
Oracle Solaris Studio 12.3: Discover and
Uncover User's Guide

Part No: E22000
December 2011

Copyright © 2010, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
"commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions
d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est
interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que
prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes
d’erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel
ou l’utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
"commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est
destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel
dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures
nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés
par l’utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à
d’autres propriétaires qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des
marques déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro
Devices. UNIX est une marque déposée d’The Open Group.

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services
émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En
aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l’accès à
des contenus, produits ou services tiers, ou à leur utilisation.

120118@25097

Contents

Preface ...5

1 Introduction ...9
Memory Error Discovery Tool (Discover) ..9
Code Coverage Tool (Uncover) ... 10

2 Memory Error Discovery Tool (Discover) ... 11
Requirements for Using Discover ... 11

Binaries Must Be Prepared Correctly .. 11
Binaries That Use Preloading or Auditing Cannot Be Used ... 12
Binaries That Redefine Standard Memory Allocation Functions Can Be Used 12

Quick Start .. 12
Instrumenting a Prepared Binary .. 14

Caching Shared Libraries .. 14
Instrumenting Shared Libraries ... 14
Ignoring Libraries .. 15
Command Line Options ... 15
bit.rc Initialization Files ... 18
SUNW_DISCOVER_OPTIONS Environment Variable .. 18
SUNW_DISCOVER_FOLLOW_FORK_MODE Environment Variable ... 18

Running an Instrumented Binary ... 19
Analyzing Discover Reports ... 19

Analyzing the HTML Report .. 19
Analyzing the ASCII Report ... 26

Memory Access Errors and Warnings .. 29
Memory Access Errors .. 29
Memory Access Warnings .. 31

3

Interpreting Discover Error Messages .. 32
Partially Initialized Memory ... 32
Speculative Loads ... 33
Uninstrumented Code .. 33

Limitations When Using Discover .. 35
Only Annotated Code is Instrumented ... 35
Machine Instruction Might Differ From Source Code .. 35
Compiler Options Affect the Generated Code ... 35
System Libraries Can Affect the Errors Reported .. 36
Custom Memory Management Can Affect the Accuracy of the Data 36
Out of Bounds Errors for Static and Automatic Arrays Cannot Be Detected 36

3 Code Coverage Tool (Uncover) ...37
Requirements for Using Uncover .. 37
Using Uncover ... 38

Instrumenting the Binary .. 38
Running the Instrumented Binary ... 39
Generating and Viewing the Coverage Report ... 39
Examples ... 40

Understanding the Coverage Report in the Performance Analyzer ... 41
The Functions Tab ... 41
The Source Tab ... 44
The Disassembly Tab ... 45
The Inst-Freq Tab .. 46

Understanding the ASCII Coverage Report .. 47
Understanding the HTML Coverage Report ... 51
Limitations When Using Uncover .. 53

Only Annotated Code Can Be Instrumented ... 53
Machine Instructions Might Differ From Source Code .. 54

Index ..57

Contents

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 20114

Preface

The Oracle Solaris Studio 2.3 Discover and Uncover User's Guide gives instructions on how to
use the Memory Error Discovery Tool (Discover) to find memory-related errors in binaries,
and the Code Coverage Tool (Uncover) to measure code coverage of applications.

Supported Platforms
This Oracle Solaris Studio release supports platforms that use the SPARC family of processor
architectures running the Oracle Solaris operating system, as well as platforms that use the x86
family of processor architectures running Oracle Solaris or specific Linux systems.

This document uses the following terms to cite differences between x86 platforms:

■ “x86” refers to the larger family of 64-bit and 32-bit x86 compatible products.
■ “x64” points out specific 64-bit x86 compatible CPUs.
■ “32-bit x86” points out specific 32-bit information about x86 based systems.

Information specific to Linux systems refers only to supported Linux x86 platforms, while
information specific to Oracle Solaris systems refers only to supported Oracle Solaris platforms
on SPARC and x86 systems.

For a complete list of supported hardware platforms and operating system releases, see the
Oracle Solaris Studio 12.3 Release Notes.

Oracle Solaris Studio Documentation
You can find complete documentation for Oracle Solaris Studio software as follows:

■ Product documentation is located at the Oracle Solaris Studio documentation web site,
including release notes, reference manuals, user guides, and tutorials.

■ Online help for the Code Analyzer, the Performance Analyzer, the Thread Analyzer,
dbxtool, DLight, and the IDE is available through the Help menu, as well as through the F1
key and Help buttons on many windows and dialog boxes, in these tools.

■ Man pages for command-line tools describe a tool's command options.

5

http://www.oracle.com/pls/topic/lookup?ctx=E24457&id=OSSRN
http://www.oracle.com/technetwork/server-storage/solarisstudio/documentation/index.html

Resources for Developers
Visit the Oracle Technical Network web site to find these resources for developers using Oracle
Solaris Studio:

■ Articles on programming techniques and best practices
■ Links to complete documentation for recent releases of the software
■ Information on support levels
■ User discussion forums.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Preface

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 20116

http://www.oracle.com/technetwork/server-storage/solarisstudio
https://forums.oracle.com/forums/category.jspa?categoryID=280
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Shell Prompts in Command Examples
The following table shows the default UNIX system prompt and superuser prompt for shells
that are included in the Oracle Solaris OS. Note that the default system prompt that is displayed
in command examples varies, depending on the Oracle Solaris release.

TABLE P–2 Shell Prompts

Shell Prompt

Bash shell, Korn shell, and Bourne shell $

Bash shell, Korn shell, and Bourne shell for superuser #

C shell machine_name%

C shell for superuser machine_name#

Preface

7

8

Introduction

The Oracle Solaris Studio 12.3 Discover and Uncover User's Guide gives instructions on how to
use the following tools:

■ “Memory Error Discovery Tool (Discover)” on page 9
■ “Code Coverage Tool (Uncover)” on page 10

Memory Error Discovery Tool (Discover)
The Memory Error Discovery Tool (Discover) software is an advanced development tool for
detecting memory access errors. Discover works on binaries compiled with the Sun Studio 12
Update 1, Oracle Solaris Studio 12.2, or Oracle Solaris Studio 12.3 compilers; or the GCC for
Sun Systems compilers starting with version 4.2.0. It works on systems running the Solaris 10
10/08 operating system or a later Solaris 10 update, or Oracle Solaris 11.

Memory-related errors in programs are notoriously difficult to find. Discover allows you to find
such errors easily by pointing out the exact place where the problem exists in the source code.
For example, if your program allocates an array and does not initialize it, then tries to read from
one of the array locations, the program will probably behave erratically. Discover can catch this
problem when you run the program in the normal way.

Other errors detected by Discover include:

■ Reading from and writing to unallocated memory
■ Accessing memory beyond allocated array bounds
■ Incorrect use of freed memory
■ Freeing the wrong memory blocks
■ Memory leaks

Since Discover catches and reports memory access errors dynamically during program
execution, if a portion of user code is not executed at run time, errors in that portion are not
reported.

1C H A P T E R 1

9

Discover is simple to use. Any binary (even a fully optimized binary) that has been prepared by
the compiler can be instrumented with a single command, then run in the normal way. During
the run, Discover produces a report of the memory anomalies, which you can view as a text file,
or as HTML in a web browser.

Code Coverage Tool (Uncover)
Uncover is a simple and easy to use command-line tool for measuring code coverage of
applications. Code coverage is an important part of software testing. It gives you information on
which areas of your code are exercised in testing and which are not, enabling you to improve
your test suites to test more of your code. The coverage information reported by Uncover can be
at a function, statement, basic block, or instruction level.

Uncover provides a unique feature called uncoverage, which allows you to quickly find major
functional areas that are not being tested. Other advantages of Uncover code coverage over
other types of instrumentation are:

■ The slowdown relative to uninstrumented code is fairly small.
■ Since Uncover operates on binaries, it can work with any optimized binary.
■ Measurements can be done by instrumenting the shipping binary. The application does not

have to be built differently for coverage testing.
■ Uncover provides a simple procedure for instrumenting the binary, running tests, and

displaying the results.
■ Uncover is multithread safe and multiprocess safe.

Code Coverage Tool (Uncover)

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201110

Memory Error Discovery Tool (Discover)

The Memory Error Discovery Tool (Discover) software is an advanced development tool for
detecting memory access errors.

This chapter includes information about the following:

■ “Requirements for Using Discover” on page 11
■ “Quick Start” on page 12
■ “Instrumenting a Prepared Binary” on page 14
■ “Running an Instrumented Binary” on page 19
■ “Analyzing Discover Reports” on page 19
■ “Memory Access Errors and Warnings” on page 29
■ “Interpreting Discover Error Messages” on page 32
■ “Limitations When Using Discover” on page 35

Requirements for Using Discover

Binaries Must Be Prepared Correctly
Discover works on binaries compiled with the Sun Studio 12 Update 1, Oracle Solaris Studio
12.2, or Oracle Solaris Studio 12.3 compilers; or the GCC for Sun Systems compilers starting
with version 4.2.0. It works on a SPARC-based or x86-based system running the Solaris 10 10/08
operating system or a later Solaris 10 update, or Oracle Solaris 11.

Discover issues an error and does not instrument a binary if it does not meet these
requirements. However, you can instrument a binary that does not meet these requirements
and run it to detect a limited number of errors by using the -l option (see “Instrumentation
Options” on page 16).

2C H A P T E R 2

11

A binary compiled as described includes information called annotations to help Discover
instrument it correctly. The addition of this small amount of information does not affect the
performance of the binary or its runtime memory usage.

Using the -g option to generate debug information when compiling the binary allows Discover
to display source code and line number information while reporting errors and warnings, and
to produce more accurate results. If your binary is not compiled with the -g option, Discover
displays only the program counters of the corresponding machine level instructions. Also,
compiling with the -g option helps Discover produce more accurate reports (see “Interpreting
Discover Error Messages” on page 32.

Binaries That Use Preloading or Auditing Cannot Be
Used
Because Discover uses some special features of the runtime linker, you cannot use it with
binaries that use preloading or auditing.

If a program requires the setting of the LD_PRELOAD environment variable, it probably won't
work correctly with Discover, because Discover needs to interpose on certain system functions,
and it cannot do so if the function has been preloaded.

Similarly, if a program uses runtime auditing (either the binary was linked with the -p option or
the -P option, or it requires the LD_AUDIT environment variable to be set), this auditing will
conflict with Discover's use of auditing. If the binary was linked with auditing, Discover fails at
instrumentation time. If you set the LD_AUDIT environment variable at runtime, the results are
undefined.

Binaries That Redefine Standard Memory Allocation
Functions Can Be Used
Discover supports binaries that redefine the standard memory allocation functions: malloc(),
calloc(), memalign(), valloc(), and free().

Quick Start
The following is an example of preparing a program, instrumenting it with Discover, and then
running it and producing a report on the detected memory access errors. This example uses a
simple program that accesses uninitialized data.

% cat test_UMR.c

#include <stdio.h>

#include <stdlib.h>

Quick Start

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201112

int main()

{

// UMR: accessing uninitialized data

int *p = (int*) malloc(sizeof(int));

printf("*p = %d\n", *p);

free(p);

}

% cc -g -02 test_UMR.c

% a.out

*p = 131464

% discover a.out

% a.out

The Discover output shows where the uninitialized memory was used and where it was
allocated, along with summary of results.

Quick Start

Chapter 2 • Memory Error Discovery Tool (Discover) 13

Instrumenting a Prepared Binary
Once you have prepared the target binary, the next step is to instrument it. Instrumentation
adds code in strategic places so that Discover can keep track of memory operations while the
binary is running.

You instrument a binary using the discover command. For example, the following command
instruments the binary a.out and overwrites the input a.out with the instrumented a.out:

discover a.out

When you run the instrumented binary, Discover monitors the program's use of memory.
During the run, Discover writes a report detailing any memory access errors to an HTML file
(in this case, by default, a.out.html) that you can view in your web browser. You can use the -w
option when you instrument the binary to request that the report be written to an ASCII file or
to stderr.

You can use the -n option to specify that you want Discover to do write-only instrumentation of
the binary.

When Discover instruments a binary, if it finds any code that it cannot instrument because it is
not annotated, it displays a warning like the following:

discover: (warning): a.out: 80% of code instrumented (16 out of 20 functions)

Non-annotated code could come from assembly language code linked into the binary, or from
modules compiled with compilers or on operating systems older than those listed in “Binaries
Must Be Prepared Correctly” on page 11.

Caching Shared Libraries
When Discover instruments a binary, it adds code to it that works with the runtime linker to
instrument dependent shared libraries when they are loaded at runtime. The instrumented
libraries are stored in a cache where they can be reused if the original has not changed since it
was last instrumented. By default, the cache directory is $HOME/SUNW_Bit_Cache. You can
change the directory with the -D option.

Instrumenting Shared Libraries
Discover produces the most accurate results if the entire program, including all shared libraries,
is instrumented. By default, Discover checks and reports memory errors only in executables.
You can use the -c option to specify that you want Discover to check for errors in the dependent
shared libraries and libraries dynamically opened by dlopen(). You can use the -n option to
specify that you want Discover to skip checking for errors in executables.

Instrumenting a Prepared Binary

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201114

If you use the -c option to avoid checking for errors in a specific library, Discover does not
report any errors in that library. However, Discover needs to track the memory state of the
entire address space to correctly detect memory errors, so it records allocations and memory
initializations in the entire program including all shared libraries.

All shared libraries used by the program should be prepared as described in “Binaries Must Be
Prepared Correctly” on page 11. By default, if the runtime linker encounters an unprepared
library, a fatal error occurs. You can, however, tell Discover to ignore one or more libraries.

Ignoring Libraries
Some libraries might not be possible to prepare, or they might not be instrumentable for some
other reason. To provide for this case, with some loss of accuracy, you can tell Discover to
ignore these libraries with the -s, -T, or -N option (see “Instrumentation Options” on page 16,
or with specifications in bit.rc files (see “bit.rc Initialization Files” on page 18

If a library cannot be instrumented and is not designated as ignorable, then either Discover fails
at instrumentation time or your program fails at runtime with an error message.

By default, Discover uses specifications in the system bit.rc file to set certain system and
compiler-supplied libraries as ignorable because they are not prepared. The effect on accuracy is
minimal because Discover knows the memory characteristics of the most commonly used
libraries.

Command Line Options
You can use the following options with the discover command to instrument a binary.

Output Options
-a Write the error data to binary_name.analyze/dynamic directory for use by the

Code Analyzer.

-b browser Start web browser browser automatically while running the instrumented
program (off by default).

-o file Write the instrumented binary to file. By default, the instrumented binary
overwrites the input binary.

-w text_file Write Discover's report on the binary to text_file . The file is created when you
run the instrumented binary. If text_file is a relative pathname, the file is placed
relative to the working directory where you run the instrumented binary. To
make the filename unique for each time you run the binary, add the string %p to
the filename to ask the Discover runtime to include the process id. For example,

Instrumenting a Prepared Binary

Chapter 2 • Memory Error Discovery Tool (Discover) 15

the option -w report.%p.txt generates a report file with the filename
report.process_id.txt. If you include %p in the filename more than once, only
the first instance is replaced with the process id.

If you do not specify this option or the -H option, the report is written in HTML
format to output_file.html, where output_file is the basename of the
instrumented binary. The file is placed in the working directory where you run
the instrumented binary.

You can specify both this option and the -H option to write the report in both
text and HTML formats.

-H html_file Write Discover's report on the binary in HTML format to html_file. This file is
created when you run the instrumented binary. If html_file is a relative
pathname, it is placed relative to the working directory where you run the
instrumented binary. To make the filename unique for each time you run the
binary, add the string %p to the filename to ask the Discover runtime to include
the process id. For example, the option -H report.%p.html generates a report
file with the filename report.process_id.html. If you include %p in the filename
more than once, only the first instance is replaced with the process id.

If you do not specify this option or the -w option, the report is written in HTML
format to output_file.html, where output_file is the basename of the
instrumented binary. The file is placed in the working directory where you run
the instrumented binary.

You can specify both this option and the -w option to write the report in both
text and HTML formats.

-e n Show only n memory errors in the report (default is show all errors).

-E n Show only n memory leaks in the report (default is 100).

-f Show offsets in the report (default is to hide them).

-m Show mangled names in the report (default is to show de-mangled names).

-S n Show only n stack frames in the report (default is 8).

Instrumentation Options
-c [- | library | file] Check for errors in all libraries, or in the specified library, or in the

libraries listed in the specified file.

-n Do not check for errors in executables.

-l Run Discover in light mode. This option provides faster execution of
your program and the program does not have to be specially prepared

Instrumenting a Prepared Binary

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201116

as described in “Binaries Must Be Prepared Correctly” on page 11, but
the number of errors detected is limited.

-F [parent | child] Specify what you want to happen if a binary you have instrumented
with Discover forks while you are running it. By default, Discover
continues to collect memory access error data from the parent process.
If you want Discover to follow the fork and collect memory access data
from the child process, specify -F child.

-i Instrument for data race detection using the Thread Analyzer. When
you use this option, only data race detection is done at runtime; no
other memory checking is done. The instrumented binary must be run
with the collect command to generate an experiment that you can
view in the Performance Analyzer (see the Oracle Solaris Studio 12.3
Thread Analyzer User's Guide).

-s Issue a warning, but do not flag an error, if an attempt is made to
instrument an uninstrumentable binary.

-T Instrument the named binary only. Do not instrument any dependent
shared libraries at runtime.

-N library Do not instrument any dependent shared library matching the prefix
library. If the initial characters of a library name match library, the
library is ignored. If library begins with a /, matching is done on the full
absolute pathname of the library. Otherwise, matching is done on the
basename of the library.

-K Do not read the bit.rc initialization files (see “bit.rc Initialization
Files” on page 18).

Caching Options
-D cache_directory Use cache_directory as the root directory for storing cached

instrumented binaries. By default, the cache directory is
$HOME/SUNW_Bit_Cache.

-k Force reinstrumentation of any libraries found in the cache.

Other Options
-h or -? Help. Print a short usage message and exit.

-v Verbose. Print a log of what Discover is doing. Repeat the option for more
information.

-V Print Discover version information and exit.

Instrumenting a Prepared Binary

Chapter 2 • Memory Error Discovery Tool (Discover) 17

bit.rc Initialization Files
Discover initializes its state by reading a series of bit.rc files at startup. A system file,
Oracle_Solaris_Studio_installation_directory/prod/lib/postopt/bit.rc, provides default
values for certain variables. Discover reads this file first, followed by $HOME/.bit.rc if it exists,
and current_directory/.bit.rc if it exists.

The bit.rc files contain commands to set, append to, and remove from certain variables. When
Discover reads a set command, it discards the previous value, if any, of the variable. When it
reads an append command, it appends the argument (after a colon separator) to the existing
value of the variable. When it reads a remove command, it removes the argument and its colon
separator from the existing value of the variable.

The variables set in the bit.rc files include the list of libraries to ignore when instrumenting,
and lists of functions or function prefixes to ignore when computing the percentage of
nonannotated (not prepared) code in a binary.

For more information, refer to the comments in the header of the system bit.rc file.

SUNW_DISCOVER_OPTIONS Environment Variable
You can change the runtime behavior of an instrumented binary by setting the
SUNW_DISCOVER_OPTIONS environment variable to a list of the command-line options -b, -e, -E,
-f, -F, -H, -l, -L, -m, -S, and -w. For example, if you want to change the number of errors
reported to 50 and limit the stack depth in the report to 3, you would set the environment
variable to -e 50 -s 3.

SUNW_DISCOVER_FOLLOW_FORK_MODE Environment
Variable
By default, if a binary you have instrumented with Discover forks while you are running it,
Discover continues to collect memory access error data from the parent process. If you want
Discover to follow the fork and collect memory access data from the child process, set the
SUNW_DISCOVER_FOLLOW_FORK_MODE environment variable.

Instrumenting a Prepared Binary

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201118

Running an Instrumented Binary
After you have instrumented your binary with Discover, you run it the same way you would
ordinarily. Typically, if a particular combination of input causes your program to behave
strangely, you would instrument it with Discover and run it with the same input to investigate
potential memory problems. While the instrumented program is running, Discover writes
information about any memory problems it finds to the specified output files in the selected
formats (text, HTML, or both). For information on interpreting the reports, see “Analyzing
Discover Reports” on page 19.

Because of the overhead of the instrumentation, your program runs significantly slower after
you instrument it. Depending on the frequency of memory access, it might run as much as 50
times slower.

Analyzing Discover Reports
The Discover report provides you with information to effectively pinpoint and fix the problems
in your source code.

By default, the report is written in HTML format to output_file.html, where output_file is the
basename of the instrumented binary. The file is placed in the working directory where you run
the instrumented binary.

When you instrument your binary, you can use the -H option to request that the HTML output
be written to a specified file, or the -w option to request that it be written to a text file (see
“Command Line Options” on page 15).

After your binary is instrumented, you can change the settings of the -H and -w options for the
report in the “SUNW_DISCOVER_OPTIONS Environment Variable” on page 18 if, for example, you
want to write the report to a different file for a subsequent run of the program.

Analyzing the HTML Report
The HTML report format allows interactive analysis of your program. The data in HTML
format can easily be shared between developers using email or placement on a web page.
Combined with JavaScript interactive features, it provides a convenient way to navigate
through the Discover messages.

The Errors tab (see “Using the Errors Tab” on page 20), Warnings tab (see “Using the
Warnings Tab” on page 22, and Memory Leaks tab (see “Using the Memory Leaks Tab” on
page 23) let you navigate through error messages, warning messages, and the memory leak
report, respectively.

Analyzing Discover Reports

Chapter 2 • Memory Error Discovery Tool (Discover) 19

The control panel on the left (see “Using the Control Panel” on page 25) lets you change the
contents of the tab that is currently displayed on the right.

Using the Errors Tab
When you first open an HTML report in your browser, the Errors tab is selected and displays
the list of memory access errors that occurred during execution of your instrumented binary.

When you click on an error, the stack trace at the time of the error is displayed:

Analyzing Discover Reports

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201120

If you compiled your code with the -g option, you can see the source code for each function in
the stack trace by clicking the function:

Analyzing Discover Reports

Chapter 2 • Memory Error Discovery Tool (Discover) 21

Using the Warnings Tab
The Warnings tab displays all of the warning messages for possible access errors. When you
click on a warning, the stack trace at the time of the warning is displayed. If you compiled your
code with the -g option, you can see the source code for each function in the stack trace by
clicking the function.

Analyzing Discover Reports

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201122

Using the Memory Leaks Tab
The Memory Leaks tab displays the total number of blocks remaining allocated at the end of the
program's run at the top, with the blocks listed below.

Analyzing Discover Reports

Chapter 2 • Memory Error Discovery Tool (Discover) 23

When you click on a block, the stack trace for the block is displayed. If you compiled your code
with the -g option, you can see the source code for each function in the stack trace by clicking
the function.

Analyzing Discover Reports

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201124

Using the Control Panel
To see the stack traces for all of the errors, warnings, and memory leaks, click Expand All in the
Stack Traces section of the control panel. To see the source code for all of the functions, click
Expand All in the Source Code section of the control panel.

To hide the stack traces or source code for all of the errors, warnings, and memory leaks, click
the corresponding Collapse All.

The Show Errors section of the control panel is displayed when the Errors tab is selected and lets
you control which types of errors are displayed. By default, the checkboxes for all of the detected
errors are checked. To hide a type of error, click its checkbox to remove the checkmark.

Analyzing Discover Reports

Chapter 2 • Memory Error Discovery Tool (Discover) 25

The Show Warnings section of the control panel is displayed when the Warnings tab is selected
and lets you control which types of warnings are displayed. By default, the checkboxes for all of
the detected warnings are checked. To hide a type of warning, click its checkbox to remove the
checkmark.

A summary of the report listing the total numbers of errors and warnings, and the amount of
leaked memory, is displayed at the bottom of the control panel.

Analyzing the ASCII Report
The ASCII (text) format of the Discover report is suitable for processing by scripts or when you
don't have access to a web browser. The following is an example of an ASCII report.

$ a.out

ERROR 1 (UAW): writing to unallocated memory at address 0x50088 (4 bytes) at:

main() + 0x2a0 <ui.c:20>

17: t = malloc(32);

18: printf("hello\n");
19: for (int i=0; i<100;i++)

20:=> t[32] = 234; // UAW

21: printf("%d\n", t[2]); //UMR

22: foo();

23: bar();

_start() + 0x108

ERROR 2 (UMR): accessing uninitialized data from address 0x50010 (4 bytes) at:

main() + 0x16c <ui.c:21>$

18: printf("hello\n");
19: for (int i=0; i<100;i++)

20: t[32] = 234; // UAW

21:=> printf("%d\n", t[2]); //UMR

22: foo();

23: bar();

24: }

_start() + 0x108

was allocated at (32 bytes):

main() + 0x24 <ui.c:17>

14: x = (int*)malloc(size); // AZS warning

15: }

16: int main() {

17:=> t = malloc(32);

18: printf("hello\n");
19: for (int i=0; i<100;i++)

20: t[32] = 234; // UAW

_start() + 0x108

0

WARNING 1 (AZS): allocating zero size memory block at:

foo() + 0xf4 <ui.c:14>

11: void foo() {

12: x = malloc(128);

13: free(x);

14:=> x = (int*)malloc(size); // AZS warning

Analyzing Discover Reports

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201126

15: }

16: int main() {

17: t = malloc(32);

main() + 0x18c <ui.c:22>

19: for (int i=0; i<100;i++)

20: t[32] = 234; // UAW

21: printf("%d\n", t[2]); //UMR

22:=> foo();

23: bar();

24: }

_start() + 0x108

***************** Discover Memory Report *****************

1 block at 1 location left allocated on heap with a total size of 128 bytes

1 block with total size of 128 bytes

bar() + 0x24 <ui.c:9>

6: 7: void bar() {

8: int *y;

9:=> y = malloc(128); // Memory leak

10: }

11: void foo() {

12: x = malloc(128);

main() + 0x194 <ui.c:23>

20: t[32] = 234; // UAW

21: printf("%d\n", t[2]); //UMR

22: foo();

23:=> bar();

24: }

_start() + 0x108

ERROR 1: repeats 100 times

DISCOVER SUMMARY:

unique errors : 2 (101 total, 0 filtered)

unique warnings : 1 (1 total, 0 filtered)

The report consists of error and warning messages followed by a summary.

The error message starts with the word ERROR and contains a three-letter code, an id number,
and an error description (writing to unallocated memory in the example). Other details
include the memory address that was accessed and the number or bytes read or written.
Following the description is a stack trace at the time of the error that pinpoints the location of
the error in the process life cycle.

If the program was compiled with the -g option, the stack trace includes the source file name
and line number. If the source file is accessible, the source code in the vicinity of the error is
printed. The target source line in each frame is indicated by the => symbol.

When the same kind of error at the same memory location with the same number of bytes
repeats, the complete message including the stack trace is printed only once. Subsequent
occurrences of the error are counted and a repetition count, as shown in the following example,
is listed at the end of the report for each identical error that occurs multiple times.

Analyzing Discover Reports

Chapter 2 • Memory Error Discovery Tool (Discover) 27

ERROR 1: repeats 100 times

If the address of the faulty memory access is on the heap, then information on the
corresponding heap block is printed after the stack trace. The information includes the block
starting address and size, and a stack trace at the time the block was allocated. If the block was
freed, a stack trace of the deallocation point is also included.

Warning messages are printed in the same format as error messages except that they start with
the word WARNING. In general, these messages alert you to conditions that do not affect
application correctness, but provide useful information that you can use to improve the
program. For example, allocating memory of zero size is not harmful, but if it happens too
often, it can potentially degrade performance.

The memory leak report contains information about memory blocks allocated on the heap but
not released at program exit. The following is an example of a memory leak report.

$ DISCOVER_MEMORY_LEAKS=1 ./a.out

...

***************** Discover Memory Report *****************

2 blocks left allocated on heap with total size of 44 bytes

block at 0x50008 (40 bytes long) was allocated at:

malloc() + 0x168 [libdiscover.so:0xea54]

f() + 0x1c [a.out:0x3001c]

<discover_example.c:9>:

8: {

9:=> int *a = (int *)malloc(n * sizeof(int));

10: int i, j, k;

main() + 0x1c [a.out:0x304a8]

<discover_example.c:33>:

32: /* Print first N=10 Fibonacci numbers */

33:=> a = f(N);

34: printf("First %d Fibonacci numbers:\n", N);

_start() + 0x5c [a.out:0x105a8]

...

The first line following the header summarizes the number of heap blocks left allocated on the
heap and their total size. The reported size is from the developer's perspective, that is, it does not
include the bookkeeping overhead of the memory allocator.

After the memory leak summary, detailed information is printed on each unfreed heap block
with a stack trace of its allocation point. The stack trace report is similar to the one described for
error and warning messages.

The Discover report is concluded with an overall summary. It reports the number of unique
warnings and errors and in parentheses, the total numbers of errors and warnings, including
repeated ones. For example:

DISCOVER SUMMARY:

unique errors : 3 (3 total)

unique warnings : 1 (5 total)

Analyzing Discover Reports

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201128

Memory Access Errors and Warnings
Discover detects and reports many memory access errors, as well as warning you about accesses
that might be errors.

Memory Access Errors
Discover detects the following memory access errors:

■ ABR: beyond Array Bounds Read
■ ABW: beyond Array Bounds Write
■ BFM: Bad Free Memory
■ BRP: Bad Realloc address Parameter
■ CGB: Corrupted array Guard Block
■ DFM: Double Freeing Memory
■ FMR: Freed Memory Read
■ FMW: Freed Memory Write
■ FRP: Freed Realloc Parameter
■ IMR: Invalid Memory Read
■ IMW: Invalid Memory Write
■ Memory leak
■ OLP: OverLaPping source and destination
■ PIR: Partially Initialized Read
■ SBR: beyond Stack frame Bounds Read
■ SBW: beyond Stack frame Bounds Write
■ UAR: UnAllocated memory Read
■ UAW: UnAllocated memory Write
■ UMR: Unitialized Memory Read

The following sections list some simple sample programs that will produce some of these errors.

ABR
// ABR: reading memory beyond array bounds at address 0x%1x (%d byte%s)"
int *a = (int*) malloc(sizeof(int[5]));

printf("a[5] = %d\n",a[5]);

ABW
// ABW: writing to memory beyond array bounds

int *a = (int*) malloc(sizeof(int[5]));

a[5] = 5;

Memory Access Errors and Warnings

Chapter 2 • Memory Error Discovery Tool (Discover) 29

BFM
// BFM: freeing wrong memory block

int *p = (int*) malloc(sizeof(int));

free(p+1);

BRP
// BRP is "bad address parameter for realloc 0x%1x"
int *p = (int*) realloc(0,sizeof(int));

int *q = (int*) realloc(p+20,sizeof(int[2]));

DFM
// DFM is "double freeing memory"
int *p = (int*) malloc(sizeof(int));

free(p);

free(p);’

FMR
// FMR is "reading from freed memory at address 0x%1x (%d byte%s)"
int *p = (int*) malloc(sizeof(int));

free(p);

printf("p = 0x%h\n",p);

FMW
// FMW is "writing to freed memory at address 0x%1x (%d byte%s)"
int *p = (int*) malloc(sizeof(int));

free(p);

*p = 1;

FRP
// FRP: freed pointer passed to realloc

int *p = (int*) malloc(sizeof(int));

free(0);

int *q = (int*) realloc(p,sizeof(int[2]));

IMR
// IMR: read from invalid memory address

int *p = 0;

int i = *p; // generates Signal 11...

IMW
// IMW: write to invalid memory address

int *p = 0;

*p = 1; // generates Signal 11...

Memory Access Errors and Warnings

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201130

OLP
char *s=(char *) malloc(15);

memset(s, ’x’, 15);

memcpy(s, s+5, 10);

return 0;

PIR
// PIR: accessing partially initialized data

int *p = (int*) malloc(sizeof(int));

((char)p) = ’c’;

printf("*(p = %d\n",*(p+1));

SBR
int a[2]={0,1};

printf("a[-10]=%d\n",a[-10]);
return 0;

SBW
int a[2]={0,1)’

a[-10]=2;

return 0;

UAR
// UAR is "reading from unallocated memory"
int *p = (int*) malloc(sizeof(int));

printf("*(p+1) = %d\n",*(p+1));

UAW
// UAW is "writing to unallocated memory"
int *p = (int*) malloc(sizeof(int));

*(p+1) = 1;

UMR
// UMR is "accessing uninitialized data from address 0x%1x (A%d byte%s)"
int *p = (int*) malloc(sizeof(int));

printf("*p = %d\n",*p);

Memory Access Warnings
Discover reports the following memory access warnings:

■ AZS: allocating zero size
■ SMR: speculative unitialized memory read

Memory Access Errors and Warnings

Chapter 2 • Memory Error Discovery Tool (Discover) 31

The following section lists a simple example program that will produce an AZS warning.

AZS
// AZS: allocating zero size memory block

int *p = malloc();

Interpreting Discover Error Messages
In some cases, Discover can report an error that is not actually an error. Such cases are called
false positives. Discover analyzes code at instrumentation time to reduce the occurrence of false
positives compared to similar tools, but there are cases where they still occur. The following
sections provide a few tips that might help you to identify and possibly avoid false positives in
Discover reports.

Partially Initialized Memory
Bit fields in C and C++ allow you to create compact data types. For example:

struct my_struct {

unsigned int valid : 1;

char c;

};

In the example, the structure member my_struct.valid takes only one bit in memory.
However, on SPARC platforms, the CPU can modify memory only in bytes, so the whole byte
containing struct.valid must be loaded in order to access or modify the structure member.
Moreover, sometimes the compiler might find it more efficient to load several bytes (for
example, a machine word of four bytes) at once. When Discover detects such a load, without
additional information it assumes that all four bytes are used. And if, for example, the field
my_struct.valid was initialized, but the field my_struct.c was not, and the machine word
containing both fields was loaded, Discover would flag a partially initialized memory read
(PIR).

Another source of false positives is initialization of a bit field. To write a part of a byte, the
compiler must first generate code that loads the byte. If the byte was not written prior to a read,
the result is an uninitialized memory read error (UMR).

To avoid false positives for bit fields, use the -g option or the -g0 option when compiling. These
options provide extra debugging information to Discover to help it identify bit field loads and
initialization, which will eliminate most false positives. If you cannot compile with the -g
option for some reason, then initialize structures with a function such as memset(). For
example:

Interpreting Discover Error Messages

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201132

...

struct my_struct s;

/* Initialize structure prio to use */

memset(&sm 0, sizeof(struct my_struct));

...

Speculative Loads
Sometimes the compiler generates a load from a known memory address under conditions
where the result of the load is not valid on all program paths. This situation often occurs on
SPARC platforms because such a load instruction can be placed in the delay slot of a branch
instruction. For example, here is a C code fragment:

int i’

if (foo(&i) != 0) { /* foo returns nonzero if it has initialized i */

printf("5d\n", i);

}

From this code, the compiler could generate code equivalent to:

int i;

int t1, t2’

t1 = foo(&i);

t2 = i; /* value in i is loaded */

if (t1 != 0) {

printf("%d\n", t2);

}

Assume that in the example, the function foo() returns 0 and does not initialize i. The load
from i is still generated, though not used. But the load will be seen by Discover, which will
report a load of an uninitialized variable (UMR).

Discover uses dataflow analysis to identify such cases whenever possible, but sometimes they
are impossible to detect.

You can reduce the occurrence of these types of false positives by compiling with a lower
optimization level.

Uninstrumented Code
Sometimes it is not possible for Discover to instrument 100% of your program. Perhaps some of
your code comes from an assembly language source file or a third-party library that cannot be
recompiled and so cannot be instrumented. Discover has no knowledge of the memory blocks
the non-instrumented code is accessing and modifying. Assume for example that a function
from a third-party shared library initializes a block of memory that is later read by the main

Interpreting Discover Error Messages

Chapter 2 • Memory Error Discovery Tool (Discover) 33

(instrumented) program. Since Discover does not know that the memory has been initialized by
the library, the subsequent read generates an uninitialized memory error (UMR).

To provide a solution for such cases, the Discover API includes the following functions:

void __ped_memory_write(unsigned long addr, long size, unsigned long pc);

void __ped_memory_read(unsigned long addr, long size, unsigned long pc);

void __ped_memory_copy(unsigned long src, unsigned lond dst, long size, unsigned long pc);

You can call the API functions from your program to inform Discover of specific events such as
a write to a memory area (__ped_memory_write()) or a read from a memory area
(__ped_memory read()). In both cases, the starting address of the memory area is passed in the
addr parameter and its size is passed in the size parameter. Set the pc parameter to 0.

Use the __ped_memory_copy function to inform Discover of memory that is being copied from
one location to another. The starting address of the source memory is passed in the src
parameter, the starting address of the destination area is passed in the dst parameter, and the
size is passed in the size parameter. Set the pc parameter to 0.

To use the API, declare these functions in your program as weak. For example, include the
following code fragment in your source code.

#ifdef __cplusplus

extern "C" {

#endif

extern void __ped_memory_write(unsigned long addr, long size, unsigned long pc);

extern void __ped_memory_read(unsigned long addr, long size, unsigned long pc);

extern void __ped_memory_copy(unsigned long src, unsigned long dst, long size, unsigned long pc);

#prgama weak __ped_memory_write

#pragma weak __ped_memory_read

#pragma weak __ped_memory_copy

#ifdef __cplusplus

}

#endif

The API functions are defined in the internal Discover library, which is linked with your
program at instrumentation time. However, when your program is not instrumented, this
library is not linked and thus all calls to the API functions will result in application hang-up. So
you must disable these functions when you are not running your program under Discover.
Alternatively, you can create a dynamic library with empty definitions of the API functions and
link it with your program. In this case, when you run your program without Discover, your
library will be used, but when you run it under Discover, the real API functions will be called
automatically.

Interpreting Discover Error Messages

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201134

Limitations When Using Discover

Only Annotated Code is Instrumented
Discover can instrument only code that has been prepared as described in “Binaries Must Be
Prepared Correctly” on page 11. Non-annotated code might come from assembly language
code linked into the binary, or from modules compiled with older compilers or operating
systems than those listed in that section.

Specifically excluded from preparation are assembly language modules and functions that
contain asm statements or .il templates.

Machine Instruction Might Differ From Source Code
Discover operates on machine code. The tool detects errors on machine instructions such as
loads and stores, and correlates the errors with the source code. Some source code statements
do not have associated machine instructions, so it may appear that Discover did not detect an
obvious user error. For example, consider the following C code fragment:

int *p = (int *)malloc(sizeof(int));

int i;

i = *p; /* compiler may not generate code for this statement */

printf("Hello World!\n");

return;

Reading a value stored at the address pointed to by p is a potential user error since the memory
was not initialized. However, an optimizing compiler will detect that the variable i is not used,
so the code for the statement reading from memory and assigning to i will not be generated. In
this case, Discover will not report uninitialized memory usage (UMR).

Compiler Options Affect the Generated Code
Compiler-generated code is not always as you expect it to be. Because the code the compiler
generates varies depending on the compiler options you use, including the -On optimization
options, the errors reported by Discover might also vary. For example, errors reported in code
generated at the -O1 optimization level could disappear for code generated at the -O4
optimization level.

Limitations When Using Discover

Chapter 2 • Memory Error Discovery Tool (Discover) 35

System Libraries Can Affect the Errors Reported
System libraries are preinstalled with the operating system and cannot be recompiled for
instrumentation. Discover provides support for the common function from the standard C
library (libc.so); that is, Discover knows what memory is accessed or modified by these
functions. However, if your application uses other system libraries, you might see false positives
in the Discover report. If false positives are reported, you can call the Discover API from your
code to eliminate them.

Custom Memory Management Can Affect the Accuracy
of the Data
Discover can track heap memory when it is allocated by standard programming language
mechanisms like malloc(), calloc(), free(), operator new(), and operator delete().

If your application uses a custom memory management system working on top of the standard
functions (for example, pool allocation management implemented with malloc()), then
Discover works, but is not guaranteed to correctly report leaks or access to freed memory.

Discover does not support the following memory allocators:

■ Custom heap allocators that use brk(2)() or sbrk(2)() system calls directly
■ Standard heap management function linked statically into a binary
■ Memory allocated from the user code using mmap(2)() and shmget(2)() system calls

The sigaltstack(2)() function is not supported.

Out of Bounds Errors for Static and Automatic Arrays
Cannot Be Detected
Because of the algorithms that Discover uses to detect array bounds, it is not possible to detect
out of bounds access errors for static and automatic (local) arrays. Errors can be detected only
for dynamically allocated arrays.

Limitations When Using Discover

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201136

Code Coverage Tool (Uncover)

■ “Requirements for Using Uncover” on page 37
■ “Using Uncover” on page 38
■ “Understanding the Coverage Report in the Performance Analyzer” on page 41
■ “Understanding the ASCII Coverage Report” on page 47
■ “Understanding the HTML Coverage Report” on page 51

Requirements for Using Uncover
Uncover works on binaries compiled with the Sun Studio 12 Update 1, Oracle Solaris Studio
12.2, or Oracle Solaris Studio 12.3 compilers, or the GCC for Sun Systems 4.2.0 or later
compilers. It work on a SPARC-based or x86-based system running the Solaris 10 10/08
operating system or a later Solaris 10 update, or Oracle Solaris 11.

A binary compiled as described includes information that Uncover uses to reliably disassemble
the binary to instrument it for coverage data collection.

Using the -g option to generate debug information when compiling the binary allows Uncover
to use source code level coverage information. If your binary is not compiled with the -g option,
Uncover uses only program counter (PC) based coverage information.

Uncover works with any binary built with Oracle Solaris Studio compilers, but works best with
binaries built with no optimization option. (Previous releases of Uncover required at least the
-O1 optimization level.) If your binary is built with an optimization option, Uncover results will
be better with lower optimization levels (-O1 or -O2). Uncover derives the source line level
coverage by relating the instructions to line numbers using the debug information generated
when the binary is built with the -goption. At optimization levels -O3 and higher, the compiler
might delete some code that might never be executed or is redundant, which might result in no
binary instructions for some source code lines. In such cases, no coverage information will be
reported for those lines. See “Limitations When Using Uncover” on page 53 for more
information.

3C H A P T E R 3

37

Using Uncover
Generating coverage information using Uncover is a three-step process:

1. Instrumenting the binary
2. Running the instrumented binary
3. Generating and viewing coverage reports

Instrumenting the Binary
The input binary can be an executable or a shared library. You must instrument each binary you
want to analyze separately.

You instrument the binary with the uncover command. For example, the following command
instruments the binary a.out and overwrites the input a.out with the instrumented a.out. It
also creates a directory with the suffix .uc (a.out.uc in this case) in which the coverage data
will be collected. A copy of the input binary is saved in this directory.

uncover a.out

You can use the following options when instrumenting your binary:

-c Turn on reporting of execution counts for instructions, blocks, and
functions. By default only information on code that is covered or not
covered is reported. (Specify this option both when instrumenting
your binary and when generating the coverage report.)

-d directory Tells Uncover to create the coverage data directory in directory. This
option is useful when you are collecting coverage data for multiple
binaries, so that all of the coverage data directories are created in the
same directory. Also, if you run different instances of the same
instrumented binary from different locations, using this option
ensures that the coverage data from all of these runs is accumulated
in the same coverage data directory.

If you do not use the -d option, the coverage data directory is created
in the current run directory.

-m on | off Turns thread-safe profiling on and off. The default is on. Use this
option in combination with the -c runtime option. If you instrument
a binary that uses threads with -m off, the binary fails at runtime and
a message is displayed asking you to reinstrument the binary with
-m on.

-o output_binary_file Writes the instrumented binary file to the specified file. The default is
to overwrite the input binary file with the instrumented file.

Using Uncover

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201138

If you run the uncover command on a input binary that is already instrumented, Uncover
issues an error message telling you that the binary cannot be instrumented because it is already
instrumented, and that you can run it to generate coverage data.

Running the Instrumented Binary
After you have instrumented your binary, you can run it normally. Every time you run the
instrumented binary, code coverage data is collected in the coverage data directory with the .uc
suffix that Uncover created during the instrumentation. Since Uncover data collection is
multi-thread safe and multi-process safe, there is no restriction on the number of simultaneous
runs or threads in the process. The coverage data is accumulated over all of the runs and
threads.

Generating and Viewing the Coverage Report
To generate a coverage report, run the uncover command on the coverage data directory. For
example:

uncover a.out.uc

This command generates an Oracle Solaris Studio Performance Analyzer experiment directory
called binary_name.er from the coverage data in the a.out.uc directory, starts the
Performance Analyzer GUI, and displays the experiment. If you have an .er.rc file (see the
Oracle Solaris Studio 12.2 Performance Analyzer manual) in the current directory or your home
directory, it might affect the way the Analyzer displays the experiment.

You can also use uncover command options to generate the report as HTML and view it in your
web browser, as ASCII to view in a terminal window. Or you direct the data to a directory where
it can be analyzed and displayed by the Code Analyzer.

-a Write error data to binary_name.analyze/coverage directory for use by
the Code Analyzer.

-c Turn on reporting of execution counts for instructions, blocks, and
functions. By default only information on code that is covered or not
covered is reported. (Specify this option both when instrumenting your
binary and when generating the coverage report.)

-e on | off Generate experiment directory for the coverage report and display the
experiment in the Performance Analyzer GUI. On by default.

-H html_directory Save the coverage data as HTML in the specified directory and
automatically display it in your web browser. Off by default.

-h or -? Help.

Using Uncover

Chapter 3 • Code Coverage Tool (Uncover) 39

-n Generate coverage reports but do not start viewers like the Performance
Analyzer or web browser.

-t ascii_file Generate an ASCII coverage report in the specified file. Off by default.

-V Print Uncover version and exit.

-v Verbose. Print a log of what Uncover is doing.

Only one output format is enabled, so if you specify multiple output options, Discover uses the
last option in the command.

Examples
uncover a.out

This command instruments the binary a.out, overwrites the input a.out, creates an a.out.uc

coverage data directory in the current directory, and saves a copy of the input a.out in the
a.out.uc directory. If a.out is already instrumented, a warning message is displayed and no
instrumentation is done.

uncover -d coverage a.out

This command does everything that the first example does, except it creates the a.out.uc
coverage directory in the directory coverage.

uncover a.out.uc

This command uses the data in the a.out.uc coverage directory to create a code coverage
experiment (a.out.er) in your working directory, and starts the Performance Analyzer GUI to
display the experiment.

uncover -H a.out.html a.out.uc

This command uses the data in the a.out.uc coverage directory to create an HTML code
coverage report in the directory a.out.html and displays the report in your web browser.

uncover -t a.out.txt a.out.uc

This command uses the data in the a.out.uc coverage directory to create an ASCII code
coverage report in the file a.out.txt.

uncover -a a.out.uc

This command uses the data in the a.out.c coverage directory to create a coverage report in
the binary_name.analyze/coverage directory for use by the Code Analyzer.

Using Uncover

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201140

Understanding the Coverage Report in the Performance
Analyzer

By default, when you run the uncover command on the coverage directory, the coverage report
is opened as an experiment in the Oracle Solaris Studio Performance Analyzer. The Analyzer
uses the Functions, Source, Disassembly, and Inst-Freq tabs to display the coverage data.

The Functions Tab
When you open the coverage report in the Analyzer, the Functions tab is selected. The tab
displays columns listing the Uncoverage, Function Count, Instr Exec, Block Covered %, and
Instr Covered % counters for each function. You can make any column the sort key for the data
by clicking on the column header. Clicking the arrow on the column header reverses the sort
order.

Understanding the Coverage Report in the Performance Analyzer

Chapter 3 • Code Coverage Tool (Uncover) 41

The Uncoverage Counter
The Uncoverage metric is a very powerful feature of Uncover. If you use this column as the sort
key, in decreasing order, the top functions in the display are the functions that offer the greatest
potential to increase coverage. In the example, the main() function is at the top of the list
because it has the largest number in the Uncoverage column. (The sigprof() and sigprofh()

functions all have the same number, so they are listed in alphabetical order.)

The Uncoverage number for the main() function is number of bytes of code that could
potentially be covered if a test is added to the suite that causes the function to be called. The
amount that coverage would actually increase varies according to the structure of the function.
If there are no branches in the function, and all the functions it calls are also straight line
functions, then coverage will indeed increase by the stated number of bytes. But in general, the
coverage increase is less than the potential, perhaps much less.

Understanding the Coverage Report in the Performance Analyzer

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201142

The uncovered functions with non-zero values in the Uncoverage column are called root
uncovered functions, meaning that they are all called by covered functions. Functions that are
called only by non-root uncovered functions do not have their own uncoverage numbers. It is
presumed that these functions will be either covered, or revealed as uncovered, in subsequent
runs, as the test suite is improved to cover the high-potential uncovered functions.

The coverage numbers are non-exclusive.

The Function Count Counter
The Function Count reports the covered functions and uncovered functions. All that matters is
whether the count is zero or non-zero. If the count is zero, the function is not covered. If the
count is non-zero, the function is covered. If any instruction in the function is executed, the
function is considered to be covered.

You can detect non-top-level uncovered functions in this column. If the Function Count for a
function is zero and the Uncoverage number is also zero, the function is not a top-level covered
function.

The Instr Exec Counter
The Instr Exec counter displays the covered instructions and uncovered instructions. A zero
count means that the instruction is not executed; a non-zero count means that the instruction is
executed.

In the Functions tab, this counter shows the total number of instructions executed for each
function. This counter also appears in the Source tab (see “The Source Tab” on page 44) and
the Disassembly tab (see “The Disassembly Tab” on page 45).

The Block Covered % Counter
For each function, the Block Covered % counter displays the percentage of basic blocks in the
function that are covered. This number gives you an idea of how well the function is covered.
Disregard this number in the <Total> row; it is the sum of percentages in the column and is
meaningless.

The Instr Covered % Counter
For each function, the Instr Covered % counter displays the percentage of instructions in the
function that are covered. This number also gives you an idea of how well the function is
covered. Disregard this number in the <Total> row; it is the sum of percentages in the column
and is meaningless.

Understanding the Coverage Report in the Performance Analyzer

Chapter 3 • Code Coverage Tool (Uncover) 43

The Source Tab
If you compiled your binary with the -g option, the Source tab displays the source code of your
program. Because Uncover instruments your program at the binary level, and you have
compiled the program with optimization, the coverage information in this tab can be puzzling
to interpret.

The Instr Exec counter in the Source tab shows the total number of instructions executed for
each source line, which is essentially the statement level code coverage information. A non-zero
value implies that the statement is covered; a zero value means that the statement is not covered.
Variable declarations and comments have no Instr Exec counts.

Understanding the Coverage Report in the Performance Analyzer

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201144

Some source code lines might not have any coverage information associated with them. In these
cases, the rows are blank and have no numbers in any of the fields. These rows occur because:

■ Comments, blank lines, declarations, and other language constructs do not contain
executable code.

■ Compiler optimizations have deleted the code corresponding to the lines because:
■ The code will never be executed (dead code).
■ The code can be executed but is redundant.

For more information, see “Limitations When Using Uncover” on page 53.

The Disassembly Tab
If you select a line in the Source tab, and then select the Disassembly tab, the Analyzer tries to
find the selected line in the binary and display its disassembly.

The Instr Exec counter in this tab shows the number of times each instruction was executed.

Understanding the Coverage Report in the Performance Analyzer

Chapter 3 • Code Coverage Tool (Uncover) 45

The Inst-Freq Tab
The Inst-Freq tab displays the overall coverage summary.

Understanding the Coverage Report in the Performance Analyzer

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201146

Understanding the ASCII Coverage Report
If you specify the -t option when you generate the coverage report from the coverage data
directory, Uncover writes a coverage report to the specified ASCII (text file).

UNCOVER Code Coverage

Total Functions: 95

Covered Functions: 58

Function Coverage: 61.1%

Total Basic Blocks: 568

Covered Basic Blocks: 258

Basic Block Coverage: 45.4%

Total Basic Block Executions: 564,812,760

Average Executions per Basic Block: 994,388.66

Total Instructions: 6,201

Covered Instructions: 3,006

Instruction Coverage: 48.5%

Understanding the ASCII Coverage Report

Chapter 3 • Code Coverage Tool (Uncover) 47

Total Instruction Executions: 4,760,934,518

Average Executions per Instruction: 767,768.83

Number of times this program was executed: unavailable

Functions sorted by metric: Exclusive Uncoverage

Excl. Excl. Excl. Excl. Name

Uncoverage Function Block Instr

Count Covered % Covered %

13404 6004876 5464 5384 <Total>

1036 0 0 0 main

980 0 0 0 iofile

748 0 0 0 do_vforkexec

732 0 0 0 callso

708 0 0 0 do_forkexec

648 0 0 0 callsx

644 0 0 0 sigprof

644 0 0 0 sigprofh

556 0 0 0 do_chdir

548 0 0 0 correlate

492 0 0 0 do_popen

404 0 0 0 pagethrash

384 0 0 0 so_cputime

384 0 0 0 sx_cputime

348 0 0 0 itimer_realprof

336 0 0 0 ldso

304 0 0 0 hrv

300 0 0 0 do_system

300 0 0 0 do_burncpu

300 0 0 0 sx_burncpu

288 0 0 0 forkcopy

276 0 0 0 masksignals

256 0 0 0 sigprof_handler

256 0 0 0 sigprof_sigaction

216 0 0 0 do_exec

196 0 0 0 iotest

176 0 0 0 closeso

156 0 0 0 gethrustime

144 0 0 0 forkchild

144 0 0 0 gethrpxtime

136 0 0 0 whrlog

112 0 0 0 masksig

92 0 0 0 closesx

84 0 0 0 reapchildren

36 0 0 0 reapchild

32 0 0 0 doabort

8 0 0 0 csig_handler

0 1 66 72 acct_init

0 1 100 100 bounce

0 63 100 96 bounce_a

0 60 100 100 bounce-b

0 16 71 58 check_sigmask

0 1 83 77 commandline

0 1 100 98 cputime

0 1 100 98 dousleep

0 1 100 100 endcases

0 1 100 95 ext_inline_code

0 1 100 96 ext_macro_code

0 1 100 99 fitos

Understanding the ASCII Coverage Report

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201148

0 2 81 80 get_clock_rate

0 1 100 100 get_ncpus

0 1 100 100 gpf

0 1 100 100 gpf_a

0 1 100 100 gpf_b

0 10 100 93 gpf_work

0 1 100 97 icputime

0 1 100 96 inc_body

0 1 100 96 inc_brace

0 1 100 95 inc_entry

0 1 100 95 inc_exit

0 1 100 96 inc_func

0 1 100 94 inc_middle

0 1 57 72 init_micro_acct

0 1 50 43 initcksig

0 1 100 95 inline_code

0 1 100 95 macro_code

0 1 100 98 muldiv

0 6000000 100 100 my_irand

0 1 100 98 naptime

0 19 50 83 prdelta

0 21 100 100 prhrdelta

0 21 100 100 prhrvdelta

0 1 100 100 prtime

0 552 100 98 real_recurse

0 1 100 100 recurse

0 1 100 100 recursedeep

0 1 100 95 s_inline_code

0 1 100 100 sigtime

0 1 100 95 sigtime_handler

0 19 100 100 snaptod

0 1 100 100 so_init

0 2 66 75 stpwtch_alloc

0 1 100 100 stpwtch_calibrate

0 2 75 66 stpwtch_print

0 2002 100 100 stpwtch_start

0 2000 90 91 stpwtch_stop

0 1 100 100 sx_init

0 1 100 99 systime

0 3 100 95 tailcall_a

0 3 100 95 tailcall_b

0 3 100 95 tailcall_c

0 1 100 100 tailcallopt

0 1 100 97 underflow

0 21 75 71 whrvlog

0 19 100 100 wlog

Instruction frequency data from experiment a.out.er

Instruction frequencies of /export/home1/synprog/a.out.uc

Instruction Executed ()

TOTAL 4760934518 (100.0)

float ops 2383657378 (50.1)

float ld st 1149983523 (24.2)

load store 1542440573 (32.4)

load 882693735 (18.5)

store 659746838 (13.9)

Understanding the ASCII Coverage Report

Chapter 3 • Code Coverage Tool (Uncover) 49

Instruction Executed () Annulled In Delay Slot

TOTAL 4760934518 (100.0)

add 713013787 (15.0) 16 1501335

subcc 558774858 (11.7) 0 6002

br 558769261 (11.7) 0 0

stf 432500661 (9.1) 726 36299281

ldf 408226488 (8.6) 40 103000396

faddd 391230847 (8.2) 0 0

fdtos 366200726 (7.7) 0 0

fstod 360200000 (7.6) 0 0

lddf 288250336 (6.1) 500 282200229

stw 138028738 (2.9) 26002 25974065

lduw 118004305 (2.5) 71 94000270

ldx 68212446 (1.4) 0 2000

stx 68211370 (1.4) 7 23532716

fitod 36026002 (0.8) 0 0

sethi 36002986 (0.8) 0 228

fdtoi 30000001 (0.6) 0 0

fdivd 26000088 (0.5) 0 0

call 22250348 (0.5) 0 0

srl 21505246 (0 5) 0 21

stdf 21006038 (0.4) 0 0

or 19464766 (0.4) 0 10981277

fmuls 6004907 (0.3) 0 0

jmpl 6004853 (0.1) 0 0

save 6004852 (0.1) 0 0

restore 6002294 (0.1) 0 6004852

sub 6000019 (0.1) 0 0

xor 6000000 (0.1) 0 0

fitos 6000000 (0.1) 0 0

fstoi 6000000 (0.1) 0 0

and 6000000 (0.1) 0 0

andn 6000000 (0.1) 0 0

sll 3505225 (0.1) 0 0

nop 3505219 (0.1) 0 3505219

fxtod 7763 (0.0) 0 0

bpr 6000 (0.0) 0 0

fcmped 4837 (0.0) 0 0

fbr 4837 (0.0) 0 0

fmuld 2850 (0.0) 0 0

orcc 383 (0.0) 0 0

sra 241 (0.0) 0 0

ldsb 160 (0.0) 0 0

mulx 87 (0.0) 0 0

stb 31 (0.0) 0 0

mov 21 (0.0) 0 0

fdtox 15 (0.0) 0 0

==

Understanding the ASCII Coverage Report

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201150

Understanding the HTML Coverage Report
The HTML report is similar to the report displayed in the Performance Analyzer.

If you click the function name link or the trimmed link for a function, the disassembly data for
that function is displayed.

Understanding the HTML Coverage Report

Chapter 3 • Code Coverage Tool (Uncover) 51

If you click the Caller-callee link for a function, the Caller-Callee data is displayed.

Understanding the HTML Coverage Report

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201152

Limitations When Using Uncover

Only Annotated Code Can Be Instrumented
Uncover can instrument only code that has been prepared as described in “Requirements for
Using Uncover” on page 37. Non-annotated code might come from assembly language code
linked into the binary, or from modules compiled with older compilers or operating systems
than those listed in that section.

Specifically excluded from preparation are assembly language modules and functions that
contain asm statements or .il templates.

Limitations When Using Uncover

Chapter 3 • Code Coverage Tool (Uncover) 53

Machine Instructions Might Differ From Source Code
Uncover operates on machine code. It finds coverage of machine instructions and then
correlates this coverage with source code. Some source code statements do not have associated
machine instructions, so Uncover might appear to not report coverage for such statements.

Example 1
Consider the following code fragment:

#define A 100

#define B 200

...

if (A>B) {

...

}

You might expect Uncover to report a non-zero execution count for the if statement, but the
compiler is likely to remove this code, so Uncover will not see it during instrumentation. So no
coverage will be reported for these instructions.

Example 2
The following is an example of dead code:

1 void foo()

2 {

3 A();

4 return;

5 B();

6 C();

7 D();

8 return;

9 }

Corresponding assembly shows that calls to B,C,D are deleted because this code is never
executed.

foo:

.L900000109:

/* 000000 2 */ save %sp,-96,%sp

/* 0x0004 3 */ call A ! params = ! Result =

/* 0x0008 */ nop

/* 0x000c 8 */ ret ! Result =

/* 0x0010 */ restore %g0,%g0,%g0

So no coverage will be reported for lines 5 through 6.

Excl. Excl. Excl. Excl. Excl.

Uncoverage Function Instr Block Instr

Count Exec Covered % Covered %

Limitations When Using Uncover

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201154

1. void foo()

0 1 1 100 100 2. {

<Function: foo

0 0 2 0 0 3. A();

4. return;

5. B();

6. C();

7. D();

8. return;

0 0 2 0 0 9. }

Example 3
The following is an example of redundant code:

1 int g;

2 int foo() {

3 int x;

4 x = g;

5 for (int i=0; i<100; i++)

6 x++;

7 return x;

8 }

At low optimization levels, the compiler may generate code for all the lines:

foo:

.L900000107:

/* 000000 3 */ save %sp,-112,%sp

/* 0x0004 5 */ sethi %hi(g),%l1

/* 0x0008 */ ld [%l1+%lo(g)],%l3 ! volatile

/* 0x000c */ add %l1,%lo(g),%l2

/* 0x0010 6 */ st %g0,[%fp-12]

/* 0x0014 5 */ st %l3,[%fp-8]

/* 0x0018 6 */ ld [%fp-12],%l4

/* 0x001c */ cmp %l4,100

/* 0x0020 */ bge,a,pn %icc,.L900000105

/* 0x0024 8 */ ld [%fp-8],%l1

.L17:

/* 0x0028 7 */ ld [%fp-8],%l1

.L900000104:

/* 0x002c 6 */ ld [%fp-12],%l3

/* 0x0030 7 */ add %l1,1,%l2

/* 0x0034 */ st %l2,[%fp-8]

/* 0x0038 6 */ add %l3,1,%l4

/* 0x003c */ st %l4,[%fp-12]

/* 0x0040 */ ld [%fp-12],%l5

/* 0x0044 */ cmp %l5,100

/* 0x0048 */ bl,a,pn %icc,.L900000104

/* 0x004c 7 */ ld [%fp-8],%l1

/* 0x0050 8 */ ld [%fp-8],%l1

.L900000105:

/* 0x0054 8 */ st %l1,[%fp-4]

/* 0x0058 */ ld [%fp-4],%i0

/* 0x005c */ ret ! Result = %i0

Limitations When Using Uncover

Chapter 3 • Code Coverage Tool (Uncover) 55

/* 0x0060 */ restore %g0,%g0,%g0

At high optimization levels, most of the executable source lines do not have any corresponding
instructions :

foo:

/* 000000 5 */ sethi %hi(g),%o5

/* 0x0004 */ ld [%o5+%lo(g)],%o4

/* 0x0008 8 */ retl ! Result = %o0

/* 0x000c 5 */ add %o4,100,%o0

So no coverage will be reported for some lines.

Excl. Excl. Excl. Excl. Excl.

Uncoverage Function Instr Block Instr

Count Exec Covered % Covered %

1. int g;

0 0 0 0 0 2. int foo() {

<Function foo>

3. int x;

4. x = g;

Source loop below has tag L1

Induction variable substitution performed on L1

L1 deleted as dead code

0 1 3 100 100 5. for (int i=0; i<100; i++)

6. x++;

7. return x;

0 0 1 0 0 8. }

Limitations When Using Uncover

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201156

Index

B
binaries

instrumented with Discover
changing the runtime behavior of, 18
running, 19
writing to a specific file, 15

instrumented with Uncover, running, 39
instrumenting for Discover, 14–18
instrumenting for Uncover, 38
preparing for Discover, 11–12
that cannot be used by Discover, 12

bit.rc initialization files, 18
telling Discover not to read, 17

D
Discover

API, 34
doing full read-write insturmentation of

libraries, 16
doing write-only instrumentation for

executables, 16
following fork, 18
forcing reinstrumentation of cached libraries, 17
ignoring shared libraries, 15, 17
instrumenting the named binary only, 17
issuing a warning if an attempt is made to

instrument an uninstrumentable binary, 17
limitations, 35–36
memory access error examples, 29
memory access errors, 29–31

Discover (Continued)
memory access warnings, 31–32
options

-a, 15
-c, 15, 16
-D, 14, 17
-E, 16
-e, 16
-F, 17
-f, 16
-H, 16, 19
-h, 17
-i, 17
-K, 17
-k, 17
-l, 16
-m, 16
-N, 15, 17
-n, 14, 16
-o, 15
-S, 16
-s, 17
-T, 15, 17
-V, 17
-v, 17
-w, 14, 15, 19

overview, 9–10
requirements for using, 11–12
running in light mode, 16
specifying cache directory, 17
specifying verbose mode, 17

57

Discover (Continued)
specifying what happens if the instrumented binary

forks, 17
writing error data to directory for use by Code

Analyzer, 15
Discover reports

ASCII, 26–28
error messages, 27
heap blocks left allocated, 28
memory leaks, 28
stack trace, 27, 28
summary, 28
unfreed heap blocks, 28
warning messages, 28
writing, 15

error messages, interpreting, 32
false positives, 32

avoiding, 32
caused by partially initialized memory, 32–33
caused by speculative loads, 33
caused by uninstrumented code, 33

HTML, 19–26
control panel, 25–26
controlling types of errors displayed, 25
controlling types of warnings displayed, 26
Errors tab, 20–21
Memory Leaks tab, 23–24
number of blocks remaining allocated, 23
showing all stack traces, 25
showing source code, 21, 22, 24
showing source code for all functions, 25
showing stack trace, 20, 22, 24
Warnings tab, 22
writing, 16

limiting number of memory errors reported, 16
limiting number of memory leaks reported, 16
limiting number of stack frames shown in, 16
showing mangled names in, 16
showing offsets in, 16

documentation, accessing, 5
documentation index, 5

I
instrumenting a binary

for data race detection with Discover, 17
for Discover, 14–18
for uncover, 38

N
non-annotated code

how Discover treats, 14
sources of, 14

R
requirements

Discover, 11–12
Uncover, 37

S
shared libraries

caching by Discover, 14
instrumenting with Discover, 14
telling Discover to ignore, 15, 17

SUNW_DISCOVER_FOLLOW_FORK_MODE environment
variable, 18

SUNW_DISCOVER_OPTIONS environment variable, 18, 19

U
Uncover

command examples, 40
coverage report, generating, 39–40
creating the coverage data directory in a specified

directory, 38
limitations, 53–56
options

-a, 39
-c, 38, 39
-d, 38
-e, 39

Index

Oracle Solaris Studio 12.3: Discover and Uncover User's Guide • December 201158

Uncover, options (Continued)
-H, 39
-h, 39
-m, 38
-n, 39
-o, 38
-t, 40
-V, 40
-v, 40

overview, 10
requirements for using, 37
running in verbose mode, 40
turning on reporting of execution counts for

instructions, blocks, and functions, 38, 39
turning thread-safe profiling on and off, 38
writing data to directory for use by the Code

Analyzer, 39
writing the instrumented binary file to a specified

file, 38
Uncover ASCII coverage report, 47–50

generating, 40
Uncover coverage report for the Performance

Analyzer, 41–46
Disassembly tab, 45
Functions tab, 41–43

Block Covered % counter, 43
Function Count counter, 43
Instr Covered % counter, 43
Instr Exec counter, 43
Uncoverage counter, 42–43

generating, 39
Inst-Freq tab, 46
Source tab, 44–45

Uncover HTML coverage report, 51–52
saving, 39

Index

59

60

	Oracle Solaris Studio 12.3: Discover and Uncover User's Guide
	Preface
	Supported Platforms
	Oracle Solaris Studio Documentation
	Resources for Developers
	Access to Oracle Support
	Typographic Conventions
	Shell Prompts in Command Examples

	Introduction
	Memory Error Discovery Tool (Discover)
	Code Coverage Tool (Uncover)

	Memory Error Discovery Tool (Discover)
	Requirements for Using Discover
	Binaries Must Be Prepared Correctly
	Binaries That Use Preloading or Auditing Cannot Be Used
	Binaries That Redefine Standard Memory Allocation Functions Can Be Used

	Quick Start
	Instrumenting a Prepared Binary
	Caching Shared Libraries
	Instrumenting Shared Libraries
	Ignoring Libraries
	Command Line Options
	Output Options
	Instrumentation Options
	Caching Options
	Other Options

	bit.rc Initialization Files
	SUNW_DISCOVER_OPTIONS Environment Variable
	SUNW_DISCOVER_FOLLOW_FORK_MODE Environment Variable

	Running an Instrumented Binary
	Analyzing Discover Reports
	Analyzing the HTML Report
	Using the Errors Tab
	Using the Warnings Tab
	Using the Memory Leaks Tab
	Using the Control Panel

	Analyzing the ASCII Report

	Memory Access Errors and Warnings
	Memory Access Errors
	ABR
	ABW
	BFM
	BRP
	DFM
	FMR
	FMW
	FRP
	IMR
	IMW
	OLP
	PIR
	SBR
	SBW
	UAR
	UAW
	UMR

	Memory Access Warnings
	AZS

	Interpreting Discover Error Messages
	Partially Initialized Memory
	Speculative Loads
	Uninstrumented Code

	Limitations When Using Discover
	Only Annotated Code is Instrumented
	Machine Instruction Might Differ From Source Code
	Compiler Options Affect the Generated Code
	System Libraries Can Affect the Errors Reported
	Custom Memory Management Can Affect the Accuracy of the Data
	Out of Bounds Errors for Static and Automatic Arrays Cannot Be Detected

	Code Coverage Tool (Uncover)
	Requirements for Using Uncover
	Using Uncover
	Instrumenting the Binary
	Running the Instrumented Binary
	Generating and Viewing the Coverage Report
	Examples

	Understanding the Coverage Report in the Performance Analyzer
	The Functions Tab
	The Uncoverage Counter
	The Function Count Counter
	The Instr Exec Counter
	The Block Covered % Counter
	The Instr Covered % Counter

	The Source Tab
	The Disassembly Tab
	The Inst-Freq Tab

	Understanding the ASCII Coverage Report
	Understanding the HTML Coverage Report
	Limitations When Using Uncover
	Only Annotated Code Can Be Instrumented
	Machine Instructions Might Differ From Source Code
	Example 1
	Example 2
	Example 3

	Index

