athr-create-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Atimer-create-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Await-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4contract-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4process-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aexit-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aexit-3c

fpathconf, pathconf – get configurable pathname variables

#include <unistd.h>

long fpathconf(int fildes, int name);

long pathconf(const char *path, int name);

The fpathconf() and pathconf() functions determine the current value of a configurable
limit or option (variable) that is associated with a file or directory.

For pathconf(), the path argument points to the pathname of a file or directory.

For fpathconf(), the fildes argument is an open file descriptor.

The name argument represents the variable to be queried relative to that file or directory. The
variables in the following table come from <limits.h> or <unistd.h> and the symbolic
constants, defined in <unistd.h>, are the corresponding values used for name:

Variable Value of name Notes

{ACL_ENABLED} _PC_ACL_ENABLED 10

{FILESIZEBITS} _PC_FILESIZEBITS 3,4

{LINK_MAX} _PC_LINK_MAX 1

{MAX_CANON} _PC_MAX_CANON 2

{MAX_INPUT} _PC_MAX_INPUT 2

{MIN_HOLE_SIZE} _PC_MIN_HOLE_SIZE 11

{NAME_MAX} _PC_NAME_MAX 3, 4

{PATH_MAX} _PC_PATH_MAX 4,5

{PIPE_BUF} _PC_PIPE_BUF 6

{POSIX_ALLOC_SIZE_MIN} _PC_ALLOC_SIZE_MIN

{POSIX_REC_INCR_XFER_SIZE} _PC_REC_INCR_XFER_SIZE

{POSIX_REC_MAX_XFER_SIZE} _PC_REC_MAX_XFER_SIZE

{POSIX_REC_MIN_XFER_SIZE} _PC_REC_MIN_XFER_SIZE

{POSIX_REC_XFER_ALIGN} _PC_REC_XFER_ALIGN

{SYMLINK_MAX} _PC_SYMLINK_MAX 4, 9

{XATTR_ENABLED} _PC_XATTR_ENABLED 1

{SATTR_ENABLED} _PC_SATTR_ENABLED

Name

Synopsis

Description

fpathconf(2)

man pages section 2: System Calls • Last Revised 1 Sep 200994

Variable Value of name Notes

{XATTR_EXISTS} _PC_XATTR_EXISTS 1

{SATTR_EXISTS} _PC_SATTR_EXISTS

{ACCESS_FILTERING} _PC_ACCESS_FILTERING 12

_POSIX_CHOWN_RESTRICTED _PC_CHOWN_RESTRICTED 7

_POSIX_NO_TRUNC _PC_NO_TRUNC 3, 4

_POSIX_VDISABLE _PC_VDISABLE 2

_POSIX_ASYNC_IO _PC_ASYNC_IO 8

_POSIX_PRIO_IO _PC_PRIO_IO 8

_POSIX_SYNC_IO _PC_SYNC_IO 8

_POSIX_TIMESTAMP_RESOLUTION _PC_TIMESTAMP_RESOLUTION 1

Notes:

1. If path or fildes refers to a directory, the value returned applies to the directory itself.

2. If path or fildes does not refer to a terminal file, it is unspecified whether an
implementation supports an association of the variable name with the specified file.

3. If path or fildes refers to a directory, the value returned applies to filenames within the
directory.

4. If path or fildes does not refer to a directory, it is unspecified whether an implementation
supports an association of the variable name with the specified file.

5. If path or fildes refers to a directory, the value returned is the maximum length of a relative
pathname when the specified directory is the working directory.

6. If path refers to a FIFO, or fildes refers to a pipe or FIFO, the value returned applies to the
referenced object. If path or fildes refers to a directory, the value returned applies to any
FIFO that exists or can be created within the directory. If path or fildes refers to any other
type of file, it is unspecified whether an implementation supports an association of the
variable name with the specified file.

7. If path or fildes refers to a directory, the value returned applies to any files, other than
directories, that exist or can be created within the directory.

8. If path or fildes refers to a directory, it is unspecified whether an implementation supports
an association of the variable name with the specified file.

9. If path or fildes refers to a directory, the value returned is the maximum length of the string
that a symbolic link in that directory can contain.

fpathconf(2)

System Calls 95

10. If path or fildes refers to a file or directory in a file system that supports ACLs, the value
returned is the bitwise inclusive OR of the following flags associated with ACL types
supported by the file system; otherwise 0 is returned.

_ACL_ACE_ENABLED The file system supports ACE ACLs.

_ACL_ACLENT_ENABLED The file system supports UFS aclent ACLs.
11. If a filesystem supports the reporting of holes (see lseek(2), pathconf() and fpathconf()

return a positive number that represents the minimum hole size returned in bytes. The
offsets of holes returned will be aligned to this same value. A special value of 1 is returned if
the filesystem does not specify the minimum hole size but still reports holes.

12. If path or fildes refers to a directory and the file system in which the directory resides
supports access filtering, a non-zero value is returned. Otherwise, 0 is returned.

If name is an invalid value, both pathconf() and fpathconf() return −1 and errno is set to
indicate the error.

If the variable corresponding to name has no limit for the path or file descriptor, both
pathconf() and fpathconf() return −1 without changing errno. If pathconf() needs to use
path to determine the value of name and pathconf() does not support the association of name
with the file specified by path, or if the process did not have appropriate privileges to query the
file specified by path, or path does not exist, pathconf() returns −1 and errno is set to indicate
the error.

If fpathconf() needs to use fildes to determine the value of name and fpathconf() does not
support the association of name with the file specified by fildes, or if fildes is an invalid file
descriptor, fpathconf() returns −1 and errno is set to indicate the error.

Otherwise pathconf() or fpathconf() returns the current variable value for the file or
directory without changing errno. The value returned will not be more restrictive than the
corresponding value available to the application when it was compiled with <limits.h> or
<unistd.h>.

The pathconf() function will fail if:

EINVAL The value of name is not valid.

ELOOP A loop exists in symbolic links encountered during resolution of the path
argument.

The fpathconf() function will fail if:

EINVAL The value of name is not valid.

The pathconf() function may fail if:

EACCES Search permission is denied for a component of the path prefix.

Return Values

Errors

fpathconf(2)

man pages section 2: System Calls • Last Revised 1 Sep 200996

EINVAL An association of the variable name with the specified file is not supported.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

ENAMETOOLONG As a result of encountering a symbolic link in resolution of the path
argument, the length of the substituted pathname string exceeded
{PATH_MAX}.

ENOENT A component of path does not name an existing file or path is an empty
string.

ENOTDIR A component of the path prefix is not a directory.

The fpathconf() function may fail if:

EBADF The fildes argument is not a valid file descriptor.

EINVAL An association of the variable name with the specified file is not supported.

The {SYMLINK_MAX} variable applies only to the fpathconf() function.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

lseek(2), confstr(3C), limits.h(3HEAD), sysconf(3C), attributes(5), standards(5)

Usage

Attributes

See Also

fpathconf(2)

System Calls 97

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aconfstr-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flimits.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

futimens, utimensat – set file access and modification times

#include <sys/stat.h>

int futimens(int fd, const struct timespec times[2]);

int utimensat(int fd, const char *path,
const struct timespec times[2], int flag);

The futimens() and utimensat() functions set the access and modification times of a file to
the values of the times argument. The futimens() function changes the times of the file
associated with the file descriptor fd. The utimensat() function changes the times of the file
pointed to by the path argument, relative to the directory associated with the file descriptor fd.
Both functions allow time specifications accurate to the nanosecond.

The times argument is an array of two timespec structures. The first array member represents
the date and time of last access, and the second member represents the date and time of last
modification. The times in the timespec structure are measured in seconds and nanoseconds
since the Epoch. The file's relevant timestamp is set to the greatest value supported by the file
system that is not greater than the specified time.

If the tv_nsec field of a timespec structure has the special value UTIME_NOW, the file's relevant
timestamp is set to the greatest value supported by the file system that is not greater than the
current time. If the tv_nsec field has the special value UTIME_OMIT, the file's relevant timestamp
is not changed. In either case, the tv_sec field is ignored.

If the times argument is a null pointer, both the access and modification timestamps are set to
the greatest value supported by the file system that is not greater than the current time. If
utimensat() is passed a relative path in the path argument, the file to be used is relative to the
directory associated with the file descriptor fd instead of the current working directory.

If utimensat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used.

Only a process with the effective user ID equal to the user ID of the file, or with write access to
the file, or with appropriate privileges may use futimens() or utimensat() with a null
pointer as the times argument or with both tv_nsec fields set to the special value UTIME_NOW.
Only a process with the effective user ID equal to the user ID of the file or with appropriate
privileges may use futimens() or utimensat() with a non-null times argument that does not
have both tv_nsec fields set to UTIME_NOW and does not have both tv_nsec fields set to
UTIME_OMIT. If both tv_nsec fields are set to UTIME_OMIT, no ownership or permissions check is
performed for the file, but other error conditions are still detected (including EACCES errors
related to the path prefix).

Values for the flag argument of utimensat() are constructed by a bitwise-inclusive OR of
flags from the following list, defined in <fcntl.h>:

Name

Synopsis

Description

futimens(2)

man pages section 2: System Calls • Last Revised 1 Sep 200998

AT_SYMLINK_NOFOLLOW

If path names a symbolic link, then the access and modification times of the symbolic link
are changed.

Upon completion, futimens() and utimensat() mark the last file status change timestamp
for update.

Upon successful completion, these functions return 0. Otherwise, these functions return -1
and set errno to indicate the error. If -1 is returned, the file times are not affected.

The futimens() and utimensat() functions will fail if:

EACCES The times argument is a null pointer, or both tv_nsec values are UTIME_NOW, and
the effective user ID of the process does not match the owner of the file and write
access is denied.

EINVAL Either of the times argument structures specified a tv_nsec value that was neither
UTIME_NOW nor UTIME_OMIT, and was a value less than zero or greater than or equal
to 1000 million.

A new file timestamp would be a value whose tv_sec component is not a value
supported by the file system.

EPERM The times argument is not a null pointer, does not have both tv_nsec fields set to
UTIME_NOW, does not have both tv_nsec fields set to UTIME_OMIT, the calling
process' effective user ID has write access to the file but does not match the owner
of the file, and the calling process does not have appropriate privileges.

EROFS The file system containing the file is read-only.

The futimens() function will fail if:

EBADF The fd argument is not a valid file descriptor.

The utimensat() function will fail if:

EACCES The permissions of the directory underlying fd do not permit directory
searches.

EBADF The path argument does not specify an absolute path and the fd argument
is neither AT_FDCWD nor a valid file descriptor open for reading.

ENOTDIR The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EACCES Search permission is denied by a component of the path prefix.

ELOOP Too many symbolic links were encountered during resolution of the path
argument.

Return Values

Errors

futimens(2)

System Calls 99

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

ENOENT A component of path does not name an existing file or path is an empty
string.

ENOTDIR A component of the path prefix is not a directory, or the path argument
contains at least one character that is not a slash (/) and ends with one or
more trailing slash characters and the last pathname component names an
existing file that is neither a directory nor a symbolic link to a directory.

The utimensat() function will fail if:

ENAMETOOLONG Path name resolution of a symbolic link produced an intermediate result
with a length that exceeds {PATH_MAX}.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

stat(2), utime(2), utimes(2), attributes(5), fsattr(5)

Attributes

See Also

futimens(2)

man pages section 2: System Calls • Last Revised 1 Sep 2009100

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5fsattr-5

getacct, putacct, wracct – get, put, or write extended accounting data

#include <sys/exacct.h>

size_t getacct(idtype_t idtype, id_t id, void *buf, size_t bufsize);

int putacct(idtype_t idtype, id_t id, void *buf, size_t bufsize, int flags);

int wracct(idtype_t idtype, id_t id, int flags);

These functions provide access to the extended accounting facility.

The getacct() function returns extended accounting buffers from the kernel for currently
executing tasks and processes. The resulting data buffer is a packed exacct object that can be
unpacked using ea_unpack_object() (see ea_pack_object(3EXACCT)) and subsequently
manipulated using the functions of the extended accounting library, libexacct(3LIB).

The putacct() function provides privileged processes the ability to tag accounting records
with additional data specific to that process. For instance, a queueing facility might want to
record to which queue a given task or process was submitted prior to running. The flags
argument determines whether the contents of buf should be treated as raw data (EP_RAW) or as
an embedded exacct structure (EP_EXACCT_OBJECT). In the case of EP_EXACCT_OBJECT, buf
must be a packed exacct object as returned by ea_pack_object(3EXACCT). The use of an
inappropriate flag or the inclusion of corrupt exacct data will likely corrupt the enclosing
exacct file.

The wracct() function requests the kernel to write, given its internal state of resource usage,
the appropriate data for the specified task or process. The flags field determines whether a
partial (EW_PARTIAL) or interval record (EW_INTERVAL) is written.

These functions require root privilege, as they allow inquiry or reporting relevant to system
tasks and processes other than the invoking process. The putacct() and wracct() functions
also cause the kernel to write records to the system's extended accounting files.

The getacct() function returns the number of bytes required to represent the extended
accounting record for the requested system task or process. If bufsize exceeds the returned
size, buf will contain a valid accounting record buffer. If bufsize is less than the return value,
buf will contain the first bufsize bytes of the record. If bufsize is 0, getacct() returns only the
number of bytes required to represent the extended accounting record. In the event of failure,
−1 is returned and errno is set to indicate the error.

The putacct() and wracct() functions return 0 if the record was successfully written.
Otherwise, −1 is returned and errno is set to indicate the error.

The getacct(), putacct(), and wracct() functions will fail if:

EINVAL The idtype argument was not P_TASKID or P_PID.

Name

Synopsis

Description

Return Values

Errors

getacct(2)

System Calls 101

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Dea-pack-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibexacct-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Dea-pack-object-3exacct

ENOSPC The file system containing the extended accounting file is full. The wracct()
or putacct() function will fail if the record size would exceed the amount of
space remaining on the file system.

ENOTACTIVE The extended accounting facility for the requested idtype_t is not active.
Either putacct() attempted to write a task record when the task accounting
file was unset, or getacct() attempted to retrieve accounting data for a
process when extended process accounting was inactive.

EPERM The {PRIV_SYS_ACCT} privilege is not asserted in the effective set of the calling
process.

ERSCH The id argument does not refer to a presently active system task ID or process
ID.

The putacct() and wracct() functions will fail if:

EINVAL The flags argument is neither EW_PARTIAL nor EW_INTERVAL.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

ea_pack_object(3EXACCT), libexacct(3LIB)attributes(5)

Attributes

See Also

getacct(2)

man pages section 2: System Calls • Last Revised 20 Jan 2003102

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Dea-pack-object-3exacct
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibexacct-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

getcontext, setcontext – get and set current user context

#include <ucontext.h>

int getcontext(ucontext_t *ucp);

int setcontext(const ucontext_t *ucp);

The getcontext() function initializes the structure pointed to by ucp to the current user
context of the calling process. The ucontext_t type that ucp points to defines the user context
and includes the contents of the calling process' machine registers, the signal mask, and the
current execution stack.

The setcontext() function restores the user context pointed to by ucp. A successful call to
setcontext() does not return; program execution resumes at the point specified by the ucp
argument passed to setcontext(). The ucp argument should be created either by a prior call
to getcontext(), or by being passed as an argument to a signal handler. If the ucp argument
was created with getcontext(), program execution continues as if the corresponding call of
getcontext() had just returned. If the ucp argument was created with makecontext(3C),
program execution continues with the function passed to makecontext(3C). When that
function returns, the process continues as if after a call to setcontext() with the ucp
argument that was input to makecontext(3C). If the ucp argument was passed to a signal
handler, program execution continues with the program instruction following the instruction
interrupted by the signal. If the uc_link member of the ucontext_t structure pointed to by
the ucp argument is equal to 0, then this context is the main context, and the process will exit
when this context returns. The effects of passing a ucp argument obtained from any other
source are unspecified.

On successful completion, setcontext() does not return and getcontext() returns 0.
Otherwise, −1 is returned.

No errors are defined.

Portable applications should not modify or access the uc_mcontext member of ucontext_t. A
portable application cannot assume that context includes any process-wide static data,
possibly including errno. Users manipulating contexts should take care to handle these
explicitly when required.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

sigaction(2), sigaltstack(2), sigprocmask(2), bsd_signal(3C), makecontext(3C),
ucontext.h(3HEAD), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

getcontext(2)

System Calls 103

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amakecontext-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amakecontext-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amakecontext-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Absd-signal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amakecontext-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fucontext.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

getdents – read directory entries and put in a file system independent format

#include <dirent.h>

int getdents(int fildes, struct dirent *buf, size_t nbyte);

The getdents() function attempts to read nbyte bytes from the directory associated with the
file descriptor fildes and to format them as file system independent directory entries in the
buffer pointed to by buf. Since the file system independent directory entries are of variable
lengths, in most cases the actual number of bytes returned will be less than nbyte. The file
system independent directory entry is specified by the dirent structure. See
dirent.h(3HEAD).

On devices capable of seeking, getdents() starts at a position in the file given by the file
pointer associated with fildes. Upon return from getdents(), the file pointer is incremented
to point to the next directory entry.

Upon successful completion, a non-negative integer is returned indicating the number of
bytes actually read. A return value of 0 indicates the end of the directory has been reached.
Otherwise, −1 is returned and errno is set to indicate the error.

The getdents() function will fail if:

EBADF The fildes argument is not a valid file descriptor open for reading.

EFAULT The buf argument points to an illegal address.

EINVAL The nbyte argument is not large enough for one directory entry.

EIO An I/O error occurred while accessing the file system.

ENOENT The current file pointer for the directory is not located at a valid entry.

ENOLINK The fildes argument points to a remote machine and the link to that machine is
no longer active.

ENOTDIR The fildes argument is not a directory.

EOVERFLOW The value of the dirent structure member d_ino or d_off cannot be
represented in an ino_t or off_t.

The getdents() function was developed to implement the readdir(3C) function and should
not be used for other purposes.

The getdents() function has a transitional interface for 64-bit file offsets. See lf64(5).

readdir(3C), dirent.h(3HEAD), lf64(5)

Name

Synopsis

Description

Return Values

Errors

Usage

See Also

getdents(2)

man pages section 2: System Calls • Last Revised 17 Jul 2001104

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fdirent.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Areaddir-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Areaddir-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fdirent.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lf64-5

getgroups, setgroups – get or set supplementary group access list IDs

#include <unistd.h>

int getgroups(int gidsetsize, gid_t *grouplist);

int setgroups(int ngroups, const gid_t *grouplist);

The getgroups() function gets the current supplemental group access list of the calling
process and stores the result in the array of group IDs specified by grouplist. This array has
gidsetsize entries and must be large enough to contain the entire list. This list cannot be larger
than NGROUPS_MAX. If gidsetsize equals 0, getgroups() will return the number of groups to
which the calling process belongs without modifying the array pointed to by grouplist.

The setgroups() function sets the supplementary group access list of the calling process from
the array of group IDs specified by grouplist. The number of entries is specified by ngroups and
can not be greater than NGROUPS_MAX.

Upon successful completion, getgroups() returns the number of supplementary group IDs
set for the calling process and setgroups() returns 0. Otherwise, −1 is returned and errno is
set to indicate the error.

The getgroups() and setgroups() functions will fail if:

EFAULT A referenced part of the array pointed to by grouplist is an illegal address.

The getgroups() function will fail if:

EINVAL The value of gidsetsize is non-zero and less than the number of supplementary
group IDs set for the calling process.

The setgroups() function will fail if:

EINVAL The value of ngroups is greater than {NGROUPS_MAX}.

EPERM The {PRIV_PROC_SETID} privilege is not asserted in the effective set of the calling
process.

Use of the setgroups() function requires the {PRIV_PROC_SETID} privilege.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard For getgroups(), see standards(5).

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

getgroups(2)

System Calls 105

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

groups(1), chown(2), getuid(2), setuid(2), getgrnam(3C), initgroups(3C), attributes(5),
privileges(5), standards(5)

See Also

getgroups(2)

man pages section 2: System Calls • Last Revised 12 Nov 2009106

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1groups-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agetgrnam-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Ainitgroups-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

getisax – extract valid instruction set extensions

#include <sys/auxv.h>

uint_t getisax(uint32_t *array, uint_t n);

The getisax() function sets the vector array of n 32–bit integers to contain the bits from the
AV_xxx_yyy namespace of the given instruction set architecture.

Values for AV_xxx_yyy for SPARC and SPARCV9, and their associated descriptions, can be
found in <sys/auxv_SPARC.h>.

Values for AV_xxx_yyy for i386 and AMD64, and their associated descriptions, can be found
in <sys/auxv_386.h>.

The getisax() function returns the number of array elements that contain non-zero values.

EXAMPLE 1 Use getisax() to determine if the SSE2 instruction set is present.

In the following example, if the message is written, the SSE2 instruction set is present and fully
supportred by the operating system.

uint_t ui;

(void) getisax(&ui, 1);

if (ui & AV_386_SSE2)

printf("SSE2 instruction set extension is present.\n");

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

isainfo(1), ld(1), pargs(1), attributes(5)

Linker and Libraries Guide

SPARC Assembly Language Reference Manual

x86 Assembly Language Reference Manual

Name

Synopsis

Description

Return Values

Examples

Attributes

See Also

getisax(2)

System Calls 107

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1isainfo-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pargs-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=SPARC
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=X86

getitimer, setitimer – get or set value of interval timer

#include <sys/time.h>

int getitimer(int which, struct itimerval *value);

int setitimer(int which, const struct itimerval *value,
struct itimerval *ovalue);

The system provides each process with four interval timers, defined in <sys/time.h>. The
getitimer() function stores the current value of the timer specified by which into the
structure pointed to by value. The setitimer() function call sets the value of the timer
specified by which to the value specified in the structure pointed to by value, and if ovalue is
not NULL, stores the previous value of the timer in the structure pointed to by ovalue.

A timer value is defined by the itimerval structure (see gettimeofday(3C) for the definition
of timeval), which includes the following members:

struct timeval it_interval; /* timer interval */

struct timeval it_value; /* current value */

The it_value member indicates the time to the next timer expiration. The it_interval
member specifies a value to be used in reloading it_value when the timer expires. Setting
it_value to 0 disables a timer, regardless of the value of it_interval. Setting it_interval to
0 disables a timer after its next expiration (assuming it_value is non-zero).

Time values smaller than the resolution of the system clock are rounded up to the resolution
of the system clock, except for ITIMER_REALPROF, whose values are rounded up to the
resolution of the profiling clock. The four timers are as follows:

ITIMER_REAL Decrements in real time. A SIGALRM signal is delivered to the process
when this timer expires.

ITIMER_VIRTUAL Decrements in lightweight process (lwp) virtual time. It runs only when
the calling lwp is executing. A SIGVTALRM signal is delivered to the
calling lwp when it expires.

ITIMER_PROF Decrements both in lightweight process (lwp) virtual time and when
the system is running on behalf of the lwp. It is designed to be used by
interpreters in statistically profiling the execution of interpreted
programs. Each time the ITIMER_PROF timer expires, the SIGPROF
signal is delivered to the calling lwp. Because this signal may interrupt
in-progress functions, programs using this timer must be prepared to
restart interrupted functions.

ITIMER_REALPROF Decrements in real time. It is designed to be used for real-time profiling
of multithreaded programs. Each time the ITIMER_REALPROF timer
expires, one counter in a set of counters maintained by the system for
each lightweight process (lwp) is incremented. The counter
corresponds to the state of the lwp at the time of the timer tick. All lwps

Name

Synopsis

Description

getitimer(2)

man pages section 2: System Calls • Last Revised 15 Jun 2009108

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agettimeofday-3c

executing in user mode when the timer expires are interrupted into
system mode. When each lwp resumes execution in user mode, if any
of the elements in its set of counters are non-zero, the SIGPROF signal is
delivered to the lwp. The SIGPROF signal is delivered before any other
signal except SIGKILL. This signal does not interrupt any in-progress
function. A siginfo structure, defined in <sys/siginfo.h>, is
associated with the delivery of the SIGPROF signal, and includes the
following members:

si_tstamp; /* high resolution timestamp */

si_syscall; /* current syscall */

si_nsysarg; /* number of syscall arguments */

si_sysarg[]; /* actual syscall arguments */

si_fault; /* last fault type */

si_faddr; /* last fault address */

si_mstate[]; /* ticks in each microstate */

The enumeration of microstates (indices into si_mstate) is defined in
<sys/msacct.h>.

Unlike the other interval timers, the ITIMER_REALPROF interval timer is
not inherited across a call to one of the exec(2) family of functions.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The getitimer() and setitimer() functions will fail if:

EINVAL The specified number of seconds is greater than 100,000,000, the number of
microseconds is greater than or equal to 1,000,000, or the which argument is
unrecognized.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

alarm(2), exec(2), gettimeofday(3C), sleep(3C), sysconf(3C), attributes(5),
standards(5)

The setitimer() function is independent of the alarm(2) and sleep(3C) functions.

The ITIMER_PROF and ITIMER_REALPROF timers deliver the same signal and have different
semantics. They cannot be used together.

Return Values

Errors

Attributes

See Also

Notes

getitimer(2)

System Calls 109

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agettimeofday-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asleep-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asleep-3c

The granularity of the resolution of alarm time is platform-dependent.

getitimer(2)

man pages section 2: System Calls • Last Revised 15 Jun 2009110

getlabel, fgetlabel – get file sensitivity label

cc [flags...] file... -ltsol [library...]

#include <tsol/label.h>

int getlabel(const char *path, m_label_t *label_p);

int fgetlabel(int fd, m_label_t *label_p);

The getlabel() function obtains the sensitivity label of the file that is named by path.
Discretionary read, write or execute permission to the final component of path is not required,
but all directories in the path prefix of path must be searchable.

The fgetlabel() function obtains the label of an open file that is referred to by the argument
descriptor, such as would be obtained by an open(2) call.

The label_p argument is a pointer to an opaque label structure. The caller must allocate space
for label_p by using m_label_alloc(3TSOL).

Upon successful completion, getlabel() and fgetlabel() return 0. Otherwise they return
−1 and set errno to indicate the error.

The getlabel() function will fail if:

EACCES Search permission is denied for a component of the path prefix of path. To
override this restriction, the calling process can assert the
PRIV_FILE_DAC_SEARCH privilege.

EFAULT label_p or path points to an invalid address.

EINVAL Unable to get the label; this may occur if path or fd is not a regular file or
directory, or if there is an unexpected error with the file.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or a pathname
component is longer than NAME_MAX while _POSIX_NO_TRUNC is in effect
(see pathconf(2)).

ENOENT The file referred to by path does not exist.

ENOTDIR A component of the path prefix of path is not a directory.

The fgetlabel() function will fail if:

EBADF The fd argument is not a valid open file descriptor.

EFAULT The label_p argument points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file system.

Name

Synopsis

Description

Return Values

Errors

getlabel(2)

System Calls 111

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Im-label-alloc-3tsol

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

open(2), pathconf(2), m_label_alloc(3TSOL), attributes(5), labels(5)

“Obtaining a File Label” in Trusted Extensions Developer’s Guide

The functionality described on this manual page is available only if the system is configured
with Trusted Extensions.

Attributes

See Also

Notes

getlabel(2)

man pages section 2: System Calls • Last Revised 15 Jun 2012112

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Im-label-alloc-3tsol
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5labels-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=TRSOLDEVlabelcode-11

getmsg, getpmsg – get next message off a stream

#include <stropts.h>

int getmsg(int fildes, struct strbuf *restrict ctlptr,
struct strbuf *restrict dataptr, int *restrict flagsp);

int getpmsg(int fildes, struct strbuf *restrict ctlptr,
struct strbuf *restrict dataptr, int *restrict bandp,
int *restrict flagsp);

The getmsg() function retrieves the contents of a message (see Intro(2)) located at the stream
head read queue from a STREAMS file, and places the contents into user specified buffer(s).
The message must contain either a data part, a control part, or both. The data and control
parts of the message are placed into separate buffers, as described below. The semantics of
each part is defined by the STREAMS module that generated the message.

The getpmsg() function behaved like getmsg(), but provides finer control over the priority of
the messages received. Except where noted, all information pertaining to getmsg() also
pertains to getpmsg().

The fildes argument specifies a file descriptor referencing an open stream. The ctlptr and
dataptr arguments each point to a strbuf structure, which contains the following members:

int maxlen; /* maximum buffer length */

int len; /* length of data */

char *buf; /* ptr to buffer */

The buf member points to a buffer into which the data or control information is to be placed,
and the maxlen member indicates the maximum number of bytes this buffer can hold. On
return, the len member contains the number of bytes of data or control information actually
received; 0 if there is a zero-length control or data part; or −1 if no data or control information
is present in the message. The flagsp argument should point to an integer that indicates the
type of message the user is able to receive, as described below.

The ctlptr argument holds the control part from the message and the dataptr argument holds
the data part from the message. If ctlptr (or dataptr) is NULL or the maxlen member is −1, the
control (or data) part of the message is not processed and is left on the stream head read
queue. If ctlptr (or dataptr) is not NULL and there is no corresponding control (or data) part of
the messages on the stream head read queue, len is set to −1. If the maxlen member is set to 0
and there is a zero-length control (or data) part, that zero-length part is removed from the
read queue and len is set to 0. If the maxlen member is set to 0 and there are more than zero
bytes of control (or data) information, that information is left on the read queue and len is set
to 0. If the maxlen member in ctlptr or dataptr is less than, respectively, the control or data part
of the message, maxlen bytes are retrieved. In this case, the remainder of the message is left on
the stream head read queue and a non-zero return value is provided, as described below under
RETURN VALUES.

Name

Synopsis

Description

getmsg(2)

System Calls 113

By default, getmsg() processes the first available message on the stream head read queue. A
user may, however, choose to retrieve only high priority messages by setting the integer
pointed to by flagsp to RS_HIPRI. In this case, getmsg() processes the next message only if it is
a high priority message.

If the integer pointed to by flagsp is 0, getmsg() retrieves any message available on the stream
head read queue. In this case, on return, the integer pointed to by flagsp will be set to RS_HIPRI

if a high priority message was retrieved, or to 0 otherwise.

For getpmsg(), the flagsp argument points to a bitmask with the following mutually-exclusive
flags defined: MSG_HIPRI, MSG_BAND, and MSG_ANY. Like getmsg(), getpmsg() processes the
first available message on the stream head read queue. A user may choose to retrieve only
high-priority messages by setting the integer pointed to by flagsp to MSG_HIPRI and the integer
pointed to by bandp to 0. In this case, getpmsg() will only process the next message if it is a
high-priority message. In a similar manner, a user may choose to retrieve a message from a
particular priority band by setting the integer pointed to by flagsp to MSG_BAND and the integer
pointed to by bandp to the priority band of interest. In this case, getpmsg() will only process
the next message if it is in a priority band equal to, or greater than, the integer pointed to by
bandp, or if it is a high-priority message. If a user just wants to get the first message off the
queue, the integer pointed to by flagsp should be set to MSG_ANY and the integer pointed to by
bandp should be set to 0. On return, if the message retrieved was a high-priority message, the
integer pointed to by flagsp will be set to MSG_HIPRI and the integer pointed to by bandp will
be set to 0. Otherwise, the integer pointed to by flagsp will be set to MSG_BAND and the integer
pointed to by bandp will be set to the priority band of the message.

If O_NDELAY and O_NONBLOCK are clear, getmsg() blocks until a message of the type specified by
flagsp is available on the stream head read queue. If O_NDELAY or O_NONBLOCK has been set and
a message of the specified type is not present on the read queue, getmsg() fails and sets errno
to EAGAIN.

If a hangup occurs on the stream from which messages are to be retrieved, getmsg() continues
to operate normally, as described above, until the stream head read queue is empty.
Thereafter, it returns 0 in the len member of ctlptr and dataptr.

Upon successful completion, a non-negative value is returned. A return value of 0 indicates
that a full message was read successfully. A return value of MORECTL indicates that more
control information is waiting for retrieval. A return value of MOREDATA indicates that more
data are waiting for retrieval. A return value of MORECTL | MOREDATA indicates that both types of
information remain. Subsequent getmsg() calls retrieve the remainder of the message.
However, if a message of higher priority has been received by the stream head read queue, the
next call to getmsg() will retrieve that higher priority message before retrieving the remainder
of the previously received partial message.

Return Values

getmsg(2)

man pages section 2: System Calls • Last Revised 1 Nov 2001114

The getmsg() and getpmsg() functions will fail if:

EAGAIN The O_NDELAY or O_NONBLOCK flag is set and no messages are available.

EBADF The fildes argument is not a valid file descriptor open for reading.

EBADMSG Queued message to be read is not valid for getmsg.

EFAULT The ctlptr, dataptr, bandp, or flagsp argument points to an illegal address.

EINTR A signal was caught during the execution of the getmsg function.

EINVAL An illegal value was specified in flagsp, or the stream referenced by fildes is linked
under a multiplexor.

ENOSTR A stream is not associated with fildes.

The getmsg() function can also fail if a STREAMS error message had been received at the
stream head before the call to getmsg(). The error returned is the value contained in the
STREAMS error message.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

Intro(2), poll(2), putmsg(2), read(2), write(2), attributes(5), standards(5)

STREAMS Programming Guide

Errors

Attributes

See Also

getmsg(2)

System Calls 115

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=STREAMS

getpflags, setpflags – get or set process flags

#include <sys/types.h>

#include <priv.h>

uint_t getpflags(uint_t flag);

int setpflags(uint_t flag, uint_t value);

The getpflags() and setpflags() functions obtain and modify the current per-process
flags.

The following values for flag are supported:

PRIV_AWARE

This one bit flag takes the value of 0 (unset) or 1 (set). Only if this flag is set is the current
process privilege-aware. A process can attempt to unset this flag but might fail silently if the
observed set invariance condition cannot be met. Setting this flag is always successful. See
privileges(5) for a discussion of this flag.

PRIV_AWARE_RESET

This one bit flag takes the value of 0 (unset) or 1 (set). This causes a process to pretend it is
non- privilege aware. The effective and permitted privilege set change on the change of the
effective uid. When all the uid sets become the same through setuid(uid) or through
setreuid(uid, uid), the effective and permitted set are set to the intersection between the
limit set and the inheritable set. At that point, both PRIV_AWARE and PRIV_AWARE_RESET are
unset.

This flag gets automatically reset when a file becomes privilege aware, either through
calling setppriv(2) or by setting PRIV_AWARE to 1.

PRIV_DEBUG

This one bit flag takes the value of 0 (unset) or 1 (set). Only if this flag is set does the current
process have privilege debugging enabled. Processes can set and unset this flag at will.

PRIV_PFEXEC

This one-bit flag takes the value of 0 (unset) or 1 (set). Only if this flag is set is the current
process a profile shell. Every time exec(2) is called, the exec_attr(4) database for the
current user's profiles database is queried and the appropriate attributes are applied to the
new program. PRIV_PFEXEC is inherited except when the real UID is changed as a result of
the applied attributes.

PRIV_XPOLICY

This one-bit flag takes the value of 0 (unset) or 1 (set). Only if this flag is set does the current
process honor its Extended Policy (see privileges(5)).

NET_MAC_AWARE

NET_MAC_AWARE_INHERIT

Name

Synopsis

Description

getpflags(2)

man pages section 2: System Calls • Last Revised 15 Mar 2012116

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4exec-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

These flags are available only if the system is configured with Trusted Extensions. These
one bit flags each take the value of 0 (unset) or 1 (set). If the NET_MAC_AWARE flag is set then
the current process is allowed to communicate with peers at labels that are different than its
own, subject to MAC policy.

The NET_MAC_AWARE_INHERIT flag controls the propagation of the NET_MAC_AWARE flag.
When a process performs one of the exec(2) functions, the NET_MAC_AWARE flag is unset
unless the NET_MAC_AWARE_INHERIT is set. NET_MAC_AWARE_INHERIT is always unset on one
of the exec functions. The PRIV_NET_MAC_AWARE privilege is required to set either of these
flags.

The getpflags() returns the value associated with a given per-process flag. If the flag
argument is invalid, (uint_t)-1 is returned and errno is set to indicate the error.

Upon successful completion, setpflags() returns 0. Otherwise, -1 is returned and errno is
set to indicate the error.

The getpflags() and setpflags() functions will fail if:

EINVAL The value of flag or the value to which the flag is set is out of range.

The setpflags() function will fail if:

EPERM An attempt was made to unset PRIV_AWARE but the observed set invariance
condition was not met.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

ppriv(1), setppriv(2), attributes(5), privileges(5)

Return Values

Errors

Attributes

See Also

getpflags(2)

System Calls 117

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ppriv-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

getpid, getpgrp, getppid, getpgid – get process, process group, and parent process IDs

#include <unistd.h>

pid_t getpid(void);

pid_t getpgrp(void);

pid_t getppid(void);

pid_t getpgid(pid_t pid);

The getpid() function returns the process ID of the calling process.

The getpgrp() function returns the process group ID of the calling process.

The getppid() function returns the parent process ID of the calling process.

The getpgid() function returns the process group ID of the process whose process ID is equal
to pid, or the process group ID of the calling process, if pid is equal to 0.

The getpid(), getpgrp(), and getppid() functions are always successful and no return value
is reserved to indicate an error.

Upon successful completion, getpgid() returns the process group ID. Otherwise, getpgid()
returns (pid_t)−1 and sets errno to indicate the error.

The getpgid() function will fail if:

EPERM The process whose process ID is equal to pid is not in the same session as the calling
process, and the implementation does not allow access to the process group ID of
that process from the calling process.

ESRCH There is no process with a process ID equal to pid.

The getpgid() function may fail if:

EINVAL The value of the pid argument is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Attributes

getpid(2)

man pages section 2: System Calls • Last Revised 27 Jan 2009118

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

Intro(2), exec(2), fork(2), getsid(2), setpgid(2), setpgrp(2), setsid(2), signal(3C),
attributes(5), standards(5)

See Also

getpid(2)

System Calls 119

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

getppriv, setppriv – get or set a privilege set

#include <priv.h>

int getppriv(priv_ptype_t which, priv_set_t *set);

int setppriv(priv_op_t op, priv_ptype_t which, priv_set_t *set);

The getppriv() function returns the process privilege set specified by which in the set pointed
to by set. The memory for set must first be allocated with priv_allocset() and later freed
with priv_freeset(). Both functions are documented on the priv_addset(3C) manual page.

The setppriv() function sets or changes the process privilege set. The op argument specifies
the operation and can be one of PRIV_OFF, PRIV_ON or PRIV_SET. The which argument
specifies the name of the privilege set. The set argument specifies the set.

If op is PRIV_OFF, the privileges in set are removed from the process privilege set specified by
which. There are no restrictions on removing privileges from process privileges sets, but the
following apply:

■ Privileges removed from PRIV_PERMITTED are silently removed from PRIV_EFFECTIVE.
■ If privileges are removed from PRIV_LIMIT, they are not removed from the other sets until

one of exec(2) functions has successfully completed.

If op is PRIV_ON, the privileges in set are added to the process privilege set specified by which.
The following operations are permitted:

■ Privileges in PRIV_PERMITTED can be added to PRIV_EFFECTIVE without restriction.
■ Privileges in PRIV_PERMITTED can be added to PRIV_INHERITABLE without restriction.
■ All operations that attempt to add privileges that are already present are permitted.

If op is PRIV_SET, the privileges in set replace completely the process privilege set specified by
which. PRIV_SET is implemented in terms of PRIV_OFF and PRIV_ON. The same restrictions
apply.

Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno is set to
indicate the error.

The getppriv() and setppriv() functions will fail if:

EINVAL The value of op or which is out of range.

EFAULT The set argument points to an illegal address.

The setppriv() function will fail if:

EPERM The application attempted to add privileges to PRIV_LIMIT or PRIV_PERMITTED, or
the application attempted to add privileges to PRIV_INHERITABLE or
PRIV_EFFECTIVE which were not in PRIV_PERMITTED.

Name

Synopsis

Description

Return Values

Errors

getppriv(2)

man pages section 2: System Calls • Last Revised 27 May 2011120

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apriv-addset-3c

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

priv_addset(3C), attributes(5), privileges(5)

Attributes

See Also

getppriv(2)

System Calls 121

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apriv-addset-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

getrlimit, setrlimit – control maximum system resource consumption

#include <sys/resource.h>

int getrlimit(int resource, struct rlimit *rlp);

int setrlimit(int resource, const struct rlimit *rlp);

Limits on the consumption of a variety of system resources by a process and each process it
creates may be obtained with the getrlimit() and set with setrlimit() functions.

Each call to either getrlimit() or setrlimit() identifies a specific resource to be operated
upon as well as a resource limit. A resource limit is a pair of values: one specifying the current
(soft) limit, the other a maximum (hard) limit. Soft limits may be changed by a process to any
value that is less than or equal to the hard limit. A process may (irreversibly) lower its hard
limit to any value that is greater than or equal to the soft limit. Only a process with
{PRIV_SYS_RESOURCE} asserted in the effective set can raise a hard limit. Both hard and soft
limits can be changed in a single call to setrlimit() subject to the constraints described
above. Limits may have an “infinite” value of RLIM_INFINITY. The rlp argument is a pointer to
struct rlimit that includes the following members:

rlim_t rlim_cur; /* current (soft) limit */

rlim_t rlim_max; /* hard limit */

The type rlim_t is an arithmetic data type to which objects of type int, size_t, and off_t can
be cast without loss of information.

The possible resources, their descriptions, and the actions taken when the current limit is
exceeded are summarized as follows:

RLIMIT_CORE The maximum size of a core file in bytes that may be created by a process.
A limit of 0 will prevent the creation of a core file. The writing of a core file
will terminate at this size.

RLIMIT_CPU The maximum amount of CPU time in seconds used by a process. This is
a soft limit only. The SIGXCPU signal is sent to the process. If the process is
holding or ignoring SIGXCPU, the behavior is scheduling class defined.

RLIMIT_DATA The maximum size of a process's heap in bytes. The brk(2) function will
fail with errno set to ENOMEM.

RLIMIT_FSIZE The maximum size of a file in bytes that may be created by a process. A
limit of 0 will prevent the creation of a file. The SIGXFSZ signal is sent to
the process. If the process is holding or ignoring SIGXFSZ, continued
attempts to increase the size of a file beyond the limit will fail with errno

set to EFBIG.

RLIMIT_NOFILE One more than the maximum value that the system may assign to a newly
created descriptor. This limit constrains the number of file descriptors
that a process may create.

Name

Synopsis

Description

getrlimit(2)

man pages section 2: System Calls • Last Revised 21 Aug 2006122

RLIMIT_STACK The maximum size of a process's stack in bytes. The system will not
automatically grow the stack beyond this limit.

Within a process, setrlimit() will increase the limit on the size of your
stack, but will not move current memory segments to allow for that
growth. To guarantee that the process stack can grow to the limit, the
limit must be altered prior to the execution of the process in which the
new stack size is to be used.

Within a multithreaded process, setrlimit() has no impact on the stack
size limit for the calling thread if the calling thread is not the main thread.
A call to setrlimit() for RLIMIT_STACK impacts only the main thread's
stack, and should be made only from the main thread, if at all.

The SIGSEGV signal is sent to the process. If the process is holding or
ignoring SIGSEGV, or is catching SIGSEGV and has not made arrangements
to use an alternate stack (see sigaltstack(2)), the disposition of SIGSEGV
will be set to SIG_DFL before it is sent.

RLIMIT_VMEM The maximum size of a process's mapped address space in bytes. If this
limit is exceeded, the brk(2) and mmap(2) functions will fail with errno set
to ENOMEM. In addition, the automatic stack growth will fail with the effects
outlined above.

RLIMIT_AS This is the maximum size of a process's total available memory, in bytes. If
this limit is exceeded, the brk(2), malloc(3C), mmap(2) and sbrk(2)
functions will fail with errno set to ENOMEM. In addition, the automatic
stack growth will fail with the effects outlined above.

Because limit information is stored in the per-process information, the shell builtin ulimit

command must directly execute this system call if it is to affect all future processes created by
the shell.

The value of the current limit of the following resources affect these implementation defined
parameters:

Limit Implementation Defined Constant

RLIMIT_FSIZE FCHR_MAX

RLIMIT_NOFILE OPEN_MAX

When using the getrlimit() function, if a resource limit can be represented correctly in an
object of type rlim_t, then its representation is returned; otherwise, if the value of the
resource limit is equal to that of the corresponding saved hard limit, the value returned is
RLIM_SAVED_MAX; otherwise the value returned is RLIM_SAVED_CUR.

getrlimit(2)

System Calls 123

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amalloc-3c

When using the setrlimit() function, if the requested new limit is RLIM_INFINITY, the new
limit will be ”no limit”; otherwise if the requested new limit is RLIM_SAVED_MAX, the new limit
will be the corresponding saved hard limit; otherwise, if the requested new limit is
RLIM_SAVED_CUR, the new limit will be the corresponding saved soft limit; otherwise, the new
limit will be the requested value. In addition, if the corresponding saved limit can be
represented correctly in an object of type rlim_t, then it will be overwritten with the new
limit.

The result of setting a limit to RLIM_SAVED_MAX or RLIM_SAVED_CUR is unspecified unless a
previous call to getrlimit() returned that value as the soft or hard limit for the
corresponding resource limit.

A limit whose value is greater than RLIM_INFINITY is permitted.

The exec family of functions also cause resource limits to be saved. See exec(2).

Upon successful completion, getrlimit() and setrlimit() return 0. Otherwise, these
functions return −1 and set errno to indicate the error.

The getrlimit() and setrlimit() functions will fail if:

EFAULT The rlp argument points to an illegal address.

EINVAL An invalid resource was specified; or in a setrlimit() call, the new rlim_cur

exceeds the new rlim_max.

EPERM The limit specified to setrlimit() would have raised the maximum limit value
and {PRIV_SYS_RESOURCE} is not asserted in the effective set of the current process.

The setrlimit() function may fail if:

EINVAL The limit specified cannot be lowered because current usage is already higher than
the limit.

The getrlimit() and setrlimit() functions have transitional interfaces for 64-bit file
offsets. See lf64(5).

The rlimit functionality is now provided by the more general resource control facility
described on the setrctl(2) manual page. The actions associated with the resource limits
described above are true at system boot, but an administrator can modify the local
configuration to modify signal delivery or type. Application authors that utilize rlimits for the
purposes of resource awareness should investigate the resource controls facility.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

Return Values

Errors

Usage

Attributes

getrlimit(2)

man pages section 2: System Calls • Last Revised 21 Aug 2006124

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

rctladm(1M), brk(2), exec(2), fork(2), open(2), setrctl(2), sigaltstack(2), ulimit(2),
getdtablesize(3C), malloc(3C), signal(3C), signal.h(3HEAD), sysconf(3C),
attributes(5), lf64(5), privileges(5), resource_controls(5), standards(5)

See Also

getrlimit(2)

System Calls 125

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mrctladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agetdtablesize-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5resource-controls-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

getsid – get process group ID of session leader

#include <unistd.h>

pid_t getsid(pid_t pid);

The getsid() function obtains the process group ID of the process that is the session leader of
the process specified by pid. If pid is (pid_t) 0, it specifies the calling process.

Upon successful completion, getsid() returns the process group ID of the session leader of
the specified process. Otherwise, it returns (pid_t)−1 and sets errno to indicate the error.

The getsid() function will fail if:

EPERM The process specified by pid is not in the same session as the calling process, and the
implementation does not allow access to the process group ID of the session leader
of that process from the calling process.

ESRCH There is no process with a process ID equal to pid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

exec(2), fork(2), getpid(2), getpgid(2), setpgid(2), setsid(2), attributes(5),
standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

getsid(2)

man pages section 2: System Calls • Last Revised 22 Jan 1996126

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

getuid, geteuid, getgid, getegid – get real user, effective user, real group, and effective group
IDs

#include <sys/types.h>

#include <unistd.h>

uid_t getuid(void);

uid_t geteuid(void);

gid_t getgid(void);

gid_t getegid(void);

The getuid() function returns the real user ID of the calling process. The real user ID
identifies the person who is logged in.

The geteuid() function returns the effective user ID of the calling process. The effective user
ID gives the process various permissions during execution of “set-user-ID” mode processes
which use getuid() to determine the real user ID of the process that invoked them.

The getgid() function returns the real group ID of the calling process.

The getegid() function returns the effective group ID of the calling process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

Intro(2), setuid(2), attributes(5), standards(5)

Name

Synopsis

Description

Attributes

See Also

getuid(2)

System Calls 127

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

getustack, setustack – retrieve or change the address of per-LWP stack boundary information

#include <ucontext.h>

int getustack(stack_t **spp);

int setustack(stack_t *sp);

The getustack() function retrieves the address of per-LWP stack boundary information. The
address is stored at the location pointed to by spp. If this address has not been defined using a
previous call to setustack(), NULL is stored at the location pointed to by spp.

The setustack() function changes the address of the current thread's stack boundary
information to the value of sp.

Upon successful completion, these functions return 0. Otherwise, −1 is returned and errno is
set to indicate the error.

These functions will fail if:

EFAULT The spp or sp argument does not refer to a valid address.

Only implementors of custom threading libraries should use these functions to get and set the
address of the stack bound to an internal per-thread data structure. Other users should use
stack_getbounds(3C) and stack_setbounds(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

_stack_grow(3C), stack_getbounds(3C), stack_inbounds(3C), stack_setbounds(3C),
stack_violation(3C), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

getustack(2)

man pages section 2: System Calls • Last Revised 2 Nov 2004128

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Astack-getbounds-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Astack-setbounds-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Au-stack-grow-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Astack-getbounds-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Astack-inbounds-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Astack-setbounds-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Astack-violation-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ioctl – control device

#include <unistd.h>

#include <stropts.h>

int ioctl(int fildes, int request, /* arg */ ...);

The ioctl() function performs a variety of control functions on devices and streams. For
non-streams files, the functions performed by this call are device-specific control functions.
The request argument and an optional third argument with varying type are passed to the file
designated by fildes and are interpreted by the device driver.

For streams files, specific functions are performed by the ioctl() function as described in
streamio(7I).

The fildes argument is an open file descriptor that refers to a device. The request argument
selects the control function to be performed and depends on the device being addressed. The
arg argument represents a third argument that has additional information that is needed by
this specific device to perform the requested function. The data type of arg depends upon the
particular control request, but it is either an int or a pointer to a device-specific data structure.

In addition to device-specific and streams functions, generic functions are provided by more
than one device driver (for example, the general terminal interface.) See termio(7I)).

Upon successful completion, the value returned depends upon the device control function,
but must be a non-negative integer. Otherwise, −1 is returned and errno is set to indicate the
error.

The ioctl() function will fail for any type of file if:

EBADF The fildes argument is not a valid open file descriptor.

EINTR A signal was caught during the execution of the ioctl() function.

EINVAL The stream or multiplexer referenced by fildes is linked (directly or indirectly)
downstream from a multiplexer.

The ioctl() function will also fail if the device driver detects an error. In this case, the error is
passed through ioctl() without change to the caller. A particular driver might not have all of
the following error cases. Under the following conditions, requests to device drivers may fail
and set errno to indicate the error

EFAULT The request argument requires a data transfer to or from a buffer pointed to by
arg, but arg points to an illegal address.

EINVAL The request or arg argument is not valid for this device.

EIO Some physical I/O error has occurred.

ENOLINK The fildes argument is on a remote machine and the link to that machine is no
longer active.

Name

Synopsis

Description

Return Values

Errors

ioctl(2)

System Calls 129

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7streamio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7termio-7i

ENOTTY The fildes argument is not associated with a streams device that accepts control
functions.

ENXIO The request and arg arguments are valid for this device driver, but the service
requested can not be performed on this particular subdevice.

ENODEV The fildes argument refers to a valid streams device, but the corresponding device
driver does not support the ioctl() function.

Streams errors are described in streamio(7I).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

attributes(5), standards(5), streamio(7I), termio(7I)

Attributes

See Also

ioctl(2)

man pages section 2: System Calls • Last Revised 15 Feb 1996130

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7streamio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7streamio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7termio-7i

issetugid – determine if current executable is running setuid or setgid

#include <unistd.h>

int issetugid(void);

The issetugid() function enables library functions (in libtermlib, libc, or other libraries)
to guarantee safe behavior when used in setuid or setgid programs or programs that run
with more privileges after a succesful exec(2). Some library functions might be passed
insufficient information and not know whether the current program was started setuid or
setgid because a higher level calling code might have made changes to the uid, euid, gid, or
egid. These low-level library functions are therefore unable to determine if they are being run
with elevated or normal privileges.

The issetugid() function should be used to determine if a path name returned from a
getenv(3C) call can be used safely to open the specified file. It is often not safe to open such a
file because the status of the effective uid is not known.

The result of a call to issetugid() is unaffected by calls to setuid(), setgid(), or other such
calls. In case of a call to fork(2), the child process inherits the same status.

The status of issetugid() is affected only by execve() (see exec(2)). If a child process
executes a new executable file, a new issetugid() status will be based on the existing process's
uid, euid, gid, and egid permissions and on the modes of the executable file. If the new
executable file modes are setuid or setgid, or if the existing process is executing the new
image with uid != euid or gid != egid, or if the permitted set before the call to the exec
function is not a superset of the inheritable set at that time, issetugid() returns 1 in the new
process.

The issetugid() function returns 1 if the process was made setuid or setgid as the result of
the last or a previous call to execve(). Otherwise it returns 0.

The issetugid() function is always successful. No return value is reserved to indicate an
error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

exec(2), fork(2), setuid(2), getenv(3C), attributes(5), privileges(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

issetugid(2)

System Calls 131

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agetenv-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agetenv-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

kill – send a signal to a process or a group of processes

#include <sys/types.h>

#include <signal.h>

int kill(pid_t pid, int sig);

The kill() function sends a signal to a process or a group of processes. The process or group
of processes to which the signal is to be sent is specified by pid. The signal that is to be sent is
specified by sig and is either one from the list given in signal (see signal.h(3HEAD)), or 0. If
sig is 0 (the null signal), error checking is performed but no signal is actually sent. This can be
used to check the validity of pid.

The real or effective user ID of the sending process must match the real or saved (from one of
functions in the exec(2) family) user ID of the receiving process, unless the privilege
{PRIV_PROC_OWNER} is asserted in the effective set of the sending process (see Intro(2)), or sig
is SIGCONT and the sending process has the same session ID as the receiving process. A process
needs the basic privilege {PRIV_PROC_SESSION} to send signals to a process with a different
session ID. See privileges(5).

If pid is greater than 0, sig will be sent to the process whose process ID is equal to pid.

If pid is negative but not (pid_t)−1, sig will be sent to all processes whose process group ID is
equal to the absolute value of pid and for which the process has permission to send a signal.

If pid is 0, sig will be sent to all processes excluding special processes (see Intro(2)) whose
process group ID is equal to the process group ID of the sender.

If pid is (pid_t)−1 and the {PRIV_PROC_OWNER} privilege is not asserted in the effective set of
the sending process, sig will be sent to all processes excluding special processes whose real user
ID is equal to the effective user ID of the sender.

If pid is (pid_t)−1 and the {PRIV_PROC_OWNER} privilege is asserted in the effective set of the
sending process, sig will be sent to all processes excluding special processes.

Upon successful completion, 0 is returned. Otherwise, −1 is returned, no signal is sent, and
errno is set to indicate the error.

The kill() function will fail if:

EINVAL The sig argument is not a valid signal number.

EPERM The sig argument is SIGKILL and the pid argument is (pid_t)-1 (that is, the
calling process does not have permission to send the signal to any of the processes
specified by pid).

The effective user of the calling process does not match the real or saved user and
the calling process does not have the {PRIV_PROC_OWNER} privilege asserted in the
effective set, and the calling process either is not sending SIGCONT to a process that

Name

Synopsis

Description

Return Values

Errors

kill(2)

man pages section 2: System Calls • Last Revised 22 Mar 2004132

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

shares the same session ID or does not have the {PRIV_PROC_SESSION} privilege
asserted and is trying to send a signal to a process with a different session ID.

ESRCH No process or process group can be found corresponding to that specified by pid.

The sigsend(2) function provides a more versatile way to send signals to processes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

kill(1), Intro(2), exec(2), getpid(2), getsid(2), setpgrp(2), sigaction(2), sigsend(2),
signal(3C), signal.h(3HEAD), attributes(5), privileges(5), standards(5)

Usage

Attributes

See Also

kill(2)

System Calls 133

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1kill-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

link, linkat – link to a file

#include <unistd.h>

int link(const char *path1, const char *path2);

int linkat(int fd1, const char *path1, int fd2, const char *path2,
int flag);

The link() function creates a new link (directory entry) for the existing file and increments
its link count by one. The path1 argument points to a path name naming an existing file. The
path2 argument points to a pathname naming the new directory entry to be created.

To create hard links, both files must be on the same file system. Both the old and the new link
share equal access and rights to the underlying object. Privileged processes can make multiple
links to a directory. Unless the caller is privileged, the file named by path1 must not be a
directory.

Upon successful completion, link() marks for update the st_ctime field of the file. Also, the
st_ctime and st_mtime fields of the directory that contains the new entry are marked for
update.

If link() fails, no link is created and the link count of the file remains unchanged.

The linkat() function is equivalent to link() except in the case where either path1 or path2
or both are relative paths. In this case a relative path path1 is interpreted relative to the
directory associated with the file descriptor fd1 instead of the current working directory and
similarly for path2 and the file descriptor fd2. If the file descriptor was opened without
O_SEARCH, the function checks whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was opened
with O_SEARCH, the function does not perform the check.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list,
defined in <fcntl.h>.

AT_SYMLINK_FOLLOW If path1 names a symbolic link, a new link for the target of the
symbolic link is created.

If linkat() is passed the special value AT_FDCWD in the fd1 or fd2 parameter, the current
working directory is used for the respective path argument. If both fd1 and fd2 have value
AT_FDCWD, the behavior is identical to a call to link().

If the AT_SYMLINK_FOLLOW flag is clear in the flag argument and the path1 argument names a
symbolic link, a new link is created for the symbolic link path1 and not its target.

Upon successful completion, 0 is returned. Otherwise, −1 is returned, no link is created, and
errno is set to indicate the error.

Name

Synopsis

Description

Return Values

link(2)

man pages section 2: System Calls • Last Revised 5 May 2011134

The link() and linkat() functions will fail if:

EACCES A component of either path prefix denies search permission, or the
requested link requires writing in a directory with a mode that denies write
permission.

EDQUOT The directory where the entry for the new link is being placed cannot be
extended because the user's quota of disk blocks on that file system has
been exhausted.

EEXIST The link named by path2 exists.

EFAULT The path1 or path2 argument points to an illegal address.

EILSEQ The path argument includes non-UTF8 characters and the file system
accepts only file names where all characters are part of the UTF-8 character
codeset.

EINTR A signal was caught during the execution of the link() function.

ELOOP Too many symbolic links were encountered in translating path.

EMLINK The maximum number of links to a file would be exceeded.

ENAMETOOLONG The length of the path1 or path2 argument exceeds PATH_MAX, or the length
of a path1 or path2 component exceeds NAME_MAX while _POSIX_NO_TRUNC
is in effect.

ENOENT The path1 or path2 argument is a null pathname; a component of either
path prefix does not exist; or the file named by path1 does not exist.

ENOLINK The path1 or path2 argument points to a remote machine and the link to
that machine is no longer active.

ENOSPC The directory that would contain the link cannot be extended.

ENOTDIR A component of either path prefix is not a directory.

EPERM The file named by path1 is a directory and the {PRIV_SYS_LINKDIR}
privilege is not asserted in the effective set of the calling process.

The effective user ID does not match the owner of the file and the
{PRIV_FILE_LINK_ANY} privilege is not asserted in the effective set of the
calling process.

EROFS The requested link requires writing in a directory on a read-only file
system.

The file named by path1 is read-only because of the mwac(5) policy.

EXDEV The link named by path2 and the file named by path1 are on different
logical devices (file systems).

Errors

link(2)

System Calls 135

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5mwac-5

The linkat() function will fail if:

EBADF The path1 or path2 argument does not specify an absolute path and the fd1 or fd2
argument, respectively, is neither AT_FDCWD nor a valid file descriptor open for
reading.

The link() and linkat() functions may fail if:

ELOOP More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path1 or path2 argument.

ENAMETOOLONG The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

EXDEV The link named by path2 and the file named by path1 are on different
logical devices (file systems).

The linkat() function may fail if:

EINVAL The value of the flag argument is not valid.

ENOTDIR The path1 or path2 argument is not an absolute path and fd1 or fd2, respectively,
is neither AT_FDCWD nor a file descriptor associated with a directory.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

symlink(2), unlink(2), attributes(5), mwac(5), privileges(5), standards(5)

Attributes

See Also

link(2)

man pages section 2: System Calls • Last Revised 5 May 2011136

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5mwac-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

llseek – move extended read/write file pointer

#include <sys/types.h>

#include <unistd.h>

offset_t llseek(int fildes, offset_t offset, int whence);

The llseek() function sets the 64-bit extended file pointer associated with the open file
descriptor specified by fildes as follows:

■ If whence is SEEK_SET, the pointer is set to offset bytes.
■ If whence is SEEK_CUR, the pointer is set to its current location plus offset.
■ If whence is SEEK_END, the pointer is set to the size of the file plus offset.
■ If whence is SEEK_HOLE, the offset of the start of the next hole greater than or equal to the

supplied offset is returned. The definition of a hole immediately follows this list.
■ If whence is SEEK_DATA, the file pointer is set to the start of the next non-hole file region

greater than or equal to the supplied offset.

A “hole” is defined as a contiguous range of bytes in a file, all having the value of zero, but not
all zeros in a file are guaranteed to be represented as holes returned with SEEK_HOLE.
Filesystems are allowed to expose ranges of zeros with SEEK_HOLE, but not required to.
Applications can use SEEK_HOLE to optimise their behavior for ranges of zeros, but must not
depend on it to find all such ranges in a file. The existence of a hole at the end of every data
region allows for easy programming and implies that a virtual hole exists at the end of the file.

For filesystems that do not supply information about holes, the file will be represented as one
entire data region.

Although each file has a 64-bit file pointer associated with it, some existing file system types
(such as tmpfs) do not support the full range of 64-bit offsets. In particular, on such file
systems, non-device files remain limited to offsets of less than two gigabytes. Device drivers
may support offsets of up to 1024 gigabytes for device special files.

Some devices are incapable of seeking. The value of the file pointer associated with such a
device is undefined.

Upon successful completion, llseek() returns the resulting pointer location as measured in
bytes from the beginning of the file. Remote file descriptors are the only ones that allow
negative file pointers. Otherwise, −1 is returned, the file pointer remains unchanged, and
errno is set to indicate the error.

The llseek() function will fail if:

EBADF The fildes argument is not an open file descriptor.

EINVAL The whence argument is not SEEK_SET, SEEK_CUR, or SEEK_END; the offset
argument is not a valid offset for this file system type; or the fildes argument is not
a remote file descriptor and the resulting file pointer would be negative.

Name

Synopsis

Description

Return Values

Errors

llseek(2)

System Calls 137

ENXIO For SEEK_DATA, there are no more data regions past the supplied offset. For
SEEK_HOLE, there are no more holes past the supplied offset.

ESPIPE The fildes argument is associated with a pipe or FIFO.

creat(2), dup(2), fcntl(2), lseek(2), open(2)See Also

llseek(2)

man pages section 2: System Calls • Last Revised 1 Apr 2005138

lseek – move read/write file pointer

#include <sys/types.h>

#include <unistd.h>

off_t lseek(int fildes, off_t offset, int whence);

The lseek() function sets the file pointer associated with the open file descriptor specified by
fildes as follows:

■ If whence is SEEK_SET, the pointer is set to offset bytes.
■ If whence is SEEK_CUR, the pointer is set to its current location plus offset.
■ If whence is SEEK_END, the pointer is set to the size of the file plus offset.
■ If whence is SEEK_HOLE, the offset of the start of the next hole greater than or equal to the

supplied offset is returned. The definition of a hole is provided near the end of the
DESCRIPTION.

■ If whence is SEEK_DATA, the file pointer is set to the start of the next non-hole file region
greater than or equal to the supplied offset.

The symbolic constants SEEK_SET, SEEK_CUR, SEEK_END, SEEK_HOLE, and SEEK_DATA are
defined in the header <unistd.h>.

Some devices are incapable of seeking. The value of the file pointer associated with such a
device is undefined.

The lseek() function allows the file pointer to be set beyond the existing data in the file. If
data are later written at this point, subsequent reads in the gap between the previous end of
data and the newly written data will return bytes of value 0 until data are written into the gap.

If fildes is a remote file descriptor and offset is negative, lseek() returns the file pointer even if
it is negative. The lseek() function will not, by itself, extend the size of a file.

If fildes refers to a shared memory object, lseek() behaves as if fildes referred to a regular file.

A “hole” is defined as a contiguous range of bytes in a file, all having the value of zero, but not
all zeros in a file are guaranteed to be represented as holes returned with SEEK_HOLE.
Filesystems are allowed to expose ranges of zeros with SEEK_HOLE, but not required to.
Applications can use SEEK_HOLE to optimise their behavior for ranges of zeros, but must not
depend on it to find all such ranges in a file. The existence of a hole at the end of every data
region allows for easy programming and implies that a virtual hole exists at the end of the file.
Applications should use fpathconf(_PC_MIN_HOLE_SIZE) or pathconf(_PC_MIN_HOLE_SIZE)
to determine if a filesystem supports SEEK_HOLE. See fpathconf(2).

For filesystems that do not supply information about holes, the file will be represented as one
entire data region.

Name

Synopsis

Description

lseek(2)

System Calls 139

Upon successful completion, the resulting offset, as measured in bytes from the beginning of
the file, is returned. Otherwise, (off_t)−1 is returned, the file offset remains unchanged, and
errno is set to indicate the error.

The lseek() function will fail if:

EBADF The fildes argument is not an open file descriptor.

EINVAL The whence argument is not SEEK_SET, SEEK_CUR, or SEEK_END; or the fildes
argument is not a remote file descriptor and the resulting file pointer would be
negative.

ENXIO For SEEK_DATA, there are no more data regions past the supplied offset. For
SEEK_HOLE, there are no more holes past the supplied offset.

EOVERFLOW The resulting file offset would be a value which cannot be represented correctly
in an object of type off_t for regular files.

ESPIPE The fildes argument is associated with a pipe, a FIFO, or a socket.

The lseek() function has a transitional interface for 64-bit file offsets. See lf64(5).

In multithreaded applications, using lseek() in conjunction with a read(2) or write(2) call
on a file descriptor shared by more than one thread is not an atomic operation. To ensure
atomicity, use pread() or pwrite().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

creat(2), dup(2), fcntl(2), fpathconf(2), open(2), read(2), write(2), attributes(5),
lf64(5), standards(5)

Return Values

Errors

Usage

Attributes

See Also

lseek(2)

man pages section 2: System Calls • Last Revised 4 May 2005140

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

_lwp_cond_signal, _lwp_cond_broadcast – signal a condition variable

#include <sys/lwp.h>

int _lwp_cond_signal(lwp_cond_t *cvp);

int _lwp_cond_broadcast(lwp_cond_t *cvp);

The _lwp_cond_signal() function unblocks one LWP that is blocked on the LWP condition
variable pointed to by cvp.

The _lwp_cond_broadcast() function unblocks all LWPs that are blocked on the LWP
condition variable pointed to by cvp.

If no LWPs are blocked on the LWP condition variable, then _lwp_cond_signal() and
_lwp_cond_broadcast() have no effect.

Both functions should be called under the protection of the same LWP mutex lock that is used
with the LWP condition variable being signaled. Otherwise, the condition variable may be
signalled between the test of the associated condition and blocking in _lwp_cond_wait().
This can cause an infinite wait.

Upon successful completion, 0 is returned. A non-zero value indicates an error.

The _lwp_cond_signal() and _lwp_cond_broadcast() functions will fail if:

EINVAL The cvp argument points to an invalid LWP condition variable.

EFAULT The cvp argument points to an invalid address.

_lwp_cond_wait(2), _lwp_mutex_lock(2)

Name

Synopsis

Description

Return Values

Errors

See Also

_lwp_cond_signal(2)

System Calls 141

_lwp_cond_wait, _lwp_cond_timedwait, _lwp_cond_reltimedwait – wait on a condition
variable

#include <sys/lwp.h>

int _lwp_cond_wait(lwp_cond_t *cvp, lwp_mutex_t *mp);

int _lwp_cond_timedwait(lwp_cond_t *cvp, lwp_mutex_t *mp,
timestruc_t *abstime);

int _lwp_cond_reltimedwait(lwp_cond_t *cvp, lwp_mutex_t *mp,
timestruc_t *reltime);

These functions are used to wait for the occurrence of a condition represented by an LWP
condition variable. LWP condition variables must be initialized to 0 before use.

The _lwp_cond_wait() function atomically releases the LWP mutex pointed to by mp and
causes the calling LWP to block on the LWP condition variable pointed to by cvp. The blocked
LWP may be awakened by _lwp_cond_signal(2), _lwp_cond_broadcast(2), or when
interrupted by delivery of a signal. Any change in value of a condition associated with the
condition variable cannot be inferred by the return of _lwp_cond_wait() and any such
condition must be re-evaluated.

The _lwp_cond_timedwait() function is similar to _lwp_cond_wait(), except that the calling
LWP will not block past the time of day specified by abstime. If the time of day becomes greater
than abstime, _lwp_cond_timedwait() returns with the error code ETIME.

The _lwp_cond_reltimedwait() function is similar to _lwp_cond_wait(), except that the
calling LWP will not block past the relative time specified by reltime. If the time of day
becomes greater than the starting time of day plus reltime, _lwp_cond_reltimedwait()
returns with the error code ETIME.

The _lwp_cond_wait(), _lwp_cond_timedwait(), and _lwp_cond_reltimedwait()

functions always return with the mutex locked and owned by the calling lightweight process.

Upon successful completion, 0 is returned. A non-zero value indicates an error.

If any of the following conditions are detected, _lwp_cond_wait(), _lwp_cond_timedwait(),
and _lwp_cond_reltimedwait() fail and return the corresponding value:

EINVAL The cvp argument points to an invalid LWP condition variable or the mp
argument points to an invalid LWP mutex.

EFAULT The mp, cvp, or abstime argument points to an illegal address.

If any of the following conditions occur, _lwp_cond_wait(), _lwp_cond_timedwait(), and
_lwp_cond_reltimedwait() fail and return the corresponding value:

EINTR The call was interrupted by a signal or fork(2).

Name

Synopsis

Description

Return Values

Errors

_lwp_cond_wait(2)

man pages section 2: System Calls • Last Revised 13 Apr 2001142

If any of the following conditions occur, _lwp_cond_timedwait() and
_lwp_cond_reltimedwait() fail and return the corresponding value:

ETIME The time specified inabstime or reltime has passed.

EXAMPLE 1 Use the _lwp_cond_wait() function in a loop testing some condition.

The _lwp_cond_wait() function is normally used in a loop testing some condition, as follows:

lwp_mutex_t m;

lwp_cond_t cv;

int cond;

(void) _lwp_mutex_lock(&m);

while (cond == FALSE) {

(void) _lwp_cond_wait(&cv, &m);

}

(void) _lwp_mutex_unlock(&m);

EXAMPLE 2 Use the _lwp_cond_timedwait() function in a loop testing some condition.

The _lwp_cond_timedwait() function is also normally used in a loop testing some condition.
It uses an absolute timeout value as follows:

timestruc_t to;

lwp_mutex_t m;

lwp_cond_t cv;

int cond, err;

(void) _lwp_mutex_lock(&m);

to.tv_sec = time(NULL) + TIMEOUT;

to.tv_nsec = 0;

while (cond == FALSE) {

err = _lwp_cond_timedwait(&cv, &m, &to);

if (err == ETIME) {

/* timeout, do something */

break;

SENDwhom}

}

(void) _lwp_mutex_unlock(&m);

This example sets a bound on the total wait time even though the _lwp_cond_timedwait()
may return several times due to the condition being signalled or the wait being interrupted.

EXAMPLE 3 Use the _lwp_cond_reltimedwait() function in a loop testing some condition.

The _lwp_cond_reltimedwait() function is also normally used in a loop testing some
condition. It uses a relative timeout value as follows:

timestruc_t to;

lwp_mutex_t m;

lwp_cond_t cv;

Examples

_lwp_cond_wait(2)

System Calls 143

EXAMPLE 3 Use the _lwp_cond_reltimedwait() function in a loop testing some condition.
(Continued)

int cond, err;

(void) _lwp_mutex_lock(&m);

while (cond == FALSE) {

to.tv_sec = TIMEOUT;

to.tv_nsec = 0;

err = _lwp_cond_reltimedwait(&cv, &m, &to);

if (err == ETIME) {

/* timeout, do something */

break;

}

}

(void) _lwp_mutex_unlock(&m);

_lwp_cond_broadcast(2), _lwp_cond_signal(2), _lwp_kill(2), _lwp_mutex_lock(2),
fork(2), kill(2)

See Also

_lwp_cond_wait(2)

man pages section 2: System Calls • Last Revised 13 Apr 2001144

_lwp_info – return the time-accounting information of a single LWP

#include <sys/time.h>

#include <sys/lwp.h>

int _lwp_info(struct lwpinfo *buffer);

The _lwp_info() function fills the lwpinfo structure pointed to by buffer with
time-accounting information pertaining to the calling LWP. This call may be extended in the
future to return other information to the lwpinfo structure as needed. The lwpinfo structure
in <sys/lwp.h> includes the following members:

timestruc_t lwp_utime;

timestruc_t lwp_stime;

The lwp_utime member is the CPU time used while executing instructions in the user space of
the calling LWP.

The lwp_stime member is the CPU time used by the system on behalf of the calling LWP.

Upon successful completion, _lwp_info() returns 0 and fills in the lwpinfo structure pointed
to by buffer.

If the following condition is detected, _lwp_info() returns the corresponding value:

EFAULT The buffer argument points to an illegal address.

Additionally, the _lwp_info() function will fail for 32-bit interfaces if:

EOVERFLOW The size of the tv_sec member of the timestruc_t type pointed to by
lwp_utime and lwp_stime is too small to contain the correct number of
seconds.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

times(2), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

_lwp_info(2)

System Calls 145

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

_lwp_kill – send a signal to a LWP

#include <sys/lwp.h>

#include <signal.h>

int _lwp_kill(lwpid_t target_lwp, int sig);

The _lwp_kill() function sends a signal to the LWP specified by target_lwp. The signal that is
to be sent is specified by sig and must be one from the list given in signal.h(3HEAD). If sig is
0 (the null signal), error checking is performed but no signal is actually sent. This can be used
to check the validity of target_lwp.

The target_lwp must be an LWP within the same process as the calling LWP.

Upon successful completion, 0 is returned. A non-zero value indicates an error.

If any of the following conditions occur, _lwp_kill() fails and returns the corresponding
value:

EINVAL The sig argument is not a valid signal number.

ESRCH The target_lwp argument cannot be found in the current process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

kill(2), sigaction(2), sigprocmask(2), signal.h(3HEAD), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

_lwp_kill(2)

man pages section 2: System Calls • Last Revised 8 Aug 2001146

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

_lwp_mutex_lock, _lwp_mutex_unlock, _lwp_mutex_trylock – mutual exclusion

#include <sys/lwp.h>

int _lwp_mutex_lock(lwp_mutex_t *mp);

int _lwp_mutex_trylock(lwp_mutex_t *mp);

int _lwp_mutex_unlock(lwp_mutex_t *mp);

These functions serialize the execution of lightweight processes. They are useful for ensuring
that only one lightweight process can execute a critical section of code at any one time (mutual
exclusion). LWP mutexes must be initialized to 0 before use.

The _lwp_mutex_lock() function locks the LWP mutex pointed to by mp. If the mutex is
already locked, the calling LWP blocks until the mutex becomes available. When
_lwp_mutex_lock() returns, the mutex is locked and the calling LWP is the "owner".

The _lwp_mutex_trylock() function attempts to lock the mutex. If the mutex is already
locked it returns with an error. If the mutex is unlocked, it is locked and
_lwp_mutex_trylock() returns.

The _lwp_mutex_unlock() function unlocks a locked mutex. The mutex must be locked and
the calling LWP must be the one that last locked the mutex (the owner). If any other LWPs are
waiting for the mutex to become available, one of them is unblocked.

Upon successful completion, 0 is returned. A non-zero value indicates an error.

If any of the following conditions are detected, _lwp_mutex_lock(), _lwp_mutex_trylock(),
and _lwp_mutex_unlock() fail and return the corresponding value:

EINVAL The mp argument points to an invalid LWP mutex.

EFAULT The mp argument points to an illegal address.

If any of the following conditions occur, _lwp_mutex_trylock() fails and returns the
corresponding value:

EBUSY The mp argument points to a locked mutex.

Intro(2), _lwp_cond_wait(2)

Name

Synopsis

Description

Return Values

Errors

See Also

_lwp_mutex_lock(2)

System Calls 147

_lwp_self – get LWP identifier

#include <sys/lwp.h>

lwpid_t _lwp_self(void);

The _lwp_self() function returns the ID of the calling LWP.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

attributes(5)

Name

Synopsis

Description

Attributes

See Also

_lwp_self(2)

man pages section 2: System Calls • Last Revised 8 Aug 2001148

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

_lwp_sema_wait, _lwp_sema_trywait, _lwp_sema_init, _lwp_sema_post – semaphore
operations

#include <sys/lwp.h>

int _lwp_sema_wait(lwp_sema_t *sema);

int _lwp_sema_trywait(lwp_sema_t *sema);

int _lwp_sema_init(lwp_sema_t *sema, int count);

int _lwp_sema_post(lwp_sema_t *sema);

Conceptually, a semaphore is an non-negative integer count that is atomically incremented
and decremented. Typically this represents the number of resources available. The
_lwp_sema_init() function initializes the count, _lwp_sema_post() atomically increments
the count, and _lwp_sema_wait() waits for the count to become greater than 0 and then
atomically decrements it.

LWP semaphores must be initialized before use. The _lwp_sema_init() function initializes
the count associated with the LWP semaphore pointed to by sema to count.

The _lwp_sema_wait() function blocks the calling LWP until the semaphore count becomes
greater than 0 and then atomically decrements it.

The _lwp_sema_trywait() function atomically decrements the count if it is greater than zero.
Otherwise it returns an error.

The _lwp_sema_post() function atomically increments the semaphore count. If there are any
LWPs blocked on the semaphore, one is unblocked.

Upon successful completion, 0 is returned. A non-zero value indicates an error.

The _lwp_sema_init(), _lwp_sema_trywait(), _lwp_sema_wait(), and _lwp_sema_post()

functions will fail if:

EINVAL The sema argument points to an invalid semaphore.

EFAULT The sema argument points to an illegal address.

The _lwp_sema_wait() function will fail if:

EINTR The function execution was interrupted by a signal or fork(2).

The _lwp_sema_trywait() function will fail if:

EBUSY The function was called on a semaphore with a zero count.

The _lwp_sema_post() function will fail if:

EOVERFLOW The value of the sema argument exceeds SEM_VALUE_MAX.

fork(2)

Name

Synopsis

Description

Return Values

Errors

See Also

_lwp_sema_wait(2)

System Calls 149

_lwp_suspend, _lwp_continue – continue or suspend LWP execution

#include <sys/lwp.h>

int _lwp_suspend(lwpid_t target_lwp);

int _lwp_continue(lwpid_t target_lwp);

The _lwp_suspend() function immediately suspends the execution of the LWP specified by
target_lwp. On successful return from _lwp_suspend(), target_lwp is no longer executing.
Once a thread is suspended, subsequent calls to _lwp_suspend() have no affect.

The _lwp_continue() function resumes the execution of a suspended LWP. Once a
suspended LWP is continued, subsequent calls to _lwp_continue() have no effect.

A suspended LWP will not be awakened by a signal. The signal stays pending until the
execution of the LWP is resumed by _lwp_continue().

Upon successful completion, 0 is returned. A non-zero value indicates an error.

If the following condition occurs, _lwp_suspend() and _lwp_continue() fail and return the
corresponding value:

ESRCH The target_lwpid argument cannot be found in the current process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

_lwp_suspend(2)

man pages section 2: System Calls • Last Revised 13 Aug 2001150

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

memcntl – memory management control

#include <sys/types.h>

#include <sys/mman.h>

int memcntl(caddr_t addr, size_t len, int cmd, caddr_t arg,
int attr, int mask);

The memcntl() function allows the calling process to apply a variety of control operations
over the address space identified by the mappings established for the address range [addr,
addr + len).

The addr argument must be a multiple of the pagesize as returned by sysconf(3C). The scope
of the control operations can be further defined with additional selection criteria (in the form
of attributes) according to the bit pattern contained in attr.

The following attributes specify page mapping selection criteria:

SHARED Page is mapped shared.

PRIVATE Page is mapped private.

The following attributes specify page protection selection criteria. The selection criteria are
constructed by a bitwise OR operation on the attribute bits and must match exactly.

PROT_READ Page can be read.

PROT_WRITE Page can be written.

PROT_EXEC Page can be executed.

The following criteria may also be specified:

PROC_TEXT Process text.

PROC_DATA Process data.

The PROC_TEXT attribute specifies all privately mapped segments with read and execute
permission, and the PROC_DATA attribute specifies all privately mapped segments with write
permission.

Selection criteria can be used to describe various abstract memory objects within the address
space on which to operate. If an operation shall not be constrained by the selection criteria,
attr must have the value 0.

The operation to be performed is identified by the argument cmd. The symbolic names for the
operations are defined in <sys/mman.h> as follows:

MC_LOCK

Lock in memory all pages in the range with attributes attr. A given page may be locked
multiple times through different mappings; however, within a given mapping, page locks

Name

Synopsis

Description

memcntl(2)

System Calls 151

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c

do not nest. Multiple lock operations on the same address in the same process will all be
removed with a single unlock operation. A page locked in one process and mapped in
another (or visible through a different mapping in the locking process) is locked in
memory as long as the locking process does neither an implicit nor explicit unlock
operation. If a locked mapping is removed, or a page is deleted through file removal or
truncation, an unlock operation is implicitly performed. If a writable MAP_PRIVATE page in
the address range is changed, the lock will be transferred to the private page.

The arg argument is not used, but must be 0 to ensure compatibility with potential future
enhancements.

MC_LOCKAS

Lock in memory all pages mapped by the address space with attributes attr. The addr and
len arguments are not used, but must be NULL and 0 respectively, to ensure compatibility
with potential future enhancements. The arg argument is a bit pattern built from the flags:

MCL_CURRENT Lock current mappings.

MCL_FUTURE Lock future mappings.

The value of arg determines whether the pages to be locked are those currently mapped by
the address space, those that will be mapped in the future, or both. If MCL_FUTURE is
specified, then all mappings subsequently added to the address space will be locked,
provided sufficient memory is available.

MC_SYNC

Write to their backing storage locations all modified pages in the range with attributes attr.
Optionally, invalidate cache copies. The backing storage for a modified MAP_SHARED

mapping is the file the page is mapped to; the backing storage for a modified MAP_PRIVATE

mapping is its swap area. The arg argument is a bit pattern built from the flags used to
control the behavior of the operation:

MS_ASYNC Perform asynchronous writes.

MS_SYNC Perform synchronous writes.

MS_INVALIDATE Invalidate mappings.

MS_ASYNC Return immediately once all write operations are scheduled; with MS_SYNC the
function will not return until all write operations are completed.

MS_INVALIDATE Invalidate all cached copies of data in memory, so that further references to
the pages will be obtained by the system from their backing storage locations. This
operation should be used by applications that require a memory object to be in a known
state.

MC_UNLOCK

Unlock all pages in the range with attributes attr. The arg argument is not used, but must be
0 to ensure compatibility with potential future enhancements.

memcntl(2)

man pages section 2: System Calls • Last Revised 14 Mar 2011152

MC_UNLOCKAS

Remove address space memory locks and locks on all pages in the address space with
attributes attr. The addr, len, and arg arguments are not used, but must be NULL, 0 and 0,
respectively, to ensure compatibility with potential future enhancements.

MC_HAT_ADVISE

Advise system how a region of user-mapped memory will be accessed. The arg argument is
interpreted as a “struct memcntl_mha *”. The following members are defined in a struct
memcntl_mha:

uint_t mha_cmd;

uint_t mha_flags;

size_t mha_pagesize;

The accepted values for mha_cmd are:

MHA_MAPSIZE_VA

MHA_MAPSIZE_STACK

MHA_MAPSIZE_BSSBRK

The mha_flags member is reserved for future use and must always be set to 0. The
mha_pagesize member must be a valid size as obtained from getpagesizes(3C) or the
constant value 0 to allow the system to choose an appropriate hardware address translation
mapping size.

MHA_MAPSIZE_VA sets the preferred hardware address translation mapping size of the
region of memory from addr to addr + len. Both addr and len must be aligned to an
mha_pagesize boundary. The entire virtual address region from addr to addr + len must
not have any holes. Permissions within each mha_pagesize–aligned portion of the region
must be consistent. When a size of 0 is specified, the system selects an appropriate size
based on the size and alignment of the memory region, type of processor, and other
considerations.

MHA_MAPSIZE_STACK sets the preferred hardware address translation mapping size of the
process main thread stack segment. The addr and len arguments must be NULL and 0,
respectively.

MHA_MAPSIZE_BSSBRK sets the preferred hardware address translation mapping size of the
process heap. The addr and len arguments must be NULL and 0, respectively. See the
NOTES section of the ppgsz(1) manual page for additional information on process heap
alignment.

The attr argument must be 0 for all MC_HAT_ADVISE operations.

The mask argument must be 0; it is reserved for future use.

Locks established with the lock operations are not inherited by a child process after fork(2).
The memcntl() function fails if it attempts to lock more memory than a system-specific limit.

memcntl(2)

System Calls 153

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agetpagesizes-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ppgsz-1

Due to the potential impact on system resources, the operations MC_LOCKAS, MC_LOCK,
MC_UNLOCKAS, and MC_UNLOCK are restricted to privileged processes.

The memcntl() function subsumes the operations of plock(3C).

MC_HAT_ADVISE is intended to improve performance of applications that use large amounts of
memory on processors that support multiple hardware address translation mapping sizes;
however, it should be used with care. Not all processors support all sizes with equal efficiency.
Use of larger sizes may also introduce extra overhead that could reduce performance or
available memory. Using large sizes for one application may reduce available resources for
other applications and result in slower system wide performance.

Upon successful completion, memcntl() returns 0; otherwise, it returns −1 and sets errno to
indicate an error.

The memcntl() function will fail if:

EAGAIN When the selection criteria match, some or all of the memory identified by the
operation could not be locked when MC_LOCK or MC_LOCKAS was specified, some or
all mappings in the address range [addr, addr + len) are locked for I/O when
MC_HAT_ADVISE was specified, or the system has insufficient resources when
MC_HAT_ADVISE was specified.

The cmd is MC_LOCK or MC_LOCKAS and locking the memory identified by this
operation would exceed a limit or resource control on locked memory.

EBUSY When the selection criteria match, some or all of the addresses in the range
[addr, addr + len) are locked and MC_SYNC with the MS_INVALIDATE option was
specified.

EINVAL The addr argument specifies invalid selection criteria or is not a multiple of the
page size as returned by sysconf(3C).

The addr and/or len argument does not have the value 0 when MC_LOCKAS or
MC_UNLOCKAS is specified.

The arg argument is not valid for the function specified.

The mha_pagesize or mha_cmd member is invalid.

MC_HAT_ADVISE is specified and not all pages in the specified region have the same
access permissions within the given size boundaries.

MC_HAT_ADVISE is specified for a region of shared memory attached with the
SHM_SHARE_MMU or SHM_PAGEABLE attribute (see shmop(2)).

ENOMEM When the selection criteria match, some or all of the addresses in the range [addr,
addr + len) are invalid for the address space of a process or specify one or more
pages which are not mapped.

Usage

Return Values

Errors

memcntl(2)

man pages section 2: System Calls • Last Revised 14 Mar 2011154

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aplock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c

EPERM The {PRIV_PROC_LOCK_MEMORY} privilege is not asserted in the effective set of the
calling process and MC_LOCK, MC_LOCKAS, MC_UNLOCK, or MC_UNLOCKAS was
specified.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ppgsz(1), fork(2), mmap(2), mprotect(2), getpagesizes(3C), mlock(3C), mlockall(3C),
msync(3C), plock(3C), sysconf(3C), attributes(5), privileges(5)

Attributes

See Also

memcntl(2)

System Calls 155

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ppgsz-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agetpagesizes-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amlock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amlockall-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amsync-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aplock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

meminfo – provide information about memory

#include <sys/types.h>

#include <sys/mman.h>

int meminfo(const uint64_t inaddr[], int addr_count,
const uint_t info_req[], int info_count, uint64_t outdata[],
uint_t validity[]);

inaddr array of input addresses; the maximum number of addresses that can be
processed for each call is MAX_MEMINFO_CNT

addr_count number of addresses

info_req array of types of information requested

info_count number of pieces of information requested for each address in inaddr

outdata array into which results are placed; array size must be the product of
info_count and addr_count

validity array of size addr_count containing bitwise result codes; 0th bit evaluates
validity of corresponding input address, 1st bit validity of response to first
member of info_req, and so on

The meminfo() function provides information about virtual and physical memory particular
to the calling process. The user or developer of performance utilities can use this information
to analyze system memory allocations and develop a better understanding of the factors
affecting application performance.

The caller of meminfo() can obtain the following types of information about both virtual and
physical memory.

MEMINFO_VPHYSICAL physical address corresponding to virtual address

MEMINFO_VLGRP locality group of physical page corresponding to virtual address

MEMINFO_VPAGESIZE size of physical page corresponding to virtual address

MEMINFO_VREPLCNT number of replicated physical pages corresponding to specified
virtual address

MEMINFO_VREPL | n nth physical replica of specified virtual address

MEMINFO_VREPL_LGRP | n lgrp of nth physical replica of specified virtual address

MEMINFO_PLGRP locality group of specified physical address

Any addresses in the inaddr array that have never been referenced will not have any
information about them returned by meminfo(). This can also occur if an address has not
been referenced recently and the physical page that had been backing that address has been
paged out.

Name

Synopsis

Parameters

Description

meminfo(2)

man pages section 2: System Calls • Last Revised 19 Dec 2011156

Upon successful completion meminfo() returns 0. Otherwise −1 is returned and errno is set to
indicate the error.

The meminfo() function will fail if:

EFAULT The area pointed to by outdata or validity could not be written, or the data pointed
to by info_req or inaddr could not be read.

EINVAL The value of info_count is greater than 31 or less than 1, or the value of addr_count
is less than 1.

EXAMPLE 1 Print physical pages and page sizes corresponding to a set of virtual addresses.

The following example prints the physical pages and page sizes corresponding to a set of
virtual addresses.

void

print_info(void **addrvec, int how_many)

{

static const uint_t info[] = {

MEMINFO_VPHYSICAL,

MEMINFO_VPAGESIZE

};

int info_num = sizeof (info) / sizeof (info[0]);

int i;

uint64_t *inaddr = alloca(sizeof (uint64_t) * how_many);

uint64_t *outdata = alloca(sizeof (uint64_t) * how_many * info_num);

uint_t *validity = alloca(sizeof (uint_t) * how_many);

for (i = 0; i < how_many; i++)

inaddr[i] = (uint64_t)addrvec[i];

if (meminfo(inaddr, how_many, info, info_num, outdata,

validity) < 0) {

perror("meminfo");
return;

}

for (i = 0; i < how_many; i++) {

if ((validity[i] & 1) == 0)

printf("address 0x%llx not part of address space\n",
inaddr[i]);

else if ((validity[i] & 2) == 0)

printf("address 0x%llx has no physical page "
"associated with it\n", inaddr[i]);

Return Values

Errors

Examples

meminfo(2)

System Calls 157

EXAMPLE 1 Print physical pages and page sizes corresponding to a set of virtual addresses.
(Continued)

else {

char buff[80];

if ((validity[i] & 4) == 0)

strcpy(buff, "<Unknown>");
else

sprintf(buff, "%lld",
outdata[i * info_num + 1]);

printf("address 0x%llx is backed by physical "
"page 0x%llx of size %s\n",
inaddr[i], outdata[i * info_num], buff);

}

}

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

memcntl(2), mmap(2), gethomelgroup(3C), getpagesize(3C), madvise(3C), sysconf(3C),
attributes(5)

Attributes

See Also

meminfo(2)

man pages section 2: System Calls • Last Revised 19 Dec 2011158

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agethomelgroup-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agetpagesize-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amadvise-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

mincore – determine residency of memory pages

#include <sys/types.h>

int mincore(caddr_t addr, size_t len, char *vec);

The mincore() function determines the residency of the memory pages in the address space
covered by mappings in the range [addr, addr + len]. The status is returned as a
character-per-page in the character array referenced by *vec (which the system assumes to be
large enough to encompass all the pages in the address range). The least significant bit of each
character is set to 1 to indicate that the referenced page is in primary memory, and to 0 to
indicate that it is not. The settings of other bits in each character are undefined and may
contain other information in future implementations.

Because the status of a page can change between the time mincore() checks and returns the
information, returned information might be outdated. Only locked pages are guaranteed to
remain in memory; see mlock(3C).

Upon successful completion, mincore() returns 0. Otherwise, −1 is returned and errno is set
to indicate the error.

The mincore() function will fail if:

EFAULT The vec argument points to an illegal address.

EINVAL The addr argument is not a multiple of the page size as returned by sysconf(3C),
or the len argument has a value less than or equal to 0.

ENOMEM Addresses in the range [addr, addr + len] are invalid for the address space of a
process or specify one or more pages which are not mapped.

mmap(2), mlock(3C), sysconf(3C)

Name

Synopsis

Description

Return Values

Errors

See Also

mincore(2)

System Calls 159

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amlock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amlock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c

mkdir, mkdirat – make a directory relative to directory file descriptor

#include <sys/stat.h>

int mkdir(const char *path, mode_t mode);

int mkdirat(int fd, const char *path, mode_t mode);

The mkdir() function creates a new directory named by the path name pointed to by path.
The mode of the new directory is initialized from mode (see chmod(2) for values of mode). The
protection part of the mode argument is modified by the process's file creation mask (see
umask(2)).

The directory's owner ID is set to the process's effective user ID. The directory's group ID is set
to the process's effective group ID, or if the S_ISGID bit is set in the parent directory, then the
group ID of the directory is inherited from the parent. The S_ISGID bit of the new directory is
inherited from the parent directory.

If path names a symbolic link, mkdir() fails and sets errno to EEXIST.

The newly created directory is empty with the exception of entries for itself (.) and its parent
directory (..).

Upon successful completion, mkdir() marks for update the st_atime, st_ctime and
st_mtime fields of the directory. Also, the st_ctime and st_mtime fields of the directory that
contains the new entry are marked for update.

The mkdirat() function is equivalent to the mkdir() function except in the case where path
specifies a relative path. In this case the newly created directory is created relative to the
directory associated with the file descriptor fd instead of the current working directory. If the
file descriptor was opened without O_SEARCH, the function checks whether directory searches
are permitted using the current permissions of the directory underlying the file descriptor. If
the file descriptor was opened with O_SEARCH, the function does not perform the check.

If mkdirat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior is identical to a call to mkdir().

Upon successful completion, 0 is returned. Otherwise, −1 is returned, no directory is created,
and errno is set to indicate the error.

The mkdir() and mkdirat() functions will fail if:

EACCES Either a component of the path prefix denies search permission or write
permission is denied on the parent directory of the directory to be created.

EDQUOT The directory where the new file entry is being placed cannot be extended
because the user's quota of disk blocks on that file system has been
exhausted; the new directory cannot be created because the user's quota of

Name

Synopsis

Description

Return Values

Errors

mkdir(2)

man pages section 2: System Calls • Last Revised 6 Jul 2010160

disk blocks on that file system has been exhausted; or the user's quota of
inodes on the file system where the file is being created has been exhausted.

EEXIST The named file already exists.

EFAULT The path argument points to an illegal address.

EINVAL An attempt was made to create an extended attribute that is a directory.

EIO An I/O error has occurred while accessing the file system.

EILSEQ The path argument includes non-UTF8 characters and the file system
accepts only file names where all characters are part of the UTF-8 character
codeset.

ELOOP Too many symbolic links were encountered in translating path, or a loop
exists in symbolic links encountered during resolution of path

EMLINK The maximum number of links to the parent directory would be exceeded.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length of a path
component exceeds NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENOENT A component of the path prefix does not exist or is a null pathname.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOSPC No free space is available on the device containing the directory.

ENOTDIR A component of the path prefix is not a directory.

EROFS The path prefix resides on a read-only file system.

The mkdirat() function will fail if:

EBADF The path argument does not specify an absolute path and the fd argument is neither
AT_FDCWD nor a valid file descriptor open for reading.

The mkdir() and mkdirat() functions may fail if:

ELOOP More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

ENAMETOOLONG As a result of encountering a symbolic link in resolution of the path
argument, the length of the substituted pathname string exceeded
{PATH_MAX}.

The mkdirat() function may fail if:

ENOTDIR The path argument is not an absolute path and fd is neither AT_FDCWD nor a file
descriptor associated with a directory.

mkdir(2)

System Calls 161

EXAMPLE 1 Create a directory.

The following example demonstrates how to create a directory named /home/cnd/mod1, with
read, write, and search permissions for owner and group, and with read and search
permissions for others.

#include <sys/stat.h>

int status;

...

status = mkdir("/home/cnd/mod1",
S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

chmod(2), mknod(2), umask(2), mkdirp(3GEN), stat.h(3HEAD), attributes(5),
standards(5)

Examples

Attributes

See Also

mkdir(2)

man pages section 2: System Calls • Last Revised 6 Jul 2010162

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Emkdirp-3gen
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fstat.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

mknod, mknodat – make a directory, a special file, or a regular file

#include <sys/stat.h>

int mknod(const char *path, mode_t mode, dev_t dev);

int mknodat(int fd, const char *path, mode_t mode, dev_t dev);

The mknod() function creates a new file named by the path name pointed to by path. The file
type and permissions of the new file are initialized from mode.

The file type is specified in mode by the S_IFMT bits, which must be set to one of the following
values:

S_IFIFO fifo special

S_IFCHR character special

S_IFDIR directory

S_IFBLK block special

S_IFREG ordinary file

The file access permissions are specified in mode by the 0007777 bits, and may be constructed
by a bitwise OR operation of the following values:

S_ISUID 04000 Set user ID on execution.

S_ISGID 020#0 Set group ID on execution if # is 7, 5, 3, or 1. Enable mandatory
file/record locking if # is 6, 4, 2, or 0

S_ISVTX 01000 On directories, restricted deletion flag; on regular files on a UFS file
system, do not cache flag.

S_IRWXU 00700 Read, write, execute by owner.

S_IRUSR 00400 Read by owner.

S_IWUSR 00200 Write by owner.

S_IXUSR 00100 Execute (search if a directory) by owner.

S_IRWXG 00070 Read, write, execute by group.

S_IRGRP 00040 Read by group.

S_IWGRP 00020 Write by group.

S_IXGRP 00010 Execute by group.

S_IRWXO 00007 Read, write, execute (search) by others.

S_IROTH 00004 Read by others.

Name

Synopsis

Description

mknod(2)

System Calls 163

S_IWOTH 00002 Write by others

S_IXOTH 00001 Execute by others.

The owner ID of the file is set to the effective user ID of the process. The group ID of the file is
set to the effective group ID of the process. However, if the S_ISGID bit is set in the parent
directory, then the group ID of the file is inherited from the parent. If the group ID of the new
file does not match the effective group ID or one of the supplementary group IDs, the S_ISGID
bit is cleared.

The access permission bits of mode are modified by the process's file mode creation mask: all
bits set in the process's file mode creation mask are cleared (see umask(2)). If mode indicates a
block or character special file, dev is a configuration-dependent specification of a character or
block I/O device. If mode does not indicate a block special or character special device, dev is
ignored. See makedev(3C).

If path is a symbolic link, it is not followed.

Upon successful completion, mknod() marks for update the last data access, last data
modification, and last file status change timestamps of the file. Also, the last data modification
and last file status change timestamps of the directory that contains the new entry is marked
for update.

Only a process with appropriate privileges may invoke mknod() for file types other than
FIFO-special.

The mknodat() function is equivalent to the mknod() function except in the case where path
specifies a relative path. In this case the newly created directory, special file, or regular file is
located relative to the directory associated with the file descriptor fd instead of the current
working directory. If the file descriptor was opened without O_SEARCH, the function checks
whether directory searches are permitted using the current permissions of the directory
underlying the file descriptor. If the file descriptor was opened with O_SEARCH, the function
does not perform the check.

If mknodat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior is identical to a call to mknod().

Upon successful completion, mknod() and mknodat() return 0. Otherwise, it returns −1, the
new file is not created, and errno is set to indicate the error.

The mknod() and mknodat() functions will fail if:

EACCES A component of the path prefix denies search permission, or write
permission is denied on the parent directory.

Return Values

Errors

mknod(2)

man pages section 2: System Calls • Last Revised 6 Jul 2010164

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amakedev-3c

EDQUOT The directory where the new file entry is being placed cannot be extended
because the user's quota of disk blocks on that file system has been
exhausted, or the user's quota of inodes on the file system where the file is
being created has been exhausted.

EEXIST The named file exists.

EFAULT The path argument points to an illegal address.

EINTR A signal was caught during the execution of the mknod() function.

EINVAL An invalid argument exists.

EIO An I/O error occurred while accessing the file system.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the length of a
path component exceeds {NAME_MAX} while _POSIX_NO_TRUNC is in effect.

ENOENT A component of the path prefix specified by path does not name an
existing directory or path is an empty string.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOSPC The directory that would contain the new file cannot be extended or the file
system is out of file allocation resources.

ENOTDIR A component of the path prefix is not a directory.

EPERM Not all privileges are asserted in the effective set of the calling process.

EROFS The directory in which the file is to be created is located on a read-only file
system.

The mknodat() function will fail if:

EACCES fd was not opened with O_SEARCH and the permissions of the directory underlying
fd do not permit directory searches.

EBADF The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

The mknod() and mknodat() functions may fail if:

ELOOP More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

ENAMETOOLONG The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

mknod(2)

System Calls 165

The mknodat() function may fail if:

ENOTDIR The path argument is not an absolute path and fd is neither AT_FDCWD nor a file
descriptor associated with a directory.

Applications should use the mkdir(2) function to create a directory because appropriate
permissions are not required and because mknod() might not establish directory entries for
the directory itself (.) and the parent directory (. .). The mknod() function can be invoked
only by a privileged user for file types other than FIFO special. The mkfifo(3C) function
should be used to create FIFOs.

Doors are created using door_create(3C) and can be attached to the file system using
fattach(3C). Symbolic links can be created using symlink(2). An endpoint for
communication can be created using socket(3SOCKET).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

chmod(2), creat(2), exec(2), mkdir(2), open(2), stat(2), symlink(2), umask(2),
door_create(3C), fattach(3C), makedev(3C), mkfifo(3C), socket(3SOCKET),
stat.h(3HEAD), attributes(5), privileges(5), standards(5)

Usage

Attributes

See Also

mknod(2)

man pages section 2: System Calls • Last Revised 6 Jul 2010166

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amkfifo-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Adoor-create-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afattach-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Bsocket-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Adoor-create-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afattach-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amakedev-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amkfifo-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Bsocket-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fstat.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

mmap – map pages of memory

#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot, int flags,
int fildes, off_t off);

The mmap() function establishes a mapping between a process's address space and a file or
shared memory object. The format of the call is as follows:

pa = mmap(addr, len, prot, flags, fildes, off);

The mmap() function establishes a mapping between the address space of the process at an
address pa for len bytes to the memory object represented by the file descriptor fildes at offset
off for len bytes. The value of pa is a function of the addr argument and values of flags, further
described below. A successful mmap() call returns pa as its result. The address range starting at
pa and continuing for len bytes will be legitimate for the possible (not necessarily current)
address space of the process. The range of bytes starting at off and continuing for len bytes will
be legitimate for the possible (not necessarily current) offsets in the file or shared memory
object represented by fildes.

The mmap() function allows [pa, pa + len) to extend beyond the end of the object both at the
time of the mmap() and while the mapping persists, such as when the file is created prior to the
mmap() call and has no contents, or when the file is truncated. Any reference to addresses
beyond the end of the object, however, will result in the delivery of a SIGBUS or SIGSEGV signal.
The mmap() function cannot be used to implicitly extend the length of files.

The mapping established by mmap() replaces any previous mappings for those whole pages
containing any part of the address space of the process starting at pa and continuing for len
bytes.

If the size of the mapped file changes after the call to mmap() as a result of some other operation
on the mapped file, the effect of references to portions of the mapped region that correspond
to added or removed portions of the file is unspecified.

The mmap() function is supported for regular files and shared memory objects. Support for
any other type of file is unspecified.

The prot argument determines whether read, write, execute, or some combination of accesses
are permitted to the data being mapped. The prot argument should be either PROT_NONE or the
bitwise inclusive OR of one or more of the other flags in the following table, defined in the
header <sys/mman.h>.

PROT_READ Data can be read.

PROT_WRITE Data can be written.

PROT_EXEC Data can be executed.

PROT_NONE Data cannot be accessed.

Name

Synopsis

Description

mmap(2)

System Calls 167

If an implementation of mmap() for a specific platform cannot support the combination of
access types specified by prot, the call to mmap() fails. An implementation may permit accesses
other than those specified by prot; however, the implementation will not permit a write to
succeed where PROT_WRITE has not been set or permit any access where PROT_NONE alone has
been set. Each platform-specific implementation of mmap() supports the following values of
prot: PROT_NONE, PROT_READ, PROT_WRITE, and the inclusive OR of PROT_READ and
PROT_WRITE. On some platforms, the PROT_WRITE protection option is implemented as
PROT_READ|PROT_WRITE and PROT_EXEC as PROT_READ|PROT_EXEC.

If PROT_WRITE is specified, the application must have opened the file descriptor fildes with
write permission unless MAP_PRIVATE is specified in the flags argument as described below.

The flags argument provides other information about the handling of the mapped data. The
value of flags is the bitwise inclusive OR of these options, defined in <sys/mman.h>:

MAP_SHARED Changes are shared.

MAP_PRIVATE Changes are private.

MAP_FIXED Interpret addr exactly.

MAP_NORESERVE Do not reserve swap space.

MAP_ANON Map anonymous memory.

MAP_ALIGN Interpret addr as required aligment.

MAP_TEXT Map text.

MAP_INITDATA Map initialized data segment.

The MAP_SHARED and MAP_PRIVATE options describe the disposition of write references to the
underlying object. If MAP_SHARED is specified, write references will change the memory object.
If MAP_PRIVATE is specified, the initial write reference will create a private copy of the memory
object page and redirect the mapping to the copy. The private copy is not created until the first
write; until then, other users who have the object mapped MAP_SHARED can change the object.
Either MAP_SHARED or MAP_PRIVATE must be specified, but not both. The mapping type is
retained across fork(2).

When MAP_FIXED is set in the flags argument, the system is informed that the value of pa must
be addr, exactly. If MAP_FIXED is set, mmap() may return (void *)−1 and set errno to EINVAL. If
a MAP_FIXED request is successful, the mapping established by mmap() replaces any previous
mappings for the process's pages in the range [pa, pa + len). The use of MAP_FIXED is
discouraged, since it may prevent a system from making the most effective use of its resources.

When MAP_FIXED is set and the requested address is the same as previous mapping, the
previous address is unmapped and the new mapping is created on top of the old one.

mmap(2)

man pages section 2: System Calls • Last Revised 1 Nov 2011168

When MAP_FIXED is not set, the system uses addr to arrive at pa. The pa so chosen will be an
area of the address space that the system deems suitable for a mapping of len bytes to the file.
The mmap() function interprets an addr value of 0 as granting the system complete freedom in
selecting pa, subject to constraints described below. A non-zero value of addr is taken to be a
suggestion of a process address near which the mapping should be placed. When the system
selects a value for pa, it will never place a mapping at address 0, nor will it replace any extant
mapping, nor map into areas considered part of the potential data or stack “segments”.

When MAP_ALIGN is set, the system is informed that the alignment of pa must be the same as
addr. The alignment value in addr must be 0 or some power of two multiple of page size as
returned by sysconf(3C). If addr is 0, the system will choose a suitable alignment.

The MAP_NORESERVE option specifies that no swap space be reserved for a mapping. Without
this flag, the creation of a writable MAP_PRIVATE mapping reserves swap space equal to the size
of the mapping; when the mapping is written into, the reserved space is employed to hold
private copies of the data. A write into a MAP_NORESERVE mapping produces results which
depend on the current availability of swap space in the system. If space is available, the write
succeeds and a private copy of the written page is created; if space is not available, the write
fails and a SIGBUS or SIGSEGV signal is delivered to the writing process. MAP_NORESERVE
mappings are inherited across fork(); at the time of the fork(), swap space is reserved in the
child for all private pages that currently exist in the parent; thereafter the child's mapping
behaves as described above.

When MAP_ANON is set in flags, and fildes is set to -1, mmap() provides a direct path to return
anonymous pages to the caller. This operation is equivalent to passing mmap() an open file
descriptor on /dev/zero with MAP_ANON elided from the flags argument.

The MAP_TEXT option informs the system that the mapped region will be used primarily for
executing instructions. This information can help the system better utilize MMU resources on
some platforms. This flag is always passed by the dynamic linker when it maps text segments
of shared objects. When the MAP_TEXT option is used for regular file mappings on some
platforms, the system can choose a mapping size larger than the page size returned by
sysconf(3C). The specific page sizes that are used depend on the platform and the alignment
of the addr and len arguments. Several different mapping sizes can be used to map the region
with larger page sizes used in the parts of the region that meet alignment and size
requirements for those page sizes.

The MAP_INITDATA option informs the system that the mapped region is an initialized data
segment of an executable or shared object. When the MAP_INITDATA option is used for regular
file mappings on some platforms, the system can choose a mapping size larger than the page
size returned by sysconf(). The MAP_INITDATA option should be used only by the dynamic
linker for mapping initialized data of shared objects.

The off argument is constrained to be aligned and sized according to the value returned by
sysconf() when passed _SC_PAGESIZE or _SC_PAGE_SIZE. When MAP_FIXED is specified, the

mmap(2)

System Calls 169

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c

addr argument must also meet these constraints. The system performs mapping operations
over whole pages. Thus, while the len argument need not meet a size or alignment constraint,
the system will include, in any mapping operation, any partial page specified by the range
[pa, pa + len).

The system will always zero-fill any partial page at the end of an object. Further, the system
will never write out any modified portions of the last page of an object which are beyond its
end. References to whole pages following the end of an object will result in the delivery of a
SIGBUS or SIGSEGV signal. SIGBUS signals may also be delivered on various file system
conditions, including quota exceeded errors.

The mmap() function adds an extra reference to the file associated with the file descriptor fildes
which is not removed by a subsequent close(2) on that file descriptor. This reference is
removed when there are no more mappings to the file by a call to the munmap(2) function.

The st_atime field of the mapped file may be marked for update at any time between the
mmap() call and the corresponding munmap(2) call. The initial read or write reference to a
mapped region will cause the file's st_atime field to be marked for update if it has not already
been marked for update.

The st_ctime and st_mtime fields of a file that is mapped with MAP_SHARED and PROT_WRITE,
will be marked for update at some point in the interval between a write reference to the
mapped region and the next call to msync(3C) with MS_ASYNC or MS_SYNC for that portion of
the file by any process. If there is no such call, these fields may be marked for update at any
time after a write reference if the underlying file is modified as a result.

If the process calls mlockall(3C) with the MCL_FUTURE flag, the pages mapped by all future
calls to mmap() will be locked in memory. In this case, if not enough memory could be locked,
mmap() fails and sets errno to EAGAIN.

The mmap() function aligns based on the length of the mapping. When determining the
amount of space to add to the address space, mmap() includes two 8-Kbyte pages, one at each
end of the mapping that are not mapped and are therefore used as “red-zone” pages. Attempts
to reference these pages result in access violations.

The size requested is incremented by the 16 Kbytes for these pages and is then subject to
rounding constraints. The constraints are:

■ For 32-bit processes:

If length > 4 Mbytes

round to 4-Mbyte multiple

elseif length > 512 Kbytes

round to 512-Kbyte multiple

else

round to 64-Kbyte multiple

mmap(2)

man pages section 2: System Calls • Last Revised 1 Nov 2011170

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amsync-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amlockall-3c

■ For 64-bit processes:

If length > 4 Mbytes

round to 4-Mbyte multiple

else

round to 1-Mbyte multiple

The net result is that for a 32-bit process:

■ If an mmap() request is made for 4 Mbytes, it results in 4 Mbytes + 16 Kbytes and is
rounded up to 8 Mbytes.

■ If an mmap() request is made for 512 Kbytes, it results in 512 Kbytes + 16 Kbytes and is
rounded up to 1 Mbyte.

■ If an mmap() request is made for 1 Mbyte, it results in 1 Mbyte + 16 Kbytes and is rounded
up to 1.5 Mbytes.

■ Each 8-Kbyte mmap() request “consumes” 64 Kbytes of virtual address space.

To obtain maximal address space usage for a 32-bit process:

■ Combine 8-Kbyte requests up to a limit of 48 Kbytes.
■ Combine amounts over 48 Kbytes into 496-Kbyte chunks.
■ Combine amounts over 496 Kbytes into 4080-Kbyte chunks.

To obtain maximal address space usage for a 64-bit process:

■ Combine amounts < 1008 Kbytes into chunks <= 1008 Kbytes.
■ Combine amounts over 1008 Kbytes into 4080-Kbyte chunks.

The following is the output from a 32-bit program demonstrating this:

map 8192 bytes: 0xff390000
map 8192 bytes: 0xff380000 64-Kbyte delta between starting addresses.

map 512 Kbytes: 0xff180000
map 512 Kbytes: 0xff080000 1–Mbyte delta between starting addresses.

map 496 Kbytes: 0xff000000
map 496 Kbytes: 0xfef80000 512-Kbyte delta between starting addresses

map 1 Mbyte: 0xfee00000
map 1 Mbyte: 0xfec80000 1536-Kbyte delta between starting addresses

map 1008 Kbytes: 0xfeb80000
map 1008 Kbytes: 0xfea80000 1-Mbyte delta between starting addresses

map 4 Mbytes: 0xfe400000
map 4 Mbytes: 0xfdc00000 8-Mbyte delta between starting addresses

map 4080 Kbytes: 0xfd800000
map 4080 Kbytes: 0xfd400000 4-Mbyte delta between starting addresses

mmap(2)

System Calls 171

The following is the output of the same program compiled as a 64-bit application:

map 8192 bytes: 0xffffffff7f000000
map 8192 bytes: 0xffffffff7ef00000 1-Mbyte delta between starting addresses

map 512 Kbytes: 0xffffffff7ee00000
map 512 Kbytes: 0xffffffff7ed00000 1-Mbyte delta between starting addresses

map 496 Kbytes: 0xffffffff7ec00000
map 496 Kbytes: 0xffffffff7eb00000 1-Mbyte delta between starting addresses

map 1 Mbyte: 0xffffffff7e900000
map 1 Mbyte: 0xffffffff7e700000 2-Mbyte delta between starting addresses

map 1008 Kbytes: 0xffffffff7e600000
map 1008 Kbytes: 0xffffffff7e500000 1–Mbyte delta between starting addresses

map 4 Mbytes: 0xffffffff7e000000
map 4 Mbytes: 0xffffffff7d800000 8-Mbyte delta between starting addresses

map 4080 Kbytes: 0xffffffff7d400000
map 4080 Kbytes: 0xffffffff7d000000 4-Mbyte delta between starting addresses

Upon successful completion, the mmap() function returns the address at which the mapping
was placed (pa); otherwise, it returns a value of MAP_FAILED and sets errno to indicate the
error. The symbol MAP_FAILED is defined in the header <sys/mman.h>. No successful return
from mmap() will return the value MAP_FAILED.

If mmap() fails for reasons other than EBADF, EINVAL or ENOTSUP, some of the mappings in the
address range starting at addr and continuing for len bytes may have been unmapped.

The mmap() function will fail if:

EACCES The fildes file descriptor is not open for read, regardless of the protection
specified; or fildes is not open for write and PROT_WRITE was specified for a
MAP_SHARED type mapping.

EAGAIN The mapping could not be locked in memory.

There was insufficient room to reserve swap space for the mapping.

EBADF The fildes file descriptor is not open (and MAP_ANON was not specified).

EINVAL The arguments addr (if MAP_FIXED was specified) or off are not multiples of the
page size as returned by sysconf().

The argument addr (if MAP_ALIGN was specified) is not 0 or some power of two
multiple of page size as returned by sysconf(3C).

MAP_FIXED and MAP_ALIGN are both specified.

Return Values

Errors

mmap(2)

man pages section 2: System Calls • Last Revised 1 Nov 2011172

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c

The field in flags is invalid (neither MAP_PRIVATE or MAP_SHARED is set).

The argument len has a value equal to 0.

MAP_ANON was specified, but the file descriptor was not −1.

MAP_TEXT was specified but PROT_EXEC was not.

MAP_TEXT and MAP_INITDATA were both specified.

EMFILE The number of mapped regions would exceed an implementation-dependent
limit (per process or per system).

ENODEV The fildes argument refers to an object for which mmap() is meaningless, such
as a terminal.

ENOMEM The MAP_FIXED option was specified and the range [addr, addr + len) exceeds
that allowed for the address space of a process.

The MAP_FIXED option was not specified and there is insufficient room in the
address space to effect the mapping.

The mapping could not be locked in memory, if required by mlockall(3C),
because it would require more space than the system is able to supply.

The composite size of len plus the lengths obtained from all previous calls to
mmap() exceeds RLIMIT_VMEM (see getrlimit(2)).

ENOTSUP The system does not support the combination of accesses requested in the prot
argument.

ENXIO Addresses in the range [off, off + len) are invalid for the object specified by
fildes.

The MAP_FIXED option was specified in flags and the combination of addr, len
and off is invalid for the object specified by fildes.

EOVERFLOW The file is a regular file and the value of off plus len exceeds the offset maximum
establish in the open file description associated with fildes.

The mmap() function may fail if:

EAGAIN The file to be mapped is already locked using advisory or mandatory record
locking. See fcntl(2).

Use of mmap() may reduce the amount of memory available to other memory allocation
functions.

Usage

mmap(2)

System Calls 173

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amlockall-3c

MAP_ALIGN is useful to assure a properly aligned value of pa for subsequent use with
memcntl(2) and the MC_HAT_ADVISE command. This is best used for large, long-lived, and
heavily referenced regions. MAP_FIXED and MAP_ALIGN are always mutually-exclusive.

Use of MAP_FIXED may result in unspecified behavior in further use of brk(2), sbrk(2),
malloc(3C), and shmat(2). The use of MAP_FIXED is discouraged, as it may prevent an
implementation from making the most effective use of resources.

The application must ensure correct synchronization when using mmap() in conjunction with
any other file access method, such as read(2) and write(2), standard input/output, and
shmat(2).

The mmap() function has a transitional interface for 64-bit file offsets. See lf64(5).

The mmap() function allows access to resources using address space manipulations instead of
the read()/write() interface. Once a file is mapped, all a process has to do to access it is use
the data at the address to which the object was mapped.

Consider the following pseudo-code:

fildes = open(. . .)

lseek(fildes, offset, whence)

read(fildes, buf, len)

/* use data in buf */

The following is a rewrite using mmap():

fildes = open(. . .)

address = mmap((caddr_t) 0, len, (PROT_READ | PROT_WRITE),

MAP_PRIVATE, fildes, offset)

/* use data at address */

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

close(2), exec(2), fcntl(2), fork(2), getrlimit(2), memcntl(2), mmapobj(2), mprotect(2),
munmap(2), shmat(2), lockf(3C), mlockall(3C), msync(3C), plock(3C), sysconf(3C),
attributes(5), lf64(5), standards(5), null(7D), zero(7D)

Attributes

See Also

mmap(2)

man pages section 2: System Calls • Last Revised 1 Nov 2011174

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Alockf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amlockall-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amsync-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aplock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7null-7d
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7zero-7d

mmapobj – map a file object in the appropriate manner

#include <sys/mman.h>

int mmapobj(int fd, uint_t flags, mmapobj_result_t *storage,
uint_t *elements, void *arg);

fd The open file descriptor for the file to be mapped.

flags Indicates that the default behavior of mmapobj() should be modified accordingly.
Available flags are:

MMOBJ_INTERPRET

Interpret the contents of the file descriptor instead of just mapping it as a
single image. This flag can be used only with ELF and AOUT files.

MMOBJ_PADDING

When mapping in the file descriptor, add an additional mapping before the
lowest mapping and after the highest mapping. The size of this padding is at
least as large as the amount pointed to by arg. These mappings will be private
to the process, will not reserve any swap space and will have no protections.
To use this address space, the protections for it will need to be changed. This
padding request will be ignored for the AOUT format.

storage A pointer to the mmapobj_result_t array where the mapping data will be copied
out after a successful mapping of fd.

elements A pointer to the number of mmapobj_result_t elements pointed to by storage.
On return, elements contains the number of mappings required to fully map the
requested object. If the original value of elements is too small, E2BIG is returned
and elements is modified to contain the number of mappings necessary.

arg A pointer to additional information that might be associated with the specific
request. Only the MMOBJ_PADDING request uses this argument. If MMOBJ_PADDING
is not specified, arg must be NULL.

The mmapobj() function establishes a set of mappings between a process's address space and a
file. By default, mmapobj() maps the whole file as a single, private, read-only mapping. The
MMOBJ_INTERPRET flag instructs mmapobj() to attempt to interpret the file and map the file
according to the rules for that file format. The following ELF and AOUT formats are supported:

ET_EXEC and AOUT executables
This format results in one or more mappings whose size, alignment and protections are as
described by the file's program header information. The address of each mapping is
explicitly defined by the file's program headers.

ET_DYN and AOUT shared objects
This format results in one or more mappings whose size, alignment and protections are as
described by the file's program header information. The base address of the initial mapping

Name

Synopsis

Parameters

Description

mmapobj(2)

System Calls 175

is chosen by mmapobj(). The addresses of adjacent mappings are based off of this base
address as defined by the file's program headers.

ET_REL and ET_CORE

This format results in a single, read-only mapping that covers the whole file. The base
address of this mapping is chosen by mmapobj().

The mmapobj() function will not map over any currently used mappings within the process,
except for the case of an ELF ET_EXEC file for which a previous reservation has been made via
/dev/null. The most common way to make such a reservation would be with an mmap() of
/dev/null.

Mappings created with mmapobj() can be processed individually by other system calls such as
munmap(2).

The mmapobj_result structure contains the following members:

typedef struct mmapobj_result {

caddr_t mr_addr; /* mapping address */

size_t mr_msize; /* mapping size */

size_t mr_fsize; /* file size */

size_t mr_offset; /* offset into file */

uint_t mr_prot; /* the protections provided */

uint_t mr_flags; /* info on the mapping */

} mmapobj_result_t;

The macro MR_GET_TYPE(mr_flags) must be used when looking for the above flags in the value
of mr_flags.

Values for mr_flags include:

MR_PADDING 0x1 /* this mapping represents requested padding */

MR_HDR_ELF 0x2 /* the ELF header is mapped at mr_addr */

MR_HDR_AOU 0x3 /* the AOUT header is mapped at mr_addr */

When MR_PADDING is set, mr_fsize and mr_offset will both be 0.

The mr_fsize member represents the amount of the file that is mapped into memory with this
mapping.

The mr_offset member is the offset into the mapping where valid data begins.

The mr_msize member represents the size of the memory mapping starting at mr_addr. This
size may include unused data prior to mr_offset that exists to satisfy the alignment
requirements of this segment. This size may also include any non-file data that are required to
provide NOBITS data (typically .bss). The system reserves the right to map more than
mr_msize bytes of memory but only mr_msize bytes will be available to the caller of
mmapobj().

mmapobj(2)

man pages section 2: System Calls • Last Revised 10 Mar 2010176

Upon successful completion, 0 is returned and elements contains the number of program
headers that are mapped for fd. The data describing these elements are copied to storage such
that the first elements members of the storage array contain valid mapping data.

On failure, -1 is returned and errno is set to indicate the error. No data is copied to storage.

The mmapobj() function will fail if:

E2BIG The elements argument was not large enough to hold the number of loadable
segments in fd. The elements argument will be modified to contain the
number of segments required.

EACCES The file system containing the fd to be mapped does not allow execute access,
or the file descriptor pointed to by fd is not open for reading.

EADDRINUSE The mapping requirements overlap an object that is already used by the
process.

EAGAIN There is insufficient room to reserve swap space for the mapping.

The file to be mapped is already locked using advisory or mandatory record
locking. See fcntl(2).

EBADF The fd argument is not a valid open file descriptor.

EFAULT The storage, arg, or elements argument points to an invalid address.

EINVAL The flags argument contains an invalid flag.

MMOBJ_PADDING was not specified in flagsand arg was non-null.

The file to be mapped has a length of 0.

ENODEV The fd argument refers to an object for which mmapobj() is meaningless, such
as a terminal.

ENOMEM Insufficient memory is available to hold the program headers.

Insufficient memory is available in the address space to create the mapping.

ENOTSUP The current user data model does not match the fd to be interpreted; thus, a
32-bit process that tried to use mmapobj() to interpret a 64-bit object would
return ENOTSUP.

The fd argument is a file whose type can not be interpreted and
MMOBJ_INTERPRET was specified in flags.

The ELF header contains an unaligned e_phentsize value.

ENOSYS An unsupported filesystem operation was attempted while trying to map in
the object.

Return Values

Errors

mmapobj(2)

System Calls 177

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Private

MT-Level Async-Signal-Safe

ld.so.1(1), fcntl(2), memcntl(2), mmap(2), mprotect(2), munmap(2), elf(3ELF),
madvise(3C), mlockall(3C), msync(3C), a.out(4), attributes(5)

Linker and Libraries Guide

Attributes

See Also

mmapobj(2)

man pages section 2: System Calls • Last Revised 10 Mar 2010178

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Delf-3elf
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amadvise-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amlockall-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amsync-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4a.out-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=LLM

mount – mount a file system

#include <sys/types.h>

#include <sys/mount.h>

#include <sys/mntent.h>

int mount(const char *spec, const char *dir, int mflag,
char *fstype, char *dataptr,int datalen, char *optptr,
int optlen);

The mount() function requests that a removable file system contained on the block special file
identified by spec be mounted on the directory identified by dir. The spec and dir arguments
are pointers to path names.

After a successful call to mount(), all references to the file dir refer to the root directory on the
mounted file system. The mounted file system is inserted into the kernel list of all mounted file
systems. This list can be examined through the mounted file system table (see mnttab(4)).

The fstype argument is the file system type name. Standard file system names are defined with
the prefix MNTTYPE_ in <sys/mntent.h>. If neither MS_DATA nor MS_OPTIONSTR is set in mflag,
then fstype is ignored and the type of the root file system is assumed.

The dataptr argument is 0 if no file system-specific data is to be passed; otherwise it points to
an area of size datalen that contains the file system-specific data for this mount and the
MS_DATA flag should be set.

If the MS_OPTIONSTR flag is set, then optptr points to a buffer containing the list of options to be
used for this mount. The optlen argument specifies the length of the buffer. On completion of
the mount() call, the options in effect for the mounted file system are returned in this buffer. If
MS_OPTIONSTR is not specified, then the options for this mount will not appear in the mounted
file systems table.

If the caller does not have all privileges available in the current zone, the nosuid option is
automatically set on the mount point. The restrict option is automatically added for autofs
mounts.

If the caller is not in the global zone, the nodevices option is automatically set.

The mflag argument is constructed by a bitwise-inclusive-OR of flags from the following list,
defined in <sys/mount.h>.

MS_DATA

The dataptr and datalen arguments describe a block of file system-specific binary data at
address dataptr of length datalen. This is interpreted by file system-specific code within the
operating system and its format depends on the file system type. If a particular file system
type does not require this data, dataptr and datalen should both be 0.

MS_GLOBAL

Mount a file system globally if the system is configured and booted as part of a cluster (see
clinfo(1M)).

Name

Synopsis

Description

mount(2)

System Calls 179

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4mnttab-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mclinfo-1m

MS_NOSUID

Prevent programs that are marked set-user-ID or set-group-ID from executing (see
chmod(1)). It also causes open(2) to return ENXIO when attempting to open block or
character special files.

MS_OPTIONSTR

The optptr and optlen arguments describe a character buffer at address optptr of size optlen.
When calling mount(), the character buffer should contain a null-terminated string of
options to be passed to the file system-specific code within the operating system. On a
successful return, the file system-specific code will return the list of options recognized.
Unrecognized options are ignored. The format of the string is a list of option names
separated by commas. Options that have values (rather than binary options such as suid or
nosuid), are separated by “=” such as dev=2c4046c. Standard option names are defined in
<sys/mntent.h>. Only strings defined in the “C” locale are supported. The maximum
length option string that can be passed to or returned from a mount() call is defined by the
MAX_MNTOPT_STR constant. The buffer should be long enough to contain more options than
were passed in, as the state of any default options that were not passed in the input option
string may also be returned in the recognized options list that is returned.

MS_OVERLAY

Allow the file system to be mounted over an existing file system mounted on dir, making
the underlying file system inaccessible. If a mount is attempted on a pre-existing mount
point without setting this flag, the mount will fail.

MS_RDONLY

Mount the file system for reading only. This flag should also be specified for file systems
that are incapable of writing (for example, CDROM). Without this flag, writing is
permitted according to individual file accessibility.

MS_REMOUNT

Remount a read-only file system as read-write.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The mount() function will fail if:

EACCES The permission bits of the mount point do not permit read/write access or
search permission is denied on a component of the path prefix.

The calling process is not the owner of the mountpoint.

The mountpoint is not a regular file or a directory and the caller does not
have all privileges available in a its zone.

The special device device does not permit read access in the case of
read-only mounts or read-write access in the case of read/write mounts.

Return Values

Errors

mount(2)

man pages section 2: System Calls • Last Revised 29 Mar 2011180

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1chmod-1

EBUSY The dir argument is currently mounted on, is someone's current working
directory, or is otherwise busy; or the device associated with spec is
currently mounted.

EEXIST A filesystem with the same FSID is already mounted.

EFAULT The spec, dir, fstype, dataptr, or optptr argument points outside the
allocated address space of the process.

EINVAL The super block has an invalid magic number, the fstype is invalid, or dir is
not an absolute path.

ELOOP Too many symbolic links were encountered in translating spec or dir.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length of a path
component exceeds NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENOENT None of the named files exists or is a null pathname.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOSPC The file system state in the super-block is not FsOKAY and mflag requests
write permission.

ENOTBLK The spec argument is not a block special device.

ENOTDIR The dir argument is not a directory, or a component of a path prefix is not a
directory.

ENOTSUP A global mount is attempted (the MS_GLOBAL flag is set in mflag) on a
machine which is not booted as a cluster; a local mount is attempted and
dir is within a globally mounted file system; or a remount was attempted on
a file system that does not support remounting.

ENXIO The device associated with spec does not exist.

EOVERFLOW The length of the option string to be returned in the optptr argument
exceeds the size of the buffer specified by optlen.

EPERM The {PRIV_SYS_MOUNT} privilege is not asserted in the effective set of the
calling process.

EREMOTE The spec argument is remote and cannot be mounted.

EROFS The spec argument is write protected and mflag requests write permission.

The mount() function can be invoked only by processes with appropriate privileges.

mount(1M), umount(2), mnttab(4)

Usage

See Also

mount(2)

System Calls 181

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mmount-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4mnttab-4

MS_OPTIONSTR-type option strings should be used.

Some flag bits set file system options that can also be passed in an option string. Options are
first set from the option string with the last setting of an option in the string determining the
value to be set by the option string. Any options controlled by flags are then applied,
overriding any value set by the option string.

Notes

mount(2)

man pages section 2: System Calls • Last Revised 29 Mar 2011182

mprotect – set protection of memory mapping

#include <sys/mman.h>

int mprotect(void *addr, size_t len, int prot);

The mprotect() function changes the access protections on the mappings specified by the
range [addr, addr + len), rounding len up to the next multiple of the page size as returned by
sysconf(3C), to be that specified by prot. Legitimate values for prot are the same as those
permitted for mmap(2) and are defined in <sys/mman.h> as:

PROT_READ /* page can be read */

PROT_WRITE /* page can be written */

PROT_EXEC /* page can be executed */

PROT_NONE /* page can not be accessed */

When mprotect() fails for reasons other than EINVAL, the protections on some of the pages in
the range [addr, addr + len) may have been changed. If the error occurs on some page at
addr2, then the protections of all whole pages in the range [addr, addr2] will have been
modified.

Upon successful completion, mprotect() returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

The mprotect() function will fail if:

EACCES The prot argument specifies a protection that violates the access permission the
process has to the underlying memory object.

EINVAL The len argument has a value equal to 0, or addr is not a multiple of the page size as
returned by sysconf(3C).

ENOMEM Addresses in the range [addr, addr + len) are invalid for the address space of a
process, or specify one or more pages which are not mapped.

The mprotect() function may fail if:

EAGAIN The address range [addr, addr + len) includes one or more pages that have been
locked in memory and that were mapped MAP_PRIVATE; prot includes PROT_WRITE;
and the system has insufficient resources to reserve memory for the private pages
that may be created. These private pages may be created by store operations in the
now-writable address range.

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Description

Return Values

Errors

Attributes

mprotect(2)

System Calls 183

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

mmap(2), plock(3C), mlock(3C), mlockall(3C), sysconf(3C), attributes(5), standards(5)See Also

mprotect(2)

man pages section 2: System Calls • Last Revised 12 Jan 1998184

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aplock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amlock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amlockall-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

msgctl – message control operations

#include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqid_ds *buf);

The msgctl() function provides a variety of message control operations as specified by cmd.
The following cmds are available:

IPC_STAT Place the current value of each member of the data structure associated with
msqid into the structure pointed to by buf. The contents of this structure are
defined in Intro(2).

IPC_SET Set the value of the following members of the data structure associated with
msqid to the corresponding value found in the structure pointed to by buf:

msg_perm.uid

msg_perm.gid

msg_perm.mode /* access permission bits only */

msg_qbytes

This command can be executed only by a process that has either the
{PRIV_IPC_OWNER} privilege or an effective user ID equal to the value of
msg_perm.cuid or msg_perm.uid in the data structure associated with msqid.
Only a process with the {PRIV_SYS_IPC_CONFIG} privilege can raise the value of
msg_qbytes.

IPC_RMID Remove the message queue identifier specified by msqid from the system and
destroy the message queue and data structure associated with it. This cmd can
only be executed by a process that has an effective user ID either with
appropriate privileges asserted in the effective set or equal to the value of
msg_perm.cuid or msg_perm.uid in the data structure associated with msqid.
The buf argument is ignored.

Upon successful completion, msgctl() returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

The msgctl() function will fail if:

EACCES The cmd argument is IPC_STAT and operation permission is denied to the
calling process (see Intro(2)).

EFAULT The buf argument points to an illegal address.

EINVAL The msqid argument is not a valid message queue identifier; or the cmd
argument is not a valid command or is IPC_SET and msg_perm.uid or
msg_perm.gid is not valid.

EOVERFLOW The cmd argument is IPC_STAT and uid or gid is too large to be stored in the
structure pointed to by buf.

Name

Synopsis

Description

Return Values

Errors

msgctl(2)

System Calls 185

EPERM The cmd argument is IPC_RMID or IPC_SET, the {PRIV_SYS_IPC_OWNER}
privilege is not asserted in the effective set of the calling process, and is not
equal to the value of msg_perm.cuid or msg_perm.uid in the data structure
associated with msqid.

The cmd argument is IPC_SET, an attempt is being made to increase to the
value of msg_qbytes, and the {PRIV_SYS_IPC_CONFIG} privilege is not asserted
in the effective set of the calling process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

Intro(2), msgget(2), msgrcv(2), msgsnd(2), attributes(5), privileges(5), standards(5)

Attributes

See Also

msgctl(2)

man pages section 2: System Calls • Last Revised 22 Mar 2004186

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

msgget – get message queue

#include <sys/msg.h>

int msgget(key_t key, int msgflg);

The msgget() argument returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data structure (see Intro(2))
are created for key if one of the following are true:

■ key is IPC_PRIVATE.
■ key does not already have a message queue identifier associated with it, and

(msgflg&IPC_CREAT) is true.

On creation, the data structure associated with the new message queue identifier is initialized
as follows:

■ msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid are set to the effective
user ID and effective group ID, respectively, of the calling process.

■ The low-order 9 bits of msg_perm.mode are set to the low-order 9 bits of msgflg.
■ msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are set to 0.
■ msg_ctime is set to the current time.
■ msg_qbytes is set to the system limit. See NOTES.

Upon successful completion, a non-negative integer representing a message queue identifier is
returned. Otherwise, −1 is returned and errno is set to indicate the error.

The msgget() function will fail if:

EACCES A message queue identifier exists for key, but operation permission (see Intro(2))
as specified by the low-order 9 bits of msgflg would not be granted.

EEXIST A message queue identifier exists for key but (msgflg&IPC_CREAT) and
(msgflg&IPC_EXCL) are both true.

ENOENT A message queue identifier does not exist for key and (msgflg&IPC_CREAT) is false.

ENOSPC A message queue identifier is to be created but the system-imposed limit on the
maximum number of allowed message queue identifiers system wide would be
exceeded. See NOTES.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Name

Synopsis

Description

Return Values

Errors

Attributes

msgget(2)

System Calls 187

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Standard See standards(5).

rctladm(1M), Intro(2), msgctl(2), msgrcv(2), msgsnd(2), setrctl(2), ftok(3C),
attributes(5), standards(5)

The system-defined limit used to initialize msg_qbytes is the minimum enforced value of the
calling process's process.max-msg-qbytes resource control.

The system-imposed limit on the number of message queue identifiers is maintained on a
per-project basis using the project.max-msg-ids resource control. The zone.max-msg-ids
resource control restricts the total amount of message queue identifiers that can be allocated
by a zone.

See rctladm(1M) and setrctl(2) for information about using resource controls.

See Also

Notes

msgget(2)

man pages section 2: System Calls • Last Revised 14 Aug 2006188

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mrctladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aftok-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mrctladm-1m

msgids – discover all message queue identifiers

#include <sys/msg.h>

int msgids(int *buf, uint_t nids, uint_t *pnids);

The msgids() function copies all active message queue identifiers from the system into the
user-defined buffer specified by buf, provided that the number of such identifiers is not greater
than the number of integers the buffer can contain, as specified by nids. If the size of the buffer
is insufficient to contain all of the active message queue identifiers in the system, none are
copied.

Whether or not the size of the buffer is sufficient to contain all of them, the number of active
message queue identifiers in the system is copied into the unsigned integer pointed to by
pnids.

If nids is 0 or less than the number of active message queue identifiers in the system, buf is
ignored.

Upon successful completion, msgids() returns 0. Otherwise, −1 is returned and errno is set to
indicate the error.

The msgids() function will fail if:

EFAULT The buf or pnids argument points to an illegal address.

The msgids() function returns a snapshot of all the active message queue identifiers in the
system. More may be added and some may be removed before they can be used by the caller.

EXAMPLE 1 msgids() example

This is sample C code indicating how to use the msgids() function (see msgsnap(2)):

void

examine_queues()

{

int *ids = NULL;

uint_t nids = 0;

uint_t n;

int i;

for (;;) {

if (msgids(ids, nids, &n) != 0) {

perror("msgids");
exit(1);

}

if (n <= nids) /* we got them all */

break;

/* we need a bigger buffer */

ids = realloc(ids, (nids = n) * sizeof (int));

Name

Synopsis

Description

Return Values

Errors

Usage

Examples

msgids(2)

System Calls 189

EXAMPLE 1 msgids() example (Continued)

}

for (i = 0; i < n; i++)

process_msgid(ids[i]);

free(ids);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

ipcrm(1), ipcs(1), Intro(2), msgctl(2), msgget(2), msgsnap(2), msgrcv(2), msgsnd(2),
attributes(5)

Attributes

See Also

msgids(2)

man pages section 2: System Calls • Last Revised 8 Mar 2000190

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ipcrm-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ipcs-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

msgrcv – message receive operation

#include <sys/msg.h>

ssize_t msgrcv(int msqid, void *msgp, size_t msgsz,
long int msgtyp, int msgflg);

The msgrcv() function reads a message from the queue associated with the message queue
identifier specified by msqid and places it in the user-defined buffer pointed to by msgp.

The msgp argument points to a user-defined buffer that must contain first a field of type long
int that will specify the type of the message, and then a data portion that will hold the data
bytes of the message. The structure below is an example of what this user-defined buffer might
look like:

struct mymsg {

long int mtype; /* message type */

char mtext[1]; /* message text */

}

The mtype member is the received message's type as specified by the sending process.

The mtext member is the text of the message.

The msgsz argument specifies the size in bytes of mtext. The received message is truncated to
msgsz bytes if it is larger than msgsz and (msgflg&MSG_NOERROR) is non-zero. The truncated
part of the message is lost and no indication of the truncation is given to the calling process.

The msgtyp argument specifies the type of message requested as follows:
■ If msgtyp is 0, the first message on the queue is received.
■ If msgtyp is greater than 0, the first message of type msgtyp is received.
■ If msgtyp is less than 0, the first message of the lowest type that is less than or equal to the

absolute value of msgtyp is received.

The msgflg argument specifies which of the following actions is to be taken if a message of the
desired type is not on the queue:
■ If (msgflg&IPC_NOWAIT) is non-zero, the calling process will return immediately with a

return value of −1 and errno set to ENOMSG.
■ If (msgflg&IPC_NOWAIT) is 0, the calling process will suspend execution until one of the

following occurs:
■ A message of the desired type is placed on the queue.
■ The message queue identifier msqid is removed from the system (see msgctl(2)); when

this occurs, errno is set equal to EIDRM and −1 is returned.
■ The calling process receives a signal that is to be caught; in this case a message is not

received and the calling process resumes execution in the manner prescribed in
sigaction(2).

Name

Synopsis

Description

msgrcv(2)

System Calls 191

Upon successful completion, the following actions are taken with respect to the data structure
associated with msqid (see Intro(2)):

■ msg_qnum is decremented by 1.
■ msg_lrpid is set equal to the process ID of the calling process.
■ msg_rtime is set equal to the current time.

Upon successful completion, msgrcv() returns a value equal to the number of bytes actually
placed into the buffer mtext. Otherwise, −1 is returned, no message is received, and errno is
set to indicate the error.

The msgrcv() function will fail if:

E2BIG The value of mtext is greater than msgsz and (msgflg&MSG_NOERROR) is 0.

EACCES Operation permission is denied to the calling process. See Intro(2).

EIDRM The message queue identifier msqid is removed from the system.

EINTR The msgrcv() function was interrupted by a signal.

EINVAL The msqid argument is not a valid message queue identifier.

ENOMSG The queue does not contain a message of the desired type and
(msgflg&IPC_NOWAIT) is non-zero.

The msgrcv() function may fail if:

EFAULT The msgp argument points to an illegal address.

The value passed as the msgp argument should be converted to type void *.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

Intro(2), msgctl(2), msgget(2), msgsnd(2), sigaction(2), attributes(5), standards(5)

Return Values

Errors

Usage

Attributes

See Also

msgrcv(2)

man pages section 2: System Calls • Last Revised 19 May 1999192

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

msgsnap – message queue snapshot operation

#include <sys/msg.h>

msgsnap(int msqid, void *buf, size_t bufsz, long msgtyp);

The msgsnap() function reads all of the messages of type msgtyp from the queue associated
with the message queue identifier specified by msqid and places them in the user-defined
buffer pointed to by buf.

The buf argument points to a user-defined buffer that on return will contain first a buffer
header structure:

struct msgsnap_head {

size_t msgsnap_size; /* bytes used/required in the buffer */

size_t msgsnap_nmsg; /* number of messages in the buffer */

};

followed by msgsnap_nmsg messages, each of which starts with a message header:

struct msgsnap_mhead {

size_t msgsnap_mlen; /* number of bytes in the message */

long msgsnap_mtype; /* message type */

};

and followed by msgsnap_mlen bytes containing the message contents.

Each subsequent message header is located at the first byte following the previous message
contents, rounded up to a sizeof(size_t) boundary.

The bufsz argument specifies the size of buf in bytes. If bufsz is less than
sizeof(msgsnap_head), msgsnap() fails with EINVAL. If bufsz is insufficient to contain all of
the requested messages, msgsnap() succeeds but returns with msgsnap_nmsg set to 0 and with
msgsnap_size set to the required size of the buffer in bytes.

The msgtyp argument specifies the types of messages requested as follows:

■ If msgtyp is 0, all of the messages on the queue are read.
■ If msgtyp is greater than 0, all messages of type msgtyp are read.
■ If msgtyp is less than 0, all messages with type less than or equal to the absolute value of

msgtyp are read.

The msgsnap() function is a non-destructive operation. Upon completion, no changes are
made to the data structures associated with msqid.

Upon successful completion, msgsnap() returns 0. Otherwise, −1 is returned and errno is set
to indicate the error.

Name

Synopsis

Description

Return Values

msgsnap(2)

System Calls 193

The msgsnap() function will fail if:

EACCES Operation permission is denied to the calling process. See Intro(2).

EINVAL The msqid argument is not a valid message queue identifier or the value of bufsz is
less than sizeof(struct msgsnap_head).

EFAULT The buf argument points to an illegal address.

The msgsnap() function returns a snapshot of messages on a message queue at one point in
time. The queue contents can change immediately following return from msgsnap().

EXAMPLE 1 msgsnap() example

This is sample C code indicating how to use the msgsnap function (see msgids(2)).

void

process_msgid(int msqid)

{

size_t bufsize;

struct msgsnap_head *buf;

struct msgsnap_mhead *mhead;

int i;

/* allocate a minimum-size buffer */

buf = malloc(bufsize = sizeof(struct msgsnap_head));

/* read all of the messages from the queue */

for (;;) {

if (msgsnap(msqid, buf, bufsize, 0) != 0) {

perror("msgsnap");
free(buf);

return;

}

if (bufsize >= buf->msgsnap_size) /* we got them all */

break;

/* we need a bigger buffer */

buf = realloc(buf, bufsize = buf->msgsnap_size);

}

/* process each message in the queue (there may be none) */

mhead = (struct msgsnap_mhead *)(buf + 1); /* first message */

for (i = 0; i < buf->msgsnap_nmsg; i++) {

size_t mlen = mhead->msgsnap_mlen;

/* process the message contents */

process_message(mhead->msgsnap_mtype, (char *)(mhead+1), mlen);

/* advance to the next message header */

Errors

Usage

Examples

msgsnap(2)

man pages section 2: System Calls • Last Revised 8 Mar 2000194

EXAMPLE 1 msgsnap() example (Continued)

mhead = (struct msgsnap_mhead *)

((char *)mhead + sizeof(struct msgsnap_mhead) +

((mlen + sizeof(size_t) - 1) & ~(sizeof(size_t) - 1)));

}

free(buf);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

ipcrm(1), ipcs(1), Intro(2), msgctl(2), msgget(2), msgids(2), msgrcv(2), msgsnd(2),
attributes(5)

Attributes

See Also

msgsnap(2)

System Calls 195

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ipcrm-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ipcs-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

msgsnd – message send operation

#include <sys/msg.h>

int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

The msgsnd() function is used to send a message to the queue associated with the message
queue identifier specified by msqid.

The msgp argument points to a user-defined buffer that must contain first a field of type long
int that will specify the type of the message, and then a data portion that will hold the data
bytes of the message. The structure below is an example of what this user-defined buffer might
look like:

struct mymsg {

long mtype; /* message type */

char mtext[1]; /* message text */

}

The mtype member is a non-zero positive type long int that can be used by the receiving
process for message selection.

The mtext member is any text of length msgsz bytes. The msgsz argument can range from 0 to
a system-imposed maximum.

The msgflg argument specifies the action to be taken if one or more of the following are true:
■ The number of bytes already on the queue is equal to msg_qbytes. See Intro(2).
■ The total number of messages on the queue would exceed the maximum allowed by the

system. See NOTES.

These actions are as follows:

■ If (msgflg&IPC_NOWAIT) is non-zero, the message will not be sent and the calling process
will return immediately.

■ If (msgflg&IPC_NOWAIT) is 0, the calling process will suspend execution until one of the
following occurs:
■ The condition responsible for the suspension no longer exists, in which case the

message is sent.
■ The message queue identifier msqid is removed from the system (see msgctl(2)); when

this occurs, errno is set equal to EIDRM and −1 is returned.
■ The calling process receives a signal that is to be caught; in this case the message is not

sent and the calling process resumes execution in the manner prescribed in
sigaction(2).

Upon successful completion, the following actions are taken with respect to the data structure
associated with msqid (see Intro(2)):

Name

Synopsis

Description

msgsnd(2)

man pages section 2: System Calls • Last Revised 11 Feb 2003196

■ msg_qnum is incremented by 1.
■ msg_lspid is set equal to the process ID of the calling process.
■ msg_stime is set equal to the current time.

Upon successful completion, 0 is returned. Otherwise, −1 is returned, no message is sent, and
errno is set to indicate the error.

The msgsnd() function will fail if:

EACCES Operation permission is denied to the calling process. See Intro(2).

EAGAIN The message cannot be sent for one of the reasons cited above and
(msgflg&IPC_NOWAIT) is non-zero.

EIDRM The message queue identifier msgid is removed from the system.

EINTR The msgsnd() function was interrupted by a signal.

EINVAL The value of msqid is not a valid message queue identifier, or the value of mtype is
less than 1.

The value of msgsz is less than 0 or greater than the system-imposed limit.

The msgsnd() function may fail if:

EFAULT The msgp argument points to an illegal address.

The value passed as the msgp argument should be converted to type void *.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

rctladm(1M), Intro(2), msgctl(2), msgget(2), msgrcv(2), setrctl(2), sigaction(2),
attributes(5), standards(5)

The maximum number of messages allowed on a message queue is the minimum enforced
value of the process.max-msg-messages resource control of the creating process at the time
msgget(2) was used to allocate the queue.

See rctladm(1M) and setrctl(2) for information about using resource controls.

Return Values

Errors

Usage

Attributes

See Also

Notes

msgsnd(2)

System Calls 197

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mrctladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mrctladm-1m

munmap – unmap pages of memory

#include <sys/mman.h>

int munmap(void *addr, size_t len);

The munmap() function removes the mappings for pages in the range [addr, addr + len),
rounding the len argument up to the next multiple of the page size as returned by
sysconf(3C). If addr is not the address of a mapping established by a prior call to mmap(2), the
behavior is undefined. After a successful call to munmap() and before any subsequent mapping
of the unmapped pages, further references to these pages will result in the delivery of a SIGBUS
or SIGSEGV signal to the process.

The mmap(2) function often performs an implicit munmap().

Upon successful completion, munmap() returns 0; otherwise, it returns −1 and sets errno to
indicate an error.

The munmap() function will fail if:

EINVAL The addr argument is not a multiple of the page size as returned by sysconf(3C);
addresses in the range [addr, addr + len) are outside the valid range for the address
space of a process; or the len argument has a value less than or equal to 0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

mmap(2), sysconf(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

munmap(2)

man pages section 2: System Calls • Last Revised 5 Jan 1998198

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

nice – change priority of a process

#include <unistd.h>

int nice(int incr);

The nice() function allows a process to change its priority. The invoking process must be in a
scheduling class that supports the nice().

The nice() function adds the value of incr to the nice value of the calling process. A process's
nice value is a non-negative number for which a greater positive value results in lower CPU
priority.

A maximum nice value of (2 * NZERO) −1 and a minimum nice value of 0 are imposed by the
system. NZERO is defined in <limits.h> with a default value of 20. Requests for values above
or below these limits result in the nice value being set to the corresponding limit. A nice value
of 40 is treated as 39.

Calling the nice() function has no effect on the priority of processes or threads with policy
SCHED_FIFO or SCHED_RR.

Only a process with the {PRIV_PROC_PRIOCNTL} privilege can lower the nice value.

Upon successful completion, nice() returns the new nice value minus NZERO. Otherwise, −1 is
returned, the process's nice value is not changed, and errno is set to indicate the error.

The nice() function will fail if:

EINVAL The nice() function is called by a process in a scheduling class other than
time-sharing or fixed-priority.

EPERM The incr argument is negative or greater than 40 and the {PRIV_PROC_PRIOCNTL}
privilege is not asserted in the effective set of the calling process.

The priocntl(2) function is a more general interface to scheduler functions.

Since −1 is a permissible return value in a successful situation, an application wishing to check
for error situations should set errno to 0, then call nice(), and if it returns −1, check to see if
errno is non-zero.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

nice(2)

System Calls 199

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

nice(1), exec(2), priocntl(2), getpriority(3C), attributes(5), privileges(5),
standards(5)

See Also

nice(2)

man pages section 2: System Calls • Last Revised 1 Apr 2004200

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1nice-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agetpriority-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

ntp_adjtime – adjust local clock parameters

#include <sys/timex.h>

int ntp_adjtime(struct timex *tptr);

The ntp_adjtime() function adjusts the parameters used to discipline the local clock,
according to the values in the struct timex pointed to by tptr. Before returning, it fills in the
structure with the most recent values kept in the kernel.

The adjustment is effected in part by speeding up or slowing down the clock, as necessary, and
in part by phase-locking onto a once-per second pulse (PPS) provided by a driver, if available.

struct timex {

uint32_t modes; /* clock mode bits (w) */

int32_t offset; /* time offset (us) (rw) */

int32_t freq; /* frequency offset (scaled ppm) (rw) */

int32_t maxerror; /* maximum error (us) (rw) */

int32_t esterror; /* estimated error (us) (rw) */

int32_t status; /* clock status bits (rw) */

int32_t constant; /* pll time constant (rw) */

int32_t precision; /* clock precision (us) (r) */

int32_t tolerance; /* clock frequency tolerance

(scaled ppm) (r) */

int32_t ppsfreq; /* pps frequency (scaled ppm) (r) */

int32_t jitter; /* pps jitter (us) (r) */

int32_t shift; /* interval duration (s) (shift) (r) */

int32_t stabil; /* pps stability (scaled ppm) (r) */

int32_t jitcnt; /* jitter limit exceeded (r) */

int32_t calcnt; /* calibration intervals (r) */

int32_t errcnt; /* calibration errors (r) */

int32_t stbcnt; /* stability limit exceeded (r) */

};

Upon successful completion, ntp_adjtime() returns the current clock state (see
<sys/timex.h>). Otherwise, it returns −1 and sets errno to indicate the error.

The ntp_adjtime() function will fail if:

EFAULT The tptr argument is an invalid pointer.

EINVAL The constant member of the structure pointed to by tptr is less than 0 or greater
than 30.

EPERM The {PRIV_SYS_TIME} privilege is not asserted in the effective set of the calling
process.

Name

Synopsis

Description

Return Values

Errors

ntp_adjtime(2)

System Calls 201

ntp_gettime(2), privileges(5)

See the ntpd man page, delivered in the SUNWntpu package (not a SunOS man page).

See Also

ntp_adjtime(2)

man pages section 2: System Calls • Last Revised 21 May 2009202

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

ntp_gettime – get local clock values

#include <sys/timex.h>

int ntp_gettime(struct ntptimeval *tptr);

The ntp_gettime() function reads the local clock value and dispersion, returning the
information in tptr.

The ntptimeval structure contains the following members:

struct ntptimeval {

struct timeval time; /* current time (ro) */

int32_t maxerror; /* maximum error (us) (ro) */

int32_t esterror; /* estimated error (us) (ro) */

};

Upon successful completion, ntp_gettime() returns the current clock state (see
<sys/timex.h>). Otherwise, it returns −1 and sets errno to indicate the error.

The ntp_gettime() function will fail if:

EFAULT The tptr argument points to an invalid address.

The ntp_gettime() function will fail for 32-bit interfaces if:

EOVERFLOW The size of the time.tv_sec member of the ntptimeval structure pointed to
by tptr is too small to contain the correct number of seconds.

ntp_adjtime(2)

See the ntpd man page, delivered in the SUNWntpu package (not a SunOS man page).

Name

Synopsis

Description

Return Values

Errors

See Also

ntp_gettime(2)

System Calls 203

open, openat – open a file

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open(const char *path, int oflag, /* mode_t mode */);

int openat(int fildes, const char *path, int oflag,
/* mode_t mode */);

The open() function establishes the connection between a file and a file descriptor. It creates
an open file description that refers to a file and a file descriptor that refers to that open file
description. The file descriptor is used by other I/O functions to refer to that file. The path
argument points to a pathname naming the file.

The openat() function is identical to the open() function except that the path argument is
interpreted relative to the starting point implied by the fildes argument. If the fildes argument
has the special value AT_FDCWD, a relative path argument will be resolved relative to the current
working directory. If the path argument is absolute, the fildes argument is ignored.

The open() function returns a file descriptor for the named file that is the lowest file descriptor
not currently open for that process. The open file description is new, and therefore the file
descriptor does not share it with any other process in the system. The FD_CLOEXEC file
descriptor flag associated with the new file descriptor is cleared.

The file offset used to mark the current position within the file is set to the beginning of the file.

The file status flags and file access modes of the open file description are set according to the
value of oflag. The mode argument is used only when O_CREAT is specified (see below.)

Values for oflag are constructed by a bitwise-inclusive-OR of flags from the following list,
defined in <fcntl.h>. Applications must specify exactly one of the first five values (file access
modes) below in the value of oflag:

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing. The result is undefined if this flag is applied to a
FIFO.

O_EXEC Open ordinary file for execute only.

O_SEARCH Open directory for search only.

Any combination of the following may be used:

O_APPEND

If set, the file offset is set to the end of the file prior to each write.

Name

Synopsis

Description

open(2)

man pages section 2: System Calls • Last Revised 2 Nov 2010204

O_CLOEXEC

If set, the FD_CLOEXEC flag is set for the new file descriptor.

O_CREAT

Create the file if it does not exist. This flag requires that the mode argument be specified.

If the file exists, this flag has no effect except as noted under O_EXCL below. Otherwise, the
file is created with the user ID of the file set to the effective user ID of the process. The
group ID of the file is set to the effective group IDs of the process, or if the S_ISGID bit is set
in the directory in which the file is being created, the file's group ID is set to the group ID of
its parent directory. If the group ID of the new file does not match the effective group ID or
one of the supplementary groups IDs, the S_ISGID bit is cleared. The access permission bits
(see <sys/stat.h>) of the file mode are set to the value of mode, modified as follows (see
creat(2)): a bitwise-AND is performed on the file-mode bits and the corresponding bits in
the complement of the process's file mode creation mask. Thus, all bits set in the process's
file mode creation mask (see umask(2)) are correspondingly cleared in the file's permission
mask. The “save text image after execution bit” of the mode is cleared (see chmod(2)).
O_SYNC Write I/O operations on the file descriptor complete as defined by synchronized
I/O file integrity completion (see fcntl.h(3HEAD) definition of O_SYNC.) When bits other
than the file permission bits are set, the effect is unspecified. The mode argument does not
affect whether the file is open for reading, writing or for both.

O_DIRECTORY

If path does not specify a directory, fail and set errno to ENOTDIR.

O_DSYNC

Write I/O operations on the file descriptor complete as defined by synchronized I/O data
integrity completion.

O_EXCL

If O_CREAT and O_EXCL are set, open() fails if the file exists. The check for the existence of
the file and the creation of the file if it does not exist is atomic with respect to other threads
executing open() naming the same filename in the same directory with O_EXCL and
O_CREAT set. If O_EXCL and O_CREAT are set, and path names a symbolic link, open() fails
and sets errno to EEXIST, regardless of the contents of the symbolic link. If O_EXCL is set
and O_CREAT is not set, the result is undefined.

O_LARGEFILE

If set, the offset maximum in the open file description is the largest value that can be
represented correctly in an object of type off64_t.

O_NOCTTY

If set and path identifies a terminal device, open() does not cause the terminal device to
become the controlling terminal for the process.

O_NOFOLLOW

If the path names a symbolic link, open() fails and sets errno to ELOOP.

open(2)

System Calls 205

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Ffcntl.h-3head

O_NOLINKS

If the link count of the named file is greater than 1, open() fails and sets errno to EMLINK.

O_NONBLOCK or O_NDELAY
These flags can affect subsequent reads and writes (see read(2) and write(2)). If both
O_NDELAY and O_NONBLOCK are set, O_NONBLOCK takes precedence.

When opening a FIFO with O_RDONLY or O_WRONLY set:
■ If O_NONBLOCK or O_NDELAY is set, an open() for reading only returns without delay. An

open() for writing only returns an error if no process currently has the file open for
reading.

■ If O_NONBLOCK and O_NDELAY are clear, an open() for reading only blocks until a thread
opens the file for writing. An open() for writing only blocks the calling thread until a
thread opens the file for reading.

After both ends of a FIFO have been opened, there is no guarantee that further calls to
open() O_RDONLY (O_WRONLY) will synchronize with later calls to open() O_WRONLY

(O_RDONLY) until both ends of the FIFO have been closed by all readers and writers. Any
data written into a FIFO will be lost if both ends of the FIFO are closed before the data is
read.

When opening a block special or character special file that supports non-blocking opens:
■ If O_NONBLOCK or O_NDELAY is set, the open() function returns without blocking for the

device to be ready or available. Subsequent behavior of the device is device-specific.
■ If O_NONBLOCK and O_NDELAY are clear, the open() function blocks the calling thread

until the device is ready or available before returning.

Otherwise, the behavior of O_NONBLOCK and O_NDELAY is unspecified.

O_RSYNC

Read I/O operations on the file descriptor complete at the same level of integrity as
specified by the O_DSYNC and O_SYNC flags. If both O_DSYNC and O_RSYNC are set in oflag, all
I/O operations on the file descriptor complete as defined by synchronized I/O data
integrity completion. If both O_SYNC and O_RSYNC are set in oflag, all I/O operations on the
file descriptor complete as defined by synchronized I/O file integrity completion.

O_SYNC

Write I/O operations on the file descriptor complete as defined by synchronized I/O file
integrity completion.

O_TRUNC

If the file exists and is a regular file, and the file is successfully opened O_RDWR or O_WRONLY,
its length is truncated to 0 and the mode and owner are unchanged. It has no effect on FIFO
special files or terminal device files. Its effect on other file types is
implementation-dependent. The result of using O_TRUNC with O_RDONLY is undefined.

open(2)

man pages section 2: System Calls • Last Revised 2 Nov 2010206

O_TTY_INIT

The O_TTY_INIT flag is ignored. Terminal devices are always opened in a state providing
conforming behavior.

O_XATTR

If set in openat(), a relative path argument is interpreted as a reference to an extended
attribute of the file associated with the supplied file descriptor. This flag therefore requires
the presence of a legal fildes argument. If set in open(), the implied file descriptor is that for
the current working directory. Extended attributes must be referenced with a relative path;
providing an absolute path results in a normal file reference.

If O_CREAT is set and the file did not previously exist, upon successful completion, open()
marks for update the st_atime, st_ctime, and st_mtime fields of the file and the st_ctime
and st_mtime fields of the parent directory.

If O_TRUNC is set and the file did previously exist, upon successful completion, open() marks
for update the st_ctime and st_mtime fields of the file.

If both the O_SYNC and O_DSYNC flags are set, the effect is as if only the O_SYNC flag was set.

If path refers to a STREAMS file, oflag may be constructed from O_NONBLOCK or O_NODELAY
OR-ed with either O_RDONLY, O_WRONLY, or O_RDWR. Other flag values are not applicable to
STREAMS devices and have no effect on them. The values O_NONBLOCK and O_NODELAY affect
the operation of STREAMS drivers and certain functions (see read(2), getmsg(2), putmsg(2),
and write(2)) applied to file descriptors associated with STREAMS files. For STREAMS
drivers, the implementation of O_NONBLOCK and O_NODELAY is device-specific.

When open() is invoked to open a named stream, and the connld module (see connld(7M))
has been pushed on the pipe, open() blocks until the server process has issued an I_RECVFD

ioctl() (see streamio(7I)) to receive the file descriptor.

If path names the master side of a pseudo-terminal device, then it is unspecified whether
open() locks the slave side so that it cannot be opened. Portable applications must call
unlockpt(3C) before opening the slave side.

If the file is a regular file and the local file system is mounted with the nbmand mount option,
then a mandatory share reservation is automatically obtained on the file. The share
reservation is obtained as if fcntl(2) were called with cmd F_SHARE_NBMAND and the fshare_t
values set as follows:

f_access Set to the type of read/write access for which the file is opened.

f_deny F_NODNY

f_id The file descriptor value returned from open().

If path is a symbolic link and O_CREAT and O_EXCL are set, the link is not followed.

Certain flag values can be set following open() as described in fcntl(2).

open(2)

System Calls 207

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7connld-7m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7streamio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aunlockpt-3c

The largest value that can be represented correctly in an object of type off_t is established as
the offset maximum in the open file description.

Upon successful completion, the open() function opens the file and return a non-negative
integer representing the lowest numbered unused file descriptor. Otherwise, −1 is returned,
errno is set to indicate the error, and no files are created or modified.

The open() and openat() functions will fail if:

EACCES Search permission is denied on a component of the path prefix.

The file exists and the permissions specified by oflag are denied.

The file does not exist and write permission is denied for the parent
directory of the file to be created.

O_TRUNC is specified and write permission is denied.

The {PRIV_FILE_DAC_SEARCH} privilege allows processes to search
directories regardless of permission bits. The {PRIV_FILE_DAC_WRITE}
privilege allows processes to open files for writing regardless of permission
bits. See privileges(5) for special considerations when opening files
owned by UID 0 for writing. The {PRIV_FILE_DAC_READ} privilege allows
processes to open files for reading regardless of permission bits.

To open a file for reading or writing, the basic privileges {PRIV_FILE_READ}
and {PRIV_FILE_WRITE}, respectively, need to be asserted in the effective
set.

EAGAIN A mandatory share reservation could not be obtained because the desired
access conflicts with an existing f_deny share reservation.

EBADF The file descriptor provided to openat() is invalid.

EDQUOT The file does not exist, O_CREAT is specified, and either the directory where
the new file entry is being placed cannot be extended because the user's
quota of disk blocks on that file system has been exhausted, or the user's
quota of inodes on the file system where the file is being created has been
exhausted.

EEXIST The O_CREAT and O_EXCL flags are set and the named file exists.

EILSEQ The path argument includes non-UTF8 characters and the file system
accepts only file names where all characters are part of the UTF-8 character
codeset.

EINTR A signal was caught during open().

EFAULT The path argument points to an illegal address.

Return Values

Errors

open(2)

man pages section 2: System Calls • Last Revised 2 Nov 2010208

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

EINVAL The system does not support synchronized I/O for this file, or the O_XATTR
flag was supplied and the underlying file system does not support extended
file attributes.

EIO The path argument names a STREAMS file and a hangup or error occurred
during the open().

EISDIR The named file is a directory and oflag includes O_WRONLY or O_RDWR.

ELOOP Too many symbolic links were encountered in resolving path.

A loop exists in symbolic links encountered during resolution of the path
argument.

The O_NOFOLLOW flag is set and the final component of path is a symbolic
link.

EMFILE There are currently {OPEN_MAX} file descriptors open in the calling process.

EMLINK The O_NOLINKS flag is set and the named file has a link count greater than 1.

EMULTIHOP Components of path require hopping to multiple remote machines and the
file system does not allow it.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

ENFILE The maximum allowable number of files is currently open in the system.

ENOENT The O_CREAT flag is not set and the named file does not exist; or the
O_CREAT flag is set and either the path prefix does not exist or the path
argument points to an empty string.

ENOEXEC The O_EXEC access mode was specified and the file to be opened is not an
ordinary file.

ENOLINK The path argument points to a remote machine, and the link to that
machine is no longer active.

ENOSR The path argument names a STREAMS-based file and the system is unable
to allocate a STREAM.

ENOSPC The directory or file system that would contain the new file cannot be
expanded, the file does not exist, and O_CREAT is specified.

ENOSYS The device specified by path does not support the open operation.

ENOTDIR A component of the path prefix is not a directory, a relative path was
supplied to openat(), the O_XATTR flag was not supplied, and the file
descriptor does not refer to a directory, the O_SEARCH access mode was

open(2)

System Calls 209

specified and the file to be opened is not a directory, or O_DIRECTORY was
specified and the path argument does not specify a directory.

ENXIO The O_NONBLOCK flag is set, the named file is a FIFO, the O_WRONLY flag is
set, and no process has the file open for reading; or the named file is a
character special or block special file and the device associated with this
special file does not exist or has been retired by the fault management
framework .

EOPNOTSUPP An attempt was made to open a path that corresponds to a AF_UNIX socket.

EOVERFLOW The named file is a regular file and either O_LARGEFILE is not set and the
size of the file cannot be represented correctly in an object of type off_t or
O_LARGEFILE is set and the size of the file cannot be represented correctly
in an object of type off64_t.

EROFS The named file resides on a read-only file system and either O_WRONLY,
O_RDWR, O_CREAT (if file does not exist), or O_TRUNC is set in the oflag
argument.

The openat() function will fail if:

EACCES The permissions of the directory underlying fildes do not permit directory
searches.

EBADF The path argument does not specify an absolute path and the fildes argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

The open() function may fail if:

EAGAIN The path argument names the slave side of a pseudo-terminal device that is
locked.

EINVAL The value of the oflag argument is not valid.

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

ENOMEM The path argument names a STREAMS file and the system is unable to
allocate resources.

ETXTBSY The file is a pure procedure (shared text) file that is being executed and
oflag is O_WRONLY or O_RDWR.

EXAMPLE 1 Open a file for writing by the owner.

The following example opens the file /tmp/file, either by creating it if it does not already
exist, or by truncating its length to 0 if it does exist. If the call creates a new file, the access
permission bits in the file mode of the file are set to permit reading and writing by the owner,
and to permit reading only by group members and others.

Examples

open(2)

man pages section 2: System Calls • Last Revised 2 Nov 2010210

EXAMPLE 1 Open a file for writing by the owner. (Continued)

If the call to open() is successful, the file is opened for writing.

#include <fcntl.h>

...

int fd;

mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;

char *filename = "/tmp/file";
...

fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, mode);

...

EXAMPLE 2 Open a file using an existence check.

The following example uses the open() function to try to create the LOCKFILE file and open it
for writing. Since the open() function specifies the O_EXCL flag, the call fails if the file already
exists. In that case, the application assumes that someone else is updating the password file
and exits.

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#define LOCKFILE "/etc/ptmp"
...

int pfd; /* Integer for file descriptor returned by open() call. */

...

if ((pfd = open(LOCKFILE, O_WRONLY | O_CREAT | O_EXCL,

S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)) == -1)

{

fprintf(stderr, "Cannot open /etc/ptmp. Try again later.\n");
exit(1);

}

...

EXAMPLE 3 Open a file for writing.

The following example opens a file for writing, creating the file if it does not already exist. If
the file does exist, the system truncates the file to zero bytes.

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#define LOCKFILE "/etc/ptmp"
...

int pfd;

char filename[PATH_MAX+1];

...

if ((pfd = open(filename, O_WRONLY | O_CREAT | O_TRUNC,

open(2)

System Calls 211

EXAMPLE 3 Open a file for writing. (Continued)

S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)) == -1)

{

perror("Cannot open output file\n"); exit(1);

}

...

The open() function has a transitional interface for 64-bit file offsets. See lf64(5). Note that
using open64() is equivalent to using open() with O_LARGEFILE set in oflag.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard For open(), see standards(5).

Intro(2), chmod(2), close(2), creat(2), dup(2), exec(2), fcntl(2), getmsg(2), getrlimit(2),
lseek(2), putmsg(2), read(2), stat(2), umask(2), write(2), attropen(3C), fcntl.h(3HEAD),
stat.h(3HEAD), unlockpt(3C), attributes(5), lf64(5), privileges(5), standards(5),
connld(7M), streamio(7I)

Hierarchical Storage Management (HSM) file systems can sometimes cause long delays when
opening a file, since HSM files must be recalled from secondary storage.

Usage

Attributes

See Also

Notes

open(2)

man pages section 2: System Calls • Last Revised 2 Nov 2010212

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aattropen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Ffcntl.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fstat.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aunlockpt-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7connld-7m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7streamio-7i

pause – suspend process until signal

#include <unistd.h>

int pause(void);

The pause() function suspends the calling process until it receives a signal. The signal must be
one that is not currently set to be ignored by the calling process.

If the signal causes termination of the calling process, pause() does not return.

If the signal is caught by the calling process and control is returned from the signal-catching
function (see signal(3C)), the calling process resumes execution from the point of
suspension.

Since pause() suspends thread execution indefinitely unless interrupted by a signal, there is
no successful completion return value. If interrupted, it returns −1 and sets errno to indicate
the error.

The pause() function will fail if:

EINTR A signal is caught by the calling process and control is returned from the
signal-catching function.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

alarm(2), kill(2), signal(3C), wait(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

pause(2)

System Calls 213

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Await-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

pcsample – program execution time profile

#include <pcsample.h>

long pcsample(uintptr_t samples[], long nsamples);

The pcsample() function provides CPU-use statistics by profiling the amount of CPU time
expended by a program.

For profiling dynamically-linked programs and 64-bit programs, it is superior to the
profil(2) function, which assumes that the entire program is contained in a small,
contiguous segment of the address space, divides this segment into “bins”, and on each clock
tick increments the counter in the bin where the program is currently executing. With shared
libraries creating discontinuous program segments spread throughout the address space, and
with 64-bit address spaces so large that the size of “bins” would be measured in megabytes, the
profil() function is of limited value.

The pcsample() function is passed an array samples containing nsamples pointer-sized
elements. During program execution, the kernel samples the program counter of the process,
storing unadulterated values in the array on each clock tick. The kernel stops writing to the
array when it is full, which occurs after nsamples / HZ seconds of process virtual time. The HZ
value is obtained by invoking the call sysconf(_SC_CLK_TCK). See sysconf(3C).

The sampling can be stopped by a subsequent call to pcsample() with the nsamples argument
set to 0. Like profil(), sampling continues across a call to fork(2), but is disabled by a call to
one of the exec family of functions (see exec(2)). It is also disabled if an update of the
samples[] array causes a memory fault.

The pcsample() function always returns 0 the first time it is called. On subsequent calls, it
returns the number of samples that were stored during the previous invocation. If nsamples is
invalid, it returns −1 and sets errno to indicate the error.

The pcsample() function will fail if:

EINVAL The value of nsamples is not valid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

Interface Stability Committed

exec(2), fork(2), profil(2), sysconf(3C), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

pcsample(2)

man pages section 2: System Calls • Last Revised 10 Mar 1998214

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

pipe – create an interprocess channel

#include <unistd.h>

int pipe(int fildes[2]);

The pipe() function creates an I/O mechanism called a pipe and returns two file descriptors,
fildes[0] and fildes[1]. The files associated with fildes[0] and fildes[1] are streams and are both
opened for reading and writing. The O_NDELAY, O_NONBLOCK, and FD_CLOEXEC flags are cleared
on both file descriptors. The fcntl(2) function can be used to set these flags.

A read from fildes[0] accesses the data written to fildes[1] on a first-in-first-out (FIFO) basis
and a read from fildes[1] accesses the data written to fildes[0] also on a FIFO basis.

Upon successful completion pipe() marks for update the st_atime, st_ctime, and st_mtime

fields of the pipe.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The pipe() function will fail if:

EMFILE More than {OPEN_MAX} file descriptors are already in use by this process.

ENFILE The number of simultaneously open files in the system would exceed a
system-imposed limit.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

sh(1), fcntl(2), fstat(2), getmsg(2), poll(2), putmsg(2), read(2), write(2), attributes(5),
standards(5), streamio(7I)

Since a pipe is bi-directional, there are two separate flows of data. Therefore, the size
(st_size) returned by a call to fstat(2) with argument fildes[0] or fildes[1] is the number of
bytes available for reading from fildes[0] or fildes[1] respectively. Previously, the size
(st_size) returned by a call to fstat() with argument fildes[1] (the write-end) was the
number of bytes available for reading from fildes[0] (the read-end).

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

pipe(2)

System Calls 215

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1sh-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7streamio-7i

poll, ppoll – input/output multiplexing

#include <poll.h>

int poll(struct pollfd * fds, nfds_t nfds, int timeout);

int ppoll(struct pollfd *restrict fds, nfds_t nfds,
const struct timespec *restrict timeout,
const sigset_t *restrict sigmask);

The poll() function provides applications with a mechanism for multiplexing input/output
over a set of file descriptors. For each member of the array pointed to by fds, poll() examines
the given file descriptor for the event(s) specified in events. The number of pollfd structures
in the fds array is specified by nfds. The poll() function identifies those file descriptors on
which an application can read or write data, or on which certain events have occurred.

The fds argument specifies the file descriptors to be examined and the events of interest for
each file descriptor. It is a pointer to an array with one member for each open file descriptor of
interest. The array's members are pollfd structures, which contain the following members:

int fd; /* file descriptor */

short events; /* requested events */

short revents; /* returned events */

The fd member specifies an open file descriptor and the events and revents members are
bitmasks constructed by a logical OR operation of any combination of the following event
flags:

POLLIN Data other than high priority data may be read without blocking. For
streams, this flag is set in revents even if the message is of zero length.

POLLRDNORM Normal data (priority band equals 0) may be read without blocking. For
streams, this flag is set in revents even if the message is of zero length.

POLLRDBAND Data from a non-zero priority band may be read without blocking. For
streams, this flag is set in revents even if the message is of zero length.

POLLPRI High priority data may be received without blocking. For streams, this flag is
set in revents even if the message is of zero length.

POLLOUT Normal data (priority band equals 0) may be written without blocking.

POLLWRNORM The same as POLLOUT.

POLLWRBAND Priority data (priority band > 0) may be written. This event only examines
bands that have been written to at least once.

POLLERR An error has occurred on the device or stream. This flag is only valid in the
revents bitmask; it is not used in the events member.

POLLHUP A hangup has occurred on the stream. This event and POLLOUT are mutually
exclusive; a stream can never be writable if a hangup has occurred. However,

Name

Synopsis

Description

poll(2)

man pages section 2: System Calls • Last Revised 22 Dec 2011216

this event and POLLIN, POLLRDNORM, POLLRDBAND, or POLLPRI are not mutually
exclusive. This flag is only valid in the revents bitmask; it is not used in the
events member.

POLLNVAL The specified fd value does not belong to an open file. This flag is only valid in
the revents member; it is not used in the events member.

If the value fd is less than 0, events is ignored and revents is set to 0 in that entry on return from
poll().

The results of the poll() query are stored in the revents member in the pollfd structure.
Bits are set in the revents bitmask to indicate which of the requested events are true. If none
are true, none of the specified bits are set in revents when the poll() call returns. The event
flags POLLHUP, POLLERR, and POLLNVAL are always set in revents if the conditions they indicate
are true; this occurs even though these flags were not present in events.

If none of the defined events have occurred on any selected file descriptor, poll() waits at
least timeout milliseconds for an event to occur on any of the selected file descriptors. On a
computer where millisecond timing accuracy is not available, timeout is rounded up to the
nearest legal value available on that system. If the value timeout is 0, poll() returns
immediately. If the value of timeout is −1, poll() blocks until a requested event occurs or until
the call is interrupted. The poll() function is not affected by the O_NDELAY and O_NONBLOCK

flags.

The poll() function supports regular files, terminal and pseudo-terminal devices,
streams-based files, FIFOs and pipes. The behavior of poll() on elements of fds that refer to
other types of file is unspecified.

The poll() function supports sockets.

A file descriptor for a socket that is listening for connections will indicate that it is ready for
reading, once connections are available. A file descriptor for a socket that is connecting
asynchronously will indicate that it is ready for writing, once a connection has been
established.

Regular files always poll() TRUE for reading and writing.

The relationship between poll() and ppoll() is analogous to the relationship between
select(3C) and pselect(3C): like pselect(), ppoll() allows an application to safely wait
until either a file descriptor becomes ready or until a signal is caught.

Other than the difference in the timeout argument, the following ppoll() call:

ready = ppoll(&fds, nfds, timeout, &sigmask);

is equivalent to atomically executing the following calls:

poll(2)

System Calls 217

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aselect-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apselect-3c

sigset_t origmask;

sigprocmask(SIG_SETMASK, &sigmask, &origmask);

ready = ppoll(&fds, nfds, timeout);

sigprocmask(SIG_SETMASK, &origmask, NULL);

If sigmask is not a null pointer, then the pselect() function replaces the signal mask of the
process by the set of signals pointed to by sigmask before examining the descriptors, and
restores the signal mask of the process before returning.

The timeout argument specifies an upper limit on the amount of time that ppoll() will block.
This argument is a pointer to a structure of the following form:

struct timespec {

long tv_sec; /* seconds */

long tv_nsec; /* nanoseconds */

};

If timeout is specified as NULL, ppoll() can block indefinitely.

Upon successful completion, a non-negative value is returned. A positive value indicates the
total number of file descriptors that has been selected (that is, file descriptors for which the
revents member is non-zero). A value of 0 indicates that the call timed out and no file
descriptors have been selected. Upon failure, −1 is returned and errno is set to indicate the
error.

The poll() and ppoll() functions will fail if:

EAGAIN Allocation of internal data structures failed, but the request may be attempted
again.

EFAULT Some argument points to an illegal address.

EINTR A signal was caught during the poll() function.

EINVAL The argument nfds is greater than {OPEN_MAX}, or one of the fd members refers to
a stream or multiplexer that is linked (directly or indirectly) downstream from a
multiplexer.

ENSOSY There is no poll() interface for doorfs.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Return Values

Errors

Attributes

poll(2)

man pages section 2: System Calls • Last Revised 22 Dec 2011218

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Standard See standards(5).

Intro(2), getmsg(2), getrlimit(2), putmsg(2), read(2), write(2), select(3C),
attributes(5), standards(5), chpoll(9E)

STREAMS Programming Guide

Non-STREAMS drivers use chpoll(9E) to implement poll() on these devices.

See Also

Notes

poll(2)

System Calls 219

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aselect-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Echpoll-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=STREAMS
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Echpoll-9e

p_online – return or change processor operational status

#include <sys/types.h>

#include <sys/processor.h>

int p_online(processorid_t processorid, int flag);

The p_online() function changes or returns the operational status of processors. The state of
the processor specified by the processorid argument is changed to the state represented by the
flag argument.

Legal values for flag are P_STATUS, P_ONLINE, P_OFFLINE, P_NOINTR, P_FAULTED, P_SPARE, and
P_FORCED.

When flag is P_STATUS, no processor status change occurs, but the current processor status is
returned.

The P_ONLINE, P_OFFLINE, P_NOINTR, P_FAULTED, and P_SPARE values for flag refer to valid
processor states. The P_OFFLINE, P_SPARE, and P_FAULTED processor states can be combined
with the P_FORCED flag.

A processor in the P_ONLINE state is allowed to process LWPs (lightweight processes) and
perform system activities. The processor is also interruptible by I/O devices attached to the
system.

A processor in the P_OFFLINE state is not allowed to process LWPs. The processor is as inactive
as possible. If the hardware supports such a feature, the processor is not interruptible by
attached I/O devices.

A processor in the P_NOINTR state is allowed to process LWPs, but it is not interruptible by
attached I/O devices. Typically, interrupts, when they occur are routed to other processors in
the system. Not all systems support putting a processor into the P_NOINTR state. It is not
permitted to put all the processors of a system into the P_NOINTR state. At least one processor
must always be available to service system clock interrupts.

A processor in the P_SPARE state is not allowed to process LWPs. In many respects the P_SPARE
state is similiar to the P_OFFLINE state, but describes a processor that is available for
reactivation by management tools without administrator intervention.

A processor in the P_FAULTED state is not allowed to process LWPs. In many respects the
P_FAULTED state is similiar to the P_OFFLINE state, but describes a processor that has been
diagnosed as faulty. The privileged caller can change the state of the processor from
P_FAULTED to any of the other states, but since the processor might generate additional errors,
electing to reactivate such a processor should be carefully considered.

Forced processor state transition can be requested if a new processor state is specified with the
bitwise-inclusive OR of the special P_FORCED flag. Forcing transition of a processor to the
P_OFFLINE, P_SPARE, or P_FAULTED state revokes processor bindings for all threads that were

Name

Synopsis

Description

p_online(2)

man pages section 2: System Calls • Last Revised 11 Jan 2009220

previously bound to that processor with processor_bind(2). There is no guarantee that a
forced processor state transition always succeeds.

Processor numbers are integers, greater than or equal to 0, and are defined by the hardware
platform. Processor numbers are not necessarily contiguous, but “not too sparse.” Processor
numbers should always be printed in decimal.

The maximum possible processorid value can be determined by calling
sysconf(_SC_CPUID_MAX). The list of valid processor numbers can be determined by calling
p_online() with processorid values from 0 to the maximum returned by
sysconf(_SC_CPUID_MAX). The EINVAL error is returned for invalid processor numbers. See
EXAMPLES below.

On successful completion, the value returned is the previous state of the processor, P_ONLINE,
P_OFFLINE, P_NOINTR, P_FAULTED, P_SPARE, or P_POWEROFF. Otherwise, −1 is returned, the
CPU state remains unchanged, and errno is set to indicate the error.

The p_online() function will fail if:

EBUSY The flag was P_OFFLINE or P_SPARE and the specified processor is the only
on-line processor, there are currently LWPs bound to the processor, or the
processor performs some essential function that cannot be performed by another
processor.

The flag was P_NOINTR and the specified processor is the only interruptible
processor in the system, or it handles interrupts that cannot be handled by
another processor.

The specified processor is powered off and cannot be powered on because some
platform- specific resource is not available.

EINVAL A non-existent processor ID was specified or flag was invalid.

The caller is in a non-global zone, the pools facility is active, and the processor is
not a member of the zone's pool's processor set.

ENOTSUP The specified processor is powered off, and the platform does not support power
on of individual processors.

EPERM The flag was not P_STATUS and the {PRIV_SYS_RES_CONFIG} privilege is not
asserted in the effective set of the calling process.

EXAMPLE 1 List the legal processor numbers.

The following code sample will list the legal processor numbers:

#include <sys/unistd.h>

#include <sys/processor.h>

#include <sys/types.h>

#include <stdio.h>

Return Values

Errors

Examples

p_online(2)

System Calls 221

EXAMPLE 1 List the legal processor numbers. (Continued)

#include <unistd.h>

#include <errno.h>

int

main()

{

processorid_t i, cpuid_max;

cpuid_max = sysconf(_SC_CPUID_MAX);

for (i = 0; i <= cpuid_max; i++) {

if (p_online(i, P_STATUS) != -1)

printf("processor %d present\n", i);

}

return (0);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pooladm(1M), psradm(1M), psrinfo(1M), zoneadm(1M), processor_bind(2),
processor_info(2), pset_create(2), sysconf(3C), attributes(5), privileges(5)

Attributes

See Also

p_online(2)

man pages section 2: System Calls • Last Revised 11 Jan 2009222

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpooladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpsradm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpsrinfo-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mzoneadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

priocntl – process scheduler control

#include <sys/types.h>

#include <sys/priocntl.h>

#include <sys/rtpriocntl.h>

#include <sys/tspriocntl.h>

#include <sys/iapriocntl.h>

#include <sys/fsspriocntl.h>

#include <sys/fxpriocntl.h>

long priocntl(idtype_t idtype, id_t id, int cmd, /* arg */ ...);

The priocntl() function provides for control over the scheduling of an active light weight
process (LWP).

LWPs fall into distinct classes with a separate scheduling policy applied to each class. The
classes currently supported are the realtime class, the time-sharing class, the fair-share class,
and the fixed-priority class. The characteristics of these classes are described under the
corresponding headings below.

The class attribute of an LWP is inherited across the fork(2) function and the exec(2) family
of functions. The priocntl() function can be used to dynamically change the class and other
scheduling parameters associated with a running LWP or set of LWPs given the appropriate
permissions as explained below.

In the default configuration, a runnable realtime LWP runs before any other LWP. Therefore,
inappropriate use of realtime LWP can have a dramatic negative impact on system
performance.

The priocntl() function provides an interface for specifying a process, set of processes, or an
LWP to which the function applies. The priocntlset(2) function provides the same functions
as priocntl(), but allows a more general interface for specifying the set of LWPs to which the
function is to apply.

For priocntl(), the idtype and id arguments are used together to specify the set of LWPs. The
interpretation of id depends on the value of idtype. The possible values for idtype and
corresponding interpretations of id are as follows:

P_ALL The priocntl() function applies to all existing LWPs. The value of id is
ignored. The permission restrictions described below still apply.

P_CID The id argument is a class ID (returned by the priocntl() PC_GETCID
command as explained below). The priocntl() function applies to all LWPs in
the specified class.

P_GID The id argument is a group ID. The priocntl() function applies to all LWPs
with this effective group ID.

P_LWPID The id argument is an LWP ID. The priocntl function applies to the LWP with
the specified ID within the calling process.

Name

Synopsis

Description

priocntl(2)

System Calls 223

P_PGID The id argument is a process group ID. The priocntl() function applies to all
LWPs currently associated with processes in the specified process group.

P_PID The id argument is a process ID specifying a single process. The priocntl()
function applies to all LWPs currently associated with the specified process.

P_PPID The id argument is a parent process ID. The priocntl() function applies to all
LWPs currently associated with processes with the specified parent process ID.

P_PROJID The id argument is a project ID. The priocntl() function applies to all LWPs
with this project ID.

P_SID The id argument is a session ID. The priocntl() function applies to all LWPs
currently associated with processes in the specified session.

P_TASKID The id argument is a task ID. The priocntl() function applies to all LWPs
currently associated with processes in the specified task.

P_UID The id argument is a user ID. The priocntl() function applies to all LWPs with
this effective user ID.

P_ZONEID The id argument is a zone ID. The priocntl() function applies to all LWPs with
this zone ID.

P_CTID The id argument is a process contract ID. The priocntl() function applies to
all LWPs with this process contract ID.

An id value of P_MYID can be used in conjunction with the idtype value to specify the LWP ID,
parent process ID, process group ID, session ID, task ID, class ID, user ID, group ID, project
ID, zone ID, or process contract ID of the calling LWP.

To change the scheduling parameters of an LWP (using the PC_SETPARMS or PC_SETXPARMS
command as explained below) , the real or effective user ID of the LWP calling priocntl()
must match the real or the calling LWP must have sufficient privileges. These are the
minimum permission requirements enforced for all classes. An individual class might impose
additional permissions requirements when setting LWPs to that class and/or when setting
class-specific scheduling parameters.

Two special scheduling classes, SYS and SDC, exist for the purpose of scheduling the execution
of certain special system processes (such as the swapper process). It is not possible to change
the class of any LWP to SYS or SDC. In addition, any processes in the SYS of SDC classes that are
included in a specified set of processes are disregarded by priocntl(). For example, an idtype
of P_UID and an id value of 0 would specify all processes with a user ID of 0 except processes in
the SYS and SDC classes and (if changing the parameters using PC_SETPARMS or PC_SETXPARMS)
the init(1M) process.

The init process is a special case. For a priocntl() call to change the class or other
scheduling parameters of the init process (process ID 1), it must be the only process specified

priocntl(2)

man pages section 2: System Calls • Last Revised 13 Nov 2009224

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Minit-1m

by idtype and id. The init process can be assigned to any class configured on the system, but
the time-sharing class is almost always the appropriate choice. (Other choices might be highly
undesirable. See the Oracle Solaris Administration: Common Tasks for more information.)

The data type and value of arg are specific to the type of command specified by cmd.

A pcinfo_t structure with the following members, defined in <sys/priocntl.h>, is used by
the PC_GETCID and PC_GETCLINFO commands.

id_t pc_cid; /* Class id */

char pc_clname[PC_CLNMSZ]; /* Class name */

int pc_clinfo[PC_CLINFOSZ]; /* Class information */

The pc_cid member is a class ID returned by the priocntl() PC_GETCID command.

The pc_clname member is a buffer of size PC_CLNMSZ, defined in <sys/priocntl.h>, used to
hold the class name: RT for realtime, TS for time-sharing, IAfor interactive, FSS for fair-share,
or FX for fixed-priority. Each string is null-terminated.

The pc_clinfo member is a buffer of size PC_CLINFOSZ, defined in <sys/priocntl.h>, used to
return data describing the attributes of a specific class. The format of this data is class-specific
and is described under the appropriate heading (REALTIME CLASS, TIME-SHARING CLASS,
INTERACTIVE CLASS, FAIR-SHARE CLASS, or FIXED-PRIORITY CLASS) below.

A pcparms_t structure with the following members, defined in <sys/priocntl.h>, is used by
the PC_SETPARMS and PC_GETPARMS commands.

id_t pc_cid; /* LWP class */

int pc_clparms[PC_CLPARMSZ]; /* Class-specific params */

The pc_cid member is a class ID returned by the priocntl() PC_GETCID command. The
special class ID PC_CLNULL can also be assigned to pc_cid when using the PC_GETPARMS
command as explained below.

The pc_clparms buffer holds class-specific scheduling parameters. The format of this
parameter data for a particular class is described under the appropriate heading below.
PC_CLPARMSZ is the length of the pc_clparms buffer and is defined in <sys/priocntl.h>.

The PC_SETXPARMS and PC_GETXPARMS commands exploit the varargs declaration of
priocntl(). The argument following the command code is a class name: RT for realtime, TS
for time-sharing, IA for interactive, FSS for fair-share, or FX for fixed-priority. The parameters
after the class name build a chain of (key, value) pairs, where the key determines the meaning
of the value within the pair. When using PC_GETXPARMS, the value associated with the key is
always a pointer to a scheduling parameter. In contrast, when using PC_SETXPARMS the
scheduling parameter is given as a direct value. A key value of 0 terminates the sequence and
all further keys or values are ignored.

priocntl(2)

System Calls 225

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=SYSADV1

The PC_SETXPARMS and PC_GETXPARMS commands are more flexible than PC_SETPARMS and
PC_GETPARMS and should replace PC_SETPARMS and PC_GETPARMS on a long-term basis.

Available priocntl() commands are:

PC_ADMIN

This command provides functionality needed for the implementation of the
dispadmin(1M) utility. It is not intended for general use by other applications.

PC_DONICE

Set or get nice value of the specified LWP(s) associated with the specified process(es).
When this command is used with the idtype of P_LWPID, it sets the nice value of the LWP.
The arg argument points to a structure of type pcnice_t. The pc_val member specifies the
nice value and the pc_op specifies the type of the operation.

When pc_op is set to PC_GETNICE, priocntl() sets the pc_val to the highest priority (lowest
numerical value) pertaining to any of the specified LWPs.

When pc_op is set to PC_SETNICE, priocntl() sets the nice value of all LWPs in the
specified set to the value specified in pc_val member of pcnice_t structure.

The priocntl() function returns −1 with errno set to EPERM if the calling LWP doesn't
have appropriate permissions to set or get nice values for one or more of the target LWPs. If
priocntl() encounters an error other than permissions, it does not continue through the
set of target LWPs but returns the error immediately.

PC_GETCID

Get class ID and class attributes for a specific class given the class name. The idtype and id
arguments are ignored. If arg is non-null, it points to a structure of type pcinfo_t. The
pc_clname buffer contains the name of the class whose attributes you are getting.

On success, the class ID is returned in pc_cid, the class attributes are returned in the
pc_clinfo buffer, and the priocntl() call returns the total number of classes configured in
the system (including the sys class). If the class specified by pc_clname is invalid or is not
currently configured, the priocntl() call returns −1 with errno set to EINVAL. The format
of the attribute data returned for a given class is defined in the <sys/rtpriocntl.h>,
<sys/tspriocntl.h>, <sys/iapriocntl.h>, <sys/fsspriocntl.h>, or
<sys/fxpriocntl.h> header and described under the appropriate heading below.

If arg is a null pointer, no attribute data is returned but the priocntl() call still returns the
number of configured classes.

PC_GETCLINFO

Get class name and class attributes for a specific class given class ID. The idtype and id
arguments are ignored. If arg is non-null, it points to a structure of type pcinfo_t. The
pc_cid member is the class ID of the class whose attributes you are getting.

Commands

priocntl(2)

man pages section 2: System Calls • Last Revised 13 Nov 2009226

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mdispadmin-1m

On success, the class name is returned in the pc_clname buffer, the class attributes are
returned in the pc_clinfo buffer, and the priocntl() call returns the total number of classes
configured in the system (including the sys class). The format of the attribute data
returned for a given class is defined in the <sys/rtpriocntl.h>, <sys/tspriocntl.h>,
<sys/iapriocntl.h>, <sys/fsspriocntl.h>, or <sys/fxpriocntl.h> header and
described under the appropriate heading below.

If arg is a null pointer, no attribute data is returned but the priocntl() call still returns the
number of configured classes.

PC_GETPARMS

Get the class and/or class-specific scheduling parameters of an LWP. The arg member
points to a structure of type pcparms_t.

If pc_cid specifies a configured class and a single LWP belonging to that class is specified by
the idtype and id values or the procset structure, then the scheduling parameters of that
LWP are returned in the pc_clparms buffer. If the LWP specified does not exist or does not
belong to the specified class, the priocntl() call returns −1 with errno set to ESRCH.

If pc_cid specifies a configured class and a set of LWPs is specified, the scheduling
parameters of one of the specified LWP belonging to the specified class are returned in the
pc_clparms buffer and the priocntl() call returns the process ID of the selected LWP. The
criteria for selecting an LWP to return in this case is class-dependent. If none of the
specified LWPs exist or none of them belong to the specified class, the priocntl() call
returns −1 with errno set to ESRCH.

If pc_cid is PC_CLNULL and a single LWP is specified, the class of the specified LWP is
returned in pc_cid and its scheduling parameters are returned in the pc_clparms buffer.

PC_GETXPARMS

Get the class or class-specific scheduling parameters of an LWP. The class name (first
argument after PC_GETXPARMS) specifies the class and the (key, value) pair sequence
contains a pointer to the class-specific parameters. The keys and the types of the
class-specific parameter data are described below and can also be found in the class-specific
headers <sys/rtpriocntl.h>, <sys/tspriocntl.h>, <sys/iapriocntl.h>,
<sys/fsspriocntl.h>, and <sys/fxpriocntl.h>. If the specified class is a configured
class and a single LWP belonging to that class is specified by the idtype and id values or the
procset structure, then the scheduling parameters of that LWP are returned in the given
(key, value) pair buffers. If the LWP specified does not exist or does not belong to the
specified class, priocntl() returns −1 and errno is set to ESRCH.

If the class name specifies a configured class and a set of LWPs is given, the scheduling
parameters of one of the specified LWPs belonging to the specified class are returned and
the priocntl() call returns the process ID of the selected LWP. The criteria for selecting an
LWP to return in this case is class-dependent. If none of the specified LWPs exist or none of
them belong to the specified class, priocntl() returns −1 and errno is set to ESRCH.

priocntl(2)

System Calls 227

If the class name is a null pointer, a single process or LWP is specified, and a (key, value)
pair for a class name request is given, priocntl() fills the buffer pointed to by value with
the class name of the specified process or LWP. The key for the class name request is
PC_KY_CLNAME and the class name buffer should be declared as:

char pc_clname[PC_CLNMSZ]; /* Class name */

PC_SETPARMS

Set the class and class-specific scheduling parameters of the specified LWP(s) associated
with the specified process(es). When this command is used with the idtype of P_LWPID, it
will set the class and class-specific scheduling parameters of the LWP. The arg argument
points to a structure of type pcparms_t. The pc_cid member specifies the class you are
setting and the pc_clparms buffer contains the class-specific parameters you are setting.
The format of the class-specific parameter data is defined in the <sys/rtpriocntl.h>,
<sys/tspriocntl.h>, <sys/iapriocntl.h>, <sys/fsspriocntl.h>, or
<sys/fxpriocntl.h> header and described under the appropriate class heading below.

When setting parameters for a set of LWPs, priocntl() acts on the LWPs in the set in an
implementation-specific order. If priocntl() encounters an error for one or more of the
target processes, it might or might not continue through the set of LWPs, depending on the
nature of the error. If the error is related to permissions (EPERM), priocntl() continues
through the LWP set, resetting the parameters for all target LWPs for which the calling
LWP has appropriate permissions. The priocntl() function then returns −1 with errno

set to EPERM to indicate that the operation failed for one or more of the target LWPs. If
priocntl() encounters an error other than permissions, it does not continue through the
set of target LWPs but returns the error immediately.

PC_SETXPARMS

Set the class and class-specific scheduling parameters of the specified LWP(s) associated
with the specified process(es). When this command is used with P_LWPID as idtype, it will
set the class and class-specific scheduling parameters of the LWP. The class name (first
argument after PC_SETXPARMS) specifies the class to be changed and the following (key,
value) pair sequence contains the class-specific parameters to be changed. Only those
(key,value) pairs whose scheduling behavior is to change must be specified. The keys and
the types of the class-specific parameter data are described below and can also be found in
the class-specific header files <sys/rtpriocntl.h>, <sys/tspriocntl.h>,
<sys/iapriocntl.h>, <sys/fsspriocntl.h>, and <sys/fxpriocntl.h>.

When setting parameters for a set of LWPs, priocntl() acts on the LWPs in the set in an
implementation-specific order. If priocntl() encounters an error for one or more of the
target processes, it might or might not continue through the set of LWPs, depending on the
nature of the error. If the error is related to permissions (EPERM), priocntl() continues to
reset the parameters for all target LWPs where the calling LWP has appropriate
permissions. The priocntl() function returns −1 and errno is set to EPERM when the
operation failed for one or more of the target LWPs. All errors other than EPERM result in an
immediate termination of priocntl().

priocntl(2)

man pages section 2: System Calls • Last Revised 13 Nov 2009228

The realtime class provides a fixed priority preemptive scheduling policy for those LWPS
requiring fast and deterministic response and absolute user/application control of scheduling
priorities. If the realtime class is configured in the system, it should have exclusive control of
the highest range of scheduling priorities on the system. This ensures that a runnable realtime
LWP is given CPU service before any LWP belonging to any other class.

The realtime class has a range of realtime priority (rt_pri) values that can be assigned to an
LWP within the class. Realtime priorities range from 0 to x, where the value of x is
configurable and can be determined for a specific installation by using the priocntl()
PC_GETCID or PC_GETCLINFO command.

The realtime scheduling policy is a fixed priority policy. The scheduling priority of a realtime
LWP is never changed except as the result of an explicit request by the user/application to
change the rt_pri value of the LWP.

For an LWP in the realtime class, the rt_pri value is, for all practical purposes, equivalent to the
scheduling priority of the LWP. The rt_pri value completely determines the scheduling
priority of a realtime LWP relative to other LWPs within its class. Numerically higher rt_pri
values represent higher priorities. Since the realtime class controls the highest range of
scheduling priorities in the system, it is guaranteed that the runnable realtime LWP with the
highest rt_pri value is always selected to run before any other LWPs in the system.

In addition to providing control over priority, priocntl() provides for control over the
length of the time quantum allotted to the LWP in the realtime class. The time quantum value
specifies the maximum amount of time an LWP can run assuming that it does not complete or
enter a resource or event wait state (sleep). If another LWP becomes runnable at a higher
priority, the currently running LWP might be preempted before receiving its full time
quantum.

The realtime quantum signal can be used for the notification of runaway realtime processes
about the consumption of their time quantum. Those processes, which are monitored by the
realtime time quantum signal, receive the configured signal in the event of time quantum
expiration. The default value (0) of the time quantum signal will denote no signal delivery and
a positive value will denote the delivery of the signal specified by the value. The realtime
quantum signal can be set with the priocntl() PC_SETXPARMS command and displayed with
the priocntl() PC_GETXPARMS command as explained below.

The system's process scheduler keeps the runnable realtime LWPs on a set of scheduling
queues. There is a separate queue for each configured realtime priority and all realtime LWPs
with a given rt_pri value are kept together on the appropriate queue. The LWPs on a given
queue are ordered in FIFO order (that is, the LWP at the front of the queue has been waiting
longest for service and receives the CPU first). Realtime LWPs that wake up after sleeping,
LWPs that change to the realtime class from some other class, LWPs that have used their full
time quantum, and runnable LWPs whose priority is reset by priocntl() are all placed at the
back of the appropriate queue for their priority. An LWP that is preempted by a higher
priority LWP remains at the front of the queue (with whatever time is remaining in its time

Realtime Class

priocntl(2)

System Calls 229

quantum) and runs before any other LWP at this priority. Following a fork(2) function call by
a realtime LWP, the parent LWP continues to run while the child LWP (which inherits its
parent's rt_pri value) is placed at the back of the queue.

A rtinfo_t structure with the following members, defined in <sys/rtpriocntl.h>, defines
the format used for the attribute data for the realtime class.

short rt_maxpri; /* Maximum realtime priority */

The priocntl() PC_GETCID and PC_GETCLINFO commands return realtime class attributes in
the pc_clinfo buffer in this format.

The rt_maxpri member specifies the configured maximum rt_pri value for the realtime
class. If rt_maxpri is x, the valid realtime priorities range from 0 to x.

A rtparms_t structure with the following members, defined in <sys/rtpriocntl.h>, defines
the format used to specify the realtime class-specific scheduling parameters of an LWP.

short rt_pri; /* Real-Time priority */

uint_t rt_tqsecs; /* Seconds in time quantum */

int rt_tqnsecs; /* Additional nanoseconds in quantum */

When using the priocntl() PC_SETPARMS or PC_GETPARMS commands, if pc_cid specifies the
realtime class, the data in the pc_clparms buffer are in this format.

These commands can be used to set the realtime priority to the specified value or get the
current rt_pri value. Setting the rt_pri value of an LWP that is currently running or runnable
(not sleeping) causes the LWP to be placed at the back of the scheduling queue for the
specified priority. The LWP is placed at the back of the appropriate queue regardless of
whether the priority being set is different from the previous rt_pri value of the LWP. A running
LWP can voluntarily release the CPU and go to the back of the scheduling queue at the same
priority by resetting its rt_pri value to its current realtime priority value. To change the time
quantum of an LWP without setting the priority or affecting the LWP's position on the queue,
the rt_pri member should be set to the special value RT_NOCHANGE, defined in
<sys/rtpriocntl.h>. Specifying RT_NOCHANGE when changing the class of an LWP to
realtime from some other class results in the realtime priority being set to 0.

For the priocntl() PC_GETPARMS command, if pc_cid specifies the realtime class and more
than one realtime LWP is specified, the scheduling parameters of the realtime LWP with the
highest rt_pri value among the specified LWPs are returned and the LWP ID of this LWP is
returned by the priocntl() call. If there is more than one LWP sharing the highest priority,
the one returned is implementation-dependent.

The rt_tqsecs and rt_tqnsecs members are used for getting or setting the time quantum
associated with an LWP or group of LWPs. rt_tqsecs is the number of seconds in the time
quantum and rt_tqnsecs is the number of additional nanoseconds in the quantum. For
example, setting rt_tqsecs to 2 and rt_tqnsecs to 500,000,000 (decimal) would result in a time
quantum of two and one-half seconds. Specifying a value of 1,000,000,000 or greater in the

priocntl(2)

man pages section 2: System Calls • Last Revised 13 Nov 2009230

rt_tqnsecs member results in an error return with errno set to EINVAL. Although the
resolution of the tq_nsecs member is very fine, the specified time quantum length is rounded
up by the system to the next integral multiple of the system clock's resolution. The maximum
time quantum that can be specified is implementation-specific and equal to INT_MAX1 ticks.
The INT_MAX value is defined in <limits.h>. Requesting a quantum greater than this
maximum results in an error return with errno set to ERANGE, although infinite quantums can
be requested using a special value as explained below. Requesting a time quantum of 0 by
setting both rt_tqsecs and rt_tqnsecs to 0 results in an error return with errno set to EINVAL.

The rt_tqnsecs member can also be set to one of the following special values defined in
<sys/rtpriocntl.h>, in which case the value of rt_tqsecs is ignored:

RT_TQINF Set an infinite time quantum.

RT_TQDEF Set the time quantum to the default for this priority (see rt_dptbl(4)).

RT_NOCHANGE Do not set the time quantum. This value is useful when you wish to change
the realtime priority of an LWP without affecting the time quantum.
Specifying this value when changing the class of an LWP to realtime from
some other class is equivalent to specifying RT_TQDEF.

When using the priocntl() PC_SETXPARMS or PC_GETXPARMS commands, the first argument
after the command code must be the class name of the realtime class (RT) . The next arguments
are formed as (key, value) pairs, terminated by a 0 key. The definition for the keys of the
realtime class can be found in <sys/rtpriocntl.h>. A repeated specification of the same key
results in an error return and errno set to EINVAL.

Key Value Type Description

RT_KY_PRI pri_t realtime priority

RT_KY_TQSECS uint_t seconds in time quantum

RT_KY_TQNSECS int nanoseconds in time quantum

RT_KY_TQSIG int realtime time quantum signal

When using the priocntl() PC_GETXPARMS command, the value associated with the key is
always a pointer to a scheduling parameter of the value type shown in the table above. In
contrast, when using the priocntl() PC_SETXPARMS command, the scheduling parameter is
given as a direct value.

A priocntl() PC_SETXPARMS command with the class name (RT) and without a following
(key, value) pair will set or reset all realtime scheduling parameters of the target process(es) to
their default values. Changing the class of an LWP to realtime from some other class causes the
parameters to be set to their default values. The default realtime priority (RT_KY_PRI) is 0. A
default time quantum (RT_TQDEF) is assigned to each priority class (see rt_dptbl(4)). The
default realtime time quantum signal (RT_KY_TQSIG) is 0.

priocntl(2)

System Calls 231

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4rt-dptbl-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4rt-dptbl-4

The value associated with RT_KY_TQSECS is the number of seconds in the time quantum. The
value associated with RT_KY_TQNSECS is the number of nanoseconds in the quantum.
Specifying a value of 1,000,000,000 or greater for the number of nanoseconds results in an
error return and errno is set to EINVAL. The specified time quantum is rounded up by the
system to the next integral multiple of the system clock's resolution. The maximum time
quantum that can be specified is implementation-specific and equal to INT_MAX ticks, defined
in <limits.h>. Requesting a quantum greater than this maximum results in an error return
and errno is set to ERANGE. If seconds (RT_KY_TQSECS) but no nanoseconds (RT_KY_TQNSECS)
are supplied, the number of nanoseconds is set to 0. If nanoseconds (RT_KY_TQNSECS) but no
seconds (RT_KY_TQSECS) are supplied, the number of seconds is set to 0. A time quantum of 0
(seconds and nanoseconds are 0) results in an error return with errno set to EINVAL. Special
values for RT_KY_TQSECS are RT_TQINF and RT_TQDEF (as described above). The priocntl()
command PC_SETXPARMS knows no special value RT_NOCHANGE.

To change the class of an LWP to realtime from any other class, the LWP invoking priocntl()
must have sufficient privileges. To change the priority or time quantum setting of a realtime
LWP, the LWP invoking priocntl() must have sufficient privileges or must itself be a realtime
LWP whose real or effective user ID matches the real of effective user ID of the target LWP.

The realtime priority and time quantum are inherited across fork(2) and the exec family of
functions. When using the time quantum signal with a user-defined signal handler across the
exec functions, the new image must install an appropriate user-defined signal handler before
the time quantum expires. Otherwise, unpredictable behavior might result.

The time-sharing scheduling policy provides for a fair and effective allocation of the CPU
resource among LWPs with varying CPU consumption characteristics. The objectives of the
time-sharing policy are to provide good response time to interactive LWPs and good
throughput to CPU-bound jobs, while providing a degree of user/application control over
scheduling.

The time-sharing class has a range of time-sharing user priority (see ts_upri below) values that
can be assigned to LWPs within the class. A ts_upri value of 0 is defined as the default base
priority for the time-sharing class. User priorities range from −x to +x where the value of x is
configurable and can be determined for a specific installation by using the priocntl()
PC_GETCID or PC_GETCLINFO command.

The purpose of the user priority is to provide some degree of user/application control over the
scheduling of LWPs in the time-sharing class. Raising or lowering the ts_upri value of an LWP
in the time-sharing class raises or lowers the scheduling priority of the LWP. It is not
guaranteed, however, that an LWP with a higher ts_upri value will run before one with a lower
ts_upri value, since the ts_upri value is just one factor used to determine the scheduling
priority of a time-sharing LWP. The system can dynamically adjust the internal scheduling
priority of a time-sharing LWP based on other factors such as recent CPU usage.

Time-SHARING
Class

priocntl(2)

man pages section 2: System Calls • Last Revised 13 Nov 2009232

In addition to the system-wide limits on user priority (returned by the PC_GETCID and
PC_GETCLINFO commands) there is a per LWP user priority limit (see ts_uprilim below)
specifying the maximum ts_upri value that can be set for a given LWP. By default, ts_uprilim is
0.

A tsinfo_t structure with the following members, defined in <sys/tspriocntl.h>, defines
the format used for the attribute data for the time-sharing class.

short ts_maxupri; /* Limits of user priority range */

The priocntl() PC_GETCID and PC_GETCLINFO commands return time-sharing class
attributes in the pc_clinfo buffer in this format.

The ts_maxupri member specifies the configured maximum user priority value for the
time-sharing class. If ts_maxupri is x, the valid range for both user priorities and user priority
limits is from −x to +x.

A tsparms_t structure with the following members, defined in <sys/tspriocntl.h>, defines
the format used to specify the time-sharing class-specific scheduling parameters of an LWP.

short ts_uprilim; /* Time-Sharing user priority limit */

short ts_upri; /* Time-Sharing user priority */

When using the priocntl() PC_SETPARMS or PC_GETPARMS commands, if pc_cid specifies the
time-sharing class, the data in the pc_clparms buffer is in this format.

For the priocntl() PC_GETPARMS command, if pc_cid specifies the time-sharing class and
more than one time-sharing LWP is specified, the scheduling parameters of the time-sharing
LWP with the highest ts_upri value among the specified LWPs is returned and the LWP ID of
this LWP is returned by the priocntl() call. If there is more than one LWP sharing the
highest user priority, the one returned is implementation-dependent.

Any time-sharing LWP can lower its own ts_uprilim (or that of another LWP with the same
user ID). Only a time-sharing LWP with sufficient privileges can raise a ts_uprilim. When
changing the class of an LWP to time-sharing from some other class, sufficient privileges are
required to set the initial ts_uprilim to a value greater than 0. Attempts by an unprivileged
LWP to raise a ts_uprilim or set an initial ts_uprilim greater than 0 fail with a return value of −1
and errno set to EPERM.

Any time-sharing LWP can set its own ts_upri (or that of another LWP with the same user ID)
to any value less than or equal to the LWP's ts_uprilim. Attempts to set the ts_upri above the
ts_uprilim (and/or set the ts_uprilim below the ts_upri) result in the ts_upri being set equal to
the ts_uprilim.

Either of the ts_uprilim or ts_upri members can be set to the special value TS_NOCHANGE,
defined in <sys/tspriocntl.h>, to set one of the values without affecting the other.
Specifying TS_NOCHANGE for the ts_upri when the ts_uprilim is being set to a value below the
current ts_upri causes the ts_upri to be set equal to the ts_uprilim being set. Specifying

priocntl(2)

System Calls 233

TS_NOCHANGE for a parameter when changing the class of an LWP to time-sharing (from some
other class) causes the parameter to be set to a default value. The default value for the
ts_uprilim is 0 and the default for the ts_upri is to set it equal to the ts_uprilim that is being set.

When using the priocntl() PC_SETXPARMS or PC_GETXPARMS commands, the first argument
after the command code is the class name of the time-sharing class (TS) . The next arguments
are formed as (key, value) pairs, terminated by a 0 key. The definition for the keys of the
time-sharing class can be found in <sys/tspriocntl.h>. A repeated specification of the same
key results in an error return and errno set to EINVAL.

Key Value Type Description

TS_KY_UPRILIM pri_t user priority limit

TS_KY_UPRI pri_t user priority

When using the priocntl() PC_GETXPARMS command, the value associated with the key is
always a pointer to a scheduling parameter of the value type in the table above. In contrast,
when using the priocntl() PC_SETXPARMS command, the scheduling parameter is given as a
direct value.

A priocntl() PC_SETXPARMS command with the class name (TS) and without a following
(key, value) pair will set or reset all time-sharing scheduling parameters of the target
process(es) to their default values. Changing the class of an LWP to time-sharing from some
other class causes the parameters to be set to their default values. The default value for the user
priority limit (TS_KY_UPRILIM) is 0. The default value for the user priority (TS_KY_UPRI) is
equal to the user priority limit (TS_KY_UPRILIM) that is being set.

The priocntl() command PC_SETXPARMS knows no special value TS_NOCHANGE.

The time-sharing user priority and user priority limit are inherited across fork() and the
exec family of functions.

The interactive scheduling policy is a variation on the time-sharing scheduling policy. All that
can be said about the time-sharing scheduling policy is also true for the interactive scheduling
policy, with one addition: An LWP in the interactive class with its ia_mode value set to
IA_SET_INTERACTIVE has its time-sharing priority boosted by IA_BOOST (10).

An iainfo_t structure with the following members, defined in <sys/iapriocntl.h>, defines
the format used for the attribute data for the interactive class.

short ia_maxupri; /* Limits of user priority range */

The priocntl() PC_GETCID and PC_GETCLINFO commands return interactive class attributes
in the pc_clinfo buffer in this format.

Interactive Class

priocntl(2)

man pages section 2: System Calls • Last Revised 13 Nov 2009234

The ia_maxupri member specifies the configured maximum user priority value for the
interactive class. If ia_maxupri is x, the valid range for both user priorities and user priority
limits is from -x to +x.

A iaparms_t structure with the following members, defined in <sys/iapriocntl.h>, defines
the format used to specify the interactive class-specific scheduling parameters of an LWP.

short ia_uprilim; /* Interactive user priority limit */

short ia_upri; /* Interactive user priority */

int ia_mode; /* interactive on/off */

When using the priocntl() PC_SETPARMS or PC_GETPARMS commands, if pc_cid specifies the
interactive class, the data in the pc_clparms buffer is in this format.

For the priocntl() PC_GETPARMS command, if pc_cid specifies the interactive class and more
than one interactive LWP is specified, the scheduling parameters of the interactive LWP with
the highest ia_upri value among the specified LWPs is returned and the LWP ID of this LWP is
returned by the priocntl() call. If there is more than one LWP sharing the highest user
priority, the one returned is implementation-dependent.

All that is said above in the TIME-SHARING CLASS section concerning manipulation of
ts_uprilim and ts_upri applies equally to manipulations of ia_uprilim and ia_upri in the
interactive class.

When using the PC_SETPARMS command, the ia_mode member must be set to one of the values
IA_SET_INTERACTIVE, IA_INTERACTIVE_OFF, or IA_NOCHANGE, defined in
<sys/iapriocntl.h>, to set the interactive mode on or off or to make no change to the
interactive mode.

When using the priocntl() PC_SETXPARMS or PC_GETXPARMS commands, the first argument
after the command code is the class name of the interactive class (IA) . The next arguments are
formed as (key, value) pairs, terminated by a 0 key. The definition for the keys of the
interactive class can be found in <sys/iapriocntl.h>. A repeated specification of the same
key results in an error return and errno set to EINVAL.

Key Value Type Description

IA_KY_UPRILIM pri_t user priority limit

IA_KY_UPRI pri_t user priority

IA_KY_MODE int interactive mode

When using the priocntl() PC_GETXPARMS command, the value associated with the key is
always a pointer to a scheduling parameter of the value type in the table above. In contrast,
when using the priocntl() PC_SETXPARMS command, the scheduling parameter is given as a
direct value.

priocntl(2)

System Calls 235

A priocntl() PC_SETXPARMS command with the class name (IA) and without a following
(key, value) pair will set or reset all interactive scheduling parameters of the target process(es)
to their default values. Changing the class of an LWP to interactive from some other class
causes the parameters to be set to their default values. The default value for the user priority
limit (IA_KY_UPRILIM) is 0. The default value for the user priority (IA_KY_UPRI) is equal to the
user priority limit (IA_KY_UPRILIM) that is being set. The default value for the interactive
mode (IA_KY_MODE) is IA_SET_INTERACTIVE.

The priocntl() command PC_SETXPARMS knows no special value IA_NOCHANGE.

The interactive user priority and user priority limit are inherited across fork and the exec
family of functions.

The fair-share scheduling policy provides a fair allocation of CPU resources among projects,
independent of the number of processes they contain. Projects are given “shares” to control
their quota of CPU resources. See FSS(7) for more information about how to configure shares.

The fair share class supports the notion of per-LWP user priority (see fss_upri below) values
for compatibility with the time-sharing scheduling class. An fss_upri value of 0 is defined as
the default base priority for the fair-share class. User priorities range from -x to +x where the
value of x is configurable and can be determined for a specific installation by using the
priocntl() PC_GETCID or PC_GETCLINFO command.

The purpose of the user priority is to provide some degree of user/application control over the
scheduling of LWPs in the fair-share class. Raising the fss_upri value of an LWP in the
fair-share class tells the scheduler to give this LWP more CPU time slices, while lowering the
fss_upri value tells the scheduler to give it less CPU slices. It is not guaranteed, however, that
an LWP with a higher fss_upri value will run before one with a lower fss_upri value. This is
because the fss_upri value is just one factor used to determine the scheduling priority of a
fair-share LWP. The system can dynamically adjust the internal scheduling priority of a
fair-share LWP based on other factors such as recent CPU usage. The fair-share scheduler
attempts to provide an evenly graded effect across the whole range of user priority values.

User priority values do not interfere with project shares. That is, changing a user priority value
of a process does not have any effect on its project CPU entitlement, which is based on the
number of shares it is allocated in comparison with other projects.

In addition to the system-wide limits on user priority (returned by the PC_GETCID and
PC_GETCLINFO commands), there is a per-LWP user priority limit (see fss_uprilim below) that
specifies the maximum fss_upri value that can be set for a given LWP. By default, fss_uprilim
is 0.

A fssinfo_t structure with the following members, defined in <sys/fsspriocntl.h>,
defines the format used for the attribute data for the fair-share class.

short fss_maxupri; /* Limits of user priority range */

Fair-SHARE Class

priocntl(2)

man pages section 2: System Calls • Last Revised 13 Nov 2009236

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7fss-7

The priocntl() PC_GETCID and PC_GETCLINFO commands return fair-share class attributes in
the pc_clinfo buffer in this format.

fss_maxupri specifies the configured maximum user priority value for the fair-share class. If
fss_maxupri is x, the valid range for both user priorities and user priority limits is from -x to
+x.

A fssparms_t structure with the following members, defined in <sys/fsspriocntl.h>,
defines the format used to specify the fair-share class-specific scheduling parameters of an
LWP.

short fss_uprilim; /* Fair-share user priority limit */

short fss_upri; /* Fair-share user priority */

When using the priocntl() PC_SETPARMS or PC_GETPARMS commands, if pc_cid specifies the
fair-share class, the data in the pc_clparms buffer is in this format.

For the priocntl() PC_GETPARMS command, if pc_cid specifies the fair-share class and more
than one fair-share LWP is specified, the scheduling parameters of the fair-share LWP with the
highest fss_upri value among the specified LWPs is returned and the LWP ID of this LWP is
returned by the priocntl() call. If there is more than one LWP sharing the highest user
priority, the one returned is implementation-dependent.

Any fair-share LWP can lower its own fss_uprilim (or that of another LWP with the same user
ID). Only a fair-share LWP with sufficient privileges can raise an fss_uprilim. When changing
the class of an LWP to fair-share from some other class, sufficient privileges are required to
enter the FSS class or to set the initial fss_uprilim to a value greater than 0. Attempts by an
unprivileged LWP to raise an fss_uprilim or set an initial fss_uprilim greater than 0 fail with a
return value of -1 and errno set to EPERM.

Any fair-share LWP can set its own fss_upri (or that of another LWP with the same user ID) to
any value less than or equal to the LWP's fss_uprilim. Attempts to set the fss_upri above the
fss_uprilim (and/or set the fss_uprilim below the fss_upri) result in the fss_upri being set
equal to the fss_uprilim.

Either of the fss_uprilim or fss_upri members can be set to the special value FSS_NOCHANGE
(defined in <sys/fsspriocntl.h>) to set one of the values without affecting the other.
Specifying FSS_NOCHANGE for the fss_upri when the fss_uprilim is being set to a value below the
current fss_upri causes the fss_upri to be set equal to the fss_uprilim being set. Specifying
FSS_NOCHANGE for a parameter when changing the class of an LWP to fair-share (from some
other class) causes the parameter to be set to a default value. The default value for the
fss_uprilim is 0 and the default for the fss_upri is to set it equal to the fss_uprilim which is
being set.

The fair-share user priority and user priority limit are inherited across fork() and the exec
family of functions.

priocntl(2)

System Calls 237

The fixed-priority class provides a fixed-priority preemptive scheduling policy for those LWPs
requiring that the scheduling priorities do not get dynamically adjusted by the system and that
the user/application have control of the scheduling priorities.

The fixed-priority class has a range of fixed-priority user priority (see fx_upri below) values
that can be assigned to LWPs within the class. A fx_upri value of 0 is defined as the default base
priority for the fixed-priority class. User priorities range from 0 to x where the value of x is
configurable and can be determined for a specific installation by using the priocntl()
PC_GETCID or PC_GETCLINFO command.

The purpose of the user priority is to provide user/application control over the scheduling of
processes in the fixed-priority class. For processes in the fixed-priority class, the fx_upri value
is, for all practical purposes, equivalent to the scheduling priority of the process. The fx_upri
value completely determines the scheduling priority of a fixed-priority process relative to
other processes within its class. Numerically higher fx_upri values represent higher priorities.

In addition to the system-wide limits on user priority (returned by the PC_GETCID and
PC_GETCLINFO commands), there is a per-LWP user priority limit (see fx_uprilim below) that
specifies the maximum fx_upri value that can be set for a given LWP. By default, fx_uprilim is
0.

A structure with the following member (defined in <sys/fxpriocntl.h>) defines the format
used for the attribute data for the fixed-priority class.

pri_t fx_maxupri; /* Maximum user priority */

The priocntl() PC_GETCID and PC_GETCLINFO commands return fixed-priority class
attributes in the pc_clinfo buffer in this format.

The fx_maxupri member specifies the configured maximum user priority value for the
fixed-priority class. If fx_maxupri is x, the valid range for both user priorities and user priority
limits is from 0 to x.

A structure with the following members (defined in <sys/fxpriocntl.h>) defines the format
used to specify the fixed-priority class-specific scheduling parameters of an LWP.

pri_t fx_upri; /* Fixed-priority user priority */

pri_t fx_uprilim; /* Fixed-priority user priority limit */

uint_t fx_tqsecs; /* seconds in time quantum */

int fx_tqnsecs; /* additional nanosecs in time quant */

When using the priocntl() PC_SETPARMS or PC_GETPARMS commands, if pc_cid specifies the
fixed-priority class, the data in the pc_clparms buffer is in this format.

For the priocntl() PC_GETPARMS command, if pc_cid specifies the fixed-priority class and
more than one fixed-priority LWP is specified, the scheduling parameters of the fixed-priority
LWP with the highest fx_upri value among the specified LWPs is returned and the LWP ID of
this LWP is returned by the priocntl() call. If there is more than one LWP sharing the
highest user priority, the one returned is implementation-dependent.

Fixed-PRIORITY
Class

priocntl(2)

man pages section 2: System Calls • Last Revised 13 Nov 2009238

Any fixed-priority LWP can lower its own fx_uprilim (or that of another LWP with the same
user ID). Only a fixed-priority LWP with sufficient privileges can raise a fx_uprilim. When
changing the class of an LWP to fixed-priority from some other class, sufficient privileges are
required to set the initial fx_uprilim to a value greater than 0. Attempts by an unprivileged
LWP to raise a fx_uprilim or set an initial fx_uprilim greater than 0 fail with a return value of
-1 and errno set to EPERM.

Any fixed-priority LWP can set its own fx_upri (or that of another LWP with the same user
ID) to any value less than or equal to the LWP's fx_uprilim. Attempts to set the fx_upri above
the fx_uprilim (and/or set the fx_uprilim below the fx_upri) result in the fx_upri being set
equal to the fx_uprilim.

Either of the fx_uprilim or fx_upri members can be set to the special value FX_NOCHANGE
(defined in <sys/fxpriocntl.h>) to set one of the values without affecting the other.
Specifying FX_NOCHANGE for the fx_upri when the fx_uprilim is being set to a value below the
current fx_upri causes the fx_upri to be set equal to the fx_uprilim being set. Specifying
FX_NOCHANGE for a parameter when changing the class of an LWP to fixed-priority (from some
other class) causes the parameter to be set to a default value. The default value for the
fx_uprilim is 0 and the default for the fx_upri is to set it equal to the fx_uprilim that is being set.
The default for time quantum is dependent on the fx_upri and on the system configuration;
see fx_dptbl(4).

The fx_tqsecs and fx_tqnsecs members are used for getting or setting the time quantum
associated with an LWP or group of LWPs. fx_tqsecs is the number of seconds in the time
quantum and fx_tqnsecs is the number of additional nanoseconds in the quantum. For
example, setting fx_tqsecs to 2 and fx_tqnsecs to 500,000,000 (decimal) would result in a time
quantum of two and one-half seconds. Specifying a value of 1,000,000,000 or greater in the
fx_tqnsecs member results in an error return with errno set to EINVAL. Although the
resolution of the tq_nsecs member is very fine, the specified time quantum length is rounded
up by the system to the next integral multiple of the system clock's resolution. The maximum
time quantum that can be specified is implementation-specific and equal to INT_MAX ticks
(defined in <limits.h>). Requesting a quantum greater than this maximum results in an
error return with errno set to ERANGE, although infinite quantums can be requested using a
special value as explained below. Requesting a time quantum of 0 (setting both fx_tqsecs and
fx_tqnsecs to 0) results in an error return with errno set to EINVAL.

The fx_tqnsecs member can also be set to one of the following special values (defined in
<sys/fxpriocntl.h>), in which case the value of fx_tqsecs is ignored:

FX_TQINF Set an infinite time quantum.

FX_TQDEF Set the time quantum to the default for this priority (see fx_dptbl(4)).

FX_NOCHANGE Do not set the time quantum. This value is useful in changing the user
priority of an LWP without affecting the time quantum. Specifying this
value when changing the class of an LWP to fixed-priority from some other
class is equivalent to specifying FX_TQDEF.

priocntl(2)

System Calls 239

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4fx-dptbl-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4fx-dptbl-4

When using the priocntl() PC_SETXPARMS or PC_GETXPARMS commands, the first argument
after the command code must be the class name of the fixed-priority class (FX) . The next
arguments are formed as (key, value) pairs, terminated by a 0 key. The definition for the keys
of the fixed-priority class can be found in <sys/fxpriocntl.h>. A repeated specification of
the same key results in an error return and errno set to EINVAL.

Key Value Type Description

FX_KY_UPRILIM pri_t user priority limit

FX_KY_UPRI pri_t user priority

FX_KY_TQSECS uint_t seconds in time quantum

FX_KY_TQNSECS int nanoseconds in time quantum

When using the priocntl() PC_GETXPARMS command, the value associated with the key is
always a pointer to a scheduling parameter of the value type shown in the table above. In
contrast, when using the priocntl() PC_SETXPARMS command, the scheduling parameter is
given as a direct value.

A priocntl() PC_SETXPARMS command with the class name (FX) and without a following
(key, value) pair will set or reset all realtime scheduling parameters of the target process(es) to
their default values. Changing the class of an LWP to fixed-priority from some other class
causes the parameters to be set to their default values. The default value for the user priority
limit (FX_KY_UPRILIM) is 0. The default value for the user priority (FX_KY_UPRI) is equal to the
user priority limit (FX_KY_UPRILIM) that is being set. A default time quantum (FX_TQDEF) is
assigned to each priority class (see fx_dptbl(4)).

The value associated with FX_KY_TQSECS is the number of seconds in the time quantum. The
value associated with FX_KY_TQNSECS is the number of nanoseconds in the quantum.
Specifying a value of 1,000,000,000 or greater for the number of nanoseconds results in an
error return and errno is set to EINVAL. The specified time quantum is rounded up by the
system to the next integral multiple of the system clock's resolution. The maximum time
quantum that can be specified is implementation-specific and equal to INT_MAX ticks, defined
in <limits.h>. Requesting a quantum greater than this maximum results in an error return
and errno is set to ERANGE. If seconds (FX_KY_TQSECS) but no nanoseconds (FX_KY_TQNSECS)
are supplied, the number of nanoseconds is set to 0. If nanoseconds (FX_KY_TQNSECS) but no
seconds (FX_KY_TQSECS) are supplied, the number of seconds is set to 0. A time quantum of 0
(seconds and nanoseconds are 0) results in an error return with errno set to EINVAL. Special
values for FX_KY_TQSECS are FX_TQINF and FX_TQDEF (as described above). The priocntl()
command PC_SETXPARMS knows no special value FX_NOCHANGE.

The fixed-priority user priority and user priority limit are inherited across fork(2) and the
exec family of functions.

priocntl(2)

man pages section 2: System Calls • Last Revised 13 Nov 2009240

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4fx-dptbl-4

Unless otherwise noted above, priocntl() returns 0 on success. On failure, priocntl()
returns −1 and sets errno to indicate the error.

The priocntl() function will fail if:

EAGAIN An attempt to change the class of an LWP failed because of insufficient resources
other than memory (for example, class-specific kernel data structures).

EFAULT One of the arguments points to an illegal address.

EINVAL The argument cmd was invalid, an invalid or unconfigured class was specified, or
one of the parameters specified was invalid.

ENOMEM An attempt to change the class of an LWP failed because of insufficient memory.

EPERM The {PRIV_PROC_PRIOCNTL} privilege is not asserted in the effective set of the
calling LWP.

The calling LWP does not have sufficient privileges to affect the target LWP.

ERANGE The requested time quantum is out of range.

ESRCH None of the specified LWPs exist.

priocntl(1), dispadmin(1M), init(1M), exec(2), fork(2), nice(2), priocntlset(2),
fx_dptbl(4), process(4), rt_dptbl(4), privileges(5)

Oracle Solaris Administration: Common Tasks

Programming Interfaces Guide

Return Values

Errors

See Also

priocntl(2)

System Calls 241

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1priocntl-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mdispadmin-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Minit-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4fx-dptbl-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4process-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4rt-dptbl-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=SYSADV1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=NETPROTO

priocntlset – generalized process scheduler control

#include <sys/types.h>

#include <sys/procset.h>

#include <sys/priocntl.h>

#include <sys/rtpriocntl.h>

#include <sys/tspriocntl.h>

#include <sys/iapriocntl.h>

#include <sys/fsspriocntl.h>

#include <sys/fxpriocntl.h>

long priocntlset(procset_t *psp, int cmd, /* arg */ ...);

The priocntlset() function changes the scheduling properties of running processes.
priocntlset() has the same functions as the priocntl() function, but a more general way of
specifying the set of processes whose scheduling properties are to be changed, which includes
specifying LWPs of processes other than the calling process.

cmd specifies the function to be performed. arg is a pointer to a structure whose type depends
on cmd. See priocntl(2) for the valid values of cmd and the corresponding arg structures.

psp is a pointer to a procset structure, which priocntlset() uses to specify the set of
processes whose scheduling properties are to be changed. The procset structure contains the
following members:

idop_t p_op; /* operator connecting left/right sets */

idtype_t p_lidtype; /* left set ID type */

id_t p_lid; /* left set ID */

idtype_t p_ridtype; /* right set ID type */

id_t p_rid; /* right set ID */

The p_lidtype and p_lid members specify the ID type and ID of one (“left”) set of processes;
the p_ridtype and p_rid members specify the ID type and ID of a second (“right”) set of
processes. ID types and IDs are specified just as for the priocntl() function. The p_op
member specifies the operation to be performed on the two sets of processes to get the set of
processes the function is to apply to. The valid values for p_op and the processes they specify
are:

POP_DIFF Set difference: processes in left set and not in right set.

POP_AND Set intersection: processes in both left and right sets.

POP_OR Set union: processes in either left or right sets or both.

POP_XOR Set exclusive-or: processes in left or right set but not in both.

The following macro, which is defined in <procset.h>, offers a convenient way to initialize a
procset structure:

Name

Synopsis

Description

priocntlset(2)

man pages section 2: System Calls • Last Revised 10 Feb 2011242

#define setprocset(psp, op, ltype, lid, rtype, rid) \

(psp)->p_op = (op), \

(psp)->p_lidtype = (ltype), \

(psp)->p_lid = (lid), \

(psp)->p_ridtype = (rtype), \

(psp)->p_rid = (rid),

Unless otherwise noted above, priocntlset() returns 0 on success. Otherwise, it returns −1
and sets errno to indicate the error.

The priocntlset() function will fail if:

EAGAIN An attempt to change the class of a process failed because of insufficient resources
other than memory (for example, class-specific kernel data structures).

EFAULT One of the arguments points to an illegal address.

EINVAL The argument cmd was invalid, an invalid or unconfigured class was specified, or
one of the parameters specified was invalid.

ENOMEM An attempt to change the class of a process failed because of insufficient memory.

EPERM The {PRIV_PROC_PRIOCNTL} privilege is not asserted in the effective set of the
calling LWP.

The calling LWP does not have sufficient privileges to affect the target LWP.

ERANGE The requested time quantum is out of range.

ESRCH None of the specified processes exist.

priocntl(1), priocntl(2)

Return Values

Errors

See Also

priocntlset(2)

System Calls 243

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1priocntl-1

processor_bind – bind LWPs to a processor

#include <sys/types.h>

#include <sys/processor.h>

#include <sys/procset.h>

int processor_bind(idtype_t idtype, id_t id, processorid_t processorid,
processorid_t *obind);

The processor_bind() function binds the LWP (lightweight process) or set of LWPs specified
by idtype and id to the processor specified by processorid. If obind is not NULL, this function
also sets the processorid_t variable pointed to by obind to the previous binding of one of the
specified LWPs, or to PBIND_NONE if the selected LWP was not bound.

If idtype is P_PID, the binding affects all LWPs of the process with process ID (PID) id.

If idtype is P_LWPID, the binding affects the LWP of the current process with LWP ID id.

If idtype is P_TASKID, the binding affects all LWPs of all processes with task ID id.

If idtype is P_PROJID, the binding affects all LWPs of all processes with project ID id.

If idtype is P_CTID, the binding affects all LWPs of all processes with process contract ID id.

If idtype is P_ZONEID, the binding affects all LWPs of all processes with zone ID id.

If id is P_MYID, the specified LWP, process, task, or project is the current one.

If processorid is PBIND_NONE, the processor bindings of the specified LWPs are cleared.

If processorid is PBIND_QUERY, the processor bindings are not changed.

The {PRIV_PROC_OWNER} privilege must be asserted in the effective set of the calling process or
the real or effective user ID of the calling process must match the real or effective user ID of the
LWPs being bound. If the calling process does not have permission to change all of the
specified LWPs, the bindings of the LWPs for which it does have permission will be changed
even though an error is returned.

Processor bindings are inherited across fork(2) and exec(2).

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The processor_bind() function will fail if:

EFAULT The location pointed to by obind was not NULL and not writable by the user.

EINVAL The specified processor is not on-line, or the idtype argument was not P_PID,
P_LWPID, P_PROJID, P_TASKID, P_CTID, or P_ZONEID.

Name

Synopsis

Description

Return Values

Errors

processor_bind(2)

man pages section 2: System Calls • Last Revised 13 Mar 2009244

The caller is in a non-global zone, the pools facility is active, and the processor is
not a member of the zone's pool's processor set.

ENOTSUP Binding a system process to a processor set is not supported.

EPERM The {PRIV_PROC_OWNER} privilege is not asserted in the effective set of the calling
process and its real or effective user ID does not match the real or effective user
ID of one of the LWPs being bound.

ESRCH No processes, LWPs, or tasks were found to match the criteria specified by idtype
and id.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

pooladm(1M), psradm(1M), psrinfo(1M), zoneadm(1M), exec(2), fork(2), p_online(2),
pset_bind(2), sysconf(3C), process(4), project(4), attributes(5), privileges(5)

Attributes

See Also

processor_bind(2)

System Calls 245

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpooladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpsradm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpsrinfo-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mzoneadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4process-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4project-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

processor_info – determine type and status of a processor

#include <sys/types.h>

#include <sys/processor.h>

int processor_info(processorid_t processorid, processor_info_t *infop);

The processor_info() function returns the status of the processor specified by processorid in
the processor_info_t structure pointed to by infop.

The structure processor_info_t contains the following members:

int pi_state;

char pi_processor_type[PI_TYPELEN];

char pi_fputypes[PI_FPUTYPE];

int pi_clock;

The pi_state member is the current state of the processor, either P_ONLINE, P_OFFLINE,
P_NOINTR, P_FAULTED, P_SPARE, or P_POWEROFF.

The pi_processor_type member is a null-terminated ASCII string specifying the type of the
processor.

The pi_fputypes member is a null-terminated ASCII string containing the comma-separated
types of floating-point units (FPUs) attached to the processor. This string will be empty if no
FPU is attached.

The pi_clock member is the processor clock frequency rounded to the nearest megahertz. It
may be 0 if not known.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The processor_info() function will fail if:

EINVAL An non-existent processor ID was specified.

The caller is in a non-global zone, the pools facility is active, and the processor is
not a member of the zone's pool's processor set.

EFAULT The processor_info_t structure pointed to by infop was not writable by the user.

pooladm(1M), psradm(1M), psrinfo(1M), zoneadm(1M), p_online(2), sysconf(3C)

Name

Synopsis

Description

Return Values

Errors

See Also

processor_info(2)

man pages section 2: System Calls • Last Revised 28 Jun 2004246

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpooladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpsradm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpsrinfo-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mzoneadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c

profil – execution time profile

#include <unistd.h>

void profil(unsigned short *buff, unsigned int bufsiz, unsigned int offset,
unsigned int scale);

The profil() function provides CPU-use statistics by profiling the amount of CPU time
expended by a program. The profil() function generates the statistics by creating an
execution histogram for a current process. The histogram is defined for a specific region of
program code to be profiled, and the identified region is logically broken up into a set of equal
size subdivisions, each of which corresponds to a count in the histogram. With each clock tick,
the current subdivision is identified and its corresponding histogram count is incremented.
These counts establish a relative measure of how much time is being spent in each code
subdivision. The resulting histogram counts for a profiled region can be used to identify those
functions that consume a disproportionately high percentage of CPU time.

The buff argument is a buffer of bufsiz bytes in which the histogram counts are stored in an
array of unsigned short int. Once one of the counts reaches 32767 (the size of a short int),
profiling stops and no more data is collected.

The offset, scale, and bufsiz arguments specify the region to be profiled.

The offset argument is effectively the start address of the region to be profiled.

The scale argument is a contraction factor that indicates how much smaller the histogram
buffer is than the region to be profiled. More precisely, scale is interpreted as an unsigned
16-bit fixed-point fraction with the decimal point implied on the left. Its value is the reciprocal
of the number of bytes in a subdivision, per byte of histogram buffer. Since there are two bytes
per histogram counter, the effective ratio of subdivision bytes per counter is one half the scale.

The values of scale are as follows:

■ the maximum value of scale, 0xffff (approximately 1), maps subdivisions 2 bytes long to
each counter.

■ the minimum value of scale (for which profiling is performed), 0x0002 (1/32,768), maps
subdivision 65,536 bytes long to each counter.

■ the default value of scale (currently used by cc -qp), 0x4000, maps subdivisions 8 bytes
long to each counter.

The values are used within the kernel as follows: when the process is interrupted for a clock
tick, the value of offset is subtracted from the current value of the program counter (pc), and
the remainder is multiplied by scale to derive a result. That result is used as an index into the
histogram array to locate the cell to be incremented. Therefore, the cell count represents the
number of times that the process was executing code in the subdivision associated with that
cell when the process was interrupted.

Name

Synopsis

Description

profil(2)

System Calls 247

The value of scale can be computed as (RATIO * 0200000L), where RATIO is the desired ratio
of bufsiz to profiled region size, and has a value between 0 and 1. Qualitatively speaking, the
closer RATIO is to 1, the higher the resolution of the profile information.

The value of bufsiz can be computed as (size_of_region_to_be_profiled * RATIO).

Profiling is turned off by giving a scale value of 0 or 1, and is rendered ineffective by giving a
bufsiz value of 0. Profiling is turned off when one of the exec family of functions (see exec(2))
is executed, but remains on in both child and parent processes after a fork(2). Profiling is
turned off if a buff update would cause a memory fault.

The pcsample(2) function should be used when profiling dynamically-linked programs and
64-bit programs.

exec(2), fork(2), pcsample(2), times(2), monitor(3C), prof(5)

In Solaris releases prior to 2.6, calling profil() in a multithreaded program would impact
only the calling LWP; the profile state was not inherited at LWP creation time. To profile a
multithreaded program with a global profile buffer, each thread needed to issue a call to
profil() at threads start-up time, and each thread had to be a bound thread. This was
cumbersome and did not easily support dynamically turning profiling on and off. In Solaris
2.6, the profil() system call for multithreaded processes has global impact — that is, a call to
profil() impacts all LWPs/threads in the process. This may cause applications that depend
on the previous per-LWP semantic to break, but it is expected to improve multithreaded
programs that wish to turn profiling on and off dynamically at runtime.

Usage

See Also

Notes

profil(2)

man pages section 2: System Calls • Last Revised 12 Nov 2001248

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amonitor-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5prof-5

pset_bind – bind LWPs to a set of processors

#include <sys/pset.h>

int pset_bind(psetid_t pset, idtype_t idtype, id_t id, psetid_t *opset);

The pset_bind() function binds the LWP or set of LWPs specified by idtype and id to the
processor set specified by pset. If opset is not NULL, pset_bind() sets the psetid_t variable
pointed to by opset to the previous processor set binding of one of the specified LWP, or to
PS_NONE if the selected LWP was not bound.

If idtype is P_PID, the binding affects all LWPs of the process with process ID (PID) id.

If idtype is P_LWPID, the binding affects the LWP of the current process with LWP ID id.

If idtype is P_TASKID, the binding affects all LWPs of all processes with task ID id.

If idtype is P_PROJID, the binding affects all LWPs of all processes with project ID id.

If idtype is P_ZONEID, the binding affects all LWPs of all processes with zone ID id.

If idtype is P_CTID, the binding affects all LWPs of all processes with process contract ID id.

If id is P_MYID, the specified LWP, process, task, process, zone, or process contract is the
current one.

If pset is PS_NONE, the processor set bindings of the specified LWPs are cleared.

If pset is PS_QUERY, the processor set bindings are not changed.

If pset is PS_MYID, the specified LWPs are bound to the same processor set as the caller. If the
caller is not bound to a processor set, the processor set bindings are cleared.

The {PRIV_SYS_RES_CONFIG} privilege must be asserted in the effective set of the calling
process or pset must be PS_QUERY.

LWPs that have been bound to a processor with processor_bind(2) may also be bound to a
processor set if the processor is part of the processor set. If this occurs, the binding to the
processor remains in effect. If the processor binding is later removed, the processor set
binding becomes effective.

Processor set bindings are inherited across fork(2) and exec(2).

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The pset_bind() function will fail if:

Name

Synopsis

Description

Return Values

Errors

pset_bind(2)

System Calls 249

EBUSY One of the LWPs is bound to a processor, and the specified processor set does not
include that processor.

EFAULT The location pointed to by opset was not NULL and not writable by the user.

EINVAL An invalid processor set ID was specified; or idtype was not P_PID, P_LWPID,
P_PROJID, P_TASKID, P_ZONEID, or P_CTID.

ENOTSUP The pools facility is active. See pooladm(1M) and pool_set_status(3POOL) for
information about enabling and disabling the pools facility. Processes can be
bound to pools using the poolbind(1M) utility or the
pool_set_binding(3POOL) function.

Binding a system process to a processor set is not supported.

EPERM The {PRIV_PROC_OWNER} is not asserted in the effecive set of the calling process
and either the real or effective user ID of the calling process does not match the
real or effective user ID of one of the LWPs being bound, or the processor set
from which one or more of the LWPs are being unbound has the PSET_NOESCAPE
attribute set and {PRIV_SYS_RES_CONFIG) is not asserted in the effective set of the
calling process. See pset_setattr(2) for more information about processor set
attributes.

ESRCH No processes, LWPs, or tasks were found to match the criteria specified by idtype
and id.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

pbind(1M), pooladm(1M), poolbind(1M), psrset(1M), exec(2), fork(2),
processor_bind(2), pset_create(2), pset_info(2), pset_setattr(2),
pool_set_binding(3POOL), pool_set_status(3POOL), pset_getloadavg(3C),
process(4), project(4), attributes(5), privileges(5)

Attributes

See Also

pset_bind(2)

man pages section 2: System Calls • Last Revised 13 Mar 2009250

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpooladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Hpool-set-status-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpoolbind-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Hpool-set-binding-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpbind-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpooladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpoolbind-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpsrset-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Hpool-set-binding-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Hpool-set-status-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apset-getloadavg-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4process-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4project-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

pset_create, pset_destroy, pset_assign – manage sets of processors

#include <sys/pset.h>

int pset_create(psetid_t *newpset);

int pset_destroy(psetid_t pset);

int pset_assign(psetid_t pset, processorid_t cpu, psetid_t *opset);

These functions control the creation and management of sets of processors. Processor sets
allow a subset of the system's processors to be set aside for exclusive use by specified LWPs and
processes. The binding of LWPs and processes to processor sets is controlled by pset_bind(2).

The pset_create() function creates an empty processor set that contains no processors. On
successful return, newpset will contain the ID of the new processor set.

The pset_destroy() function destroys the processor set pset, releasing its constituent
processors and processes. If pset is PS_MYID, the processor set to which the caller is bound is
destroyed.

The pset_assign() function assigns the processor cpu to the processor set pset. A processor
that has been assigned to a processor set will run only LWPs and processes that have been
explicitly bound to that processor set, unless another LWP requires a resource that is only
available on that processor.

On successful return, if opset is non-null, opset will contain the processor set ID of the former
processor set of the processor.

If pset is PS_NONE, pset_assign() releases processor cpu from its current processor set.

If pset is PS_QUERY, pset_assign() makes no change to processor sets, but returns the current
processor set ID of processor cpu in opset.

If pset is PS_MYID, processor cpu is assigned to the processor set to which the caller belongs. If
the caller does not belong to a processor set, processor cpu is released from its current
processor set.

These functions are restricted to privileged processes, except for pset_assign() when pset is
PS_QUERY.

Upon successful completion, these functions return 0. Otherwise, −1 is returned and errno is
set to indicate the error.

These functions will fail if:

EBUSY The processor could not be moved to the specified processor set.

EFAULT The location pointed to by newpset was not writable by the user, or the location
pointed to by opset was not NULL and not writable by the user.

Name

Synopsis

Description

Return Values

Errors

pset_create(2)

System Calls 251

EINVAL The specified processor does not exist, the specified processor is not on-line, or
an invalid processor set was specified.

ENOMEM There was insufficient space for pset_create to create a new processor set.

ENOTSUP The pools facility is active. See pooladm(1M) and pool_set_status(3POOL) for
information about enabling and disabling the pools facility.

EPERM The {PRIV_SYS_RES_CONFIG} privilege is not asserted in the effective set of the
calling process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

pooladm(1M), psradm(1M), psrinfo(1M), psrset(1M), p_online(2), processor_bind(2),
pset_bind(2), pset_info(2), pool_set_status(3POOL), pset_getloadavg(3C),
attributes(5), privileges(5)

The processor set type of PS_SYSTEM is no longer supported.

Processors with LWPs bound to them using processor_bind(2) cannot be assigned to a new
processor set. If this is attempted, pset_assign() will fail and set errno to EBUSY.

Attributes

See Also

Notes

pset_create(2)

man pages section 2: System Calls • Last Revised 22 Feb 2008252

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpooladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Hpool-set-status-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpooladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpsradm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpsrinfo-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpsrset-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Hpool-set-status-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apset-getloadavg-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

pset_info – get information about a processor set

#include <sys/pset.h>

int pset_info(psetid_t pset, int *type, uint_t *numcpus,
processorid_t *cpulist);

The pset_info() function returns information on the processor set pset.

If type is non-null, then on successful completion the type of the processor set will be stored in
the location pointed to by type. The only type supported for active processor sets is
PS_PRIVATE.

If numcpus is non-null, then on successful completion the number of processors in the
processor set will be stored in the location pointed to by numcpus.

If numcpus and cpulist are both non-null, then cpulist points to a buffer where a list of
processors assigned to the processor set is to be stored, and numcpus points to the maximum
number of processor IDs the buffer can hold. On successful completion, the list of processors
up to the maximum buffer size is stored in the buffer pointed to by cpulist.

If pset is PS_NONE, the list of processors not assigned to any processor set will be stored in the
buffer pointed to by cpulist, and the number of such processors will be stored in the location
pointed to by numcpus. The location pointed to by type will be set to PS_NONE.

If pset is PS_MYID, the processor list and number of processors returned will be those of the
processor set to which the caller is bound. If the caller is not bound to a processor set, the
result will be equivalent to setting pset to PS_NONE.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The pset_info() function will fail if:

EFAULT The location pointed to by type, numcpus, or cpulist was not null and not writable
by the user.

EINVAL An invalid processor set ID was specified.

The caller is in a non-global zone, the pools facility is active, and the processor is
not a member of the zone's pool's processor set.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Name

Synopsis

Description

Return Values

Errors

Attributes

pset_info(2)

System Calls 253

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

pooladm(1M), psrinfo(1M), psrset(1M), zoneadm(1M), processor_info(2),
pset_assign(2), pset_bind(2), pset_create(2), pset_destroy(2), pset_getloadavg(3C),
attributes(5)

The processor set of type PS_SYSTEM is no longer supported.

See Also

Notes

pset_info(2)

man pages section 2: System Calls • Last Revised 28 Jun 2004254

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpooladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpsrinfo-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpsrset-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mzoneadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apset-getloadavg-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

pset_list – get list of processor sets

#include <sys/pset.h>

int pset_list(psetid_t *psetlist, uint_t *numpsets);

The pset_list() function returns a list of processor sets in the system.

If numpsets is non-null, then on successful completion the number of processor sets in the
system will be stored in the location pointed to by numpsets.

If numpsets and psetlist are both non-null, then psetlist points to a buffer where a list of
processor sets in the system is to be stored, and numpsets points to the maximum number of
processor set IDs the buffer can hold. On successful completion, the list of processor sets up to
the maximum buffer size is stored in the buffer pointed to by psetlist.

Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno is set to
indicate the error.

The pset_list() function will fail if:

EFAULT The location pointed to by psetlist or numpsets was not null and not writable by
the user.

If the caller is in a non-global zone and the pools facility is active, pset_list() returns only
the processor set of the pool to which the zone is bound.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

pooladm(1M), psrset(1M), zoneadm(1M), processor_info(2), pset_bind(2),
pset_create(2), pset_info(2), pset_getloadavg(3C), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

pset_list(2)

System Calls 255

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpooladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpsrset-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mzoneadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apset-getloadavg-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

pset_setattr, pset_getattr – set or get processor set attributes

#include <sys/pset.h>

int pset_setattr(psetid_t pset, uint_t attr);

int pset_getattr(psetid_t pset, uint_t *attr);

The pset_setattr() function sets attributes of the processor set specified by pset. The
bitmask of attributes to be set or cleared is specified by attr.

The pset_getattr function returns attributes of the processor set specified by pset. On
successful return, attr will contain the bitmask of attributes for the specified processor set.

The value of the attr argument is the bitwise inclusive-OR of these attributes, defined in
<sys/pset.h>:

PSET_NOESCAPE Unbinding of LWPs from the processor set with this attribute requires the
{PRIV_SYS_RES_CONFIG} privilege to be asserted in the effective set of the
calling process.

The binding of LWPs and processes to processor sets is controlled by pset_bind(2). When the
PSET_NOESCAPE attribute is cleared, a process calling pset_bind() can clear the processor set
binding of any LWP whose real or effective user ID matches its own real of effective user ID.
Setting PSET_NOESCAPE attribute forces pset_bind() to requires the {PRIV_SYS_RES_CONFIG}
privilege to be asserted in the effective set of the calling process.

Upon successful completion, these functions return 0. Otherwise, -1 is returned and errno is
set to indicate the error.

These function will fail if:

EFAULT The location pointed to by attr was not writable by the user.

EINVAL An invalid processor set ID was specified.

The caller is in a non-global zone, the pools facility is active, and the processor is
not a member of the zone's pool's processor set.

ENOTSUP The pools facility is active. See pooladm(1M) and pool_set_status(3POOL) for
information about enabling and disabling the pools facility.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Name

Synopsis

Description

Return Values

Errors

Attributes

pset_setattr(2)

man pages section 2: System Calls • Last Revised 28 Jun 2004256

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpooladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Hpool-set-status-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

pooladm(1M), pooladm(1M), psrset(1M), zoneadm(1M), pset_bind(2),
pool_set_status(3POOL), attributes(5)

See Also

pset_setattr(2)

System Calls 257

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpooladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpooladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpsrset-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mzoneadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Hpool-set-status-3pool
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

putmsg, putpmsg – send a message on a stream

#include <stropts.h>

int putmsg(int fildes, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int flags);

int putpmsg(int fildes, const struct strbuf *ctlptr,
const struct strbuf *dataptr,int band, int flags);

The putmsg() function creates a message from user-specified buffer(s) and sends the message
to a streams file. The message may contain either a data part, a control part, or both. The data
and control parts to be sent are distinguished by placement in separate buffers, as described
below. The semantics of each part is defined by the streams module that receives the message.

The putpmsg() function does the same thing as putmsg(), but provides the user the ability to
send messages in different priority bands. Except where noted, all information pertaining to
putmsg() also pertains to putpmsg().

The fildes argument specifies a file descriptor referencing an open stream. The ctlptr and
dataptr arguments each point to a strbuf structure, which contains the following members:

int maxlen; /* not used here */

int len; /* length of data */

void *buf; /* ptr to buffer */

The ctlptr argument points to the structure describing the control part, if any, to be included
in the message. The buf member in the strbuf structure points to the buffer where the control
information resides, and the len member indicates the number of bytes to be sent. The maxlen
member is not used in putmsg() (see getmsg(2)). In a similar manner, dataptr specifies the
data, if any, to be included in the message. The flags argument indicates what type of message
should be sent and is described later.

To send the data part of a message, dataptr must not be NULL, and the len member of dataptr
must have a value of 0 or greater. To send the control part of a message, the corresponding
values must be set for ctlptr. No data (control) part is sent if either dataptr (ctlptr) is NULL or
the len member of dataptr (ctlptr) is negative.

For putmsg(), if a control part is specified, and flags is set to RS_HIPRI, a high priority message
is sent. If no control part is specified, and flags is set to RS_HIPRI, putmsg() fails and sets errno
to EINVAL. If flags is set to 0, a normal (non-priority) message is sent. If no control part and no
data part are specified, and flags is set to 0, no message is sent, and 0 is returned.

The stream head guarantees that the control part of a message generated by putmsg() is at
least 64 bytes in length.

For putpmsg(), the flags are different. The flags argument is a bitmask with the following
mutually-exclusive flags defined: MSG_HIPRI and MSG_BAND. If flags is set to 0, putpmsg() fails
and sets errno to EINVAL. If a control part is specified and flags is set to MSG_HIPRI and band is

Name

Synopsis

Description

putmsg(2)

man pages section 2: System Calls • Last Revised 1 Nov 2003258

set to 0, a high-priority message is sent. If flags is set to MSG_HIPRI and either no control part is
specified or band is set to a non-zero value, putpmsg() fails and sets errno to EINVAL. If flags is
set to MSG_BAND, then a message is sent in the priority band specified by band. If a control part
and data part are not specified and flags is set to MSG_BAND, no message is sent and 0 is
returned.

Normally, putmsg() will block if the stream write queue is full due to internal flow control
conditions. For high-priority messages, putmsg() does not block on this condition. For other
messages, putmsg() does not block when the write queue is full and O_NDELAY or O_NONBLOCK
is set. Instead, it fails and sets errno to EAGAIN.

The putmsg() or putpmsg() function also blocks, unless prevented by lack of internal
resources, waiting for the availability of message blocks in the stream, regardless of priority or
whether O_NDELAY or O_NONBLOCK has been specified. No partial message is sent.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The putmsg() and putpmsg() functions will fail if:

EAGAIN A non-priority message was specified, the O_NDELAY or O_NONBLOCK flag is set
and the stream write queue is full due to internal flow control conditions.

EBADF The fildes argument is not a valid file descriptor open for writing.

EFAULT The ctlptr or dataptr argument points to an illegal address.

EINTR A signal was caught during the execution of the putmsg() function.

EINVAL An undefined value was specified in flags; flags is set to RS_HIPRI and no
control part was supplied; or the stream referenced by fildes is linked below a
multiplexor.

ENOSR Buffers could not be allocated for the message that was to be created due to
insufficient streams memory resources.

ENOSTR The fildes argument is not associated with a stream.

ENXIO A hangup condition was generated downstream for the specified stream, or
the other end of the pipe is closed.

EPIPE or EIO The fildes argument refers to a streams-based pipe and the other end of the
pipe is closed. A SIGPIPE signal is generated for the calling thread. This error
condition occurs only with SUS-conforming applications. See standards(5).

ERANGE The size of the data part of the message does not fall within the range
specified by the maximum and minimum packet sizes of the topmost stream
module. This value is also returned if the control part of the message is larger
than the maximum configured size of the control part of a message, or if the
data part of a message is larger than the maximum configured size of the data

Return Values

Errors

putmsg(2)

System Calls 259

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

part of a message.

In addition, putmsg() and putpmsg() will fail if the stream head had processed an
asynchronous error before the call. In this case, the value of errno does not reflect the result of
putmsg() or putpmsg() but reflects the prior error.

The putpmsg() function will fail if:

EINVAL The flags argument is set to MSG_HIPRI and band is non-zero.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

Intro(2), getmsg(2), poll(2), read(2), write(2), attributes(5), standards(5)

STREAMS Programming Guide

Attributes

See Also

putmsg(2)

man pages section 2: System Calls • Last Revised 1 Nov 2003260

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=STREAMS

read, readv, pread – read from file

#include <unistd.h>

ssize_t read(int fildes, void *buf, size_t nbyte);

ssize_t pread(int fildes, void *buf, size_t nbyte, off_t offset);

#include <sys/uio.h>

ssize_t readv(int fildes, const struct iovec *iov, int iovcnt);

The read() function attempts to read nbyte bytes from the file associated with the open file
descriptor, fildes, into the buffer pointed to by buf.

If nbyte is 0, read() returns 0 and has no other results.

On files that support seeking (for example, a regular file), the read() starts at a position in the
file given by the file offset associated with fildes. The file offset is incremented by the number of
bytes actually read.

Files that do not support seeking (for example, terminals) always read from the current
position. The value of a file offset associated with such a file is undefined.

If fildes refers to a socket, read() is equivalent to recv(3SOCKET) with no flags set.

No data transfer will occur past the current end-of-file. If the starting position is at or after the
end-of-file, 0 will be returned. If the file refers to a device special file, the result of subsequent
read() requests is implementation-dependent.

When attempting to read from a regular file with mandatory file/record locking set (see
chmod(2)), and there is a write lock owned by another process on the segment of the file to be
read:

■ If O_NDELAY or O_NONBLOCK is set, read() returns −1 and sets errno to EAGAIN.
■ If O_NDELAY and O_NONBLOCK are clear, read() sleeps until the blocking record lock is

removed.

When attempting to read from an empty pipe (or FIFO):

■ If no process has the pipe open for writing, read() returns 0 to indicate end-of-file.
■ If some process has the pipe open for writing and O_NDELAY is set, read() returns 0.
■ If some process has the pipe open for writing and O_NONBLOCK is set, read() returns −1 and

sets errno to EAGAIN.
■ If O_NDELAY and O_NONBLOCK are clear, read() blocks until data is written to the pipe or the

pipe is closed by all processes that had opened the pipe for writing.

When attempting to read a file associated with a terminal that has no data currently available:

Name

Synopsis

Description

read(2)

System Calls 261

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Brecv-3socket

■ If O_NDELAY is set, read() returns 0.
■ If O_NONBLOCK is set, read() returns −1 and sets errno to EAGAIN.
■ If O_NDELAY and O_NONBLOCK are clear, read() blocks until data become available.

When attempting to read a file associated with a socket or a stream that is not a pipe, a FIFO,
or a terminal, and the file has no data currently available:

■ If O_NDELAY or O_NONBLOCK is set, read() returns −1 and sets errno to EAGAIN.
■ If O_NDELAY and O_NONBLOCK are clear, read() blocks until data becomes available.

The read() function reads data previously written to a file. If any portion of a regular file prior
to the end-of-file has not been written, read() returns bytes with value 0. For example,
lseek(2) allows the file offset to be set beyond the end of existing data in the file. If data is later
written at this point, subsequent reads in the gap between the previous end of data and the
newly written data will return bytes with value 0 until data is written into the gap.

For regular files, no data transfer will occur past the offset maximum established in the open
file description associated with fildes.

Upon successful completion, where nbyte is greater than 0, read() will mark for update the
st_atime field of the file, and return the number of bytes read. This number will never be
greater than nbyte. The value returned may be less than nbyte if the number of bytes left in the
file is less than nbyte, if the read() request was interrupted by a signal, or if the file is a pipe or
FIFO or special file and has fewer than nbyte bytes immediately available for reading. For
example, a read() from a file associated with a terminal may return one typed line of data.

If a read() is interrupted by a signal before it reads any data, it will return −1 with errno set to
EINTR.

If a read() is interrupted by a signal after it has successfully read some data, it will return the
number of bytes read.

A read() from a streams file can read data in three different modes: byte-stream mode,
message-nondiscard mode, and message-discard mode. The default is byte-stream mode. This
can be changed using the I_SRDOPT ioctl(2) request, and can be tested with the I_GRDOPT
ioctl(). In byte-stream mode, read() retrieves data from the stream until as many bytes as
were requested are transferred, or until there is no more data to be retrieved. Byte-stream
mode ignores message boundaries.

In streams message-nondiscard mode, read() retrieves data until as many bytes as were
requested are transferred, or until a message boundary is reached. If read() does not retrieve
all the data in a message, the remaining data is left on the stream, and can be retrieved by the
next read() call. Message-discard mode also retrieves data until as many bytes as were
requested are transferred, or a message boundary is reached. However, unread data remaining
in a message after the read() returns is discarded, and is not available for a subsequent
read(), readv() or getmsg(2) call.

read(2)

man pages section 2: System Calls • Last Revised 24 Mar 2011262

How read() handles zero-byte streams messages is determined by the current read mode
setting. In byte-stream mode, read() accepts data until it has read nbyte bytes, or until there is
no more data to read, or until a zero-byte message block is encountered. The read() function
then returns the number of bytes read, and places the zero-byte message back on the stream to
be retrieved by the next read(), readv() or getmsg(2). In message-nondiscard mode or
message-discard mode, a zero-byte message returns 0 and the message is removed from the
stream. When a zero-byte message is read as the first message on a stream, the message is
removed from the stream and 0 is returned, regardless of the read mode.

A read() from a streams file returns the data in the message at the front of the stream head
read queue, regardless of the priority band of the message.

By default, streams are in control-normal mode, in which a read() from a streams file can
only process messages that contain a data part but do not contain a control part. The read()
fails if a message containing a control part is encountered at the stream head. This default
action can be changed by placing the stream in either control-data mode or control-discard
mode with the I_SRDOPT ioctl() command. In control-data mode, read() converts any
control part to data and passes it to the application before passing any data part originally
present in the same message. In control-discard mode, read() discards message control parts
but returns to the process any data part in the message.

In addition, read() and readv() will fail if the stream head had processed an asynchronous
error before the call. In this case, the value of errno does not reflect the result of read() or
readv() but reflects the prior error. If a hangup occurs on the stream being read, read()
continues to operate normally until the stream head read queue is empty. Thereafter, it
returns 0.

The readv() function is equivalent to read(), but places the input data into the iovcnt buffers
specified by the members of the iov array: iov[0], iov[1], …, iov[iovcnt−1]. The iovcnt
argument is valid if greater than 0 and less than or equal to {IOV_MAX}.

The iovec structure contains the following members:

void *iov_base;

size_t iov_len;

Each iovec entry specifies the base address and length of an area in memory where data
should be placed. The readv() function always fills an area completely before proceeding to
the next.

Upon successful completion, readv() marks for update the st_atime field of the file.

The pread() function performs the same action as read(), except that it reads from a given
position in the file without changing the file pointer. The first three arguments to pread() are
the same as read() with the addition of a fourth argument offset for the desired position inside
the file. pread() will read up to the maximum offset value that can be represented in an off_t

for regular files. An attempt to perform a pread() on a file that is incapable of seeking results
in an error.

readv()

pread()

read(2)

System Calls 263

Upon successful completion, read() and readv() return a non-negative integer indicating
the number of bytes actually read. Otherwise, the functions return −1 and set errno to indicate
the error.

The read(), readv(), and pread() functions will fail if:

EAGAIN Mandatory file/record locking was set, O_NDELAY or O_NONBLOCK was set, and
there was a blocking record lock; total amount of system memory available when
reading using raw I/O is temporarily insufficient; no data is waiting to be read on
a file associated with a tty device and O_NONBLOCK was set; or no message is
waiting to be read on a stream and O_NDELAY or O_NONBLOCK was set.

EBADF The fildes argument is not a valid file descriptor open for reading.

EBADMSG Message waiting to be read on a stream is not a data message.

EDEADLK The read was going to go to sleep and cause a deadlock to occur.

EINTR A signal was caught during the read operation and no data was transferred.

EINVAL An attempt was made to read from a stream linked to a multiplexor.

EIO A physical I/O error has occurred, or the process is in a background process
group and is attempting to read from its controlling terminal, and either the
process is ignoring or blocking the SIGTTIN signal or the process group of the
process is orphaned.

EISDIR The fildes argument refers to a directory on a file system type that does not
support read operations on directories.

ENOLCK The system record lock table was full, so the read() or readv() could not go to
sleep until the blocking record lock was removed.

ENOLINK The fildes argument is on a remote machine and the link to that machine is no
longer active.

ENXIO The device associated with fildes is a block special or character special file and the
value of the file pointer is out of range.

The read() and pread() functions will fail if:

EFAULT The buf argument points to an illegal address.

EINVAL The nbyte argument overflowed an ssize_t.

The read() and readv() functions will fail if:

EOVERFLOW The file is a regular file, nbyte is greater than 0, the starting position is before
the end-of-file, and the starting position is greater than or equal to the offset
maximum established in the open file description associated with fildes.

The readv() function may fail if:

Return Values

Errors

read(2)

man pages section 2: System Calls • Last Revised 24 Mar 2011264

EFAULT The iov argument points outside the allocated address space.

EINVAL The iovcnt argument was less than or equal to 0 or greater than {IOV_MAX}. See
Intro(2) for a definition of {IOV_MAX}).

One of the iov_len values in the iov array was negative, or the sum of the iov_len
values in the iov array overflowed an ssize_t.

The pread() function will fail and the file pointer remain unchanged if:

ESPIPE The fildes argument is associated with a pipe or FIFO.

The pread() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level read() is Async-Signal-Safe

Standard See standards(5).

Intro(2), chmod(2), creat(2), dup(2), fcntl(2), getmsg(2), ioctl(2), lseek(2), open(2),
pipe(2), recv(3SOCKET), attributes(5), lf64(5), standards(5), streamio(7I), termio(7I)

Usage

Attributes

See Also

read(2)

System Calls 265

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Brecv-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7streamio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7termio-7i

readlink, readlinkat – read the contents of a symbolic link

#include <unistd.h>

ssize_t readlink(const char *restrict path, char *restrict buf,
size_t bufsiz);

ssize_t readlinkat(int fd, const char *restrict path,
char *restrict buf, size_t bufsize);

The readlink() function places the contents of the symbolic link referred to by path in the
buffer buf which has size bufsiz. If the number of bytes in the symbolic link is less than bufsiz,
the contents of the remainder of buf are left unchanged. If the buf argument is not large
enough to contain the link content, the first bufsize bytes are placed in buf.

Upon successful completion, readlink() marks for update the last data access timestamp of
the symbolic link.

The readlinkat() function is equivalent to the readlink() function except in the case where
path specifies a relative path. In this case the symbolic link whose content is read is relative to
the directory associated with the file descriptor fd instead of the current working directory. If
the file descriptor was opened without O_SEARCH, the function checks whether directory
searches are permitted using the current permissions of the directory underlying the file
descriptor. If the file descriptor was opened with O_SEARCH, the function does not perform the
check.

If readlinkat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior is identical to a call to readlink().

Upon successful completion, readlink() and readlinkat() return the count of bytes placed
in the buffer. Otherwise, it returns −1, leaves the buffer unchanged, and sets errno to indicate
the error.

The readlink() and readlinkat() functions will fail if:

EACCES Search permission is denied for a component of the path prefix of path.

EFAULT path or buf points to an illegal address.

EINVAL The path argument names a file that is not a symbolic link.

EIO An I/O error occurred while reading from the file system.

ENOENT A component of path does not name an existing file or path is an empty
string.

ELOOP A loop exists in symbolic links encountered during resolution of the path
argument.

ENAMETOOLONG The length of path exceeds {PATH_MAX}, or a pathname component is
longer than {NAME_MAX} while _POSIX_NO_TRUNC is in effect.

Name

Synopsis

Description

Return Values

Errors

readlink(2)

man pages section 2: System Calls • Last Revised 6 Jul 2010266

ENOTDIR A component of the path prefix is not a directory.

ENOSYS The file system does not support symbolic links.

The readlinkat() function will fail if:

EACCES fd was not opened with O_SEARCH and the permissions of the directory underlying
fd do not permit directory searches.

EBADF The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

The readlink() and readlinkat() functions may fail if:

EACCES Read permission is denied for the directory.

ELOOP More than {SYMLOOP_MAX} symbolic links were encountered in resolving
path.

ENAMETOOLONG As a result of encountering a symbolic link in resolution of the path
argument, the length of the substituted pathname string exceeded
{PATH_MAX}.

The readlinkat() function may fail if:

ENOTDIR The path argument is not an absolute path and fd is neither AT_FDCWD nor a file
descriptor associated with a directory.

Portable applications should not assume that the returned contents of the symbolic link are
null-terminated.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

stat(2), symlink(2), attributes(5), standards(5)

Usage

Attributes

See Also

readlink(2)

System Calls 267

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

rename, renameat – change the name of a file

#include <stdio.h>

int rename(const char *old, const char *new);

#include <unistd.h>

int renameat(int fromfd, const char *old, int tofd,
const char *new);

#include <unistd.h>

int rename(const char *old, const char *new);

The rename() function changes the name of a file. The old argument points to the pathname
of the file to be renamed. The new argument points to the new path name of the file.

The renameat() function renames an entry in a directory, possibly moving the entry into a
different directory. See fsattr(5). If the old argument is an absolute path, the fromfd is
ignored. Otherwise it is resolved relative to the fromfd argument rather than the current
working directory. Similarly, if the new argument is not absolute, it is resolved relative to the
tofd argument. If either fromfd or tofd have the value AT_FDCWD, defined in <fcntl.h>, and
their respective paths are relative, the path is resolved relative to the current working
directory.

Current implementation restrictions will cause the renameat() function to return an error if
an attempt is made to rename an extended attribute file to a regular (non-attribute) file, or to
rename a regular file to an extended attribute file.

If old and new both refer to the same existing file, the rename() and renameat() functions
return successfully and performs no other action.

If old points to the pathname of a file that is not a directory, new must not point to the
pathname of a directory. If the link named by new exists, it will be removed and old will be
renamed to new. In this case, a link named new must remain visible to other processes
throughout the renaming operation and will refer to either the file referred to by new or the file
referred to as old before the operation began.

If old points to the pathname of a directory, new must not point to the pathname of a file that is
not a directory. If the directory named by new exists, it will be removed and old will be
renamed to new. In this case, a link named new will exist throughout the renaming operation
and will refer to either the file referred to by new or the file referred to as old before the
operation began. Thus, if new names an existing directory, it must be an empty directory.

The new pathname must not contain a path prefix that names old. Write access permission is
required for both the directory containing old and the directory containing new. If old points
to the pathname of a directory, write access permission is required for the directory named by
old, and, if it exists, the directory named by new.

Name

Synopsis

XPG3

Description

rename(2)

man pages section 2: System Calls • Last Revised 27 Oct 2010268

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5fsattr-5

If the directory containing old has the sticky bit set, at least one of the following conditions
listed below must be true:

■ the user must own old
■ the user must own the directory containing old
■ old must be writable by the user
■ the user must be a privileged user

If new exists, and the directory containing new is writable and has the sticky bit set, at least one
of the following conditions must be true:

■ the user must own new
■ the user must own the directory containing new
■ new must be writable by the user
■ the user must be a privileged user

If the link named by new exists, the file's link count becomes zero when it is removed, and no
process has the file open, then the space occupied by the file will be freed and the file will no
longer be accessible. If one or more processes have the file open when the last link is removed,
the link will be removed before rename() or renameat() returns, but the removal of the file
contents will be postponed until all references to the file have been closed.

Upon successful completion, the rename() and renameat() functions will mark for update
the st_ctime and st_mtime fields of the parent directory of each file.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate an error.

The rename() function will fail if:

EACCES A component of either path prefix denies search permission; one of the
directories containing old and new denies write permissions; or write
permission is denied by a directory pointed to by old or new.

EBUSY The new or old argument is a directory and the mount point for a mounted
file system.

EDQUOT The directory where the new name entry is being placed cannot be
extended because the user's quota of disk blocks on that file system has
been exhausted.

EEXIST The link named by new is a directory containing entries other than ‘.' (the
directory itself) and ‘..' (the parent directory).

EFAULT Either old or new references an invalid address.

EILSEQ The path argument includes non-UTF8 characters and the file system
accepts only file names where all characters are part of the UTF-8 character
codeset.

Return Values

Errors

rename(2)

System Calls 269

EINVAL The new argument directory pathname contains a path prefix that names
the old directory, or an attempt was made to rename a regular file to an
extended attribute or from an extended attribute to a regular file.

EIO An I/O error occurred while making or updating a directory entry.

EISDIR The new argument points to a directory but old points to a file that is not a
directory.

ELOOP Too many symbolic links were encountered in translating the pathname.

ENAMETOOLONG The length of old or new exceeds PATH_MAX, or a pathname component is
longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

EMLINK The file named by old is a directory, and the link count of the parent
directory of new would exceed LINK_MAX.

ENOENT The link named by old does not name an existing file, a component of the
path prefix of new does not exist, or either old or new points to an empty
string.

ENOSPC The directory that would contain new cannot be extended.

ENOTDIR A component of either path prefix is not a directory, or old names a
directory and new names a file that is not a directory, or tofd and dirfd in
renameat() do not reference a directory.

EROFS The requested operation requires writing in a directory on a read-only file
system.

EXDEV The links named by old and new are on different file systems.

The renameat() functions will fail if:

ENOTSUP An attempt was made to rename a regular file as an attribute file or to rename an
attribute file as a regular file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard For rename(), see standards(5).

chmod(2), link(2), unlink(2), attributes(5), fsattr(5), standards(5)

Attributes

See Also

rename(2)

man pages section 2: System Calls • Last Revised 27 Oct 2010270

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5fsattr-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

The system can deadlock if there is a loop in the file system graph. Such a loop can occur if
there is an entry in directory a, a/name1, that is a hard link to directory b, and an entry in
directory b, b/name2, that is a hard link to directory a. When such a loop exists and two
separate processes attempt to rename a/name1 to b/name2 and b/name2 to a/name1, the
system may deadlock attempting to lock both directories for modification. Use symbolic links
instead of hard links for directories.

Notes

rename(2)

System Calls 271

resolvepath – resolve all symbolic links of a path name

#include <unistd.h>

int resolvepath(const char *path, char *buf, size_t bufsiz);

The resolvepath() function fully resolves all symbolic links in the path name path into a
resulting path name free of symbolic links and places the resulting path name in the buffer buf
which has size bufsiz. The resulting path name names the same file or directory as the original
path name. All ‘‘.'' components are eliminated and every non-leading ‘‘..'' component is
eliminated together with its preceding directory component. If leading ‘‘..'' components
reach to the root directory, they are replaced by ‘‘/''. If the number of bytes in the resulting
path name is less than bufsiz, the contents of the remainder of buf are unspecified.

Upon successful completion, resolvepath() returns the count of bytes placed in the buffer.
Otherwise, it returns −1, leaves the buffer unchanged, and sets errno to indicate the error.

The resolvepath() function will fail if:

EACCES Search permission is denied for a component of the path prefix of path or
for a path prefix component resulting from the resolution of a symbolic
link.

EFAULT The path or buf argument points to an illegal address.

EIO An I/O error occurred while reading from the file system.

ENOENT The path argument is an empty string or a component of path or a path
name component produced by resolving a symbolic link does not name an
existing file.

ELOOP Too many symbolic links were encountered in resolving path.

ENAMETOOLONG The length of path exceeds PATH_MAX, or a path name component is longer
than NAME_MAX. Path name resolution of a symbolic link produced an
intermediate result whose length exceeds PATH_MAX or a component whose
length exceeds NAME_MAX.

ENOTDIR A component of the path prefix of path or of a path prefix component
resulting from the resolution of a symbolic link is not a directory.

No more than PATH_MAX bytes will be placed in the buffer. Applications should not assume that
the returned contents of the buffer are null-terminated.

readlink(2), realpath(3C)

Name

Synopsis

Description

Return Values

Errors

Usage

See Also

resolvepath(2)

man pages section 2: System Calls • Last Revised 12 May 1997272

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Arealpath-3c

rmdir – remove a directory

#include <unistd.h>

int rmdir(const char *path);

The rmdir() function removes the directory named by the path name pointed to by path. The
directory must not have any entries other than “.” and “..”.

If the directory's link count becomes zero and no process has the directory open, the space
occupied by the directory is freed and the directory is no longer accessible. If one or more
processes have the directory open when the last link is removed, the “.” and “..” entries, if
present, are removed before rmdir() returns and no new entries may be created in the
directory, but the directory is not removed until all references to the directory have been
closed.

Upon successful completion rmdir() marks for update the st_ctime and st_mtime fields of
the parent directory.

Upon successful completion, 0 is returned. Otherwise, −1 is returned, errno is set to indicate
the error, and the named directory is not changed.

The rmdir() function will fail if:

EACCES Search permission is denied for a component of the path prefix and
{PRIV_FILE_DAC_SEARCH} is not asserted in the effective set of the calling
process

Write permission is denied on the directory containing the directory to be
removed and {PRIV_FILE_DAC_WRITE} is not asserted.

The parent directory has the S_ISVTX variable set, is not owned by the user,
and {PRIV_FILE_OWNER} is not asserted.

The directory is not owned by the user and is not writable by the user.

EBUSY The directory to be removed is the mount point for a mounted file system.

EEXIST The directory contains entries other than those for “.” and “..”.

EFAULT The path argument points to an illegal address.

EINVAL The directory to be removed is the current directory, or the final
component of path is “.”.

EILSEQ The path argument includes non-UTF8 characters and the file system
accepts only file names where all characters are part of the UTF-8 character
codeset.

EIO An I/O error occurred while accessing the file system.

Name

Synopsis

Description

Return Values

Errors

rmdir(2)

System Calls 273

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length of a path
component exceeds NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENOENT The named directory does not exist or is the null pathname.

ENOLINK The path argument points to a remote machine, and the connection to that
machine is no longer active.

ENOTDIR A component of the path prefix is not a directory.

EROFS The directory entry to be removed is part of a read-only file system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

mkdir(1), rm(1), mkdir(2), attributes(5), privileges(5), standards(5)

Attributes

See Also

rmdir(2)

man pages section 2: System Calls • Last Revised 18 May 2007274

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1mkdir-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1rm-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

semctl – semaphore control operations

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semctl(int semid, int semnum, int cmd...);

The semctl() function provides a variety of semaphore control operations as specified by
cmd. The fourth argument is optional, depending upon the operation requested. If required, it
is of type union semun, which must be explicitly declared by the application program.

union semun {

int val;

struct semid_ds *buf;

ushort_t *array;

} arg ;

The permission required for a semaphore operation is given as {token}, where token is the type
of permission needed. The types of permission are interpreted as follows:

00400 READ by user

00200 ALTER by user

00040 READ by group

00020 ALTER by group

00004 READ by others

00002 ALTER by others

See the Semaphore Operation Permissions subsection of the DEFINITIONS section of
Intro(2) for more information. The following semaphore operations as specified by cmd are
executed with respect to the semaphore specified by semid and semnum.

GETVAL Return the value of semval (see Intro(2)). {READ}

SETVAL Set the value of semval to arg.val. {ALTER} When this command is successfully
executed, the semadj value corresponding to the specified semaphore in all
processes is cleared.

GETPID Return the value of (int) sempid. {READ}

GETNCNT Return the value of semncnt. {READ}

GETZCNT Return the value of semzcnt. {READ}

The following operations return and set, respectively, every semval in the set of semaphores.

GETALL Place semvals into array pointed to by arg.array. {READ}

SETALL Set semvals according to the array pointed to by arg.array. {ALTER}. When this
cmd is successfully executed, the semadj values corresponding to each specified
semaphore in all processes are cleared.

Name

Synopsis

Description

semctl(2)

System Calls 275

The following operations are also available.

IPC_STAT Place the current value of each member of the data structure associated with
semid into the structure pointed to by arg.buf. The contents of this structure are
defined in Intro(2). {READ}

IPC_SET Set the value of the following members of the data structure associated with
semid to the corresponding value found in the structure pointed to by arg.buf:

sem_perm.uid

sem_perm.gid

sem_perm.mode /* access permission bits only */

This command can be executed only by a process that has either the
{PRIV_IPC_OWNER} privilege or an effective user ID equal to the value of
msg_perm.cuid or msg_perm.uid in the data structure associated with msqid.
Only a process with the {PRIV_SYS_IPC_CONFIG} privilege can raise the value of
msg_qbytes.

IPC_RMID Remove the semaphore identifier specified by semid from the system and
destroy the set of semaphores and data structure associated with it. This
command can be executed only by a process that has the {PRIV_IPC_OWNER}
privilege or an effective user ID equal to the value of sem_perm.cuid or
sem_perm.uid in the data structure associated with semid.

Upon successful completion, the value returned depends on cmd as follows:

GETVAL the value of semval

GETPID the value of (int) sempid

GETNCNT the value of semncnt

GETZCNT the value of semzcnt

All other successful completions return 0; otherwise, −1 is returned and errno is set to
indicate the error.

The semctl() function will fail if:

EACCES Operation permission is denied to the calling process (see Intro(2)).

EFAULT The source or target is not a valid address in the user process.

EINVAL The semid argument is not a valid semaphore identifier; the semnum argument
is less than 0 or greater than sem_nsems −1; or the cmd argument is not a valid
command or is IPC_SET and sem_perm.uid or sem_perm.gid is not valid.

EPERM The cmd argument is equal to IPC_RMID or IPC_SET, the effective user ID of the
calling process is not equal to the value of sem_perm.cuid or sem_perm.uid in

Return Values

Errors

semctl(2)

man pages section 2: System Calls • Last Revised 1 Feb 2003276

the data structure associated with semid, and {PRIV_IPC_OWNER} is not asserted
in the effective set of the calling process.

EOVERFLOW The cmd argument is IPC_STAT and uid or gid is too large to be stored in the
structure pointed to by arg.buf.

ERANGE The cmd argument is SETVAL or SETALL and the value to which semval is to be
set is greater than the system imposed maximum.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

ipcs(1), Intro(2), semget(2), semop(2), attributes(5), privileges(5), standards(5)

Attributes

See Also

semctl(2)

System Calls 277

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ipcs-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

semget – get set of semaphores

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);

The semget() function returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing nsems semaphores
(see Intro(2)) are created for key if one of the following is true:

■ key is equal to IPC_PRIVATE.
■ key does not already have a semaphore identifier associated with it, and

(semflg&IPC_CREAT) is true.

On creation, the data structure associated with the new semaphore identifier is initialized as
follows:

■ sem_perm.cuid, sem_perm.uid, sem_perm.cgid, and sem_perm.gid are set equal to the
effective user ID and effective group ID, respectively, of the calling process.

■ The access permission bits of sem_perm.mode are set equal to the access permission bits of
semflg.

■ sem_nsems is set equal to the value of nsems.
■ sem_otime is set equal to 0 and sem_ctime is set equal to the current time.

Upon successful completion, a non-negative integer representing a semaphore identifier is
returned. Otherwise, −1 is returned and errno is set to indicate the error.

The semget() function will fail if:

EACCES A semaphore identifier exists for key, but operation permission (see Intro(2)) as
specified by the low-order 9 bits of semflg would not be granted.

EEXIST A semaphore identifier exists for key but both (semflg&IPC_CREAT) and
(semflg&IPC_EXCL) are both true.

EINVAL The nsems argument is either less than or equal to 0 or greater than the
system-imposed limit. See NOTES.

A semaphore identifier exists for key, but the number of semaphores in the set
associated with it is less than nsems and nsems is not equal to 0.

ENOENT A semaphore identifier does not exist for key and (semflg&IPC_CREAT) is false.

ENOSPC A semaphore identifier is to be created but the system-imposed limit on the
maximum number of allowed semaphores or semaphore identifiers system-wide
would be exceeded. See NOTES.

Name

Synopsis

Description

Return Values

Errors

semget(2)

man pages section 2: System Calls • Last Revised 14 Aug 2006278

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

ipcrm(1), ipcs(1), rctladm(1M), Intro(2), semctl(2), semop(2), setrctl(2), ftok(3C),
attributes(5), standards(5)

The system-imposed limit on the value of the nsems argument is the maintained on a
per-process basis using the process.max-sem-nsems resource control.

The system-imposed limit on the number of semaphore identifiers is maintained on a
per-project basis using the project.max-sem-ids resource control. The zone.max-sem-ids
resource control limis the total number of semaphore identifiers that can be allocated by a
zone.

See rctladm(1M) and setrctl(2) for information about using resource controls.

Attributes

See Also

Notes

semget(2)

System Calls 279

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ipcrm-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ipcs-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mrctladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aftok-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mrctladm-1m

semids – discover all semaphore identifiers

#include <sys/sem.h>

int semids(int *buf, uint_t nids, uint_t *pnids);

The semids() function copies all active semaphore identifiers from the system into the
user-defined buffer specified by buf, provided that the number of such identifiers is not greater
than the number of integers the buffer can contain, as specified by nids. If the size of the buffer
is insufficient to contain all of the active semaphore identifiers in the system, none are copied.

Whether or not the size of the buffer is sufficient to contain all of them, the number of active
semaphore identifiers in the system is copied into the unsigned integer pointed to by pnids.

If nids is 0 or less than the number of active semaphore identifiers in the system, buf is ignored.

Upon successful completion, semids() returns 0. Otherwise, −1 is returned and errno is set to
indicate the error.

The semids() function will fail if:

EFAULT The buf or pnids argument points to an illegal address.

The semids() function returns a snapshot of all the active semaphore identifiers in the system.
More may be added and some may be removed before they can be used by the caller.

EXAMPLE 1 semids() example

This is sample C code indicating how to use the semids() function.

void

examine_semids()

{

int *ids = NULL;

uint_t nids = 0;

uint_t n;

int i;

for (;;) {

if (semids(ids, nids, &n) != 0) {

perror("semids");
exit(1);

}

if (n <= nids) /* we got them all */

break;

/* we need a bigger buffer */

ids = realloc(ids, (nids = n) * sizeof (int));

}

for (i = 0; i < n; i++)

Name

Synopsis

Description

Return Values

Errors

Usage

Examples

semids(2)

man pages section 2: System Calls • Last Revised 8 Mar 2000280

EXAMPLE 1 semids() example (Continued)

process_semid(ids[i]);

free(ids);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

ipcrm(1), ipcs(1), Intro(2), semctl(2), semget(2), semop(2), attributes(5)

Attributes

See Also

semids(2)

System Calls 281

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ipcrm-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ipcs-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

semop, semtimedop – semaphore operations

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semop(int semid, struct sembuf *sops, size_t nsops);

int semtimedop(int semid, struct sembuf *sops, size_t nsops,
const struct timespec *timeout);

The semop() function is used to perform atomically an array of semaphore operations on the
set of semaphores associated with the semaphore identifier specified by semid. The sops
argument is a pointer to the array of semaphore-operation structures. The nsops argument is
the number of such structures in the array.

Each sembuf structure contains the following members:

short sem_num; /* semaphore number */

short sem_op; /* semaphore operation */

short sem_flg; /* operation flags */

Each semaphore operation specified by sem_op is performed on the corresponding semaphore
specified by semid and sem_num. The permission required for a semaphore operation is given
as {token}, where token is the type of permission needed. The types of permission are
interpreted as follows:

00400 READ by user

00200 ALTER by user

00040 READ by group

00020 ALTER by group

00004 READ by others

00002 ALTER by others

See the Semaphore Operation Permissions section of Intro(2) for more information.

A process maintains a value, semadj, for each semaphore it modifies. This value contains the
cumulative effect of operations the process has performed on an individual semaphore with
the SEM_UNDO flag set (so that they can be undone if the process terminates unexpectedly). The
value of semadj can affect the behavior of calls to semop(), semtimedop(), exit(), and
_exit() (the latter two functions documented on exit(2)), but is otherwise unobservable. See
below for details.

The sem_op member specifies one of three semaphore operations:

1. The sem_op member is a negative integer; {ALTER}
■ If semval (see Intro(2)) is greater than or equal to the absolute value of sem_op, the

absolute value of sem_op is subtracted from semval. Also, if (sem_flg&SEM_UNDO) is true,
the absolute value of sem_op is added to the calling process's semadj value (see exit(2))
for the specified semaphore.

Name

Synopsis

Description

semop(2)

man pages section 2: System Calls • Last Revised 12 May 2006282

■ If semval is less than the absolute value of sem_op and (sem_flg&IPC_NOWAIT) is true,
semop() returns immediately.

■ If semval is less than the absolute value of sem_op and (sem_flg&IPC_NOWAIT) is false,
semop() increments the semncnt associated with the specified semaphore and
suspends execution of the calling thread until one of the following conditions occur:
■ The value of semval becomes greater than or equal to the absolute value of sem_op.

When this occurs, the value of semncnt associated with the specified semaphore is
decremented, the absolute value of sem_op is subtracted from semval and, if
(sem_flg&SEM_UNDO) is true, the absolute value of sem_op is added to the calling
process's semadj value for the specified semaphore.

■ The semid for which the calling thread is awaiting action is removed from the
system (see semctl(2)). When this occurs, errno is set to EIDRM and −1 is returned.

■ The calling thread receives a signal that is to be caught. When this occurs, the value
of semncnt associated with the specified semaphore is decremented, and the calling
thread resumes execution in the manner prescribed in sigaction(2).

2. The sem_op member is a positive integer; {ALTER}
The value of sem_op is added to semval and, if (sem_flg&SEM_UNDO) is true, the value of
sem_op is subtracted from the calling process's semadj value for the specified semaphore.

3. The sem_op member is 0; {READ}
■ If semval is 0, semop() returns immediately.
■ If semval is not equal to 0 and (sem_flg&IPC_NOWAIT) is true, semop() returns

immediately.
■ If semval is not equal to 0 and (sem_flg&IPC_NOWAIT) is false, semop() increments the

semzcnt associated with the specified semaphore and suspends execution of the calling
thread until one of the following occurs:
■ The value of semval becomes 0, at which time the value of semzcnt associated with

the specified semaphore is set to 0 and all processes waiting on semval to become 0
are awakened.

■ The semid for which the calling thread is awaiting action is removed from the
system. When this occurs, errno is set to EIDRM and −1 is returned.

■ The calling thread receives a signal that is to be caught. When this occurs, the value
of semzcnt associated with the specified semaphore is decremented, and the calling
thread resumes execution in the manner prescribed in sigaction(2).

Upon successful completion, the value of sempid for each semaphore specified in the array
pointed to by sops is set to the process ID of the calling process.

The semtimedop() function behaves as semop() except when it must suspend execution of the
calling process to complete its operation. If semtimedop() must suspend the calling process
after the time interval specified in timeout expires, or if the timeout expires while the process is
suspended, semtimedop() returns with an error. If the timespec structure pointed to by

semop(2)

System Calls 283

timeout is zero-valued and semtimedop() needs to suspend the calling process to complete the
requested operation(s), it returns immediately with an error. If timeout is the NULL pointer, the
behavior of semtimedop() is identical to that of semop().

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The semop() and semtimedop() functions will fail if:

E2BIG The nsops argument is greater than the system-imposed maximum. See NOTES.

EACCES Operation permission is denied to the calling process (see Intro(2)).

EAGAIN The operation would result in suspension of the calling process but
(sem_flg&IPC_NOWAIT) is true.

EFAULT The sops argument points to an illegal address.

EFBIG The value of sem_num is less than 0 or greater than or equal to the number of
semaphores in the set associated with semid.

EIDRM A semid was removed from the system.

EINTR A signal was received.

EINVAL The semid argument is not a valid semaphore identifier, or the number of
individual semaphores for which the calling process requests a SEM_UNDO
operation would exceed the system-imposed limit. Oracle Solaris does not impose
a limit on the number of individual semaphores for which the calling process
requests a SEM_UNDO operation.

ENOSPC The limit on the number of individual processes requesting a SEM_UNDO operation
would be exceeded. Oracle Solaris does not impose a limit on the number of
individual processes requesting an SEM_UNDO operation.

ERANGE An operation would cause a semval or a semadj value to overflow the
system-imposed limit.

The semtimedop() function will fail if:

EAGAIN The timeout expired before the requested operation could be completed.

The semtimedop() function will fail if one of the following is detected:

EFAULT The timeout argument points to an illegal address.

EINVAL The timeout argument specified a tv_sec or tv_nsec value less than 0, or a
tv_nsec value greater than or equal to 1000 million.

See attributes(5) for descriptions of the following attributes:

Return Values

Errors

Attributes

semop(2)

man pages section 2: System Calls • Last Revised 12 May 2006284

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability semop() is Standard.

ipcs(1), rctladm(1M), Intro(2), exec(2), exit(2), fork(2), semctl(2), semget(2),
setrctl(2), sigaction(2), attributes(5), standards(5)

The system-imposed maximum on nsops for a semaphore identifier is the minimum enforced
value of the process.max-sem-ops resource control of the creating process at the time
semget(2) was used to allocate the identifier.

See rctladm(1M) and setrctl(2) for information about using resource controls.

See Also

Notes

semop(2)

System Calls 285

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ipcs-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mrctladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mrctladm-1m

setpgid – set process group ID

#include <sys/types.h>

#include <unistd.h>

int setpgid(pid_t pid, pid_t pgid);

The setpgid() function sets the process group ID of the process with ID pid to pgid.

If pgid is equal to pid, the process becomes a process group leader. See Intro(2) for more
information on session leaders and process group leaders.

If pgid is not equal to pid, the process becomes a member of an existing process group.

If pid is equal to 0, the process ID of the calling process is used. If pgid is equal to 0, the process
specified by pid becomes a process group leader.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The setpgid() function will fail if:

EACCES The pid argument matches the process ID of a child process of the calling process
and the child process has successfully executed one of the exec family of functions
(see exec(2)).

EINVAL The pgid argument is less than (pid_t) 0 or greater than or equal to PID_MAX, or
the calling process has a controlling terminal that does not support job control.

EPERM The process indicated by the pid argument is a session leader.

EPERM The pid argument matches the process ID of a child process of the calling process
and the child process is not in the same session as the calling process.

EPERM The pgid argument does not match the process ID of the process indicated by the
pid argument, and there is no process with a process group ID that matches pgid in
the same session as the calling process.

ESRCH The pid argument does not match the process ID of the calling process or of a
child process of the calling process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Attributes

setpgid(2)

man pages section 2: System Calls • Last Revised 28 Dec 1996286

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

Intro(2), exec(2), exit(2), fork(2), getpid(2), getsid(2), attributes(5), standards(5)See Also

setpgid(2)

System Calls 287

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

setpgrp – set process group ID

#include <sys/types.h>

#include <unistd.h>

pid_t setpgrp(void);

If the calling process is not already a session leader, the setpgrp() function makes it one by
setting its process group ID and session ID to the value of its process ID, and releases its
controlling terminal. See Intro(2) for more information on process group IDs and session
leaders.

The setpgrp() function returns the value of the new process group ID.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

setpgrp(1), Intro(2), exec(2), fork(2), getpid(2), getsid(2), kill(2), signal(3C),
attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

setpgrp(2)

man pages section 2: System Calls • Last Revised 5 Jan 2000288

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1setpgrp-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

setrctl, getrctl – set or get resource control values

#include <rctl.h>

int setrctl(const char *controlname, rctlblk_t *old_blk,
rctlblk_t *new_blk, uint_t flags);

int getrctl(const char *controlname, rctlblk_t *old_blk,
rctlblk_t *new_blk, uint_t flags);

The setrctl() and getrctl() functions provide interfaces for the modification and retrieval
of resource control (rctl) values on active entities on the system, such as processes, tasks, or
projects. All resource controls are unsigned 64-bit integers; however, a collection of flags are
defined that modify which rctl value is to be set or retrieved.

Resource controls are restricted to three levels: basic controls that can be modified by the
owner of the calling process, privileged controls that can be modified only by privileged
callers, and system controls that are fixed for the duration of the operating system instance.
Setting or retrieving each of these controls is performed by setting the privilege field of the
resource control block to RCTL_BASIC, RCTL_PRIVILEGED, or RCTL_SYSTEM with
rctlblk_set_privilege() (see rctlblk_set_value(3C)).

For limits on collective entities such as the task or project, the process ID of the calling process
is associated with the resource control value. This ID is available by using
rctlblk_get_recipient_pid() (see rctlblk_set_value(3C)). These values are visible only
to that process and privileged processes within the collective.

The getrctl() function provides a mechanism for iterating through all of the established
values on a resource control. The iteration is primed by calling getrctl() with old_blk set to
NULL, a valid resource control block pointer in new_blk, and specifying RCTL_FIRST in the flags
argument. Once a resource control block has been obtained, repeated calls to getrctl() with
RCTL_NEXT in the flags argument and the obtained control in the old_blk argument will return
the next resource control block in the sequence. The iteration reports the end of the sequence
by failing and setting errno to ENOENT.

The getrctl() function allows the calling process to get the current usage of a controlled
resource using RCTL_USAGE as the flags value. The current value of the resource usage is placed
in the value field of the resource control block specified by new_blk. This value is obtained
with rctlblk_set_value(3C). All other members of the returned block are undefined and
might be invalid.

The setrctl() function allows the creation, modification, or deletion of action-value pairs on
a given resource control. When passed RCTL_INSERT as the flags value, setrctl() expects
new_blk to contain a new action-value pair for insertion into the sequence. For RCTL_DELETE,
the block indicated by new_blk is deleted from the sequence. For RCTL_REPLACE, the block
matching old_blk is deleted and replaced by the block indicated by new_blk. When (flags &
RCTL_USE_RECIPIENT_PID) is non-zero, setrctl() uses the process ID set by

Name

Synopsis

Description

setrctl(2)

System Calls 289

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Arctlblk-set-value-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Arctlblk-set-value-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Arctlblk-set-value-3c

rctlblk_set_value(3C) when selecting the rctl value to insert, delete, or replace basic rctls.
Otherwise, the process ID of the calling process is used.

The kernel maintains a history of which resource control values have triggered for a particular
entity, retrievable from a resource control block with the rctlblk_set_value(3C) function.
The insertion or deletion of a resource control value at or below the currently enforced value
might cause the currently enforced value to be reset. In the case of insertion, the newly
inserted value becomes the actively enforced value. All higher values that have previously
triggered will have their firing times zeroed. In the case of deletion of the currently enforced
value, the next higher value becomes the actively enforced value.

The various resource control block properties are described on the rctlblk_set_value(3C)
manual page.

Resource controls are inherited from the predecessor process or task. One of the exec(2)
functions can modify the resource controls of a process by resetting their histories, as noted
above for insertion or deletion operations.

Upon successful completion, the setrctl() and getrctl() functions return 0. Otherwise
they return −1 and set errno to indicate the error.

The setrctl() and getrctl() functions will fail if:

EFAULT The controlname, old_blk, or new_blk argument points to an illegal address.

EINVAL No resource control with the given name is known to the system, or the
resource control block contains properties that are not valid for the resource
control specified.

RCTL_USE_RECIPIENT_PID was used to set a process scope rctl and the process
ID set by rctlblk_set_value(3C) does not match the process ID of calling
process.

ENOENT No value beyond the given resource control block exists.

RCTL_USE_RECIPIENT_PID was used and the process ID set by
rctlblk_set_value(3C) does not exist within the current task, project, or
zone, depending on the resource control name.

ESRCH No value matching the given resource control block was found for any of
RCTL_NEXT, RCTL_DELETE, or RCTL_REPLACE.

ENOTSUPP The resource control requested by RCTL_USAGE does not support the usage
operation.

The setrctl() function will fail if:

EACCES The rctl value specified cannot be changed by the current process, including the
case where the recipient process ID does not match the calling process and the
calling process is unprivileged.

Return Values

Errors

setrctl(2)

man pages section 2: System Calls • Last Revised 31 Jan 2007290

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Arctlblk-set-value-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Arctlblk-set-value-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Arctlblk-set-value-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Arctlblk-set-value-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Arctlblk-set-value-3c

EPERM An attempt to set a system limit was attempted.

EXAMPLE 1 Retrieve a rctl value.

Obtain the lowest enforced rctl value on the rctl limiting the number of LWPs in a task.

#include <rctl.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

...

rctlblk_t *rblk;

if ((rblk = (rctlblk_t *)malloc(rctlblk_size())) == NULL) {

(void) fprintf(stderr, "malloc failed: %s\n",
strerror(errno));

exit(1);

}

if (getrctl("task.max-lwps", NULL, rblk, RCTL_FIRST) == -1)

(void) fprintf(stderr, "failed to get rctl: %s\n",
strerror(errno));

else

(void) printf("task.max-lwps = %llu\n",
rctlblk_get_value(rblk));

Resource control blocks are matched on the value and privilege fields. Resource control
operations act on the first matching resource control block. Duplicate resource control blocks
are not permitted. Multiple blocks of equal value and privilege need to be entirely deleted and
reinserted, rather than replaced, to have the correct outcome. Resource control blocks are
sorted such that all blocks with the same value that lack the RCTL_LOCAL_DENY flag precede
those having that flag set.

Only one RCPRIV_BASIC resource control value is permitted per process per control. Insertion
of an RCPRIV_BASIC value will cause any existing RCPRIV_BASIC value owned by that process
on the control to be deleted.

The resource control facility provides the backend implementation for both
setrctl()/getrctl() and setrlimit()/getrlimit(). The facility behaves consistently
when either of these interfaces is used exclusively; when using both interfaces, the caller must
be aware of the ordering issues above, as well as the limit equivalencies described in the
following paragraph.

Examples

Usage

setrctl(2)

System Calls 291

The hard and soft process limits made available with setrlimit() and getrlimit() are
mapped to the resource controls implementation. (New process resource controls will not be
made available with the rlimit interface.) Because of the RCTL_INSERT and RCTL_DELETE

operations, it is possible that the set of values defined on a resource control has more or fewer
than the two values defined for an rlimit. In this case, the soft limit is the lowest priority
resource control value with the RCTL_LOCAL_DENY flag set, and the hard limit is the resource
control value with the lowest priority equal to or exceeding RCPRIV_PRIVILEGED with the
RCTL_LOCAL_DENY flag set. If no identifiable soft limit exists on the resource control and
setrlimit() is called, a new resource control value is created. If a resource control does not
have the global RCTL_GLOBAL_LOWERABLE property set, its hard limit will not allow lowering by
unprivileged callers.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

rctladm(1M), getrlimit(2), errno(3C), rctlblk_set_value(3C), attributes(5),
resource_controls(5)

Attributes

See Also

setrctl(2)

man pages section 2: System Calls • Last Revised 31 Jan 2007292

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mrctladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aerrno-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Arctlblk-set-value-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5resource-controls-5

setregid – set real and effective group IDs

#include <unistd.h>

int setregid(gid_t rgid, gid_t egid);

The setregid() function is used to set the real and effective group IDs of the calling process.
If rgid is −1, the real group ID is not changed; if egid is −1, the effective group ID is not
changed. The real and effective group IDs may be set to different values in the same call.

If the {PRIV_PROC_SETID} privilege is asserted in the effective set of the calling process, the real
group ID and the effective group ID can be set to any legal value.

If the {PRIV_PROC_SETID} privilege is not asserted in the effective set of the calling process,
either the real group ID can be set to the saved set-group-ID from execve(2), or the effective
group ID can either be set to the saved set-group-ID or the real group ID.

In either case, if the real group ID is being changed (that is, if rgid is not −1), or the effective
group ID is being changed to a value not equal to the real group ID, the saved set-group-ID is
set equal to the new effective group ID.

Upon successful completion, 0 is returned. Otherwise, −1 is returned, errno is set to indicate
the error, and neither of the group IDs will be changed.

The setregid() function will fail if:

EINVAL The value of rgid or egid is less than 0 or greater than UID_MAX (defined in
<limits.h>).

EPERM The {PRIV_PROC_SETID} privilege is not asserted in the effective set of the calling
processes and a change was specified other than changing the real group ID to the
saved set-group-ID or changing the effective group ID to the real group ID or the
saved group ID.

If a set-group-ID process sets its effective group ID to its real group ID, it can still set its
effective group ID back to the saved set-group-ID.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

execve(2), getgid(2), setreuid(2), setuid(2), attributes(5), privileges(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

setregid(2)

System Calls 293

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

setreuid – set real and effective user IDs

#include <unistd.h>

int setreuid(uid_t ruid, uid_t euid);

The setreuid() function is used to set the real and effective user IDs of the calling process. If
ruid is −1, the real user ID is not changed; if euid is −1, the effective user ID is not changed. The
real and effective user IDs may be set to different values in the same call.

If the {PRIV_PROC_SETID} privilege is asserted in the effective set of the calling process, the real
user ID and the effective user ID can be set to any legal value.

If the {PRIV_PROC_SETID} privilege is not asserted in the effective set of the calling process,
either the real user ID can be set to the effective user ID, or the effective user ID can either be
set to the saved set-user ID from execve() (seeexec(2)) or the real user ID.

In either case, if the real user ID is being changed (that is, if ruid is not −1), or the effective user
ID is being changed to a value not equal to the real user ID, the saved set-user ID is set equal to
the new effective user ID.

All privileges are required to change to uid 0.

Upon successful completion, 0 is returned. Otherwise, −1 is returned, errno is set to indicate
the error, and neither of the user IDs will be changed.

The setreuid() function will fail if:

EINVAL The value of ruid or euid is less than 0 or greater than UID_MAX (defined in
<limits.h>).

EPERM The {PRIV_PROC_SETID} privilege is not asserted in the effective set of the
calling processes and a change was specified other than changing the real user ID
to the effective user ID, or changing the effective user ID to the real user ID or the
saved set-user ID. See privileges(5) for additional restrictions which apply when
changing to UID 0.

If a set-user-ID process sets its effective user ID to its real user ID, it can still set its effective
user ID back to the saved set-user ID.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

setreuid(2)

man pages section 2: System Calls • Last Revised 22 Mar 2004294

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

exec(2), getuid(2), setregid(2), setuid(2), attributes(5), privileges(5), standards(5)See Also

setreuid(2)

System Calls 295

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

setsid – create session and set process group ID

#include <sys/types.h>

#include <unistd.h>

pid_t setsid(void);

The setsid() function creates a new session, if the calling process is not a process group
leader. Upon return the calling process will be the session leader of this new session, will be the
process group leader of a new process group, and will have no controlling terminal. The
process group ID of the calling process will be set equal to the process ID of the calling process.
The calling process will be the only process in the new process group and the only process in
the new session.

Upon successful completion, setsid() returns the value of the process group ID of the calling
process. Otherwise it returns (pid_t)−1 and sets errno to indicate the error.

The setsid() function will fail if:

EPERM The calling process is already a process group leader, or the process group ID of a
process other than the calling process matches the process ID of the calling process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

getsid(2), setpgid(2), setpgrp(2), attributes(5), standards(5)

A call to setsid() by a process that is a process group leader will fail. A process can become a
process group leader by being the last member of a pipeline started by a job control shell.
Thus, a process that expects to be part of a pipeline, and that calls setsid(), should always
first fork; the parent should exit and the child should call setsid(). This will ensure that the
calling process will work reliably when started by both job control shells and non-job control
shells.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Warnings

setsid(2)

man pages section 2: System Calls • Last Revised 21 Aug 2002296

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

settaskid, gettaskid, getprojid – set or get task or project IDs

#include <sys/types.h>

#include <sys/task.h>

#include <unistd.h>

taskid_t settaskid(projid_t project, int flags);

taskid_t gettaskid(void);

#include <sys/types.h>

#include <sys/task.h>

#include <unistd.h>

#include <project.h>

projid_t getprojid(void);

The settaskid() function makes a request of the system to assign a new task ID to the calling
process, changing the associated project ID to that specified. The calling process must have
sufficient privileges to perform this operation. The flags argument should be either
TASK_NORMAL for a regular task, or TASK_FINAL, which disallows subsequent settaskid() calls
by the created task.

The gettaskid() function returns the task ID of the calling process.

The getprojid() function returns the project ID of the calling process.

Upon successful completion, these functions return the appropriate task or project ID.
Otherwise, −1 is returned and errno is set to indicate the error.

The settaskid() function will fail if:

EACCES The invoking task was created with the TASK_FINAL flag.

EAGAIN A resource control limiting the number of tasks, LWPs, or processes in the current
project or zone has been exceeded.

A resource control on the given project would be exceeded.

EINVAL The given project ID is not within the valid project ID range.

EPERM The {PRIV_PROC_TASKID} privilege is not asserted in the effective set of the calling
process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

Name

Synopsis

Description

Return Values

Errors

Attributes

settaskid(2)

System Calls 297

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

setsid(2), project(4), attributes(5), privileges(5)See Also

settaskid(2)

man pages section 2: System Calls • Last Revised 5 May 2010298

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4project-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

setuid, setegid, seteuid, setgid – set user and group IDs

#include <sys/types.h>

#include <unistd.h>

int setuid(uid_t uid);

int setgid(gid_t gid);

int seteuid(uid_t euid);

int setegid(gid_t egid);

The setuid() function sets the real user ID, effective user ID, and saved user ID of the calling
process. The setgid() function sets the real group ID, effective group ID, and saved group ID
of the calling process. The setegid() and seteuid() functions set the effective group and
user IDs respectively for the calling process. See Intro(2) for more information on real,
effective, and saved user and group IDs.

At login time, the real user ID, effective user ID, and saved user ID of the login process are set
to the login ID of the user responsible for the creation of the process. The same is true for the
real, effective, and saved group IDs; they are set to the group ID of the user responsible for the
creation of the process.

When a process calls one of the exec(2) family of functions to execute a file (program), the
user and/or group identifiers associated with the process can change. If the file executed is a
set-user-ID file, the effective and saved user IDs of the process are set to the owner of the file
executed. If the file executed is a set-group-ID file, the effective and saved group IDs of the
process are set to the group of the file executed. If the file executed is not a set-user-ID or
set-group-ID file, the effective user ID, saved user ID, effective group ID, and saved group ID
are not changed.

If the {PRIV_PROC_SETID} privilege is asserted in the effective set of the process calling
setuid(), the real, effective, and saved user IDs are set to the uid argument. If the uid
argument is 0 and none of the saved, effective or real UID is 0, additional restrictions apply.
See privileges(5).

If the {PRIV_PROC_SETID} privilege is not asserted in the effective set, but uid is either the real
user ID or the saved user ID of the calling process, the effective user ID is set to uid.

If the {PRIV_PROC_SETID} privilege is asserted in the effective set of the process calling
setgid(), the real, effective, and saved group IDs are set to the gid argument.

If the {PRIV_PROC_SETID} privilege is not asserted in the effective set, but gid is either the real
group ID or the saved group ID of the calling process, the effective group ID is set to gid.

Name

Synopsis

Description

setuid(2)

System Calls 299

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The setuid() and setgid() functions will fail if:

EINVAL The value of uid or gid is out of range.

EPERM For setuid() and seteuid(), the {PRIV_PROC_SETID} privilege is not asserted in
the effective set of the calling process and the uid argument does not match either
the real or saved user IDs, or an attempt is made to change to UID 0 and none of
the existing UIDs is 0, in which case additional privileges are required.

For setgid() and setegid(), the {PRIV_PROC_SETID} privilege is not asserted in
the effective set and the gid argument does not match either the real or saved
group IDs.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

Intro(2), exec(2), getgroups(2), getuid(2), stat.h(3HEAD), attributes(5),
privileges(5), standards(5)

Return Values

Errors

Attributes

See Also

setuid(2)

man pages section 2: System Calls • Last Revised 20 Jan 2003300

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fstat.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

shmadv – shared memory advice

#include <sys/shm.h>

#include <sys/shm_impl.h>

#include <sys/syscall.h>

int shmadv(int shmid, uint_t cmd, uint_t *advice);

The shmadv() function enables setting or getting advice for a given shared memory ID, shmid.
The cmd argument can be set to SHM_ADV_GET or SHM_ADV_SET to get or set the advice. The
advice argument is a pointer to a buffer allocated and given by the application. It is used to pass
the value of the advice into or out of the function when setting or getting advice.

The advice argument can take one of the following values:

SHM_ACCESS_DEFAULT

Reset operating system's expectation of how this shared memory segment will be accessed
to the default.

SHM_ACCESS_LWP

Tell the operating system that the next LWP to touch the shared memory segment will
access it heavily, so the operating system should allocate the memory and other resources
for this segment accordingly.

SHM_ACCESS_MANY

Tell the operating system that many processes and/or LWPs will access the specified shared
memory segment randomly across the machine, so the operating system should try to
allocate the resources for this range accordingly.

SHM_ACCESS_MANY_PSET

Tell the operating system that many processes and/or LWPs in a processor set will access
the specified shared memory segment randomly across the machine, so the operating
system should try to allocate the resources for this range accordingly.

The SHM_ACCESS advice can be given on the shared memory ID before shmat(2) is called to
create the shared memory segment. Doing this is useful for affecting how the memory will be
allocated for the shared memory segment before it is allocated. This is especially useful for
Intimate Shared Memory (ISM) segments created with the SHM_SHARE_MMU flag to shmat()

since all of the memory for ISM segments is allocated during shmat().

The SHM_ACCESS advice is very similar to advice that can be given using madvise(3C).
However, madvise() can apply advice only to an existing address range and consequently can
be used only to affect a System V shared memory segment after it has been created by shmat().

The shmadv() function can be used only to apply advice to a System V shared memory
segment before it is allocated by shmat(). The madvise() function can be used only on a
System V shared memory segment after shmat() has been called to create the segment.

Name

Synopsis

Description

shmadv(2)

System Calls 301

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amadvise-3c

Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno is set to
indicate the error.

The shmadv() function will fail if:

EACCES Operation permission is denied to the calling process (see Intro(2)).

EBUSY It is too late to apply advice to affect the memory allocation of the shared memory
segment with the specified shared memory ID because it has been allocated by
shmat() already.

EFAULT The advice argument points to an illegal address.

EINVAL The shmid, cmd, or advice being set is not valid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Intro(2), shmat(2), shmget(2), attributes(5)

Return Values

Errors

Attributes

See Also

shmadv(2)

man pages section 2: System Calls • Last Revised 5 May 2011302

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

shmctl – shared memory control operations

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

The shmctl() function provides a variety of shared memory control operations as specified by
cmd. The permission required for a shared memory control operation is given as {token},
where token is the type of permission needed. The types of permission are interpreted as
follows:

00400 READ by user

00200 WRITE by user

00040 READ by group

00020 WRITE by group

00004 READ by others

00002 WRITE by others

See the Shared Memory Operation Permissions section of Intro(2) for more information.

The following operations require the specified tokens:

IPC_STAT Place the current value of each member of the data structure associated with
shmid into the structure pointed to by buf. The contents of this structure are
defined in Intro(2). {READ}

IPC_SET Set the value of the following members of the data structure associated with
shmid to the corresponding value found in the structure pointed to by buf:

shm_perm.uid

shm_perm.gid

shm_perm.mode /* access permission bits only */

This command can be executed only by a process that has appropriate
privileges or an effective user ID equal to the value of shm_perm.cuid or
shm_perm.uid in the data structure associated with shmid.

IPC_RMID Remove the shared memory identifier specified by shmid from the system.
The segment referenced by the identifier will be destroyed when all processes
with the segment attached have either detached the segment or exited. If the
segment is not attached to any process when IPC_RMID is invoked, it will be
destroyed immediately. This command can be executed only by a process
that has appropriate privileges or an effective user ID equal to the value of
shm_perm.cuid or shm_perm.uid in the data structure associated with shmid.

SHM_LOCK Lock the shared memory segment specified by shmid in memory. This
command can be executed only by a process that has appropriate privileges.

Name

Synopsis

Description

shmctl(2)

System Calls 303

SHM_UNLOCK Unlock the shared memory segment specified by shmid. This command can
be executed only by a process that has appropriate privileges.

A shared memory segment must be explicitly removed using IPC_RMID before the system can
deallocate it and the resources it uses.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The shmctl() function will fail if:

EACCES The cmd argument is equal to IPC_STAT and {READ} operation permission is
denied to the calling process.

EFAULT The buf argument points to an illegal address.

EINVAL The shmid argument is not a valid shared memory identifier; or the cmd
argument is not a valid command or is IPC_SET and shm_perm.uid or
shm_perm.gid is not valid.

ENOMEM The cmd argument is equal to SHM_LOCK and there is not enough memory, or
the operation would exceed a limit or resource control on locked memory.

EOVERFLOW The cmd argument is IPC_STAT and uid or gid is too large to be stored in the
structure pointed to by buf.

EPERM The cmd argument is equal to IPC_RMID or IPC_SET, the effective user ID of the
calling process is not equal to the value of shm_perm.cuid or shm_perm.uid in
the data structure associated with shmid, and {PRIV_IPC_OWNER} is not
asserted in the effective set of the calling process.

The cmd argument is equal to SHM_LOCK or SHM_UNLOCK and
{PRIV_PROC_LOCK_MEMORY} is not asserted in the effective set of the calling
process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

ipcs(1), Intro(2), shmget(2), shmop(2), attributes(5), privileges(5), standards(5)

Return Values

Errors

Attributes

See Also

shmctl(2)

man pages section 2: System Calls • Last Revised 10 Apr 2007304

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ipcs-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

shmget – get shared memory segment identifier

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);

The shmget() function returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory segment of at
least size bytes (see Intro(2)) are created for key if one of the following are true:

■ The key argument is equal to IPC_PRIVATE.
■ The key argument does not already have a shared memory identifier associated with it, and

(shmflg&IPC_CREAT) is true.

Upon creation, the data structure associated with the new shared memory identifier is
initialized as follows:

■ The values of shm_perm.cuid, shm_perm.uid, shm_perm.cgid, and shm_perm.gid are set
equal to the effective user ID and effective group ID, respectively, of the calling process.

■ The access permission bits of shm_perm.mode are set equal to the access permission bits of
shmflg. shm_segsz is set equal to the value of size.

■ The values of shm_lpid, shm_nattch shm_atime, and shm_dtime are set equal to 0.
■ The shm_ctime is set equal to the current time.

Shared memory segments must be explicitly removed after the last reference to them has been
removed.

Upon successful completion, a non-negative integer representing a shared memory identifier
is returned. Otherwise, −1 is returned and errno is set to indicate the error.

The shmget() function will fail if:

EACCES A shared memory identifier exists for key but operation permission (see Intro(2))
as specified by the low-order 9 bits of shmflg would not be granted.

EEXIST A shared memory identifier exists for key but both (shmflg&IPC_CREAT) and
(shmflg&IPC_EXCL) are true.

EINVAL The size argument is less than the system-imposed minimum or greater than the
system-imposed maximum. See NOTES.

A shared memory identifier exists for key but the size of the segment associated
with it is less than size and size is not equal to 0.

ENOENT A shared memory identifier does not exist for key and (shmflg&IPC_CREAT) is false.

Name

Synopsis

Description

Return Values

Errors

shmget(2)

System Calls 305

ENOMEM A shared memory identifier and associated shared memory segment are to be
created but the amount of available memory is not sufficient to fill the request.

ENOSPC A shared memory identifier is to be created but the system-imposed limit on the
maximum number of allowed shared memory identifiers system-wide would be
exceeded. See NOTES.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

rctladm(1M), Intro(2), setrctl(2), shmctl(2), shmop(2), ftok(3C), getpagesize(3C),
attributes(5), standards(5)

The project.max-shm-memory resource control restricts the total amount of shared memory
a project can allocate. The zone.max-shm-memory resource control restricts the total amount
of shared memory that can be allocated by a zone. The system-imposed maximum on the size
of a shared memory segment is therefore a function of the sizes of any other shared memory
segments the calling project might have allocated that are still in use, as well as any other
shared memory segments allocated and still in use by processes in the zone. For accounting
purposes, segment sizes are rounded up to the nearest multiple of the system page size. See
getpagesize(3C).

The system-imposed limit on the number of shared memory identifiers is maintained on a
per-project basis using the project.max-shm-ids resource control. The zone.max-shm-ids
resource control restricts the total number of shared memory identifiers that can be allocated
by a zone.

See rctladm(1M) and setrctl(2) for information about using resource controls.

Attributes

See Also

Notes

shmget(2)

man pages section 2: System Calls • Last Revised 14 Aug 2006306

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mrctladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aftok-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agetpagesize-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agetpagesize-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mrctladm-1m

shmids – discover all shared memory identifiers

#include <sys/shm.h>

int shmids(int *buf, uint_t nids, uint_t *pnids);

The shmids() function copies all active shared memory identifiers from the system into the
user-defined buffer specified by buf, provided that the number of such identifiers is not greater
than the number of integers the buffer can contain, as specified by nids. If the size of the buffer
is insufficient to contain all of the active shared memory identifiers in the system, none are
copied.

Whether or not the size of the buffer is sufficient to contain all of them, the number of active
shared memory identifiers in the system is copied into the unsigned integer pointed to by
pnids.

If nids is 0 or less than the number of active shared memory identifiers in the system, buf is
ignored.

Upon successful completion, shmids() returns 0. Otherwise, −1 is returned and errno is set to
indicate the error.

The shmids() function will fail if:

EFAULT The buf or pnids argument points to an illegal address.

The shmids() function returns a snapshot of all the active shared memory identifiers in the
system. More may be added and some may be removed before they can be used by the caller.

EXAMPLE 1 shmids() example

This is sample C code indicating how to use the shmids() function.

void

examine_shmids()

{

int *ids = NULL;

uint_t nids = 0;

uint_t n;

int i;

for (;;) {

if (shmids(ids, nids, &n) != 0) {

perror("shmids");
exit(1);

}

if (n <= nids) /* we got them all */

break;

/* we need a bigger buffer */

ids = realloc(ids, (nids = n) * sizeof (int));

Name

Synopsis

Description

Return Values

Errors

Usage

Examples

shmids(2)

System Calls 307

EXAMPLE 1 shmids() example (Continued)

}

for (i = 0; i < n; i++)

process_shmid(ids[i]);

free(ids);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

ipcrm(1), ipcs(1), Intro(2), shmctl(2), shmget(2), shmop(2), attributes(5)

Attributes

See Also

shmids(2)

man pages section 2: System Calls • Last Revised 8 Mar 2000308

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ipcrm-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ipcs-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

shmop, shmat, shmdt – shared memory operations

#include <sys/types.h>

#include <sys/shm.h>

void *shmat(int shmid, const void *shmaddr, int shmflg);

int shmdt(const void *shmaddr);

The shmat() function attaches the shared memory segment associated with the shared
memory identifier specified by shmid to the data segment of the calling process.

The permission required for a shared memory control operation is given as {token}, where
token is the type of permission needed. The types of permission are interpreted as follows:

00400 READ by user

00200 WRITE by user

00040 READ by group

00020 WRITE by group

00004 READ by others

00002 WRITE by others

See the Shared Memory Operation Permissions section of Intro(2) for more information.

For shared memory segments created with the SHM_SHARE_MMU or SHM_PAGEABLE flags, the
default protections cannot be changed so as to prevent a single process from affecting other
processes sharing the same shared segment.

When (shmflg&SHM_SHARE_MMU) is true, virtual memory resources in addition to shared
memory itself are shared among processes that use the same shared memory.

When (shmflg&SHM_PAGEABLE) is true, virtual memory resources are shared and the dynamic
shared memory (DISM) framework is created. The dynamic shared memory can be resized
dynamically within the specified size in shmget(2). The DISM shared memory is pageable
unless it is locked.

The shared memory segment is attached to the data segment of the calling process at the
address specified based on one of the following criteria:

■ If shmaddr is equal to (void *) 0, the segment is attached to the first available address as
selected by the system.

■ If shmaddr is equal to (void *) 0 and (shmflg&SHM_SHARE_MMU) or (shmflg&SHM_PAGEABLE)
is true, then the segment is attached to the first available suitably aligned address. When
(shmflg&SHM_SHARE_MMU) or (shmflg&SHM_PAGEABLE) is set, however, the permission given
by shmget() determines whether the segment is attached for reading or reading and
writing.

■ If shmaddr is not equal to (void *) 0 and (shmflg&SHM_RND) is true, the segment is
attached to the address given by (shmaddr- (shmaddr modulus SHMLBA)).

Name

Synopsis

Description

shmop(2)

System Calls 309

■ If shmaddr is not equal to (void *) 0 and (shmflg&SHM_RND) is false, the segment is
attached to the address given by shmaddr.

■ The segment is attached for reading if (shmflg&SHM_RDONLY) is true {READ}, otherwise it is
attached for reading and writing {READ/WRITE}.

The shmdt() function detaches from the calling process's data segment the shared memory
segment located at the address specified by shmaddr.

Shared memory segments must be explicitly removed after the last reference to them has been
removed.

Upon successful completion, shmat() returns the data segment start address of the attached
shared memory segment; shmdt() returns 0. Otherwise, −1 is returned, the shared memory
segment is not attached, and errno is set to indicate the error.

The shmat() function will fail if:

EACCES Operation permission is denied to the calling process (see Intro(2)).

EINVAL The shmid argument is not a valid shared memory identifier.

The shmaddr argument is not equal to 0, and the value of (shmaddr- (shmaddr
modulus SHMLBA)) is an illegal address.

The shmaddr argument is not equal to 0, is an illegal address, and
(shmflg&SHM_RND) is false.

The shmaddr argument is not equal to 0, is not properly aligned, and
(shmfg&SHM_SHARE_MMU) is true.

SHM_SHARE_MMU is not supported in certain architectures.

Both (shmflg&SHM_SHARE_MMU) and (shmflg&SHM_PAGEABLE) are true.

(shmflg&SHM_SHARE_MMU) is true and the shared memory segment specified by
shmid() had previously been attached by a call to shmat() in which
(shmflg&SHM_PAGEABLE) was true.

(shmflg&SHM_PAGEABLE) is true and the shared memory segment specified by
shmid() had previously been attached by a call to shmat() in which
(shmflg&SHM_SHARE_MMU) was true.

EMFILE The number of shared memory segments attached to the calling process would
exceed the system-imposed limit.

ENOMEM The available data space is not large enough to accommodate the shared memory
segment.

The shmdt() function will fail if:

Return Values

Errors

shmop(2)

man pages section 2: System Calls • Last Revised 24 Mar 2011310

EINVAL The shmaddr argument is not the data segment start address of a shared memory
segment.

ENOMEM (shmflg&SHM_SHARE_MMU) is true and attaching to the shared memory segment
would exceed a limit or resource control on locked memory.

Using a fixed value for the shmaddr argument can adversely affect performance on certain
platforms due to D-cache aliasing.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

Intro(2), exec(2), exit(2), fork(2), shmctl(2), shmget(2), attributes(5), standards(5)

Warnings

Attributes

See Also

shmop(2)

System Calls 311

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

sigaction – detailed signal management

#include <signal.h>

int sigaction(int sig, const struct sigaction *restrict act,
struct sigaction *restrict oact);

The sigaction() function allows the calling process to examine or specify the action to be
taken on delivery of a specific signal. See signal.h(3HEAD) for an explanation of general
signal concepts.

The sig argument specifies the signal and can be assigned any of the signals specified in
signal.h(3HEAD) except SIGKILL and SIGSTOP.

If the argument act is not NULL, it points to a structure specifying the new action to be taken
when delivering sig. If the argument oact is not NULL, it points to a structure where the action
previously associated with sig is to be stored on return from sigaction().

The sigaction structure includes the following members:

void (*sa_handler)();

void (*sa_sigaction)(int, siginfo_t *, void *);

sigset_t sa_mask;

int sa_flags;

The storage occupied by sa_handler and sa_sigaction may overlap, and a
standard-conforming application (see standards(5)) must not use both simultaneously.

The sa_handler member identifies the action to be associated with the specified signal, if the
SA_SIGINFO flag (see below) is cleared in the sa_flags field of the sigaction structure. It may
take any of the values specified in signal.h(3HEAD) or that of a user specified signal handler.
If the SA_SIGINFO flag is set in the sa_flags field, the sa_sigaction field specifies a
signal-catching function.

The sa_mask member specifies a set of signals to be blocked while the signal handler is active.
On entry to the signal handler, that set of signals is added to the set of signals already being
blocked when the signal is delivered. In addition, the signal that caused the handler to be
executed will also be blocked, unless the SA_NODEFER flag has been specified. SIGSTOP and
SIGKILL cannot be blocked (the system silently enforces this restriction).

The sa_flags member specifies a set of flags used to modify the delivery of the signal. It is
formed by a logical OR of any of the following values:

SA_ONSTACK If set and the signal is caught, and if the thread that is chosen to processes a
delivered signal has an alternate signal stack declared with
sigaltstack(2), then it will process the signal on that stack. Otherwise,
the signal is delivered on the thread's normal stack.

Name

Synopsis

Description

sigaction(2)

man pages section 2: System Calls • Last Revised 23 Mar 2005312

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head

SA_RESETHAND If set and the signal is caught, the disposition of the signal is reset to
SIG_DFL and the signal will not be blocked on entry to the signal handler
(SIGILL, SIGTRAP, and SIGPWR cannot be automatically reset when
delivered; the system silently enforces this restriction).

SA_NODEFER If set and the signal is caught, the signal will not be automatically blocked
by the kernel while it is being caught.

SA_RESTART If set and the signal is caught, functions that are interrupted by the
execution of this signal's handler are transparently restarted by the system,
namely fcntl(2), ioctl(2), wait(3C), waitid(2), and the following
functions on slow devices like terminals: getmsg() and getpmsg() (see
getmsg(2)); putmsg() and putpmsg() (see putmsg(2)); pread(), read(),
and readv() (see read(2)); pwrite(), write(), and writev() (see
write(2)); recv(), recvfrom(), and recvmsg() (see recv(3SOCKET));
and send(), sendto(), and sendmsg() (see send(3SOCKET)). Otherwise,
the function returns an EINTR error.

SA_SIGINFO If cleared and the signal is caught, sig is passed as the only argument to the
signal-catching function. If set and the signal is caught, two additional
arguments are passed to the signal-catching function. If the second
argument is not equal to NULL, it points to a siginfo_t structure
containing the reason why the signal was generated (see
siginfo.h(3HEAD)); the third argument points to a ucontext_t
structure containing the receiving process's context when the signal was
delivered (see ucontext.h(3HEAD)).

SA_NOCLDWAIT If set and sig equals SIGCHLD, the system will not create zombie processes
when children of the calling process exit. If the calling process
subsequently issues a wait(3C), it blocks until all of the calling process's
child processes terminate, and then returns −1 with errno set to ECHILD.

SA_NOCLDSTOP If set and sig equals SIGCHLD, SIGCHLD will not be sent to the calling process
when its child processes stop or continue.

Upon successful completion, 0 is returned. Otherwise, −1 is returned, errno is set to indicate
the error, and no new signal handler is installed.

The sigaction() function will fail if:

EINVAL The value of the sig argument is not a valid signal number or is equal to SIGKILL or
SIGSTOP. In addition, if in a multithreaded process, it is equal to SIGWAITING,
SIGCANCEL, or SIGLWP.

See attributes(5) for descriptions of the following attributes:

Return Values

Errors

Attributes

sigaction(2)

System Calls 313

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Await-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Brecv-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Bsend-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsiginfo.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fucontext.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Await-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

kill(1), Intro(2), exit(2), fcntl(2), getmsg(2), ioctl(2), kill(2), pause(2), putmsg(2),
read(2), sigaltstack(2), sigprocmask(2), sigsend(2), sigsuspend(2), waitid(2), write(2),
recv(3SOCKET), send(3SOCKET), siginfo.h(3HEAD), signal(3C), signal.h(3HEAD),
sigsetops(3C), ucontext.h(3HEAD), wait(3C), attributes(5), standards(5)

The handler routine can be declared:

void handler (int sig, siginfo_t *sip, ucontext_t *ucp);

The sig argument is the signal number. The sip argument is a pointer (to space on the stack) to
a siginfo_t structure, which provides additional detail about the delivery of the signal. The
ucp argument is a pointer (again to space on the stack) to a ucontext_t structure (defined in
<sys/ucontext.h>) which contains the context from before the signal. It is not
recommended that ucp be used by the handler to restore the context from before the signal
delivery.

See Also

Notes

sigaction(2)

man pages section 2: System Calls • Last Revised 23 Mar 2005314

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1kill-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Brecv-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Bsend-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsiginfo.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asigsetops-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fucontext.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Await-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

sigaltstack – set or get signal alternate stack context

#include <signal.h>

int sigaltstack(const stack_t *restrict ss, stack_t *restrict oss);

The sigaltstack() function allows a thread to define and examine the state of an alternate
stack area on which signals are processed. If ss is non-zero, it specifies a pointer to and the size
of a stack area on which to deliver signals, and informs the system whether the thread is
currently executing on that stack. When a signal's action indicates its handler should execute
on the alternate signal stack (specified with a sigaction(2) call), the system checks whether
the thread chosen to execute the signal handler is currently executing on that stack. If the
thread is not currently executing on the signal stack, the system arranges a switch to the
alternate signal stack for the duration of the signal handler's execution.

The stack_t structure includes the following members:

int *ss_sp

long ss_size

int ss_flags

If ss is not NULL, it points to a structure specifying the alternate signal stack that will take effect
upon successful return from sigaltstack(). The ss_sp and ss_size members specify the
new base and size of the stack, which is automatically adjusted for direction of growth and
alignment. The ss_flags member specifies the new stack state and may be set to the
following:

SS_DISABLE The stack is to be disabled and ss_sp and ss_size are ignored. If SS_DISABLE
is not set, the stack will be enabled.

If oss is not NULL, it points to a structure specifying the alternate signal stack that was in effect
prior to the call to sigaltstack(). The ss_sp and ss_size members specify the base and size
of that stack. The ss_flags member specifies the stack's state, and may contain the following
values:

SS_ONSTACK The thread is currently executing on the alternate signal stack. Attempts to
modify the alternate signal stack while the thread is executing on it will fail.

SS_DISABLE The alternate signal stack is currently disabled.

Upon successful completion, 0 is return. Otherwise, −1 is returned and errno is set to indicate
the error.

The sigaltstack() function will fail if:

EFAULT The ss or oss argument points to an illegal address.

EINVAL The ss argument is not a null pointer, and the ss_flags member pointed to by ss
contains flags other than SS_DISABLE.

Name

Synopsis

Description

Return Values

Errors

sigaltstack(2)

System Calls 315

ENOMEM The size of the alternate stack area is less than MINSIGSTKSZ.

EPERM An attempt was made to modify an active stack.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

getcontext(2), mmap(2), sigaction(2), ucontext.h(3HEAD), attributes(5), standards(5)

The value SIGSTKSZ is defined to be the number of bytes that would be used to cover the usual
case when allocating an alternate stack area. The value MINSIGSTKSZ is defined to be the
minimum stack size for a signal handler. In computing an alternate stack size, a program
should add that amount to its stack requirements to allow for the operating system overhead.

The following code fragment is typically used to allocate an alternate stack with an adjacent
red zone (an unmapped page) to guard against stack overflow, as with default stacks:

#include <signal.h>

#include <sys/mman.h>

stack_t sigstk;

sigstk.ss_sp = mmap(NULL, SIGSTKSZ, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANON, -1, 0);

if (sigstk.ss_sp == MAP_FAILED)

/* error return */;

sigstk.ss_size = SIGSTKSZ;

sigstk.ss_flags = 0;

if (sigaltstack(&sigstk, NULL) < 0)

perror("sigaltstack");

Attributes

See Also

Notes

sigaltstack(2)

man pages section 2: System Calls • Last Revised 1 Nov 2003316

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fucontext.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

sigpending – examine signals that are blocked and pending

#include <signal.h>

int sigpending(sigset_t *set);

The sigpending() function retrieves those signals that have been sent to the calling process
but are being blocked from delivery by the calling process's signal mask. The signals are stored
in the space pointed to by the set argument.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The sigpending() function will fail if:

EFAULT The set argument points to an illegal address.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

sigaction(2), sigprocmask(2), sigsetops(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sigpending(2)

System Calls 317

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asigsetops-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

sigprocmask – change or examine caller's signal mask

#include <signal.h>

int sigprocmask(int how, const sigset_t *restrict set,
sigset_t *restrict oset);

The sigprocmask() function is used to examine and/or change the caller's signal mask. If the
value is SIG_BLOCK, the set pointed to by the set argument is added to the current signal mask.
If the value is SIG_UNBLOCK, the set pointed by the set argument is removed from the current
signal mask. If the value is SIG_SETMASK, the current signal mask is replaced by the set pointed
to by the set argument. If the oset argument is not NULL, the previous mask is stored in the
space pointed to by oset. If the value of the set argument is NULL, the value how is not
significant and the caller's signal mask is unchanged; thus, the call can be used to inquire about
currently blocked signals. If the set or oset argument points to an invalid address, the behavior
is undefined and errno may be set to EFAULT.

If there are any pending unblocked signals after the call to sigprocmask(), at least one of
those signals will be delivered before the call to sigprocmask() returns.

It is not possible to block signals that cannot be caught or ignored (see sigaction(2)). It is also
not possible to block or unblock SIGCANCEL, as SIGCANCEL is reserved for the
implementation of POSIX thread cancellation (see pthread_cancel(3C) and
cancellation(5)). This restriction is silently enforced by the standard C library.

If sigprocmask() fails, the caller's signal mask is not changed.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The sigprocmask() function will fail if:

EINVAL The value of the how argument is not equal to one of the defined values.

The sigprocmask() function may fail if:

EFAULT The set or oset argument points to an illegal address.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Attributes

sigprocmask(2)

man pages section 2: System Calls • Last Revised 23 Mar 2005318

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-cancel-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5cancellation-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

sigaction(2), pthread_cancel(3C), pthread_sigmask(3C), signal(3C),
signal.h(3HEAD), sigsetops(3C), attributes(5), cancellation(5)

The call to sigprocmask() affects only the calling thread's signal mask. It is identical to a call
to pthread_sigmask(3C).

Signals that are generated synchronously should not be masked. If such a signal is blocked and
delivered, the receiving process is killed.

See Also

Notes

sigprocmask(2)

System Calls 319

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-cancel-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-sigmask-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asigsetops-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5cancellation-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-sigmask-3c

sigsend, sigsendset – send a signal to a process or a group of processes

#include <signal.h>

int sigsend(idtype_t idtype, id_t id, int sig);

int sigsendset(procset_t *psp, int sig);

The sigsend() function sends a signal to the process or group of processes specified by id and
idtype. The signal to be sent is specified by sig and is either 0 or one of the values listed in
signal.h(3HEAD). If sig is 0 (the null signal), error checking is performed but no signal is
actually sent. This value can be used to check the validity of id and idtype.

The real or effective user ID of the sending process must match the real or saved user ID of the
receiving process, unless the {PRIV_PROC_OWNER} privilege is asserted in the effective set of the
sending process or sig is SIGCONT and the sending process has the same session ID as the
receiving process.

If idtype is P_PID, sig is sent to the process with process ID id.

If idtype is P_PGID, sig is sent to all processes with process group ID id.

If idtype is P_SID, sig is sent to all processes with session ID id.

If idtype is P_TASKID, sig is sent to all processes with task ID id.

If idtype is P_UID, sig is sent to any process with effective user ID id.

If idtype is P_GID, sig is sent to any process with effective group ID id.

If idtype is P_PROJID, sig is sent to any process with project ID id.

If idtype is P_CID, sig is sent to any process with scheduler class ID id (see priocntl(2)).

If idtype is P_CTID, sig is sent to any process with process contract ID id.

If idtype is P_ALL, sig is sent to all processes and id is ignored.

If id is P_MYID, the value of id is taken from the calling process.

The process with a process ID of 0 is always excluded. The process with a process ID of 1 is
excluded unless idtype is equal to P_PID.

The sigsendset() function provides an alternate interface for sending signals to sets of
processes. This function sends signals to the set of processes specified by psp. psp is a pointer to
a structure of type procset_t, defined in <sys/procset.h>, which includes the following
members:

idop_t p_op;

idtype_t p_lidtype;

Name

Synopsis

Description

sigsend(2)

man pages section 2: System Calls • Last Revised 19 Jul 2004320

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head

id_t p_lid;

idtype_t p_ridtype;

id_t p_rid;

The p_lidtype and p_lid members specify the ID type and ID of one (“left”) set of processes;
the p_ridtype and p_rid members specify the ID type and ID of a second (“right”) set of
processes. ID types and IDs are specified just as for the idtype and id arguments to sigsend().
The p_op member specifies the operation to be performed on the two sets of processes to get
the set of processes the function is to apply to. The valid values for p_op and the processes they
specify are:

POP_DIFF Set difference: processes in left set and not in right set.

POP_AND Set intersection: processes in both left and right sets.

POP_OR Set union: processes in either left or right set or both.

POP_XOR Set exclusive-or: processes in left or right set but not in both.

Upon successful completion, 0 is return. Otherwise, −1 is returned and errno is set to indicate
the error.

The sigsend() and sigsendset() functions will fail if:

EINVAL The sig argument is not a valid signal number, or the idtype argument is not a valid
idtype field.

EINVAL The sig argument is SIGKILL, idtype is P_PID and id is 1 (proc1).

EPERM The effective user of the calling process does not match the real or saved user ID of
the receiving process, the calling process does not have the {PRIV_PROC_OWNER}
privilege asserted in the effective set, and the calling process is not sending
SIGCONT to a process that shares the same session ID.

The calling process does not have the {PRIV_PROC_SESSION} privilege asserted and
is trying to send a signal to a process with a different session ID, even though the
effective user ID matches the real or saved ID of the receiving process.

ESRCH No process can be found corresponding to that specified by id and idtype.

The sigsendset() function will fail if:

EFAULT The psp argument points to an illegal address.

kill(1), getpid(2), kill(2), priocntl(2), signal(3C), signal.h(3HEAD), process(4),
privileges(5)

Return Values

Errors

See Also

sigsend(2)

System Calls 321

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1kill-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4process-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

sigsuspend – install a signal mask and suspend caller until signal

#include <signal.h>

int sigsuspend(const sigset_t *set);

The sigsuspend() function replaces the caller's signal mask with the set of signals pointed to
by the set argument and suspends the caller until delivery of a signal whose action is either to
execute a signal catching function or to terminate the process. If the set argument points to an
invalid address, the behavior is undefined and errno may be set to EFAULT.

If the action is to terminate the process, sigsuspend() does not return. If the action is to
execute a signal catching function, sigsuspend() returns after the signal catching function
returns. On return, the signal mask is restored to the set that existed before the call to
sigsuspend().

It is not possible to block signals that cannot be ignored (see signal.h(3HEAD)). This
restriction is silently imposed by the system.

Since sigsuspend() suspends the caller's execution indefinitely, there is no successful
completion return value. On failure, it returns −1 and sets errno to indicate the error.

The sigsuspend() function will fail if:

EINTR A signal was caught by the caller and control was returned from the signal catching
function.

The sigsuspend() function may fail if:

EFAULT The set argument points to an illegal address.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

sigaction(2), sigprocmask(2), sigwait(2), signal(3C), signal.h(3HEAD),
sigsetops(3C), attributes(5)

If the caller specifies more than one unblocked signal in the mask to sigsuspend(), more than
one signal might be processed before the call to sigsuspend() returns.

While the caller is executing the signal handler that interrupted its call to sigsuspend(), its
signal mask is the one passed to sigsuspend(), modified as usual by the signal mask

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

sigsuspend(2)

man pages section 2: System Calls • Last Revised 24 Jun 2001322

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asigsetops-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

specification in the signal's sigaction(2) parameters. The caller's signal mask is not restored
to its previous value until the caller returns from all the signal handlers that interrupted
sigsuspend().

sigsuspend(2)

System Calls 323

sigwait – wait until a signal is posted

#include <signal.h>

int sigwait(sigset_t *set);

cc [flag ...] file ... -D_POSIX_PTHREAD_SEMANTICS [library...]
#include <signal.h>

int sigwait(const sigset_t *set, int *sig);

The sigwait() function selects a signal in set that is pending on the calling thread. If no signal
in set is pending, sigwait() blocks until a signal in set becomes pending. The selected signal is
cleared from the set of signals pending on the calling thread and the number of the signal is
returned, or in the standard–conforming version (see standards(5)) placed in sig. The
selection of a signal in set is independent of the signal mask of the calling thread. This means a
thread can synchronously wait for signals that are being blocked by the signal mask of the
calling thread . To ensure that only the caller receives the signals defined in set, all threads
should have signals in set masked including the calling thread.

If more than one thread is using sigwait() to wait for the same signal, no more than one of
these threads returns from sigwait() with the signal number. If more than a single thread is
blocked in sigwait() for a signal when that signal is generated for the process, it is
unspecified which of the waiting threads returns from sigwait(). If the signal is generated for
a specific thread, as by pthread_kill(3C), only that thread returns.

Should any of the multiple pending signals in the range SIGRTMIN to SIGRTMAX be selected, it
will be the lowest numbered one. The selection order between realtime and non-realtime
signals, or between multiple pending non-realtime signals, is unspecified.

Upon successful completion, the default version of sigwait() returns a signal number; the
standard–conforming version returns 0 and stores the received signal number at the location
pointed to by sig. Otherwise, the default version returns -1 and sets errno to indicate an error;
the standard-conforming version returns an error number to indicate the error.

The sigwait() function will fail if:

EFAULT The set argument points to an invalid address.

EINTR The wait was interrupted by an unblocked, caught signal.

EINVAL The set argument contains an unsupported signal number.

EXAMPLE 1 Creating a thread to handle receipt of a signal

The following sample C code creates a thread to handle the receipt of a signal. More
specifically, it catches the asynchronously generated signal, SIGINT.

/**

*

* compile with -D_POSIX_PTHREAD_SEMANTICS switch;

Name

Synopsis

Standard conforming

Description

Return Values

Errors

Examples

sigwait(2)

man pages section 2: System Calls • Last Revised 16 Apr 2009324

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-kill-3c

EXAMPLE 1 Creating a thread to handle receipt of a signal (Continued)

* required by sigwait()

*

* sigint thread handles delivery of signal. uses sigwait() to wait

* for SIGINT signal.

*

**/

#include <pthread.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <signal.h>

#include <synch.h>

static void *threadTwo(void *);

static void *threadThree(void *);

static void *sigint(void *);

sigset_t signalSet;

void *

main(void)

{

pthread_t t;

pthread_t t2;

pthread_t t3;

sigfillset (&signalSet);

/*

* Block signals in initial thread. New threads will

* inherit this signal mask.

*/

pthread_sigmask (SIG_BLOCK, &signalSet, NULL);

printf("Creating threads\n");

pthread_create(&t, NULL, sigint, NULL);

pthread_create(&t2, NULL, threadTwo, NULL);

pthread_create(&t3, NULL, threadThree, NULL);

printf("##################\n");
printf("press CTRL-C to deliver SIGINT to sigint thread\n");
printf("##################\n");

pthread_exit((void *)0);

sigwait(2)

System Calls 325

EXAMPLE 1 Creating a thread to handle receipt of a signal (Continued)

}

static void *

threadTwo(void *arg)

{

printf("hello world, from threadTwo [tid: %d]\n",
pthread_self());

printf("threadTwo [tid: %d] is now complete and exiting\n",
pthread_self());

pthread_exit((void *)0);

}

static void *

threadThree(void *arg)

{

printf("hello world, from threadThree [tid: %d]\n",
pthread_self());

printf("threadThree [tid: %d] is now complete and exiting\n",
pthread_self());

pthread_exit((void *)0);

}

void *

sigint(void *arg)

{

int sig;

int err;

printf("thread sigint [tid: %d] awaiting SIGINT\n",
pthread_self());

/*

/* use standard-conforming sigwait() -- 2 args: signal set, signum

*/

err = sigwait (&signalSet, &sig);

/* test for SIGINT; could catch other signals */

if (err || sig != SIGINT)

abort();

printf("\nSIGINT signal %d caught by sigint thread [tid: %d]\n",
sig, pthread_self());

pthread_exit((void *)0);

}

sigwait(2)

man pages section 2: System Calls • Last Revised 16 Apr 2009326

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

sigaction(2), sigpending(2), sigprocmask(2), sigsuspend(2), pthread_create(3C),
pthread_kill(3C), pthread_sigmask(3C), signal.h(3HEAD), attributes(5),
standards(5)

The sigwait() function cannot be used to wait for signals that cannot be caught (see
sigaction(2)). This restriction is silently imposed by the system.

Solaris 2.4 and earlier releases provided a sigwait() facility as specified in POSIX.1c Draft 6.
The final POSIX.1c standard changed the interface as described above. Support for the Draft 6
interface is provided for compatibility only and may not be supported in future releases. New
applications and libraries should use the standard–conforming interface.

Attributes

See Also

Notes

sigwait(2)

System Calls 327

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-create-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-kill-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Apthread-sigmask-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

__sparc_utrap_install – install a SPARC V9 user trap handler

#include <sys/utrap.h>

int __sparc_utrap_install(utrap_entry_t type,
utrap_handler_t new_precise, utrap_handler_t new_deferred,
utrap_handler_t *old_precise, utrap_handler_t *old_deferred);

The __sparc_utrap_install() function establishes new_precise and new_deferred user trap
handlers as the new values for the specified type and returns the existing user trap handler
values in *old_precise and *old_deferred in a single atomic operation. A new handler address
of NULL means no user handler of that type will be installed. A new handler address of
UTH_NOCHANGE means that the user handler for that type should not be changed. An old
handler pointer of NULL means that the user is not interested in the old handler address.

A precise trap is caused by a specific instruction and occurs before any program-visible state
has been changed by this instruction. When a precise trap occurs, the program counter (PC)
saved in the Trap Program Counter (TPC) register points to the instruction that induced the
trap; all instructions prior to this trapping instruction have been executed. The next program
counter (nPC) saved in the Trap Next Program Counter (TnPC) register points to the next
instruction following the trapping instruction, which has not yet been executed. A
deferred trap is also caused by a particular instruction, but unlike a precise trap, a deferred trap
may occur after the program-visible state has been changed. See the
SPARC Architecture Manual, Version 9 for further information on precise and deferred traps.

The list that follows contains hardware traps and their corresponding user trap types. User
trap types marked with a plus-sign (+) are required and must be provided by all
ABI-conforming implementations. The others may not be present on every implementation;
an attempt to install a user trap handler for those conditions will return EINVAL. User trap
types marked with an asterisk (*) are implemented as precise traps only.

Trap Name User Trap Type (utrap_entry_t)

illegal_instruction UT_ILLTRAP_INSTRUCTION +* or

UT_ILLEGAL_INSTRUCTION

fp_disabled UT_FP_DISABLED +*

fp_exception_ieee_754 UT_FP_EXCEPTION_IEEE_754 +

fp_exception_other UT_FP_EXCEPTION_OTHER

tag_overflow UT_TAG_OVERFLOW +*

division_by_zero UT_DIVISION_BY_ZERO +

mem_address_not_aligned UT_MEM_ADDRESS_NOT_ALIGNED +

privileged_action UT_PRIVILEGED_ACTION +

Name

Synopsis

Description

__sparc_utrap_install(2)

man pages section 2: System Calls • Last Revised 11 Nov 1997328

Trap Name User Trap Type (utrap_entry_t)

privileged_opcode UT_PRIVILEGED_OPCODE

async_data_error UT_ASYNC_DATA_ERROR

trap_instruction UT_TRAP_INSTRUCTION_16 through
UT_TRAP_INSTRUCTION_31 +*

instruction_access_exception

instruction_access_MMU_miss

instruction_access_error

UT_INSTRUCTION_EXCEPTION or
UT_INSTRUCTION_PROTECTION or
UT_INSTRUCTION_ERROR

data_access_exception data_access_MMU_miss

data_access_error data_access_protection

UT_DATA_EXCEPTION or UT_DATA_PROTECTION or
UT_DATA_ERROR

The following explanations are provided for those user trap types that are not
self-explanatory.

UT_ILLTRAP_INSTRUCTION

This trap is raised by user execution of the ILLTRAP INSTRUCTION. It is always precise.

UT_ILLEGAL_INSTRUCTION

This trap will be raised by the execution of otherwise undefined opcodes. It is
implementation-dependent as to what opcodes raise this trap; the ABI only specifies the
interface. The trap may be precise or deferred.

UT_PRIVILEGED_OPCODE

All opcodes declared to be privileged in SPARC V9 will raise this trap. It is
implementation-dependent whether other opcodes will raise it as well; the ABI only
specifies the interface.

UT_DATA_EXCEPTION, UT_INSTRUCTION_EXCEPTION

No valid user mapping can be made to this address, for a data or instruction access,
respectively.

UT_DATA_PROTECTION, UT_INSTRUCTION_PROTECTION

A valid mapping exists, and user privilege to it exists, but the type of access (read, write, or
execute) is denied, for a data or instruction access, respectively.

UT_DATA_ERROR, UT_INSTRUCTION_ERROR

A valid mapping exists, and both user privilege and the type of access are allowed, but an
unrecoverable error occurred in attempting the access, for a data or instruction access,
respectively. %l1 will contain either BUS_ADDRERR or BUS_OBJERR.

UT_FP_DISABLED

This trap is raised when an application issues a floating point instruction (including load or
store) and the SPARC V9 Floating Point Registers State (FPRS) FEF bit is 0. If a user
handler is installed for this trap, it will be given control. Otherwise the system will set FEF
to one and retry the instruction.

__sparc_utrap_install(2)

System Calls 329

For all traps, the handler executes in a new register window, where the in registers are the out
registers of the previous frame and have the value they contained at the time of the trap,
similar to a normal subroutine call after the save instruction. The global registers (including
the special registers %ccr, %asi, and %y) and the floating-point registers have their values from
the time of the trap. The stack pointer register %sp plus the BIAS will point to a
properly-aligned 128-byte register save area; if the handler needs scratch space, it should
decrement the stack pointer to obtain it. If the handler needs access to the previous frame's in
registers or local registers, it should execute a FLUSHW instruction, and then access them off of
the frame pointer. If the handler calls an ABI-conforming function, it must set the %asi
register to ASI_PRIMARY_NOFAULT before the call.

On entry to a precise user trap handler %l6 contains the %pc and %l7 contains the %npc at the
time of the trap. To return from a handler and reexecute the trapped instruction, the handler
would execute:

jmpl %l6, %g0 ! Trapped PC supplied to user trap handler

return %l7 ! Trapped nPC supplied to user trap handler

To return from a handler and skip the trapped instruction, the handler would execute:

jmpl %l7, %g0 ! Trapped nPC supplied to user trap handler

return %l7 + 4 ! Trapped nPC + 4

On entry to a deferred trap handler %o0 contains the address of the instruction that caused the
trap and %o1 contains the actual instruction (right-justified, zero-extended), if the information
is available. Otherwise %o0 contains the value −1 and %o1 is undefined. Additional information
may be made available for certain cases of deferred traps, as indicated in the following table.

Instructions Additional Information

LD-type (LDSTUB) %o2 contains the effective address (rs1 + rs2 | simm13).

ST-type (CAS, SWAP) %o2 contains the effective address (rs1 + rs2 |simm13).

Integer arithmetic %o2 contains the rs1 value. %o3 contains the rs2 | simm13 value. %o4
contains the contents of the %y register.

Floating-point arithmetic %o2 contains the address of rs1 value. %o3 contains the address of rs2
value.

Control-transfer %o2 contains the target address (rs1 + rs2 | simm13).

Asynchronous data errors %o2 contains the address that caused the error. %o3 contains the effective
ASI, if available, else −1.

To return from a deferred trap, the trap handler issues:

ta 68 ! ST_RETURN_FROM_DEFERRED_TRAP

The following pseudo-code explains how the operating system dispatches traps:

__sparc_utrap_install(2)

man pages section 2: System Calls • Last Revised 11 Nov 1997330

if (precise trap) {

if (precise_handler) {

invoke(precise_handler);

/* not reached */

} else {

convert_to_signal(precise_trap);

}

} else if (deferred_trap) {

invoke(deferred_handler);

/* not reached */

} else {

convert_to_signal(deferred_trap);

}

}

if (signal)

send(signal);

User trap handlers must preserve all registers except the locals (%l0-7) and the outs (%o0-7),
that is, %i0-7, %g1-7, %d0-d62, %asi, %fsr, %fprs, %ccr, and %y, except to the extent that
modifying the registers is part of the desired functionality of the handler. For example, the
handler for UT_FP_DISABLED may load floating-point registers.

Upon successful completion, 0 is returned. Otherwise, a non-zero value is returned and errno

is set to indicate the error.

The __sparc_utrap_install() function will fail if:

EINVAL The type argument is not a supported user trap type; the new user trap handler
address is not word aligned; the old user trap handler address cannot be returned;
or the user program is not a 64-bit executable.

EXAMPLE 1 A sample program using the __sparc_utrap_install() function.

The __sparc_utrap_install() function is normally used by user programs that wish to
provide their own tailored exception handlers as a faster alternative to signal(3C), or to
handle exceptions that are not directly supported by the signal() interface, such as
fp_disabled.

extern void *fpdis_trap_handler();

utrap_handler_t new_precise = (utrap_handler_t)fpdis_trap_handler;

double d;

int err;

err = __sparc_utrap_install(UT_FP_DISABLED, new_precise,

UTH_NOCHANGE, NULL, NULL);

if (err == EINVAL) {

/* unexpected error, do something */

exit (1);

}

d = 1.0e-300;

Return Values

Errors

Examples

__sparc_utrap_install(2)

System Calls 331

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asignal-3c

EXAMPLE 1 A sample program using the __sparc_utrap_install() function. (Continued)

ENTRY(fpdis_trap_handler)

wr %g0, FPRS_FEF, %fprs

jmpl %l6, %g0

return %l7

SET_SIZE(fpdis_trap_handler)

This example turns on bit 2, FEF, in the Floating-Point Registers State (FPRS) Register, after a
floating-point instruction causes an fp_disabled trap. (Note that this example simulates part
of the default system behavior; programs do not need such a handler. The example is for
illustrative purposes only.)

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

signal(3C), attributes(5)

SPARC Architecture Manual, Version 9

Manufacturer's processor chip user manuals

The Exceptions and Interrupt Descriptions section of the SPARC V9 manual documents
which hardware traps are mandatory or optional, and whether they can be implemented as
precise or deferred traps, or both. The manufacturer's processor chip user manuals describe
the details of the traps supported for the specific processor implementation.

Attributes

See Also

Notes

__sparc_utrap_install(2)

man pages section 2: System Calls • Last Revised 11 Nov 1997332

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

stat, lstat, fstat, fstatat – get file status

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

int stat(const char *restrict path, struct stat *restrict buf);

int lstat(const char *restrict path, struct stat *restrict buf);

int fstat(int fildes, struct stat *buf);

int fstatat(int fildes, const char *path, struct stat *buf,
int flag);

The stat() function obtains information about the file pointed to by path. Read, write, or
execute permission of the named file is not required, but all directories listed in the path name
leading to the file must be searchable.

The lstat() function obtains file attributes similar to stat(), except when the named file is a
symbolic link; in that case lstat() returns information about the link, while stat() returns
information about the file the link references.

The fstat() function obtains information about an open file known by the file descriptor
fildes, obtained from a successful open(2), creat(2), dup(2), fcntl(2), or pipe(2) function. If
fildes references a shared memory object, the system updates in the stat structure pointed to
by the buf argument only the st_uid, st_gid, st_size, and st_mode fields, and only the
S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits need be valid.
The system can update other fields and flags. The fstat() function updates any pending
time-related fields before writing to the stat structure.

The fstatat() function obtains file attributes similar to the stat(), lstat(), and fstat()

functions. If the path argument is a relative path, it is resolved relative to the fildes argument
rather than the current working directory. If path is absolute, the fildes argument is unused. If
the fildes argument has the special value AT_FDCWD, relative paths are resolved from the current
working directory. If AT_SYMLINK_NOFOLLOW is set in the flag argument, the function behaves
like lstat() and does not automatically follow symbolic links. See fsattr(5). If _AT_TRIGGER
is set in the flag argument and the vnode is a trigger mount point, the mount is performed and
the function returns the attributes of the root of the mounted filesystem.

The buf argument is a pointer to a stat structure into which information is placed concerning
the file. A stat structure includes the following members:

mode_t st_mode; /* File mode (see mknod(2)) */

ino_t st_ino; /* Inode number */

dev_t st_dev; /* ID of device containing */

/* a directory entry for this file */

dev_t st_rdev; /* ID of device */

/* This entry is defined only for */

Name

Synopsis

Description

stat(2)

System Calls 333

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5fsattr-5

/* char special or block special files */

nlink_t st_nlink; /* Number of links */

uid_t st_uid; /* User ID of the file’s owner */

gid_t st_gid; /* Group ID of the file’s group */

off_t st_size; /* File size in bytes */

time_t st_atime; /* Time of last access */

time_t st_mtime; /* Time of last data modification */

time_t st_ctime; /* Time of last file status change */

/* Times measured in seconds since */

/* 00:00:00 UTC, Jan. 1, 1970 */

long st_blksize; /* Preferred I/O block size */

blkcnt_t st_blocks; /* Number of 512 byte blocks allocated*/

char st_fstype[_ST_FSTYPSZ];

/* Null-terminated type of filesystem */

Descriptions of structure members are as follows:

st_mode The mode of the file as described for the mknod() function. In addition to the
modes described on the mknod(2) manual page, the mode of a file can also be
S_IFSOCK if the file is a socket, S_IFDOOR if the file is a door, S_IFPORT if the
file is an event port, or S_IFLNK if the file is a symbolic link. S_IFLNK can be
returned either by lstat() or by fstat() when the AT_SYMLINK_NOFOLLOW
flag is set.

st_ino This field uniquely identifies the file in a given file system. The pair st_ino
and st_dev uniquely identifies regular files.

st_dev This field uniquely identifies the file system that contains the file. Its value
may be used as input to the ustat() function to determine more information
about this file system. No other meaning is associated with this value.

st_rdev This field should be used only by administrative commands. It is valid only
for block special or character special files and only has meaning on the system
where the file was configured.

st_nlink This field should be used only by administrative commands.

st_uid The user ID of the file's owner.

st_gid The group ID of the file's group.

st_size For regular files, this is the address of the end of the file. For block special or
character special, this is not defined. See also pipe(2).

st_atime Time when file data was last accessed. Some of the functions that change this
member are: creat(), mknod(), pipe(), utime(2), and read(2).

st_mtime Time when data was last modified. Some of the functions that change this
member are: creat(), mknod(), pipe(), utime(), and write(2).

stat(2)

man pages section 2: System Calls • Last Revised 10 Oct 2007334

st_ctime Time when file status was last changed. Some of the functions that change
this member are: chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2),
rename(2), unlink(2), utime(2), and write(2).

st_blksize A hint as to the “best” unit size for I/O operations. This field is not defined for
block special or character special files.

st_blocks The total number of physical blocks of size 512 bytes actually allocated on
disk. This field is not defined for block special or character special files.

st_fstype A null-teminated string that uniquely identifies the type of the filesystem that
contains the file.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The stat(), fstat(), lstat(), and fstatat() functions will fail if:

EIO An error occurred while reading from the file system.

EOVERFLOW The file size in bytes or the number of blocks allocated to the file or the file
serial number cannot be represented correctly in the structure pointed to by
buf.

The stat(), lstat(), and fstatat() functions will fail if:

EACCES Search permission is denied for a component of the path prefix.

EFAULT The buf or path argument points to an illegal address.

EINTR A signal was caught during the execution of the stat() or lstat()
function.

ELOOP A loop exists in symbolic links encountered during the resolution of the
path argument.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the length of a
path component exceeds {NAME_MAX} while _POSIX_NO_TRUNC is in effect.

ENOENT A component of path does not name an existing file or path is an empty
string.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOTDIR A component of the path prefix is not a directory, or the fildes argument
does not refer to a valid directory when given a non-null relative path.

The fstat() and fstatat() functions will fail if:

Return Values

Errors

stat(2)

System Calls 335

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2rename-2

EBADF The fildes argument is not a valid open file descriptor. The fildes argument to
fstatat() can also have the valid value of AT_FDCWD.

EFAULT The buf argument points to an illegal address.

EINTR A signal was caught during the execution of the fstat() function.

ENOLINK The fildes argument points to a remote machine and the link to that machine is
no longer active.

The stat(), fstat(), and lstat() functions may fail if:

EOVERFLOW One of the members is too large to store in the stat structure pointed to by
buf.

The stat() and lstat() functions may fail if:

ELOOP More than {SYMLOOP_MAX} symbolic links were encountered during the
resolution of the path argument.

ENAMETOOLONG As a result of encountering a symbolic link in resolution of thepath
argument, the length of the substituted pathname strings exceeds
{PATH_MAX}.

The stat() and fstatat() functions may fail if:

ENXIO The path argument names a character or block device special file and the
corresponding I/O device has been retired by the fault management framework.

EXAMPLE 1 Use stat() to obtain file status information.

The following example shows how to obtain file status information for a file named
/home/cnd/mod1. The structure variable buffer is defined for the stat structure.

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

struct stat buffer;

int status;

...

status = stat("/home/cnd/mod1", &buffer);

EXAMPLE 2 Use stat() to get directory information.

The following example fragment gets status information for each entry in a directory. The call
to the stat() function stores file information in the stat structure pointed to by statbuf. The
lines that follow the stat() call format the fields in the stat structure for presentation to the
user of the program.

#include <sys/types.h>

#include <sys/stat.h>

Examples

stat(2)

man pages section 2: System Calls • Last Revised 10 Oct 2007336

EXAMPLE 2 Use stat() to get directory information. (Continued)

#include <dirent.h>

#include <pwd.h>

#include <grp.h>

#include <time.h>

#include <locale.h>

#include <langinfo.h>

#include <stdio.h>

#include <stdint.h>

struct dirent *dp;

struct stat statbuf;

struct passwd *pwd;

struct group *grp;

struct tm *tm;

char datestring[256];

...

/* Loop through directory entries */

while ((dp = readdir(dir)) != NULL) {

/* Get entry’s information. */

if (stat(dp->d_name, &statbuf) == -1)

continue;

/* Print out type, permissions, and number of links. */

printf("%10.10s", sperm (statbuf.st_mode));

printf("%4d", statbuf.st_nlink);

/* Print out owners name if it is found using getpwuid(). */

if ((pwd = getpwuid(statbuf.st_uid)) != NULL)

printf(" %-8.8s", pwd->pw_name);

else

printf(" %-8d", statbuf.st_uid);

/* Print out group name if it’s found using getgrgid(). */

if ((grp = getgrgid(statbuf.st_gid)) != NULL)

printf(" %-8.8s", grp->gr_name);

else

printf(" %-8d", statbuf.st_gid);

/* Print size of file. */

printf(" %9jd", (intmax_t)statbuf.st_size);

tm = localtime(&statbuf.st_mtime);

/* Get localized date string. */

strftime(datestring, sizeof(datestring), nl_langinfo(D_T_FMT), tm);

printf(" %s %s\n", datestring, dp->d_name);

stat(2)

System Calls 337

EXAMPLE 2 Use stat() to get directory information. (Continued)

}

EXAMPLE 3 Use fstat() to obtain file status information.

The following example shows how to obtain file status information for a file named
/home/cnd/mod1. The structure variable buffer is defined for the stat structure. The
/home/cnd/mod1 file is opened with read/write privileges and is passed to the open file
descriptor fildes.

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

struct stat buffer;

int status;

...

fildes = open("/home/cnd/mod1", O_RDWR);

status = fstat(fildes, &buffer);

EXAMPLE 4 Use lstat() to obtain symbolic link status information.

The following example shows how to obtain status information for a symbolic link named
/modules/pass1. The structure variable buffer is defined for the stat structure. If the path
argument specified the filename for the file pointed to by the symbolic link (/home/cnd/mod1),
the results of calling the function would be the same as those returned by a call to the stat()
function.

#include <sys/stat.h>

struct stat buffer;

int status;

...

status = lstat("/modules/pass1", &buffer);

If chmod() or fchmod() is used to change the file group owner permissions on a file with
non-trivial ACL entries, only the ACL mask is set to the new permissions and the group owner
permission bits in the file's mode field (defined in mknod(2)) are unchanged. A non-trivial ACL
entry is one whose meaning cannot be represented in the file's mode field alone. The new ACL
mask permissions might change the effective permissions for additional users and groups that
have ACL entries on the file.

The stat(), fstat(), and lstat() functions have transitional interfaces for 64-bit file offsets.
See lf64(5).

See attributes(5) for descriptions of the following attributes:

Usage

Attributes

stat(2)

man pages section 2: System Calls • Last Revised 10 Oct 2007338

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See below.

For stat(), fstat(), and lstat(), see standards(5).

access(2), chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), time(2),
unlink(2), utime(2), write(2), fattach(3C), stat.h(3HEAD), attributes(5), fsattr(5),
lf64(5), standards(5)

See Also

stat(2)

System Calls 339

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afattach-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fstat.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5fsattr-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

statvfs, fstatvfs – get file system information

#include <sys/types.h>

#include <sys/statvfs.h>

int statvfs(const char *restrict path, struct statvfs *restrict buf);

int fstatvfs(int fildes, struct statvfs *buf);

The statvfs() function returns a “generic superblock” describing a file system; it can be used
to acquire information about mounted file systems. The buf argument is a pointer to a
structure (described below) that is filled by the function.

The path argument should name a file that resides on that file system. The file system type is
known to the operating system. Read, write, or execute permission for the named file is not
required, but all directories listed in the path name leading to the file must be searchable.

The statvfs structure pointed to by buf includes the following members:

u_long f_bsize; /* preferred file system block size */

u_long f_frsize; /* fundamental filesystem block

(size if supported) */

fsblkcnt_t f_blocks; /* total # of blocks on file system

in units of f_frsize */

fsblkcnt_t f_bfree; /* total # of free blocks */

fsblkcnt_t f_bavail; /* # of free blocks avail to

non-privileged user */

fsfilcnt_t f_files; /* total # of file nodes (inodes) */

fsfilcnt_t f_ffree; /* total # of free file nodes */

fsfilcnt_t f_favail; /* # of inodes avail to

non-privileged user*/

u_long f_fsid; /* file system id (dev for now) */

char f_basetype[FSTYPSZ]; /* target fs type name,

null-terminated */

u_long f_flag; /* bit mask of flags */

u_long f_namemax; /* maximum file name length */

char f_fstr[32]; /* file system specific string */

u_long f_filler[16]; /* reserved for future expansion */

The f_basetype member contains a null-terminated FSType name of the mounted target.

The following values can be returned in the f_flag field:

ST_RDONLY 0x01 /* read-only file system */

ST_NOSUID 0x02 /* does not support setuid/setgid semantics */

ST_NOTRUNC 0x04 /* does not truncate file names longer than

NAME_MAX */

The fstatvfs() function is similar to statvfs(), except that the file named by path in
statvfs() is instead identified by an open file descriptor fildes obtained from a successful
open(2), creat(2), dup(2), fcntl(2), or pipe(2) function call.

Name

Synopsis

Description

statvfs(2)

man pages section 2: System Calls • Last Revised 22 Mar 2004340

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The statvfs() and fstatvfs() functions will fail if:

EOVERFLOW One of the values to be returned cannot be represented correctly in the
structure pointed to by buf.

The statvfs() function will fail if:

EACCES Search permission is denied on a component of the path prefix.

EFAULT The path or buf argument points to an illegal address.

EINTR A signal was caught during the execution of the statvfs() function.

EIO An I/O error occurred while reading the file system.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of a path component exceeds NAME_MAX characters, or the
length of path The exceeds PATH_MAX characters.

ENOENT Either a component of the path prefix or the file referred to by path does
not exist.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOTDIR A component of the path prefix of path is not a directory.

The fstatvfs() function will fail if:

EBADF The fildes argument is not an open file descriptor.

EFAULT The buf argument points to an illegal address.

EINTR A signal was caught during the execution of the fstatvfs() function.

EIO An I/O error occurred while reading the file system.

The statvfs() and fstatvfs() functions have transitional interfaces for 64-bit file offsets.
See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

Return Values

Errors

Usage

Attributes

statvfs(2)

System Calls 341

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

chmod(2), chown(2), creat(2), dup(2), fcntl(2), link(2), mknod(2), open(2), pipe(2), read(2),
time(2), unlink(2), utime(2), write(2), attributes(5), lf64(5), standards(5)

The values returned for f_files, f_ffree, and f_favail may not be valid for NFS mounted
file systems.

See Also

Bugs

statvfs(2)

man pages section 2: System Calls • Last Revised 22 Mar 2004342

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

stime – set system time and date

#include <unistd.h>

int stime(const time_t *tp);

The stime() function sets the system's idea of the time and date. The tp argument points to
the value of time as measured in seconds from 00:00:00 UTC January 1, 1970.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The stime() function will fail if:

EINVAL The tp argument points to an invalid (negative) value.

EPERM The {PRIV_SYS_TIME} privilege is not asserted in the effective set of the calling
process.

time(2), privileges(5)

Name

Synopsis

Description

Return Values

Errors

See Also

stime(2)

System Calls 343

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

swapctl – manage swap space

#include <sys/stat.h>

#include <sys/swap.h>

int swapctl(int cmd, void *arg);

The swapctl() function adds, deletes, or returns information about swap resources. cmd
specifies one of the following options contained in <sys/swap.h>:

SC_ADD /* add a resource for swapping */

SC_LIST /* list the resources for swapping */

SC_REMOVE /* remove a resource for swapping */

SC_GETNSWP /* return number of swap resources */

When SC_ADD or SC_REMOVE is specified, arg is a pointer to a swapres structure containing the
following members:

char *sr_name; /* pathname of resource */

off_t sr_start; /* offset to start of swap area */

off_t sr_length; /* length of swap area */

The sr_start and sr_length members are specified in 512-byte blocks. A swap resource can
only be removed by specifying the same values for the sr_start and sr_length members as
were specified when it was added. Swap resources need not be removed in the order in which
they were added.

When SC_LIST is specified, arg is a pointer to a swaptable structure containing the following
members:

int swt_n; /* number of swapents following */

struct swapent swt_ent[]; /* array of swt_n swapents */

A swapent structure contains the following members:

char *ste_path; /* name of the swap file */

off_t ste_start; /* starting block for swapping */

off_t ste_length; /* length of swap area */

long ste_pages; /* number of pages for swapping */

long ste_free; /* number of ste_pages free */

long ste_flags; /* ST_INDEL bit set if swap file */

/* is now being deleted */

The SC_LIST function causes swapctl() to return at most swt_n entries. The return value of
swapctl() is the number actually returned. The ST_INDEL bit is turned on in ste_flags if the
swap file is in the process of being deleted.

When SC_GETNSWP is specified, swapctl() returns as its value the number of swap resources in
use. arg is ignored for this operation.

Name

Synopsis

Description

swapctl(2)

man pages section 2: System Calls • Last Revised 25 Sep 1997344

The SC_ADD and SC_REMOVE functions will fail if calling process does not have appropriate
privileges.

Upon successful completion, the function swapctl() returns a value of 0 for SC_ADD or
SC_REMOVE, the number of struct swapent entries actually returned for SC_LIST, or the
number of swap resources in use for SC_GETNSWP. Upon failure, the function swapctl()

returns a value of −1 and sets errno to indicate an error.

Under the following conditions, the function swapctl() fails and sets errno to:

EEXIST Part of the range specified by sr_start and sr_length is already being
used for swapping on the specified resource (SC_ADD).

EFAULT Either arg, sr_name, or ste_path points to an illegal address.

EINVAL The specified function value is not valid, the path specified is not a swap
resource (SC_REMOVE), part of the range specified by sr_start and
sr_length lies outside the resource specified (SC_ADD), or the specified
swap area is less than one page (SC_ADD).

EISDIR The path specified for SC_ADD is a directory.

ELOOP Too many symbolic links were encountered in translating the pathname
provided to SC_ADD or SC_REMOVE.

ENAMETOOLONG The length of a component of the path specified for SC_ADD or SC_REMOVE
exceeds NAME_MAX characters or the length of the path exceeds PATH_MAX
characters and _POSIX_NO_TRUNC is in effect.

ENOENT The pathname specified for SC_ADD or SC_REMOVE does not exist.

ENOMEM An insufficient number of struct swapent structures were provided to
SC_LIST, or there were insufficient system storage resources available
during an SC_ADD or SC_REMOVE, or the system would not have enough
swap space after an SC_REMOVE.

ENOSYS The pathname specified for SC_ADD or SC_REMOVE is not a file or block
special device.

ENOTDIR Pathname provided to SC_ADD or SC_REMOVE contained a component in the
path prefix that was not a directory.

EPERM The {PRIV_SYS_MOUNT} was not asserted in the effective set of the calling
process.

EROFS The pathname specified for SC_ADD is a read-only file system.

Additionally, the swapctl() function will fail for 32-bit interfaces if:

EOVERFLOW The amount of swap space configured on the machine is too large to be
represented by a 32-bit quantity.

Return Values

Errors

swapctl(2)

System Calls 345

EXAMPLE 1 The usage of the SC_GETNSWP and SC_LIST commands.

The following example demonstrates the usage of the SC_GETNSWP and SC_LIST commands.

#include <sys/stat.h>

#include <sys/swap.h>

#include <stdio.h>

#define MAXSTRSIZE 80

main(argc, argv)

int argc;

char *argv[];

{

swaptbl_t *s;

int i, n, num;

char *strtab; /* string table for path names */

again:

if ((num = swapctl(SC_GETNSWP, 0)) == -1) {

perror("swapctl: GETNSWP");
exit(1);

}

if (num == 0) {

fprintf(stderr, "No Swap Devices Configured\n");
exit(2);

}

/* allocate swaptable for num+1 entries */

if ((s = (swaptbl_t *)

malloc(num * sizeof(swapent_t) +

sizeof(struct swaptable))) ==

(void *) 0) {

fprintf(stderr, "Malloc Failed\n");
exit(3);

}

/* allocate num+1 string holders */

if ((strtab = (char *)

malloc((num + 1) * MAXSTRSIZE)) == (void *) 0) {

fprintf(stderr, "Malloc Failed\n");
exit(3);

}

/* initialize string pointers */

for (i = 0; i < (num + 1); i++) {

s->swt_ent[i].ste_path = strtab + (i * MAXSTRSIZE);

}

s->swt_n = num + 1;

if ((n = swapctl(SC_LIST, s)) < 0) {

Examples

swapctl(2)

man pages section 2: System Calls • Last Revised 25 Sep 1997346

EXAMPLE 1 The usage of the SC_GETNSWP and SC_LIST commands. (Continued)

perror("swapctl");
exit(1);

}

if (n > num) { /* more were added */

free(s);

free(strtab);

goto again;

}

for (i = 0; i < n; i++)

printf("%s %ld\n",
s->swt_ent[i].ste_path, s->swt_ent[i].ste_pages);

}

privileges(5)See Also

swapctl(2)

System Calls 347

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

symlink, symlinkat – make a symbolic link to a file

#include <unistd.h>

int symlink(const char *path1, const char *path2);

int symlinkat(const char *path1,int fd, const char *path2);

The symlink() function creates a symbolic link path2 to the file path1. Either name may be an
arbitrary pathname, the files need not be on the same file system, and path1 may be
nonexistent.

The file to which the symbolic link points is used when an open(2) operation is performed on
the link. A stat() operation performed on a symbolic link returns the linked-to file, while an
lstat() operation returns information about the link itself. See stat(2). Unexpected results
may occur when a symbolic link is made to a directory. To avoid confusion in applications, the
readlink(2) call can be used to read the contents of a symbolic link.

The symlinkat() function is equivalent to the symlink() function except in the case where
path2 specifies a relative path. In this case the symbolic link is created relative to the directory
associated with the file descriptor fd instead of the current working directory. If the file
descriptor was opened without O_SEARCH, the function checks whether directory searches are
permitted using the current permissions of the directory underlying the file descriptor. If the
file descriptor was opened with O_SEARCH, the function does not perform the check.

If symlinkat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior is identical to a call to symlink().

Upon successful completion, 0 is returned. Otherwise, −1 is returned, errno is set to indicate
the error, and the symbolic link is not made.

The symlink() and symlinkat() functions will fail if:

EACCES Write permission is denied in the directory where the symbolic link is
being created, or search permission is denied for a component of the path
prefix of path2.

EDQUOT The directory where the entry for the new symbolic link is being placed
cannot be extended because the user's quota of disk blocks on that file
system has been exhausted; the new symbolic link cannot be created
because the user's quota of disk blocks on that file system has been
exhausted; or the user's quota of inodes on the file system where the file is
being created has been exhausted.

EEXIST The file referred to by path2 already exists.

EFAULT The path1 or path2 argument points to an illegal address.

Name

Synopsis

Description

Return Values

Errors

symlink(2)

man pages section 2: System Calls • Last Revised 6 Jul 2010348

EILSEQ The path argument includes non-UTF8 characters and the file system
accepts only file names where all characters are part of the UTF-8 character
codeset.

EIO An I/O error occurs while reading from or writing to the file system.

ELOOP Too many symbolic links are encountered in translating path2.

ENAMETOOLONG The length of the path2 argument exceeds PATH_MAX, or the length of a
path2 component exceeds NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENOENT A component of the path prefix of path2 does not exist.

ENOSPC The directory in which the entry for the new symbolic link is being placed
cannot be extended because no space is left on the file system containing
the directory; the new symbolic link cannot be created because no space is
left on the file system which will contain the link; or there are no free
inodes on the file system on which the file is being created.

ENOSYS The file system does not support symbolic links.

ENOTDIR A component of the path prefix of path2 is not a directory.

EROFS The file path2 would reside on a read-only file system.

The symlinkat() function will fail if:

EACCES fd was not opened with O_SEARCH and the permissions of the directory underlying
fd do not permit directory searches.

EBADF The path2 argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

The symlink() and symlinkat() functions may fail if:

ELOOP More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path2 argument.

ENAMETOOLONG The length of the path2 argument exceeds {PATH_MAX} or pathname
resolution of a symbolic link in the path2 argument produced an
intermediate result with a length that exceeds {PATH_MAX}.

The symlinkat() function may fail if:

ENOTDIR The path2 argument is not an absolute path and fd is neither AT_FDCWD nor a file
descriptor associated with a directory

See attributes(5) for descriptions of the following attributes:Attributes

symlink(2)

System Calls 349

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

cp(1), link(2), open(2), readlink(2), stat(2), unlink(2), attributes(5)See Also

symlink(2)

man pages section 2: System Calls • Last Revised 6 Jul 2010350

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1cp-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

sync – update super block

#include <unistd.h>

void sync(void);

The sync() function writes all information in memory that should be on disk, including
modified super blocks, modified inodes, and delayed block I/O.

Unlike fsync(3C), which completes the writing before it returns, sync() schedules but does
not necessarily complete the writing before returning.

The sync() function should be used by applications that examine a file system, such as
fsck(1M), and df(1M), and is mandatory before rebooting.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

df(1M), fsck(1M), fsync(3C), attributes(5), standards(5)

Name

Synopsis

Description

Usage

Attributes

See Also

sync(2)

System Calls 351

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afsync-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mfsck-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mdf-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mdf-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mfsck-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afsync-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

sysfs – get file system type information

#include <sys/fstyp.h>

#include <sys/fsid.h>

int sysfs(int opcode, const char *fsname);

int sysfs(int opcode, int fs_index, char *buf);

int sysfs(int opcode);

The sysfs() function returns information about the file system types configured in the
system. The number of arguments accepted by sysfs() depends on the opcode argument,
which can take the following values:

GETFSIND Translate fsname, a null-terminated file-system type identifier, into a
file-system type index.

GETFSTYP Translate fs_index, a file-system type index, into a null-terminated file-system
type identifier and write it into the buffer pointed to by buf, which must be at
least of size FSTYPSZ as defined in <sys/fstyp.h>.

GETNFSTYP Return the total number of file system types configured in the system.

Upon successful completion, the value returned depends upon the opcode argument as
follows:

GETFSIND the file-system type index

GETFSTYP 0

GETNFSTYP the number of file system types configured

Otherwise, −1 is returned and errno is set to indicate the error.

The sysfs() function will fail if:

EFAULT The buf or fsname argument points to an illegal address.

EINVAL The fsname argument points to an invalid file-system identifier; the fs_index
argument is 0 or invalid; or the opcode argument is invalid.

Name

Synopsis

Description

Return Values

Errors

sysfs(2)

man pages section 2: System Calls • Last Revised 5 Jul 1990352

sysinfo – get and set system information strings

#include <sys/systeminfo.h>

int sysinfo(int command, char *buf, long count);

The sysinfo() function copies information relating to the operating system on which the
process is executing into the buffer pointed to by buf. It can also set certain information where
appropriate commands are available. The count parameter indicates the size of the buffer.

The POSIX P1003.1 interface (see standards(5)) sysconf(3C) provides a similar class of
configuration information, but returns an integer rather than a string.

The values for command are as follows:

SI_SYSNAME

Copy into the array pointed to by buf the string that would be returned by uname(2) in the
sysnamefield. This is the name of the implementation of the operating system, for example,
SunOS or UTS.

SI_HOSTNAME

Copy into the array pointed to by buf a string that names the present host machine. This is
the string that would be returned by uname() in the nodenamefield. This hostname or
nodename is often the name the machine is known by locally. The hostname is the name of
this machine as a node in some network. Different networks might have different names
for the node, but presenting the nodename to the appropriate network directory or
name-to-address mapping service should produce a transport end point address. The
name might not be fully qualified. Internet host names can be up to 256 bytes in length
(plus the terminating null).

SI_SET_HOSTNAME

Copy the null-terminated contents of the array pointed to by buf into the string maintained
by the kernel whose value will be returned by succeeding calls to sysinfo() with the
command SI_HOSTNAME. This command requires that {PRIV_SYS_ADMIN} is asserted in the
effective set of the calling process.

SI_RELEASE

Copy into the array pointed to by buf the string that would be returned by uname(2) in the
release field. Typical values might be 5.2 or 4.1.

SI_VERSION

Copy into the array pointed to by buf the string that would be returned by uname(2) in the
versionfield. The syntax and semantics of this string are defined by the system provider.

SI_MACHINE

Copy into the array pointed to by buf the string that would be returned by uname(2) in the
machine field, for example, sun4u.

Name

Synopsis

Description

sysinfo(2)

System Calls 353

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c

SI_ARCHITECTURE

Copy into the array pointed to by buf a string describing the basic instruction set
architecture of the current system, for example, sparc, mc68030, m32100, or i386. These
names might not match predefined names in the C language compilation system.

SI_ARCHITECTURE_64

Copy into the array pointed to by buf a string describing the 64-bit instruction set
architecture of the current system, for example, sparcv9 or amd64. These names might not
match predefined names in the C language compilation system. This subcode is not
recognized on systems that do not allow a 64-bit application to run.

SI_ARCHITECTURE_32

Copy into the array pointed to by buf a string describing the 32-bit instruction set
architecture of the current system, for example, sparc or i386. These names might not
match predefined names in the C language compilation system.

SI_ARCHITECTURE_K

Copy into the array pointed to by buf a string describing the kernel instruction set
architecture of the current system for example sparcv9 or i386. These names might not
match predefined names in the C language compilation system.

SI_ARCHITECTURE_NATIVE

Copy into the array pointed to by buf a string describing the native instruction set
architecture of the current system, for example sparcv9 or i386. These names might not
match predefined names in the C language compilation system.

SI_ISALIST

Copy into the array pointed to by buf the names of the variant instruction set architectures
executable on the current system.

The names are space-separated and are ordered in the sense of best performance. That is,
earlier-named instruction sets might contain more instructions than later-named
instruction sets; a program that is compiled for an earlier-named instruction set will most
likely run faster on this machine than the same program compiled for a later-named
instruction set.

Programs compiled for an instruction set that does not appear in the list will most likely
experience performance degradation or not run at all on this machine.

The instruction set names known to the system are listed in isalist(5); these names might
not match predefined names or compiler options in the C language compilation system.

This command is obsolete and might be removed in a future release. See getisax(2) and
the Linker and Libraries Guide for a better way to handle instruction set extensions.

SI_PLATFORM

Copy into the array pointed to by buf a string describing the specific model of the hardware
platform, for example, SUNW,Sun-Blade-1500, SUNW,Sun-Fire-T200, or i86pc.

sysinfo(2)

man pages section 2: System Calls • Last Revised 23 Nov 2011354

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5isalist-5
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=LLM

SI_HW_PROVIDER

Copies the name of the hardware manufacturer into the array pointed to by buf.

SI_HW_SERIAL

Copy into the array pointed to by buf a string which is the ASCII representation of the
hardware-specific serial number of the physical machine on which the function is executed.
This might be implemented in Read-Only Memory, using software constants set when
building the operating system, or by other means, and might contain non-numeric
characters. If the function is executed within a non-global zone that emulates a host
identifier, then the ASCII representation of the zone's host identifier is copied into the
array pointed to by buf. It is anticipated that manufacturers will not issue the same “serial
number” to more than one physical machine. The pair of strings returned by
SI_HW_PROVIDER and SI_HW_SERIAL is not guaranteed to be unique across all vendor's
SVR4 implementations and could change over the lifetime of a given system.

SI_SRPC_DOMAIN

Copies the Secure Remote Procedure Call domain name into the array pointed to by buf.

SI_SET_SRPC_DOMAIN

Set the string to be returned by sysinfo() with the SI_SRPC_DOMAIN command to the value
contained in the array pointed to by buf. This command requires that {PRIV_SYS_ADMIN} is
asserted in the effective set of the calling process.

SI_DHCP_CACHE

Copy into the array pointed to by buf an ASCII string consisting of the ASCII hexidecimal
encoding of the name of the interface configured by boot(1M) followed by the DHCPACK
reply from the server. This command is intended for use only by the dhcpagent(1M)
DHCP client daemon for the purpose of adopting the DHCP maintenance of the interface
configured by boot.

Upon successful completion, the value returned indicates the buffer size in bytes required to
hold the complete value and the terminating null character. If this value is no greater than the
value passed in count, the entire string was copied. If this value is greater than count, the string
copied into buf has been truncated to count−1 bytes plus a terminating null character.

Otherwise, −1 is returned and errno is set to indicate the error.

The sysinfo() function will fail if:

EFAULT The buf argument does not point to a valid address.

EINVAL The count argument for a non-SET command is less than 0 or the data for a SET
command exceeds the limits established by the implementation.

EPERM The {PRIV_SYS_ADMIN} was not asserted in the effective set of the calling process.

Return Values

Errors

sysinfo(2)

System Calls 355

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mboot-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mdhcpagent-1m

In many cases there is no corresponding programming interface to set these values; such
strings are typically settable only by the system administrator modifying entries in
/etc/system or the code provided by the particular OEM reading a serial number or code out
of read-only memory, or hard-coded in the version of the operating system.

A good estimation for count is 257, which is likely to cover all strings returned by this interface
in typical installations.

boot(1M), dhcpagent(1M), getisax(2), uname(2), gethostid(3C), gethostname(3C),
sysconf(3C), isalist(5), privileges(5), standards(5), zones(5)

Linker and Libraries Guide

Usage

See Also

sysinfo(2)

man pages section 2: System Calls • Last Revised 23 Nov 2011356

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mboot-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mdhcpagent-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agethostid-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Agethostname-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5isalist-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5zones-5
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=LLM

time – get time

#include <sys/types.h>

#include <time.h>

time_t time(time_t *tloc);

The time() function returns the value of time in seconds since 00:00:00 UTC, January 1, 1970.

If tloc is non-zero, the return value is also stored in the location to which tloc points. If tloc
points to an illegal address, time() fails and its actions are undefined.

Upon successful completion, time() returns the value of time. Otherwise, (time_t)−1 is
returned and errno is set to indicate the error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

stime(2), ctime(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

time(2)

System Calls 357

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Actime-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

times – get process and child process times

#include <sys/times.h>

#include <limits.h>

clock_t times(struct tms *buffer);

The times() function fills the tms structure pointed to by buffer with time-accounting
information. The tms structure, defined in <sys/times.h>, contains the following members:

clock_t tms_utime;

clock_t tms_stime;

clock_t tms_cutime;

clock_t tms_cstime;

All times are reported in clock ticks. The specific value for a clock tick is defined by the
variable CLK_TCK, found in the header <limits.h>.

The times of a terminated child process are included in the tms_cutime and tms_cstime

members of the parent when wait(3C) or waitpid(3C) returns the process ID of this
terminated child. If a child process has not waited for its children, their times will not be
included in its times.

The tms_utime member is the CPU time used while executing instructions in the user space of
the calling process.

The tms_stime member is the CPU time used by the system on behalf of the calling process.

The tms_cutime member is the sum of the tms_utime and the tms_cutime of the child
processes.

The tms_cstime member is the sum of the tms_stime and the tms_cstime of the child
processes.

Upon successful completion, times() returns the elapsed real time, in clock ticks, since an
arbitrary point in the past (for example, system start-up time). This point does not change
from one invocation of times() within the process to another. The return value may overflow
the possible range of type clock_t. If times() fails, (clock_t)−1 is returned and errno is set
to indicate the error.

The times() function will fail if:

EFAULT The buffer argument points to an illegal address.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Name

Synopsis

Description

Return Values

Errors

Attributes

times(2)

man pages section 2: System Calls • Last Revised 14 May 1997358

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Await-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Awaitpid-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

Standard See standards(5).

time(1), timex(1), exec(2), fork(2), time(2), waitid(2), wait(3C), waitpid(3C),
attributes(5), standards(5)

See Also

times(2)

System Calls 359

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1time-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1timex-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Await-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Awaitpid-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

uadmin – administrative control

#include <sys/uadmin.h>

int uadmin(int cmd, int fcn, uintptr_t mdep);

The uadmin() function provides control for basic administrative functions. This function is
tightly coupled to the system administrative procedures and is not intended for general use.
The argument mdep is provided for machine-dependent use and is not defined here. It should
be initialized to NULL if not used.

As specified by cmd, the following commands are available:

A_SHUTDOWN The system is shut down. All user processes are killed, the buffer cache is
flushed, and the root file system is unmounted. The action to be taken after
the system has been shut down is specified by fcn. The functions are generic;
the hardware capabilities vary on specific machines.

AD_HALT Halt the processor(s).

AD_POWEROFF Halt the processor(s) and turn off the power.

AD_BOOT Reboot the system, using the kernel file.

AD_IBOOT Interactive reboot; user is prompted for bootable
program name.

AD_FASTREBOOT Bypass BIOS and boot loader

A_REBOOT The system stops immediately without any further processing. The action to
be taken next is specified by fcn as above.

A_DUMP The system is forced to panic immediately without any further processing
and a crash dump is written to the dump device (see dumpadm(1M)). The
action to be taken next is specified by fcn, as above.

A_REMOUNT The root file system is mounted again after having been fixed. This should be
used only during the startup process.

A_FREEZE Suspend the whole system. The system state is preserved in the state file. The
following subcommands, specified by fcn, are available.

AD_SUSPEND_TO_DISK

Save the system state to the state file. This subcommand is equivalent to
ACPI state S4.

AD_CHECK_SUSPEND_TO_DISK

Check if your system supports suspend to disk. Without performing a
system suspend/resume, this subcommand checks if this feature is
currently available on your system.

Name

Synopsis

Description

uadmin(2)

man pages section 2: System Calls • Last Revised 25 Mar 2009360

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mdumpadm-1m

AD_SUSPEND_TO_RAM

Save the system state to memory This subcommand is equivalent to ACPI
state S3.

AD_CHECK_SUSPEND_TO_RAM

Check if your system supports suspend to memory. Without performing a
system suspend/resume, this subcommand checks if this feature is
currently available on your system.

The following subcommands, specified by fcn, are obsolete and might be
removed in a subsequent release:

AD_COMPRESS

Save the system state to the state file with compression of data. This
subcommand has been replaced by AD_SUSPEND_TO_DISK, which should
be used instead.

AD_CHECK

Check if your system supports suspend and resume. Without performing
a system suspend/resume, this command checks if this feature is currently
available on your system. This subcommand has been replaced by
AD_CHECK_SUSPEND_TO_DISK, which should be used instead.

AD_FORCE

Force AD_COMPRESS even when threads of user applications are not
suspendable. This subcommand should never be used, as it might result in
undefined behavior.

Upon successful completion, the value returned depends on cmd as follows:

A_SHUTDOWN Never returns.

A_REBOOT Never returns.

A_FREEZE 0 upon resume.

A_REMOUNT 0.

Otherwise, −1 is returned and errno is set to indicate the error.

The uadmin() function will fail if:

EBUSY Suspend is already in progress.

EINVAL The cmd argument is invalid.

ENOMEM Suspend/resume ran out of physical memory.

ENOSPC Suspend/resume could not allocate enough space on the root file system to store
system information.

Return Values

Errors

uadmin(2)

System Calls 361

ENOTSUP Suspend/resume is not supported on this platform or the command specified by
cmd is not allowed.

ENXIO Unable to successfully suspend system.

EPERM The {PRIV_SYS_CONFIG} privilege is not asserted in the effective set of the calling
process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below.

The A_FREEZE command and its subcommands are Committed.

dumpadm(1M), halt(1M), kernel(1M), reboot(1M), uadmin(1M), attributes(5),
privileges(5)

Shutting down or halting the system by means of uadmin(1M) does not update the boot
archive. Avoid using this command after

■ editing of files such as /etc/system
■ installing new driver binaries or kernel binaries
■ updating existing driver binaries or kernel binaries.

Use reboot(1M) or halt(1M) instead.

Attributes

See Also

Warnings

uadmin(2)

man pages section 2: System Calls • Last Revised 25 Mar 2009362

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mdumpadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mhalt-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mkernel-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mreboot-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Muadmin-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Muadmin-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mreboot-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mhalt-1m

ulimit – get and set process limits

#include <ulimit.h>

long ulimit(int cmd, /* newlimit */...);

The ulimit() function provides for control over process limits. It is effective in limiting the
growth of regular files. Pipes are limited to PIPE_MAX bytes.

The cmd values, defined in <ulimit.h>, include:

UL_GETFSIZE Return the soft file size limit of the process. The limit is in units of 512-byte
blocks and is inherited by child processes. Files of any size can be read. The
return value is the integer part of the soft file size limit divided by 512. If the
result cannot be represented as a long int, the result is unspecified.

UL_SETFSIZE Set the hard and soft file size limits for output operations of the process to
the value of the second argument, taken as a long int. Any process may
decrease its own hard limit, but only a process with appropriate privileges
may increase the limit. The new file size limit is returned. The hard and soft
file size limits are set to the specified value multiplied by 512. If the result
would overflow an rlimit_t, the actual value set is unspecified.

UL_GMEMLIM Get the maximum possible break value (see brk(2)).

UL_GDESLIM Get the current value of the maximum number of open files per process
configured in the system.

Upon successful completion, ulimit() returns the value of the requested limit. Otherwise, −1
is returned, the limit is not changed, and errno is set to indicate the error.

The ulimit() function will fail if:

EINVAL The cmd argument is not valid.

EPERM A process that has not asserted {PRIV_SYS_RESOURCE} in its effective set is trying to
increase its file size limit.

Since all return values are permissible in a successful situation, an application wishing to
check for error situations should set errno to 0, then call ulimit(), and if it returns −1, check
if errno is non-zero.

The getrlimit() and setrlimit() functions provide a more general interface for controlling
process limits, and are preferred over ulimit(). See getrlimit(2).

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

ulimit(2)

System Calls 363

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

brk(2), getrlimit(2), write(2), attributes(5), privileges(5), standards(5)See Also

ulimit(2)

man pages section 2: System Calls • Last Revised 1 Feb 2003364

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

umask – set and get file creation mask

#include <sys/types.h>

#include <sys/stat.h>

mode_t umask(mode_t cmask);

The umask() function sets the process's file mode creation mask to cmask and returns the
previous value of the mask. Only the access permission bits of cmask and the file mode
creation mask are used. The mask is inherited by child processes. See Intro(2) for more
information on masks.

The previous value of the file mode creation mask is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

mkdir(1), sh(1), Intro(2), chmod(2), creat(2), mknod(2), open(2), stat.h(3HEAD),
attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

umask(2)

System Calls 365

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1mkdir-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1sh-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fstat.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

umount, umount2 – unmount a file system

#include <sys/mount.h>

int umount(const char *file);

int umount2(const char *file, int mflag);

The umount() function requests that a previously mounted file system contained on a block
special device or directory be unmounted. The file argument is a pointer to the absolute
pathname of the file system to be unmounted. After unmounting the file system, the directory
upon which the file system was mounted reverts to its ordinary interpretation.

The umount2() function is identical to umount(), with the additional capability of
unmounting file systems even if there are open files active. The mflag argument must contain
one of the following values:

0 Perform a normal unmount that is equivalent to umount(). The umount2()
function returns EBUSY if there are open files active within the file system to be
unmounted.

MS_FORCE Unmount the file system, even if there are open files active. A forced unmount
can result in loss of data, so it should be used only when a regular unmount is
unsuccessful. The umount2() function returns ENOTSUP if the specified file
systems does not support MS_FORCE. Only file systems of type nfs, ufs, pcfs,
and zfs support MS_FORCE.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The umount() and umount2() functions will fail if:

EACCES The permission bits of the mount point do not permit read/write access or
search permission is denied on a component of the path prefix.

The calling process is not the owner of the mountpoint.

The mountpoint is not a regular file or a directory and the caller does not
have all privileges available in a its zone.

The special device device does not permit read access in the case of
read-only mounts or read-write access in the case of read/write mounts.

EBUSY A file on file is busy.

EFAULT The file pointed to by file points to an illegal address.

EINVAL The file pointed to by file is not mounted.

ELOOP Too many symbolic links were encountered in translating the path pointed
to by file.

Name

Synopsis

Description

Return Values

Errors

umount(2)

man pages section 2: System Calls • Last Revised 4 Aug 2008366

ENAMETOOLONG The length of the file argument exceeds PATH_MAX, or the length of a file
component exceeds NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENOENT The file pointed to by file does not exist or is not an absolute path.

ENOLINK The file pointed to by file is on a remote machine and the link to that
machine is no longer active.

ENOTBLK The file pointed to by file is not a block special device.

EPERM The {PRIV_SYS_MOUNT} privilege is not asserted in the effective set of the
calling process.

EREMOTE The file pointed to by file is remote.

The umount2() function will fail if:

ENOTSUP The file pointed to by file does not support this operation.

The umount() and umount2() functions can be invoked only by a process that has the
{PRIV_SYS_MOUNT} privilege asserted in its effective set.

Because it provides greater functionality, the umount2() function is preferred.

mount(2), privileges(5)

Usage

See Also

umount(2)

System Calls 367

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5

uname – get name of current operating system

#include <sys/utsname.h>

int uname(struct utsname *name);

The uname() function stores information identifying the current operating system in the
structure pointed to by name.

The uname() function uses the utsname structure, defined in <sys/utsname.h>, whose
members include:

char sysname[SYS_NMLN];

char nodename[SYS_NMLN];

char release[SYS_NMLN];

char version[SYS_NMLN];

char machine[SYS_NMLN];

The uname() function returns a null-terminated character string naming the current
operating system in the character array sysname. Similarly, the nodename member contains
the name by which the system is known on a communications network. The release and
version members further identify the operating system. The machine member contains a
standard name that identifies the hardware on which the operating system is running.

Upon successful completion, a non-negative value is returned. Otherwise, −1 is returned and
errno is set to indicate the error.

The uname() function will fail if:

EFAULT The name argument points to an illegal address.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

uname(1), sysinfo(2), sysconf(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

uname(2)

man pages section 2: System Calls • Last Revised 21 Jul 1999368

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1uname-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

unlink, unlinkat – remove directory entry

#include <unistd.h>

int unlink(const char *path);

int unlinkat(int dirfd, const char *path, int flag);

The unlink() function removes a link to a file. If path names a symbolic link, unlink()
removes the symbolic link named by path and does not affect any file or directory named by
the contents of the symbolic link. Otherwise, unlink() removes the link named by the
pathname pointed to by path and decrements the link count of the file referenced by the link.

The unlinkat() function also removes a link to a file. See fsattr(5). If the flag argument is 0,
the behavior of unlinkat() is the same as unlink() except in the processing of its path
argument. If path is absolute, unlinkat() behaves the same as unlink() and the dirfd
argument is unused. If path is relative and dirfd has the value AT_FDCWD, defined in <fcntl.h>,
unlinkat() also behaves the same as unlink(). Otherwise, path is resolved relative to the
directory referenced by the dirfd argument.

If the flag argument is set to the value AT_REMOVEDIR, defined in <fcntl.h>, unlinkat()
behaves the same as rmdir(2) except in the processing of the path argument as described
above.

When the file's link count becomes 0 and no process has the file open, the space occupied by
the file will be freed and the file is no longer accessible. If one or more processes have the file
open when the last link is removed, the link is removed before unlink() or unlinkat()
returns, but the removal of the file contents is postponed until all references to the file are
closed.

If the path argument is a directory and the filesystem supports unlink() and unlinkat() on
directories, the directory is unlinked from its parent with no cleanup being performed. In
UFS, the disconnected directory will be found the next time the filesystem is checked with
fsck(1M). The unlink() and unlinkat() functions will not fail simply because a directory is
not empty. The user with appropriate privileges can orphan a non-empty directory without
generating an error message.

If the path argument is a directory and the filesystem does not support unlink() and
unlink() on directories (for example, ZFS), the call will fail with errno set to EPERM.

Upon successful completion, unlink() and unlinkat() will mark for update the st_ctime
and st_mtime fields of the parent directory. If the file's link count is not 0, the st_ctime field of
the file will be marked for update.

Upon successful completion, 0 is returned. Otherwise, −1 is returned, errno is set to indicate
the error, and the file is not unlinked.

Name

Synopsis

Description

Return Values

unlink(2)

System Calls 369

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5fsattr-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mfsck-1m

The unlink() and unlinkat() functions will fail if:

EACCES Search permission is denied for a component of the path prefix, or write
permission is denied on the directory containing the link to be removed.

EACCES The parent directory has the sticky bit set and the file is not writable by the
user, the user does not own the parent directory, the user does not own the
file, and the user is not a privileged user.

EBUSY The entry to be unlinked is the mount point for a mounted file system.

EFAULT The path argument points to an illegal address.

EILSEQ The path argument includes non-UTF8 characters and the file system
accepts only file names where all characters are part of the UTF-8 character
codeset.

EINTR A signal was caught during the execution of the unlink() function.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length of a path
component exceeds NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENOENT The named file does not exist or is a null pathname.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOTDIR A component of the path prefix is not a directory or the provided directory
descriptor for unlinkat() is not AT_FDCWD or does not reference a
directory.

EPERM The named file is a directory and {PRIV_SYS_LINKDIR} is not asserted in
the effective set of the calling process, or the filesystem implementation
does not support unlink() or unlinkat() on directories.

EROFS The directory entry to be unlinked is part of a read-only file system.

The unlink() and unlinkat() functions may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

ETXTBSY The entry to be unlinked is the last directory entry to a pure procedure
(shared text) file that is being executed.

Applications should use rmdir(2) to remove a directory.

See attributes(5) for descriptions of the following attributes:

Errors

Usage

Attributes

unlink(2)

man pages section 2: System Calls • Last Revised 18 May 2007370

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

rm(1), close(2), link(2), open(2), rmdir(2), remove(3C), attributes(5), privileges(5),
fsattr(5)

See Also

unlink(2)

System Calls 371

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1rm-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aremove-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5fsattr-5

ustat – get file system statistics

#include <sys/types.h>

#include <ustat.h>

int ustat(dev_t dev, struct ustat *buf);

The ustat() function returns information about a mounted file system. The dev argument is a
device number identifying a device containing a mounted file system (see makedev(3C)). The
buf argument is a pointer to a ustat structure that includes the following members:

daddr_t f_tfree; /* Total free blocks */

ino_t f_tinode; /* Number of free inodes */

char f_fname[6]; /* Filsys name */

char f_fpack[6]; /* Filsys pack name */

The f_fname and f_fpack members may not contain significant information on all systems;
in this case, these members will contain the null character as the first character.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The ustat() function will fail if:

ECOMM The dev argument is on a remote machine and the link to that machine is no
longer active.

EFAULT The buf argument points to an illegal address.

EINTR A signal was caught during the execution of the ustat() function.

EINVAL The dev argument is not the device number of a device containing a mounted
file system.

ENOLINK The dev argument refers to a device on a remote machine and the link to that
machine is no longer active.

EOVERFLOW One of the values returned cannot be represented in the structure pointed to
by buf.

The statvfs(2) function should be used in favor of ustat().

stat(2), statvfs(2), makedev(3C), lfcompile(5)

The NFS revision 2 protocol does not permit the number of free files to be provided to the
client; therefore, when ustat() has completed on an NFS file system, f_tinode is always −1.

Name

Synopsis

Description

Return Values

Errors

Usage

See Also

Bugs

ustat(2)

man pages section 2: System Calls • Last Revised 23 Jul 2001372

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amakedev-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amakedev-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lfcompile-5

utime – set file access and modification times

#include <sys/types.h>

#include <utime.h>

int utime(const char *path, const struct utimbuf *times);

The utime() function sets the access and modification times of the file pointed to by path, and
causes the time of the last file status change (st_ctime) to be updated.

If times is NULL, the access and modification times of the file are set to the current time. A
process must be the owner of the file or have write permission to use utime() in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf structure (defined in
<utime.h>) and the access and modification times are set to the values contained in the
designated structure. Only the owner of the file or a process that has the {PRIV_FILE_OWNER}
privilege asserted in its effective set can use utime() in this manner.

The utimbuf structure contains the following members:

time_t actime; /* access time */

time_t modtime; /* modification time */

The times contained in the members of the utimbuf structure are measured in seconds since
00:00:00 UTC, January 1, 1970.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The utime() function will fail if:

EACCES Search permission is denied by a component of the path prefix.

EACCES The process does not have appropriate privileges and is not the owner of
the file, write permission is denied for the file, and times is NULL.

EFAULT The path argument points to an illegal address.

EINTR A signal was caught during the execution of the utime() function.

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length of a path
component exceeds NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENOENT The named file does not exist or is a null pathname.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

Name

Synopsis

Description

Return Values

Errors

utime(2)

System Calls 373

ENOTDIR A component of the path prefix is not a directory.

EPERM The effective user of the calling process is not the owner of the file,
{PRIV_FILE_OWNER} is not asserted in the effective set of the calling process,
and times is not NULL.

EROFS The file system containing the file is mounted read-only.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

futimens(2), stat(2), utimes(2), attributes(5), privileges(5), standards(5)

Attributes

See Also

utime(2)

man pages section 2: System Calls • Last Revised 1 Sep 2009374

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

utimes, futimesat – set file access and modification times

#include <sys/time.h>

int utimes(const char *path, const struct timeval times[2]);

int futimesat(int fildes, const char *path,
const struct timeval times[2]);

The utimes() function sets the access and modification times of the file pointed to by the path
argument to the value of the times argument. It allows time specifications accurate to the
microsecond.

The futimesat() function also sets access and modification times. See fsattr(5). If path is a
relative path name, however, futimesat() resolves the path relative to the fildes argument
rather than the current working directory. If fildes is set to AT_FDCWD, defined in <fcntl.h>,
futimesat() resolves the path relative to the current working directory. If path is a null
pointer, futimesat() sets the access and modification times on the file referenced by fildes.
The fildes argument is ignored even when futimesat() is provided with an absolute path.

The times argument is an array of timeval structures. The first array member represents the
date and time of last access, and the second member represents the date and time of last
modification. The times in the timeval structure are measured in seconds and microseconds
since the Epoch, although rounding toward the nearest second may occur.

If the times argument is a null pointer, the access and modification times of the file are set to
the current time. The effective user ID of the process must be the same as the owner of the file,
or must have write access to the file or the {PRIV_FILE_OWNER} privilege to use this call in this
manner. Upon completion, utimes() will mark the time of the last file status change,
st_ctime, for update.

Upon successful completion, 0 is returned. Otherwise, −1 is returned, errno is set to indicate
the error, and the file times will not be affected.

The utimes() and futimesat() functions will fail if:

EACCES Search permission is denied by a component of the path prefix; or the times
argument is a null pointer and the effective user ID of the process does not
match the owner of the file and write access is denied.

EFAULT The path or times argument points to an illegal address. For futimesat(),
path might have the value NULL if the fildes argument refers to a valid open
file descriptor.

EINTR A signal was caught during the execution of the utimes() function.

EINVAL The number of microseconds specified in one or both of the timeval
structures pointed to by times was greater than or equal to 1,000,000 or less
than 0.

Name

Synopsis

Description

Return Values

Errors

utimes(2)

System Calls 375

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5fsattr-5

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP Too many symbolic links were encountered in resolving path.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOENT A component of path does not name an existing file or path is an empty
string.

ENOTDIR A component of the path prefix is not a directory or the path argument is
relative and the fildes argument is not AT_FDCWD or does not refer to a valid
directory.

EPERM The times argument is not a null pointer and the calling process's effective
user ID has write access to the file but does not match the owner of the file
and the calling process does not have the appropriate privileges.

EROFS The file system containing the file is read-only.

The utimes() and futimesat() functions may fail if:

ENAMETOOLONG Path name resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See below.

For utimes(), see standards(5).

futimens(2), stat(2), utime(2), attributes(5), fsattr(5), standards(5)

Attributes

See Also

utimes(2)

man pages section 2: System Calls • Last Revised 1 Sep 2009376

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5fsattr-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

uucopy – no-fault memory-to-memory copy

#include <strings.h>

int uucopy(const void *s1, void *s2, size_t n);

The uucopy() function copies n bytes from memory area s1 to s2. Copying between objects
that overlap could corrupt one or both buffers.

Unlike bcopy(3C), uucopy() does not cause a segmentation fault if either the source or
destination buffer includes an illegal address. Instead, it returns −1 and sets errno to EFAULT.
This error could occur after the operation has partially completed, so the contents of the buffer
at s2 are defined if the operation fails.

Upon successful completion, uucopy() returns 0. Otherwise, the function returns −1 and set
errno to indicate the error.

The uucopy() function will fail if:

EFAULT Either the s1 or s2 arguments points to an illegal address.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

bcopy(3C), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

uucopy(2)

System Calls 377

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Abcopy-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Abcopy-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5

vfork, vforkx – spawn new process in a virtual memory efficient way

#include <unistd.h>

pid_t vfork(void);

#include <sys/fork.h>

pid_t vforkx(int flags);

The vfork() and vforkx() functions create a new process without fully copying the address
space of the old process. These functions are useful in instances where the purpose of a
fork(2) operation is to create a new system context for an execve() operation (see exec(2)).

Unlike with the fork() function, the child process borrows the parent's memory and thread of
control until a call to execve() or an exit (either abnormally or by a call to _exit() (see
exit(2)). Any modification made during this time to any part of memory in the child process
is reflected in the parent process on return from vfork() or vforkx(). The parent process is
suspended while the child is using its resources.

In a multithreaded application, vfork() and vforkx() borrow only the thread of control that
called vfork() or vforkx() in the parent; that is, the child contains only one thread. The use
of vfork() or vforkx() in multithreaded applications, however, is unsafe due to race
conditions that can cause the child process to become deadlocked and consequently block
both the child and parent process from execution indefinitely.

The vfork() and vforkx() functions can normally be used the same way as fork() and
forkx(), respectively. The calling procedure, however, should not return while running in the
child's context, since the eventual return from vfork() or vforkx() in the parent would be to
a stack frame that no longer exists. The _exit() function should be used in favor of exit(3C)
if unable to perform an execve() operation, since exit() will invoke all functions registered
by atexit(3C) and will flush and close standard I/O channels, thereby corrupting the parent
process's standard I/O data structures. Care must be taken in the child process not to modify
any global or local data that affects the behavior of the parent process on return from vfork()

or vforkx(), unless such an effect is intentional.

Unlike fork() and forkx(), fork handlers are not run when vfork() and vforkx() are called.

The vfork() and vforkx() functions are deprecated. Their sole legitimate use as a prelude to
an immediate call to a function from the exec family can be achieved safely by
posix_spawn(3C) or posix_spawnp(3C).

The vforkx() function accepts a flags argument consisting of a bitwise inclusive-OR of zero
or more of the following flags, which are defined in the header <sys/fork.h>:

FORK_NOSIGCHLD

FORK_WAITPID

Name

Synopsis

Description

Fork Extensions

vfork(2)

man pages section 2: System Calls • Last Revised 13 Dec 2006378

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aexit-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aatexit-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aposix-spawn-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aposix-spawnp-3c

See fork(2) for descriptions of these flags. If the flags argument is 0, vforkx() is identical to
vfork().

Upon successful completion, vfork() and vforkx() return 0 to the child process and returns
the process ID of the child process to the parent process. Otherwise, −1 is returned to the
parent process, no child process is created, and errno is set to indicate the error.

The vfork() and vforkx() functions will fail if:

EAGAIN The system-imposed limit on the total number of processes under execution
(either system-quality or by a single user) would be exceeded. This limit is
determined when the system is generated.

ENOMEM There is insufficient swap space for the new process.

The vforkx() function will fail if:

EINVAL The flags argument is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

MT-Level Unsafe

exec(2), exit(2), fork(2), ioctl(2), atexit(3C), exit(3C), posix_spawn(3C),
posix_spawnp(3C), signal.h(3HEAD), wait(3C), attributes(5), standards(5)

To avoid a possible deadlock situation, processes that are children in the middle of a vfork()
or vforkx() are never sent SIGTTOU or SIGTTIN signals; rather, output or ioctls are allowed
and input attempts result in an EOF indication.

To forestall parent memory corruption due to race conditions with signal handling, vfork()
and vforkx() treat signal handlers in the child process in the same manner as the exec(2)
functions: signals set to be caught by the parent process are set to the default action (SIG_DFL)
in the child process (see signal.h(3HEAD)). Any attempt to set a signal handler in the child
before execve() to anything other than SIG_DFL or SIG_IGN is disallowed and results in
setting the handler to SIG_DFL.

On some systems, the implementation of vfork() and vforkx() cause the parent to inherit
register values from the child. This can create problems for certain optimizing compilers if
<unistd.h> is not included in the source calling vfork() or if <sys/fork.h> is not included
in the source calling vforkx().

Return Values

Errors

Attributes

See Also

Notes

vfork(2)

System Calls 379

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aatexit-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aexit-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aposix-spawn-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aposix-spawnp-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Await-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal.h-3head

vhangup – virtually “hangup” the current controlling terminal

#include <unistd.h>

void vhangup(void);

The vhangup() function is used by the initialization process init(1M) (among others) to
ensure that users are given “clean” terminals at login by revoking access of the previous users'
processes to the terminal. To effect this, vhangup() searches the system tables for references to
the controlling terminal of the invoking process and revokes access permissions on each
instance of the terminal that it finds. Further attempts to access the terminal by the affected
processes will yield I/O errors (EBADF or EIO). A SIGHUP (hangup signal) is sent to the process
group of the controlling terminal.

init(1M)

Access to the controlling terminal using /dev/tty is still possible.

This call should be replaced by an automatic mechanism that takes place on process exit.

Name

Synopsis

Description

See Also

Bugs

vhangup(2)

man pages section 2: System Calls • Last Revised 19 Mar 1998380

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Minit-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Minit-1m

waitid – wait for child process to change state

#include <wait.h>

int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

The waitid() function suspends the calling process until one of its child processes changes
state. It records the current state of a child in the structure pointed to by infop. It returns
immediately if a child process changed state prior to the call.

The idtype and id arguments specify which children waitid() is to wait for, as follows:

■ If idtype is P_PID, waitid() waits for the child with a process ID equal to (pid_t)id.
■ If idtype is P_PGID, waitid() waits for any child with a process group ID equal to

(pid_t)id.
■ If idtype is P_ALL, waitid() waits for any child and id is ignored.

The options argument is used to specify which state changes waitid() is to wait for. It is
formed by bitwise OR operation of any of the following flags:

WCONTINUED Return the status for any child that was stopped and has been continued.

WEXITED Wait for process(es) to exit.

WNOHANG Return immediately.

WNOWAIT Keep the process in a waitable state.

WSTOPPED Wait for and return the process status of any child that has stopped upon
receipt of a signal.

WTRAPPED Wait for traced process(es) to become trapped or reach a breakpoint (see
ptrace(3C)).

The infop argument must point to a siginfo_t structure, as defined in siginfo.h(3HEAD). If
waitid() returns because a child process was found that satisfies the conditions indicated by
the arguments idtype and options, then the structure pointed to by infop will be filled by the
system with the status of the process. The si_signo member will always be equal to SIGCHLD.

One instance of a SIGCHLD signal is queued for each child process whose status has changed. If
waitid() returns because the status of a child process is available and WNOWAIT was not
specified in options, any pending SIGCHLD signal associated with the process ID of that child
process is discarded. Any other pending SIGCHLD signals remain pending.

If waitid() returns due to a change of state of one of its children and WNOHANG was not used, 0
is returned. Otherwise, −1 is returned and errno is set to indicate the error. If WNOHANG was
used, 0 can be returned (indicating no error); however, no children may have changed state if
info->si_pid is 0.

Name

Synopsis

Description

Return Values

waitid(2)

System Calls 381

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aptrace-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsiginfo.h-3head

The waitid() function will fail if:

ECHILD The set of processes specified by idtype and id does not contain any unwaited
processes.

EFAULT The infop argument points to an illegal address.

EINTR The waitid() function was interrupted due to the receipt of a signal by the calling
process.

EINVAL An invalid value was specified for options, or idtype and id specify an invalid set of
processes.

With options equal to WEXITED | WTRAPPED, waitid() is equivalent to waitpid(3C). With
idtype equal to P_ALL and options equal to WEXITED | WTRAPPED, waitid() is equivalent to
wait(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

Intro(2), exec(2), exit(2), fork(2), pause(2), sigaction(2), ptrace(3C), signal(3C),
siginfo.h(3HEAD), wait(3C), waitpid(3C), attributes(5), standards(5)

Errors

Usage

Attributes

See Also

waitid(2)

man pages section 2: System Calls • Last Revised 9 Jun 2004382

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Awaitpid-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Await-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Aptrace-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsiginfo.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Await-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Awaitpid-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5

write, pwrite, writev – write on a file

#include <unistd.h>

ssize_t write(int fildes, const void *buf, size_t nbyte);

ssize_t pwrite(int fildes, const void *buf, size_t nbyte,
off_t offset);

#include <sys/uio.h>

ssize_t writev(int fildes, const struct iovec *iov, int iovcnt);

The write() function attempts to write nbyte bytes from the buffer pointed to by buf to the file
associated with the open file descriptor, fildes.

If nbyte is 0, write() will return 0 and have no other results if the file is a regular file;
otherwise, the results are unspecified.

On a regular file or other file capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file offset associated with fildes. Before successful return
from write(), the file offset is incremented by the number of bytes actually written. On a
regular file, if this incremented file offset is greater than the length of the file, the length of the
file will be set to this file offset.

If the O_SYNC bit has been set, write I/O operations on the file descriptor complete as defined
by synchronized I/O file integrity completion.

If fildes refers to a socket, write() is equivalent to send(3SOCKET) with no flags set.

On a file not capable of seeking, writing always takes place starting at the current position. The
value of a file offset associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file offset will be set to the end of the file
prior to each write and no intervening file modification operation will occur between
changing the file offset and the write operation.

For regular files, no data transfer will occur past the offset maximum established in the open
file description with fildes.

A write() to a regular file is blocked if mandatory file/record locking is set (see chmod(2)), and
there is a record lock owned by another process on the segment of the file to be written:

■ If O_NDELAY or O_NONBLOCK is set, write() returns −1 and sets errno to EAGAIN.
■ If O_NDELAY and O_NONBLOCK are clear, write() sleeps until all blocking locks are removed

or the write() is terminated by a signal.

If a write() requests that more bytes be written than there is room for—for example, if the
write would exceed the process file size limit (see getrlimit(2) and ulimit(2)), the system file
size limit, or the free space on the device—only as many bytes as there is room for will be

Name

Synopsis

Description

write(2)

System Calls 383

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Bsend-3socket

written. For example, suppose there is space for 20 bytes more in a file before reaching a limit.
A write() of 512-bytes returns 20. The next write() of a non-zero number of bytes gives a
failure return (except as noted for pipes and FIFO below).

If write() is interrupted by a signal before it writes any data, it will return −1 with errno set to
EINTR.

If write() is interrupted by a signal after it successfully writes some data, it will return the
number of bytes written.

If write() exceeds the process file size limit, the application generates a SIGXFSZ signal, whose
default behavior is to dump core.

After a write() to a regular file has successfully returned:

■ Any successful read(2) from each byte position in the file that was modified by that write
will return the data specified by the write() for that position until such byte positions are
again modified.

■ Any subsequent successful write() to the same byte position in the file will overwrite that
file data.

Write requests to a pipe or FIFO are handled the same as a regular file with the following
exceptions:

■ There is no file offset associated with a pipe, hence each write request appends to the end of
the pipe.

■ Write requests of {PIPE_BUF} bytes or less are guaranteed not to be interleaved with data
from other processes doing writes on the same pipe. Writes of greater than {PIPE_BUF}

bytes may have data interleaved, on arbitrary boundaries, with writes by other processes,
whether or not the O_NONBLOCK or O_NDELAY flags are set.

■ If O_NONBLOCK and O_NDELAY are clear, a write request may cause the process to block, but
on normal completion it returns nbyte.

■ If O_NONBLOCK and O_NDELAY are set, write() does not block the process. If a write()
request for PIPE_BUF or fewer bytes succeeds completely write() returns nbyte.
Otherwise, if O_NONBLOCK is set, it returns −1 and sets errno to EAGAIN or if O_NDELAY is set,
it returns 0. A write() request for greater than {PIPE_BUF} bytes transfers what it can and
returns the number of bytes written or it transfers no data and, if O_NONBLOCK is set, returns
−1 with errno set to EAGAIN or if O_NDELAY is set, it returns 0. Finally, if a request is greater
than PIPE_BUF bytes and all data previously written to the pipe has been read, write()
transfers at least PIPE_BUF bytes.

write(2)

man pages section 2: System Calls • Last Revised 24 Mar 2011384

When attempting to write to a file descriptor (other than a pipe, a FIFO, a socket, or a stream)
that supports nonblocking writes and cannot accept the data immediately:

■ If O_NONBLOCK and O_NDELAY are clear, write() blocks until the data can be accepted.
■ If O_NONBLOCK or O_NDELAY is set, write() does not block the process. If some data can be

written without blocking the process, write() writes what it can and returns the number
of bytes written. Otherwise, if O_NONBLOCK is set, it returns −1 and sets errno to EAGAIN or
if O_NDELAY is set, it returns 0.

Upon successful completion, where nbyte is greater than 0, write() will mark for update the
st_ctime and st_mtime fields of the file, and if the file is a regular file, the S_ISUID and
S_ISGID bits of the file mode may be cleared.

For streams files (see Intro(2) and streamio(7I)), the operation of write() is determined by
the values of the minimum and maximum nbyte range (“packet size”) accepted by the stream.
These values are contained in the topmost stream module, and can not be set or tested from
user level. If nbyte falls within the packet size range, nbyte bytes are written. If nbyte does not
fall within the range and the minimum packet size value is zero, write() breaks the buffer into
maximum packet size segments prior to sending the data downstream (the last segment may
be smaller than the maximum packet size). If nbyte does not fall within the range and the
minimum value is non-zero, write() fails and sets errno to ERANGE. Writing a zero-length
buffer (nbyte is zero) to a streams device sends a zero length message with zero returned.
However, writing a zero-length buffer to a pipe or FIFO sends no message and zero is
returned. The user program may issue the I_SWROPT ioctl(2) to enable zero-length messages
to be sent across the pipe or FIFO (see streamio(7I)).

When writing to a stream, data messages are created with a priority band of zero. When
writing to a socket or to a stream that is not a pipe or a FIFO:

■ If O_NDELAY and O_NONBLOCK are not set, and the stream cannot accept data (the stream
write queue is full due to internal flow control conditions), write() blocks until data can
be accepted.

■ If O_NDELAY or O_NONBLOCK is set and the stream cannot accept data, write() returns -1
and sets errno to EAGAIN.

■ If O_NDELAY or O_NONBLOCK is set and part of the buffer has already been written when a
condition occurs in which the stream cannot accept additional data, write() terminates
and returns the number of bytes written.

The write() and writev() functions will fail if the stream head had processed an
asynchronous error before the call. In this case, the value of errno does not reflect the result of
write() or writev() but reflects the prior error.

The pwrite() function is equivalent to write(), except that it writes into a given position and
does not change the file offset (regardless of whether O_APPEND is set). The first three
arguments to pwrite() are the same as write(), with the addition of a fourth argument offset
for the desired position inside the file.

pwrite()

write(2)

System Calls 385

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7streamio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7streamio-7i

The writev() function performs the same action as write(), but gathers the output data
from the iovcnt buffers specified by the members of the iov array: iov[0], iov[1], …,
iov[iovcnt − 1]. The iovcnt buffer is valid if greater than 0 and less than or equal to {IOV_MAX}.
See Intro(2) for a definition of {IOV_MAX}.

The iovec structure contains the following members:

void *iov_base;

size_t iov_len;

Each iovec entry specifies the base address and length of an area in memory from which data
should be written. The writev() function always writes all data from an area before
proceeding to the next.

If fildes refers to a regular file and all of the iov_len members in the array pointed to by iov are
0, writev() will return 0 and have no other effect. For other file types, the behavior is
unspecified.

If the sum of the iov_len values is greater than SSIZE_MAX, the operation fails and no data is
transferred.

Upon successful completion, write() returns the number of bytes actually written to the file
associated with fildes. This number is never greater than nbyte. Otherwise, −1 is returned, the
file-pointer remains unchanged, and errno is set to indicate the error.

Upon successful completion, writev() returns the number of bytes actually written.
Otherwise, it returns −1, the file-pointer remains unchanged, and errno is set to indicate an
error.

The write(), pwrite(), and writev() functions will fail if:

EAGAIN Mandatory file/record locking is set, O_NDELAY or O_NONBLOCK is set, and there is
a blocking record lock; an attempt is made to write to a stream that can not
accept data with the O_NDELAY or O_NONBLOCK flag set; or a write to a pipe or FIFO
of PIPE_BUF bytes or less is requested and less than nbytes of free space is
available.

EBADF The fildes argument is not a valid file descriptor open for writing.

EDEADLK The write was going to go to sleep and cause a deadlock situation to occur.

EDQUOT The user's quota of disk blocks on the file system containing the file has been
exhausted.

EFBIG An attempt is made to write a file that exceeds the process's file size limit or the
maximum file size (see getrlimit(2) and ulimit(2)).

EFBIG The file is a regular file, nbyte is greater than 0, and the starting position is greater
than or equal to the offset maximum established in the file description associated
with fildes.

writev()

Return Values

Errors

write(2)

man pages section 2: System Calls • Last Revised 24 Mar 2011386

EINTR A signal was caught during the write operation and no data was transferred.

EIO The process is in the background and is attempting to write to its controlling
terminal whose TOSTOP flag is set, or the process is neither ignoring nor blocking
SIGTTOU signals and the process group of the process is orphaned.

ENOLCK Enforced record locking was enabled and {LOCK_MAX} regions are already locked
in the system, or the system record lock table was full and the write could not go
to sleep until the blocking record lock was removed.

ENOLINK The fildes argument is on a remote machine and the link to that machine is no
longer active.

ENOSPC During a write to an ordinary file, there is no free space left on the device.

ENOSR An attempt is made to write to a streams with insufficient streams memory
resources available in the system.

ENXIO A hangup occurred on the stream being written to.

EPIPE An attempt is made to write to a pipe or a FIFO that is not open for reading by
any process, or that has only one end open (or to a file descriptor created by
socket(3SOCKET), using type SOCK_STREAM that is no longer connected to a
peer endpoint). A SIGPIPE signal will also be sent to the thread. The process dies
unless special provisions were taken to catch or ignore the signal.

ERANGE The transfer request size was outside the range supported by the streams file
associated with fildes.

The write() and pwrite() functions will fail if:

EFAULT The buf argument points to an illegal address.

EINVAL The nbyte argument overflowed an ssize_t.

The pwrite() function fails and the file pointer remains unchanged if:

ESPIPE The fildes argument is associated with a pipe or FIFO.

The write() and writev() functions may fail if:

EINVAL The stream or multiplexer referenced by fildes is linked (directly or indirectly)
downstream from a multiplexer.

ENXIO A request was made of a non-existent device, or the request was outside the
capabilities of the device.

ENXIO A hangup occurred on the stream being written to.

A write to a streams file may fail if an error message has been received at the stream head. In
this case, errno is set to the value included in the error message.

write(2)

System Calls 387

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Bsocket-3socket

The writev() function may fail if:

EINVAL The iovcnt argument was less than or equal to 0 or greater than {IOV_MAX}; one of
the iov_len values in the iov array was negative; or the sum of the iov_len values
in the iov array overflowed an ssize_t.

The pwrite() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level write() is Async-Signal-Safe

Standard See standards(5).

Intro(2), chmod(2), creat(2), dup(2), fcntl(2), getrlimit(2), ioctl(2), lseek(2), open(2),
pipe(2), ulimit(2), send(3SOCKET), socket(3SOCKET), attributes(5), lf64(5),
standards(5), streamio(7I)

Usage

Attributes

See Also

write(2)

man pages section 2: System Calls • Last Revised 24 Mar 2011388

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Bsend-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Bsocket-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7streamio-7i

yield – yield execution to another lightweight process

#include <unistd.h>

void yield(void);

The yield() function causes the current lightweight process to yield its execution in favor of
another lightweight process with the same or greater priority.

thr_yield(3C)

Name

Synopsis

Description

See Also

yield(2)

System Calls 389

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Athr-yield-3c

390

	man pages section 2: System Calls
	Preface
	Overview

	Introduction
	Intro(2)

	System Calls
	access(2)
	acct(2)
	acl(2)
	adjtime(2)
	alarm(2)
	brk(2)
	chdir(2)
	chmod(2)
	chown(2)
	chroot(2)
	close(2)
	creat(2)
	dup(2)
	exec(2)
	execvex(2)
	exit(2)
	fcntl(2)
	fork(2)
	fpathconf(2)
	futimens(2)
	getacct(2)
	getcontext(2)
	getdents(2)
	getgroups(2)
	getisax(2)
	getitimer(2)
	getlabel(2)
	getmsg(2)
	getpflags(2)
	getpid(2)
	getppriv(2)
	getrlimit(2)
	getsid(2)
	getuid(2)
	getustack(2)
	ioctl(2)
	issetugid(2)
	kill(2)
	link(2)
	llseek(2)
	lseek(2)
	_lwp_cond_signal(2)
	_lwp_cond_wait(2)
	_lwp_info(2)
	_lwp_kill(2)
	_lwp_mutex_lock(2)
	_lwp_self(2)
	_lwp_sema_wait(2)
	_lwp_suspend(2)
	memcntl(2)
	meminfo(2)
	mincore(2)
	mkdir(2)
	mknod(2)
	mmap(2)
	mmapobj(2)
	mount(2)
	mprotect(2)
	msgctl(2)
	msgget(2)
	msgids(2)
	msgrcv(2)
	msgsnap(2)
	msgsnd(2)
	munmap(2)
	nice(2)
	ntp_adjtime(2)
	ntp_gettime(2)
	open(2)
	pause(2)
	pcsample(2)
	pipe(2)
	poll(2)
	p_online(2)
	priocntl(2)
	priocntlset(2)
	processor_bind(2)
	processor_info(2)
	profil(2)
	pset_bind(2)
	pset_create(2)
	pset_info(2)
	pset_list(2)
	pset_setattr(2)
	putmsg(2)
	read(2)
	readlink(2)
	rename(2)
	resolvepath(2)
	rmdir(2)
	semctl(2)
	semget(2)
	semids(2)
	semop(2)
	setpgid(2)
	setpgrp(2)
	setrctl(2)
	setregid(2)
	setreuid(2)
	setsid(2)
	settaskid(2)
	setuid(2)
	shmadv(2)
	shmctl(2)
	shmget(2)
	shmids(2)
	shmop(2)
	sigaction(2)
	sigaltstack(2)
	sigpending(2)
	sigprocmask(2)
	sigsend(2)
	sigsuspend(2)
	sigwait(2)
	__sparc_utrap_install(2)
	stat(2)
	statvfs(2)
	stime(2)
	swapctl(2)
	symlink(2)
	sync(2)
	sysfs(2)
	sysinfo(2)
	time(2)
	times(2)
	uadmin(2)
	ulimit(2)
	umask(2)
	umount(2)
	uname(2)
	unlink(2)
	ustat(2)
	utime(2)
	utimes(2)
	uucopy(2)
	vfork(2)
	vhangup(2)
	waitid(2)
	write(2)
	yield(2)

