
Packaging and Delivering Software With
the Image Packaging System in Oracle®
Solaris 11.1

Part No: E21383–01
October 2012

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions
d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est
interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que
prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes
d’erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel
ou l’utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est
destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel
dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures
nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés
par l’utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à
d’autres propriétaires qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des
marques déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro
Devices. UNIX est une marque déposée d’The Open Group.

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services
émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En
aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l’accès à
des contenus, produits ou services tiers, ou à leur utilisation.

121203@25097

Contents

Preface ...7

1 IPS Design Goals, Concepts, and Terminology ... 11
IPS Design Goals ... 11
Software Self-Assembly .. 13

Tools for Software Self-Assembly .. 13
Examples of Software Self-Assembly in Oracle Solaris ... 15

IPS Package Lifecycle .. 15
IPS Terminology and Components .. 17

Installable Image .. 17
Package Identifier: FMRI .. 17
Package Content: Actions ... 20
Package Repository .. 31

2 Packaging Software With IPS ..33
Designing a Package .. 33
Creating and Publishing a Package ... 34

Generate a Package Manifest .. 34
Add Necessary Metadata to the Generated Manifest ... 36
Evaluate Dependencies .. 38
Add Any Facets or Actuators That Are Needed ... 39
Verify the Package .. 41
Publish the Package ... 42
Test the Package ... 43

Converting SVR4 Packages To IPS Packages ... 45
Generate an IPS Package Manifest from a SVR4 Package ... 45
Verify the Converted Package .. 48

3

Other Package Conversion Considerations ... 48

3 Installing, Removing, and Updating Software Packages ... 51
How Package Changes Are Performed ... 51

Check Input for Errors .. 51
Determine the System End State .. 52
Run Basic Checks ... 52
Run the Solver .. 52
Optimize the Solver Results .. 53
Evaluate Actions ... 53
Download Content .. 54
Execute Actions .. 54
Process Actuators ... 54
Update Boot Archive ... 55

4 Specifying Package Dependencies ...57
Dependency Types .. 57

require Dependency .. 57
require-any Dependency .. 58
optional Dependency .. 58
conditional Dependency .. 58
group Dependency ... 59
origin Dependency .. 60
incorporate Dependency .. 60
parent Dependency .. 61
exclude Dependency .. 61

Constraints and Freezing .. 61
Constraining Installable Package Versions .. 62
Relaxing Constraints on Installable Package Versions .. 62
Freezing Installable Package Versions ... 63

5 Allowing Variations ...65
Mutually Exclusive Software Components .. 65
Optional Software Components .. 66

Contents

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 20124

6 Modifying Package Manifests Programmatically ..71
Transform Rules .. 71
Include Rules .. 72
Transform Order ... 73
Packaged Transforms .. 73

7 Automating System Change as Part of Package Installation .. 75
Specifying System Changes on Package Actions ... 75
Delivering an SMF Service ... 76

Delivering a New SMF Service .. 76
Delivering a Service that Runs Once .. 77
Supporting Package Self-Assembly in SMF Methods .. 78

8 Advanced Topics For Package Updating .. 81
Avoiding Conflicting Package Content .. 81
Renaming, Merging and Splitting Packages ... 81

Renaming a Single Package ... 82
Merging Two Packages .. 82
Splitting a Package ... 83

Obsoleting Packages .. 83
Preserving Editable Files that Migrate .. 84
Moving Unpackaged Contents on Directory Removal or Rename ... 84
Delivering Multiple Implementations of an Application ... 85
Delivering Directories To Be Shared Across Boot Environments ... 87

▼ How To Deliver Content to Shared Directories ... 88

9 Signing IPS Packages ..91
Signing Package Manifests ... 91

Defining Signature Actions ... 91
Publishing Signed Package Manifests .. 92

Troubleshooting Signed Packages ... 93
Chain Certificate Not Found .. 94
Authorized Certificate Not Found ... 94
Untrusted Self-Signed Certificate .. 95

Contents

5

Signature Value Does Not Match Expected Value ... 95
Unknown Critical Extension .. 96
Unknown Extension Value ... 96
Unauthorized Use of Certificate .. 96
Unexpected Hash Value .. 97
Revoked Certificate .. 97

10 Handling Non-Global Zones ..99
Packaging Considerations for Non-Global Zones .. 99

Does the Package Cross the Global, Non-Global Zone Boundary? 99
How Much of a Package Should Be Installed in a Non-Global Zone? 100

Troubleshooting Package Installations in Non-Global Zones ... 101
Packages that Have Parent Dependencies on Themselves .. 101
Packages that Do Not Have Parent Dependencies on Themselves 101

11 Modifying Published Packages ...103
Republishing Packages .. 103
Changing Package Metadata .. 104
Changing Package Publisher .. 104

A Classifying Packages ...107
Assigning Classifications .. 107
Classification Values ... 107

B How IPS Is Used To Package the Oracle Solaris OS ..111
Oracle Solaris Package Versioning .. 111
Oracle Solaris Incorporation Packages ... 112
Relaxing Dependency Constraints .. 113
Oracle Solaris Group Packages .. 114
Attributes and Tags ... 115

Informational Attributes ... 115
Oracle Solaris Attributes ... 115
Organization-Specific Attributes ... 116
Oracle Solaris Tags ... 116

Contents

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 20126

Preface

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1
describes how to use the Oracle Solaris Image Packaging System (IPS) feature to create software
packages for the Oracle Solaris 11 operating system (OS).

Who Should Use This Book
This manual is for software developers who want to create packages that can be installed on the
Oracle Solaris 11 OS and maintained using IPS. This book is also for developers and system
administrators who want to better understand IPS and how the Oracle Solaris OS is packaged
using IPS. Underlying IPS design concepts are discussed so that readers can more readily
understand and use the more advanced features of IPS.

How This Book Is Organized
■ Chapter 1, “IPS Design Goals, Concepts, and Terminology,” outlines the basic design

philosophy of IPS and its expression as software patterns.
■ Chapter 2, “Packaging Software With IPS,” gets you started constructing your own packages.
■ Chapter 3, “Installing, Removing, and Updating Software Packages,” describes how the IPS

client works internally when installing, updating, and removing the software installed in an
image.

■ Chapter 4, “Specifying Package Dependencies,” explains the different types of IPS
dependencies and how they can be used to construct working software systems.

■ Chapter 5, “Allowing Variations,” explains how to provide different installation options to
the end user.

■ Chapter 6, “Modifying Package Manifests Programmatically,” explains how package
manifests can be machine edited to automatically annotate and check the manifests.

■ Chapter 7, “Automating System Change as Part of Package Installation,” explains how to use
the Service Management Facility (SMF) to automatically handle any necessary system
changes that should occur as a result of package installation.

■ Chapter 8, “Advanced Topics For Package Updating,” discusses renaming, merging, and
splitting packages, moving package contents, delivering multiple implementations of an
application, and sharing information across boot environments.

7

■ Chapter 9, “Signing IPS Packages,” describes IPS package signing and how developers and
quality assurance organizations can sign either new packages or existing, already signed
packages.

■ Chapter 10, “Handling Non-Global Zones,” describes how IPS handles zones and discusses
those cases where packaging needs to account for non-global zones.

■ Chapter 11, “Modifying Published Packages,” describes how administrators can modify
existing packages for local conditions.

■ Appendix A, “Classifying Packages,” shows package information classification scheme
definitions.

■ Appendix B, “How IPS Is Used To Package the Oracle Solaris OS,” describes how Oracle uses
IPS features to package the Oracle Solaris OS.

Related Documentation
■ Chapter 2, “Managing Services (Overview),” in Managing Services and Faults in Oracle

Solaris 11.1 describes the Oracle Solaris Service Management Facility (SMF) feature
■ Copying and Creating Oracle Solaris 11.1 Package Repositories
■ Adding and Updating Oracle Solaris 11.1 Software Packages
■ Creating and Administering Oracle Solaris 11.1 Boot Environments and the beadm(1M) man

page
■ Installing Oracle Solaris 11.1 Systems
■ Oracle Solaris Administration: Oracle Solaris Zones, Oracle Solaris 10 Zones, and Resource

Management
■ Oracle Solaris 11.1 Administration: ZFS File Systems

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Preface

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 20128

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SVSVFhbrunlevels-25516
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=SVSVFhbrunlevels-25516
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=CCOSP
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=AUOSS
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=CMBEA
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mbeadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=IOSUI
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=SYSADRM
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=SYSADRM
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=ZFSADMIN
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Description Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in Command Examples
The following table shows UNIX system prompts and superuser prompts for shells that are
included in the Oracle Solaris OS. In command examples, the shell prompt indicates whether
the command should be executed by a regular user or a user with privileges.

TABLE P–2 Shell Prompts

Shell Prompt

Bash shell, Korn shell, and Bourne shell $

Bash shell, Korn shell, and Bourne shell for superuser #

C shell machine_name%

C shell for superuser machine_name#

Preface

9

10

IPS Design Goals, Concepts, and Terminology

This chapter outlines the basic design philosophy of IPS and its expression as software patterns.

IPS Design Goals
IPS is designed to eliminate some long-standing issues with previous software distribution,
installation, and maintenance mechanisms that have caused significant problems for Oracle
Solaris customers, developers, maintainers, and ISVs.

Principle IPS design goals include:

Minimize downtime.
Minimize planned downtime by making software update possible while machines are in
production.

Minimize unplanned downtime by supporting quick reboot to known working software
configurations.

Automate installation and update.
Automate, as much as possible, the installation of new software and updates to existing
software.

Reduce media requirement.
Resolve the difficulties with ever-increasing software size and limited distribution media
space.

Verify correct software installation.
Ensure that it is possible to determine whether a package is correctly installed as defined by
the author (publisher) of the package. Such a check should not be spoofable.

Enable easy virtualization.
Incorporate mechanisms to allow for the easy virtualization of Oracle Solaris at a variety of
levels, in particular using zones.

1C H A P T E R 1

11

Simplify upgrade.
Reduce the effort required to generate patches or upgrades for existing systems.

Enable easy package creation.
Enable other software publishers (ISVs and end-users themselves) to easily create and
publish packages for Oracle Solaris.

These goals led to the following ideas:

Create boot environments as needed.
Leverage ZFS snapshot and clone facilities to dynamically create boot environments on an
as-needed basis.
■ Since Oracle Solaris 11 requires ZFS as the root file system, zone file systems need to be

on ZFS as well.
■ Users can create as many boot environments as desired.
■ IPS can automatically create boot environments on an as-needed basis, either for backup

purposes prior to modifying the running system, or for installation of a new version of
the OS.

Unify installation, patch, and update.
Eliminate duplicated mechanisms and code used to install, patch, and update.

This idea results in several significant changes to the way Oracle Solaris is maintained,
including the following important examples:
■ All OS software updates and patching are done directly with IPS.
■ Any time a new package is installed, it is already exactly at the correct version.

Minimize opportunities to install incorrectly.
The requirement for unspoofable verification of package installation has the following
consequences:
■ If a package needs to support installation in multiple ways, those ways must be specified

by the developer so that the verification process can take this into account.
■ Scripting is inherently unverifiable since the packaging system cannot determine the

intent of the script writer. This, along with other issues discussed later, led to the
elimination of scripting during packaging operations.

■ A package cannot have any mechanism to edit its own manifest, since verification is then
impossible.

■ If the administrator wants to install a package in a manner incompatible with the original
publisher's definition, the packaging system should enable the administrator to easily
republish the package he wants to alter so that the scope of his changes is clear, not lost
across upgrades, and can be verified in the same manner as the original package.

Provide software repositories.
The need to avoid size restrictions led to a software repository model, accessed using several
different methods. Different repository sources can be composited to provide a complete set

IPS Design Goals

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201212

of packages, and repositories can be distributed as a single file. In this manner, no single
media is ever required to contain all the available software. To support disconnected or
firewalled operations, tools are provided to copy and merge repositories.

Include metadata as part of the software package.
The desire to enable multiple (possibly competing) software publishers led to the decision to
store all the packaging metadata in the packages themselves: No master database exists for
information such as all packages and dependencies. A catalog of available packages from a
software publisher is part of the repository for performance reasons, but the catalog can also
be regenerated from the data contained in the packages.

Software Self-Assembly
Given the goals and ideas described above, IPS introduces the general concept of software
self-assembly: Any collection of installed software on a system should be able to build itself into
a working configuration when that system is booted, by the time the packaging operation
completes, or at software runtime.

Software self-assembly eliminates the need for install-time scripting in IPS. The software is
responsible for its own configuration, rather than relying on the packaging system to perform
that configuration on behalf of the software. Software self-assembly also enables the packaging
system to safely operate on alternate images, such as boot environments that are not currently
booted, or offline zone roots. In addition, since the self-assembly is performed only on the
running image, the package developer does not need to cope with cross-version or
cross-architecture runtime contexts.

Some operating system image preparation must be done before boot, and IPS manages this
transparently. Image preparation includes updating boot blocks, preparing a boot archive
(ramdisk), and, on some architectures, managing the menu of boot choices.

Tools for Software Self-Assembly
The following IPS features and characteristics facilitate software self-assembly.

Atomic Software Objects
An action is the atomic unit of software delivery in IPS. Each action delivers a single software
object. That software object can be a file system object such as a file, directory, or link, or a more
complex software construct such as a user, group, or driver. In the SVR4 packaging system,
these more complex action types are handled by using class action scripts. In IPS, no scripting is
required.

Actions, grouped together into packages, can be installed, updated, and removed from both live
images and offline images.

Software Self-Assembly

Chapter 1 • IPS Design Goals, Concepts, and Terminology 13

Actions are discussed in more detail in “Package Content: Actions” on page 20.

Configuration Composition
Rather than maintaining complex configuration files that require extensive scripting to update
each configuration file during packaging operations, IPS encourages delivering fragments of
configuration files. The packaged application can access those fragments directly when reading
its configuration, or the fragments can be assembled into the complete configuration file before
reading the file.

The Oracle Solaris 11 user attributes database is a good example of fragmented configuration
files. The /etc/user_attr configuration file is used to configure extended attributes for roles
and users on the system. In Oracle Solaris 11, the /etc/user_attr file is used for local changes
only. Complete configuration is read from the separate files delivered into the
/etc/user_attr.d directory. Multiple packages deliver fragments of the complete
configuration. No scripting is needed when fragments are installed, removed, or updated.

This method of composing configuration files requires that the software is written with
composition in mind, which is not always possible.

An alternative way to support composition is for a service to treat the configuration file as
volatile, and reassemble the configuration file when fragments of the configuration are installed,
removed, or updated. Typically, this assembly is performed by an SMF service. Assembly by an
SMF service is discussed further in the next item.

Actuators and SMF Services
An actuator is a tag applied to any action delivered by the packaging system that causes a system
change when that action is installed, removed, or updated. These changes are typically
implemented as SMF services.

SMF services can configure software directly, or SMF services can construct configuration files
using data delivered in the SMF manifest or sourced from files installed on the system.

SMF services have a rich syntax to express dependencies. Each service runs only when all of its
dependencies have been met.

Any service can add itself as a dependency on the
svc:/milestone/self-assembly-complete:default SMF milestone. Once the booting
operating system has reached this milestone, all self-assembly operations should be completed.

A special type of zone called an Immutable Zone is a zone that can be configured to have
restricted write access to portions of its file system. See the discussion of file-mac-profile in
the zonecfg(1M) man page. To complete self-assembly in this type of zone, boot the zone
read/write. After the self-assembly-complete SMF milestone, the zone is automatically
booted to the required file-mac-profile setting.

Software Self-Assembly

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201214

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mzonecfg-1m

Examples of Software Self-Assembly in Oracle Solaris
The following examples describe packages that are delivered as part of Oracle Solaris.

Apache Web Server
A good example of self-assembly is in the Oracle Solaris package for Apache Web Server:
pkg:/web/server/apache-22. This package ships with a default httpd.conf file that has an
Include directive that references /etc/apache2/2.2/conf.d:

Include /etc/apache2/2.2/conf.d/*.conf

Another package can deliver a new .conf file to that directory and use a refresh_fmri actuator
to automatically refresh the Apache instance whenever the package that delivers this new .conf

file is installed, updated, or removed. Refreshing the Apache instance causes the web server to
rebuild its configuration.

file etc/apache2/2.2/conf.d/custom.conf path=etc/apache2/2.2/conf.d/custom.conf \

owner=root group=bin mode=0644 refresh_fmri=svc:/network/http:apache22

See “Add Any Facets or Actuators That Are Needed” on page 39 and Chapter 7, “Automating
System Change as Part of Package Installation,” for information about how to use the
refresh_fmri actuator.

Multiple Packages Delivering Configuration Fragments
Another example of self-assembly in the Oracle Solaris OS is shown in several packages that
deliver content to the /etc/security/exec_attr.d/ directory.

In earlier Oracle Solaris releases, an SMF service merged the files delivered in exec_attr.d into
a single database, /etc/security/exec_attr. In the Oracle Solaris 11 OS, libsecdb reads the
fragments in exec_attr.d directly, eliminating the need for a separate service to perform the
merge.

Other directories containing fragments of configuration in /etc/security are handled in a
similar way.

IPS Package Lifecycle
This section provides high-level descriptions of each state in the IPS package lifecycle. For best
results, both package developers and system administrators should understand the various
phases of the package lifecycle.

Create Packages can be created by anyone. IPS does not impose any particular software
build system or directory hierarchy on package authors. For details about package
creation, see Chapter 2, “Packaging Software With IPS.” Aspects of package
creation are discussed throughout the remaining chapters of this guide.

IPS Package Lifecycle

Chapter 1 • IPS Design Goals, Concepts, and Terminology 15

Publish Packages are published to an IPS repository, either to an HTTP location or to the
file system. A published package can also be converted to a .p5p package archive
file. To access software from an IPS repository, the repository can be added to the
system using the pkg set-publisher command, or the repository can be
accessed as a temporary source by using the -g option with pkg commands.
Examples of package publication are shown in Chapter 2, “Packaging Software
With IPS.”

Install Packages can be installed on a system, either from an IPS repository accessed over
http://, https://, or file:// URLs, or from a .p5p package archive. Package
installation is described in more detail in Chapter 3, “Installing, Removing, and
Updating Software Packages.”

Update Updated versions of packages might become available, either published to an IPS
repository, or delivered as a new .p5p package archive. Installed packages can
then be brought up to date, either individually, or as part of an entire system
update.

Note that IPS does not use the same concept of “patching” that the SVR4
packaging system did. All changes to IPS packaged software are delivered by
updated packages.

Package updates are performed in much the same way as package installations,
but the packaging system is optimized to install only the changed portions
delivered by an updated package. Package updating is described in more detail in
Chapter 3, “Installing, Removing, and Updating Software Packages.”

Rename During the life of a package, you might want to rename the package. A package
might be renamed for organizational reasons or to refactor packages. Examples of
package refactoring include combining several packages into a single package or
breaking a single package into multiple smaller packages.

IPS gracefully handles content that moves between packages. IPS also allows old
package names to persist on the system, automatically installing the new packages
when a user asks to install a renamed package. Package renaming is described in
more detail in Chapter 10.

Obsolete Eventually a package might reach the end of its life. A package publisher might
decide that a package will no longer be supported, and that it will not have any
more updates made available. IPS allows publishers to mark such packages as
obsolete.

Obsolete packages can no longer be used as a target for most dependencies from
other packages, and any packages upgraded to an obsolete version are
automatically removed from the system. Package obsoletion is described in more
detail in “Renaming, Merging and Splitting Packages” on page 81.

IPS Package Lifecycle

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201216

Remove Finally, a package can be removed from the system if no other packages have
dependencies on it. Package removal is described in more detail in Chapter 3,
“Installing, Removing, and Updating Software Packages.”

IPS Terminology and Components
This section defines IPS terms and describes IPS components.

Installable Image
IPS is designed to install packages in an image. An image is a directory tree, and can be mounted
in a variety of locations as needed. An image is one of the following three types:

Full In a full image, all dependencies are resolved within the image itself, and IPS maintains
the dependencies in a consistent manner.

Zone Non-global zone images are linked to a full image (the parent global zone image), but
do not provide a complete system on their own. In a zone image, IPS maintains the
non-global zone consistent with its global zone as defined by dependencies in the
packages.

User User images contain only relocatable packages.

In general, images are created or cloned by installers, beadm(1M), or zonecfg(1M), for example,
rather than by pkg image-create.

Package Identifier: FMRI
Every IPS package is represented by a fault management resource identifier (FMRI) that
consists of a publisher, a name, and a version, with the scheme pkg. In the following example
package FMRI, solaris is the publisher, system/library is the package name, and
0.5.11,5.11-0.175.0.0.0.2.1:20111019T082311Z is the version:

pkg://solaris/system/library@0.5.11,5.11-0.175.1.0.0.2.1:20120919T082311Z

IPS Terminology and Components

Chapter 1 • IPS Design Goals, Concepts, and Terminology 17

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mbeadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mzonecfg-1m

FMRIs can be specified in abbreviated form if the resulting FMRI is still unique. The scheme,
publisher, and version can be omitted. Leading components can be omitted from the package
name.

■ When the FMRI starts with pkg:// or //, the first word following // must be the publisher
name, and no components can be omitted from the package name. When no components
are omitted from the package name, the package name is considered complete, or rooted.

■ When the FMRI starts with pkg:/ or /, the first word following the slash is the package
name, and no components can be omitted from the package name. No publisher name can
be present.

■ When the version is omitted, the package generally resolves to the latest version of the
package that can be installed.

Package Publisher
A publisher is an entity that develops and constructs packages. A publisher name, or prefix,
identifies this source in a unique manner. Publisher names can include upper and lower case
letters, numbers, hyphens, and periods: the same characters as a valid host name. Internet
domain names or registered trademarks are good choices for publisher names, since these
provide natural namespace partitioning.

Package clients combine all specified sources of packages for a given publisher when computing
packaging solutions.

Package Name
Package names are hierarchical with an arbitrary number of components separated by forward
slash (/) characters. Package name components must start with a letter or number, and can
include underscores (_), hyphens (-), periods (.), and plus signs (+). Package name
components are case sensitive.

Package names form a single namespace across publishers. Packages with the same name and
version but different publishers are assumed to be interchangeable in terms of external
dependencies and interfaces.

Leading components of package names can be omitted if the package name that is used is
unique. For instance, /driver/network/ethernet/e1000g can be reduced to
network/ethernet/e1000g, ethernet/e1000g, or even simply e1000g. When no components
are omitted from the package name, the package name is considered complete, or rooted. If the
packaging client complains about ambiguous package names, specify more components of the
package name or specify the full, rooted name. Package names should be chosen to reduce
possible ambiguities as much as possible.

If an FMRI contains a publisher name, then the full, rooted package name must be specified.

IPS Terminology and Components

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201218

Scripts should refer to packages by their full, rooted names.

FMRIs can also be specified using an asterisk (*) to match any portion of a package name. Thus
/driver/*/e1000g and /dri*00g both expand to /driver/network/ethernet/e1000g.

Package Version
A package version consists of four sequences of integer numbers, separated by punctuation.
The elements in the first three sequences are separated by dots, and the sequences are arbitrarily
long. Leading zeros in version elements are forbidden, to allow for unambiguous sorting by
package version. For example, 01.1 and 1.01 are invalid version elements.

In the following example package version, the first sequence is 0.5.11, the second sequence is
5.11, the third sequence is 0.175.1.0.0.2.1, and the fourth sequence is 20120919T082311Z.

0.5.11,5.11-0.175.1.0.0.2.1:20120919T082311Z

Component version The first sequence is the component version. For components that are
developed as part of Oracle Solaris, this sequence represents the point
in the release when this package last changed. For a component with its
own development life cycle, this sequence is the dotted release number,
such as 2.4.10.

Build version The second sequence is the build version. This sequence, if present,
must follow a comma. Oracle Solaris uses this sequence to denote the
release of the OS for which the package was compiled.

Branch version The third sequence is the branch version, providing vendor-specific
information. This sequence, if present, must follow a hyphen. This
sequence can contain a build number or provide some other
information. This value can be incremented when the packaging
metadata is changed, independently of the component. See “Oracle
Solaris Package Versioning” on page 111 for a description of how the
branch version fields are used in Oracle Solaris.

Time stamp The fourth sequence is a time stamp. This sequence, if present, must
follow a colon. This sequence represents the date and time the package
was published in the GMT time zone. This sequence is automatically
updated when the package is published

The package versions are ordered using left-to-right precedence: The number immediately after
the @ is the most significant part of the version space. The time stamp is the least significant part
of the version space.

The pkg.human-version attribute can be used to hold a human-readable version string,
however the versioning scheme described above must also be present. The human-readable
version string is only used for display purposes, as documented in “Set Actions” on page 24.

IPS Terminology and Components

Chapter 1 • IPS Design Goals, Concepts, and Terminology 19

By allowing arbitrary version lengths, IPS can accommodate a variety of different models for
supporting software. For example, a package author can use the build or branch versions and
assign one portion of the versioning scheme to security updates, another for paid versus unpaid
support updates, another for minor bug fixes, or whatever information is needed.

A version can also be the token latest, which specifies the latest version known.

Appendix B, “How IPS Is Used To Package the Oracle Solaris OS,” describes how Oracle Solaris
implements versioning.

Package Content: Actions
Actions define the software that comprises a package; they define the data needed to create this
software component. Package contents are expressed in a package manifest file as a set of
actions.

Package manifests are largely created using programs. Package developers provide minimal
information, and the manifest is completed using package development tools as described in
Chapter 2, “Packaging Software With IPS.”

Actions are expressed in the following form in package manifest files:

action_name attribute1=value1 attribute2=value2 ...

In the following example action, dir indicates this action specifies a directory. Attributes in the
form name=value describe properties of that directory:

dir path=a/b/c group=sys mode=0755 owner=root

The following example shows an action that has data associated with it. In this file action, the
second field, which has no name= prefix, is called the payload:

file 11dfc625cf4b266aaa9a77a73c23f5525220a0ef path=etc/release owner=root \

group=sys mode=0444 chash=099953b6a315dc44f33bca742619c636cdac3ed6 \

pkg.csize=139 pkg.size=189 variant.arch=i386

In this example, the payload is the SHA-1 hash of the file. This payload can alternatively appear
as a regular attribute with the name hash, as shown in the following example. If both forms are
present in the same action, they must have identical values.

file hash=11dfc625cf4b266aaa9a77a73c23f5525220a0ef path=etc/release owner=root \

group=sys mode=0444 chash=099953b6a315dc44f33bca742619c636cdac3ed6 \

pkg.csize=139 pkg.size=189 variant.arch=i386

Action metadata is freely extensible. Additional attributes can be added to actions as needed.
Attribute names cannot include spaces, quotation marks, or equals signs (=). Attribute values

IPS Terminology and Components

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201220

can have all of those, although values with spaces must be enclosed in single or double
quotation marks. Single quotation marks need not be escaped inside a string enclosed in double
quotation marks, and double quotation marks need not be escaped inside a string enclosed in
single quotation marks. A quotation mark can be prefixed with a backslash (\) to prevent
terminating the quoted string. Backslashes can be escaped with backslashes. Custom attribute
names should use a unique prefix to prevent accidental namespace overlap. See the discussion
of publisher names in “Package Publisher” on page 18.

Multiple attributes with the same name can be present and are treated as unordered lists.

Most actions have a key attribute. The key attribute is the attribute that makes this action unique
from all other actions in the image. For file system objects, the key attribute is the path for that
object.

The following sections describe each IPS action type and the attributes that define these actions.
The action types are detailed in the pkg(5) man page, and are repeated here for reference. Each
section contains an example action as it would appear in a package manifest during package
creation. Other attributes might be automatically added to the action during publication.

File Actions
The file action is by far the most common action. A file action represents an ordinary file.
The file action references a payload, and has the following four standard attributes:

path The file system path where the file is installed. This is the key attribute of a file
action. The value of the path attribute is relative to the root of the image. Do not
include the leading /.

mode The access permissions of the file. The value of the mode attribute is simple
permissions in numeric form, not ACLs.

owner The name of the user that owns the file.

group The name of the group that owns the file.

The payload is normally specified as a positional attribute: The payload is the first word after the
action name and has no attribute name. In a published manifest, the payload value is the SHA-1
hash of the file contents. If the payload is present in a manifest that has not yet been published, it
represents the path where the payload can be found, as explained in the pkgsend(1) man page.
The named hash attribute must be used instead of the positional attribute if the payload value
includes an equal symbol (=), double quotation mark ("), or space character. Both positional
and hash attributes can be used in the same action, but the hashes must be identical.

A file action can also include the following attributes:

preserve Specifies that the contents of the file should not be overwritten on upgrade
if the contents are determined to have changed since the file was installed

IPS Terminology and Components

Chapter 1 • IPS Design Goals, Concepts, and Terminology 21

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5pkg-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkgsend-1

or last upgraded. On initial installs, if an existing file is found, that existing
file is salvaged (stored in /var/pkg/lost+found).

The preserve attribute can have one of the following values:

renameold The existing file is renamed with the extension .old, and
the new file is put in its place.

renamenew The existing file is left alone, and the new file is installed
with the extension .new.

legacy This file is not installed for initial package installs. On
upgrades, any existing file is renamed with the extension
.legacy, and then the new file is put in its place.

true The existing file is left alone, and the new file is not
installed.

overlay Specifies whether the action allows other packages to deliver a file at the
same location or whether it delivers a file intended to overlay another. This
functionality is intended for use with configuration files that do not
participate in any self-assembly (for example, /etc/motd) and that can be
safely overwritten.

If overlay is not specified, multiple packages cannot deliver files to the
same location.

The overlay attribute can have one of the following values:

allow One other package is allowed to deliver a file to the same
location. This value has no effect unless the preserve attribute is
also set.

true The file delivered by the action overwrites any other action that
has specified allow.

Changes to the installed file are preserved based on the value of the
preserve attribute of the overlaying file. On removal, the contents of the
file are preserved if the action being overlaid is still installed, regardless of
whether the preserve attribute was specified. Only one action can overlay
another, and the mode, owner, and group attributes must match.

original_name This attribute is used to handle editable files moving from package to
package, from place to place, or both. The value of this attribute is the name
of the originating package, followed by a colon, followed by the original
path to the file. Any file being deleted is recorded either with its package
and path, or with the value of the original_name attribute if specified. Any

IPS Terminology and Components

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201222

editable file being installed that has the original_name attribute set uses
the file of that name if it is deleted as part of the same packaging operation.

Once this attribute is set, do not change its value, even if the package or file
are repeatedly renamed. Keeping the same value permits upgrade to occur
from all previous versions.

release-note This attribute is used to indicate that this file contains release note text. The
value of this attribute is a package FMRI. If the FMRI specifies a package
name that is present in the original image and a version that is newer than
the version of the package in the original image, this file will be part of the
release notes. A special FMRI of feature/pkg/self refers to the
containing package. If the version of feature/pkg/self is 0, this file will
only be part of the release notes on initial installation.

revert-tag This attribute is used to tag editable files that should be reverted as a set.
Multiple revert-tag values can be specified The file reverts to its
manifest-defined state when the pkg revert command is invoked with any
of those tags specified. See the pkg(1) man page for information about the
revert subcommand.

Specific types of files can have additional attributes. For ELF files, the following attributes are
recognized:

elfarch The architecture of the ELF file. This value is the output of uname -p on the
architecture for which the file is built.

elfbits This value is 32 or 64.

elfhash This value is the hash of the ELF sections in the file that are mapped into memory
when the binary is loaded. These are the only sections necessary to consider when
determining whether the executable behavior of two binaries will differ.

An example file action is:

file path=usr/bin/pkg owner=root group=bin mode=0755

Directory Actions
The dir action is like the file action in that it represents a file system object, except that it
represents a directory instead of an ordinary file. The dir action has the same four standard
attributes as the file action (path, owner, group, and mode), and path is the key attribute.

Directories are reference counted in IPS. When the last package that either explicitly or
implicitly references a directory no longer does so, that directory is removed. If that directory
contains unpackaged file system objects, those items are moved into /var/pkg/lost+found.

Use the following attribute to move unpackaged contents into a new directory:

IPS Terminology and Components

Chapter 1 • IPS Design Goals, Concepts, and Terminology 23

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkg-1

salvage-from Names a directory of salvaged items. A directory with such an attribute
inherits on creation the salvaged directory contents if they exist. For an
example, see “Moving Unpackaged Contents on Directory Removal or
Rename” on page 84.

During installation, pkg(1) checks that all instances of a given directory action on the system
have the same owner, group, and mode attribute values. The dir action is not installed if
conflicting values are found on the system or in other packages to be installed in the same
operation.

An example of a dir action is:

dir path=usr/share/lib owner=root group=sys mode=0755

Link Actions
The link action represents a symbolic link. The link action has the following standard
attributes:

path The file system path where the symbolic link is installed. This is the key attribute for
a link action.

target The target of the symbolic link. The file system object to which the link resolves.

The link action also takes attributes that allow for multiple versions or implementations of a
given piece of software to be installed on the system at the same time. Such links are mediated,
and allow administrators to easily toggle which links point to which version or implementation
as desired. These mediated links are discussed in “Delivering Multiple Implementations of an
Application” on page 85.

An example of a link action is:

link path=usr/lib/libpython2.6.so target=libpython2.6.so.1.0

Hardlink Actions
The hardlink action represents a hard link. It has the same attributes as the link action, and
path is also its key attribute

An example of a hardlink action is:

hardlink path=opt/myapplication/hardlink target=foo

Set Actions
The set action represents a package-level attribute, or metadata, such as the package
description.

IPS Terminology and Components

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201224

The following attributes are recognized:

name The name of the attribute.

value The value given to the attribute.

The set action can deliver any metadata the package author chooses. The following attribute
names have specific meaning to the packaging system:

pkg.fmri The name and version of the containing package.

info.classification One or more tokens that a pkg(5) client can use to classify the
package. The value should have a scheme (such as
org.opensolaris.category.2008 or org.acm.class.1998) and
the actual classification (such as Applications/Games), separated by
a colon (:). The scheme is used by the packagemanager(1) GUI. A
set of info.classification values is provided in Appendix A,
“Classifying Packages.”

pkg.summary A brief synopsis of the description. This value is shown at the end of
each line of pkg list -s output, as well as in one line of the output
of pkg info. This value should be no longer than 60 characters. This
value should describe what the package is, and should not repeat the
name or version of the package.

pkg.description A detailed description of the contents and functionality of the
package, typically a paragraph or so in length. This value should
describe why someone might want to install this package.

pkg.obsolete When true, the package is marked obsolete. An obsolete package
can have no actions other than more set actions, and must not be
marked renamed. Package obsoletion is covered in “Obsoleting
Packages” on page 83.

pkg.renamed When true, the package has been renamed. The package must
include one or more depend actions as well, which point to the
package versions to which this package has been renamed. A
package cannot be marked both renamed and obsolete, but
otherwise can have any number of set actions. Package renaming is
covered in “Renaming, Merging and Splitting Packages” on
page 81.

pkg.human-version The version scheme used by IPS is strict and does not allow for
letters or words in the pkg.fmri version field. If a commonly used
human-readable version is available for a given package, that
version can be set here. The value is displayed by IPS tools. This
value is not used as a basis for version comparison and cannot be
used in place of the pkg.fmri version.

IPS Terminology and Components

Chapter 1 • IPS Design Goals, Concepts, and Terminology 25

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1packagemanager-1

Some additional informational attributes, as well as some used by Oracle Solaris are described
in Appendix B, “How IPS Is Used To Package the Oracle Solaris OS.”

An example of a set action is:

set name=pkg.summary value="Image Packaging System"

Driver Actions
The driver action represents a device driver. The driver action does not reference a payload.
The driver files themselves must be installed as file actions. The following attributes are
recognized. See add_drv(1M) for more information about these attribute values.

name The name of the driver. This is usually, but not always, the file name of the
driver binary. This is the key attribute of the driver action.

alias An alias for the driver. A given driver can have more than one alias attribute.
No special quoting rules are necessary.

class A driver class. A given driver can have more than one class attribute.

perms The file system permissions for the device nodes of the driver.

clone_perms The file system permissions for the minor nodes of the clone driver for this
driver.

policy Additional security policy for the device. A given driver can have more than
one policy attribute, but no minor device specification can be present in
more than one attribute.

privs Privileges used by the driver. A given driver can have more than one privs
attribute.

devlink An entry in /etc/devlink.tab. The value is the exact line to go into the file,
with tabs denoted by \t. See the devlinks(1M) man page for more
information. A given driver can have more than one devlink attribute.

An example of a driver action is:

driver name=vgatext \

alias=pciclass,000100 \

alias=pciclass,030000 \

alias=pciclass,030001 \

alias=pnpPNP,900 variant.arch=i386 variant.opensolaris.zone=global

IPS Terminology and Components

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201226

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Madd-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mdevlinks-1m

Depend Actions
The depend action represents an inter-package dependency. A package can depend on another
package because the first requires functionality in the second for the functionality in the first to
work, or even to install. Dependencies are covered in Chapter 4, “Specifying Package
Dependencies.”

The following attributes are recognized:

fmri The FMRI representing the target of the dependency. This is the key attribute
of the depend action. The FMRI value must not include the publisher. The
package name is assumed to be complete (that is, rooted), even if it does not
begin with a forward slash (/). Dependencies of type require-any can have
multiple fmri attributes. A version is optional on the fmri value, though for
some types of dependencies, an FMRI with no version has no meaning.

The FMRI value cannot use asterisks (*), and cannot use the latest token for a
version.

type The type of the dependency.

require The target package is required and must have a version equal
to or greater than the version specified in the fmri attribute.
If the version is not specified, any version satisfies the
dependency. A package cannot be installed if any of its
require dependencies cannot be satisfied.

optional The dependency target, if present, must be at the specified
version level or greater.

exclude The containing package cannot be installed if the
dependency target is present at the specified version level or
greater. If no version is specified, the target package cannot
be installed concurrently with the package specifying the
dependency.

incorporate The dependency is optional, but the version of the target
package is constrained. See Chapter 4, “Specifying Package
Dependencies,” for a discussion of constraints and freezing.

require-any Any one of multiple target packages as specified by multiple
fmri attributes can satisfy the dependency, following the
same rules as the require dependency type.

conditional The dependency target is required only if the package
defined by the predicate attribute is present on the system.

origin Prior to installation of this package, the dependency target
must, if present, be at the specified value or greater on the

IPS Terminology and Components

Chapter 1 • IPS Design Goals, Concepts, and Terminology 27

image to be modified. If the value of the root-image
attribute is true, the target must be present on the image
rooted at / in order to install this package.

group The dependency target is required unless the package is on
the image avoid list. Note that obsolete packages silently
satisfy the group dependency. See the avoid subcommand in
the pkg(1) man page for information about the image avoid
list.

parent The dependency is ignored if the image is not a child image,
such as a zone. If the image is a child image, then the
dependency target must be present in the parent image. The
version matching for a parent dependency is the same as
that used for incorporate dependencies.

predicate The FMRI that represents the predicate for conditional dependencies.

root-image Has an effect only for origin dependencies as mentioned above.

An example of a depend action is:

depend fmri=crypto/ca-certificates type=require

License Actions
The license action represents a license or other informational file associated with the package
contents. A package can deliver licenses, disclaimers, or other guidance to the package installer
through the license action.

The payload of the license action is delivered into the image metadata directory related to the
package, and should only contain human-readable text data. The license action payload
should not contain HTML or any other form of markup. Through attributes, license actions
can indicate to clients that the related payload must be displayed or accepted. The method of
display or acceptance is at the discretion of clients.

The following attributes are recognized:

license Provides a meaningful description for the license to assist users in
determining the contents without reading the license text itself. This is the
key attribute of the license action.

Some example values include:
■ ABC Co. Copyright Notice
■ ABC Co. Custom License
■ Common Development and Distribution License 1.0 (CDDL)
■ GNU General Public License 2.0 (GPL)

IPS Terminology and Components

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201228

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkg-1

■ GNU General Public License 2.0 (GPL) Only
■ MIT License
■ Mozilla Public License 1.1 (MPL)
■ Simplified BSD License

Wherever possible, including the version of the license in the description is
recommended as shown above. The license value must be unique within a
package.

must-accept When true, this license must be accepted by a user before the related
package can be installed or updated. Omission of this attribute is equivalent
to false. The method of acceptance (interactive or configuration-based, for
example) is at the discretion of clients.

must-display When true, the payload of the license action must be displayed by clients
during packaging operations. Omission of this attribute is equivalent to
false. This attribute should not be used for copyright notices, but only for
actual licenses or other material that must be displayed during operations.
The method of display is at the discretion of clients.

An example of a license action is:

license license="Apache v2.0"

Legacy Actions
The legacy action represents package data used by the legacy SVR4 packaging system. The
attributes associated with the legacy action are added into the databases of the legacy SVR4
packaging system so that the tools querying those databases can operate as if the legacy package
were actually installed. In particular, specifying the legacy action should cause the package
named by the pkg attribute to satisfy SVR4 dependencies.

The following attributes are recognized. See the pkginfo(4) man page for description of the
associated parameters.

category The value for the CATEGORY parameter. The default value is system.

desc The value for the DESC parameter.

hotline The value for the HOTLINE parameter.

name The value for the NAME parameter. The default value is none provided.

pkg The abbreviation for the package being installed. The default value is the name
from the FMRI of the package. This is the key attribute of the legacy action.

vendor The value for the VENDOR parameter.

IPS Terminology and Components

Chapter 1 • IPS Design Goals, Concepts, and Terminology 29

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4pkginfo-4

version The value for the VERSION parameter. The default value is the version from the
FMRI of the package.

An example of a legacy action is:

legacy pkg=SUNWcsu arch=i386 category=system \

desc="core software for a specific instruction-set architecture" \

hotline="Please contact your local service provider" \

name="Core Solaris, (Usr)" vendor="Oracle Corporation" \

version=11.11,REV=2009.11.11 variant.arch=i386

Signature Actions
Signature actions are used as part of the support for package signing in IPS. Signature actions
are covered in detail in Chapter 9, “Signing IPS Packages.”

User Actions
The user action defines a UNIX user as specified in the /etc/passwd, /etc/shadow,
/etc/group, and /etc/ftpd/ftpusers files. Information from user actions is added to the
appropriate files.

The following attributes are recognized:

username The unique name of the user.

password The encrypted password of the user. The default value is *LK*.

uid The unique numeric ID of the user. The default value is the first free value
under 100.

group The name of the user's primary group. This name must be found in
/etc/group.

gcos-field The real name of the user, as represented in the GECOS field in /etc/passwd.
The default value is the value of the username attribute.

home-dir The user's home directory. The default value is /.

login-shell The user's default shell. The default value is empty.

group-list Secondary groups to which the user belongs. See the group(4) man page.

ftpuser Can be set to true or false. The default value of true indicates that the user
is permitted to login via FTP. See the ftpusers(4) man page.

lastchg The number of days between January 1, 1970, and the date that the password
was last modified. The default value is empty.

IPS Terminology and Components

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201230

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4group-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4ftpusers-4

min The minimum number of days required between password changes. This
field must be set to 0 or above to enable password aging. The default value is
empty.

max The maximum number of days the password is valid. The default value is
empty. See the shadow(4) man page.

warn The number of days before password expires that the user is warned.

inactive The number of days of inactivity allowed for the user. This is counted on a
per-machine basis. The information about the last login is taken from the
machine's lastlog file.

expire An absolute date expressed as the number of days since the UNIX Epoch
(January 1, 1970). When this number is reached, the login can no longer be
used. For example, an expire value of 13514 specifies a login expiration of
January 1, 2007.

flag Set to empty.

A example of a user action is:

user gcos-field="pkg(5) server UID" group=pkg5srv uid=97 username=pkg5srv

Group Actions
The group action defines a UNIX group as specified in the group(4) file. No support is provided
for group passwords. Groups defined with the group action initially have no user list. Users can
be added with the user action.

The following attributes are recognized:

groupname The value for the name of the group.

gid The unique numeric ID of the group. The default value is the first free group
under 100.

An example of a group action is:

group groupname=pkg5srv gid=97

Package Repository
A software repository contains packages for one or more publishers. Repositories can be
configured for access in a variety of different ways: HTTP, HTTPS, file (on local storage or via
NFS or SMB), and as a self-contained package archive file, usually with the .p5p extension.

IPS Terminology and Components

Chapter 1 • IPS Design Goals, Concepts, and Terminology 31

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4shadow-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4group-4

Package archives allow for convenient distribution of IPS packages, and are discussed further in
“Publish as a Package Archive” on page 43.

A repository accessed via HTTP or HTTPS has a server process, pkg.depotd, associated with it.
See the pkg.depotd(1M) man page for more information. For an example, see “Retrieving
Packages Using an HTTP Interface” in Copying and Creating Oracle Solaris 11.1 Package
Repositories.

In the case of file repositories, the repository software runs as part of the accessing client.
Repositories are created with the pkgrepo and pkgrecv commands as shown in Copying and
Creating Oracle Solaris 11.1 Package Repositories.

IPS Terminology and Components

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201232

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpkg.depotd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=CCOSPaccessrepo2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=CCOSPaccessrepo2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=CCOSPaccessrepo2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=CCOSP
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=CCOSP

Packaging Software With IPS

This chapter gets you started constructing your own packages, including:
■ Designing, creating, and publishing a new package
■ Converting a SVR4 package to an IPS package

Designing a Package
Many of the criteria for good package development described in this section require you to
make trade-offs. Satisfying all requirements equally is often difficult. The following criteria are
presented in order of importance. However, this sequence is meant to serve as a flexible guide
depending on your circumstances. Although each of these criteria is important, it is up to you to
optimize these requirements to produce a good set of packages.

Select a package name.
Oracle Solaris uses a hierarchical naming strategy for IPS packages. Wherever possible,
design your package names to fit into the same scheme. Try to keep the last part of your
package name unique so that users can specify a short package name to commands such as
pkg install.

Optimize for client-server configurations.
Consider the various patterns of software use (client and server) when laying out packages.
Good package design divides the affected files to optimize installation of each configuration
type. For example, for a network protocol implementation, the package user should be able
to install the client without necessarily installing the server. If client and server share
implementation components, create a base package that contains the shared bits.

Package by functional boundaries.
Packages should be self-contained and distinctly identified with a set of functionality. For
example, a package that contains ZFS should contain all ZFS utilities and be limited to only
ZFS binaries.

Packages should be organized from a user's point of view into functional units.

2C H A P T E R 2

33

Package along license or royalty boundaries.
Put code that requires royalty payments due to contractual agreements or that has distinct
software license terms in a dedicated package or group of packages. Do not disperse the code
into more packages than necessary.

Avoid or manage overlap between packages.
Packages that overlap cannot be installed at the same time. An example of packages that
overlap are packages that deliver different content to the same file system location. Since this
error might not be caught until the user attempts to install the package, overlapping
packages can provide a poor user experience. The pkglint(1) tool can help to detect this
error during the package authoring process.

If the package content must differ, declare an exclude dependency so that IPS does not allow
these packages to be installed together.

Correctly size packages.
A package represents a single unit of software, and is either installed or not installed. (See the
discussion of facets in “Optional Software Components” on page 66 to understand how a
package can deliver optional software components.) Packages that are always installed
together should be combined. Since IPS downloads only changed files on update, even large
packages update quickly if change is limited.

Creating and Publishing a Package
Packaging software with IPS is usually straightforward due to the amount of automation that is
provided. Automation avoids repetitive tedium, which seems to be the principal cause of most
packaging bugs.

Publication in IPS consists of the following steps:

1. Generate a package manifest.
2. Add necessary metadata to the generated manifest.
3. Evaluate dependencies.
4. Add any facets or actuators that are needed.
5. Verify the package.
6. Publish the package.
7. Test the package.

Generate a Package Manifest
The easiest way to get started is to organize the component files into the same directory
structure that you want on the installed system.

Creating and Publishing a Package

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201234

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkglint-1

Two ways to do this are:
■ If the software you want to package is already in a tarball, unpack the tarball into a

subdirectory. For many open source software packages that use the autoconf utility, setting
the DESTDIR environment variable to point to the desired prototype area accomplishes this.
The autoconf utility is available in the pkg:/developer/build/autoconf package.

■ Use the install target in a Makefile.

Suppose your software consists of a binary, a library, and a man page, and you want to install
this software in a directory under /opt named mysoftware. Create a directory in your build area
under which your software appears in this layout. In the following example, this directory is
named proto:

proto/opt/mysoftware/lib/mylib.so.1

proto/opt/mysoftware/bin/mycmd

proto/opt/mysoftware/man/man1/mycmd.1

Use the pkgsend generate command to generate a manifest for this proto area. Pipe the
output package manifest through pkgfmt to make the manifest more readable. See the
pkgsend(1) and pkgfmt(1) man pages for more information.

In the following example, the proto directory is in the current working directory:

$ pkgsend generate proto | pkgfmt > mypkg.p5m.1

The output mypkg.p5m.1 file contains the following lines:

dir path=opt owner=root group=bin mode=0755

dir path=opt/mysoftware owner=root group=bin mode=0755

dir path=opt/mysoftware/bin owner=root group=bin mode=0755

file opt/mysoftware/bin/mycmd path=opt/mysoftware/bin/mycmd owner=root \

group=bin mode=0644

dir path=opt/mysoftware/lib owner=root group=bin mode=0755

file opt/mysoftware/lib/mylib.so.1 path=opt/mysoftware/lib/mylib.so.1 \

owner=root group=bin mode=0644

dir path=opt/mysoftware/man owner=root group=bin mode=0755

dir path=opt/mysoftware/man/man1 owner=root group=bin mode=0755

file opt/mysoftware/man/man1/mycmd.1 path=opt/mysoftware/man/man1/mycmd.1 \

owner=root group=bin mode=0644

The path of the files to be packaged appears twice in the file action:
■ The first word after the word file describes the location of the file in the proto area.
■ The path in the path= attribute specifies the location where the file is to be installed.

This double entry enables you to modify the installation location without modifying the proto
area. This capability can save significant time, for example if you repackage software that was
designed for installation on a different operating system.

Notice that pkgsend generate has applied default values for directory owners and groups. In
the case of /opt, the defaults are not correct. Delete that directory because it is delivered by

Creating and Publishing a Package

Chapter 2 • Packaging Software With IPS 35

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkgsend-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkgfmt-1

other packages already on the system, and pkg(1) will not install the package if the attributes of
/opt conflict with those already on the system. “Add Necessary Metadata to the Generated
Manifest” on page 36 below shows a programmatic way to delete the unwanted directory.

If a file name contains an equal symbol (=), double quotation mark ("), or space character,
pkgsend generates a hash attribute in the manifest, as shown in the following example:

$ mkdir -p proto/opt

$ touch proto/opt/my\ file1

$ touch proto/opt/"my file2"

$ touch proto/opt/my=file3

$ touch proto/opt/’my"file4’

$ pkgsend generate proto

dir group=bin mode=0755 owner=root path=opt

file group=bin hash=opt/my=file3 mode=0644 owner=root path=opt/my=file3

file group=bin hash="opt/my file2" mode=0644 owner=root path="opt/my file2"
file group=bin hash=’opt/my"file4’ mode=0644 owner=root path=’opt/my"file4’
file group=bin hash="opt/my file1" mode=0644 owner=root path="opt/my file1"

When the package is published (see “Publish the Package” on page 42), the value of the hash
attribute becomes the SHA-1 hash of the file contents, as noted in “File Actions” on page 21.

Add Necessary Metadata to the Generated Manifest
A package should define the following metadata. See “Set Actions” on page 24 for more
information about these values and how to set these values.

pkg.fmri

The name and version of the package as described in “Package Identifier: FMRI” on page 17.
A description of Oracle Solaris versioning can be found in “Oracle Solaris Package
Versioning” on page 111.

pkg.description

A description of the contents of the package

pkg.summary

A one-line synopsis of the description.

variant.arch

Each architectures for which this package is suitable. If the entire package can be installed on
any architecture, variant.arch can be omitted. Producing packages that have different
components for different architectures is discussed in Chapter 5, “Allowing Variations.”

info.classification

A grouping scheme used by the packagemanager(1) GUI. The supported values are shown in
Appendix A, “Classifying Packages.” The example in this section specifies an arbitrary
classification.

Creating and Publishing a Package

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201236

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkg-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1packagemanager-1

This example also adds a link action to /usr/share/man/index.d that points to the man
directory under mysoftware. This link is discussed further in “Add Any Facets or Actuators
That Are Needed” on page 39.

Rather than modifying the generated manifest directly, use pkgmogrify(1) to edit the generated
manifest. See Chapter 6, “Modifying Package Manifests Programmatically,” for a full
description of using pkgmogrify to modify package manifests.

Create the following pkgmogrify input file to specify the changes to be made to the manifest.
Name this file mypkg.mog. In this example, a macro is used to define the architecture, and
regular expression matching is used to delete the /opt directory from the manifest.

set name=pkg.fmri value=mypkg@1.0,5.11-0

set name=pkg.summary value="This is an example package"
set name=pkg.description value="This is a full description of \

all the interesting attributes of this example package."
set name=variant.arch value=$(ARCH)

set name=info.classification \

value=org.opensolaris.category.2008:Applications/Accessories

link path=usr/share/man/index.d/mysoftware target=opt/mysoftware/man

<transform dir path=opt$->drop>

Run pkgmogrify on the mypkg.p5m.1 manifest with the mypkg.mog changes:

$ pkgmogrify -DARCH=‘uname -p‘ mypkg.p5m.1 mypkg.mog | pkgfmt > mypkg.p5m.2

The output mypkg.p5m.2 file has the following content. The dir action for path=opt has been
removed, and the metadata and link contents from mypkg.mog have been added to the original
mypkg.p5m.1 contents.

set name=pkg.fmri value=mypkg@1.0,5.11-0

set name=pkg.summary value="This is an example package"
set name=pkg.description \

value="This is a full description of all the interesting attributes of this example package."
set name=info.classification \

value=org.opensolaris.category.2008:Applications/Accessories

set name=variant.arch value=i386

dir path=opt/mysoftware owner=root group=bin mode=0755

dir path=opt/mysoftware/bin owner=root group=bin mode=0755

file opt/mysoftware/bin/mycmd path=opt/mysoftware/bin/mycmd owner=root \

group=bin mode=0644

dir path=opt/mysoftware/lib owner=root group=bin mode=0755

file opt/mysoftware/lib/mylib.so.1 path=opt/mysoftware/lib/mylib.so.1 \

owner=root group=bin mode=0644

dir path=opt/mysoftware/man owner=root group=bin mode=0755

dir path=opt/mysoftware/man/man1 owner=root group=bin mode=0755

file opt/mysoftware/man/man1/mycmd.1 path=opt/mysoftware/man/man1/mycmd.1 \

owner=root group=bin mode=0644

link path=usr/share/man/index.d/mysoftware target=opt/mysoftware/man

Creating and Publishing a Package

Chapter 2 • Packaging Software With IPS 37

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkgmogrify-1

Evaluate Dependencies
Use the pkgdepend(1) command to automatically generate dependencies for the package. The
generated depend actions are defined in “Depend Actions” on page 27 and discussed further in
Chapter 4, “Specifying Package Dependencies.”

Dependency generation is composed of two separate steps:

1. Dependency generation. Determine the files on which the software depends. Use the
pkgdepend generate command.

2. Dependency resolution. Determine the packages that contain those files on which the
software depends. Use the pkgdepend resolve command.

Generate Package Dependencies
In the following command, the -m option causes pkgdepend to include the entire manifest in its
output. The -d option passes the proto directory to the command.

$ pkgdepend generate -md proto mypkg.p5m.2 | pkgfmt > mypkg.p5m.3

The output mypkg.p5m.3 file has the following content. The pkgdepend utility added notations
about a dependency on libc.so.1 by both mylib.so.1 and mycmd. The internal dependency
between mycmd and mylib.so.1 is silently omitted.

set name=pkg.fmri value=mypkg@1.0,5.11-0

set name=pkg.summary value="This is an example package"
set name=pkg.description \

value="This is a full description of all the interesting attributes of this example package."
set name=info.classification \

value=org.opensolaris.category.2008:Applications/Accessories

set name=variant.arch value=i386

dir path=opt/mysoftware owner=root group=bin mode=0755

dir path=opt/mysoftware/bin owner=root group=bin mode=0755

file opt/mysoftware/bin/mycmd path=opt/mysoftware/bin/mycmd owner=root \

group=bin mode=0644

dir path=opt/mysoftware/lib owner=root group=bin mode=0755

file opt/mysoftware/lib/mylib.so.1 path=opt/mysoftware/lib/mylib.so.1 \

owner=root group=bin mode=0644

dir path=opt/mysoftware/man owner=root group=bin mode=0755

dir path=opt/mysoftware/man/man1 owner=root group=bin mode=0755

file opt/mysoftware/man/man1/mycmd.1 path=opt/mysoftware/man/man1/mycmd.1 \

owner=root group=bin mode=0644

link path=usr/share/man/index.d/mysoftware target=opt/mysoftware/man

depend fmri=__TBD pkg.debug.depend.file=libc.so.1 \

pkg.debug.depend.reason=opt/mysoftware/bin/mycmd \

pkg.debug.depend.type=elf type=require pkg.debug.depend.path=lib \

pkg.debug.depend.path=opt/mysoftware/lib pkg.debug.depend.path=usr/lib

depend fmri=__TBD pkg.debug.depend.file=libc.so.1 \

pkg.debug.depend.reason=opt/mysoftware/lib/mylib.so.1 \

pkg.debug.depend.type=elf type=require pkg.debug.depend.path=lib \

pkg.debug.depend.path=usr/lib

Creating and Publishing a Package

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201238

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkgdepend-1

Resolve Package Dependencies
To resolve dependencies, pkgdepend examines the packages currently installed in the image
used for building the software. By default, pkgdepend puts its output in mypkg.p5m.3.res. This
step takes a while to run since it loads a large amount of information about the system on which
it is running. The pkgdepend utility can resolve many packages at once if you want to amortize
this time over all packages. Running pkgdepend on one package at a time is not time efficient.

$ pkgdepend resolve -m mypkg.p5m.3

When this completes, the output mypkg.p5m.3.res file contains the following content. The
pkgdepend utility has converted the notation about the file dependency on libc.so.1 to a
package dependency on pkg:/system/library, which delivers that file.

set name=pkg.fmri value=mypkg@1.0,5.11-0

set name=pkg.summary value="This is an example package"
set name=pkg.description \

value="This is a full description of all the interesting attributes of this example package."
set name=info.classification \

value=org.opensolaris.category.2008:Applications/Accessories

set name=variant.arch value=i386

dir path=opt/mysoftware owner=root group=bin mode=0755

dir path=opt/mysoftware/bin owner=root group=bin mode=0755

file opt/mysoftware/bin/mycmd path=opt/mysoftware/bin/mycmd owner=root \

group=bin mode=0644

dir path=opt/mysoftware/lib owner=root group=bin mode=0755

file opt/mysoftware/lib/mylib.so.1 path=opt/mysoftware/lib/mylib.so.1 \

owner=root group=bin mode=0644

dir path=opt/mysoftware/man owner=root group=bin mode=0755

dir path=opt/mysoftware/man/man1 owner=root group=bin mode=0755

file opt/mysoftware/man/man1/mycmd.1 path=opt/mysoftware/man/man1/mycmd.1 \

owner=root group=bin mode=0644

link path=usr/share/man/index.d/mysoftware target=opt/mysoftware/man

depend fmri=pkg:/system/library@0.5.11-0.175.1.0.0.21.0 type=require

You should use pkgdepend to generate dependencies, rather than declaring depend actions
manually. Manual dependencies can become incorrect or unnecessary as the package contents
change over time. For example, when a file that an application depends on gets moved to a
different package, any manually declared dependencies on the previous package would then be
incorrect for that dependency.

Some manually declared dependencies might be necessary if pkgdepend is unable to determine
dependencies completely. In such a case, you should add explanatory comments to the
manifest.

Add Any Facets or Actuators That Are Needed
Facets and actuators are discussed in more detail in Chapter 5, “Allowing Variations,” and
Chapter 7, “Automating System Change as Part of Package Installation.” A facet denotes an
action that is not required but can be optionally installed. An actuator specifies system changes
that must occur when the associated action is installed, updated, or removed

Creating and Publishing a Package

Chapter 2 • Packaging Software With IPS 39

This example package delivers a man page in opt/mysoftware/man/man1. This section shows
how to add a facet to indicate that man pages are optional. The user could choose to install all of
the package except the man page. (If the user sets the facet to false, no man pages are installed
from any package if their file actions are tagged with that facet.)

To include the man page in the index, the svc:/application/man-index:default SMF
service must be restarted when the package is installed. This section shows how to add the
restart_fmri actuator to perform that task. The man-index service looks in
/usr/share/man/index.d for symbolic links to directories that contain man pages, adding the
target of each link to the list of directories it scans. To include the man page in the index, this
example package includes a link from /usr/share/man/index.d/mysoftware to
/opt/mysoftware/man. Including this link and this actuator is a good example of the
self-assembly discussed in “Software Self-Assembly” on page 13 and used throughout the
packaging of the Oracle Solaris OS.

A set of pkgmogrify transforms that you can use are available in /usr/share/pkg/transforms.
These transforms are used to package the Oracle Solaris OS, and are discussed in more detail in
Chapter 6, “Modifying Package Manifests Programmatically.”

The file /usr/share/pkg/transforms/documentation contains transforms similar to the
transforms needed in this example to set the man page facet and restart the man-index service.
Since this example delivers the man page to /opt, the documentation transforms must be
modified as shown below. These modified transforms include the regular expression
opt/.+/man(/.+)? which matches all paths beneath opt that contain a man subdirectory. Save
the following modified transforms to /tmp/doc-transform:

<transform dir file link hardlink path=opt/.+/man(/.+)? -> \

default facet.doc.man true>

<transform file path=opt/.+/man(/.+)? -> \

add restart_fmri svc:/application/man-index:default>

Use the following command to apply these transforms to the manifest:

$ pkgmogrify mypkg.p5m.3.res /tmp/doc-transform | pkgfmt > mypkg.p5m.4.res

The input mypkg.p5m.3.res manifest contains the following three man-page-related actions:

dir path=opt/mysoftware/man owner=root group=bin mode=0755

dir path=opt/mysoftware/man/man1 owner=root group=bin mode=0755

file opt/mysoftware/man/man1/mycmd.1 path=opt/mysoftware/man/man1/mycmd.1 \

owner=root group=bin mode=0644

After the transforms are applied, the output mypkg.p5m.4.res manifest contains the following
modified actions:

dir path=opt/mysoftware/man owner=root group=bin mode=0755 facet.doc.man=true

dir path=opt/mysoftware/man/man1 owner=root group=bin mode=0755 \

facet.doc.man=true

file opt/mysoftware/man/man1/mycmd.1 path=opt/mysoftware/man/man1/mycmd.1 \

Creating and Publishing a Package

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201240

owner=root group=bin mode=0644 \

restart_fmri=svc:/application/man-index:default facet.doc.man=true

For efficiency, these transforms could have been added when metadata was originally added,
before evaluating dependencies.

Verify the Package
The last step before publication is to run pkglint(1) on the manifest to find errors that can be
identified before publication and testing. Some of the errors that pkglint can find would also be
found either at publication time or when a user attempts to install the package, but of course
you want to identify errors as early as possible in the package authoring process.

Examples of errors that pkglint reports include:

■ Delivering files already owned by another package.
■ Difference in metadata for shared, reference-counted actions such as directories. An

example of this error is discussed at the end of “Generate a Package Manifest” on page 34.

You can run pkglint in one of the following modes:

■ Directly on the package manifest. This mode is usually sufficient to quickly check the
validity of your manifests.

■ On the package manifest, also referencing a package repository. Use this mode at least once
before publication to a repository.
By referencing a repository, pkglint can perform additional checks to ensure that the
package interacts well with other packages in that repository.

Use the pkglint -L command to show the full list of checks that pkglint performs. Detailed
information about how to enable, disable, and bypass particular checks is given in the
pkglint(1) man page. The man page also details how to extend pkglint to run additional
checks.

The following output shows problems with the example manifest:

$ pkglint mypkg.p5m.4.res

Lint engine setup...

Starting lint run...

WARNING pkglint.action005.1 obsolete dependency check skipped: unable

to find dependency pkg:/system/library@0.5.11-0.175.1.0.0.21.0 for

pkg:/mypkg@1.0,5.11-0

This warning is acceptable for this example. The pkglint.action005.1 warning says that
pkglint could not find a package called pkg:/system/library@0.5.11-0.175.1.0.0.21.0,
on which this example package depends. The dependency package is in a package repository
and could not be found since pkglint was called with only the manifest file as an argument.

Creating and Publishing a Package

Chapter 2 • Packaging Software With IPS 41

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkglint-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkglint-1

In the following command, the -r option references a repository that contains the dependency
package. The -c option specifies a local directory used for caching package metadata from the
lint and reference repositories:

$ pkglint -c ./solaris-reference -r http://pkg.oracle.com/solaris/release mypkg.p5m.4.res

Publish the Package
IPS provides three different ways to deliver a package:

■ Publish to a local file-based repository.
■ Publish to a remote HTTP-based repository.
■ Convert to a .p5p package archive.

Generally, publishing to a file-based repository is sufficient to test a package.

If the package must be transferred to other machines that cannot access the package
repositories, converting one or more packages to a package archive can be convenient.

The package can also be published directly to an HTTP repository, hosted on a machine with a
read/write instance of the svc:/application/pkg/server service, which in turn runs
pkg.depotd(1M).

Publishing to an HTTP repository is not generally recommended since there are no
authorization or authentication checks on the incoming package when publishing over HTTP.
Publishing to HTTP repositories can be convenient on secure networks or when testing the
same package across several machines if NFS or SMB access to the file repository is not possible.

Installing packages over HTTP or HTTPS is fine.

Publish to a Local File Repository
Use the pkgrepo(1) command to create and manage repositories. Choose a location on your
system, create a repository, then set the default publisher for that repository:

$ pkgrepo create my-repository

$ pkgrepo -s my-repository set publisher/prefix=mypublisher

$ ls my-repository

pkg5.repository

Use the pkgsend(1) command to publish the example package, and then use pkgrepo to
examine the repository:

$ pkgsend -s my-repository publish -d proto mypkg.p5m.4.res

pkg://mypublisher/mypkg@1.0,5.11-0:20120331T034425Z

PUBLISHED

$ pkgrepo -s my-repository info

PUBLISHER PACKAGES STATUS UPDATED

mypublisher 1 online 2012-03-31T03:44:25.235964Z

Creating and Publishing a Package

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201242

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mpkg.depotd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkgrepo-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkgsend-1

The file repository can then be served over HTTP or HTTPS using pkg.depotd if required.

Publish as a Package Archive
Package archives enable you to distribute groups of packages in a single file. Use the pkgrecv(1)
command to create package archives from package repositories, or to create package
repositories from package archives.

Package archives can be easily downloaded from an existing web site, copied to a USB key, or
burned to a DVD for installation in cases where a package repository is not available.

The following command creates a package archive from the simple repository created in the
previous section:

$ pkgrecv -s my-repository -a -d myarchive.p5p mypkg

Retrieving packages for publisher mypublisher ...

Retrieving and evaluating 1 package(s)...

DOWNLOAD PKGS FILES XFER (MB) SPEED

Completed 1/1 3/3 0.7/0.7 17.9k/s

ARCHIVE FILES STORE (MB)

myarchive.p5p 14/14 0.7/0.7

Using Package Repositories and Archives
Use the pkgrepo command to list the newest available packages from a repository or archive:

$ pkgrepo -s my-repository list ’*@latest’

PUBLISHER NAME O VERSION

mypublisher mypkg 1.0,5.11-0:20120331T034425Z

$ pkgrepo -s myarchive.p5p list ’*@latest’

PUBLISHER NAME O VERSION

mypublisher mypkg 1.0,5.11-0:20120331T034425Z

This output can be useful for constructing scripts to create archives with the latest versions of all
packages from a given repository.

Temporary repositories or package archives can be provided to pkg install and other pkg
operations by using the -g option. Such temporary repositories and archives cannot be used on
systems with child or parent images (for example, systems with non-global zones) since the
system repository does not get temporarily configured with that publisher information.
Non-global zones have a child/parent relationship with the global zone. Package archives can be
set as sources of local publishers in non-global zones, however.

Test the Package
The final step in package development is to test whether the published package has been
packaged properly.

Creating and Publishing a Package

Chapter 2 • Packaging Software With IPS 43

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkgrecv-1

To test installation without requiring root privilege, assign the test user the Software
Installation profile. Use the -P option of the usermod command to assign the test user the
Software Installation profile.

Note – If this image has child images (non-global zones) installed, you cannot use the -g option
with the pkg install command to test installation of this package. You must configure the
my-repository repository in the image.

Add the publisher in the my-repository repository to the configured publishers in this image:

$ pfexec pkg set-publisher -p my-repository

pkg set-publisher:

Added publisher(s): mypublisher

You can use the pkg install -nv command to see what the install command will do without
making any changes. The following command actually installs the package:

$ pfexec pkg install mypkg

Packages to install: 1

Create boot environment: No

Create backup boot environment: No

Services to change: 1

DOWNLOAD PKGS FILES XFER (MB) SPEED

Completed 1/1 3/3 0.0/0.0 0B/s

PHASE ITEMS

Installing new actions 15/15

Updating package state database Done

Updating image state Done

Creating fast lookup database Done

Reading search index Done

Updating search index 1/1

Examine the software that was delivered on the system:

$ find /opt/mysoftware/

/opt/mysoftware/

/opt/mysoftware/bin

/opt/mysoftware/bin/mycmd

/opt/mysoftware/lib

/opt/mysoftware/lib/mylib.so.1

/opt/mysoftware/man

/opt/mysoftware/man/man-index

/opt/mysoftware/man/man-index/term.doc

/opt/mysoftware/man/man-index/.index-cache

/opt/mysoftware/man/man-index/term.dic

/opt/mysoftware/man/man-index/term.req

/opt/mysoftware/man/man-index/term.pos

/opt/mysoftware/man/man1

/opt/mysoftware/man/man1/mycmd.1

Creating and Publishing a Package

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201244

In addition to the binaries and man page, the system has also generated the man page indexes as
a result of the actuator restarting the man-index service.

The pkg info command shows the metadata that was added to the package:

$ pkg info mypkg

Name: mypkg

Summary: This is an example package

Description: This is a full description of all the interesting attributes of

this example package.

Category: Applications/Accessories

State: Installed

Publisher: mypublisher

Version: 1.0

Build Release: 5.11

Branch: 0

Packaging Date: March 31, 2012 03:44:25 AM

Size: 0.00 B

FMRI: pkg://mypublisher/mypkg@1.0,5.11-0:20120331T034425Z

The pkg search command returns hits when querying for files that are delivered by mypkg:

$ pkg search -l mycmd.1

INDEX ACTION VALUE PACKAGE

basename file opt/mysoftware/man/man1/mycmd.1 pkg:/mypkg@1.0-0

Converting SVR4 Packages To IPS Packages
This section shows an example of converting a SVR4 package to an IPS package and highlights
areas that might need special attention.

To convert a SVR4 package to an IPS package, follow the same steps described in above in this
chapter for packaging any software in IPS. Most of these steps are the same for conversion from
SVR4 to IPS packages and are not explained again in this section. This section describes the
steps that are different when converting a package rather than creating a new package.

Generate an IPS Package Manifest from a SVR4
Package
The source argument of the pkgsend generate command can be a SVR4 package. See the
pkgsend(1) man page for a complete list of supported sources. When source is a SVR4 package,
pkgsend generate uses the pkgmap(4) file in that SVR4 package, rather than the directory
inside the package that contains the files delivered.

While scanning the prototype file, the pkgsend utility also looks for entries that could cause
problems when converting the package to IPS. The pkgsend utility reports those problems and
prints the generated manifest.

Converting SVR4 Packages To IPS Packages

Chapter 2 • Packaging Software With IPS 45

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkgsend-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4pkgmap-4

The example SVR4 package used in this section has the following pkginfo(4) file:

VENDOR=My Software Inc.

HOTLINE=Please contact your local service provider

PKG=MSFTmypkg

ARCH=i386

DESC=A sample SVR4 package of My Sample Package

CATEGORY=system

NAME=My Sample Package

BASEDIR=/

VERSION=11.11,REV=2011.10.17.14.08

CLASSES=none manpage

PSTAMP=linn20111017132525

MSFT_DATA=Some extra package metadata

The example SVR4 package used in this section has the following corresponding prototype(4)
file:

i pkginfo

i copyright

i postinstall

d none opt 0755 root bin

d none opt/mysoftware 0755 root bin

d none opt/mysoftware/lib 0755 root bin

f none opt/mysoftware/lib/mylib.so.1 0644 root bin

d none opt/mysoftware/bin 0755 root bin

f none opt/mysoftware/bin/mycmd 0755 root bin

d none opt/mysoftware/man 0755 root bin

d none opt/mysoftware/man/man1 0755 root bin

f none opt/mysoftware/man/man1/mycmd.1 0644 root bin

Running the pkgsend generate command on the SVR4 package built using these files
generates the following IPS manifest:

$ pkgsend generate ./MSFTmypkg | pkgfmt

pkgsend generate: ERROR: script present in MSFTmypkg: postinstall

set name=pkg.summary value="My Sample Package"
set name=pkg.description value="A sample SVR4 package of My Sample Package"
set name=pkg.send.convert.msft-data value="Some extra package metadata"
dir path=opt owner=root group=bin mode=0755

dir path=opt/mysoftware owner=root group=bin mode=0755

dir path=opt/mysoftware/bin owner=root group=bin mode=0755

file reloc/opt/mysoftware/bin/mycmd path=opt/mysoftware/bin/mycmd owner=root \

group=bin mode=0755

dir path=opt/mysoftware/lib owner=root group=bin mode=0755

file reloc/opt/mysoftware/lib/mylib.so.1 path=opt/mysoftware/lib/mylib.so.1 \

owner=root group=bin mode=0644

dir path=opt/mysoftware/man owner=root group=bin mode=0755

dir path=opt/mysoftware/man/man1 owner=root group=bin mode=0755

file reloc/opt/mysoftware/man/man1/mycmd.1 \

path=opt/mysoftware/man/man1/mycmd.1 owner=root group=bin mode=0644

legacy pkg=MSFTmypkg arch=i386 category=system \

desc="A sample SVR4 package of My Sample Package" \

hotline="Please contact your local service provider" \

name="My Sample Package" vendor="My Software Inc." \

Converting SVR4 Packages To IPS Packages

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201246

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4pkginfo-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4prototype-4

version=11.11,REV=2011.10.17.14.08

license install/copyright license=MSFTmypkg.copyright

Note the following points regarding the pkgsend generate output:

■ The pkg.summary and pkg.description attributes were automatically created from data in
the pkginfo file.

■ A set action was generated from the extra parameter in the pkginfo file. This set action is
set beneath the pkg.send.convert.* namespace. Use pkgmogrify(1) transforms to convert
such attributes to more appropriate attribute names.

■ A legacy action was generated from data in the pkginfo file.
■ A license action was generated that points to the copyright file used in the SVR4 package.
■ An error message was emitted regarding a scripting operation that cannot be converted.

The following check shows the error message and the non-zero return code from pkgsend

generate:

$ pkgsend generate MSFTmypkg > /dev/null

pkgsend generate: ERROR: script present in MSFTmypkg: postinstall

$ echo $?

1

The SVR4 package is using a postinstall script that cannot be converted directly to an IPS
equivalent. The script must be manually inspected.

The postinstall script in the package has the following content:

#!/usr/bin/sh

catman -M /opt/mysoftware/man

You can achieve the same results as this script by using a restart_fmri actuator that points to
an existing SMF service, svc:/application/man-index:default, as described in “Add Any
Facets or Actuators That Are Needed” on page 39. See Chapter 7, “Automating System Change
as Part of Package Installation,” for a thorough discussion of actuators.

The pkgsend generate command also checks for the presence of class-action scripts and
produces error messages that indicate which scripts should be examined.

In any conversion of a SVR4 package to an IPS package, the needed functionality probably can
be implemented by using an existing action type or SMF service. See “Package Content:
Actions” on page 20 for details about available action types. See Chapter 7, “Automating System
Change as Part of Package Installation,” for information about SMF and package actions.

Adding package metadata and resolving dependencies are done in the same way as described in
“Creating and Publishing a Package” on page 34 and therefore are not discussed in this section.
The next package creation step that might present unique issues for converted packages is the
verification step.

Converting SVR4 Packages To IPS Packages

Chapter 2 • Packaging Software With IPS 47

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkgmogrify-1

Verify the Converted Package
A common source of errors when converting SVR4 packages is mismatched attributes between
directories delivered in the SVR4 package and the same directories delivered by IPS packages.

In the SVR4 package in this example, the directory action for /opt in the sample manifest has
different attributes than the attributes defined for this directory by the system packages.

The “Directory Actions” on page 23 section stated that all reference-counted actions must have
the same attributes. When trying to install the version of mypkg that has been generated so far,
the following error occurs:

pkg install mypkg

Creating Plan /

pkg install: The requested change to the system attempts to install multiple actions

for dir ’opt’ with conflicting attributes:

1 package delivers ’dir group=bin mode=0755 owner=root path=opt’:

pkg://mypublisher/mypkg@1.0,5.11-0:20111017T020042Z

3 packages deliver ’dir group=sys mode=0755 owner=root path=opt’:

pkg://solaris/developer/build/onbld@0.5.11,5.11-0.175.0.0.0.1.0:20111012T010101Z

pkg://solaris/system/core-os@0.5.11,5.11-0.175.0.0.0.1.0:20111012T023456Z

These packages may not be installed together. Any non-conflicting set may

be, or the packages must be corrected before they can be installed.

To catch the error before publishing the package, rather than at install time, use the pkglint(1)
command with a reference repository, as shown in the following example:

$ pkglint -c ./cache -r file:///scratch/solaris-repo ./mypkg.mf.res

Lint engine setup...

PHASE ITEMS

4 4292/4292

Starting lint run...

ERROR pkglint.dupaction007 path opt is reference-counted but has different attributes across 5

duplicates: group: bin -> mypkg group: sys -> developer/build/onbld system/core-os system/ldoms/ldomsmanager

Notice the error message about path opt having different attributes in different packages.

The extra ldomsmanager package that pkglint reports is in the reference package repository,
but is not installed on the test system. The ldomsmanager package is not listed in the error
reported previously by pkg install because that package is not installed.

Other Package Conversion Considerations
While it is possible to install SVR4 packages directly on an Oracle Solaris 11 system, you should
create IPS packages instead. Installing SVR4 packages is an interim solution.

Converting SVR4 Packages To IPS Packages

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201248

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkglint-1

Apart from the legacy action described in “Legacy Actions” on page 29, no links exist between
the two packaging systems, and SVR4 and IPS packages do not reference package metadata
from each other.

IPS has commands such as pkg verify that can determine whether packaged content has been
installed correctly. However, errors can result if another packaging system legitimately installs
packages or runs install scripts that modify directories or files installed by IPS packages.

The IPS pkg fix and pkg revert commands can overwrite files delivered by SVR4 packages as
well as by IPS packages, potentially causing the packaged applications to malfunction.

Commands such as pkg install, which normally check for duplicate actions and common
attributes on reference-counted actions, might fail to detect potential errors when files from a
different packaging system conflict.

With these potential errors in mind, and given the comprehensive package development tool
chain in IPS, developing IPS packages instead of SVR4 packages is recommended for Oracle
Solaris 11.

Converting SVR4 Packages To IPS Packages

Chapter 2 • Packaging Software With IPS 49

50

Installing, Removing, and Updating Software
Packages

This chapter describes how the IPS client works internally when installing, updating, and
removing the software installed in an image.

Understanding how pkg(1) performs these operations is important for understanding the
various errors that can occur and for more quickly resolving package dependency problems.

How Package Changes Are Performed
The following steps are executed when pkg is invoked to modify the software installed on the
machine:

■ Check the input for errors
■ Determine the system end-state
■ Run basic checks
■ Run the solver
■ Optimize the solver results
■ Evaluate actions
■ Download content
■ Execute actions
■ Process actuators

When executing these steps in the global zone, pkg can also operate on any non-global zones on
the system. For example, pkg ensures that dependencies are correct between the global zone and
non-global zones, and downloads content and executes actions as needed for non-global zones.
Chapter 10, “Handling Non-Global Zones,” discusses zones in detail.

Check Input for Errors
Basic error checking is performed on the options presented on the command line.

3C H A P T E R 3

51

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkg-1

Determine the System End State
A description of the desired end state of the system is constructed. In the case of updating all
packages in the image, the desired end state might be something like “all the packages currently
installed, or newer versions of them.” In the case of package removal, the desired end state is “all
the packages currently installed without this one.”

IPS attempts to determine what the user intends this end state to look like. In some cases, IPS
might determine an end state that is not what the user intended, even though that end state does
match what the user requested.

When troubleshooting, it is best to be as specific as possible. The following command is not
specific:

pkg update

If this command fails with a message such as “No updates available for this image,” then you
might want to try a more specific command such as the following command:

pkg update "*@latest"

This command defines the end state more precisely, and can produce more directed error
messages.

Run Basic Checks
The desired end state of the system is reviewed to make sure that a solution is possible. During
this basic review, pkg checks that a plausible version exists of all dependencies, and that desired
packages do not exclude each other.

If an obvious error exists, then pkg prints an appropriate error message and exits.

Run the Solver
The solver forms the core of the computation engine used by pkg(5) to determine the packages
that can be installed, updated, or removed, given the constraints in the image and constraints
introduced by any new packages for installation.

This problem is an example of a Boolean satisfiability problem, and can be solved by a SAT
solver.

The various possible choices for all the packages are assigned Boolean variables, and all the
dependencies between those packages, any required packages, and so on, are cast as Boolean
expressions in conjunctive normal form.

How Package Changes Are Performed

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201252

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5pkg-5
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

The set of expressions generated is passed to MiniSAT. If MiniSAT cannot find any solution, the
error handling code attempts to walk the set of installed packages and the attempted operation
and print the reasons that each possible choice was eliminated.

If the currently installed set of packages meets the requirements but no other set does, pkg
reports that there is nothing to do.

As mentioned previously, the error message generation and specificity is determined by the
inputs to pkg. Being as specific as possible in commands issued to pkg produces the most useful
error messages.

If MiniSAT finds a possible solution, the optimization phase begins.

Optimize the Solver Results
The optimization phase is necessary because there is no way to describe some solutions as more
desirable than others to a SAT solver. Instead, once a solution is found, IPS adds constraints to
the problem to separate less desirable choices, and to separate the current solution as well. IPS
then repeatedly invokes MiniSAT and repeats the above operation until no more solutions are
found. The last successful solution is taken as the best one.

The difficulty of finding a solution is proportional to the number of possible solutions. Being
more specific about the desired result produces solutions more quickly.

Once the set of package FMRIs that best satisfy the posed problem is found, the evaluation
phase begins.

Evaluate Actions
In the evaluation phase, IPS compares the packages currently installed on the system with the
end state, and compares package manifests of old and new packages to determine three lists:
■ Actions that are being removed.
■ Actions that are being added.
■ Actions that are being updated.

The action lists are then updated in the following ways:
■ Directory and link actions are reference counted, and mediated link processing is done.
■ Hard links are marked for repair if their target file is updated. This is done because updating

a target of a hard link in a manner that is safe for currently executing processes breaks the
hard links.

■ Editable files moving between packages are correctly handled so that any user edits are not
lost.

How Package Changes Are Performed

Chapter 3 • Installing, Removing, and Updating Software Packages 53

http://minisat.se

■ Action lists are sorted so that removals, additions, and updates occur in the correct order.

All currently installed packages are then cross-checked to make sure that no packages conflict.
Example conflicts include two packages that deliver a file to the same location, or two packages
that deliver the same directory with different directory attributes.

If conflicts exist, the conflicts are reported and pkg exits with an error message.

Finally, the action lists are scanned to determine whether any SMF services need to be restarted
if this operation is performed, whether this change can be applied to a running system, whether
the boot archive needs to be rebuilt, and whether the amount of space required is available.

Download Content
If pkg is running without the -n flag, processing continues to the download phase.

For each action that requires content, IPS downloads any required files by hash and caches
them. This step can take some time if the amount of content to be retrieved is large.

Once downloading is complete, if the change is to be applied to a live system (the image is
rooted at /), and a reboot is required, the running system is cloned and the target image is
switched to the clone.

Execute Actions
Executing actions involves actually performing the install or remove methods specific to each
action type on the image.

Execution begins with all the removal actions being executed. If any unexpected content is
found in directories being removed from the system, that content is placed in
/var/pkg/lost+found.

Execution then proceeds to install and update actions. Note that all the actions have been
blended across all packages. Thus all the changes in a single package operation are applied to the
system at once rather than package by package. This permits packages to depend on each other
and exchange content safely. For details on how files are updated, see “File Actions” on page 21.

Process Actuators
If the changes are being applied to a live system, any pending actuators are executed at this
point. These are typically SMF service restarts and refreshes. Once these are launched, IPS
updates the local search indices. Actuators are discussed in detail in Chapter 7, “Automating
System Change as Part of Package Installation.”

How Package Changes Are Performed

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201254

Update Boot Archive
If necessary, the boot archive is updated.

How Package Changes Are Performed

Chapter 3 • Installing, Removing, and Updating Software Packages 55

56

Specifying Package Dependencies

Dependencies define how packages are related. This chapter explains the different types of IPS
dependencies and how they can be used to construct working software systems.

IPS provides a variety of different dependency types as discussed in “Depend Actions” on
page 27. This chapter provides more detail about how each dependency type can be used to
control the software that is installed.

Dependency Types
In IPS, a package cannot be installed unless all package dependencies are satisfied. IPS allows
packages to be mutually dependent (to have circular dependencies). IPS also allows packages to
have different kinds of dependencies on the same package at the same time.

Each section in this chapter contains an example depend action as it would appear in a manifest
during package creation.

require Dependency
The most basic type of dependency is the require dependency. These dependencies are
typically used to express functional dependencies such as libraries, or interpreters such as
Python or Perl.

If a package A@1.0 contains a require dependency on package B@2, then if A@1.0 is installed,
the B package at version 2 or higher must also be installed. This acceptance of higher versioned
packages reflects the implicit expectation of binary compatibility in newer versions of existing
packages.

If any version of the package named in the depend action is acceptable, you can omit the version
portion of the specified FMRI.

An example require dependency is:

4C H A P T E R 4

57

depend fmri=pkg:/system/library type=require

require-any Dependency
The require-any dependency is used if more than one package can satisfy a functional
requirement. IPS chooses one of the packages to install if the dependency is not already
satisfied.

For example, you could use a require-any dependency to ensure that at least one version of
Perl is installed on the system. The versioning is handled in the same manner as for the require
dependency.

An example require-any dependency is:

depend type=require-any fmri=pkg:/editor/gnu-emacs/gnu-emacs-gtk \

fmri=pkg:/editor/gnu-emacs/gnu-emacs-no-x11 \

fmri=pkg:/editor/gnu-emacs/gnu-emacs-x11

optional Dependency
The optional dependency specifies that if the given package is installed, it must be at the given
version or greater.

This type of dependency is typically used to handle cases where packages transfer content. In
this case, each version of the package post-transfer would contain an optional dependency on
the post-transfer version of the other package, so that it would be impossible to install
incompatible versions of the two packages. Omitting the version on an optional dependency
makes the dependency meaningless, but is permitted.

An example optional dependency is:

depend fmri=pkg:/x11/server/xorg@1.9.99 type=optional

conditional Dependency
The conditional dependency has a predicate attribute and an fmri attribute. If the package
specified in the value of the predicate attribute is present on the system at the specified or
greater version, the conditional dependency is treated as a require dependency on the
package in the fmri attribute. If the package specified in the predicate attribute is not present
on the system or is present at a lower version, the conditional dependency is ignored.

The conditional dependency is most often used to install optional extensions to a package if
the requisite base packages are present on the system.

Dependency Types

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201258

For example, an editor package that has both X11 and terminal versions might place the X11
version in a separate package, and include a conditional dependency on the X11 version from
the text version with the existence of the requisite X client library package as the predicate.

An example conditional dependency is:

depend type=conditional fmri=library/python-2/pycurl-26 \

predicate=runtime/python-26

group Dependency
The group dependency is used to construct groups of packages.

The group dependency ignores the version specified. Any version of the named package
satisfies this dependency.

The named package is required unless the package has been the object of one of the following
actions:

■ The package has been placed on the avoid list. See the pkg(1) man page for information
about the avoid list.

■ The package has been rejected with pkg install --reject.
■ The package has been uninstalled with pkg uninstall.

These three options enable administrators to deselect packages that are the subject of a group
dependency. If any of these three options has been used, IPS will not reinstall the package
during an update unless the package was subsequently required by another dependency. If the
new dependency is removed by another subsequent operation, then the package is uninstalled
again.

A good example of how to use these dependencies is to construct packages containing group
dependencies on packages that are needed for typical uses of a system. Some examples might be
solaris-large-server, solaris-desktop, or developer-gnu. “Oracle Solaris Group
Packages” on page 114 shows a set of Oracle Solaris packages that deliver group dependencies.

Installing group packages provides confidence that over subsequent updates to newer versions
of the OS, the appropriate packages will be added to the system.

An example group dependency is:

depend fmri=package/pkg type=group

Dependency Types

Chapter 4 • Specifying Package Dependencies 59

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkg-1

origin Dependency
The origin dependency exists to resolve upgrade issues that require intermediate transitions.
The default behavior is to specify the minimum version of a package (if installed) that must be
present on the system being updated.

For example, a typical use might be a database package version 5 that supports upgrade from
version 3 or greater, but not earlier versions. In this case, version 5 would have an origin

dependency on itself at version 3. Thus, if version 5 was being freshly installed, installation
would proceed. However, if version 1 of the package was installed, the package could not be
upgraded directly to version 5. In this case, pkg update database-package would not select
version 5 but instead would select version 3 as the latest possible version to which to upgrade.

The behavior of the origin dependency can be modified by setting the root-image attribute to
true. In this case, the named package must be at the specified version or greater if it is present in
the running system, rather than the image being updated. This is generally used for operating
system issues such as dependencies on boot block installers.

An example origin dependency is:

depend fmri=pkg:/database/mydb@3.0 type=origin

incorporate Dependency
The incorporate dependency specifies that if the given package is installed, it must be at the
given version, to the given version accuracy. For example, if the dependent FMRI has a version
of 1.4.3, then no version less than 1.4.3 or greater than or equal to 1.4.4 satisfies the dependency.
Version 1.4.3.7 does satisfy this example dependency.

The common way to use incorporate dependencies is to put many of them in the same
package to define a surface in the package version space that is compatible. Packages that
contain such sets of incorporate dependencies are often called incorporations. Incorporations
are typically used to define sets of software packages that are built together and are not
separately versioned. The incorporate dependency is heavily used in Oracle Solaris to ensure
that compatible versions of software are installed together.

An example incorporate dependency is:

depend type=incorporate \

fmri=pkg:/driver/network/ethernet/e1000g@0.5.11,5.11-0.175.0.0.0.2.1

Dependency Types

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201260

parent Dependency
The parent dependency is used for zones or other child images. In this case, the dependency is
only checked in the child image, and specifies a package and version that must be present in the
parent image or global zone. The version specified must match to the level of precision
specified.

For example, if the parent dependency is on A@2.1, then any version of A beginning with 2.1
matches. This dependency is often used to require that packages are kept in sync between
non-global zones and the global zone. As a shortcut, the special package name
feature/package/dependency/self is used as a synonym for the exact version of the package
that contains this dependency.

The parent dependency is used to keep key operating system components, such as libc.so.1,
installed in the non-global zone synchronized with the kernel installed in the global zone. The
parent dependency is also discussed in Chapter 10, “Handling Non-Global Zones.”

An example parent dependency is:

depend type=parent fmri=feature/package/dependency/self \

variant.opensolaris.zone=nonglobal

exclude Dependency
The package that contains the exclude dependency cannot be installed if the dependent
package is installed in the image at the specified version level or greater.

If the version is omitted from the FMRI of an exclude dependency, then no version of the
excluded package can be installed concurrently with the package specifying the dependency.

The exclude dependency is seldom used. These constraints can be frustrating to
administrators, and should be avoided where possible.

An example exclude dependency is:

depend fmri=pkg:/x11/server/xorg@1.10.99 type=exclude

Constraints and Freezing
Through the careful use of the various types of depend actions described above, packages can
define the ways in which they are allowed to be upgraded.

Constraints and Freezing

Chapter 4 • Specifying Package Dependencies 61

Constraining Installable Package Versions
Typically, you want a set of packages installed on a system to be supported and upgraded
together: Either all packages in the set are updated, or none of the packages in the set are
updated. This is the reason for using the incorporate dependency.

The following three partial package manifests show the relationship between the foo and bar

packages and the myincorp incorporation package.

The following excerpt is from the foo package manifest:

set name=pkg.fmri value=foo@1.0

dir path=foo owner=root group=bin mode=0755

depend fmri=myincorp type=require

The following excerpt is from the bar package manifest:

set name=pkg.fmri value=bar@1.0

dir path=bar owner=root group=bin mode=0755

depend fmri=myincorp type=require

The following excerpt is from the myincorp package manifest:

set name=pkg.fmri value=myincorp@1.0

depend fmri=foo@1.0 type=incorporate

depend fmri=bar@1.0 type=incorporate

The foo and bar packages both have a require dependency on the myincorp incorporation.
The myincorp package has incorporate dependencies that constrain the foo and bar packages
in the following ways:

■ The foo and bar packages can be upgraded to at most version 1.0: to the level of granularity
defined by the version number specified in the dependency.

■ If the foo and bar packages are installed, they must be at least at version 1.0 or greater.

The incorporate dependency on version 1.0 allows version 1.0.1 or 1.0.2.1, for example, but
does not allow version 1.1, 2.0, or 0.9, for example. When an updated incorporation package is
installed that specifies incorporate dependencies at a higher version, the foo and bar packages
are allowed to update to those higher versions.

Because foo and bar both have require dependencies on the myincorp package, the
incorporation package must always be installed.

Relaxing Constraints on Installable Package Versions
In some situations, you might want to relax an incorporation constraint.

Perhaps bar can function independently of foo, but you want foo to remain within the series of
versions defined by the incorporate dependency in the incorporation.

Constraints and Freezing

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201262

You can use facets to relax incorporation constraints, allowing the administrator to effectively
disable certain incorporate dependencies. Facets are discussed in more detail in Chapter 5,
“Allowing Variations.” Briefly, facets are special attributes that can be applied to actions within a
package to enable authors to mark those actions as optional.

When actions are marked with facet attributes in this manner, the actions that contain those
facets can be enabled or disabled using the pkg change-facet command.

By convention, facets that optionally install incorporate dependencies are named
facet.version-lock.name, where name is the name of the package that contains that depend
action.

Using the example above, the myincorp package manifest could contain the following lines:

set name=pkg.fmri value=myincorp@1.0

depend fmri=foo@1.0 type=incorporate

depend fmri=bar@1.0 type=incorporate facet.version-lock.bar=true

By default, this incorporation includes the depend action on the bar package, constraining bar
to version 1.0. The following command relaxes this constraint:

pkg change-facet version-lock.bar=false

After successful execution of this command, the bar package is free from the incorporation
constraints and can be upgraded to version 2.0 if necessary.

Freezing Installable Package Versions
So far, the discussion has been around constraints applied during the package authoring
process by modifying the package manifests. The administrator can also apply constraints to
the system at runtime.

Using the pkg freeze command, the administrator can prevent a given package from being
changed from either its current installed version, including time stamp, or a version specified
on the command line. This capability is effectively the same as an incorporate dependency.

See the pkg(1) man page for more information about the freeze command.

To apply more complex dependencies to an image, create and install a package that includes
those dependencies.

Constraints and Freezing

Chapter 4 • Specifying Package Dependencies 63

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkg-1

64

Allowing Variations

This chapter explains how to provide different installation options to the end user.

Mutually Exclusive Software Components
Oracle Solaris supports multiple architectures, and one common error made with the SVR4
packaging system was the accidental installation of packages for an incorrect architecture.
Maintaining separate IPS software repositories for each supported architecture is unappealing
to ISVs and error prone for software users. As a result, IPS supports installation of a single
package on multiple architectures.

The mechanism that implements this feature is called a variant. A variant enables the properties
of the target image to determine which software components are actually installed.

A variant has two parts: its name, and the list of possible values. The variants defined in Oracle
Solaris 11 are shown in the following table.

Variant Name Possible Values

variant.arch sparc, i386

variant.opensolaris.zone global, nonglobal

variant.debug.* true, false

Variants appear in the following two places in a package:

■ A set action names the variant and defines the values that apply to this package.
■ Any action that can only be installed for a subset of the variant values named in the set

action has a tag that specifies the name of the variant and the value on which this action is
installed.

5C H A P T E R 5

65

For example, a package that delivers the symbolic link /var/ld/64 might include the following
definitions:

set name=variant.arch value=sparc value=i386

dir group=bin mode=0755 owner=root path=var/ld

dir group=bin mode=0755 owner=root path=var/ld/amd64 \

variant.arch=i386

dir group=bin mode=0755 owner=root path=var/ld/sparcv9 \

variant.arch=sparc

link path=var/ld/32 target=.

link path=var/ld/64 target=sparcv9 variant.arch=sparc

link path=var/ld/64 target=amd64 variant.arch=i386

Note that components that are delivered on both SPARC and x86 receive no variant tag, but
components delivered to one architecture or the other receive the appropriate tag. Actions can
contain multiple tags for different variant names. For example, a package might include both
debug and nondebug binaries for both SPARC and x86.

In Oracle Solaris, kernel components are commonly elided from packages installed in zones,
since kernel components serve no useful purpose in a non-global zone. Thus, the kernel
components are marked with the opensolaris.zone variant set to global so that they are not
installed in non-global zones. This is typically done in the manifest during publication by using
a pkgmogrify(1) rule. The packages from the i386 and sparc builds are marked for zones, and
then pkgmerge(1) merges packages from the sparc and i386 builds. This is far more reliable
and faster than attempting to construct such packages manually.

Package developers cannot define new variants. However, developers can provide debug
versions of components, tagged with a variant.debug.* variant, and users can select that
variant if problems arise. The variant.debug.* portion of the variant namespace is predefined
to have a default value of false. Remember that variants are set per image, so be sure to select a
suitable name that is unique at the appropriate resolution for that piece of software.

Variant tags are applied to any actions that differ between architectures during merging,
including dependencies and set actions. Packages that are marked as not supporting one of the
variant values of the current image are not considered for installation.

The pkgmerge(1) man page provides several examples of merging packages. The pkgmerge
command merges across multiple different variants at the same time if needed.

Optional Software Components
Some portions of your software that belong with the main body might be optional, and some
users might not want to install them. Examples include localization files for different locales,
man pages and other documentation, and header files needed only by developers or DTrace
users.

Traditionally, optional content has been delivered in separate packages with identifiers such as
-dev or -devel appended to the package name. Administrators installed optional content by

Optional Software Components

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201266

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkgmogrify-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkgmerge-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkgmerge-1

installing these optional packages. One problem with this solution is that the administrator
must discover optional packages to install by examining lists of available packages.

IPS implements a mechanism called facets to deliver optional package content. Facets are
similar to variants: Each facet has a name and a value, and actions can contain multiple tags for
different facet names. In the image, the default value for all facets is true, and the value of a
particular facet can be explicitly set to either true or false. The facet namespace is hierarchical.
The pkg client implicitly sets facet.* to true for the image. The value of a particular facet in the
image is the value of the longest matching facet name.

The following example shows how the administrator can include man pages but exclude all
other documentation from being installed in this image. Man pages and other documentation
can be in the same package with software and other content that the administrator wants to
install. In the package manifests, man pages are tagged with facet.doc.man=true. Other
documentation actions might be tagged with facet.doc.pdf=true or facet.doc.html=true,
for example. In the image, the administrator can use the following commands to include the
man pages but exclude all other documentation:

pkg change-facet facet.doc.*=false

pkg change-facet facet.doc.man=true

Similarly, actions in package manifests can be tagged with locale facets such as
facet.locale.de=true or facet.locale.fr=true. The following commands install only the
German localization in this image:

pkg change-facet facet.locale.*=false

pkg change-facet facet.locale.de=true

If an action contains multiple facet tags, the action is installed if the value of any of the facet tags
is true. Use the pkg facet command to display the facets that have been explicitly set in the
image.

$ pkg facet

FACETS VALUE

facet.doc.* False

facet.doc.man True

facet.locale.* False

facet.locale.de True

Use pkgmogrify to quickly and accurately add facet tags to your package manifests, using
regular expressions to match the different types of files. This is described in detail in Chapter 6,
“Modifying Package Manifests Programmatically.”

Facets can also be used to manage dependencies, turning dependencies on and off depending
on whether the facet is set. See “Constraints and Freezing” on page 61 for a discussion of
facet.version-lock.*.

The following facets might be useful for software developers:

Optional Software Components

Chapter 5 • Allowing Variations 67

facet.devel facet.locale.es_BO facet.locale.lt_LT

facet.doc facet.locale.es_CL facet.locale.lv

facet.doc.man facet.locale.es_CO facet.locale.lv_LV

facet.doc.pdf facet.locale.es_CR facet.locale.mk

facet.doc.info facet.locale.es_DO facet.locale.mk_MK

facet.doc.html facet.locale.es_EC facet.locale.ml

facet.locale.* facet.locale.es_ES facet.locale.ml_IN

facet.locale.af facet.locale.es_GT facet.locale.mr

facet.locale.af_ZA facet.locale.es_HN facet.locale.mr_IN

facet.locale.ar facet.locale.es_MX facet.locale.ms

facet.locale.ar_AE facet.locale.es_NI facet.locale.ms_MY

facet.locale.ar_BH facet.locale.es_PA facet.locale.mt

facet.locale.ar_DZ facet.locale.es_PE facet.locale.mt_MT

facet.locale.ar_EG facet.locale.es_PR facet.locale.nb

facet.locale.ar_IQ facet.locale.es_PY facet.locale.nb_NO

facet.locale.ar_JO facet.locale.es_SV facet.locale.nl

facet.locale.ar_KW facet.locale.es_US facet.locale.nl_BE

facet.locale.ar_LY facet.locale.es_UY facet.locale.nl_NL

facet.locale.ar_MA facet.locale.es_VE facet.locale.nn

facet.locale.ar_OM facet.locale.et facet.locale.nn_NO

facet.locale.ar_QA facet.locale.et_EE facet.locale.no

facet.locale.ar_SA facet.locale.eu facet.locale.or

facet.locale.ar_TN facet.locale.fi facet.locale.or_IN

facet.locale.ar_YE facet.locale.fi_FI facet.locale.pa

facet.locale.as facet.locale.fr facet.locale.pa_IN

facet.locale.as_IN facet.locale.fr_BE facet.locale.pl

facet.locale.az facet.locale.fr_CA facet.locale.pl_PL

facet.locale.az_AZ facet.locale.fr_CH facet.locale.pt

facet.locale.be facet.locale.fr_FR facet.locale.pt_BR

facet.locale.be_BY facet.locale.fr_LU facet.locale.pt_PT

facet.locale.bg facet.locale.ga facet.locale.ro

facet.locale.bg_BG facet.locale.gl facet.locale.ro_RO

facet.locale.bn facet.locale.gu facet.locale.ru

facet.locale.bn_IN facet.locale.gu_IN facet.locale.ru_RU

facet.locale.bs facet.locale.he facet.locale.ru_UA

facet.locale.bs_BA facet.locale.he_IL facet.locale.rw

facet.locale.ca facet.locale.hi facet.locale.sa

facet.locale.ca_ES facet.locale.hi_IN facet.locale.sa_IN

facet.locale.cs facet.locale.hr facet.locale.sk

facet.locale.cs_CZ facet.locale.hr_HR facet.locale.sk_SK

facet.locale.da facet.locale.hu facet.locale.sl

facet.locale.da_DK facet.locale.hu_HU facet.locale.sl_SI

facet.locale.de facet.locale.hy facet.locale.sq

facet.locale.de_AT facet.locale.hy_AM facet.locale.sq_AL

facet.locale.de_BE facet.locale.id facet.locale.sr

facet.locale.de_CH facet.locale.id_ID facet.locale.sr_ME

facet.locale.de_DE facet.locale.is facet.locale.sr_RS

facet.locale.de_LI facet.locale.is_IS facet.locale.sv

facet.locale.de_LU facet.locale.it facet.locale.sv_SE

facet.locale.el facet.locale.it_CH facet.locale.ta

facet.locale.el_CY facet.locale.it_IT facet.locale.ta_IN

facet.locale.el_GR facet.locale.ja facet.locale.te

facet.locale.en facet.locale.ja_JP facet.locale.te_IN

facet.locale.en_AU facet.locale.ka facet.locale.th

facet.locale.en_BW facet.locale.ka_GE facet.locale.th_TH

facet.locale.en_CA facet.locale.kk facet.locale.tr

facet.locale.en_GB facet.locale.kk_KZ facet.locale.tr_TR

facet.locale.en_HK facet.locale.kn facet.locale.uk

facet.locale.en_IE facet.locale.kn_IN facet.locale.uk_UA

Optional Software Components

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201268

facet.locale.en_IN facet.locale.ko facet.locale.vi

facet.locale.en_MT facet.locale.ko_KR facet.locale.vi_VN

facet.locale.en_NZ facet.locale.ks facet.locale.zh

facet.locale.en_PH facet.locale.ks_IN facet.locale.zh_CN

facet.locale.en_SG facet.locale.ku facet.locale.zh_HK

facet.locale.en_US facet.locale.ku_TR facet.locale.zh_SG

facet.locale.en_ZW facet.locale.ky facet.locale.zh_TW

facet.locale.eo facet.locale.ky_KG

facet.locale.es_AR facet.locale.lg

Optional Software Components

Chapter 5 • Allowing Variations 69

70

Modifying Package Manifests
Programmatically

This chapter explains how package manifests can be machine edited to automatically annotate
and check the manifests.

Chapter 2, “Packaging Software With IPS,” covers all the techniques that are necessary to
publish a package. This chapter provides additional information that can help you publish a
large package, publish a large number of packages, or republish packages over a period of time.

Your package might contain many actions that need to be tagged with variants or facets as
discussed in Chapter 5, “Allowing Variations,” or that need to be tagged with service restarts as
discussed in Chapter 7, “Automating System Change as Part of Package Installation.” Rather
than edit package manifests manually or write a script or program to do this work, use the IPS
pkgmogrify utility to transform the package manifests quickly, accurately, and repeatably.

The pkgmogrify utility applies two types of rules: transform and include. Transform rules
modify actions. Include rules cause other files to be processed. The pkgmogrify utility reads
these rules from a file and applies them to the specified package manifest.

Transform Rules
This section shows an example transform rule and describes the parts of all transform rules.

In Oracle Solaris, files delivering in a subdirectory named kernel are treated as kernel modules
and are tagged as requiring a reboot. The following tag is applied to actions whose path
attribute value includes kernel:

reboot-needed=true

To apply this tag, the following rule is specified in the pkgmogrify rule file:

<transform file path=.*kernel/.+ -> default reboot-needed true>

6C H A P T E R 6

71

delimiters The rule is enclosed with < and >. The portion of the rule to the left of
the -> is the selection section or matching section. The portion to the
right of the -> is the execution section of the operation.

transform The type of the rule.

file Apply this rule only to file actions. This is called the selection section
of the rule.

path=.*kernel/.+ Transform only file actions with a path attribute that matches the
regular expression path=.*kernel/.+. This is called the matching
section of the rule.

default Add the attribute and value that follow default to any matching action
that does not already have a value set for that attribute.

reboot-needed The attribute being set.

true The value of the attribute being set.

The selection or matching section of a transform rule can restrict by action type and by action
attribute value. See the pkgmogrify man page for detail about how these matching rules work.
Typical uses are for selecting actions that deliver to specified areas of the file system. For
example, in the following rule, operation could be used to ensure that usr/bin and everything
delivered inside usr/bin defaults to the correct user or group.

<transform file dir link hardlink path=usr/bin.* -> operation>

The pkgmogrify(1) man page describes the many operations that pkgmogrify can perform to
add, remove, set, and edit action attributes as well as add and remove entire actions.

Include Rules
Include rules enable transforms to be spread across multiple files and subsets reused by different
manifests. Suppose you need to deliver two packages: A and B. Both packages should have their
source-url set to the same URL, but only package B should have its files in /etc set to be
group=sys.

The manifest for package A should specify an include rule that pulls in the file with the
source-url transform. The manifest for package B should specify an include rule that pulls in
the file containing the file group setting transform. Finally, an include rule that pulls in the file
with the source-url transform should be added either to either package B or to the file with the
transform that sets the group.

Include Rules

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201272

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkgmogrify-1

Transform Order
Transforms are applied in the order in which they are encountered in a file. The ordering can be
used to simplify the matching portions of transforms.

Suppose all files delivered in /foo should have a default group of sys, except those files
delivered in /foo/bar, which should have a default group of bin.

You could write a complex regular expression that matches all paths that begin with /foo except
for paths that begin with /foo/bar. Using the ordering of transforms makes this matching
much simpler.

When ordering default transforms, always go from most specific to most general. Otherwise the
latter rules will never be used.

For this example, use the following two rules:

<transform file path=foo/bar/.* -> default group bin>

<transform file path=foo/.* -> default group sys>

Using transforms to add an action using the matching described above would be difficult since
you would need to find a pattern that matched each package delivered once and only once. The
pkgmogrify tool creates synthetic actions to help with this issue. As pkgmogrify processes
manifests, for each manifest that sets the pkg.fmri attribute, a synthetic pkg action is created by
pkgmogrify. You can match against the pkg action as if it were actually in the manifest.

For example, suppose you wanted to add to every package an action containing the web site
example.com, where the source code for the delivered software can be found. The following
transform accomplishes that:

<transform pkg -> emit set info.source-url=http://example.com>

Packaged Transforms
As a convenience to developers, a set of the transforms that were used when packaging the
Oracle Solaris OS are available in the following files in /usr/share/pkg/transforms:

developer Sets facet.devel on *.h header files delivered to /usr/.*/include,
archive and lint libraries, pkg-config(1) data files, and autoconf(1)
macros.

documentation Sets a variety of facet.doc.* facets on documentation files.

locale Sets a variety of facet.locale.* facets on files that are locale-specific.

Packaged Transforms

Chapter 6 • Modifying Package Manifests Programmatically 73

smf-manifests Adds a restart_fmri actuator that points to the
svc:/system/manifest-import:default on any packaged SMF manifests
so that the system will import that manifest after the package is installed.

Packaged Transforms

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201274

Automating System Change as Part of Package
Installation

This chapter explains how to use the Service Management Facility (SMF) to automatically
handle any necessary system changes that should occur as a result of package installation.

Specifying System Changes on Package Actions
First determine which actions should cause a change to the system when they are installed,
updated, or removed. For example, some system changes are needed to implement the software
self-assembly concept described in “Software Self-Assembly” on page 13.

For each of those package actions, determine which existing SMF service provides the necessary
system change. Alternatively, write a new service that provides the needed functionality and
ensure that service is delivered to the system as described in “Delivering an SMF Service” on
page 76.

When you have determined the set of actions that should cause a change to the system when
they are installed, tag those actions in the package manifest to cause that system change to
occur. The value of a tag that causes system change to occur is called an actuator.

The following actuator tags can be added to any action in a manifest:

reboot-needed This actuator takes the value true or false. This actuator declares that
update or removal of the tagged action must be performed in a new boot
environment if the package system is operating on a live image. Creation of
a new boot environment is controlled by the be-policy image property.
See the “Image Properties” section in the pkg(1) man page for more
information about the be-policy property.

SMF Actuators These actuators are related to SMF services.

SMF actuators take a single service FMRI as a value, possibly including
globbing characters to match multiple FMRIs. If the same service FMRI is

7C H A P T E R 7

75

tagged by multiple actions, possibly across multiple packages being
operated on, IPS only triggers that actuator once.

The following list of SMF actuators describes the effect on the service FMRI
that is the value of each named actuator:

disable_fmri Disable the specified service prior to performing the
package operation.

refresh_fmri Refresh the specified service after completing the
package operation.

restart_fmri Restart the specified service after completing the
package operation.

suspend_fmri Temporarily suspend the specified service prior to
performing the package operation, and enable the
service after completing the package operation.

Delivering an SMF Service
To deliver a new SMF service, create a package that delivers the SMF manifest file and method
script.

This section first discusses the general case of delivering any new SMF service, and then
discusses the specific case of delivering a service that runs once. Finally, this section presents
some tips for self-assembly of these service packages.

Delivering a New SMF Service
A package that delivers a new SMF service usually needs a system change.

In SVR4 packaging, post-install scripting ran an SMF command to restart the
svc:/system/manifest-import:default service.

In IPS, the action that delivers the manifest file into lib/svc/manifest or var/svc/manifest
should be tagged with the following actuator:

restart_fmri=svc:/system/manifest-import:default

This actuator ensures that when the manifest is added, updated, or removed, the
manifest-import service is restarted, causing the service delivered by that SMF manifest to be
added, updated, or removed.

Delivering an SMF Service

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201276

If the package is added to a live system, this action is performed once all packages have been
added to the system during that packaging operation. If the package is added to an alternate
boot environment, this action is performed during the first boot of that boot environment.

Delivering a Service that Runs Once
A package that needs to perform a one-time configuration of the new software environment
should deliver an SMF service to perform that configuration.

The package that delivers the application should include the following actions:

file path=opt/myapplication/bin/run-once.sh owner=root group=sys mode=0755

file path=lib/svc/manifest/application/myapplication-run-once.xml owner=root group=sys \

mode=0644 restart_fmri=svc:/system/manifest-import:default

The SMF method script for the service can contain anything that is needed to further configure
the application or modify the system so that the application runs efficiently. In this example, the
method script writes a simple log message:

#!/usr/bin/sh

. /lib/svc/share/smf_include.sh

assembled=$(/usr/bin/svcprop -p config/assembled $SMF_FMRI)

if ["$assembled" == "true"] ; then

exit $SMF_EXIT_OK

fi

svccfg -s $SMF_FMRI setprop config/assembled = true

svccfg -s $SMF_FMRI refresh

echo "This is output from our run-once method script"

Generally, the SMF service should only perform work if the application has not already been
configured. This example method script checks config/assembled. An alternative approach is
to package the service separately from the application, and then use the method script to
remove the package that contains the service.

When testing a method script, run pkg verify before and after installing the package that runs
the actuator. Compare the output of each run to ensure that the script does not attempt to
modify any files that are not marked as editable.

The following shows the SMF service manifest for this example:

<?xml version="1.0"?>
<!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1">
<service_bundle type=’manifest’ name=’MyApplication:run-once’>

<service

name=’application/myapplication/run-once’

type=’service’

version=’1’>

<single_instance />

<dependency

Delivering an SMF Service

Chapter 7 • Automating System Change as Part of Package Installation 77

name=’fs-local’

grouping=’require_all’

restart_on=’none’

type=’service’>

<service_fmri value=’svc:/system/filesystem/local:default’ />

</dependency>

<dependent

name=’myapplication_self-assembly-complete’

grouping=’optional_all’

restart_on=’none’>

<service_fmri value=’svc:/milestone/self-assembly-complete’ />

</dependent>

<instance enabled=’true’ name=’default’>

<exec_method

type=’method’

name=’start’

exec=’/opt/myapplication/bin/run-once.sh’

timeout_seconds=’0’/>

<exec_method

type=’method’

name=’stop’

exec=’:true’

timeout_seconds=’0’/>

<property_group name=’startd’ type=’framework’>

<propval name=’duration’ type=’astring’ value=’transient’ />

</property_group>

<property_group name=’config’ type=’application’>

<propval name=’assembled’ type=’boolean’ value=’false’ />

</property_group>

</instance>

</service>

</service_bundle>

Note that the SMF service has a startd/duration property set to transient so that
svc.startd(1M) does not track processes for this service. Also note that the service adds itself
as a dependency to the self-assembly-complete system milestone.

Supporting Package Self-Assembly in SMF Methods
This section provides some additional tips to support package self-assembly when writing SMF
methods.

Testing Whether a Configuration File Recompile Is Necessary
If compiling a configuration file from packaged configuration file fragments is expensive to
perform each time the method script runs, consider using the following test in the method
script.

Run ls -t on a directory of packaged configuration file fragments, and then use head -1 to
select the most recently changed version. Compare the time stamp of this file with the time

Delivering an SMF Service

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201278

stamp of the unpackaged configuration file that is compiled from those fragments to determine
whether the service needs to recompile the configuration file.

Limiting the Time To Wait for Self-Assembly To Complete
The example SMF service manifest shown above defines timeout_seconds=’0’ for the start
method. This means that SMF will wait indefinitely for self-assembly to complete.

To assist in debugging, you might want to impose a finite timeout on self-assembly processes,
enabling SMF to drop the service to maintenance if something goes wrong.

Delivering an SMF Service

Chapter 7 • Automating System Change as Part of Package Installation 79

80

Advanced Topics For Package Updating

This chapter discusses renaming, merging, and splitting packages, moving package contents,
delivering multiple implementations of an application, and sharing information across boot
environments.

Avoiding Conflicting Package Content
For performance reasons, the solver works purely on the dependency information specified in
packages. For most update operations, this information is sufficient to enable IPS to
automatically install correct updated packages.

Packages whose dependencies indicate that they can be installed at the same time but whose
content conflicts, cause conflict checking to fail in pre-installation. If conflict checking fails, the
end user must try to fix the problem, perhaps by manually specifying different versions of some
packages. An example of conflicting content is two packages that install the same file.

The package developer must ensure that conflicting packages cannot be installed due to
constraining dependencies. Use the pkglint utility to help discover such conflicts. See “Verify
the Package” on page 41 and the pkglint(1) man page for more information about pkglint.

Renaming, Merging and Splitting Packages
The desired organization of a software component can change because of mistakes in the
original packages, changes in the product or its usage over time, or changes in the surrounding
software environment. Sometimes just the name of a package needs to change. When planning
such changes, consider the user who is performing an upgrade, to ensure that unintended side
effects do not occur.

8C H A P T E R 8

81

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkglint-1

Three types of package reorganization are discussed in this section, in order of increasingly
complex considerations for pkg update:

1. Renaming single packages
2. Merging two packages
3. Splitting a package

Renaming a Single Package
Renaming a single package is straightforward. IPS provides a mechanism to indicate that a
package has been renamed.

To rename a package, publish a new version of the existing package with the following two
actions:

■ A set action in the following form:

set name=pkg.renamed value=true

■ A require dependency on the new package.

A renamed package cannot deliver content other than depend or set actions.

The new package must ensure that it cannot be installed at the same time as the original package
before the rename. If both packages are covered by the same incorporation dependency, this
restriction is automatic. If not, the new package must contain an optional dependency on the
old package at the renamed version. This ensures that the solver will not select both packages,
which would fail conflict checking.

A user who installs this renamed package automatically receives the new named package, since
it is a dependency of the old version. If a renamed package is not depended upon by any other
packages, it is automatically removed from the system. The presence of older software can cause
a number of renamed packages to be shown as installed. When that older software is removed,
the renamed packages are automatically removed as well.

Packages can be renamed multiple times without issue, though this is not recommended since it
can be confusing to users.

Merging Two Packages
Merging packages is straightforward as well. The following two cases are examples of merging
packages:

■ One package absorbs another package at the renamed version.
■ Two packages are renamed to the same new package name.

Renaming, Merging and Splitting Packages

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201282

One Package Absorbs Another
Suppose package A@2 must absorb package B@3. To do this, rename package B to package A@2.
Remember to include an optional dependency in A@2 on B@3, unless both packages are
incorporated so that they update together as described above. A user upgrading B to B@3 now
gets A installed since A has absorbed B.

Two Packages Are Renamed
In this case, rename both packages to the name of the new merged package, including two
optional dependencies on the old packages in the new one if they are not otherwise
constrained.

Splitting a Package
When you split a package, rename each resulting new package as described in “Renaming a
Single Package” on page 82. If one of the resulting new packages is not renamed, the pre-split
and post-split versions of that package are not compatible and might violate dependency logic
when the end user tries to update the package.

Rename the original package, and include require dependencies on all new packages that
resulted from the split. This ensures that any package that had a dependency on the original
package will get all the new pieces.

Some components of the split package can be absorbed into existing packages as a merge. See
“One Package Absorbs Another” on page 83.

Obsoleting Packages
Package obsoletion is the mechanism by which packages are emptied of contents and removed
from the system. An obsoleted package does not satisfy require dependencies. Update fails if
an installed package has a require dependency on a package that has become obsolete, unless a
newer version of the installed package is available that does not contain the require
dependency.

A package is made obsolete by publishing a new version with no content except for the
following set action:

set name=pkg.obsolete value=true

A package can be made non-obsolete by publishing newer versions. Users who update when an
installed package is obsolete lose that package. Users who updated before the package was
obsolete and do not update again until after a newer version of the package is published are
updated to that newer version.

Obsoleting Packages

Chapter 8 • Advanced Topics For Package Updating 83

Preserving Editable Files that Migrate
One common issue with updating packages is the migration of editable files, either moving
between packages or changing location in the installed file system.

Migrating editable files between packages.
IPS attempts to migrate editable files that move between packages if the file name and file
path have not changed. Renaming a package is an example of moving files between packages.

Migrating editable files in the file system.
If the file path changes, ensure the original_name attribute is assigned to preserve the user's
customizations of the file.

If the file action in the package that originally delivered this file does not contain the
attribute original_name, add that attribute in the updated package. Set the value of the
attribute to the name of the originating package, followed by a colon and the original path to
the file without a leading /.

Once the original_name attribute is present on an editable file, do not change the attribute
value. This value acts as a unique identifier for all moves going forward so that the user's
content is properly preserved regardless of the number of versions skipped on an update.

Moving Unpackaged Contents on Directory Removal or
Rename

Normally, unpackaged contents are salvaged when the containing directory is removed,
because the last reference to it disappears.

When a directory changes names, IPS treats this as the removal of the old directory and the
creation of a new one. Any editable files that are still in the directory when the directory is
renamed or removed are salvaged.

If the old directory has unpackaged content such as log files that should be moved to the new
directory, use the salvage-from attribute on the new directory. For example, if pkgA renames a
directory from /opt/olddata/log to /opt/newdata/log, then in the version of pkgA that
makes this change, include the following attribute on the dir action that creates
/opt/newdata/log:

salvage-from=opt/olddata/log

Any unpackaged contents of any time are migrated to the new location.

The salvage-from attribute is discussed again in “Delivering Directories To Be Shared Across
Boot Environments” on page 87.

Preserving Editable Files that Migrate

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201284

Delivering Multiple Implementations of an Application
You might want to deliver multiple implementations of a given application with characteristics
such as the following:

■ All implementations are available in the image.
■ One of the implementations is specified as the preferred implementation.
■ The preferred implementation has symbolic links to its binaries installed to a common

directory such as /usr/bin for ease of discovery.
■ The administrator can change the preferred implementation as required, without adding or

removing any packages.

One example of delivering multiple implementations of an application is GCC. Oracle Solaris
provides multiple versions of GCC, with each version in its own package, and /usr/bin/gcc

points to the preferred version.

IPS uses mediated links to manage multiple implementations of an application in a single
image. A mediated link is a symbolic link that is controlled by the pkg set-mediator and pkg

unset-mediator commands. The link actions in the packages that deliver different
implementations of an application are said to participate in a mediation. The pkg mediator
command lists the mediations in the image. See the pkg(1) man page for information about the
mediator commands.

The following attributes can be set on link actions to control how mediated links are delivered:

mediator

Specifies the entry in the mediation namespace shared by all path names participating in a
given mediation group (for example python).

Link mediation can be performed based on mediator-version and
mediator-implementation. All mediated links for a given path name must specify the same
mediator. However, not all mediator versions and implementations need to provide a link at
a given path. If a mediation does not provide a link, then the link is removed when that
mediation is selected.

A mediator, in combination with a specific version and/or implementation represents a
mediation that can be selected for use by the packaging system.

mediator-version

Specifies the version (expressed as a dot-separated sequence of non-negative integers) of the
interface described by the mediator attribute. This attribute is required if mediator is
specified and mediator-implementation is not specified. A local system administrator can
explicitly set the version to use. The value specified generally should match the version of the
package that is delivering the link. For example, runtime/python-26 should use
mediator-version=2.6, although this is not required.

Delivering Multiple Implementations of an Application

Chapter 8 • Advanced Topics For Package Updating 85

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkg-1

mediator-implementation

Specifies the implementation of the mediator. The attribute can be specified in addition to or
instead of the mediator-version attribute. Implementation strings are not considered to be
ordered. A string is arbitrarily selected by pkg(5) if not explicitly specified by a system
administrator.

The value of mediator-implementation can be a string of arbitrary length composed of
alphanumeric characters and spaces. If the implementation itself can be or is versioned, then
the version should be specified at the end of the string, after an @ symbol. The version is a
dot-separated sequence of non-negative integers. If multiple versions of an implementation
exist, the default behavior is to select the implementation with the highest version.

If only one instance of an implementation-mediation link at a particular path is installed on
a system, then that one is chosen automatically. If future links at the path are installed, the
link will not be switched unless a vendor, site, or local override applies, or if one of the links is
version-mediated.

mediator-priority

When resolving conflicts in mediated links, pkg(5) chooses the link with the greatest value of
mediator-version if possible. If that is not possible, pkg(5) chooses the link based on
mediator-implementation. The mediator-priority attribute is used to specify an override
for the normal conflict resolution process. If the mediator-priority attribute is not
specified, the default mediator selection logic is applied.

The mediator-priority attribute can have one of the following values:

vendor The link is preferred over those that do not have a mediator-priority specified.

site The link is preferred over those that have a value of vendor or that do not have a
mediator-priority specified.

A local system administrator can override the selection logic described above.

The following two excerpts from sample manifests participate in a mediation for the link
/usr/bin/myapp. Implementation 1 is version 5.8.4:

set name=pkg.fmri value=pkg://test/myapp-impl-1@1.0,5.11:20120721T035233Z

file path=usr/myapp/5.8.4/bin/myapp group=sys mode=0755 owner=root

link path=usr/bin/myapp target=usr/myapp/5.8.4/bin/myapp mediator=myapp mediator-version=5.8.4

Implementation 2 is version 5.12:

set name=pkg.fmri value=pkg://test/myapp-impl-2@1.0,5.11:20120721T035239Z

file path=usr/myapp/5.12/bin/myapp group=sys mode=0755 owner=root

link path=usr/bin/myapp target=usr/myapp/5.12/bin/myapp mediator=myapp mediator-version=5.12

Both of these packages can be installed in the same image:

Delivering Multiple Implementations of an Application

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201286

$ pkg list myapp-impl-1 myapp-impl-2

NAME (PUBLISHER) VERSION IFO

myapp-impl-1 1.0 i--

myapp-impl-2 1.0 i--

Use the pkg mediator command to see the mediations in use:

$ pkg mediator

MEDIATOR VER. SRC. VERSION IMPL. SRC. IMPLEMENTATION

myapp local 5.12 system

$ ls -al usr/bin/myapp

lrwxrwxrwx 1 root sys 23 Jul 21 16:58 usr/bin/myapp -> usr/myapp/5.12/bin/myapp

Use the pkg search command to see which other packages participate in the myapp mediation:

$ pkg search -ro path,target,mediator,mediator-version,pkg.shortfmri ::mediator:myapp

PATH TARGET MEDIATOR MEDIATOR-VERSION PKG.SHORTFMRI

usr/bin/myapp usr/myapp/5.12/bin/myapp myapp 5.12 pkg:/myapp-impl-2@1.0

usr/bin/myapp usr/myapp/5.8.4/bin/myapp myapp 5.8.4 pkg:/myapp-impl-1@1.0

Use the pkg set-mediator command to change the mediation. The following example changes
which version of myapp is the preferred version:

pkg set-mediator -V 5.8.4 myapp

Packages to update: 2

Mediators to change: 1

Create boot environment: No

Create backup boot environment: No

PHASE ITEMS

Removing old actions 2/2

Updating modified actions 2/2

Updating image state Done

Creating fast lookup database Done

Reading search index Done

Updating search index 2/2

ls -al usr/bin/myapp

lrwxrwxrwx 1 root sys 24 Jul 21 17:02 usr/bin/myapp -> usr/myapp/5.8.4/bin/myapp

Delivering Directories To Be Shared Across Boot Environments
Some files delivered to a boot environments (BE) must be shared across BEs to preserve normal
system operation in an environment with multiple BEs. In general, IPS does not support
delivery of content that is shared across BEs. Such shared content updated in one BE might not
meet the requirements of other BEs. This section describes how you can deliver content that is
shared across BEs.

The following directories are already shared across BEs by IPS:

Delivering Directories To Be Shared Across Boot Environments

Chapter 8 • Advanced Topics For Package Updating 87

/var/audit

/var/cores

/var/crash

/var/mail

Within each BE, these directories are symbolic links to the following shared directories:

/var/share/audit

/var/share/cores

/var/share/crash

/var/share/mail

These shared directories are in the VARSHARE dataset, which is a shared dataset mounted at
/var/share.

If other data needs to be shared across BEs but is delivered in an IPS package as unshared,
administrators are likely to place such data on separate datasets or on remote file servers.
However, creating per-directory datasets means creating many datasets per zone, which is not
desirable.

Instead, use the following procedure to create a package that delivers a shared dataset, or to
modify a package to share content that was previously delivered as unshared. IPS supports
update from an older version of a package that did not share content to a newer version of the
same package that does share content across BEs.

▼ How To Deliver Content to Shared Directories
This procedure describes how to design a package that must deliver content that is shared
across BEs.

To share data across BEs, use a shared dataset, mounted into the BE during boot, with symbolic
links from locations inside the BE pointing into that shared dataset. Inside the BE, deliver basic
directory structure to a staging directory. Provide an SMF service that moves the content staged
inside the BE to the shared dataset during boot, and provide an actuator to require a reboot.

Deliver shared content to a staging area in the BE.

a. Deliver a staging area.
In your package, deliver a staging area for shared content. For example, you might deliver a
directory named .migrate.

b. Deliver the shared structure.
Deliver subdirectories into the .migrate directory that provide the directory structure you
want in the shared dataset.

1

Delivering Directories To Be Shared Across Boot Environments

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201288

c. Deliver the shared files.
Deliver files to the directory structure in the staging area as needed. Other file system objects
such as links cannot be shared.

If the content delivered to the staging area was previously delivered as unshared content, use a
salvage-from attribute on the new dir or file action. In the following example, content that
was previously delivered to /opt/myapplication/logs will now be delivered to a dataset that is
shared across BEs. The staging area for this shared dataset is /opt/.migrate.

The following action was previously delivered:
dir path=opt/myapplication/logs owner=daemon group=daemon mode=0755

The following action is the new action for the directory that will be shared:

dir path=opt/.migrate/myapplication/logs owner=daemon group=daemon \

mode=0755 reboot-needed=true salvage-from=/opt/myapplication/logs

The salvage-from attribute is also discussed in “Moving Unpackaged Contents on Directory
Removal or Rename” on page 84.

Provide a script to move content into the shared dataset.
During boot, a script can be run as part of an SMF method script to move file content from the
staging directory into the shared dataset. This script must do the following steps:

a. Create the shared dataset.
The following command in the SMF method script creates the dataset rpool/OPTSHARE
mounted at /opt/share. This dataset could also be used by other shared content from /opt.
The script should use zfs list to test whether the dataset already exists.
zfs create -o mountpoint=/opt/share rpool/OPTSHARE

b. Create the shared directory structure.
In the shared dataset, recreate any parts of the directory structure defined under the staging
directory in the BE that do not already exist.

c. Move file content.
Move the file content from the staging directory to the shared dataset.

Deliver a symbolic link from the BE to the shared directory.
The following action creates a symbolic link from the previously packaged directory to the
shared directory in /opt/share that will be created by the script when the system reboots:
link path=opt/myapplication/logs target=../../opt/share/myapplication/logs

2

3

Delivering Directories To Be Shared Across Boot Environments

Chapter 8 • Advanced Topics For Package Updating 89

Add an actuator to require a reboot.
A reboot-needed actuator is required for these directory entries in order to properly support
updates of Immutable Zones mentioned in “Software Self-Assembly” on page 13. Immutable
Zones boot as far as the svc:/milestone/self-assembly-complete:default milestone in
read/write mode if self-assembly is required, before rebooting read-only. See the
file-mac-profile property in the zonecfg(1M) man page for more information.

On reboot, the SMF service moves any new and salvaged directory content into the shared
dataset. The symbolic links from /opt/myapplication point into that shared dataset.

4

Delivering Directories To Be Shared Across Boot Environments

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201290

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mzonecfg-1m

Signing IPS Packages

The ability to validate that the software installed on the user's machine is actually as originally
specified by the publisher is an important feature of IPS. This ability to validate the installed
system is key for both the user and the support engineering staff.

Signature policies can be set for the image or for specific publishers. Policies include ignoring
signatures, verifying existing signatures, requiring signatures, and requiring specific common
names in the chain of trust.

This chapter describes IPS package signing and how developers and quality assurance
organizations can sign either new packages or existing, already signed packages.

Signing Package Manifests
IPS package manifests can be signed, with the signatures becoming part of the manifest.

Defining Signature Actions
Signatures are represented as actions just as all other manifest content is represented as actions.
Since manifests contain all the package metadata (such as file permissions, ownership, and
content hashes), a signature action that validates that the manifest has not be altered since it was
published is an important part of system validation.

The signature actions form a tree that includes the delivered binaries such that complete
verification of the installed software is possible.

In addition to validation, signatures can also be used to indicate approval by other
organizations or parties. For example, the internal QA organization could sign manifests of
packages once the packages are qualified for production use. Such approvals could be required
for installation.

9C H A P T E R 9

91

A manifest can have multiple independent signatures. Signatures can be added or removed
without invalidating other signatures that are present. This feature facilitates production
handoffs, with signatures used along the path to indicate completion along the way. Subsequent
steps can optionally remove previous signatures at any time.

A signature action has the following form:

signature hash_of_certificate algorithm=signature_algorithm \

value=signature_value \

chain="hashes_of_certificates_needed_to_validate_primary_certificate" \

version=pkg_version_of_signature

The payload and chain attributes represent the packaging hash of the PEM (Privacy Enhanced
Mail) files, containing the x.509 certificates which can be retrieved from the originating
repository. The payload certificate is the certificate that verifies the value in value. The value is
the signed hash of the message text of the manifest, prepared as discussed below.

The other certificates presented need to form a certificate path that leads from the payload
certificate to the trust anchors.

Two types of signature algorithms are supported:

RSA The first type of signature algorithm is the RSA group of algorithms. An example
of an RSA signature algorithm is rsa-sha256. The string after the hyphen
(sha256 in this example) specifies the hash algorithm to use to change the
message text into a single value the RSA algorithm can use.

Hash only The second type of signature algorithm is compute the hash only. This type of
algorithm exists primarily for testing and process verification purposes and
presents the hash as the signature value. A signature action of this type is
indicated by the lack of a payload certificate hash. This type of signature action is
verified if the image is configured to check signatures. However, its presence does
not count as a signature if signatures are required. The following example shows
a hash only signature action:

signature algorithm=hash_algorithm value=hash \

version=pkg_version_of_signature

Publishing Signed Package Manifests
Publishing a signed manifest is a two step process. This process leaves the package intact,
including its time stamp.

1. Publish the package unsigned to a repository.
2. Update the package in place, using the pkgsign command to append a signature action to

the manifest in the repository.

Signing Package Manifests

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201292

This process enables a signature action to be added by someone other than the publisher
without invalidating the original publisher's signature. For example, the QA department of a
company might want to sign all packages that are installed internally to indicate they have been
approved for use, but not republish the packages, since republishing would create a new time
stamp and invalidate the signature of the original publisher.

Note that using the pkgsign command is the only way to publish a signed package. If you
publish a package that already contains a signature, that signature is removed and a warning is
emitted. The pkgsign(1) man page contains examples of how to use the pkgsign command.

Signature actions with variants are ignored. Therefore, performing a pkgmerge on a pair of
manifests invalidates any signatures that were previously applied.

Note – Signing the package should be the last step of the package development before the
package is tested.

Troubleshooting Signed Packages
The pkgsign tool does not perform all possible checks for its inputs when signing packages.
Therefore, it is important to check signed packages to ensure that they can be properly installed
after being signed.

This section shows errors that can occur when attempting to install or update a signed package
and provides explanations of the errors and solutions to the problems.

A signed package can fail to install or update for reasons that are unique to signed packages. For
example, if the signature of a package fails to verify, or if the chain of trust cannot be verified or
anchored to a trusted certificate, the package fails to install.

When installing signed packages, the following image and publisher properties influence the
checks that are performed on packages:

Image properties

■ signature-policy

■ signature-required-names

■ trust-anchor-directory

Publisher properties

■ signature-policy

■ signature-required-names

See the pkg(1) man page for further information about these properties and their values.

Troubleshooting Signed Packages

Chapter 9 • Signing IPS Packages 93

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkgsign-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkg-1

Chain Certificate Not Found
The following error occurs when a certificate in the chain of trust is missing or otherwise
erroneous.

pkg install: The certificate which issued this certificate:

/C=US/ST=California/L=Menlo Park/O=pkg5/CN=cs1_ch1_ta3/emailAddress=cs1_ch1_ta3

could not be found. The issuer is:

/C=US/ST=California/L=Menlo Park/O=pkg5/CN=ch1_ta3/emailAddress=ch1_ta3

The package involved is: pkg://test/example_pkg@1.0,5.11-0:20110919T184152Z

In this example, there were three certificates in the chain of trust when the package was signed.
The chain of trust was rooted in the trust anchor, a certificate named ta3. The ta3 certificate
signed a chain certificate named ch1_ta3, and ch1_ta3 signed a code signing certificate named
cs1_ch1_ta3.

When the pkg command tried to install the package, it was able to locate the code signing
certificate, cs1_ch1_ta3, but could not locate the chain certificate, ch1_ta3, so the chain of trust
could not be established.

The most common cause of this problem is failing to provide the correct certificates to the -i
option of pkgsign.

Authorized Certificate Not Found
The following error is similar to the error shown in the previous example but the cause is
different.

pkg install: The certificate which issued this certificate:

/C=US/ST=California/L=Menlo Park/O=pkg5/CN=cs1_cs8_ch1_ta3/emailAddress=cs1_cs8_ch1_ta3

could not be found. The issuer is:

/C=US/ST=California/L=Menlo Park/O=pkg5/CN=cs8_ch1_ta3/emailAddress=cs8_ch1_ta3

The package involved is: pkg://test/example_pkg@1.0,5.11-0:20110919T201101Z

In this case, the package was signed using the cs1_cs8_ch1_ta3 certificate, which was signed by
the cs8_ch1_ta3 certificate.

The problem is that the cs8_ch1_ta3 certificate was not authorized to sign other certificates.
Specifically, the cs8_ch1_ta3 certificate had the basicConstraints extension set to CA:false

and marked critical.

When the pkg command verifies the chain of trust, it does not find a certificate that is allowed to
sign the cs1_cs8_ch1_ta3 certificate. Since the chain of trust cannot be verified from the leaf to
the root, the pkg command prevents the package from being installed.

Troubleshooting Signed Packages

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201294

Untrusted Self-Signed Certificate
The following error occurs when a chain of trust ends in a self-signed certificate that is not
trusted by the system.

pkg install: Chain was rooted in an untrusted self-signed certificate.

The package involved is:pkg://test/example_pkg@1.0,5.11-0:20110919T185335Z

When you create a chain of certificates using OpenSSL for testing, the root certificate is usually
self-signed, since there is little reason to have an outside company verify a certificate that is only
used for testing.

In a test situation, there are two solutions:

■ The first solution is to add the self-signed certificate that is the root of the chain of trust into
/etc/certs/CA and refresh the system/ca-certificates service. This mirrors the likely
situation customers will encounter where a production package is signed with a certificate
that is ultimately rooted in a certificate that is delivered with the operating system as a trust
anchor.

■ The second solution is to approve the self-signed certificate for the publisher that offers the
package for testing by using the --approve-ca-cert option with the pkg set-publisher
command.

Signature Value Does Not Match Expected Value
The following error occurs when the value on the signature action could not be verified using
the certificate that the action claims was paired with the key used to sign the package.

pkg install: A signature in pkg://test/example_pkg@1.0,5.11-0:20110919T195801Z

could not be verified for this reason:

The signature value did not match the expected value. Res: 0

The signature’s hash is 0ce15c572961b7a0413b8390c90b7cac18ee9010

There are two possible causes for an error like this:

■ The first possible cause is that the package has been changed since it was signed. This is
unlikely but is possible if the package manifest has been hand edited since signing. Without
manual intervention, the package should not have changed since it was signed because
pkgsend strips existing signature actions during publication because the old signature is
invalid when the package gets a new time stamp.

■ The second, more likely cause is that the key and certificate used to the sign the package
were not a matched pair. If the certificate given to the -c option of pkgsign was not created
with the key given to the -k option of pkgsign, the package is signed, but its signature will
not be verified.

Troubleshooting Signed Packages

Chapter 9 • Signing IPS Packages 95

Unknown Critical Extension
The following error occurs when a certificate in the chain of trust uses a critical extension that
pkg does not understand.

pkg install: The certificate whose subject is

/C=US/ST=California/L=Menlo Park/O=pkg5/CN=cs2_ch1_ta3/emailAddress=cs2_ch1_ta3

could not be verified because it uses a critical extension that pkg5 cannot

handle yet. Extension name:issuerAltName

Extension value:<EMPTY>

Until pkg learns how to process that critical extension, the only solution is to regenerate the
certificate without the problematic critical extension.

Unknown Extension Value
The following error is similar to the previous error except that the problem is not with an
unfamiliar critical extension but with a value that pkg does not understand for an extension that
pkg does understand.

pkg install: The certificate whose subject is

/C=US/ST=California/L=Menlo Park/O=pkg5/CN=cs5_ch1_ta3/emailAddress=cs5_ch1_ta3

could not be verified because it has an extension with a value that pkg(5)

does not understand.

Extension name:keyUsage

Extension value:Encipher Only

In this case, pkg understands the keyUsage extension, but does not understand the value
Encipher Only. The error looks the same whether the extension in question is critical or not.

The solution, until pkg learns about the value in question, is to remove the value from the
extension, or remove the extension entirely.

Unauthorized Use of Certificate
The following error occurs when a certificate has been used for a purpose for which it was not
authorized.

pkg install: The certificate whose subject is

/C=US/ST=California/L=Menlo Park/O=pkg5/CN=ch1_ta3/emailAddress=ch1_ta3

could not be verified because it has been used inappropriately.

The way it is used means that the value for extension keyUsage must include

’DIGITAL SIGNATURE’ but the value was ’Certificate Sign, CRL Sign’.

Troubleshooting Signed Packages

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 201296

In this case, the certificate ch1_ta3 has been used to sign the package. The keyUsage extension
of the certificate means that the certificate is only valid to sign other certificates and CRLs
(Certificate Revocation Lists).

Unexpected Hash Value
The following error indicates that the certificate has been changed since it was last retrieved
from the publisher.

pkg install: Certificate

/tmp/ips.test.7149/0/image0/var/pkg/publisher/test/certs/0ce15c572961b7a0413b8390c90b7cac18ee9010

has been modified on disk. Its hash value is not what was expected.

The certificate at the provided path is used to verify the package being installed, but the hash of
the contents on disk do not match what the signature action thought they should be.

The simple solution is to remove the certificate and allow pkg to download the certificate again.

Revoked Certificate
The following error indicates the certificate in question, which was in the chain of trust for the
package to be installed, was revoked by the issuer of the certificate.

pkg install: This certificate was revoked:

/C=US/ST=California/L=Menlo Park/O=pkg5/CN=cs1_ch1_ta4/emailAddress=cs1_ch1_ta4

for this reason: None

The package involved is: pkg://test/example_pkg@1.0,5.11-0:20110919T205539Z

Troubleshooting Signed Packages

Chapter 9 • Signing IPS Packages 97

98

Handling Non-Global Zones

Developing packages that work consistently with zones usually involves little or no additional
work. This chapter describes how IPS handles zones and discusses those cases where packaging
needs to account for non-global zones.

Packaging Considerations for Non-Global Zones
When considering zones and packaging, two questions need to be answered:

■ Does anything in my package have an interface that crosses the boundary between the global
zone and non-global zones?

■ How much of the package should be installed in the non-global zone?

Does the Package Cross the Global, Non-Global Zone
Boundary?
If pkgA delivers both kernel and userland functionality, and both sides of that interface must be
updated accordingly, then whenever pkgA is updated in a non-global zone, pkgA must also be
updated in any other zones where pkgA is installed.

To ensure this update is done correctly, use a parent dependency in pkgA. If a single package
delivers both sides of the interface, then a parent dependency on
feature/package/dependency/self ensures that the global zone and the non-global zones
contain the same version of the package, preventing version skew across the interface.

The parent dependency also ensures that if the package is in a non-global zone, then it is also
present in the global zone.

10C H A P T E R 1 0

99

If the interface spans multiple packages, then the package that contains the non-global zone side
of the interface must contain a parent dependency on the package that delivers the global zone
side of the interface. The parent dependency is also discussed in “Dependency Types” on
page 57.

How Much of a Package Should Be Installed in a
Non-Global Zone?
If all of a package should be installed when the package is being installed in a non-global zone,
then nothing needs to be done to the package to enable it to function properly. For consumers
of the package, though, it can be reassuring to see that the package author properly considered
zone installation and decided that this package can function in a zone. For that reason, you
should explicitly state that the package functions in both global and non-global zones. To do
this, add the following action to the manifest:

set name=variant.opensolaris.zone value=global value=nonglobal

If no content in the package can be installed in a non-global zone (for example a package that
only delivers kernel modules or drivers), then the package should specify that it cannot be
installed in a non-global zone. To do this, add the following action to the manifest:

set name=variant.opensolaris.zone value=global

If some but not all of the content in the package can be installed in a non-global zone, then take
the following steps:

1. Use the following set action to state that the package can be installed in both global and
non-global zones:

set name=variant.opensolaris.zone value=global value=nonglobal

2. Identify the actions that are relevant only in the global zone or only in a non-global zone.
Assign the following attribute to actions that are relevant only in the global zone:

variant.opensolaris.zone=global

Assign the following attribute to actions that are relevant only in a non-global zone:

zone:variant.opensolaris.zone=nonglobal

If a package has a parent dependency or has pieces that are different in global and non-global
zones, test to ensure that the package works as expected in a non-global zone as well as in the
global zone.

If the package has a parent dependency on itself, then the global zone must configure the
repository that delivers the package as one of its origins. Install the package in the global zone
first, and then in the non-global zone for testing.

Packaging Considerations for Non-Global Zones

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 2012100

Troubleshooting Package Installations in Non-Global Zones
This section discusses problems that users might encounter when attempting to install a
package in a non-global zone.

Packages that Have Parent Dependencies on
Themselves
If you encounter a problem installing a package in a non-global zone, ensure that the following
services are online in the global zone:

svc:/application/pkg/zones-proxyd:default

svc:/application/pkg/system-repository:default

Ensure that the following service is online in the non-global zone:

svc:/application/pkg/zones-proxy-client:default

These three services provide publisher configuration to the non-global zone and a
communication channel that the non-global zone can use to make requests to the repositories
assigned to the system publishers served from the global zone.

You cannot update the package in the non-global zone, since it has a parent dependency on
itself. Initiate the update from the global zone; pkg updates the non-global zone along with the
global zone.

Once the package is installed in the non-global zone, test the functionality of the package.

Packages that Do Not Have Parent Dependencies on
Themselves
If the package does not have a parent dependency on itself, then you do not need to configure
the publisher in the global zone, and you should not install the package in the global zone.
Updating the package in the global zone will not update the package in the non-global zone. In
this case, updating the package in the global zone can cause unexpected results when testing the
older non-global zone package.

The simplest solution in this situation is to make the publisher available to the non-global zone,
and install and update the package from within the non-global zone.

If the zone cannot access the publisher's repositories, configuring the publisher in the global
zone enables the zones-proxy-client and system-repository services to proxy access to the
publisher for the non-global zone. Then install and update the package in the non-global zone.

Troubleshooting Package Installations in Non-Global Zones

Chapter 10 • Handling Non-Global Zones 101

102

Modifying Published Packages

Occasionally, you might need to modify packages that you did not produce. For example, you
might need to override attributes, replace a portion of the package with an internal
implementation, or remove binaries that are not permitted on your systems.

This chapter describes how you can modify existing packages for local conditions.

Republishing Packages
IPS enables you to easily republish an existing package with your modifications, even if you did
not originally publish the package. You can also republish new versions of the modified package
so that pkg update continues to work as users expect. Modified packages install and update
correctly in the image.

Of course, running a system with a modified package could adversely affect your support if any
relationship is suspected between observed problems and the modified package.

Use the following steps to modify and republish a package:

1. Use pkgrecv(1) to download the package to be republished in a raw format to a specified
directory. All of the files are named by their hash value, and the manifest is named
manifest. Remember to set any required proxy configuration in the http_proxy
environment variable.

2. Use pkgmogrify(1) to make the necessary modifications to the manifest. Remove any time
stamp from the internal package FMRI to prevent confusion during publication.
If changes are significant, use pkglint(1) to verify the resulting package.

3. Use pkgsend(1) to republish the package. Note that this republication strips the package of
any signatures that are present and ignores any time stamp specified by pkg.fmri. To
prevent a warning message, remove signature actions in the pkgmogrify step.

11C H A P T E R 1 1

103

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkgrecv-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkgmogrify-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkglint-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkgsend-1

If you do not have permission to publish to the original source of the package, use
pkgrepo(1) to create a repository, and then use the following command to set the new
publisher ahead of the original publisher in the publisher search order:

pkg set-publisher --search-before=original_publisher new_publisher
4. If necessary, use pkgsign(1) to sign the package. To prevent client caching issues, sign the

package before you install the package, even for testing.

Changing Package Metadata
In the following example, the original pkg.summary value is changed to be “IPS has lots of
features.” The package is downloaded using the --raw option of pkgrecv. By default, only the
newest version of the package is downloaded. The package is then republished to a new
repository.

$ mkdir republish; cd republish

$ pkgrecv -d . --raw -s http://pkg.oracle.com/solaris/release package/pkg

$ cd package* # The package name contains a ’/’ and is url-encoded.

$ cd *

$ cat > fix-pkg

Change the value of pkg.summary

<transform set name=pkg.summary -> edit value ’.*’ "IPS has lots of features">

Delete any signature actions

<transform signature -> drop>

Remove the time stamp from the fmri so that the new package gets a new time stamp

<transform set name=pkg.fmri -> edit value ":20.+" "">

^D

$ pkgmogrify manifest fix-pkg > new-manifest

$ pkgrepo create ./mypkg

$ pkgsend -s ./mypkg publish -d . new-manifest

Changing Package Publisher
Another common use case is to republish packages under a new publisher name. One case
when this is useful is to consolidate packages from multiple repositories into a single repository.
For example, you might want to consolidate packages from repositories of several different
development teams into a single repository for integration testing.

To republish under a new publisher name, use the pkgrecv, pkgmogrify, pkgrepo, and pkgsend

steps shown in the previous example.

The following sample transform changes the publisher to mypublisher:

<transform set name=pkg.fmri -> edit value pkg://[^/]+/ pkg://mypublisher/>

You can use a simple shell script to iterate over all packages in the repository. Use the output
from pkgrecv --newest to process only the newest packages from the repository.

Changing Package Metadata

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 2012104

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkgrepo-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkgsign-1

The following script saves the above transform in a file named change-pub.mog, and then
republishes from development-repo to a new repository mypublisher, changing the package
publisher along the way:

#!/usr/bin/ksh93

pkgrepo create mypublisher

pkgrepo -s mypublisher set publisher/prefix=mypublisher

mkdir incoming

for package in $(pkgrecv -s ./development-repo --newest); do

pkgrecv -s development-repo -d incoming --raw $package

done

for pdir in incoming/*/* ; do

pkgmogrify $pdir/manifest change-pub.mog > $pdir/manifest.newpub

pkgsend -s mypublisher publish -d $pdir $pdir/manifest.newpub

done

This script could be modified to do tasks such as select only certain packages, make additional
changes to the versioning scheme of the packages, and show progress as it republishes each
package.

Changing Package Publisher

Chapter 11 • Modifying Published Packages 105

106

Classifying Packages

This appendix shows package information classification scheme definitions.

Assigning Classifications
The Package Manager GUI uses the info.classification package attribute, with scheme
org.opensolaris.category.2008, to display packages by category. Users can also use the pkg
search command to display packages that have a given classification.

Use a set action to assign a classification to a package, as shown in the following example:

set name=info.classification \

value="org.opensolaris.category.2008:System/Administration and Configuration"

The category and subcategory are separated by a forward slash character. Spaces in the attribute
value require quoting.

A package can have more than one classification, as shown in the following example:

set name=info.classification \

value="org.opensolaris.category.2008:Meta Packages/Group Packages" \

value="org.opensolaris.category.2008:Web Services/Application and Web Servers"

Classification Values
The following category and subcategory values are defined:

Meta Packages

Group Packages
Incorporations

AA P P E N D I X A

107

Applications

Accessories
Configuration and Preferences
Games
Graphics and Imaging
Internet
Office
Panels and Applets
Plug-ins and Run-times
Sound and Video
System Utilities
Universal Access

Desktop (GNOME)

Documentation
File Managers
Libraries
Localizations
Scripts
Sessions
Theming
Trusted Extensions
Window Managers

Development

C
C++
Databases
Distribution Tools
Editors
Fortran
GNOME and GTK+
GNU
High Performance Computing
Java
Objective C
Other Languages
PHP
Perl
Python
Ruby

Classification Values

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 2012108

Source Code Management
Suites
System
X11

Drivers

Display
Media
Networking
Other Peripherals
Ports
Storage

System

Administration and Configuration
Core
Databases
Enterprise Management
File System
Fonts
Hardware
Internationalization
Libraries
Localizations
Media
Multimedia Libraries
Packaging
Printing
Security
Services
Shells
Software Management
Text Tools
Trusted
Virtualization
X11

Web Services

Application and Web Servers
Communications

Classification Values

Appendix A • Classifying Packages 109

Classification Values

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 2012110

How IPS Is Used To Package the Oracle Solaris
OS

This appendix describes how Oracle uses IPS features to package the Oracle Solaris OS, and
how the various dependency types are used to define working package sets for the OS.

This appendix provides another concrete example of using IPS to manage a complex set of
software.

Oracle Solaris Package Versioning
“Package Identifier: FMRI” on page 17 described the pkg.fmri attribute and the different
components of the version field, including how the version field can be used to support different
models of software development. This section explains how the Oracle Solaris OS uses the
version field, and provides insight into the reasons that a fine-grained versioning scheme can be
useful. In your packages, you do not need to follow the same versioning scheme that the Oracle
Solaris OS uses.

The meaning of each part of the version string in the following sample package FMRI is given
below:

pkg://solaris/system/library@0.5.11,5.11-0.175.1.0.0.2.1:20120919T082311Z

0.5.11

Component version. For packages that are part of the Oracle Solaris OS, this is the OS
major.minor version. For other packages, this is the upstream version. For example, the
component version of the following Apache Web Server package is 2.2.22:

pkg:/web/server/apache-22@2.2.22,5.11-0.175.1.0.0.2.1:20120919T122323Z

5.11

Build version. This is used to define the OS release that this package was built for. The build
version should always be 5.11 for packages created for Oracle Solaris 11.

BA P P E N D I X B

111

0.175.1.0.0.2.1

Branch version. Oracle Solaris packages show the following information in the branch
version portion of the version string of a package FMRI:

0.175 Major release number. The major or marketing development release build
number. In this example, 0.175 indicates Oracle Solaris 11.

1 Update release number. The update release number for this Oracle Solaris
release. The update value is 0 for the first customer shipment of an Oracle Solaris
release, 1 for the first update of that release, 2 for the second update of that
release, and so forth. In this example, 1 indicates Oracle Solaris 11.1.

0 SRU number. The Support Repository Update (SRU) number for this update
release. SRUs include only bug fixes; they do not include new features. The
Oracle Support Repository is available only to systems under a support contract.

0 Reserved. This field is not currently used for Oracle Solaris packages.

2 SRU build number. The build number of the SRU, or the respin number for the
major release.

1 Nightly build number. The build number for the individual nightly builds.

20120919T082311Z

Time stamp. The time stamp was defined when the package was published.

Oracle Solaris Incorporation Packages
Oracle Solaris is delivered by a set of packages, with each group of packages constrained by an
incorporation.

Each incorporation roughly represents the organization that developed each group of packages,
though there are some cross-incorporation dependencies within the packages themselves. The
following incorporation packages are in Oracle Solaris (pkg list *incorporation):

pkg:/consolidation/SunVTS/SunVTS-incorporation

pkg:/consolidation/X/X-incorporation

pkg:/consolidation/admin/admin-incorporation

pkg:/consolidation/cacao/cacao-incorporation

pkg:/consolidation/cde/cde-incorporation

pkg:/consolidation/cns/cns-incorporation

pkg:/consolidation/dbtg/dbtg-incorporation

pkg:/consolidation/desktop/desktop-incorporation

pkg:/consolidation/desktop/gnome-incorporation

pkg:/consolidation/gfx/gfx-incorporation

pkg:/consolidation/install/install-incorporation

pkg:/consolidation/ips/ips-incorporation

pkg:/consolidation/java/java-incorporation

pkg:/consolidation/jdmk/jdmk-incorporation

pkg:/consolidation/l10n/l10n-incorporation

Oracle Solaris Incorporation Packages

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 2012112

pkg:/consolidation/ldoms/ldoms-incorporation

pkg:/consolidation/man/man-incorporation

pkg:/consolidation/nspg/nspg-incorporation

pkg:/consolidation/nvidia/nvidia-incorporation

pkg:/consolidation/osnet/osnet-incorporation

pkg:/consolidation/sfw/sfw-incorporation

pkg:/consolidation/sic_team/sic_team-incorporation

pkg:/consolidation/solaris_re/solaris_re-incorporation

pkg:/consolidation/sunpro/sunpro-incorporation

pkg:/consolidation/ub_javavm/ub_javavm-incorporation

pkg:/consolidation/userland/userland-incorporation

pkg:/consolidation/vpanels/vpanels-incorporation

pkg:/consolidation/xvm/xvm-incorporation

Each of these incorporations includes the following information:

■ Package metadata.
■ Dependencies of type incorporate, sometimes with variant.arch variants to denote

dependencies that are specific to a given architecture. See “incorporate Dependency” on
page 60 and “Mutually Exclusive Software Components” on page 65 for more information
about incorporate dependencies and variant.arch variants.

■ A license action to ensure that a license is displayed when the incorporation is installed.
See “License Actions” on page 28 for more information about license actions.

Each package delivered on the system contains a require dependency on one of these
incorporations. See “require Dependency” on page 57 for more information.

Oracle Solaris also includes a special incorporation named entire. The entire incorporation
constrains all other incorporations to the same build by including both require and
incorporate dependencies on each incorporation package. In this way, the entire
incorporation defines a software surface such that all packages are upgraded as a single group.

Relaxing Dependency Constraints
Some of the incorporations listed above use facet.version-lock.* facets to enable the
administrator to use the pkg change-facet command to relax the constraint to the
incorporation for the specified packages. See “Relaxing Constraints on Installable Package
Versions” on page 62 for more information.

For example, the pkg:/consolidation/userland/userland-incorporation package contains
the following facet.version-lock.* definitions:

..

depend type=incorporate \

fmri=pkg:/library/python-2/subversion@1.6.16-0.175.0.0.0.2.537 \

facet.version-lock.library/python-2/subversion=true

depend type=incorporate \

fmri=pkg:/library/security/libassuan@2.0.1-0.175.0.0.0.2.537 \

Relaxing Dependency Constraints

Appendix B • How IPS Is Used To Package the Oracle Solaris OS 113

facet.version-lock.library/security/libassuan=true

depend type=incorporate \

fmri=pkg:/library/security/openssl/openssl-fips-140@1.2-0.175.0.0.0.2.537 \

facet.version-lock.library/security/openssl/openssl-fips-140=true

depend type=incorporate fmri=pkg:/mail/fetchmail@6.3.21-0.175.0.0.0.2.537 \

facet.version-lock.mail/fetchmail=true

depend type=incorporate \

fmri=pkg:/network/chat/ircii@0.2006.7.25-0.175.0.0.0.2.537 \

facet.version-lock.network/chat/ircii=true

depend type=incorporate \

fmri=pkg:/print/cups/filter/foomatic-db-engine@0.20080903-0.175.0.0.0.2.537 \

facet.version-lock.print/cups/filter/foomatic-db-engine=true

depend type=incorporate \

fmri=pkg:/print/filter/gutenprint@5.2.4-0.175.0.0.0.2.537 \

facet.version-lock.print/filter/gutenprint=true

depend type=incorporate fmri=pkg:/runtime/erlang@12.2.5-0.175.0.0.0.2.537 \

facet.version-lock.runtime/erlang=true

..

The entire package also contains version-lock facets. In this case, the facets allow specified
incorporations to be removed from the entire incorporation. However, this can result in a
system that is not covered by support. Those packages should only be unlocked on advice from
Oracle support personnel.

Oracle Solaris Group Packages
Oracle Solaris defines several group packages that contain group dependencies. See “group
Dependency” on page 59 for more information about group dependencies. These group
packages enable convenient installation of common sets of packages.

The following group packages are in Oracle Solaris (pkg list -a group*):

pkg:/group/feature/amp

pkg:/group/feature/developer-gnu

pkg:/group/feature/multi-user-desktop

pkg:/group/feature/storage-avs

pkg:/group/feature/storage-nas

pkg:/group/feature/storage-server

pkg:/group/feature/trusted-desktop

pkg:/group/system/solaris-auto-install

pkg:/group/system/solaris-desktop

pkg:/group/system/solaris-large-server

pkg:/group/system/solaris-small-server

The solaris-small-server group package is installed by the default AI manifest that is used to
install non-global zones (/usr/share/auto_install/manifest/zone_default.xml). See
solaris(5) for more information.

Oracle Solaris Group Packages

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 2012114

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5solaris-5

Attributes and Tags
This section describes general and Oracle Solaris action attributes and Oracle Solaris attribute
tags.

Informational Attributes
The following attributes are not necessary for correct package installation, but having a shared
convention reduces confusion between publishers and users.

info.classification

See “Set Actions” on page 24 for information about the info.classification attribute. See
a list of classifications in Appendix A, “Classifying Packages.”

info.keyword

A list of additional terms that should cause this package to be returned by a search.

info.maintainer

A human readable string that describes the entity that provides the package. This string
should be the name, or name and email of an individual, or the name of an organization.

info.maintainer-url

A URL associated with the entity that provides the package.

info.upstream

A human readable string that describes the entity that creates the software. This string
should be the name, or name and email of an individual, or the name of an organization.

info.upstream-url

A URL associated with the entity that creates the software delivered in the package.

info.source-url

A URL to the source code bundle for the package, if appropriate.

info.repository-url

A URL to the source code repository for the package, if appropriate.

info.repository-changeset

A changeset ID for the version of the source code contained in info.repository-url.

Oracle Solaris Attributes
org.opensolaris.arc-caseid One or more case identifiers (for example,

PSARC/2008/190) associated with the ARC case
(Architecture Review Committee) or cases associated with
the component delivered by the package.

Attributes and Tags

Appendix B • How IPS Is Used To Package the Oracle Solaris OS 115

org.opensolaris.smf.fmri One or more FMRIs that represent SMF services delivered
by this package. These attributes are automatically
generated by pkgdepend for packages that contain SMF
service manifests. See the pkgdepend(1) man page.

Organization-Specific Attributes
To provide additional metadata for a package, use an organization-specific prefix on the
attribute name. Organizations can use this method to provide additional metadata for packages
developed in that organization or to amend the metadata of an existing package. To amend the
metadata of an existing package, you must have control over the repository where the package is
published. For example, a service organization might introduce an attribute named
service.example.com,support-level or com.example.service,support-level to describe
a level of support for a package and its contents.

Oracle Solaris Tags
variant.opensolaris.zone Specifies which actions in a package can be installed in a

non-global zone, in the global zone, or in either a non-global
or the global zone. See Chapter 10, “Handling Non-Global
Zones,” for more information.

Attributes and Tags

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1 • October 2012116

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1pkgdepend-1

	Packaging and Delivering Software With the Image Packaging System in Oracle® Solaris 11.1
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Related Documentation
	Access to Oracle Support
	Typographic Conventions
	Shell Prompts in Command Examples

	IPS Design Goals, Concepts, and Terminology
	IPS Design Goals
	Software Self-Assembly
	Tools for Software Self-Assembly
	Atomic Software Objects
	Configuration Composition
	Actuators and SMF Services

	Examples of Software Self-Assembly in Oracle Solaris
	Apache Web Server
	Multiple Packages Delivering Configuration Fragments

	IPS Package Lifecycle
	IPS Terminology and Components
	Installable Image
	Package Identifier: FMRI
	Package Publisher
	Package Name
	Package Version

	Package Content: Actions
	File Actions
	Directory Actions
	Link Actions
	Hardlink Actions
	Set Actions
	Driver Actions
	Depend Actions
	License Actions
	Legacy Actions
	Signature Actions
	User Actions
	Group Actions

	Package Repository

	Packaging Software With IPS
	Designing a Package
	Creating and Publishing a Package
	Generate a Package Manifest
	Add Necessary Metadata to the Generated Manifest
	Evaluate Dependencies
	Generate Package Dependencies
	Resolve Package Dependencies

	Add Any Facets or Actuators That Are Needed
	Verify the Package
	Publish the Package
	Publish to a Local File Repository
	Publish as a Package Archive
	Using Package Repositories and Archives

	Test the Package

	Converting SVR4 Packages To IPS Packages
	Generate an IPS Package Manifest from a SVR4 Package
	Verify the Converted Package
	Other Package Conversion Considerations

	Installing, Removing, and Updating Software Packages
	How Package Changes Are Performed
	Check Input for Errors
	Determine the System End State
	Run Basic Checks
	Run the Solver
	Optimize the Solver Results
	Evaluate Actions
	Download Content
	Execute Actions
	Process Actuators
	Update Boot Archive

	Specifying Package Dependencies
	Dependency Types
	require Dependency
	require-any Dependency
	optional Dependency
	conditional Dependency
	group Dependency
	origin Dependency
	incorporate Dependency
	parent Dependency
	exclude Dependency

	Constraints and Freezing
	Constraining Installable Package Versions
	Relaxing Constraints on Installable Package Versions
	Freezing Installable Package Versions

	Allowing Variations
	Mutually Exclusive Software Components
	Optional Software Components

	Modifying Package Manifests Programmatically
	Transform Rules
	Include Rules
	Transform Order
	Packaged Transforms

	Automating System Change as Part of Package Installation
	Specifying System Changes on Package Actions
	Delivering an SMF Service
	Delivering a New SMF Service
	Delivering a Service that Runs Once
	Supporting Package Self-Assembly in SMF Methods
	Testing Whether a Configuration File Recompile Is Necessary
	Limiting the Time To Wait for Self-Assembly To Complete

	Advanced Topics For Package Updating
	Avoiding Conflicting Package Content
	Renaming, Merging and Splitting Packages
	Renaming a Single Package
	Merging Two Packages
	One Package Absorbs Another
	Two Packages Are Renamed

	Splitting a Package

	Obsoleting Packages
	Preserving Editable Files that Migrate
	Moving Unpackaged Contents on Directory Removal or Rename
	Delivering Multiple Implementations of an Application
	Delivering Directories To Be Shared Across Boot Environments
	How To Deliver Content to Shared Directories

	Signing IPS Packages
	Signing Package Manifests
	Defining Signature Actions
	Publishing Signed Package Manifests

	Troubleshooting Signed Packages
	Chain Certificate Not Found
	Authorized Certificate Not Found
	Untrusted Self-Signed Certificate
	Signature Value Does Not Match Expected Value
	Unknown Critical Extension
	Unknown Extension Value
	Unauthorized Use of Certificate
	Unexpected Hash Value
	Revoked Certificate

	Handling Non-Global Zones
	Packaging Considerations for Non-Global Zones
	Does the Package Cross the Global, Non-Global Zone Boundary?
	How Much of a Package Should Be Installed in a Non-Global Zone?

	Troubleshooting Package Installations in Non-Global Zones
	Packages that Have Parent Dependencies on Themselves
	Packages that Do Not Have Parent Dependencies on Themselves

	Modifying Published Packages
	Republishing Packages
	Changing Package Metadata
	Changing Package Publisher

	Classifying Packages
	Assigning Classifications
	Classification Values

	How IPS Is Used To Package the Oracle Solaris OS
	Oracle Solaris Package Versioning
	Oracle Solaris Incorporation Packages
	Relaxing Dependency Constraints
	Oracle Solaris Group Packages
	Attributes and Tags
	Informational Attributes
	Oracle Solaris Attributes
	Organization-Specific Attributes
	Oracle Solaris Tags

