
Oracle® Solaris 11.1 Administration: ZFS File
Systems

Part No: E29007–05
September 2013

Copyright © 2006, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions
d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est
interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que
prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes
d’erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel
ou l’utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est
destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel
dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures
nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés
par l’utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à
d’autres propriétaires qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des
marques déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro
Devices. UNIX est une marque déposée d’The Open Group.

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services
émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En
aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l’accès à
des contenus, produits ou services tiers, ou à leur utilisation.

130903@25097

Contents

Preface ...11

1 Oracle Solaris ZFS File System (Introduction) ... 15
What's New in ZFS? ... 15

Improved ZFS Pool Device Messages .. 16
ZFS File Sharing Improvements ... 16
Shared var File System .. 17
Boot Support for EFI (GPT) Labeled Disks .. 17
ZFS Command Usage Enhancements ... 18
ZFS Snapshot Enhancements ... 18
ZFS Manual Page Change (zfs.1m) ... 19
Improved aclmode Property ... 19
Identifying Pool Devices By Physical Location .. 20
ZFS Shadow Migration .. 21
ZFS File System Encryption .. 21
ZFS Send Stream Enhancements ... 21
ZFS Snapshot Differences (zfs diff) ..22
ZFS Storage Pool Recovery and Performance Enhancements .. 22
Tuning ZFS Synchronous Behavior .. 23
Improved ZFS Pool Messages ... 23
ZFS ACL Interoperability Enhancements ... 24
Splitting a Mirrored ZFS Storage Pool (zpool split) ...25
ZFS iSCSI Changes .. 25
New ZFS System Process ... 25
ZFS Deduplication Property ... 26

What Is Oracle Solaris ZFS? ... 26
ZFS Pooled Storage .. 27
Transactional Semantics ... 27

3

Checksums and Self-Healing Data ... 28
Unparalleled Scalability .. 28
ZFS Snapshots .. 28
Simplified Administration .. 28

ZFS Terminology ... 29
ZFS Component Naming Requirements .. 31
Oracle Solaris ZFS and Traditional File System Differences .. 31

ZFS File System Granularity ... 31
ZFS Disk Space Accounting .. 32
Mounting ZFS File Systems .. 34
Traditional Volume Management ... 34
Solaris ACL Model Based on NFSv4 .. 34

2 Getting Started With Oracle Solaris ZFS .. 35
ZFS Rights Profiles .. 35
ZFS Hardware and Software Requirements and Recommendations .. 36
Creating a Basic ZFS File System ... 36
Creating a Basic ZFS Storage Pool ... 37

▼ How to Identify Storage Requirements for Your ZFS Storage Pool 37
▼ How to Create a ZFS Storage Pool .. 38

Creating a ZFS File System Hierarchy ... 38
▼ How to Determine Your ZFS File System Hierarchy ... 39
▼ How to Create ZFS File Systems ... 39

3 Managing Oracle Solaris ZFS Storage Pools ... 43
Components of a ZFS Storage Pool ... 43

Using Disks in a ZFS Storage Pool ... 43
Using Slices in a ZFS Storage Pool ... 45
Using Files in a ZFS Storage Pool ... 46
Considerations for ZFS Storage Pools ... 47

Replication Features of a ZFS Storage Pool .. 47
Mirrored Storage Pool Configuration ... 48
RAID-Z Storage Pool Configuration ... 48
ZFS Hybrid Storage Pool ... 49
Self-Healing Data in a Redundant Configuration .. 49

Contents

Oracle Solaris 11.1 Administration: ZFS File Systems • September 20134

Dynamic Striping in a Storage Pool ... 49
Creating and Destroying ZFS Storage Pools .. 50

Creating ZFS Storage Pools ... 50
Displaying Storage Pool Virtual Device Information .. 56
Handling ZFS Storage Pool Creation Errors ... 57
Destroying ZFS Storage Pools .. 60

Managing Devices in ZFS Storage Pools ... 61
Adding Devices to a Storage Pool ... 61
Attaching and Detaching Devices in a Storage Pool .. 66
Creating a New Pool By Splitting a Mirrored ZFS Storage Pool ... 68
Onlining and Offlining Devices in a Storage Pool .. 71
Clearing Storage Pool Device Errors ... 73
Replacing Devices in a Storage Pool .. 73
Designating Hot Spares in Your Storage Pool .. 76

Managing ZFS Storage Pool Properties .. 81
Querying ZFS Storage Pool Status ... 84

Displaying Information About ZFS Storage Pools ... 84
Viewing I/O Statistics for ZFS Storage Pools .. 89
Determining the Health Status of ZFS Storage Pools .. 91

Migrating ZFS Storage Pools .. 96
Preparing for ZFS Storage Pool Migration .. 96
Exporting a ZFS Storage Pool ... 97
Determining Available Storage Pools to Import .. 97
Importing ZFS Storage Pools From Alternate Directories .. 99
Importing ZFS Storage Pools .. 99
Recovering Destroyed ZFS Storage Pools ... 102

Upgrading ZFS Storage Pools .. 104

4 Managing ZFS Root Pool Components .. 107
Managing ZFS Root Pool Components (Overview) ... 107

ZFS Root Pool Requirements ... 108
Managing Your ZFS Root Pool .. 110

Installing a ZFS Root Pool ... 110
▼ How to Update Your ZFS Boot Environment .. 111
▼ How to Mount an Alternate BE .. 112

Contents

5

▼ How to Configure a Mirrored Root Pool (SPARC or x86/VTOC) 112
▼ How to Configure a Mirrored Root Pool (x86/EFI (GPT)) ... 114
▼ How to Replace a Disk in a ZFS Root Pool (SPARC or x86/VTOC) 115
▼ How to Replace a Disk in a ZFS Root Pool (SPARC or x86/EFI (GPT)) 117
▼ How to Create a BE in Another Root Pool (SPARC or x86/VTOC) 119
▼ How to Create a BE in Another Root Pool (SPARC or x86/EFI (GPT)) 120

Managing Your ZFS Swap and Dump Devices .. 121
Adjusting the Sizes of Your ZFS Swap and Dump Devices ... 122
Troubleshooting ZFS Dump Device Issues .. 123

Booting From a ZFS Root File System .. 124
Booting From an Alternate Disk in a Mirrored ZFS Root Pool .. 124
Booting From a ZFS Root File System on a SPARC Based System 126
Booting From a ZFS Root File System on an x86 Based System ... 127
Booting For Recovery Purposes in a ZFS Root Environment .. 129

5 Managing Oracle Solaris ZFS File Systems .. 133
Managing ZFS File Systems (Overview) ... 133
Creating, Destroying, and Renaming ZFS File Systems ... 134

Creating a ZFS File System .. 134
Destroying a ZFS File System ... 135
Renaming a ZFS File System ... 136

Introducing ZFS Properties .. 137
ZFS Read-Only Native Properties .. 148
Settable ZFS Native Properties ... 149
ZFS User Properties ... 155

Querying ZFS File System Information .. 156
Listing Basic ZFS Information .. 156
Creating Complex ZFS Queries ... 157

Managing ZFS Properties ... 159
Setting ZFS Properties ... 159
Inheriting ZFS Properties ... 160
Querying ZFS Properties ... 161

Mounting ZFS File Systems .. 164
Managing ZFS Mount Points .. 164
Mounting ZFS File Systems .. 166

Contents

Oracle Solaris 11.1 Administration: ZFS File Systems • September 20136

Using Temporary Mount Properties ... 167
Unmounting ZFS File Systems ... 168

Sharing and Unsharing ZFS File Systems ... 168
Legacy ZFS Sharing Syntax ... 169
New ZFS Sharing Syntax ... 170
ZFS Sharing Migration/Transition Issues ... 176
Troubleshooting ZFS File System Sharing Problems .. 177

Setting ZFS Quotas and Reservations ... 178
Setting Quotas on ZFS File Systems ... 179
Setting Reservations on ZFS File Systems ... 182

Encrypting ZFS File Systems .. 184
Changing an Encrypted ZFS File System's Keys ... 186
Mounting an Encrypted ZFS File System .. 187
Upgrading Encrypted ZFS File Systems .. 188
Interactions Between ZFS Compression, Deduplication, and Encryption Properties 189
Examples of Encrypting ZFS File Systems .. 189

Migrating ZFS File Systems .. 191
▼ How to Migrate a File System to a ZFS File System .. 192

Troubleshooting ZFS File System Migrations .. 193
Upgrading ZFS File Systems .. 194

6 Working With Oracle Solaris ZFS Snapshots and Clones .. 195
Overview of ZFS Snapshots .. 195

Creating and Destroying ZFS Snapshots .. 196
Displaying and Accessing ZFS Snapshots ... 199
Rolling Back a ZFS Snapshot .. 200
Identifying ZFS Snapshot Differences (zfs diff) ... 201

Overview of ZFS Clones ... 202
Creating a ZFS Clone ... 203
Destroying a ZFS Clone ... 203
Replacing a ZFS File System With a ZFS Clone .. 203

Sending and Receiving ZFS Data ... 204
Saving ZFS Data With Other Backup Products .. 205
Identifying ZFS Snapshot Streams ... 205
Sending a ZFS Snapshot .. 207

Contents

7

Receiving a ZFS Snapshot ... 208
Applying Different Property Values to a ZFS Snapshot Stream ... 210
Sending and Receiving Complex ZFS Snapshot Streams .. 212
Remote Replication of ZFS Data .. 214

7 Using ACLs and Attributes to Protect Oracle Solaris ZFS Files ..215
Solaris ACL Model ... 215

Syntax Descriptions for Setting ACLs ... 216
ACL Inheritance ... 220
ACL Properties ... 221

Setting ACLs on ZFS Files ... 222
Setting and Displaying ACLs on ZFS Files in Verbose Format .. 224

Setting ACL Inheritance on ZFS Files in Verbose Format .. 229
Setting and Displaying ACLs on ZFS Files in Compact Format .. 235
Applying Special Attributes to ZFS Files ... 240

8 Oracle Solaris ZFS Delegated Administration .. 243
Overview of ZFS Delegated Administration .. 243

Disabling ZFS Delegated Permissions ... 244
Delegating ZFS Permissions ... 244

Delegating ZFS Permissions (zfs allow) ... 247
Removing ZFS Delegated Permissions (zfs unallow) ... 248

Delegating ZFS Permissions (Examples) .. 248
Displaying ZFS Delegated Permissions (Examples) ... 252
Removing ZFS Delegated Permissions (Examples) .. 253

9 Oracle Solaris ZFS Advanced Topics ... 255
ZFS Volumes .. 255

Using a ZFS Volume as a Swap or Dump Device ... 256
Using a ZFS Volume as an iSCSI LUN .. 257

Using ZFS on a Solaris System With Zones Installed .. 258
Adding ZFS File Systems to a Non-Global Zone .. 259
Delegating Datasets to a Non-Global Zone .. 259
Adding ZFS Volumes to a Non-Global Zone ... 260

Contents

Oracle Solaris 11.1 Administration: ZFS File Systems • September 20138

Using ZFS Storage Pools Within a Zone ... 261
Managing ZFS Properties Within a Zone ... 261
Understanding the zoned Property ... 262
Copying Zones to Other Systems ... 263

Using ZFS Alternate Root Pools .. 263
Creating ZFS Alternate Root Pools .. 264
Importing Alternate Root Pools ... 264

10 Oracle Solaris ZFS Troubleshooting and Pool Recovery ... 265
Resolving ZFS Space Issues .. 265

ZFS File System Space Reporting ... 265
ZFS Storage Pool Space Reporting ... 266

Identifying ZFS Failures .. 267
Missing Devices in a ZFS Storage Pool .. 267
Damaged Devices in a ZFS Storage Pool ... 268
Corrupted ZFS Data .. 268

Checking ZFS File System Integrity .. 268
File System Repair .. 268
File System Validation ... 269
Controlling ZFS Data Scrubbing ... 269

Resolving Problems With ZFS ... 271
Determining If Problems Exist in a ZFS Storage Pool ... 272
Reviewing zpool status Output .. 272
System Reporting of ZFS Error Messages ... 275

Repairing a Damaged ZFS Configuration .. 276
Resolving a Missing Device .. 276

Physically Reattaching a Device ... 279
Notifying ZFS of Device Availability ... 279

Replacing or Repairing a Damaged Device .. 280
Determining the Type of Device Failure ... 280
Clearing Transient Errors ... 281
Replacing a Device in a ZFS Storage Pool ... 282

Repairing Damaged Data ... 289
Identifying the Type of Data Corruption .. 290
Repairing a Corrupted File or Directory ... 291

Contents

9

Repairing ZFS Storage Pool-Wide Damage .. 292
Repairing an Unbootable System .. 294

11 Archiving Snapshots and Root Pool Recovery .. 295
Overview of ZFS Recovery Process ... 295

ZFS Pool Recovery Requirements .. 296
Creating a ZFS Snapshot Archive for Recovery ... 296

▼ How to Create a ZFS Snapshot Archive .. 297
Recreating Your Root Pool and Recovering Root Pool Snapshots .. 298

▼ How to Recreate the Root Pool on the Recovery System ... 298

12 Recommended Oracle Solaris ZFS Practices ... 303
Recommended Storage Pool Practices .. 303

General System Practices .. 303
ZFS Storage Pool Creation Practices .. 304
Storage Pool Practices for Performance .. 308
ZFS Storage Pool Maintenance and Monitoring Practices ... 309

Recommended File System Practices .. 310
File System Creation Practices .. 310
Monitoring ZFS File System Practices ... 311

A Oracle Solaris ZFS Version Descriptions .. 313
Overview of ZFS Versions .. 313
ZFS Pool Versions ... 313
ZFS File System Versions .. 315

Index ... 317

Contents

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201310

Preface

The Oracle Solaris 11.1 ZFS Administration Guide provides information about setting up and
managing Oracle Solaris ZFS file systems.

This guide contains information for both SPARC based and x86 based systems.

Note – This Oracle Solaris release supports systems that use the SPARC and x86 families of
processor architectures. The supported systems appear in the Oracle Solaris Hardware
Compatibility List at http://www.oracle.com/webfolder/technetwork/hcl/index.html. This
document cites any implementation differences between the platform types.

Who Should Use This Book
This guide is intended for anyone who is interested in setting up and managing Oracle Solaris
ZFS file systems. Experience using the Oracle Solaris operating system (OS) or another UNIX
version is recommended.

How This Book Is Organized
The following table describes the chapters in this book.

Chapter Description

Chapter 1, “Oracle Solaris ZFS
File System (Introduction)”

Provides an overview of ZFS and its features and benefits. It also covers some
basic concepts and terminology.

Chapter 2, “Getting Started
With Oracle Solaris ZFS”

Provides step-by-step instructions on setting up basic ZFS configurations
with basic pools and file systems. This chapter also provides the hardware
and software required to create ZFS file systems.

Chapter 3, “Managing Oracle
Solaris ZFS Storage Pools”

Provides a detailed description of how to create and administer ZFS storage
pools.

Chapter 4, “Managing ZFS
Root Pool Components”

Describes how to manage ZFS root pool components, such as configuring a
mirrored root pool, upgrading your ZFS boot environments, and resizing
swap and dump devices.

11

http://www.oracle.com/webfolder/technetwork/hcl/index.html

Chapter Description

Chapter 5, “Managing Oracle
Solaris ZFS File Systems”

Provides detailed information about managing ZFS file systems. Included are
such concepts as the hierarchical file system layout, property inheritance,
and automatic mount point management and share interactions.

Chapter 6, “Working With
Oracle Solaris ZFS Snapshots
and Clones”

Describes how to create and administer ZFS snapshots and clones.

Chapter 7, “Using ACLs and
Attributes to Protect Oracle
Solaris ZFS Files”

Describes how to use access control lists (ACLs) to protect your ZFS files by
providing more granular permissions than the standard UNIX permissions.

Chapter 8, “Oracle Solaris ZFS
Delegated Administration”

Describes how to use ZFS delegated administration to allow nonprivileged
users to perform ZFS administration tasks.

Chapter 9, “Oracle Solaris ZFS
Advanced Topics”

Provides information about using ZFS volumes, using ZFS on an Oracle
Solaris system with zones installed, and using alternate root pools.

Chapter 10, “Oracle Solaris ZFS
Troubleshooting and Pool
Recovery”

Describes how to identify ZFS failures and how to recover from them. Steps
for preventing failures are covered as well.

Chapter 11, “Archiving
Snapshots and Root Pool
Recovery”

Describes how to archive root pool snapshots and perform root pool
recovery.

Chapter 12, “Recommended
Oracle Solaris ZFS Practices”

Describes recommended practices for creating, monitoring, and maintaining
your ZFS storage pools and file systems.

Appendix A, “Oracle Solaris
ZFS Version Descriptions”

Describes available ZFS versions, features of each version, and the Solaris OS
that provides the ZFS version and feature.

Related Books
Related information about general Oracle Solaris system administration topics can be found in
the following books:

■ Managing System Information, Processes, and Performance in Oracle Solaris 11.1
■ Managing User Accounts and User Environments in Oracle Solaris 11.1
■ Oracle Solaris 11.1 Administration: Devices and File Systems
■ Oracle Solaris 11.1 Administration: Security Services

Preface

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201312

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=ADSYS
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=ADUSR
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFS
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SYSADV6

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Description Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in Command Examples
The following table shows UNIX system prompts and superuser prompts for shells that are
included in the Oracle Solaris OS. In command examples, the shell prompt indicates whether
the command should be executed by a regular user or a user with privileges.

TABLE P–2 Shell Prompts

Shell Prompt

Bash shell, Korn shell, and Bourne shell $

Preface

13

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

TABLE P–2 Shell Prompts (Continued)
Shell Prompt

Bash shell, Korn shell, and Bourne shell for superuser #

C shell machine_name%

C shell for superuser machine_name#

Preface

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201314

Oracle Solaris ZFS File System (Introduction)

This chapter provides an overview of the Oracle Solaris ZFS file system and its features and
benefits. This chapter also covers some basic terminology used throughout the rest of this book.

The following sections are provided in this chapter:

■ “What's New in ZFS?” on page 15
■ “What Is Oracle Solaris ZFS?” on page 26
■ “ZFS Terminology” on page 29
■ “ZFS Component Naming Requirements” on page 31
■ “Oracle Solaris ZFS and Traditional File System Differences” on page 31

What's New in ZFS?
This section summarizes new features in the ZFS file system.

■ “Improved ZFS Pool Device Messages” on page 16
■ “ZFS File Sharing Improvements” on page 16
■ “Shared var File System” on page 17
■ “Boot Support for EFI (GPT) Labeled Disks” on page 17
■ “ZFS Command Usage Enhancements” on page 18
■ “ZFS Snapshot Enhancements” on page 18
■ “ZFS Manual Page Change (zfs.1m)” on page 19
■ “Improved aclmode Property” on page 19
■ “Identifying Pool Devices By Physical Location” on page 20
■ “ZFS Shadow Migration” on page 21
■ “ZFS File System Encryption” on page 21
■ “ZFS Send Stream Enhancements” on page 21
■ “ZFS Snapshot Differences (zfs diff)” on page 22
■ “ZFS Storage Pool Recovery and Performance Enhancements” on page 22
■ “Tuning ZFS Synchronous Behavior” on page 23
■ “Improved ZFS Pool Messages” on page 23

1C H A P T E R 1

15

■ “ZFS ACL Interoperability Enhancements” on page 24
■ “Splitting a Mirrored ZFS Storage Pool (zpool split)” on page 25
■ “ZFS iSCSI Changes” on page 25
■ “New ZFS System Process” on page 25
■ “ZFS Deduplication Property” on page 26

Improved ZFS Pool Device Messages
Oracle Solaris 11.1: The zpool status command has been enhanced to provide more detailed
information about device failures. The zpool status output in this example identifies a pool
device (c0t5000C500335F907Fd0) that is UNAVAIL due to persistent errors and it should be
replaced.

zpool status -v pond

pool: pond

state: DEGRADED

status: One or more devices are unavailable in response to persistent errors.

Sufficient replicas exist for the pool to continue functioning in a

degraded state.

action: Determine if the device needs to be replaced, and clear the errors

using ’zpool clear’ or ’fmadm repaired’, or replace the device

with ’zpool replace’.

scan: scrub repaired 0 in 0h0m with 0 errors on Wed Jun 20 15:38:08 2012

config:

NAME STATE READ WRITE CKSUM

pond DEGRADED 0 0 0

mirror-0 DEGRADED 0 0 0

c0t5000C500335F95E3d0 ONLINE 0 0 0

c0t5000C500335F907Fd0 UNAVAIL 0 0 0

mirror-1 ONLINE 0 0 0

c0t5000C500335BD117d0 ONLINE 0 0 0

c0t5000C500335DC60Fd0 ONLINE 0 0 0

device details:

c0t5000C500335F907Fd0 UNAVAIL cannot open

status: ZFS detected errors on this device.

The device was missing.

see: http://support.oracle.com/msg/ZFS-8000-LR for recovery

errors: No known data errors

ZFS File Sharing Improvements
Oracle Solaris 11.1: Sharing ZFS file systems has improved with the following primary
enhancements:

■ The share syntax is simplified. You can share a file system by setting the new share.nfs or
share.smb property

What's New in ZFS?

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201316

■ Better inheritance of share properties to descendent file systems

The file sharing improvements are associated with pool version 34.

For more information, see “Sharing and Unsharing ZFS File Systems” on page 168.

Shared var File System
Oracle Solaris 11.1: Installing Oracle Solaris 11.1 automatically creates a rpool/VARSHARE file
system that is mounted at /var/share. The purpose of this file system is to share file systems
across boot environments so that the amount of space that is needed in the /var directory for all
BEs is reduced. For example:

ls /var/share

audit cores crash mail

Symbolic links are automatically created from /var to the /var/share components listed above
for compatibility purposes. This file system generally requires no administration except to
ensure that /var components do not fill the root file system.

If an Oracle Solaris 11 system is updated to the Oracle Solaris 11.1 release, it might take some
time to migrate data from the original /var directory to the /var/share directory.

Boot Support for EFI (GPT) Labeled Disks
Oracle Solaris 11.1: This release installs an EFI (GPT) disk label on a ZFS root pool disk for an
x86 based system, in most cases. For example:

zpool status rpool

pool: rpool

state: ONLINE

scan: none requested

config:

NAME STATE READ WRITE CKSUM

rpool ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

errors: No known data errors

■ Installing Oracle Solaris 11.1 on a SPARC based system with GPT aware firmware or an x86
based system applies a GPT disk label on the root pool disk that uses the entire disk. For
SPARC based systems that support a GPT labeled boot disk, see the Oracle Solaris 11.1
release notes for information about applying GPT aware firmware. Otherwise, installing
Oracle Solaris 11.1 on a SPARC system applies an an SMI (VTOC) label to the root pool disk
with a single slice 0.

■ In most cases, an x86 based system is installed with an EFI (GPT) labeled disk

What's New in ZFS?

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 17

■ The zpool command has been enhanced to support an EFI (GPT) disk label so that if you
need to recreate a root pool after the system is installed, you can do so with the zpool
create -B command. This new command option creates the required partitions and boot
information that is needed for booting. For more information about creating a root pool
after installation, see “How to Create a BE in Another Root Pool (SPARC or x86/VTOC)” on
page 119.
If you need to replace a disk in a root pool with an EFI (GPT) label, you will need to run this
command after the zpool replace operation.

bootadm install-bootloader

■ Oracle Solaris installations are no longer limited to the first 2 TiB of the disk on an x86 based
system.

ZFS Command Usage Enhancements
Oracle Solaris 11: The zfs and zpool command have a help subcommand that you can use to
provide more information about the zfs and zpool subcommands and their supported
options. For example:

zfs help

The following commands are supported:

allow clone create destroy diff get

groupspace help hold holds inherit list

mount promote receive release rename rollback

send set share snapshot unallow unmount

unshare upgrade userspace

For more info, run: zfs help <command>

zfs help create

usage:

create [-p] [-o property=value] ... <filesystem>

create [-ps] [-b blocksize] [-o property=value] ... -V <size> <volume>

zpool help

The following commands are supported:

add attach clear create destroy detach export get

help history import iostat list offline online remove

replace scrub set split status upgrade

For more info, run: zpool help <command>

zpool help attach

usage:

attach [-f] <pool> <device> <new-device>

For more information, see zfs(1M) and zpool(1M).

ZFS Snapshot Enhancements
Oracle Solaris 11: This release includes the following ZFS snapshot enhancements:

What's New in ZFS?

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201318

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mzfs-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mzpool-1m

■ The zfs snapshot command has a snap alias that provides abbreviated syntax for this
command. For example:

zfs snap -r users/home@snap1

■ The zfs diff command provides an enumeration option, -e, to identify all the files that
were added or modified between the two snapshots. The generated output identifies all files
added, but does not provide possible deletions. For example:

zfs diff -e tank/cindy@yesterday tank/cindy@now

+ /tank/cindy/

+ /tank/cindy/file.1

You can also use the -o option to identify selected fields to be displayed. For example:

zfs diff -e -o size -o name tank/cindy@yesterday tank/cindy@now

+ 7 /tank/cindy/

+ 206695 /tank/cindy/file.1

For more information about creating ZFS snapshots, see Chapter 6, “Working With Oracle
Solaris ZFS Snapshots and Clones.”

ZFS Manual Page Change (zfs.1m)
Oracle Solaris 11: The zfs.1m manual page has been revised so that core ZFS file system
features remain in the zfs.1m page, but delegated administration, encryption, and share syntax
and examples are covered in the following pages:

■ zfs_allow(1M)
■ zfs_encrypt(1M)
■ zfs_share(1M)

Improved aclmodeProperty
Oracle Solaris 11: The aclmode property modifies Access Control List (ACL) behavior
whenever ACL permissions on a file are modified during a chmod operation. The aclmode
property has been reintroduced with the following property values:

■ discard – A file system with an aclmode property of discard deletes all ACL entries that do
not represent the mode of the file. This is the default value.

■ mask – A file system with an aclmode property of mask reduces user or group permissions.
The permissions are reduced, such that they are no greater than the group permission bits,
unless it is a user entry that has the same UID as the owner of the file or directory. In this
case, the ACL permissions are reduced so that they are no greater than owner permission
bits. The mask value also preserves the ACL across mode changes, provided an explicit ACL
set operation has not been performed.

What's New in ZFS?

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 19

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mzfs-allow-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mzfs-encrypt-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mzfs-share-1m

■ passthrough – A file system with an aclmode property of passthrough indicates that no
changes are made to the ACL other than generating the necessary ACL entries to represent
the new mode of the file or directory.

For more information, see Example 7–14.

Identifying Pool Devices By Physical Location
Oracle Solaris 11: In this Solaris release, use the zpool status -l command to display physical
disk location information for pool devices that is available from the /dev/chassis directory.
This directory contains chassis, receptacle, and occupant values for the devices on your system.

In addition, you can use the fmadm add-alias command to include a disk alias name that helps
you identify the physical location of disks in your environment. For example:

fmadm add-alias SUN-Storage-J4400.0912QAJ001 SUN-Storage-J4400.rack22

For example:

% zpool status -l export

pool: export

state: ONLINE

scan: resilvered 492G in 8h22m with 0 errors on Wed Aug 1 17:22:11 2012

config:

NAME STATE READ WRITE CKSUM

export ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

/dev/chassis/SUN-Storage-J4400.rack22/SCSI_Device__2/disk ONLINE 0 0 0

/dev/chassis/SUN-Storage-J4400.rack22/SCSI_Device__3/disk ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

/dev/chassis/SUN-Storage-J4400.rack22/SCSI_Device__4/disk ONLINE 0 0 0

/dev/chassis/SUN-Storage-J4400.rack22/SCSI_Device__5/disk ONLINE 0 0 0

mirror-2 ONLINE 0 0 0

/dev/chassis/SUN-Storage-J4400.rack22/SCSI_Device__6/disk ONLINE 0 0 0

/dev/chassis/SUN-Storage-J4400.rack22/SCSI_Device__7/disk ONLINE 0 0 0

mirror-3 ONLINE 0 0 0

/dev/chassis/SUN-Storage-J4400.rack22/SCSI_Device__8/disk ONLINE 0 0 0

/dev/chassis/SUN-Storage-J4400.rack22/SCSI_Device__9/disk ONLINE 0 0 0

mirror-4 ONLINE 0 0 0

/dev/chassis/SUN-Storage-J4400.rack22/SCSI_Device__10/disk ONLINE 0 0 0

/dev/chassis/SUN-Storage-J4400.rack22/SCSI_Device__11/disk ONLINE 0 0 0

spares

/dev/chassis/SUN-Storage-J4400.rack22/SCSI_Device__0/disk AVAIL

/dev/chassis/SUN-Storage-J4400.rack22/SCSI_Device__1/disk AVAIL

errors: No known data errors

The zpool iostat command has also been updated to provide physical location information
for a pool's devices.

In addition, the diskinfo, format, and prtconf commands also provide physical disk location
information. For more information, see diskinfo(1M).

What's New in ZFS?

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201320

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mdiskinfo-1m

ZFS Shadow Migration
Oracle Solaris 11: In this release, you can migrate data from an old file system to a new file
system while simultaneously allowing access and modification of the new file system during the
migration process.

Setting the shadow property on a new ZFS file system triggers the migration of the older data.
The shadow property can be set to migrate data from the local system or a remote system with
either of the following values:

file:///path
nfs://host:path

For more information, see “Migrating ZFS File Systems” on page 191.

ZFS File System Encryption
Oracle Solaris 11: In this release, you can encrypt a ZFS file system.

For example, the tank/cindy file system is created with the encryption property enabled. The
default encryption policy is to prompt for a passphrase, which must be a minimum of 8
characters in length.

zfs create -o encryption=on tank/cindy

Enter passphrase for ’tank/cindy’: xxx

Enter again: xxx

An encryption policy is set when a ZFS file system is created. A file system's encryption policy is
inherited by descendent file systems and cannot be removed.

For more information, see “Encrypting ZFS File Systems” on page 184.

ZFS Send Stream Enhancements
Oracle Solaris 11: In this release, you can set file system properties that are sent and received in
a snapshot stream. These enhancements provide flexibility in applying file system properties in
a send stream to the receiving file system or in determining whether the local file system
properties, such as the mountpoint property value, should be ignored when received.

For more information, see “Applying Different Property Values to a ZFS Snapshot Stream” on
page 210.

What's New in ZFS?

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 21

ZFS Snapshot Differences (zfs diff)
Oracle Solaris 11: In this release, you can determine ZFS snapshot differences by using the zfs
diff command.

For example, assume that the following two snapshots are created:

$ ls /tank/cindy

fileA

$ zfs snapshot tank/cindy@0913

$ ls /tank/cindy

fileA fileB

$ zfs snapshot tank/cindy@0914

For example, to identify the differences between two snapshots, use syntax similar to the
following:

$ zfs diff tank/cindy@0913 tank/cindy@0914

M /tank/cindy/

+ /tank/cindy/fileB

In the output, the M indicates that the directory has been modified. The + indicates that fileB
exists in the later snapshot.

For more information, see “Identifying ZFS Snapshot Differences (zfs diff)” on page 201.

ZFS Storage Pool Recovery and Performance
Enhancements
Oracle Solaris 11: In this release, the following new ZFS storage pool features are provided:

■ You can import a pool with a missing log by using the zpool import -m command. For
more information, see “Importing a Pool With a Missing Log Device” on page 100.

■ You can import a pool in read-only mode. This feature is primarily for pool recovery. If a
damaged pool cannot be accessed because the underlying devices are damaged, you can
import the pool read-only to recover the data. For more information, see “Importing a Pool
in Read-Only Mode” on page 102.

■ A RAID-Z (raidz1, raidz2, or raidz3) storage pool that is created in this release will have
some latency-sensitive metadata automatically mirrored to improve read I/O throughput
performance. For existing RAID-Z pools that are upgraded to at least pool version 29, some
metadata will be mirrored for all newly written data.
Mirrored metadata in a RAID-Z pool does not provide additional protection against
hardware failures, similar to what a mirrored storage pool provides. Additional space is
consumed by mirrored metadata, but the RAID-Z protection remains the same as in
previous releases. This enhancement is for performance purposes only.

What's New in ZFS?

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201322

Tuning ZFS Synchronous Behavior
Oracle Solaris 11: In this release, you can determine a ZFS file system's synchronous behavior
by using the sync property.

The default synchronous behavior is to write all synchronous file system transactions to the
intent log and to flush all devices to ensure that the data is stable. Disabling the default
synchronous behavior is not recommended. Applications that depend on synchronous support
might be affected, and data loss could occur.

The sync property can be set before or after the file system is created. In either case, the property
value takes effect immediately. For example:

zfs set sync=always tank/neil

The zil_disable parameter is no longer available in Oracle Solaris releases that include the
sync property.

For more information, see Table 5–1.

Improved ZFS Pool Messages
Oracle Solaris 11: In this release, you can use the -T option to provide an interval and count
value for the zpool list and zpool status commands to display additional information.

In addition, more pool scrub and resilver information is provided by the zpool status
command as follows:

■ Resilver in-progress report. For example:

scan: resilver in progress since Thu Jun 7 14:41:11 2012

3.83G scanned out of 73.3G at 106M/s, 0h11m to go

3.80G resilvered, 5.22% done

■ Scrub in-progress report. For example:

scan: scrub in progress since Thu Jun 7 14:59:25 2012

1.95G scanned out of 73.3G at 118M/s, 0h10m to go

0 repaired, 2.66% done

■ Resilver completion message. For example:

resilvered 73.3G in 0h13m with 0 errors on Thu Jun 7 14:54:16 2012

■ Scrub completion message. For example:

scan: scrub repaired 512B in 1h2m with 0 errors on Thu Jun 7 15:10:32 2012

■ Ongoing scrub cancellation message. For example:

scan: scrub canceled on Thu Jun 7 15:19:20 MDT 2012

■ Scrub and resilver completion messages persist across system reboots

What's New in ZFS?

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 23

The following syntax uses the interval and count option to display ongoing pool resilvering
information. You can use the -T d value to display the information in standard date format or
-T u to display the information in an internal format.

zpool status -T d tank 3 2

Thu Jun 14 14:08:21 MDT 2012

pool: tank

state: DEGRADED

status: One or more devices is currently being resilvered. The pool will

continue to function in a degraded state.

action: Wait for the resilver to complete.

Run ’zpool status -v’ to see device specific details.

scan: resilver in progress since Thu Jun 14 14:08:05 2012

2.96G scanned out of 4.19G at 189M/s, 0h0m to go

1.48G resilvered, 70.60% done

config:

NAME STATE READ WRITE CKSUM

tank DEGRADED 0 0 0

mirror-0 ONLINE 0 0 0

c0t5000C500335F95E3d0 ONLINE 0 0 0

c0t5000C500335F907Fd0 ONLINE 0 0 0

mirror-1 DEGRADED 0 0 0

c0t5000C500335BD117d0 ONLINE 0 0 0

c0t5000C500335DC60Fd0 DEGRADED 0 0 0 (resilvering)

errors: No known data errors

ZFS ACL Interoperability Enhancements
Oracle Solaris 11: In this release, the following ACL enhancements are provided:
■ Trivial ACLs do not require deny Access control entries (ACEs) except for unusual

permissions. For example, a mode of 0644, 0755, or 0664 does not require deny ACEs, but a
mode, such as 0705, 0060, and so on, does require deny ACEs.
The old behavior includes deny ACEs in a trivial ACL like 644. For example:

ls -v file.1

-rw-r--r-- 1 root root 206663 Jun 14 11:52 file.1

0:owner@:execute:deny

1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

2:group@:write_data/append_data/execute:deny

3:group@:read_data:allow

4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

The new behavior for a trivial ACL like 644 does not include the deny ACEs. For example:

ls -v file.1

-rw-r--r-- 1 root root 206663 Jun 22 14:30 file.1

0:owner@:read_data/write_data/append_data/read_xattr/write_xattr

What's New in ZFS?

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201324

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

2:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

■ ACLs are no longer split into multiple ACEs during inheritance to try to preserve the
original unmodified permission. Instead, the permissions are modified as necessary to
enforce the file creation mode.

■ The aclinherit property behavior includes a reduction in permissions when the property
is set to restricted, which means that ACLs are no longer split into multiple ACEs during
inheritance.

■ A new permission mode calculation rule specifies that if an ACL has a user ACE that is also
the file owner, then those permissions are included in the permission mode computation.
The same rule applies if a group ACE is the group owner of the file.

For more information, see Chapter 7, “Using ACLs and Attributes to Protect Oracle Solaris ZFS
Files.”

Splitting a Mirrored ZFS Storage Pool (zpool split)
Oracle Solaris 11: In this release, you can use the zpool split command to split a mirrored
storage pool, which detaches a disk or disks in the original mirrored pool to create another
identical pool.

For more information, see “Creating a New Pool By Splitting a Mirrored ZFS Storage Pool” on
page 68.

ZFS iSCSI Changes
Oracle Solaris 11: In this release, the iSCSI target daemon is replaced by using the Common
Multiprotocol SCSI Target (COMSTAR) target daemon. This change also means that the
shareiscsi property that was used to share a ZFS volume as an iSCSI LUN is no longer
available. Use the stmfadm command to configure and share a ZFS volume as an iSCSI LUN.

For more information, see “Using a ZFS Volume as an iSCSI LUN” on page 257.

New ZFS System Process
Oracle Solaris 11: In this release, each ZFS storage pool has an associated process,
zpool-poolname. The threads in this process are the pool's I/O processing threads to handle I/O
tasks, such as compression and checksum validation, that are associated with the pool. The
purpose of this process is to provide visibility into each storage pool's CPU utilization.

What's New in ZFS?

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 25

Information about these running processes can be reviewed by using the ps and prstat

commands. These processes are only available in the global zone. For more information, see
SDC(7).

ZFS Deduplication Property
Oracle Solaris 11: In this release, you can use the deduplication (dedup) property to remove
redundant data from your ZFS file systems. If a file system has the dedup property enabled,
duplicate data blocks are removed synchronously. The result is that only unique data is stored,
and common components are shared between files.

You can enable this property as follows:

zfs set dedup=on tank/home

Although deduplication is set as a file system property, the scope is pool-wide. For example, you
can identify the deduplication ratio as follows:

zpool list tank

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

tank 556G 4.19G 552G 0% 1.00x ONLINE -

The zpool list output has been updated to support the deduplication property.

For more information about setting the deduplication property, see “The dedup Property” on
page 153.

Do not enable the dedup property on file systems that reside on production systems until you
review the following considerations:

■ Determine if your data would benefit from deduplication space savings
■ Determine whether your system has enough physical memory to support deduplication
■ Potential system performance impacts

For more information about these considerations, see “The dedup Property” on page 153.

What Is Oracle Solaris ZFS?
The Oracle Solaris ZFS file system is a file system that fundamentally changes the way file
systems are administered, with features and benefits not found in other file systems available
today. ZFS is robust, scalable, and easy to administer.

What Is Oracle Solaris ZFS?

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201326

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7sdc-7

ZFS Pooled Storage
ZFS uses the concept of storage pools to manage physical storage. Historically, file systems were
constructed on top of a single physical device. To address multiple devices and provide for data
redundancy, the concept of a volume manager was introduced to provide a representation of a
single device so that file systems would not need to be modified to take advantage of multiple
devices. This design added another layer of complexity and ultimately prevented certain file
system advances because the file system had no control over the physical placement of data on
the virtualized volumes.

ZFS eliminates volume management altogether. Instead of forcing you to create virtualized
volumes, ZFS aggregates devices into a storage pool. The storage pool describes the physical
characteristics of the storage (device layout, data redundancy, and so on) and acts as an
arbitrary data store from which file systems can be created. File systems are no longer
constrained to individual devices, allowing them to share disk space with all file systems in the
pool. You no longer need to predetermine the size of a file system, as file systems grow
automatically within the disk space allocated to the storage pool. When new storage is added, all
file systems within the pool can immediately use the additional disk space without additional
work. In many ways, the storage pool works similarly to a virtual memory system: When a
memory DIMM is added to a system, the operating system doesn't force you to run commands
to configure the memory and assign it to individual processes. All processes on the system
automatically use the additional memory.

Transactional Semantics
ZFS is a transactional file system, which means that the file system state is always consistent on
disk. Traditional file systems overwrite data in place, which means that if the system loses
power, for example, between the time a data block is allocated and when it is linked into a
directory, the file system will be left in an inconsistent state. Historically, this problem was
solved through the use of the fsck command. This command was responsible for reviewing and
verifying the file system state, and attempting to repair any inconsistencies during the process.
This problem of inconsistent file systems caused great pain to administrators, and the fsck
command was never guaranteed to fix all possible problems. More recently, file systems have
introduced the concept of journaling. The journaling process records actions in a separate
journal, which can then be replayed safely if a system crash occurs. This process introduces
unnecessary overhead because the data needs to be written twice, often resulting in a new set of
problems, such as when the journal cannot be replayed properly.

With a transactional file system, data is managed using copy on write semantics. Data is never
overwritten, and any sequence of operations is either entirely committed or entirely ignored.
Thus, the file system can never be corrupted through accidental loss of power or a system crash.
Although the most recently written pieces of data might be lost, the file system itself will always
be consistent. In addition, synchronous data (written using the O_DSYNC flag) is always
guaranteed to be written before returning, so it is never lost.

What Is Oracle Solaris ZFS?

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 27

Checksums and Self-Healing Data
With ZFS, all data and metadata is verified using a user-selectable checksum algorithm.
Traditional file systems that do provide checksum verification have performed it on a per-block
basis, out of necessity due to the volume management layer and traditional file system design.
The traditional design means that certain failures, such as writing a complete block to an
incorrect location, can result in data that is incorrect but has no checksum errors. ZFS
checksums are stored in a way such that these failures are detected and can be recovered from
gracefully. All checksum verification and data recovery are performed at the file system layer,
and are transparent to applications.

In addition, ZFS provides for self-healing data. ZFS supports storage pools with varying levels of
data redundancy. When a bad data block is detected, ZFS fetches the correct data from another
redundant copy and repairs the bad data, replacing it with the correct data.

Unparalleled Scalability
A key design element of the ZFS file system is scalability. The file system itself is 128 bit,
allowing for 256 quadrillion zettabytes of storage. All metadata is allocated dynamically, so no
need exists to preallocate inodes or otherwise limit the scalability of the file system when it is
first created. All the algorithms have been written with scalability in mind. Directories can have
up to 248 (256 trillion) entries, and no limit exists on the number of file systems or the number
of files that can be contained within a file system.

ZFS Snapshots
A snapshot is a read-only copy of a file system or volume. Snapshots can be created quickly and
easily. Initially, snapshots consume no additional disk space within the pool.

As data within the active dataset changes, the snapshot consumes disk space by continuing to
reference the old data. As a result, the snapshot prevents the data from being freed back to the
pool.

Simplified Administration
Most importantly, ZFS provides a greatly simplified administration model. Through the use of a
hierarchical file system layout, property inheritance, and automatic management of mount
points and NFS share semantics, ZFS makes it easy to create and manage file systems without
requiring multiple commands or editing configuration files. You can easily set quotas or
reservations, turn compression on or off, or manage mount points for numerous file systems
with a single command. You can examine or replace devices without learning a separate set of
volume manager commands. You can send and receive file system snapshot streams.

What Is Oracle Solaris ZFS?

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201328

ZFS manages file systems through a hierarchy that allows for this simplified management of
properties such as quotas, reservations, compression, and mount points. In this model, file
systems are the central point of control. File systems themselves are very cheap (equivalent to
creating a new directory), so you are encouraged to create a file system for each user, project,
workspace, and so on. This design enables you to define fine-grained management points.

ZFS Terminology
This section describes the basic terminology used throughout this book:

boot environment A boot environment is a bootable Oracle Solaris environment consisting
of a ZFS root file system and, optionally, other file systems mounted
underneath it. Exactly one boot environment can be active at a time.

checksum A 256-bit hash of the data in a file system block. The checksum capability
can range from the simple and fast fletcher4 (the default) to
cryptographically strong hashes such as SHA256.

clone A file system whose initial contents are identical to the contents of a
snapshot.

For information about clones, see “Overview of ZFS Clones” on
page 202.

dataset A generic name for the following ZFS components: clones, file systems,
snapshots, and volumes.

Each dataset is identified by a unique name in the ZFS namespace.
Datasets are identified using the following format:

pool/path[@snapshot]

pool Identifies the name of the storage pool that contains the
dataset

path Is a slash-delimited path name for the dataset component

snapshot Is an optional component that identifies a snapshot of a
dataset

For more information about datasets, see Chapter 5, “Managing Oracle
Solaris ZFS File Systems.”

file system A ZFS dataset of type filesystem that is mounted within the standard
system namespace and behaves like other file systems.

For more information about file systems, see Chapter 5, “Managing
Oracle Solaris ZFS File Systems.”

ZFS Terminology

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 29

mirror A virtual device that stores identical copies of data on two or more disks.
If any disk in a mirror fails, any other disk in that mirror can provide the
same data.

pool A logical group of devices describing the layout and physical
characteristics of the available storage. Disk space for datasets is
allocated from a pool.

For more information about storage pools, see Chapter 3, “Managing
Oracle Solaris ZFS Storage Pools.”

RAID-Z A virtual device that stores data and parity on multiple disks. For more
information about RAID-Z, see “RAID-Z Storage Pool Configuration”
on page 48.

resilvering The process of copying data from one device to another device is known
as resilvering. For example, if a mirror device is replaced or taken offline,
the data from an up-to-date mirror device is copied to the newly restored
mirror device. This process is referred to as mirror resynchronization in
traditional volume management products.

For more information about ZFS resilvering, see “Viewing Resilvering
Status” on page 287.

snapshot A read-only copy of a file system or volume at a given point in time.

For more information about snapshots, see “Overview of ZFS
Snapshots” on page 195.

virtual device A logical device in a pool, which can be a physical device, a file, or a
collection of devices.

For more information about virtual devices, see “Displaying Storage
Pool Virtual Device Information” on page 56.

volume A dataset that represents a block device. For example, you can create a
ZFS volume as a swap device.

For more information about ZFS volumes, see “ZFS Volumes” on
page 255.

ZFS Terminology

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201330

ZFS Component Naming Requirements
Each ZFS component, such as datasets and pools, must be named according to the following
rules:

■ Each component can only contain alphanumeric characters in addition to the following
four special characters:
■ Underscore (_)
■ Hyphen (-)
■ Colon (:)
■ Period (.)

■ Pool names must begin with a letter, and can only contain alphanumeric characters as well
as underscore (_), dash (-), and period (.). Note the following pool name restrictions:
■ The beginning sequence c[0-9] is not allowed.
■ The name log is reserved.
■ A name that begins with mirror, raidz, raidz1, raidz2, raidz3, or spare is not allowed

because these names are reserved.
■ Pool names must not contain a percent sign (%).

■ Dataset names must begin with an alphanumeric character.
■ Dataset names must not contain a percent sign (%).

In addition, empty components are not allowed.

Oracle Solaris ZFS and Traditional File System Differences
■ “ZFS File System Granularity” on page 31
■ “ZFS Disk Space Accounting” on page 32
■ “Mounting ZFS File Systems” on page 34
■ “Traditional Volume Management” on page 34
■ “Solaris ACL Model Based on NFSv4” on page 34

ZFS File System Granularity
Historically, file systems have been constrained to one device and thus to the size of that device.
Creating and re-creating traditional file systems because of size constraints are time-consuming
and sometimes difficult. Traditional volume management products help manage this process.

Oracle Solaris ZFS and Traditional File System Differences

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 31

Because ZFS file systems are not constrained to specific devices, they can be created easily and
quickly, similar to the way directories are created. ZFS file systems grow automatically within
the disk space allocated to the storage pool in which they reside.

Instead of creating one file system, such as /export/home, to manage many user subdirectories,
you can create one file system per user. You can easily set up and manage many file systems by
applying properties that can be inherited by the descendent file systems contained within the
hierarchy.

For an example that shows how to create a file system hierarchy, see “Creating a ZFS File System
Hierarchy” on page 38.

ZFS Disk Space Accounting
ZFS is based on the concept of pooled storage. Unlike typical file systems, which are mapped to
physical storage, all ZFS file systems in a pool share the available storage in the pool. So, the
available disk space reported by utilities such as df might change even when the file system is
inactive, as other file systems in the pool consume or release disk space.

Note that the maximum file system size can be limited by using quotas. For information about
quotas, see “Setting Quotas on ZFS File Systems” on page 179. A specified amount of disk space
can be guaranteed to a file system by using reservations. For information about reservations, see
“Setting Reservations on ZFS File Systems” on page 182. This model is very similar to the NFS
model, where multiple directories are mounted from the same file system (consider /home).

All metadata in ZFS is allocated dynamically. Most other file systems preallocate much of their
metadata. As a result, at file system creation time, an immediate space cost for this metadata is
required. This behavior also means that the total number of files supported by the file systems is
predetermined. Because ZFS allocates its metadata as it needs it, no initial space cost is required,
and the number of files is limited only by the available disk space. The output from the df -g
command must be interpreted differently for ZFS than other file systems. The total files
reported is only an estimate based on the amount of storage that is available in the pool.

ZFS is a transactional file system. Most file system modifications are bundled into transaction
groups and committed to disk asynchronously. Until these modifications are committed to
disk, they are called pending changes. The amount of disk space used, available, and referenced
by a file or file system does not consider pending changes. Pending changes are generally
accounted for within a few seconds. Even committing a change to disk by using fsync(3c) or
O_SYNC does not necessarily guarantee that the disk space usage information is updated
immediately.

On a UFS file system, the du command reports the size of the data blocks within the file. On a
ZFS file system, du reports the actual size of the file as stored on disk. This size includes

Oracle Solaris ZFS and Traditional File System Differences

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201332

metadata as well as compression. This reporting really helps answer the question of "how much
more space will I get if I remove this file?" So, even when compression is off, you will still see
different results between ZFS and UFS.

When you compare the space consumption that is reported by the df command with the zfs
list command, consider that df is reporting the pool size and not just file system sizes. In
addition, df doesn't understand descendent file systems or whether snapshots exist. If any ZFS
properties, such as compression and quotas, are set on file systems, reconciling the space
consumption that is reported by df might be difficult.

Consider the following scenarios that might also impact reported space consumption:

■ For files that are larger than recordsize, the last block of the file is generally about 1/2 full.
With the default recordsize set to 128 KB, approximately 64 KB is wasted per file, which
might be a large impact. The integration of RFE 6812608 would resolve this scenario. You
can work around this by enabling compression. Even if your data is already compressed, the
unused portion of the last block will be zero-filled, and compresses very well.

■ On a RAIDZ-2 pool, every block consumes at least 2 sectors (512-byte chunks) of parity
information. The space consumed by the parity information is not reported, but because it
can vary, and be a much larger percentage for small blocks, an impact to space reporting
might be seen. The impact is more extreme for a recordsize set to 512 bytes, where each
512-byte logical block consumes 1.5 KB (3 times the space). Regardless of the data being
stored, if space efficiency is your primary concern, you should leave the recordsize at the
default (128 KB), and enable compression (to the default of lzjb).

■ The df command is not aware of deduplicated file data.

Out of Space Behavior
File system snapshots are inexpensive and easy to create in ZFS. Snapshots are common in most
ZFS environments. For information about ZFS snapshots, see Chapter 6, “Working With
Oracle Solaris ZFS Snapshots and Clones.”

The presence of snapshots can cause some unexpected behavior when you attempt to free disk
space. Typically, given appropriate permissions, you can remove a file from a full file system,
and this action results in more disk space becoming available in the file system. However, if the
file to be removed exists in a snapshot of the file system, then no disk space is gained from the
file deletion. The blocks used by the file continue to be referenced from the snapshot.

As a result, the file deletion can consume more disk space because a new version of the directory
needs to be created to reflect the new state of the namespace. This behavior means that you can
receive an unexpected ENOSPC or EDQUOT error when attempting to remove a file.

Oracle Solaris ZFS and Traditional File System Differences

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 33

Mounting ZFS File Systems
ZFS reduces complexity and eases administration. For example, with traditional file systems,
you must edit the /etc/vfstab file every time you add a new file system. ZFS has eliminated
this requirement by automatically mounting and unmounting file systems according to the
properties of the file system. You do not need to manage ZFS entries in the /etc/vfstab file.

For more information about mounting and sharing ZFS file systems, see “Mounting ZFS File
Systems” on page 164.

Traditional Volume Management
As described in “ZFS Pooled Storage” on page 27, ZFS eliminates the need for a separate volume
manager. ZFS operates on raw devices, so it is possible to create a storage pool comprised of
logical volumes, either software or hardware. This configuration is not recommended, as ZFS
works best when it uses raw physical devices. Using logical volumes might sacrifice
performance, reliability, or both, and should be avoided.

Solaris ACL Model Based on NFSv4
Previous versions of the Solaris OS supported an ACL implementation that was primarily based
on the POSIX ACL draft specification. The POSIX-draft based ACLs are used to protect UFS
files. A new Solaris ACL model that is based on the NFSv4 specification is used to protect ZFS
files.

The main differences of the new Solaris ACL model are as follows:

■ The model is based on the NFSv4 specification and is similar to NT-style ACLs.
■ This model provides a much more granular set of access privileges.
■ ACLs are set and displayed with the chmod and ls commands rather than the setfacl and

getfacl commands.
■ Richer inheritance semantics designate how access privileges are applied from directory to

subdirectories, and so on.

For more information about using ACLs with ZFS files, see Chapter 7, “Using ACLs and
Attributes to Protect Oracle Solaris ZFS Files.”

Oracle Solaris ZFS and Traditional File System Differences

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201334

Getting Started With Oracle Solaris ZFS

This chapter provides step-by-step instructions on setting up a basic Oracle Solaris ZFS
configuration. By the end of this chapter, you will have a basic understanding of how the ZFS
commands work, and should be able to create a basic pool and file systems. This chapter does
not provide a comprehensive overview and refers to later chapters for more detailed
information.

The following sections are provided in this chapter:

■ “ZFS Rights Profiles” on page 35
■ “ZFS Hardware and Software Requirements and Recommendations” on page 36
■ “Creating a Basic ZFS File System” on page 36
■ “Creating a Basic ZFS Storage Pool” on page 37
■ “Creating a ZFS File System Hierarchy” on page 38

ZFS Rights Profiles
If you want to perform ZFS management tasks without using the superuser (root) account, you
can assume a role with either of the following profiles to perform ZFS administration tasks:

■ ZFS Storage Management – Provides the privilege to create, destroy, and manipulate devices
within a ZFS storage pool

■ ZFS File system Management – Provides the privilege to create, destroy, and modify ZFS file
systems

For more information about creating or assigning roles, see Oracle Solaris 11.1 Administration:
Security Services.

In addition to using RBAC roles for administering ZFS file systems, you might also consider
using ZFS delegated administration for distributed ZFS administration tasks. For more
information, see Chapter 8, “Oracle Solaris ZFS Delegated Administration.”

2C H A P T E R 2

35

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SYSADV6
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SYSADV6

ZFS Hardware and Software Requirements and
Recommendations

Ensure that you review the following hardware and software requirements and
recommendations before attempting to use the ZFS software:

■ Use a SPARC or x86 based system that is running a supported Oracle Solaris release.
■ The minimum amount of disk space required for a storage pool is 64 MB. The minimum

disk size is 128 MB.
■ For good ZFS performance, size the memory requirements based on your workload.
■ If you create a mirrored pool configuration, use multiple controllers.

Creating a Basic ZFS File System
ZFS administration has been designed with simplicity in mind. Among the design goals is to
reduce the number of commands needed to create a usable file system. For example, when you
create a new pool, a new ZFS file system is created and mounted automatically.

The following example shows how to create a basic mirrored storage pool named tank and a
ZFS file system named tank in one command. Assume that the whole disks /dev/dsk/c1t0d0
and /dev/dsk/c2t0d0 are available for use.

zpool create tank mirror c1t0d0 c2t0d0

For more information about redundant ZFS pool configurations, see “Replication Features of a
ZFS Storage Pool” on page 47.

The new ZFS file system, tank, can use available disk space as needed, and is automatically
mounted at /tank.

mkfile 100m /tank/foo

df -h /tank

Filesystem size used avail capacity Mounted on

tank 80G 100M 80G 1% /tank

Within a pool, you probably want to create additional file systems. File systems provide points
of administration that enable you to manage different sets of data within the same pool.

The following example shows how to create a file system named fs in the storage pool tank.

zfs create tank/fs

The new ZFS file system, tank/fs, can use available disk space as needed, and is automatically
mounted at /tank/fs.

ZFS Hardware and Software Requirements and Recommendations

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201336

mkfile 100m /tank/fs/foo

df -h /tank/fs

Filesystem size used avail capacity Mounted on

tank/fs 80G 100M 80G 1% /tank/fs

Typically, you want to create and organize a hierarchy of file systems that matches your
organizational needs. For information about creating a hierarchy of ZFS file systems, see
“Creating a ZFS File System Hierarchy” on page 38.

Creating a Basic ZFS Storage Pool
The previous example illustrates the simplicity of ZFS. The remainder of this chapter provides a
more complete example, similar to what you would encounter in your environment. The first
tasks are to identify your storage requirements and create a storage pool. The pool describes the
physical characteristics of the storage and must be created before any file systems are created.

▼ How to Identify Storage Requirements for Your ZFS
Storage Pool

Determine available devices for your storage pool.

Before creating a storage pool, you must determine which devices will store your data. These
devices must be disks of at least 128 MB in size, and they must not be in use by other parts of the
operating system. The devices can be individual slices on a preformatted disk, or they can be
entire disks that ZFS formats as a single large slice.

In the storage example in “How to Create a ZFS Storage Pool” on page 38, assume that the
whole disks /dev/dsk/c1t0d0 and /dev/dsk/c2t0d0 are available for use.

For more information about disks and how they are used and labeled, see “Using Disks in a ZFS
Storage Pool” on page 43.

Choose data replication.

ZFS supports multiple types of data replication, which determines the types of hardware
failures the pool can withstand. ZFS supports nonredundant (striped) configurations, as well as
mirroring and RAID-Z (a variation on RAID-5).

In the storage example in “How to Create a ZFS Storage Pool” on page 38, basic mirroring of
two available disks is used.

For more information about ZFS replication features, see “Replication Features of a ZFS Storage
Pool” on page 47.

1

2

Creating a Basic ZFS Storage Pool

Chapter 2 • Getting Started With Oracle Solaris ZFS 37

▼ How to Create a ZFS Storage Pool
Become root or assume an equivalent role with the appropriate ZFS rights profile.

For more information about the ZFS rights profiles, see “ZFS Rights Profiles” on page 35.

Pick a name for your storage pool.

This name is used to identify the storage pool when you are using the zpool and zfs

commands. Pick any pool name that you prefer, but it must satisfy the naming requirements in
“ZFS Component Naming Requirements” on page 31.

Create the pool.

For example, the following command creates a mirrored pool that is named tank:
zpool create tank mirror c1t0d0 c2t0d0

If one or more devices contains another file system or is otherwise in use, the command cannot
create the pool.

For more information about creating storage pools, see “Creating ZFS Storage Pools” on
page 50. For more information about how device usage is determined, see “Detecting In-Use
Devices” on page 58.

View the results.

You can determine if your pool was successfully created by using the zpool list command.
zpool list

NAME SIZE ALLOC FREE CAP HEALTH ALTROOT

tank 80G 137K 80G 0% ONLINE -

For more information about viewing pool status, see “Querying ZFS Storage Pool Status” on
page 84.

Creating a ZFS File System Hierarchy
After creating a storage pool to store your data, you can create your file system hierarchy.
Hierarchies are simple yet powerful mechanisms for organizing information. They are also very
familiar to anyone who has used a file system.

ZFS allows file systems to be organized into hierarchies, where each file system has only a single
parent. The root of the hierarchy is always the pool name. ZFS leverages this hierarchy by
supporting property inheritance so that common properties can be set quickly and easily on
entire trees of file systems.

1

2

3

4

Creating a ZFS File System Hierarchy

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201338

▼ How to Determine Your ZFS File System Hierarchy
Pick the file system granularity.

ZFS file systems are the central point of administration. They are lightweight and can be created
easily. A good model to use is to establish one file system per user or project, as this model
allows properties, snapshots, and backups to be controlled on a per-user or per-project basis.

Two ZFS file systems, jeff and bill, are created in “How to Create ZFS File Systems” on
page 39.

For more information about managing file systems, see Chapter 5, “Managing Oracle Solaris
ZFS File Systems.”

Group similar file systems.

ZFS allows file systems to be organized into hierarchies so that similar file systems can be
grouped. This model provides a central point of administration for controlling properties and
administering file systems. Similar file systems should be created under a common name.

In the example in “How to Create ZFS File Systems” on page 39, the two file systems are placed
under a file system named home.

Choose the file system properties.

Most file system characteristics are controlled by properties. These properties control a variety
of behaviors, including where the file systems are mounted, how they are shared, if they use
compression, and if any quotas are in effect.

In the example in “How to Create ZFS File Systems” on page 39, all home directories are
mounted at /export/zfs/user, are shared by using NFS, and have compression enabled. In
addition, a quota of 10 GB on user jeff is enforced.

For more information about properties, see “Introducing ZFS Properties” on page 137.

▼ How to Create ZFS File Systems
Become root or assume an equivalent role with the appropriate ZFS rights profile.

For more information about the ZFS rights profiles, see “ZFS Rights Profiles” on page 35.

Create the desired hierarchy.

In this example, a file system that acts as a container for individual file systems is created.
zfs create tank/home

1

2

3

1

2

Creating a ZFS File System Hierarchy

Chapter 2 • Getting Started With Oracle Solaris ZFS 39

Set the inherited properties.
After the file system hierarchy is established, set up any properties to be shared among all users:
zfs set mountpoint=/export/zfs tank/home

zfs set share.nfs=on tank/home

zfs set compression=on tank/home

zfs get compression tank/home

NAME PROPERTY VALUE SOURCE

tank/home compression on local

You can set file system properties when the file system is created. For example:

zfs create -o mountpoint=/export/zfs -o share.nfs=on -o compression=on tank/home

For more information about properties and property inheritance, see “Introducing ZFS
Properties” on page 137.

Next, individual file systems are grouped under the home file system in the pool tank.

Create the individual file systems.
File systems could have been created and then the properties could have been changed at the
home level. All properties can be changed dynamically while file systems are in use.
zfs create tank/home/jeff

zfs create tank/home/bill

These file systems inherit their property values from their parent, so they are automatically
mounted at /export/zfs/user and are NFS shared. You do not need to edit the /etc/vfstab or
/etc/dfs/dfstab file.

For more information about creating file systems, see “Creating a ZFS File System” on page 134.

For more information about mounting and sharing file systems, see “Mounting ZFS File
Systems” on page 164.

Set the file system-specific properties.
In this example, user jeff is assigned a quota of 10 GBs. This property places a limit on the
amount of space he can consume, regardless of how much space is available in the pool.
zfs set quota=10G tank/home/jeff

View the results.
View available file system information by using the zfs list command:
zfs list

NAME USED AVAIL REFER MOUNTPOINT

tank 92.0K 67.0G 9.5K /tank

tank/home 24.0K 67.0G 8K /export/zfs

tank/home/bill 8K 67.0G 8K /export/zfs/bill

tank/home/jeff 8K 10.0G 8K /export/zfs/jeff

Note that user jeff only has 10 GB of space available, while user bill can use the full pool (67
GB).

3

4

5

6

Creating a ZFS File System Hierarchy

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201340

For more information about viewing file system status, see “Querying ZFS File System
Information” on page 156.

For more information about how disk space is used and calculated, see “ZFS Disk Space
Accounting” on page 32.

Creating a ZFS File System Hierarchy

Chapter 2 • Getting Started With Oracle Solaris ZFS 41

42

Managing Oracle Solaris ZFS Storage Pools

This chapter describes how to create and administer storage pools in Oracle Solaris ZFS.

The following sections are provided in this chapter:

■ “Components of a ZFS Storage Pool” on page 43
■ “Replication Features of a ZFS Storage Pool” on page 47
■ “Creating and Destroying ZFS Storage Pools” on page 50
■ “Managing Devices in ZFS Storage Pools” on page 61
■ “Managing ZFS Storage Pool Properties” on page 81
■ “Querying ZFS Storage Pool Status” on page 84
■ “Migrating ZFS Storage Pools” on page 96
■ “Upgrading ZFS Storage Pools” on page 104

Components of a ZFS Storage Pool
The following sections provide detailed information about the following storage pool
components:

■ “Using Disks in a ZFS Storage Pool” on page 43
■ “Using Slices in a ZFS Storage Pool” on page 45
■ “Using Files in a ZFS Storage Pool” on page 46

Using Disks in a ZFS Storage Pool
The most basic element of a storage pool is physical storage. Physical storage can be any block
device of at least 128 MB in size. Typically, this device is a hard drive that is visible to the system
in the /dev/dsk directory.

A storage device can be a whole disk (c1t0d0) or an individual slice (c0t0d0s7). The
recommended mode of operation is to use an entire disk, in which case the disk does not

3C H A P T E R 3

43

require special formatting. ZFS formats the disk using an EFI label to contain a single, large
slice. When used in this way, the partition table that is displayed by the format command
appears similar to the following:

Current partition table (original):

Total disk sectors available: 143358287 + 16384 (reserved sectors)

Part Tag Flag First Sector Size Last Sector

0 usr wm 256 68.36GB 143358320

1 unassigned wm 0 0 0

2 unassigned wm 0 0 0

3 unassigned wm 0 0 0

4 unassigned wm 0 0 0

5 unassigned wm 0 0 0

6 unassigned wm 0 0 0

8 reserved wm 143358321 8.00MB 143374704

When Oracle Solaris 11.1 is installed, a EFI (GPT) labeled is applied to root pool disks on an x86
based system in most cases, which looks similar to the following:

Current partition table (original):

Total disk sectors available: 27246525 + 16384 (reserved sectors)

Part Tag Flag First Sector Size Last Sector

0 BIOS_boot wm 256 256.00MB 524543

1 usr wm 524544 12.74GB 27246558

2 unassigned wm 0 0 0

3 unassigned wm 0 0 0

4 unassigned wm 0 0 0

5 unassigned wm 0 0 0

6 unassigned wm 0 0 0

8 reserved wm 27246559 8.00MB 27262942

In the above output, partition 0 (BIOS boot) contains required GPT boot information. Similar
to partition 8, it requires no administration and should not be modified. The root file system is
contained in partition 1.

On a SPARC system with updated firmware that has been installed with Oracle Solaris 11.1, an
EFI (GPT) disk label is applied. For example:

Current partition table (original):

Total disk sectors available: 143358320 + 16384 (reserved sectors)

Part Tag Flag First Sector Size Last Sector

0 usr wm 256 68.36GB 143358320

1 unassigned wm 0 0 0

2 unassigned wm 0 0 0

3 unassigned wm 0 0 0

4 unassigned wm 0 0 0

5 unassigned wm 0 0 0

6 unassigned wm 0 0 0

8 reserved wm 143358321 8.00MB 143374704

Review the following considerations when using whole disks in your ZFS storage pools:

Components of a ZFS Storage Pool

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201344

■ When using a whole disk, the disk is generally named by using the /dev/dsk/cNtNdN
naming convention. Some third-party drivers use a different naming convention or place
disks in a location other than the /dev/dsk directory. To use these disks, you must manually
label the disk and provide a slice to ZFS.

■ On an x86 based system, the disk must have a valid Solaris fdisk partition. For more
information about creating or changing a Solaris fdisk partition, see “Setting Up Disks for
ZFS File Systems (Task Map)” in Oracle Solaris 11.1 Administration: Devices and File
Systems.

■ ZFS applies an EFI label when you create a storage pool with whole disks. For more
information about EFI labels, see “EFI (GPT) Disk Label” in Oracle Solaris 11.1
Administration: Devices and File Systems.

■ Oracle Solaris 11.1 installer applies an EFI (GPT) label for the root pool disks on a SPARC
based system with GPT aware firmware and on an x86 based system, in most cases. For
more information, see “ZFS Root Pool Requirements” on page 108.

Disks can be specified by using either the full path, such as /dev/dsk/c1t0d0, or a shorthand
name that consists of the device name within the /dev/dsk directory, such as c1t0d0. For
example, the following are valid disk names:
■ c1t0d0

■ /dev/dsk/c1t0d0

■ /dev/foo/disk

Using Slices in a ZFS Storage Pool
Disks can be labeled with a legacy Solaris VTOC (SMI) label when you create a storage pool
with a disk slice, but using disk slices for a pool is not recommended because management of
disk slices is more difficult.

On a SPARC based system, a 72-GB disk has 68 GB of usable space located in slice 0 as shown in
the following format output:

format

.

.

.

Specify disk (enter its number): 4

selecting c1t1d0

partition> p

Current partition table (original):

Total disk cylinders available: 14087 + 2 (reserved cylinders)

Part Tag Flag Cylinders Size Blocks

0 root wm 0 - 14086 68.35GB (14087/0/0) 143349312

1 unassigned wm 0 0 (0/0/0) 0

2 backup wm 0 - 14086 68.35GB (14087/0/0) 143349312

3 unassigned wm 0 0 (0/0/0) 0

Components of a ZFS Storage Pool

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 45

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSdisksxadd-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSdisksxadd-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSdisksxadd-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSdisksconcepts-14
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSdisksconcepts-14

4 unassigned wm 0 0 (0/0/0) 0

5 unassigned wm 0 0 (0/0/0) 0

6 unassigned wm 0 0 (0/0/0) 0

7 unassigned wm 0 0 (0/0/0) 0

On an x86 based system, a 72-GB disk has 68 GB of usable disk space located in slice 0, as shown
in the following format output. A small amount of boot information is contained in slice 8.
Slice 8 requires no administration and cannot be changed.

format

.

.

.

selecting c1t0d0

partition> p

Current partition table (original):

Total disk cylinders available: 49779 + 2 (reserved cylinders)

Part Tag Flag Cylinders Size Blocks

0 root wm 1 - 49778 68.36GB (49778/0/0) 143360640

1 unassigned wu 0 0 (0/0/0) 0

2 backup wm 0 - 49778 68.36GB (49779/0/0) 143363520

3 unassigned wu 0 0 (0/0/0) 0

4 unassigned wu 0 0 (0/0/0) 0

5 unassigned wu 0 0 (0/0/0) 0

6 unassigned wu 0 0 (0/0/0) 0

7 unassigned wu 0 0 (0/0/0) 0

8 boot wu 0 - 0 1.41MB (1/0/0) 2880

9 unassigned wu 0 0 (0/0/0) 0

An fdisk partition also exists on an x86 based system. An fdisk partition is represented by a
/dev/dsk/cN[tN]dNpN device name and acts as a container for the disk's available slices. Do not
use a cN[tN]dNpN device for a ZFS storage pool component because this configuration is neither
tested nor supported.

Using Files in a ZFS Storage Pool
ZFS also allows you to use files as virtual devices in your storage pool. This feature is aimed
primarily at testing and enabling simple experimentation, not for production use.

■ If you create a ZFS pool backed by files on a UFS file system, then you are implicitly relying
on UFS to guarantee correctness and synchronous semantics.

■ If you create a ZFS pool backed by files or volumes that are created on another ZFS pool,
then the system might deadlock or panic.

However, files can be quite useful when you are first trying out ZFS or experimenting with more
complicated configurations when insufficient physical devices are present. All files must be
specified as complete paths and must be at least 64 MB in size.

Components of a ZFS Storage Pool

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201346

Considerations for ZFS Storage Pools
Review the following considerations when creating and managing ZFS storage pools.

■ Using whole physical disks is the easiest way to create ZFS storage pools. ZFS configurations
become progressively more complex, from management, reliability, and performance
perspectives, when you build pools from disk slices, LUNs in hardware RAID arrays, or
volumes presented by software-based volume managers. The following considerations
might help you determine how to configure ZFS with other hardware or software storage
solutions:
■ If you construct a ZFS configuration on top of LUNs from hardware RAID arrays, you

need to understand the relationship between ZFS redundancy features and the
redundancy features offered by the array. Certain configurations might provide
adequate redundancy and performance, but other configurations might not.

■ You can construct logical devices for ZFS using volumes presented by software-based
volume managers. However, these configurations are not recommended. Although ZFS
functions properly on such devices, less-than-optimal performance might be the result.

For additional information about storage pool recommendations, see Chapter 12,
“Recommended Oracle Solaris ZFS Practices.”

■ Disks are identified both by their path and by their device ID, if available. On systems where
device ID information is available, this identification method allows devices to be
reconfigured without updating ZFS. Because device ID generation and management can
vary by system, export the pool first before moving devices, such as moving a disk from one
controller to another controller. A system event, such as a firmware update or other
hardware change, might change the device IDs in your ZFS storage pool, which can cause
the devices to become unavailable.

Replication Features of a ZFS Storage Pool
ZFS provides data redundancy, as well as self-healing properties, in mirrored and RAID-Z
configurations.

■ “Mirrored Storage Pool Configuration” on page 48
■ “RAID-Z Storage Pool Configuration” on page 48
■ “Self-Healing Data in a Redundant Configuration” on page 49
■ “Dynamic Striping in a Storage Pool” on page 49
■ “ZFS Hybrid Storage Pool” on page 49

Replication Features of a ZFS Storage Pool

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 47

Mirrored Storage Pool Configuration
A mirrored storage pool configuration requires at least two disks, preferably on separate
controllers. Many disks can be used in a mirrored configuration. In addition, you can create
more than one mirror in each pool. Conceptually, a basic mirrored configuration would look
similar to the following:

mirror c1t0d0 c2t0d0

Conceptually, a more complex mirrored configuration would look similar to the following:

mirror c1t0d0 c2t0d0 c3t0d0 mirror c4t0d0 c5t0d0 c6t0d0

For information about creating a mirrored storage pool, see “Creating a Mirrored Storage Pool”
on page 51.

RAID-Z Storage Pool Configuration
In addition to a mirrored storage pool configuration, ZFS provides a RAID-Z configuration
with either single-, double-, or triple-parity fault tolerance. Single-parity RAID-Z (raidz or
raidz1) is similar to RAID-5. Double-parity RAID-Z (raidz2) is similar to RAID-6.

For more information about RAIDZ-3 (raidz3), see the following blog:

http://blogs.oracle.com/ahl/entry/triple_parity_raid_z

All traditional RAID-5-like algorithms (RAID-4, RAID-6, RDP, and EVEN-ODD, for example)
might experience a problem known as the RAID-5 write hole. If only part of a RAID-5 stripe is
written, and power is lost before all blocks have been written to disk, the parity will remain
unsynchronized with the data, and therefore forever useless, (unless a subsequent full-stripe
write overwrites it). In RAID-Z, ZFS uses variable-width RAID stripes so that all writes are
full-stripe writes. This design is only possible because ZFS integrates file system and device
management in such a way that the file system's metadata has enough information about the
underlying data redundancy model to handle variable-width RAID stripes. RAID-Z is the
world's first software-only solution to the RAID-5 write hole.

A RAID-Z configuration with N disks of size X with P parity disks can hold approximately
(N-P)*X bytes and can withstand P device(s) failing before data integrity is compromised. You
need at least two disks for a single-parity RAID-Z configuration and at least three disks for a
double-parity RAID-Z configuration, and so on. For example, if you have three disks in a
single-parity RAID-Z configuration, parity data occupies disk space equal to one of the three
disks. Otherwise, no special hardware is required to create a RAID-Z configuration.

Conceptually, a RAID-Z configuration with three disks would look similar to the following:

raidz c1t0d0 c2t0d0 c3t0d0

Replication Features of a ZFS Storage Pool

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201348

http://blogs.oracle.com/ahl/entry/triple_parity_raid_z

Conceptually, a more complex RAID-Z configuration would look similar to the following:

raidz c1t0d0 c2t0d0 c3t0d0 c4t0d0 c5t0d0 c6t0d0 c7t0d0

raidz c8t0d0 c9t0d0 c10t0d0 c11t0d0c12t0d0 c13t0d0 c14t0d0

If you are creating a RAID-Z configuration with many disks, consider splitting the disks into
multiple groupings. For example, a RAID-Z configuration with 14 disks is better split into two
7-disk groupings. RAID-Z configurations with single-digit groupings of disks should perform
better.

For information about creating a RAID-Z storage pool, see “Creating a RAID-Z Storage Pool”
on page 52.

For more information about choosing between a mirrored configuration or a RAID-Z
configuration based on performance and disk space considerations, see the following blog
entry:

http://blogs.oracle.com/roch/entry/when_to_and_not_to

For additional information about RAID-Z storage pool recommendations, see Chapter 12,
“Recommended Oracle Solaris ZFS Practices.”

ZFS Hybrid Storage Pool
The ZFS hybrid storage pool, available in Oracle's Sun Storage 7000 product series, is a special
storage pool that combines DRAM, SSDs, and HDDs, to improve performance and increase
capacity, while reducing power consumption. With this product's management interface, you
can select the ZFS redundancy configuration of the storage pool and easily manage other
configuration options.

For more information about this product, see the Sun Storage Unified Storage System
Administration Guide.

Self-Healing Data in a Redundant Configuration
ZFS provides self-healing data in a mirrored or RAID-Z configuration.

When a bad data block is detected, not only does ZFS fetch the correct data from another
redundant copy, but it also repairs the bad data by replacing it with the good copy.

Dynamic Striping in a Storage Pool
ZFS dynamically stripes data across all top-level virtual devices. The decision about where to
place data is done at write time, so no fixed-width stripes are created at allocation time.

Replication Features of a ZFS Storage Pool

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 49

http://blogs.oracle.com/roch/entry/when_to_and_not_to

When new virtual devices are added to a pool, ZFS gradually allocates data to the new device in
order to maintain performance and disk space allocation policies. Each virtual device can also
be a mirror or a RAID-Z device that contains other disk devices or files. This configuration gives
you flexibility in controlling the fault characteristics of your pool. For example, you could create
the following configurations out of four disks:
■ Four disks using dynamic striping
■ One four-way RAID-Z configuration
■ Two two-way mirrors using dynamic striping

Although ZFS supports combining different types of virtual devices within the same pool, avoid
this practice. For example, you can create a pool with a two-way mirror and a three-way
RAID-Z configuration. However, your fault tolerance is as good as your worst virtual device,
RAID-Z in this case. A best practice is to use top-level virtual devices of the same type with the
same redundancy level in each device.

Creating and Destroying ZFS Storage Pools
The following sections describe different scenarios for creating and destroying ZFS storage
pools:

■ “Creating ZFS Storage Pools” on page 50
■ “Displaying Storage Pool Virtual Device Information” on page 56
■ “Handling ZFS Storage Pool Creation Errors” on page 57
■ “Destroying ZFS Storage Pools” on page 60

Creating and destroying pools is fast and easy. However, be cautious when performing these
operations. Although checks are performed to prevent using devices known to be in use in a
new pool, ZFS cannot always know when a device is already in use. Destroying a pool is easier
than creating one. Use zpool destroy with caution. This simple command has significant
consequences.

Creating ZFS Storage Pools
To create a storage pool, use the zpool create command. This command takes a pool name
and any number of virtual devices as arguments. The pool name must satisfy the naming
requirements in “ZFS Component Naming Requirements” on page 31.

Creating a Basic Storage Pool
The following command creates a new pool named tank that consists of the disks c1t0d0 and
c1t1d0:

zpool create tank c1t0d0 c1t1d0

Creating and Destroying ZFS Storage Pools

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201350

Device names representing the whole disks are found in the /dev/dsk directory and are labeled
appropriately by ZFS to contain a single, large slice. Data is dynamically striped across both
disks.

Creating a Mirrored Storage Pool
To create a mirrored pool, use the mirror keyword, followed by any number of storage devices
that will comprise the mirror. Multiple mirrors can be specified by repeating the mirror
keyword on the command line. The following command creates a pool with two, two-way
mirrors:

zpool create tank mirror c1d0 c2d0 mirror c3d0 c4d0

The second mirror keyword indicates that a new top-level virtual device is being specified. Data
is dynamically striped across both mirrors, with data being redundant between each disk
appropriately.

For more information about recommended mirrored configurations, see Chapter 12,
“Recommended Oracle Solaris ZFS Practices.”

Currently, the following operations are supported in a ZFS mirrored configuration:

■ Adding another set of disks for an additional top-level virtual device (vdev) to an existing
mirrored configuration. For more information, see “Adding Devices to a Storage Pool” on
page 61.

■ Attaching additional disks to an existing mirrored configuration. Or, attaching additional
disks to a non-replicated configuration to create a mirrored configuration. For more
information, see “Attaching and Detaching Devices in a Storage Pool” on page 66.

■ Replacing a disk or disks in an existing mirrored configuration as long as the replacement
disks are greater than or equal to the size of the device to be replaced. For more information,
see “Replacing Devices in a Storage Pool” on page 73.

■ Detaching a disk in a mirrored configuration as long as the remaining devices provide
adequate redundancy for the configuration. For more information, see “Attaching and
Detaching Devices in a Storage Pool” on page 66.

■ Splitting a mirrored configuration by detaching one of the disks to create a new, identical
pool. For more information, see “Creating a New Pool By Splitting a Mirrored ZFS Storage
Pool” on page 68.

You cannot outright remove a device that is not a spare, a log device, or a cache device from a
mirrored storage pool.

Creating a ZFS Root Pool
Consider the following root pool configuration requirements:

Creating and Destroying ZFS Storage Pools

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 51

■ In Oracle Solaris 11.1, disks used for the root pool are installed with an EFI (GPT) label on
an x86 based system or a supported SPARC system with GPT aware firmware. Or, an SMI
(VTOC) label is applied on a SPARC based system without GPT aware firmware. The Oracle
Solaris 11.1 installer applies an EFI (GPT) label if possible and if you need to recreate a ZFS
root pool after installation, you can use the following command to apply the EFI (GPT) disk
label and the correct boot information:

zpool create -B rpool2 c1t0d0

■ The root pool must be created as a mirrored configuration or as a single-disk configuration.
You cannot add additional disks to create multiple mirrored top-level virtual devices by
using the zpool add command, but you can expand a mirrored virtual device by using the
zpool attach command.

■ A RAID-Z or a striped configuration is not supported.
■ The root pool cannot have a separate log device.
■ If you attempt to use an unsupported configuration for a root pool, you see messages similar

to the following:

ERROR: ZFS pool <pool-name> does not support boot environments

zpool add -f rpool log c0t6d0s0

cannot add to ’rpool’: root pool can not have multiple vdevs or separate logs

For more information about installing and booting a ZFS root file system, see Chapter 4,
“Managing ZFS Root Pool Components.”

Creating a RAID-Z Storage Pool
Creating a single-parity RAID-Z pool is identical to creating a mirrored pool, except that the
raidz or raidz1 keyword is used instead of mirror. The following example shows how to create
a pool with a single RAID-Z device that consists of five disks:

zpool create tank raidz c1t0d0 c2t0d0 c3t0d0 c4t0d0 /dev/dsk/c5t0d0

This example illustrates that disks can be specified by using their shorthand device names or
their full device names. Both /dev/dsk/c5t0d0 and c5t0d0 refer to the same disk.

You can create a double-parity or triple-parity RAID-Z configuration by using the raidz2 or
raidz3 keyword when creating the pool. For example:

zpool create tank raidz2 c1t0d0 c2t0d0 c3t0d0 c4t0d0 c5t0d0

zpool status -v tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

raidz2-0 ONLINE 0 0 0

Creating and Destroying ZFS Storage Pools

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201352

c1t0d0 ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

c3t0d0 ONLINE 0 0 0

c4t0d0 ONLINE 0 0 0

c5t0d0 ONLINE 0 0 0

errors: No known data errors

zpool create tank raidz3 c0t0d0 c1t0d0 c2t0d0 c3t0d0 c4t0d0

c5t0d0 c6t0d0 c7t0d0 c8t0d0

zpool status -v tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

raidz3-0 ONLINE 0 0 0

c0t0d0 ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

c3t0d0 ONLINE 0 0 0

c4t0d0 ONLINE 0 0 0

c5t0d0 ONLINE 0 0 0

c6t0d0 ONLINE 0 0 0

c7t0d0 ONLINE 0 0 0

c8t0d0 ONLINE 0 0 0

errors: No known data errors

Currently, the following operations are supported in a ZFS RAID-Z configuration:

■ Adding another set of disks for an additional top-level virtual device to an existing RAID-Z
configuration. For more information, see “Adding Devices to a Storage Pool” on page 61.

■ Replacing a disk or disks in an existing RAID-Z configuration as long as the replacement
disks are greater than or equal to the size of the device to be replaced. For more information,
see “Replacing Devices in a Storage Pool” on page 73.

Currently, the following operations are not supported in a RAID-Z configuration:

■ Attaching an additional disk to an existing RAID-Z configuration.
■ Detaching a disk from a RAID-Z configuration, except when you are detaching a disk that is

replaced by a spare disk or when you need to detach a spare disk.
■ You cannot outright remove a device that is not a log device or a cache device from a

RAID-Z configuration. An RFE is filed for this feature.

For more information about a RAID-Z configuration, see “RAID-Z Storage Pool
Configuration” on page 48.

Creating and Destroying ZFS Storage Pools

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 53

Creating a ZFS Storage Pool With Log Devices
The ZFS intent log (ZIL) is provided to satisfy POSIX requirements for synchronous
transactions. For example, databases often require their transactions to be on stable storage
devices when returning from a system call. NFS and other applications can also use fsync() to
ensure data stability.

By default, the ZIL is allocated from blocks within the main pool. However, better performance
might be possible by using separate intent log devices, such as NVRAM or a dedicated disk.

Consider the following points when determining whether setting up a ZFS log device is
appropriate for your environment:
■ Log devices for the ZFS intent log are not related to database log files.
■ Any performance improvement seen by implementing a separate log device depends on the

device type, the hardware configuration of the pool, and the application workload. For
preliminary performance information, see this blog:
http://blogs.oracle.com/perrin/entry/slog_blog_or_blogging_on

■ Log devices can be unreplicated or mirrored, but RAID-Z is not supported for log devices.
■ If a separate log device is not mirrored and the device that contains the log fails, storing log

blocks reverts to the storage pool.
■ Log devices can be added, replaced, removed, attached, detached, imported, and exported as

part of the larger storage pool.
■ You can attach a log device to an existing log device to create a mirrored log device. This

operation is identical to attaching a device in a unmirrored storage pool.
■ The minimum size of a log device is the same as the minimum size of each device in a pool,

which is 64 MB. The amount of in-play data that might be stored on a log device is relatively
small. Log blocks are freed when the log transaction (system call) is committed.

■ The maximum size of a log device should be approximately 1/2 the size of physical memory
because that is the maximum amount of potential in-play data that can be stored. For
example, if a system has 16 GB of physical memory, consider a maximum log device size of 8
GB.

You can set up a ZFS log device when the storage pool is created or after the pool is created.

The following example shows how to create a mirrored storage pool with mirrored log devices:

zpool create datap mirror c0t5000C500335F95E3d0 c0t5000C500335F907Fd0 mirror

c0t5000C500335BD117d0 c0t5000C500335DC60Fd0 log mirror c0t5000C500335E106Bd0 c0t5000C500335FC3E7d0

zpool status datap

pool: datap

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

Creating and Destroying ZFS Storage Pools

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201354

http://blogs.oracle.com/perrin/entry/slog_blog_or_blogging_on

datap ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t5000C500335F95E3d0 ONLINE 0 0 0

c0t5000C500335F907Fd0 ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c0t5000C500335BD117d0 ONLINE 0 0 0

c0t5000C500335DC60Fd0 ONLINE 0 0 0

logs

mirror-2 ONLINE 0 0 0

c0t5000C500335E106Bd0 ONLINE 0 0 0

c0t5000C500335FC3E7d0 ONLINE 0 0 0

errors: No known data errors

For information about recovering from a log device failure, see Example 10–2.

Creating a ZFS Storage Pool With Cache Devices
Cache devices provide an additional layer of caching between main memory and disk. Using
cache devices provides the greatest performance improvement for random-read workloads of
mostly static content.

You can create a storage pool with cache devices to cache storage pool data. For example:

zpool create tank mirror c2t0d0 c2t1d0 c2t3d0 cache c2t5d0 c2t8d0

zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

c2t3d0 ONLINE 0 0 0

cache

c2t5d0 ONLINE 0 0 0

c2t8d0 ONLINE 0 0 0

errors: No known data errors

After cache devices are added, they gradually fill with content from main memory. Depending
on the size of your cache device, it could take over an hour for the device to fill. Capacity and
reads can be monitored by using the zpool iostat command as follows:

zpool iostat -v pool 5

Cache devices can be added or removed from a pool after the pool is created.

Creating and Destroying ZFS Storage Pools

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 55

Consider the following points when determining whether to create a ZFS storage pool with
cache devices:

■ Using cache devices provides the greatest performance improvement for random-read
workloads of mostly static content.

■ Capacity and reads can be monitored by using the zpool iostat command.
■ Single or multiple cache devices can be added when the pool is created. They can also be

added and removed after the pool is created. For more information, see Example 3–4.
■ Cache devices cannot be mirrored or be part of a RAID-Z configuration.
■ If a read error is encountered on a cache device, that read I/O is reissued to the original

storage pool device, which might be part of a mirrored or a RAID-Z configuration. The
content of the cache devices is considered volatile, similar to other system caches.

Cautions For Creating Storage Pools
Review the following cautions when creating and managing ZFS storage pools.

■ Do not repartition or relabel disks that are part of an existing storage pool. If you attempt to
repartition or relabel a root pool disk, you might have to reinstall the OS.

■ Do not create a storage pool that contains components from another storage pool, such files
or volumes. Deadlocks can occur in this unsupported configuration.

■ A pool created with a single slice or single disk has no redundancy and is at risk for data loss.
A pool created with multiple slices but no redundancy is also at risk for data loss. A pool
created with multiple slices across disks is harder to manage than a pool created with whole
disks.

■ A pool that is not created with ZFS redundancy (RAIDZ or mirror) can only report data
inconsistencies. It cannot repair data inconsistencies.

■ Although a pool that is created with ZFS redundancy can help reduce down time due to
hardware failures, it is not immune to hardware failures, power failures, or disconnected
cables. Make sure you backup your data on a regular basis. Performing routine backups of
pool data on non-enterprise grade hardware is important.

■ A pool cannot be shared across systems. ZFS is not a cluster file system.

Displaying Storage Pool Virtual Device Information
Each storage pool contains one or more virtual devices. A virtual device is an internal
representation of the storage pool that describes the layout of physical storage and the storage
pool's fault characteristics. As such, a virtual device represents the disk devices or files that are
used to create the storage pool. A pool can have any number of virtual devices at the top of the
configuration, known as a top-level vdev.

Creating and Destroying ZFS Storage Pools

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201356

If the top-level virtual device contains two or more physical devices, the configuration provides
data redundancy as mirror or RAID-Z virtual devices. These virtual devices consist of disks,
disk slices, or files. A spare is a special virtual dev that tracks available hot spares for a pool.

The following example shows how to create a pool that consists of two top-level virtual devices,
each a mirror of two disks:

zpool create tank mirror c1d0 c2d0 mirror c3d0 c4d0

The following example shows how to create a pool that consists of one top-level virtual device of
four disks:

zpool create mypool raidz2 c1d0 c2d0 c3d0 c4d0

You can add another top-level virtual device to this pool by using the zpool add command. For
example:

zpool add mypool raidz2 c2d1 c3d1 c4d1 c5d1

Disks, disk slices, or files that are used in nonredundant pools function as top-level virtual
devices. Storage pools typically contain multiple top-level virtual devices. ZFS dynamically
stripes data among all of the top-level virtual devices in a pool.

Virtual devices and the physical devices that are contained in a ZFS storage pool are displayed
with the zpool status command. For example:

zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c0t2d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

mirror-2 ONLINE 0 0 0

c0t3d0 ONLINE 0 0 0

c1t3d0 ONLINE 0 0 0

errors: No known data errors

Handling ZFS Storage Pool Creation Errors
Pool creation errors can occur for many reasons. Some reasons are obvious, such as when a
specified device doesn't exist, while other reasons are more subtle.

Creating and Destroying ZFS Storage Pools

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 57

Detecting In-Use Devices
Before formatting a device, ZFS first determines if the disk is in-use by ZFS or some other part
of the operating system. If the disk is in use, you might see errors such as the following:

zpool create tank c1t0d0 c1t1d0

invalid vdev specification

use ’-f’ to override the following errors:

/dev/dsk/c1t0d0s0 is currently mounted on /. Please see umount(1M).

/dev/dsk/c1t0d0s1 is currently mounted on swap. Please see swap(1M).

/dev/dsk/c1t1d0s0 is part of active ZFS pool zeepool. Please see zpool(1M).

Some errors can be overridden by using the -f option, but most errors cannot. The following
conditions cannot be overridden by using the -f option, and you must manually correct them:

Mounted file system The disk or one of its slices contains a file system that is currently
mounted. To correct this error, use the umount command.

File system in /etc/vfstab The disk contains a file system that is listed in the /etc/vfstab
file, but the file system is not currently mounted. To correct this
error, remove or comment out the line in the /etc/vfstab file.

Dedicated dump device The disk is in use as the dedicated dump device for the system. To
correct this error, use the dumpadm command.

Part of a ZFS pool The disk or file is part of an active ZFS storage pool. To correct
this error, use the zpool destroy command to destroy the other
pool, if it is no longer needed. Or, use the zpool detach
command to detach the disk from the other pool. You can only
detach a disk from a mirrored storage pool.

The following in-use checks serve as helpful warnings and can be overridden by using the -f
option to create the pool:

Contains a file system The disk contains a known file system, though it is not mounted
and doesn't appear to be in use.

Part of volume The disk is part of a Solaris Volume Manager volume.

Part of exported ZFS pool The disk is part of a storage pool that has been exported or
manually removed from a system. In the latter case, the pool is
reported as potentially active, as the disk might or might
not be a network-attached drive in use by another system. Be
cautious when overriding a potentially active pool.

The following example demonstrates how the -f option is used:

zpool create tank c1t0d0

invalid vdev specification

use ’-f’ to override the following errors:

Creating and Destroying ZFS Storage Pools

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201358

/dev/dsk/c1t0d0s0 contains a ufs filesystem.

zpool create -f tank c1t0d0

Ideally, correct the errors rather than use the -f option to override them.

Mismatched Replication Levels
Creating pools with virtual devices of different replication levels is not recommended. The
zpool command tries to prevent you from accidentally creating a pool with mismatched levels
of redundancy. If you try to create a pool with such a configuration, you see errors similar to the
following:

zpool create tank c1t0d0 mirror c2t0d0 c3t0d0

invalid vdev specification

use ’-f’ to override the following errors:

mismatched replication level: both disk and mirror vdevs are present

zpool create tank mirror c1t0d0 c2t0d0 mirror c3t0d0 c4t0d0 c5t0d0

invalid vdev specification

use ’-f’ to override the following errors:

mismatched replication level: 2-way mirror and 3-way mirror vdevs are present

You can override these errors with the -f option, but you should avoid this practice. The
command also warns you about creating a mirrored or RAID-Z pool using devices of different
sizes. Although this configuration is allowed, mismatched levels of redundancy result in unused
disk space on the larger device. The -f option is required to override the warning.

Doing a Dry Run of Storage Pool Creation
Attempts to create a pool can fail unexpectedly in different ways, and formatting disks is a
potentially harmful action. For these reasons, the zpool create command has an additional
option, -n, which simulates creating the pool without actually writing to the device. This dry
run option performs the device in-use checking and replication-level validation, and reports
any errors in the process. If no errors are found, you see output similar to the following:

zpool create -n tank mirror c1t0d0 c1t1d0

would create ’tank’ with the following layout:

tank

mirror

c1t0d0

c1t1d0

Some errors cannot be detected without actually creating the pool. The most common example
is specifying the same device twice in the same configuration. This error cannot be reliably
detected without actually writing the data, so the zpool create -n command can report success
and yet fail to create the pool when the command is run without this option.

Creating and Destroying ZFS Storage Pools

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 59

Default Mount Point for Storage Pools
When a pool is created, the default mount point for the top-level file system is /pool-name. This
directory must either not exist or be empty. If the directory does not exist, it is automatically
created. If the directory is empty, the root file system is mounted on top of the existing
directory. To create a pool with a different default mount point, use the -m option of the zpool
create command. For example:

zpool create home c1t0d0

default mountpoint ’/home’ exists and is not empty

use ’-m’ option to provide a different default

zpool create -m /export/zfs home c1t0d0

This command creates the new pool home and the home file system with a mount point of
/export/zfs.

For more information about mount points, see “Managing ZFS Mount Points” on page 164.

Destroying ZFS Storage Pools
Pools are destroyed by using the zpool destroy command. This command destroys the pool
even if it contains mounted datasets.

zpool destroy tank

Caution – Be very careful when you destroy a pool. Ensure that you are destroying the right pool
and you always have copies of your data. If you accidentally destroy the wrong pool, you can
attempt to recover the pool. For more information, see “Recovering Destroyed ZFS Storage
Pools” on page 102.

If you destroy a pool with the zpool destroy command, the pool is still available for import as
described in “Recovering Destroyed ZFS Storage Pools” on page 102. This means that
confidential data might still be available on the disks that were part of the pool. If you want to
destroy data on the destroyed pool's disks, you must use a feature like the format utility's
analyze->purge option on every disk in the destroyed pool.

Another option for keeping file system data confidential is to create encrypted ZFS file systems.
When a pool with an encrypted file system is destroyed, the data would not be accessible
without the encryption keys, even if the destroyed pool was recovered. For more information,
see “Encrypting ZFS File Systems” on page 184.

Creating and Destroying ZFS Storage Pools

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201360

Destroying a Pool With Unavailable Devices
The act of destroying a pool requires data to be written to disk to indicate that the pool is no
longer valid. This state information prevents the devices from showing up as a potential pool
when you perform an import. If one or more devices are unavailable, the pool can still be
destroyed. However, the necessary state information won't be written to these unavailable
devices.

These devices, when suitably repaired, are reported as potentially active when you create a new
pool. They appear as valid devices when you search for pools to import. If a pool has enough
UNAVAIL devices such that the pool itself is UNAVAIL (meaning that a top-level virtual device is
UNAVAIL), then the command prints a warning and cannot complete without the -f option. This
option is necessary because the pool cannot be opened, so whether data is stored there is
unknown. For example:

zpool destroy tank

cannot destroy ’tank’: pool is faulted

use ’-f’ to force destruction anyway

zpool destroy -f tank

For more information about pool and device health, see “Determining the Health Status of ZFS
Storage Pools” on page 91.

For more information about importing pools, see “Importing ZFS Storage Pools” on page 99.

Managing Devices in ZFS Storage Pools
Most of the basic information regarding devices is covered in “Components of a ZFS Storage
Pool” on page 43. After a pool has been created, you can perform several tasks to manage the
physical devices within the pool.

■ “Adding Devices to a Storage Pool” on page 61
■ “Attaching and Detaching Devices in a Storage Pool” on page 66
■ “Creating a New Pool By Splitting a Mirrored ZFS Storage Pool” on page 68
■ “Onlining and Offlining Devices in a Storage Pool” on page 71
■ “Clearing Storage Pool Device Errors” on page 73
■ “Replacing Devices in a Storage Pool” on page 73
■ “Designating Hot Spares in Your Storage Pool” on page 76

Adding Devices to a Storage Pool
You can dynamically add disk space to a pool by adding a new top-level virtual device. This disk
space is immediately available to all datasets in the pool. To add a new virtual device to a pool,
use the zpool add command. For example:

Managing Devices in ZFS Storage Pools

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 61

zpool add zeepool mirror c2t1d0 c2t2d0

The format for specifying the virtual devices is the same as for the zpool create command.
Devices are checked to determine if they are in use, and the command cannot change the level
of redundancy without the -f option. The command also supports the -n option so that you can
perform a dry run. For example:

zpool add -n zeepool mirror c3t1d0 c3t2d0

would update ’zeepool’ to the following configuration:

zeepool

mirror

c1t0d0

c1t1d0

mirror

c2t1d0

c2t2d0

mirror

c3t1d0

c3t2d0

This command syntax would add mirrored devices c3t1d0 and c3t2d0 to the zeepool pool's
existing configuration.

For more information about how virtual device validation is done, see “Detecting In-Use
Devices” on page 58.

EXAMPLE 3–1 Adding Disks to a Mirrored ZFS Configuration

In the following example, another mirror is added to an existing mirrored ZFS configuration.

zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c0t2d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

errors: No known data errors

zpool add tank mirror c0t3d0 c1t3d0

zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

Managing Devices in ZFS Storage Pools

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201362

EXAMPLE 3–1 Adding Disks to a Mirrored ZFS Configuration (Continued)

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c0t2d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

mirror-2 ONLINE 0 0 0

c0t3d0 ONLINE 0 0 0

c1t3d0 ONLINE 0 0 0

errors: No known data errors

EXAMPLE 3–2 Adding Disks to a RAID-Z Configuration

Additional disks can be added similarly to a RAID-Z configuration. The following example
shows how to convert a storage pool with one RAID-Z device that contains three disks to a
storage pool with two RAID-Z devices that contains three disks each.

zpool status rzpool

pool: rzpool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

rzpool ONLINE 0 0 0

raidz1-0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

c1t3d0 ONLINE 0 0 0

c1t4d0 ONLINE 0 0 0

errors: No known data errors

zpool add rzpool raidz c2t2d0 c2t3d0 c2t4d0

zpool status rzpool

pool: rzpool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

rzpool ONLINE 0 0 0

raidz1-0 ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

c1t3d0 ONLINE 0 0 0

raidz1-1 ONLINE 0 0 0

c2t2d0 ONLINE 0 0 0

c2t3d0 ONLINE 0 0 0

c2t4d0 ONLINE 0 0 0

errors: No known data errors

Managing Devices in ZFS Storage Pools

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 63

EXAMPLE 3–3 Adding and Removing a Mirrored Log Device

The following example shows how to add a mirrored log device to a mirrored storage pool.

zpool status newpool

pool: newpool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

newpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t4d0 ONLINE 0 0 0

c0t5d0 ONLINE 0 0 0

errors: No known data errors

zpool add newpool log mirror c0t6d0 c0t7d0

zpool status newpool

pool: newpool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

newpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t4d0 ONLINE 0 0 0

c0t5d0 ONLINE 0 0 0

logs

mirror-1 ONLINE 0 0 0

c0t6d0 ONLINE 0 0 0

c0t7d0 ONLINE 0 0 0

errors: No known data errors

You can attach a log device to an existing log device to create a mirrored log device. This
operation is identical to attaching a device in an unmirrored storage pool.

You can remove log devices by using the zpool remove command. The mirrored log device in
the previous example can be removed by specifying the mirror-1 argument. For example:

zpool remove newpool mirror-1

zpool status newpool

pool: newpool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

newpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t4d0 ONLINE 0 0 0

c0t5d0 ONLINE 0 0 0

errors: No known data errors

Managing Devices in ZFS Storage Pools

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201364

EXAMPLE 3–3 Adding and Removing a Mirrored Log Device (Continued)

If your pool configuration contains only one log device, you remove the log device by specifying
the device name. For example:

zpool status pool

pool: pool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

pool ONLINE 0 0 0

raidz1-0 ONLINE 0 0 0

c0t8d0 ONLINE 0 0 0

c0t9d0 ONLINE 0 0 0

logs

c0t10d0 ONLINE 0 0 0

errors: No known data errors

zpool remove pool c0t10d0

EXAMPLE 3–4 Adding and Removing Cache Devices

You can add cache devices to your ZFS storage pool and remove them if they are no longer
required.

Use the zpool add command to add cache devices. For example:

zpool add tank cache c2t5d0 c2t8d0

zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

c2t3d0 ONLINE 0 0 0

cache

c2t5d0 ONLINE 0 0 0

c2t8d0 ONLINE 0 0 0

errors: No known data errors

Cache devices cannot be mirrored or be part of a RAID-Z configuration.

Use the zpool remove command to remove cache devices. For example:

zpool remove tank c2t5d0 c2t8d0

zpool status tank

Managing Devices in ZFS Storage Pools

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 65

EXAMPLE 3–4 Adding and Removing Cache Devices (Continued)

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

c2t3d0 ONLINE 0 0 0

errors: No known data errors

Currently, the zpool remove command only supports removing hot spares, log devices, and
cache devices. Devices that are part of the main mirrored pool configuration can be removed by
using the zpool detach command. Nonredundant and RAID-Z devices cannot be removed
from a pool.

For more information about using cache devices in a ZFS storage pool, see “Creating a ZFS
Storage Pool With Cache Devices” on page 55.

Attaching and Detaching Devices in a Storage Pool
In addition to the zpool add command, you can use the zpool attach command to add a new
device to an existing mirrored or nonmirrored device.

If you are attaching a disk to create a mirrored root pool, see “How to Configure a Mirrored
Root Pool (SPARC or x86/VTOC)” on page 112.

If you are replacing a disk in a ZFS root pool, see “How to Replace a Disk in a ZFS Root Pool
(SPARC or x86/VTOC)” on page 115.

EXAMPLE 3–5 Converting a Two-Way Mirrored Storage Pool to a Three-way Mirrored Storage Pool

In this example, zeepool is an existing two-way mirror that is converted to a three-way mirror
by attaching c2t1d0, the new device, to the existing device, c1t1d0.

zpool status zeepool

pool: zeepool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

Managing Devices in ZFS Storage Pools

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201366

EXAMPLE 3–5 Converting a Two-Way Mirrored Storage Pool to a Three-way Mirrored Storage Pool
(Continued)

c1t1d0 ONLINE 0 0 0

errors: No known data errors

zpool attach zeepool c1t1d0 c2t1d0

zpool status zeepool

pool: zeepool

state: ONLINE

scrub: resilver completed after 0h0m with 0 errors on Fri Jan 8 12:59:20 2010

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0 592K resilvered

errors: No known data errors

If the existing device is part of a three-way mirror, attaching the new device creates a four-way
mirror, and so on. Whatever the case, the new device begins to resilver immediately.

EXAMPLE 3–6 Converting a Nonredundant ZFS Storage Pool to a Mirrored ZFS Storage Pool

In addition, you can convert a nonredundant storage pool to a redundant storage pool by using
the zpool attach command. For example:

zpool create tank c0t1d0

zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

errors: No known data errors

zpool attach tank c0t1d0 c1t1d0

zpool status tank

pool: tank

state: ONLINE

scrub: resilver completed after 0h0m with 0 errors on Fri Jan 8 14:28:23 2010

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0 73.5K resilvered

errors: No known data errors

Managing Devices in ZFS Storage Pools

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 67

You can use the zpool detach command to detach a device from a mirrored storage pool. For
example:

zpool detach zeepool c2t1d0

However, this operation fails if no other valid replicas of the data exist. For example:

zpool detach newpool c1t2d0

cannot detach c1t2d0: only applicable to mirror and replacing vdevs

Creating a New Pool By Splitting a Mirrored ZFS
Storage Pool
A mirrored ZFS storage pool can be quickly cloned as a backup pool by using the zpool split
command. You can use this feature to split a mirrored root pool, but the pool that is split off is
not bootable until you perform some additional steps.

You can use the zpool split command to detach one or more disks from a mirrored ZFS
storage pool to create a new pool with the detached disk or disks. The new pool will have
identical contents to the original mirrored ZFS storage pool.

By default, a zpool split operation on a mirrored pool detaches the last disk for the newly
created pool. After the split operation, you then import the new pool. For example:

zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

errors: No known data errors

zpool split tank tank2

zpool import tank2

zpool status tank tank2

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

errors: No known data errors

Managing Devices in ZFS Storage Pools

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201368

pool: tank2

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank2 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

errors: No known data errors

You can identify which disk should be used for the newly created pool by specifying it with the
zpool split command. For example:

zpool split tank tank2 c1t0d0

Before the actual split operation occurs, data in memory is flushed to the mirrored disks. After
the data is flushed, the disk is detached from the pool and given a new pool GUID. A new pool
GUID is generated so that the pool can be imported on the same system on which it was split.

If the pool to be split has non-default file system mount points, and the new pool is created on
the same system, then you must use the zpool split -R option to identify an alternate root
directory for the new pool so that any existing mount points do not conflict. For example:

zpool split -R /tank2 tank tank2

If you don't use the zpool split -R option, and you can see that mount points conflict when
you attempt to import the new pool, import the new pool with the -R option. If the new pool is
created on a different system, then specifying an alternate root directory is not necessary unless
mount point conflicts occur.

Review the following considerations before using the zpool split feature:

■ This feature is not available for a RAID-Z configuration or a non-redundant pool of
multiple disks.

■ Data and application operations should be quiesced before attempting a zpool split
operation.

■ A pool cannot be split if resilvering is in process.
■ Splitting a mirrored pool is optimal when the pool contains two to three disks, where the last

disk in the original pool is used for the newly created pool. Then, you can use the zpool
attach command to re-create your original mirrored storage pool or convert your newly
created pool into a mirrored storage pool. No method currently exists to create a new
mirrored pool from an existing mirrored pool in one zpool split operation because the
new (split) pool is non-redundant

Managing Devices in ZFS Storage Pools

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 69

■ If the existing pool is a three-way mirror, then the new pool will contain one disk after the
split operation. If the existing pool is a two-way mirror of two disks, then the outcome is two
non-redundant pools of two disks. You must attach two additional disks to convert the
non-redundant pools to mirrored pools.

■ A good way to keep your data redundant during a split operation is to split a mirrored
storage pool that contains three disks so that the original pool contains two mirrored disks
after the split operation.

■ Confirm that your hardware is configured correctly before splitting a mirrored pool. For
related information about confirming your hardware's cache flush settings, see “General
System Practices” on page 303.

EXAMPLE 3–7 Splitting a Mirrored ZFS Pool

In the following example, a mirrored storage pool called mothership, with three disks is split.
The two resulting pools are the mirrored pool mothership, with two disks and the new pool,
luna, with one disk. Each pool has identical content.

The pool luna could be imported on another system for backup purposes. After the backup is
complete, the pool luna could be destroyed and the disk reattached to the mothership. Then,
the process could be repeated.

zpool status mothership

pool: mothership

state: ONLINE

scan: none requested

config:

NAME STATE READ WRITE CKSUM

mothership ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t5000C500335F95E3d0 ONLINE 0 0 0

c0t5000C500335BD117d0 ONLINE 0 0 0

c0t5000C500335F907Fd0 ONLINE 0 0 0

errors: No known data errors

zpool split mothership luna

zpool import luna

zpool status mothership luna

pool: luna

state: ONLINE

scan: none requested

config:

NAME STATE READ WRITE CKSUM

luna ONLINE 0 0 0

c0t5000C500335F907Fd0 ONLINE 0 0 0

errors: No known data errors

pool: mothership

state: ONLINE

Managing Devices in ZFS Storage Pools

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201370

EXAMPLE 3–7 Splitting a Mirrored ZFS Pool (Continued)

scan: none requested

config:

NAME STATE READ WRITE CKSUM

mothership ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t5000C500335F95E3d0 ONLINE 0 0 0

c0t5000C500335BD117d0 ONLINE 0 0 0

errors: No known data errors

Onlining and Offlining Devices in a Storage Pool
ZFS allows individual devices to be taken offline or brought online. When hardware is
unreliable or not functioning properly, ZFS continues to read data from or write data to the
device, assuming the condition is only temporary. If the condition is not temporary, you can
instruct ZFS to ignore the device by taking it offline. ZFS does not send any requests to an offline
device.

Note – Devices do not need to be taken offline in order to replace them.

Taking a Device Offline
You can take a device offline by using the zpool offline command. The device can be
specified by path or by short name, if the device is a disk. For example:

zpool offline tank c0t5000C500335F95E3d0

Consider the following points when taking a device offline:

■ You cannot take a pool offline to the point where it becomes UNAVAIL. For example, you
cannot take offline two devices in a raidz1 configuration, nor can you take offline a
top-level virtual device.

zpool offline tank c0t5000C500335F95E3d0

cannot offline c0t5000C500335F95E3d0: no valid replicas

■ By default, the OFFLINE state is persistent. The device remains offline when the system is
rebooted.
To temporarily take a device offline, use the zpool offline -t option. For example:

zpool offline -t tank c1t0d0

bringing device ’c1t0d0’ offline

When the system is rebooted, this device is automatically returned to the ONLINE state.

Managing Devices in ZFS Storage Pools

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 71

■ When a device is taken offline, it is not detached from the storage pool. If you attempt to use
the offline device in another pool, even after the original pool is destroyed, you see a message
similar to the following:

device is part of exported or potentially active ZFS pool. Please see zpool(1M)

If you want to use the offline device in another storage pool after destroying the original
storage pool, first bring the device online, then destroy the original storage pool.

Another way to use a device from another storage pool, while keeping the original storage
pool, is to replace the existing device in the original storage pool with another comparable
device. For information about replacing devices, see “Replacing Devices in a Storage Pool”
on page 73.

Offline devices are in the OFFLINE state when you query pool status. For information about
querying pool status, see “Querying ZFS Storage Pool Status” on page 84.

For more information on device health, see “Determining the Health Status of ZFS Storage
Pools” on page 91.

Bringing a Device Online
After a device is taken offline, it can be brought online again by using the zpool online
command. For example:

zpool online tank c0t5000C500335F95E3d0

When a device is brought online, any data that has been written to the pool is resynchronized
with the newly available device. Note that you cannot bring a device online to replace a disk. If
you take a device offline, replace the device, and try to bring it online, it remains in the UNAVAIL
state.

If you attempt to bring online an UNAVAIL device, a message similar to the following is
displayed:

You might also see the faulted disk message displayed on the console or written to the
/var/adm/messages file. For example:

SUNW-MSG-ID: ZFS-8000-LR, TYPE: Fault, VER: 1, SEVERITY: Major

EVENT-TIME: Wed Jun 20 11:35:26 MDT 2012

PLATFORM: ORCL,SPARC-T3-4, CSN: 1120BDRCCD, HOSTNAME: tardis

SOURCE: zfs-diagnosis, REV: 1.0

EVENT-ID: fb6699c8-6bfb-eefa-88bb-81479182e3b7

DESC: ZFS device ’id1,sd@n5000c500335dc60f/a’ in pool ’pond’ failed to open.

AUTO-RESPONSE: An attempt will be made to activate a hot spare if available.

IMPACT: Fault tolerance of the pool may be compromised.

REC-ACTION: Use ’fmadm faulty’ to provide a more detailed view of this event.

Run ’zpool status -lx’ for more information. Please refer to the associated

reference document at http://support.oracle.com/msg/ZFS-8000-LR for the latest

Managing Devices in ZFS Storage Pools

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201372

service procedures and policies regarding this diagnosis.

For more information about replacing a faulted device, see “Resolving a Missing Device” on
page 276.

You can use the zpool online -e command to expand a LUN. By default, a LUN that is added
to a pool is not expanded to its full size unless the autoexpand pool property is enabled. You can
expand the LUN automatically by using the zpool online -e command even if the LUN is
already online or if the LUN is currently offline. For example:

zpool online -e tank c0t5000C500335F95E3d0

Clearing Storage Pool Device Errors
If a device is taken offline due to a failure that causes errors to be listed in the zpool status
output, you can clear the error counts with the zpool clear command.

If specified with no arguments, this command clears all device errors within the pool. For
example:

zpool clear tank

If one or more devices are specified, this command only clears errors associated with the
specified devices. For example:

zpool clear tank c0t5000C500335F95E3d0

For more information about clearing zpool errors, see “Clearing Transient Errors” on page 281.

Replacing Devices in a Storage Pool
You can replace a device in a storage pool by using the zpool replace command.

If you are physically replacing a device with another device in the same location in a redundant
pool, then you might only need to identify the replaced device. On some hardware, ZFS
recognizes that the device is a different disk in the same location. For example, to replace a failed
disk (c1t1d0) by removing the disk and replacing it in the same location, use the following
syntax:

zpool replace tank c1t1d0

If you are replacing a device in a storage pool with a disk in a different physical location, you
must specify both devices. For example:

Managing Devices in ZFS Storage Pools

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 73

zpool replace tank c1t1d0 c1t2d0

If you are replacing a disk in the ZFS root pool, see “How to Replace a Disk in a ZFS Root Pool
(SPARC or x86/VTOC)” on page 115.

The following are the basic steps for replacing a disk:

1. Offline the disk, if necessary, with the zpool offline command.
2. Remove the disk to be replaced.
3. Insert the replacement disk.
4. Review the format output to determine if the replacement disk is visible.

In addition, check to see whether the device ID has changed. If the replacement disk has a
WWN, then the device ID for the failed disk is changed.

5. Let ZFS know the disk is replaced. For example:

zpool replace tank c1t1d0

If the replacement disk has a different device ID as identified above, include the new device
ID.

zpool replace tank c0t5000C500335FC3E7d0 c0t5000C500335BA8C3d0

6. Bring the disk online with the zpool online command, if necessary.
7. Notify FMA that the device is replaced.

From fmadm faulty output, identify the zfs://pool=name/vdev=guid string in the
Affects: section and provide that string as an argument to the fmadm repaired command.

fmadm faulty

fmadm repaired zfs://pool=name/vdev=guid

On some systems with SATA disks, you must unconfigure a disk before you can take it offline. If
you are replacing a disk in the same slot position on this system, then you can just run the zpool
replace command as described in the first example in this section.

For an example of replacing a SATA disk, see Example 10–1.

Consider the following when replacing devices in a ZFS storage pool:

■ If you set the autoreplace pool property to on, then any new device found in the same
physical location as a device that previously belonged to the pool is automatically formatted
and replaced. You are not required to use the zpool replace command when this property
is enabled. This feature might not be available on all hardware types.

■ The storage pool state REMOVED is provided when a device or hot spare has been physically
removed while the system was running. A hot spare device is substituted for the removed
device, if available.

Managing Devices in ZFS Storage Pools

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201374

■ If a device is removed and then reinserted, the device is placed online. If a hot spare was
activated when the device was reinserted, the hot spare is removed when the online
operation completes.

■ Automatic detection when devices are removed or inserted is hardware-dependent and
might not be supported on all platforms. For example, USB devices are automatically
configured upon insertion. However, you might have to use the cfgadm -c configure
command to configure a SATA drive.

■ Hot spares are checked periodically to ensure that they are online and available.
■ The size of the replacement device must be equal to or larger than the smallest disk in a

mirrored or RAID-Z configuration.
■ When a replacement device that is larger in size than the device it is replacing is added to a

pool, it is not automatically expanded to its full size. The autoexpand pool property value
determines whether a replacement LUN is expanded to its full size when the disk is added to
the pool. By default, the autoexpand property is disabled. You can enable this property to
expand the LUN size before or after the larger LUN is added to the pool.
In the following example, two 16-GB disks in a mirrored pool are replaced with two 72-GB
disks. Ensure that the first device is completely resilvered before attempting the second
device replacement. The autoexpand property is enabled after the disk replacements to
expand the full disk sizes.

zpool create pool mirror c1t16d0 c1t17d0

zpool status

pool: pool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

pool ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t16d0 ONLINE 0 0 0

c1t17d0 ONLINE 0 0 0

zpool list pool

NAME SIZE ALLOC FREE CAP HEALTH ALTROOT

pool 16.8G 76.5K 16.7G 0% ONLINE -

zpool replace pool c1t16d0 c1t1d0

zpool replace pool c1t17d0 c1t2d0

zpool list pool

NAME SIZE ALLOC FREE CAP HEALTH ALTROOT

pool 16.8G 88.5K 16.7G 0% ONLINE -

zpool set autoexpand=on pool

zpool list pool

NAME SIZE ALLOC FREE CAP HEALTH ALTROOT

pool 68.2G 117K 68.2G 0% ONLINE -

Managing Devices in ZFS Storage Pools

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 75

■ Replacing many disks in a large pool is time-consuming due to resilvering the data onto the
new disks. In addition, you might consider running the zpool scrub command between
disk replacements to ensure that the replacement devices are operational and that the data is
written correctly.

■ If a failed disk has been replaced automatically with a hot spare, then you might need to
detach the spare after the failed disk is replaced. You can use the zpool detach command to
detach a spare in a mirrored or RAID-Z pool. For information about detaching a hot spare,
see “Activating and Deactivating Hot Spares in Your Storage Pool” on page 78.

For more information about replacing devices, see “Resolving a Missing Device” on page 276
and “Replacing or Repairing a Damaged Device” on page 280.

Designating Hot Spares in Your Storage Pool
The hot spares feature enables you to identify disks that could be used to replace a failed or
faulted device in a storage pool. Designating a device as a hot spare means that the device is not
an active device in the pool, but if an active device in the pool fails, the hot spare automatically
replaces the failed device.

Devices can be designated as hot spares in the following ways:

■ When the pool is created with the zpool create command.
■ After the pool is created with the zpool add command.

The following example shows how to designate devices as hot spares when the pool is created:

zpool create zeepool mirror c0t5000C500335F95E3d0 c0t5000C500335F907Fd0

mirror c0t5000C500335BD117d0 c0t5000C500335DC60Fd0 spare c0t5000C500335E106Bd0 c0t5000C500335FC3E7d0

zpool status zeepool

pool: zeepool

state: ONLINE

scan: none requested

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t5000C500335F95E3d0 ONLINE 0 0 0

c0t5000C500335F907Fd0 ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c0t5000C500335BD117d0 ONLINE 0 0 0

c0t5000C500335DC60Fd0 ONLINE 0 0 0

spares

c0t5000C500335E106Bd0 AVAIL

c0t5000C500335FC3E7d0 AVAIL

errors: No known data errors

Managing Devices in ZFS Storage Pools

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201376

The following example shows how to designate hot spares by adding them to a pool after the
pool is created:

zpool add zeepool spare c0t5000C500335E106Bd0 c0t5000C500335FC3E7d0

zpool status zeepool

pool: zeepool

state: ONLINE

scan: none requested

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t5000C500335F95E3d0 ONLINE 0 0 0

c0t5000C500335F907Fd0 ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c0t5000C500335BD117d0 ONLINE 0 0 0

c0t5000C500335DC60Fd0 ONLINE 0 0 0

spares

c0t5000C500335E106Bd0 AVAIL

c0t5000C500335FC3E7d0 AVAIL

errors: No known data errors

Hot spares can be removed from a storage pool by using the zpool remove command. For
example:

zpool remove zeepool c0t5000C500335FC3E7d0

zpool status zeepool

pool: zeepool

state: ONLINE

scan: none requested

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t5000C500335F95E3d0 ONLINE 0 0 0

c0t5000C500335F907Fd0 ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c0t5000C500335BD117d0 ONLINE 0 0 0

c0t5000C500335DC60Fd0 ONLINE 0 0 0

spares

c0t5000C500335E106Bd0 AVAIL

errors: No known data errors

A hot spare cannot be removed if it is currently used by a storage pool.

Consider the following when using ZFS hot spares:

■ Currently, the zpool remove command can only be used to remove hot spares, cache
devices, and log devices.

Managing Devices in ZFS Storage Pools

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 77

■ To add a disk as a hot spare, the hot spare must be equal to or larger than the size of the
largest disk in the pool. Adding a smaller disk as a spare to a pool is allowed. However, when
the smaller spare disk is activated, either automatically or with the zpool replace
command, the operation fails with an error similar to the following:

cannot replace disk3 with disk4: device is too small

■ You cannot share a spare across systems.
■ Consider that if you share a spare between two data pools on the same system, you must

coordinate the use of the spare between the two pools. For example, pool A has the spare in
use and pool A is exported. Pool B could unknowingly use the spare while pool A is
exported. When pool A is imported, data corruption could occur because both pools are
using the same disk.

■ Do not share a spare between a root pool and a data pool.

Activating and Deactivating Hot Spares in Your Storage Pool
Hot spares are activated in the following ways:

■ Manual replacement – You replace a failed device in a storage pool with a hot spare by using
the zpool replace command.

■ Automatic replacement – When a fault is detected, an FMA agent examines the pool to
determine if it has any available hot spares. If so, it replaces the faulted device with an
available spare.
If a hot spare that is currently in use fails, the FMA agent detaches the spare and thereby
cancels the replacement. The agent then attempts to replace the device with another hot
spare, if one is available. This feature is currently limited by the fact that the ZFS diagnostic
engine only generates faults when a device disappears from the system.
If you physically replace a failed device with an active spare, you can reactivate the original
device by using the zpool detach command to detach the spare. If you set the autoreplace
pool property to on, the spare is automatically detached and returned to the spare pool when
the new device is inserted and the online operation completes.

An UNAVAIL device is automatically replaced if a hot spare is available. For example:

zpool status -x

pool: zeepool

state: DEGRADED

status: One or more devices are unavailable in response to persistent errors.

Sufficient replicas exist for the pool to continue functioning in a

degraded state.

action: Determine if the device needs to be replaced, and clear the errors

using ’zpool clear’ or ’fmadm repaired’, or replace the device

with ’zpool replace’.

Run ’zpool status -v’ to see device specific details.

scan: resilvered 3.15G in 0h0m with 0 errors on Thu Jun 21 16:46:19 2012

config:

Managing Devices in ZFS Storage Pools

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201378

NAME STATE READ WRITE CKSUM

zeepool DEGRADED 0 0 0

mirror-0 ONLINE 0 0 0

c0t5000C500335F95E3d0 ONLINE 0 0 0

c0t5000C500335F907Fd0 ONLINE 0 0 0

mirror-1 DEGRADED 0 0 0

c0t5000C500335BD117d0 ONLINE 0 0 0

spare-1 DEGRADED 449 0 0

c0t5000C500335DC60Fd0 UNAVAIL 0 0 0

c0t5000C500335E106Bd0 ONLINE 0 0 0

spares

c0t5000C500335E106Bd0 INUSE

errors: No known data errors

Currently, you can deactivate a hot spare in the following ways:

■ By removing the hot spare from the storage pool.
■ By detaching a hot spare after a failed disk is physically replaced. See Example 3–8.
■ By temporarily or permanently swapping in another hot spare. See Example 3–9.

EXAMPLE 3–8 Detaching a Hot Spare After the Failed Disk Is Replaced

In this example, the failed disk (c0t5000C500335DC60Fd0) is physically replaced and ZFS is
notified by using the zpool replace command.

zpool replace zeepool c0t5000C500335DC60Fd0

zpool status zeepool

pool: zeepool

state: ONLINE

scan: resilvered 3.15G in 0h0m with 0 errors on Thu Jun 21 16:53:43 2012

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t5000C500335F95E3d0 ONLINE 0 0 0

c0t5000C500335F907Fd0 ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c0t5000C500335BD117d0 ONLINE 0 0 0

c0t5000C500335DC60Fd0 ONLINE 0 0 0

spares

c0t5000C500335E106Bd0 AVAIL

If necessary, you can use the zpool detach command to return the hot spare back to the spare
pool. For example:

zpool detach zeepool c0t5000C500335E106Bd0

Managing Devices in ZFS Storage Pools

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 79

EXAMPLE 3–9 Detaching a Failed Disk and Using the Hot Spare

If you want to replace a failed disk by temporarily or permanently swapping in the hot spare
that is currently replacing it, then detach the original (failed) disk. If the failed disk is eventually
replaced, then you can add it back to the storage pool as a spare. For example:

zpool status zeepool

pool: zeepool

state: DEGRADED

status: One or more devices are unavailable in response to persistent errors.

Sufficient replicas exist for the pool to continue functioning in a

degraded state.

action: Determine if the device needs to be replaced, and clear the errors

using ’zpool clear’ or ’fmadm repaired’, or replace the device

with ’zpool replace’.

Run ’zpool status -v’ to see device specific details.

scan: scrub in progress since Thu Jun 21 17:01:49 2012

1.07G scanned out of 6.29G at 220M/s, 0h0m to go

0 repaired, 17.05% done

config:

NAME STATE READ WRITE CKSUM

zeepool DEGRADED 0 0 0

mirror-0 ONLINE 0 0 0

c0t5000C500335F95E3d0 ONLINE 0 0 0

c0t5000C500335F907Fd0 ONLINE 0 0 0

mirror-1 DEGRADED 0 0 0

c0t5000C500335BD117d0 ONLINE 0 0 0

c0t5000C500335DC60Fd0 UNAVAIL 0 0 0

spares

c0t5000C500335E106Bd0 AVAIL

errors: No known data errors

zpool detach zeepool c0t5000C500335DC60Fd0

zpool status zeepool

pool: zeepool

state: ONLINE

scan: resilvered 3.15G in 0h0m with 0 errors on Thu Jun 21 17:02:35 2012

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t5000C500335F95E3d0 ONLINE 0 0 0

c0t5000C500335F907Fd0 ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c0t5000C500335BD117d0 ONLINE 0 0 0

c0t5000C500335E106Bd0 ONLINE 0 0 0

errors: No known data errors

(Original failed disk c0t5000C500335DC60Fd0 is physically replaced)

zpool add zeepool spare c0t5000C500335DC60Fd0

zpool status zeepool

pool: zeepool

state: ONLINE

scan: resilvered 3.15G in 0h0m with 0 errors on Thu Jun 21 17:02:35 2012

config:

Managing Devices in ZFS Storage Pools

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201380

EXAMPLE 3–9 Detaching a Failed Disk and Using the Hot Spare (Continued)

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t5000C500335F95E3d0 ONLINE 0 0 0

c0t5000C500335F907Fd0 ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c0t5000C500335BD117d0 ONLINE 0 0 0

c0t5000C500335E106Bd0 ONLINE 0 0 0

spares

c0t5000C500335DC60Fd0 AVAIL

errors: No known data errors

After a disk is replaced and the spare is detached, let FMA know that the disk is repaired.

fmadm faulty

fmadm repaired zfs://pool=name/vdev=guid

Managing ZFS Storage Pool Properties
You can use the zpool get command to display pool property information. For example:

zpool get all zeepool

NAME PROPERTY VALUE SOURCE

zeepool allocated 6.29G -

zeepool altroot - default

zeepool autoexpand off default

zeepool autoreplace off default

zeepool bootfs - default

zeepool cachefile - default

zeepool capacity 1% -

zeepool dedupditto 0 default

zeepool dedupratio 1.00x -

zeepool delegation on default

zeepool failmode wait default

zeepool free 550G -

zeepool guid 7543986419840620672 -

zeepool health ONLINE -

zeepool listshares off default

zeepool listsnapshots off default

zeepool readonly off -

zeepool size 556G -

zeepool version 34 default

Storage pool properties can be set with the zpool set command. For example:

zpool set autoreplace=on zeepool

zpool get autoreplace zeepool

Managing ZFS Storage Pool Properties

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 81

NAME PROPERTY VALUE SOURCE

zeepool autoreplace on local

If you attempt to set a pool property on a pool that is 100% full, you will see a message similar to
the following:

zpool set autoreplace=on tank

cannot set property for ’tank’: out of space

For information on preventing pool space capacity problems, see Chapter 12, “Recommended
Oracle Solaris ZFS Practices.”

TABLE 3–1 ZFS Pool Property Descriptions

Property Name Type Default Value Description

allocated String N/A Read-only value that identifies the amount of storage space
within the pool that has been physically allocated.

altroot String off Identifies an alternate root directory. If set, this directory is
prepended to any mount points within the pool. This property
can be used when you are examining an unknown pool, if the
mount points cannot be trusted, or in an alternate boot
environment, where the typical paths are not valid.

autoreplace Boolean off Controls automatic device replacement. If set to off, device
replacement must be initiated by using the zpool replace
command. If set to on, any new device found in the same
physical location as a device that previously belonged to the
pool is automatically formatted and replaced. The property
abbreviation is replace.

bootfs Boolean N/A Identifies the default bootable file system for the root pool.
This property is typically set by the installation programs.

cachefile String N/A Controls where pool configuration information is cached. All
pools in the cache are automatically imported when the system
boots. However, installation and clustering environments
might require this information to be cached in a different
location so that pools are not automatically imported. You can
set this property to cache pool configuration information in a
different location. This information can be imported later by
using the zpool import -c command. For most ZFS
configurations, this property is not used.

capacity Number N/A Read-only value that identifies the percentage of pool space
used.

The property abbreviation is cap.

Managing ZFS Storage Pool Properties

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201382

TABLE 3–1 ZFS Pool Property Descriptions (Continued)
Property Name Type Default Value Description

dedupditto String N/A Sets a threshold, and if the reference count for a deduped block
goes above the threshold, another ditto copy of the block is
stored automatically.

dedupratio String N/A Read-only deduplication ratio achieved for a pool, expressed
as a multiplier.

delegation Boolean on Controls whether a nonprivileged user can be granted access
permissions that are defined for a file system. For more
information, see Chapter 8, “Oracle Solaris ZFS Delegated
Administration.”

failmode String wait Controls the system behavior if a catastrophic pool failure
occurs. This condition is typically a result of a loss of
connectivity to the underlying storage device or devices or a
failure of all devices within the pool. The behavior of such an
event is determined by one of the following values:
■ wait – Blocks all I/O requests to the pool until device

connectivity is restored, and the errors are cleared by using
the zpool clear command. In this state, I/O operations to
the pool are blocked, but read operations might succeed. A
pool remains in the wait state until the device issue is
resolved.

■ continue – Returns an EIO error to any new write I/O
requests, but allows reads to any of the remaining healthy
devices. Any write requests that have yet to be committed
to disk are blocked. After the device is reconnected or
replaced, the errors must be cleared with the zpool clear
command.

■ panic – Prints a message to the console and generates a
system crash dump.

free String N/A Read-only value that identifies the number of blocks within
the pool that are not allocated.

guid String N/A Read-only property that identifies the unique identifier for the
pool.

health String N/A Read-only property that identifies the current health of the
pool, as either ONLINE, DEGRADED, SUSPENDED,
REMOVED, or UNAVAIL.

listshares String off Controls whether share information in this pool is displayed
with the zfs list command. The default value is off.

Managing ZFS Storage Pool Properties

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 83

TABLE 3–1 ZFS Pool Property Descriptions (Continued)
Property Name Type Default Value Description

listsnapshots String off Controls whether snapshot information that is associated with
this pool is displayed with the zfs list command. If this
property is disabled, snapshot information can be displayed
with the zfs list -t snapshot command.

readonly Boolean off Identifies whether a pool can be modified. This property is
only enabled when a pool is has been imported in read-only
mode. If enabled, any synchronous data that exists only in the
intent log will not be accessible until the pool is re-imported in
read-write mode.

size Number N/A Read-only property that identifies the total size of the storage
pool.

version Number N/A Identifies the current on-disk version of the pool. The
preferred method of updating pools is with the zpool upgrade
command, although this property can be used when a specific
version is needed for backwards compatibility. This property
can be set to any number between 1 and the current version
reported by the zpool upgrade -v command.

Querying ZFS Storage Pool Status
The zpool list command provides several ways to request information regarding pool status.
The information available generally falls into three categories: basic usage information, I/O
statistics, and health status. All three types of storage pool information are covered in this
section.
■ “Displaying Information About ZFS Storage Pools” on page 84
■ “Viewing I/O Statistics for ZFS Storage Pools ” on page 89
■ “Determining the Health Status of ZFS Storage Pools” on page 91

Displaying Information About ZFS Storage Pools
You can use the zpool list command to display basic information about pools.

Displaying Information About All Storage Pools or a Specific Pool
With no arguments, the zpool list command displays the following information for all pools
on the system:

zpool list

NAME SIZE ALLOC FREE CAP HEALTH ALTROOT

tank 80.0G 22.3G 47.7G 28% ONLINE -

dozer 1.2T 384G 816G 32% ONLINE -

Querying ZFS Storage Pool Status

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201384

This command output displays the following information:

NAME The name of the pool.

SIZE The total size of the pool, equal to the sum of the sizes of all top-level virtual
devices.

ALLOC The amount of physical space allocated to all datasets and internal
metadata. Note that this amount differs from the amount of disk space as
reported at the file system level.

For more information about determining available file system space, see
“ZFS Disk Space Accounting” on page 32.

FREE The amount of unallocated space in the pool.

CAP (CAPACITY) The amount of disk space used, expressed as a percentage of the total disk
space.

HEALTH The current health status of the pool.

For more information about pool health, see “Determining the Health
Status of ZFS Storage Pools” on page 91.

ALTROOT The alternate root of the pool, if one exists.

For more information about alternate root pools, see “Using ZFS Alternate
Root Pools” on page 263.

You can also gather statistics for a specific pool by specifying the pool name. For example:

zpool list tank

NAME SIZE ALLOC FREE CAP HEALTH ALTROOT

tank 80.0G 22.3G 47.7G 28% ONLINE -

You can use the zpool list interval and count options to gather statistics over a period of time.
In addition, you can display a time stamp by using the -T option. For example:

zpool list -T d 3 2

Tue Nov 2 10:36:11 MDT 2010

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

pool 33.8G 83.5K 33.7G 0% 1.00x ONLINE -

rpool 33.8G 12.2G 21.5G 36% 1.00x ONLINE -

Tue Nov 2 10:36:14 MDT 2010

pool 33.8G 83.5K 33.7G 0% 1.00x ONLINE -

rpool 33.8G 12.2G 21.5G 36% 1.00x ONLINE -

Querying ZFS Storage Pool Status

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 85

Displaying Pool Devices by Physical Locations
You can use the zpool status -l option to display information about the physical location of
pool devices. Reviewing the physical location information is helpful when you need to
physically remove or replace a disk.

In addition, you can use the fmadm add-alias command to include a disk alias name that helps
you identify the physical location of disks in your environment. For example:

fmadm add-alias SUN-Storage-J4400.1002QCQ015 Lab10Rack5...

zpool status -l tank

pool: tank

state: ONLINE

scan: scrub repaired 0 in 0h0m with 0 errors on Fri Aug 3 16:00:35 2012

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

/dev/chassis/Lab10Rack5.../DISK_02/disk ONLINE 0 0 0

/dev/chassis/Lab10Rack5.../DISK_20/disk ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

/dev/chassis/Lab10Rack5.../DISK_22/disk ONLINE 0 0 0

/dev/chassis/Lab10Rack5.../DISK_14/disk ONLINE 0 0 0

mirror-2 ONLINE 0 0 0

/dev/chassis/Lab10Rack5.../DISK_10/disk ONLINE 0 0 0

/dev/chassis/Lab10Rack5.../DISK_16/disk ONLINE 0 0 0

mirror-3 ONLINE 0 0 0

/dev/chassis/Lab10Rack5.../DISK_01/disk ONLINE 0 0 0

/dev/chassis/Lab10Rack5.../DISK_21/disk ONLINE 0 0 0

mirror-4 ONLINE 0 0 0

/dev/chassis/Lab10Rack5.../DISK_23/disk ONLINE 0 0 0

/dev/chassis/Lab10Rack5.../DISK_15/disk ONLINE 0 0 0

mirror-5 ONLINE 0 0 0

/dev/chassis/Lab10Rack5.../DISK_09/disk ONLINE 0 0 0

/dev/chassis/Lab10Rack5.../DISK_04/disk ONLINE 0 0 0

mirror-6 ONLINE 0 0 0

/dev/chassis/Lab10Rack5.../DISK_08/disk ONLINE 0 0 0

/dev/chassis/Lab10Rack5.../DISK_05/disk ONLINE 0 0 0

mirror-7 ONLINE 0 0 0

/dev/chassis/Lab10Rack5.../DISK_07/disk ONLINE 0 0 0

/dev/chassis/Lab10Rack5.../DISK_11/disk ONLINE 0 0 0

mirror-8 ONLINE 0 0 0

/dev/chassis/Lab10Rack5.../DISK_06/disk ONLINE 0 0 0

/dev/chassis/Lab10Rack5.../DISK_19/disk ONLINE 0 0 0

mirror-9 ONLINE 0 0 0

/dev/chassis/Lab10Rack5.../DISK_00/disk ONLINE 0 0 0

/dev/chassis/Lab10Rack5.../DISK_13/disk ONLINE 0 0 0

mirror-10 ONLINE 0 0 0

/dev/chassis/Lab10Rack5.../DISK_03/disk ONLINE 0 0 0

/dev/chassis/Lab10Rack5.../DISK_18/disk ONLINE 0 0 0

spares

/dev/chassis/Lab10Rack5.../DISK_17/disk AVAIL

/dev/chassis/Lab10Rack5.../DISK_12/disk AVAIL

Querying ZFS Storage Pool Status

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201386

errors: No known data errors

Displaying Specific Storage Pool Statistics
Specific statistics can be requested by using the -o option. This option provides custom reports
or a quick way to list pertinent information. For example, to list only the name and size of each
pool, you use the following syntax:

zpool list -o name,size

NAME SIZE

tank 80.0G

dozer 1.2T

The column names correspond to the properties that are listed in “Displaying Information
About All Storage Pools or a Specific Pool” on page 84.

Scripting ZFS Storage Pool Output
The default output for the zpool list command is designed for readability and is not easy to
use as part of a shell script. To aid programmatic uses of the command, the -H option can be
used to suppress the column headings and separate fields by tabs, rather than by spaces. For
example, to request a list of all pool names on the system, you would use the following syntax:

zpool list -Ho name

tank

dozer

Here is another example:

zpool list -H -o name,size

tank 80.0G

dozer 1.2T

Displaying ZFS Storage Pool Command History
ZFS automatically logs successful zfs and zpool commands that modify pool state
information. This information can be displayed by using the zpool history command.

For example, the following syntax displays the command output for the root pool:

zpool history

History for ’rpool’:

2012-04-06.14:02:55 zpool create -f rpool c3t0d0s0

2012-04-06.14:02:56 zfs create -p -o mountpoint=/export rpool/export

2012-04-06.14:02:58 zfs set mountpoint=/export rpool/export

2012-04-06.14:02:58 zfs create -p rpool/export/home

2012-04-06.14:03:03 zfs create -p -V 2048m rpool/swap

2012-04-06.14:03:08 zfs set primarycache=metadata rpool/swap

2012-04-06.14:03:09 zfs create -p -V 4094m rpool/dump

Querying ZFS Storage Pool Status

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 87

2012-04-06.14:26:47 zpool set bootfs=rpool/ROOT/s11u1 rpool

2012-04-06.14:31:15 zfs set primarycache=metadata rpool/swap

2012-04-06.14:31:46 zfs create -o canmount=noauto -o mountpoint=/var/share rpool/VARSHARE

2012-04-06.15:22:33 zfs set primarycache=metadata rpool/swap

2012-04-06.16:42:48 zfs set primarycache=metadata rpool/swap

2012-04-09.16:17:24 zfs snapshot -r rpool/ROOT@yesterday

2012-04-09.16:17:54 zfs snapshot -r rpool/ROOT@now

You can use similar output on your system to identify the actual ZFS commands that were
executed to troubleshoot an error condition.

The features of the history log are as follows:

■ The log cannot be disabled.
■ The log is saved persistently on disk, which means that the log is saved across system

reboots.
■ The log is implemented as a ring buffer. The minimum size is 128 KB. The maximum size is

32 MB.
■ For smaller pools, the maximum size is capped at 1 percent of the pool size, where the size is

determined at pool creation time.
■ The log requires no administration, which means that tuning the size of the log or changing

the location of the log is unnecessary.

To identify the command history of a specific storage pool, use syntax similar to the following:

zpool history tank

2012-01-25.16:35:32 zpool create -f tank mirror c3t1d0 c3t2d0 spare c3t3d0

2012-02-17.13:04:10 zfs create tank/test

2012-02-17.13:05:01 zfs snapshot -r tank/test@snap1

Use the -l option to display a long format that includes the user name, the host name, and the
zone in which the operation was performed. For example:

zpool history -l tank

History for ’tank’:

2012-01-25.16:35:32 zpool create -f tank mirror c3t1d0 c3t2d0 spare c3t3d0

[user root on tardis:global]

2012-02-17.13:04:10 zfs create tank/test [user root on tardis:global]

2012-02-17.13:05:01 zfs snapshot -r tank/test@snap1 [user root on tardis:global]

Use the -i option to display internal event information that can be used for diagnostic
purposes. For example:

zpool history -i tank

History for ’tank’:

2012-01-25.16:35:32 zpool create -f tank mirror c3t1d0 c3t2d0 spare c3t3d0

2012-01-25.16:35:32 [internal pool create txg:5] pool spa 33; zfs spa 33; zpl 5;

uts tardis 5.11 11.1 sun4v

2012-02-17.13:04:10 zfs create tank/test

2012-02-17.13:04:10 [internal property set txg:66094] $share2=2 dataset = 34

Querying ZFS Storage Pool Status

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201388

2012-02-17.13:04:31 [internal snapshot txg:66095] dataset = 56

2012-02-17.13:05:01 zfs snapshot -r tank/test@snap1

2012-02-17.13:08:00 [internal user hold txg:66102] <.send-4736-1> temp = 1 ...

Viewing I/O Statistics for ZFS Storage Pools
To request I/O statistics for a pool or specific virtual devices, use the zpool iostat command.
Similar to the iostat command, this command can display a static snapshot of all I/O activity,
as well as updated statistics for every specified interval. The following statistics are reported:

alloc capacity The amount of data currently stored in the pool or device. This amount
differs from the amount of disk space available to actual file systems by a
small margin due to internal implementation details.

For more information about the differences between pool space and
dataset space, see “ZFS Disk Space Accounting” on page 32.

free capacity The amount of disk space available in the pool or device. Like the used
statistic, this amount differs from the amount of disk space available to
datasets by a small margin.

read operations The number of read I/O operations sent to the pool or device, including
metadata requests.

write operations The number of write I/O operations sent to the pool or device.

read bandwidth The bandwidth of all read operations (including metadata), expressed
as units per second.

write bandwidth The bandwidth of all write operations, expressed as units per second.

Listing Pool-Wide I/O Statistics
With no options, the zpool iostat command displays the accumulated statistics since boot for
all pools on the system. For example:

zpool iostat

capacity operations bandwidth

pool alloc free read write read write

---------- ----- ----- ----- ----- ----- -----

rpool 6.05G 61.9G 0 0 786 107

tank 31.3G 36.7G 4 1 296K 86.1K

---------- ----- ----- ----- ----- ----- -----

Because these statistics are cumulative since boot, bandwidth might appear low if the pool is
relatively idle. You can request a more accurate view of current bandwidth usage by specifying
an interval. For example:

Querying ZFS Storage Pool Status

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 89

zpool iostat tank 2

capacity operations bandwidth

pool alloc free read write read write

---------- ----- ----- ----- ----- ----- -----

tank 18.5G 49.5G 0 187 0 23.3M

tank 18.5G 49.5G 0 464 0 57.7M

tank 18.5G 49.5G 0 457 0 56.6M

tank 18.8G 49.2G 0 435 0 51.3M

In the above example, the command displays usage statistics for the pool tank every two
seconds until you type Control-C. Alternately, you can specify an additional count argument,
which causes the command to terminate after the specified number of iterations.

For example, zpool iostat 2 3 would print a summary every two seconds for three iterations,
for a total of six seconds. If there is only a single pool, then the statistics are displayed on
consecutive lines. If more than one pool exists, then an additional dashed line delineates each
iteration to provide visual separation.

Listing Virtual Device I/O Statistics
In addition to pool-wide I/O statistics, the zpool iostat command can display I/O statistics
for virtual devices. This command can be used to identify abnormally slow devices or to observe
the distribution of I/O generated by ZFS. To request the complete virtual device layout as well as
all I/O statistics, use the zpool iostat -v command. For example:

zpool iostat -v

capacity operations bandwidth

pool alloc free read write read write

---------- ----- ----- ----- ----- ----- -----

rpool 6.05G 61.9G 0 0 785 107

mirror 6.05G 61.9G 0 0 785 107

c1t0d0s0 - - 0 0 578 109

c1t1d0s0 - - 0 0 595 109

---------- ----- ----- ----- ----- ----- -----

tank 36.5G 31.5G 4 1 295K 146K

mirror 36.5G 31.5G 126 45 8.13M 4.01M

c1t2d0 - - 0 3 100K 386K

c1t3d0 - - 0 3 104K 386K

---------- ----- ----- ----- ----- ----- -----

Note two important points when viewing I/O statistics for virtual devices:

■ First, disk space usage statistics are only available for top-level virtual devices. The way in
which disk space is allocated among mirror and RAID-Z virtual devices is particular to the
implementation and not easily expressed as a single number.

■ Second, the numbers might not add up exactly as you would expect them to. In particular,
operations across RAID-Z and mirrored devices will not be exactly equal. This difference is
particularly noticeable immediately after a pool is created, as a significant amount of I/O is
done directly to the disks as part of pool creation, which is not accounted for at the mirror

Querying ZFS Storage Pool Status

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201390

level. Over time, these numbers gradually equalize. However, broken, unresponsive, or
offline devices can affect this symmetry as well.

You can use the same set of options (interval and count) when examining virtual device
statistics.

You can also display physical location information about the pool's virtual devices. For
example:

zpool iostat -lv

capacity operations bandwidth

pool alloc free read write read write

---------- ----- ----- ----- ----- ----- -----

export 2.39T 2.14T 13 27 42.7K 300K

mirror 490G 438G 2 5 8.53K 60.3K

/dev/chassis/lab10rack15/SCSI_Device__2/disk - - 1 0 4.47K 60.3K

/dev/chassis/lab10rack15/SCSI_Device__3/disk - - 1 0 4.45K 60.3K

mirror 490G 438G 2 5 8.62K 59.9K

/dev/chassis/lab10rack15/SCSI_Device__4/disk - - 1 0 4.52K 59.9K

/dev/chassis/lab10rack15/SCSI_Device__5/disk - - 1 0 4.48K 59.9K

mirror 490G 438G 2 5 8.60K 60.2K

/dev/chassis/lab10rack15/SCSI_Device__6/disk - - 1 0 4.50K 60.2K

/dev/chassis/lab10rack15/SCSI_Device__7/disk - - 1 0 4.49K 60.2K

mirror 490G 438G 2 5 8.47K 60.1K

/dev/chassis/lab10rack15/SCSI_Device__8/disk - - 1 0 4.42K 60.1K

/dev/chassis/lab10rack15/SCSI_Device__9/disk - - 1 0 4.43K 60.1K

.

.

.

Determining the Health Status of ZFS Storage Pools
ZFS provides an integrated method of examining pool and device health. The health of a pool is
determined from the state of all its devices. This state information is displayed by using the
zpool status command. In addition, potential pool and device failures are reported by fmd,
displayed on the system console, and logged in the /var/adm/messages file.

This section describes how to determine pool and device health. This chapter does not
document how to repair or recover from unhealthy pools. For more information about
troubleshooting and data recovery, see Chapter 10, “Oracle Solaris ZFS Troubleshooting and
Pool Recovery.”

A pool's health status is described by one of four states:

DEGRADED

A pool with one or more failed devices, but the data is still available due to a redundant
configuration.

ONLINE

A pool that has all devices operating normally.

Querying ZFS Storage Pool Status

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 91

SUSPENDED

A pool that is waiting for device connectivity to be restored. A SUSPENDED pool remains in
the wait state until the device issue is resolved.

UNAVAIL

A pool with corrupted metadata, or one or more unavailable devices, and insufficient
replicas to continue functioning.

Each pool device can fall into one of the following states:

DEGRADED The virtual device has experienced a failure but can still function. This state is
most common when a mirror or RAID-Z device has lost one or more constituent
devices. The fault tolerance of the pool might be compromised, as a subsequent
fault in another device might be unrecoverable.

OFFLINE The device has been explicitly taken offline by the administrator.

ONLINE The device or virtual device is in normal working order. Although some transient
errors might still occur, the device is otherwise in working order.

REMOVED The device was physically removed while the system was running. Device
removal detection is hardware-dependent and might not be supported on all
platforms.

UNAVAIL The device or virtual device cannot be opened. In some cases, pools with UNAVAIL

devices appear in DEGRADED mode. If a top-level virtual device is UNAVAIL, then
nothing in the pool can be accessed.

The health of a pool is determined from the health of all its top-level virtual devices. If all virtual
devices are ONLINE, then the pool is also ONLINE. If any one of the virtual devices is DEGRADED or
UNAVAIL, then the pool is also DEGRADED. If a top-level virtual device is UNAVAIL or OFFLINE, then
the pool is also UNAVAIL or SUSPENDED. A pool in the UNAVAIL or SUSPENDED state is completely
inaccessible. No data can be recovered until the necessary devices are attached or repaired. A
pool in the DEGRADED state continues to run, but you might not achieve the same level of data
redundancy or data throughput than if the pool were online.

The zpool status command also provides details about resilver and scrub operations.

■ Resilver in-progress report. For example:

scan: resilver in progress since Wed Jun 20 14:19:38 2012

7.43G scanned out of 71.8G at 36.4M/s, 0h30m to go

7.43G resilvered, 10.35% done

■ Scrub in-progress report. For example:

scan: scrub in progress since Wed Jun 20 14:56:52 2012

529M scanned out of 71.8G at 48.1M/s, 0h25m to go

0 repaired, 0.72% done

■ Resilver completion message. For example:

Querying ZFS Storage Pool Status

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201392

scan: resilvered 71.8G in 0h14m with 0 errors on Wed Jun 20 14:33:42 2012

■ Scrub completion message. For example:

scan: scrub repaired 0 in 0h11m with 0 errors on Wed Jun 20 15:08:23 2012

■ Ongoing scrub cancellation message. For example:

scan: scrub canceled on Wed Jun 20 16:04:40 2012

■ Scrub and resilver completion messages persist across system reboots

Basic Storage Pool Health Status
You can quickly review pool health status by using the zpool status command as follows:

zpool status -x

all pools are healthy

Specific pools can be examined by specifying a pool name in the command syntax. Any pool
that is not in the ONLINE state should be investigated for potential problems, as described in the
next section.

Detailed Health Status
You can request a more detailed health summary status by using the -v option. For example:

zpool status -v pond

pool: pond

state: DEGRADED

status: One or more devices are unavailable in response to persistent errors.

Sufficient replicas exist for the pool to continue functioning in a

degraded state.

action: Determine if the device needs to be replaced, and clear the errors

using ’zpool clear’ or ’fmadm repaired’, or replace the device

with ’zpool replace’.

scan: scrub repaired 0 in 0h0m with 0 errors on Wed Jun 20 15:38:08 2012

config:

NAME STATE READ WRITE CKSUM

pond DEGRADED 0 0 0

mirror-0 DEGRADED 0 0 0

c0t5000C500335F95E3d0 ONLINE 0 0 0

c0t5000C500335F907Fd0 UNAVAIL 0 0 0

mirror-1 ONLINE 0 0 0

c0t5000C500335BD117d0 ONLINE 0 0 0

c0t5000C500335DC60Fd0 ONLINE 0 0 0

device details:

c0t5000C500335F907Fd0 UNAVAIL cannot open

status: ZFS detected errors on this device.

The device was missing.

see: http://support.oracle.com/msg/ZFS-8000-LR for recovery

Querying ZFS Storage Pool Status

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 93

errors: No known data errors

This output displays a complete description of why the pool is in its current state, including a
readable description of the problem and a link to a knowledge article for more information.
Each knowledge article provides up-to-date information about the best way to recover from
your current problem. Using the detailed configuration information, you can determine which
device is damaged and how to repair the pool.

In the preceding example, the UNAVAIL device should be replaced. After the device is replaced,
use the zpool online command to bring the device online, if necessary. For example:

zpool online pond c0t5000C500335F907Fd0

warning: device ’c0t5000C500335DC60Fd0’ onlined, but remains in degraded state

zpool status -x

all pools are healthy

The above output identifies that the device remains in a degraded state until any resilvering is
complete.

If the autoreplace property is on, you might not have to online the replaced device.

If a pool has an offline device, the command output identifies the problem pool. For example:

zpool status -x

pool: pond

state: DEGRADED

status: One or more devices has been taken offline by the administrator.

Sufficient replicas exist for the pool to continue functioning in a

degraded state.

action: Online the device using ’zpool online’ or replace the device with

’zpool replace’.

config:

NAME STATE READ WRITE CKSUM

pond DEGRADED 0 0 0

mirror-0 DEGRADED 0 0 0

c0t5000C500335F95E3d0 ONLINE 0 0 0

c0t5000C500335F907Fd0 OFFLINE 0 0 0

mirror-1 ONLINE 0 0 0

c0t5000C500335BD117d0 ONLINE 0 0 0

c0t5000C500335DC60Fd0 ONLINE 0 0 0

errors: No known data errors

The READ and WRITE columns provide a count of I/O errors that occurred on the device, while
the CKSUM column provides a count of uncorrectable checksum errors that occurred on the
device. Both error counts indicate a potential device failure, and some corrective action is
needed. If non-zero errors are reported for a top-level virtual device, portions of your data
might have become inaccessible.

The errors: field identifies any known data errors.

Querying ZFS Storage Pool Status

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201394

In the preceding example output, the offline device is not causing data errors.

For more information about diagnosing and repairing UNAVAIL pools and data, see Chapter 10,
“Oracle Solaris ZFS Troubleshooting and Pool Recovery.”

Gathering ZFS Storage Pool Status Information
You can use the zpool status interval and count options to gather statistics over a period of
time. In addition, you can display a time stamp by using the -T option. For example:

zpool status -T d 3 2

Wed Jun 20 16:10:09 MDT 2012

pool: pond

state: ONLINE

scan: resilvered 9.50K in 0h0m with 0 errors on Wed Jun 20 16:07:34 2012

config:

NAME STATE READ WRITE CKSUM

pond ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t5000C500335F95E3d0 ONLINE 0 0 0

c0t5000C500335F907Fd0 ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c0t5000C500335BD117d0 ONLINE 0 0 0

c0t5000C500335DC60Fd0 ONLINE 0 0 0

errors: No known data errors

pool: rpool

state: ONLINE

scan: scrub repaired 0 in 0h11m with 0 errors on Wed Jun 20 15:08:23 2012

config:

NAME STATE READ WRITE CKSUM

rpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t5000C500335BA8C3d0s0 ONLINE 0 0 0

c0t5000C500335FC3E7d0s0 ONLINE 0 0 0

errors: No known data errors

Wed Jun 20 16:10:12 MDT 2012

pool: pond

state: ONLINE

scan: resilvered 9.50K in 0h0m with 0 errors on Wed Jun 20 16:07:34 2012

config:

NAME STATE READ WRITE CKSUM

pond ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t5000C500335F95E3d0 ONLINE 0 0 0

c0t5000C500335F907Fd0 ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c0t5000C500335BD117d0 ONLINE 0 0 0

c0t5000C500335DC60Fd0 ONLINE 0 0 0

Querying ZFS Storage Pool Status

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 95

errors: No known data errors

pool: rpool

state: ONLINE

scan: scrub repaired 0 in 0h11m with 0 errors on Wed Jun 20 15:08:23 2012

config:

NAME STATE READ WRITE CKSUM

rpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t5000C500335BA8C3d0s0 ONLINE 0 0 0

c0t5000C500335FC3E7d0s0 ONLINE 0 0 0

errors: No known data errors

Migrating ZFS Storage Pools
Occasionally, you might need to move a storage pool between systems. To do so, the storage
devices must be disconnected from the original system and reconnected to the destination
system. This task can be accomplished by physically recabling the devices, or by using
multiported devices such as the devices on a SAN. ZFS enables you to export the pool from one
system and import it on the destination system, even if the systems are of different architectural
endianness. For information about replicating or migrating file systems between different
storage pools, which might reside on different systems, see “Sending and Receiving ZFS Data”
on page 204.

■ “Preparing for ZFS Storage Pool Migration” on page 96
■ “Exporting a ZFS Storage Pool” on page 97
■ “Determining Available Storage Pools to Import” on page 97
■ “Importing ZFS Storage Pools From Alternate Directories” on page 99
■ “Importing ZFS Storage Pools” on page 99
■ “Recovering Destroyed ZFS Storage Pools” on page 102

Preparing for ZFS Storage Pool Migration
Storage pools should be explicitly exported to indicate that they are ready to be migrated. This
operation flushes any unwritten data to disk, writes data to the disk indicating that the export
was done, and removes all information about the pool from the system.

If you do not explicitly export the pool, but instead remove the disks manually, you can still
import the resulting pool on another system. However, you might lose the last few seconds of
data transactions, and the pool will appear UNAVAIL on the original system because the devices
are no longer present. By default, the destination system cannot import a pool that has not been
explicitly exported. This condition is necessary to prevent you from accidentally importing an
active pool that consists of network-attached storage that is still in use on another system.

Migrating ZFS Storage Pools

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201396

Exporting a ZFS Storage Pool
To export a pool, use the zpool export command. For example:

zpool export tank

The command attempts to unmount any mounted file systems within the pool before
continuing. If any of the file systems fail to unmount, you can forcefully unmount them by
using the -f option. For example:

zpool export tank

cannot unmount ’/export/home/eric’: Device busy

zpool export -f tank

After this command is executed, the pool tank is no longer visible on the system.

If devices are unavailable at the time of export, the devices cannot be identified as cleanly
exported. If one of these devices is later attached to a system without any of the working devices,
it appears as “potentially active.”

If ZFS volumes are in use in the pool, the pool cannot be exported, even with the -f option. To
export a pool with a ZFS volume, first ensure that all consumers of the volume are no longer
active.

For more information about ZFS volumes, see “ZFS Volumes” on page 255.

Determining Available Storage Pools to Import
After the pool has been removed from the system (either through an explicit export or by
forcefully removing the devices), you can attach the devices to the target system. ZFS can handle
some situations in which only some of the devices are available, but a successful pool migration
depends on the overall health of the devices. In addition, the devices do not necessarily have to
be attached under the same device name. ZFS detects any moved or renamed devices, and
adjusts the configuration appropriately. To discover available pools, run the zpool import
command with no options. For example:

zpool import

pool: tank

id: 11809215114195894163

state: ONLINE

action: The pool can be imported using its name or numeric identifier.

config:

tank ONLINE

mirror-0 ONLINE

c1t0d0 ONLINE

c1t1d0 ONLINE

Migrating ZFS Storage Pools

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 97

In this example, the pool tank is available to be imported on the target system. Each pool is
identified by a name as well as a unique numeric identifier. If multiple pools with the same
name are available to import, you can use the numeric identifier to distinguish between them.

Similar to the zpool status command output, the zpool import output includes a link to a
knowledge article with the most up-to-date information regarding repair procedures for the
problem that is preventing a pool from being imported. In this case, the user can force the pool
to be imported. However, importing a pool that is currently in use by another system over a
storage network can result in data corruption and panics as both systems attempt to write to the
same storage. If some devices in the pool are not available but sufficient redundant data exists to
provide a usable pool, the pool appears in the DEGRADED state. For example:

zpool import

pool: tank

id: 4715259469716913940

state: DEGRADED

status: One or more devices are unavailable.

action: The pool can be imported despite missing or damaged devices. The

fault tolerance of the pool may be compromised if imported.

config:

tank DEGRADED

mirror-0 DEGRADED

c0t5000C500335E106Bd0 ONLINE

c0t5000C500335FC3E7d0 UNAVAIL cannot open

device details:

c0t5000C500335FC3E7d0 UNAVAIL cannot open

status: ZFS detected errors on this device.

The device was missing.

In this example, the first disk is damaged or missing, though you can still import the pool
because the mirrored data is still accessible. If too many unavailable devices are present, the
pool cannot be imported.

In this example, two disks are missing from a RAID-Z virtual device, which means that
sufficient redundant data is not available to reconstruct the pool. In some cases, not enough
devices are present to determine the complete configuration. In this case, ZFS cannot determine
what other devices were part of the pool, though ZFS does report as much information as
possible about the situation. For example:

zpool import

pool: mothership

id: 3702878663042245922

state: UNAVAIL

status: One or more devices are unavailable.

action: The pool cannot be imported due to unavailable devices or data.

config:

mothership UNAVAIL insufficient replicas

Migrating ZFS Storage Pools

Oracle Solaris 11.1 Administration: ZFS File Systems • September 201398

raidz1-0 UNAVAIL insufficient replicas

c8t0d0 UNAVAIL cannot open

c8t1d0 UNAVAIL cannot open

c8t2d0 ONLINE

c8t3d0 ONLINE

device details:

c8t0d0 UNAVAIL cannot open

status: ZFS detected errors on this device.

The device was missing.

c8t1d0 UNAVAIL cannot open

status: ZFS detected errors on this device.

The device was missing.

Importing ZFS Storage Pools From Alternate
Directories
By default, the zpool import command only searches devices within the /dev/dsk directory. If
devices exist in another directory, or you are using pools backed by files, you must use the -d
option to search alternate directories. For example:

zpool create dozer mirror /file/a /file/b

zpool export dozer

zpool import -d /file

pool: dozer

id: 7318163511366751416

state: ONLINE

action: The pool can be imported using its name or numeric identifier.

config:

dozer ONLINE

mirror-0 ONLINE

/file/a ONLINE

/file/b ONLINE

zpool import -d /file dozer

If devices exist in multiple directories, you can specify multiple -d options.

Importing ZFS Storage Pools
After a pool has been identified for import, you can import it by specifying the name of the pool
or its numeric identifier as an argument to the zpool import command. For example:

zpool import tank

If multiple available pools have the same name, you must specify which pool to import by using
the numeric identifier. For example:

Migrating ZFS Storage Pools

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 99

zpool import

pool: dozer

id: 2704475622193776801

state: ONLINE

action: The pool can be imported using its name or numeric identifier.

config:

dozer ONLINE

c1t9d0 ONLINE

pool: dozer

id: 6223921996155991199

state: ONLINE

action: The pool can be imported using its name or numeric identifier.

config:

dozer ONLINE

c1t8d0 ONLINE

zpool import dozer

cannot import ’dozer’: more than one matching pool

import by numeric ID instead

zpool import 6223921996155991199

If the pool name conflicts with an existing pool name, you can import the pool under a different
name. For example:

zpool import dozer zeepool

This command imports the exported pool dozer using the new name zeepool. The new pool
name is persistent.

If the pool was not cleanly exported, ZFS requires the -f flag to prevent users from accidentally
importing a pool that is still in use on another system. For example:

zpool import dozer

cannot import ’dozer’: pool may be in use on another system

use ’-f’ to import anyway

zpool import -f dozer

Note – Do not attempt to import a pool that is active on one system to another system. ZFS is not
a native cluster, distributed, or parallel file system and cannot provide concurrent access from
multiple, different hosts.

Pools can also be imported under an alternate root by using the -R option. For more
information on alternate root pools, see “Using ZFS Alternate Root Pools” on page 263.

Importing a Pool With a Missing Log Device
By default, a pool with a missing log device cannot be imported. You can use zpool import -m
command to force a pool to be imported with a missing log device. For example:

Migrating ZFS Storage Pools

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013100

zpool import dozer

pool: dozer

id: 16216589278751424645

state: UNAVAIL

status: One or more devices are missing from the system.

action: The pool cannot be imported. Attach the missing

devices and try again.

see: http://support.oracle.com/msg/ZFS-8000-6X

config:

dozer UNAVAIL missing device

mirror-0 ONLINE

c8t0d0 ONLINE

c8t1d0 ONLINE

device details:

missing-1 UNAVAIL corrupted data

status: ZFS detected errors on this device.

The device has bad label or disk contents.

Additional devices are known to be part of this pool, though their

exact configuration cannot be determined.

Import the pool with the missing log device. For example:

zpool import -m dozer

zpool status dozer

pool: dozer

state: DEGRADED

status: One or more devices are unavailable in response to persistent errors.

Sufficient replicas exist for the pool to continue functioning in a

degraded state.

action: Determine if the device needs to be replaced, and clear the errors

using ’zpool clear’ or ’fmadm repaired’, or replace the device

with ’zpool replace’.

Run ’zpool status -v’ to see device specific details.

scan: none requested

config:

NAME STATE READ WRITE CKSUM

dozer DEGRADED 0 0 0

mirror-0 ONLINE 0 0 0

c8t0d0 ONLINE 0 0 0

c8t1d0 ONLINE 0 0 0

logs

2189413556875979854 UNAVAIL 0 0 0

errors: No known data errors

After attaching the missing log device, run the zpool clear command to clear the pool errors.

A similar recovery can be attempted with missing mirrored log devices. For example:

After attaching the missing log devices, run the zpool clear command to clear the pool errors.

Migrating ZFS Storage Pools

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 101

Importing a Pool in Read-Only Mode
You can import a pool in read-only mode. If a pool is so damaged that it cannot be accessed, this
feature might enable you to recover the pool's data. For example:

zpool import -o readonly=on tank

zpool scrub tank

cannot scrub tank: pool is read-only

When a pool is imported in read-only mode, the following conditions apply:

■ All file systems and volumes are mounted in read-only mode.
■ Pool transaction processing is disabled. This also means that any pending synchronous

writes in the intent log are not played until the pool is imported read-write.
■ Attempts to set a pool property during the read-only import are ignored.

A read-only pool can be set back to read-write mode by exporting and importing the pool. For
example:

zpool export tank

zpool import tank

zpool scrub tank

Importing a Pool By a Specific Device Path
The following command imports the pool dpool by identifying one of the pool's specific
devices, /dev/dsk/c2t3d0, in this example.

zpool import -d /dev/dsk/c2t3d0s0 dpool

zpool status dpool

pool: dpool

state: ONLINE

scan: resilvered 952K in 0h0m with 0 errors on Fri Jun 29 16:22:06 2012

config:

NAME STATE READ WRITE CKSUM

dpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c2t3d0 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

Even though this pool is comprised of whole disks, the command must include the specific
device's slice identifier.

Recovering Destroyed ZFS Storage Pools
You can use the zpool import -D command to recover a storage pool that has been destroyed.
For example:

Migrating ZFS Storage Pools

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013102

zpool destroy tank

zpool import -D

pool: tank

id: 5154272182900538157

state: ONLINE (DESTROYED)

action: The pool can be imported using its name or numeric identifier.

config:

tank ONLINE

mirror-0 ONLINE

c1t0d0 ONLINE

c1t1d0 ONLINE

In this zpool import output, you can identify the tank pool as the destroyed pool because of
the following state information:

state: ONLINE (DESTROYED)

To recover the destroyed pool, run the zpool import -D command again with the pool to be
recovered. For example:

zpool import -D tank

zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE

mirror-0 ONLINE

c1t0d0 ONLINE

c1t1d0 ONLINE

errors: No known data errors

If one of the devices in the destroyed pool is unavailable, you might be able to recover the
destroyed pool anyway by including the -f option. In this scenario, you would import the
degraded pool and then attempt to fix the device failure. For example:

zpool destroy dozer

zpool import -D

pool: dozer

id: 4107023015970708695

state: DEGRADED (DESTROYED)

status: One or more devices are unavailable.

action: The pool can be imported despite missing or damaged devices. The

fault tolerance of the pool may be compromised if imported.

config:

dozer DEGRADED

raidz2-0 DEGRADED

c8t0d0 ONLINE

c8t1d0 ONLINE

c8t2d0 ONLINE

Migrating ZFS Storage Pools

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 103

c8t3d0 UNAVAIL cannot open

c8t4d0 ONLINE

device details:

c8t3d0 UNAVAIL cannot open

status: ZFS detected errors on this device.

The device was missing.

zpool import -Df dozer

zpool status -x

pool: dozer

state: DEGRADED

status: One or more devices are unavailable in response to persistent errors.

Sufficient replicas exist for the pool to continue functioning in a

degraded state.

action: Determine if the device needs to be replaced, and clear the errors

using ’zpool clear’ or ’fmadm repaired’, or replace the device

with ’zpool replace’.

Run ’zpool status -v’ to see device specific details.

scan: none requested

config:

NAME STATE READ WRITE CKSUM

dozer DEGRADED 0 0 0

raidz2-0 DEGRADED 0 0 0

c8t0d0 ONLINE 0 0 0

c8t1d0 ONLINE 0 0 0

c8t2d0 ONLINE 0 0 0

4881130428504041127 UNAVAIL 0 0 0

c8t4d0 ONLINE 0 0 0

errors: No known data errors

zpool online dozer c8t4d0

zpool status -x

all pools are healthy

Upgrading ZFS Storage Pools
If you have ZFS storage pools from a previous Solaris release, you can upgrade your pools with
the zpool upgrade command to take advantage of the pool features in the current release. In
addition, the zpool status command notifies you when your pools are running older versions.
For example:

zpool status

pool: tank

state: ONLINE

status: The pool is formatted using an older on-disk format. The pool can

still be used, but some features are unavailable.

action: Upgrade the pool using ’zpool upgrade’. Once this is done, the

pool will no longer be accessible on older software versions.

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

Upgrading ZFS Storage Pools

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013104

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

errors: No known data errors

You can use the following syntax to identify additional information about a particular version
and supported releases:

zpool upgrade -v

This system is currently running ZFS pool version 33.

The following versions are supported:

VER DESCRIPTION

--- --

1 Initial ZFS version

2 Ditto blocks (replicated metadata)

3 Hot spares and double parity RAID-Z

4 zpool history

5 Compression using the gzip algorithm

6 bootfs pool property

7 Separate intent log devices

8 Delegated administration

9 refquota and refreservation properties

10 Cache devices

11 Improved scrub performance

12 Snapshot properties

13 snapused property

14 passthrough-x aclinherit

15 user/group space accounting

16 stmf property support

17 Triple-parity RAID-Z

18 Snapshot user holds

19 Log device removal

20 Compression using zle (zero-length encoding)

21 Deduplication

22 Received properties

23 Slim ZIL

24 System attributes

25 Improved scrub stats

26 Improved snapshot deletion performance

27 Improved snapshot creation performance

28 Multiple vdev replacements

29 RAID-Z/mirror hybrid allocator

30 Encryption

31 Improved ’zfs list’ performance

32 One MB blocksize

33 Improved share support

34 Sharing with inheritance

For more information on a particular version, including supported releases,

see the ZFS Administration Guide.

Then, you can run the zpool upgrade command to upgrade all of your pools. For example:

Upgrading ZFS Storage Pools

Chapter 3 • Managing Oracle Solaris ZFS Storage Pools 105

zpool upgrade -a

Note – If you upgrade your pool to a later ZFS version, the pool will not be accessible on a system
that runs an older ZFS version.

Upgrading ZFS Storage Pools

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013106

Managing ZFS Root Pool Components

This chapter describes how to manage your Oracle Solaris ZFS root pool components, such as
attaching a root pool mirror, cloning a ZFS boot environment, and resizing swap and dump
devices.

The following sections are provided in this chapter:

■ “Managing ZFS Root Pool Components (Overview)” on page 107
■ “ZFS Root Pool Requirements” on page 108
■ “Managing Your ZFS Root Pool” on page 110
■ “Managing Your ZFS Swap and Dump Devices” on page 121
■ “Booting From a ZFS Root File System” on page 124

For information about root pool recovery, see Chapter 11, “Archiving Snapshots and Root Pool
Recovery.”

For any late-breaking issues, see the Oracle Solaris 11.1 release notes.

Managing ZFS Root Pool Components (Overview)
ZFS is the default root file system in the Oracle Solaris 11 release. Review the following
considerations when installing the Oracle Solaris release.

■ Installation – In the Oracle Solaris 11 release, you can install and boot from a ZFS root file
system in the following ways:
■ Live CD (x86 only) – Installs a ZFS root pool on a single disk. You can use the fdisk

partition menu during the installation to partition the disk for your environment.
■ Text installation (SPARC and x86) – Installs a ZFS root pool on a single disk from media

or over the network. You can use the fdisk partition menu during the installation to
partition the disk for your environment.

4C H A P T E R 4

107

■ Automated Installer (AI) (SPARC and x86) – Automatically installs a ZFS root pool. You
can use an AI manifest to determine the disk and the disk partitions to be used for the
ZFS root pool.

■ Swap and dump devices – Automatically created on ZFS volumes in the ZFS root pool by all
of the above installation methods. For more information about managing ZFS swap and
dump devices, see “Managing Your ZFS Swap and Dump Devices” on page 121.

■ Mirrored root pool configuration – You can configure a mirrored root pool during an
automatic installation. For more information about configuring a mirrored root pool after
an installation, see “How to Configure a Mirrored Root Pool (SPARC or x86/VTOC)” on
page 112.

■ Root pool space management – After the system is installed, consider setting a quota on the
ZFS root file system to prevent the root file system from filling up. Currently, no ZFS root
pool space is reserved as a safety net for a full file system. For example, if you have a 68-GB
disk for the root pool, consider setting a 67–GB quota on the ZFS root file system
(rpool/ROOT/solaris) which allows 1 GB of remaining file system space. For information
about setting quotas, “Setting Quotas on ZFS File Systems” on page 179.

ZFS Root Pool Requirements
Review the following sections that describe ZFS root pool space and configuration
requirements.

ZFS Root Pool Space Requirements
When a system is installed, the size of the swap volume and the dump volume are dependent
upon the amount of physical memory. The minimum amount of pool space for a bootable ZFS
root file system depends upon the amount of physical memory, the disk space available, and the
number of boot environments (BEs) to be created.

Review the following ZFS storage pool space requirements:

■ For a description of memory requirements for the different installation methods, see Oracle
Solaris 11.1 Release Notes.

■ At least 7-13 GB of disk space is recommended. The space is consumed as follows:
■ Swap area and dump device – The default sizes of the swap and dump volumes that are

created by the Solaris installation programs vary based on the amount of memory on the
system and other variables. The dump device size is approximately half the size of
physical memory or greater, depending on the system's activity.
You can adjust the sizes of your swap and dump volumes to sizes of your choosing as
long as the new sizes support system operation, during or after installation. For more
information, see “Adjusting the Sizes of Your ZFS Swap and Dump Devices” on
page 122.

Managing ZFS Root Pool Components (Overview)

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013108

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SERNS
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SERNS

■ Boot environment (BE) – A ZFS BE is approximately 4-6 GB. Each ZFS BE that is
cloned from another ZFS BE doesn't need additional disk space. Consider that BE size
will increase when the BE is updated, depending on the updates. All ZFS BEs in the same
root pool use the same swap and dump devices.

■ Oracle Solaris OS Components – All subdirectories of the root file system that are part
of the OS image, with the exception of /var, must be in the root file system. In addition,
all Solaris OS components must reside in the root pool with the exception of the swap
and dump devices.

ZFS Root Pool Configuration Requirements
Review the following ZFS storage pool configuration requirements:

■ In Oracle Solaris 11.1, the disk that is intended for the root pool can have either an EFI
(GPT) or SMI (VTOC) on an x86 based system or an SMI (VTOC) label on a SPARC
system.
■ SPARC systems with updated GPT aware firmware will install an EFI (GPT) disk label

on the root pool disk or disks. If the SPARC system does not have updated firmware, an
SMI (VTOC) disk label is installed on the root pool disk or disks.

■ An x86 based system is installed with an EFI (GPT) label on the root pool disk or disk, in
most cases.

For information about what the EFI (GPT) label looks like on an x86 based system, see
“Using Disks in a ZFS Storage Pool” on page 43.

■ The pool must exist either on a disk slice or on disk slices that are mirrored if an SMI
(VTOC) label disk on a SPARC based system or an x86 based system. Or, if the root pool
disks are EFI (GPT) labeled, the pool can exist on a whole disk or mirrored whole disks. If
you attempt to use an unsupported pool configuration during a beadm operation, you will
see a message similar to the following:

ERROR: ZFS pool name does not support boot environments

For a detailed description of supported ZFS root pool configurations, see “Creating a ZFS
Root Pool” on page 51.

■ On an x86 based system, the disk must contain a Solaris fdisk partition. A Solaris fdisk
partition is created automatically when the x86 based system is installed. For more
information about Solaris fdisk partitions, see “Guidelines for Creating an fdisk Partition”
in Oracle Solaris 11.1 Administration: Devices and File Systems.

■ Pool properties or file system properties can be set on a root pool during an automatic
installation. The gzip compression algorithm is not supported on root pools.

■ Do not rename the root pool after it is created by an initial installation. Renaming the root
pool might cause an unbootable system.

Managing ZFS Root Pool Components (Overview)

Chapter 4 • Managing ZFS Root Pool Components 109

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSdisksxadd-54639
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSdisksxadd-54639

Managing Your ZFS Root Pool
The following sections provide information about installing and updating a ZFS root pool and
configuring a mirrored root pool.

Installing a ZFS Root Pool
The Oracle Solaris 11 Live CD installation method installs a default ZFS root pool on a single
disk. With the Oracle Solaris 11 automated installation (AI) method, you can create an AI
manifest to identify the disk or mirrored disks for the ZFS root pool.

The AI installer provides the flexibility of installing a ZFS root pool on the default boot disk or
on a target disk that you identify. You can specify the logical device, such as c1t0d0, or the
physical device path. In addition, you can use the MPxIO identifier or the device ID for the
device to be installed.

After the installation, review your ZFS storage pool and file system information, which can vary
by installation type and customizations. For example:

zpool status rpool

pool: rpool

state: ONLINE

scan: none requested

config:

NAME STATE READ WRITE CKSUM

rpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c8t0d0 ONLINE 0 0 0

c8t1d0 ONLINE 0 0 0

zfs list

NAME USED AVAIL REFER MOUNTPOINT

rpool 11.8G 55.1G 4.58M /rpool

rpool/ROOT 3.57G 55.1G 31K legacy

rpool/ROOT/solaris 3.57G 55.1G 3.40G /

rpool/ROOT/solaris/var 165M 55.1G 163M /var

rpool/VARSHARE 42.5K 55.1G 42.5K /var/share

rpool/dump 6.19G 55.3G 6.00G -

rpool/export 63K 55.1G 32K /export

rpool/export/home 31K 55.1G 31K /export/home

rpool/swap 2.06G 55.2G 2.00G -

Review your ZFS BE information. For example:

beadm list

BE Active Mountpoint Space Policy Created

-- ------ ---------- ----- ------ -------

solaris NR / 3.75G static 2012-07-20 12:10

In the above output, the Active field indicates whether the BE is active now represented by N
and active on reboot represented by R, or both represented by NR.

Managing Your ZFS Root Pool

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013110

▼ How to Update Your ZFS Boot Environment
The default ZFS boot environment (BE) is named solaris by default. You can identify your
BEs by using the beadm list command. For example:

beadm list

BE Active Mountpoint Space Policy Created

-- ------ ---------- ----- ------ -------

solaris NR / 3.82G static 2012-07-19 13:44

In the above output, NR means the BE is active now and will be the active BE on reboot.

You can use the pkg update command to update your ZFS boot environment. If you update
your ZFS BE by using the pkg update command, a new BE is created and activated
automatically, unless the updates to the existing BE are very minimal.

Update your ZFS BE.
pkg update

DOWNLOAD PKGS FILES XFER (MB)

Completed 707/707 10529/10529 194.9/194.9

.

.

.

A new BE, solaris-1, is created automatically and activated.

You can also create and activate a backup BE outside of the update process.

beadm create solaris-1

beadm activate solaris-1

Reboot the system to complete the BE activation. Then, confirm your BE status.
init 6

.

.

.

beadm list

BE Active Mountpoint Space Policy Created

-- ------ ---------- ----- ------ -------

solaris - - 46.95M static 2012-07-20 10:25

solaris-1 NR / 3.82G static 2012-07-19 14:45

If an error occurs when booting the new BE, activate and boot back to the previous BE.
beadm activate solaris

init 6

1

2

3

Managing Your ZFS Root Pool

Chapter 4 • Managing ZFS Root Pool Components 111

▼ How to Mount an Alternate BE
You might need to copy or access a file from another BE for recovery purposes.

Become an administrator.

Mount the alternate BE.
beadm mount solaris-1 /mnt

Access the BE.
ls /mnt

bin export media pkg rpool tmp

boot home mine platform sbin usr

dev import mnt proc scde var

devices java net project shared

doe kernel nfs4 re src

etc lib opt root system

Unmount the alternate BE when you're finished with it.
beadm umount solaris-1

▼ How to Configure a Mirrored Root Pool (SPARC or
x86/VTOC)
If you do not configure a mirrored root pool during an automatic installation, you can easily
configure a mirrored root pool after the installation.

For information about replacing a disk in a root pool, see “How to Replace a Disk in a ZFS Root
Pool (SPARC or x86/VTOC)” on page 115.

Display your current root pool status.
zpool status rpool

pool: rpool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

rpool ONLINE 0 0 0

c2t0d0s0 ONLINE 0 0 0

errors: No known data errors

Prepare a second disk for attachment to the root pool, if necessary.

■ SPARC: Confirm that the disk has an SMI (VTOC) disk label and a slice 0. If you need to
relabel the disk and create a slice 0, see “How to Create a Disk Slice for a ZFS Root File
System” in Oracle Solaris 11.1 Administration: Devices and File Systems.

1

2

3

4

1

2

Managing Your ZFS Root Pool

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013112

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSdiskssadd-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSdiskssadd-5

■ x86: Confirm that the disk has an fdisk partition, an SMI disk label, and a slice 0. If you
need to repartition the disk and create a slice 0, see “Preparing a Disk for a ZFS Root File
System” in Oracle Solaris 11.1 Administration: Devices and File Systems.

Attach a second disk to configure a mirrored root pool.
zpool attach rpool c2t0d0s0 c2t1d0s0

Make sure to wait until resilver is done before rebooting.

The correct disk labeling and the boot blocks are applied automatically.

View the root pool status to confirm that resilvering is complete.
zpool status rpool

zpool status rpool

pool: rpool

state: DEGRADED

status: One or more devices is currently being resilvered. The pool will

continue to function in a degraded state.

action: Wait for the resilver to complete.

Run ’zpool status -v’ to see device specific details.

scan: resilver in progress since Fri Jul 20 13:39:53 2012

938M scanned out of 11.7G at 46.9M/s, 0h3m to go

938M resilvered, 7.86% done

config:

NAME STATE READ WRITE CKSUM

rpool DEGRADED 0 0 0

mirror-0 DEGRADED 0 0 0

c2t0d0s0 ONLINE 0 0 0

c2t1d0s0 DEGRADED 0 0 0 (resilvering)

In the above output, the resilvering process is not complete. Resilvering is complete when you
see messages similar to the following:

resilvered 11.6G in 0h5m with 0 errors on Fri Jul 20 13:57:25 2012

If you attaching a larger disk, set the pool's autoexpandproperty to expand the pool's size.

Determine the existing rpool pool size:
zpool list rpool

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

rpool 29.8G 152K 29.7G 0% 1.00x ONLINE -

zpool set autoexpand=on rpool

Review the expanded rpool pool size:

zpool list rpool

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

rpool 279G 146K 279G 0% 1.00x ONLINE -

Verify that you can boot successfully from the new disk.

3

4

5

6

Managing Your ZFS Root Pool

Chapter 4 • Managing ZFS Root Pool Components 113

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSdisksxadd-30
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSdisksxadd-30

▼ How to Configure a Mirrored Root Pool (x86/EFI (GPT))
The Oracle Solaris 11.1 release installs an EFI (GPT) label by default on an x86 based system, in
most cases.

If you do not configure a mirrored root pool during an automatic installation, you can easily
configure a mirrored root pool after the installation.

For information about replacing a disk in a root pool, see “How to Replace a Disk in a ZFS Root
Pool (SPARC or x86/VTOC)” on page 115.

Display your current root pool status.
zpool status rpool

pool: rpool

state: ONLINE

scan: none requested

config:

NAME STATE READ WRITE CKSUM

rpool ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

errors: No known data errors

Attach a second disk to configure a mirrored root pool.
zpool attach rpool c2t0d0 c2t1d0

Make sure to wait until resilver is done before rebooting.

The correct disk labeling and the boot blocks are applied automatically.

If you have customized partitions on your root pool disk, then you might need syntax similar to
the following:

zpool attach rpool c2t0d0s0 c2t1d0

View the root pool status to confirm that resilvering is complete.
zpool status rpool

pool: rpool

state: DEGRADED

status: One or more devices is currently being resilvered. The pool will

continue to function in a degraded state.

action: Wait for the resilver to complete.

Run ’zpool status -v’ to see device specific details.

scan: resilver in progress since Fri Jul 20 13:52:05 2012

809M scanned out of 11.6G at 44.9M/s, 0h4m to go

776M resilvered, 6.82% done

config:

NAME STATE READ WRITE CKSUM

rpool DEGRADED 0 0 0

mirror-0 DEGRADED 0 0 0

c8t0d0 ONLINE 0 0 0

1

2

3

Managing Your ZFS Root Pool

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013114

c8t1d0 DEGRADED 0 0 0 (resilvering)

errors: No known data errors

In the above output, the resilvering process is not complete. Resilvering is complete when you
see messages similar to the following:

resilvered 11.6G in 0h5m with 0 errors on Fri Jul 20 13:57:25 2012

If you attaching a larger disk, set the pool's autoexpandproperty to expand the pool's size.
Determine the existing rpool pool size:
zpool list rpool

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

rpool 29.8G 152K 29.7G 0% 1.00x ONLINE -

zpool set autoexpand=on rpool

Review the expanded rpool pool size:

zpool list rpool

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

rpool 279G 146K 279G 0% 1.00x ONLINE -

Verify that you can boot successfully from the new disk.

▼ How to Replace a Disk in a ZFS Root Pool (SPARC or
x86/VTOC)
You might need to replace a disk in the root pool for the following reasons:
■ The root pool is too small and you want to replace it with a larger disk
■ The root pool disk is failing. In a non-redundant pool, if the disk is failing so that the system

won't boot, you'll need to boot from an alternate media, such as a CD or the network, before
you replace the root pool disk.

■ If you use the zpool replace command to replace a disk in a root pool disk, you will need to
apply the boot blocks manually.

In a mirrored root pool configuration, you might be able to attempt a disk replacement without
having to boot from alternate media. You can replace a failed disk by using the zpool replace
command or if you have an additional disk, you can use the zpool attach command. See the
steps below for an example of attaching an additional disk and detaching a root pool disk.

Systems with SATA disks require that you offline and unconfigure a disk before attempting the
zpool replace operation to replace a failed disk. For example:

zpool offline rpool c1t0d0s0

cfgadm -c unconfigure c1::dsk/c1t0d0

4

5

Managing Your ZFS Root Pool

Chapter 4 • Managing ZFS Root Pool Components 115

<Physically remove failed disk c1t0d0>

<Physically insert replacement disk c1t0d0>

cfgadm -c configure c1::dsk/c1t0d0

<Confirm that the new disk has an SMI label and a slice 0>

zpool online rpool c1t0d0s0

zpool replace rpool c1t0d0s0

zpool status rpool

<Let disk resilver before installing the boot blocks>

bootadm install-bootloader

On some hardware, you do not have to online or reconfigure the replacement disk after it is
inserted.

Physically connect the replacement disk.

Prepare a second disk for attachment to the root pool, if necessary.

■ SPARC: Confirm that the replacement (new) disk has an SMI (VTOC) label and a slice 0.
For information about relabeling a disk that is intended for the root pool, see “How to Label
a Disk” in Oracle Solaris 11.1 Administration: Devices and File Systems.

■ x86: Confirm that the disk has an fdisk partition, an SMI disk label, and a slice 0. If you
need to repartition the disk and create a slice 0, see “How to Set Up a Disk for a ZFS Root File
System” in Oracle Solaris 11.1 Administration: Devices and File Systems.

Attach the new disk to the root pool.
For example:
zpool attach rpool c2t0d0s0 c2t1d0s0

Make sure to wait until resilver is done before rebooting.

The correct disk labeling and the boot blocks are applied automatically.

Confirm the root pool status.
For example:
zpool status rpool

pool: rpool

state: ONLINE

scan: resilvered 11.7G in 0h5m with 0 errors on Fri Jul 20 13:45:37 2012

config:

NAME STATE READ WRITE CKSUM

rpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c2t0d0s0 ONLINE 0 0 0

c2t1d0s0 ONLINE 0 0 0

errors: No known data errors

Verify that you can boot from the new disk after resilvering is complete.
For example, on a SPARC based system:
ok boot /pci@1f,700000/scsi@2/disk@1,0

1

2

3

4

5

Managing Your ZFS Root Pool

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013116

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSdisksprep-32432
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSdisksprep-32432
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSdisksxadd-20
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSdisksxadd-20

Identify the boot device pathnames of the current and new disk so that you can test booting
from the replacement disk and also manually boot from the existing disk, if necessary, if the
replacement disk fails. In the example below, the current root pool disk (c2t0d0s0) is:

/pci@1f,700000/scsi@2/disk@0,0

In the example below, the replacement boot disk is (c2t1d0s0):

boot /pci@1f,700000/scsi@2/disk@1,0

If the system boots from the new disk, detach the old disk.
For example:
zpool detach rpool c2t0d0s0

If you attaching a larger disk, set the pool's autoexpandproperty to expand the pool's size.
zpool set autoexpand=on rpool

Or, expand the device:

zpool online -e c2t1d0s0

Set up the system to boot automatically from the new disk.

■ SPARC: Set up the system to boot automatically from the new disk, either by using the
eeprom command or the setenv command from the boot PROM.

■ x86: Reconfigure the system BIOS.

▼ How to Replace a Disk in a ZFS Root Pool (SPARC or
x86/EFI (GPT))
The Oracle Solaris 11.1 release installs an EFI (GPT) label by default on an x86 based system, in
most cases.

You might need to replace a disk in the root pool for the following reasons:

■ The root pool is too small and you want to replace it with a larger disk
■ The root pool disk is failing. In a non-redundant pool, if the disk is failing so that the system

won't boot, you'll need to boot from an alternate media, such as a CD or the network, before
you replace the root pool disk.

■ If you use the zpool replace command to replace a disk in a root pool disk, you will need to
apply the boot blocks manually.

In a mirrored root pool configuration, you might be able to attempt a disk replacement without
having to boot from alternate media. You can replace a failed disk by using the zpool replace

6

7

8

Managing Your ZFS Root Pool

Chapter 4 • Managing ZFS Root Pool Components 117

command or if you have an additional disk, you can use the zpool attach command. See the
steps below for an example of attaching an additional disk and detaching a root pool disk.

Systems with SATA disks require that you offline and unconfigure a disk before attempting the
zpool replace operation to replace a failed disk. For example:

zpool offline rpool c1t0d0

cfgadm -c unconfigure c1::dsk/c1t0d0

<Physically remove failed disk c1t0d0>

<Physically insert replacement disk c1t0d0>

cfgadm -c configure c1::dsk/c1t0d0

zpool online rpool c1t0d0

zpool replace rpool c1t0d0

zpool status rpool

<Let disk resilver before installing the boot blocks>

x86# bootadm install-bootloader

On some hardware, you do not have to online or reconfigure the replacement disk after it is
inserted.

Physically connect the replacement disk.

Attach the new disk to the root pool.
For example:
zpool attach rpool c2t0d0 c2t1d0

Make sure to wait until resilver is done before rebooting.

The correct disk labeling and the boot blocks are applied automatically.

Confirm the root pool status.
For example:
zpool status rpool

pool: rpool

state: ONLINE

scan: resilvered 11.6G in 0h5m with 0 errors on Fri Jul 20 12:06:07 2012

config:

NAME STATE READ WRITE CKSUM

rpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

errors: No known data errors

Verify that you can boot from the new disk after resilvering is complete.

If the system boots from the new disk, detach the old disk.
For example:
zpool detach rpool c2t0d0

1

2

3

4

5

Managing Your ZFS Root Pool

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013118

If you attaching a larger disk, set the pool's autoexpandproperty to expand the pool's size.
zpool set autoexpand=on rpool

Or, expand the device:

zpool online -e c2t1d0

Set up the system to boot automatically from the new disk.
Reconfigure the system BIOS.

▼ How to Create a BE in Another Root Pool (SPARC or
x86/VTOC)
If you want to re-create your existing BE in another root pool, follow the steps below. You can
modify the steps based on whether you want two root pools with similar BEs that have
independent swap and dump devices or whether you just want a BE in another root pool that
shares the swap and dump devices.

After you activate and boot from the new BE in the second root pool, it will have no information
about the previous BE in the first root pool. If you want to boot back to the original BE, you will
need to boot the system manually from the original root pool's boot disk.

Create a second root pool with an SMI (VTOC)-labeled disk. For example:
zpool create rpool2 c4t2d0s0

Create the new BE in the second root pool. For example:
beadm create -p rpool2 solaris2

Set the bootfsproperty on the second root pool. For example:
zpool set bootfs=rpool2/ROOT/solaris2 rpool2

Activate the new BE. For example:
beadm activate solaris2

Boot from the new BE but you must boot specifically from the second root pool's boot device.
ok boot disk2

Your system should be running under the new BE.

Re-create the swap volume. For example:
zfs create -V 4g rpool2/swap

Update the /etc/vfstab entry for the new swap device. For example:
/dev/zvol/dsk/rpool2/swap - - swap - no -

6

7

1

2

3

4

5

6

7

Managing Your ZFS Root Pool

Chapter 4 • Managing ZFS Root Pool Components 119

Re-create the dump volume. For example:
zfs create -V 4g rpool2/dump

Reset the dump device. For example:
dumpadm -d /dev/zvol/dsk/rpool2/dump

Reset your default boot device to boot from the second root pool's boot disk.

■ SPARC – Set up the system to boot automatically from the new disk, either by using the
eeprom command or the setenv command from the boot PROM.

■ x86 – Reconfigure the system BIOS.

Reboot to clear the original root pool's swap and dump devices.
init 6

▼ How to Create a BE in Another Root Pool (SPARC or
x86/EFI (GPT))
The Oracle Solaris 11.1 release installs an EFI (GPT) label by default on an x86 based system, in
most cases.

If you want to re-create your existing BE in another root pool, follow the steps below. You can
modify the steps based on whether you want two root pools with similar BEs that have
independent swap and dump devices or whether you just want a BE in another root pool that
shares the swap and dump devices.

After you activate and boot from the new BE in the second root pool, it will have no information
about the previous BE in the first root pool. If you want to boot back to the original BE, you will
need to boot the system manually from the original root pool's boot disk.

Create the alternate root pool.
zpool create -B rpool2 c2t2d0

Or, create a mirrored alternate root pool. For example:

zpool create -B rpool2 mirror c2t2d0 c2t3d0

Create the new BE in the second root pool. For example:
beadm create -p rpool2 solaris2

Apply the boot information to the second root pool. For example:
bootadm install-bootloader -P rpool2

8

9

10

11

1

2

3

Managing Your ZFS Root Pool

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013120

Set the bootfsproperty on the second root pool. For example:
zpool set bootfs=rpool2/ROOT/solaris2 rpool2

Activate the new BE. For example:
beadm activate solaris2

Boot from the new BE.

■ SPARC – Set up the system to boot automatically from the new disk, either by using the
eeprom command or the setenv command from the boot PROM.

■ x86 – Reconfigure the system BIOS.

Your system should be running under the new BE.

Re-create the swap volume. For example:
zfs create -V 4g rpool2/swap

Update the /etc/vfstab entry for the new swap device. For example:
/dev/zvol/dsk/rpool2/swap - - swap - no -

Re-create the dump volume. For example:
zfs create -V 4g rpool2/dump

Reset the dump device. For example:
dumpadm -d /dev/zvol/dsk/rpool2/dump

Reboot to clear the original root pool's swap and dump devices.
init 6

Managing Your ZFS Swap and Dump Devices
During the installation process, a swap area is created on a ZFS volume in the ZFS root pool. For
example:

swap -l

swapfile dev swaplo blocks free

/dev/zvol/dsk/rpool/swap 145,2 16 16646128 16646128

During the installation process, a dump device is created on a ZFS volume in the ZFS root pool.
In general, a dump device requires no administration because it is set up automatically at
installation time. For example:

dumpadm

Dump content: kernel pages

Dump device: /dev/zvol/dsk/rpool/dump (dedicated)

4

5

6

7

8

9

10

11

Managing Your ZFS Swap and Dump Devices

Chapter 4 • Managing ZFS Root Pool Components 121

Savecore directory: /var/crash/

Savecore enabled: yes

Save compressed: on

If you disable and remove the dump device, then you will need to enable it with the dumpadm
command after it is recreated. In most cases, you will only have to adjust the size of the dump
device by using the zfs command.

For information about the swap and dump volume sizes that are created by the installation
programs, see “ZFS Root Pool Requirements” on page 108.

Both the swap volume size and the dump volume size can be adjusted after installation. For
more information, see “Adjusting the Sizes of Your ZFS Swap and Dump Devices” on page 122.

Consider the following issues when working with ZFS swap and dump devices:
■ Separate ZFS volumes must be used for the swap area and dump devices.
■ Currently, using a swap file on a ZFS file system is not supported.
■ If you need to change your swap area or dump device after the system is installed, use the

swap and dumpadm commands as in previous Solaris releases. For more information, see
Chapter 16, “Configuring Additional Swap Space (Tasks),” in Oracle Solaris 11.1
Administration: Devices and File Systems and Chapter 1, “Managing System Crash
Information (Tasks),” in Troubleshooting Typical Issues in Oracle Solaris 11.1.

Adjusting the Sizes of Your ZFS Swap and Dump
Devices
You might need to adjust the size of swap and dump devices after installation or possibly,
recreate the swap and dump volumes.
■ You can reset the volsize property of the dump device after a system is installed. For

example:

zfs set volsize=2G rpool/dump

zfs get volsize rpool/dump

NAME PROPERTY VALUE SOURCE

rpool/dump volsize 2G -

■ You can resize the swap volume but the system must be rebooted to see the increased swap
size. For example:

swap -d /dev/zvol/dsk/rpool/swap

zfs set volsize=2G rpool/swap

swap -a /dev/zvol/dsk/rpool/swap

init 6

For information on removing a swap device on an active system, see “How to Add Swap
Space in an Oracle Solaris ZFS Root Environment” in Oracle Solaris 11.1 Administration:
Devices and File Systems.

Managing Your ZFS Swap and Dump Devices

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013122

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSfsswap-14677
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSfsswap-14677
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=ADTRBtscrashdumps-40145
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=ADTRBtscrashdumps-40145
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSgizet
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSgizet
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSgizet

■ If you need more swap space on a system that is already installed and the swap device is
busy, just add another swap volume. For example:

zfs create -V 2G rpool/swap2

■ Activate the new swap volume. For example:

swap -a /dev/zvol/dsk/rpool/swap2

swap -l

swapfile dev swaplo blocks free

/dev/zvol/dsk/rpool/swap 256,1 16 1058800 1058800

/dev/zvol/dsk/rpool/swap2 256,3 16 4194288 4194288

■ Add an entry for the second swap volume to the /etc/vfstab file. For example:

/dev/zvol/dsk/rpool/swap2 - - swap - no -

Troubleshooting ZFS Dump Device Issues
Review the following items if you have problems either capturing a system crash dump or
resizing the dump device.

■ If a crash dump was not created automatically, you can use the savecore command to save
the crash dump.

■ A dump device is created automatically when you initially install a ZFS root file system or
migrate to a ZFS root file system. In most cases, you will only need to adjust the size of the
dump device if the default dump device size is too small. For example, on a large-memory
system, the dump device size is increased to 40 GB as follows:

zfs set volsize=40G rpool/dump

Resizing a large dump device can be a time-consuming process.

If, for any reason, you need to enable a dump device after you create a dump device
manually, use syntax similar to the following:

dumpadm -d /dev/zvol/dsk/rpool/dump

Dump content: kernel pages

Dump device: /dev/zvol/dsk/rpool/dump (dedicated)

Savecore directory: /var/crash/

Savecore enabled: yes

Save compressed: on

■ A system with 128 GB or greater memory will need a larger dump device than the dump
device that is created by default. If the dump device is too small to capture an existing crash
dump, a message similar to the following is displayed:

dumpadm -d /dev/zvol/dsk/rpool/dump

dumpadm: dump device /dev/zvol/dsk/rpool/dump is too small to hold a system dump

dump size 36255432704 bytes, device size 34359738368 bytes

For information on sizing the swap and dump devices, see “Planning for Swap Space” in
Oracle Solaris 11.1 Administration: Devices and File Systems.

Managing Your ZFS Swap and Dump Devices

Chapter 4 • Managing ZFS Root Pool Components 123

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSfsswap-31050
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSfsswap-31050

■ You cannot currently add a dump device to a pool with multiple top level-devices. You will
see a message similar to the following:

dumpadm -d /dev/zvol/dsk/datapool/dump

dump is not supported on device ’/dev/zvol/dsk/datapool/dump’:

’datapool’ has multiple top level vdevs

Add the dump device to the root pool, which cannot have multiple top-level devices.

Booting From a ZFS Root File System
Both SPARC based and x86 based systems boot with a boot archive, which is a file system image
that contains the files required for booting. When booting from a ZFS root file system, the path
names of both the boot archive and the kernel file are resolved in the root file system that is
selected for booting.

Booting from a ZFS file system differs from booting from a UFS file system because with ZFS, a
device specifier identifies a storage pool, not a single root file system. A storage pool can contain
multiple bootable ZFS root file systems. When booting from ZFS, you must specify a boot
device and a root file system within the pool that was identified by the boot device.

By default, the file system selected for booting is the one identified by the pool's bootfs
property. This default selection can be overridden by specifying an alternate bootable file
system that is included in the boot -Z command on a SPARC system or by selecting an alternate
boot device from the BIOS on an x86 based system.

Booting From an Alternate Disk in a Mirrored ZFS Root
Pool
You can attach a disk to create a mirrored ZFS root pool after installation. For more
information about creating a mirrored root pool, see “How to Configure a Mirrored Root Pool
(SPARC or x86/VTOC)” on page 112.

Review the following known issues regarding mirrored ZFS root pools:

■ You can boot from different devices in a mirrored ZFS root pool. Depending on the
hardware configuration, you might need to update the PROM or the BIOS to specify a
different boot device.
For example, you can boot from either disk (c1t0d0s0 or c1t1d0s0) in this pool.

zpool status

pool: rpool

state: ONLINE

scrub: none requested

config:

Booting From a ZFS Root File System

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013124

NAME STATE READ WRITE CKSUM

rpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c1t0d0s0 ONLINE 0 0 0

c1t1d0s0 ONLINE 0 0 0

On a SPARC based system, enter the alternate disk at the ok prompt.

ok boot /pci@7c0/pci@0/pci@1/pci@0,2/LSILogic,sas@2/disk@1

After the system is rebooted, confirm the active boot device. For example:

SPARC# prtconf -vp | grep bootpath

bootpath: ’/pci@7c0/pci@0/pci@1/pci@0,2/LSILogic,sas@2/disk@1,0:a’

On an x86 based system, use syntax similar to the following:

x86# prtconf -v|sed -n ’/bootpath/,/value/p’

name=’bootpath’ type=string items=1

value=’/pci@0,0/pci8086,25f8@4/pci108e,286@0/disk@0,0:a’

■ On an x86 based system, select an alternate disk in the mirrored ZFS root pool from the
appropriate BIOS menu.

■ SPARC or x86: If you replace a root pool disk by using the zpool replace command, you
must install the boot information on the newly replaced disk by using the bootadm
command. If you create a mirrored ZFS root pool with the initial installation method or if
you use the zpool attach command to attach a disk to the root pool, then this step is
unnecessary. The bootadm syntax is as follows:

bootadm install-bootloader

If you want to install the boot loader on an alternate root pool, then use the -P (pool) option.

bootadm install-bootloader -P rpool2

If you want to install the GRUB legacy boot loader, then use the legacy installgrub
command.

x86# installgrub /boot/grub/stage1 /boot/grub/stage2 /dev/rdsk/c0t1d0s0

■ You can boot from different devices in a mirrored ZFS root pool. Depending on the
hardware configuration, you might need to update the PROM or the BIOS to specify a
different boot device.
For example, you can boot from either disk (c1t0d0s0 or c1t1d0s0) in this pool.

zpool status

pool: rpool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

rpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

Booting From a ZFS Root File System

Chapter 4 • Managing ZFS Root Pool Components 125

c1t0d0s0 ONLINE 0 0 0

c1t1d0s0 ONLINE 0 0 0

On a SPARC based system, enter the alternate disk at the ok prompt.

ok boot /pci@7c0/pci@0/pci@1/pci@0,2/LSILogic,sas@2/disk@1

After the system is rebooted, confirm the active boot device. For example:

SPARC# prtconf -vp | grep bootpath

bootpath: ’/pci@7c0/pci@0/pci@1/pci@0,2/LSILogic,sas@2/disk@1,0:a’

On an x86 based system, use syntax similar to the following:

x86# prtconf -v|sed -n ’/bootpath/,/value/p’

name=’bootpath’ type=string items=1

value=’/pci@0,0/pci8086,25f8@4/pci108e,286@0/disk@0,0:a’

■ On an x86 based system, select an alternate disk in the mirrored ZFS root pool from the
appropriate BIOS menu.

Booting From a ZFS Root File System on a SPARC Based
System
On a SPARC based system with multiple ZFS BEs, you can boot from any BE by using the beadm
activate command.

During an installation and beadm activation process, the ZFS root file system is automatically
designated with the bootfs property.

Multiple bootable file systems can exist within a pool. By default, the bootable file system entry
in the /pool-name/boot/menu.lst file is identified by the pool's bootfs property. However, a
menu.lst entry can contain a bootfs command, which specifies an alternate file system in the
pool. In this way, the menu.lst file can contain entries for multiple root file systems within the
pool.

When a system is installed with a ZFS root file system, an entry similar to the following is added
to the menu.lst file:

title Oracle Solaris 11.1 SPARC

bootfs rpool/ROOT/solaris

When a new BE is created, the menu.lst file is updated automatically.

title Oracle Solaris 11.1 SPARC

bootfs rpool/ROOT/solaris

title solaris

bootfs rpool/ROOT/solaris2

On a SPARC based system, you can select the BE to boot from as follows:

Booting From a ZFS Root File System

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013126

■ After a ZFS BE is activated, you can use the boot -L command to display a list of bootable file
systems within a ZFS pool. Then, you can select one of the bootable file systems in the list.
Detailed instructions for booting that file system are displayed. You can boot the selected file
system by following the instructions.

■ Use the boot -Z file system command to boot a specific ZFS file system.

This method of booting does not activate the BE automatically. After the BE is booted with the
boot -L and -Z syntax, you would have to activate this BE to continue booting from it
automatically.

EXAMPLE 4–1 Booting From a Specific ZFS Boot Environment

If you have multiple ZFS BEs in a ZFS storage pool on your system's boot device, you can use the
beadm activate command to specify a default BE.

For example, the following ZFS BEs are available as described by the beadm output:

beadm list

BE Active Mountpoint Space Policy Created

-- ------ ---------- ----- ------ -------

solaris NR / 3.80G static 2012-07-20 10:25

solaris-2 - - 7.68M static 2012-07-19 13:44

If you have multiple ZFS BEs on your SPARC based system, you can use the boot -L command.
For example:

ok boot -L

Boot device: /pci@7c0/pci@0/pci@1/pci@0,2/LSILogic,sas@2/disk@0,0:a File and args: -L

1 Oracle Solaris 11.1 SPARC

2 solaris

Select environment to boot: [1 - 2]: 1

To boot the selected entry, invoke:

boot [<root-device>] -Z rpool/ROOT/solaris-2

Program terminated

ok boot -Z rpool/ROOT/solaris-2

Keep in mind that the BE that is booted with the above command is not activated for the next
reboot. If you want to continue to boot automatically from the BE that is selected during the
boot -Z operation, you will need to activate it.

Booting From a ZFS Root File System on an x86 Based
System
In Oracle Solaris 11, an x86 system is installed with legacy GRUB, the following entries are
added to the /pool-name/boot/grub/menu.lst file during the installation process or beadm
activate operation to boot ZFS automatically:

Booting From a ZFS Root File System

Chapter 4 • Managing ZFS Root Pool Components 127

title solaris

bootfs rpool/ROOT/solaris

kernel$ /platform/i86pc/kernel/amd64/unix -B $ZFS-BOOTFS

module$ /platform/i86pc/amd64/boot_archive

title solaris-1

bootfs rpool/ROOT/solaris-1

kernel$ /platform/i86pc/kernel/amd64/unix -B $ZFS-BOOTFS

module$ /platform/i86pc/amd64/boot_archive

If the device identified by GRUB as the boot device contains a ZFS storage pool, the menu.lst
file is used to create the GRUB menu.

On an x86 based system with multiple ZFS BEs, you can select a BE from the GRUB menu. If the
root file system corresponding to this menu entry is a ZFS file system, the following option is
added.

-B $ZFS-BOOTFS

In Oracle Solaris 11.1, an x86 based system is installed with GRUB2. The menu.lst file is
replaced by the /rpool/boot/grub/grub.cfg file, but this file should not be edited manually.
Use the bootadm sub commands to add, change, and remove menu entries.

For more information about modifying the GRUB menu items, see Booting and Shutting Down
Oracle Solaris 11.1 Systems.

EXAMPLE 4–2 x86: Booting a ZFS File System

When booting from a ZFS root file system on a GRUB2 system, the root device is specified as
follows:

bootadm list-menu

the location of the boot loader configuration files is: /rpool/boot/grub

default 0

console text

timeout 30

0 Oracle Solaris 11.1

When booting from a ZFS root file system on a legacy GRUB system, the root device is specified
by the boot -B $ZFS-BOOTFS parameter. For example:

title solaris

bootfs rpool/ROOT/solaris

kernel$ /platform/i86pc/kernel/amd64/unix -B $ZFS-BOOTFS

module$ /platform/i86pc/amd64/boot_archive

title solaris-1

bootfs rpool/ROOT/solaris-1

kernel$ /platform/i86pc/kernel/amd64/unix -B $ZFS-BOOTFS

module$ /platform/i86pc/amd64/boot_archive

Booting From a ZFS Root File System

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013128

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SBOOT
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SBOOT

EXAMPLE 4–3 x86: Fast Rebooting a ZFS Root File System

The fast reboot feature provides the ability to reboot within seconds on x86 based systems. With
the fast reboot feature, you can reboot to a new kernel without experiencing the long delays that
can be imposed by the BIOS and boot loader. The ability to fast reboot a system drastically
reduces down time and improves efficiency.

You must still use the init 6 command when transitioning between BEs with the beadm
activate command. For other system operations where the reboot command is appropriate,
you can use the reboot -f command. For example:

reboot -f

Booting For Recovery Purposes in a ZFS Root
Environment
Use the following procedure if you need to boot the system so that you can recover from a lost
root password or similar problem.

▼ How to Boot the System For Recovery Purposes
Use the procedure below to resolve a problem with a menu.lst problem or a root password
problem. If you need to replace a disk in root pool, see “How to Replace a Disk in a ZFS Root
Pool (SPARC or x86/VTOC)” on page 115. If you need to perform complete system (bare metal)
recovery, see Chapter 11, “Archiving Snapshots and Root Pool Recovery.”

Select the appropriate boot method:

■ x86: Live Media – Boot from the installation media and use a GNOME terminal for the
recovery procedure.

■ SPARC: Text installation – Boot from the install media or from the network, and select
option 3 Shell from the text installation screen.

■ x86: Text installation – From the GRUB menu, select the Text Installer and command
line boot entry, then select the option 3 Shell from the text installation screen.

■ SPARC: Automated installation – Use the following command to boot directly from an
installation menu that allows you to exit to a shell.

ok boot net:dhcp

■ x86: Automated installation – Booting from an install server on the network requires a PXE
boot. Select the Text Installer and command line entry from the GRUB menu. Then,
select the option 3 Shell from the text installation screen.

1

Booting From a ZFS Root File System

Chapter 4 • Managing ZFS Root Pool Components 129

For example, after the system is booted, select option 3 Shell.

1 Install Oracle Solaris

2 Install Additional Drivers

3 Shell

4 Terminal type (currently xterm)

5 Reboot

Please enter a number [1]: 3

To return to the main menu, exit the shell

#

Select the boot recovery problem:

■ Resolve a bad root shell by booting the system to single-user mode and correcting the shell
entry in the /etc/passwd file.
On an x86 system, edit the selected boot entry and add the -s option.
For example, on a SPARC system, shut down the system and boot to single-mode. After you
log in as root, edit the /etc/passwd file, and fix the root shell entry.

init 0

ok boot -s

Boot device: /pci@7c0/pci@0/pci@1/pci@0,2/LSILogic,sas@2/disk@0,0:a ...

SunOS Release 5.11 Version 11.1 64-bit

Copyright (c) 1983, 2012, Oracle and/or its affiliates. All rights reserved.

Booting to milestone "milestone/single-user:default".
Hostname: tardis.central

Requesting System Maintenance Mode

SINGLE USER MODE

Enter user name for system maintenance (control-d to bypass): root

Enter root password (control-d to bypass): xxxx

single-user privilege assigned to root on /dev/console.

Entering System Maintenance Mode

Aug 3 15:46:21 su: ’su root’ succeeded for root on /dev/console

Oracle Corporation SunOS 5.11 11.1 October 2012

su: No shell /usr/bin/mybash. Trying fallback shell /sbin/sh.

root@tardis.central:~# TERM =vt100; export TERM

root@tardis.central:~# vi /etc/passwd

root@tardis.central:~# <Press control-d>

logout

svc.startd: Returning to milestone all.

■ Resolve a problem that prevents an x86–based system from booting. .
First, you must boot from media or the network by using one of the boot methods listed in
step 1. Then, import the root pool and fix a GRUB entry, for example.
You can the use the bootadm list-menu command to list and modify GRUB2 entries. You
can also use the set-menu subcommand to change a boot entry. For more information, see
bootadm(1M).

x86# zpool import -f rpool

x86# bootadm list-menu

x86# bootadm set-menu default=1

2

Booting From a ZFS Root File System

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013130

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mbootadm-1m

x86# exit

1 Install Oracle Solaris

2 Install Additional Drivers

3 Shell

4 Terminal type (currently sun-color)

5 Reboot

Please enter a number [1]: 5

Confirm that the system boots successfully.
■ Resolve an unknown root password that prevents you from logging into the system.

First, you must boot from media or the network by using one of the boot methods listed in
step 1. Then, import the root pool (rpool) and mount the BE to remove the root password
entry. This process is identical on SPARC and x86 platforms.

zpool import -f rpool

beadm list

be_find_current_be: failed to find current BE name

be_find_current_be: failed to find current BE name

BE Active Mountpoint Space Policy Created

-- ------ ---------- ----- ------ -------

solaris - - 46.95M static 2012-07-20 10:25

solaris-2 R - 3.81G static 2012-07-19 13:44

mkdir /a

beadm mount solaris-2 /a

TERM=vt100

export TERM

cd /a/etc

vi shadow

<Carefully remove the unknown password>

cd /

beadm umount solaris-2

halt

Go to the next step to set the root password.

Set the root password by booting to single-user mode and setting the password.
This step assumes that you have removed an unknown root password in the previous step.

On an x86 based system, edit the selected boot entry and add the -s option.

On a SPARC based system, boot the system to single-user mode, log in as root, and set the root
password. For example:
ok boot -s

Boot device: /pci@7c0/pci@0/pci@1/pci@0,2/LSILogic,sas@2/disk@0,0:a ...

SunOS Release 5.11 Version 11.1 64-bit

Copyright (c) 1983, 2012, Oracle and/or its affiliates. All rights reserved

Booting to milestone "milestone/single-user:default".

Enter user name for system maintenance (control-d to bypass): root

Enter root password (control-d to bypass): <Press return>

single-user privilege assigned to root on /dev/console.

Entering System Maintenance Mode

3

Booting From a ZFS Root File System

Chapter 4 • Managing ZFS Root Pool Components 131

Jul 20 14:09:59 su: ’su root’ succeeded for root on /dev/console

Oracle Corporation SunOS 5.11 11.1 October 2012

root@tardis.central:~# passwd -r files root

New Password: xxxxxx

Re-enter new Password: xxxxxx

passwd: password successfully changed for root

root@tardis.central:~# <Press control-d>

logout

svc.startd: Returning to milestone all.

Booting From a ZFS Root File System

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013132

Managing Oracle Solaris ZFS File Systems

This chapter provides detailed information about managing Oracle Solaris ZFS file systems.
Concepts such as the hierarchical file system layout, property inheritance, and automatic
mount point management and share interactions are included.

The following sections are provided in this chapter:
■ “Managing ZFS File Systems (Overview)” on page 133
■ “Creating, Destroying, and Renaming ZFS File Systems” on page 134
■ “Introducing ZFS Properties” on page 137
■ “Querying ZFS File System Information” on page 156
■ “Managing ZFS Properties” on page 159
■ “Mounting ZFS File Systems” on page 164
■ “Sharing and Unsharing ZFS File Systems” on page 168
■ “Setting ZFS Quotas and Reservations” on page 178
■ “Encrypting ZFS File Systems” on page 184
■ “Migrating ZFS File Systems” on page 191
■ “Upgrading ZFS File Systems” on page 194

Managing ZFS File Systems (Overview)
A ZFS file system is built on top of a storage pool. File systems can be dynamically created and
destroyed without requiring you to allocate or format any underlying disk space. Because file
systems are so lightweight and because they are the central point of administration in ZFS, you
are likely to create many of them.

ZFS file systems are administered by using the zfs command. The zfs command provides a set
of subcommands that perform specific operations on file systems. This chapter describes these
subcommands in detail. Snapshots, volumes, and clones are also managed by using this
command, but these features are only covered briefly in this chapter. For detailed information
about snapshots and clones, see Chapter 6, “Working With Oracle Solaris ZFS Snapshots and
Clones.” For detailed information about ZFS volumes, see “ZFS Volumes” on page 255.

5C H A P T E R 5

133

Note – The term dataset is used in this chapter as a generic term to refer to a file system,
snapshot, clone, or volume.

Creating, Destroying, and Renaming ZFS File Systems
ZFS file systems can be created and destroyed by using the zfs create and zfs destroy

commands. ZFS file systems can be renamed by using the zfs rename command.
■ “Creating a ZFS File System” on page 134
■ “Destroying a ZFS File System” on page 135
■ “Renaming a ZFS File System” on page 136

Creating a ZFS File System
ZFS file systems are created by using the zfs create command. The create subcommand
takes a single argument: the name of the file system to be created. The file system name is
specified as a path name starting from the name of the pool as follows:

pool-name/[filesystem-name/]filesystem-name

The pool name and initial file system names in the path identify the location in the hierarchy
where the new file system will be created. The last name in the path identifies the name of the file
system to be created. The file system name must satisfy the naming requirements in “ZFS
Component Naming Requirements” on page 31.

Encrypting a ZFS file system must be enabled when the file system is created. For information
about encrypting a ZFS file system, see “Encrypting ZFS File Systems” on page 184.

In the following example, a file system named jeff is created in the tank/home file system.

zfs create tank/home/jeff

ZFS automatically mounts the newly created file system if it is created successfully. By default,
file systems are mounted as /dataset, using the path provided for the file system name in the
create subcommand. In this example, the newly created jeff file system is mounted at
/tank/home/jeff. For more information about automatically managed mount points, see
“Managing ZFS Mount Points” on page 164.

For more information about the zfs create command, see zfs(1M).

You can set file system properties when the file system is created.

In the following example, a mount point of /export/zfs is created for the tank/home file
system:

Creating, Destroying, and Renaming ZFS File Systems

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013134

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mzfs-1m

zfs create -o mountpoint=/export/zfs tank/home

For more information about file system properties, see “Introducing ZFS Properties” on
page 137.

Destroying a ZFS File System
To destroy a ZFS file system, use the zfs destroy command. The destroyed file system is
automatically unmounted and unshared. For more information about automatically managed
mounts or automatically managed shares, see “Automatic Mount Points” on page 164.

In the following example, the tank/home/mark file system is destroyed:

zfs destroy tank/home/mark

Caution – No confirmation prompt appears with the destroy subcommand. Use it with extreme
caution.

If the file system to be destroyed is busy and cannot be unmounted, the zfs destroy command
fails. To destroy an active file system, use the -f option. Use this option with caution as it can
unmount, unshare, and destroy active file systems, causing unexpected application behavior.

zfs destroy tank/home/matt

cannot unmount ’tank/home/matt’: Device busy

zfs destroy -f tank/home/matt

The zfs destroy command also fails if a file system has descendents. To recursively destroy a
file system and all its descendents, use the -r option. Note that a recursive destroy also destroys
snapshots, so use this option with caution.

zfs destroy tank/ws

cannot destroy ’tank/ws’: filesystem has children

use ’-r’ to destroy the following datasets:

tank/ws/jeff

tank/ws/bill

tank/ws/mark

zfs destroy -r tank/ws

If the file system to be destroyed has indirect dependents, even the recursive destroy command
fails. To force the destruction of all dependents, including cloned file systems outside the target
hierarchy, the -R option must be used. Use extreme caution with this option.

zfs destroy -r tank/home/eric

cannot destroy ’tank/home/eric’: filesystem has dependent clones

use ’-R’ to destroy the following datasets:

tank//home/eric-clone

zfs destroy -R tank/home/eric

Creating, Destroying, and Renaming ZFS File Systems

Chapter 5 • Managing Oracle Solaris ZFS File Systems 135

Caution – No confirmation prompt appears with the -f, -r, or -R options to the zfs destroy
command, so use these options carefully.

For more information about snapshots and clones, see Chapter 6, “Working With Oracle
Solaris ZFS Snapshots and Clones.”

Renaming a ZFS File System
File systems can be renamed by using the zfs rename command. With the rename
subcommand, you can perform the following operations:

■ Change the name of a file system.
■ Relocate the file system within the ZFS hierarchy.
■ Change the name of a file system and relocate it within the ZFS hierarchy.

The following example uses the rename subcommand to rename of a file system from eric to
eric_old:

zfs rename tank/home/eric tank/home/eric_old

The following example shows how to use zfs rename to relocate a file system:

zfs rename tank/home/mark tank/ws/mark

In this example, the mark file system is relocated from tank/home to tank/ws. When you
relocate a file system through rename, the new location must be within the same pool and it
must have enough disk space to hold this new file system. If the new location does not have
enough disk space, possibly because it has reached its quota, the rename operation fails.

For more information about quotas, see “Setting ZFS Quotas and Reservations” on page 178.

The rename operation attempts an unmount/remount sequence for the file system and any
descendent file systems. The rename command fails if the operation is unable to unmount an
active file system. If this problem occurs, you must forcibly unmount the file system.

For information about renaming snapshots, see “Renaming ZFS Snapshots” on page 198.

Creating, Destroying, and Renaming ZFS File Systems

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013136

Introducing ZFS Properties
Properties are the main mechanism that you use to control the behavior of file systems,
volumes, snapshots, and clones. Unless stated otherwise, the properties defined in this section
apply to all the dataset types.

■ “ZFS Read-Only Native Properties” on page 148
■ “Settable ZFS Native Properties” on page 149
■ “ZFS User Properties” on page 155

Properties are divided into two types, native properties and user-defined properties. Native
properties either provide internal statistics or control ZFS file system behavior. In addition,
native properties are either settable or read-only. User properties have no effect on ZFS file
system behavior, but you can use them to annotate datasets in a way that is meaningful in your
environment. For more information about user properties, see “ZFS User Properties” on
page 155.

Most settable properties are also inheritable. An inheritable property is a property that, when
set on a parent file system, is propagated down to all of its descendents.

All inheritable properties have an associated source that indicates how a property was obtained.
The source of a property can have the following values:

local Indicates that the property was explicitly set on the dataset
by using the zfs set command as described in “Setting ZFS
Properties” on page 159.

inherited from dataset-name Indicates that the property was inherited from the named
ancestor.

default Indicates that the property value was not inherited or set
locally. This source is a result of no ancestor having the
property set as source local.

The following table identifies both read-only and settable native ZFS file system properties.
Read-only native properties are identified as such. All other native properties listed in this table
are settable. For information about user properties, see “ZFS User Properties” on page 155.

TABLE 5–1 ZFS Native Property Descriptions

Property Name Type Default Value Description

aclinherit String secure Controls how ACL entries are inherited when files and
directories are created. The values are discard,
noallow, secure, and passthrough. For a description
of these values, see “ACL Properties” on page 221.

Introducing ZFS Properties

Chapter 5 • Managing Oracle Solaris ZFS File Systems 137

TABLE 5–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

aclmode String groupmask Controls how an ACL entry is modified during a chmod
operation. The values are discard, groupmask, and
passthrough. For a description of these values, see
“ACL Properties” on page 221.

atime Boolean on Controls whether the access time for files is updated
when they are read. Turning this property off avoids
producing write traffic when reading files and can
result in significant performance gains, though it might
confuse mailers and similar utilities.

available Number N/A Read-only property that identifies the amount of disk
space available to a file system and all its children,
assuming no other activity in the pool. Because disk
space is shared within a pool, available space can be
limited by various factors including physical pool size,
quotas, reservations, and other datasets within the
pool.

The property abbreviation is avail.

For more information about disk space accounting, see
“ZFS Disk Space Accounting” on page 32.

canmount Boolean on Controls whether a file system can be mounted with
the zfs mount command. This property can be set on
any file system, and the property itself is not
inheritable. However, when this property is set to off, a
mount point can be inherited to descendent file
systems, but the file system itself is never mounted.

When the noauto option is set, a file system can only be
mounted and unmounted explicitly. The file system is
not mounted automatically when the file system is
created or imported, nor is it mounted by the zfs
mount-a command or unmounted by the zfs
unmount-a command.

For more information, see “The canmount Property”
on page 151.

Introducing ZFS Properties

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013138

TABLE 5–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

casesensitivity String mixed This property indicates whether the file name
matching algorithm used by the file system should be
casesensitive, caseinsensitive, or allow a
combination of both styles of matching (mixed).
Traditionally, UNIX and POSIX file systems have
case-sensitive file names.

The mixed value for this property indicates the file
system can support requests for both case-sensitive and
case-insensitive matching behavior. Currently,
case-insensitive matching behavior on a file system
that supports mixed behavior is limited to the Oracle
Solaris SMB server product. For more information
about using the mixed value, see “The
casesensitivity Property” on page 151.

Regardless of the casesensitivity property setting,
the file system preserves the case of the name specified
to create a file. This property cannot be changed after
the file system is created.

checksum String on Controls the checksum used to verify data integrity.
The default value is on, which automatically selects an
appropriate algorithm, currently fletcher4. The
values are on, off, fletcher2, fletcher4, sha256,
and sha256+mac. A value of off disables integrity
checking on user data. A value of off is not
recommended.

compression String off Enables or disables compression for a dataset. The
values are on, off, lzjb, gzip, and gzip-N. Currently,
setting this property to lzjb, gzip, or gzip-N has the
same effect as setting this property to on. Enabling
compression on a file system with existing data only
compresses new data. Existing data remains
uncompressed.

The property abbreviation is compress.

compressratio Number N/A Read-only property that identifies the compression
ratio achieved for a dataset, expressed as a multiplier.
Compression can be enabled by the zfs set
compression=on dataset command.

The value is calculated from the logical size of all files
and the amount of referenced physical data. It includes
explicit savings through the use of the compression
property.

Introducing ZFS Properties

Chapter 5 • Managing Oracle Solaris ZFS File Systems 139

TABLE 5–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

copies Number 1 Sets the number of copies of user data per file system.
Available values are 1, 2, or 3. These copies are in
addition to any pool-level redundancy. Disk space used
by multiple copies of user data is charged to the
corresponding file and dataset, and counts against
quotas and reservations. In addition, the used property
is updated when multiple copies are enabled. Consider
setting this property when the file system is created
because changing this property on an existing file
system only affects newly written data.

creation String N/A Read-only property that identifies the date and time
that a dataset was created.

dedup String off Controls the ability to remove duplicate data in a ZFS
file system. Possible values are on, off, verify, and
sha256[,verify]. The default checksum for
deduplication is sha256.

For more information, see “The dedup Property” on
page 153.

devices Boolean on Controls whether device files in a file system can be
opened.

encryption Boolean off Controls whether a file system is encrypted. An
encrypted file system means that data is encoded and a
key is needed by the file system owner to access the
data.

exec Boolean on Controls whether programs in a file system are allowed
to be executed. Also, when set to off, mmap(2) calls
with PROT_EXEC are disallowed.

keychangedate String none Identifies the date of the last wrapping key change from
a zfs key -c operation for the specified file system. If
no key change operation has occurred, the value of this
read-only property is the same as the file system's
creation date.

keysource String none Identifies the format and location of the key that wraps
the file system keys. The valid property values are raw,
hex, passphrase,prompt, or file. The key must be
present when the file system is created, mounted, or
loaded by using the zfs key -l command. If
encryption is enabled for a new file system, the default
keysource is passphrase,prompt.

Introducing ZFS Properties

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013140

TABLE 5–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

keystatus String none Read-only property that identifies the file system's
encryption key status. The availability of a file system's
key is indicated by available or unavailable. For file
systems that do not have encryption enabled, none is
displayed.

logbias String latency Controls how ZFS optimizes synchronous requests for
this file system. If logbias is set to latency, ZFS uses
the pool's separate log devices, if any, to handle the
requests at low latency. If logbias is set to throughput,
ZFS does not use the pool's separate log devices.
Instead, ZFS optimizes synchronous operations for
global pool throughput and efficient use of resources.
The default value is latency.

mlslabel String None See the multilevel property for a description of the
behavior of the mlslabel property on multilevel file
systems. The following mlslabel description applies to
non-multilevel file systems.

Provides a sensitivity label that determines if a file
system can be mounted in a Trusted Extensions zone.
If the labeled file system matches the labeled zone, the
file system can be mounted and accessed from the
labeled zone. The default value is none. This property
can only be modified when Trusted Extensions is
enabled and only with the appropriate privilege.

mounted Boolean N/A Read-only property that indicates whether a file
system, clone, or snapshot is currently mounted. This
property does not apply to volumes. The value can be
either yes or no.

mountpoint String N/A Controls the mount point used for this file system.
When the mountpoint property is changed for a file
system, the file system and any descendents that inherit
the mount point are unmounted. If the new value is
legacy, then they remain unmounted. Otherwise, they
are automatically remounted in the new location if the
property was previously legacy or none, or if they were
mounted before the property was changed. In addition,
any shared file systems are unshared and shared in the
new location.

For more information about using this property, see
“Managing ZFS Mount Points” on page 164.

Introducing ZFS Properties

Chapter 5 • Managing Oracle Solaris ZFS File Systems 141

TABLE 5–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

multilevel Boolean off This property can only be used on a system with
Trusted Extensions enabled. The default value is off.

Objects in a multilevel file system are individually
labeled with an explicit sensitivity label attribute that is
automatically generated. Objects can be relabeled in
place by changing this label attribute, by using the
setlabel or setflabel interfaces.

A root file system, an Oracle Solaris Zone file system, or
a file system that contains packaged Solaris code should
not be multilevel.

There are differences in the mlslabel property on a
multilevel file system. The mlslabel value defines the
highest possible label for objects in the file system. An
attempt to create a file at (or relabel a file to) a label
higher than the mlslabel value is not allowed. Mount
policy based on the mlslabel value does not apply to a
multilevel file system.

For a multilevel file system, the mlslabel property can
be set explicitly when the file system is created.
Otherwise, a default mlslabel property of ADMIN_HIGH
is automatically created. After creating a multilevel file
system, the mlslabel property can be changed, but it
cannot be set to a lower label, set to none, nor can it be
removed.

primarycache String all Controls what is cached in the primary cache (ARC).
Possible values are all, none, and metadata. If set to
all, both user data and metadata are cached. If set to
none, neither user data nor metadata is cached. If set to
metadata, only metadata is cached. When these
properties are set on existing file systems, only new I/O
is cache based on the values of these properties. Some
database environments might benefit from not caching
user data. You must determine if setting cache
properties is appropriate for your environment.

nbmand Boolean off Controls whether the file system should be mounted
with nbmand (Non-blocking mandatory) locks. This
property is for SMB clients only. Changes to this
property only take effect when the file system is
unmounted and remounted.

Introducing ZFS Properties

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013142

TABLE 5–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

normalization String None This property indicates whether a file system should
perform a unicode normalization of file names
whenever two file names are compared, and which
normalization algorithm should be used. File names
are always stored unmodified, names are normalized as
part of any comparison process. If this property is set to
a legal value other than none, and the utf8only
property was left unspecified, the utf8only property is
automatically set to on. The default value of the
normalization property is none. This property cannot
be changed after the file system is created.

origin String N/A Read-only property for cloned file systems or volumes
that identifies the snapshot from which the clone was
created. The origin cannot be destroyed (even with the
-r or -f option) as long as a clone exists.

Non-cloned file systems have an origin of none.

quota Number (or
none)

none Limits the amount of disk space a file system and its
descendents can consume. This property enforces a
hard limit on the amount of disk space used, including
all space consumed by descendents, such as file systems
and snapshots. Setting a quota on a descendent of a file
system that already has a quota does not override the
ancestor's quota, but rather imposes an additional
limit. Quotas cannot be set on volumes, as the volsize
property acts as an implicit quota.

For information about setting quotas, see “Setting
Quotas on ZFS File Systems” on page 179.

rekeydate String N/A Read-only property that indicates the date of the last
data encryption key change from a zfs key -K or zfs
clone -K operation on this file system. If no rekey

operation has been performed, the value of this
property is the same as the creation date.

readonly Boolean off Controls whether a dataset can be modified. When set
to on, no modifications can be made.

The property abbreviation is rdonly.

recordsize Number 128K Specifies a suggested block size for files in a file system.

The property abbreviation is recsize. For a detailed
description, see “The recordsize Property” on
page 154.

Introducing ZFS Properties

Chapter 5 • Managing Oracle Solaris ZFS File Systems 143

TABLE 5–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

referenced Number N/A Read-only property that identifies the amount of data
accessible by a dataset, which might or might not be
shared with other datasets in the pool.

When a snapshot or clone is created, it initially
references the same amount of disk space as the file
system or snapshot it was created from, because its
contents are identical.

The property abbreviation is refer.

refquota Number (or
none)

none Sets the amount of disk space that a dataset can
consume. This property enforces a hard limit on the
amount of space used. This hard limit does not include
disk space used by descendents, such as snapshots and
clones.

refreservation Number (or
none)

none Sets the minimum amount of disk space that is
guaranteed to a dataset, not including descendents,
such as snapshots and clones. When the amount of disk
space used is below this value, the dataset is treated as if
it were taking up the amount of space specified by
refreservation. The refreservation reservation is
accounted for in the parent dataset's disk space used,
and counts against the parent dataset's quotas and
reservations.

If refreservation is set, a snapshot is only allowed if
enough free pool space is available outside of this
reservation to accommodate the current number of
referenced bytes in the dataset.

The property abbreviation is refreserv.

reservation Number (or
none)

none Sets the minimum amount of disk space guaranteed to
a file system and its descendents. When the amount of
disk space used is below this value, the file system is
treated as if it were using the amount of space specified
by its reservation. Reservations are accounted for in the
parent file system's disk space used, and count against
the parent file system's quotas and reservations.

The property abbreviation is reserv.

For more information, see “Setting Reservations on
ZFS File Systems” on page 182.

Introducing ZFS Properties

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013144

TABLE 5–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

rstchown Boolean on Indicates whether the file system owner can grant file
ownership changes. The default is to restrict chown
operations. When rstchown is set to off, the user has
the PRIV_FILE_CHOWN_SELF privilege for chown
operations.

secondarycache String all Controls what is cached in the secondary cache
(L2ARC). Possible values are all, none, and metadata.
If set to all, both user data and metadata are cached. If
set to none, neither user data nor metadata is cached. If
set to metadata, only metadata is cached.

setuid Boolean on Controls whether the setuid bit is honored in a file
system.

shadow String None Identifies a ZFS file system as a shadow of the file
system described by the URI. Data is migrated to a
shadow file system with this property set from the file
system identified by the URI. The file system to be
migrated must be read-only for a complete migration.

share.nfs String off Controls whether an NFS share of a ZFS file system is
created and published and what options are used. You
can also publish and unpublish an NFS share by using
the zfs share and zfs unshare commands. Using the
zfs share command to publish an NFS share requires
that an NFS share property is also set. For information
about setting NFS share properties, see “Sharing and
Unsharing ZFS File Systems” on page 168.

For more information about sharing ZFS file systems,
see “Sharing and Unsharing ZFS File Systems” on
page 168.

share.smb String off Controls whether a SMB share of a ZFS file system is
created and published and what options are used. You
can also publish and unpublish an SMB share by using
the zfs share and zfs unshare commands. Using the
zfs share command to publish an SMB share require
that an SMB share property is also set. For information
about setting SMB share properties, see “Sharing and
Unsharing ZFS File Systems” on page 168.

snapdir String hidden Controls whether the .zfs directory is hidden or
visible in the root of the file system. For more
information about using snapshots, see “Overview of
ZFS Snapshots” on page 195.

Introducing ZFS Properties

Chapter 5 • Managing Oracle Solaris ZFS File Systems 145

TABLE 5–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

sync String standard Determines the synchronous behavior of a file system's
transactions. Possible values are:
■ standard, the default value, which means

synchronous file system transactions, such as
fsync, O_DSYNC, O_SYNC, and so on, are written to
the intent log.

■ always, ensures that every file system transaction is
written and flushed to stable storage by a returning
system call. This value has a significant
performance penalty.

■ disabled, means that synchronous requests are
disabled. File system transactions are only
committed to stable storage on the next
transaction group commit, which might be after
many seconds. This value gives the best
performance, with no risk of corrupting the pool.

Caution – This disabled value is very dangerous
because ZFS is ignoring the synchronous
transaction demands of applications, such as
databases or NFS operations. Setting this value on
the currently active root or /var file system might
result in unexpected behavior, application data
loss, or increased vulnerability to replay attacks.
You should only use this value if you fully
understand all the associated risks.

type String N/A Read-only property that identifies the dataset type as
filesystem (file system or clone), volume, or
snapshot.

used Number N/A Read-only property that identifies the amount of disk
space consumed by a dataset and all its descendents.

For a detailed description, see “The used Property” on
page 149.

usedbychildren Number off Read-only property that identifies the amount of disk
space that is used by children of this dataset, which
would be freed if all the dataset's children were
destroyed. The property abbreviation is usedchild.

Introducing ZFS Properties

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013146

TABLE 5–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

usedbydataset Number off Read-only property that identifies the amount of disk
space that is used by a dataset itself, which would be
freed if the dataset was destroyed, after first destroying
any snapshots and removing any refreservation
reservations. The property abbreviation is usedds.

usedbyrefreservationNumber off Read-only property that identifies the amount of disk
space that is used by a refreservation set on a dataset,
which would be freed if the refreservation was
removed. The property abbreviation is
usedrefreserv.

usedbysnapshots Number off Read-only property that identifies the amount of disk
space that is consumed by snapshots of a dataset. In
particular, it is the amount of disk space that would be
freed if all of this dataset's snapshots were destroyed.
Note that this value is not simply the sum of the
snapshots' used properties, because space can be
shared by multiple snapshots. The property
abbreviation is usedsnap.

version Number N/A Identifies the on-disk version of a file system, which is
independent of the pool version. This property can
only be set to a later version that is available from the
supported software release. For more information, see
the zfs upgrade command.

utf8only Boolean Off This property indicates whether a file system should
reject file names that include characters that are not
present in the UTF-8 character code set. If this
property is explicitly set to off, the normalization
property must either not be explicitly set or be set to
none. The default value for the utf8only property is
off. This property cannot be changed after the file
system is created.

volsize Number N/A For volumes, specifies the logical size of the volume.

For a detailed description, see “The volsize Property”
on page 155.

volblocksize Number 8 KB For volumes, specifies the block size of the volume. The
block size cannot be changed after the volume has been
written, so set the block size at volume creation time.
The default block size for volumes is 8 KB. Any power
of 2 from 512 bytes to 128 KB is valid.

The property abbreviation is volblock.

Introducing ZFS Properties

Chapter 5 • Managing Oracle Solaris ZFS File Systems 147

TABLE 5–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

vscan Boolean Off Controls whether regular files should be scanned for
viruses when a file is opened and closed. In addition to
enabling this property, a virus scanning service must
also be enabled for virus scanning to occur if you have
third-party virus scanning software. The default value
is off.

zoned Boolean N/A Indicates whether a file system has been added to a
non-global zone. If this property is set, then the mount
point is not honored in the global zone, and ZFS
cannot mount such a file system when requested.
When a zone is first installed, this property is set for
any added file systems.

For more information about using ZFS with zones
installed, see “Using ZFS on a Solaris System With
Zones Installed” on page 258.

xattr Boolean on Indicates whether extended attributes are enabled (on)
or disabled (off) for this file system.

ZFS Read-Only Native Properties
Read-only native properties can be retrieved but not set. Read-only native properties are not
inherited. Some native properties are specific to a particular type of dataset. In such cases, the
dataset type is mentioned in the description in Table 5–1.

The read-only native properties are listed here and described in Table 5–1.
■ available

■ compressratio

■ creation

■ keystatus

■ mounted

■ origin

■ referenced

■ rekeydate

■ type

■ used

For detailed information, see “The used Property” on page 149.
■ usedbychildren

Introducing ZFS Properties

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013148

■ usedbydataset

■ usedbyrefreservation

■ usedbysnapshots

For more information about disk space accounting, including the used, referenced, and
available properties, see “ZFS Disk Space Accounting” on page 32.

The usedProperty
The used property is a read-only property that identifies the amount of disk space consumed by
this dataset and all its descendents. This value is checked against the dataset's quota and
reservation. The disk space used does not include the dataset's reservation, but does consider
the reservation of any descendent datasets. The amount of disk space that a dataset consumes
from its parent, as well as the amount of disk space that is freed if the dataset is recursively
destroyed, is the greater of its space used and its reservation.

When snapshots are created, their disk space is initially shared between the snapshot and the file
system, and possibly with previous snapshots. As the file system changes, disk space that was
previously shared becomes unique to the snapshot and is counted in the snapshot's space used.
The disk space that is used by a snapshot accounts for its unique data. Additionally, deleting
snapshots can increase the amount of disk space unique to (and used by) other snapshots. For
more information about snapshots and space issues, see “Out of Space Behavior” on page 33.

The amount of disk space used, available, and referenced does not include pending changes.
Pending changes are generally accounted for within a few seconds. Committing a change to a
disk using the fsync(3c) or O_SYNC function does not necessarily guarantee that the disk space
usage information will be updated immediately.

The usedbychildren, usedbydataset, usedbyrefreservation, and usedbysnapshots

property information can be displayed with the zfs list -o space command. These
properties identify the used property into disk space that is consumed by descendents. For
more information, see Table 5–1.

Settable ZFS Native Properties
Settable native properties are properties whose values can be both retrieved and set. Settable
native properties are set by using the zfs set command, as described in “Setting ZFS
Properties” on page 159 or by using the zfs create command as described in “Creating a ZFS
File System” on page 134. With the exceptions of quotas and reservations, settable native
properties are inherited. For more information about quotas and reservations, see “Setting ZFS
Quotas and Reservations” on page 178.

Some settable native properties are specific to a particular type of dataset. In such cases, the
dataset type is mentioned in the description in Table 5–1. If not specifically mentioned, a
property applies to all dataset types: file systems, volumes, clones, and snapshots.

Introducing ZFS Properties

Chapter 5 • Managing Oracle Solaris ZFS File Systems 149

The settable properties are listed here and described in Table 5–1.

■ aclinherit

For a detailed description, see “ACL Properties” on page 221.
■ atime

■ canmount

■ casesensitivity

■ checksum

■ compression

■ copies

■ devices

■ dedup

■ encryption

■ exec

■ keysource

■ logbias

■ mlslabel

■ mountpoint

■ nbmand

■ normalization

■ primarycache

■ quota

■ readonly

■ recordsize

For a detailed description, see “The recordsize Property” on page 154.
■ refquota

■ refreservation

■ reservation

■ rstchown

■ secondarycache

■ share.smb

■ share.nfs

■ setuid

■ snapdir

Introducing ZFS Properties

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013150

■ version

■ vscan

■ utf8only

■ volsize

For a detailed description, see “The volsize Property” on page 155.
■ volblocksize

■ zoned

■ xattr

The canmountProperty
If the canmount property is set to off, the file system cannot be mounted by using the zfs mount
or zfs mount -a commands. Setting this property to off is similar to setting the mountpoint
property to none, except that the file system still has a normal mountpoint property that can be
inherited. For example, you can set this property to off, establish inheritable properties for
descendent file systems, but the parent file system itself is never mounted nor is it accessible to
users. In this case, the parent file system is serving as a container so that you can set properties
on the container, but the container itself is never accessible.

In the following example, userpool is created, and its canmount property is set to off. Mount
points for descendent user file systems are set to one common mount point, /export/home.
Properties that are set on the parent file system are inherited by descendent file systems, but the
parent file system itself is never mounted.

zpool create userpool mirror c0t5d0 c1t6d0

zfs set canmount=off userpool

zfs set mountpoint=/export/home userpool

zfs set compression=on userpool

zfs create userpool/user1

zfs create userpool/user2

zfs mount

userpool/user1 /export/home/user1

userpool/user2 /export/home/user2

Setting the canmount property to noauto means that the file system can only be mounted
explicitly, not automatically.

The casesensitivityProperty
This property indicates whether the file name matching algorithm used by the file system
should be casesensitive, caseinsensitive, or allow a combination of both styles of matching
(mixed).

When a case-insensitive matching request is made of a mixed sensitivity file system, the
behavior is generally the same as would be expected of a purely case-insensitive file system. The

Introducing ZFS Properties

Chapter 5 • Managing Oracle Solaris ZFS File Systems 151

difference is that a mixed sensitivity file system might contain directories with multiple names
that are unique from a case-sensitive perspective, but not unique from the case-insensitive
perspective.

For example, a directory might contain files foo, Foo, and FOO. If a request is made to
case-insensitively match any of the possible forms of foo, (for example foo, FOO, FoO, fOo, and
so on) one of the three existing files is chosen as the match by the matching algorithm. Exactly
which file the algorithm chooses as a match is not guaranteed, but what is guaranteed is that the
same file is chosen as a match for any of the forms of foo. The file chosen as a case-insensitive
match for foo, FOO, foO, Foo, and so on, is always the same, so long as the directory remains
unchanged.

The utf8only, normalization, and casesensitivity properties also provide new permissions
that can be assigned to non-privileged users by using ZFS delegated administration. For more
information, see “Delegating ZFS Permissions” on page 244.

The copiesProperty
As a reliability feature, ZFS file system metadata is automatically stored multiple times across
different disks, if possible. This feature is known as ditto blocks.

In this release, you can also store multiple copies of user data is also stored per file system by
using the zfs set copies command. For example:

zfs set copies=2 users/home

zfs get copies users/home

NAME PROPERTY VALUE SOURCE

users/home copies 2 local

Available values are 1, 2, or 3. The default value is 1. These copies are in addition to any
pool-level redundancy, such as in a mirrored or RAID-Z configuration.

The benefits of storing multiple copies of ZFS user data are as follows:

■ Improves data retention by enabling recovery from unrecoverable block read faults, such as
media faults (commonly known as bit rot) for all ZFS configurations.

■ Provides data protection, even when only a single disk is available.
■ Enables you to select data protection policies on a per-file system basis, beyond the

capabilities of the storage pool.

Note – Depending on the allocation of the ditto blocks in the storage pool, multiple copies might
be placed on a single disk. A subsequent full disk failure might cause all ditto blocks to be
unavailable.

You might consider using ditto blocks when you accidentally create a non-redundant pool and
when you need to set data retention policies.

Introducing ZFS Properties

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013152

The dedupProperty
The dedup property controls whether duplicate data is removed from a file system. If a file
system has the dedup property enabled, duplicate data blocks are removed synchronously. The
result is that only unique data is stored and common components are shared between files.

Do not enable the dedup property on file systems that reside on production systems until you
review the following considerations:

1. Determine if your data would benefit from deduplication space savings. If your data is not
dedup-able, then there's not point in enabling dedup. For example:

zdb -S tank

Simulated DDT histogram:

bucket allocated referenced

______ ______________________________ ______________________________

refcnt blocks LSIZE PSIZE DSIZE blocks LSIZE PSIZE DSIZE

------ ------ ----- ----- ----- ------ ----- ----- -----

1 2.27M 239G 188G 194G 2.27M 239G 188G 194G

2 327K 34.3G 27.8G 28.1G 698K 73.3G 59.2G 59.9G

4 30.1K 2.91G 2.10G 2.11G 152K 14.9G 10.6G 10.6G

8 7.73K 691M 529M 529M 74.5K 6.25G 4.79G 4.80G

16 673 43.7M 25.8M 25.9M 13.1K 822M 492M 494M

32 197 12.3M 7.02M 7.03M 7.66K 480M 269M 270M

64 47 1.27M 626K 626K 3.86K 103M 51.2M 51.2M

128 22 908K 250K 251K 3.71K 150M 40.3M 40.3M

256 7 302K 48K 53.7K 2.27K 88.6M 17.3M 19.5M

512 4 131K 7.50K 7.75K 2.74K 102M 5.62M 5.79M

2K 1 2K 2K 2K 3.23K 6.47M 6.47M 6.47M

8K 1 128K 5K 5K 13.9K 1.74G 69.5M 69.5M

Total 2.63M 277G 218G 225G 3.22M 337G 263G 270G

dedup = 1.20, compress = 1.28, copies = 1.03, dedup * compress / copies = 1.50

If the estimated dedup ratio is greater than 2, then you might see dedup space savings.

In the above example, the dedup ratio is less than 2, so enabling dedup is not recommended.
2. Make sure your system has enough memory to support dedup.

■ Each in-core dedup table entry is approximately 320 bytes
■ Multiply the number of allocated blocks times 320. For example:

in-core DDT size = 2.63M x 320 = 841.60M

3. Dedup performance is best when the deduplication table fits into memory. If the dedup
table has to be written to disk, then performance will decrease. For example, removing a
large file system with dedup enabled will severely decrease system performance if the system
doesn't meet the memory requirements described above.

When dedup is enabled, the dedup checksum algorithm overrides the checksum property.
Setting the property value to verify is equivalent to specifying sha256,verify. If the property
is set to verify and two blocks have the same signature, ZFS does a byte-by-byte comparison
with the existing block to ensure that the contents are identical.

This property can be enabled per file system. For example:

Introducing ZFS Properties

Chapter 5 • Managing Oracle Solaris ZFS File Systems 153

zfs set dedup=on tank/home

You can use the zfs get command to determine if the dedup property is set.

Although deduplication is set as a file system property, the scope is pool-wide. For example, you
can identify the deduplication ratio. For example:

zpool list tank

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

rpool 136G 55.2G 80.8G 40% 2.30x ONLINE -

The DEDUP column indicates how much deduplication has occurred. If the dedup property is not
enabled on any file system or if the dedup property was just enabled on the file system, the DEDUP
ratio is 1.00x.

You can use the zpool get command to determine the value of the dedupratio property. For
example:

zpool get dedupratio export

NAME PROPERTY VALUE SOURCE

rpool dedupratio 3.00x -

This pool property illustrates how much data deduplication this pool has achieved.

The encryptionProperty
You can use the encryption property to encrypt ZFS file systems. For more information, see
“Encrypting ZFS File Systems” on page 184.

The recordsizeProperty
The recordsize property specifies a suggested block size for files in the file system.

This property is designed solely for use with database workloads that access files in fixed-size
records. ZFS automatically adjust block sizes according to internal algorithms optimized for
typical access patterns. For databases that create very large files but access the files in small
random chunks, these algorithms might be suboptimal. Specifying a recordsize value greater
than or equal to the record size of the database can result in significant performance gains. Use
of this property for general purpose file systems is strongly discouraged and might adversely
affect performance. The size specified must be a power of 2 greater than or equal to 512 bytes
and less than or equal to 128 KB. Changing the file system's recordsize value only affects files
created afterward. Existing files are unaffected.

The property abbreviation is recsize.

The share.smb Property
This property enables sharing of ZFS file systems with the Oracle Solaris SMB service, and
identifies options to be used.

Introducing ZFS Properties

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013154

When the property is changed from off to on, any shares that inherit the property are re-shared
with their current options. When the property is set to off, the shares that inherit the property
are unshared.For examples of using the share.smb property, see “Sharing and Unsharing ZFS
File Systems” on page 168.

The volsizeProperty
The volsize property specifies the logical size of the volume. By default, creating a volume
establishes a reservation for the same amount. Any changes to volsize are reflected in an
equivalent change to the reservation. These checks are used to prevent unexpected behavior for
users. A volume that contains less space than it claims is available can result in undefined
behavior or data corruption, depending on how the volume is used. These effects can also occur
when the volume size is changed while the volume is in use, particularly when you shrink the
size. Use extreme care when adjusting the volume size.

Though not recommended, you can create a sparse volume by specifying the -s flag to zfs

create -V or by changing the reservation after the volume has been created. A sparse volume is
a volume whose reservation is not equal to the volume size. For a sparse volume, changes to
volsize are not reflected in the reservation.

For more information about using volumes, see “ZFS Volumes” on page 255.

ZFS User Properties
In addition to the native properties, ZFS supports arbitrary user properties. User properties
have no effect on ZFS behavior, but you can use them to annotate datasets with information that
is meaningful in your environment.

User property names must conform to the following conventions:

■ They must contain a colon (':') character to distinguish them from native properties.
■ They must contain lowercase letters, numbers, or the following punctuation characters: ':',

'+','.', '_'.
■ The maximum length of a user property name is 256 characters.

The expected convention is that the property name is divided into the following two
components but this namespace is not enforced by ZFS:

module:property

When making programmatic use of user properties, use a reversed DNS domain name for the
module component of property names to reduce the chance that two independently developed
packages will use the same property name for different purposes. Property names that begin
with com.oracle. are reserved for use by Oracle Corporation.

The values of user properties must conform to the following conventions:

Introducing ZFS Properties

Chapter 5 • Managing Oracle Solaris ZFS File Systems 155

■ They must consist of arbitrary strings that are always inherited and are never validated.
■ The maximum length of the user property value is 1024 characters.

For example:

zfs set dept:users=finance userpool/user1

zfs set dept:users=general userpool/user2

zfs set dept:users=itops userpool/user3

All of the commands that operate on properties, such as zfs list, zfs get, zfs set, and so on,
can be used to manipulate both native properties and user properties.

For example:

zfs get -r dept:users userpool

NAME PROPERTY VALUE SOURCE

userpool dept:users all local

userpool/user1 dept:users finance local

userpool/user2 dept:users general local

userpool/user3 dept:users itops local

To clear a user property, use the zfs inherit command. For example:

zfs inherit -r dept:users userpool

If the property is not defined in any parent dataset, it is removed entirely.

Querying ZFS File System Information
The zfs list command provides an extensible mechanism for viewing and querying dataset
information. Both basic and complex queries are explained in this section.

Listing Basic ZFS Information
You can list basic dataset information by using the zfs list command with no options. This
command displays the names of all datasets on the system and the values of their used,
available, referenced, and mountpoint properties. For more information about these
properties, see “Introducing ZFS Properties” on page 137.

For example:

zfs list

users 2.00G 64.9G 32K /users

users/home 2.00G 64.9G 35K /users/home

users/home/cindy 548K 64.9G 548K /users/home/cindy

users/home/mark 1.00G 64.9G 1.00G /users/home/mark

users/home/neil 1.00G 64.9G 1.00G /users/home/neil

Querying ZFS File System Information

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013156

You can also use this command to display specific datasets by providing the dataset name on the
command line. Additionally, use the -r option to recursively display all descendents of that
dataset. For example:

zfs list -t all -r users/home/mark

NAME USED AVAIL REFER MOUNTPOINT

users/home/mark 1.00G 64.9G 1.00G /users/home/mark

users/home/mark@yesterday 0 - 1.00G -

users/home/mark@today 0 - 1.00G -

You can use the zfs list command with the mount point of a file system. For example:

zfs list /user/home/mark

NAME USED AVAIL REFER MOUNTPOINT

users/home/mark 1.00G 64.9G 1.00G /users/home/mark

The following example shows how to display basic information about tank/home/gina and all
of its descendent file systems:

zfs list -r users/home/gina

NAME USED AVAIL REFER MOUNTPOINT

users/home/gina 2.00G 62.9G 32K /users/home/gina

users/home/gina/projects 2.00G 62.9G 33K /users/home/gina/projects

users/home/gina/projects/fs1 1.00G 62.9G 1.00G /users/home/gina/projects/fs1

users/home/gina/projects/fs2 1.00G 62.9G 1.00G /users/home/gina/projects/fs2

For additional information about the zfs list command, see zfs(1M).

Creating Complex ZFS Queries
The zfs list output can be customized by using the -o, -t, and -H options.

You can customize property value output by using the -o option and a comma-separated list of
desired properties. You can supply any dataset property as a valid argument. For a list of all
supported dataset properties, see “Introducing ZFS Properties” on page 137. In addition to the
properties defined, the -o option list can also contain the literal name to indicate that the output
should include the name of the dataset.

The following example uses zfs list to display the dataset name, along with the share.nfs
and mountpoint property values.

zfs list -r -o name,share.nfs,mountpoint users/home

NAME NFS MOUNTPOINT

users/home on /users/home

users/home/cindy on /users/home/cindy

users/home/gina on /users/home/gina

users/home/gina/projects on /users/home/gina/projects

users/home/gina/projects/fs1 on /users/home/gina/projects/fs1

users/home/gina/projects/fs2 on /users/home/gina/projects/fs2

users/home/mark on /users/home/mark

users/home/neil on /users/home/neil

Querying ZFS File System Information

Chapter 5 • Managing Oracle Solaris ZFS File Systems 157

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mzfs-1m

You can use the -t option to specify the types of datasets to display. The valid types are
described in the following table.

TABLE 5–2 Types of ZFS Objects

Type Description

filesystem File systems and clones

volume Volumes

share File system share

snapshot Snapshots

The -t options takes a comma-separated list of the types of datasets to be displayed. The
following example uses the -t and -o options simultaneously to show the name and used

property for all file systems:

zfs list -r -t filesystem -o name,used users/home

NAME USED

users/home 4.00G

users/home/cindy 548K

users/home/gina 2.00G

users/home/gina/projects 2.00G

users/home/gina/projects/fs1 1.00G

users/home/gina/projects/fs2 1.00G

users/home/mark 1.00G

users/home/neil 1.00G

You can use the -H option to omit the zfs list header from the generated output. With the -H
option, all white space is replaced by the Tab character. This option can be useful when you
need parseable output, for example, when scripting. The following example shows the output
generated from using the zfs list command with the -H option:

zfs list -r -H -o name users/home

users/home

users/home/cindy

users/home/gina

users/home/gina/projects

users/home/gina/projects/fs1

users/home/gina/projects/fs2

users/home/mark

users/home/neil

Querying ZFS File System Information

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013158

Managing ZFS Properties
Dataset properties are managed through the zfs command's set, inherit, and get

subcommands.
■ “Setting ZFS Properties” on page 159
■ “Inheriting ZFS Properties” on page 160
■ “Querying ZFS Properties” on page 161

Setting ZFS Properties
You can use the zfs set command to modify any settable dataset property. Or, you can use the
zfs create command to set properties when a dataset is created. For a list of settable dataset
properties, see “Settable ZFS Native Properties” on page 149.

The zfs set command takes a property/value sequence in the format of property=value
followed by a dataset name. Only one property can be set or modified during each zfs set

invocation.

The following example sets the atime property to off for tank/home.

zfs set atime=off tank/home

In addition, any file system property can be set when a file system is created. For example:

zfs create -o atime=off tank/home

You can specify numeric property values by using the following easy-to-understand suffixes (in
increasing sizes): BKMGTPEZ. Any of these suffixes can be followed by an optional b, indicating
bytes, with the exception of the B suffix, which already indicates bytes. The following four
invocations of zfs set are equivalent numeric expressions that set the quota property be set to
the value of 20 GB on the users/home/mark file system:

zfs set quota=20G users/home/mark

zfs set quota=20g users/home/mark

zfs set quota=20GB users/home/mark

zfs set quota=20gb users/home/mark

If you attempt to set a property on a file system that is 100% full, you will see a message similar
to the following:

zfs set quota=20gb users/home/mark

cannot set property for ’/users/home/mark’: out of space

The values of non-numeric properties are case-sensitive and must be in lowercase letters, with
the exception of mountpoint. The values of this property can have mixed upper and lower case
letters.

Managing ZFS Properties

Chapter 5 • Managing Oracle Solaris ZFS File Systems 159

For more information about the zfs set command, see zfs(1M).

Inheriting ZFS Properties
All settable properties, with the exception of quotas and reservations, inherit their value from
the parent file system, unless a quota or reservation is explicitly set on the descendent file
system. If no ancestor has an explicit value set for an inherited property, the default value for the
property is used. You can use the zfs inherit command to clear a property value, thus causing
the value to be inherited from the parent file system.

The following example uses the zfs set command to turn on compression for the
tank/home/jeff file system. Then, zfs inherit is used to clear the compression property,
thus causing the property to inherit the default value of off. Because neither home nor tank has
the compression property set locally, the default value is used. If both had compression
enabled, the value set in the most immediate ancestor would be used (home in this example).

zfs set compression=on tank/home/jeff

zfs get -r compression tank/home

NAME PROPERTY VALUE SOURCE

tank/home compression off default

tank/home/eric compression off default

tank/home/eric@today compression - -

tank/home/jeff compression on local

zfs inherit compression tank/home/jeff

zfs get -r compression tank/home

NAME PROPERTY VALUE SOURCE

tank/home compression off default

tank/home/eric compression off default

tank/home/eric@today compression - -

tank/home/jeff compression off default

The inherit subcommand is applied recursively when the -r option is specified. In the
following example, the command causes the value for the compression property to be inherited
by tank/home and any descendents it might have:

zfs inherit -r compression tank/home

Note – Be aware that the use of the -r option clears the current property setting for all
descendent file systems.

For more information about the zfs inherit command, see zfs(1M).

Managing ZFS Properties

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013160

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mzfs-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mzfs-1m

Querying ZFS Properties
The simplest way to query property values is by using the zfs list command. For more
information, see “Listing Basic ZFS Information” on page 156. However, for complicated
queries and for scripting, use the zfs get command to provide more detailed information in a
customized format.

You can use the zfs get command to retrieve any dataset property. The following example
shows how to retrieve a single property value on a dataset:

zfs get checksum tank/ws

NAME PROPERTY VALUE SOURCE

tank/ws checksum on default

The fourth column, SOURCE, indicates the origin of this property value. The following table
defines the possible source values.

TABLE 5–3 Possible SOURCE Values (zfs get Command)

Source Value Description

default This property value was never explicitly set for this dataset or any of its
ancestors. The default value for this property is being used.

inherited from dataset-name This property value is inherited from the parent dataset specified in
dataset-name.

local This property value was explicitly set for this dataset by using zfs set.

temporary This property value was set by using the zfs mount -o option and is
only valid for the duration of the mount. For more information about
temporary mount point properties, see “Using Temporary Mount
Properties” on page 167.

- (none) This property is read-only. Its value is generated by ZFS.

You can use the special keyword all to retrieve all dataset property values. The following
examples use the all keyword:

zfs get all tank/home

NAME PROPERTY VALUE SOURCE

tank/home aclinherit restricted default

tank/home aclmode discard default

tank/home atime on default

tank/home available 66.9G -

tank/home canmount on default

tank/home casesensitivity mixed -

tank/home checksum on default

tank/home compression off default

tank/home compressratio 1.00x -

tank/home copies 1 default

Managing ZFS Properties

Chapter 5 • Managing Oracle Solaris ZFS File Systems 161

tank/home creation Fri May 11 10:58 2012 -

tank/home dedup off default

tank/home devices on default

tank/home encryption off -

tank/home exec on default

tank/home keysource none default

tank/home keystatus none -

tank/home logbias latency default

tank/home mlslabel none -

tank/home mounted yes -

tank/home mountpoint /tank/home default

tank/home multilevel off -

tank/home nbmand off default

tank/home normalization none -

tank/home primarycache all default

tank/home quota none default

tank/home readonly off default

tank/home recordsize 128K default

tank/home referenced 43K -

tank/home refquota none default

tank/home refreservation none default

tank/home rekeydate - default

tank/home reservation none default

tank/home rstchown on default

tank/home secondarycache all default

tank/home setuid on default

tank/home shadow none -

tank/home share.* ... local

tank/home snapdir hidden default

tank/home sync standard default

tank/home type filesystem -

tank/home used 8.54M -

tank/home usedbychildren 8.49M -

tank/home usedbydataset 43K -

tank/home usedbyrefreservation 0 -

tank/home usedbysnapshots 0 -

tank/home utf8only off -

tank/home version 6 -

tank/home vscan off default

tank/home xattr on default

tank/home zoned off default

The -s option to zfs get enables you to specify, by source type, the properties to display. This
option takes a comma-separated list indicating the desired source types. Only properties with
the specified source type are displayed. The valid source types are local, default, inherited,
temporary, and none. The following example shows all properties that have been locally set on
tank/ws.

zfs get -s local all tank/ws

NAME PROPERTY VALUE SOURCE

tank/ws compression on local

Any of the above options can be combined with the -r option to recursively display the
specified properties on all children of the specified file system. In the following example, all
temporary properties on all file systems within tank/home are recursively displayed:

Managing ZFS Properties

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013162

zfs get -r -s temporary all tank/home

NAME PROPERTY VALUE SOURCE

tank/home atime off temporary

tank/home/jeff atime off temporary

tank/home/mark quota 20G temporary

You can query property values by using the zfs get command without specifying a target file
system, which means the command operates on all pools or file systems. For example:

zfs get -s local all

tank/home atime off local

tank/home/jeff atime off local

tank/home/mark quota 20G local

For more information about the zfs get command, see zfs(1M).

Querying ZFS Properties for Scripting
The zfs get command supports the -H and -o options, which are designed for scripting. You
can use the -H option to omit header information and to replace white space with the Tab
character. Uniform white space allows for easily parseable data. You can use the -o option to
customize the output in the following ways:

■ The literal name can be used with a comma-separated list of properties as defined in the
“Introducing ZFS Properties” on page 137 section.

■ A comma-separated list of literal fields, name, value, property, and source, to be output
followed by a space and an argument, which is a comma-separated list of properties.

The following example shows how to retrieve a single value by using the -H and -o options of
zfs get:

zfs get -H -o value compression tank/home

on

The -p option reports numeric values as their exact values. For example, 1 MB would be
reported as 1000000. This option can be used as follows:

zfs get -H -o value -p used tank/home

182983742

You can use the -r option, along with any of the preceding options, to recursively retrieve the
requested values for all descendents. The following example uses the -H, -o, and -r options to
retrieve the file system name and the value of the used property for export/home and its
descendents, while omitting the header output:

zfs get -H -o name,value -r used export/home

Managing ZFS Properties

Chapter 5 • Managing Oracle Solaris ZFS File Systems 163

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mzfs-1m

Mounting ZFS File Systems
This section describes how ZFS mounts file systems.

■ “Managing ZFS Mount Points” on page 164
■ “Mounting ZFS File Systems” on page 166
■ “Using Temporary Mount Properties” on page 167
■ “Unmounting ZFS File Systems” on page 168

Managing ZFS Mount Points
By default, a ZFS file system is automatically mounted when it is created. You can determine
specific mount-point behavior for a file system as described in this section.

You can also set the default mount point for a pool's file system at creation time by using zpool
create's -m option. For more information about creating pools, see “Creating ZFS Storage
Pools” on page 50.

All ZFS file systems are mounted by ZFS at boot time by using the Service Management
Facility's (SMF) svc://system/filesystem/local service. File systems are mounted under
/path, where path is the name of the file system.

You can override the default mount point by using the zfs set command to set the
mountpoint property to a specific path. ZFS automatically creates the specified mount point, if
needed, and automatically mounts the associated file system.

ZFS file systems are automatically mounted at boot time without requiring you to edit the
/etc/vfstab file.

The mountpoint property is inherited. For example, if pool/home has the mountpoint property
set to /export/stuff, then pool/home/user inherits /export/stuff/user for its mountpoint
property value.

To prevent a file system from being mounted, set the mountpoint property to none. In addition,
the canmount property can be used to control whether a file system can be mounted. For more
information about the canmount property, see “The canmount Property” on page 151.

File systems can also be explicitly managed through legacy mount interfaces by using zfs set

to set the mountpoint property to legacy. Doing so prevents ZFS from automatically mounting
and managing a file system. Legacy tools including the mount and umount commands, and the
/etc/vfstab file must be used instead. For more information about legacy mounts, see “Legacy
Mount Points” on page 165.

Automatic Mount Points
■ When you change the mountpoint property from legacy or none to a specific path, ZFS

automatically mounts the file system.

Mounting ZFS File Systems

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013164

■ If ZFS is managing a file system but it is currently unmounted, and the mountpoint property
is changed, the file system remains unmounted.

Any file system whose mountpoint property is not legacy is managed by ZFS. In the following
example, a file system is created whose mount point is automatically managed by ZFS:

zfs create pool/filesystem

zfs get mountpoint pool/filesystem

NAME PROPERTY VALUE SOURCE

pool/filesystem mountpoint /pool/filesystem default

zfs get mounted pool/filesystem

NAME PROPERTY VALUE SOURCE

pool/filesystem mounted yes -

You can also explicitly set the mountpoint property as shown in the following example:

zfs set mountpoint=/mnt pool/filesystem

zfs get mountpoint pool/filesystem

NAME PROPERTY VALUE SOURCE

pool/filesystem mountpoint /mnt local

zfs get mounted pool/filesystem

NAME PROPERTY VALUE SOURCE

pool/filesystem mounted yes -

When the mountpoint property is changed, the file system is automatically unmounted from
the old mount point and remounted to the new mount point. Mount-point directories are
created as needed. If ZFS is unable to unmount a file system due to it being active, an error is
reported, and a forced manual unmount is necessary.

Legacy Mount Points
You can manage ZFS file systems with legacy tools by setting the mountpoint property to
legacy. Legacy file systems must be managed through the mount and umount commands and
the /etc/vfstab file. ZFS does not automatically mount legacy file systems at boot time, and
the ZFS mount and umount commands do not operate on file systems of this type. The following
examples show how to set up and manage a ZFS file system in legacy mode:

zfs set mountpoint=legacy tank/home/eric

mount -F zfs tank/home/eschrock /mnt

To automatically mount a legacy file system at boot time, you must add an entry to the
/etc/vfstab file. The following example shows what the entry in the /etc/vfstab file might
look like:

#device device mount FS fsck mount mount

#to mount to fsck point type pass at boot options

#

tank/home/eric - /mnt zfs - yes -

Mounting ZFS File Systems

Chapter 5 • Managing Oracle Solaris ZFS File Systems 165

The device to fsck and fsck pass entries are set to - because the fsck command is not
applicable to ZFS file systems. For more information about ZFS data integrity, see
“Transactional Semantics” on page 27.

Mounting ZFS File Systems
ZFS automatically mounts file systems when file systems are created or when the system boots.
Use of the zfs mount command is necessary only when you need to change mount options, or
explicitly mount or unmount file systems.

The zfs mount command with no arguments shows all currently mounted file systems that are
managed by ZFS. Legacy managed mount points are not displayed. For example:

zfs mount | grep tank/home

zfs mount | grep tank/home

tank/home /tank/home

tank/home/jeff /tank/home/jeff

You can use the -a option to mount all ZFS managed file systems. Legacy managed file systems
are not mounted. For example:

zfs mount -a

By default, ZFS does not allow mounting on top of a nonempty directory. For example:

zfs mount tank/home/lori

cannot mount ’tank/home/lori’: filesystem already mounted

Legacy mount points must be managed through legacy tools. An attempt to use ZFS tools
results in an error. For example:

zfs mount tank/home/bill

cannot mount ’tank/home/bill’: legacy mountpoint

use mount(1M) to mount this filesystem

mount -F zfs tank/home/billm

When a file system is mounted, it uses a set of mount options based on the property values
associated with the file system. The correlation between properties and mount options is as
follows:

TABLE 5–4 ZFS Mount-Related Properties and Mount Options

Property Mount Option

atime atime/noatime

devices devices/nodevices

exec exec/noexec

Mounting ZFS File Systems

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013166

TABLE 5–4 ZFS Mount-Related Properties and Mount Options (Continued)
Property Mount Option

nbmand nbmand/nonbmand

readonly ro/rw

setuid setuid/nosetuid

xattr xattr/noaxttr

The mount option nosuid is an alias for nodevices,nosetuid.

You can use the NFSv4 mirror mount features to help you better manage NFS-mounted ZFS
home directories.

When file systems are created on the NFS server, the NFS client can automatically discover
these newly created file systems within their existing mount of a parent file system.

For example, if the server neo already shares the tank file system and client zee has it mounted,
/tank/baz is automatically visible on the client after it is created on the server.

zee# mount neo:/tank /mnt

zee# ls /mnt

baa bar

neo# zfs create tank/baz

zee% ls /mnt

baa bar baz

zee% ls /mnt/baz

file1 file2

Using Temporary Mount Properties
If any of the mount options described in the preceding section are set explicitly by using the-o
option with the zfs mount command, the associated property value is temporarily overridden.
These property values are reported as temporary by the zfs get command and revert back to
their original values when the file system is unmounted. If a property value is changed while the
file system is mounted, the change takes effect immediately, overriding any temporary setting.

In the following example, the read-only mount option is temporarily set on the
tank/home/neil file system. The file system is assumed to be unmounted.

zfs mount -o ro users/home/neil

To temporarily change a property value on a file system that is currently mounted, you must use
the special remount option. In the following example, the atime property is temporarily
changed to off for a file system that is currently mounted:

Mounting ZFS File Systems

Chapter 5 • Managing Oracle Solaris ZFS File Systems 167

zfs mount -o remount,noatime users/home/neil

NAME PROPERTY VALUE SOURCE

users/home/neil atime off temporary

zfs get atime users/home/perrin

For more information about the zfs mount command, see zfs(1M).

Unmounting ZFS File Systems
You can unmount ZFS file systems by using the zfs unmount subcommand. The unmount
command can take either the mount point or the file system name as an argument.

In the following example, a file system is unmounted by its file system name:

zfs unmount users/home/mark

In the following example, the file system is unmounted by its mount point:

zfs unmount /users/home/mark

The unmount command fails if the file system is busy. To forcibly unmount a file system, you can
use the -f option. Be cautious when forcibly unmounting a file system if its contents are actively
being used. Unpredictable application behavior can result.

zfs unmount tank/home/eric

cannot unmount ’/tank/home/eric’: Device busy

zfs unmount -f tank/home/eric

To provide for backward compatibility, the legacy umount command can be used to unmount
ZFS file systems. For example:

umount /tank/home/bob

For more information about the zfs umount command, see zfs(1M).

Sharing and Unsharing ZFS File Systems
The Oracle Solaris 11.1 release simplifies ZFS share administration by leveraging ZFS property
inheritance. The new share syntax is enabled on pools running pool version 34.

Multiple shares can be defined per file system. A share name uniquely identifies each share. You
can define the properties that are used to share a particular path in a file system. By default, all
file systems are unshared. In general, the NFS server services are not started until a share is
created. If you create a valid share, the NFS services are started automatically. If a ZFS file
system's mountpoint property is set to legacy, the file system can only be shared by using the
legacy share command.

Sharing and Unsharing ZFS File Systems

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013168

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mzfs-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mzfs-1m

■ The share.nfs property replaces the sharenfs property in previous releases to define and
publish an NFS share.

■ The share.smb property replaces the sharesmb property in previous releases to define and
publish an SMB share.

■ Both the sharenfs property and sharesmb property are aliases to the share.nfs property
and the sharenfs property.

■ The /etc/dfs/dfstab file is no longer used to share file systems at boot time. Setting these
properties share file systems automatically. SMF manages ZFS or UFS share information so
that file systems are shared automatically when the system is rebooted. This feature means
that all file systems whose sharenfs or sharesmb property are not set to off are shared at
boot time.

■ The sharemgr interface is no longer available. The legacy share command is still available to
create a legacy share. See the examples below.

■ The share -a command is like the previous share -ap command so that sharing a file
system is persistent. The share -p option is no longer available.

For example, if you want to share the tank/home file system, use syntax similar to the following:

zfs set share.nfs=on tank/home

You can also specify additional property values or modify existing property values on existing
file system shares. For example:

zfs set share.nfs.nosuid=on tank/home/userA

In preceding example, where the share.nfs property is set on the tank/home file system, the
share.nfs property value is inherited to any descendent file systems. For example:

zfs create tank/home/userA

zfs create tank/home/userB

Legacy ZFS Sharing Syntax
Oracle Solaris 11 syntax is still supported so that you can share file systems in two steps. This
syntax is supported in all pool versions.
■ First, use the zfs set share command to create an NFS or SMB share of ZFS file system.

zfs create rpool/fs1

zfs set share=name=fs1,path=/rpool/fs1,prot=nfs rpool/fs1

name=fs1,path=/rpool/fs1,prot=nfs

■ Then, set the sharenfs or sharesmb property to on to publish the share. For example:

zfs set sharenfs=on rpool/fs1

grep fs1 /etc/dfs/sharetab

/rpool/fs1 fs1 nfs sec=sys,rw

Sharing and Unsharing ZFS File Systems

Chapter 5 • Managing Oracle Solaris ZFS File Systems 169

File system shares can be displayed with the legacy zfs get share command.

zfs get share rpool/fs1

NAME PROPERTY VALUE SOURCE

rpool/fs1 share name=fs1,path=/rpool/fs1,prot=nfs local

In addition, the share command to share a file system, similar to the syntax in the Oracle Solaris
10 release, is still supported to share any directory within a file system. For example, to share a
ZFS file system:

share -F nfs /tank/zfsfs

grep zfsfs /etc/dfs/sharetab

/tank/zfsfs tank_zfsfs nfs sec=sys,rw

The above syntax is identical to sharing a UFS file system:

share -F nfs /ufsfs

grep ufsfs /etc/dfs/sharetab

/ufsfs - nfs rw

/tank/zfsfs tank_zfsfs nfs rw

New ZFS Sharing Syntax
The zfs set command is used to share and publish a ZFS file system over the NFS or SMB
protocols. Or, you can set the share.nfs or share.smb property when the file system is created.

For example, the tank/sales file system is created and shared. The default share permissions
are read-write for everyone. The descendent tank/sales/logs file system is also shared
automatically because the share.nfs property is inherited to descendent file systems and the
tank/sales/log file system is set to read-only access.

zfs create -o share.nfs=on tank/sales

zfs create -o share.nfs.ro=* tank/sales/logs

zfs get -r share.nfs tank/sales

NAME PROPERTY VALUE SOURCE

tank/sales share.nfs on local

tank/sales% share.nfs on inherited from tank/sales

tank/sales/log share.nfs on inherited from tank/sales

tank/sales/log% share.nfs on inherited from tank/sales

You can provide root access to a specific system for a shared file system as follows:

zfs set share.nfs=on tank/home/data

zfs set share.nfs.sec.default.root=neo tank/home/data

ZFS Sharing with Per-Property Inheritance
In pools that have been upgraded to the latest pool version 34, new sharing syntax is available
that makes use of ZFS property inheritance to ease share maintenance. Each sharing

Sharing and Unsharing ZFS File Systems

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013170

characteristic becomes a separate share property. The share properties are identified by names
that start with the share. prefix. Examples of share properties include share.desc,
share.nfs.nosuid, and share.smb.guestok.

The share.nfs property controls whether NFS sharing is enabled. The share.smb property
controls whether SMB sharing is enabled. The legacy sharenfs and sharesmb property names
can still be used, because in new pools, sharenfs is an alias for share.nfs and sharesmb is an
alias for share.smb. If you want to share the tank/home file system, use syntax similar to the
following:

zfs set share.nfs=on tank/home

In this example, the share.nfs property value is inherited to any descendent file systems. For
example:

zfs create tank/home/userA

zfs create tank/home/userB

grep tank/home /etc/dfs/sharetab

/tank/home tank_home nfs sec=sys,rw

/tank/home/userA tank_home_userA nfs sec=sys,rw

/tank/home/userB tank_home_userB nfs sec=sys,rw

ZFS Sharing Inheritance in Older Pools

In older pools, only the sharenfs and sharesmb properties are inherited by descendent file
systems. Other sharing characteristics are stored in the .zfs/shares file for each share and are
not inherited.

A special rule is that whenever a new file system is created that inherits sharenfs or sharesmb
from its parent, a default share is created for that file system from the sharenfs or sharesmb
value. Note that when sharenfs is simply on, the default share that is created in a descendent
file system has only the default NFS characteristics. For example:

zpool get version tank

NAME PROPERTY VALUE SOURCE

tank version 33 default

zfs create -o sharenfs=on tank/home

zfs create tank/home/userA

grep tank/home /etc/dfs/sharetab

/tank/home tank_home nfs sec=sys,rw

/tank/home/userA tank_home_userA nfs sec=sys,r

ZFS Named Shares
You can also create a named share, which provides more flexibility in setting permissions and
properties in an SMB environment. For example:

zfs share -o share.smb=on tank/workspace%myshare

Sharing and Unsharing ZFS File Systems

Chapter 5 • Managing Oracle Solaris ZFS File Systems 171

In the preceding example, the zfs share command creates an SMB share called myshare of the
tank/workspace file system. You can access the SMB share and display or set specific
permissions or ACLs through the .zfs/shares directory of the file system. Each SMB share is
represented by a separate .zfs/shares file. For example:

ls -lv /tank/workspace/.zfs/shares

-rwxrwxrwx+ 1 root root 0 May 15 10:31 myshare

0:everyone@:read_data/write_data/append_data/read_xattr/write_xattr

/execute/delete_child/read_attributes/write_attributes/delete

/read_acl/write_acl/write_owner/synchronize:allow

Named shares inherit sharing properties from the parent file system. If you add the
share.smb.guestok property to the parent file system in the previous example, this property is
inherited to the named share. For example:

zfs get -r share.smb.guestok tank/workspace

NAME PROPERTY VALUE SOURCE

tank/workspace share.smb.guestok on inherited from tank

tank/workspace%myshare share.smb.guestok on inherited from tank

Named shares can be helpful in the NFS environment when defining shares for a subdirectory
of the file system. For example:

zfs create -o share.nfs=on -o share.nfs.anon=99 -o share.auto=off tank/home

mkdir /tank/home/userA

mkdir /tank/home/userB

zfs share -o share.path=/tank/home/userA tank/home%userA

zfs share -o share.path=/tank/home/userB tank/home%userB

grep tank/home /etc/dfs/sharetab

/tank/home/userA userA nfs anon=99,sec=sys,rw

/tank/home/userB userB nfs anon=99,sec=sys,rw

The above example also illustrates that setting the share.auto to off for a file system turns off
the auto share for that file system while leaving all other property inheritance intact. Unlike
most other sharing properties, the share.auto property is not inheritable.

Named shares are also used when creating a public NFS share. A public share can only be
created on a named NFS share. For example:

zfs create -o mountpoint=/pub tank/public

zfs share -o share.nfs=on -o share.nfs.public=on tank/public%pubshare

grep pub /etc/dfs/sharetab

/pub pubshare nfs public,sec=sys,rw

See share_nfs(1M) and share_smb(1M) for a detailed description of NFS and SMB share
properties.

ZFS Automatic Shares
When an automatic (auto) share is created, a unique resource name is constructed from the file
system name. The constructed name is a copy of the file system name except that the characters

Sharing and Unsharing ZFS File Systems

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013172

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mshare-nfs-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mshare-smb-1m

in the file system name that would be illegal in the resource name, are replaced with underscore
(_) characters. For example, the resource name of data/home/john is data_home_john.

Setting a share.autoname property name allows you to replace the file system name with a
specific name when creating the auto share. The specific name is also used to replace the prefix
file system name in the case of inheritance. For example:

zfs create -o share.smb=on -o share.autoname=john data/home/john

zfs create data/home/john/backups

grep john /etc/dfs/sharetab

/data/home/john john smb

/data/home/john/backups john_backups smb

If a legacy share command or the zfs set share command is used on a file system that has not
yet been shared, its share.auto value is automatically set to off. The legacy commands always
create named shares. This special rule prevents the auto share from interfering with the named
share that is being created.

Displaying ZFS Share Information
Display the value of the file sharing properties by using zfs get command. The following
example shows how to display the share.nfs property for a single file system:

zfs get share.nfs tank/sales

NAME PROPERTY VALUE SOURCE

tank/sales share.nfs on local

The following example shows how to display the share.nfs property for descendent file
systems:

zfs get -r share.nfs tank/sales

NAME PROPERTY VALUE SOURCE

tank/sales share.nfs on local

tank/sales% share.nfs on inherited from tank/sales

tank/sales/log share.nfs on inherited from tank/sales

tank/sales/log% share.nfs on inherited from tank/sales

The extended share property information is not available in the zfs get all command syntax.

You can display specific details about NFS or SMB share information by using the following
syntax:

zfs get share.nfs.all tank/sales

NAME PROPERTY VALUE SOURCE

tank/sales share.nfs.aclok off default

tank/sales share.nfs.anon default

tank/sales share.nfs.charset.* ... default

tank/sales share.nfs.cksum default

tank/sales share.nfs.index default

tank/sales share.nfs.log default

tank/sales share.nfs.noaclfab off default

Sharing and Unsharing ZFS File Systems

Chapter 5 • Managing Oracle Solaris ZFS File Systems 173

tank/sales share.nfs.nosub off default

tank/sales share.nfs.nosuid off default

tank/sales share.nfs.public - -

tank/sales share.nfs.sec default

tank/sales share.nfs.sec.* ... default

Because there are many share properties, consider displaying the properties with a non-default
value. For example:

zfs get -e -s local,received,inherited share.all tank/home

NAME PROPERTY VALUE SOURCE

tank/home share.auto off local

tank/home share.nfs on local

tank/home share.nfs.anon 99 local

tank/home share.protocols nfs local

tank/home share.smb.guestok on inherited from tank

Changing a ZFS Share Property Values
You can change share property values by specifying new or modified properties on a file system
share. For example, if the read-only property is set when the file system is created, the property
can be set to off.

zfs create -o share.nfs.ro=* tank/data

zfs get share.nfs.ro tank/data

NAME PROPERTY VALUE SOURCE

tank/data share.nfs.sec.sys.ro on local

zfs set share.nfs.ro=none tank/data

zfs get share.nfs.ro tank/data

NAME PROPERTY VALUE SOURCE

tank/data share.nfs.sec.sys.ro off local

If you create an SMB share, you can also add the NFS share protocol. For example:

zfs set share.smb=on tank/multifs

zfs set share.nfs=on tank/multifs

grep multifs /etc/dfs/sharetab

/tank/multifs tank_multifs nfs sec=sys,rw

/tank/multifs tank_multifs smb -

Remove the SMB protocol:

zfs set share.smb=off tank/multifs

grep multifs /etc/dfs/sharetab

/tank/multifs tank_multifs nfs sec=sys,rw

You can rename a named share. For example:

zfs share -o share.smb=on tank/home/abc%abcshare

grep abc /etc/dfs/sharetab

/tank/home/abc abcshare smb -

zfs rename tank/home/abc%abcshare tank/home/abc%a1share

grep abc /etc/dfs/sharetab

/tank/home/abc a1share smb -

Sharing and Unsharing ZFS File Systems

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013174

Publishing and Unpublishing ZFS Shares
You can temporarily unshare a named share without destroying it by using the zfs unshare
command. For example:

zfs unshare tank/home/abc%a1share

grep abc /etc/dfs/sharetab

#

zfs share tank/home/abc%a1share

grep abc /etc/dfs/sharetab

/tank/home/abc a1share smb -

When the zfs unshare command is issued, all file system shares are unshared. These shares
remain unshared until the zfs share command is issued for the file system or the share.nfs or
share.smb property is set for the file system.

Defined shares are not removed when the zfs unshare command is issued, and they are
re-shared the next time the zfs share command is issued for the file system or the share.nfs
or share.smb property is set for the file system.

Removing a ZFS Share
You can unshare a file system share by setting the share.nfs or share.smb property to off. For
example:

zfs set share.nfs=off tank/multifs

grep multifs /etc/dfs/sharetab

#

You can permanently remove a named share by using the zfs destroy command. For example:

zfs destroy tank/home/abc%a1share

ZFS File Sharing Within a Non-Global Zone
Starting with Oracle Solaris 11, you can create and publish NFS shares in an Oracle Solaris
non-global zone.

■ If a ZFS file system is mounted and available in a non-global zone, it can be shared in that
zone.

■ A file system can be shared in the global zone if it is not delegated to a non-global zone and is
not mounted in a non-global zone. If a file system is added to a non-global zone, it can only
be shared by using the legacy share command.

For example, the /export/home/data and /export/home/data1 file systems are available in the
zfszone.

zfszone# share -F nfs /export/home/data

zfszone# cat /etc/dfs/sharetab

Sharing and Unsharing ZFS File Systems

Chapter 5 • Managing Oracle Solaris ZFS File Systems 175

zfszone# zfs set share.nfs=on tank/zones/export/home/data1

zfszone# cat /etc/dfs/sharetab

ZFS Sharing Migration/Transition Issues
Identify any transition issues in this section.
■ Importing file systems with older sharing properties - When importing a pool or

receiving a file system stream that was created before Oracle Solaris 11, the sharenfs and
sharesmb properties include all the share properties directly in the property value. In most
cases, these legacy share properties are converted to an equivalent set of named shares as
soon as each file system is shared. Since import operations trigger mounting and sharing in
most cases, the conversion to named shares happens directly during the import process.

■ Upgrading from Oracle Solaris 11 - The first file system sharing after a pool upgrade to
version 34 can take a long time because the named shares are converted to the new format.
The named shares created by the upgrade process are correct but cannot take advantage of
share property inheritance.
■ Display share property values:

zfs get share.nfs filesystem
zfs get share.smb filesystem

■ If you boot back to an older BE, reset the sharenfs and sharesmb properties to their
original values.

■ Upgrading from Oracle Solaris 11 Express - In Oracle Solaris 11 and 11.1, the sharenfs
and sharesmb properties can have only off and on values. These properties are no longer
used to define share characteristics.
The /etc/dfs/dfstab file is no longer used to share file systems at boot time. At boot time,
all mounted ZFS file systems that include enabled file system shares are automatically
shared. A share is enabled when it sharenfs or sharesmb is set to on.
The sharemgr interface is no longer available. The legacy share command is still available to
create a legacy share. The share -a command is like the previous share -ap command so
that sharing a file system is persistent. The share -p option is no longer available.

■ Upgrading your system – ZFS shares will be incorrect if you boot back to an Oracle Solaris
11 Express BE due to property changes in this release. Non-ZFS shares are unaffected. If you
plan to boot back to an older BE, you should first save a copy of the existing share
configuration prior to the pkg update operation to be able to restore the share configuration
on the ZFS datasets.
In the older BE, use the sharemgr show -vp command to list all shares and their
configuration.
Use the following commands to display share property values:

zfs get sharenfs filesystem
zfs get sharesmb filesystem

Sharing and Unsharing ZFS File Systems

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013176

If you back to an older BE, reset the sharenfs and sharesmb properties and any shares
defined with sharemgr to their original values.

■ Legacy unsharing behavior – Using the unshare -a command or unshareall command
unshares a file system, but does not update the SMF shares repository. If you try to re-share
the existing share, the shares repository is checked for conflicts, and an error is displayed.

Troubleshooting ZFS File System Sharing Problems
Review the following share behavior scenarios and considerations:

■ Share properties and .zfs/shares files are treated differently in zfs clone and zfs send

operations. The .zfs/shares files are included in snapshots and are preserved in zfs clone

and zfs send operations. Sharing properties including named shares are not included in
snapshots. For a description of the behavior of properties during zfs send and zfs receive

operations, see “Applying Different Property Values to a ZFS Snapshot Stream” on page 210.
After a clone operation, all files are from the pre-clone snapshot, whereas the properties are
inherited from the clone's new position in the ZFS file system hierarchy.

■ Certain legacy share operations automatically turn off the auto share or convert an existing
auto share to an equivalent named share. If a file system is not shared as expected, check to
see if its share.auto value has been set to off.

■ If a request to create a named share fails because the share would conflict with the auto
share, you may have to turn off the auto share in order to proceed.

■ When a pool is imported read only, neither its properties nor its files can be modified. It can
be impossible to introduce new sharing in this situation. If sharing was already established
before the pool was exported, the existing sharing characteristics are used, if possible.

The following table identifies know share states and how to resolve them, if necessary.

Share State Description Resolution

INVALID The share is invalid because it is
internally inconsistent or because it
conflicts with another share.

Attempt to re-share the invalid share by using
the following command:

zfs share FS%share

Using this command displays an error message
about which aspect of the share is failing
validation. Correct this, then retry the share.

SHARED The share is shared. None needed.

UNSHARED The share is valid but is unshared. Use the zfs share command to re-share either
the individual share or the parent file system.

Sharing and Unsharing ZFS File Systems

Chapter 5 • Managing Oracle Solaris ZFS File Systems 177

Share State Description Resolution

UNVALIDATED The share is not yet validated. The file
system that contains the share might not
be in a shareable state. For example, it is
not mounted or it is delegated to a zone
other than the current zone.
Alternatively, the ZFS properties
representing the desired share have been
created, but have not yet been validated
as a legal share.

Use the zfs share command to re-share the
individual share or the parent file system. If the
file system itself is shareable, an attempt to
re-share will either succeed in sharing (and
transition the state to shared) or fail to share
(and transition the state to invalid). Or, you can
use the share -A command to list all shares in all
mounted file systems. This will cause all shares
in mounted file systems to be resolved as either
unshared (valid but not yet shared) or invalid.

Setting ZFS Quotas and Reservations
You can use the quota property to set a limit on the amount of disk space a file system can use.
In addition, you can use the reservation property to guarantee that a specified amount of disk
space is available to a file system. Both properties apply to the file system on which they are set
and all descendents of that file system.

That is, if a quota is set on the tank/home file system, the total amount of disk space used by
tank/home and all of its descendents cannot exceed the quota. Similarly, if tank/home is given a
reservation, tank/home and all of its descendents draw from that reservation. The amount of
disk space used by a file system and all of its descendents is reported by the used property.

The refquota and refreservation properties are used to manage file system space without
accounting for disk space consumed by descendents, such as snapshots and clones.

In this Solaris release, you can set a user or a group quota on the amount of disk space consumed
by files that are owned by a particular user or group. The user and group quota properties
cannot be set on a volume, on a file system before file system version 4, or on a pool before pool
version 15.

Consider the following points to determine which quota and reservation features might best
help you manage your file systems:

■ The quota and reservation properties are convenient for managing disk space consumed
by file systems and their descendents.

■ The refquota and refreservation properties are appropriate for managing disk space
consumed by file systems.

■ Setting the refquota or refreservation property higher than the quota or reservation
property has no effect. If you set the quota or refquota property, operations that try to
exceed either value fail. It is possible to a exceed a quota that is greater than the refquota.
For example, if some snapshot blocks are modified, you might actually exceed the quota
before you exceed the refquota.

Setting ZFS Quotas and Reservations

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013178

■ User and group quotas provide a way to more easily manage disk space with many user
accounts, such as in a university environment.

For more information about setting quotas and reservations, see “Setting Quotas on ZFS File
Systems” on page 179 and “Setting Reservations on ZFS File Systems” on page 182.

Setting Quotas on ZFS File Systems
Quotas on ZFS file systems can be set and displayed by using the zfs set and zfs get

commands. In the following example, a quota of 10 GB is set on tank/home/jeff:

zfs set quota=10G tank/home/jeff

zfs get quota tank/home/jeff

NAME PROPERTY VALUE SOURCE

tank/home/jeff quota 10G local

Quotas also affect the output of the zfs list and df commands. For example:

zfs list -r tank/home

NAME USED AVAIL REFER MOUNTPOINT

tank/home 1.45M 66.9G 36K /tank/home

tank/home/eric 547K 66.9G 547K /tank/home/eric

tank/home/jeff 322K 10.0G 291K /tank/home/jeff

tank/home/jeff/ws 31K 10.0G 31K /tank/home/jeff/ws

tank/home/lori 547K 66.9G 547K /tank/home/lori

tank/home/mark 31K 66.9G 31K /tank/home/mark

df -h /tank/home/jeff

Filesystem Size Used Avail Use% Mounted on

tank/home/jeff 10G 306K 10G 1% /tank/home/jeff

Note that although tank/home has 66.9 GB of disk space available, tank/home/jeff and
tank/home/jeff/ws each have only 10 GB of disk space available, due to the quota on
tank/home/jeff.

You cannot set a quota to an amount less than is currently being used by a file system. For
example:

zfs set quota=10K tank/home/jeff

cannot set property for ’tank/home/jeff’:

size is less than current used or reserved space

You can set a refquota on a file system that limits the amount of disk space that the file system
can consume. This hard limit does not include disk space that is consumed by descendents. For
example, studentA's 10 GB quota is not impacted by space that is consumed by snapshots.

zfs set refquota=10g students/studentA

zfs list -t all -r students

NAME USED AVAIL REFER MOUNTPOINT

students 150M 66.8G 32K /students

students/studentA 150M 9.85G 150M /students/studentA

Setting ZFS Quotas and Reservations

Chapter 5 • Managing Oracle Solaris ZFS File Systems 179

students/studentA@yesterday 0 - 150M -

zfs snapshot students/studentA@today

zfs list -t all -r students

students 150M 66.8G 32K /students

students/studentA 150M 9.90G 100M /students/studentA

students/studentA@yesterday 50.0M - 150M -

students/studentA@today 0 - 100M -

For additional convenience, you can set another quota on a file system to help manage the disk
space that is consumed by snapshots. For example:

zfs set quota=20g students/studentA

zfs list -t all -r students

NAME USED AVAIL REFER MOUNTPOINT

students 150M 66.8G 32K /students

students/studentA 150M 9.90G 100M /students/studentA

students/studentA@yesterday 50.0M - 150M -

students/studentA@today 0 - 100M -

In this scenario, studentA might reach the refquota (10 GB) hard limit, but studentA can
remove files to recover, even if snapshots exist.

In the preceding example, the smaller of the two quotas (10 GB as compared to 20 GB) is
displayed in the zfs list output. To view the value of both quotas, use the zfs get command.
For example:

zfs get refquota,quota students/studentA

NAME PROPERTY VALUE SOURCE

students/studentA refquota 10G local

students/studentA quota 20G local

Setting User and Group Quotas on a ZFS File System
You can set a user quota or a group quota by using the zfs userquota or zfs groupquota
commands, respectively. For example:

zfs create students/compsci

zfs set userquota@student1=10G students/compsci

zfs create students/labstaff

zfs set groupquota@labstaff=20GB students/labstaff

Display the current user quota or group quota as follows:

zfs get userquota@student1 students/compsci

NAME PROPERTY VALUE SOURCE

students/compsci userquota@student1 10G local

zfs get groupquota@labstaff students/labstaff

NAME PROPERTY VALUE SOURCE

students/labstaff groupquota@labstaff 20G local

You can display general user or group disk space usage by querying the following properties:

Setting ZFS Quotas and Reservations

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013180

zfs userspace students/compsci

TYPE NAME USED QUOTA

POSIX User root 350M none

POSIX User student1 426M 10G

zfs groupspace students/labstaff

TYPE NAME USED QUOTA

POSIX Group labstaff 250M 20G

POSIX Group root 350M none

To identify individual user or group disk space usage, query the following properties:

zfs get userused@student1 students/compsci

NAME PROPERTY VALUE SOURCE

students/compsci userused@student1 550M local

zfs get groupused@labstaff students/labstaff

NAME PROPERTY VALUE SOURCE

students/labstaff groupused@labstaff 250 local

The user and group quota properties are not displayed by using the zfs get all dataset
command, which displays a list of all of the other file system properties.

You can remove a user quota or group quota as follows:

zfs set userquota@student1=none students/compsci

zfs set groupquota@labstaff=none students/labstaff

User and group quotas on ZFS file systems provide the following features:
■ A user quota or group quota that is set on a parent file system is not automatically inherited

by a descendent file system.
■ However, the user or group quota is applied when a clone or a snapshot is created from a file

system that has a user or group quota. Likewise, a user or group quota is included with the
file system when a stream is created by using the zfs send command, even without the -R
option.

■ Unprivileged users can only access their own disk space usage. The root user or a user who
has been granted the userused or groupused privilege, can access everyone's user or group
disk space accounting information.

■ The userquota and groupquota properties cannot be set on ZFS volumes, on a file system
prior to file system version 4, or on a pool prior to pool version 15.

Enforcement of user and group quotas might be delayed by several seconds. This delay means
that users might exceed their quota before the system notices that they are over quota and
refuses additional writes with the EDQUOT error message.

You can use the legacy quota command to review user quotas in an NFS environment, for
example, where a ZFS file system is mounted. Without any options, the quota command only
displays output if the user's quota is exceeded. For example:

zfs set userquota@student1=10m students/compsci

zfs userspace students/compsci

TYPE NAME USED QUOTA

Setting ZFS Quotas and Reservations

Chapter 5 • Managing Oracle Solaris ZFS File Systems 181

POSIX User root 350M none

POSIX User student1 550M 10M

quota student1

Block limit reached on /students/compsci

If you reset the user quota and the quota limit is no longer exceeded, you can use the quota -v
command to review the user's quota. For example:

zfs set userquota@student1=10GB students/compsci

zfs userspace students/compsci

TYPE NAME USED QUOTA

POSIX User root 350M none

POSIX User student1 550M 10G

quota student1

quota -v student1

Disk quotas for student1 (uid 102):

Filesystem usage quota limit timeleft files quota limit timeleft

/students/compsci

563287 10485760 10485760 - - - - -

Setting Reservations on ZFS File Systems
A ZFS reservation is an allocation of disk space from the pool that is guaranteed to be available
to a dataset. As such, you cannot reserve disk space for a dataset if that space is not currently
available in the pool. The total amount of all outstanding, unconsumed reservations cannot
exceed the amount of unused disk space in the pool. ZFS reservations can be set and displayed
by using the zfs set and zfs get commands. For example:

zfs set reservation=5G tank/home/bill

zfs get reservation tank/home/bill

NAME PROPERTY VALUE SOURCE

tank/home/bill reservation 5G local

Reservations can affect the output of the zfs list command. For example:

zfs list -r tank/home

NAME USED AVAIL REFER MOUNTPOINT

tank/home 5.00G 61.9G 37K /tank/home

tank/home/bill 31K 66.9G 31K /tank/home/bill

tank/home/jeff 337K 10.0G 306K /tank/home/jeff

tank/home/lori 547K 61.9G 547K /tank/home/lori

tank/home/mark 31K 61.9G 31K /tank/home/mark

Note that tank/home is using 5 GB of disk space, although the total amount of space referred to
by tank/home and its descendents is much less than 5 GB. The used space reflects the space
reserved for tank/home/bill. Reservations are considered in the used disk space calculation of
the parent file system and do count against its quota, reservation, or both.

zfs set quota=5G pool/filesystem

zfs set reservation=10G pool/filesystem/user1

cannot set reservation for ’pool/filesystem/user1’: size is greater than

available space

Setting ZFS Quotas and Reservations

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013182

A dataset can use more disk space than its reservation, as long as unreserved space is available in
the pool, and the dataset's current usage is below its quota. A dataset cannot consume disk space
that has been reserved for another dataset.

Reservations are not cumulative. That is, a second invocation of zfs set to set a reservation
does not add its reservation to the existing reservation. Rather, the second reservation replaces
the first reservation. For example:

zfs set reservation=10G tank/home/bill

zfs set reservation=5G tank/home/bill

zfs get reservation tank/home/bill

NAME PROPERTY VALUE SOURCE

tank/home/bill reservation 5G local

You can set a refreservation reservation to guarantee disk space for a dataset that does not
include disk space consumed by snapshots and clones. This reservation is accounted for in the
parent dataset's space used calculation, and counts against the parent dataset's quotas and
reservations. For example:

zfs set refreservation=10g profs/prof1

zfs list

NAME USED AVAIL REFER MOUNTPOINT

profs 10.0G 23.2G 19K /profs

profs/prof1 10G 33.2G 18K /profs/prof1

You can also set a reservation on the same dataset to guarantee dataset space and snapshot
space. For example:

zfs set reservation=20g profs/prof1

zfs list

NAME USED AVAIL REFER MOUNTPOINT

profs 20.0G 13.2G 19K /profs

profs/prof1 10G 33.2G 18K /profs/prof1

Regular reservations are accounted for in the parent's used space calculation.

In the preceding example, the smaller of the two quotas (10 GB as compared to 20 GB) is
displayed in the zfs list output. To view the value of both quotas, use the zfs get command.
For example:

zfs get reservation,refreserv profs/prof1

NAME PROPERTY VALUE SOURCE

profs/prof1 reservation 20G local

profs/prof1 refreservation 10G local

If refreservation is set, a snapshot is only allowed if sufficient unreserved pool space exists
outside of this reservation to accommodate the current number of referenced bytes in the
dataset.

Setting ZFS Quotas and Reservations

Chapter 5 • Managing Oracle Solaris ZFS File Systems 183

Encrypting ZFS File Systems
Encryption is the process where data is encoded for privacy and a key is needed by the data
owner to access the encoded data. The benefits of using ZFS encryption are as follows:
■ ZFS encryption is integrated with the ZFS command set. Like other ZFS operations,

encryption operations such as key changes and rekey are performed online.
■ You can use your existing storage pools as long as they are upgraded. You have the flexibility

of encrypting specific file systems.
■ ZFS encryption is inheritable to descendent file systems. Key management can be delegated

through ZFS delegated administration.
■ Data is encrypted using AES (Advanced Encryption Standard) with key lengths of 128, 192,

and 256 in the CCM and GCM operation modes.
■ ZFS encryption uses the Oracle Solaris Cryptographic Framework, which gives it access to

any available hardware acceleration or optimized software implementations of the
encryption algorithms automatically.

■ Currently, you cannot encrypt the ZFS root file system or other OS components, such as the
/var directory, even if it is a separate file system.

You can set an encryption policy when a ZFS file system is created, but the policy cannot be
changed. For example, the tank/home/darren file system is created with the encryption
property enabled. The default encryption policy is to prompt for a passphrase, which must be a
minimum of 8 characters in length.

zfs create -o encryption=on tank/home/darren

Enter passphrase for ’tank/home/darren’: xxxxxxx

Enter again: xxxxxxxx

Confirm that the file system has encryption enabled. For example:

zfs get encryption tank/home/darren

NAME PROPERTY VALUE SOURCE

tank/home/darren encryption on local

The default encryption algorithm is aes-128-ccm when a file system's encryption value is on.

A wrapping key is used to encrypt the actual data encryption keys. The wrapping key is passed
from the zfs command, as in the above example when the encrypted file system is created, to
the kernel. A wrapping key is either in a file (in raw or hex format) or it is derived from a
passphrase.

The format and location of the wrapping key are specified in the keysource property as follows:

keysource=format,location

■ Format is one of the following:
■ raw – The raw key bytes

Encrypting ZFS File Systems

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013184

■ hex – A hexadecimal key string
■ passphrase – A character string that generates a key

■ Location is one of the following:
■ prompt – You are prompted for a key or a passphrase when the file system is created or

mounted
■ file:///filename – The key or a passphrase file location in a file system
■ pkcs11 – A URI describing the location of a key or a passphrase in a PKCS#11 token
■ https://location – The key or a passphrase file location on a secure server.

Transporting key information in the clear using this method is not recommended. A GET

on the URL returns just the key value or the passphrase, according to what was requested
in the format part of the keysource property.
When using an https:// locator for the keysource, the certificate that the server
presents must be one that is trusted by libcurl and OpenSSL. Add your own trust
anchor or self signed certificate to the certificate store in /etc/openssl/certs. Place the
PEM format certificate into the /etc/certs/CA directory and run the following
command:

svcadm refresh ca-certificates

If the keysource format is passphrase, then the wrapping key is derived from the passphrase.
Otherwise, the keysource property value points to the actual wrapping key, as raw bytes or in
hexidecimal format. You can specify that the passphrase is stored in a file or stored in a raw
stream of bytes that are prompted for, which is likely only suitable for scripting.

When a file system's keysource property values identifies passphrase, then the wrapping key is
derived from the passphrase using PKCS#5 PBKD2 and a per file system randomly generated salt.
This means that the same passphrase generates a different wrapping key if used on descendent
file systems.

A file system's encryption policy is inherited by descendent file systems and cannot be removed.
For example:

zfs snapshot tank/home/darren@now

zfs clone tank/home/darren@now tank/home/darren-new

Enter passphrase for ’tank/home/darren-new’: xxxxxxx

Enter again: xxxxxxxx

zfs set encryption=off tank/home/darren-new

cannot set property for ’tank/home/darren-new’: ’encryption’ is readonly

If you need to copy or migrate encrypted or unencrypted ZFS file systems, then consider the
following points:
■ Currently, you cannot send an unencrypted dataset stream and receive it as an encrypted

stream even if the receiving pool's dataset has encryption enabled.
■ You can use the following commands to migrate unencrypted data to a pool/file system with

encryption enabled:

Encrypting ZFS File Systems

Chapter 5 • Managing Oracle Solaris ZFS File Systems 185

■ cp -r

■ find | cpio

■ tar

■ rsync

■ A replicated encrypted file system stream can be received into a encrypted file system and
the data remains encrypted. For more information, see Example 5–4.

Changing an Encrypted ZFS File System's Keys
You can change an encrypted file system's wrapping key by using the zfs key -c command.
The existing wrapping key must have been loaded first, either at boot time or by explicitly
loading the file system key (zfs key -l) or by mounting the file system (zfs mount filesystem).
For example:

zfs key -c tank/home/darren

Enter new passphrase for ’tank/home/darren’: xxxxxxxx

Enter again: xxxxxxxx

In the following example, the wrapping key is changed and the keysource property value is
changed to specify that the wrapping key comes from a file.

zfs key -c -o keysource=raw,file:///media/stick/key tank/home/darren

The data encryption key for an encrypted file system can be changed by using the zfs key -K
command, but the new encryption key is only used for newly written data. This feature can be
used to provide compliance with NIST 800-57 guidelines on a data encryption key's time limit.
For example:

zfs key -K tank/home/darren

In the above example, the data encryption key is not visible nor is it directly managed by you. In
addition, you need the keychange delegation to perform a key change operation.

The following encryption algorithms are available:

■ aes-128-ccm, aes-192-ccm, aes-256-ccm
■ aes-128-gcm, aes-192-gcm, aes-256-gcm

The ZFS keysource property identifies the format and location of the key that wraps the file
system's data encryption keys. For example:

zfs get keysource tank/home/darren

NAME PROPERTY VALUE SOURCE

tank/home/darren keysource passphrase,prompt local

The ZFS rekeydate property identifies the date of the last zfs key -K operation. For example:

Encrypting ZFS File Systems

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013186

zfs get rekeydate tank/home/darren

NAME PROPERTY VALUE SOURCE

tank/home/darren rekeydate Wed Jul 25 16:54 2012 local

If an encrypted file system's creation and rekeydate properties have the same value, the file
system has never been rekeyed by an zfs key -K operation.

Managing ZFS Encryption Keys
ZFS encryption keys can be managed in different ways, depending on your needs, either on the
local system or remotely, if a centralized location is needed.

■ Locally – The above examples illustrate that the wrapping key can be either a passphrase
prompt or a raw key that is stored in a file on the local system.

■ Remotely – Key information can be stored remotely by using a centralized key management
system like Oracle Key Manager or by using a web service that supports a simple GET
request on an http or https URI. Oracle Key Manager key information is accessible to an
Oracle Solaris system by using a PKCS#11 token.

For more information about managing ZFS encryption keys, see

http://www.oracle.com/

technetwork/articles/servers-storage-admin/manage-zfs-encryption-1715034.html

For information about using Oracle Key Manager to manage key information, see:

http://docs.oracle.com/cd/E24472_02/

Delegating ZFS Key Operation Permissions
Review the following permission descriptions for delegating key operations:

■ Loading or unloading a file system key by using the zfs key -l and zfs key -u commands
require the key permission. In most cases, you will need the mount permission as well.

■ Changing a file system key by using the zfs key -c and zfs key -K commands require the
keychange permission.

Consider delegating separate permissions for key use (load or unload) and key change, which
allows you to have a two-person key operation model. For example, determine which users can
use the keys verses which users can change them. Or, both users need to be present for a key
change. This model also allows you to build a key escrow system.

Mounting an Encrypted ZFS File System
Review the following considerations when attempting to mount an encrypted ZFS file system:

Encrypting ZFS File Systems

Chapter 5 • Managing Oracle Solaris ZFS File Systems 187

http://www.oracle.com/technetwork/articles/servers-storage-admin/manage-zfs-encryption-1715034.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/manage-zfs-encryption-1715034.html
http://docs.oracle.com/cd/E24472_02/

■ If an encrypted file system key is not available during boot time, the file system is not
mounted automatically. For example, a file system with an encryption policy set to
passphrase,prompt will not mount during boot time because the boot process is not
interrupted to prompt for a passphrase.

■ If you want to mount a file system with an encryption policy set to passphrase,prompt at
boot time, you will need to either explicitly mount it with the zfs mount command and
specify the passphrase or use the zfs key -l command to be prompted for the key after the
system is booted.
For example:

zfs mount -a

Enter passphrase for ’tank/home/darren’: xxxxxxxx

Enter passphrase for ’tank/home/ws’: xxxxxxxx

Enter passphrase for ’tank/home/mark’: xxxxxxxx

■ If an encrypted file system's keysource property points to a file in another file system, the
mount order of the file systems can impact whether the encrypted file system is mounted at
boot, particularly if the file is on removable media.

Upgrading Encrypted ZFS File Systems
Before you upgrade a Solaris 11 system to Solaris 11.1, ensure that your encrypted file systems
are mounted. Mount the encrypted file systems and provide the passphrases, if prompted.

zfs mount -a

Enter passphrase for ’pond/amy’: xxxxxxxx

Enter passphrase for ’pond/rory’: xxxxxxxx

zfs mount | grep pond

pond /pond

pond/amy /pond/amy

pond/rory /pond/rory

Then, upgrade the encrypted file systems.

zfs upgrade -a

If you attempt to upgrade encrypted ZFS file systems that are unmounted, a message similar to
the following is displayed:

zfs upgrade -a

cannot set property for ’pond/amy’: key not present

In addition, the zpool status output might show corrupted data.

zpool status -v pond

.

.

.

pond/amy:<0x1>

pond/rory:<0x1>

Encrypting ZFS File Systems

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013188

If the above errors occur, remount the encrypted file systems as directed above. Then, scrub and
clear the pool errors.

zpool scrub pond

zpool clear pond

For more information about upgrading file systems, see “Upgrading ZFS File Systems” on
page 194.

Interactions Between ZFS Compression,
Deduplication, and Encryption Properties
Review the following considerations when using the ZFS compression, deduplication, and
encryption properties:

■ When a file is written, the data is compressed, encrypted, and the checksum is verified.
Then, the data is deduplicated, if possible.

■ When a file is read, the checksum is verified and the data is decrypted. Then, the data is
decompressed, if required.

■ If the dedup property is enabled on an encrypted file system that is also cloned and the zfs
key -Kor zfs clone -K commands have not been used on the clones, data from all the clones
will be deduplicated, if possible.

Examples of Encrypting ZFS File Systems

EXAMPLE 5–1 Encrypting a ZFS File System by Using a Raw Key

In the following example, an aes-256-ccm encryption key is generated by using the pktool
command and is written to a file, /cindykey.file.

pktool genkey keystore=file outkey=/cindykey.file keytype=aes keylen=256

Then, the /cindykey.file is specified when the tank/home/cindy file system is created.

zfs create -o encryption=aes-256-ccm -o keysource=raw,file:///cindykey.file

tank/home/cindy

EXAMPLE 5–2 Encrypting a ZFS File System With a Different Encryption Algorithm

You can create a ZFS storage pool and have all the file systems in the storage pool inherit an
encryption algorithm. In this example, the users pool is created and the users/home file system
is created and encrypted by using a passphrase. The default encryption algorithm is
aes-128-ccm.

Encrypting ZFS File Systems

Chapter 5 • Managing Oracle Solaris ZFS File Systems 189

EXAMPLE 5–2 Encrypting a ZFS File System With a Different Encryption Algorithm (Continued)

Then, the users/home/mark file system is created and encrypted by using the aes-256-ccm
encryption algorithm.

zpool create -O encryption=on users mirror c0t1d0 c1t1d0 mirror c2t1d0 c3t1d0

Enter passphrase for ’users’: xxxxxxxx

Enter again: xxxxxxxx

zfs create users/home

zfs get encryption users/home

NAME PROPERTY VALUE SOURCE

users/home encryption on inherited from users

zfs create -o encryption=aes-256-ccm users/home/mark

zfs get encryption users/home/mark

NAME PROPERTY VALUE SOURCE

users/home/mark encryption aes-256-ccm local

EXAMPLE 5–3 Cloning an Encrypted ZFS File System
If the clone file system inherits the keysource property from the same file system as its origin
snapshot, then a new keysource is not necessary, and you are not prompted for a new
passphrase if keysource=passphrase,prompt. The same keysource is used for the clone. For
example:

By default, you are not prompted for a key when cloning a descendent of an encrypted file
system.

zfs create -o encryption=on tank/ws

Enter passphrase for ’tank/ws’: xxxxxxxx

Enter again: xxxxxxxx

zfs create tank/ws/fs1

zfs snapshot tank/ws/fs1@snap1

zfs clone tank/ws/fs1@snap1 tank/ws/fs1clone

If you want to create a new key for the clone file system, use the zfs clone -K command.

If you clone an encrypted file system rather than a descendent encrypted file system, you are
prompted to provide a new key. For example:

zfs create -o encryption=on tank/ws

Enter passphrase for ’tank/ws’: xxxxxxxx

Enter again: xxxxxxxx

zfs snapshot tank/ws@1

zfs clone tank/ws@1 tank/ws1clone

Enter passphrase for ’tank/ws1clone’: xxxxxxxx

Enter again: xxxxxxxx

EXAMPLE 5–4 Sending and Receiving an Encrypted ZFS File System
In the following example, the tank/home/darren@snap1 snapshot is created from the encrypted
/tank/home/darren file system. Then, the snapshot is sent to bpool/snaps, with the encryption
property enabled so the resulting received data is encrypted. However, the
tank/home/darren@snap1 stream is not encrypted during the send process.

Encrypting ZFS File Systems

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013190

EXAMPLE 5–4 Sending and Receiving an Encrypted ZFS File System (Continued)

zfs get encryption tank/home/darren

NAME PROPERTY VALUE SOURCE

tank/home/darren encryption on local

zfs snapshot tank/home/darren@snap1

zfs get encryption bpool/snaps

NAME PROPERTY VALUE SOURCE

bpool/snaps encryption on inherited from bpool

zfs send tank/home/darren@snap1 | zfs receive bpool/snaps/darren1012

zfs get encryption bpool/snaps/darren1012

NAME PROPERTY VALUE SOURCE

bpool/snaps/darren1012 encryption on inherited from bpool

In this case, a new key is automatically generated for the received encrypted file system.

Migrating ZFS File Systems
You can use the shadow migration feature to migrate file systems as follows:

■ A local or remote ZFS file system to a target ZFS file system
■ A local or remote UFS file system to a target ZFS file system

Shadow migration is a process that pulls the data to be migrated:

■ Create an empty ZFS file system.
■ Set the shadow property on an empty ZFS file system, which is the target (or shadow) file

system, to point to the file system to be migrated.
■ Data from file system to be migrated is copied over to the shadow file system.

You can use the shadow property URI to identify the file system to be migrated in two ways:

■ shadow=file:///path – Use this syntax to migrate a local file system
■ shadow=nfs://host/path – Use this syntax to migrate a NFS file system

Review the following considerations when migrating file systems:

■ The file system to migrated must be set to read-only. If the file system is not set to read-only,
in progress changes might not be migrated.

■ The target file system must be completely empty.
■ If the system is rebooted during a migration, the migration continues after the system is

booted.
■ Access to directory content that is not completely migrated or access to file content that is

not completely migrated is blocked until the entire content is migrated.
■ If you want the UID, GID, and ACL information to be migrated to the shadow file system

during an NFS migration, make sure that the name service information is accessible
between the local and remote systems. You might consider copying a subset of the file

Migrating ZFS File Systems

Chapter 5 • Managing Oracle Solaris ZFS File Systems 191

system data to be migrated for a test migration to see that all the information is migrated
properly before doing a completing a large migration of data over NFS.

■ Migrating file system data over NFS can be slow, depending on your network bandwidth. Be
patient.

■ You can use the shadowstat command to monitor a file system migration, which provides
the following data:
■ The BYTES XFRD column identifies how many bytes have been transferred to the shadow

file system.
■ The BYTES LEFT column fluxuates continuously until the migration is almost complete.

ZFS does not identify how much data needs to be migrated at the beginning of the
migration because this process might be too time-consuming.

■ Consider using the BYTES XFRD and the ELAPSED TIME information to estimate the
length of the migration process.

▼ How to Migrate a File System to a ZFS File System
If you are migrating data from a remote NFS server, confirm that the name service information is
accessible on both systems.

For a large migration using NFS, you might consider doing a test migration of a subset of the
data to ensure that the UID, GUID, and ACL information migrates correctly.

Install the shadow-migration package on the system where the data is to be migrated, if
necessary, and enable the shadowd service to assist with the migration process.
pkg install shadow-migration

svcadm enable shadowd

If you do not enable the shadowd process, you will have to reset the shadow property to none

when the migration process is complete.

Set the local or remote file system to be migrated to read-only.

If you are migrating a local ZFS file system, set it to read-only. For example:
zfs set readonly=on tank/home/data

If you are migrating a remote file system, share it read-only. For example,

share -F nfs -o ro /export/home/ufsdata

share

- /export/home/ufsdata ro ""

1

2

3

Migrating ZFS File Systems

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013192

Create a new ZFS file system with the shadow property set to the file system to be migrated.
For example, if you are migrating a local ZFS file system, rpool/old, to a new ZFS file system,
users/home/shadow, set the shadow property to rpool/old when the users/home/shadow file
system is created.
zfs create -o shadow=file:///rpool/old users/home/shadow

For example, to migrate /export/home/ufsdata from a remote server, set the shadow property
when the ZFS file system is created.

zfs create -o shadow=nfs://neo/export/home/ufsdata users/home/shadow2

Check the progress of the migration.
For example:
shadowstat

EST

BYTES BYTES ELAPSED

DATASET XFRD LEFT ERRORS TIME

users/home/shadow 45.5M 2.75M - 00:02:31

users/home/shadow 55.8M - - 00:02:41

users/home/shadow 69.7M - - 00:02:51

No migrations in progress

When the migration is complete, the shadow property is set to none.

zfs get -r shadow users/home/shadow*

NAME PROPERTY VALUE SOURCE

users/home/shadow shadow none -

users/home/shadow2 shadow none -

Troubleshooting ZFS File System Migrations
Review the following points when troubleshooting ZFS migration problems:

■ If the file system to be migrated is not set to read-only, then not all data will be migrated.
■ If the target file system is not empty when the shadow property is set, the data migration will

not begin.
■ If you add or remove data from the file system to be migrated when the migration is in

progress, those changes might not be migrated.
■ If you attempt to change the mount of the shadow file system when the migration is in

progress, you will see the following message:

zfs set mountpoint=/users/home/data users/home/shadow3

cannot unmount ’/users/home/shadow3’: Device busy

4

5

Migrating ZFS File Systems

Chapter 5 • Managing Oracle Solaris ZFS File Systems 193

Upgrading ZFS File Systems
If you have ZFS file systems from a previous Solaris release, you can upgrade your file systems
with the zfs upgrade command to take advantage of the file system features in the current
release. In addition, this command notifies you when your file systems are running older
versions.

For example, this file system is at the current version 5.

zfs upgrade

This system is currently running ZFS filesystem version 5.

All filesystems are formatted with the current version.

Use this command to identify the features that are available with each file system version.

zfs upgrade -v

The following filesystem versions are supported:

VER DESCRIPTION

--- --

1 Initial ZFS filesystem version

2 Enhanced directory entries

3 Case insensitive and File system unique identifier (FUID)

4 userquota, groupquota properties

5 System attributes

For more information on a particular version, including supported releases,

see the ZFS Administration Guide.

For information about upgrading encrypted file systems, see “Upgrading Encrypted ZFS File
Systems” on page 188

Upgrading ZFS File Systems

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013194

Working With Oracle Solaris ZFS Snapshots and
Clones

This chapter describes how to create and manage Oracle Solaris ZFS snapshots and clones.
Information about saving snapshots is also provided.

The following sections are provided in this chapter:
■ “Overview of ZFS Snapshots” on page 195
■ “Creating and Destroying ZFS Snapshots” on page 196
■ “Displaying and Accessing ZFS Snapshots” on page 199
■ “Rolling Back a ZFS Snapshot” on page 200
■ “Overview of ZFS Clones” on page 202
■ “Creating a ZFS Clone” on page 203
■ “Destroying a ZFS Clone” on page 203
■ “Replacing a ZFS File System With a ZFS Clone” on page 203
■ “Sending and Receiving ZFS Data” on page 204

Overview of ZFS Snapshots
A snapshot is a read-only copy of a file system or volume. Snapshots can be created almost
instantly, and they initially consume no additional disk space within the pool. However, as data
within the active dataset changes, the snapshot consumes disk space by continuing to reference
the old data, thus preventing the disk space from being freed.

ZFS snapshots include the following features:
■ The persist across system reboots.
■ The theoretical maximum number of snapshots is 264.
■ Snapshots use no separate backing store. Snapshots consume disk space directly from the

same storage pool as the file system or volume from which they were created.
■ Recursive snapshots are created quickly as one atomic operation. The snapshots are created

together (all at once) or not created at all. The benefit of atomic snapshot operations is that
the snapshot data is always taken at one consistent time, even across descendent file systems.

6C H A P T E R 6

195

Snapshots of volumes cannot be accessed directly, but they can be cloned, backed up, rolled
back to, and so on. For information about backing up a ZFS snapshot, see “Sending and
Receiving ZFS Data” on page 204.
■ “Creating and Destroying ZFS Snapshots” on page 196
■ “Displaying and Accessing ZFS Snapshots” on page 199
■ “Rolling Back a ZFS Snapshot” on page 200

Creating and Destroying ZFS Snapshots
Snapshots are created by using the zfs snapshot or the zfs snap command, which takes as its
only argument the name of the snapshot to create. The snapshot name is specified as follows:

filesystem@snapname
volume@snapname

The snapshot name must satisfy the naming requirements in “ZFS Component Naming
Requirements” on page 31.

In the following example, a snapshot of tank/home/cindy that is named friday is created.

zfs snapshot tank/home/cindy@friday

You can create snapshots for all descendent file systems by using the -r option. For example:

zfs snapshot -r tank/home@snap1

zfs list -t snapshot -r tank/home

NAME USED AVAIL REFER MOUNTPOINT

tank/home@snap1 0 - 2.11G -

tank/home/cindy@snap1 0 - 115M -

tank/home/lori@snap1 0 - 2.00G -

tank/home/mark@snap1 0 - 2.00G -

tank/home/tim@snap1 0 - 57.3M -

Snapshots have no modifiable properties. Nor can dataset properties be applied to a snapshot.
For example:

zfs set compression=on tank/home/cindy@friday

cannot set property for ’tank/home/cindy@friday’:

this property can not be modified for snapshots

Snapshots are destroyed by using the zfs destroy command. For example:

zfs destroy tank/home/cindy@friday

A dataset cannot be destroyed if snapshots of the dataset exist. For example:

zfs destroy tank/home/cindy

cannot destroy ’tank/home/cindy’: filesystem has children

use ’-r’ to destroy the following datasets:

Overview of ZFS Snapshots

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013196

tank/home/cindy@tuesday

tank/home/cindy@wednesday

tank/home/cindy@thursday

In addition, if clones have been created from a snapshot, then they must be destroyed before the
snapshot can be destroyed.

For more information about the destroy subcommand, see “Destroying a ZFS File System” on
page 135.

Holding ZFS Snapshots
If you have different automatic snapshot policies such that older snapshots are being
inadvertently destroyed by zfs receive because they no longer exist on the sending side, you
might consider using the snapshots hold feature.

Holding a snapshot prevents it from being destroyed. In addition, this feature allows a snapshot
with clones to be deleted pending the removal of the last clone by using the zfs destroy -d
command. Each snapshot has an associated user-reference count, which is initialized to zero.
This count increases by 1 whenever a hold is put on a snapshot and decreases by 1 whenever a
hold is released.

In the previous Oracle Solaris release, a snapshot could only be destroyed by using the zfs
destroy command if it had no clones. In this Oracle Solaris release, the snapshot must also have
a zero user-reference count.

You can hold a snapshot or set of snapshots. For example, the following syntax puts a hold tag,
keep, on tank/home/cindy/snap@1:

zfs hold keep tank/home/cindy@snap1

You can use the -r option to recursively hold the snapshots of all descendent file systems. For
example:

zfs snapshot -r tank/home@now

zfs hold -r keep tank/home@now

This syntax adds a single reference, keep, to the given snapshot or set of snapshots. Each
snapshot has its own tag namespace and hold tags must be unique within that space. If a hold
exists on a snapshot, attempts to destroy that held snapshot by using the zfs destroy
command will fail. For example:

zfs destroy tank/home/cindy@snap1

cannot destroy ’tank/home/cindy@snap1’: dataset is busy

To destroy a held snapshot, use the -d option. For example:

zfs destroy -d tank/home/cindy@snap1

Use the zfs holds command to display a list of held snapshots. For example:

Overview of ZFS Snapshots

Chapter 6 • Working With Oracle Solaris ZFS Snapshots and Clones 197

zfs holds tank/home@now

NAME TAG TIMESTAMP

tank/home@now keep Fri Aug 3 15:15:53 2012

zfs holds -r tank/home@now

NAME TAG TIMESTAMP

tank/home/cindy@now keep Fri Aug 3 15:15:53 2012

tank/home/lori@now keep Fri Aug 3 15:15:53 2012

tank/home/mark@now keep Fri Aug 3 15:15:53 2012

tank/home/tim@now keep Fri Aug 3 15:15:53 2012

tank/home@now keep Fri Aug 3 15:15:53 2012

You can use the zfs release command to release a hold on a snapshot or set of snapshots. For
example:

zfs release -r keep tank/home@now

If the snapshot is released, the snapshot can be destroyed by using the zfs destroy command.
For example:

zfs destroy -r tank/home@now

Two new properties identify snapshot hold information.

■ The defer_destroy property is on if the snapshot has been marked for deferred destruction
by using the zfs destroy -d command. Otherwise, the property is off.

■ The userrefs property is set to the number of holds on this snapshot, also referred to as the
user-reference count.

Renaming ZFS Snapshots
You can rename snapshots, but they must be renamed within the same pool and dataset from
which they were created. For example:

zfs rename tank/home/cindy@snap1 tank/home/cindy@today

In addition, the following shortcut syntax is equivalent to the preceding syntax:

zfs rename tank/home/cindy@snap1 today

The following snapshot rename operation is not supported because the target pool and file
system name are different from the pool and file system where the snapshot was created:

zfs rename tank/home/cindy@today pool/home/cindy@saturday

cannot rename to ’pool/home/cindy@today’: snapshots must be part of same

dataset

You can recursively rename snapshots by using the zfs rename -r command. For example:

zfs list -t snapshot -r users/home

NAME USED AVAIL REFER MOUNTPOINT

users/home@now 23.5K - 35.5K -

Overview of ZFS Snapshots

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013198

users/home@yesterday 0 - 38K -

users/home/lori@yesterday 0 - 2.00G -

users/home/mark@yesterday 0 - 1.00G -

users/home/neil@yesterday 0 - 2.00G -

zfs rename -r users/home@yesterday @2daysago

zfs list -t snapshot -r users/home

NAME USED AVAIL REFER MOUNTPOINT

users/home@now 23.5K - 35.5K -

users/home@2daysago 0 - 38K -

users/home/lori@2daysago 0 - 2.00G -

users/home/mark@2daysago 0 - 1.00G -

users/home/neil@2daysago 0 - 2.00G -

Displaying and Accessing ZFS Snapshots
By default, snapshots are no longer displayed in the zfs list output. You must use the zfs
list -t snapshot command to display snapshot information. Or, enable the listsnapshots
pool property. For example:

zpool get listsnapshots tank

NAME PROPERTY VALUE SOURCE

tank listsnapshots off default

zpool set listsnapshots=on tank

zpool get listsnapshots tank

NAME PROPERTY VALUE SOURCE

tank listsnapshots on local

Snapshots of file systems are accessible in the .zfs/snapshot directory within the root of the
file system. For example, if tank/home/cindy is mounted on /home/cindy, then the
tank/home/cindy@thursday snapshot data is accessible in the
/home/cindy/.zfs/snapshot/thursday directory.

ls /tank/home/cindy/.zfs/snapshot

thursday tuesday wednesday

You can list snapshots as follows:

zfs list -t snapshot -r tank/home

NAME USED AVAIL REFER MOUNTPOINT

tank/home/cindy@tuesday 45K - 2.11G -

tank/home/cindy@wednesday 45K - 2.11G -

tank/home/cindy@thursday 0 - 2.17G -

You can list snapshots that were created for a particular file system as follows:

zfs list -r -t snapshot -o name,creation tank/home

NAME CREATION

tank/home/cindy@tuesday Fri Aug 3 15:18 2012

tank/home/cindy@wednesday Fri Aug 3 15:19 2012

tank/home/cindy@thursday Fri Aug 3 15:19 2012

tank/home/lori@today Fri Aug 3 15:24 2012

tank/home/mark@today Fri Aug 3 15:24 2012

Overview of ZFS Snapshots

Chapter 6 • Working With Oracle Solaris ZFS Snapshots and Clones 199

Disk Space Accounting for ZFS Snapshots
When a snapshot is created, its disk space is initially shared between the snapshot and the file
system, and possibly with previous snapshots. As the file system changes, disk space that was
previously shared becomes unique to the snapshot, and thus is counted in the snapshot's used
property. Additionally, deleting snapshots can increase the amount of disk space unique to (and
thus used by) other snapshots.

A snapshot's space referenced property value is the same as the file system's was when the
snapshot was created.

You can identify additional information about how the values of the used property are
consumed. New read-only file system properties describe disk space usage for clones, file
systems, and volumes. For example:

$ zfs list -o space -r rpool

NAME AVAIL USED USEDSNAP USEDDS USEDREFRESERV USEDCHILD

rpool 124G 9.57G 0 302K 0 9.57G

rpool/ROOT 124G 3.38G 0 31K 0 3.38G

rpool/ROOT/solaris 124G 20.5K 0 0 0 20.5K

rpool/ROOT/solaris/var 124G 20.5K 0 20.5K 0 0

rpool/ROOT/solaris-1 124G 3.38G 66.3M 3.14G 0 184M

rpool/ROOT/solaris-1/var 124G 184M 49.9M 134M 0 0

rpool/VARSHARE 124G 39.5K 0 39.5K 0 0

rpool/dump 124G 4.12G 0 4.00G 129M 0

rpool/export 124G 63K 0 32K 0 31K

rpool/export/home 124G 31K 0 31K 0 0

rpool/swap 124G 2.06G 0 2.00G 64.7M 0

For a description of these properties, see Table 5–1.

Rolling Back a ZFS Snapshot
You can use the zfs rollback command to discard all changes made to a file system since a
specific snapshot was created. The file system reverts to its state at the time the snapshot was
taken. By default, the command cannot roll back to a snapshot other than the most recent
snapshot.

To roll back to an earlier snapshot, all intermediate snapshots must be destroyed. You can
destroy earlier snapshots by specifying the -r option.

If clones of any intermediate snapshots exist, the -R option must be specified to destroy the
clones as well.

Overview of ZFS Snapshots

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013200

Note – The file system that you want to roll back is unmounted and remounted, if it is currently
mounted. If the file system cannot be unmounted, the rollback fails. The -f option forces the file
system to be unmounted, if necessary.

In the following example, the tank/home/cindy file system is rolled back to the tuesday
snapshot:

zfs rollback tank/home/cindy@tuesday

cannot rollback to ’tank/home/cindy@tuesday’: more recent snapshots exist

use ’-r’ to force deletion of the following snapshots:

tank/home/cindy@wednesday

tank/home/cindy@thursday

zfs rollback -r tank/home/cindy@tuesday

In this example, the wednesday and thursday snapshots are destroyed because you rolled back
to the earlier tuesday snapshot.

zfs list -r -t snapshot -o name,creation tank/home/cindy

NAME CREATION

tank/home/cindy@tuesday Fri Aug 3 15:18 2012

Identifying ZFS Snapshot Differences (zfs diff)
You can determine ZFS snapshot differences by using the zfs diff command.

For example, assume that the following two snapshots are created:

$ ls /tank/home/tim

fileA

$ zfs snapshot tank/home/tim@snap1

$ ls /tank/home/tim

fileA fileB

$ zfs snapshot tank/home/tim@snap2

For example, to identify the differences between two snapshots, use syntax similar to the
following:

$ zfs diff tank/home/tim@snap1 tank/home/tim@snap2

M /tank/home/tim/

+ /tank/home/tim/fileB

In the output, the M indicates that the directory has been modified. The + indicates that fileB
exists in the later snapshot.

The M in the following output indicates that a file in a snapshot has been renamed.

$ mv /tank/cindy/fileB /tank/cindy/fileC

$ zfs snapshot tank/cindy@snap2

$ zfs diff tank/cindy@snap1 tank/cindy@snap2

Overview of ZFS Snapshots

Chapter 6 • Working With Oracle Solaris ZFS Snapshots and Clones 201

M /tank/cindy/

R /tank/cindy/fileB -> /tank/cindy/fileC

The following table summarizes the file or directory changes that are identified by the zfs diff
command.

File or Directory Change Identifier

File or directory has been modified or file or directory link has
changed

M

File or directory is present in the older snapshot but not in the
more recent snapshot

—

File or directory is present in the more recent snapshot but not
in the older snapshot

+

File or directory has been renamed R

For more information, see zfs(1M).

Overview of ZFS Clones
A clone is a writable volume or file system whose initial contents are the same as the dataset
from which it was created. As with snapshots, creating a clone is nearly instantaneous and
initially consumes no additional disk space. In addition, you can snapshot a clone.

Clones can only be created from a snapshot. When a snapshot is cloned, an implicit dependency
is created between the clone and snapshot. Even though the clone is created somewhere else in
the file system hierarchy, the original snapshot cannot be destroyed as long as the clone exists.
The origin property exposes this dependency, and the zfs destroy command lists any such
dependencies, if they exist.

Clones do not inherit the properties of the dataset from which it was created. Use the zfs get
and zfs set commands to view and change the properties of a cloned dataset. For more
information about setting ZFS dataset properties, see “Setting ZFS Properties” on page 159.

Because a clone initially shares all its disk space with the original snapshot, its used property
value is initially zero. As changes are made to the clone, it uses more disk space. The used
property of the original snapshot does not include the disk space consumed by the clone.

■ “Creating a ZFS Clone” on page 203
■ “Destroying a ZFS Clone” on page 203
■ “Replacing a ZFS File System With a ZFS Clone” on page 203

Overview of ZFS Clones

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013202

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mzfs-1m

Creating a ZFS Clone
To create a clone, use the zfs clone command, specifying the snapshot from which to create
the clone, and the name of the new file system or volume. The new file system or volume can be
located anywhere in the ZFS hierarchy. The new dataset is the same type (for example, file
system or volume) as the snapshot from which the clone was created. You cannot create a clone
of a file system in a pool that is different from where the original file system snapshot resides.

In the following example, a new clone named tank/home/matt/bug123 with the same initial
contents as the snapshot tank/ws/gate@yesterday is created:

zfs snapshot tank/ws/gate@yesterday

zfs clone tank/ws/gate@yesterday tank/home/matt/bug123

In the following example, a cloned workspace is created from the projects/newproject@today
snapshot for a temporary user as projects/teamA/tempuser. Then, properties are set on the
cloned workspace.

zfs snapshot projects/newproject@today

zfs clone projects/newproject@today projects/teamA/tempuser

zfs set share.nfs=on projects/teamA/tempuser

zfs set quota=5G projects/teamA/tempuser

Destroying a ZFS Clone
ZFS clones are destroyed by using the zfs destroy command. For example:

zfs destroy tank/home/matt/bug123

Clones must be destroyed before the parent snapshot can be destroyed.

Replacing a ZFS File System With a ZFS Clone
You can use the zfs promote command to replace an active ZFS file system with a clone of that
file system. This feature enables you to clone and replace file systems so that the original file
system becomes the clone of the specified file system. In addition, this feature makes it possible
to destroy the file system from which the clone was originally created. Without clone
promotion, you cannot destroy an original file system of active clones. For more information
about destroying clones, see “Destroying a ZFS Clone” on page 203.

In the following example, the tank/test/productA file system is cloned and then the clone file
system, tank/test/productAbeta, becomes the original tank/test/productA file system.

zfs create tank/test

zfs create tank/test/productA

zfs snapshot tank/test/productA@today

Overview of ZFS Clones

Chapter 6 • Working With Oracle Solaris ZFS Snapshots and Clones 203

zfs clone tank/test/productA@today tank/test/productAbeta

zfs list -r tank/test

NAME USED AVAIL REFER MOUNTPOINT

tank/test 104M 66.2G 23K /tank/test

tank/test/productA 104M 66.2G 104M /tank/test/productA

tank/test/productA@today 0 - 104M -

tank/test/productAbeta 0 66.2G 104M /tank/test/productAbeta

zfs promote tank/test/productAbeta

zfs list -r tank/test

NAME USED AVAIL REFER MOUNTPOINT

tank/test 104M 66.2G 24K /tank/test

tank/test/productA 0 66.2G 104M /tank/test/productA

tank/test/productAbeta 104M 66.2G 104M /tank/test/productAbeta

tank/test/productAbeta@today 0 - 104M -

In this zfs list output, note that the disk space accounting information for the original
productA file system has been replaced with the productAbeta file system.

You can complete the clone replacement process by renaming the file systems. For example:

zfs rename tank/test/productA tank/test/productAlegacy

zfs rename tank/test/productAbeta tank/test/productA

zfs list -r tank/test

Optionally, you can remove the legacy file system. For example:

zfs destroy tank/test/productAlegacy

Sending and Receiving ZFS Data
The zfs send command creates a stream representation of a snapshot that is written to
standard output. By default, a full stream is generated. You can redirect the output to a file or to
a different system. The zfs receive command creates a snapshot whose contents are specified
in the stream that is provided on standard input. If a full stream is received, a new file system is
created as well. You can send ZFS snapshot data and receive ZFS snapshot data and file systems
with these commands. See the examples in the next section.

■ “Saving ZFS Data With Other Backup Products” on page 205
■ “Sending a ZFS Snapshot” on page 207
■ “Receiving a ZFS Snapshot” on page 208
■ “Applying Different Property Values to a ZFS Snapshot Stream” on page 210
■ “Sending and Receiving Complex ZFS Snapshot Streams” on page 212
■ “Remote Replication of ZFS Data” on page 214

The following backup solutions for saving ZFS data are available:

■ Enterprise backup products – If you need the following features, then consider an
enterprise backup solution:
■ Per-file restoration

Sending and Receiving ZFS Data

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013204

■ Backup media verification
■ Media management

■ File system snapshots and rolling back snapshots – Use the zfs snapshot and zfs

rollback commands if you want to easily create a copy of a file system and revert to a
previous file system version, if necessary. For example, to restore a file or files from a
previous version of a file system, you could use this solution.
For more information about creating and rolling back to a snapshot, see “Overview of ZFS
Snapshots” on page 195.

■ Saving snapshots – Use the zfs send and zfs receive commands to send and receive a
ZFS snapshot. You can save incremental changes between snapshots, but you cannot restore
files individually. You must restore the entire file system snapshot. These commands do not
provide a complete backup solution for saving your ZFS data.

■ Remote replication – Use the zfs send and zfs receive commands to copy a file system
from one system to another system. This process is different from a traditional volume
management product that might mirror devices across a WAN. No special configuration or
hardware is required. The advantage of replicating a ZFS file system is that you can re-create
a file system on a storage pool on another system, and specify different levels of
configuration for the newly created pool, such as RAID-Z, but with identical file system
data.

■ Archive utilities – Save ZFS data with archive utilities such as tar, cpio, and pax or
third-party backup products. Currently, both tar and cpio translate NFSv4-style ACLs
correctly, but pax does not.

Saving ZFS Data With Other Backup Products
In addition to the zfs send and zfs receive commands, you can also use archive utilities,
such as the tar and cpio commands, to save ZFS files. These utilities save and restore ZFS file
attributes and ACLs. Check the appropriate options for both the tar and cpio commands.

For up-to-date information about issues with ZFS and third-party backup products, see the
Oracle Solaris 11 Release Notes.

Identifying ZFS Snapshot Streams
A snapshot of a ZFS file system or volume is converted into a snapshot stream by using the zfs
send command. Then, you can use the snapshot stream to re-create a ZFS file system or volume
by using the zfs receive command.

Depending on the zfs send options that were used to create the snapshot stream, different
types of stream formats are generated.
■ Full stream – Consists of all dataset content from the time that the dataset was created up to

the specified snapshot.

Sending and Receiving ZFS Data

Chapter 6 • Working With Oracle Solaris ZFS Snapshots and Clones 205

The default stream generated by the zfs send command is a full stream. It contains one file
system or volume, up to and including the specified snapshot. The stream does not contain
snapshots other than the snapshot specified on the command line.

■ Incremental stream – Consists of the differences between one snapshot and another
snapshot.

A stream package is a stream type that contains one or more full or incremental streams. Three
types of stream packages exist:

■ Replication stream package – Consists of the specified dataset and its descendents. It
includes all intermediate snapshots. If the origin of a cloned dataset is not a descendent of
the snapshot specified on the command line, that origin dataset is not included in the stream
package. To receive the stream, the origin dataset must exist in the destination storage pool.
Consider the following list of datasets and their origins. Assume that they were created in
the order that they appear below.

NAME ORIGIN

pool/a -

pool/a/1 -

pool/a/1@clone -

pool/b -

pool/b/1 pool/a/1@clone

pool/b/1@clone2 -

pool/b/2 pool/b/1@clone2

pool/b@pre-send -

pool/b/1@pre-send -

pool/b/2@pre-send -

pool/b@send -

pool/b/1@send -

pool/b/2@send -

A replication stream package that is created with the following syntax:

zfs send -R pool/b@send

Consists of the following full and incremental streams:

TYPE SNAPSHOT INCREMENTAL FROM

full pool/b@pre-send -

incr pool/b@send pool/b@pre-send

incr pool/b/1@clone2 pool/a/1@clone

incr pool/b/1@pre-send pool/b/1@clone2

incr pool/b/1@send pool/b/1@send

incr pool/b/2@pre-send pool/b/1@clone2

incr pool/b/2@send pool/b/2@pre-send

In the preceding output, the pool/a/1@clone snapshot is not included in the replication
stream package. As such, this replication stream package can only be received in a pool that
already has pool/a/1@clone snapshot.

■ Recursive stream package – Consists of the specified dataset and its descendents. Unlike
replication stream packages, intermediate snapshots are not included unless they are the
origin of a cloned dataset that is included in the stream. By default, if the origin of a dataset is

Sending and Receiving ZFS Data

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013206

not a descendent of the snapshot specified on the command line, the behavior is the similar
to replication streams. However, a self-contained recursive stream, discussed below, are
created in such a way that there are no external dependencies.
A recursive stream package that is created with the following syntax:

zfs send -r pool/b@send ...

Consists of the following full and incremental streams:

TYPE SNAPSHOT INCREMENTAL FROM

full pool/b@send -

incr pool/b/1@clone2 pool/a/1@clone

incr pool/b/1@send pool/b/1@clone2

incr pool/b/2@send pool/b/1@clone2

In the preceding output, the pool/a/1@clone snapshot is not included in the recursive
stream package. As such, this recursive stream package can only be received in a pool that
already has pool/a/1@clone snapshot. This behavior is similar to the replication stream
package scenario described above.

■ Self-contained recursive stream package - Is not dependent on any datasets that are not
included in the stream package. This recursive stream package is created with the following
syntax:

zfs send -rc pool/b@send ...

Consists of the following full and incremental streams:

TYPE SNAPSHOT INCREMENTAL FROM

full pool/b@send -

full pool/b/1@clone2

incr pool/b/1@send pool/b/1@clone2

incr pool/b/2@send pool/b/1@clone2

Notice that the self-contained recursive stream has a full stream of the pool/b/1@clone2
snapshot, making it possible receive the pool/b/1 snapshot with no external dependencies.

Sending a ZFS Snapshot
You can use the zfs send command to send a copy of a snapshot stream and receive the
snapshot stream in another pool on the same system or in another pool on a different system
that is used to store backup data. For example, to send the snapshot stream on a different pool to
the same system, use syntax similar to the following:

zfs send tank/dana@snap1 | zfs recv spool/ds01

You can use zfs recv as an alias for the zfs receive command.

If you are sending the snapshot stream to a different system, pipe the zfs send output through
the ssh command. For example:

Sending and Receiving ZFS Data

Chapter 6 • Working With Oracle Solaris ZFS Snapshots and Clones 207

sys1# zfs send tank/dana@snap1 | ssh sys2 zfs recv newtank/dana

When you send a full stream, the destination file system must not exist.

You can send incremental data by using the zfs send -i option. For example:

sys1# zfs send -i tank/dana@snap1 tank/dana@snap2 | ssh sys2 zfs recv newtank/dana

The first argument (snap1) is the earlier snapshot and the second argument (snap2) is the later
snapshot. In this case, the newtank/dana file system must already exist for the incremental
receive to be successful.

Note – Accessing file information in the original received file system, can cause the incremental
snapshot receive operation to fail with a message similar to this one:

cannot receive incremental stream of tank/dana@snap2 into newtank/dana:

most recent snapshot of tank/dana@snap2 does not match incremental source

Consider setting the atime property to off if you need to access file information in the original
received file system and if you also need to receive incremental snapshots into the received file
system.

The incremental snap1 source can be specified as the last component of the snapshot name.
This shortcut means you only have to specify the name after the @ sign for snap1, which is
assumed to be from the same file system as snap2. For example:

sys1# zfs send -i snap1 tank/dana@snap2 | ssh sys2 zfs recv newtank/dana

This shortcut syntax is equivalent to the incremental syntax in the preceding example.

The following message is displayed if you attempt to generate an incremental stream from a
different file system snapshot1:

cannot send ’pool/fs@name’: not an earlier snapshot from the same fs

If you need to store many copies, consider compressing a ZFS snapshot stream representation
with the gzip command. For example:

zfs send pool/fs@snap | gzip > backupfile.gz

Receiving a ZFS Snapshot
Keep the following key points in mind when you receive a file system snapshot:
■ Both the snapshot and the file system are received.
■ The file system and all descendent file systems are unmounted.

Sending and Receiving ZFS Data

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013208

■ The file systems are inaccessible while they are being received.
■ The original file system to be received must not exist while it is being transferred.
■ If the file system name already exists, you can use zfs rename command to rename the file

system.

For example:

zfs send tank/gozer@0830 > /bkups/gozer.083006

zfs receive tank/gozer2@today < /bkups/gozer.083006

zfs rename tank/gozer tank/gozer.old

zfs rename tank/gozer2 tank/gozer

If you make a change to the destination file system and you want to perform another
incremental send of a snapshot, you must first roll back the receiving file system.

Consider the following example. First, make a change to the file system as follows:

sys2# rm newtank/dana/file.1

Then, perform an incremental send of tank/dana@snap3. However, you must first roll back the
receiving file system to receive the new incremental snapshot. Or, you can eliminate the
rollback step by using the -F option. For example:

sys1# zfs send -i tank/dana@snap2 tank/dana@snap3 | ssh sys2 zfs recv -F newtank/dana

When you receive an incremental snapshot, the destination file system must already exist.

If you make changes to the file system and you do not roll back the receiving file system to
receive the new incremental snapshot or you do not use the -F option, you see a message similar
to the following:

sys1# zfs send -i tank/dana@snap4 tank/dana@snap5 | ssh sys2 zfs recv newtank/dana

cannot receive: destination has been modified since most recent snapshot

The following checks are performed before the -F option is successful:

■ If the most recent snapshot doesn't match the incremental source, neither the roll back nor
the receive is completed, and an error message is returned.

■ If you accidentally provide the name of different file system that doesn't match the
incremental source specified in the zfs receive command, neither the rollback nor the
receive is completed, and the following error message is returned:

cannot send ’pool/fs@name’: not an earlier snapshot from the same fs

Sending and Receiving ZFS Data

Chapter 6 • Working With Oracle Solaris ZFS Snapshots and Clones 209

Applying Different Property Values to a ZFS Snapshot
Stream
You can send a ZFS snapshot stream with a certain file system property value, but you can
specify a different local property value when the snapshot stream is received. Or, you can
specify that the original property value be used when the snapshot stream is received to
re-create the original file system. In addition, you can disable a file system property when the
snapshot stream is received.
■ Use the zfs inherit -S to revert a local property value to the received value, if any. If a

property does not have a received value, the behavior of the zfs inherit -S command is the
same as the zfs inherit command without the -S option. If the property does have a
received value, the zfs inherit command masks the received value with the inherited
value until issuing a zfs inherit -S command reverts it to the received value.

■ You can use the zfs get -o to include the new non-default RECEIVED column. Or, use the
zfs get -o all command to include all columns, including RECEIVED.

■ You can use the zfs send -p option to include properties in the send stream without the -R
option.

■ You can use the zfs receive -e option to use the last element of the sent snapshot name to
determine the new snapshot name. The following example sends the poola/bee/cee@1
snapshot to the poold/eee file system and only uses the last element (cee@1) of the snapshot
name to create the received file system and snapshot.

zfs list -rt all poola

NAME USED AVAIL REFER MOUNTPOINT

poola 134K 134G 23K /poola

poola/bee 44K 134G 23K /poola/bee

poola/bee/cee 21K 134G 21K /poola/bee/cee

poola/bee/cee@1 0 - 21K -

zfs send -R poola/bee/cee@1 | zfs receive -e poold/eee

zfs list -rt all poold

NAME USED AVAIL REFER MOUNTPOINT

poold 134K 134G 23K /poold

poold/eee 44K 134G 23K /poold/eee

poold/eee/cee 21K 134G 21K /poold/eee/cee

poold/eee/cee@1 0 - 21K -

In some cases, file system properties in a send stream might not apply to the receiving file
system or local file system properties, such as the mountpoint property value, might interfere
with a restore.

For example, the tank/data file system has the compression property disabled. A snapshot of
the tank/data file system is sent with properties (-p option) to a backup pool and is received
with the compression property enabled.

zfs get compression tank/data

NAME PROPERTY VALUE SOURCE

tank/data compression off default

Sending and Receiving ZFS Data

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013210

zfs snapshot tank/data@snap1

zfs send -p tank/data@snap1 | zfs recv -o compression=on -d bpool

zfs get -o all compression bpool/data

NAME PROPERTY VALUE RECEIVED SOURCE

bpool/data compression on off local

In the example, the compression property is enabled when the snapshot is received into bpool.
So, for bpool/data, the compression value is on.

If this snapshot stream is sent to a new pool, restorepool, for recovery purposes, you might
want to keep all the original snapshot properties. In this case, you would use the zfs send -b
command to restore the original snapshot properties. For example:

zfs send -b bpool/data@snap1 | zfs recv -d restorepool

zfs get -o all compression restorepool/data

NAME PROPERTY VALUE RECEIVED SOURCE

restorepool/data compression off off received

In the example, the compression value is off, which represents the snapshot compression value
from the original tank/data file system.

If you have a local file system property value in a snapshot stream and you want to disable the
property when it is received, use the zfs receive -x command. For example, the following
command sends a recursive snapshot stream of home directory file systems with all file system
properties reserved to a backup pool, but without the quota property values:

zfs send -R tank/home@snap1 | zfs recv -x quota bpool/home

zfs get -r quota bpool/home

NAME PROPERTY VALUE SOURCE

bpool/home quota none local

bpool/home@snap1 quota - -

bpool/home/lori quota none default

bpool/home/lori@snap1 quota - -

bpool/home/mark quota none default

bpool/home/mark@snap1 quota - -

If the recursive snapshot was not received with the -x option, the quota property would be set in
the received file systems.

zfs send -R tank/home@snap1 | zfs recv bpool/home

zfs get -r quota bpool/home

NAME PROPERTY VALUE SOURCE

bpool/home quota none received

bpool/home@snap1 quota - -

bpool/home/lori quota 10G received

bpool/home/lori@snap1 quota - -

bpool/home/mark quota 10G received

bpool/home/mark@snap1 quota - -

Sending and Receiving ZFS Data

Chapter 6 • Working With Oracle Solaris ZFS Snapshots and Clones 211

Sending and Receiving Complex ZFS Snapshot
Streams
This section describes how to use the zfs send -I and -R options to send and receive more
complex snapshot streams.

Keep the following points in mind when sending and receiving complex ZFS snapshot streams:

■ Use the zfs send -I option to send all incremental streams from one snapshot to a
cumulative snapshot. Or, use this option to send an incremental stream from the original
snapshot to create a clone. The original snapshot must already exist on the receiving side to
accept the incremental stream.

■ Use the zfs send -R option to send a replication stream of all descendent file systems. When
the replication stream is received, all properties, snapshots, descendent file systems, and
clones are preserved.

■ When using the zfs send -r option without the -c option and when using the zfs send -R
option stream packages omit the origin of clones in some circumstances. For more
information, see “Identifying ZFS Snapshot Streams” on page 205.

■ Use both options to send an incremental replication stream.
■ Changes to properties are preserved, as are snapshot and file system rename and destroy

operations are preserved.
■ If zfs recv -F is not specified when receiving the replication stream, dataset destroy

operations are ignored. The zfs recv -F syntax in this case also retains its rollback if
necessary meaning.

■ As with other (non zfs send -R) -i or -I cases, if -I is used, all snapshots between snapA

and snapD are sent. If -i is used, only snapD (for all descendents) are sent.
■ To receive any of these new types of zfs send streams, the receiving system must be

running a software version capable of sending them. The stream version is incremented.

However, you can access streams from older pool versions by using a newer software
version. For example, you can send and receive streams created with the newer options to
and from a version 3 pool. But, you must be running recent software to receive a stream sent
with the newer options.

EXAMPLE 6–1 Sending and Receiving Complex ZFS Snapshot Streams

A group of incremental snapshots can be combined into one snapshot by using the zfs send -I
option. For example:

zfs send -I pool/fs@snapA pool/fs@snapD > /snaps/fs@all-I

Then, you would remove snapB, snapC, and snapD.

Sending and Receiving ZFS Data

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013212

EXAMPLE 6–1 Sending and Receiving Complex ZFS Snapshot Streams (Continued)

zfs destroy pool/fs@snapB

zfs destroy pool/fs@snapC

zfs destroy pool/fs@snapD

To receive the combined snapshot, you would use the following command.

zfs receive -d -F pool/fs < /snaps/fs@all-I

zfs list

NAME USED AVAIL REFER MOUNTPOINT

pool 428K 16.5G 20K /pool

pool/fs 71K 16.5G 21K /pool/fs

pool/fs@snapA 16K - 18.5K -

pool/fs@snapB 17K - 20K -

pool/fs@snapC 17K - 20.5K -

pool/fs@snapD 0 - 21K -

You can also use the zfs send -I command to combine a snapshot and a clone snapshot to
create a combined dataset. For example:

zfs create pool/fs

zfs snapshot pool/fs@snap1

zfs clone pool/fs@snap1 pool/clone

zfs snapshot pool/clone@snapA

zfs send -I pool/fs@snap1 pool/clone@snapA > /snaps/fsclonesnap-I

zfs destroy pool/clone@snapA

zfs destroy pool/clone

zfs receive -F pool/clone < /snaps/fsclonesnap-I

You can use the zfs send -R command to replicate a ZFS file system and all descendent file
systems, up to the named snapshot. When this stream is received, all properties, snapshots,
descendent file systems, and clones are preserved.

In the following example, snapshots are created for user file systems. One replication stream is
created for all user snapshots. Next, the original file systems and snapshots are destroyed and
then recovered.

zfs snapshot -r users@today

zfs list

NAME USED AVAIL REFER MOUNTPOINT

users 187K 33.2G 22K /users

users@today 0 - 22K -

users/user1 18K 33.2G 18K /users/user1

users/user1@today 0 - 18K -

users/user2 18K 33.2G 18K /users/user2

users/user2@today 0 - 18K -

users/user3 18K 33.2G 18K /users/user3

users/user3@today 0 - 18K -

zfs send -R users@today > /snaps/users-R

zfs destroy -r users

zfs receive -F -d users < /snaps/users-R

zfs list

NAME USED AVAIL REFER MOUNTPOINT

Sending and Receiving ZFS Data

Chapter 6 • Working With Oracle Solaris ZFS Snapshots and Clones 213

EXAMPLE 6–1 Sending and Receiving Complex ZFS Snapshot Streams (Continued)

users 196K 33.2G 22K /users

users@today 0 - 22K -

users/user1 18K 33.2G 18K /users/user1

users/user1@today 0 - 18K -

users/user2 18K 33.2G 18K /users/user2

users/user2@today 0 - 18K -

users/user3 18K 33.2G 18K /users/user3

users/user3@today 0 - 18K -

In the following example, the zfs send -R command was used to replicate the users file system
and its descendents, and to send the replicated stream to another pool, users2.

zfs create users2 mirror c0t1d0 c1t1d0

zfs receive -F -d users2 < /snaps/users-R

zfs list

NAME USED AVAIL REFER MOUNTPOINT

users 224K 33.2G 22K /users

users@today 0 - 22K -

users/user1 33K 33.2G 18K /users/user1

users/user1@today 15K - 18K -

users/user2 18K 33.2G 18K /users/user2

users/user2@today 0 - 18K -

users/user3 18K 33.2G 18K /users/user3

users/user3@today 0 - 18K -

users2 188K 16.5G 22K /users2

users2@today 0 - 22K -

users2/user1 18K 16.5G 18K /users2/user1

users2/user1@today 0 - 18K -

users2/user2 18K 16.5G 18K /users2/user2

users2/user2@today 0 - 18K -

users2/user3 18K 16.5G 18K /users2/user3

users2/user3@today 0 - 18K -

Remote Replication of ZFS Data
You can use the zfs send and zfs recv commands to remotely copy a snapshot stream
representation from one system to another system. For example:

zfs send tank/cindy@today | ssh newsys zfs recv sandbox/restfs@today

This command sends the tank/cindy@today snapshot data and receives it into the
sandbox/restfs file system. The command also creates a restfs@today snapshot on the
newsys system. In this example, the user has been configured to use ssh on the remote system.

Sending and Receiving ZFS Data

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013214

Using ACLs and Attributes to Protect Oracle
Solaris ZFS Files

This chapter provides information about using access control lists (ACLs) to protect your ZFS
files by providing more granular permissions than the standard UNIX permissions.

The following sections are provided in this chapter:

■ “Solaris ACL Model” on page 215
■ “Setting ACLs on ZFS Files” on page 222
■ “Setting and Displaying ACLs on ZFS Files in Verbose Format” on page 224
■ “Setting and Displaying ACLs on ZFS Files in Compact Format” on page 235
■ “Applying Special Attributes to ZFS Files” on page 240

Solaris ACL Model
Previous versions of Solaris supported an ACL implementation that was primarily based on the
POSIX-draft ACL specification. The POSIX-draft based ACLs are used to protect UFS files and
are translated by versions of NFS prior to NFSv4.

With the introduction of NFSv4, a new ACL model fully supports the interoperability that
NFSv4 offers between UNIX and non-UNIX clients. The new ACL implementation, as defined
in the NFSv4 specification, provides much richer semantics that are based on NT-style ACLs.

The main differences of the new ACL model are as follows:

■ Based on the NFSv4 specification and similar to NT-style ACLs.
■ Provide much more granular set of access privileges. For more information, see Table 7–2.
■ Set and displayed with the chmod and ls commands rather than the setfacl and getfacl

commands.
■ Provide richer inheritance semantics for designating how access privileges are applied from

directory to subdirectories, and so on. For more information, see “ACL Inheritance” on
page 220.

7C H A P T E R 7

215

Both ACL models provide more fine-grained access control than is available with the standard
file permissions. Much like POSIX-draft ACLs, the new ACLs are composed of multiple Access
Control Entries (ACEs).

POSIX-draft style ACLs use a single entry to define what permissions are allowed and what
permissions are denied. The new ACL model has two types of ACEs that affect access checking:
ALLOW and DENY. As such, you cannot infer from any single ACE that defines a set of permissions
whether or not the permissions that weren't defined in that ACE are allowed or denied.

Translation between NFSv4-style ACLs and POSIX-draft ACLs is as follows:
■ If you use any ACL-aware utility, such as the cp, mv, tar, cpio, or rcp commands, to transfer

UFS files with ACLs to a ZFS file system, the POSIX-draft ACLs are translated into the
equivalent NFSv4-style ACLs.

■ Some NFSv4-style ACLs are translated to POSIX-draft ACLs. You see a message similar to
the following if an NFSv4–style ACL isn't translated to a POSIX-draft ACL:

cp -p filea /var/tmp

cp: failed to set acl entries on /var/tmp/filea

■ If you create a UFS tar or cpio archive with the preserve ACL option (tar -p or cpio -P) on
a system that runs a current Solaris release, you will lose the ACLs when the archive is
extracted on a system that runs a previous Solaris release.
All of the files are extracted with the correct file modes, but the ACL entries are ignored.

■ You can use the ufsrestore command to restore data into a ZFS file system. If the original
data includes POSIX-style ACLs, they are converted to NFSv4-style ACLs.

■ If you attempt to set an NFSv4-style ACL on a UFS file, you see a message similar to the
following:

chmod: ERROR: ACL type’s are different

■ If you attempt to set a POSIX-style ACL on a ZFS file, you will see messages similar to the
following:

getfacl filea

File system doesn’t support aclent_t style ACL’s.

See acl(5) for more information on Solaris ACL support.

For information about other limitations with ACLs and backup products, see “Saving ZFS Data
With Other Backup Products” on page 205.

Syntax Descriptions for Setting ACLs
Two basic ACL formats are provided as follows:
■ Trivial ACL – Contains only traditional UNIX user, group, and owner entries.
■ Non-Trivial ACL – Contains more entries than just owner, group, and everyone, or

includes inheritance flags set, or the entries are ordered in a non-traditional way.

Solaris ACL Model

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013216

Syntax for Setting Trivial ACLs

chmod [options] A[index]{+|=}owner@ |group@

|everyone@:access-permissions/...[:inheritance-flags]:deny | allow file

chmod [options] A-owner@, group@,

everyone@:access-permissions/...[:inheritance-flags]:deny | allow file ...

chmod [options] A[index]- file

Syntax for Setting Non-Trivial ACLs

chmod [options]

A[index]{+|=}user|group:name:access-permissions/...[:inheritance-flags]:deny | allow file

chmod [options] A-user|group:name:access-permissions/...[:inheritance-flags]:deny |

allow file ...

chmod [options] A[index]- file

owner@, group@, everyone@
Identifies the ACL-entry-type for trivial ACL syntax. For a description of ACL-entry-types,
see Table 7–1.

user or group:ACL-entry-ID=username or groupname
Identifies the ACL-entry-type for explicit ACL syntax. The user and group ACL-entry-type
must also contain the ACL-entry-ID, username or groupname. For a description of
ACL-entry-types, see Table 7–1.

access-permissions/.../
Identifies the access permissions that are granted or denied. For a description of ACL access
privileges, see Table 7–2.

inheritance-flags
Identifies an optional list of ACL inheritance flags. For a description of the ACL inheritance
flags, see Table 7–4.

deny | allow
Identifies whether the access permissions are granted or denied.

In the following example, no ACL-entry-ID value exists for owner@, group@, or everyone@..

group@:write_data/append_data/execute:deny

The following example includes an ACL-entry-ID because a specific user (ACL-entry-type) is
included in the ACL.

0:user:gozer:list_directory/read_data/execute:allow

When an ACL entry is displayed, it looks similar to the following:

Solaris ACL Model

Chapter 7 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 217

2:group@:write_data/append_data/execute:deny

The 2 or the index-ID designation in this example identifies the ACL entry in the larger ACL,
which might have multiple entries for owner, specific UIDs, group, and everyone. You can
specify the index-ID with the chmod command to identify which part of the ACL you want to
modify. For example, you can identify index ID 3 as A3 to the chmod command, similar to the
following:

chmod A3=user:venkman:read_acl:allow filename

ACL entry types, which are the ACL representations of owner, group, and other, are described
in the following table.

TABLE 7–1 ACL Entry Types

ACL Entry Type Description

owner@ Specifies the access granted to the owner of the object.

group@ Specifies the access granted to the owning group of the object.

everyone@ Specifies the access granted to any user or group that does not match any other ACL
entry.

user With a user name, specifies the access granted to an additional user of the object.
Must include the ACL-entry-ID, which contains a username or userID. If the value is
not a valid numeric UID or username, the ACL entry type is invalid.

group With a group name, specifies the access granted to an additional group of the object.
Must include the ACL-entry-ID, which contains a groupname or groupID. If the
value is not a valid numeric GID or groupname, the ACL entry type is invalid.

ACL access privileges are described in the following table.

TABLE 7–2 ACL Access Privileges

Access Privilege
Compact Access
Privilege Description

add_file w Permission to add a new file to a directory.

add_subdirectory p On a directory, permission to create a subdirectory.

append_data p Not currently implemented.

delete d Permission to delete a file. For more information about specific
delete permission behavior, see Table 7–3.

delete_child D Permission to delete a file or directory within a directory. For more
information about specific delete_child permission behavior, see
Table 7–3.

Solaris ACL Model

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013218

TABLE 7–2 ACL Access Privileges (Continued)

Access Privilege
Compact Access
Privilege Description

execute x Permission to execute a file or search the contents of a directory.

list_directory r Permission to list the contents of a directory.

read_acl c Permission to read the ACL (ls).

read_attributes a Permission to read basic attributes (non-ACLs) of a file. Think of
basic attributes as the stat level attributes. Allowing this access mask
bit means the entity can execute ls(1) and stat(2).

read_data r Permission to read the contents of the file.

read_xattr R Permission to read the extended attributes of a file or perform a
lookup in the file's extended attributes directory.

synchronize s Not currently implemented.

write_xattr W Permission to create extended attributes or write to the extended
attributes directory.

Granting this permission to a user means that the user can create an
extended attribute directory for a file. The attribute file's
permissions control the user's access to the attribute.

write_data w Permission to modify or replace the contents of a file.

write_attributes A Permission to change the times associated with a file or directory to
an arbitrary value.

write_acl C Permission to write the ACL or the ability to modify the ACL by
using the chmod command.

write_owner o Permission to change the file's owner or group. Or, the ability to
execute the chown or chgrp commands on the file.

Permission to take ownership of a file or permission to change the
group ownership of the file to a group of which the user is a
member. If you want to change the file or group ownership to an
arbitrary user or group, then the PRIV_FILE_CHOWN privilege is
required.

The following table provides additional details about ACL delete and delete_child behavior.

TABLE 7–3 ACL delete and delete_child Permission Behavior

Parent Directory Permissions Target Object Permissions

ACL allows delete ACL denies delete Delete permission
unspecified

Solaris ACL Model

Chapter 7 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 219

TABLE 7–3 ACL delete and delete_child Permission Behavior (Continued)
Parent Directory Permissions Target Object Permissions

ACL allows delete_child Permit Permit Permit

ACL denies delete_child Permit Deny Deny

ACL allows only write and
execute

Permit Permit Permit

ACL denies write and
execute

Permit Deny Deny

ZFS ACL Sets
The following ACL combinations can be applied in an ACL set rather than setting individual
permissions separately. The following ACL sets are available.

ACL Set Name Included ACL Permissions

full_set All permissions

modify_set all permissions except write_acl and write_owner

read_set read_data, read_attributes, read_xattr, and read_acl

write_set write_data, append_data, write_attributes, and
write_xattr

These ACL sets are prefined and cannot be modified.

ACL Inheritance
The purpose of using ACL inheritance is so that a newly created file or directory can inherit the
ACLs they are intended to inherit, but without disregarding the existing permission bits on the
parent directory.

By default, ACLs are not propagated. If you set a non-trivial ACL on a directory, it is not
inherited to any subsequent directory. You must specify the inheritance of an ACL on a file or
directory.

The optional inheritance flags are described in the following table.

Solaris ACL Model

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013220

TABLE 7–4 ACL Inheritance Flags

Inheritance Flag
Compact Inheritance
Flag Description

file_inherit f Only inherit the ACL from the parent directory to the
directory's files.

dir_inherit d Only inherit the ACL from the parent directory to the
directory's subdirectories.

inherit_only i Inherit the ACL from the parent directory but applies only to
newly created files or subdirectories and not the directory itself.
This flag requires the file_inherit flag, the dir_inherit flag,
or both, to indicate what to inherit.

no_propagate n Only inherit the ACL from the parent directory to the first-level
contents of the directory, not the second-level or subsequent
contents. This flag requires the file_inherit flag, the
dir_inherit flag, or both, to indicate what to inherit.

- N/A No permission granted.

Currently, the following flags are only applicable to a SMB client or server.

successful_access S Indicates whether an alarm or audit record should be initiated
upon a successful access. This flag is used with audit or alarm
ACE types.

failed_access F Indicates whether an alarm or audit record should be initiated
when an access fails. This flag is used with audit or alarm ACE
types.

inherited I Indicates that an ACE was inherited.

In addition, you can set a default ACL inheritance policy on the file system that is more strict or
less strict by using the aclinherit file system property. For more information, see the next
section.

ACL Properties
The ZFS file system includes the following ACL properties to determine the specific behavior of
ACL inheritance and ACL interaction with chmod operations.
■ aclinherit – Determine the behavior of ACL inheritance. Values include the following:

■ discard – For new objects, no ACL entries are inherited when a file or directory is
created. The ACL on the file or directory is equal to the permission mode of the file or
directory.

■ noallow – For new objects, only inheritable ACL entries that have an access type of deny
are inherited.

Solaris ACL Model

Chapter 7 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 221

■ restricted – For new objects, the write_owner and write_acl permissions are
removed when an ACL entry is inherited.

■ passthrough – When property value is set to passthrough, files are created with a mode
determined by the inheritable ACEs. If no inheritable ACEs exist that affect the mode,
then the mode is set in accordance to the requested mode from the application.

■ passthrough-x – Has the same semantics as passthrough, except that when
passthrough-x is enabled, files are created with the execute (x) permission, but only if
execute permission is set in the file creation mode and in an inheritable ACE that affects
the mode.

The default mode for the aclinherit is restricted.
■ aclmode – Modifies ACL behavior when a file is initially created or controls how an ACL is

modified during a chmod operation. Values include the following:
■ discard – A file system with an aclmode property of discard deletes all ACL entries that

do not represent the mode of the file. This is the default value.
■ mask – A file system with an aclmode property of mask reduces user or group

permissions. The permissions are reduced, such that they are no greater than the group
permission bits, unless it is a user entry that has the same UID as the owner of the file or
directory. In this case, the ACL permissions are reduced so that they are no greater than
owner permission bits. The mask value also preserves the ACL across mode changes,
provided an explicit ACL set operation has not been performed.

■ passthrough – A file system with an aclmode property of passthrough indicates that no
changes are made to the ACL other than generating the necessary ACL entries to
represent the new mode of the file or directory.

The default mode for the aclmode is discard.

For more information on using the aclmode property, see Example 7–14.

Setting ACLs on ZFS Files
As implemented with ZFS, ACLs are composed of an array of ACL entries. ZFS provides a pure
ACL model, where all files have an ACL. Typically, the ACL is trivial in that it only represents
the traditional UNIX owner/group/other entries.

ZFS files still have permission bits and a mode, but these values are more of a cache of what the
ACL represents. As such, if you change the permissions of the file, the file's ACL is updated
accordingly. In addition, if you remove a non-trivial ACL that granted a user access to a file or
directory, that user could still have access to the file or directory because of the file or directory's
permission bits that grant access to group or everyone. All access control decisions are governed
by the permissions represented in a file or directory's ACL.

The primary rules of ACL access on a ZFS file are as follows:

Setting ACLs on ZFS Files

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013222

■ ZFS processes ACL entries in the order they are listed in the ACL, from the top down.
■ Only ACL entries that have a “who” that matches the requester of the access are processed.
■ Once an allow permission has been granted, it cannot be denied by a subsequent ACL deny

entry in the same ACL permission set.
■ The owner of the file is granted the write_acl permission unconditionally, even if the

permission is explicitly denied. Otherwise, any permission left unspecified is denied.
In the cases of deny permissions or when an access permission is missing, the privilege
subsystem determines what access request is granted for the owner of the file or for
superuser. This mechanism prevents owners of files from getting locked out of their files and
enables superuser to modify files for recovery purposes.

If you set a non-trivial ACL on a directory, the ACL is not automatically inherited by the
directory's children. If you set an non-trivial ACL and you want it inherited to the directory's
children, you have to use the ACL inheritance flags. For more information, see Table 7–4 and
“Setting ACL Inheritance on ZFS Files in Verbose Format” on page 229.

When you create a new file and depending on the umask value, a default trivial ACL, similar to
the following, is applied:

$ ls -v file.1

-rw-r--r-- 1 root root 206663 Jun 23 15:06 file.1

0:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

2:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Each user category (owner@, group@, everyone@) has an ACL entry in this example.

A description of this file ACL is as follows:

0:owner@ The owner can read and modify the contents of the file
(read_data/write_data/append_data/read_xattr). The owner can also
modify the file's attributes such as timestamps, extended attributes, and ACLs
(write_xattr/read_attributes/write_attributes/read_acl/write_acl).
In addition, the owner can modify the ownership of the file
(write_owner:allow).

The synchronize access permission is not currently implemented.

1:group@ The group is granted read permissions to the file and the file's attributes
(read_data/read_xattr/read_attributes/read_acl:allow).

2:everyone@ Everyone who is not user or group is granted read permissions to the file and
the file's attributes (read_data/read_xattr/read_attributes/read_acl/
synchronize:allow). The synchronize access permission is not currently
implemented.

Setting ACLs on ZFS Files

Chapter 7 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 223

When a new directory is created and depending on the umask value, a default directory ACL is
similar to the following:

$ ls -dv dir.1

drwxr-xr-x 2 root root 2 Jul 20 13:44 dir.1

0:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

2:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

A description of this directory ACL is as follows:

0:owner@ The owner can read and modify the directory contents
(list_directory/read_data/add_file/write_data/add_subdirectory
/append_data) and read and modify the file's attributes such as timestamps,
extended attributes, and ACLs
(/read_xattr/write_xattr/read_attributes/write_attributes/read_acl/
write_acl). In addition, the owner can search the contents (execute), delete
a file or directory (delete_child), and can modify the ownership of the
directory (write_owner:allow).

The synchronize access permission is not currently implemented.

1:group@ The group can list and read the directory contents and the directory's
attributes. In addition, the group has execute permission to search the
directory contents
(list_directory/read_data/read_xattr/execute/read_attributes
/read_acl/synchronize:allow).

2:everyone@ Everyone who is not user or group is granted read and execute permissions to
the directory contents and the directory's attributes
(list_directory/read_data/read_xattr/execute/read_
attributes/read_acl/synchronize:allow). The synchronize access
permission is not currently implemented.

Setting and Displaying ACLs on ZFS Files in Verbose Format
You can use the chmod command to modify ACLs on ZFS files. The following chmod syntax for
modifying ACLs uses acl-specification to identify the format of the ACL. For a description of
acl-specification, see “Syntax Descriptions for Setting ACLs” on page 216.

■ Adding ACL entries
■ Adding an ACL entry for a user

Setting and Displaying ACLs on ZFS Files in Verbose Format

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013224

% chmod A+acl-specification filename

■ Adding an ACL entry by index-ID

% chmod Aindex-ID+acl-specification filename

This syntax inserts the new ACL entry at the specified index-ID location.
■ Replacing an ACL entry

% chmod A=acl-specification filename

% chmod Aindex-ID=acl-specification filename

■ Removing ACL entries
■ Removing an ACL entry by index-ID

% chmod Aindex-ID- filename

■ Removing an ACL entry by user

% chmod A-acl-specification filename

■ Removing all non-trivial ACEs from a file

% chmod A- filename

Verbose ACL information is displayed by using the ls -v command. For example:

ls -v file.1

-rw-r--r-- 1 root root 206695 Jul 20 13:43 file.1

0:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

2:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

For information about using the compact ACL format, see “Setting and Displaying ACLs on
ZFS Files in Compact Format” on page 235.

EXAMPLE 7–1 Modifying Trivial ACLs on ZFS Files

This section provides examples of setting and displaying trivial ACLs, which means only the
traditional UNIX entries, user, group, and other are included in the ACL.

In the following example, a trivial ACL exists on file.1:

ls -v file.1

-rw-r--r-- 1 root root 206695 Jul 20 13:43 file.1

0:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

2:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Setting and Displaying ACLs on ZFS Files in Verbose Format

Chapter 7 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 225

EXAMPLE 7–1 Modifying Trivial ACLs on ZFS Files (Continued)

In the following example, write_data permissions are granted for group@.

chmod A1=group@:read_data/write_data:allow file.1

ls -v file.1

-rw-rw-r-- 1 root root 206695 Jul 20 13:43 file.1

0:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:read_data/write_data:allow

2:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

In the following example, permissions on file.1 are set back to 644.

chmod 644 file.1

ls -v file.1

-rw-r--r-- 1 root root 206695 Jul 20 13:43 file.1

0:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

2:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

EXAMPLE 7–2 Setting Non-Trivial ACLs on ZFS Files

This section provides examples of setting and displaying non-trivial ACLs.

In the following example, read_data/execute permissions are added for the user gozer on the
test.dir directory.

chmod A+user:gozer:read_data/execute:allow test.dir

ls -dv test.dir

drwxr-xr-x+ 2 root root 2 Jul 20 14:23 test.dir

0:user:gozer:list_directory/read_data/execute:allow

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

2:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

In the following example, read_data/execute permissions are removed for user gozer.

chmod A0- test.dir

ls -dv test.dir

drwxr-xr-x 2 root root 2 Jul 20 14:23 test.dir

0:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner

Setting and Displaying ACLs on ZFS Files in Verbose Format

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013226

EXAMPLE 7–2 Setting Non-Trivial ACLs on ZFS Files (Continued)

/synchronize:allow

1:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

2:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

EXAMPLE 7–3 ACL Interaction With Permissions on ZFS Files

The following ACL examples illustrate the interaction between setting ACLs and then changing
the file or directory's permission bits.

In the following example, a trivial ACL exists on file.2:

ls -v file.2

-rw-r--r-- 1 root root 2693 Jul 20 14:26 file.2

0:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

2:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

In the following example, ACL allow permissions are removed from everyone@.

chmod A2- file.2

ls -v file.2

-rw-r----- 1 root root 2693 Jul 20 14:26 file.2

0:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

In this output, the file's permission bits are reset from 644 to 640. Read permissions for
everyone@ have been effectively removed from the file's permissions bits when the ACL allow
permissions are removed for everyone@.

In the following example, the existing ACL is replaced with read_data/write_data

permissions for everyone@.

chmod A=everyone@:read_data/write_data:allow file.3

ls -v file.3

-rw-rw-rw- 1 root root 2440 Jul 20 14:28 file.3

0:everyone@:read_data/write_data:allow

In this output, the chmod syntax effectively replaces the existing ACL with
read_data/write_data:allow permissions to read/write permissions for owner, group, and
everyone@. In this model, everyone@ specifies access to any user or group. Since no owner@ or
group@ ACL entry exists to override the permissions for owner and group, the permission bits
are set to 666.

Setting and Displaying ACLs on ZFS Files in Verbose Format

Chapter 7 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 227

EXAMPLE 7–3 ACL Interaction With Permissions on ZFS Files (Continued)

In the following example, the existing ACL is replaced with read permissions for user gozer.

chmod A=user:gozer:read_data:allow file.3

ls -v file.3

----------+ 1 root root 2440 Jul 20 14:28 file.3

0:user:gozer:read_data:allow

In this output, the file permissions are computed to be 000 because no ACL entries exist for
owner@, group@, or everyone@, which represent the traditional permission components of a file.
The owner of the file can resolve this problem by resetting the permissions (and the ACL) as
follows:

chmod 655 file.3

ls -v file.3

-rw-r-xr-x 1 root root 2440 Jul 20 14:28 file.3

0:owner@:execute:deny

1:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

2:group@:read_data/read_xattr/execute/read_attributes/read_acl

/synchronize:allow

3:everyone@:read_data/read_xattr/execute/read_attributes/read_acl

/synchronize:allow

EXAMPLE 7–4 Restoring Trivial ACLs on ZFS Files

You can use the chmod command to remove all non-trivial ACLs on a file or directory.

In the following example, two non-trivial ACEs exist on test5.dir.

ls -dv test5.dir

drwxr-xr-x+ 2 root root 2 Jul 20 14:32 test5.dir

0:user:lp:read_data:file_inherit:deny

1:user:gozer:read_data:file_inherit:deny

2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

3:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

4:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

In the following example, the non-trivial ACLs for users gozer and lp are removed. The
remaining ACL contains the default values for owner@, group@, and everyone@.

chmod A- test5.dir

ls -dv test5.dir

drwxr-xr-x 2 root root 2 Jul 20 14:32 test5.dir

0:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

Setting and Displaying ACLs on ZFS Files in Verbose Format

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013228

EXAMPLE 7–4 Restoring Trivial ACLs on ZFS Files (Continued)

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

2:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

EXAMPLE 7–5 Applying an ACL Set to ZFS Files

ACL sets are available so that you do not have to apply ACL permissions separately. For a
description of ACL sets, see “ZFS ACL Sets” on page 220.

For example, you can apply the read_set as follows:

chmod A+user:otto:read_set:allow file.1

ls -v file.1

-r--r--r--+ 1 root root 206695 Jul 20 13:43 file.1

0:user:otto:read_data/read_xattr/read_attributes/read_acl:allow

1:owner@:read_data/read_xattr/write_xattr/read_attributes

/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

2:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

3:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

You can apply the write_set and read_set as follows:

chmod A+user:otto:read_set/write_set:allow file.2

ls -v file.2

-rw-r--r--+ 1 root root 2693 Jul 20 14:26 file.2

0:user:otto:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl:allow

1:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

2:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

3:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Setting ACL Inheritance on ZFS Files in Verbose Format
You can determine how ACLs are inherited or not inherited on files and directories. By default,
ACLs are not propagated. If you set a non-trivial ACL on a directory, the ACL is not inherited
by any subsequent directory. You must specify the inheritance of an ACL on a file or directory.

The aclinherit property can be set globally on a file system. By default, aclinherit is set to
restricted.

Setting and Displaying ACLs on ZFS Files in Verbose Format

Chapter 7 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 229

For more information, see “ACL Inheritance” on page 220.

EXAMPLE 7–6 Granting Default ACL Inheritance

By default, ACLs are not propagated through a directory structure.

In the following example, a non-trivial ACE of read_data/write_data/execute is applied for
user gozer on test.dir.

chmod A+user:gozer:read_data/write_data/execute:allow test.dir

ls -dv test.dir

drwxr-xr-x+ 2 root root 2 Jul 20 14:53 test.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute:allow

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

2:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

If a test.dir subdirectory is created, the ACE for user gozer is not propagated. User gozer
would only have access to sub.dir if the permissions on sub.dir granted him access as the file
owner, group member, or everyone@.

mkdir test.dir/sub.dir

ls -dv test.dir/sub.dir

drwxr-xr-x 2 root root 2 Jul 20 14:54 test.dir/sub.dir

0:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

2:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

EXAMPLE 7–7 Granting ACL Inheritance on Files and Directories

This series of examples identify the file and directory ACEs that are applied when the
file_inherit flag is set.

In the following example, read_data/write_data permissions are added for files in the
test2.dir directory for user gozer so that he has read access on any newly created files.

chmod A+user:gozer:read_data/write_data:file_inherit:allow test2.dir

ls -dv test2.dir

drwxr-xr-x+ 2 root root 2 Jul 20 14:55 test2.dir

0:user:gozer:read_data/write_data:file_inherit:allow

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner

Setting and Displaying ACLs on ZFS Files in Verbose Format

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013230

EXAMPLE 7–7 Granting ACL Inheritance on Files and Directories (Continued)

/synchronize:allow

2:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

In the following example, user gozer's permissions are applied on the newly created
test2.dir/file.2 file. The ACL inheritance granted, read_data:file_inherit:allow,
means user gozer can read the contents of any newly created file.

touch test2.dir/file.2

ls -v test2.dir/file.2

-rw-r--r--+ 1 root root 0 Jul 20 14:56 test2.dir/file.2

0:user:gozer:read_data:inherited:allow

1:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

2:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

3:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Because the aclinherit property for this file system is set to the default mode, restricted,
user gozer does not have write_data permission on file.2 because the group permission of
the file does not allow it.

Note the inherit_only permission, which is applied when the file_inherit or dir_inherit
flags are set, is used to propagate the ACL through the directory structure. As such, user gozer is
only granted or denied permission from everyone@ permissions unless he is the file owner or is
a member of the file's group owner. For example:

mkdir test2.dir/subdir.2

ls -dv test2.dir/subdir.2

drwxr-xr-x+ 2 root root 2 Jul 20 14:57 test2.dir/subdir.2

0:user:gozer:list_directory/read_data/add_file/write_data:file_inherit

/inherit_only/inherited:allow

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

2:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

The following series of examples identify the file and directory ACLs that are applied when both
the file_inherit and dir_inherit flags are set.

In the following example, user gozer is granted read, write, and execute permissions that are
inherited for newly created files and directories.

Setting and Displaying ACLs on ZFS Files in Verbose Format

Chapter 7 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 231

EXAMPLE 7–7 Granting ACL Inheritance on Files and Directories (Continued)

chmod A+user:gozer:read_data/write_data/execute:file_inherit/dir_inherit:allow

test3.dir

ls -dv test3.dir

drwxr-xr-x+ 2 root root 2 Jul 20 15:00 test3.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute

:file_inherit/dir_inherit:allow

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

2:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

The inherited text in the output below is an informational message that indicates that the ACE
is inherited.

touch test3.dir/file.3

ls -v test3.dir/file.3

-rw-r--r--+ 1 root root 0 Jul 20 15:01 test3.dir/file.3

0:user:gozer:read_data:inherited:allow

1:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

2:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

3:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

In the above examples, because the permission bits of the parent directory for group@ and
everyone@ deny write and execute permissions, user gozer is denied write and execute
permissions. The default aclinherit property is restricted, which means that write_data
and execute permissions are not inherited.

In the following example, user gozer is granted read, write, and execute permissions that are
inherited for newly created files, but are not propagated to subsequent contents of the directory.

chmod A+user:gozer:read_data/write_data/execute:file_inherit/no_propagate:allow

test4.dir

ls -dv test4.dir

drwxr--r--+ 2 root root 2 Mar 1 12:11 test4.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute

:file_inherit/no_propagate:allow

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

2:group@:list_directory/read_data/read_xattr/read_attributes/read_acl

/synchronize:allow

3:everyone@:list_directory/read_data/read_xattr/read_attributes/read_acl

/synchronize:allow

Setting and Displaying ACLs on ZFS Files in Verbose Format

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013232

EXAMPLE 7–7 Granting ACL Inheritance on Files and Directories (Continued)

As the following example illustrates, gozer's read_data/write_data/execute permissions are
reduced based on the owning group's permissions.

touch test4.dir/file.4

ls -v test4.dir/file.4

-rw-r--r--+ 1 root root 0 Jul 20 15:09 test4.dir/file.4

0:user:gozer:read_data:inherited:allow

1:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

2:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

3:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

EXAMPLE 7–8 ACL Inheritance With ACL Inherit Mode Set to Pass Through

If the aclinherit property on the tank/cindy file system is set to passthrough, then user
gozer would inherit the ACL applied on test4.dir for the newly created file.5 as follows:

zfs set aclinherit=passthrough tank/cindy

touch test4.dir/file.5

ls -v test4.dir/file.5

-rw-r--r--+ 1 root root 0 Jul 20 14:16 test4.dir/file.5

0:user:gozer:read_data/write_data/execute:inherited:allow

1:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

2:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

3:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

EXAMPLE 7–9 ACL Inheritance With ACL Inherit Mode Set to Discard

If the aclinherit property on a file system is set to discard, then ACLs can potentially be
discarded when the permission bits on a directory change. For example:

zfs set aclinherit=discard tank/cindy

chmod A+user:gozer:read_data/write_data/execute:dir_inherit:allow test5.dir

ls -dv test5.dir

drwxr-xr-x+ 2 root root 2 Jul 20 14:18 test5.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute

:dir_inherit:allow

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

2:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

Setting and Displaying ACLs on ZFS Files in Verbose Format

Chapter 7 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 233

EXAMPLE 7–9 ACL Inheritance With ACL Inherit Mode Set to Discard (Continued)

If, at a later time, you decide to tighten the permission bits on a directory, the non-trivial ACL is
discarded. For example:

chmod 744 test5.dir

ls -dv test5.dir

drwxr--r-- 2 root root 2 Jul 20 14:18 test5.dir

0:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:list_directory/read_data/read_xattr/read_attributes/read_acl

/synchronize:allow

2:everyone@:list_directory/read_data/read_xattr/read_attributes/read_acl

/synchronize:allow

EXAMPLE 7–10 ACL Inheritance With ACL Inherit Mode Set to Noallow

In the following example, two non-trivial ACLs with file inheritance are set. One ACL allows
read_data permission, and one ACL denies read_data permission. This example also
illustrates how you can specify two ACEs in the same chmod command.

zfs set aclinherit=noallow tank/cindy

chmod A+user:gozer:read_data:file_inherit:deny,user:lp:read_data:file_inherit:allow

test6.dir

ls -dv test6.dir

drwxr-xr-x+ 2 root root 2 Jul 20 14:22 test6.dir

0:user:gozer:read_data:file_inherit:deny

1:user:lp:read_data:file_inherit:allow

2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/delete_child

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

3:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

4:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

As the following example shows, when a new file is created, the ACL that allows read_data
permission is discarded.

touch test6.dir/file.6

ls -v test6.dir/file.6

-rw-r--r--+ 1 root root 0 Jul 20 14:23 test6.dir/file.6

0:user:gozer:read_data:inherited:deny

1:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

2:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

3:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Setting and Displaying ACLs on ZFS Files in Verbose Format

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013234

Setting and Displaying ACLs on ZFS Files in Compact Format
You can set and display permissions on ZFS files in a compact format that uses 14 unique letters
to represent the permissions. The letters that represent the compact permissions are listed in
Table 7–2 and Table 7–4.

You can display compact ACL listings for files and directories by using the ls -V command. For
example:

ls -V file.1

-rw-r--r-- 1 root root 206695 Jul 20 14:27 file.1

owner@:rw-p--aARWcCos:-------:allow

group@:r-----a-R-c--s:-------:allow

everyone@:r-----a-R-c--s:-------:allow

The compact ACL output is described as follows:

owner@ The owner can read and modify the contents of the file
(rw=read_data/write_data), (p=append_data). The owner can also modify
the file's attributes such as timestamps, extended attributes, and ACLs
(a=read_attributes, W=write_xattr, R=read_xattr, A=write_attributes,
c=read_acl, C=write_acl). In addition, the owner can modify the ownership
of the file (o=write_owner).

The synchronize (s) access permission is not currently implemented.

group@ The group is granted read permissions to the file (r=read_data) and the file's
attributes (a=read_attributes, R=read_xattr, c=read_acl).

The synchronize (s) access permission is not currently implemented.

everyone@ Everyone who is not user or group is granted read permissions to the file and the
file's attributes (r=read_data, a=append_data, R=read_xattr, c=read_acl,
and s=synchronize).

The synchronize (s) access permission is not currently implemented.

Compact ACL format provides the following advantages over verbose ACL format:

■ Permissions can be specified as positional arguments to the chmod command.
■ The hyphen (-) characters, which identify no permissions, can be removed and only the

required letters need to be specified.
■ Both permissions and inheritance flags are set in the same fashion.

For information about using the verbose ACL format, see “Setting and Displaying ACLs on ZFS
Files in Verbose Format” on page 224.

Setting and Displaying ACLs on ZFS Files in Compact Format

Chapter 7 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 235

EXAMPLE 7–11 Setting and Displaying ACLs in Compact Format

In the following example, a trivial ACL exists on file.1:

ls -V file.1

-rw-r--r-- 1 root root 206695 Jul 20 14:27 file.1

owner@:rw-p--aARWcCos:-------:allow

group@:r-----a-R-c--s:-------:allow

everyone@:r-----a-R-c--s:-------:allow

In this example, read_data/execute permissions are added for the user gozer on file.1.

chmod A+user:gozer:rx:allow file.1

ls -V file.1

-rw-r--r--+ 1 root root 206695 Jul 20 14:27 file.1

user:gozer:r-x-----------:-------:allow

owner@:rw-p--aARWcCos:-------:allow

group@:r-----a-R-c--s:-------:allow

everyone@:r-----a-R-c--s:-------:allow

In the following example, user gozer is granted read, write, and execute permissions that are
inherited for newly created files and directories by using the compact ACL format.

chmod A+user:gozer:rwx:fd:allow dir.2

ls -dV dir.2

drwxr-xr-x+ 2 root root 2 Jul 20 14:33 dir.2

user:gozer:rwx-----------:fd-----:allow

owner@:rwxp-DaARWcCos:-------:allow

group@:r-x---a-R-c--s:-------:allow

everyone@:r-x---a-R-c--s:-------:allow

You can also cut and paste permissions and inheritance flags from the ls -V output into the
compact chmod format. For example, to duplicate the permissions and inheritance flags on
dir.2 for user gozer to user cindy on dir.2, copy and paste the permission and inheritance
flags (rwx-----------:fd-----:allow) into your chmod command. For example:

chmod A+user:cindy:rwx-----------:fd-----:allow dir.2

ls -dV dir.2

drwxr-xr-x+ 2 root root 2 Jul 20 14:33 dir.2

user:cindy:rwx-----------:fd-----:allow

user:gozer:rwx-----------:fd-----:allow

owner@:rwxp-DaARWcCos:-------:allow

group@:r-x---a-R-c--s:-------:allow

everyone@:r-x---a-R-c--s:-------:allow

EXAMPLE 7–12 ACL Inheritance With ACL Inherit Mode Set to Pass Through

A file system that has the aclinherit property set to passthrough inherits all inheritable ACL
entries without any modifications made to the ACL entries when they are inherited. When this
property is set to passthrough, files are created with a permission mode that is determined by
the inheritable ACEs. If no inheritable ACEs exist that affect the permission mode, then the
permission mode is set in accordance to the requested mode from the application.

Setting and Displaying ACLs on ZFS Files in Compact Format

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013236

EXAMPLE 7–12 ACL Inheritance With ACL Inherit Mode Set to Pass Through (Continued)

The following examples use compact ACL syntax to show how to inherit permission bits by
setting aclinherit mode to passthrough.

In this example, an ACL is set on test1.dir to force inheritance. The syntax creates an owner@,
group@, and everyone@ ACL entry for newly created files. Newly created directories inherit an
@owner, group@, and everyone@ ACL entry.

zfs set aclinherit=passthrough tank/cindy

pwd

/tank/cindy

mkdir test1.dir

chmod A=owner@:rwxpcCosRrWaAdD:fd:allow,group@:rwxp:fd:allow,

everyone@::fd:allow test1.dir

ls -Vd test1.dir

drwxrwx---+ 2 root root 2 Jul 20 14:42 test1.dir

owner@:rwxpdDaARWcCos:fd-----:allow

group@:rwxp----------:fd-----:allow

everyone@:--------------:fd-----:allow

In this example, a newly created file inherits the ACL that was specified to be inherited to newly
created files.

cd test1.dir

touch file.1

ls -V file.1

-rwxrwx---+ 1 root root 0 Jul 20 14:44 file.1

owner@:rwxpdDaARWcCos:------I:allow

group@:rwxp----------:------I:allow

everyone@:--------------:------I:allow

In this example, a newly created directory inherits both ACEs that control access to this
directory as well as ACEs for future propagation to children of the newly created directory.

mkdir subdir.1

ls -dV subdir.1

drwxrwx---+ 2 root root 2 Jul 20 14:45 subdir.1

owner@:rwxpdDaARWcCos:fd----I:allow

group@:rwxp----------:fd----I:allow

everyone@:--------------:fd----I:allow

The fd----I entries are for propagating inheritance and are not considered during access
control.

In the following example, a file is created with a trivial ACL in another directory where inherited
ACEs are not present.

cd /tank/cindy

mkdir test2.dir

Setting and Displaying ACLs on ZFS Files in Compact Format

Chapter 7 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 237

EXAMPLE 7–12 ACL Inheritance With ACL Inherit Mode Set to Pass Through (Continued)

cd test2.dir

touch file.2

ls -V file.2

-rw-r--r-- 1 root root 0 Jul 20 14:48 file.2

owner@:rw-p--aARWcCos:-------:allow

group@:r-----a-R-c--s:-------:allow

everyone@:r-----a-R-c--s:-------:allow

EXAMPLE 7–13 ACL Inheritance With ACL Inherit Mode Set to Pass Through-X

When aclinherit=passthrough-x is enabled, files are created with the execute (x) permission
for owner@, group@, or everyone@, but only if execute permission is set in the file creation mode
and in an inheritable ACE that affects the mode.

The following example shows how to inherit the execute permission by setting aclinherit
mode to passthrough-x.

zfs set aclinherit=passthrough-x tank/cindy

The following ACL is set on /tank/cindy/test1.dir to provide executable ACL inheritance
for files for owner@.

chmod A=owner@:rwxpcCosRrWaAdD:fd:allow,group@:rwxp:fd:allow,

everyone@::fd:allow test1.dir

ls -Vd test1.dir

drwxrwx---+ 2 root root 2 Jul 20 14:50 test1.dir

owner@:rwxpdDaARWcCos:fd-----:allow

group@:rwxp----------:fd-----:allow

everyone@:--------------:fd-----:allow

A file (file1) is created with requested permissions 0666. The resulting permissions are 0660.
The execution permission was not inherited because the creation mode did not request it.

touch test1.dir/file1

ls -V test1.dir/file1

-rw-rw----+ 1 root root 0 Jul 20 14:52 test1.dir/file1

owner@:rw-pdDaARWcCos:------I:allow

group@:rw-p----------:------I:allow

everyone@:--------------:------I:allow

Next, an executable called t is generated by using the cc compiler in the testdir directory.

cc -o t t.c

ls -V t

-rwxrwx---+ 1 root root 7396 Dec 3 15:19 t

owner@:rwxpdDaARWcCos:------I:allow

group@:rwxp----------:------I:allow

everyone@:--------------:------I:allow

Setting and Displaying ACLs on ZFS Files in Compact Format

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013238

EXAMPLE 7–13 ACL Inheritance With ACL Inherit Mode Set to Pass Through-X (Continued)

The resulting permissions are 0770 because cc requested permissions 0777, which caused the
execute permission to be inherited from the owner@, group@, and everyone@ entries.

EXAMPLE 7–14 ACL Interaction With chmodOperations on ZFS Files

The following examples illustrate how specific aclmode and aclinherit property values
influence the interaction of existing ACLs with a chmod operation that changes file or directory
permissions to either reduce or expand any existing ACL permissions to be consistent with the
owning group.

In this example, the aclmode property is set to mask and the aclinherit property is set to
restricted. The ACL permissions in this example are displayed in compact mode, which more
easily illustrates changing permissions.

The original file and group ownership and ACL permissions are as follows:

zfs set aclmode=mask pond/whoville

zfs set aclinherit=restricted pond/whoville

ls -lV file.1

-rwxrwx---+ 1 root root 206695 Aug 30 16:03 file.1

user:amy:r-----a-R-c---:-------:allow

user:rory:r-----a-R-c---:-------:allow

group:sysadmin:rw-p--aARWc---:-------:allow

group:staff:rw-p--aARWc---:-------:allow

owner@:rwxp--aARWcCos:-------:allow

group@:rwxp--aARWc--s:-------:allow

everyone@:------a-R-c--s:-------:allow

A chown operation changes the file ownership on file.1 and the output is now seen by the
owning user, amy. For example:

chown amy:staff file.1

su - amy

$ ls -lV file.1

-rwxrwx---+ 1 amy staff 206695 Aug 30 16:03 file.1

user:amy:r-----a-R-c---:-------:allow

user:rory:r-----a-R-c---:-------:allow

group:sysadmin:rw-p--aARWc---:-------:allow

group:staff:rw-p--aARWc---:-------:allow

owner@:rwxp--aARWcCos:-------:allow

group@:rwxp--aARWc--s:-------:allow

everyone@:------a-R-c--s:-------:allow

The following chmod operation changes the permissions to a more restrictive mode. In this
example, the modified sysadmin group's and staff group's ACL permissions do not exceed the
owning group's permissions.

Setting and Displaying ACLs on ZFS Files in Compact Format

Chapter 7 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 239

EXAMPLE 7–14 ACL Interaction With chmodOperations on ZFS Files (Continued)

$ chmod 640 file.1

$ ls -lV file.1

-rw-r-----+ 1 amy staff 206695 Aug 30 16:03 file.1

user:amy:r-----a-R-c---:-------:allow

user:rory:r-----a-R-c---:-------:allow

group:sysadmin:r-----a-R-c---:-------:allow

group:staff:r-----a-R-c---:-------:allow

owner@:rw-p--aARWcCos:-------:allow

group@:r-----a-R-c--s:-------:allow

everyone@:------a-R-c--s:-------:allow

The following chmod operation changes the permissions to a less restrictive mode. In this
example, the modified sysadmin group's and staff group's ACL permissions are restored to
allow the same permissions as the owning group.

$ chmod 770 file.1

$ ls -lV file.1

-rwxrwx---+ 1 amy staff 206695 Aug 30 16:03 file.1

user:amy:r-----a-R-c---:-------:allow

user:rory:r-----a-R-c---:-------:allow

group:sysadmin:rw-p--aARWc---:-------:allow

group:staff:rw-p--aARWc---:-------:allow

owner@:rwxp--aARWcCos:-------:allow

group@:rwxp--aARWc--s:-------:allow

everyone@:------a-R-c--s:-------:allow

Applying Special Attributes to ZFS Files
The following examples show how to apply and display special attributes, such as immutability
or read-only access, to ZFS files.

For more information about displaying and applying special attributes, see ls(1) and chmod(1).

EXAMPLE 7–15 Apply Immutability to a ZFS File

Use the following syntax to make a file immutable:

chmod S+ci file.1

echo this >>file.1

-bash: file.1: Not owner

rm file.1

rm: cannot remove ‘file.1’: Not owner

You can display special attributes on ZFS files by using the following syntax:

ls -l/c file.1

-rw-r--r--+ 1 root root 206695 Jul 20 14:27 file.1

{A-----im----}

Applying Special Attributes to ZFS Files

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013240

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ls-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1chmod-1

EXAMPLE 7–15 Apply Immutability to a ZFS File (Continued)

Use the following syntax to remove file immutability:

chmod S-ci file.1

ls -l/c file.1

-rw-r--r--+ 1 root root 206695 Jul 20 14:27 file.1

{A------m----}

rm file.1

EXAMPLE 7–16 Apply Read-Only Access to a ZFS File

The following example shows how to apply read-only access to a ZFS file.

chmod S+cR file.2

echo this >>file.2

-bash: file.2: Not owner

EXAMPLE 7–17 Displaying and Changing ZFS File Attributes

You can display and set special attributes with the following syntax:

ls -l/v file.3

-r--r--r-- 1 root root 206695 Jul 20 14:59 file.3

{archive,nohidden,noreadonly,nosystem,noappendonly,nonodump,

noimmutable,av modified,noav_quarantined,nonounlink,nooffline,nosparse}

chmod S+cR file.3

ls -l/v file.3

-r--r--r-- 1 root root 206695 Jul 20 14:59 file.3

{archive,nohidden,readonly,nosystem,noappendonly,nonodump,noimmutable,

av_modified,noav_quarantined,nonounlink,nooffline,nosparse}

Some of these attributes only apply in an Oracle Solaris SMB environment.

You can clear all attributes on a file. For example:

chmod S-a file.3

ls -l/v file.3

-r--r--r-- 1 root root 206695 Jul 20 14:59 file.3

{noarchive,nohidden,noreadonly,nosystem,noappendonly,nonodump,

noimmutable,noav_modified,noav_quarantined,nonounlink,nooffline,nosparse}

Applying Special Attributes to ZFS Files

Chapter 7 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 241

242

Oracle Solaris ZFS Delegated Administration

This chapter describes how to use delegated administration to allow nonprivileged users to
perform ZFS administration tasks.

The following sections are provided in this chapter:

■ “Overview of ZFS Delegated Administration” on page 243
■ “Delegating ZFS Permissions” on page 244
■ “Displaying ZFS Delegated Permissions (Examples)” on page 252
■ “Delegating ZFS Permissions (Examples)” on page 248
■ “Removing ZFS Delegated Permissions (Examples)” on page 253

Overview of ZFS Delegated Administration
ZFS delegated administration enables you to distribute refined permissions to specific users,
groups, or everyone. Two types of delegated permissions are supported:

■ Individual permissions can be explicitly delegated such as create, destroy, mount,
snapshot, and so on.

■ Groups of permissions called permission sets can be defined. A permission set can later be
updated, and all of the consumers of the set automatically get the change. Permission sets
begin with the @ symbol and are limited to 64 characters in length. After the @ symbol, the
remaining characters in the set name have the same restrictions as normal ZFS file system
names.

ZFS delegated administration provides features similar to the RBAC security model. ZFS
delegation provides the following advantages for administering ZFS storage pools and file
systems:

■ Permissions follow the ZFS storage pool whenever a pool is migrated.
■ Provides dynamic inheritance where you can control how the permissions propagate

through the file systems.

8C H A P T E R 8

243

■ Can be configured so that only the creator of a file system can destroy the file system.
■ You can delegate permissions to specific file systems. Newly created file systems can

automatically pick up permissions.
■ Provides simple NFS administration. For example, a user with explicit permissions can

create a snapshot over NFS in the appropriate .zfs/snapshot directory.

Consider using delegated administration for distributing ZFS tasks. For information about
using RBAC to manage general Oracle Solaris administration tasks, see Part III, “Roles, Rights
Profiles, and Privileges,” in Oracle Solaris 11.1 Administration: Security Services.

Disabling ZFS Delegated Permissions
You control the delegated administration features by using a pool's delegation property. For
example:

zpool get delegation users

NAME PROPERTY VALUE SOURCE

users delegation on default

zpool set delegation=off users

zpool get delegation users

NAME PROPERTY VALUE SOURCE

users delegation off local

By default, the delegation property is enabled.

Delegating ZFS Permissions
You can use the zfs allow command to delegate permissions on ZFS file systems to non-root
users in the following ways:

■ Individual permissions can be delegated to a user, group, or everyone.
■ Groups of individual permissions can be delegated as a permission set to a user, group, or

everyone.
■ Permissions can be delegated either locally to the current file system only or to all

descendents of the current file system.

The following table describes the operations that can be delegated and any dependent
permissions that are required to perform the delegated operations.

Permission (Subcommand) Description Dependencies

allow The permission to grant permissions
that you have to another user.

Must also have the permission that is being
allowed.

Delegating ZFS Permissions

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013244

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SYSADV6prbactm-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SYSADV6prbactm-1

Permission (Subcommand) Description Dependencies

clone The permission to clone any of the
dataset's snapshots.

Must also have the create permission and
the mount permission in the original file
system.

create The permission to create descendent
datasets.

Must also have the mount permission.

destroy The permission to destroy a dataset. Must also have the mount permission.

diff The permission to identify paths within a
dataset.

Non-root users need this permission to use
the zfs diff command.

hold The permission to hold a snapshot.

mount The permission to mount and unmount
a file system, and create and destroy
volume device links.

promote The permission to promote a clone to a
dataset.

Must also have the mount permission and
the promote permission in the original file
system.

receive The permission to create descendent file
systems with the zfs receive
command.

Must also have the mount permission and
the create permission.

release The permission to release a snapshot
hold, which might destroy the snapshot.

rename The permission to rename a dataset. Must also have the create permission and
the mount permission in the new parent.

rollback The permission to roll back a snapshot.

send The permission to send a snapshot
stream.

share The permission to share and unshare a
file system.

Must have both share and share.nfs to
create an NFS share.

Must have both share and share.smb to
create an SMB share.

snapshot The permission to create a snapshot of a
dataset.

You can delegate the following set of permissions but a permission might be limited to access,
read, or change permission:
■ groupquota

■ groupused

■ key

Delegating ZFS Permissions

Chapter 8 • Oracle Solaris ZFS Delegated Administration 245

■ keychange

■ userprop

■ userquota

■ userused

In addition, you can delegate administration of the following ZFS properties to non-root users:

■ aclinherit

■ aclmode

■ atime

■ canmount

■ casesensitivity

■ checksum

■ compression

■ copies

■ dedup

■ devices

■ encryption

■ exec

■ keysource

■ logbias

■ mountpoint

■ nbmand

■ normalization

■ primarycache

■ quota

■ readonly

■ recordsize

■ refquota

■ refreservation

■ reservation

■ rstchown

■ secondarycache

■ setuid

■ shadow

■ share.nfs

■ share.smb

■ snapdir

■ sync

■ utf8only

■ version

■ volblocksize

■ volsize

■ vscan

■ xattr

Delegating ZFS Permissions

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013246

■ zoned

Some of these properties can be set only at dataset creation time. For a description of these
properties, see “Introducing ZFS Properties” on page 137.

Delegating ZFS Permissions (zfs allow)
The zfs allow syntax follows:

zfs allow -[ldugecs] everyone|user|group[,...] perm|@setname,...] filesystem| volume

The following zfs allow syntax (in bold) identifies to whom the permissions are delegated:

zfs allow [-uge]|user|group|everyone [,...] filesystem | volume

Multiple entities can be specified as a comma-separated list. If no -uge options are specified,
then the argument is interpreted preferentially as the keyword everyone, then as a user name,
and lastly, as a group name. To specify a user or group named “everyone,” use the -u or -g
option. To specify a group with the same name as a user, use the -g option. The -c option
delegates create-time permissions.

The following zfs allow syntax (in bold) identifies how permissions and permission sets are
specified:

zfs allow [-s] ... perm|@setname [,...] filesystem | volume

Multiple permissions can be specified as a comma-separated list. Permission names are the
same as ZFS subcommands and properties. For more information, see the preceding section.

Permissions can be aggregated into permission sets and are identified by the -s option.
Permission sets can be used by other zfs allow commands for the specified file system and its
descendents. Permission sets are evaluated dynamically, so changes to a set are immediately
updated. Permission sets follow the same naming requirements as ZFS file systems, but the
name must begin with an at sign (@) and can be no more than 64 characters in length.

The following zfs allow syntax (in bold) identifies how the permissions are delegated:

zfs allow [-ld] filesystem | volume

The -l option indicates that the permissions are allowed for the specified file system and not its
descendents, unless the -d option is also specified. The -d option indicates that the permissions
are allowed for the descendent file systems and not for this file system, unless the -l option is
also specified. If neither option is specified, then the permissions are allowed for the file system
or volume and all of its descendents.

Delegating ZFS Permissions

Chapter 8 • Oracle Solaris ZFS Delegated Administration 247

Removing ZFS Delegated Permissions (zfs unallow)
You can remove previously delegated permissions with the zfs unallow command.

For example, assume that you delegated create, destroy, mount, and snapshot permissions as
follows:

zfs allow cindy create,destroy,mount,snapshot tank/home/cindy

zfs allow tank/home/cindy

---- Permissions on tank/home/cindy ----------------------------------

Local+Descendent permissions:

user cindy create,destroy,mount,snapshot

To remove these permissions, you would use the following syntax:

zfs unallow cindy tank/home/cindy

zfs allow tank/home/cindy

Delegating ZFS Permissions (Examples)
EXAMPLE 8–1 Delegating Permissions to an Individual User

When you delegate create and mount permissions to an individual user, you must ensure that
the user has permissions on the underlying mount point.

For example, to delegate user mark create and mount permissions on the tank file system, set
the permissions first:

chmod A+user:mark:add_subdirectory:fd:allow /tank/home

Then, use the zfs allow command to delegate create, destroy, and mount permissions. For
example:

zfs allow mark create,destroy,mount tank/home

Now, user mark can create his own file systems in the tank/home file system. For example:

su mark

mark$ zfs create tank/home/mark

mark$ ^D

su lp

$ zfs create tank/home/lp

cannot create ’tank/home/lp’: permission denied

EXAMPLE 8–2 Delegating create and destroy Permissions to a Group

The following example shows how to set up a file system so that anyone in the staff group can
create and mount file systems in the tank/home file system, as well as destroy their own file
systems. However, staff group members cannot destroy anyone else's file systems.

Delegating ZFS Permissions (Examples)

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013248

EXAMPLE 8–2 Delegating create and destroy Permissions to a Group (Continued)

zfs allow staff create,mount tank/home

zfs allow -c create,destroy tank/home

zfs allow tank/home

---- Permissions on tank/home --

Create time permissions:

create,destroy

Local+Descendent permissions:

group staff create,mount

su cindy

cindy% zfs create tank/home/cindy/files

cindy% exit

su mark

mark% zfs create tank/home/mark/data

mark% exit

cindy% zfs destroy tank/home/mark/data

cannot destroy ’tank/home/mark/data’: permission denied

EXAMPLE 8–3 Delegating Permissions at the Correct File System Level

Ensure that you delegate users permission at the correct file system level. For example, user
mark is delegated create, destroy, and mount permissions for the local and descendent file
systems. User mark is delegated local permission to snapshot the tank/home file system, but he is
not allowed to snapshot his own file system. So, he has not been delegated the snapshot
permission at the correct file system level.

zfs allow -l mark snapshot tank/home

zfs allow tank/home

---- Permissions on tank/home --

Create time permissions:

create,destroy

Local permissions:

user mark snapshot

Local+Descendent permissions:

group staff create,mount

su mark

mark$ zfs snapshot tank/home@snap1

mark$ zfs snapshot tank/home/mark@snap1

cannot create snapshot ’tank/home/mark@snap1’: permission denied

To delegate user mark permission at the descendent file system level, use the zfs allow -d
option. For example:

zfs unallow -l mark snapshot tank/home

zfs allow -d mark snapshot tank/home

zfs allow tank/home

---- Permissions on tank/home --

Create time permissions:

create,destroy

Descendent permissions:

user mark snapshot

Local+Descendent permissions:

group staff create,mount

su mark

Delegating ZFS Permissions (Examples)

Chapter 8 • Oracle Solaris ZFS Delegated Administration 249

EXAMPLE 8–3 Delegating Permissions at the Correct File System Level (Continued)

$ zfs snapshot tank/home@snap2

cannot create snapshot ’tank/home@snap2’: permission denied

$ zfs snapshot tank/home/mark@snappy

Now, user mark can only create a snapshot below the tank/home file system level.

EXAMPLE 8–4 Defining and Using Complex Delegated Permissions

You can delegate specific permissions to users or groups. For example, the following zfs allow

command delegates specific permissions to the staff group. In addition, destroy and
snapshot permissions are delegated after tank/home file systems are created.

zfs allow staff create,mount tank/home

zfs allow -c destroy,snapshot tank/home

zfs allow tank/home

---- Permissions on tank/home --

Create time permissions:

create,destroy,snapshot

Local+Descendent permissions:

group staff create,mount

Because user mark is a member of the staff group, he can create file systems in tank/home. In
addition, user mark can create a snapshot of tank/home/mark2 because he has specific
permissions to do so. For example:

su mark

$ zfs create tank/home/mark2

$ zfs allow tank/home/mark2

---- Permissions on tank/home/mark2 ----------------------------------

Local permissions:

user mark create,destroy,snapshot

---- Permissions on tank/home --

Create time permissions:

create,destroy,snapshot

Local+Descendent permissions:

group staff create,mount

But, user mark cannot create a snapshot in tank/home/mark because he doesn't have specific
permissions to do so. For example:

$ zfs snapshot tank/home/mark@snap1

cannot create snapshot ’tank/home/mark@snap1’: permission denied

In this example, user mark has create permission in his home directory, which means he can
create snapshots. This scenario is helpful when your file system is NFS mounted.

$ cd /tank/home/mark2

$ ls

$ cd .zfs

$ ls

shares snapshot

Delegating ZFS Permissions (Examples)

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013250

EXAMPLE 8–4 Defining and Using Complex Delegated Permissions (Continued)

$ cd snapshot

$ ls -l

total 3

drwxr-xr-x 2 mark staff 2 Sep 27 15:55 snap1

$ pwd

/tank/home/mark2/.zfs/snapshot

$ mkdir snap2

$ zfs list

zfs list -r tank/home

NAME USED AVAIL REFER MOUNTPOINT

tank/home/mark 63K 62.3G 32K /tank/home/mark

tank/home/mark2 49K 62.3G 31K /tank/home/mark2

tank/home/mark2@snap1 18K - 31K -

tank/home/mark2@snap2 0 - 31K -

$ ls

snap1 snap2

$ rmdir snap2

$ ls

snap1

EXAMPLE 8–5 Defining and Using a ZFS Delegated Permission Set

The following example shows how to create the permission set @myset and delegates the
permission set and the rename permission to the group staff for the tank file system. User
cindy, a staff group member, has the permission to create a file system in tank. However, user
lp does not have permission to create a file system in tank.

zfs allow -s @myset create,destroy,mount,snapshot,promote,clone,readonly tank

zfs allow tank

---- Permissions on tank ---

Permission sets:

@myset clone,create,destroy,mount,promote,readonly,snapshot

zfs allow staff @myset,rename tank

zfs allow tank

---- Permissions on tank ---

Permission sets:

@myset clone,create,destroy,mount,promote,readonly,snapshot

Local+Descendent permissions:

group staff @myset,rename

chmod A+group:staff:add_subdirectory:fd:allow tank

su cindy

cindy% zfs create tank/data

cindy% zfs allow tank

---- Permissions on tank ---

Permission sets:

@myset clone,create,destroy,mount,promote,readonly,snapshot

Local+Descendent permissions:

group staff @myset,rename

cindy% ls -l /tank

total 15

drwxr-xr-x 2 cindy staff 2 Jun 24 10:55 data

cindy% exit

su lp

$ zfs create tank/lp

Delegating ZFS Permissions (Examples)

Chapter 8 • Oracle Solaris ZFS Delegated Administration 251

EXAMPLE 8–5 Defining and Using a ZFS Delegated Permission Set (Continued)

cannot create ’tank/lp’: permission denied

Displaying ZFS Delegated Permissions (Examples)
You can use the following command to display permissions:

zfs allow dataset

This command displays permissions that are set or allowed on the specified dataset. The output
contains the following components:
■ Permission sets
■ Individual permissions or create-time permissions
■ Local dataset
■ Local and descendent datasets
■ Descendent datasets only

EXAMPLE 8–6 Displaying Basic Delegated Administration Permissions

The following output indicates that user cindy has create, destroy, mount, snapshot
permissions on the tank/cindy file system.

zfs allow tank/cindy

Local+Descendent permissions on (tank/cindy)

user cindy create,destroy,mount,snapshot

EXAMPLE 8–7 Displaying Complex Delegated Administration Permissions

The output in this example indicates the following permissions on the pool/fred and pool file
systems.

For the pool/fred file system:

■ Two permission sets are defined:
■ @eng (create, destroy, snapshot, mount, clone, promote, rename)
■ @simple (create, mount)

■ Create-time permissions are set for the @eng permission set and the mountpoint property.
Create-time means that after a file system set is created, the @eng permission set and the
permission to set the mountpoint property are delegated.

■ User tom is delegated the @eng permission set, and user joe is granted create, destroy, and
mount permissions for local file systems.

■ User fred is delegated the @basic permission set, and share and rename permissions for the
local and descendent file systems.

Displaying ZFS Delegated Permissions (Examples)

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013252

EXAMPLE 8–7 Displaying Complex Delegated Administration Permissions (Continued)

■ User barney and the staff group are delegated the @basic permission set for descendent
file systems only.

For the pool file system:

■ The permission set @simple (create, destroy, mount) is defined.
■ The group staff is granted the @simple permission set on the local file system.

Here is the output for this example:

$ zfs allow pool/fred

---- Permissions on pool/fred --

Permission sets:

@eng create,destroy,snapshot,mount,clone,promote,rename

@simple create,mount

Create time permissions:

@eng,mountpoint

Local permissions:

user tom @eng

user joe create,destroy,mount

Local+Descendent permissions:

user fred @basic,share,rename

user barney @basic

group staff @basic

---- Permissions on pool ---

Permission sets:

@simple create,destroy,mount

Local permissions:

group staff @simple

Removing ZFS Delegated Permissions (Examples)
You can use the zfs unallow command to remove delegated permissions. For example, user
cindy has create, destroy, mount, and snapshot permissions on the tank/cindy file system.

zfs allow cindy create,destroy,mount,snapshot tank/home/cindy

zfs allow tank/home/cindy

---- Permissions on tank/home/cindy ----------------------------------

Local+Descendent permissions:

user cindy create,destroy,mount,snapshot

The following zfs unallow syntax removes user cindy's snapshot permission from the
tank/home/cindy file system:

zfs unallow cindy snapshot tank/home/cindy

zfs allow tank/home/cindy

---- Permissions on tank/home/cindy ----------------------------------

Local+Descendent permissions:

user cindy create,destroy,mount

Removing ZFS Delegated Permissions (Examples)

Chapter 8 • Oracle Solaris ZFS Delegated Administration 253

cindy% zfs create tank/home/cindy/data

cindy% zfs snapshot tank/home/cindy@today

cannot create snapshot ’tank/home/cindy@today’: permission denied

As another example, user mark has the following permissions on the tank/home/mark file
system:

zfs allow tank/home/mark

---- Permissions on tank/home/mark ----------------------------------

Local+Descendent permissions:

user mark create,destroy,mount

The following zfs unallow syntax removes all permissions for user mark from the
tank/home/mark file system:

zfs unallow mark tank/home/mark

The following zfs unallow syntax removes a permission set on the tank file system.

zfs allow tank

---- Permissions on tank ---

Permission sets:

@myset clone,create,destroy,mount,promote,readonly,snapshot

Create time permissions:

create,destroy,mount

Local+Descendent permissions:

group staff create,mount

zfs unallow -s @myset tank

zfs allow tank

---- Permissions on tank ---

Create time permissions:

create,destroy,mount

Local+Descendent permissions:

group staff create,mount

Removing ZFS Delegated Permissions (Examples)

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013254

Oracle Solaris ZFS Advanced Topics

This chapter describes ZFS volumes, using ZFS on a Solaris system with zones installed, ZFS
alternate root pools, and ZFS rights profiles.

The following sections are provided in this chapter:

■ “ZFS Volumes” on page 255
■ “Using ZFS on a Solaris System With Zones Installed” on page 258
■ “Using ZFS Alternate Root Pools” on page 263

ZFS Volumes
A ZFS volume is a dataset that represents a block device. ZFS volumes are identified as devices
in the /dev/zvol/{dsk,rdsk}/pool directory.

In the following example, a 5-GB ZFS volume, tank/vol, is created:

zfs create -V 5gb tank/vol

When you create a volume, a reservation is automatically set to the initial size of the volume so
that unexpected behavior doesn't occur. For example, if the size of the volume shrinks, data
corruption might occur. You must be careful when changing the size of the volume.

In addition, if you create a snapshot of a volume that changes in size, you might introduce
inconsistencies if you attempt to roll back the snapshot or create a clone from the snapshot.

For information about file system properties that can be applied to volumes, see Table 5–1.

You can display a ZFS volume's property information by using the zfs get or zfs get all
command. For example:

zfs get all tank/vol

9C H A P T E R 9

255

A question mark (?) displayed for volsize in the zfs get output indicates an unknown value
because an I/O error occurred. For example:

zfs get -H volsize tank/vol

tank/vol volsize ? local

An I/O error generally indicates a problem with a pool device. For information about resolving
pool device problems, see “Resolving Problems With ZFS” on page 271.

If you are using a Solaris system with zones installed, you cannot create or clone a ZFS volume
in a non-global zone. Any attempt to do so will fail. For information about using ZFS volumes
in a global zone, see “Adding ZFS Volumes to a Non-Global Zone” on page 260.

Using a ZFS Volume as a Swap or Dump Device
During installation of a ZFS root file system or a migration from a UFS root file system, a swap
device is created on a ZFS volume in the ZFS root pool. For example:

swap -l

swapfile dev swaplo blocks free

/dev/zvol/dsk/rpool/swap 253,3 16 8257520 8257520

During installation of a ZFS root file system or a migration from a UFS root file system, a dump
device is created on a ZFS volume in the ZFS root pool. The dump device requires no
administration after it is set up. For example:

dumpadm

Dump content: kernel pages

Dump device: /dev/zvol/dsk/rpool/dump (dedicated)

Savecore directory: /var/crash/

Savecore enabled: yes

If you need to change your swap area or dump device after the system is installed, use the swap
and dumpadm commands as in previous Solaris releases. If you need to create an additional swap
volume, create a ZFS volume of a specific size and then enable swap on that device. Then, add an
entry for the new swap device in the /etc/vfstab file. For example:

zfs create -V 2G rpool/swap2

swap -a /dev/zvol/dsk/rpool/swap2

swap -l

swapfile dev swaplo blocks free

/dev/zvol/dsk/rpool/swap 256,1 16 2097136 2097136

/dev/zvol/dsk/rpool/swap2 256,5 16 4194288 4194288

Do not swap to a file on a ZFS file system. A ZFS swap file configuration is not supported.

For information about adjusting the size of the swap and dump volumes, see “Adjusting the
Sizes of Your ZFS Swap and Dump Devices” on page 122.

ZFS Volumes

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013256

Using a ZFS Volume as an iSCSI LUN
The Common Multiprotocol SCSI Target (COMSTAR) software framework enables you to
convert any Oracle Solaris host into a SCSI target device that can be accessed over a storage
network by initiator hosts. You can create and configure a ZFS volume to be shared as an iSCSI
logical unit (LUN).

First, install the COMSTAR package.

pkg install group/feature/storage-server

Next, create a ZFS volume to be used as an iSCSI target and then create the
SCSI-block-device-based LUN. For example:

zfs create -V 2g tank/volumes/v2

sbdadm create-lu /dev/zvol/rdsk/tank/volumes/v2

Created the following LU:

GUID DATA SIZE SOURCE

-------------------------------- ------------------- ----------------

600144f000144f1dafaa4c0faff20001 2147483648 /dev/zvol/rdsk/tank/volumes/v2

sbdadm list-lu

Found 1 LU(s)

GUID DATA SIZE SOURCE

-------------------------------- ------------------- ----------------

600144f000144f1dafaa4c0faff20001 2147483648 /dev/zvol/rdsk/tank/volumes/v2

You can expose the LUN views to all clients or selected clients. Identify the LUN GUID and then
share the LUN view. In the following example, the LUN view is shared to all clients.

stmfadm list-lu

LU Name: 600144F000144F1DAFAA4C0FAFF20001

stmfadm add-view 600144F000144F1DAFAA4C0FAFF20001

stmfadm list-view -l 600144F000144F1DAFAA4C0FAFF20001

View Entry: 0

Host group : All

Target group : All

LUN : 0

The next step is to create the iSCSI targets. For information about creating the iSCSI targets, see
Chapter 11, “Configuring Storage Devices With COMSTAR (Tasks),” in Oracle Solaris 11.1
Administration: Devices and File Systems.

A ZFS volume as an iSCSI target is managed just like any other ZFS dataset, except that you
cannot rename the dataset, roll back a volume snapshot, or export the pool while the ZFS
volumes are shared as iSCSI LUNs. You will see messages similar to the following:

zfs rename tank/volumes/v2 tank/volumes/v1

cannot rename ’tank/volumes/v2’: dataset is busy

zpool export tank

cannot export ’tank’: pool is busy

ZFS Volumes

Chapter 9 • Oracle Solaris ZFS Advanced Topics 257

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSfmvcd
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSfmvcd

All iSCSI target configuration information is stored within the dataset. Like an NFS shared file
system, an iSCSI target that is imported on a different system is shared appropriately.

Using ZFS on a Solaris System With Zones Installed
The following sections describe how to use ZFS on a system with Oracle Solaris zones:

■ “Adding ZFS File Systems to a Non-Global Zone” on page 259
■ “Delegating Datasets to a Non-Global Zone” on page 259
■ “Adding ZFS Volumes to a Non-Global Zone” on page 260
■ “Using ZFS Storage Pools Within a Zone” on page 261
■ “Managing ZFS Properties Within a Zone” on page 261
■ “Understanding the zoned Property” on page 262

Keep the following points in mind when associating ZFS datasets with zones:

■ You can add a ZFS file system or a clone to a non-global zone with or without delegating
administrative control.

■ You can add a ZFS volume as a device to non-global zones.
■ You cannot associate ZFS snapshots with zones at this time.

In the following sections, a ZFS dataset refers to a file system or a clone.

Adding a dataset allows the non-global zone to share disk space with the global zone, though the
zone administrator cannot control properties or create new file systems in the underlying file
system hierarchy. This operation is identical to adding any other type of file system to a zone
and should be used when the primary purpose is solely to share common disk space.

ZFS also allows datasets to be delegated to a non-global zone, giving complete control over the
dataset and all its children to the zone administrator. The zone administrator can create and
destroy file systems or clones within that dataset, as well as modify properties of the datasets.
The zone administrator cannot affect datasets that have not been added to the zone, including
exceeding any top-level quotas set on the delegated dataset.

Consider the following when working with ZFS on a system with Oracle Solaris zones installed:

■ A ZFS file system that is added to a non-global zone must have its mountpoint property set
to legacy.

■ When both a source zonepath and a target zonepath reside on a ZFS file system and are in
the same pool, zoneadm clone will now automatically use the ZFS clone to clone a zone. The
zoneadm clone command will create a ZFS snapshot of the source zonepath and set up the
target zonepath. You cannot use the zfs clone command to clone a zone. For more
information, see Part II, “Oracle Solaris Zones,” in Oracle Solaris Administration: Oracle
Solaris Zones, Oracle Solaris 10 Zones, and Resource Management.

Using ZFS on a Solaris System With Zones Installed

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013258

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=SYSADRMzone
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=SYSADRMzone

Adding ZFS File Systems to a Non-Global Zone
You can add a ZFS file system as a generic file system when the goal is solely to share space with
the global zone. A ZFS file system that is added to a non-global zone must have its mountpoint
property set to legacy. For example, if the tank/zone/zion file system will be added to a
non-global zone, set the mountpoint property in the global zone as follows:

zfs set mountpoint=legacy tank/zone/zion

You can add a ZFS file system to a non-global zone by using the zonecfg command's add fs
subcommand.

In the following example, a ZFS file system is added to a non-global zone by a global zone
administrator from the global zone:

zonecfg -z zion

zonecfg:zion> add fs

zonecfg:zion:fs> set type=zfs

zonecfg:zion:fs> set special=tank/zone/zion

zonecfg:zion:fs> set dir=/opt/data

zonecfg:zion:fs> end

This syntax adds the ZFS file system, tank/zone/zion, to the already configured zion zone,
which is mounted at /opt/data. The mountpoint property of the file system must be set to
legacy, and the file system cannot already be mounted in another location. The zone
administrator can create and destroy files within the file system. The file system cannot be
remounted in a different location, nor can the zone administrator change properties on the file
system such as atime, readonly, compression, and so on. The global zone administrator is
responsible for setting and controlling properties of the file system.

For more information about the zonecfg command and about configuring resource types with
zonecfg, see Part II, “Oracle Solaris Zones,” in Oracle Solaris Administration: Oracle Solaris
Zones, Oracle Solaris 10 Zones, and Resource Management.

Delegating Datasets to a Non-Global Zone
To meet the primary goal of delegating the administration of storage to a zone, ZFS supports
adding datasets to a non-global zone through the use of the zonecfg command's add dataset
subcommand.

In the following example, a ZFS file system is delegated to a non-global zone by a global zone
administrator from the global zone.

zonecfg -z zion

zonecfg:zion> add dataset

zonecfg:zion:dataset> set name=tank/zone/zion

zonecfg:zion:dataset> set alias=tank

zonecfg:zion:dataset> end

Using ZFS on a Solaris System With Zones Installed

Chapter 9 • Oracle Solaris ZFS Advanced Topics 259

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=SYSADRMzone
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=SYSADRMzone

Unlike adding a file system, this syntax causes the ZFS file system tank/zone/zion to be visible
within the already configured zion zone. Within the zion zone, this file system is not accessible
as tank/zone/zion, but as a virtual pool named tank. The delegated file system alias provides a
view of the original pool to the zone as a virtual pool. The alias property specifies the name of
the virtual pool. If no alias is specified, a default alias matching the last component of the file
system name is used. If a specific alias is not provided, the default alias in the above example
would have been zion.

Within delegated datasets, the zone administrator can set file system properties, as well as create
descendent file systems. In addition, the zone administrator can create snapshots and clones,
and otherwise control the entire file system hierarchy. If ZFS volumes are created within
delegated file systems, it is possible for them to conflict with ZFS volumes that are added as
device resources. For more information, see the next section and dev(7FS).

Adding ZFS Volumes to a Non-Global Zone
You can add or create a ZFS volume in a non-global zone or you can add access to a volume's
data in a non-global zone in the following ways:

■ In a non-global zone, a privileged zone administrator can create a ZFS volume as
descendent of a previously delegated file system. For example:

zfs create -V 2g tank/zone/zion/vol1

The above syntax means that the zone administrator can manage the volume's properties
and data in the non-global zone.

■ In a global zone, use the zonecfg add dataset subcommand and specify a ZFS volume to be
added to a non-global zone. For example:

zonecfg -z zion

zonecfg:zion> add dataset

zonecfg:zion:dataset> set name=tank/volumes/vol1

zonecfg:zion:dataset> end

The above syntax means that the zone administrator can manage the volume's properties
and data in the non-global zone.

■ In a global zone, use the zonecfg add device subcommand and specify a ZFS volume
whose data can be accessed in a non-global zone. For example:

zonecfg -z zion

zonecfg:zion> add device

zonecfg:zion:device> set match=/dev/zvol/dsk/tank/volumes/vol2

zonecfg:zion:device> end

The above syntax means that only the volume data can be accessed in the non-global zone.

Using ZFS on a Solaris System With Zones Installed

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013260

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7dev-7fs

Using ZFS Storage Pools Within a Zone
ZFS storage pools cannot be created or modified within a zone. The delegated administration
model centralizes control of physical storage devices within the global zone and control of
virtual storage to non-global zones. Although a pool-level dataset can be added to a zone, any
command that modifies the physical characteristics of the pool, such as creating, adding, or
removing devices, is not allowed from within a zone. Even if physical devices are added to a
zone by using the zonecfg command's add device subcommand, or if files are used, the zpool
command does not allow the creation of any new pools within the zone.

Managing ZFS Properties Within a Zone
After a dataset is delegated to a zone, the zone administrator can control specific dataset
properties. After a dataset is delegated to a zone, all its ancestors are visible as read-only
datasets, while the dataset itself is writable, as are all of its descendents. For example, consider
the following configuration:

global# zfs list -Ho name

tank

tank/home

tank/data

tank/data/matrix

tank/data/zion

tank/data/zion/home

If tank/data/zion were added to a zone with the default zion alias, each dataset would have the
following properties.

Dataset Visible Writable Immutable Properties

tank No - -

tank/home No - -

tank/data No - -

tank/data/zion Yes Yes zoned, quota,
reservation

tank/data/zion/home Yes Yes zoned

Note that every parent of tank/zone/zion is invisible and all descendants are writable. The
zone administrator cannot change the zoned property because doing so would expose a security
risk that described in the next section.

Privileged users in the zone can change any other settable property, except for quota and
reservation properties. This behavior allows the global zone administrator to control the disk
space consumption of all datasets used by the non-global zone.

Using ZFS on a Solaris System With Zones Installed

Chapter 9 • Oracle Solaris ZFS Advanced Topics 261

In addition, the share.nfs and mountpoint properties cannot be changed by the global zone
administrator after a dataset has been delegated to a non-global zone.

Understanding the zonedProperty
When a dataset is delegated to a non-global zone, the dataset must be specially marked so that
certain properties are not interpreted within the context of the global zone. After a dataset has
been delegated to a non-global zone and is under the control of a zone administrator, its
contents can no longer be trusted. As with any file system, there might be setuid binaries,
symbolic links, or otherwise questionable contents that might adversely affect the security of the
global zone. In addition, the mountpoint property cannot be interpreted in the context of the
global zone. Otherwise, the zone administrator could affect the global zone's namespace. To
address the latter, ZFS uses the zoned property to indicate that a dataset has been delegated to a
non-global zone at one point in time.

The zoned property is a boolean value that is automatically turned on when a zone containing a
ZFS dataset is first booted. A zone administrator does not need to manually turn on this
property. If the zoned property is set, the dataset cannot be mounted or shared in the global
zone. In the following example, tank/zone/zion has been delegated to a zone, while
tank/zone/global has not:

zfs list -o name,zoned,mountpoint -r tank/zone

NAME ZONED MOUNTPOINT

tank/zone/global off /tank/zone/global

tank/zone/zion on /tank/zone/zion

zfs mount

tank/zone/global /tank/zone/global

tank/zone/zion /export/zone/zion/root/tank/zone/zion

Note the difference between the mountpoint property and the directory where the
tank/zone/zion dataset is currently mounted. The mountpoint property reflects the property
as it is stored on disk, not where the dataset is currently mounted on the system.

When a dataset is removed from a zone or a zone is destroyed, the zoned property is not
automatically cleared. This behavior is due to the inherent security risks associated with these
tasks. Because an untrusted user has had complete access to the dataset and its descendents, the
mountpoint property might be set to bad values, or setuid binaries might exist on the file
systems.

To prevent accidental security risks, the zoned property must be manually cleared by the global
zone administrator if you want to reuse the dataset in any way. Before setting the zoned
property to off, ensure that the mountpoint property for the dataset and all its descendents are
set to reasonable values and that no setuid binaries exist, or turn off the setuid property.

After you have verified that no security vulnerabilities are left, the zoned property can be turned
off by using the zfs set or zfs inherit command. If the zoned property is turned off while a

Using ZFS on a Solaris System With Zones Installed

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013262

dataset is in use within a zone, the system might behave in unpredictable ways. Only change the
property if you are sure the dataset is no longer in use by a non-global zone.

Copying Zones to Other Systems
When you need to migrate one or more zones needs to another system, consider using the zfs
send and zfs receive commands. Depending on the scenario, it may be best to use a
replication streams or recursive streams.

The examples in this section describe how to copy zone data between systems. Additional steps
are required to transfer each zone's configuration and attach each zone to the new system. For
more information, see Part II, “Oracle Solaris Zones,” in Oracle Solaris 11.1 Administration:
Oracle Solaris Zones, Oracle Solaris 10 Zones, and Resource Management.

If all zones on one system need to move to another system, consider using a replication stream
because it preserves snapshots and clones. Snapshots and clones are used extensively by pkg
update, beadm create, and the zoneadm clone commands.

In the following example, the sysA's zones are installed in the rpool/zones file system and they
need to be copied to the tank/zones file system on sys. The following commands create a
snapshot and copy the data to sysB by using a replication stream:

sysA# zfs snapshot -r rpool/zones@send-to-sysB

sysA# zfs send -R rpool/zones@send-to-sysB | ssh sysB zfs receive -d tank

In the following example, one of several zones is copied from sysC to the sysD. Assume that the
ssh command is not available but an NFS server instance is available. The following commands
might be used to generate a recursive zfs send stream without worrying about whether the
zone is a clone of another zone.

sysC# zfs snapshot -r rpool/zones/zone1@send-to-nfs

sysC# zfs send -rc rpool/zones/zone1@send-to-nfs > /net/nfssrv/export/scratch/zone1.zfs

sysD# zfs create tank/zones

sysD# zfs receive -d tank/zones < /net/nfssrv/export/scratch/zone1.zfs

Using ZFS Alternate Root Pools
When a pool is created, it is intrinsically tied to the host system. The host system maintains
information about the pool so that it can detect when the pool is unavailable. Although useful
for normal operations, this information can prove a hindrance when you are booting from
alternate media or creating a pool on removable media. To solve this problem, ZFS provides an
alternate root pool feature. An alternate root pool does not persist across system reboots, and all
mount points are modified to be relative to the root of the pool.

Using ZFS Alternate Root Pools

Chapter 9 • Oracle Solaris ZFS Advanced Topics 263

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=VLZONzone
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=VLZONzone

Creating ZFS Alternate Root Pools
The most common reason for creating an alternate root pool is for use with removable media.
In these circumstances, users typically want a single file system, and they want it to be mounted
wherever they choose on the target system. When an alternate root pool is created by using the
zpool create -R option, the mount point of the root file system is automatically set to /, which
is the equivalent of the alternate root value.

In the following example, a pool called morpheus is created with /mnt as the alternate root path:

zpool create -R /mnt morpheus c0t0d0

zfs list morpheus

NAME USED AVAIL REFER MOUNTPOINT

morpheus 32.5K 33.5G 8K /mnt

Note the single file system, morpheus, whose mount point is the alternate root of the pool, /mnt.
The mount point that is stored on disk is / and the full path to /mnt is interpreted only in this
initial context of the pool creation. This file system can then be exported and imported under an
arbitrary alternate root pool on a different system by using -R alternate root value syntax.

zpool export morpheus

zpool import morpheus

cannot mount ’/’: directory is not empty

zpool export morpheus

zpool import -R /mnt morpheus

zfs list morpheus

NAME USED AVAIL REFER MOUNTPOINT

morpheus 32.5K 33.5G 8K /mnt

Importing Alternate Root Pools
Pools can also be imported using an alternate root. This feature allows for recovery situations,
where the mount points should not be interpreted in context of the current root, but under
some temporary directory where repairs can be performed. This feature also can be used when
you are mounting removable media as described in the preceding section.

In the following example, a pool called morpheus is imported with /mnt as the alternate root
path. This example assumes that morpheus was previously exported.

zpool import -R /a pool

zpool list morpheus

NAME SIZE ALLOC FREE CAP HEALTH ALTROOT

pool 44.8G 78K 44.7G 0% ONLINE /a

zfs list pool

NAME USED AVAIL REFER MOUNTPOINT

pool 73.5K 44.1G 21K /a/pool

Using ZFS Alternate Root Pools

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013264

Oracle Solaris ZFS Troubleshooting and Pool
Recovery

This chapter describes how to identify and recover from ZFS failures. Information for
preventing failures is provided as well.

The following sections are provided in this chapter:
■ “Resolving ZFS Space Issues” on page 265
■ “Identifying ZFS Failures” on page 267
■ “Checking ZFS File System Integrity” on page 268
■ “Resolving Problems With ZFS” on page 271
■ “Repairing a Damaged ZFS Configuration” on page 276
■ “Resolving a Missing Device” on page 276
■ “Replacing or Repairing a Damaged Device” on page 280
■ “Repairing Damaged Data” on page 289
■ “Repairing an Unbootable System” on page 294

For information about complete root pool recovery, see Chapter 11, “Archiving Snapshots and
Root Pool Recovery.”

Resolving ZFS Space Issues
Review the following sections if you are unsure how ZFS reports file system and pool space
accounting. Also review “ZFS Disk Space Accounting” on page 32.

ZFS File System Space Reporting
The zpool list and zfs list commands are better than the previous df and du commands for
determining your available pool and file system space. With the legacy commands, you cannot
easily discern between pool and file system space, nor do the legacy commands account for
space that is consumed by descendent file systems or snapshots.

For example, the following root pool (rpool) has 5.46 GB allocated and 68.5 GB free.

10C H A P T E R 1 0

265

zpool list rpool

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

rpool 74G 5.46G 68.5G 7% 1.00x ONLINE -

If you compare the pool space accounting with the file system space accounting by reviewing
the USED column of your individual file systems, you can see that the pool space that is reported
in ALLOC is accounted for in the file systems' USED total. For example:

zfs list -r rpool

NAME USED AVAIL REFER MOUNTPOINT

rpool 5.41G 67.4G 74.5K /rpool

rpool/ROOT 3.37G 67.4G 31K legacy

rpool/ROOT/solaris 3.37G 67.4G 3.07G /

rpool/ROOT/solaris/var 302M 67.4G 214M /var

rpool/dump 1.01G 67.5G 1000M -

rpool/export 97.5K 67.4G 32K /rpool/export

rpool/export/home 65.5K 67.4G 32K /rpool/export/home

rpool/export/home/admin 33.5K 67.4G 33.5K /rpool/export/home/admin

rpool/swap 1.03G 67.5G 1.00G -

ZFS Storage Pool Space Reporting
The SIZE value that is reported by the zpool list command is generally the amount of
physical disk space in the pool, but varies depending on the pool's redundancy level. See the
examples below. The zfs list command lists the usable space that is available to file systems,
which is disk space minus ZFS pool redundancy metadata overhead, if any.

■ Non-redundant storage pool – When a pool is created with one 136-GB disk, the zpool
list command reports SIZE and initial FREE values as 136 GB. The initial AVAIL space
reported by the zfs list command is 134 GB, due to a small amount of pool metadata
overhead. For example:

zpool create tank c0t6d0

zpool list tank

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

tank 136G 95.5K 136G 0% 1.00x ONLINE -

zfs list tank

NAME USED AVAIL REFER MOUNTPOINT

tank 72K 134G 21K /tank

■ Mirrored storage pool– When a pool is created with two 136-GB disks, zpool list
command reports SIZE as 136 GB and initial FREE value as 136 GB. This reporting is
referred to as the deflated space value. The initial AVAIL space reported by the zfs list
command is 134 GB, due to a small amount of pool metadata overhead. For example:

zpool create tank mirror c0t6d0 c0t7d0

zpool list tank

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

tank 136G 95.5K 136G 0% 1.00x ONLINE -

zfs list tank

NAME USED AVAIL REFER MOUNTPOINT

tank 72K 134G 21K /tank

Resolving ZFS Space Issues

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013266

■ RAID-Z storage pool – When a raidz2 pool is created with three 136-GB disks, the zpool
list commands reports SIZE as 408 GB and initial FREE value as 408 GB. This reporting is
referred to as the inflated disk space value, which includes redundancy overhead, such as
parity information. The initial AVAIL space reported by the zfs list command is 133 GB,
due to the pool redundancy overhead. The space discrepancy between the zpool list and
the zfs list output for a RAID-Z pool is because zpool list reports the inflated pool
space.

zpool create tank raidz2 c0t6d0 c0t7d0 c0t8d0

zpool list tank

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

tank 408G 286K 408G 0% 1.00x ONLINE -

zfs list tank

NAME USED AVAIL REFER MOUNTPOINT

tank 73.2K 133G 20.9K /tank

Identifying ZFS Failures
As a combined file system and volume manager, ZFS can exhibit many different failures. This
chapter begins by outlining the various failures, then discusses how to identify them on a
running system. This chapter concludes by discussing how to repair the problems. ZFS can
encounter three basic types of errors:

■ “Missing Devices in a ZFS Storage Pool” on page 267
■ “Damaged Devices in a ZFS Storage Pool” on page 268
■ “Corrupted ZFS Data” on page 268

Note that a single pool can experience all three errors, so a complete repair procedure involves
finding and correcting one error, proceeding to the next error, and so on.

Missing Devices in a ZFS Storage Pool
If a device is completely removed from the system, ZFS detects that the device cannot be opened
and places it in the REMOVED state. Depending on the data replication level of the pool, this
removal might or might not result in the entire pool becoming unavailable. If one disk in a
mirrored or RAID-Z device is removed, the pool continues to be accessible. A pool might
become UNAVAIL, which means no data is accessible until the device is reattached, under the
following conditions:

■ If all components of a mirror are removed
■ If more than one device in a RAID-Z (raidz1) device is removed
■ If top-level device is removed in a single-disk configuration

Identifying ZFS Failures

Chapter 10 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 267

Damaged Devices in a ZFS Storage Pool
The term “damaged” covers a wide variety of possible errors. Examples include the following:

■ Transient I/O errors due to a bad disk or controller
■ On-disk data corruption due to cosmic rays
■ Driver bugs resulting in data being transferred to or from the wrong location
■ A user overwriting portions of the physical device by accident

In some cases, these errors are transient, such as a random I/O error while the controller is
having problems. In other cases, the damage is permanent, such as on-disk corruption. Even
still, whether the damage is permanent does not necessarily indicate that the error is likely to
occur again. For example, if you accidentally overwrite part of a disk, no type of hardware
failure has occurred, and the device does not need to be replaced. Identifying the exact problem
with a device is not an easy task and is covered in more detail in a later section.

Corrupted ZFS Data
Data corruption occurs when one or more device errors (indicating one or more missing or
damaged devices) affects a top-level virtual device. For example, one half of a mirror can
experience thousands of device errors without ever causing data corruption. If an error is
encountered on the other side of the mirror in the exact same location, corrupted data is the
result.

Data corruption is always permanent and requires special consideration during repair. Even if
the underlying devices are repaired or replaced, the original data is lost forever. Most often, this
scenario requires restoring data from backups. Data errors are recorded as they are
encountered, and they can be controlled through routine pool scrubbing as explained in the
following section. When a corrupted block is removed, the next scrubbing pass recognizes that
the corruption is no longer present and removes any trace of the error from the system.

Checking ZFS File System Integrity
No fsck utility equivalent exists for ZFS. This utility has traditionally served two purposes,
those of file system repair and file system validation.

File System Repair
With traditional file systems, the way in which data is written is inherently vulnerable to
unexpected failure causing file system inconsistencies. Because a traditional file system is not
transactional, unreferenced blocks, bad link counts, or other inconsistent file system structures
are possible. The addition of journaling does solve some of these problems, but can introduce

Checking ZFS File System Integrity

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013268

additional problems when the log cannot be rolled back. The only way for inconsistent data to
exist on disk in a ZFS configuration is through hardware failure (in which case the pool should
have been redundant) or when a bug exists in the ZFS software.

The fsck utility repairs known problems specific to UFS file systems. Most ZFS storage pool
problems are generally related to failing hardware or power failures. Many problems can be
avoided by using redundant pools. If your pool is damaged due to failing hardware or a power
outage, see “Repairing ZFS Storage Pool-Wide Damage” on page 292.

If your pool is not redundant, the risk that file system corruption can render some or all of your
data inaccessible is always present.

File System Validation
In addition to performing file system repair, the fsck utility validates that the data on disk has
no problems. Traditionally, this task requires unmounting the file system and running the fsck
utility, possibly taking the system to single-user mode in the process. This scenario results in
downtime that is proportional to the size of the file system being checked. Instead of requiring
an explicit utility to perform the necessary checking, ZFS provides a mechanism to perform
routine checking of all inconsistencies. This feature, known as scrubbing, is commonly used in
memory and other systems as a method of detecting and preventing errors before they result in
a hardware or software failure.

Controlling ZFS Data Scrubbing
Whenever ZFS encounters an error, either through scrubbing or when accessing a file on
demand, the error is logged internally so that you can obtain a quick overview of all known
errors within the pool.

Explicit ZFS Data Scrubbing
The simplest way to check data integrity is to initiate an explicit scrubbing of all data within the
pool. This operation traverses all the data in the pool once and verifies that all blocks can be
read. Scrubbing proceeds as fast as the devices allow, though the priority of any I/O remains
below that of normal operations. This operation might negatively impact performance, though
the pool's data should remain usable and nearly as responsive while the scrubbing occurs. To
initiate an explicit scrub, use the zpool scrub command. For example:

zpool scrub tank

The status of the current scrubbing operation can be displayed by using the zpool status
command. For example:

Checking ZFS File System Integrity

Chapter 10 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 269

zpool status -v tank

pool: tank

state: ONLINE

scan: scrub in progress since Mon Jun 7 12:07:52 2010

201M scanned out of 222M at 9.55M/s, 0h0m to go

0 repaired, 90.44% done

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

errors: No known data errors

Only one active scrubbing operation per pool can occur at one time.

You can stop a scrubbing operation that is in progress by using the -s option. For example:

zpool scrub -s tank

In most cases, a scrubbing operation to ensure data integrity should continue to completion.
Stop a scrubbing operation at your own discretion if system performance is impacted by the
operation.

Performing routine scrubbing guarantees continuous I/O to all disks on the system. Routine
scrubbing has the side effect of preventing power management from placing idle disks in
low-power mode. If the system is generally performing I/O all the time, or if power
consumption is not a concern, then this issue can safely be ignored.

For more information about interpreting zpool status output, see “Querying ZFS Storage
Pool Status” on page 84.

ZFS Data Scrubbing and Resilvering
When a device is replaced, a resilvering operation is initiated to move data from the good copies
to the new device. This action is a form of disk scrubbing. Therefore, only one such action can
occur at a given time in the pool. If a scrubbing operation is in progress, a resilvering operation
suspends the current scrubbing and restarts it after the resilvering is completed.

For more information about resilvering, see “Viewing Resilvering Status” on page 287.

Checking ZFS File System Integrity

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013270

Resolving Problems With ZFS
The following sections describe how to identify and resolve problems with your ZFS file systems
or storage pools:
■ “Determining If Problems Exist in a ZFS Storage Pool” on page 272
■ “Reviewing zpool status Output” on page 272
■ “System Reporting of ZFS Error Messages” on page 275

You can use the following features to identify problems with your ZFS configuration:
■ Detailed ZFS storage pool information can be displayed by using the zpool status

command.
■ Pool and device failures are reported through ZFS/FMA diagnostic messages.
■ Previous ZFS commands that modified pool state information can be displayed by using the

zpool history command.

Most ZFS troubleshooting involves the zpool status command. This command analyzes the
various failures in a system and identifies the most severe problem, presenting you with a
suggested action and a link to a knowledge article for more information. Note that the
command only identifies a single problem with a pool, though multiple problems can exist. For
example, data corruption errors generally imply that one of the devices has failed, but replacing
the failed device might not resolve all of the data corruption problems.

In addition, a ZFS diagnostic engine diagnoses and reports pool failures and device failures.
Checksum, I/O, device, and pool errors associated with these failures are also reported. ZFS
failures as reported by fmd are displayed on the console as well as the system messages file. In
most cases, the fmd message directs you to the zpool status command for further recovery
instructions.

The basic recovery process is as follows:

■ If appropriate, use the zpool history command to identify the ZFS commands that
preceded the error scenario. For example:

zpool history tank

History for ’tank’:

2010-07-15.12:06:50 zpool create tank mirror c0t1d0 c0t2d0 c0t3d0

2010-07-15.12:06:58 zfs create tank/eric

2010-07-15.12:07:01 zfs set checksum=off tank/eric

In this output, note that checksums are disabled for the tank/eric file system. This
configuration is not recommended.

■ Identify the errors through the fmd messages that are displayed on the system console or in
the /var/adm/messages file.

■ Find further repair instructions by using the zpool status -x command.
■ Repair the failures, which involves the following steps:

Resolving Problems With ZFS

Chapter 10 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 271

■ Replacing the unavailable or missing device and bring it online.
■ Restoring the faulted configuration or corrupted data from a backup.
■ Verifying the recovery by using the zpool status -x command.
■ Backing up your restored configuration, if applicable.

This section describes how to interpret zpool status output in order to diagnose the type of
failures that can occur. Although most of the work is performed automatically by the
command, it is important to understand exactly what problems are being identified in order to
diagnose the failure. Subsequent sections describe how to repair the various problems that you
might encounter.

Determining If Problems Exist in a ZFS Storage Pool
The easiest way to determine if any known problems exist on a system is to use the zpool
status -x command. This command describes only pools that are exhibiting problems. If no
unhealthy pools exist on the system, then the command displays the following:

zpool status -x

all pools are healthy

Without the -x flag, the command displays the complete status for all pools (or the requested
pool, if specified on the command line), even if the pools are otherwise healthy.

For more information about command-line options to the zpool status command, see
“Querying ZFS Storage Pool Status” on page 84.

Reviewing zpool status Output
The complete zpool status output looks similar to the following:

zpool status pond

pool: pond

state: DEGRADED

status: One or more devices are unavailable in response to persistent errors.

Sufficient replicas exist for the pool to continue functioning in a

degraded state.

action: Determine if the device needs to be replaced, and clear the errors

using ’zpool clear’ or ’fmadm repaired’, or replace the device

with ’zpool replace’.

Run ’zpool status -v’ to see device specific details.

scan: scrub repaired 0 in 0h0m with 0 errors on Wed Jun 20 13:16:09 2012

config:

NAME STATE READ WRITE CKSUM

pond DEGRADED 0 0 0

mirror-0 ONLINE 0 0 0

c0t5000C500335F95E3d0 ONLINE 0 0 0

c0t5000C500335F907Fd0 ONLINE 0 0 0

Resolving Problems With ZFS

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013272

mirror-1 DEGRADED 0 0 0

c0t5000C500335BD117d0 ONLINE 0 0 0

c0t5000C500335DC60Fd0 UNAVAIL 0 0 0

errors: No known data errors

This output is described in the following section.

Overall Pool Status Information
This section in the zpool status output contains the following fields, some of which are only
displayed for pools exhibiting problems:

pool Identifies the name of the pool.

state Indicates the current health of the pool. This information refers only to the ability of
the pool to provide the necessary replication level.

status Describes what is wrong with the pool. This field is omitted if no errors are found.

action A recommended action for repairing the errors. This field is omitted if no errors are
found.

see Refers to a knowledge article containing detailed repair information. Online articles
are updated more often than this guide can be updated. So, always reference them
for the most up-to-date repair procedures. This field is omitted if no errors are
found.

scrub Identifies the current status of a scrub operation, which might include the date and
time that the last scrub was completed, a scrub is in progress, or if no scrub was
requested.

errors Identifies known data errors or the absence of known data errors.

Pool Configuration Information
The config field in the zpool status output describes the configuration of the devices in the
pool, as well as their state and any errors generated from the devices. The state can be one of the
following: ONLINE, FAULTED, DEGRADED, or SUSPENDED. If the state is anything but ONLINE, the
fault tolerance of the pool has been compromised.

The second section of the configuration output displays error statistics. These errors are divided
into three categories:

■ READ – I/O errors that occurred while issuing a read request
■ WRITE – I/O errors that occurred while issuing a write request
■ CKSUM – Checksum errors, meaning that the device returned corrupted data as the result of a

read request

Resolving Problems With ZFS

Chapter 10 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 273

These errors can be used to determine if the damage is permanent. A small number of I/O
errors might indicate a temporary outage, while a large number might indicate a permanent
problem with the device. These errors do not necessarily correspond to data corruption as
interpreted by applications. If the device is in a redundant configuration, the devices might
show uncorrectable errors, while no errors appear at the mirror or RAID-Z device level. In such
cases, ZFS successfully retrieved the good data and attempted to heal the damaged data from
existing replicas.

For more information about interpreting these errors, see “Determining the Type of Device
Failure” on page 280.

Finally, additional auxiliary information is displayed in the last column of the zpool status
output. This information expands on the state field, aiding in the diagnosis of failures. If a
device is UNAVAIL, this field indicates whether the device is inaccessible or whether the data on
the device is corrupted. If the device is undergoing resilvering, this field displays the current
progress.

For information about monitoring resilvering progress, see “Viewing Resilvering Status” on
page 287.

Scrubbing Status
The scrub section of the zpool status output describes the current status of any explicit
scrubbing operations. This information is distinct from whether any errors are detected on the
system, though this information can be used to determine the accuracy of the data corruption
error reporting. If the last scrub ended recently, most likely, any known data corruption has
been discovered.

The following zpool status scrub status messages are provided:

■ Scrub in-progress report. For example:

scan: scrub in progress since Wed Jun 20 14:56:52 2012

529M scanned out of 71.8G at 48.1M/s, 0h25m to go

0 repaired, 0.72% done

■ Scrub completion message. For example:

scan: scrub repaired 0 in 0h11m with 0 errors on Wed Jun 20 15:08:23 2012

■ Ongoing scrub cancellation message. For example:

scan: scrub canceled on Wed Jun 20 16:04:40 2012

Scrub completion messages persist across system reboots.

For more information about the data scrubbing and how to interpret this information, see
“Checking ZFS File System Integrity” on page 268.

Resolving Problems With ZFS

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013274

Data Corruption Errors
The zpool status command also shows whether any known errors are associated with the
pool. These errors might have been found during data scrubbing or during normal operation.
ZFS maintains a persistent log of all data errors associated with a pool. This log is rotated
whenever a complete scrub of the system finishes.

Data corruption errors are always fatal. Their presence indicates that at least one application
experienced an I/O error due to corrupt data within the pool. Device errors within a redundant
pool do not result in data corruption and are not recorded as part of this log. By default, only the
number of errors found is displayed. A complete list of errors and their specifics can be found
by using the zpool status -v option. For example:

zpool status -v tank

pool: tank

state: ONLINE

status: One or more devices has experienced an error resulting in data

corruption. Applications may be affected.

action: Restore the file in question if possible. Otherwise restore the

entire pool from backup.

see: http://support.oracle.com/msg/ZFS-8000-8A

scan: scrub repaired 0 in 0h0m with 2 errors on Fri Jun 29 16:58:58 2012

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 2 0 0

c8t0d0 ONLINE 0 0 0

c8t1d0 ONLINE 2 0 0

errors: Permanent errors have been detected in the following files:

/tank/file.1

A similar message is also displayed by fmd on the system console and the /var/adm/messages
file. These messages can also be tracked by using the fmdump command.

For more information about interpreting data corruption errors, see “Identifying the Type of
Data Corruption” on page 290.

System Reporting of ZFS Error Messages
In addition to persistently tracking errors within the pool, ZFS also displays syslog messages
when events of interest occur. The following scenarios generate notification events:

■ Device state transition – If a device becomes FAULTED, ZFS logs a message indicating that
the fault tolerance of the pool might be compromised. A similar message is sent if the device
is later brought online, restoring the pool to health.

Resolving Problems With ZFS

Chapter 10 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 275

■ Data corruption – If any data corruption is detected, ZFS logs a message describing when
and where the corruption was detected. This message is only logged the first time it is
detected. Subsequent accesses do not generate a message.

■ Pool failures and device failures – If a pool failure or a device failure occurs, the fault
manager daemon reports these errors through syslog messages as well as the fmdump
command.

If ZFS detects a device error and automatically recovers from it, no notification occurs. Such
errors do not constitute a failure in the pool redundancy or in data integrity. Moreover, such
errors are typically the result of a driver problem accompanied by its own set of error messages.

Repairing a Damaged ZFS Configuration
ZFS maintains a cache of active pools and their configuration in the root file system. If this
cache file is corrupted or somehow becomes out of sync with configuration information that is
stored on disk, the pool can no longer be opened. ZFS tries to avoid this situation, though
arbitrary corruption is always possible given the qualities of the underlying storage. This
situation typically results in a pool disappearing from the system when it should otherwise be
available. This situation can also manifest as a partial configuration that is missing an unknown
number of top-level virtual devices. In either case, the configuration can be recovered by
exporting the pool (if it is visible at all) and re-importing it.

For information about importing and exporting pools, see “Migrating ZFS Storage Pools” on
page 96.

Resolving a Missing Device
If a device cannot be opened, it displays the UNAVAIL state in the zpool status output. This
state means that ZFS was unable to open the device when the pool was first accessed, or the
device has since become unavailable. If the device causes a top-level virtual device to be
unavailable, then nothing in the pool can be accessed. Otherwise, the fault tolerance of the pool
might be compromised. In either case, the device just needs to be reattached to the system to
restore normal operations. If you need to replace a device that is UNAVAIL because it has failed,
see “Replacing a Device in a ZFS Storage Pool” on page 282.

If a device is UNAVAIL in a root pool or a mirrored root pool, see the following references:

■ Mirrored root pool disk failed – “Booting From an Alternate Disk in a Mirrored ZFS Root
Pool” on page 124

■ Replacing a disk in a root pool
■ “How to Replace a Disk in a ZFS Root Pool (SPARC or x86/VTOC)” on page 115

Repairing a Damaged ZFS Configuration

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013276

■ “How to Replace a Disk in a ZFS Root Pool (SPARC or x86/EFI (GPT))” on page 117
■ Full root pool disaster recovery – Chapter 11, “Archiving Snapshots and Root Pool

Recovery”

For example, you might see a message similar to the following from fmd after a device failure:

SUNW-MSG-ID: ZFS-8000-QJ, TYPE: Fault, VER: 1, SEVERITY: Minor

EVENT-TIME: Wed Jun 20 13:09:55 MDT 2012

PLATFORM: ORCL,SPARC-T3-4, CSN: 1120BDRCCD, HOSTNAME: tardis

SOURCE: zfs-diagnosis, REV: 1.0

EVENT-ID: e13312e0-be0a-439b-d7d3-cddaefe717b0

DESC: Outstanding dtls on ZFS device ’id1,sd@n5000c500335dc60f/a’ in pool ’pond’.

AUTO-RESPONSE: No automated response will occur.

IMPACT: None at this time.

REC-ACTION: Use ’fmadm faulty’ to provide a more detailed view of this event.

Run ’zpool status -lx’ for more information. Please refer to the associated

reference document at http://support.oracle.com/msg/ZFS-8000-QJ for the latest

service procedures and policies regarding this diagnosis.

To view more detailed information about the device problem and the resolution, use the zpool
status -v command. For example:

zpool status -v

pool: pond

state: DEGRADED

status: One or more devices are unavailable in response to persistent errors.

Sufficient replicas exist for the pool to continue functioning in a

degraded state.

action: Determine if the device needs to be replaced, and clear the errors

using ’zpool clear’ or ’fmadm repaired’, or replace the device

with ’zpool replace’.

scan: scrub repaired 0 in 0h0m with 0 errors on Wed Jun 20 13:16:09 2012

config:

NAME STATE READ WRITE CKSUM

pond DEGRADED 0 0 0

mirror-0 ONLINE 0 0 0

c0t5000C500335F95E3d0 ONLINE 0 0 0

c0t5000C500335F907Fd0 ONLINE 0 0 0

mirror-1 DEGRADED 0 0 0

c0t5000C500335BD117d0 ONLINE 0 0 0

c0t5000C500335DC60Fd0 UNAVAIL 0 0 0

device details:

c0t5000C500335DC60Fd0 UNAVAIL cannot open

status: ZFS detected errors on this device.

The device was missing.

see: http://support.oracle.com/msg/ZFS-8000-LR for recovery

You can see from this output that the c0t5000C500335DC60Fd0 device is not functioning. If you
determine that the device is faulty, replace it.

If necessary, use the zpool online command to bring the replaced device online. For example:

Resolving a Missing Device

Chapter 10 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 277

Let FMA know that the device has been replaced if the output of the fmadm faulty identifies the
device error. For example:

fmadm faulty

--------------- ------------------------------------ -------------- ---------

TIME EVENT-ID MSG-ID SEVERITY

--------------- ------------------------------------ -------------- ---------

Jun 20 13:15:41 3745f745-371c-c2d3-d940-93acbb881bd8 ZFS-8000-LR Major

Problem Status : solved

Diag Engine : zfs-diagnosis / 1.0

System

Manufacturer : unknown

Name : ORCL,SPARC-T3-4

Part_Number : unknown

Serial_Number : 1120BDRCCD

Host_ID : 84a02d28

--

Suspect 1 of 1 :

Fault class : fault.fs.zfs.open_failed

Certainty : 100%

Affects : zfs://pool=86124fa573cad84e/vdev=25d36cd46e0a7f49/pool_name=pond/vdev_

name=id1,sd@n5000c500335dc60f/a

Status : faulted and taken out of service

FRU

Name : "zfs://pool=86124fa573cad84e/vdev=25d36cd46e0a7f49/pool_name=pond/vdev_
name=id1,sd@n5000c500335dc60f/a"

Status : faulty

Description : ZFS device ’id1,sd@n5000c500335dc60f/a’ in pool ’pond’ failed to

open.

Response : An attempt will be made to activate a hot spare if available.

Impact : Fault tolerance of the pool may be compromised.

Action : Use ’fmadm faulty’ to provide a more detailed view of this event.

Run ’zpool status -lx’ for more information. Please refer to the

associated reference document at

http://support.oracle.com/msg/ZFS-8000-LR for the latest service

procedures and policies regarding this diagnosis.

Extract the string in the Affects: section of the fmadm faulty output and include it with the
following command to let FMA know that the device is replaced:

fmadm repaired zfs://pool=86124fa573cad84e/vdev=25d36cd46e0a7f49/pool_name=pond/vdev_

name=id1,sd@n5000c500335dc60f/a

fmadm: recorded repair to of zfs://pool=86124fa573cad84e/vdev=25d36cd46e0a7f49/pool_name=pond/vdev_

name=id1,sd@n5000c500335dc60f/a

As a last step, confirm that the pool with the replaced device is healthy. For example:

Resolving a Missing Device

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013278

zpool status -x tank

pool ’tank’ is healthy

Physically Reattaching a Device
Exactly how a missing device is reattached depends on the device in question. If the device is a
network-attached drive, connectivity to the network should be restored. If the device is a USB
device or other removable media, it should be reattached to the system. If the device is a local
disk, a controller might have failed such that the device is no longer visible to the system. In this
case, the controller should be replaced, at which point the disks will again be available. Other
problems can exist and depend on the type of hardware and its configuration. If a drive fails and
it is no longer visible to the system, the device should be treated as a damaged device. Follow the
procedures in “Replacing or Repairing a Damaged Device” on page 280.

A pool might be SUSPENDED if device connectivity is compromised. A SUSPENDED pool remains
in the wait state until the device issue is resolved. For example:

zpool status cybermen

pool: cybermen

state: SUSPENDED

status: One or more devices are unavailable in response to IO failures.

The pool is suspended.

action: Make sure the affected devices are connected, then run ’zpool clear’ or

’fmadm repaired’.

Run ’zpool status -v’ to see device specific details.

see: http://support.oracle.com/msg/ZFS-8000-HC

scan: none requested

config:

NAME STATE READ WRITE CKSUM

cybermen UNAVAIL 0 16 0

c8t3d0 UNAVAIL 0 0 0

c8t1d0 UNAVAIL 0 0 0

After device connectivity is restored, clear the pool or device errors.

zpool clear cybermen

fmadm repaired zfs://pool=name/vdev=guid

Notifying ZFS of Device Availability
After a device is reattached to the system, ZFS might or might not automatically detect its
availability. If the pool was previously UNAVAIL or SUSPENDED, or the system was rebooted as
part of the attach procedure, then ZFS automatically rescans all devices when it tries to open
the pool. If the pool was degraded and the device was replaced while the system was running,
you must notify ZFS that the device is now available and ready to be reopened by using the
zpool online command. For example:

Resolving a Missing Device

Chapter 10 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 279

zpool online tank c0t1d0

For more information about bringing devices online, see “Bringing a Device Online” on
page 72.

Replacing or Repairing a Damaged Device
This section describes how to determine device failure types, clear transient errors, and
replacing a device.

Determining the Type of Device Failure
The term damaged device is rather vague and can describe a number of possible situations:

■ Bit rot – Over time, random events such as magnetic influences and cosmic rays can cause
bits stored on disk to flip. These events are relatively rare but common enough to cause
potential data corruption in large or long-running systems.

■ Misdirected reads or writes – Firmware bugs or hardware faults can cause reads or writes of
entire blocks to reference the incorrect location on disk. These errors are typically transient,
though a large number of them might indicate a faulty drive.

■ Administrator error – Administrators can unknowingly overwrite portions of a disk with
bad data (such as copying /dev/zero over portions of the disk) that cause permanent
corruption on disk. These errors are always transient.

■ Temporary outage– A disk might become unavailable for a period of time, causing I/Os to
fail. This situation is typically associated with network-attached devices, though local disks
can experience temporary outages as well. These errors might or might not be transient.

■ Bad or flaky hardware – This situation is a catch-all for the various problems that faulty
hardware exhibits, including consistent I/O errors, faulty transports causing random
corruption, or any number of failures. These errors are typically permanent.

■ Offline device – If a device is offline, it is assumed that the administrator placed the device
in this state because it is faulty. The administrator who placed the device in this state can
determine if this assumption is accurate.

Determining exactly what is wrong with a device can be a difficult process. The first step is to
examine the error counts in the zpool status output. For example:

zpool status -v tank

pool: tank

state: ONLINE

status: One or more devices has experienced an error resulting in data

corruption. Applications may be affected.

action: Restore the file in question if possible. Otherwise restore the

Replacing or Repairing a Damaged Device

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013280

entire pool from backup.

see: http://support.oracle.com/msg/ZFS-8000-8A

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 2 0 0

c8t0d0 ONLINE 0 0 0

c8t0d0 ONLINE 2 0 0

errors: Permanent errors have been detected in the following files:

/tank/file.1

The errors are divided into I/O errors and checksum errors, both of which might indicate the
possible failure type. Typical operation predicts a very small number of errors (just a few over
long periods of time). If you are seeing a large number of errors, then this situation probably
indicates impending or complete device failure. However, an administrator error can also result
in large error counts. The other source of information is the syslog system log. If the log shows
a large number of SCSI or Fibre Channel driver messages, then this situation probably indicates
serious hardware problems. If no syslog messages are generated, then the damage is likely
transient.

The goal is to answer the following question:

Is another error likely to occur on this device?

Errors that happen only once are considered transient and do not indicate potential failure.
Errors that are persistent or severe enough to indicate potential hardware failure are considered
fatal. The act of determining the type of error is beyond the scope of any automated software
currently available with ZFS, and so much must be done manually by you, the administrator.
After determination is made, the appropriate action can be taken. Either clear the transient
errors or replace the device due to fatal errors. These repair procedures are described in the next
sections.

Even if the device errors are considered transient, they still might have caused uncorrectable
data errors within the pool. These errors require special repair procedures, even if the
underlying device is deemed healthy or otherwise repaired. For more information about
repairing data errors, see “Repairing Damaged Data” on page 289.

Clearing Transient Errors
If the device errors are deemed transient, in that they are unlikely to affect the future health of
the device, they can be safely cleared to indicate that no fatal error occurred. To clear error
counters for RAID-Z or mirrored devices, use the zpool clear command. For example:

zpool clear tank c1t1d0

Replacing or Repairing a Damaged Device

Chapter 10 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 281

This syntax clears any device errors and clears any data error counts associated with the device.

To clear all errors associated with the virtual devices in a pool, and to clear any data error counts
associated with the pool, use the following syntax:

zpool clear tank

For more information about clearing pool errors, see “Clearing Storage Pool Device Errors” on
page 73.

Replacing a Device in a ZFS Storage Pool
If device damage is permanent or future permanent damage is likely, the device must be
replaced. Whether the device can be replaced depends on the configuration.

■ “Determining If a Device Can Be Replaced” on page 282
■ “Devices That Cannot be Replaced” on page 283
■ “Replacing a Device in a ZFS Storage Pool” on page 283
■ “Viewing Resilvering Status” on page 287

Determining If a Device Can Be Replaced
If the device to be replaced is part of a redundant configuration, sufficient replicas from which
to retrieve good data must exist. For example, if two disks in a four-way mirror are UNAVAIL,
then either disk can be replaced because healthy replicas are available. However, if two disks in a
four-way RAID-Z (raidz1) virtual device are UNAVAIL, then neither disk can be replaced
because insufficient replicas from which to retrieve data exist. If the device is damaged but
otherwise online, it can be replaced as long as the pool is not in the UNAVAIL state. However, any
corrupted data on the device is copied to the new device, unless sufficient replicas with good
data exist.

In the following configuration, the c1t1d0 disk can be replaced, and any data in the pool is
copied from the healthy replica, c1t0d0:

mirror DEGRADED

c1t0d0 ONLINE

c1t1d0 UNAVAIL

The c1t0d0 disk can also be replaced, though no self-healing of data can take place because no
good replica is available.

In the following configuration, neither UNAVAIL disk can be replaced. The ONLINE disks cannot
be replaced either because the pool itself is UNAVAIL.

raidz1 UNAVAIL

c1t0d0 ONLINE

Replacing or Repairing a Damaged Device

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013282

c2t0d0 UNAVAIL

c3t0d0 UNAVAIL

c4t0d0 ONLINE

In the following configuration, either top-level disk can be replaced, though any bad data
present on the disk is copied to the new disk.

c1t0d0 ONLINE

c1t1d0 ONLINE

If either disk is UNAVAIL, then no replacement can be performed because the pool itself is
UNAVAIL.

Devices That Cannot be Replaced
If the loss of a device causes the pool to become UNAVAIL or the device contains too many data
errors in a non-redundant configuration, then the device cannot be safely replaced. Without
sufficient redundancy, no good data with which to heal the damaged device exists. In this case,
the only option is to destroy the pool and re-create the configuration, and then to restore your
data from a backup copy.

For more information about restoring an entire pool, see “Repairing ZFS Storage Pool-Wide
Damage” on page 292.

Replacing a Device in a ZFS Storage Pool
After you have determined that a device can be replaced, use the zpool replace command to
replace the device. If you are replacing the damaged device with different device, use syntax
similar to the following:

zpool replace tank c1t1d0 c2t0d0

This command migrates data to the new device from the damaged device or from other devices
in the pool if it is in a redundant configuration. When the command is finished, it detaches the
damaged device from the configuration, at which point the device can be removed from the
system. If you have already removed the device and replaced it with a new device in the same
location, use the single device form of the command. For example:

zpool replace tank c1t1d0

This command takes an unformatted disk, formats it appropriately, and then resilvers data
from the rest of the configuration.

For more information about the zpool replace command, see “Replacing Devices in a Storage
Pool” on page 73.

Replacing or Repairing a Damaged Device

Chapter 10 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 283

EXAMPLE 10–1 Replacing a SATA Disk in a ZFS Storage Pool

The following example shows how to replace a device (c1t3d0) in a mirrored storage pool tank
on a system with SATA devices. To replace the disk c1t3d0 with a new disk at the same location
(c1t3d0), then you must unconfigure the disk before you attempt to replace it. If the disk to be
replaced is not a SATA disk, then see “Replacing Devices in a Storage Pool” on page 73.

The basic steps follow:

■ Take offline the disk (c1t3d0)to be replaced. You cannot unconfigure a SATA disk that is
currently being used.

■ Use the cfgadm command to identify the SATA disk (c1t3d0) to be unconfigured and
unconfigure it. The pool will be degraded with the offline disk in this mirrored
configuration, but the pool will continue to be available.

■ Physically replace the disk (c1t3d0). Ensure that the blue Ready to Remove LED is
illuminated before you physically remove the UNAVAIL drive, if available.

■ Reconfigure the SATA disk (c1t3d0).
■ Bring the new disk (c1t3d0) online.
■ Run the zpool replace command to replace the disk (c1t3d0).

Note – If you had previously set the pool property autoreplace to on, then any new device,
found in the same physical location as a device that previously belonged to the pool is
automatically formatted and replaced without using the zpool replace command. This
feature might not be supported on all hardware.

■ If a failed disk is automatically replaced with a hot spare, you might need to detach the hot
spare after the failed disk is replaced. For example, if c2t4d0 is still an active hot spare after
the failed disk is replaced, then detach it.

zpool detach tank c2t4d0

■ If FMA is reporting the failed device, then you should clear the device failure.

fmadm faulty

fmadm repaired zfs://pool=name/vdev=guid

The following example walks through the steps to replace a disk in a ZFS storage pool.

zpool offline tank c1t3d0

cfgadm | grep c1t3d0

sata1/3::dsk/c1t3d0 disk connected configured ok

cfgadm -c unconfigure sata1/3

Unconfigure the device at: /devices/pci@0,0/pci1022,7458@2/pci11ab,11ab@1:3

This operation will suspend activity on the SATA device

Continue (yes/no)? yes

cfgadm | grep sata1/3

sata1/3 disk connected unconfigured ok

Replacing or Repairing a Damaged Device

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013284

EXAMPLE 10–1 Replacing a SATA Disk in a ZFS Storage Pool (Continued)

<Physically replace the failed disk c1t3d0>

cfgadm -c configure sata1/3

cfgadm | grep sata1/3

sata1/3::dsk/c1t3d0 disk connected configured ok

zpool online tank c1t3d0

zpool replace tank c1t3d0

zpool status tank

pool: tank

state: ONLINE

scrub: resilver completed after 0h0m with 0 errors on Tue Feb 2 13:17:32 2010

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c0t2d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

mirror-2 ONLINE 0 0 0

c0t3d0 ONLINE 0 0 0

c1t3d0 ONLINE 0 0 0

errors: No known data errors

Note that the preceding zpool output might show both the new and old disks under a replacing
heading. For example:

replacing DEGRADED 0 0 0

c1t3d0s0/o FAULTED 0 0 0

c1t3d0 ONLINE 0 0 0

This text means that the replacement process is in progress and the new disk is being resilvered.

If you are going to replace a disk (c1t3d0) with another disk (c4t3d0), then you only need to
run the zpool replace command. For example:

zpool replace tank c1t3d0 c4t3d0

zpool status

pool: tank

state: DEGRADED

scrub: resilver completed after 0h0m with 0 errors on Tue Feb 2 13:35:41 2010

config:

NAME STATE READ WRITE CKSUM

tank DEGRADED 0 0 0

mirror-0 ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c0t2d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

Replacing or Repairing a Damaged Device

Chapter 10 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 285

EXAMPLE 10–1 Replacing a SATA Disk in a ZFS Storage Pool (Continued)

mirror-2 DEGRADED 0 0 0

c0t3d0 ONLINE 0 0 0

replacing DEGRADED 0 0 0

c1t3d0 OFFLINE 0 0 0

c4t3d0 ONLINE 0 0 0

errors: No known data errors

You might need to run the zpool status command several times until the disk replacement is
completed.

zpool status tank

pool: tank

state: ONLINE

scrub: resilver completed after 0h0m with 0 errors on Tue Feb 2 13:35:41 2010

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c0t2d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

mirror-2 ONLINE 0 0 0

c0t3d0 ONLINE 0 0 0

c4t3d0 ONLINE 0 0 0

EXAMPLE 10–2 Replacing a Failed Log Device

ZFS identifies intent log failures in the zpool status command output. Fault Management
Architecture (FMA) reports these errors as well. Both ZFS and FMA describe how to recover
from an intent log failure.

The following example shows how to recover from a failed log device (c0t5d0) in the storage
pool (pool). The basic steps follow:

■ Review the zpool status -x output and FMA diagnostic message, described here:
https://support.oracle.com/

CSP/main/

article?cmd=show&type=NOT&doctype=REFERENCE&alias=EVENT:ZFS-8000-K4

■ Physically replace the failed log device.
■ Bring the new log device online.
■ Clear the pool's error condition.
■ Clear the FMA error.

Replacing or Repairing a Damaged Device

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013286

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&alias=EVENT:ZFS-8000-K4
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&alias=EVENT:ZFS-8000-K4
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&alias=EVENT:ZFS-8000-K4

EXAMPLE 10–2 Replacing a Failed Log Device (Continued)

For example, if the system shuts down abruptly before synchronous write operations are
committed to a pool with a separate log device, you see messages similar to the following:

zpool status -x

pool: pool

state: FAULTED

status: One or more of the intent logs could not be read.

Waiting for adminstrator intervention to fix the faulted pool.

action: Either restore the affected device(s) and run ’zpool online’,

or ignore the intent log records by running ’zpool clear’.

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

pool FAULTED 0 0 0 bad intent log

mirror-0 ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c0t4d0 ONLINE 0 0 0

logs FAULTED 0 0 0 bad intent log

c0t5d0 UNAVAIL 0 0 0 cannot open

<Physically replace the failed log device>

zpool online pool c0t5d0

zpool clear pool

fmadm faulty

fmadm repair zfs://pool=name/vdev=guid

You can resolve the log device failure in the following ways:

■ Replace or recover the log device. In this example, the log device is c0t5d0.
■ Bring the log device back online.

zpool online pool c0t5d0

■ Reset the failed log device error condition.

zpool clear pool

To recover from this error without replacing the failed log device, you can clear the error with
the zpool clear command. In this scenario, the pool will operate in a degraded mode and the
log records will be written to the main pool until the separate log device is replaced.

Consider using mirrored log devices to avoid the log device failure scenario.

Viewing Resilvering Status
The process of replacing a device can take an extended period of time, depending on the size of
the device and the amount of data in the pool. The process of moving data from one device to
another device is known as resilvering and can be monitored by using the zpool status
command.

Replacing or Repairing a Damaged Device

Chapter 10 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 287

The following zpool status resilver status messages are provided:

■ Resilver in-progress report. For example:

scan: resilver in progress since Mon Jun 7 09:17:27 2010

13.3G scanned out of 16.2G at 18.5M/s, 0h2m to go

13.3G resilvered, 82.34% done

■ Resilver completion message. For example:

resilvered 16.2G in 0h16m with 0 errors on Mon Jun 7 09:34:21 2010

Resilver completion messages persist across system reboots.

Traditional file systems resilver data at the block level. Because ZFS eliminates the artificial
layering of the volume manager, it can perform resilvering in a much more powerful and
controlled manner. The two main advantages of this feature are as follows:

■ ZFS only resilvers the minimum amount of necessary data. In the case of a short outage (as
opposed to a complete device replacement), the entire disk can be resilvered in a matter of
minutes or seconds. When an entire disk is replaced, the resilvering process takes time
proportional to the amount of data used on disk. Replacing a 500-GB disk can take seconds
if a pool has only a few gigabytes of used disk space.

■ Resilvering is interruptible and safe. If the system loses power or is rebooted, the resilvering
process resumes exactly where it left off, without any need for manual intervention.

To view the resilvering process, use the zpool status command. For example:

zpool status tank

pool: tank

state: ONLINE

status: One or more devices is currently being resilvered. The pool will

continue to function, possibly in a degraded state.

action: Wait for the resilver to complete.

scan: resilver in progress since Mon Jun 7 10:49:20 2010

54.6M scanned out of 222M at 5.46M/s, 0h0m to go

54.5M resilvered, 24.64% done

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

replacing-0 ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0 (resilvering)

c1t1d0 ONLINE 0 0 0

In this example, the disk c1t0d0 is being replaced by c2t0d0. This event is observed in the status
output by the presence of the replacing virtual device in the configuration. This device is not
real, nor is it possible for you to create a pool by using it. The purpose of this device is solely to
display the resilvering progress and to identify which device is being replaced.

Replacing or Repairing a Damaged Device

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013288

Note that any pool currently undergoing resilvering is placed in the ONLINE or DEGRADED state
because the pool cannot provide the desired level of redundancy until the resilvering process is
completed. Resilvering proceeds as fast as possible, though the I/O is always scheduled with a
lower priority than user-requested I/O, to minimize impact on the system. After the resilvering
is completed, the configuration reverts to the new, complete, configuration. For example:

zpool status tank

pool: tank

state: ONLINE

scrub: resilver completed after 0h1m with 0 errors on Tue Feb 2 13:54:30 2010

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0 377M resilvered

c1t1d0 ONLINE 0 0 0

errors: No known data errors

The pool is once again ONLINE, and the original failed disk (c1t0d0) has been removed from the
configuration.

Repairing Damaged Data
The following sections describe how to identify the type of data corruption and how to repair
the data, if possible.

■ “Identifying the Type of Data Corruption” on page 290
■ “Repairing a Corrupted File or Directory” on page 291
■ “Repairing ZFS Storage Pool-Wide Damage” on page 292

ZFS uses checksums, redundancy, and self-healing data to minimize the risk of data corruption.
Nonetheless, data corruption can occur if a pool isn't redundant, if corruption occurred while a
pool was degraded, or an unlikely series of events conspired to corrupt multiple copies of a
piece of data. Regardless of the source, the result is the same: The data is corrupted and
therefore no longer accessible. The action taken depends on the type of data being corrupted
and its relative value. Two basic types of data can be corrupted:

■ Pool metadata – ZFS requires a certain amount of data to be parsed to open a pool and
access datasets. If this data is corrupted, the entire pool or portions of the dataset hierarchy
will become unavailable.

■ Object data – In this case, the corruption is within a specific file or directory. This problem
might result in a portion of the file or directory being inaccessible, or this problem might
cause the object to be broken altogether.

Repairing Damaged Data

Chapter 10 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 289

Data is verified during normal operations as well as through a scrubbing. For information about
how to verify the integrity of pool data, see “Checking ZFS File System Integrity” on page 268.

Identifying the Type of Data Corruption
By default, the zpool status command shows only that corruption has occurred, but not
where this corruption occurred. For example:

zpool status tank

pool: tank

state: ONLINE

status: One or more devices has experienced an error resulting in data

corruption. Applications may be affected.

action: Restore the file in question if possible. Otherwise restore the

entire pool from backup.

see: http://support.oracle.com/msg/ZFS-8000-8A

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 4 0 0

c0t5000C500335E106Bd0 ONLINE 0 0 0

c0t5000C500335FC3E7d0 ONLINE 4 0 0

errors: 2 data errors, use ’-v’ for a list

Each error indicates only that an error occurred at a given point in time. Each error is not
necessarily still present on the system. Under normal circumstances, this is the case. Certain
temporary outages might result in data corruption that is automatically repaired after the
outage ends. A complete scrub of the pool is guaranteed to examine every active block in the
pool, so the error log is reset whenever a scrub finishes. If you determine that the errors are no
longer present, and you don't want to wait for a scrub to complete, reset all errors in the pool by
using the zpool online command.

If the data corruption is in pool-wide metadata, the output is slightly different. For example:

zpool status -v morpheus

pool: morpheus

id: 13289416187275223932

state: UNAVAIL

status: The pool metadata is corrupted.

action: The pool cannot be imported due to damaged devices or data.

see: http://support.oracle.com/msg/ZFS-8000-72

config:

morpheus FAULTED corrupted data

c1t10d0 ONLINE

In the case of pool-wide corruption, the pool is placed into the FAULTED state because the pool
cannot provide the required redundancy level.

Repairing Damaged Data

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013290

Repairing a Corrupted File or Directory
If a file or directory is corrupted, the system might still function, depending on the type of
corruption. Any damage is effectively unrecoverable if no good copies of the data exist on the
system. If the data is valuable, you must restore the affected data from backup. Even so, you
might be able to recover from this corruption without restoring the entire pool.

If the damage is within a file data block, then the file can be safely removed, thereby clearing the
error from the system. Use the zpool status -v command to display a list of file names with
persistent errors. For example:

zpool status tank -v

pool: tank

state: ONLINE

status: One or more devices has experienced an error resulting in data

corruption. Applications may be affected.

action: Restore the file in question if possible. Otherwise restore the

entire pool from backup.

see: http://support.oracle.com/msg/ZFS-8000-8A

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 4 0 0

c0t5000C500335E106Bd0 ONLINE 0 0 0

c0t5000C500335FC3E7d0 ONLINE 4 0 0

errors: Permanent errors have been detected in the following files:

/tank/file.1

/tank/file.2

The list of file names with persistent errors might be described as follows:

■ If the full path to the file is found and the dataset is mounted, the full path to the file is
displayed. For example:

/monkey/a.txt

■ If the full path to the file is found, but the dataset is not mounted, then the dataset name with
no preceding slash (/), followed by the path within the dataset to the file, is displayed. For
example:

monkey/ghost/e.txt

■ If the object number to a file path cannot be successfully translated, either due to an error or
because the object doesn't have a real file path associated with it, as is the case for a dnode_t,
then the dataset name followed by the object's number is displayed. For example:

monkey/dnode:<0x0>

■ If an object in the metaobject set (MOS) is corrupted, then a special tag of <metadata>,
followed by the object number, is displayed.

Repairing Damaged Data

Chapter 10 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 291

If the corruption is within a directory or a file's metadata, the only choice is to move the file
elsewhere. You can safely move any file or directory to a less convenient location, allowing the
original object to be restored in its place.

Repairing Corrupted Data With Multiple Block References
If a damaged file system has corrupted data with multiple block references, such as from
snapshots, the zpool status -v command will not display all corrupted data paths. The ZFS
scrub algorithm traverses the pool and visits each block of data only once. It can only report the
corruption the first time that it is encountered. Therefore, it only generates a single path to the
impacted file. Note that this also applies to corrupted blocks that have been deduplicated.

If you have corrupted data and the zpool status -v command identifies that snapshot data is
impacted, consider searching for additional corrupted paths.

find mount-point -inum $inode -print

find mount-point/.zfs/snapshot -inum $inode -print

The first command searches for the inode number of the reported corrupted data in the
specified file system and all its snapshots. The second command searches for snapshots with the
same inode number.

Repairing ZFS Storage Pool-Wide Damage
If the damage is in pool metadata and that damage prevents the pool from being opened or
imported, then the following options are available to you:

■ You can attempt to recover the pool by using the zpool clear -F command or the zpool
import -F command. These commands attempt to roll back the last few pool transactions to
an operational state. You can use the zpool status command to review a damaged pool
and the recommended recovery steps. For example:

zpool status

pool: tpool

state: UNAVAIL

status: The pool metadata is corrupted and the pool cannot be opened.

action: Recovery is possible, but will result in some data loss.

Returning the pool to its state as of Fri Jun 29 17:22:49 2012

should correct the problem. Approximately 5 seconds of data

must be discarded, irreversibly. Recovery can be attempted

by executing ’zpool clear -F tpool’. A scrub of the pool

is strongly recommended after recovery.

see: http://support.oracle.com/msg/ZFS-8000-72

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tpool UNAVAIL 0 0 1 corrupted data

c1t1d0 ONLINE 0 0 2

Repairing Damaged Data

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013292

c1t3d0 ONLINE 0 0 4

The recovery process as described in the preceding output is to use the following command:

zpool clear -F tpool

If you attempt to import a damaged storage pool, you will see messages similar to the
following:

zpool import tpool

cannot import ’tpool’: I/O error

Recovery is possible, but will result in some data loss.

Returning the pool to its state as of Fri Jun 29 17:22:49 2012

should correct the problem. Approximately 5 seconds of data

must be discarded, irreversibly. Recovery can be attempted

by executing ’zpool import -F tpool’. A scrub of the pool

is strongly recommended after recovery.

The recovery process as described in the preceding output is to use the following command:

zpool import -F tpool

Pool tpool returned to its state as of Fri Jun 29 17:22:49 2012.

Discarded approximately 5 seconds of transactions

If the damaged pool is in the zpool.cache file, the problem is discovered when the system is
booted, and the damaged pool is reported in the zpool status command. If the pool isn't in
the zpool.cache file, it won't successfully import or open and you will see the damaged pool
messages when you attempt to import the pool.

■ You can import a damaged pool in read-only mode. This method enables you to import the
pool so that you can access the data. For example:

zpool import -o readonly=on tpool

For more information about importing a pool read-only, see “Importing a Pool in
Read-Only Mode” on page 102.

■ You can import a pool with a missing log device by using the zpool import -m command.
For more information, see “Importing a Pool With a Missing Log Device” on page 100.

■ If the pool cannot be recovered by either pool recovery method, you must restore the pool
and all its data from a backup copy. The mechanism you use varies widely depending on the
pool configuration and backup strategy. First, save the configuration as displayed by the
zpool status command so that you can re-create it after the pool is destroyed. Then, use
the zpool destroy -f command to destroy the pool.
Also, keep a file describing the layout of the datasets and the various locally set properties
somewhere safe, as this information will become inaccessible if the pool is ever rendered
inaccessible. With the pool configuration and dataset layout, you can reconstruct your
complete configuration after destroying the pool. The data can then be populated by using
whatever backup or restoration strategy you use.

Repairing Damaged Data

Chapter 10 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 293

Repairing an Unbootable System
ZFS is designed to be robust and stable despite errors. Even so, software bugs or certain
unexpected problems might cause the system to panic when a pool is accessed. As part of the
boot process, each pool must be opened, which means that such failures will cause a system to
enter into a panic-reboot loop. To recover from this situation, ZFS must be informed not to
look for any pools on startup.

ZFS maintains an internal cache of available pools and their configurations in
/etc/zfs/zpool.cache. The location and contents of this file are private and are subject to
change. If the system becomes unbootable, boot to the milestone none by using the
-m milestone=none boot option. After the system is up, remount your root file system as
writable and then rename or move the /etc/zfs/zpool.cache file to another location. These
actions cause ZFS to forget that any pools exist on the system, preventing it from trying to
access the unhealthy pool causing the problem. You can then proceed to a normal system state
by issuing the svcadm milestone all command. You can use a similar process when booting
from an alternate root to perform repairs.

After the system is up, you can attempt to import the pool by using the zpool import
command. However, doing so will likely cause the same error that occurred during boot,
because the command uses the same mechanism to access pools. If multiple pools exist on the
system, do the following:

■ Rename or move the zpool.cache file to another location as discussed in the preceding text.
■ Determine which pool might have problems by using the fmdump -eV command to display

the pools with reported fatal errors.
■ Import the pools one by one, skipping the pools that are having problems, as described in

the fmdump output.

Repairing an Unbootable System

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013294

Archiving Snapshots and Root Pool Recovery

This chapter describes how to archive snapshots that can be used to migrate or restore an Oracle
Solaris 11 system in the event of a system failure. You can use these steps to create the core of
basic disaster recovery plan, or the steps might be used to migrate a system's configuration to a
new boot device.

The following sections are provided in this chapter:

■ “Overview of ZFS Recovery Process” on page 295
■ “Creating a ZFS Snapshot Archive for Recovery” on page 296
■ “Recreating Your Root Pool and Recovering Root Pool Snapshots” on page 298

Overview of ZFS Recovery Process
At a minimum, all file system data should be backed up on a regular basis to reduce down time
due to system failures. If a catastrophic system failure occurs, you could restore your ZFS root
pool snapshots rather than reinstall the OS and recreate your system configuration. Then,
restore any non-root pool data.

Any system that runs Oracle Solaris 11 is a candidate for backup and archival. The overall
process involves the following steps:

■ Create a ZFS snapshot archive for the root pool file systems and for any non-root pools that
need to migrated or recovered.
You should re-archive your root pool snapshots after the OS is updated.

■ Save the snapshot archive on local removable media, such as a USB drive, or send the
snapshots to a remote system for potential retrieval.

■ Failed disk or other system components are replaced.
■ The target system is booted from Oracle Solaris 11 installation media, new storage pools are

created and the file systems are recovered.

11C H A P T E R 1 1

295

■ Perform minimal boot configuration, and then the system is usable, offering all of the
services that were running at the time of archival.

ZFS Pool Recovery Requirements
■ The archived system and recovery system must be the same architecture and must meet the

Oracle Solaris 11 minimum requirements for supported platforms.
■ The replacement disks that will contain the new ZFS storage pool must be at least as large in

capacity as the data used in the archived pools (see below).

In Oracle Solaris 11, the root pool disk must have an SMI (VTOC) label. In Oracle Solaris
11.1, x86 based system's root pool disks can have either an SMI (VTOC) or EFI (GPT) disk
label. For information about boot support for EFI (GPT) labeled disks, see “Boot Support
for EFI (GPT) Labeled Disks” on page 17.

■ Root access is required on both system that contains the archived snapshots and the
recovery system. If you are using ssh to access the remote system, you will need to configure
it for privileged access.

Creating a ZFS Snapshot Archive for Recovery
Before you create the ZFS root pool snapshot, consider saving the following information:

■ Capture the root pool properties.

sysA# zpool get all rpool

■ Identify the size and current capacity of the root pool disk.

sysA# zpool list

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

rpool 74G 5.42G 68.6G 7% 1.00x ONLINE -

■ Identify the root pool components.

sysA# zfs list -r rpool

NAME USED AVAIL REFER MOUNTPOINT

rpool 13.8G 53.1G 73.5K /rpool

rpool/ROOT 3.54G 53.1G 31K legacy

rpool/ROOT/solaris 3.54G 53.1G 3.37G /

rpool/ROOT/solaris/var 165M 53.1G 163M /var

rpool/VARSHARE 37.5K 53.1G 37.5K /var/share

rpool/dump 8.19G 53.4G 7.94G -

rpool/export 63K 53.1G 32K /export

rpool/export/home 31K 53.1G 31K /export/home

rpool/swap 2.06G 53.2G 2.00G -

Creating a ZFS Snapshot Archive for Recovery

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013296

▼ How to Create a ZFS Snapshot Archive
The following steps describe how to create a recursive snapshot of the root pool that will include
all file systems in the root pool. Other non-root pools can be archived in this same way.

Consider the following points:

■ For complete system recovery, send the snapshots to a pool on a remote system.
■ Create an NFS share from the remote system and also configure ssh to allow privileged

access, if necessary.
■ The recursive root pool snapshot is sent as one large snapshot file to a remote system, but

you could send the recursive snapshots to be stored as individual snapshots on a remote
system.

In the steps that follow, the recursive snapshot is named rpool@snap1. The local system to be
recovered is sysA and the remote system is sysB. Note that rpool is the default root pool name
and might be different on your system.

Become an administrator.

Create a recursive snapshot of the root pool.
sysA# zfs snapshot -r rpool@rpool.snap1

Reduce the snapshot archive by removing the swap and dump snapshots, if desired.
sysA# zfs destroy rpool/dump@rpool.snap1

sysA# zfs destroy rpool/swap@rpool.snap1

The swap volume does not contain data that is relevant to a system migration or recovery. Do
not remove the dump volume snapshot if you wish to preserve any crash dumps.

Send the recursive root pool snapshot to another pool on another system.

a. Share a file system on a remote system for receiving the snapshot or snapshots:
In the following steps, the /tank/snaps file system is shared for storing the recursive root
snapshot.
sysB# zfs set share.nfs=on tank/snaps

sysB# zfs set share.nfs.sec.default.root=sysA tank/snaps

b. Send the recursive root pool snapshot to a remote system.
Send the recursive snapshot to the remote file system that was shared in the previous step.
sysA# zfs send -Rv rpool@rpool.snap1 | gzip > /net/sysB/tank/snaps/

rpool.snap1.gz

sending from @ to rpool@rpool.snap1

sending from @ to rpool/VARSHARE@rpool.snap1

sending from @ to rpool/export@rpool.snap1

sending from @ to rpool/export/home@rpool.snap1

1

2

3

4

Creating a ZFS Snapshot Archive for Recovery

Chapter 11 • Archiving Snapshots and Root Pool Recovery 297

sending from @ to rpool/ROOT@rpool.snap1

sending from @ to rpool/ROOT/solaris@install

sending from @install to rpool/ROOT/solaris@rpool.snap1

sending from @ to rpool/ROOT/solaris/var@install

sending from @install to rpool/ROOT/solaris/var@rpool.snap1

Recreating Your Root Pool and Recovering Root Pool
Snapshots

If you need to recreate your root pool and recover you root pool snapshots, the general steps are
as follows:
■ Prepare replacement root pool disk or disks and recreate the root pool
■ Restore the root pool file system snapshots
■ Select and activate the desired boot environment
■ Boot the system

▼ How to Recreate the Root Pool on the Recovery System
Review the following considerations when recovering your root pool.
■ If a non-redundant root pool disk fails, you will need to boot the system from installation

media or an install server to either re-install the OS or restore your root pool snapshots that
you archived previously.
For information about replacing a disk on your system, see your hardware documentation.

■ If a mirrored root pool disk fails, then you can replace the failed disk while the system is still
operational. For information on replacing a failed disk in a mirrored root pool, see “How to
Replace a Disk in a ZFS Root Pool (SPARC or x86/VTOC)” on page 115.

Identify and replace the failed root pool disk or system component.
This disk is generally the default boot device or you can select another disk and then reset the
default boot device.

Boot the system from the Oracle Solaris 11 installation media by selecting one of the following.

■ DVD or USB install media (SPARC or x86) – Insert the media and select the appropriate
device as the boot device.
If text-based media is used, select the Shell option from the text installer menu.

■ Live media (x86 only) – The GNOME desktop session can be used during the recovery
procedure.

■ Automated installer or a local copy of AI media (SPARC or x86) – From the text installer
menu, select the shell option. On a SPARC system, boot the AI media (either locally or over
the network), and select the Shell option:

1

2

Recreating Your Root Pool and Recovering Root Pool Snapshots

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013298

ok boot net:dhcp

.

.

.Welcome to the Oracle Solaris 11 installation menu

1 Install Oracle Solaris

2 Install Additional Drivers

3 Shell

4 Terminal type (currently xterm)

5 Reboot

Please enter a number [1]: 3

SPARC or x86 (VTOC): Prepare the root pool disk.

a. Confirm that the replacement root pool disk is visible from the formatutility.
format

Searching for disks...done

AVAILABLE DISK SELECTIONS:

0. c2t0d0 <FUJITSU-MAY2073RCSUN72G-0401 cyl 14087 alt 2 hd 24 sec 424>

/pci@780/pci@0/pci@9/scsi@0/sd@0,0

1. c2t1d0 <FUJITSU-MAY2073RCSUN72G-0401 cyl 14087 alt 2 hd 24 sec 424>

/pci@780/pci@0/pci@9/scsi@0/sd@1,0

2. c2t2d0 <SEAGATE-ST973402SSUN72G-0400-68.37GB>

/pci@780/pci@0/pci@9/scsi@0/sd@2,0

3. c2t3d0 <SEAGATE-ST973401LSUN72G-0556-68.37GB>

/pci@780/pci@0/pci@9/scsi@0/sd@3,0

Specify disk (enter its number): 0

b. SPARC or x86 (VTOC): Confirm that the root pool disk has an SMI (VTOC) label and a slice 0
with the bulk of the disk space.
Review the partition table to confirm that the root pool disk has an SMI label and a slice 0.
selecting c2t0d0

[disk formatted]

format> partition

partition> print

c. SPARC or x86 (VTOC): Relabel the disk with an SMI (VTOC) label, if necessary.
Use the following shortcut commands to relabel the disk. A caution is that these commands
do not provide any error checking so make sure that you are relabeling the correct disk.
■ SPARC:

sysA# format -L vtoc -d c2t0d0

Confirm that slice 0 has disk space allocated appropriately. The default partition is
applied in the above command, which might be too small for the root pool slice 0. For
information about modifying the default partition table, see “How to Replace a ZFS Root
Pool Disk (EFI (GPT))” in Oracle Solaris 11.1 Administration: Devices and File Systems.

■ x86:

sysA# fdisk -B /dev/rdsk/c2t0d0p0

sysA# format -L vtoc -d c2t0d0

3

Recreating Your Root Pool and Recovering Root Pool Snapshots

Chapter 11 • Archiving Snapshots and Root Pool Recovery 299

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSdisksxadd-40
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSdisksxadd-40

Confirm that slice 0 has disk space allocated appropriately. The default partition is
applied in the above command, which might be too small for the root pool slice 0. For
information about modifying the default partition table, see “How to Replace a ZFS Root
Pool Disk (EFI (GPT))” in Oracle Solaris 11.1 Administration: Devices and File Systems.

Recreate the root pool.

On a SPARC or an x86 (VTOC) system:
sysA# zpool create rpool c2t0d0s0

On an x86 based system with an EFI (GPT) labelled root pool disk, use syntax similar to the
following:

sysA# zpool create -B rpool c2t0d0

Mount the file system that contains the snapshots from the remote system.
sysA# mount -F nfs sysB:/tank/snaps /mnt

Restore the root pool snapshots.
sysA# gzcat /mnt/rpool.snap1.qz | zfs receive -Fv rpool

receiving full stream of rpool@rpool.snap1 into rpool@rpool.snap1

received 92.7KB stream in 1 seconds (92.7KB/sec)

receiving full stream of rpool/export@rpool.snap1 into rpool/export@rpool.snap1

received 47.9KB stream in 1 seconds (47.9KB/sec)

.

.

.

Recreate swap and dump devices, if necessary.

For example:
sysA# zfs create -V 4G rpool/swap

sysA# zfs create -V 4G rpool/dump

For information about sizing swap and dump volumes, see “Planning for Swap Space” in Oracle
Solaris 11.1 Administration: Devices and File Systems.

Mount the BE.

The next step requires that the BE is mounted so that the boot blocks can be installed.
sysA# beadm mount solaris /tmp/mnt

Install the boot blocks on the new disk.

Use the following command on either a SPARC or an x86 based system.
sysA# bootadm install-bootloader -P rpool

4

5

6

7

8

9

Recreating Your Root Pool and Recovering Root Pool Snapshots

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013300

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSdisksxadd-40
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSdisksxadd-40
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSfsswap-31050
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SAGDFSfsswap-31050

If the same devices will not be used or the devices will be configured in a different way on the
original system, clear the existing device information. Then, direct the system to reconfigure the
new device information.
devfsadm -Cn -r /tmp/mnt

touch /tmp/mnt/reconfigure

Unmount the BE.
#beadm unmount solaris

Activate the boot environment, if necessary.
For example:
sysA# beadm list

BE Active Mountpoint Space Policy Created

-- ------ ---------- ----- ------ -------

solaris-1 - - 46.95M static 2012-07-20 10:25

solaris - - 3.83G static 2012-07-19 13:44

beadm activate solaris

Verify that you can boot successfully from the replacement root pool disk.
If necessary, reset the default boot device:

■ SPARC: Set up the system to boot automatically from the new disk, either by using the
eeprom command or the setenv command from the boot PROM.

■ x86: Reconfigure the system BIOS.

10

11

12

13

Recreating Your Root Pool and Recovering Root Pool Snapshots

Chapter 11 • Archiving Snapshots and Root Pool Recovery 301

302

Recommended Oracle Solaris ZFS Practices

This chapter describes recommended practices for creating, monitoring, and maintaining your
ZFS storage pools and file systems.

The following sections are provided in this chapter:

■ “Recommended Storage Pool Practices” on page 303
■ “Recommended File System Practices” on page 310

Recommended Storage Pool Practices
The following sections provide recommended practices for creating and monitoring ZFS
storage pools. For information about troubleshooting storage pool problems, see Chapter 10,
“Oracle Solaris ZFS Troubleshooting and Pool Recovery.”

General System Practices
■ Keep system up-to-date with latest Solaris releases and patches
■ Confirm that your controller honors cache flush commands so that you know your data is

safely written, which is important before changing the pool's devices or splitting a mirrored
storage pool. This is generally not a problem on Oracle/Sun hardware, but it is good practice
to confirm that your hardware's cache flushing setting is enabled.

■ Size memory requirements to actual system workload
■ With a known application memory footprint, such as for a database application, you

might cap the ARC size so that the application will not need to reclaim its necessary
memory from the ZFS cache.

■ Consider deduplication memory requirements
■ Identify ZFS memory usage with the following command:

12C H A P T E R 1 2

303

mdb -k

> ::memstat

Page Summary Pages MB %Tot

------------ ---------------- ---------------- ----

Kernel 388117 1516 19%

ZFS File Data 81321 317 4%

Anon 29928 116 1%

Exec and libs 1359 5 0%

Page cache 4890 19 0%

Free (cachelist) 6030 23 0%

Free (freelist) 1581183 6176 76%

Total 2092828 8175

Physical 2092827 8175

> $q

■ Consider using ECC memory to protect against memory corruption. Silent memory
corruption can potentially damage your data.

■ Perform regular backups – Although a pool that is created with ZFS redundancy can help
reduce down time due to hardware failures, it is not immune to hardware failures, power
failures, or disconnected cables. Make sure you backup your data on a regular basis. If your
data is important, it should be backed up. Different ways to provide copies of your data are:
■ Regular or daily ZFS snapshots
■ Weekly backups of ZFS pool data. You can use the zpool split command to create an

exact duplicate of ZFS mirrored storage pool.
■ Monthly backups by using an enterprise-level backup product

■ Hardware RAID
■ Consider using JBOD-mode for storage arrays rather than hardware RAID so that ZFS

can manage the storage and the redundancy.
■ Use hardware RAID or ZFS redundancy or both
■ Using ZFS redundancy has many benefits – For production environments, configure

ZFS so that it can repair data inconsistencies. Use ZFS redundancy, such as RAID-Z,
RAID-Z-2, RAID-Z-3, mirror, regardless of the RAID level implemented on the
underlying storage device. With such redundancy, faults in the underlying storage
device or its connections to the host can be discovered and repaired by ZFS.

See also “Pool Creation Practices on Local or Network Attached Storage Arrays” on
page 307.

■ Crash dumps consume more disk space, generally in the 1/2-3/4 size of physical memory
range.

ZFS Storage Pool Creation Practices
The following sections provide general and more specific pool practices.

Recommended Storage Pool Practices

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013304

General Storage Pool Practices
■ Use whole disks to enable disk write cache and provide easier maintenance. Creating pools

on slices adds complexity to disk management and recovery.
■ Use ZFS redundancy so that ZFS can repair data inconsistencies.

■ The following message is displayed when a non-redundant pool is created:

zpool create tank c4t1d0 c4t3d0

’tank’ successfully created, but with no redundancy; failure

of one device will cause loss of the pool

■ For mirrored pools, use mirrored disk pairs
■ For RAID-Z pools, group 3-9 disks per VDEV
■ Do not mix RAID-Z and mirrored components within the same pool. These pools are

harder to manage and performance might suffer.
■ Use hot spares to reduce down time due to hardware failures
■ Use similar size disks so that I/O is balanced across devices

■ Smaller LUNs can be expanded to large LUNs
■ Do not expand LUNs from extremely varied sizes, such as 128 MB to 2 TB, to keep

optimal metaslab sizes
■ Consider creating a small root pool and larger data pools to support faster system recovery

Root Pool Creation Practices
■ SPARC (SMI (VTOC)): Create root pools with slices by using the s* identifier. Do not use

the p* identifier. In general, a system's ZFS root pool is created when the system is installed.
If you are creating a second root pool or re-creating a root pool, use syntax similar to the
following:

zpool create rpool c0t1d0s0

Or, create a mirrored root pool. For example:

zpool create rpool mirror c0t1d0s0 c0t2d0s0

■ x86 (EFI (GPT)): Create root pools with whole disks by using the d* identifier. Do not use
the p* identifier. In general, a system's ZFS root pool is created when the system is installed.
If you are creating a second root pool or re-creating a root pool, use syntax similar to the
following:

zpool create rpool c0t1d0

Or, create a mirrored root pool. For example:

zpool create rpool mirror c0t1d0 c0t2d0

Recommended Storage Pool Practices

Chapter 12 • Recommended Oracle Solaris ZFS Practices 305

■ The root pool must be created as a mirrored configuration or as a single-disk configuration.
Neither a RAID-Z nor a striped configuration is supported. You cannot add additional disks
to create multiple mirrored top-level virtual devices by using the zpool add command, but
you can expand a mirrored virtual device by using the zpool attach command.

■ The root pool cannot have a separate log device.
■ Pool properties can be set during an AI installation, but the gzip compression algorithm is

not supported on root pools.
■ Do not rename the root pool after it is created by an initial installation. Renaming the root

pool might cause an unbootable system.
■ Do not create a root pool on a USB stick for a production system because root pool disks are

critical for continuous operation, particularly in an enterprise environment. Consider using
a system's internal disks for the root pool, or at least use, the same quality disks that you
would use for your non-root data. In addition, a USB stick might not be large enough to
support a dump volume size that is equivalent to at least 1/2 the size of physical memory.

Non-Root (Data) Pool Creation Practices
■ Create non-root pools with whole disks by using the d* identifier. Do not use the p*

identifier.
■ ZFS works best without any additional volume management software.
■ For better performance, use individual disks or at least LUNs made up of just a few disks.

By providing ZFS with more visibility into the LUNs setup, ZFS is able to make better
I/O scheduling decisions.

■ Create redundant pool configurations across multiple controllers to reduce down time
due to a controller failure.

■ Mirrored storage pools – Consume more disk space but generally perform better with
small random reads.

zpool create tank mirror c1d0 c2d0 mirror c3d0 c4d0

■ RAID-Z storage pools – Can be created with 3 parity strategies, where parity equals 1
(raidz), 2 (raidz2), or 3 (raidz3). A RAID-Z configuration maximizes disk space and
generally performs well when data is written and read in large chunks (128K or more).
■ Consider a single-parity RAID-Z (raidz) configuration with 2 VDEVs of 3 disks

(2+1) each.

zpool create rzpool raidz1 c1t0d0 c2t0d0 c3t0d0 raidz1 c1t1d0 c2t1d0 c3t1d0

■ A RAIDZ-2 configuration offers better data availability, and performs similarly to
RAID-Z. RAIDZ-2 has significantly better mean time to data loss (MTTDL) than
either RAID-Z or 2-way mirrors. Create a double-parity RAID-Z (raidz2)
configuration at 6 disks (4+2).

zpool create rzpool raidz2 c0t1d0 c1t1d0 c4t1d0 c5t1d0 c6t1d0 c7t1d0

raidz2 c0t2d0 c1t2d0 c4t2d0 c5t2d0 c6t2d0 c7t2d

Recommended Storage Pool Practices

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013306

■ A RAIDZ-3 configuration maximizes disk space and offers excellent availability
because it can withstand 3 disk failures. Create a triple-parity RAID-Z (raidz3)
configuration at 9 disks (6+3).

zpool create rzpool raidz3 c0t0d0 c1t0d0 c2t0d0 c3t0d0 c4t0d0

c5t0d0 c6t0d0 c7t0d0 c8t0d0

Pool Creation Practices on Local or Network Attached Storage Arrays
Consider the following storage pool practices when creating an a ZFS storage pool on a storage
array that is connected locally or remotely.

■ If you create an pool on SAN devices and the network connection is slow, the pool's devices
might be UNAVAIL for a period of time. You need to assess whether the network connection
is appropriate for providing your data in a continuous fashion. Also, consider that if you are
using SAN devices for your root pool, they might not be available as soon as the system is
booted and the root pool's devices might also be UNAVAIL.

■ Confirm with your array vendor that the disk array is not flushing its cache after a flush
write cache request is issued by ZFS.

■ Use whole disks, not disk slices, as storage pool devices so that Oracle Solaris ZFS activates
the local small disk caches, which get flushed at appropriate times.

■ For best performance, create one LUN for each physical disk in the array. Using only one
large LUN can cause ZFS to queue up too few read I/O operations to actually drive the
storage to optimal performance. Conversely, using many small LUNs could have the effect
of swamping the storage with a large number of pending read I/O operations.

■ A storage array that uses dynamic (or thin) provisioning software to implement virtual
space allocation is not recommended for Oracle Solaris ZFS. When Oracle Solaris ZFS
writes the modified data to free space, it writes to the entire LUN. The Oracle Solaris ZFS
write process allocates all the virtual space from the storage array's point of view, which
negates the benefit of dynamic provisioning.

Consider that dynamic provisioning software might be unnecessary when using ZFS:
■ You can expand a LUN in an existing ZFS storage pool and it will use the new space.
■ Similar behavior works when a smaller LUN is replaced with a larger LUN.
■ If you assess the storage needs for your pool and create the pool with smaller LUNs that

equal the required storage needs, then you can always expand the LUNs to a larger size if
you need more space.

■ If the array can present individual devices (JBOD-mode), then consider creating redundant
ZFS storage pools (mirror or RAID-Z) on this type of array so that ZFS can report and
correct data inconsistencies.

Recommended Storage Pool Practices

Chapter 12 • Recommended Oracle Solaris ZFS Practices 307

Pool Creation Practices for an Oracle Database
Consider the following storage pool practices when creating an Oracle database.

■ Use a mirrored pool or hardware RAID for pools
■ RAID-Z pools are generally not recommended for random read workloads
■ Create a small separate pool with a separate log device for database redo logs
■ Create a small separate pool for the archive log

For more information, see the following white paper:

http://blogs.oracle.com/storage/entry/new_white_paper_configuring_oracle

Using ZFS Storage Pools in VirtualBox
■ Virtual Box is configured to ignore cache flush commands from the underlying storage by

default. This means that in the event of a system crash or a hardware failure, data could be
lost.

■ Enable cache flushing on Virtual Box by issuing the following command:

VBoxManage setextradata <VM_NAME> "VBoxInternal/Devices/<type>/0/LUN#<n>/Config/IgnoreFlush" 0

■ <VM_NAME> is the name of the virtual machine
■ <type> is the controller type, either piix3ide (if you're using the usual IDE virtual

controller) or ahci, if you're using a SATA controller
■ <n> is the disk number

Storage Pool Practices for Performance
■ Keep pool capacity below 90% for best performance
■ Mirrored pools are recommended over RAID-Z pools for random read/write workloads
■ Separate log devices

■ Recommended to improve synchronous write performance
■ With a high synchronous write load, prevents fragmentation of writing many log blocks

in the main pool
■ Separate cache devices are recommended to improve read performance
■ Scrub/resilver - A very large RAID-Z pool with lots of devices will have longer scrub and

resilver times
■ Pool performance is slow – Use the zpool status command to rule out any hardware

problems that are causing pool performance problems. If no problems show up in the zpool
status command, use the fmdump command to display hardware faults or use the fmdump
-eV command to review any hardware errors that have not yet resulted in a reported fault.

Recommended Storage Pool Practices

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013308

http://blogs.oracle.com/storage/entry/new_white_paper_configuring_oracle

ZFS Storage Pool Maintenance and Monitoring
Practices
■ Make sure that pool capacity is below 90% for best performance.

Pool performance can degrade when a pool is very full and file systems are updated
frequently, such as on a busy mail server. Full pools might cause a performance penalty, but
no other issues. If the primary workload is immutable files, then keep pool in the 95-96%
utilization range. Even with mostly static content in the 95-96% range, write, read, and
resilvering performance might suffer.
■ Monitor pool and file system space to make sure that they are not full.
■ Consider using ZFS quotas and reservations to make sure file system space does not

exceed 90% pool capacity.
■ Monitor pool health

■ Redundant pools, monitor pool with zpool status and fmdump on a weekly basis
■ Non-redundant pools, monitor pool with zpool status and fmdump on a biweekly basis

■ Run zpool scrub on a regular basis to identify data integrity problems.
■ If you have consumer-quality drives, consider a weekly scrubbing schedule.
■ If you have datacenter-quality drives, consider a monthly scrubbing schedule.
■ You should also run a scrub prior to replacing devices or temporarily reducing a pool's

redundancy to ensure that all devices are currently operational.
■ Monitoring pool or device failures - Use zpool status as described below. Also use fmdump

or fmdump -eV to see if any device faults or errors have occurred.
■ Redundant pools, monitor pool health with zpool status and fmdump on a weekly basis
■ Non-redundant pools, monitor pool health with zpool status and fmdump on a

biweekly basis
■ Pool device is UNAVAIL or OFFLINE – If a pool device is not available, then check to see if the

device is listed in the format command output. If the device is not listed in the format
output, then it will not be visible to ZFS.
If a pool device has UNAVAIL or OFFLINE, then this generally means that the device has failed
or cable has disconnected, or some other hardware problem, such as a bad cable or bad
controller has caused the device to be inaccessible.

■ Consider configuring the smtp-notify service to notify you when a hardware component is
diagnosed as faulty. For more information, see the Notification Parameters section of smf(5)
and smtp-notify(1M).
By default, some notifications are set up automatically to be sent to the root user. If you add
an alias for your user account as root in the /etc/aliases file, you will receive electronic
mail notifications, similar to the following:

Recommended Storage Pool Practices

Chapter 12 • Recommended Oracle Solaris ZFS Practices 309

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5smf-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Msmtp-notify-1m

From noaccess@tardis.space.com Fri Jun 29 16:58:59 2012

Date: Fri, 29 Jun 2012 16:58:58 -0600 (MDT)

From: No Access User <noaccess@tardis.space.com>

Message-Id: <201206292258.q5TMwwFL002753@tardis.space.com>

Subject: Fault Management Event: tardis:ZFS-8000-8A

To: root@tardis.space.com

Content-Length: 771

SUNW-MSG-ID: ZFS-8000-8A, TYPE: Fault, VER: 1, SEVERITY: Critical

EVENT-TIME: Fri Jun 29 16:58:58 MDT 2012

PLATFORM: ORCL,SPARC-T3-4, CSN: 1120BDRCCD, HOSTNAME: tardis

SOURCE: zfs-diagnosis, REV: 1.0

EVENT-ID: 76c2d1d1-4631-4220-dbbc-a3574b1ee807

DESC: A file or directory in pool ’pond’ could not be read due to corrupt data.

AUTO-RESPONSE: No automated response will occur.

IMPACT: The file or directory is unavailable.

REC-ACTION: Use ’fmadm faulty’ to provide a more detailed view of this event.

Run ’zpool status -xv’ and examine the list of damaged files to determine what

has been affected. Please refer to the associated reference document at

http://support.oracle.com/msg/ZFS-8000-8A for the latest service procedures

and policies regarding this diagnosis.

■ Monitor your storage pool space – Use the zpool list command and the zfs list
command to identify how much disk is consumed by file system data. ZFS snapshots can
consume disk space and if they are not listed by the zfs list command, they can silently
consume disk space. Use the zfs list -t snapshot command to identify disk space that is
consumed by snapshots.

Recommended File System Practices
The following sections describe recommended file system practices.

File System Creation Practices
The following sections describe ZFS file system creation practices.

■ Create one file system per user for home directories
■ Consider using file system quotas and reservations to manage and reserve disk space for

important file systems
■ Consider using user and group quotas to manage disk space in an environment with many

users
■ Use ZFS property inheritance to apply properties to many descendent file systems

File System Creation Practices for an Oracle Database
Consider the following file system practices when creating an Oracle database.

■ Match the ZFS recordsize property to the Oracle db_block_size.

Recommended File System Practices

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013310

■ Create database table and index file systems in main database pool, using an 8 KB
recordsize and the default primarycache value.

■ Create temp data and undo table space file systems in the main database pool, using default
recordsize and primarycache values.

■ Create archive log file system in the archive pool, enabling compression and default
recordsize value and primarycache set to metadata.

For more information, see “Tuning ZFS for an Oracle Database” in Oracle Solaris 11.1 Tunable
Parameters Reference Manual.

Monitoring ZFS File System Practices
You should monitor your ZFS file systems to ensure they are available and to identify space
consumption issues.

■ Weekly, monitor file system space availability with the zpool list and zfs list

commands rather than the du and df commands because legacy commands do not account
for space that is consumed by descendent file systems or snapshots.
For more information, see “Resolving ZFS Space Issues” on page 265.

■ Display file system space consumption by using the zfs list -o space command.
■ File system space can be unknowingly consumed by snapshots. You can display all dataset

information by using the following syntax:

zfs list -t all

■ A separate /var file system is created automatically when a system is installed, but you
should set a quota and reservation on this file system to ensure that it does not unknowingly
consume root pool space.

■ In addition, you can use the fsstat command to display file operation activity of ZFS file
systems. Activity can be reported by mount point or by file system type. The following
example shows general ZFS file system activity:

fsstat /

new name name attr attr lookup rddir read read write write

file remov chng get set ops ops ops bytes ops bytes

832 589 286 837K 3.23K 2.62M 20.8K 1.15M 1.75G 62.5K 348M /

■ Backups
■ Keep file system snapshots
■ Consider enterprise-level software for weekly and monthly backups
■ Store root pool snapshots on a remote system for bare metal recovery

Recommended File System Practices

Chapter 12 • Recommended Oracle Solaris ZFS Practices 311

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SOLTUNEPARAMREFchapterzfs-db2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SOLTUNEPARAMREFchapterzfs-db2

312

Oracle Solaris ZFS Version Descriptions

This appendix describes available ZFS versions, features of each version, and the Solaris OS that
provides the ZFS version and feature.

The following sections are provided in this appendix:

■ “Overview of ZFS Versions” on page 313
■ “ZFS Pool Versions” on page 313
■ “ZFS File System Versions” on page 315

Overview of ZFS Versions
New ZFS pool and file system features are introduced and accessible by using a specific ZFS
version that is available in Solaris releases. You can use the zpool upgrade or zfs upgrade to
identify whether a pool or file system is at lower version than the currently running Solaris
release provides. You can also use these commands to upgrade your pool and file system
versions.

For information about using the zpool upgrade and zfs upgrade commands, see “Upgrading
ZFS File Systems” on page 194 and “Upgrading ZFS Storage Pools” on page 104.

ZFS Pool Versions
The following table provides a list of ZFS pool versions that are available in the Oracle Solaris
release.

Version Oracle Solaris 11 Description

1 snv_36 Initial ZFS version

2 snv_38 Ditto blocks (replicated metadata)

AA P P E N D I X A

313

Version Oracle Solaris 11 Description

3 snv_42 Hot spares and double parity RAID-Z

4 snv_62 zpool history

5 snv_62 gzip compression algorithm

6 snv_62 bootfs pool property

7 snv_68 Separate intent log devices

8 snv_69 Delegated administration

9 snv_77 refquota and refreservation properties

10 snv_78 Cache devices

11 snv_94 Improved scrub performance

12 snv_96 Snapshot properties

13 snv_98 snapused property

14 snv_103 aclinherit passthrough-x property

15 snv_114 user and group space accounting

16 snv_116 stmf property

17 snv_120 Triple-parity RAID-Z

18 snv_121 Snapshot user holds

19 snv_125 Log device removal

20 snv_128 zle (zero-length encoding) compression algorithm

21 snv_128 Deduplication

22 snv_128 Received properties

23 snv_135 Slim ZIL

24 snv_137 System attributes

25 snv_140 Improved scrub stats

26 snv_141 Improved snapshot deletion performance

27 snv_145 Improved snapshot creation performance

28 snv_147 Multiple vdev replacements

29 snv_148 RAID-Z/mirror hybrid allocator

30 snv_149 Encryption

ZFS Pool Versions

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013314

Version Oracle Solaris 11 Description

31 snv_150 Improved 'zfs list' performance

32 snv_151 One MB blocksize

33 snv_163 Improved share support

34 S11.1 Sharing with inheritance

ZFS File System Versions
The following table lists the ZFS file system versions that are available in the Oracle Solaris
release. Keep in mind that features that are available in specific file system versions require a
specific pool version.

Version Oracle Solaris 11 Description

1 snv_36 Initial ZFS file system version

2 snv_69 Enhanced directory entries

3 snv_77 Case insensitivity and file system unique identifier (FUID)

4 snv_114 userquota and groupquota properties

5 snv_137 System attributes

6 S11.1 Multilevel file system support

ZFS File System Versions

Appendix A • Oracle Solaris ZFS Version Descriptions 315

316

Index

A
accessing

ZFS snapshot
(example of), 199

ACL model, Solaris, differences between ZFS and
traditional file systems, 34

ACL property mode
aclinherit, 137
aclmode, 138

aclinherit property, 221
ACLs

access privileges, 218
ACL inheritance, 220
ACL inheritance flags, 220
ACL on ZFS directory

detailed description, 224
ACL on ZFS file

detailed description, 223
ACL property, 221
aclinherit property, 221
description, 215
differences from POSIX-draft ACLs, 216
entry types, 218
format description, 216
modifying trivial ACL on ZFS file (verbose mode)

(example of), 225
restoring trivial ACL on ZFS file (verbose mode)

(example of), 228
setting ACL inheritance on ZFS file (verbose mode)

(example of), 229
setting ACLs on ZFS file (compact mode)

(example of), 236

ACLs, setting ACLs on ZFS file (compact mode)
(Continued)

description, 235
setting ACLs on ZFS file (verbose mode)

description, 224
setting on ZFS files

description, 222
adding

cache devices (example of), 65
devices to a ZFS storage pool (zpool add)

(example of), 61
disks to a RAID-Z configuration (example of), 63
mirrored log device (example of), 64
ZFS file system to a non-global zone

(example of), 259
ZFS volume to a non-global zone

(example of), 260
adjusting, sizes of swap and dump devices, 122
allocated property, description, 82
alternate root pools

creating
(example of), 264

description, 263
importing

(example of), 264
altroot property, description, 82
atime property, description, 138
attaching

devices to ZFS storage pool (zpool attach)
(example of), 66

autoreplace property, description, 82
available property, description, 138

317

B
bootblocks, installing with bootadm, 125
bootfs property, description, 82
booting

a ZFS BE with boot -L and boot -Z on SPARC
systems, 127

root file system, 124

C
cache devices

considerations for using, 55
creating a ZFS storage pool with (example of), 55

cache devices, adding, (example of), 65
cache devices, removing, (example of), 65
cachefile property, description, 82
canmount property

description, 138
detailed description, 151

capacity property, description, 82
casesensitivity property, description, 139
checking, ZFS data integrity, 269
checksum, definition, 29
checksum property, description, 139
checksummed data, description, 28
clearing

a device in a ZFS storage pool (zpool clear)
description, 73

device errors (zpool clear)
(example of), 281

clearing a device
ZFS storage pool

(example of), 73
clone, definition, 29
clones

creating (example of), 203
destroying (example of), 203
features, 202

components of, ZFS storage pool, 43
components of ZFS, naming requirements, 31
compression property, description, 139
compressratio property, description, 139
controlling, data validation (scrubbing), 269
copies property, description, 140

crash dump, saving, 123
creating

a basic ZFS file system (zpool create)
(example of), 36

a new pool by splitting a mirrored storage pool
(zpool split)
(example of), 68

a ZFS storage pool (zpool create)
(example of), 36

alternate root pools
(example of), 264

double-parity RAID-Z storage pool (zpool create)
(example of), 52

mirrored ZFS storage pool (zpool create)
(example of), 51

single-parity RAID-Z storage pool (zpool create)
(example of), 52

triple-parity RAID-Z storage pool (zpool create)
(example of), 52

ZFS clone (example of), 203
ZFS file system, 39

(example of), 134
description, 134

ZFS file system hierarchy, 38
ZFS snapshot

(example of), 196
ZFS storage pool

description, 50
ZFS storage pool (zpool create)

(example of), 50
ZFS storage pool with cache devices (example

of), 55
ZFS storage pool with log devices (example of), 54
ZFS volume

(example of), 255
creation property, description, 140

D
data

corrupted, 268
corruption identified (zpool status -v)

(example of), 275
repair, 269

Index

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013318

data (Continued)
resilvering

description, 270
scrubbing

(example of), 269
validation (scrubbing), 269

dataset
definition, 29
description, 134

dataset types, description, 158
dedup property, description, 140
dedupditto property, description, 83
dedupratio property, description, 83
delegated administration, overview, 243
delegating

dataset to a non-global zone
(example of), 259

permissions (example of), 248
delegating permissions, zfs allow, 247
delegating permissions to a group, (example of), 248
delegating permissions to an individual user, (example

of), 248
delegation property, description, 83
delegation property, disabling, 244
destroying

ZFS clone (example of), 203
ZFS file system

(example of), 135
ZFS file system with dependents

(example of), 135
ZFS snapshot

(example of), 197
ZFS storage pool

description, 50
ZFS storage pool (zpool destroy)

(example of), 60
detaching

devices to ZFS storage pool (zpool detach)
(example of), 68

detecting
in-use devices

(example of), 58
mismatched replication levels

(example of), 59

determining
if a device can be replaced

description, 282
type of device failure

description, 280
devices property, description, 140
differences between ZFS and traditional file systems

file system granularity, 31
mounting ZFS file systems, 34
new Solaris ACL model, 34
out of space behavior, 33
traditional volume management, 34
ZFS space accounting, 32

disks, as components of ZFS storage pools, 45
displaying

delegated permissions (example of), 252
detailed ZFS storage pool health status

(example of), 94
health status of storage pools

description of, 91
syslog reporting of ZFS error messages

description, 275
ZFS storage pool health status

(example of), 93
ZFS storage pool I/O statistics

description, 89
ZFS storage pool vdev I/O statistics

(example of), 90
ZFS storage pool-wide I/O statistics

(example of), 89
dry run

ZFS storage pool creation (zpool create -n)
(example of), 59

dumpadm, enabling a dump device, 123
dynamic striping

description, 49
storage pool feature, 49

E
EFI label

description, 45
interaction with ZFS, 45

Index

319

encrypting a ZFS file system
changing keys, 186
example of, 184
examples of, 189
overview, 184

exec property, description, 140
exporting

ZFS storage pool
(example of), 97

F
failmode property, description, 83
failure modes

corrupted data, 268
damaged devices, 268
missing (UNAVAIL) devices, 267

failures, 267
file system, definition, 29
file system granularity, differences between ZFS and

traditional file systems, 31
file system hierarchy, creating, 38
files, as components of ZFS storage pools, 46
free property, description, 83

G
guid property, description, 83

H
hardware and software requirements, 36
health property, description, 83
hot spares

creating
(example of), 76

description of
(example of), 76

I
identifying

storage requirements, 37
type of data corruption (zpool status -v)

(example of), 290
ZFS storage pool for import (zpool import -a)

(example of), 98
importing

alternate root pools
(example of), 264

ZFS storage pool
(example of), 100

ZFS storage pool from alternate directories (zpool
import -d)
(example of), 99

in-use devices
detecting

(example of), 58
inheriting

ZFS properties (zfs inherit)
description, 160

installing bootblocks
bootadm

(example of), 125

L
listing

descendents of ZFS file systems
(example of), 157

types of ZFS file systems
(example of), 158

ZFS file systems
(example of), 156

ZFS file systems (zfs list)
(example of), 40

ZFS file systems without header information
(example of), 158

ZFS pool information, 38
ZFS properties (zfs list)

(example of), 161
ZFS properties by source value

(example of), 162

Index

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013320

listing (Continued)
ZFS properties for scripting

(example of), 163
ZFS storage pools

(example of), 85
description, 84

listshares property, description, 83
listsnapshots property, description, 84
logbias property, description, 141

M
migrating a ZFS file system

example of, 192
overview, 191
troubleshooting, 193

migrating ZFS storage pools, description, 96
mirror, definition, 30
mirrored configuration

conceptual view, 48
description, 48
redundancy feature, 48

mirrored log device, adding, (example of), 64
mirrored log devices, creating a ZFS storage pool with

(example of), 54
mirrored storage pool (zpool create), (example

of), 51
mismatched replication levels

detecting
(example of), 59

mlslabel property, description, 141
modifying

trivial ACL on ZFS file (verbose mode)
(example of), 225

mount point, default for ZFS storage pools, 60
mount points

automatic, 164
legacy, 164
managing ZFS

description, 164
mounted property, description, 141
mounting

ZFS file systems
(example of), 166

mounting ZFS file systems, differences between ZFS and
traditional file systems, 34

mountpoint, default for ZFS file system, 134
mountpoint property, description, 141

N
naming requirements, ZFS components, 31
NFSv4 ACLs

ACL inheritance, 220
ACL inheritance flags, 220
ACL property, 221
differences from POSIX-draft ACLs, 216
format description, 216
model

description, 215
notifying

ZFS of reattached device (zpool online)
(example of), 279

O
offlining a device (zpool offline)

ZFS storage pool
(example of), 71

onlining a device
ZFS storage pool (zpool online)

(example of), 72
onlining and offlining devices

ZFS storage pool
description, 71

origin property, description, 143
out of space behavior, differences between ZFS and

traditional file systems, 33

P
permission sets, defined, 243
pool, definition, 30
pooled storage, description, 27
POSIX-draft ACLs, description, 216
primarycache property, description, 142

Index

321

properties of ZFS
description, 137
description of heritable properties, 137

Q
quota property, description, 143
quotas and reservations, description, 178

R
RAID-Z, definition, 30
RAID-Z configuration

(example of), 52
conceptual view, 48
double-parity, description, 48
redundancy feature, 48
single-parity, description, 48

RAID-Z configuration, adding disks to, (example
of), 63

read-only properties of ZFS
available, 138
compression, 139
creation, 140
description, 148
mounted, 141
origin, 143
referenced, 144
type, 146
used, 146
usedbychildren, 146
usedbydataset, 147
usedbyrefreservation, 147
usedbysnapshots, 147

read-only property, description, 143
receiving

ZFS file system data (zfs receive)
(example of), 208

recordsize property
description, 143
detailed description, 154

recovering
destroyed ZFS storage pool

(example of), 103
recursive stream package, 207
referenced property, description, 144
refquota property, description, 144
refreservation property, description, 144
removing, cache devices (example of), 65
removing permissions, zfs unallow, 248
renaming

ZFS file system
(example of), 136

ZFS snapshot
(example of), 198

repairing
a damaged ZFS configuration

description, 276
an unbootable system

description, 294
pool-wide damage

description, 293
repairing a corrupted file or directory

description, 291
replacing

a device (zpool replace)
(example of), 73, 283, 288

a missing device
(example of), 276

replication features of ZFS, mirrored or RAID-Z, 47
replication stream package, 206
reservation property, description, 144
resilvering, definition, 30
resilvering and data scrubbing, description, 270
restoring

trivial ACL on ZFS file (verbose mode)
(example of), 228

rights profiles, for management of ZFS file systems and
storage pools, 35

rolling back
ZFS snapshot

(example of), 201

Index

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013322

S
savecore, saving crash dumps, 123
saving

crash dumps
savecore, 123

ZFS file system data (zfs send)
(example of), 207

scripting
ZFS storage pool output

(example of), 87
scrubbing

(example of), 269
data validation, 269

secondarycache property, description, 145
self-healing data, description, 49
sending and receiving

ZFS file system data
description, 204

separate log devices, considerations for using, 54
settable properties of ZFS

aclinherit, 137
aclmode, 138
atime, 138
canmount, 138

detailed description, 151
casesensitivity, 139
checksum, 139
compression, 139
copies, 140
dedup, 140
description, 149
devices, 140
exec, 140
mountpoint, 141
primarycache, 142
quota, 143
read-only, 143
recordsize, 143

detailed description, 154
refquota, 144
refreservation, 144
reservation, 144
secondarycache, 145
setuid, 145

settable properties of ZFS (Continued)
shadow, 145
share,nfs, 145
share.smb, 145
snapdir, 145
sync, 146
used

detailed description, 149
version, 147
volblocksize, 147
volsize, 147

detailed description, 155
xattr, 148
zoned, 148

setting
ACL inheritance on ZFS file (verbose mode)

(example of), 229
ACLs on ZFS file (compact mode)

(example of), 236
description, 235

ACLs on ZFS file (verbose mode)
(description, 224

ACLs on ZFS files
description, 222

compression property
(example of), 40

legacy mount points
(example of), 165

mountpoint property, 40
quota property (example of), 40
share.nfs property

(example of), 40
ZFS atime property

(example of), 159
ZFS file system quota (zfs set quota)

example of, 179
ZFS file system reservation

(example of), 182
ZFS mount points (zfs set mountpoint)

(example of), 165
ZFS quota

(example of), 159
setuid property, description, 145
shadow migration, overview, 191

Index

323

shadow property, description, 145
share.nfs property, description, 145
share.smb property, description, 145
share.smb property, description, detailed, 155
sharing ZFS file systems, share.smb property, 155
simplified administration, description, 28
size property, description, 84
snapdir property, description, 145
snapshot

accessing
(example of), 199

creating
(example of), 196

definition, 30
destroying

(example of), 197
features, 195
renaming

(example of), 198
rolling back

(example of), 201
space accounting, 200

Solaris ACLs
ACL inheritance, 220
ACL inheritance flags, 220
ACL property, 221
differences from POSIX-draft ACLs, 216
format description, 216
new model

description, 215
splitting a mirrored storage pool

(zpool split)
(example of), 68

storage requirements, identifying, 37
stream package

recursive, 207
replication, 206

swap and dump devices
adjusting sizes of, 122
description, 121
issues, 122

sync property, description, 146

T
terminology

checksum, 29
clone, 29
dataset, 29
file system, 29
mirror, 30
pool, 30
RAID-Z, 30
resilvering, 30
snapshot, 30
virtual device, 30
volume, 30

traditional volume management, differences between
ZFS and traditional file systems, 34

transactional semantics, description, 27
troubleshooting

clear device errors (zpool clear)
(example of), 281

damaged devices, 268
data corruption identified (zpool status -v)

(example of), 275
determining if a device can be replaced

description, 282
determining if problems exist (zpool status

-x), 272
determining type of data corruption (zpool status

-v)
(example of), 290

determining type of device failure
description, 280

identifying problems, 271
missing (UNAVAIL) devices, 267
notifying ZFS of reattached device (zpool online)

(example of), 279
overall pool status information

description, 273
repairing a corrupted file or directory

description, 291
repairing a damaged ZFS configuration, 276
repairing an unbootable system

description, 294
repairing pool-wide damage

description, 293

Index

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013324

troubleshooting (Continued)
replacing a device (zpool replace)

(example of), 283, 288
replacing a missing device

(example of), 276
syslog reporting of ZFS error messages, 275
ZFS failures, 267
ZFS file system migration, 193

type property, description, 146

U
unmounting

ZFS file systems
(example of), 168

upgrading
ZFS file systems

description, 194
ZFS storage pool

description, 104
used property

description, 146
detailed description, 149

usedbychildren property, description, 146
usedbydataset property, description, 147
usedbyrefreservation property, description, 147
usedbysnapshots property, description, 147
user properties of ZFS

(example of), 155
detailed description, 155

V
version property, description, 147
version property, description, 84
virtual device, definition, 30
virtual devices, as components of ZFS storage pools, 56
volblocksize property, description, 147
volsize property

description, 147
detailed description, 155

volume, definition, 30

W
whole disks, as components of ZFS storage pools, 45

X
xattr property, description, 148

Z
zfs allow

description, 247
displaying delegated permissions, 252

zfs create

(example of), 39, 134
description, 134

ZFS delegated administration, overview, 243
zfs destroy, (example of), 135
zfs destroy -r, (example of), 135
ZFS file system

description, 133
versions

description, 313
ZFS file systems

ACL on ZFS directory
detailed description, 224

ACL on ZFS file
detailed description, 223

adding ZFS file system to a non-global zone
(example of), 259

adding ZFS volume to a non-global zone
(example of), 260

booting a root file system
description, 124

booting a ZFS BE with boot -Land boot -Z

(SPARC example of), 127
checksum

definition, 29
checksummed data

description, 28
clone

replacing a file system with (example of), 203
clones

definition, 29

Index

325

ZFS file systems, clones (Continued)
description, 202

component naming requirements, 31
creating

(example of), 134
creating a clone, 203
creating a ZFS volume

(example of), 255
dataset

definition, 29
dataset types

description, 158
default mountpoint

(example of), 134
delegating dataset to a non-global zone

(example of), 259
description, 26
destroying

(example of), 135
destroying a clone, 203
destroying with dependents

(example of), 135
encrypting, 184
file system

definition, 29
inheriting property of (zfs inherit)

(example of), 160
listing

(example of), 156
listing descendents

(example of), 157
listing properties by source value

(example of), 162
listing properties for scripting

(example of), 163
listing properties of (zfs list)

(example of), 161
listing types of

(example of), 158
listing without header information

(example of), 158
managing automatic mount points, 164
managing legacy mount points

description, 164

ZFS file systems (Continued)
managing mount points

description, 164
migrating, 192
modifying trivial ACL on ZFS file (verbose mode)

(example of), 225
mounting

(example of), 166
pooled storage

description, 27
property management within a zone

description, 261
receiving data streams (zfs receive)

(example of), 208
renaming

(example of), 136
restoring trivial ACL on ZFS file (verbose mode)

(example of), 228
rights profiles, 35
saving data streams (zfs send)

(example of), 207
sending and receiving

description, 204
setting a reservation

(example of), 182
setting ACL inheritance on ZFS file (verbose mode)

(example of), 229
setting ACLs on ZFS file (compact mode)

(example of), 236
description, 235

setting ACLs on ZFS file (verbose mode)
description, 224

setting ACLs on ZFS files
description, 222

setting atime property
(example of), 159

setting legacy mount point
(example of), 165

setting mount point (zfs set mountpoint)
(example of), 165

setting quota property
(example of), 159

simplified administration
description, 28

Index

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013326

ZFS file systems (Continued)
snapshot

accessing, 199
creating, 196
definition, 30
description, 195
destroying, 197
renaming, 198
rolling back, 201

snapshot space accounting, 200
swap and dump devices

adjusting sizes of, 122
description, 121
issues, 122

transactional semantics
description, 27

unmounting
(example of), 168

upgrading
description, 194

using on a Solaris system with zones installed
description, 258

volume
definition, 30

ZFS file systems (zfs set quota)
setting a quota

example of, 179
zfs get, (example of), 161
zfs get -H -o, (example of), 163
zfs get -s, (example of), 162
zfs inherit, (example of), 160
ZFS intent log (ZIL), description, 54
zfs list

(example of), 40, 156
zfs list -H, (example of), 158
zfs list -r, (example of), 157
zfs list -t, (example of), 158
zfs mount, (example of), 166
ZFS pool properties

allocated, 82
alroot, 82
autoreplace, 82
bootfs, 82
cachefile, 82

ZFS pool properties (Continued)
capacity, 82
dedupditto, 83
dedupratio, 83
delegation, 83
failmode, 83
free, 83
guid, 83
health, 83
listsharess, 83
listsnapshots, 84
size, 84
version, 84

zfs promote, clone promotion (example of), 203
ZFS properties

aclinherit, 137
aclmode, 138
atime, 138
available, 138
canmount, 138

detailed description, 151
casesensitivity, 139
checksum, 139
compression, 139
compressratio, 139
copies, 140
creation, 140
dedup, 140
description, 137
devices, 140
exec, 140
inheritable, description of, 137
logbias, 141
management within a zone

description, 261
mlslabel, 141
mounted, 141
mountpoint, 141
origin, 143
quota, 143
read-only, 143
read-only, 148
recordsize, 143

detailed description, 154

Index

327

ZFS properties (Continued)
referenced, 144
refquota, 144
refreservation, 144
reservation, 144
secondarycache, 142, 145
settable, 149
setuid, 145
shadow, 145
share.nfs, 145
share.smb, 145
snapdir, 145
sync, 146
type, 146
used, 146

detailed description, 149
usedbychildren, 146
usedbydataset, 147
usedbyrefreservation, 147
usedbysnapshots, 147
user properties

detailed description, 155
version, 147
volblocksize, 147
volsize, 147

detailed description, 155
xattr, 148
zoned, 148
zoned property

detailed description, 262
zfs receive, (example of), 208
zfs rename, (example of), 136
zfs send, (example of), 207
zfs set atime, (example of), 159
zfs set compression, (example of), 40
zfs set mountpoint

(example of), 40, 165
zfs set mountpoint=legacy, (example of), 165
zfs set quota

(example of), 40
zfs set quota, (example of), 159
zfs set quota

example of, 179
zfs set reservation, (example of), 182

zfs set share.nfs, (example of), 40
ZFS space accounting, differences between ZFS and

traditional file systems, 32
ZFS storage pool

versions
description, 313

ZFS storage pools
adding devices to (zpool add)

(example of), 61
alternate root pools, 263
attaching devices to (zpool attach)

(example of), 66
clearing a device

(example of), 73
clearing device errors (zpool clear)

(example of), 281
components, 43
corrupted data

description, 268
creating (zpool create)

(example of), 50
creating a RAID-Z configuration (zpool create)

(example of), 52
creating mirrored configuration (zpool create)

(example of), 51
damaged devices

description, 268
data corruption identified (zpool status -v)

(example of), 275
data repair

description, 269
data scrubbing

(example of), 269
description, 269

data scrubbing and resilvering
description, 270

data validation
description, 269

default mount point, 60
destroying (zpool destroy)

(example of), 60
detaching devices from (zpool detach)

(example of), 68

Index

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013328

ZFS storage pools (Continued)
determining if a device can be replaced

description, 282
determining if problems exist (zpool status -x)

description, 272
determining type of device failure

description, 280
displaying detailed health status

(example of), 94
displaying health status, 91

(example of), 93
doing a dry run (zpool create -n)

(example of), 59
dynamic striping, 49
exporting

(example of), 97
failures, 267
identifying for import (zpool import -a)

(example of), 98
identifying problems

description, 271
identifying type of data corruption (zpool status

-v)
(example of), 290

importing
(example of), 100

importing from alternate directories (zpool import
-d)
(example of), 99

listing
(example of), 85

migrating
description, 96

mirror
definition, 30

mirrored configuration, description, 48
missing (UNAVAIL) devices

description, 267
notifying ZFS of reattached device (zpool online)

(example of), 279
offlining a device (zpool offline)

(example of), 71
onlining and offlining devices

description, 71

ZFS storage pools (Continued)
overall pool status information for troubleshooting

description, 273
pool

definition, 30
pool-wide I/O statistics

(example of), 89
RAID-Z

definition, 30
RAID-Z configuration, description, 48
recovering a destroyed pool

(example of), 103
repairing a corrupted file or directory

description, 291
repairing a damaged ZFS configuration, 276
repairing an unbootable system

description, 294
repairing pool-wide damage

description, 293
replacing a device (zpool replace)

(example of), 73, 283
replacing a missing device

(example of), 276
resilvering

definition, 30
rights profiles, 35
scripting storage pool output

(example of), 87
splitting a mirrored storage pool (zpool split)

(example of), 68
system error messages

description, 275
upgrading

description, 104
using files, 46
using whole disks, 45
vdev I/O statistics

(example of), 90
viewing resilvering process

(example of), 288
virtual device

definition, 30
virtual devices, 56

Index

329

ZFS storage pools (zpool online)
onlining a device

(example of), 72
zfs unallow, description, 248
zfs unmount, (example of), 168
zfs upgrade, 194
ZFS version

ZFS feature and Solaris OS
description, 313

ZFS volume, description, 255
zoned property

description, 148
detailed description, 262

zones
adding ZFS file system to a non-global zone

(example of), 259
adding ZFS volume to a non-global zone

(example of), 260
delegating dataset to a non-global zone

(example of), 259
using with ZFS file systems

description, 258
ZFS property management within a zone

description, 261
zoned property

detailed description, 262
zpool add, (example of), 61
zpool attach, (example of), 66
zpool clear

(example of), 73
description, 73

zpool create

(example of), 36, 38
basic pool

(example of), 50
mirrored storage pool

(example of), 51
RAID-Z storage pool

(example of), 52
zpool create -n, dry run (example of), 59
zpool destroy, (example of), 60
zpool detach, (example of), 68
zpool export, (example of), 97
zpool import -a, (example of), 98

zpool import -D, (example of), 103
zpool import -d, (example of), 99
zpool import name, (example of), 100
zpool iostat, pool-wide (example of), 89
zpool iostat -v, vdev (example of), 90
zpool list

(example of), 38, 85
description, 84

zpool list -Ho name, (example of), 87
zpool offline, (example of), 71
zpool online, (example of), 72
zpool replace, (example of), 73
zpool split, (example of), 68
zpool status -v, (example of), 94
zpool status -x, (example of), 93
zpool upgrade, 104

Index

Oracle Solaris 11.1 Administration: ZFS File Systems • September 2013330

	Oracle® Solaris 11.1 Administration: ZFS File Systems
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Related Books
	Access to Oracle Support
	Typographic Conventions
	Shell Prompts in Command Examples

	Oracle Solaris ZFS File System (Introduction)
	What's New in ZFS?
	Improved ZFS Pool Device Messages
	ZFS File Sharing Improvements
	Shared var File System
	Boot Support for EFI (GPT) Labeled Disks
	ZFS Command Usage Enhancements
	ZFS Snapshot Enhancements
	ZFS Manual Page Change (zfs.1m)
	Improved aclmode Property
	Identifying Pool Devices By Physical Location
	ZFS Shadow Migration
	ZFS File System Encryption
	ZFS Send Stream Enhancements
	ZFS Snapshot Differences (zfs diff)
	ZFS Storage Pool Recovery and Performance Enhancements
	Tuning ZFS Synchronous Behavior
	Improved ZFS Pool Messages
	ZFS ACL Interoperability Enhancements
	Splitting a Mirrored ZFS Storage Pool (zpool split)
	ZFS iSCSI Changes
	New ZFS System Process
	ZFS Deduplication Property

	What Is Oracle Solaris ZFS?
	ZFS Pooled Storage
	Transactional Semantics
	Checksums and Self-Healing Data
	Unparalleled Scalability
	ZFS Snapshots
	Simplified Administration

	ZFS Terminology
	ZFS Component Naming Requirements
	Oracle Solaris ZFS and Traditional File System Differences
	ZFS File System Granularity
	ZFS Disk Space Accounting
	Out of Space Behavior

	Mounting ZFS File Systems
	Traditional Volume Management
	Solaris ACL Model Based on NFSv4

	Getting Started With Oracle Solaris ZFS
	ZFS Rights Profiles
	ZFS Hardware and Software Requirements and Recommendations
	Creating a Basic ZFS File System
	Creating a Basic ZFS Storage Pool
	How to Identify Storage Requirements for Your ZFS Storage Pool
	How to Create a ZFS Storage Pool

	Creating a ZFS File System Hierarchy
	How to Determine Your ZFS File System Hierarchy
	How to Create ZFS File Systems

	Managing Oracle Solaris ZFS Storage Pools
	Components of a ZFS Storage Pool
	Using Disks in a ZFS Storage Pool
	Using Slices in a ZFS Storage Pool
	Using Files in a ZFS Storage Pool
	Considerations for ZFS Storage Pools

	Replication Features of a ZFS Storage Pool
	Mirrored Storage Pool Configuration
	RAID-Z Storage Pool Configuration
	ZFS Hybrid Storage Pool
	Self-Healing Data in a Redundant Configuration
	Dynamic Striping in a Storage Pool

	Creating and Destroying ZFS Storage Pools
	Creating ZFS Storage Pools
	Creating a Basic Storage Pool
	Creating a Mirrored Storage Pool
	Creating a ZFS Root Pool
	Creating a RAID-Z Storage Pool
	Creating a ZFS Storage Pool With Log Devices
	Creating a ZFS Storage Pool With Cache Devices
	Cautions For Creating Storage Pools

	Displaying Storage Pool Virtual Device Information
	Handling ZFS Storage Pool Creation Errors
	Detecting In-Use Devices
	Mismatched Replication Levels
	Doing a Dry Run of Storage Pool Creation
	Default Mount Point for Storage Pools

	Destroying ZFS Storage Pools
	Destroying a Pool With Unavailable Devices

	Managing Devices in ZFS Storage Pools
	Adding Devices to a Storage Pool
	Attaching and Detaching Devices in a Storage Pool
	Creating a New Pool By Splitting a Mirrored ZFS Storage Pool
	Onlining and Offlining Devices in a Storage Pool
	Taking a Device Offline
	Bringing a Device Online

	Clearing Storage Pool Device Errors
	Replacing Devices in a Storage Pool
	Designating Hot Spares in Your Storage Pool
	Activating and Deactivating Hot Spares in Your Storage Pool

	Managing ZFS Storage Pool Properties
	Querying ZFS Storage Pool Status
	Displaying Information About ZFS Storage Pools
	Displaying Information About All Storage Pools or a Specific Pool
	Displaying Pool Devices by Physical Locations
	Displaying Specific Storage Pool Statistics
	Scripting ZFS Storage Pool Output
	Displaying ZFS Storage Pool Command History

	Viewing I/O Statistics for ZFS Storage Pools
	Listing Pool-Wide I/O Statistics
	Listing Virtual Device I/O Statistics

	Determining the Health Status of ZFS Storage Pools
	Basic Storage Pool Health Status
	Detailed Health Status
	Gathering ZFS Storage Pool Status Information

	Migrating ZFS Storage Pools
	Preparing for ZFS Storage Pool Migration
	Exporting a ZFS Storage Pool
	Determining Available Storage Pools to Import
	Importing ZFS Storage Pools From Alternate Directories
	Importing ZFS Storage Pools
	Importing a Pool With a Missing Log Device
	Importing a Pool in Read-Only Mode
	Importing a Pool By a Specific Device Path

	Recovering Destroyed ZFS Storage Pools

	Upgrading ZFS Storage Pools

	Managing ZFS Root Pool Components
	Managing ZFS Root Pool Components (Overview)
	ZFS Root Pool Requirements
	ZFS Root Pool Space Requirements
	ZFS Root Pool Configuration Requirements

	Managing Your ZFS Root Pool
	Installing a ZFS Root Pool
	How to Update Your ZFS Boot Environment
	How to Mount an Alternate BE
	How to Configure a Mirrored Root Pool (SPARC or x86/VTOC)
	How to Configure a Mirrored Root Pool (x86/EFI (GPT))
	How to Replace a Disk in a ZFS Root Pool (SPARC or x86/VTOC)
	How to Replace a Disk in a ZFS Root Pool (SPARC or x86/EFI (GPT))
	How to Create a BE in Another Root Pool (SPARC or x86/VTOC)
	How to Create a BE in Another Root Pool (SPARC or x86/EFI (GPT))

	Managing Your ZFS Swap and Dump Devices
	Adjusting the Sizes of Your ZFS Swap and Dump Devices
	Troubleshooting ZFS Dump Device Issues

	Booting From a ZFS Root File System
	Booting From an Alternate Disk in a Mirrored ZFS Root Pool
	Booting From a ZFS Root File System on a SPARC Based System
	Booting From a ZFS Root File System on an x86 Based System
	Booting For Recovery Purposes in a ZFS Root Environment
	How to Boot the System For Recovery Purposes

	Managing Oracle Solaris ZFS File Systems
	Managing ZFS File Systems (Overview)
	Creating, Destroying, and Renaming ZFS File Systems
	Creating a ZFS File System
	Destroying a ZFS File System
	Renaming a ZFS File System

	Introducing ZFS Properties
	ZFS Read-Only Native Properties
	The used Property

	Settable ZFS Native Properties
	The canmount Property
	The casesensitivity Property
	The copies Property
	The dedup Property
	The encryption Property
	The recordsize Property
	The share.smb Property
	The volsize Property

	ZFS User Properties

	Querying ZFS File System Information
	Listing Basic ZFS Information
	Creating Complex ZFS Queries

	Managing ZFS Properties
	Setting ZFS Properties
	Inheriting ZFS Properties
	Querying ZFS Properties
	Querying ZFS Properties for Scripting

	Mounting ZFS File Systems
	Managing ZFS Mount Points
	Automatic Mount Points
	Legacy Mount Points

	Mounting ZFS File Systems
	Using Temporary Mount Properties
	Unmounting ZFS File Systems

	Sharing and Unsharing ZFS File Systems
	Legacy ZFS Sharing Syntax
	New ZFS Sharing Syntax
	ZFS Sharing with Per-Property Inheritance
	ZFS Sharing Inheritance in Older Pools

	ZFS Named Shares
	ZFS Automatic Shares
	Displaying ZFS Share Information
	Changing a ZFS Share Property Values
	Publishing and Unpublishing ZFS Shares
	Removing a ZFS Share
	ZFS File Sharing Within a Non-Global Zone

	ZFS Sharing Migration/Transition Issues
	Troubleshooting ZFS File System Sharing Problems

	Setting ZFS Quotas and Reservations
	Setting Quotas on ZFS File Systems
	Setting User and Group Quotas on a ZFS File System

	Setting Reservations on ZFS File Systems

	Encrypting ZFS File Systems
	Changing an Encrypted ZFS File System's Keys
	Managing ZFS Encryption Keys
	Delegating ZFS Key Operation Permissions

	Mounting an Encrypted ZFS File System
	Upgrading Encrypted ZFS File Systems
	Interactions Between ZFS Compression, Deduplication, and Encryption Properties
	Examples of Encrypting ZFS File Systems

	Migrating ZFS File Systems
	How to Migrate a File System to a ZFS File System
	Troubleshooting ZFS File System Migrations

	Upgrading ZFS File Systems

	Working With Oracle Solaris ZFS Snapshots and Clones
	Overview of ZFS Snapshots
	Creating and Destroying ZFS Snapshots
	Holding ZFS Snapshots
	Renaming ZFS Snapshots

	Displaying and Accessing ZFS Snapshots
	Disk Space Accounting for ZFS Snapshots

	Rolling Back a ZFS Snapshot
	Identifying ZFS Snapshot Differences (zfs diff)

	Overview of ZFS Clones
	Creating a ZFS Clone
	Destroying a ZFS Clone
	Replacing a ZFS File System With a ZFS Clone

	Sending and Receiving ZFS Data
	Saving ZFS Data With Other Backup Products
	Identifying ZFS Snapshot Streams
	Sending a ZFS Snapshot
	Receiving a ZFS Snapshot
	Applying Different Property Values to a ZFS Snapshot Stream
	Sending and Receiving Complex ZFS Snapshot Streams
	Remote Replication of ZFS Data

	Using ACLs and Attributes to Protect Oracle Solaris ZFS Files
	Solaris ACL Model
	Syntax Descriptions for Setting ACLs
	ZFS ACL Sets

	ACL Inheritance
	ACL Properties

	Setting ACLs on ZFS Files
	Setting and Displaying ACLs on ZFS Files in Verbose Format
	Setting ACL Inheritance on ZFS Files in Verbose Format

	Setting and Displaying ACLs on ZFS Files in Compact Format
	Applying Special Attributes to ZFS Files

	Oracle Solaris ZFS Delegated Administration
	Overview of ZFS Delegated Administration
	Disabling ZFS Delegated Permissions

	Delegating ZFS Permissions
	Delegating ZFS Permissions (zfs allow)
	Removing ZFS Delegated Permissions (zfs unallow)

	Delegating ZFS Permissions (Examples)
	Displaying ZFS Delegated Permissions (Examples)
	Removing ZFS Delegated Permissions (Examples)

	Oracle Solaris ZFS Advanced Topics
	ZFS Volumes
	Using a ZFS Volume as a Swap or Dump Device
	Using a ZFS Volume as an iSCSI LUN

	Using ZFS on a Solaris System With Zones Installed
	Adding ZFS File Systems to a Non-Global Zone
	Delegating Datasets to a Non-Global Zone
	Adding ZFS Volumes to a Non-Global Zone
	Using ZFS Storage Pools Within a Zone
	Managing ZFS Properties Within a Zone
	Understanding the zoned Property
	Copying Zones to Other Systems

	Using ZFS Alternate Root Pools
	Creating ZFS Alternate Root Pools
	Importing Alternate Root Pools

	Oracle Solaris ZFS Troubleshooting and Pool Recovery
	Resolving ZFS Space Issues
	ZFS File System Space Reporting
	ZFS Storage Pool Space Reporting

	Identifying ZFS Failures
	Missing Devices in a ZFS Storage Pool
	Damaged Devices in a ZFS Storage Pool
	Corrupted ZFS Data

	Checking ZFS File System Integrity
	File System Repair
	File System Validation
	Controlling ZFS Data Scrubbing
	Explicit ZFS Data Scrubbing
	ZFS Data Scrubbing and Resilvering

	Resolving Problems With ZFS
	Determining If Problems Exist in a ZFS Storage Pool
	Reviewing zpool status Output
	Overall Pool Status Information
	Pool Configuration Information
	Scrubbing Status
	Data Corruption Errors

	System Reporting of ZFS Error Messages

	Repairing a Damaged ZFS Configuration
	Resolving a Missing Device
	Physically Reattaching a Device
	Notifying ZFS of Device Availability

	Replacing or Repairing a Damaged Device
	Determining the Type of Device Failure
	Clearing Transient Errors
	Replacing a Device in a ZFS Storage Pool
	Determining If a Device Can Be Replaced
	Devices That Cannot be Replaced
	Replacing a Device in a ZFS Storage Pool
	Viewing Resilvering Status

	Repairing Damaged Data
	Identifying the Type of Data Corruption
	Repairing a Corrupted File or Directory
	Repairing Corrupted Data With Multiple Block References

	Repairing ZFS Storage Pool-Wide Damage

	Repairing an Unbootable System

	Archiving Snapshots and Root Pool Recovery
	Overview of ZFS Recovery Process
	ZFS Pool Recovery Requirements

	Creating a ZFS Snapshot Archive for Recovery
	How to Create a ZFS Snapshot Archive

	Recreating Your Root Pool and Recovering Root Pool Snapshots
	How to Recreate the Root Pool on the Recovery System

	Recommended Oracle Solaris ZFS Practices
	Recommended Storage Pool Practices
	General System Practices
	ZFS Storage Pool Creation Practices
	General Storage Pool Practices
	Root Pool Creation Practices
	Non-Root (Data) Pool Creation Practices
	Pool Creation Practices on Local or Network Attached Storage Arrays
	Pool Creation Practices for an Oracle Database
	Using ZFS Storage Pools in VirtualBox

	Storage Pool Practices for Performance
	ZFS Storage Pool Maintenance and Monitoring Practices

	Recommended File System Practices
	File System Creation Practices
	File System Creation Practices for an Oracle Database

	Monitoring ZFS File System Practices

	Oracle Solaris ZFS Version Descriptions
	Overview of ZFS Versions
	ZFS Pool Versions
	ZFS File System Versions

	Index

