Oracle® Solaris Studio 12.3: DLight
Tutorial

December 2011

ORACLE"

The DLight Tutorial shows how to use DLight to launch an executable and use the DLight monitoring graphs
and tools to examine the profiling data from the running program. The tutorial also shows how to attach to a
process and examine profiling data from the process and all its child processes and threads. The tutorial
includes the following topics:

= “Introduction” on page 2

= “Setting Oracle Solaris Privileges for DLight” on page 3

= “Downloading the Oracle Solaris Studio Sample Applications” on page 4
= “Building the Sample Application” on page 4

= “Starting DLight” on page 4

= “Profiling the Sample Application” on page 4

= “Profiling a Process Tree” on page 22

= “For More Information” on page 28

Introduction

DLight is an interactive graphical observability tool that uses Oracle Solaris Dynamic Tracing (DTrace)
technology to gather information about programs running on Oracle Solaris. DLight enables you to analyze
programs with DTrace, without needing to know how to use the D scripting language. DLight runs multiple
DTrace scripts in a synchronized fashion, while showing you the output graphically, to help you trace a
runtime problem in an application to the root cause.

The basic workflow of DLight is as follows:

Create a target to define the process or executable you want to profile
Run the target

Examine the data in the DLight tools that open when you run the target
Interact with the tools to view problem points in the code

Stop the target if necessary

RANESER L

When you create a target you can specify the type of target and the system where the target should run (local
or remote system).

DLight Targets types are:
Executable Target Program that is not yet running
Process Target Running process

Process Tree Target ~ Running process and all child processes spawned by that process

When you run an Executable Target or Process Target, each tool displays usage information in a graph in the
DLight Run Monitor window.

When you run the Process Tree target, tools display in Process Tree Profiling windows that offer more
information about the activity of the multiple processes and threads.

The tools in the Run Monitor window and Process Tree Profiling window are described later in this
document.

You must have specific DTrace-related Oracle Solaris privileges on the system where you run DLight, as
described in the next section.

Tip - See Help = Help Contents for information about targets, profiling processes on remote hosts, and
changing tool configuration.

Oracle Solaris Studio 12.3: DLight Tutorial 2

Setting Oracle Solaris Privileges for DLight

DLight requires the user who runs it to be assigned Oracle Solaris privileges: dtrace_proc, dtrace_user,and
dtrace_kernel. These privileges control a user's access to DTrace features. If your username does not have
these privileges assigned, DLight prompts you for the password for an administrator account such as root
that can set privileges. This prompt occurs the first time you run an executable target or attach to a target
process in the DLight session.

After you supply the correct password, the administrator account is used to assign the necessary privileges to
the process that runs DLight for the duration of the DLight session. If you use DLight on a system where you
have these privileges assigned to your username permanently or log in as an administrator, DLight does not
prompt for an administrator password.

Note - These privileges should be used with care because they enable the user to look inside the running of the
kernel. You should only enable these privileges for users on systems that are used for software development,
and not on production systems.

To check your Solaris privileges, type the following at the command prompt:

$ /bin/ppriv $$

If your account has the required privileges, the ppriv command should return something similar to:

basic,dtrace kernel,dtrace proc,dtrace user
basic,dtrace kernel,dtrace proc,dtrace user
basic,dtrace kernel,dtrace proc,dtrace user
all

roHMmM

The line that starts with I: is important because it specifies privileges that are inherited by programs started
from your shell. If your account doesn't have the required inheritable privileges, and you do not have
administrator privileges or root access to your system, you should ask your system administrator to add the
dtrace_proc,dtrace_user,and dtrace_kernelinheritable privileges to your account.

If you have administrator privileges or root access to your system, you can grant your user account the
required privileges as described below.

To permanently grant required DTrace privileges to a user account:
1. Make sure the user account whose privileges you want to modify is logged out of the system.
2. Login as superuser (root) or another administrator user.

3. Type the following at the command prompt, and replace username with the user account name you are
modifying:

$ usermod -K defaultpriv=basic,dtrace_kernel,dtrace_user,dtrace_proc username

You can also assign privileges to a user's running shell process to temporarily grant these enhanced privileges
to the user.

To temporarily grant required DTrace privileges to a user account:
1. Type the following at the user's command prompt to determine the process ID of the user's shell process:

$ echo $$
2. Login as superuser (root) or another administrator user in another terminal.

3. Type the following, and replace process-1D with the process ID that was returned from the echo
command.

$ ppriv -s I+dtrace_user,dtrace_proc,dtrace_kernel process-1D

All commands typed in the shell specified by process-ID now inherit the required privileges. The user
should start DLight in this shell.

Oracle Solaris Studio 12.3: DLight Tutorial 3

Downloading the Oracle Solaris Studio Sample
Applications

This tutorial uses a sample program called ProfilingDemo.

The source code for the sample program is available in the sample applications zip file on the Oracle Solaris
Studio 12.3 Sample Applications web page (http://www.oracle.com/
technetwork/server-storage/solarisstudio/downloads/solaris-studio-samples-1408618.html).

If you have not already done so, download the sample applications zip file and unpack it in a directory of your
choice. The sample application is located in the DLight subdirectory of the
SolarisStudioSampleApplications directory.

Building the Sample Application

This procedure assumes you have already downloaded the sample applications zip file and unpacked itina
directory of your choice.

1. Copy the ProfilingDemo directory to your own private working area, such as your home directory:

% cp -r SolarisStudioSampleApplications/DLight/ProfilingDemo ~/ProfilingDemo
2. Build your copy of the program:

% cd ~/ProfilingDemo
% make

The program profilingdemo is built using the -g option, which generates debug information. If you
compile without this option, DLight can collect and display run time data for the program, but the
features that let you display the source code for a function will not work.

Starting DLight
Start DLight by typing:

% dlight

If you did not add the Oracle Solaris Studio directory to your path, you can start DLight by typing:

% /studio-installation-directory/bin/dlight

The default installation directory is /opt/solarisstudiol2.3/bin.

Profiling the Sample Application

The DLight Executable Target enables DLight to launch and profile an application that is not yet running. In
this section, you create and run an Executable Target and observe the dynamic graphs displayed by DLight as
the sample application runs.

1. InDLight, click the New DLight Target button 7/ . The Create New Executable Target dialog box
opens with the Executable Target tab selected.
2. Inthe Create New Executable Target dialog box:

a. Type the pathname to your profilingdemo executable in the Run field, or click Browse to navigate to
your profilingdemo executable file and open it.

b. Click Run.

Oracle Solaris Studio 12.3: DLight Tutorial 4

http://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/solaris-studio-samples-1408618.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/solaris-studio-samples-1408618.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/solaris-studio-samples-1408618.html

The new Executable Target is saved and listed in the DLight Targets window, and DLight runs the
target.

¢. Ifyoudo not have sufficient privileges for DTrace as explained in “Setting Oracle Solaris Privileges for
DLight” on page 3, you are prompted for your root password. You can also use non-root
administrator user's credentials if you replace the root username with the appropriate administrator
name.

3. Theprofilingdemo application begins executing and the Run Monitor window displays dynamic graphs
of profiling data gathered about the running application.

Tip - If you cannot see all the graphs, close the Host Info window. You can also use the scroll bars on the
side of the Run Monitor window to view more of the graphs.

4. Inthe Output window, the profilingdemo program tells you what it is doing so you can match the output
to the data represented in the graphs. Click the Output window and press Enter each time the program
requests it until execution is finished.

Using the Slider Controls

At the bottom of the DLight Run Monitor window, you can see sliders for controlling your view of the graphs:
View slider, Details slider, and Time slider.

Wiew slider
Details slider
b| Time slider

1. Place your mouse cursor over the end points of the sliders for tooltip information about each of the
sliders.

2. Click and hold your mouse cursor on the Time slider and drag the slider to the left to see the beginning of
the run. All the graphs slide in unison so you can see what happened in each area (CPU, memory, threads,
I/O) at any given time, and see the relationships between them.

3. Drag the Time slider from left to right to see the complete run.

4. Move your mouse cursor to the View slider, the control that overlays the time units. The View slider
controls let you select which part of the run time is displayed in the graphs.

5. Click and drag the left handle of the View slider, the start point, all the way to the beginning of the run at
0:00. The graphs now show the entire run at once. The effect is similar to zooming out as far as possible.
Notice that the Time slider is not functional when you select the complete run time. You are already
looking at all the data so there is nothing left to scroll.

Oracle Solaris Studio 12.3: DLight Tutorial 5

DLight Targets DLight Run Monitor - ... 41 X
Thread Microstates Thread Details...

3 M Sieeping
2 & waiting
1
M Blacked
M Running
10 0:30 1.00
CPU Usage Hot Spots...
100 F Wpem
= M User
60 -
25 - H ﬁm i I
0 0:30 1:.00
Memory Usage Memary Leaks...
o M Hesp
16K -
0EK I —
A \ J Max: 18K
10 0:30 1.00

: T

ANy =

G40
48M

220)
e AWL Files: 0
e
oo 0:30 1.00
@ E 111

[«] [»]

1/0 Usage 1i0 Details.
b

6. The View slider can be used for zooming. Drag the start point of the View slider to the right. As you drag
the handle, the graphs zoom in to focus on the area toward the end of the run. Notice that the Time slider
can again be used to scroll back and forth in the run time.

7. Place your mouse cursor over the end points of the orange colored Details slider for a description of how
to use the slider. The Details slider controls enable you to select a portion of the run time to examine in
detail.

8. Drag the start point of the Details slider to a later time than the start point of the View slider. Notice that
the graphs are grayed out in the area in front of the start point, giving a highlight effect to the graph
between the start and end points.

Oracle Solaris Studio 12.3: DLight Tutorial

DLight Targets | DLight Run Monitor - .. 41

Thread Microstates Thread Details
M Sieeping
5 [waiting

Nad . | | W 5icoked
S

1:00 105 1:10

CPU Usage Hot Spots:

100 F
75
80 -

25

M system
M user

1:00 1.05 1:10

Memory Usage Memory Leaks

20K F e
15K -

o8k -
48K B Max: 18K

Thread Usage Sync Problems:

1B -
-8B 3
1 B

M Threads
M Lockwaits

110 Usage 10 Details
% I s, bis.

9. When you click on any of the graphs' detail buttons (Thread Details, Hot Spots, Memory Leaks, Sync
Problems, or I/O Details), the data for the highlighted area is shown in a details tab. In other words, the
Details slider is used to select the data to be shown in the Details tabs.

10. Drag the start point of the View slider back to the beginning of the run so you can see all the data.

Exploring Thread Microstates

The Thread Microstates graph shows an overview of the program's threads as they enter various execution
states during the program's run. The Solaris microstate accounting feature uses the DTrace facility to provide
fine-grained information about the state of each thread as it enters and exits ten different execution states:

User running The percentage of time the process has spent in user mode

System running The percentage of time the process has spent in system mode

Other Running The percentage of time the process has spent in processing system traps and such
Text pagefault The percentage of time the process has spent in processing text page faults

Data page fault ~ The percentage of time the process has spent in processing data page faults

Blocked The percentage of time the process has spent waiting for user locks
Sleeping The percentage of time the process has spent sleeping
Waiting The percentage of time the process has spent waiting for CPU

The Thread Microstates tool graphically shows summarized state information for all the threads that are
created during the program's run. Only four states are shown: Sleeping, Waiting, Blocked, and Running.
These states represent a simplified or summary view of the ten possible microstates, and give an overview of
the states of all the threads running in your program. For example, the time spent in the Running state
represents all types of running states: running in user mode, running in system calls, running in page faults,
running in traps.

1. Move the left handle of the View slider to the left until the graphs show about 20 seconds of the run time as
illustrated below. This image shows the beginning of the program's run, during the SEQUENTIAL DEMO
portion, when two tasks are run one after the other in a single thread. The points where the thread is
sleeping correspond to the points where the program is waiting for the user to press Enter.

Oracle Solaris Studio 12.3: DLight Tutorial 7

file Miew Run Jools Window Help

76 b H

M Blacked
M Running

DLight Targets DLight Run Monitor - ... 41 X
Thread Microstates Thread Details...
3 M Sieeping
2 @ waiting

CPU Usage Hot Spats...
oo [System
™ W User
80 -

25
0 0:.05 0:10 o018 o:

Memory Usage Memory Leaks...
20K M Heap
15K

0BK [~

s Max: 18K

0 005 010 016 0@

Sync Problems...

W Threads
W Lock waits

1i0 Usage 1i0 Details.

M wiites, bis
A \ [Reads, bis
320 \
Tam NN Files: 0

0 005 010 016 0%

(ORI 1 e e e o o
D.Eo LHuJu 100
=1

I T]

F3 welcome Window

ORACLE’

A==
Welcome to DLight
Profile Application Online Tutorial
Profile Running Process
Profile Tree of Processes
&
Show On Startup f;;‘a

Output - Run profiingdemo at locahost x| Profiling details

Call Stack

@ "7 SEQUENTIAL DEMO =rs

I'm going to run 2 works sequentially, one after another.

Each work will run for 10 seconds.

work 0: loads 1 of your 1 CPUs writing to a file

0:00 - Press [Enter] to start this work. .

work 0: Starting writing to temporary file. ..

work 0: Completed writing to file, wrote 48875520 bytes

work 1: loads 1 of your 1 CPUs with calculations, uses 10000 bytes of memory

0:31 - Press [Enter] to start this work. .

work 1: Allocating 10000 bytes of memory with malloe(). ..

oK

mD

Click and drag the Time slider to the right until the number of threads shown in the Thread Microstates

tool jumps to three.

The number of threads jumps to three as the program enters the PARALLEL DEMO portion. The main thread

launches two additional threads to run two tasks in parallel, each in its own thread. You can see that

considerable time is spent in the Waiting state (yellow) and the Sleeping state (blue), and not as much

time spent in the Running state (green). No time is spent in the Blocked state (orange) during the
PARALLEL DEMO portion because this portion of the program does not implement any thread
synchronization tactics such as mutex locks that would block threads.

Oracle Solaris Studio 12.3: DLight Tutorial

file Mew Run Tools Window Help
f

% b
DLight Targets | DLight Run Monitar - .. 41 x [[B8 Welcome Window x 4r[=][Tl
S

M Sieeping
@ waiting
M Blacked
M Running

Welcome to DLight

Profile Application Online Tutorial

Profile Running Process
100
@ System
= H User Profile Tree of Processes
&0
25

Memory Usage Memory Leaks...
k M Heap
15K
98K
< Max: 18K
1:35 0:40 0:45

4
Thread Usage Sync Problems... =

ORACLE" Show On Startup =

(

M Threads
W Lock waits

Output - Run profiingdemo at localhost % x | Profiling details Call Stack
g *** PAPALLEL DEMC ***
|

[»

I'm going to run 2 works in parallel, each work in its own thread.

110 Usage 0 Details. Threads will be created with pthread_create().

Torks will run for 10 seconds.

U M wiites, bis
48M - I Reads, bis work 0: loads 1 of your 1 CPUs writing to a file
32M - work 1: loads 1 of your 1 CPUs with caleulations, uses 10000 bytes of memory
e 0:44 - Press [Enter] to start...
M . Files: 0

Allocating 8 bytes of memory for thread descriptors with callac()
Creating threads with pthread_create()

Dﬁu‘ T 'uﬁrllﬂ L ‘|%|1 E:'u‘ T work 0: Starting writing to temporary file. ..
i i work 1: Allocating 10000 bytes of memory with malloe()... OK
=
|4l | T b work 1: Starting mathematical calculations. .. -

4. Dragthe Time slider all the way to the end of the run time. Notice that the Blocked microstate shown in
orange appears at the point where the program enters the PTHREAD MUTEX DEMO portion, in which each
thread uses mutual exclusion locks to prevent other threads from interfering at certain points. Each
thread can run actively only after it obtains the mutex lock. A thread is blocked when it tries to access a
locked section of code when another thread owns the mutex lock. The use of mutual exclusion locks

prevents the threads from entering a data race condition where threads have overlapping access to the
same data.

Oracle Solaris Studio 12.3: DLight Tutorial

File View Run Tools Window Help

e b

DLight Targets | DLight Run Monitor - . 41 % [E3 Welcome Window = AD][=[T]
Thread Microstates Thread Details
a Welcome to DLight
M Sieeping
= [waiting
L M Blocked
M Running

“ Profile Application “ Online Tutorial

- = Profile Running Process
[system

e B User <~ Profile Tree of Processes

50

25

055 100 105 110

Memory Usage Memory Leaks
20K T
18K
98K [
ek Max: 18K

0:55 100 105 110

&
Thread Usage Sync Problems =

ORACLE: Show On Startup]a“:v;-

M Threads
W Lock waits

Qutput - Run profiingdemo at localhost ¥ X |Profiing details Call Stack
[*** PTHREAD MUTEH DEMG *+*

I'n going to run 2 works in parallel.

110 Usage s Each work tries to lock = mutex with pthread muvex lock().

Thile mutex is locked by one work, others can not leck it again.

(AT iy B Writes, bls Work relsases the mutex in a sscond with prhread mutex_unlock().
A8M [Resds, bis
32m work 0: loads 1 of your 1 CFUs writing to a file

aemle work 1: loads 1 of your 1 CPUs with caleulations, uses 10000 bytes of memory

H : H L |Files O 0:58 - FPress [Enter] to starc... =l
055 100 105 10
Allocaving @ bytes of memory for thread descriptors with callec()
Dku‘ R ‘Ulu'1 'DD‘ ‘y Creating threads with prhread create()
11 work 0: locked mutex with pthread mutex lock()
[«] Lo [work 0: Starting writing to temporary file...

L4

5. Click the Thread Details button to display details about the thread microstates. The Thread Details

window opens to display a graphical timeline representation of all the threads run in the program along
with detailed state information.

5 Welcome Window % | = Thread Details x| [41¥][=l[E]

| Q" Q" Q| Show: [All Thraads [] petitievet. [asic [~]

Thread ID H 1250 1200
Thread 1
Thread 2
Thread 3
Thread § | H =

Thread 4 H H =

T
1211 [ris] Summary

[l] 1 [+]
B Running B Blocked 0 Wating B Sissping)

Oracle Solaris Studio 12.3: DLight Tutorial

The Thread Details window shows the state transitions for each thread during the complete run time of
the program.

6. Putyour cursor on one of the colored areas of a thread. A popup window displays details about what is
going on with that thread at that particular moment. Details include the time when the data was collected
and the percentage of time spent in each thread state at that moment. When you put your cursor over the
Summary area at the right side of the window, the popup window displays the percentage in each state for
the thread's complete run.

I Welcome Window /(=] Thread Details x| Thread Call Stack | [«[¥[=][a]
‘QH QH ! Show ‘AII Threads ‘V|I;etall Level ‘Easm ‘v|

T T T
Thread ID £ 0:50 1:00 1:01[m:s] Summary
h h h

Thread 1

Thread 2 i Lz
Thread 3 o
Thread § | | .
Thread 4 H = . | =z

Time 1:05.637

| Running 6%

|l Biocked 40%

Waiting 54%
| sleeping 0%

[«] I Ii I»]
B Running B Blocked] Watting B Stesping =1

7. Try using the window's controls to change what is shown:

= By default, the window shows all threads. Click the downward arrow to the right of the Show
drop-down list. You can select Live Threads only to show only threads that have not terminated, or
Finished Threads only to show only those threads that have terminated during the program run.

= By default, the window shows only the four generalized execution states. Click the downward arrow to
the right of the Detail Level drop-down list. You can select Moderate to display more detail on these
states, or Advanced to display ten microstates.

= Click an individual thread and notice that the thread is highlighted. If you press Shift and click another
thread, a range of threads is selected. To select multiple threads that are not adjacent, press Ctrl before
selecting the threads. When the threads you are interested in are highlighted, right-click and select
Show Only Selected Threads. To see all the threads again, select All Threads from the Show
drop-down list.

= Right-click on any thread and select Thread Name = Thread Entry to change the displayed thread
names to the functions entered when the threads began executing.

8. Zoom in on the thread graphs to take a closer look by clicking the Zoom In button EN . This image
shows the window zoomed in, with the Detail Level set to Advanced.

Oracle Solaris Studio 12.3: DLight Tutorial 11

[B Welcome Window _x Thread Details x| AD=E]

‘QH E)‘H @“ Show: ‘AII Threads "|getail Level: |Advanced ‘v|

Thread ID
Thread 1
Thread 2
Thread 3
Thread 5
Thread 4 | B

T
140 [ms] Summary

[a] I Il I
[user Running B System Running B Cther Running £ Waiting B Blocked]

O stopped B Sleeping [Text pags faut B Data page fautt B Kernsl page faut

9. Click the Zoom Out button S to go back to the previous zoom level.
10. Click the Show Complete Run button & to display the complete run in the Thread Details window at

once. You can click the button again 8 to return to the scrolling view of the thread details.

11. Click the second orange rectangle on thread 4. The Thread Call stack tab opens to show the call stack for
the thread at this moment. You can expand a node in the stack to see the calls happening in that thread, or
right-click the top node and choose Expand All to see the calls in all of the threads.

[B Welcome Window _x Thread Details x| AD=E]
Show: ‘AII Threads ‘ - | Detail Level: |Advanced
T T
Thread ID i 0:00 0:30
| |
Thread 1 | [
Thread 2
Thread 3
Thread 5
Thread 4 |
I User Running B System Running B Other Running 1 Wating B Blocked X/

O Stopped B Sleeping [Text page faut B Data page fautt B Kernel page faut

Output - Run profilngclemo at localhost | Thread Call Stac)

[Stacks dump at 1:01 457

¢ B Sleeping Thread 1 at 0:59.456
% _ nanosleep in libc.so.1+0x0
T mutex_demo at mutex.c129
T main at main.c:62
% _startin profiingdemo_1+0x0

o @ Blocked Thread 5 at 1:01 457

¢ B Sleeping Thread 4 at 1:01.457

% _ nanosleep in libc.so.1+0x0
) |mutex_threadfunc &t mutex c.97

% _thr_setup in libc.s0.1+0x0
% _wp_startin lbc.so.1+0x0

12. Double-click the mutex_threadfunc function to open the source file where the function is called. (You
can display the calling source file for any function in the stack that is not grayed out.)

Oracle Solaris Studio 12.3: DLight Tutorial 12

[EZ Welcome Window x| [Thread Details_x | {2 mutex.e x [A¥[=i[E]

RE-J- A58 g &,

ac whilz {'dons] { - -

0 pthread mutex_lock (&mutex) ;

a1 TRACE ("work %d: locked mutex with pthread mutex lock()\n”, work-

9z if (!done) I

o3 work run(work, MICROS PER SECOND) ;

2 }

o5 TRACE ("work %d: releasing mutex with pthread mutex unlock() \n",

EE pthread mutex_unlock (&mutex)

o7 uslesp (MICROS PER SECOND / 100);

o8 }

a9 rzturn NULL;

100 3

101 L=
102 void mutex_demo(int work_count, work t® works, int seconds] { i
103 PRINT ("### PTHREAD MUTEX DEMO ***\n\n"); =
104 EXPLAIN(" I'm going to run d works in parallel.\n", work count]: | |
108 EXPLATN(" FEach work triss to lock a mutex with pthread mutex lock() .
106 EXPLAIN(" While mutex is locked by one work, others can not lock it

107 EXPLAIN(" Work releases the mutex in a second with pthread mutex unl
108

108 int i;

110 for (i = 0:; i < work count: ++i) { ~|

|4l 1]]

Output - Run profiingdemo at localhost Thread Call Stack = x

[stacks dump &t 1.01.457
¢ W Sleeping Thread 1 at 0:59.456
% _ nanosleepinlibc

T mutex_demo at nutex o129
T main at mair
® _startinpro
o @ Blocked Thread § at 1:01 457
¢ W Sleeping Thread 4 at 1:01.457

emo_1+0x0

% __nanosteep iniic 0x0
%) [mutex_threadfunc at mutex.c:97

13. Click the Thread Details tab to return to the Thread Details window. Click on a thread. You can navigate
along the thread's timeline using your mouse or your keyboard:

= With your mouse, right-click the thread and use the Navigate menu to move the focus to the left or
right, set a point on the timeline and update the content of the Thread Call Stack tab, or switch focus to
the Thread Call Stack tab.

= To use keyboard shortcuts to navigate the thread, press the following keys:
= Ctrl+LeftArrow and Ctrl+RightArrow to scroll left and right in the thread timeline
= Ctrl+DownArrow to select a point in the timeline, which will update the Thread Call Stack
= Alt+DownArrow to focus input on the Thread Call Stack window

= In the Thread Call Stack you can use the arrow keys and Enter to open source files associated with the
functions

Exploring CPU Usage
The CPU Usage graph shows the percentage of the total CPU time used by your application during its run.

1. Click the Hot Spots button to display details about the CPU time. The CPU Time Per Function tab opens
to display the functions of the program, along with the CPU time used by each function. The functions are
listed in order of CPU time used, with the functions that use the most time listed first. If the program is
still running, the time initially displayed is the amount of time consumed at the moment you clicked the
button.

CPU Time Per Function = 3 | Output - Run profiingciemo at localhost
Time Filter Start, 000 End | ma=] Fitter: | [~ ‘@

Function Name _ | ~ CPU Time i | CPU Time (Inclusive)
work_run_usrepu ot common c.59 7.860 7681~
_write 1542 1.542)
mutex_unlock 0225 0225,
mutex_lock_impl 0217 0217,
memepy 0053 0053,
gettimeofday 0027 0027,
_fwrite_unlocked 0023 0072
malloe nn1a nntal

2. Click the header of the Function Name column to sort the functions alphabetically.

Oracle Solaris Studio 12.3: DLight Tutorial 13

3. Click the header of the CPU Time (Exclusive) column to sort the functions by the order of time used by
the individual functions.

4. Notice the difference between the two columns of CPU Time. CPU Time (Inclusive) shows the total CPU
time spent from the time the function is entered until the time it is exited, including the time of all other
functions that are called by the listed function. CPU Time (Exclusive) shows the time used only by the
specific function, not including any functions that it calls.

5. Click the CPU Time (Inclusive) column header to place the most time-consuming function back at the
top. Notice that thework_run_usrcpu function used slightly more CPU Time (Inclusive) than CPU Time
(Exclusive), which means that a small amount of its CPU time was actually used by other functions that it
calls, but that thework_run_usrcpu function itself used most of the time.

6. Some of the functions are shown in bold text. You can display the source files for those functions.
Double-click thework_run_usrcpu function. The common. c file opens, with the cursor resting on the
work_run_usrcpu function, line 59.

]
o]

[~

[BB Welcome Window x| B matexe x| | commonc x

BEE-0- ARSE @w &

53 static void work run idle(int work id, long micros) { =
54 TRACE ("work %d: Sleeping for %1d microseconds with usleep()\n", work |
55 usleep (micros)

56 TRACE ("work %d: Done sleeping\n”, work id):
57 }

59| 7.7 | 7.7 static void work run usrcpu(int work id, long micros) { bl

&0 TRACE ("work Starting mathematical calculations...\n", work id);: -
Bl long i =0, 3
82 double pi = O;
&3 struct timeval curtime, endtime;
&4 gettimeofday(fendtime, 0O);: =
[l i] [»]
CPU Time Per Function % x| Output - Run profiingdemo at localhost
Time Fiter Start | ook ene | x| Fiter: | Ba]
'@| Function Name | = CPU Time i | CPU Time (Inclusive)
|2 | work_run_usrepu =t common.c:59 7860 7631~
_write 1542 1.542)
0225 0.225]
07 0217]

7. Place your mouse cursor over the numbers in the left margin. The numbers are the same metrics for
exclusive and inclusive CPU time for the function that are displayed in the CPU Time Per Function tab.
The metrics are rounded to use less space, but the unrounded values are shown when you mouse over
them. Metrics for CPU-consuming lines such as the for loop that does calculations within the
work_run_usrcpu function are also shown in the common . ¢ source file.

[F Welcome Window_x | (] mutexe x| | common.e x [AT*R
RE-F- anSE g =
53 static void wo le(int work_id, long micros) {
54 TRACE ("'u ping for 41d microseconds with uslesp()\n", work_
55 usleep (m
56 TRACE("work %d: Done sleepino\n”, work id):

57 ¥
56| 7.7 | 7.7 static void work run usrcpu(int work_id, long micros) {

RACE i tarting mathematical calculations...\n", work id);:
= CPU Time (Exclusive) 765863 - -
CPU Time (inclusive)7 88122 [7

€3 struct timeval curtime, endtime;
&4 gettimeofday|sendeime, 0);

8. Change the Time Filter start time in the CPU Time Per Function tab to 0:30 by either typing the time and
pressing Enter, or using the arrows to scroll through the seconds. The graphs in the Run Monitor window
change just as they did when you moved the handles on Details slider. If you drag the handles, the Time
Filter settings in the CPU Time Per Function tab are updated to match. More importantly, the data shown
for the functions in the tab is updated to reflect the filter so only the CPU time used during that time
period is shown.

Oracle Solaris Studio 12.3: DLight Tutorial 14

[Welcome Window x|] mutexce [| commonc x [¥][=i[E]
BE-8- 9sHE

@s

53 static void work run idle(int work id, long micros) { =
54 TRACE ("work %d: Sleeping for %ld microseconds with uslesp()\n", work |

55 usleep micros) ; L
3 TRACE ("work d: Dons sleeping\n", work id): =
57 ¥ =

59| 1.7 | 1.7 static wvoid work run usrcpu(int work id, long micros) { -

&0 TRACE ("work %d: Starting mathematical calculations...\n", work id): =
61 CPU Time (Exclusive)1.69843| 4 = q;
= CPU Time: (Inclusive)1 63843 |

a3 struct timeval curtime, endtime;
64 gettimeofday (&endtime, 0O): =
[« 1] I [y
CPU Time Per Function % 5 | Output - Run profiingdiemo at localhost
Time Fiter Start. | 030F Jena: | ma=] Fitter: | ~]a
Function Name | = CPU Time i] CPU Time (Inclusive)
jwork_run_usrepu ai common .59 [&ED)) 1,698~
_write 0358 0358,
mutex_lock_impl 0102 0102
mutex_unlock 0089 0089,

gettimeofday 0014 0014

9. You can also filter for data that meets a certain metric. Right-click on the CPU Time (Exclusive) metrics
forwork_run_usrcpu. Select Show only rows where > CPU Time (Exclusive) == the metric shown for
work_run_usrcpu. All the other rows are filtered away, and only the row whose exclusive CPU time is
equal to that metric is displayed.

CPU Time Per Function

¥ % | Output - Run profiingdemo at localhost

Time Filter Start 030 End | max{ Filter: |

‘) Function Nams | = CPU Time: i | CPU Time (inclusive)

work_run_usrepu &t commo .. 1569
Go To Source
Show only rows where b| CPU Time (Exclusive) == 1696426314 ns

CPU Time (Exclusive) <> 1696426314 ns
CPU Time (Exclusive) = 16898426314 ns.
CPU Time (Exclusive) < 1696426314 ns.
CPU Time (Exclusive) »= 1698428314 ns
CPU Time (Exclusive) <= 1696426314 ns
No Fitter

0005

Exploring Memory Usage

The Memory Usage tool shows how your program's memory heap changes over its run time. You can use it to

identify memory leaks, which are points in your program where memory that is no longer needed fails to be

released. Memory leaks can lead to increased memory consumption in your program. If a program with a
memory leak runs long enough, it can eventually run out of usable memory.

1. Slide the Time slider in the Run Monitor to the left and right to see how the memory heap increases and
decreases over time. There are four spikes in usage in the run of the program. The first two occur during
the SEQUENTIAL DEMO, the third occurs during the PARALLEL DEMO, and the fourth occurs during the
PTHREAD MUTEX DEMO.

2. Click the Memory Leaks button to display the Memory Leak Details tab, which shows details about which

functions exhibit memory leaks. Only functions that are producing memory leaks are listed in the tab. If

your program is running when you click the button, the leak locations shown are those that exist at the

moment you clicked the button. More leaks may occur as time goes on, so click the Refresh button () to

update the list. If no memory leaks are detected by the end of the run, the Memory Leak Details tab
indicates that no memory leaks were found.

3. Youcan filter the data by changing the Start and End times in the Memory Leak Details tab, or by using
the Details slider in the Run Monitor window.

4. Inthisrun, the ProfilingDemo program shows a memory leak associated with awork_run_getmem

function. Double-click thework_run_getmem function and the common. c file opens with the cursor at the

line where the memory leak occurs in the function.

Oracle Solaris Studio 12.3: DLight Tutorial

15

5. The memory leak metrics are displayed in the left margin. Mouse over them to display the details as you
did with the CPU Usage metrics.

1E mwm-]gmumm Flﬁmn I*Emll 4 »ilvo)

Ee-u- aesE au wa

i A EUeE TR o o .

55 I .

100 TRACE { "wor LT mpl=ted writing t file, wrote Nld byrs=aln®, wrk_;d. i * iz

101 !

1z

103 static woid* work_rum_getmem|work_t* worki |

104 woid* ptr = MULL:

10% awitch (work->mem usage) |

108 Case mem_none:

T eln

108 break: |

108 case mem malloc:

110 TRACE ("work Vi Allocating wld #a of memcry with mall ", work| Mo

Ll leabe pte = malloc vork->mem size):

1z . L

= [Total Bytes Leaked:10000]__ i

114 bo=lms |

115 TRACE {"failedin®) i
pig]

Y break;

e Cane mem_mmap

11% TRACE {"work Vd: Allocacing %ld vas of PEROEY WILH SEwAj Yy WOEk=¥

120 PEE = mmap (WULL, work-»mem size, PROT_FEAD, MAP_FRIVATE | NAF_ANCNTHOUS

121 Lf iper == MAP FAILED) [

b peEr = NULL:

1212 TRACE("Tal ledin™) 2 "'
2 4% o i el
Output - Run profilngdame_1 ot loca... | MemenyLeskDeteds. . F x| Thread Call Stack
Time Filter Stat: 000 (2l Endi 010)

& = Leak location | Total Bytes Lasked |
imalloc 206
:pluﬂni_damn &t parallelc:78 8
work_run_getmem s common s 111 10000
work_rn_syscpu st common ol 2200

6. Aswith the CPU Time Per Function tab, you can right-click the metrics in the Memory Leak Details tab
and select a criterion for filtering the data.

Oulput - Aun profilingdema_L al loca... immm |.-im-udcalﬂmk
: oo (8 ST

Time Filter Start g Ene . Total Bytes Lesked == 10,000

€ |+ Lonk tocati Totsl Bytes Leaked <> 10,000
—— Total Bytes Leaked > 10,000 —J“
. = Total Bytes Laaked < 10.000 2
(parallel_demao o parallel o7 Total Bytes Lesked >= 10,000 .
‘wark_run_getmem o common il Total Bytes Leaked <= 10,000 Go To Source
Emrh_m_ﬂm:w & common.c B4 Ma Filtar

113]31 ™S

Exploring Thread Usage

The Thread Usage Tool shows the number of threads in use by your program, and any moments where a
thread has to wait to get a lock in order to proceed with its task. This data is useful for multithreaded
applications, which must perform thread synchronization in order to avoid expensive wait times.

Oracle Solaris Studio 12.3: DLight Tutorial

16

1. Slide the Time slider to the beginning of the run and notice, as you did for the Thread Microstates graph,
that the number of threads is one during the SEQUENTIAL DEMO portion of the program but increases to
three as the program enters the PARALLEL DEMO portion.

2. Move the endpoint handle of the View slider so that you can see the data from the beginning of the run
until just before the two additional threads are launched.

3. Lookat the CPU Usage and Memory Usage graphs for the same time period and notice that the single
thread is performing some activity that uses CPU time and memory. This period corresponds to the
SEQUENTIAL DEMO portion of the program, in which the main thread writes to the file and then performs
some calculations sequentially. CPU and memory usage both decrease while the program waits for the
user to press Enter, and the number of threads remains at one.

CPU Usage Hat Spots
i B System
;; L W User
a5 b |1

0:20

Memory Usage Memory Leaks

20K —— s

15K -
|

08K |- |
8K [\f Max: 18K

EE] 00 020

Thread Usage Sync Problems

aF

M Threads

Tl M Lock waits

4. Slide the Time slider to the right so that you can see two points where the threads increase to three. The
first increase in threads corresponds to the PARALLEL DEMO portion of the program run, where the main
thread starts two additional threads to do the work of writing to a file and performing calculations, in
parallel. Notice that the memory usage and CPU usage are a bit higher during this portion, but the two
tasks are completed in much less time than in the SEQUENTIAL DEMO portion.

CPU Usage Hot Spots:

= B sptem
75

50 M user
o =t s =i

0:30 040 050

Memory Usage Memory Leaks

20K e
15K

0BK [~
48K -

\
\ prvnsi
\

Max: 18K

0:30 040 050

Thread Usage Sync Problems:

aF
s
14

Bl [H Threads
M Lockwaits

5. Notice that the number of threads returns to one after the PARALLEL DEMO threads finish, and the main
thread waits for the user to press Enter.

6. The thread count increases to three again as the PTHREAD MUTEX DEMO portion of the program runs. Notice
that shortly after the thread count increases to three, a lock wait appears, shown in orange. The PTHREAD
MUTEX DEMO uses mutual exclusion locks to prevent overlapping access to certain functions by multiple
threads, which causes the threads to wait to obtain a lock.

Oracle Solaris Studio 12.3: DLight Tutorial 17

7.

10.

11.

Click the Sync Problems button to display details about thread locks. The Thread Synchronization Details
tab opens and lists functions that had to wait to obtain a mutex lock. Also displayed are metrics for the
number of milliseconds that the function spent waiting and the number of times the functions had to wait
for alock.

If you click the Sync Problems button while the program is running, you might need to click the Refresh

button) to update the display with the latest thread lock.
Click the header of the Wait Time column to sort the functions in order of time spent waiting.

Click the header of the Lock Waits column to sort the functions by the number of times a thread was
waiting in the functions.

Double-click the mutex threadfunc function, which has the most lock waits. The mutex. ¢ source file
opens with the cursor at the line where the pthread_mutex_lock function is called. This function is
responsible for locking a memory location before the location is read or written, and must wait until no
other thread has a lock on that memory location.

[Welcome Window * | (= Thread Detas J'*l‘_J_,ml.l!'al.u. chil_’_n:!rnrﬂnnnn x o S G | 14
e @E-0- aesld au oa
&4 static prhread sutex t wutex = FTHREAD NUTEX INITIALIZER: [a
B5
BE Btatic vold® I'I'II=F.H_lh:l.".‘ﬂ']:f"lnr.‘-"--l.l *oh |
B7 pthread barrier walt (&startc);
[:11] 119 | @ work_t* work = (work_t*) pi
BS while |'done) |
g0 1e30W | l'l.l pthread_mutex_lock i eutex) 7
51 TRACE (" ¥ " I \ s WOEE=-31d] 3
- it ('donel |
¥3 work runiwork, MICROS _FER_SECCHD) ;
54 }
G5 TRACE ("w . \n™, Wark-»
.14]'r.:u':n-::_rrutr?x_l.ml.-ck Enmitex)
&7 uslesp (NICRDS PER SECOND 100 :
Ll i
55 return NOLL;
100 |
101
102 volid mutex demo|lnt work _count, work t" works, inc seconds) |
103 FRINTI T F I LT
104 EXPLAIN(- ", Il'-.l:l.k_-.-'.-:ll:t :
105 EXPLATN(t t v
108 EXPLAIN
1oy EXFLAIN(
ioe
108 int i3 v
Mg 4 "

12. The metrics for Wait Time and Lock Waits are displayed in the left column margin of the source file. Place

13.

your mouse cursor over the metrics to see the details, which match what is shown in the Thread
Synchronization Details tab.

Right-click on the metrics and deselect Show Profiler Metrics. The metrics are no longer displayed in the
source editor for any of the profiling tools.

14. Choose View = Show Profiler Metrics to display the metrics again.

Exploring I/0 Usage

The I/O Usage tool shows an overview of the program's read and write activity during the run.

1.

The following image shows the I/O usage at the beginning of the run, during the SEQUENTIAL DEMO
portion in which two tasks are run one after the other in a single thread. In the first few seconds the
program started, and then it was waiting for the user to press Enter. When the user pressed Enter, the
program wrote characters to a temporary file. This activity is reflected in the graph as the orange line
showing bytes written.

Oracle Solaris Studio 12.3: DLight Tutorial 18

Memory Usage Wemory Leaks

20K —— e
15K -

08K -
48K [Wax: 18K

Thread Usage Sync Problems:

M Threads
M Lockwaits

1i0 Usage /0 Details

480 [T

s W wirites, bis
5
2.3u \[\\ E Reads, b/s
& [Fitess 0
o o0 020
[
% 0:53
Y m—— 5

2. Notice the following:

= The orange line shows the number of bytes written in the last second. The Profiling Demo program
itself reports in the Output window that it writes a total of 79984640 bytes or about 76.3M during this
run of the SEQUENTIAL DEMO. If you added up all of the data points shown on the orange line, the total
would be close to 76.3M.

= The System time shown in the CPU Usage tool is high during this phase because the program makes
use of system calls to generate data and write it to the disk.

® The Memory Usage tool shows a steady 8K bytes of memory heap allocated.

3. Click the I/O Details button. The I/O Usage details tab opens, displaying standard input, standard output,
and temporary files that the program reads from and writes to. The files with check marks have been
closed. The files that are marked with a yellow icon are still open for read and write actions.

Output - Aun profiingdemo_1 &t loca...] VO Usages L] ll Thread Call Stack
Time Fllter Start: 0:00 *| End: max -
1]
il | File Mamae | Bytes Read | Bytes written ial
8 partrmpiaaal o FES0560 L8
8 <stdin> 3 o
@ <stdout> 0 7207 <Na selection>
8 farftmpfbaal].. o 3031040
0 WTILZO0

8 fartmpicaall .

L
TR ST PPN . & o B

4. Notice that this program requires input from pressing the Enter key only occasionally, so the Bytes Read
column is not very useful. You can close the Bytes Read column by clicking the Change Visible Columns
button to the right of the column headers. In the Change Visible Columns dialog box, click the checkbox
to deselect Bytes Read and click OK.

5. Suppose that you want more details about how this program uses all of these temporary files. Click the
/var/tmp/baal]. .. filein the I/O Usage details tab to see the functions that opened and closed the file.
The functions are listed in the panel to the right of the file list.

6. Double-click thework_run_syscpu function in the function list to open the source file for the function.

Oracle Solaris Studio 12.3: DLight Tutorial 19

0
(o]

1O welcome window * | = Thread Details |] mutex * |] comman *| .
B aesE aa wa

1) 4

TE TRACE | *"wocEk %d: Compleced calevulacicssn, did %14 icseaciopsyn®™, lﬂl!][__.l.d.]]

r i

k]

7% stacic void er_run_l?sc:puunl: “l'k__lﬂ.. long microm) |

ED TRACE("wvork Nd: Scarcing wrlting ¢ CEmMpOT AL filw W work ld)r

Bl FILE* f£d:

H long 4 = @, 71 = O:

e3 char buf[10Z4]: -

B4 struct timeval curtime, endtime; '

Bs gettimeofday(fendtime, 0);

BE l'.:.-_.t:ld.ll.enﬂl.:.u, microm) i

- if fifd = empfilejii) |

L 1] for 1i5) 1

1] gertimesfday |dcurcime, 0);

L1] it I'llﬂ!‘_h!!b!tlifﬂ:l.ﬂ. senduims)) |

8l break;

L]

§3 for (3 = 1 # 107 1 < 37 +#1) 1

4 twrleeibuf, 1, sizeol (buf), f£d):

55 ttlushitd):

SE 1

57 b

L]] folose (fdi:

L1) -
e

Time Filter Start: 0:00 H.,Em max o

@ | Fle Name | Bytes Read | eyoswritten |i&] ~ [Dpened at
® <sdout> 9 7207 work_run+0x74
@ partmpibaal... 1] 3031040 I W parallel_threadfunc+0xde
@ partmpfeaall.. o 3973120 [** [Closed at
® partmp/daall.] 1986560 g *::.NH.MFP#WHF
work_run+0x74
i o el S o

7. IntheI/O Usage details tab, as in the CPU Time Per Function tab and Thread Synchronization Details
tab, you can specify a time interval to look at. In the I/O Usage graph in the Run Monitor window, the
write activity starts very near the beginning of the run, at the point where the SEQUENTIAL DEMO portion of
the program begins writing to a temporary file.

8. Isolate the SEQUENTIAL DEMO portion of the run by typing the time that it ended (0:17 in the following
image) in the End field. The data is filtered in the Run Monitor window and the I/O Usage details tab so
that you can focus on the input and output of the SEQUENTIAL DEMO phase.

LT e (T P 1
[T LT AT A TETET T =
1T qifd = eeprileinin 0
TN
W el bt d B
NE iV ime Before iicurtiee, GenStiesii |
Breaky

i
for t3® & & LBt & @ 34 ekl
ferite buf, L wizsef [buf|, fdic
Tehmabidin
P
(
frloms (28 ;

- sEEE
:j\
i
T EETE SR ERENET &

1
.
-

-
In;...‘__ﬁ = ;l.'i......I i. e

i woosan| Jif| marmer man: ou [tee oi

e = pr—rrn . P [r— | [Closad at

—; B A, “!: I J " W ik tim_rpmipuetOeldc

I' @ pantremsai. L] 0 merk_uriauti

- o i B L EEELE 1 U sequantal_demo+ta 4

L [L L & » W el
o W
= 8 a4
= - .

Oracle Solaris Studio 12.3: DLight Tutorial 20

9. Notice that one temporary file is shown in the I/O Usage details tab during the sequential demo. A single
thread opens, writes to the file, and then closes it. Click the file to see the functions that access it, and
double-click a function to see its source code.

10. In the Run Monitor window, move the Time slider to the right until you see write activity begin again after
a pause. The pause in writing occurs during the second task in the sequential demo, which is a calculation
task during which no disk writes take place. The renewed write activity shows that the program is entering
the PARALLEL DEMO portion, where the user presses Enter to launch the tasks, and the writing to disk and
calculation occur simultaneously in separate threads.

11. Isolate the parallel demo activity by typing the time it starts in the Start field and the time it ends in the
End field. For the run shown in this image, the start time is 0:18 and the end time is 0:29.

[et L i tday | iesdl o, @
iy e | ey Laga =] |Gl b, S peE
e o W LR e R 1
u-
(- m s
[geit Lo tday sourties, 0

1 " A Vel) e, Gem
Y e i [rae—

1 (35 (5] =

5 far i3 =

L]

L]

w

i i s 1 2ud 1]
"

- - 2 .
Cutput Mo profirgelere_L et boal | iDkieg. | Thrwad Cab slack

W0 Lnaga — Time Pller @am cix 3l wrék 0 g

W s 0 | e riarre | mytwn pamd | ytes wmiten

™ & <mdur>
- 8 fesrAmpbad T
B swnmpn s

i
¥ Bt 0 Fow i pciaal T
- [T B i U o
-

| C— - L P -

Rl TR e iy

12. Notice that several temporary files are shown in the I/O Usage details tab during the PARALLEL DEMO
portion of the run. Only one thread is writing to the files because each second it switches to a new file. The
calculating task does not write to disk.

13. Click one of the files and see that the parallel_threadfunc function is opening and closing the files.

| Gutput - un profilngdems_1 at local... }m” t.|.4 Thread Call Stack
Time Filter Start: 018 |:J End: 0w |:J
| & | File Name l Bytes Aead 1 Bytes Wntten E i I _C‘F“?"'E'd at
= " L 7] work_run_syscpu+0xSd
O =stdout> o 3345 W work_nun+0xTd
& parmpibaalE. 1] 2888032 |, ¥ parallel_threadfurc+0wde
@ partmpicaaldn., o 3973120 ¥] Chosed at
& jvartmpidaalls 0 1986560 l E work_run_syscpu+0nldc
o wirk_nun+0x74
® jvacjmp/enalps ° 2497040 ¥ U par allel_threadiunc+0wac
1.8 B ¥] Filalaliind

L b oneiveem o n (YT

14. Click and drag the right handle of the Details slider to the end of the run. In the following image, you can
see that the I/O activity changes again when the program enters the PTHREAD MUTEX DEMO portion and the
user presses Enter. Filter the data for this portion of the run by changing the start time to the end time of
the parallel demo, in this case 0:24.

Oracle Solaris Studio 12.3: DLight Tutorial 21

n | o f ey | sl Lo
Mty Unagps PR—— u e ——
. e r ¥ Pa = wEprlis i
; L m
= ! iy |t e
i L] (S} 1 -
i i B0 reaki
=
- 1
-1 teeine it i o
e A e Epne Srobar " et lunhit
- - az ,
[1
4 R BT folase itd
e el - :
- - - ! .
g o pratngere_L o s | N LG 8| e Lol B ak
VO e YD Detmiy Theis Fillse Soat) 0 0a 1o Wl e S
': e 55 | ika mdare [rr—— [rrT—)
- & pvarfrgegaa [Em—_
H & <sdn> 1 n]
)
@ “xtdmn I e iy yelartona
— e - [azen
——— T e wtimaty
[S Y B o] [| rrsani)

15. The I/O Usage details tab shows that multiple files are open during the PTHREAD MUTEX DEMO portion of
the run. One thread is writing to a file, and every second it switches the file it writes to, as in the PARALLEL
DEMO portion. However, because mutex locks are used, sometime the writing thread is blocked by the
calculating thread and cannot continuously write to files.

This concludes the demonstration of the Run Monitor window's tools for Execute Targets. These tools also
apply to the Process Target.

Profiling a Process Tree

When you run a Process Tree Target, you attach DLight to a running process. DLight profiles the specified
process and all child processes that it spawns or forks. Profiling a running process and its child processes can
help you detect issues that occur between the processes as well as among the threads of a process.

If you want to capture the activity from when a process launches, you can start profiling the shell you use to
execute the program, and the activity of the shell and the program's main process and all its child processes
will be recorded. You can also target the program's already running process if you are not interested in the
startup activity.

This section shows generally how to use the Process Tree target and does not require use of a sample
application.

1. Inaterminal window, type the following command to determine the PID of the shell.

°

% echo $$
2. InDLight, click the down-arrow next to the New Target button and select Process Tree Target.

The Create New Target dialog box opens with the Process Tree Target tab selected. The tab shows a list of
processes running on the system.

3. IntheProcess Tree Target tab's Filter field, type the PID that was returned by the echo command to find
the PID in the list of processes.

The list of processes should refresh automatically to display only the processes containing the string you
typed in the Filter field.

4. Select the process running with the PID and click Save.

The target is listed in the DLight Targets tab with the label Process Tree: [pid] [localhost]. The target is
saved permanently to run on this PID, no matter what program you run from the shell running under this
PID.

5. Select the Process Tree target and click the Run button: |> .

Oracle Solaris Studio 12.3: DLight Tutorial 22

The Process Tree Profiling tab opens in DLight, and displays graphs labelled Thread Microstates of
Profiled Processes and CPU Usage of Profiled Processes. At first, only the shell is profiled and not much
activity is occurring.

6. Inthe terminal window where the targeted shell is running, start the program that you want to profile.

The following figure shows the Process Tree Profiling tab with data being generated on a program called
locker which starts many child processes.

File View Run Tools Window Help
Ao b O

|DL‘ ht T

12

« x|/ Welcome Winclow | Pracess Tree Profiing *|=)Process Tree Profiing * [/ */[*][5]

Thread Microstates of Profiled Processes |§‘ | fj ‘
13fF e
7 B
s
L —— e e =SESE

0o 0:05 010 015 o:

CPU Usage of Profiled Processes Running on 16 CPU |£; ‘
108 o
Bl
o EEEEL.

00 .05 0:10 15 0:
.—Q\HHHHHH.............HHHHH\H@*-
oo 0:05 010 0:15 oo
0:18

(] [2)

@ User Running B System Running @ Other Running @ Waiting B Blocked on mutex 2

OStopped @ Sleeping M Text page fault @ Data page fault @ Kernel page fault
Process Tree Monitor [localhost: [25040]]
Qutput ¥ x

These graphs together can be used to determine how your application's multiple processes and multiple
threads are working together. You can see points where threads are blocked and the effect on CPU usage,
and narrow the problems down to the lines of code where they occur.

Examine the Thread Microstates of Profiled Processes graph at the top of the Process Tree Profiling tab.

In the Thread Microstates of Profiled Processes graph, the vertical axis shows the number of threads
running and the horizontal axis shows the wall clock time elapsed while the processes ran. However, the
graph shows an aggregation of the microstates of all the threads of all the processes that DLight profiled
with the Process Tree Target. You can use the graph for a broad view of the behavior of the processes.

Examine the CPU Usage of Profiled Processes graph.

The CPU Usage of Profiled Processes graph's vertical axis shows the percent of CPU time, and the
horizontal axis shows the wall clock time elapsed while the processes ran. However, the data shown is an
aggregation of the CPU usage of all the threads in all the processes profiled across all the CPUs on the
system. The number of CPUs is noted in the title of the graph and also in the Host Info window on the left
side of the DLight window.

Along with the Thread Microstates graph, you can use the CPU Usage graph to determine where there are
locking issues.

Click the Thread Map button |§| to open a new Process Tree Profiling tab that shows detailed
information about the microstates of processes and threads.

The Process Tree Microstate Details window shows the microstate transitions in the form of a timeline for

each thread of the target process and its child processes during the period that DLight is monitoring the
target.

When the window opens initially, each profiled process is shown. The target process is the top line and it
shows the aggregation of microstates for all the threads executing in that process. The child process
timelines also show the microstates for the threads they execute.

Oracle Solaris Studio 12.3: DLight Tutorial 23

10.

11.

File View Run Tools Window Help

% b B
DLight Targets % ‘EI Welcome Window *l Process Tree Profiing "I Process Tree Profiing "‘ (] (=][=]
! Process Tree: [25040] |v ‘Qetail i T v|

@ © @ | Show: [All Threads

Thread ID i0:00 0:10 Irmis] Sum...
b lcsh (PID 25040) T |
P locker (FID 25961) ———— e]
b Unknown binary (PID 259... R
b Unknown binary (PID 259... |
4 Unknown binary (PID 259... [|
4 Unknown binary (PID 259... [I
4 Unknown binary (PID 259... I
b Unknown binary (PID 259... 0
4 Unknown binary (PID 259... H .
4 Unknown binary (PID 259... I .
b Unknown binary (PID 259... I YRS |
b Unknown binary (PID 259... [|
4 Unknown binary (PID 259...
4 Unknown binary (PID 259...
4 Unknown binary (PID 259... (5|
b Unknown binary (PID 259... [5:: |
4 Unknown binary (PID 259... [1007:0 |
4 Unknown binary (PID 259... [1a:: |
b lUnknown binary (PID 259... S |~
[l T D]

=

B Running @ Blocked B Waiting @ Sleeping

In the figure above, the top line shows the csh shell process that was specified in the DLight target, and it is
sleeping while the program runs. The second line is the locker program's main process, and the rest of
the “Unknown binary” processes were started by the locker program as forks of the original process. This
is a known issue that DLight sometimes cannot determine the process name.

Click the handle of a process timeline to show timelines for each thread created by the process.

[Welcome Window *I Process Tree Profiing XllEl Process Tree Profling * BDIRIO)
@ & & Show: Al Threads | v | Detail Level: [Basic -

Thread ID 10:00 0:10 [m:s] Sum...

b lcsh (PID 25040)

b Jocker (PID 25961)
v Unknown binary (PID 259...
Process 25963 / Thread 1
v Unknown binary (PID 259...
Process 25962 / Thread 1
v Unknown binary (PID 259...
Process 25964 / Thread 1
Unknown binary (PID 259... I
Unknown binary (PID 259...]
]
|
|
|
|

Unknown binary (PID 259...
Unknown binary (PID 259...
Unknown binary (PID 259...
Unknown binary (PID 259...
Unknown binary (PID 259...
Unknown binary (PID 259...
Unknown binary (PID 259...
Unknown binary (PID 259...
Unknown binary (PID 259...

VYV VYV VYV

-

[T

B Running W Blocked B \Waiting B Sleeping d

If the processes are single-threaded as shown in this document, the process timelines and thread timelines
look the same. However, the thread timelines show more information when you click them as described
later. If the processes were multithreaded, expanding the process would show multiple threads.

Place your mouse cursor over the Summary area to the right.

The Summary area shows the percent of time spent in microstates for the entire run of the thread or
process. When you place the mouse cursor over the Summary, a legend is displayed to indicate the
meaning of the colors and the percentage of time for the process or thread. Similar pop-ups are displayed
when you place the mouse cursor over the processes and threads timelines themselves.

Oracle Solaris Studio 12.3: DLight Tutorial 24

12.

13.

14.

Unknown binary (PID £09 /1) EX—

»

4 Unknown binary (PID 25970) R

4 Unknown binary (PID 25969) froz |

4 Unknown binary (PID 25968)

E Unknown binary (PID 25975) [l Running 0:03.200 10%
Unknown binary (PID 25974) 4

b Unknown binary (PID 25973) g M Blocked 0:02.580 9%

3 Lnknosmn hinar: (P10 2RQ72) al : I Waiting 0:00.000 0%

< m -

Sleeping 0:25.920 81%
[l sleeping

B Running W Blocked B Waiting B Slccpng I

In the figure above, the mouse cursor was placed over the Summary area of a thread.

Click the handle of a process timeline to show its thread timelines, then click some point in a thread
timeline and the Thread Call Stack window opens to show the call stack that was executing at that
moment in time.

B Welcome Window * | Process Tree Profiling *l Process Tree Profiing *| Thread Call Stack * Ll @
[Stacks dump at 0:15.504 E
Sleeping PID 25040 [Thread 1] at 0:00.069
Sleeping PID 26357 [Thread 1] at 0:10.954
Sleeping PID 26355 [Thread 1] at 0:14.945
Running PID 26356 [Thread 1] at 0:11.932
Sleeping PID 26351 [Thread 1] at 0:11.945

[]

[]

[]

[]

Sleeping PID 26352 [Thread 1] at 0:09.942
Sleeping PID 26359 [Thread 17 at 0:14.977
Sleeping PID 26358 [Thread 1] at 0:12.040
Sleeping PID 26362 [Thread 17 at 0:04.947
Running PID 26360 [Thread 1] at 0:15.609

Running PID 26363 [Thread 1] at 0:09.941

0.1+0x0

VvV VVVVVVY VY
o o o o o Y s

® _ lwp_mutex_wakeup In libc.
® mutex unlock in libc.so.1+0x0
® unlock_mutex in locker +0x0

® unlock in locker+0x0 -
® fork_next_level in locker +0x0
® fork next level in locker +0x0
r+0x0

® fork_next_level in loc
‘ ® fork next level in|

L P R N ALa) [~

In the call stack, if the program's source code is available, the highlighted functions indicate functions that
occur in your source. Double-click the highlighted functions to see the source in a new window in DLight.
If the executable was built with debugging information (using the -g compiler option) then DLight can
also provide source code navigation.

For more information about viewing microstate timelines, see the DLight help by choosing Help = Help
Contents from the DLight menu bar.

Click the main Process Tree Profiling tab to return to the Thread Microstates of Profiled Processes and
CPU Usage of Profiled Processes graphs.

Click the Lock Stat button |@| to open a new tab that shows detailed information about the microstates
of processes and threads.

A new Process Tree Profiling tab opens and shows locking statistics for the process and its children,
including the amount of blocked time for threads that are blocked, threads that hold locks, mutexes, and
lines of code where threads were blocked.

Oracle Solaris Studio 12.3: DLight Tutorial 25

B Welcorme Window % | Process Tree Profiling * rocess Tree Profiing * (=)

Thread Microstates of Profiled Processes @ @
afF Opens Process

00 001 002 D03 004 005 D06 007 008 o0 010 o1l 0l2 013 014 015 06 017 018 019 o

00 001 0:02 003 004 005 006 007 008 009 010 011 012 018 014 015 016 017 018 019 O

oﬁo 10 olﬂo o3 | oo 50 100 110 120 130 140 150 2fo
1:59
(I [[

O User Running @ System Running B Other Running @ Waiting B Blocked on mutex e
O Stopped B Sleeping B Text page fault @ Data page fault MKernel page fault
Process Tree Monitor [localhost: [25040]]
Qutput | Process Tree Profiling ¥ %
Time Filter Stert: [0:00 |%] End: [max [
][vTime
> & Oxfede00cO was blocking on for 772553 ms. 772553666 =

> @ Thread Process 25971 / Thread 1 [25971/1] caused c21119655
I & Thread Process 25981 / Thread 1 [25981/1] caused c18044288 |
> & Thread Process 25989 / Thread 1 [25989/1] caused c15637065 =No selection=
I & Thread Process 25985 / Thread 1 [25985/1] caused c12727015 g
> @ Thread Process 25969 / Thread 1 [25969/1] was bloc 10217230
I @ Thread Process 25970 / Thread 1 [25970/1] was bloc 10217222
> @ Thread Process 25976 / Thread 1 [25976/1] was bloc 96263217

15. Click the handles on the left to display the relationships between the threads, functions, and lines of code
that are blocking or being blocked.

16. Click an item in the list to open a thread call stack in a side window.

Oracle Solaris Studio 12.3: DLight Tutorial

B Welcome Window * | Process Tree Profiling *l Process Tree Profiling E”Z‘ E] @

Thread Microstates of Profiled Processes

F

,J
i}
TTTTT

00 001 0:02 003 004 005 006 007 008 009 010 011 012 018 014 015 016 017 018 019 O

u
i
TTTTT

00 001 002 D03 004 005 D06 007 008 o0 010 o1l 0l2 013 o4 015 06 o7 018 019 o

o e P B e B e B B e e ey e |
uEu 010 u@u 0:30 040 0:50 100 110 120 130 1:40 150 zﬁu
1:59
[« [B}

O User Running B Systerm Running B Other Running B Waiting B Blocked on mutex

=

O Stopped @ Sleeping B Text page fault @ Data page fault MKernel page fault
Process Tree Monitor [localhost: [25040]]

Qutput | Process Tree Profiling ¥ x

Time Filter Start: [0:00 || Enc: [max [5]

|=Time |& Biocked: Function
b & Oxfede00cO was blocking on for 772553 ms. 772553666 '%Crkﬂ’?z‘ﬁ; i ilocies
I £ Thread Process 25971 / Thread 1 [25971/1] cause21119655 :

N - = Stack 1 (102172 me/2
> & Thread Process 25981 / Thread 1 [25981/1] cause180442888| | © mutex lock ken
> & Thread Process 25989 / Thread 1 [25989/1] cause 156370654 ® mutex lock inte
> T Thread Process 25985 / Thread 1 [25985/1] cause12727015 ® mute)(:lock:imp
~ @ Thread Process 25969 / Thread 1 [25969/1] was £102172304 ® mutex lock in lib
b & Thread Process 25971 / Thread 1 [25971/1] cau:102172304

B

® lock_mutex in loc
® lock in locker +0x [

‘Function lock_mutex was blocked for 102172 ms“

If multiple call stacks were affected by a block, each stack is listed in this window. The blocked time shown
for an item in the list is an aggregate of all the calls to the item. In the call stack window, you can see how
much of the block time was used by each call stack. The most time-consuming call stack is listed first. You
might see multiple call stacks even when one line of code is responsible for all the block time if the line is
executed in different paths through the code.

17. Notice that some of the functions in the call stack are shown in bold. Click the bold function name to open
the source file at the listed line number in DLight.

Because DLight has access to the source code, the functions are listed in bold and the source file name and
line number is shown.

18. Click the main Process Tree Profiling tab to return to the graphs Thread Microstates of Profiled Processes
and CPU Usage of Profiled Processes.

19. Click the Hot Spots button |ﬁ| in the CPU Usage of Profiled Processes panel to open a new tab to help
you identify the CPU-intensive areas (hot spots) in your program's process tree.

Oracle Solaris Studio 12.3: DLight Tutorial 27

Qutput | Process Tree Profiling ¥ x
Time Filter Start: [0:00 2 End: [max [] Filter: | [v8

o) IFunction MName]I CPU Time, sec l@

__write in Unknown binary 131.949 &

!

Oxfeece767 \n. Unk_nw'nrjwork_run_usrcpu at L,It”S‘CIZS‘ 12.354
postforkl child sigev mygrrormrovwrrormary 7.886
fwrite in Unknown binary 6.098
getxfdat in Unknown binary 3.942
stremp in Unknown binary 3.229
memcpy in Unknown binary 2774
_ forlaxin locker 2.024
__close in Unknown binary 1.370

getegid in csh 0.591|[+]

The tab displays the functions in your program with their exclusive CPU Time metric. This is the time
used only by the specific function, not including the CPU time used by any functions that it calls.
Notice that some of the functions in the list are shown in bold.

20. Double-click the bold function names to open the source file at the listed line numbers.

If the source file is available to DLight, a new window opens to show the source.

For More Information

For more information about using the DLight graphical tools to identify performance problems in your
applications, choose Help = Help Contents from the DLight menu bar.

The help includes instructions for topics not covered in this document, including:

= Profiling on a remote host so you can run DLight locally and profile an application that is running on a
remote system.

= Specifying a tool configuration to create a subset of the DLight tools so you see only the ones you are
interested in.

= Detailed usage information for each tool to show the tasks you can perform with each tool.

Oracle Solaris Studio 12.3: DLight Tutorial

28

Copyright ©2011 This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms
set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create
arisk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle
Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the
AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services.

E22001

Oracle Corporation 500 Oracle Parkway, Redwood City, CA 94065 U.S.A.

ORACLE"

