
Oracle® Solaris Studio 12.3: C++ User's
Guide

Part No: E21991
January, 2012

Copyright © 1991, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions
d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est
interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que
prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes
d’erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel
ou l’utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique :

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
"commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est
destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel
dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures
nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés
par l’utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés.Tout autre nom mentionné peut correspondre à des marques appartenant à
d’autres propriétaires qu’Oracle.

AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. Intel et Intel Xeon sont des marques ou
des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques déposées de SPARC
International, Inc. UNIX est une marque déposée concédé sous license par X/Open Company, Ltd.

120118@25097

Contents

Preface ...19

Part I C++ Compiler ...23

1 The C++ Compiler ..25
1.1 New Features and Functionality of the Oracle Solaris Studio 12.3 C++ 5.12 Compiler 25
1.2 Special x86 Notes ... 26
1.3 Compiling for 64–Bit Platforms .. 27
1.4 Binary Compatibility Verification ... 27
1.5 Standards Conformance ... 27
1.6 Release Information .. 28
1.7 Man Pages ... 28
1.8 Native-Language Support .. 29

2 Using the C++ Compiler ...31
2.1 Getting Started ... 31
2.2 Invoking the Compiler .. 32

2.2.1 Command Syntax ... 32
2.2.2 File Name Conventions .. 33
2.2.3 Using Multiple Source Files ... 34

2.3 Compiling With Different Compiler Versions .. 34
2.4 Compiling and Linking .. 35

2.4.1 Compile-Link Sequence ... 35
2.4.2 Separate Compiling and Linking .. 35
2.4.3 Consistent Compiling and Linking .. 35
2.4.4 Compiling for 64–Bit Memory Model ... 36
2.4.5 Compiler Command-Line Diagnostics ... 36

3

2.4.6 Understanding the Compiler Organization .. 37
2.5 Preprocessing Directives and Names .. 38

2.5.1 Pragmas .. 38
2.5.2 Macros With a Variable Number of Arguments ... 38
2.5.3 Predefined Names ... 39
2.5.4 Warnings and Errors .. 39

2.6 Memory Requirements ... 39
2.6.1 Swap Space Size ... 40
2.6.2 Increasing Swap Space .. 40
2.6.3 Control of Virtual Memory ... 40
2.6.4 Memory Requirements .. 41

2.7 Using the strip Command with C++ Objects .. 41
2.8 Simplifying Commands .. 42

2.8.1 Using Aliases Within the C Shell .. 42
2.8.2 Using CCFLAGS to Specify Compile Options .. 42
2.8.3 Using make ... 42

3 Using the C++ Compiler Options .. 45
3.1 Syntax Overview .. 45
3.2 General Guidelines .. 46
3.3 Options Summarized by Function .. 46

3.3.1 Code Generation Options .. 46
3.3.2 Compile-Time Performance Options .. 47
3.3.3 Compile-Time and Link-Time Options .. 48
3.3.4 Debugging Options .. 49
3.3.5 Floating-Point Options .. 50
3.3.6 Language Options ... 50
3.3.7 Library Options ... 51
3.3.8 Obsolete Options .. 52
3.3.9 Output Options ... 52
3.3.10 Run-Time Performance Options .. 54
3.3.11 Preprocessor Options ... 55
3.3.12 Profiling Options .. 56
3.3.13 Reference Options .. 56
3.3.14 Source Options .. 56

Contents

Oracle Solaris Studio 12.3: C++ User's Guide • January, 20124

3.3.15 Template Options ... 57
3.3.16 Thread Options ... 57

3.4 User-Supplied Default Options File .. 57

Part II Writing C++ Programs .. 59

4 Language Extensions ..61
4.1 Linker Scoping ... 61

4.1.1 Compatibility with Microsoft Windows .. 62
4.2 Thread-Local Storage .. 63
4.3 Overriding With Less Restrictive Virtual Functions .. 64
4.4 Making Forward Declarations of enum Types and Variables ... 64
4.5 Using Incomplete enum Types .. 65
4.6 Using an enum Name as a Scope Qualifier ... 65
4.7 Using Anonymous struct Declarations .. 65
4.8 Passing the Address of an Anonymous Class Instance ... 66
4.9 Declaring a Static Namespace-Scope Function as a Class Friend .. 67
4.10 Using the Predefined __func__ Symbol for Function Name ... 67
4.11 Supported Attributes .. 68

4.11.1 __packed__ Attribute Details .. 69
4.12 Compiler Support for Intel MMX and Extended x86 Platform Intrinsics 69

5 Program Organization ..71
5.1 Header Files .. 71

5.1.1 Language-Adaptable Header Files .. 71
5.1.2 Idempotent Header Files .. 72

5.2 Template Definitions .. 73
5.2.1 Template Definitions Included ... 73
5.2.2 Template Definitions Separate .. 73

6 Creating and Using Templates ..77
6.1 Function Templates .. 77

6.1.1 Function Template Declaration .. 77
6.1.2 Function Template Definition .. 77

Contents

5

6.1.3 Function Template Use .. 78
6.2 Class Templates ... 78

6.2.1 Class Template Declaration ... 78
6.2.2 Class Template Definition ... 79
6.2.3 Class Template Member Definitions .. 79
6.2.4 Class Template Use ... 80

6.3 Template Instantiation ... 81
6.3.1 Implicit Template Instantiation .. 81
6.3.2 Explicit Template Instantiation .. 81

6.4 Template Composition ... 82
6.5 Default Template Parameters .. 83
6.6 Template Specialization .. 83

6.6.1 Template Specialization Declaration ... 83
6.6.2 Template Specialization Definition .. 83
6.6.3 Template Specialization Use and Instantiation ... 84
6.6.4 Partial Specialization .. 84

6.7 Template Problem Areas .. 85
6.7.1 Nonlocal Name Resolution and Instantiation ... 85
6.7.2 Local Types as Template Arguments .. 85
6.7.3 Friend Declarations of Template Functions .. 86
6.7.4 Using Qualified Names Within Template Definitions ... 88
6.7.5 Nesting Template Names ... 88
6.7.6 Referencing Static Variables and Static Functions .. 89
6.7.7 Building Multiple Programs Using Templates in the Same Directory 89

7 Compiling Templates ..91
7.1 Verbose Compilation .. 91
7.2 Repository Administration .. 91

7.2.1 Generated Instances ... 91
7.2.2 Whole-Class Instantiation ... 92
7.2.3 Compile-Time Instantiation ... 92
7.2.4 Template Instance Placement and Linkage ... 92

7.3 External Instances ... 93
7.3.1 Possible Cache Conflicts .. 94
7.3.2 Static Instances .. 94

Contents

Oracle Solaris Studio 12.3: C++ User's Guide • January, 20126

7.3.3 Global Instances .. 95
7.3.4 Explicit Instances .. 95
7.3.5 Semi-Explicit Instances .. 96

7.4 Template Repository ... 96
7.4.1 Repository Structure ... 96
7.4.2 Writing to the Template Repository ... 96
7.4.3 Reading From Multiple Template Repositories .. 96
7.4.4 Sharing Template Repositories ... 97
7.4.5 Template Instance Automatic Consistency With -instances=extern 97

7.5 Template Definition Searching .. 97
7.5.1 Source File Location Conventions .. 98
7.5.2 Definitions Search Path .. 98
7.5.3 Troubleshooting a Problematic Search .. 98

8 Exception Handling ...99
8.1 Synchronous and Asynchronous Exceptions .. 99
8.2 Specifying Runtime Errors ... 99
8.3 Disabling Exceptions .. 100
8.4 Using Runtime Functions and Predefined Exceptions ... 100
8.5 Mixing Exceptions With Signals and Setjmp/Longjmp .. 101
8.6 Building Shared Libraries That Have Exceptions .. 102

9 Improving Program Performance ...103
9.1 Avoiding Temporary Objects ... 103
9.2 Using Inline Functions ... 104
9.3 Using Default Operators .. 104
9.4 Using Value Classes .. 105

9.4.1 Choosing to Pass Classes Directly ... 106
9.4.2 Passing Classes Directly on Various Processors .. 106

9.5 Cache Member Variables ... 106

10 Building Multithreaded Programs ...109
10.1 Building Multithreaded Programs .. 109

10.1.1 Indicating Multithreaded Compilation ... 109

Contents

7

10.1.2 Using C++ Support Libraries With Threads and Signals .. 110
10.2 Using Exceptions in a Multithreaded Program ... 110

10.2.1 Thread Cancellation ... 110
10.3 Sharing C++ Standard Library Objects Between Threads ... 110
10.4 Memory Barrier Intrinsics .. 112

Part III Libraries ..115

11 Using Libraries ...117
11.1 C Libraries .. 117
11.2 Libraries Provided With the C++ Compiler .. 117

11.2.1 C++ Library Descriptions .. 118
11.2.2 Accessing the C++ Library Man Pages ... 119
11.2.3 Default C++ Libraries .. 119

11.3 Related Library Options ... 120
11.4 Using Class Libraries .. 121

11.4.1 iostream Library .. 121
11.4.2 Linking C++ Libraries .. 122

11.5 Statically Linking Standard Libraries .. 123
11.6 Using Shared Libraries .. 124
11.7 Replacing the C++ Standard Library .. 125

11.7.1 What Can Be Replaced ... 125
11.7.2 What Cannot Be Replaced ... 125
11.7.3 Installing the Replacement Library .. 125
11.7.4 Using the Replacement Library ... 126
11.7.5 Standard Header Implementation .. 126

12 Using the C++ Standard Library ... 129
12.1 C++ Standard Library Header Files .. 130
12.2 STLport ... 131

12.2.1 Redistribution and Supported STLport Libraries ... 132
12.3 Apache stdcxx Standard Library .. 133

Contents

Oracle Solaris Studio 12.3: C++ User's Guide • January, 20128

13 Using the Classic iostream Library ... 135
13.1 Predefined iostreams ... 135
13.2 Basic Structure of iostream Interaction ... 136
13.3 Using the Classic iostream Library .. 137

13.3.1 Output Using iostream ... 137
13.3.2 Input Using iostream .. 140
13.3.3 Defining Your Own Extraction Operators .. 140
13.3.4 Using the char* Extractor ... 141
13.3.5 Reading Any Single Character .. 141
13.3.6 Binary Input ... 142
13.3.7 Peeking at Input .. 142
13.3.8 Extracting Whitespace ... 142
13.3.9 Handling Input Errors .. 143
13.3.10 Using iostreams With stdio ... 143

13.4 Creating iostreams .. 144
13.4.1 Dealing With Files Using Class fstream ... 144

13.5 Assignment of iostreams .. 147
13.6 Format Control .. 147
13.7 Manipulators .. 147

13.7.1 Using Plain Manipulators .. 148
13.7.2 Parameterized Manipulators ... 149

13.8 strstream: iostreams for Arrays ... 151
13.9 stdiobuf: iostreams for stdio Files .. 151
13.10 Working Withstreambuf Streams .. 151

13.10.1 streambuf Pointer Types ... 151
13.10.2 Using streambuf Objects .. 152

13.11 iostream Man Pages ... 152
13.12 iostream Terminology ... 154

14 Building Libraries ..157
14.1 Understanding Libraries .. 157
14.2 Building Static (Archive) Libraries .. 158
14.3 Building Dynamic (Shared) Libraries ... 159
14.4 Building Shared Libraries That Contain Exceptions .. 160
14.5 Building Libraries for Private Use ... 160

Contents

9

14.6 Building Libraries for Public Use .. 160
14.7 Building a Library That Has a C API ... 161
14.8 Using dlopen to Access a C++ Library From a C Program .. 162

Part IV Appendixes ...163

A C++ Compiler Options ..165
A.1 How Option Information Is Organized ... 165
A.2 Option Reference .. 166

A.2.1 -# .. 166
A.2.2 -### .. 166
A.2.3 –Bbinding .. 167
A.2.4 –c .. 168
A.2.5 –cg{89|92} .. 169
A.2.6 –compat={5|g} ... 169
A.2.7 +d .. 170
A.2.8 -Dname[=def] .. 171
A.2.9 –d{y|n} ... 171
A.2.10 –dalign ... 172
A.2.11 –dryrun ... 172
A.2.12 –E .. 173
A.2.13 -erroff[=t] ... 174
A.2.14 -errtags[=a] .. 175
A.2.15 -errwarn[=t] .. 175
A.2.16 –fast ... 176
A.2.17 –features=a[,a...] .. 179
A.2.18 -filt[=filter[,filter...]] .. 181
A.2.19 –flags ... 183
A.2.20 -fma[={none|fused}] ... 184
A.2.21 –fnonstd ... 184
A.2.22 –fns[={yes|no}] ... 184
A.2.23 –fprecision=p .. 186
A.2.24 –fround=r ... 187
A.2.25 –fsimple[=n] .. 187
A.2.26 –fstore ... 189

Contents

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201210

A.2.27 -ftrap=t[,t...] .. 189
A.2.28 –G .. 191
A.2.29 –g .. 191
A.2.30 –g0 .. 193
A.2.31 -g3 .. 193
A.2.32 –H .. 193
A.2.33 –h[]name .. 193
A.2.34 –help ... 194
A.2.35 -Ipathname .. 194
A.2.36 -I- .. 195
A.2.37 –i .. 197
A.2.38 -include filename ... 197
A.2.39 -inline ... 198
A.2.40 –instances=a .. 198
A.2.41 –instlib=filename .. 199
A.2.42 –KPIC ... 200
A.2.43 –Kpic ... 200
A.2.44 –keeptmp ... 201
A.2.45 –Lpath .. 201
A.2.46 –llib ... 201
A.2.47 –libmieee ... 202
A.2.48 –libmil ... 202
A.2.49 -library=l[,l...] .. 202
A.2.50 -m32|-m64 .. 205
A.2.51 -mc .. 206
A.2.52 –misalign ... 206
A.2.53 -mr[,string] ... 206
A.2.54 -mt[={yes|no}] .. 206
A.2.55 –native ... 207
A.2.56 –noex ... 207
A.2.57 –nofstore ... 207
A.2.58 –nolib ... 207
A.2.59 –nolibmil ... 207
A.2.60 –norunpath ... 208
A.2.61 –O .. 208
A.2.62 –Olevel .. 208

Contents

11

A.2.63 –o filename .. 208
A.2.64 +p .. 209
A.2.65 –P .. 209
A.2.66 –p .. 210
A.2.67 –pentium ... 210
A.2.68 –pg .. 210
A.2.69 -PIC ... 210
A.2.70 –pic ... 210
A.2.71 –pta ... 210
A.2.72 –ptipath .. 210
A.2.73 –pto ... 211
A.2.74 –ptv ... 211
A.2.75 –Qoption phase option[,option…] ... 211
A.2.76 –qoption phase option .. 212
A.2.77 –qp .. 212
A.2.78 –Qproduce sourcetype .. 212
A.2.79 –qproduce sourcetype .. 213
A.2.80 –Rpathname[:pathname…] ... 213
A.2.81 –S .. 213
A.2.82 –s .. 213
A.2.83 -staticlib=l[,l…] ... 214
A.2.84 -sync_stdio=[yes|no] .. 215
A.2.85 –temp=path ... 216
A.2.86 –template=opt[,opt…] .. 216
A.2.87 –time ... 218
A.2.88 -traceback[={%none|common|signals_list}] .. 218
A.2.89 –Uname .. 219
A.2.90 –unroll=n ... 219
A.2.91 –V .. 219
A.2.92 –v .. 219
A.2.93 –verbose=v[,v…] ... 220
A.2.94 -Wc,arg .. 220
A.2.95 +w .. 221
A.2.96 +w2 .. 222
A.2.97 –w .. 222
A.2.98 -Xlinker arg ... 222

Contents

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201212

A.2.99 –Xm .. 222
A.2.100 -xaddr32 ... 222
A.2.101 -xalias_level[=n] ... 223
A.2.102 -xanalyze={code|no} .. 225
A.2.103 -xannotate[=yes|no] .. 226
A.2.104 –xar ... 226
A.2.105 –xarch=isa .. 227
A.2.106 -xautopar ... 231
A.2.107 -xbinopt={prepare|off} ... 231
A.2.108 -xbuiltin[={%all|%default|%none}] .. 232
A.2.109 –xcache=c ... 233
A.2.110 -xchar[=o] .. 234
A.2.111 -xcheck[=i] ... 236
A.2.112 -xchip=c ... 236
A.2.113 –xcode=a ... 238
A.2.114 -xdebugformat=[stabs|dwarf] .. 240
A.2.115 -xdepend=[yes|no] .. 241
A.2.116 -xdumpmacros[=value[,value...]] .. 242
A.2.117 -xe ... 244
A.2.118 -xF[=v[,v...]] ... 245
A.2.119 -xhelp=flags .. 246
A.2.120 -xhwcprof ... 246
A.2.121 -xia ... 247
A.2.122 -xinline[=func-spec[,func-spec...]] .. 248
A.2.123 -xinstrument=[no%]datarace .. 249
A.2.124 -xipo[={0|1|2}] .. 250
A.2.125 -xipo_archive=[a] ... 252
A.2.126 -xivdep[=p] .. 253
A.2.127 -xjobs=n ... 254
A.2.128 -xkeepframe[=[%all,%none,name,no%name]] .. 254
A.2.129 -xlang=language[,language] .. 255
A.2.130 -xldscope={v} .. 256
A.2.131 -xlibmieee ... 258
A.2.132 -xlibmil ... 258
A.2.133 –xlibmopt ... 258
A.2.134 –xlic_lib=sunperf .. 259

Contents

13

A.2.135 –xlicinfo ... 259
A.2.136 -xlinkopt[=level] .. 259
A.2.137 -xloopinfo ... 260
A.2.138 –xM ... 260
A.2.139 -xM1 ... 261
A.2.140 -xMD ... 261
A.2.141 -xMF ... 262
A.2.142 -xMMD ... 262
A.2.143 –xMerge ... 262
A.2.144 -xmaxopt[=v] ... 262
A.2.145 -xmemalign=ab .. 263
A.2.146 -xmodel=[a] .. 264
A.2.147 –xnolib ... 265
A.2.148 –xnolibmil ... 266
A.2.149 –xnolibmopt ... 267
A.2.150 -xnorunpath ... 267
A.2.151 -xOlevel .. 267
A.2.152 -xopenmp[=i] ... 270
A.2.153 -xpagesize=n .. 271
A.2.154 -xpagesize_heap=n .. 272
A.2.155 -xpagesize_stack=n .. 273
A.2.156 -xpch=v ... 274
A.2.157 -xpchstop=file ... 276
A.2.158 -xpec[={yes|no}] .. 277
A.2.159 –xpg ... 277
A.2.160 -xport64[=(v)] .. 278
A.2.161 -xprefetch[=a[,a...]] ... 281
A.2.162 -xprefetch_auto_type=a ... 283
A.2.163 -xprefetch_level[=i] .. 284
A.2.164 –xprofile=p ... 284
A.2.165 -xprofile_ircache[=path] ... 288
A.2.166 -xprofile_pathmap .. 288
A.2.167 -xreduction ... 289
A.2.168 –xregs=r[,r...] .. 289
A.2.169 -xrestrict[=f] .. 290
A.2.170 –xs ... 292

Contents

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201214

A.2.171 –xsafe=mem ... 293
A.2.172 –xspace ... 293
A.2.173 –xtarget=t ... 293
A.2.174 -xthreadvar[=o] ... 297
A.2.175 –xtime ... 298
A.2.176 -xtrigraphs[={yes|no}] ... 298
A.2.177 –xunroll=n .. 299
A.2.178 -xustr={ascii_utf16_ushort|no} ... 299
A.2.179 -xvector[=a] .. 300
A.2.180 -xvis[={yes|no}] ... 301
A.2.181 -xvpara ... 302
A.2.182 –xwe ... 302
A.2.183 -Yc,path ... 302
A.2.184 -z[]arg .. 304

B Pragmas .. 305
B.1 Pragma Forms ... 305

B.1.1 Overloaded Functions as Pragma Arguments .. 305
B.2 Pragma Reference ... 306

B.2.1 #pragma align .. 306
B.2.2 #pragma does_not_read_global_data ... 307
B.2.3 #pragma does_not_return .. 307
B.2.4 #pragma does_not_write_global_data .. 308
B.2.5 #pragma dumpmacros .. 308
B.2.6 #pragma end_dumpmacros .. 309
B.2.7 #pragma error_messages .. 309
B.2.8 #pragma fini .. 310
B.2.9 #pragma hdrstop .. 310
B.2.10 #pragma ident .. 311
B.2.11 #pragma init .. 311
B.2.12 #pragma ivdep ... 311
B.2.13 #pragma must_have_frame .. 311
B.2.14 #pragma no_side_effect ... 312
B.2.15 #pragma opt .. 313
B.2.16 #pragma pack(n) .. 313

Contents

15

B.2.17 #pragma rarely_called ... 314
B.2.18 #pragma returns_new_memory ... 315
B.2.19 #pragma unknown_control_flow ... 315
B.2.20 #pragma weak .. 315

Glossary .. 319

Index ... 325

Contents

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201216

Examples

EXAMPLE 6–1 Example of Local Type as Template Argument Problem 86
EXAMPLE 6–2 Example of Friend Declaration Problem .. 86
EXAMPLE 13–1 stringExtraction Operator ... 140
EXAMPLE A–1 Preprocessor Example Program foo.cc ... 173
EXAMPLE A–2 Preprocessor Output of foo.ccUsing -EOption ... 173

17

18

Preface

This guide describes the Oracle Solaris Studio 12.3 C++ Compiler.

Supported Platforms
This Oracle Solaris Studio release supports platforms that use the SPARC family of processor
architectures running the Oracle Solaris operating system, as well as platforms that use the x86
family of processor architectures running Oracle Solaris or specific Linux systems.

This document uses the following terms to cite differences between x86 platforms:

■ “x86” refers to the larger family of 64-bit and 32-bit x86 compatible products.
■ “x64” points out specific 64-bit x86 compatible CPUs.
■ “32-bit x86” points out specific 32-bit information about x86 based systems.

Information specific to Linux systems refers only to supported Linux x86 platforms, while
information specific to Oracle Solaris systems refers only to supported Oracle Solaris platforms
on SPARC and x86 systems.

For a complete list of supported hardware platforms and operating system releases, see the
Oracle Solaris Studio Release Notes.

Oracle Solaris Studio Documentation
You can find complete documentation for Oracle Solaris Studio software as follows:

■ Product documentation is located at the Oracle Solaris Studio documentation web site,
including release notes, reference manuals, user guides, and tutorials.

■ Online help for the Code Analyzer, the Performance Analyzer, the Thread Analyzer,
dbxtool, DLight, and the IDE is available through the Help menu, as well as through the F1
key and Help buttons on many windows and dialog boxes, in these tools.

■ Man pages for command-line tools describe a tool's command options.

19

http://www.oracle.com/pls/topic/lookup?ctx=E24457&id=OSSRN
http://www.oracle.com/technetwork/server-storage/solarisstudio/documentation/index.html

Resources for Developers
Visit the Oracle Technical Network web site to find these resources for developers using Oracle
Solaris Studio:

■ Articles on programming techniques and best practices
■ Links to complete documentation for recent releases of the software
■ Information on support levels
■ User discussion forums.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Preface

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201220

http://www.oracle.com/technetwork/server-storage/solarisstudio
https://forums.oracle.com/forums/category.jspa?categoryID=280
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Shell Prompts in Command Examples
The following table shows the default UNIX system prompt and superuser prompt for shells
that are included in the Oracle Solaris OS. Note that the default system prompt that is displayed
in command examples varies, depending on the Oracle Solaris release.

TABLE P–2 Shell Prompts

Shell Prompt

Bash shell, Korn shell, and Bourne shell $

Bash shell, Korn shell, and Bourne shell for superuser #

C shell machine_name%

C shell for superuser machine_name#

Preface

21

22

C++ Compiler

P A R T I

23

24

The C++ Compiler

This chapter provides general information about the current Oracle Solaris Studio C++
compiler.

1.1 New Features and Functionality of the Oracle Solaris
Studio 12.3 C++ 5.12 Compiler

This section provides a summary list of the new and changed features and functionality
introduced in the Oracle Solaris Studio 12.3 C++ 5.12 Compiler release.

■ Support for new SPARC T4 platform: —xtarget=T4, —xchip=T4, —xarch=sparc4
■ Support for new x86 Platform Sandy Bridge / AVX: —xtarget=sandybridge

—xchip=sandybridge —xarch=avx

■ Support for new x86 Platform Westmere / AES: —xtarget=westmere —xchip=westmere
—xarch=aes

■ New compiler option: —g3 adds expanded debugging symbol table information. (“A.2.31
-g3” on page 193)

■ New compiler option: —Xlinker arg passes arg to linker, ld(1). Equivalent to —Wl,arg.
(“A.2.98 -Xlinker arg” on page 222)

■ The OpenMP default number of threads, OMP_NUM_THREADS is now 2 (was 1). (“A.2.152
-xopenmp[=i]” on page 270)

■ Support for the OpenMP 3.1 shared memory parallelization specifications. (“A.2.152
-xopenmp[=i]” on page 270)

■ New compiler option: —xivdep sets the interpretation of ivdep pragmas. The ivdep
pragmas tell a compiler to ignore some or all loop-carried dependences on array references
that it finds in a loop for purposes of optimization. This enables a compiler to perform
various loop optimizations such as microvectorization, distribution, software pipelining,

1C H A P T E R 1

25

etc., which would not be otherwise possible. It is used in cases where the user knows either
that the dependences do not matter or that they never occur in practice. (“A.2.126
-xivdep[=p]” on page 253)

■ Use —library=sunperf to link to the Sun Performance Library. This obsoletes
-xlic_lib=sunperf. (“A.2.49 -library=l[,l...]” on page 202)

■ The —compat=4 suboption (“compatability mode”) has been removed. The default is now
—compat=5. Also, -compat=g option for g++ source and binary compatibility, previously
available only on Linux platforms, has been extended to Oracle Solaris/x86 as well. (“A.2.6
–compat={5|g}” on page 169)

■ New option —features=cplusplus_redef allows the normally pre-defined macro
__cplusplus to be redefined by a —D option on the command line. Attempting to redefine
__cplusplus via a #define directive in source code is still not allowed. Also, use of
—features=%none and —features=%all is now deprecated in this release. (“A.2.17
–features=a[,a...]” on page 179)

■ New option —xanalyze={code|no} produces a static analysis of the source code that can be
viewed using the Oracle Solaris Code Analyzer. (“A.2.102 -xanalyze={code|no}” on
page 225)

■ A new suboption —xbuiltin=%default only inlines functions that do not set errno. The
value of errno is always correct at any optimization level, and can be checked reliably.
(“A.2.108 -xbuiltin[={%all|%default|%none}]” on page 232)

■ Support for user-supplied compiler option defaults. (“3.4 User-Supplied Default Options
File” on page 57)

■ C99 header stdbool.h and the C++ equivalent cstdbool are now available. In C++ the
headers have no effect and are provided for compatibility with C99.

1.2 Special x86 Notes
■ Be aware of some important issues when compiling for x86 Oracle Solaris platforms.
■ Programs compiled with -xarch set to sse, sse2, sse2a, sse3, or beyond must be run only

on platforms that provide these extensions and features.
■ Numerical results on x86 might differ from results on SPARC due to the x86 80-bit

floating-point registers. To minimize these differences, use the -fstore option or compile
with -xarch=sse2 if the hardware supports SSE2.

■ Numerical results can also differ between Oracle Solaris and Linux because the intrinsic
math libraries (for example, sin(x)) are not the same.

1.2 Special x86 Notes

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201226

1.3 Compiling for 64–Bit Platforms
Use the —m32 option to compile for the ILP32 32–bit model. Use the —m64 option to compile for
the LP64 64–bit model.

The ILP32 model specifies that C++-language int, long, and pointer data types are all 32 bits
wide. The LP64 model specifies that long and pointer data types are all 64-bits wide. The Oracle
Solaris OS and Linux OS also support large files and large arrays under the LP64 memory
model.

When you compile with -m64, the resulting executable works only on 64-bit UltraSPARC or x86
processors under the Oracle Solaris OS or Linux OS running a 64-bit kernel. Compilation,
linking, and execution of 64-bit objects can only take place in an Oracle Solaris OS or Linux OS
that supports 64-bit execution.

1.4 Binary Compatibility Verification
On Oracle Solaris systems, program binaries compiled with the Oracle Solaris Studio compilers
are marked with architecture hardware flags indicating the instruction sets assumed by the
compiled binary. At runtime these marker flags are checked to verify that the binary can run on
the hardware it is attempting to execute on.

If a program does not contain these architecture hardware flags, or if the platform does not
enable the appropriate features or instruction set extensions, running the program could result
in segmentation faults or incorrect results without any explicit warning messages.

This warning extends also to programs that employ .il inline assembly language functions or
__asm() assembler code that utilize SSE, SSE2, SSE2a, and SSE3 and newer instructions and
extensions.

1.5 Standards Conformance
The C++ compiler (CC) supports the ISO International Standard for C++, ISO IS 14882:2003,
Programming Language—C++.

On SPARC platforms, the compiler provides support for the optimization-exploiting features of
SPARC V8 and SPARC V9, including the UltraSPARC implementation. These features are
defined in the SPARC Architecture Manuals, Version 8 (ISBN 0-13-825001-4), and Version 9
(ISBN 0-13-099227-5), published by Prentice-Hall for SPARC International.

In this document, “Standard” means conforming to the versions of the standards listed above.
“Nonstandard” or “Extension” refers to features that go beyond these versions of these
standards.

1.5 Standards Conformance

Chapter 1 • The C++ Compiler 27

The responsible standards bodies may revise these standards from time to time. The versions of
the applicable standards to which the C++ compiler conforms may be revised or replaced,
resulting in features in future releases of the Oracle Solaris Studio C++ compiler that create
incompatibilities with earlier releases.

1.6 Release Information
The What's New In Oracle Solaris Studio 12.3 guide highlights important information relevant
to this release of the compiler, and includes:

■ Information discovered after the manuals were printed
■ New and changed features
■ Software corrections
■ Problems and workarounds
■ Limitations and incompatibilities
■ Shippable libraries
■ Standards not implemented

The What's New guide can be found on the documentation index page for this release at
http://www.oracle.com/technetwork/server-storage/solarisstudio/documentation

1.7 Man Pages
Online manual (man) pages provide immediate documentation about a command, function,
subroutine, or collection of such things.

You can display a man page by running the command:

example% man topic

Throughout the C++ documentation, man page references appear with the topic name and
man section number: CC(1) is accessed with man CC. Sections other than 1 (ieee_flags(3M) for
example) would be accessed with the -s option on the man command as follows:

example% man -s 3M ieee_flags

1.6 Release Information

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201228

http://www.oracle.com/technetwork/server-storage/solarisstudio/documentation

1.8 Native-Language Support
This release of C++ supports the development of applications in languages other than English,
including most European languages, Chinese, and Japanese. As a result, you can easily switch
your application from one native language to another. This feature is known as
internationalization.

In general, the C++ compiler implements internationalization as follows:

■ C++ recognizes ASCII characters from international keyboards (in other words, it has
keyboard independence and is 8-bit clean).

■ C++ allows the printing of some messages in the native language.
■ C++ allows native-language characters in comments, strings, and data.
■ C++ supports only Extended UNIX Character (EUC) compliant character sets in which

every null byte in a string is the null character and every byte in the string with the ASCII
value of / is the / character.

Variable names cannot be internationalized and must be in the English character set.

You can change your application from one native language to another by setting the locale. For
information on this and other native-language support features, see the operating system
documentation.

1.8 Native-Language Support

Chapter 1 • The C++ Compiler 29

30

Using the C++ Compiler

This chapter describes how to use the C++ compiler.

The principal use of any compiler is to transform a program written in a high-level language
like C++ into a data file that is executable by the target computer hardware. You can use the
C++ compiler to do the following:

■ Transform source files into relocatable binary (.o) files, to be linked later into an executable
file, a static (archive) library (.a) file (using -xar), or a dynamic (shared) library (.so) file

■ Link or relink object files or library files (or both) into an executable file
■ Compile an executable file with runtime debugging enabled (-g)
■ Compile an executable file with runtime statement or procedure-level profiling (-pg)

2.1 Getting Started
This section gives you a brief overview of how to use the C++ compiler to compile and run C++
programs. See Appendix A, “C++ Compiler Options,” for a full reference to the command-line
options.

Note – The command-line examples in this chapter show CC usages. Printed output might be
slightly different.

The basic steps for building and running a C++ program involve the following tasks:

1. Using an editor to create a C++ source file with one of the valid suffixes listed in Table 2–1
2. Invoking the compiler to produce an executable file
3. Launching the program into execution by typing the name of the executable file

The following program displays a message on the screen:

2C H A P T E R 2

31

example% cat greetings.cc

#include <iostream>

int main() {

std::cout << “Real programmers write C++!” << std::endl;

return 0;

}

example% CC greetings.cc

example% ./a.out

Real programmers write C++!

example%

In this example, CC compiles the source file greetings.cc and, by default, compiles the
executable program onto the file, a.out. To launch the program, type the name of the
executable file, a.out, at the command prompt.

Traditionally, UNIX compilers name the executable file a.out. It can be awkward to have each
compilation write to the same file. Moreover, if such a file already exists, it will be overwritten
the next time you run the compiler. Instead, use the -o compiler option to specify the name of
the executable output file, as in the following example:

example% CC– o greetings greetings.cc

In this example, the -o option tells the compiler to write the executable code to the file
greetings. (Common practice is to give a program consisting of a single source file the name of
the source file without the suffix.)

Alternatively, you could rename the default a.out file using the mv command after each
compilation. Either way, run the program by typing the name of the executable file:

example% ./greetings

Real programmers write C++!

example%

2.2 Invoking the Compiler
The remainder of this chapter discusses the conventions used by the CC command, compiler
source line directives, and other issues concerning the use of the compiler.

2.2.1 Command Syntax
The general syntax of a compiler command line is as follows:

CC [options] [source-files] [object-files] [libraries]

An option is an option keyword prefixed by either a dash (–) or a plus sign (+). Some options
take arguments.

2.2 Invoking the Compiler

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201232

In general, the processing of the compiler options is from left to right, allowing selective
overriding of macro options (options that include other options). In most cases, if you specify
the same option more than once, the rightmost assignment overrides and there is no
accumulation. Note the following exceptions:

■ All linker options and the -features, –I -l,– L, -library, –pti, –R, -staticlib, -U,
-verbose, -xdumpmacros, and -xprefetch options accumulate, they do not override.

■ All –U options are processed after all –D options.

Source files, object files, and libraries are compiled and linked in the order in which they appear
on the command line.

In the following example, CC is used to compile two source files (growth.C and fft.C) to
produce an executable file named growth with runtime debugging enabled:

example% CC -g -o growth growth.C fft.C

2.2.2 File Name Conventions
The suffix attached to a file name appearing on the command line determines how the compiler
processes the file. A file name with a suffix other than those listed in the following table, or
without a suffix, is passed to the linker.

TABLE 2–1 File Name Suffixes Recognized by the C++ Compiler

Suffix Language Action

.c C++ Compile as C++ source files, put object files in current
directory; default name of object file is that of the source
but with an .o suffix.

.C C++ Same action as .c suffix.

.cc C++ Same action as .c suffix.

.cpp C++ Same action as .c suffix.

.cxx C++ Same action as .c suffix.

.c++ C++ Same action as .c suffix.

.i C++ Preprocessor output file treated as C++ source file. Same
action as .c suffix.

.s Assembler Assemble source files using the assembler.

.S Assembler Assemble source files using both the C language
preprocessor and the assembler.

2.2 Invoking the Compiler

Chapter 2 • Using the C++ Compiler 33

TABLE 2–1 File Name Suffixes Recognized by the C++ Compiler (Continued)
Suffix Language Action

.il Inline expansion Process assembly inline-template files for inline
expansion. The compiler will use templates to expand
inline calls to selected routines. (Inline-template files are
special assembler files. See the inline(1) man page.)

.o Object files Pass object files through to the linker.

.a Static (archive) library Pass object library names to the linker.

.so

.so.n

Dynamic (shared) library Pass names of shared objects to the linker.

2.2.3 Using Multiple Source Files
The C++ compiler accepts multiple source files on the command line. A single source file
compiled by the compiler, together with any files that it directly or indirectly supports, is
referred to as a compilation unit. C++ treats each source as a separate compilation unit.

2.3 Compiling With Different Compiler Versions
This compiler does not use the cache by default. It only uses the cache if you specify
-instances=extern. If the compiler makes use of the cache, it checks the cache directory’s
version and issues error messages whenever it encounters cache version problems. Future C++
compilers will also check cache versions. For example, a future compiler that has a different
template cache version identification and that processes a cache directory produced by this
release of the compiler might issue an error that is similar to the following message:

Template Database at ./SunWS_cache is incompatible with

this compiler

Similarly, the compiler issues an error if it encounters a cache directory that was produced by a
later version of the compiler.

When you upgrade your compiler, cleaning the cache is always a good practice. Run CCadmin

-clean on every directory that contains a template cache directory. In most cases, a template
cache directory is named SunWS_cache. Alternatively, you can use rm -rf SunWS_cache.

2.3 Compiling With Different Compiler Versions

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201234

2.4 Compiling and Linking
This section describes some aspects of compiling and linking programs. In the following
example, CC is used to compile three source files and to link the object files to produce an
executable file named prgrm.

example% CC file1.cc file2.cc file3.cc -o prgrm

2.4.1 Compile-Link Sequence
In the previous example, the compiler automatically generates the loader object files (file1.o,
file2.o, and file3.o) and then invokes the system linker to create the executable program for
the file prgrm.

After compilation, the object files (file1.o, file2.o,and file3.o) remain. This convention
enables you to easily relink and recompile your files.

Note – If only one source file is compiled and a program is linked in the same operation, the
corresponding .o file is deleted automatically. To preserve all .o files, do not compile and link
in the same operation unless more than one source file gets compiled.

If the compilation fails, you will receive a message for each error. No .o files are generated for
those source files with errors, and no executable program is written.

2.4.2 Separate Compiling and Linking
You can compile and link in separate steps. The -c option compiles source files and generates
.o object files, but does not create an executable. Without the -c option, the compiler invokes
the linker. By splitting the compile and link steps, a complete recompilation is not needed just
to fix one file. The following example shows how to compile one file and link with others in
separate steps:

example% CC -c file1.cc Make new object file
example% CC -o prgrm file1.o file2.o file3.o Make executable file

Be sure that the link step lists all the object files needed to make the complete program. If any
object files are missing from this step, the link will fail with “undefined external reference”
errors (missing routines).

2.4.3 Consistent Compiling and Linking
If you compile and link in separate steps, consistent compiling and linking is critical when using
the compiler options listed in “3.3.3 Compile-Time and Link-Time Options” on page 48.

2.4 Compiling and Linking

Chapter 2 • Using the C++ Compiler 35

If you compile a subprogram using any of these options, you must link using the same option as
well:
■ If you compile with the -library or -m64/-m32 options, you must include these same

options on all CC commands.
■ With -p, -xpg, and -xprofile, including the option in one phase and excluding it from the

other phase will not affect the correctness of the program, but you will not be able to do
profiling.

■ With -g and -g0, including the option in one phase and excluding it from the other phase
will not affect the correctness of the program, but it will affect the ability to debug the
program. Any module that is not compiled with either of these options but is linked with -g

or -g0 will not be prepared properly for debugging. Note that compiling the module that
contains the function main with the -g option or the -g0 option is usually necessary for
debugging.

In the following example, the programs are compiled using the -library=stlport4 compiler
option.

example% CC -library=stlport4 sbr.cc -c

example% CC -library=stlport4 main.cc -c

example% CC -library=stlport4 sbr.o main.o -o myprogram

If you do not use -library=stlport4 consistently, some parts of the program will use the
deafult libCstd, and others will use the optional replacement STLport library. The resulting
program might not link, and would not in any case run correctly.

If the program uses templates, some templates might get instantiated at link time. In that case,
the command-line options from the last line (the link line) will be used to compile the
instantiated templates.

2.4.4 Compiling for 64–Bit Memory Model
Use the -m64 option to specify a 64–bit memory model for the target platform. Compilation
linking and execution of 64-bit objects can only take place in an Oracle Solaris or Linux
platform that supports 64-bit execution.

2.4.5 Compiler Command-Line Diagnostics
The -V option displays the name and version number of each program invoked by CC. The -v
option displays the full command lines invoked by CC.

The —verbose=%all displays additional information about the compiler.

Any arguments on the command line that the compiler does not recognize are interpreted as
linker options, object program file names, or library names.

2.4 Compiling and Linking

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201236

The basic distinctions are:
■ Unrecognized options, which are preceded by a dash (–) or a plus sign (+), generate

warnings.
■ Unrecognized nonoptions, which are not preceded by a dash or a plus sign, generate no

warnings. However, they are passed to the linker. If the linker does not recognize them, they
generate linker error messages.

In the following example, note that -bit is not recognized by CC and the option is passed on to
the linker (ld), which tries to interpret it. Because single letter ld options can be strung
together, the linker sees -bit as -b -i -t, all of which are legitimate ld options. This result
might not be what you intend or expect:

example% CC -bit move.cc -bit is not a recognized compiler option
CC: Warning: Option -bit passed to ld, if ld is invoked, ignored otherwise

In the next example, the user intended to type the CC option -fast but omitted the leading dash.
The compiler again passes the argument to the linker, which in turn interprets it as a file name:

example% CC fast move.cc < - The user meant to type -fast
move.CC:

ld: fatal: file fast: cannot open file; errno=2

ld: fatal: File processing errors. No output written to a.out

2.4.6 Understanding the Compiler Organization
The C++ compiler package consists of a front end, optimizer, code generator, assembler,
template prelinker, and link editor. The CC command invokes each of these components
automatically unless you use command-line options to specify otherwise.

Because any of these components may generate an error, and the components perform different
tasks, identifying the component that generates an error might be helpful. Use the -v and
-dryrun options to display more detail during compiler execution.

As shown in the following table, input files to the various compiler components have different
file name suffixes. The suffix establishes the kind of compilation that is done. Refer to Table 2–1
for the meanings of the file suffixes.

TABLE 2–2 Components of the C++ Compilation System

Component Description Notes on Use

ccfe Front end (compiler preprocessor and
compiler)

iropt Code optimizer -xO[2-5], -fast

2.4 Compiling and Linking

Chapter 2 • Using the C++ Compiler 37

TABLE 2–2 Components of the C++ Compilation System (Continued)
Component Description Notes on Use

ir2hf x86: Intermediate language translator -xO[2-5], -fast

inline SPARC: Inline expansion of assembly
language templates

.il file specified

fbe Assembler

cg SPARC: Code generator, inliner, assembler

ube x86: Code generator -xO[2-5], -fast

CClink Template prelinker Used only with the
-instances=extern option

ld link editor

2.5 Preprocessing Directives and Names
This section discusses information about preprocessing directives that is specific to the C++
compiler.

2.5.1 Pragmas
The preprocessor directive pragma is part of the C++ standard but the form, content, and
meaning of pragmas is different for every compiler. See Appendix B, “Pragmas,” for details on
the pragmas that the C++ compiler recognizes.

Oracle Solaris Studio C++ also supports the C99 keyword _Pragma. The following two
invocations are equivalent:

#pragma dumpmacros(defs)

_Pragma("dumpmacros(defs)")

To use _Pragma instead of #pragma, write the pragma text as a literal string enclosed in
parentheses as the one argument of the _Pragma keyword.

2.5.2 Macros With a Variable Number of Arguments
The C++ compiler accepts #define preprocessor directives of the following form.

#define identifier (...) replacement-list
#define identifier (identifier-list, ...) replacement-list

2.5 Preprocessing Directives and Names

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201238

If the macro parameter list ends with an ellipsis, an invocation of the macro is allowed to have
more arguments than there are macro parameters. The additional arguments are collected into
a single string, including commas, that can be referenced by the name __VA_ARGS__ in the
macro replacement list.

The following example demonstrates how to use a variable-argument-list macro.

#define debug(...) fprintf(stderr, __VA_ARGS__)

#define showlist(...) puts(#__VA_ARGS__)

#define report(test, ...) ((test)?puts(#test):\

printf(__VA_ARGS__))

debug(“Flag”);

debug(“X = %d\n”,x);

showlist(The first, second, and third items.);

report(x>y, “x is %d but y is %d”, x, y);

which results in the following:

fprintf(stderr, “Flag”);

fprintf(stderr, “X = %d\n”, x);

puts(“The first, second, and third items.”);

((x>y)?puts(“x>y”):printf(“x is %d but y is %d”, x, y));

2.5.3 Predefined Names
“A.2.8 -Dname[=def]” on page 171 in the appendix shows the predefined macros. You can use
these values in such preprocessor conditionals as #ifdef.The +p option prevents the automatic
definition of the sun, unix, sparc, and i386 predefined macros.

2.5.4 Warnings and Errors
The #error and #warning preprocessor directives can be used to generate compile-time
diagnostics.

#error token-string Issue error diagnostic token-string and terminate compilation

#warning token-string Issue warning diagnostic token-string and continue compilation.

2.6 Memory Requirements
The amount of memory a compilation requires depends on several parameters, including:

■ Size of each procedure
■ Level of optimization
■ Limits set for virtual memory
■ Size of the disk swap file

2.6 Memory Requirements

Chapter 2 • Using the C++ Compiler 39

On the SPARC platform, if the optimizer runs out of memory, it tries to recover by retrying the
current procedure at a lower level of optimization. The optimizer then resumes subsequent
routines at the original level specified in the -xOlevel option on the command line.

If you compile a single source file that contains many routines, the compiler might run out of
memory or swap space. Try reducing the level of optimization. Alternatively, split the largest
procedures into separate files of their own.

2.6.1 Swap Space Size
The swap -s command displays available swap space. See the swap(1M) man page for more
information.

The following example demonstrates the use of the swap command:

example% swap -s

total: 40236k bytes allocated + 7280k reserved = 47516k used, 1058708k available

2.6.2 Increasing Swap Space
Use mkfile(1M) and swap (1M) to increase the size of the swap space on a workstation. (You
must become superuser to do this.) The mkfile command creates a file of a specific size, and
swap -a adds the file to the system swap space:

example# mkfile -v 90m /home/swapfile

/home/swapfile 94317840 bytes

example# /usr/sbin/swap -a /home/swapfile

2.6.3 Control of Virtual Memory
Compiling very large routines (thousands of lines of code in a single procedure) at -xO3 or
higher can require a large amount of memory. In such cases, performance of the system might
degrade. You can control memory footprint by limiting the amount of virtual memory available
to a single process.

To limit virtual memory in an sh shell, use the ulimit command. See the sh(1) man page for
more information.

The following example shows how to limit virtual memory to 4 Gbytes:

example$ ulimit -d 4000000

2.6 Memory Requirements

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201240

In a csh shell, use the limit command to limit virtual memory. See the csh(1) man page for
more information.

The next example also shows how to limit virtual memory to 4 Gbytes:

example% limit datasize 4G

Each of these examples causes the optimizer to try to recover at 4 Gbytes of data space.

The limit on virtual memory cannot be greater than the system’s total available swap space and,
in practice, must be small enough to permit normal use of the system while a large compilation
is in progress.

Be sure that no compilation consumes more than half the swap space.

With 8 Gbytes of swap space, use the following commands:

In an sh shell:

example$ ulimit -d 4000000

In a csh shell:

example% limit datasize 4G

The best setting depends on the degree of optimization requested and the amount of real
memory and virtual memory available.

2.6.4 Memory Requirements
A workstation should have at least 2 gigabytes of memory. See the product release notes for
detailed requirements.

2.7 Using the stripCommand with C++ Objects
The UNIX strip command should not be used with C++ object files, as it can render those
object files unusable.

2.7 Using the strip Command with C++ Objects

Chapter 2 • Using the C++ Compiler 41

2.8 Simplifying Commands
You can simplify complicated compiler commands by defining special shell aliases by using the
CCFLAGS environment variable, or by using make.

2.8.1 Using Aliases Within the C Shell
The following example defines an alias for a command with frequently used options.

example% alias CCfx "CC -fast -xnolibmil"

The next example uses the alias CCfx.

example% CCfx any.C

The command CCfx is now the same as the following command:

example% CC -fast -xnolibmil any.C

2.8.2 Using CCFLAGS to Specify Compile Options
You can specify options by setting the CCFLAGS variable.

The CCFLAGS variable can be used explicitly in the command line. The following example shows
how to set CCFLAGS (C Shell):

example% setenv CCFLAGS ’-xO2 -m64’

The next example uses CCFLAGS explicitly.

example% CC $CCFLAGS any.cc

When you use make, if the CCFLAGS variable is set as in the preceding example and the makefile’s
compilation rules are implicit, then invoking make will result in a compilation equivalent to the
following command:

CC -xO2 -m64 files...

2.8.3 Using make

The make utility is a very powerful program development tool that you can easily use with all
Oracle Solaris Studio compilers. See the make(1S) man page for additional information.

2.8 Simplifying Commands

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201242

2.8.3.1 Using CCFLAGSWithin make

When you are using the implicit compilation rules of the makefile (that is, there is no C++
compile line), the make program uses CCFLAGS automatically.

2.8 Simplifying Commands

Chapter 2 • Using the C++ Compiler 43

44

Using the C++ Compiler Options

This chapter explains how to use the command-line C++ compiler options and then
summarizes their use by function. Detailed explanations of the options are provided in “A.2
Option Reference” on page 166.

3.1 Syntax Overview
The following table shows examples of typical option syntax formats that are used in this book.

TABLE 3–1 Option Syntax Format Examples

Syntax Format Example

-option –E

–optionvalue –Ipathname

–option=value –xunroll=4

–option value –o filename

Parentheses, braces, brackets, pipe characters, and ellipses are metacharacters used in the
descriptions of the options and are not part of the options themselves. See the typographical
conventions in the Preface to this manual for a detailed explanation of the usage syntax.

3C H A P T E R 3

45

3.2 General Guidelines
Some general guidelines for the C++ compiler options are:
■ The-llib option links with library liblib.a (or liblib.so). It is always safer to put-llib after

the source and object files to ensure the order in which libraries are searched.
■ In general, processing of the compiler options is from left to right (with the exception that-U

options are processed after all-D options), allowing selective overriding of macro options
(options that include other options). This rule does not apply to linker options.

■ The -features, -I -l, -L, -library, -pti, -R, -staticlib, -U, -verbose, and
-xprefetch options accumulate, they do not override.

■ The -D option accumulates. However, multiple -D options for the same name override each
other.

Source files, object files, and libraries are compiled and linked in the order in which they appear
on the command line.

3.3 Options Summarized by Function
In this section, the compiler options are grouped by function to provide a quick reference. For a
detailed description of each option, refer to Appendix A, “C++ Compiler Options.”

The options apply to all platforms except as noted; features that are unique to the Oracle Solaris
OS on SPARC-based systems are identified as SPARC, and the features that are unique to the
Oracle Solaris OS on x86-based systems are identified as x86.

3.3.1 Code Generation Options

TABLE 3–2 Code Generation Options

Option Action

-compat Sets the major release compatibility mode of the compiler.

-g Compiles for use with the debugger.

-KPIC Produces position-independent code.

-Kpic Produces position-independent code.

-mt Compiles and links for multithreaded code.

-xaddr32 Restricts code to a 32–bit address space (x86/x64)

-xarch Specifies the target architecture.

3.2 General Guidelines

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201246

TABLE 3–2 Code Generation Options (Continued)
Option Action

-xcode=a (SPARC) Specifies the code address space.

-xlinker Specify linker options.

-xMerge (SPARC) Merges the data segment with the text segment.

-xtarget Specifies the target system.

-xmodel Modifies the form of 64-bit objects for the Solaris x86 platforms

+w Identifies code that might have unintended consequences.

+w2 Emits all the warnings emitted by +w plus warnings about technical
violations that are probably harmless but that might reduce the
maximum portability of your program.

-xregs The compiler can generate faster code if it has more registers
available for temporary storage (scratch registers). This option
makes available additional scratch registers that might not always
be appropriate.

-z arg Linker option.

3.3.2 Compile-Time Performance Options

TABLE 3–3 Compile-Time Performance Options

Option Action

-instlib Inhibits the generation of template instances that are
already present in the designated library.

-m32|-m64 Specifies the memory model for the compiled binary
object.

-xinstrument Compiles and instruments your program for analysis by
the Thread Analyzer.

-xjobs Sets the number of processes the compiler can create to
complete its work.

-xpch Might reduce compile time for applications whose source
files share a common set of include files.

-xpchstop Specifies the last include file to be considered in creating a
precompiled header file with -xpch.

-xprofile_ircache (SPARC) Reuses compilation data saved during
-xprofile=collect.

3.3 Options Summarized by Function

Chapter 3 • Using the C++ Compiler Options 47

TABLE 3–3 Compile-Time Performance Options (Continued)
Option Action

-xprofile_pathmap (SPARC) Support for multiple programs or shared
libraries in a single profile directory.

3.3.3 Compile-Time and Link-Time Options
The following table lists the options that must be specified both at link-time and at
compile-time.

TABLE 3–4 Compile-Time and Link-Time Options

Option Action

-fast Selects the optimum combination of compilation options
for speed of executable code.

-m32|-m64 Specifies the memory model for the compiled binary
object.

-mt Macro option that expands to -D_REENTRANT -lthread.

-xarch Specifies the instruction set architecture.

-xautopar Turns on automatic parallelization for multiple
processors.

-xhwcprof (SPARC) Enables compiler support for hardware
counter-based profiling.

-xipo Performs whole-program optimizations by invoking an
interprocedural analysis component.

-xlinker Specify linker options

-xlinkopt Performs link-time optimizations on relocatable object
files.

-xmemalign (SPARC) Specifies the maximum assumed memory
alignment and behavior of misaligned data accesses.

-xopenmp Supports the OpenMP interface for explicit parallelization
including a set of source code directives, runtime library
routines, and environment variables

-xpagesize Sets the preferred page size for the stack and the heap.

-xpagesize_heap Sets the preferred page size for the heap.

-xpagesize_stack Sets the preferred page size for the stack.

3.3 Options Summarized by Function

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201248

TABLE 3–4 Compile-Time and Link-Time Options (Continued)
Option Action

-xpg Prepares the object code to collect data for profiling with
gprof(1).

-xprofile Collects data for a profile or uses a profile to optimize.

-xvector=lib Enables automatic generation of calls to the vector library
functions.

3.3.4 Debugging Options

TABLE 3–5 Debugging Options

Option Action

-### Equivalent to -dryrun

+d Does not expand C++ inline functions.

-dryrun Shows shows all commands that the driver would issue to
all components of the compilation.

-E Runs only the preprocessor on the C++ source files and
sends the result to stdout. Does not compile.

-g Compiles for use with the debugger.

-g0 Compiles for debugging but doesn’t disable inlining.

-H Prints path names of included files.

-keeptmp Retains temporary files created during compilation.

-P Only preprocesses source; outputs to .i file.

-Qoption Passes an option directly to a compilation phase.

-s Strips the symbol table out of the executable file, thus
preventing the ability to debug code.

-temp=dir Defines the directory for temporary files.

-verbose=vlst Controls compiler verbosity.

-xcheck Adds a runtime check for stack overflow.

-xdumpmacros Prints information about macros such as definition,
location defined and undefined, and locations used.

-xe Only checks for syntax and semantic errors.

3.3 Options Summarized by Function

Chapter 3 • Using the C++ Compiler Options 49

TABLE 3–5 Debugging Options (Continued)
Option Action

-xhelp=flags Displays a summary list of compiler options.

-xport64 Warns against common problems during a port from a
32-bit architecture to a 64-bit architecture.

3.3.5 Floating-Point Options

TABLE 3–6 Floating-Point Options

Option Action

-fma (SPARC) Enables automatic generation of floating-point, fused, and
multiply-add instructions.

-fns[={no|yes}] (SPARC) Disables or enables the SPARC nonstandard floating-point
mode.

-fprecision=p x86: Sets floating-point precision mode.

-fround=r Sets IEEE rounding mode in effect at startup.

-fsimple=n Sets floating-point optimization preferences.

-fstore x86: Forces precision of floating-point expressions.

-ftrap=tlst Sets the IEEE trapping mode in effect at startup.

-nofstore x86: Disables forced precision of expression.

-xlibmieee Causes libm to return IEEE 754 values for math routines in
exceptional cases.

3.3.6 Language Options

TABLE 3–7 Language Options

Option Action

-compat Sets the major release compatibility mode of the compiler.

-features=alst Enables or disables various C++ language features.

-xchar Eases the migration of code from systems where the char type is
defined as unsigned.

-xldscope Controls the default linker scope of variable and function
definitions to create faster and safer shared libraries.

3.3 Options Summarized by Function

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201250

TABLE 3–7 Language Options (Continued)
Option Action

-xthreadvar (SPARC) Changes the default thread-local storage access mode.

-xtrigraphs Enables recognition of trigraph sequences.

-xustr Enables recognition of string literals composed of sixteen-bit
characters.

3.3.7 Library Options

TABLE 3–8 Library Options

Option Action

-Bbinding Requests symbolic, dynamic, or static library linking.

-d{y|n} Allows or disallows dynamic libraries for the entire executable.

-G Builds a dynamic shared library instead of an executable file.

-hname Assigns an internal name to the generated dynamic shared library.

-i Tells ld(1) to ignore any LD_LIBRARY_PATH setting.

-Ldir Adds dir to the list of directories to be searched for libraries.

-llib Adds liblib.a or liblib.so to the linker’s library search list.

-library=llst Forces inclusion of specific libraries and associated files into
compilation and linking.

-mt Compiles and links for multithreaded code.

-norunpath Does not build the path for libraries into the executable file.

-Rplst Builds dynamic library search paths into the executable file.

-staticlib=llst Indicates which C++ libraries are to be linked statically.

-xar Creates archive libraries.

-xbuiltin[=opt] Enables or disables better optimization of standard library calls

-xia (Solaris) Links the appropriate interval arithmetic libraries and
sets a suitable floating-point environment.

-xlang=l[,l] Includes the appropriate runtime libraries and ensures the proper
runtime environment for the specified language.

-xlibmieee Causes libm to return IEEE 754 values for math routines in
exceptional cases.

3.3 Options Summarized by Function

Chapter 3 • Using the C++ Compiler Options 51

TABLE 3–8 Library Options (Continued)
Option Action

-xlibmil Inlines selected libm library routines for optimization.

-xlibmopt Uses a library of optimized math routines.

-xnolib Disables linking with default system libraries.

-xnolibmil Cancels– xlibmil on the command line.

-xnolibmopt Does not use the math routine library.

3.3.8 Obsolete Options

Note – The following options are either currently obsolete and so no longer accepted by the
compiler, or are likely to be removed in a future release.

TABLE 3–9 Obsolete Options

Option Action

-features=[%all|%none] Obsolete suboptions %all and %none.

-library=%all Obsolete suboption that is likely to be removed in a future release.

-xlic_lib=sunperf Use —library=sunperf to link to the Sun Performance Library.

-xlicinfo Deprecated.

-xnativeconnect Obsolete, there is no alternative option.

-xprefetch=yes Use -xprefetch=auto,explicit instead.

-xprefetch=no Use -xprefetch=no%auto,no%explicit instead.

-xvector=yes Use -xvector=lib instead.

-xvector=no Use -xvector=none instead.

3.3.9 Output Options

TABLE 3–10 Output Options

Option Action

-c Compiles only; produces object (.o) files, but suppresses linking.

3.3 Options Summarized by Function

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201252

TABLE 3–10 Output Options (Continued)
Option Action

-dryrun Shows all the command lines issued by the driver to the compiler but
does not compile.

-E Runs only the preprocessor on the C++ source files and sends the
result to stdout. Does not compile.

-erroff Suppresses compiler warning messages.

-errtags Displays the message tag for each warning message.

-errwarn If the indicated warning message is issued, compiler exits with a
failure status.

-filt Suppresses the filtering that the compiler applies to linker error
messages.

–G Builds a dynamic shared library instead of an executable file.

–H Prints the path names of included files.

–migration Explains where to get information about migrating from earlier
compilers.

–o filename Sets name of the output or executable file to filename.

–P Only preprocesses source; outputs to .i file.

–Qproduce sourcetype Causes the CC driver to produce output of the type sourcetype.

–s Strips the symbol table out of the executable file.

–verbose=vlst Controls compiler verbosity.

+w Prints extra warnings where necessary.

+w2 Prints still more warnings where appropriate.

–w Suppresses warning messages.

-xdumpmacros Prints information about macros such as definition, location defined
and undefined, and locations used.

-xe Performs only syntax and semantic checking on the source file but
does not produce any object or executable code.

–xhelp=flags Displays a summary list of compiler options

–xM Outputs makefile dependency information.

–xM1 Generates dependency information, but excludes /usr/include

–xtime Reports execution time for each compilation phase.

3.3 Options Summarized by Function

Chapter 3 • Using the C++ Compiler Options 53

TABLE 3–10 Output Options (Continued)
Option Action

–xwe Converts all warnings to errors.

-z arg Linker option.

3.3.10 Run-Time Performance Options

TABLE 3–11 Run-Time Performance Options

Option Action

–fast Selects a combination of compilation options for optimum execution
speed for some programs.

-fma (SPARC) Enables automatic generation of floating-point, fused,
multiply-add instructions.

-g Instructs both the compiler and the linker to prepare the program for
performance analysis (and for debugging).

-s Strips the symbol table out of the executable.

-m32|-m64 Specifies the memory model for the compiled binary object.

-xalias_level Enables the compiler to perform type-based alias analysis and
optimizations.

-xarch=isa Specifies target architecture instruction set.

-xbinopt Prepares the binary for later optimizations, transformations, and
analysis.

-xbuiltin[=opt] Enables or disables better optimization of standard library calls

-xcache=c (SPARC) Defines target cache properties for the optimizer.

-xchip=c Specifies target processor chip.

-xF Enables linker reordering of functions and variables.

-xinline=flst Specifies which user-written routines can be inlined by the optimizer

-xipo Performs interprocedural optimizations.

-xlibmil Inlines selected libm library routines for optimization.

-xlibmopt Uses a library of optimized math routines.

-xlinkopt (SPARC) Performs link-time optimization on the resulting
executable or dynamic library in addition to any optimizations in the
object files.

3.3 Options Summarized by Function

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201254

TABLE 3–11 Run-Time Performance Options (Continued)
Option Action

-xmemalign=ab (SPARC) Specifies maximum assumed memory alignment and
behavior of misaligned data accesses.

-xnolibmil Cancels– xlibmil on the command line.

-xnolibmopt Does not use the math routine library.

-xOlevel Specifies optimization level to level.

-xpagesize Sets the preferred page size for the stack and the heap.

-xpagesize_heap Sets the preferred page size for the heap.

-xpagesize_stack Sets the preferred page size for the stack.

-xprefetch[=lst] Enables prefetch instructions on architectures that support prefetch.

-xprefetch_level Control the aggressiveness of automatic insertion of prefetch
instructions as set by -xprefetch=auto

-xprofile Collects or optimizes using runtime profiling data.

-xregs=rlst Controls scratch register use.

-xsafe=mem (SPARC) Allows no memory-based traps.

-xspace (SPARC) Does not allow optimizations that increase code size.

-xtarget=t Specifies a target instruction set and optimization system.

-xthreadvar Changes the default thread-local storage access mode.

-xunroll=n Enables unrolling of loops where possible.

-xvis (SPARC) Enables compiler recognition of the assembly-language
templates defined in the VIS instruction set

3.3.11 Preprocessor Options

TABLE 3–12 Preprocessor Options

Option Action

-Dname[=def] Defines symbol name to the preprocessor.

-E Runs only the preprocessor on the C++ source files and sends the result to
stdout. Does not compile.

-H Prints the path names of included files.

-P Only preprocesses source; outputs to .i file.

3.3 Options Summarized by Function

Chapter 3 • Using the C++ Compiler Options 55

TABLE 3–12 Preprocessor Options (Continued)
Option Action

-Uname Deletes initial definition of preprocessor symbol name.

-xM Outputs makefile dependency information.

-xM1 Generates dependency information but excludes /usr/include.

3.3.12 Profiling Options

TABLE 3–13 Profiling Options

Option Action

-p Prepares the object code to collect data for profiling using prof.

-xpg Compiles for profiling with the gprof profiler.

-xprofile Collects or optimizes using runtime profiling data.

3.3.13 Reference Options

TABLE 3–14 Reference Options

Option Action

-xhelp=flags Displays a summary list of compiler options.

3.3.14 Source Options

TABLE 3–15 Source Options

Option Action

-H Prints the path names of included files.

-Ipathname Adds pathname to the include file search path.

-I- Changes the include-file search rules

-xM Outputs makefile dependency information.

-xM1 Generates dependency information but excludes /usr/include.

3.3 Options Summarized by Function

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201256

3.3.15 Template Options
TABLE 3–16 Template Options

Option Action

-instances=a Controls the placement and linkage of template instances.

-template=wlst Enables or disables various template options.

3.3.16 Thread Options
TABLE 3–17 Thread Options

Option Action

-mt Compiles and links for multithreaded code.

-xsafe=mem (SPARC) Allows no memory-based traps.

-xthreadvar (SPARC) Changes the default thread-local storage access mode.

3.4 User-Supplied Default Options File
The default compiler options file enables the user to specify a set of default options that are
applied to all compiles, unless otherwise overridden. For example, the file could specify that all
compiles default at —xO2, or automatically include the file setup.il.

At startup, the compiler searches for a default options file listing default options it should
include for all compiles. The environment variable SPRO_DEFAULTS_PATH specifies a colon
separated list of directories to search for the the defaults file.

If the environment variable is not set, a standard set of defaults is used. If the environment
variable is set but is empty, no defaults are used.

The defaults file name must be of the form compiler.defaults, where compiler is one of the
following: cc, c89, c99, CC, ftn, or lint. For example, the defaults for the C++ compiler
would be CC.defaults

If a defaults file for the compiler is found in the directories listed in SPRO_DEFAULTS_PATH, the
compiler will read the file and process the options prior to processing the options on the
command line. The first defaults file found will be used and the search terminated.

System administrators may create system-wide default files in
Studio-install-path/prod/etc/config. If the environment variable is set, the installed defaults
file will not be read.

3.4 User-Supplied Default Options File

Chapter 3 • Using the C++ Compiler Options 57

The format of a defaults file is similar to the command line. Each line of the file may contain one
or more compiler options separated by white space. Shell expansions, such as wild cards and
substitutions, will not be applied to the options in the defaults file.

The value of the SPRO_DEFAULTS_PATH and the fully expanded command line will be displayed
in the verbose output produced by options —#, —###, and —dryrun.

Options specified by the user on the command line will usually override options read from the
defaults file. For example, if the defaults file specifies compiling with —xO4 and the user specifies
—xO2 on the command line, —xO2 will be used.

Some options appearing in the default options file will be appended after the options specified
on the command line. These are the preprocessor option —I, linker options —B, —L, —R, and
—l, and all file arguments, such as source files, object files, archives, and shared objects.

The following is an example of how a user-supplied default compiler option startup file might
be used.

demo% cat /project/defaults/CC.defaults

-I/project/src/hdrs —L/project/libs —llibproj —xvpara

demo% setenv SPRO_DEFAULTS_PATH /project/defaults

demo% CC —c —I/local/hdrs —L/local/libs —lliblocal tst.c

This command is now equivalent to:

CC -fast —xvpara —c —I/local/hdrs —L/local/libs —lliblocal tst.c \

—I/project/src/hdrs —L/project/libs —llibproj

While the compiler defaults file provides a convenient way to set the defaults for an entire
project, it can become the cause of hard to diagnose problems. Set the environment variable
SPRO_DEFAULTS_PATH to an absolute path rather than the current directory to avoid such
problems.

The interface stability of the default options file is uncommitted. The order of option processing
is subject to change in a future release.

3.4 User-Supplied Default Options File

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201258

Writing C++ Programs

P A R T I I

59

60

Language Extensions

This chapter documents the language extensions specific to this compiler. The compiler does
not recognize some of the features described in this chapter unless you specify certain compiler
options on the command line. The relevant compiler options are listed in each section as
appropriate.

The -features=extensions option enables you to compile nonstandard code that is
commonly accepted by other C++ compilers. You can use this option when you must compile
invalid code and you are not permitted to modify the code to make it valid.

This chapter describes the language extensions that the compiler supports when you use
the -features=extensions options.

Note – You can easily turn each supported instance of invalid code into valid code that all
compilers will accept. If you are allowed to make the code valid, you should do so instead of
using this option. Using the -features=extensions option perpetuates invalid code that will
be rejected by some compilers.

4.1 Linker Scoping
Use the following declaration specifiers to help constrain declarations and definitions of extern
symbols. The scoping restraints you specify for a static archive or an object file will not take
effect until the file is linked into a shared library or an executable. Despite this, the compiler can
still perform some optimization given the presence of the linker scoping specifiers.

By using these specifiers, you no longer need to use mapfiles for linker scoping. You can also
control the default setting for variable scoping by specifying -xldscope on the command line.

For more information, see “A.2.130 -xldscope={v}” on page 256.

4C H A P T E R 4

61

TABLE 4–1 Linker Scoping Declaration Specifiers

Value Meaning

__global Symbol definitions have global linker scoping and is the least restrictive linker
scoping. All references to the symbol bind to the definition in the first dynamic
load module that defines the symbol. This linker scoping is the current linker
scoping for extern symbols.

__symbolic Symbol definitions have symbolic linker scoping, which is more restrictive than
global linker scoping. All references to the symbol from within the dynamic load
module being linked bind to the symbol defined within the module. Outside of
the module, the symbol appears as though it were global. This linker scoping
corresponds to the linker option -Bsymbolic. Although you cannot use
-Bsymbolic with C++ libraries, you can use the __symbolic specifier without
causing problems. See the ld(1) man page for more information on the linker.

__hidden Symbol definitions have hidden linker scoping. Hidden linker scoping is more
restrictive than symbolic and global linker scoping. All references within a
dynamic load module bind to a definition within that module. The symbol will
not be visible outside of the module.

A symbol definition may be redeclared with a more restrictive specifier, but may not be
redeclared with a less restrictive specifier. A symbol may not be declared with a different
specifier once the symbol has been defined.

__global is the least restrictive scoping, __symbolic is more restrictive, and __hidden is the
most restrictive scoping.

All virtual functions must be visible to all compilation units that include the class definition
because the declaration of virtual functions affects the construction and interpretation of virtual
tables.

You can apply the linker scoping specifiers to struct, class, and union declarations and
definitions because C++ classes may require generation of implicit information, such as virtual
tables and runtime type information. The specifier, in this case, follows the struct, class, or
union keyword. Such an application implies the same linker scoping for all its implicit
members.

4.1.1 Compatibility with Microsoft Windows
For compatibility with similar scoping features in Microsoft Visual C++ (MSVC++) for
dynamic libraries, the following syntax is also supported:

__declspec(dllexport) is equivalent to __symbolic

__declspec(dllimport) is equivalent to __global

4.1 Linker Scoping

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201262

When taking advantage of this syntax with Oracle Solaris Studio C++, you should add the
option -xldscope=hidden to CC command lines. The result will be comparable to the results
using MSVC++. With MSVC++, __declspec(dllimport) is supposed to be used only on
declarations of external symbols, not on definitions. Example:

__declspec(dllimport) int foo(); // OK

__declspec(dllimport) int bar() { ... } // not OK

MSVC++ is lax about allowing dllimport on definitions, and the results using Oracle Solaris
Studio C++ will be different. In particular, using dllimport on a definition using Oracle Solaris
Studio C++ results in the symbol having global linkage instead of symbolic linkage. Dynamic
libraries on Microsoft Windows do not support global linkage of symbols. If you run into this
problem, you can change the source code to use dllexport instead of dllimport on definitions.
You will then get the same results with MSVC++ and Oracle Solaris Studio C++.

4.2 Thread-Local Storage
Take advantage of thread-local storage by declaring thread-local variables. A thread-local
variable declaration consists of a normal variable declaration with the addition of the
declaration specifier __thread. For more information, see “A.2.174 -xthreadvar[=o]” on
page 297.

You must include the __thread specifier in the first declaration of the thread variable. Variables
that you declare with the __thread specifier are bound as they would be without the __thread
specifier.

You can declare variables only of static duration with the __thread specifier. Variables with
static duration include file global, file static, function local static, and class static member. You
should not declare variables with dynamic or automatic duration with the __thread specifier. A
thread variable can have a static initializer, but it cannot have a dynamic initializer or
destructors. For example, __thread int x = 4; is permitted, but __thread int x = f(); is not. A
thread variable should not have a type with non-trivial constructors and destructors. In
particular, a thread variable may not have type std::string.

The address-of operator (&) for a thread variable is evaluated at runtime and returns the
address of the current thread’s variable. Therefore, the address of a thread variable is not a
constant.

The address of a thread variable is stable for the lifetime of the corresponding thread. Any
thread in the process can freely use the address of a thread variable during the variable’s lifetime.
You cannot use a thread variable’s address after its thread terminates. All addresses of a thread’s
variables are invalid after the thread’s termination.

4.2 Thread-Local Storage

Chapter 4 • Language Extensions 63

4.3 Overriding With Less Restrictive Virtual Functions
The C++ standard says that an overriding virtual function must not be less restrictive in the
exceptions it allows than any function it overrides. It can have the same restrictions or be more
restrictive. Note that the absence of an exception specification allows any exception.

Suppose, for example, that you call a function through a pointer to a base class. If the function
has an exception specification, you can count on no other exceptions being thrown. If the
overriding function has a less-restrictive specification, an unexpected exception could be
thrown, which can result in unexpected program behavior followed by a program abort.

When you use -features=extensions, the compiler will allow overriding functions with
less-restrictive exception specifications.

4.4 Making Forward Declarations of enum Types and
Variables

When you use -features=extensions, the compiler allows the forward declaration of enum
types and variables. In addition, the compiler allows the declaration of a variable with an
incomplete enum type. The compiler will always assume an incomplete enum type to have the
same size and range as type int on the current platform.

The following two lines show an example of invalid code that will compile when you use
the -features=extensions option.

enum E; // invalid: forward declaration of enum not allowed

E e; // invalid: type E is incomplete

Because enum definitions cannot reference one another, and no enum definition can
cross-reference another type, the forward declaration of an enumeration type is never
necessary. To make the code valid, you can always provide the full definition of the enum before
it is used.

Note – On 64-bit architectures, enum can require a size that is larger than type int. If that is the
case, and if the forward declaration and the definition are visible in the same compilation, the
compiler will emit an error. If the actual size is not the assumed size and the compiler does not
see the discrepancy, the code will compile and link, but might not run properly. Unexpected
program behavior can occur, particularly if an 8-byte value is stored in a 4-byte variable.

4.3 Overriding With Less Restrictive Virtual Functions

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201264

4.5 Using Incomplete enum Types
When you use -features=extensions, incomplete enum types are taken as forward
declarations. For example, the following invalid code will compile when you use the
-features=extensions option.

typedef enum E F; // invalid, E is incomplete

As noted previously, you can always include the definition of an enum type before it is used.

4.6 Using an enumName as a Scope Qualifier
Because an enum declaration does not introduce a scope, an enum name cannot be used as a
scope qualifier. For example, the following code is invalid.

enum E {e1, e2, e3};

int i = E::e1; // invalid: E is not a scope name

To compile this invalid code, use the -features=extensions option.
The -features=extensions option instructs the compiler to ignore a scope qualifier if it is the
name of an enum type.

To make the code valid, remove the invalid qualifier E::.

Note – Use of this option increases the possibility of typographical errors yielding incorrect
programs that compile without error messages.

4.7 Using Anonymous structDeclarations
An anonymous struct declaration is a declaration that declares neither a tag for the struct, nor
an object or typedef name. Anonymous structs are not allowed in C++.

The -features=extensions option allows the use of an anonymous struct declaration but
only as member of a union.

The following code is an example of an invalid anonymous struct declaration that compiles
when you use the -features=extensions option.

union U {

struct {

int a;

double b;

}; // invalid: anonymous struct

struct {

4.7 Using Anonymous structDeclarations

Chapter 4 • Language Extensions 65

char* c;

unsigned d;

}; // invalid: anonymous struct

};

The names of the struct members are visible without qualification by a struct member name.
Given the definition of U in this code example, you can write:

U u;

u.a = 1;

Anonymous structs are subject to the same limitations as anonymous unions.

Note that you can make the code valid by giving a name to each struct, for example:

union U {

struct {

int a;

double b;

} A;

struct {

char* c;

unsigned d;

} B;

};

U u;

U.A.a = 1;

4.8 Passing the Address of an Anonymous Class Instance
You are not allowed to take the address of a temporary variable. For example, the following
code is invalid because it takes the address of a variable created by a constructor call. However,
the compiler accepts this invalid code when you use the -features=extensions option.

class C {

public:

C(int);

...

};

void f1(C*);

int main()

{

f1(&C(2)); // invalid

}

Note that you can make this code valid by using an explicit variable.

C c(2);

f1(&c);

4.8 Passing the Address of an Anonymous Class Instance

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201266

The temporary object is destroyed when the function returns. Ensuring that the address of the
temporary variable is not retained is the programmer’s responsibility. In addition, the data that
is stored in the temporary variable (for example, by f1) is lost when the temporary variable is
destroyed.

4.9 Declaring a Static Namespace-Scope Function as a Class
Friend

The following code is invalid.

class A {

friend static void foo(<args>);

...

};

Because a class name has external linkage and all definitions must be identical, friend functions
must also have external linkage. However, when you use the -features=extensions option,
the compiler to accepts this code.

Presumably the programmer’s intent with this invalid code was to provide a nonmember
“helper” function in the implementation file for class A. You can get the same effect by making
foo a static member function. You can make it private if you do not want clients to call the
function.

Note – If you use this extension, your class can be “hijacked” by any client. Any client can include
the class header, then define its own static function foo, which will automatically be a friend of
the class. The effect will be as if you made all members of the class public.

4.10 Using the Predefined __func__ Symbol for Function
Name

The compiler implicitly declares the identifier __func__ in each function as a static array of
const char. If the program uses the identifier, the compiler also provides the following
definition where function-name is the unadorned name of the function. Class membership,
namespaces, and overloading are not reflected in the name.

static const char __func__[] = "function-name";

For example, consider the following code fragment.

#include <stdio.h>

void myfunc(void)

4.10 Using the Predefined __func__ Symbol for Function Name

Chapter 4 • Language Extensions 67

{

printf("%s\n", __func__);

}

Each time the function is called, it will print the following to the standard output stream.

myfunc

The identifier __FUNCTION__ is also defined and is equivalent to __func__.

4.11 Supported Attributes
The following are supported attributes:The following attributes, invoked by __attribute__
((keyword)), or alternatively by [[keyword]], are implemented by the compiler for
compatibility. Spelling the attribute keyword within double underscores, __keyword__, is also
accepted.

aligned Roughly equivalent to #pragma align. Generates a warning and is ignored
if used on variable length arrays.

always_inline Equivalent to #pragma inline and -xinline

const Equivalent to #pragma no_side_effect

constructor Equivalent to #pragma init

destructor Equivalent to #pragma fini

malloc Equivalent to #pragma returns_new_memory

mode (No equivalent)

noinline Equivalent to #pragma no_inline and -xinline

noreturn Equivalent to #pragma does_not_return

pure Equivalent to #pragma does_not_write_global_data

packed Equivalent to #pragma pack(). See details below.

returns_twice Equivalent to #pragma unknown_control_flow

strong Accepted for compatibility with g++, but has no effect. The g++
documentation recommends not using this attribute.

vector_size Indicates that a variable or a type name (created using typedef) represents
a vector.

visibility Provides linker scoping. (See “A.2.130 -xldscope={v}” on page 256) Syntax
is: __attribute__((visibility(“visibility-type”))), where visibility-type
is one of:

default Same as __global linker scoping

4.11 Supported Attributes

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201268

hidden Same as __hidden linker scoping

internal Same as __symbolic linker scoping

weak Equivalent to #pragma weak

4.11.1 __packed__Attribute Details
This attribute, attached to struct or union type definition, specifies that each member (other
than zero-width bitfields) of the structure or union is placed to minimize the memory required.
When attached to an enum definition, __packed__ indicates that the smallest integral type
should be used.

Specifying this attribute for struct and union types is equivalent to specifying the packed
attribute on each of the structure or union members.

In the following example, struct my_packed_struct's members are packed closely together
but the internal layout of its s member is not packed. To do that, struct my_unpacked_struct
would also need to be packed.

struct my_unpacked_struct

{

char c;

int i;

;

struct __attribute__ ((__packed__)) my_packed_struct

{

char c;

int i;

struct my_unpacked_struct s;

};

You may only specify this attribute on the definition of an enum, struct, or union, and not on a
typedef that does not also define the enumerated type, structure, or union.

4.12 Compiler Support for Intel MMX and Extended x86
Platform Intrinsics

Prototypes declared in the mmintrin.h header file support the Intel MMX intrinsics, and are
provided for compatibility.

Specific header files provide prototypes for additional extended platform intrinsics, as shown in
the following table.

4.12 Compiler Support for Intel MMX and Extended x86 Platform Intrinsics

Chapter 4 • Language Extensions 69

TABLE 4–2 Header Files

x86 Platform Header File

SSE mmintrin.h

SSE2 xmmintrin.h

SSE3 pmmintrin.h

SSSE3 tmmintrin.h

SSE4A ammintrin.h

SSE4.1 smmintrin.h

SSE4.2 nmmintrin.h

AES encryption and PCLMULQDQ wmmintrin.h

AVX immintrin.h

Each header file includes the prototypes before it in the table. For example, on an SSE4.1
platform, including smmintrin.h in the user program declares the intrinsic names supporting
SSE4.1, SSSE3, SSE3, SSE2, SSE, and MMX platforms because smmintrin.h includes
tmmintrin.h, which includes pmmintrin.h, and so on down to mmintrin.h.

Note that ammintrin.h is published by AMD and is not included in any of the Intel intrinsic
headers. ammintrin.h includes pmmintrin.h, so by including ammintrin.h, all AMD SSE4A as
well as Intel SSE3, SSE2, SSE and MMX functions are declared.

Alternatively, the single Oracle Solaris Studio header file sunmedia_intrin.h includes
declarations from all the Intel header files, but does not include the AMD header file
ammintrin.h.

Be aware that code deployed on a host platform (for example, SSE3) that calls any super-set
intrinsic function (for example, for AVX) will not load on Oracle Solaris platforms and could
fail with undefined behavior or incorrect results on Linux platforms. Deploy programs that call
these platform-specific intrinsics only on the platforms that support them.

These are system header files and should appear in your program as shown in this example:

#include <nmmintrin.h>

Refer to the latest Intel C++ compiler reference guides for details.

4.12 Compiler Support for Intel MMX and Extended x86 Platform Intrinsics

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201270

Program Organization

The file organization of a C++ program requires more care than is typical for a C program. This
chapter describes how to set up your header files and your template definitions.

5.1 Header Files
Creating an effective header file can be difficult. Often your header file must adapt to different
versions of both C and C++. To accommodate templates, make sure your header file is tolerant
of multiple inclusions (idempotent).

5.1.1 Language-Adaptable Header Files
You might need to develop header files for inclusion in both C and C++ programs. However,
Kernighan and Ritchie C (K&R C), also known as “classic C,” ANSI C, Annotated Reference
Manual C++ (ARM C++), and ISO C++ sometimes require different declarations or definitions
for the same program element within a single header file. (See the C++ Migration Guide for
additional information on the variations between languages and versions.) To make header files
acceptable to all these standards, you might need to use conditional compilation based on the
existence or value of the preprocessor macros __STDC__ and __cplusplus.

The macro __STDC__ is not defined in K&R C, but is defined in both ANSI C and C++. Use this
macro to separate K&R C code from ANSI C or C++ code. This macro is most useful for
separating prototyped from nonprototyped function definitions.

#ifdef __STDC__

int function(char*,...); // C++ & ANSI C declaration

#else

int function(); // K&R C

#endif

The macro __cplusplus is not defined in C, but is defined in C++.

5C H A P T E R 5

71

Note – Early versions of C++ defined the macro c_plusplus instead of __ cplusplus. The
macro c_plusplus is no longer defined.

Use the definition of the __cplusplus macro to separate C and C++. This macro is most useful
in guarding the specification of an extern “C” interface for function declarations, as shown in
the following example. To prevent inconsistent specification of extern “C”, never place an
#include directive within the scope of an extern “C” linkage specification.

#include “header.h”

... // ... other include files...

#if defined(__cplusplus)

extern “C” {

#endif

int g1();

int g2();

int g3()

#if defined(__cplusplus)

}

#endif

In ARM C++, the __cplusplus macro has a value of 1. In ISO C++, the macro has the value
199711L (the year and month of the standard expressed as a long constant). Use the value of
this macro to separate ARM C++ from ISO C++. The macro value is most useful for guarding
changes in template syntax.

// template function specialization

#if __cplusplus < 199711L

int power(int,int); // ARM C++

#else

template <> int power(int,int); // ISO C++

#endif

5.1.2 Idempotent Header Files
Your header files should be idempotent, that is, the effect of including a header file many times
should be exactly the same as including the header file only once. This property is especially
important for templates. You can best accomplish idempotency by setting preprocessor
conditions that prevent the body of your header file from appearing more than once.

#ifndef HEADER_H

#define HEADER_H

/* contents of header file */

#endif

5.1 Header Files

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201272

5.2 Template Definitions
You can organize your template definitions in two ways: with definitions included and with
definitions separated. The definitions-included organization allows greater control over
template compilation.

5.2.1 Template Definitions Included
When you put the declarations and definitions for a template within the file that uses the
template, the organization is definitions-included. For example:

main.cc

template <class Number> Number twice(Number original);

template <class Number> Number twice(Number original)

{ return original + original; }

int main()

{ return twice<int>(-3); }

When a file using a template includes a file that contains both the template’s declaration and the
template’s definition, the file that uses the template also has the definitions-included
organization. For example:

twice.h

#ifndef TWICE_H

#define TWICE_H

template <class Number>

Number twice(Number original);

template <class Number> Number twice(Number original)

{ return original + original; }

#endif

main.cc

#include “twice.h”

int main()

{ return twice(-3); }

Note – Making your template headers idempotent is very important. (See “5.1.2 Idempotent
Header Files” on page 72.)

5.2.2 Template Definitions Separate
Another way to organize template definitions is to keep the definitions in template definition
files, as shown in the following example.

twice.h

5.2 Template Definitions

Chapter 5 • Program Organization 73

#ifndef TWICE_H

#define TWICE_H

template <class Number>

Number twice(Number original);

#endif TWICE_H

twice.cc

template <class Number>

Number twice(Number original)

{ return original + original; }

main.cc

#include “twice.h”

int main()

{ return twice<int>(-3); }

Template definition files must not include any non-idempotent header files and often need not
include any header files at all. (See “5.1.2 Idempotent Header Files” on page 72.) Note that not
all compilers support the definitions-separate model for templates.

Because a separate definitions file is a header file, it might be included implicitly in many files. It
therefore should not contain any function or variable definitions unless they are part of a
template definition. A separate definitions file can include type definitions, including typedefs.

Note – Although source-file extensions for template definition files are commonly used (that is,
.c, .C, .cc, .cpp, .cxx, or .c++), template definition files are header files. The compiler includes
them automatically if necessary. Template definition files should not be compiled
independently.

If you place template declarations in one file and template definitions in another file, be very
careful how you construct the definition file, what you name it, and where you put it. You might
also need to identify explicitly to the compiler the location of the definitions. Refer to “7.5
Template Definition Searching” on page 97 for information about the template definition
search rules.

When generating preprocessor output with the -E or -P options, the definitions-separate file
organization does not allow the template definitions to be included in the .i file. Compiling the
.i file can fail due to missing definitions. By conditionally including the template definition file
in the template declaration header (see the code example below), you can ensure the template
definitions are available by using -template=no%extdef on the command line. The libCtd and
STLport libraries are implemented in this way.

// templace declaration file

template <class T> class foo { ... };

#ifdef _TEMPLATE_NO_EXTDEF

#include "foo.cc" //template definition file

#endif

5.2 Template Definitions

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201274

However, do not attempt to define the macro _TEMPLATE_NO_EXTDEF yourself. When defined
without the —template=no%extdef option, compilation failures can occur due to multiple
inclusion of template definition files.

5.2 Template Definitions

Chapter 5 • Program Organization 75

76

Creating and Using Templates

Templates enable you to write a single body of code that applies to a wide range of types in a
type-safe manner. This chapter introduces template concepts and terminology in the context of
function templates, discusses the more complicated (and more powerful) class templates, and
describes the composition of templates. Also discussed are template instantiation, default
template parameters, and template specialization. The chapter concludes with a discussion of
potential problem areas for templates.

6.1 Function Templates
A function template describes a set of related functions that differ only by the types of their
arguments or return values.

6.1.1 Function Template Declaration
You must declare a template before you can use it. A declaration, as in the following example,
provides enough information to use the template but not enough information to implement the
template.

template <class Number> Number twice(Number original);

In this example, Number is a template parameter; it specifies the range of functions that the
template describes. More specifically, Number is a template type parameter, and its use within
the template definition stands for a type determined at the location where the template is used.

6.1.2 Function Template Definition
If you declare a template, you must also define it. A definition provides enough information to
implement the template. The following example defines the template declared in the previous
example.

6C H A P T E R 6

77

template <class Number> Number twice(Number original)

{ return original + original; }

Because template definitions often appear in header files, a template definition might be
repeated in several compilation units. All definitions, however, must be the same. This
restriction is called the One-Definition Rule.

6.1.3 Function Template Use
Once declared, templates can be used like any other function. Their use consists of naming the
template and providing function arguments. The compiler can infer the template type
arguments from the function argument types. For example, you can use the previously declared
template as follows:

double twicedouble(double item)

{ return twice(item); }

If a template argument cannot be inferred from the function argument types, it must be
supplied where the function is called. For example:

template<class T> T func(); // no function arguments

int k = func<int>(); // template argument supplied explicitly

6.2 Class Templates
A class template describes a set of related classes or data types that differ only by types, by
integral values, by pointers or references to variables with global linkage, or by a combination
thereof. Class templates are particularly useful in describing generic but type-safe data
structures.

6.2.1 Class Template Declaration
A class template declaration provides only the name of the class and its template arguments.
Such a declaration is an incomplete class template.

The following example is a template declaration for a class named Array that takes any type as
an argument.

template <class Elem> class Array;

This template is for a class named String that takes an unsigned int as an argument.

template <unsigned Size> class String;

6.2 Class Templates

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201278

6.2.2 Class Template Definition
A class template definition must declare the class data and function members, as in the
following examples.

template <class Elem> class Array {

Elem* data;

int size;

public:

Array(int sz);

int GetSize();

Elem& operator[](int idx);

};

template <unsigned Size> class String {

char data[Size];

static int overflows;

public:

String(char *initial);

int length();

};

Unlike function templates, class templates can have both type parameters (such as class Elem)
and expression parameters (such as unsigned Size). An expression parameter can be:
■ A value that has an integral type or enumeration
■ A pointer or a reference to an object
■ A pointer or a reference to a function
■ A pointer to a class member function

6.2.3 Class Template Member Definitions
The full definition of a class template requires definitions for its function members and static
data members. Dynamic (nonstatic) data members are sufficiently defined by the class template
declaration.

6.2.3.1 Function Member Definitions
The definition of a template function member consists of the template parameter specification
followed by a function definition. The function identifier is qualified by the class template’s class
name and the template arguments. The following example shows definitions of two function
members of the Array class template, which has a template parameter specification of template
<class Elem>. Each function identifier is qualified by the template class name and the template
argument Array<Elem>.

template <class Elem> Array<Elem>::Array(int sz)

{size = sz; data = new Elem[size];}

template <class Elem> int Array<Elem>::GetSize()

{ return size; }

6.2 Class Templates

Chapter 6 • Creating and Using Templates 79

This example shows definitions of function members of the String class template.

#include <string.h>

template <unsigned Size> int String<Size>::length()

{int len = 0;

while (len < Size && data[len]!= ’\0’) len++;

return len;}

template <unsigned Size> String<Size>::String(char *initial)

{strncpy(data, initial, Size);

if (length() == Size) overflows++;}

6.2.3.2 Static Data Member Definitions
The definition of a template static data member consists of the template parameter specification
followed by a variable definition, where the variable identifier is qualified by the class template
name and its template actual arguments.

template <unsigned Size> int String<Size>::overflows = 0;

6.2.4 Class Template Use
A template class can be used wherever a type can be used. Specifying a template class consists of
providing the values for the template name and arguments. The declaration in the following
example creates the variable int_array based upon the Array template. The variable’s class
declaration and its set of methods are just like those in the Array template except that Elem is
replaced with int. See “6.3 Template Instantiation” on page 81.

Array<int> int_array(100);

The declaration in this example creates the short_string variable using the String template.

String<8> short_string("hello");

You can use template class member functions as you would any other member function

int x = int_array.GetSize();

int x = short_string.length();

.

6.2 Class Templates

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201280

6.3 Template Instantiation
Template instantiation involves generating a concrete class or function (instance) for a
particular combination of template arguments. For example, the compiler generates a class for
Array<int> and a different class for Array<double>. The new classes are defined by
substituting the template arguments for the template parameters in the definition of the
template class. In the Array<int> example shown in “6.2 Class Templates” on page 78, the
compiler substitutes int wherever Elem appears.

6.3.1 Implicit Template Instantiation
The use of a template function or template class introduces the need for an instance. If that
instance does not already exist, the compiler implicitly instantiates the template for that
combination of template arguments.

6.3.2 Explicit Template Instantiation
The compiler implicitly instantiates templates only for those combinations of template
arguments that are actually used. This approach may be inappropriate for the construction of
libraries that provide templates. C++ provides a facility to explicitly instantiate templates, as
seen in the following examples.

6.3.2.1 Explicit Instantiation of Template Functions
To instantiate a template function explicitly, follow the template keyword by a declaration (not
definition) for the function, with the function identifier followed by the template arguments.

template float twice<float>(float original);

Template arguments may be omitted when the compiler can infer them.

template int twice(int original);

6.3.2.2 Explicit Instantiation of Template Classes
To instantiate a template class explicitly, follow the template keyword by a declaration (not
definition) for the class, with the class identifier followed by the template arguments.

template class Array<char>;

template class String<19>;

When you explicitly instantiate a class, all of its members are also instantiated.

6.3 Template Instantiation

Chapter 6 • Creating and Using Templates 81

6.3.2.3 Explicit Instantiation of Template Class Function Members
To explicitly instantiate a template class function member, follow the template keyword by a
declaration (not definition) for the function, with the function identifier qualified by the
template class, followed by the template arguments.

template int Array<char>::GetSize();

template int String<19>::length();

6.3.2.4 Explicit Instantiation of Template Class Static Data Members
To explicitly instantiate a template class static data member, follow the template keyword by a
declaration (not definition) for the member, with the member identifier qualified by the
template class, followed by the template argument.

template int String<19>::overflows;

6.4 Template Composition
You can use templates in a nested manner. This is particularly useful when defining generic
functions over generic data structures, as in the standard C++ library. For example, a template
sort function may be declared over a template array class:

template <class Elem> void sort(Array<Elem>);

and defined as:

template <class Elem> void sort(Array<Elem> store)

{int num_elems = store.GetSize();

for (int i = 0; i < num_elems-1; i++)

for (int j = i+1; j < num_elems; j++)

if (store[j-1] > store[j])

{Elem temp = store[j];

store[j] = store[j-1];

store[j-1] = temp;}}

The preceding example defines a sort function over the predeclared Array class template
objects. The next example shows the actual use of the sort function.

Array<int> int_array(100); // construct an array of ints

sort(int_array); // sort it

6.4 Template Composition

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201282

6.5 Default Template Parameters
You can give default values to template parameters for class templates (but not function
templates).

template <class Elem = int> class Array;

template <unsigned Size = 100> class String;

If a template parameter has a default value, all parameters after it must also have default values.
A template parameter can have only one default value.

6.6 Template Specialization
Treating some combinations of template arguments as a special case might provide some
performance gains, as in the examples for twice in this section. Alternatively, a template
description might fail to work for a set of its possible arguments, as in the examples for sort in
this section. Template specialization allows you to define alternative implementations for a
given combination of actual template arguments. The template specialization overrides the
default instantiation.

6.6.1 Template Specialization Declaration
You must declare a specialization before any use of that combination of template arguments.
The following examples declare specialized implementations of twice and sort.

template <> unsigned twice<unsigned>(unsigned original);

template <> sort<char*>(Array<char*> store);

You can omit the template arguments if the compiler can unambiguously determine them. For
example:

template <> unsigned twice(unsigned original);

template <> sort(Array<char*> store);

6.6.2 Template Specialization Definition
You must define all template specializations that you declare. The following examples define the
functions declared in the preceding section.

template <> unsigned twice<unsigned>(unsigned original)

{return original << 1;}

6.6 Template Specialization

Chapter 6 • Creating and Using Templates 83

#include <string.h>

template <> void sort<char*>(Array<char*> store)

{int num_elems = store.GetSize();

for (int i = 0; i < num_elems-1; i++)

for (int j = i+1; j < num_elems; j++)

if (strcmp(store[j-1], store[j]) > 0)

{char *temp = store[j];

store[j] = store[j-1];

store[j-1] = temp;}}

6.6.3 Template Specialization Use and Instantiation
A specialization is used and instantiated just as any other template, except that the definition of
a completely specialized template is also an instantiation.

6.6.4 Partial Specialization
In the previous examples, the templates are fully specialized. That is, they define an
implementation for specific template arguments. A template can also be partially specialized,
meaning that only some of the template parameters are specified, or that one or more
parameters are limited to certain categories of type. The resulting partial specialization is itself
still a template. For example, the following code sample shows a primary template and a full
specialization of that template.

template<class T, class U> class A {...}; //primary template

template<> class A<int, double> {...}; //specialization

The following code shows examples of partial specialization of the primary template.

template<class U> class A<int> {...}; // Example 1

template<class T, class U> class A<T*> {...}; // Example 2

template<class T> class A<T**, char> {...}; // Example 3

■ Example 1 provides a special template definition for cases when the first template parameter
is type int.

■ Example 2 provides a special template definition for cases when the first template parameter
is any pointer type.

■ Example 3 provides a special template definition for cases when the first template parameter
is pointer-to-pointer of any type, and the second template parameter is type char.

6.6 Template Specialization

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201284

6.7 Template Problem Areas
This section describes problems you might encounter when using templates.

6.7.1 Nonlocal Name Resolution and Instantiation
Sometimes a template definition uses names that are not defined by the template arguments or
within the template itself. If so, the compiler resolves the name from the scope enclosing the
template, which could be the context at the point of definition, or at the point of instantiation. A
name can have different meanings in different places, yielding different resolutions.

Name resolution is complex. Consequently, you should not rely on nonlocal names except
those provided in a pervasive global environment. That is, use only nonlocal names that are
declared and defined the same way everywhere. In the following example, the template function
converter uses the nonlocal names intermediary and temporary. These names have different
definitions in use1.cc and use2.cc, and will probably yield different results under different
compilers. For templates to work reliably, all nonlocal names (intermediary and temporary in
this case) must have the same definition everywhere.

use_common.h

// Common template definition

template <class Source, class Target>

Target converter(Source source)

{temporary = (intermediary)source;

return (Target)temporary;}

use1.cc

typedef int intermediary;

int temporary;

#include "use_common.h"
use2.cc

typedef double intermediary;

unsigned int temporary;

#include "use_common.h"

A common use of nonlocal names is the use of the cin and cout streams within a template. Few
programmers really want to pass the stream as a template parameter, so they refer to a global
variable. However, cin and cout must have the same definition everywhere.

6.7.2 Local Types as Template Arguments
The template instantiation system relies on type-name equivalence to determine which
templates need to be instantiated or reinstantiated. Thus local types can cause serious problems
when used as template arguments. Beware of creating similar problems in your code.

6.7 Template Problem Areas

Chapter 6 • Creating and Using Templates 85

EXAMPLE 6–1 Example of Local Type as Template Argument Problem

array.h

template <class Type> class Array {

Type* data;

int size;

public:

Array(int sz);

int GetSize();

};

array.cc

template <class Type> Array<Type>::Array(int sz)

{size = sz; data = new Type[size];}

template <class Type> int Array<Type>::GetSize()

{return size;}

file1.cc

#include "array.h"
struct Foo {int data;};

Array<Foo> File1Data(10);

file2.cc

#include "array.h"
struct Foo {double data;};

Array<Foo> File2Data(20);

The Foo type registered in file1.cc is not the same as the Foo type registered in file2.cc.
Using local types in this way could lead to errors and unexpected results.

6.7.3 Friend Declarations of Template Functions
Templates must be declared before they are used. A friend declaration constitutes a use of the
template, not a declaration of the template. A true template declaration must precede the friend
declaration. For example, when the compilation system attempts to link the produced object file
for the following example, it generates an undefined error for the operator<< function, which is
not instantiated.

EXAMPLE 6–2 Example of Friend Declaration Problem

array.h

// generates undefined error for the operator<< function

#ifndef ARRAY_H

#define ARRAY_H

#include <iosfwd>

template<class T> class array {

int size;

public:

array();

friend std::ostream&

operator<<(std::ostream&, const array<T>&);

};

6.7 Template Problem Areas

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201286

EXAMPLE 6–2 Example of Friend Declaration Problem (Continued)

#endif

array.cc

#include <stdlib.h>

#include <iostream>

template<class T> array<T>::array() {size = 1024;}

template<class T>

std::ostream&

operator<<(std::ostream& out, const array<T>& rhs)

{return out <<’[’ << rhs.size <<’]’;}

main.cc

#include <iostream>

#include "array.h"

int main()

{

std::cout

<< "creating an array of int... " << std::flush;

array<int> foo;

std::cout << "done\n";
std::cout << foo << std::endl;

return 0;

}

Note that no error message is issued during compilation because the compiler reads the
following line as the declaration of a normal function that is a friend of the array class.

friend ostream& operator<<(ostream&, const array<T>&);

Because operator<< is really a template function, you need to supply a template declaration for
it prior to the declaration of template class array. However, because operator<< has a
parameter of type array<T>, you must precede the function declaration with a declaration of
array<T>. The file array.h must look like this example:

#ifndef ARRAY_H

#define ARRAY_H

#include <iosfwd>

// the next two lines declare operator<< as a template function

template<class T> class array;

template<class T>

std::ostream& operator<<(std::ostream&, const array<T>&);

template<class T> class array {

int size;

public:

array();

friend std::ostream&

operator<< <T> (std::ostream&, const array<T>&);

6.7 Template Problem Areas

Chapter 6 • Creating and Using Templates 87

};

#endif

6.7.4 Using Qualified Names Within Template Definitions
The C++ standard requires types with qualified names that depend upon template arguments to
be explicitly noted as type names with the typename keyword. This requirement applies even if
the compiler can deduce that it should be a type. The comments in the following example show
the types with qualified names that require the typename keyword.

struct simple {

typedef int a_type;

static int a_datum;

};

int simple::a_datum = 0; // not a type

template <class T> struct parametric {

typedef T a_type;

static T a_datum;

};

template <class T> T parametric<T>::a_datum = 0; // not a type

template <class T> struct example {

static typename T::a_type variable1; // dependent

static typename parametric<T>::a_type variable2; // dependent

static simple::a_type variable3; // not dependent

};

template <class T> typename T::a_type // dependent

example<T>::variable1 = 0; // not a type

template <class T> typename parametric<T>::a_type // dependent

example<T>::variable2 = 0; // not a type

template <class T> simple::a_type // not dependent

example<T>::variable3 = 0; // not a type

6.7.5 Nesting Template Names
Because the “>>” character sequence is interpreted as the right-shift operator, you must be
careful when you use one template name inside another. Make sure you separate adjacent “>”
characters with at least one blank space.

For example, the following ill-formed statement:

Array<String<10>> short_string_array(100); // >> = right-shift

is interpreted as:

Array<String<10 >> short_string_array(100);

The correct syntax is:

Array<String<10> > short_string_array(100);

6.7 Template Problem Areas

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201288

6.7.6 Referencing Static Variables and Static Functions
Within a template definition, the compiler does not support referencing an object or function
that is declared static at global scope or in a namespace. If multiple instances are generated, the
One-Definition Rule (C++ standard section 3.2) is violated because each instance refers to a
different object. The usual failure indication is missing symbols at link time.

If you want a single object to be shared by all template instantiations, then make the object a
nonstatic member of a named namespace. If you want a different object for each instantiation of
a template class, then make the object a static member of the template class. If you want a
different object for each instantiation of a template function, then make the object local to the
function.

6.7.7 Building Multiple Programs Using Templates in the
Same Directory
If you are building more than one program or library by specifying -instances=extern, build
them in separate directories. If you want to build in the same directory, clean the repository
between the different builds. This practice avoids any unpredictable errors. For more
information, see “7.4.4 Sharing Template Repositories” on page 97.

Consider the following example with makefiles a.cc, b.cc, x.h, and x.cc. Note that this
example is meaningful only if you specify -instances=extern:

........

Makefile

........

CCC = CC

all: a b

a:

$(CCC) -I. -instances=extern -c a.cc

$(CCC) -instances=extern -o a a.o

b:

$(CCC) -I. -instances=extern -c b.cc

$(CCC) -instances=extern -o b b.o

clean:

/bin/rm -rf SunWS_cache *.o a b

...

x.h

...

template <class T> class X {

public:

int open();

int create();

6.7 Template Problem Areas

Chapter 6 • Creating and Using Templates 89

static int variable;

};

...

x.cc

...

template <class T> int X<T>::create() {

return variable;

}

template <class T> int X<T>::open() {

return variable;

}

template <class T> int X<T>::variable = 1;

...

a.cc

...

#include "x.h"

int main()

{

X<int> temp1;

temp1.open();

temp1.create();

}

...

b.cc

...

#include "x.h"

int main()

{

X<int> temp1;

temp1.create();

}

If you build both a and b, add a make clean command between the two builds. The following
commands result in an error:

example% make a

example% make b

The following commands will not produce any error:

example% make a

example% make clean

example% make b

6.7 Template Problem Areas

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201290

Compiling Templates

Template compilation requires the C++ compiler to do more than traditional UNIX compilers
have done. The C++ compiler must generate object code for template instances on an
as-needed basis. It might share template instances among separate compilations using a
template repository. It might accept some template compilation options. It must locate template
definitions in separate source files and maintain consistency between template instances and
mainline code.

7.1 Verbose Compilation
When given the flag -verbose=template, the C++ compiler notifies you of significant events
during template compilation. Conversely, the compiler does not notify you when given the
default, -verbose=no%template. The +w option might give other indications of potential
problems when template instantiation occurs.

7.2 Repository Administration
The CCadmin(1) command administers the template repository (used only with the option
-instances=extern). For example, changes in your program can render some instantiations
superfluous, thus wasting storage space. The CCadmin– clean command (formerly ptclean)
clears out all instantiations and associated data. Instantiations are re-created only when needed.

7.2.1 Generated Instances
The compiler treats inline template functions as inline functions for the purposes of template
instance generation. The compiler manages them as it does other inline functions, and the
descriptions in this chapter do not apply to template inline functions.

7C H A P T E R 7

91

7.2.2 Whole-Class Instantiation
The compiler usually instantiates members of template classes independently of other
members, so that the compiler instantiates only members that are used within the program.
Methods written solely for use through a debugger will therefore not normally be instantiated.

Use two strategies to ensure that debugging members are available to the debugger.

■ First, write a non-template function that uses the template class instance members that are
otherwise unused. This function need not be called.

■ Second, use the -template=wholeclass compiler option, which instructs the compiler to
instantiate all non-template non-inline members of a template class if any of those same
members are instantiated.

The ISO C++ Standard permits developers to write template classes for which all members
might not be legal with a given template argument. As long as the illegal members are not
instantiated, the program is still well formed. The ISO C++ Standard Library uses this
technique. However, the -template=wholeclass option instantiates all members, and hence
cannot be used with such template classes when instantiated with the problematic template
arguments.

7.2.3 Compile-Time Instantiation
Instantiation is the process by which a C++ compiler creates a usable function or object from a
template. The C++ compiler uses compile-time instantiation, which forces instantiations to
occur when the reference to the template is being compiled.

The advantages of compile-time instantiation are:

■ Debugging is much easier. Error messages occur in context, allowing the compiler to give a
complete traceback to the point of reference.

■ Template instantiations are always up-to-date.
■ The overall compilation time, including the link phase, is reduced.

Templates can be instantiated multiple times if source files reside in different directories or if
you use libraries with template symbols.

7.2.4 Template Instance Placement and Linkage
By default, instances go into special address sections, and the linker recognizes and discards
duplicates. You can instruct the compiler to use one of five instance placement and linkage
methods: external, static, global, explicit, and semi-explicit.

■ External instances perform best when the following is true:

7.2 Repository Administration

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201292

■ The set of instances in the program is small but each compilation unit references a large
subset of the instances.

■ Few instances are referenced in more than one or two compilation units.

Static instances are deprecated .
■ Global instances, the default, are suitable for all development, and perform best when

objects reference a variety of instances.
■ Explicit instances are suitable for some carefully controlled application compilation

environments.
■ Semi-explicit instances require slightly less controlled compilation environments but

produce larger object files and have restricted uses.

This section discusses the five instance placement and linkage methods. Additional information
about generating instances can be found in “6.3 Template Instantiation” on page 81.

7.3 External Instances
With the external instances method, all instances are placed within the template repository. The
compiler ensures that exactly one consistent template instance exists; instances are neither
undefined nor multiply defined. Templates are reinstantiated only when necessary. For
non-debug code, the total size of all object files (including any within the template cache) may
be smaller with -instances=extern than with -instances=global.

Template instances receive global linkage in the repository. Instances are referenced from the
current compilation unit with external linkage.

Note – If you are compiling and linking in separate steps and you specify -instance=extern for
the compilation step, you must also specify it for the link step.

The disadvantage of this method is that the cache must be cleared whenever you change
programs or make significant program changes. The cache is a bottleneck for parallel
compilation, as when using dmake because access to the cache must be restricted to one
compilation at a time. Also, you can build only one program within a directory.

Determining whether a valid template instance is already in the cache can take longer than just
creating the instance in the main object file and discarding it later if needed.

Specify external linkage with the -instances=extern option.

Because instances are stored within the template repository, you must use the CC command to
link C++ objects that use external instances into programs.

If you wish to create a library that contains all the template instances that it uses, compile with
the-xar option. Do not use the ar command. For example:

7.3 External Instances

Chapter 7 • Compiling Templates 93

example% CC -xar -instances=extern -o libmain.a a.o b.o c.o

7.3.1 Possible Cache Conflicts
Do not run different compiler versions in the same directory due to possible cache conflicts
when you specify -instance=extern. Consider the following when you compile with the
-instances=extern template model:

■ Do not create unrelated binaries in the same directory. Any binaries (.o, .a, .so, executable
programs) created in the same directory should be related, in that names of all objects,
functions, and types common to two or more object files have identical definitions.

■ It is safe to run multiple compilations simultaneously in the same directory, such as when
using dmake. It is not safe to run any compilations or link steps at the same time as another
link step. A link step is any operation that creates a library or executable program. Be sure
that dependencies in a makefile do not allow any commands to run in parallel with a link
step.

7.3.2 Static Instances

Note – The -instances=static option is deprecated because -instances=global now gives
you all the advantages of static without the disadvantages. This option was provided in earlier
compilers to overcome problems that no longer exist.

With the static instances method, all instances are placed within the current compilation unit.
As a consequence, templates are reinstantiated during each recompilation; instances are not
saved to the template repository.

The disadvantage of this method is that it does not follow language semantics and makes
substantially larger objects and executables.

Instances receive static linkage. These instances will not be visible or usable outside the current
compilation unit. As a result, templates might have identical instantiations in several object
files. Because multiple instances produce unnecessarily large programs, static instance linkage
is suitable only for small programs where templates are unlikely to be multiply instantiated.

Compilation is potentially faster with static instances, so this method might also be suitable
during Fix-and-Continue debugging. (See Debugging a Program With dbx.)

7.3 External Instances

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201294

Note – If your program depends on sharing template instances (such as static data members of
template classes or template functions) across compilation units, do not use the static instances
method. Your program will not work properly.

Specify static instance linkage with the -instances=static compiler option.

7.3.3 Global Instances
Unlike with early compiler releases, you do not have to guard against multiple copies of a global
instance.

The advantage of this method is that incorrect source code commonly accepted by other
compilers is now also accepted in this mode. In particular, references to static variables from
within a template instances are not legal but are commonly accepted.

The disadvantage of this method is that individual object files may be larger due to copies of
template instances in multiple files. If you compile some object files for debug using the -g
option and some without, it is hard to predict whether you will get a debug or non-debug
version of a template instance linked into the program.

Template instances receive global linkage. These instances are visible and usable outside the
current compilation unit.

Specify global instances with the -instances=global option (the default).

7.3.4 Explicit Instances
In the explicit instances method, instances are generated only for templates that are explicitly
instantiated. Implicit instantiations are not satisfied. Instances are placed within the current
compilation unit.

The advantage of this method is that you have the least amount of template compilation and
smallest object sizes.

The disadvantage is that you must perform all instantiation manually.

Template instances receive global linkage. These instances are visible and usable outside the
current compilation unit. The linker recognizes and discards duplicates.

Specify explicit instances with the -instances=explicit option.

7.3 External Instances

Chapter 7 • Compiling Templates 95

7.3.5 Semi-Explicit Instances
When you use the semi-explicit instances method, instances are generated only for templates
that are explicitly instantiated or implicitly instantiated within the body of a template. Instances
required by explicitly created instances are generated automatically. Implicit instantiations in
the mainline code are not satisfied. Instances are placed within the current compilation unit. As
a consequence, templates are reinstantiated during each recompilation; instances receive global
linkage and they are not saved to the template repository.

Specify semi-explicit instances with the -instances=semiexplicit option.

7.4 Template Repository
The template repository stores template instances between separate compilations so that
template instances are compiled only when necessary. The template repository contains all
nonsource files needed for template instantiation when using the external instances method.
The repository is not used for other kinds of instances.

7.4.1 Repository Structure
The template repository is contained, by default, within a cache directory called SunWS_cache.

The cache directory is contained within the directory in which the object files are placed. You
can change the name of the cache directory by setting the SUNWS_CACHE_NAME environment
variable. Note that the value of the SUNWS_CACHE_NAME variable must be a directory name and
not a path name. The compiler automatically places the template cache directory under the
object file directory so the compiler already has a path.

7.4.2 Writing to the Template Repository
When the compiler must store template instances, it stores them within the template repository
corresponding to the output file. For example, the following command writes the object file to
./sub/a.o and writes template instances into the repository contained within
./sub/SunWS_cache. If the cache directory does not exist and the compiler needs to instantiate
a template, the compiler will create the directory.

example% CC -o sub/a.o a.cc

7.4.3 Reading From Multiple Template Repositories
The compiler reads from the template repositories corresponding to the object files that it reads.
For example, the following command reads from ./sub1/SunWS_cache and
./sub2/SunWS_cache, and, if necessary, writes to ./SunWS_cache.

7.4 Template Repository

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201296

example% CC sub1/a.o sub2/b.o

7.4.4 Sharing Template Repositories
Templates that are within a repository must not violate the one-definition rule of the ISO C++
standard. That is, a template must have the same source in all uses of the template. Violating
this rule produces undefined behavior.

The simplest, though most conservative, way to ensure that the rule is not violated is to build
only one program or library within any one directory. Two unrelated programs might use the
same type name or external name to mean different things. If the programs share a template
repository, template definitions could conflict, thus yielding unpredictable results.

7.4.5 Template Instance Automatic Consistency With
-instances=extern

The template repository manager ensures that the states of the instances in the repository are
consistent and up-to-date with your source files when you specify -instances=extern.

For example, if your source files are compiled with the -g option (debugging on), the files you
need from the database are also compiled with -g.

In addition, the template repository tracks changes in your compilation. For example, if you
have the -DDEBUG flag set to define the name DEBUG, the database tracks this. If you omit this flag
on a subsequent compile, the compiler reinstantiates those templates on which this dependency
is set.

Note – If you remove the source code of a template or stop using a template, instances of the
template remain in the cache. If you change the signature of a function template, instances
using the old signature remain in the cache. If you run into unexpected behavior at compile or
link time due to these issues, clear the template cache and rebuild the program.

7.5 Template Definition Searching
When you use the definitions-separate template organization, template definitions are not
available in the current compilation unit, and the compiler must search for the definition. This
section describes how the compiler locates the definition.

Definition searching is somewhat complex and prone to error. Therefore, you should use the
definitions-included template file organization if possible. Doing so helps you avoid definition
searching altogether. See “5.2.1 Template Definitions Included” on page 73.

7.5 Template Definition Searching

Chapter 7 • Compiling Templates 97

Note – If you use the -template=no%extdef option, the compiler will not search for separate
source files.

7.5.1 Source File Location Conventions
Without the specific directions provided with an options file, the compiler uses a Cfront-style
method to locate template definition files. This method requires that the template definition file
contain the same base name as the template declaration file. This method also requires the
template definition file to be on the current include path. For example, if the template function
foo() is located in foo.h, the matching template definition file should be named foo.cc or
some other recognizable source-file extension (.C, .c, .cc, .cpp, .cxx, or .c++). The template
definition file must be located in one of the normal include directories or in the same directory
as its matching header file.

7.5.2 Definitions Search Path
As an alternative to the normal search path set with –I, you can specify a search directory for
template definition files with the option –ptidirectory. Multiple -pti flags define multiple
search directories, that is, a search path. If you use -ptidirectory, the compiler looks for
template definition files on this path and ignores the –I flag. Because the -ptidirectory flag
complicates the search rules for source files, use the -I option instead of the -ptidirectory
option.

7.5.3 Troubleshooting a Problematic Search
Sometimes the compiler generates confusing warnings or error messages because it is looking
for a file that you don’t intend to compile. Usually, the problem is that a file, for example foo.h,
contains template declarations and another file, such as foo.cc, gets implicitly included.

If a header file, foo.h, has template declarations, the compiler searches for a file called foo with
a C++ file extension (.C, .c, .cc, .cpp, .cxx, or .c++) by default. If the compiler finds such a file, it
includes the file automatically. See “7.5 Template Definition Searching” on page 97 for more
information on such searches.

If you have a file foo.cc that you don’t intend to be treated this way, you have two options:

■ Change the name of the .h or the .cc file to eliminate the name match.
■ Disable the automatic search for template definition files by specifying the

-template=no%extdef option. You must then include all template definitions explicitly in
your code and will not be able to use the “definitions separate” model.

7.5 Template Definition Searching

Oracle Solaris Studio 12.3: C++ User's Guide • January, 201298

Exception Handling

This chapter discusses the C++ compiler’s implementation of exception handling. Additional
information can be found in “10.2 Using Exceptions in a Multithreaded Program” on page 110.
For more information on exception handling, see The C++ Programming Language, Third
Edition, by Bjarne Stroustrup (Addison-Wesley, 1997).

8.1 Synchronous and Asynchronous Exceptions
Exception handling is intended to support only synchronous exceptions, such as array range
checks. The term synchronous exception means that exceptions can be originated only from
throw expressions.

The C++ standard supports synchronous exception handling with a termination model.
Termination means that once an exception is thrown, control never returns to the throw point.

Exception handling is not intended to directly handle asynchronous exceptions such as
keyboard interrupts. However, you can make exception handling work in the presence of
asynchronous events if you are careful. For instance, to make exception handling work with
signals, you can write a signal handler that sets a global variable, and create another routine that
polls the value of that variable at regular intervals and throws an exception when the value
changes. You cannot throw an exception from a signal handler.

8.2 Specifying Runtime Errors
Five runtime error messages are associated with exceptions:

■ No handler for the exception
■ Unexpected exception thrown
■ An exception can only be re-thrown in a handler
■ During stack unwinding, a destructor must handle its own exception

8C H A P T E R 8

99

■ Out of memory

When errors are detected at runtime, the error message displays the type of the current
exception and one of the five error messages. By default, the predefined function terminate()

is called, which then calls abort().

The compiler uses the information provided in the exception specification to optimize code
production. For example, table entries for functions that do not throw exceptions are
suppressed, and runtime checking for exception specifications of functions is eliminated
wherever possible.

8.3 Disabling Exceptions
If you know that exceptions are not used in a program, you can use the compiler option
features=no%except to suppress generation of code that supports exception handling. The use
of the option results in slightly smaller code size and faster code execution. However, when files
compiled with exceptions disabled are linked to files using exceptions, some local objects in the
files compiled with exceptions disabled are not destroyed when exceptions occur. By default,
the compiler generates code to support exception handling. Unless the time and space overhead
is significant, leaving exceptions enabled is usually better.

Note – Because the C++ standard library, dynamic_cast, and the default operator new require
exceptions, you should not turn off exceptions when you compile in standard mode (the default
mode).

8.4 Using Runtime Functions and Predefined Exceptions
The standard header <exception> provides the classes and exception-related functions
specified in the C++ standard. You can access this header only when compiling in standard
mode (compiler default mode, or with option -compat=5). The following excerpt shows the
<exception> header file declarations.

// standard header <exception>

namespace std {

class exception {

exception() throw();

exception(const exception&) throw();

exception& operator=(const exception&) throw();

virtual ~exception() throw();

virtual const char* what() const throw();

};

class bad_exception: public exception {...};

// Unexpected exception handling

typedef void (*unexpected_handler)();

8.3 Disabling Exceptions

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012100

unexpected_handler

set_unexpected(unexpected_handler) throw();

void unexpected();

// Termination handling

typedef void (*terminate_handler)();

terminate_handler set_terminate(terminate_handler) throw();

void terminate();

bool uncaught_exception() throw();

}

The standard class exception is the base class for all exceptions thrown by selected language
constructs or by the C++ standard library. An object of type exception can be constructed,
copied, and destroyed without generating an exception. The virtual member function what()

returns a character string that describes the exception.

For compatibility with exceptions as used in C++ release 4.2, the header <exception.h> is also
provided for use in standard mode. This header allows for a transition to standard C++ code
and contains declarations that are not part of standard C++. Update your code to follow the
C++ standard (using <exception> instead of <exception.h>) as development schedules
permit.

// header <exception.h>, used for transition

#include <exception>

#include <new>

using std::exception;

using std::bad_exception;

using std::set_unexpected;

using std::unexpected;

using std::set_terminate;

using std::terminate;

typedef std::exception xmsg;

typedef std::bad_exception xunexpected;

typedef std::bad_alloc xalloc;

8.5 Mixing Exceptions With Signals and Setjmp/Longjmp
You can use the setjmp/longjmp functions in a program where exceptions can occur as long as
they do not interact.

All the rules for using exceptions and setjmp/longjmp separately apply. In addition, a longjmp
from point A to point B is valid only if an exception thrown at A and caught at B would have the
same effect. In particular, you must not longjmp into or out of a try-block or catch-block
(directly or indirectly), or longjmp past the initialization or non-trivial destruction of auto
variables or temporary variables.

You cannot throw an exception from a signal handler.

8.5 Mixing Exceptions With Signals and Setjmp/Longjmp

Chapter 8 • Exception Handling 101

8.6 Building Shared Libraries That Have Exceptions
Never use -Bsymbolic with programs containing C++ code. Use linker map files instead or
linker scoping options. See “4.1 Linker Scoping” on page 61... With -Bsymbolic, references in
different modules can bind to different copies of what is supposed to be one global object.

The exception mechanism relies on comparing addresses. If you have two copies of something,
their addresses won’t compare equal, and the exception mechanism can fail because the
exception mechanism relies on comparing what are supposed to be unique addresses.

8.6 Building Shared Libraries That Have Exceptions

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012102

Improving Program Performance

You can improve the performance of C++ functions by writing those functions in a manner
that helps the compiler do a better job of optimizing them. Many books have been written on
software performance in general and C++ in particular. Rather than repeat such valuable
information, this chapter discusses only those performance strategies that strongly affect the
C++ compiler.

9.1 Avoiding Temporary Objects
C++ functions often produce implicit temporary objects, each of which must be created and
destroyed. For non-trivial classes, the creation and destruction of temporary objects can be
expensive in terms of processing time and memory usage. The C++ compiler does eliminate
some temporary objects, but it cannot eliminate all of them.

Write functions to minimize the number of temporary objects while ensuring that your
programs remain comprehensible. Techniques include using explicit variables rather than
implicit temporary objects and using reference parameters rather than value parameters.
Another technique is to implement and use operations such as += rather than implementing
and using only + and =. For example, the first line below introduces a temporary object for the
result of a + b, while the second line does not.

T x = a + b;

T x(a); x += b;

9C H A P T E R 9

103

9.2 Using Inline Functions
Calls to small and quick functions can be smaller and quicker when expanded inline than when
called normally. Conversely, calls to large or slow functions can be larger and slower when
expanded inline than when branched to. Furthermore, all calls to an inline function must be
recompiled whenever the function definition changes. Consequently, the decision to use inline
functions requires considerable care.

Do not use inline functions when you anticipate changes to the function definition and
recompiling all callers is expensive. Otherwise, use inline functions when the code to expand
the function inline is smaller than the code to call the function or the application performs
significantly faster with the function inline.

The compiler cannot inline all function calls, so making the most effective use of function
inlining may require some source changes. Use the +w option to learn when function inlining
does not occur. In the following situations, the compiler will not inline the function:

■ The function contains difficult control constructs, such as loops, switch statements, and
try/catch statements. Many times these functions execute the difficult control constructs
infrequently. To inline such a function, split the function into two parts: an inner part that
contains the difficult control constructs and an outer part that decides when to call the inner
part. This technique of separating the infrequent part from the frequent part of a function
can improve performance even when the compiler can inline the full function.

■ The inline function body is large or complicated. Apparently simple function bodies may be
complicated because of calls to other inline functions within the body, or because of implicit
constructor and destructor calls (as often occurs in constructors and destructors for derived
classes). For such functions, inline expansion rarely provides significant performance
improvement, and the function is best left uninlined.

■ The arguments to an inline function call are large or complicated. The compiler is
particularly sensitive when the object for an inline member function call is itself the result of
an inline function call. To inline functions with complicated arguments, simply compute
the function arguments into local variables and then pass the variables to the function.

9.3 Using Default Operators
If a class definition does not declare a parameterless constructor, a copy constructor, a copy
assignment operator, or a destructor, the compiler will implicitly declare them. These are called
default operators. A C-like struct has these default operators. When the compiler builds a
default operator, it knows a great deal about the work that needs to be done and can produce
very good code. This code is often much faster than user-written code because the compiler can
take advantage of assembly-level facilities while the programmer usually cannot. So, when the
default operators do what is needed, the program should not declare user-defined versions of
these operators.

9.2 Using Inline Functions

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012104

Default operators are inline functions, so do not use default operators when inline functions are
inappropriate (see the previous section). Otherwise, default operators are appropriate in the
following situations:

■ The user-written parameterless constructor would call only parameterless constructors for
its base objects and member variables. Primitive types effectively have “do nothing”
parameterless constructors.

■ The user-written copy constructor would simply copy all base objects and member
variables.

■ The user-written copy assignment operator would simply copy all base objects and member
variables.

■ The user-written destructor would be empty.

Some C++ programming texts suggest that class programmers always define all operators so
that any reader of the code will know that the class programmer did not forget to consider the
semantics of the default operators. Obviously, this advice interferes with the optimization
discussed above. The resolution of the conflict is to place a comment in the code stating that the
class is using the default operator.

9.4 Using Value Classes
C++ classes, including structures and unions, are passed and returned by value. For
Plain-Old-Data (POD) classes, the C++ compiler is required to pass the struct as would the C
compiler. Objects of these classes are passed directly. For objects of classes with user-defined
copy constructors, the compiler is effectively required to construct a copy of the object, pass a
pointer to the copy, and destruct the copy after the return. Objects of these classes are passed
indirectly. For classes that fall between these two requirements, the compiler can choose.
However, this choice affects binary compatibility, so the compiler must choose consistently for
every class.

For most compilers, passing objects directly can result in faster execution. This execution
improvement is particularly noticeable with small value classes, such as complex numbers or
probability values. You can sometimes improve program efficiency by designing classes that are
more likely to be passed directly than indirectly.

A class is passed indirectly if it has any one of the following characteristics:

■ A user-defined copy constructor
■ A user-defined destructor
■ A base that is passed indirectly
■ A non-static data member that is passed indirectly

Otherwise, the class is passed directly.

9.4 Using Value Classes

Chapter 9 • Improving Program Performance 105

9.4.1 Choosing to Pass Classes Directly
To maximize the chance that a class will be passed directly:

■ Use default constructors, especially the default copy constructor, where possible.
■ Use the default destructor where possible. Because the default destructor is not virtual, a

class with a default destructor should generally not be a base class.
■ Avoid virtual functions and virtual bases.

9.4.2 Passing Classes Directly on Various Processors
Classes and unions that are passed directly by the C++ compiler are passed exactly as the C
compiler would pass a struct or union. However, C++ structs and unions are passed differently
on different architectures.

TABLE 9–1 Passing of Structs and Unions by Architecture

Architecture Description

SPARC V7/V8 Structs and unions are passed and returned by allocating storage
within the caller and passing a pointer to that storage. (That is, all
structs and unions are passed by reference.)

SPARC V9 Structs with a size no greater than 16 bytes (32 bytes) are passed
(returned) in registers. Unions and all other structs are passed and
returned by allocating storage within the caller and passing a pointer
to that storage. (That is, small structs are passed in registers; unions
and large structs are passed by reference.) As a consequence, small
value classes are passed as efficiently as primitive types.

x86 platforms Structs and unions are passed by allocating space on the stack and
copying the argument onto the stack. Structs and unions are returned
by allocating a temporary object in the caller’s frame and passing the
address of the temporary object as an implicit first parameter.

9.5 Cache Member Variables
Accessing member variables is a common operation in C++ member functions.

The compiler must often load member variables from memory through the this pointer.
Because values are being loaded through a pointer, the compiler sometimes cannot determine
when a second load must be performed or whether the value loaded before is still valid. In these
cases, the compiler must choose the safe, but slow, approach and reload the member variable
each time it is accessed.

9.5 Cache Member Variables

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012106

You can avoid unnecessary memory reloads by explicitly caching the values of member
variables in local variables, as follows:

■ Declare a local variable and initialize it with the value of the member variable.
■ Use the local variable in place of the member variable throughout the function.
■ If the local variable changes, assign the final value of the local variable to the member

variable. However, this optimization may yield undesired results if the member function
calls another member function on that object.

This optimization is most productive when the values can reside in registers, as is the case with
primitive types. The optimization may also be productive for memory-based values because the
reduced aliasing gives the compiler more opportunity to optimize.

This optimization may be counter productive if the member variable is often passed by
reference, either explicitly or implicitly.

On occasion, the desired semantics of a class requires explicit caching of member variables, for
instance when there is a potential alias between the current object and one of the member
function’s arguments. For example:

complex& operator*= (complex& left, complex& right)

{

left.real = left.real * right.real + left.imag * right.imag;

left.imag = left.real * right.imag + left.image * right.real;

}

will yield unintended results when called with:

x*=x;

9.5 Cache Member Variables

Chapter 9 • Improving Program Performance 107

108

Building Multithreaded Programs

This chapter explains how to build multithreaded programs. It also discusses the use of
exceptions, explains how to share C++ Standard Library objects across threads, and describes
how to use classic (old) iostreams in a multithreading environment.

For more information about multithreading, see the Multithreaded Programming Guide.

See also the OpenMP API User's Guide for information on using OpenMP shared memory
paralellization directives to create multithreaded programs.

10.1 Building Multithreaded Programs
All libraries shipped with the C++ compiler are multithreading safe. If you want to build a
multithreaded application, or if you want to link your application to a multithreaded library,
you must compile and link your program with the –mt option. This option passes
–D_REENTRANT to the preprocessor and passes –lthread in the correct order to ld. By default,
the -mt option ensures that libthread is linked before libCrun. Use of —mt is recommended as
a simpler and less error-prone alternative to specifying the macro and library.

10.1.1 Indicating Multithreaded Compilation
You can check whether an application is linked to libthread by using the ldd command:

example% CC -mt myprog.cc

example% ldd a.out

libm.so.1 => /usr/lib/libm.so.1

libCrun.so.1 => /usr/lib/libCrun.so.1

libthread.so.1 => /usr/lib/libthread.so.1

libc.so.1 => /usr/lib/libc.so.1

libdl.so.1 => /usr/lib/libdl.so.1

10C H A P T E R 1 0

109

10.1.2 Using C++ Support Libraries With Threads and Signals
The C++ support libraries, libCrun, libiostream, and libCstd are multithread safe but are
not async safe. Therefore, in a multithreaded application, functions available in the support
libraries should not be used in signal handlers. Doing so can result in a deadlock situation.

It is not safe to use the following features in a signal handler in a multithreaded application:
■ Iostreams
■ new and delete expressions
■ Exceptions

10.2 Using Exceptions in a Multithreaded Program
The current exception-handling implementation is safe for multithreading because exceptions
in one thread do not interfere with exceptions in other threads. However, you cannot use
exceptions to communicate across threads because an exception thrown from one thread
cannot be caught in another.

Each thread can set its own terminate() or unexpected() function. Calling set_terminate()
or set_unexpected() in one thread affects only the exceptions in that thread. The default
function for terminate() is abort() for any thread (see “8.2 Specifying Runtime Errors” on
page 99).

10.2.1 Thread Cancellation
Thread cancellation through a call to pthread_cancel(3T) results in the destruction of
automatic (local nonstatic) objects on the stack except when you specify -noex or
-features=no%except.

pthread_cancel(3T) uses the same mechanism as exceptions. When a thread is cancelled, the
execution of local destructors is interleaved with the execution of cleanup routines that the user
has registered with pthread_cleanup_push(). The local objects for functions called after a
particular cleanup routine is registered are destroyed before that routine is executed.

10.3 Sharing C++ Standard Library Objects Between
Threads

The C++ Standard Library (libCstd -library=Cstd) is MT-safe with the exception of some
locales. It ensures that the internals of the library work properly in a multithreaded
environment. You still need to place locks around any library objects that you yourself share
between threads. See the man pages for setlocale(3C) and attributes(5).

10.2 Using Exceptions in a Multithreaded Program

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012110

For example, if you instantiate a string, then create a new thread and pass that string to the
thread by reference, then you must add locks around write accesses to that string because you
are explicitly sharing the one string object between threads. (The facilities provided by the
library to accomplish this task are described below.)

On the other hand, if you pass the string to the new thread by value, you do not need to worry
about locking, even though the strings in the two different threads may be sharing a
representation through Rogue Wave’s “copy on write” technology. The library handles that
locking automatically. You are only required to lock when making an object available to
multiple threads explicitly, either by passing references between threads or by using global or
static objects.

The locking (synchronization) mechanism used internally in the C++ Standard Library to
ensure correct behavior in the presence of multiple threads can be described as follows:

Two synchronization classes provide mechanisms for achieving multithreaded safety;
_RWSTDMutex and _RWSTDGuard.

The _RWSTDMutex class provides a platform-independent locking mechanism through the
following member functions:
■ void acquire()–Acquires a lock on self, or blocks until such a lock can be obtained.
■ void release()–Releases a lock on self.

class _RWSTDMutex

{

public:

_RWSTDMutex ();

~_RWSTDMutex ();

void acquire ();

void release ();

};

The _RWSTDGuard class is a convenience wrapper class that encapsulates an object of
_RWSTDMutex class. An _RWSTDGuard object attempts to acquire the encapsulated mutex in its
constructor (throwing an exception of type ::thread_error, derived from std::exception on

error), and releases the mutex in its destructor (the destructor never throws an exception).

class _RWSTDGuard

{

public:

_RWSTDGuard (_RWSTDMutex&);

~_RWSTDGuard ();

};

Additionally, you can use the macro _RWSTD_MT_GUARD(mutex) (formerly _STDGUARD) to
conditionally create an object of the _RWSTDGuard class in multithread builds. The object guards
the remainder of the code block in which it is defined from being executed by multiple threads
simultaneously. In single-threaded builds, the macro expands into an empty expression.

The following example illustrates the use of these mechanisms.

10.3 Sharing C++ Standard Library Objects Between Threads

Chapter 10 • Building Multithreaded Programs 111

#include <rw/stdmutex.h>

//

// An integer shared among multiple threads.

//

int I;

//

// A mutex used to synchronize updates to I.

//

_RWSTDMutex I_mutex;

//

// Increment I by one. Uses an _RWSTDMutex directly.

//

void increment_I ()

{

I_mutex.acquire(); // Lock the mutex.

I++;

I_mutex.release(); // Unlock the mutex.

}

//

// Decrement I by one. Uses an _RWSTDGuard.

//

void decrement_I ()

{

_RWSTDGuard guard(I_mutex); // Acquire the lock on I_mutex.

--I;

//

// The lock on I is released when destructor is called on guard.

//

}

10.4 Memory Barrier Intrinsics
The compiler provides the header file mbarrier.h, which defines various memory barrier
intrinsics for SPARC and x86 processors. These intrinsics may be of use for developers writing
multithreaded code using their own synchronization primitives. Refer to the appropriate
processor documentation to determine when and if these intrinsics are necessary for their
particular situation.

Memory ordering intrinsics supported by mbarrier.h include the following:
■ __machine_r_barrier() - This is a read barrier. It ensures that all the load operations

before the barrier will be completed before all the load operations after the barrier.
■ __machine_w_barrier() - This is a write barrier. It ensures that all the store operations

before the barrier will be completed before all the store operations after the barrier.
■ __machine_rw_barrier() - This is a read—write barrier. It ensures that all the load and

store operations before the barrier will be completed before all the load and store operations
after the barrier.

10.4 Memory Barrier Intrinsics

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012112

■ __machine_acq_barrier() -This is a barrier with acquire semantics. It ensures that all the
load operations before the barrier will be completed before all the load and store operations
after the barrier.

■ __machine_rel_barrier() - This is a barrier with release semantics. It ensures that all the
load and store operations before the barrier will be completed before all the store operations
after the barrier.

■ __compiler_barrier() - Prevents the compiler from moving memory accesses across the
barrier.

All the barrier intrinsics with the exception of the __compiler_barrier() intrinsic generate
memory ordering instructions on x86, these are mfence, sfence, or lfence instructions. On
SPARC platforms these are membar instructions.

The __compiler_barrier() intrinsic generates no instructions and instead informs the
compiler that all previous memory operations must be completed before any future memory
operations are initiated. The practical result is that all non-local variables and local variables
with the static storage class specifier will be stored back to memory before the barrier, and
reloaded after the barrier, and the compiler will not mix memory operations from before the
barrier with those after the barrier. All other barriers implicitly include the behaviour of the
__compiler_barrier() intrinsic.

For example, in the following code the presence of the __compiler_barrier() intrinsic stops
the compiler from merging the two loops:

#include "mbarrier.h"
int thread_start[16];

void start_work()

{

/* Start all threads */

for (int i=0; i<8; i++)

{

thread_start[i]=1;

}

__compiler_barrier();

/* Wait for all threads to complete */

for (int i=0; i<8; i++)

{

while (thread_start[i]==1){}

}

}

10.4 Memory Barrier Intrinsics

Chapter 10 • Building Multithreaded Programs 113

114

Libraries

P A R T I I I

115

116

Using Libraries

Libraries provide a way to share code among several applications and to reduce the complexity
of very large applications. The C++ compiler gives you access to a variety of libraries. This
chapter explains how to use these libraries.

11.1 C Libraries
The Oracle Solaris operating system comes with several libraries installed in /usr/lib. Most of
these libraries have a C interface. Of these, the libc and libm, libraries are linked by the CC
driver by default. The library libthread is linked if you use the -mt option. To link any other
system library, use the appropriate -l option at link time. For example, to link the libdemangle
library, pass –ldemangle on the CC command line at link time:

example% CC text.c -ldemangle

The C++ compiler has its own runtime support libraries. All C++ applications are linked to
these libraries by the CC driver. The C++ compiler also comes with several other useful libraries,
as explained in the following section.

11.2 Libraries Provided With the C++ Compiler
Several libraries are shipped with the C++ compiler.

The following table lists the libraries that are shipped with the C++ compiler and the modes in
which they are available.

TABLE 11–1 Libraries Shipped With the C++ Compiler

Library Description

libstlport STLport implementation of the standard library.

11C H A P T E R 1 1

117

TABLE 11–1 Libraries Shipped With the C++ Compiler (Continued)
Library Description

libstlport_dbg STLport library for debug mode

libCrun C++ runtime

libCstd C++ standard library

libiostream Classic iostreams

libcsunimath Supports the -xia option

librwtool Tools.h++ 7

librwtool_dbg Debug-enabled Tools.h++ 7

libgc Garbage collection

libdemangle Demangling

sunperf Sun Performance Library

Note – Do not redefine or modify any of the configuration macros for STLport, Rogue Wave, or
Oracle Solaris Studio C++ libraries. The libraries are configured and built in a way that works
with the C++ compiler. libCstd and Tools.h++ are configured to interoperate so modifying
the configuration macros results in programs that will not compile, will not link, or do not run
properly.

11.2.1 C++ Library Descriptions
This section provides a brief description of each of the C++ libraries.

■ libCrun – Contains the runtime support needed by the compiler in the default standard
mode (-compat=5). It provides support for new/delete, exceptions, and RTTI.

libCstd – The C++ standard library. In particular, this library includes iostreams. If you
have existing sources that use the classic iostreams and you want to make use of the
standard iostreams, you have to modify your sources to conform to the new interface. See
the C++ Standard Library Reference online manual for details.

■ libiostream – The classic iostreams library built with -compat=5. If you have existing
sources that use the classic iostreams and you want to compile these sources with the
standard mode (–compat=5), you can use libiostream without modifying your sources.
Use– library=iostream to get this library.

11.2 Libraries Provided With the C++ Compiler

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012118

Note – Much of the standard library depends on using standard iostreams. Using classic
iostreams in the same program can cause problems.

■ libstlport – The STLport implementation of the C++ standard library. You can use this
library instead of the default libCstd by specifying the option -library=stlport4.
However, you cannot use libstlport and libCstd in the same program. You must compile
and link everything, including imported libraries, using one library or the other exclusively.

■ librwtool (Tools.h++) – A C++ foundation class library from RogueWave. Version 7 is
provided. This library is obsolete and use of the library is deprecated in new code. It is
provided to accommodate programs written for C++ 4.2 that used RW Tools.h++.

■ libgc – Used in deployment mode or garbage collection mode. Simply linking with the
libgc library automatically and permanently fixes a program’s memory leaks. When you
link your program with the libgc library, you can program without calling free or delete
while otherwise programming normally. The garbage collection library has a dependency
on the dynamic load library so specify -lgc and -ldl when you link your program.
Additional information can be found in the gcFixPrematureFrees(3) and
gcInitialize(3) man pages.

■ libdemangle – Used for demangling C++ mangled names.

11.2.2 Accessing the C++ Library Man Pages
The man pages associated with the libraries described in this section are located in sections 1, 3,
3C++, and 3cc4.

To access man pages for the C++ libraries, type:

example% man library-name

To access man pages for version 4.2 of the C++ libraries, type:

example% man -s 3CC4 library-name

11.2.3 Default C++ Libraries
The C++ libraries are linked by default when building an executable program, but not when
building a shared library (.so). When building a shared library, all needed libraries must be
listed explicitly. The -zdefs option will cause the linker to complain if a needed library is
omitted, and is the default when building an executable program.. The following libraries are
linked by default by the CC driver:

-lCstd -lCrun -lm -lc

11.2 Libraries Provided With the C++ Compiler

Chapter 11 • Using Libraries 119

See “A.2.49 -library=l[,l...]” on page 202 for more information.

11.3 Related Library Options
The CC driver provides several options to help you use libraries.
■ Use the -l option to specify a library to be linked.
■ Use the -L option to specify a directory to be searched for the library.
■ Use the -mt option compile and link multithreaded code.
■ Use the -xia option to link the interval arithmetic libraries.
■ Use the -xlang option to link Fortran or C99 runtime libraries.
■ Use the -library option to specify the following libraries that are shipped with the Oracle

Solaris Studio C++ compiler:

libCrun

libCstd

libiostream

libC

libcomplex

libstlport, libstlport_dbg
librwtool, librwtool_dbg
libgc

sunperf

Note – To use the classic-iostreams form of librwtool, use the -library=rwtools7 option.
To use the standard-iostreams form of librwtool, use the -library=rwtools7_std option.

A library that is specified using both –library and –staticlib options will be linked statically.
Some examples:

libstdcxx (distributed as part of the Oracle Solaris OS)

The following command links the classic-iostreams form of Tools.h++ version 7 and
libiostream libraries dynamically.

example% CC test.cc -library=rwtools7,iostream

The following command links the libgc library statically.

example% CC test.cc -library=gc -staticlib=gc

The following command excludes the libraries libCrun and libCstd, which would otherwise
be included by default.

11.3 Related Library Options

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012120

example% CC test.cc -library=no%Crun,no%Cstd

By default, CC links various sets of system libraries depending on the command line options. If
you specify -xnolib (or -nolib), CC links only those libraries that are specified explicitly with
the -l option on the command line. (When -xnolib or -nolib is used, the -library option is
ignored, if present.)

The –R option allows you to build dynamic library search paths into the executable file. At
execution time, the runtime linker searches these paths for the shared libraries needed by the
application. The CC driver passes – R<install-directory>/lib to ld by default if the compiler is
installed in the standard location. You can use -norunpath to disable building the default path
for shared libraries into the executable.

The linker searches /lib and /usr/lib by default. Do not specify these directories or any
compiler installation directories in -L options.

Programs built for deployment should be built with -norunpath or an -R option that avoids
looking in the compiler directory for libraries. See “11.6 Using Shared Libraries” on page 124.

11.4 Using Class Libraries
Generally, two steps are involved in using a class library:

1. Include the appropriate header in your source code.
2. Link your program with the object library.

11.4.1 iostream Library
The C++ compiler provides two implementations of iostreams:

■ Classic iostreams. This term refers to the iostreams library shipped with the C++ 4.0, 4.0.1,
4.1, and 4.2 compilers, and earlier with the cfront-based 3.0.1 compiler. There is no
standard for this library. It is available in libiostream.

■ Standard iostreams. This is part of the C++ standard library, libCstd, and is available only
in standard mode. It is neither binary-compatible nor source-compatible with the classic
iostreams library.

If you have existing C++ sources, your code might look like the following example, which uses
classic iostreams.

// file prog1.cc

#include <iostream.h>

int main() {

cout << "Hello, world!" << endl;

return 0;

}

11.4 Using Class Libraries

Chapter 11 • Using Libraries 121

The following example uses standard iostreams.

// file prog2.cc

#include <iostream>

int main() {

std::cout << "Hello, world!" << std::endl;

return 0;

}

The following command compiles and links prog2.cc into an executable program called prog2.
The program is compiled in standard mode. libCstd, which includes the standard iostream
library, is linked by default.

example% CC prog2.cc -o prog2

11.4.1.1 Note About Classic iostreams and Legacy RogueWave Tools
The so-called “Classic” iostreams is the original 1986 version of iostreams, which was replaced
in the C++ standard. It is selected through the -library=rwtools7,iostream option. No two
implementations of “classic” iostreams are the same, so apart from being obsolete, code using it
is not portable. Note that this library and option will be discontinued in future Oracle Solaris
Studio releases.

The RW Tools.h++ toolset provided with legacy Sun Studio and with Oracle Studio dates from
the 1990's and has not been significantly updated since. It's time and date classes have serious
issues regarding daylight savings time that cannot be fixed. (The functionality of this toolset is
currently available in the C++ Standard and in open source libraries like BOOST.) RW
Tools.h++ is selected by the -library=rwtools7 or -library=rwtools7_std options and will
be discontinued in future Oracle Solaris Studio releases.

11.4.2 Linking C++ Libraries
The following table shows the compiler options for linking the C++ libraries. See “A.2.49
-library=l[,l...]” on page 202 for more information.

TABLE 11–2 Compiler Options for Linking C++ Libraries

Library Option

Classic iostream -library=iostream

Tools.h++ version 7 -library=rwtools7,iostream

-library=rwtools7_std

Tools.h++ version 7 debug -library=rwtools7_dbg,iostream

-library=rwtools7_std_dbg

11.4 Using Class Libraries

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012122

TABLE 11–2 Compiler Options for Linking C++ Libraries (Continued)
Library Option

Garbage collection -library=gc

STLport version 4 -library=stlport4

STLport version 4 debug -library=stlport4_dbg

Apache stdcxx version 4 -library=stdcxx4

Sun Performance Library -library=sunperf

11.5 Statically Linking Standard Libraries
The CC driver links in shared versions of several libraries by default, including libc and libm, by
passing a -llib option for each of the default libraries to the linker. (See “11.2.3 Default C++
Libraries” on page 119 for the list of default libraries.)

If you want any of these default libraries to be linked statically, you can use the -library option
along with the –staticlib option. For example:

example% CC test.c -staticlib=Crun

In this example, the -library option is not explicitly included in the command. In this case, the
-library option is not necessary because the default setting for -library is Cstd,Crun in
standard mode (the default mode).

Alternately, you can use the -xnolib compiler option. With the -xnolib option, the driver does
not pass any -l options to ld; you must pass these options yourself. The following example
shows how you would link statically with libCrun, and dynamically with libm, and libc:

example% CC test.c -xnolib -lCstd -Bstatic -lCrun -Bdynamic -lm -lc

The order of the -l options is important. The –lCstd, –lCrun, and -lm options appear before
-lc.

Note – Linking the libCrun and libCstd statically is not recommended. The dynamic versions
in /usr/lib are built to work with the version of Oracle Solaris where they are installed.

Some CC options link to other libraries. These library links are also suppressed by -xnolib. For
example, using the -mt option causes the CC driver to pass -lthread to ld. However, if you use
both–mt and –xnolib, the CC driver does not pass-lthread to ld. See “A.2.147 –xnolib” on
page 265 for more information. See Linker and Libraries Guide for more information about ld.

11.5 Statically Linking Standard Libraries

Chapter 11 • Using Libraries 123

Note – Static versions of Oracle Solaris libraries in /lib and /usr/lib are no longer available.
For example, this attempt to link libc statically will fail:

CC hello.cc -xnolib -lCrun -lCstd -Bstatic -lc

11.6 Using Shared Libraries
The following C++ runtime shared libraries are shipped as part of the C++ compiler:

■ libCCexcept.so.1 (SPARC Solaris only)
■ libcomplex.so.5 (Solaris only)
■ librwtool.so.2

■ libstlport.so.1

On Linux, these additional libraries are shipped as part of the C++ compiler:

■ libCrun.so.1

■ libCstd.so.1

■ libdemangle.so

■ libiostream.so.1

On the latest Oracle Solaris releases, these additional libraries, along with some others, are
installed as part of the Oracle Solaris C++ runtime library package, SUNWlibC.

If your application uses any of the shared libraries that are shipped as part of the C++ compiler,
the CC driver arranges for a runpath (refer to the -R option) pointing to the location of the
library to be built into the executable. If the executable is later deployed to a different computer
where the same compiler version is not installed in the same location, the required shared
library will not be found.

At program start time, the library might not be found at all, or the wrong version of the library
might be used, leading to incorrect program behavior. In such a case, you should ship the
required libraries along with the executable, and build with runpath pointing to where they will
be installed.

The article Using and Redistributing Solaris Studio Libraries in an Application contains a full
discussion of this topic, along with examples. It is available at
http://www.oracle.com/technetwork/articles/servers-storage-dev/redistrib-libs-344133.html

11.6 Using Shared Libraries

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012124

11.7 Replacing the C++ Standard Library
Replacing the standard library that is distributed with the compiler is risky, and good results are
not guaranteed. The basic operation is to disable the standard headers and library supplied with
the compiler and to specify the directories where the new header files and library are found, as
well as the name of the library itself.

The compiler supports the STLport and Apache stdcxx implementations of the standard
library. See “12.2 STLport” on page 131 and “12.3 Apache stdcxx Standard Library” on page 133
for more information.

11.7.1 What Can Be Replaced
You can replace most of the standard library and its associated headers. The replaced library is
libCstd, and the associated headers are the following:

<algorithm> <bitset> <complex> <deque> <fstream <functional> <iomanip> <ios>

<iosfwd> <iostream> <istream> <iterator> <limits> <list> <locale> <map> <memory>

<numeric> <ostream> <queue> <set> <sstream> <stack> <stdexcept> <streambuf>

<string> <strstream> <utility> <valarray> <vector>

The replaceable part of the library consists of what is loosely known as “STL”, plus the string
classes, the iostream classes, and their helper classes. Because these classes and headers are
interdependent, replacing just a portion of them is unlikely to work. You should replace all of
the headers and all of libCstd if you replace any part.

11.7.2 What Cannot Be Replaced
The standard headers <exception>, <new>, and <typeinfo> are tied tightly to the compiler
itself and to libCrun, and cannot reliably be replaced. The library libCrun contains many
“helper” functions that the compiler depends on, and cannot be replaced.

The 17 standard headers inherited from C (<stdlib.h>, <stdio.h>, <string.h>, and so forth)
are tied tightly to the Oracle Solaris operating system and the basic Solaris runtime library libc,
and cannot reliably be replaced. The C++ versions of those headers (<cstdlib>, <cstdio>,
<cstring>, and so forth) are tied tightly to the basic C versions and cannot reliably be replaced.

11.7.3 Installing the Replacement Library
To install the replacement library, you must first decide on the locations for the replacement
headers and on the replacement for libCstd. For purposes of discussion, assume the headers
are placed in /opt/mycstd/include and the library is placed in /opt/mycstd/lib. Assume the
library is called libmyCstd.a. (Usually library names start with “lib”.)

11.7 Replacing the C++ Standard Library

Chapter 11 • Using Libraries 125

11.7.4 Using the Replacement Library
On each compilation, use the -I option to point to the location where the headers are installed.
In addition, use the -library=no%Cstd option to prevent finding the compiler’s own versions of
the libCstd headers. For example:

example% CC -I/opt/mycstd/include -library=no%Cstd... (compile)

During compiling, the -library=no%Cstd option prevents searching the directory where the
compiler’s own version of these headers is located.

On each program or library link, use the -library=no%Cstd option to prevent finding the
compiler’s own libCstd, the -L option to point to the directory where the replacement library
is, and the -l option to specify the replacement library. For example:

example% CC -library=no%Cstd -L/opt/mycstd/lib -lmyCstd... (link)

Alternatively, you can use the full path name of the library directly, and omit using the -L and
-l options. For example:

example% CC -library=no%Cstd /opt/mycstd/lib/libmyCstd.a... (link)

During linking, the -library=no%Cstd option prevents linking the compiler’s own version of
libCstd.

11.7.5 Standard Header Implementation
C has 17 standard headers (<stdio.h>, <string.h>, <stdlib.h>, and others). These headers
are delivered as part of the Oracle Solaris operating system in the directory /usr/include. C++
has those same headers, with the added requirement that the various declared names appear in
both the global namespace and in namespace std.

C++ also has a second version of each of the C standard headers (<cstdio>, <cstring>, and
<cstdlib>, and others) with the various declared names appearing only in namespace std.
Finally, C++ adds 32 of its own standard headers (<string>, <utility>, <iostream>, and
others).

The obvious implementation of the standard headers would use the name found in C++ source
code as the name of a text file to be included. For example, the standard headers <string> (or
<string.h>) would refer to a file named string (or string.h) in some directory. That obvious
implementation has the following drawbacks:
■ You cannot search for just header files or create a makefile rule for the header files if they

do not have file name suffixes.
■ If you have a directory or executable program named string, it might erroneously be found

instead of the standard header file.

11.7 Replacing the C++ Standard Library

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012126

To solve these problems, the compiler include directory contains a file with the same name as
the header, along with a symbolic link to it that has the unique suffix .SUNWCCh (SUNW is the
prefix for all compiler-related packages, CC is the C++ compiler, and h is the usual suffix for
header files). When you specify <string>, the compiler rewrites it to <string.SUNWCCh> and
searches for that name. The suffixed name will be found only in the compiler’s own include

directory. If the file so found is a symbolic link (which it normally is), the compiler dereferences
the link exactly once and uses the result (string in this case) as the file name for error messages
and debugger references. The compiler uses the suffixed name when emitting file dependency
information.

The name rewriting occurs only for the two forms of the 17 standard C headers and the 32
standard C++ headers, only when they appear in angle brackets and without any path specified.
If you use quotes instead of angle brackets, specify any path components, or specify some other
header, no rewriting occurs.

The following table illustrates common situations.

TABLE 11–3 Header Search Examples

Source Code Compiler Searches For Comments

<string> string.SUNWCCh C++ string templates

<cstring> cstring.SUNWCCh C++ version of C string.h

<string.h> string.h.SUNWCCh C string.h

<fcntl.h> fcntl.h Not a standard C or C++ header

"string" string Double-quotation marks, not
angle brackets

<../string> ../string Path specified

If the compiler does not find header.SUNWCCh, the compiler restarts the search looking for the
name as provided in the #include directive. For example, given the directive #include
<string>, the compiler attempts to find a file named string.SUNWCCh. If that search fails, the
compiler looks for a file named string.

11.7.5.1 Replacing Standard C++ Headers
Because of the search algorithm described in “11.7.5 Standard Header Implementation” on
page 126, you do not need to supply SUNWCCh versions of the replacement headers described in
“11.7.3 Installing the Replacement Library” on page 125. However, if you run into some of the
described problems, the recommended solution is to add symbolic links having the suffix
.SUNWCCh for each of the unsuffixed headers. That is, for file utility, you would run the
following command:

example% ln -s utility utility.SUNWCCh

11.7 Replacing the C++ Standard Library

Chapter 11 • Using Libraries 127

When the compiler looks first for utility.SUNWCCh, it will find it, and not be confused by any
other file or directory called utility.

11.7.5.2 Replacing Standard C Headers
Replacing the standard C headers is not supported. If you nevertheless want to provide your
own versions of standard headers, the recommended procedure is as follows:

■ Put all the replacement headers in one directory.
■ Create a .SUNWCCh symbolic link to each of the replacement headers in that directory.
■ Cause the directory that contains the replacement headers to be searched by using the -I

directives on each invocation of the compiler.

For example, suppose you have replacements for <stdio.h> and <cstdio>. Put the files
stdio.h and cstdio in directory /myproject/myhdr. In that directory, run the following
commands:

example% ln -s stdio.h stdio.h.SUNWCCh

example% ln -s cstdio cstdio.SUNWCCh

Use the option -I/myproject/mydir on every compilation.

Caveats:
■ If you replace any C headers, you must replace them in pairs. For example, if you replace

<time.h>, you should also replace <ctime>.
■ Replacement headers must have the same effects as the versions being replaced. That is, the

various runtime libraries such as libCrun, libC, libCstd, libc, and librwtool are built
using the definitions in the standard headers. If your replacements do not match, your
program is unlikely to work.

11.7 Replacing the C++ Standard Library

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012128

Using the C++ Standard Library

When compiling in default (standard) mode, the compiler has access to the complete library
specified by the C++ standard. The library components include what is informally known as the
Standard Template Library (STL), as well as the following components:
■ String classes
■ Numeric classes
■ Standard stream I/O classes
■ Basic memory allocation
■ Exception classes
■ Runtime type information

The term STL does not have a formal definition, but it is usually understood to include
containers, iterators, and algorithms. The following subset of the standard library headers can
be thought of as comprising the STL:
■ <algorithm>

■ <deque>

■ <iterator>

■ <list>

■ <map>

■ <memory>

■ <queue>

■ <set>

■ <stack>

■ <utility>

■ <vector>

The C++ standard library (libCstd) is based on the RogueWave Standard C++ Library,
Version 2. This library is the default.

The C++ compiler also supports STLport’s Standard Library implementation version 4.5.3.
libCstd is still the default library, but STLport’s product is available as an alternative. See “12.2
STLport” on page 131 for more information.

12C H A P T E R 1 2

129

If you need to use your own version of the C++ standard library instead of one of the versions
that is supplied with the compiler, you can do so by specifying the -library=no%Cstd option.
Replacing the standard library that is distributed with the compiler is risky, and good results are
not guaranteed. For more information, see “11.7 Replacing the C++ Standard Library” on
page 125.

12.1 C++ Standard Library Header Files
Table 12–1 lists the headers for the complete standard library along with a brief description of
each.

TABLE 12–1 C++ Standard Library Header Files

Header File Description

<algorithm> Standard algorithms that operate on containers

<bitset> Fixed-size sequences of bits

<complex> The numeric type representing complex numbers

<deque> Sequences supporting addition and removal at each end

<exception> Predefined exception classes

<fstream> Stream I/O on files

<functional> Function objects

<iomanip> iostream manipulators

<ios> iostream base classes

<iosfwd> Forward declarations of iostream classes

<iostream> Basic stream I/O functionality

<istream> Input I/O streams

<iterator> Class for traversing a sequence

<limits> Properties of numeric types

<list> Ordered sequences

<locale> Support for internationalization

<map> Associative containers with key/value pairs

<memory> Special memory allocators

<new> Basic memory allocation and deallocation

12.1 C++ Standard Library Header Files

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012130

TABLE 12–1 C++ Standard Library Header Files (Continued)
Header File Description

<numeric> Generalized numeric operations

<ostream> Output I/O streams

<queue> Sequences supporting addition at the head and removal at the tail

<set> Associative container with unique keys

<sstream> Stream I/O using an in-memory string as source or sink

<stack> Sequences supporting addition and removal at the head

<stdexcept> Additional standard exception classes

<streambuf> Buffer classes for iostreams

<string> Sequences of characters

<typeinfo> Run-time type identification

<utility> Comparison operators

<valarray> Value arrays useful for numeric programming

<vector> Sequences supporting random access

12.2 STLport
Use the STLport implementation of the standard library if you wish to use an alternative
standard library to libCstd. You can issue the following compiler option to turn off libCstd

and use the STLport library instead:
■ -library=stlport4

See “A.2.49 -library=l[,l...]” on page 202 for more information.

This release includes both a static archive called libstlport.a and a dynamic library called
libstlport.so.

Consider the following information before you decide whether or not you are going to use the
STLport implementation:
■ STLport is an open source product and does not guarantee compatibility across different

releases. In other words, compiling with a future version of STLport may break applications
compiled with STLport 4.5.3. It also might not be possible to link binaries compiled using
STLport 4.5.3 with binaries compiled using a future version of STLport.

■ The stlport4, Cstd and iostream libraries provide their own implementation of I/O
streams. Specifying more than one of these with the -library option can result in
undefined program behavior.

12.2 STLport

Chapter 12 • Using the C++ Standard Library 131

■ Future releases of the compiler might not include STLport4. They might include only a later
version of STLport. The compiler option -library=stlport4 might not be available in
future releases, but could be replaced by an option referring to a later STLport version.

■ Tools.h++ is not supported with STLport.
■ STLport is binary incompatible with the default libCstd. If you use the STLport

implementation of the standard library, then you must compile and link all files, including
third-party libraries, with the option -library=stlport4. This means, for example, that
you cannot use the STLport implementation and the C++ interval math library
libCsunimath together. The reason for this is that libCsunimath was compiled with the
default library headers, not with STLport.

■ If you decide to use the STLport implementation, be certain to include header files that your
code implicitly references. The standard headers are allowed, but not required, to include
one another as part of the implementation.

12.2.1 Redistribution and Supported STLport Libraries
See the Distribution README file for a list of libraries and object files that you can redistribute
with your executables or libraries under the terms of the End User Object Code License. The
C++ section of this README file lists which version of the STLport.so this release of the
compiler supports. This README file can be found on the legal page for this release of Oracle
Solaris Studio software, at http://www.oracle.com/
technetwork/server-storage/solarisstudio/overview/index.html

The following test case does not compile with STLport because the code in the test case makes
unportable assumptions about the library implementation. In particular, it assumes that either
<vector> or <iostream> automatically include <iterator>, which is not a valid assumption.

#include <vector>

#include <iostream>

using namespace std;

int main ()

{

vector <int> v1 (10);

vector <int> v3 (v1.size());

for (int i = 0; i < v1.size (); i++)

{v1[i] = i; v3[i] = i;}

vector <int> v2(v1.size ());

copy_backward (v1.begin (), v1.end (), v2.end ());

ostream_iterator<int> iter (cout, " ");
copy (v2.begin (), v2.end (), iter);

cout << endl;

return 0;

}

To fix the problem, include <iterator> in the source.

12.2 STLport

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012132

http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html

12.3 Apache stdcxx Standard Library
Use the Apache stdcxx version 4 C++ standard library in Oracle Solaris, instead of the default
libCstd by compiling with -library=stdcxx4. This option also sets the -mt option implicitly.
The stdcxx library requires multithreading mode. This option must be used consistently on
every compilation and link command in the entire application. Code compiled with
-library=stdcxx4 cannot be used in the same program as code compiled with the default
-library=Cstd or the optional -library=stlport4.

Keep in mind the following when using the Apache stdcxx library:

■ The stdcxx and iostream libraries provide their own implementation of I/O streams.
Specifying more than one of these with the -library option can result in undefined
program behavior.

■ Tools.h++ is not supported with stdcxx.
■ The C++ Interval Math library (libCsunimath) is not supported with stdcxx.
■ The stdcxx library is binary incompatible with the default libCstd and with STLport. If you

use the stdcxx implementation of the standard library, then you must compile and link all
files, including third-party libraries, with the option -library=stdcxx4.

12.3 Apache stdcxx Standard Library

Chapter 12 • Using the C++ Standard Library 133

134

Using the Classic iostream Library

C++, like C, has no built-in input or output statements. Instead, I/O facilities are provided by a
library. The C++ compiler provides both the classic implementation and the ISO standard
implementation of the iostream classes.

■ By default, the classic iostream classes are contained in libiostream. Use libiostream
when you have source code that uses the classic iostream classes and you want to compile
the source in standard mode. To use the classic iostream facilities in standard mode,
include the iostream.h header file and compile using the -library=iostream option.

■ The standard iostream classes are available only in standard mode, and are contained in the
C++ standard library, libCstd.

This chapter provides an introduction to the classic iostream library and provides examples of
its use. This chapter does not provide a complete description of the iostream library. See the
iostream library man pages for more details. To access the classic iostream man pages type the
command: man -s 3CC4 name

See “11.4.1.1 Note About Classic iostreams and Legacy RogueWave Tools” on page 122

13.1 Predefined iostreams

There are four predefined iostreams:

■ cin, connected to standard input
■ cout, connected to standard output
■ cerr, connected to standard error
■ clog, connected to standard error

The predefined iostreams are fully buffered, except for cerr. See “13.3.1 Output Using
iostream” on page 137 and “13.3.2 Input Using iostream” on page 140.

13C H A P T E R 1 3

135

13.2 Basic Structure of iostream Interaction
By including the iostream library, a program can use any number of input or output streams.
Each stream has some source or sink, which may be one of the following:

■ Standard input
■ Standard output
■ Standard error
■ A file
■ An array of characters

A stream can be restricted to input or output, or a single stream can allow both input and
output. The iostream library implements these streams using two processing layers.

■ The lower layer implements sequences, which are simply streams of characters. These
sequences are implemented by the streambuf class, or by classes derived from it.

■ The upper layer performs formatting operations on sequences. These formatting operations
are implemented by the istream and ostream classes, which have as a member an object of a
type derived from class streambuf. An additional class, iostream, is for streams on which
both input and output can be performed.

Standard input, output, and error are handled by special class objects derived from class
istream or ostream.

The ifstream, ofstream, and fstream classes, which are derived from istream, ostream, and
iostream respectively, handle input and output with files.

The istrstream, ostrstream, and strstream classes, which are derived from istream,
ostream, and iostream respectively, handle input and output to and from arrays of characters.

When you open an input or output stream, you create an object of one of these types, and
associate the streambuf member of the stream with a device or file. You generally do this
association through the stream constructor, so you don’t work with the streambuf directly. The
iostream library predefines stream objects for the standard input, standard output, and error
output, so you don’t have to create your own objects for those streams.

You use operators or iostream member functions to insert data into a stream (output) or
extract data from a stream (input), and to control the format of data that you insert or extract.

When you want to insert and extract a new data type—one of your classes—you generally
overload the insertion and extraction operators.

13.2 Basic Structure of iostream Interaction

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012136

13.3 Using the Classic iostream Library
To use routines from the classic iostream library, you must include the header files for the part
of the library you need. The header files are described in the following table.

TABLE 13–1 iostreamRoutine Header Files

Header File Description

iostream.h Declares basic features of iostream library.

fstream.h Declares iostreams and streambufs specialized to files. Includes
iostream.h.

strstream.h Declares iostreams and streambufs specialized to character arrays.
Includes iostream.h.

iomanip.h Declares manipulators: values you insert into or extract from iostreams to
have different effects. Includes iostream.h.

stdiostream.h (obsolete) Declares iostreams and streambufs specialized to use stdio
FILEs.Includes iostream.h.

stream.h (obsolete) Includes iostream.h, fstream.h, iomanip.h, and
stdiostream.h. For compatibility with older style streams from C++
version 1.2.

You usually do not need all of these header files in your program. Include only the ones that
contain the declarations you need. By default, libiostream contains the classic iostream
library.

13.3.1 Output Using iostream

Output using iostream usually relies on the overloaded left-shift operator (<<) which, in the
context of iostream, is called the insertion operator. To output a value to standard output, you
insert the value in the predefined output stream cout. For example, given a value someValue,
you send it to standard output with a statement like:

cout << someValue;

The insertion operator is overloaded for all built-in types, and the value represented by
someValue is converted to its proper output representation. If, for example, someValue is a
float value, the << operator converts the value to the proper sequence of digits with a decimal
point. Where it inserts float values on the output stream, << is called the float inserter. In
general, given a type X, << is called the X inserter. The format of output and how you can control
it is discussed in the ios(3CC4) man page.

13.3 Using the Classic iostream Library

Chapter 13 • Using the Classic iostream Library 137

The iostream library does not support user-defined types. If you define types that you want to
output in your own way, you must define an inserter (that is, overload the << operator) to
handle them correctly.

The << operator can be applied repetitively. To insert two values on cout, you can use a
statement like the one in the following example:

cout << someValue << anotherValue;

The output from the above example will show no space between the two values. So you may
want to write the code this way:

cout << someValue << " " << anotherValue;

The << operator has the precedence of the left shift operator (its built-in meaning). As with
other operators, you can always use parentheses to specify the order of action. When necessary,
use parentheses to avoid problems of precedence. Of the following four statements, the first two
are equivalent, but the last two are not.

cout << a+b; // + has higher precedence than <<

cout << (a+b);

cout << (a&y); // << has precedence higher than &

cout << a&y; // probably an error: (cout << a) & y

13.3.1.1 Defining Your Own Insertion Operator
The following example defines a string class:

#include <stdlib.h>

#include <iostream.h>

class string {

private:

char* data;

size_t size;

public:

// (functions not relevant here)

friend ostream& operator<<(ostream&, const string&);

friend istream& operator>>(istream&, string&);

};

The insertion and extraction operators must in this case be defined as friends because the data
part of the string class is private.

ostream& operator<< (ostream& ostr, const string& output)

{ return ostr << output.data;}

The following example shows the definition of operator<< overloaded for use with strings.

cout << string1 << string2;

13.3 Using the Classic iostream Library

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012138

operator<< takes ostream& (that is, a reference to an ostream) as its first argument and returns
the same ostream, making it possible to combine insertions in one statement.

13.3.1.2 Handling Output Errors
Generally, you don’t have to check for errors when you overload operator<< because the
iostream library is arranged to propagate errors.

When an error occurs, the iostream where it occurred enters an error state. Bits in the
iostream’s state are set according to the general category of the error. The inserters defined in
iostream ignore attempts to insert data into any stream that is in an error state, so such
attempts do not change the iostream’s state.

In general, the recommended way to handle errors is to periodically check the state of the
output stream in some central place. If an error exists, you should handle it in some way. This
chapter assumes that you define a function error, which takes a string and aborts the program.
error is not a predefined function. See “13.3.9 Handling Input Errors” on page 143 for an
example of an error function. You can examine the state of an iostream with the operator
!,which returns a nonzero value if the iostream is in an error state. For example:

if (!cout) error("output error");

There is another way to test for errors. The ios class defines operator void *(), so it returns a
NULL pointer when an error occurs. You can use a statement like the following example:

if (cout << x) return; // return if successful

You can also use the function good, a member of ios:

if (cout.good()) return; // return if successful

The error bits are declared in the enum:

enum io_state {goodbit=0, eofbit=1, failbit=2,

badbit=4, hardfail=0x80};

For details on the error functions, see the iostream man pages.

13.3.1.3 Flushing
As with most I/O libraries, iostream often accumulates output and sends it on in larger and
generally more efficient chunks. If you want to flush the buffer, insert the special value flush.
For example:

cout << "This needs to get out immediately." << flush;

13.3 Using the Classic iostream Library

Chapter 13 • Using the Classic iostream Library 139

flush is an example of a kind of object known as a manipulator, which is a value that can be
inserted into an iostream to have some effect other than causing output of its value. These
values are really functions that take an ostream& or istream& argument and return its
argument after performing some actions on it (see “13.7 Manipulators” on page 147).

13.3.1.4 Binary Output
To obtain output in the raw binary form of a value, use the member function write as shown in
the following example. This example shows the output in the raw binary form of x.

cout.write((char*)&x, sizeof(x));

The previous example violates type discipline by converting &x to char*. Doing so is normally
harmless but if the type of x is a class with pointers or virtual member functions, or one that
requires nontrivial constructor actions, the value written by the above example cannot be read
back in properly.

13.3.2 Input Using iostream

Input using iostream is similar to output. You use the extraction operator >> and can string
together extractions the way you can with insertions. For example:

cin >> a >> b;

This statement gets two values from standard input. As with other overloaded operators, the
extractors used depend on the types of a and b. Two different extractors are used if a and b have
different types. The format of input and how you can control it is discussed in some detail in the
ios(3CC4) man page. In general, leading whitespace characters (spaces, newlines, tabs,
form-feeds, and so on) are ignored.

13.3.3 Defining Your Own Extraction Operators
When you want input for a new type, you overload the extraction operator for it, just as you
overload the insertion operator for output.

Class string defines its extraction operator in the following code example:

EXAMPLE 13–1 stringExtraction Operator

istream& operator>> (istream& istr, string& input)

{

const int maxline = 256;

char holder[maxline];

istr.get(holder, maxline, ”\n’);
input = holder;

return istr;

13.3 Using the Classic iostream Library

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012140

EXAMPLE 13–1 stringExtraction Operator (Continued)

}

The get function reads characters from the input stream istr and stores them in holder until
maxline-1 characters have been read, a new line is encountered, or EOF, whichever happens
first. The data in holder is then null-terminated. Finally, the characters in holder are copied
into the target string.

By convention, an extractor converts characters from its first argument (in this case, istream&
istr), stores them in its second argument, which is always a reference, and returns its first
argument. The second argument must be a reference because an extractor is meant to store the
input value in its second argument.

13.3.4 Using the char* Extractor
Be careful when using this predefined extractor, which can cause problems. Use this extractor as
follows:

char x[50];

cin >> x;

This extractor skips leading whitespace, extracts characters, and copies them to x until it
reaches another whitespace character. It then completes the string with a terminating null (0)
character.Use this extractor carefully because input can overflow the given array.

You must also be sure the pointer points to allocated storage. The following example shows a
common error:

char * p; // not initialized

cin >> p;

Because the location where the input data will be stored is unclear, your program might abort.

13.3.5 Reading Any Single Character
In addition to using the char extractor, you can get a single character with either form of the get
member function. For example:

char c;

cin.get(c); // leaves c unchanged if input fails

int b;

b = cin.get(); // sets b to EOF if input fails

13.3 Using the Classic iostream Library

Chapter 13 • Using the Classic iostream Library 141

Note – Unlike the other extractors, the char extractor does not skip leading whitespace.

The following example shows a way to skip only blanks, stopping on a tab, newline, or any other
character:

int a;

do {

a = cin.get();

}

while(a ==’ ’);

13.3.6 Binary Input
If you need to read binary values (such as those written with the member function write), you
can use the read member function. The following example shows how to input the raw binary
form of x using the read member function, and is the inverse of the earlier example that uses
write.

cin.read((char*)&x, sizeof(x));

13.3.7 Peeking at Input
You can use the peek member function to look at the next character in the stream without
extracting it. For example:

if (cin.peek()!= c) return 0;

13.3.8 Extracting Whitespace
By default, the iostream extractors skip leading whitespace. The following example turns off
whitespace skipping from cin, then turns it back on:

cin.unsetf(ios::skipws); // turn off whitespace skipping

...

cin.setf(ios::skipws); // turn it on again

You can use the iostream manipulator ws to remove leading whitespace from the iostream
regardless of whether skipping is enabled. The following example shows how to remove the
leading whitespace from iostream istr:

istr >> ws;

13.3 Using the Classic iostream Library

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012142

13.3.9 Handling Input Errors
By convention, an extractor whose first argument has a nonzero error state should not extract
anything from the input stream and should not clear any error bits. An extractor that fails
should set at least one error bit.

As with output errors, you should check the error state periodically and take some action, such
as aborting, when you find a nonzero state. The ! operator tests the error state of an iostream.
For example, the following code produces an input error if you type alphabetic characters for
input:

#include <stdlib.h>

#include <iostream.h>

void error (const char* message) {

cerr << message << "\n";
exit(1);

}

int main() {

cout << "Enter some characters: ";
int bad;

cin >> bad;

if (!cin) error("aborted due to input error");
cout << "If you see this, not an error." << "\n";
return 0;

}

Class ios has member functions that you can use for error handling. See the man pages for
details.

13.3.10 Using iostreamsWith stdio

You can use stdio with C++ programs, but problems can occur when you mix iostreams and
stdio in the same standard stream within a program. For example, if you write to both stdout

and cout, independent buffering occurs and produces unexpected results. The problem is
worse if you input from both stdin and cin because independent buffering could render the
input unusable.

To eliminate this problem with standard input, standard output, and standard error, use the
following instruction before performing any input or output. It connects all the predefined
iostreams with the corresponding predefined stdio FILEs.

ios::sync_with_stdio();

This type of a connection is not the default because a significant performance penalty occurs
when the predefined streams are made unbuffered as part of the connection. You can use both
stdio and iostreams in the same program applied to different files, that is, you can write to
stdout using stdio routines and write to other files attached to iostreams. You can open
stdio FILEs for input and also read from cin so long as you don’t also try to read from stdin.

13.3 Using the Classic iostream Library

Chapter 13 • Using the Classic iostream Library 143

13.4 Creating iostreams

To read or write a stream other than the predefined iostreams, you need to create your own
iostream. In general, that means creating objects of types defined in the iostream library. This
section discusses the various types available.

13.4.1 Dealing With Files Using Class fstream
Dealing with files is similar to dealing with standard input and standard output; classes
ifstream, ofstream, and fstream are derived from classes istream, ostream, and iostream,
respectively. As derived classes, they inherit the insertion and extraction operations (along with
the other member functions) and also have members and constructors for use with files.

Include the file fstream.h to use any of the fstreams. Use an ifstream when you only want to
perform input, an ofstream for output only, and an fstream for a stream on which you want to
perform both input and output. Use the name of the file as the constructor argument.

For example, copy the file thisFile to the file thatFile as in the following example:

ifstream fromFile("thisFile");
if (!fromFile)

error("unable to open ’thisFile’ for input");
ofstream toFile ("thatFile");
if (!toFile)

error("unable to open ’thatFile’ for output");
char c;

while (toFile && fromFile.get(c)) toFile.put(c);

This code does the following:

■ Creates an ifstream object called fromFile with a default mode of ios::in and connects it
to thisFile. It opens thisFile.

■ Checks the error state of the new ifstream object and if it is in a failed state, calls the error
function, which must be defined elsewhere in the program.

■ Creates an ofstream object called toFile with a default mode of ios::out and connects it
to thatFile.

■ Checks the error state of toFile as above.
■ Creates a char variable to hold the data while it is passed.
■ Copies the contents of fromFile to toFile one character at a time.

13.4 Creating iostreams

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012144

Note – Copying a file this way, one character at a time, is, of course, undesirable. This code is
provided merely as an example of using fstreams. You should instead insert the streambuf
associated with the input stream into the output stream. See “13.10 Working
Withstreambuf Streams” on page 151, and the sbufpub(3CC4) man page.

13.4.1.1 Open Mode
The mode is constructed by or-ing together bits from the enumerated type open_mode, which is
a public type of class ios and has the following definition:

enum open_mode {binary=0, in=1, out=2, ate=4, app=8, trunc=0x10,

nocreate=0x20, noreplace=0x40};

Note – The binary flag is not needed on UNIX but is provided for compatibility with systems
that do need it. Portable code should use the binary flag when opening binary files.

You can open a file for both input and output. For example, the following code opens file
someName for both input and output, attaching it to the fstream variable inoutFile.

fstream inoutFile("someName", ios::in|ios::out);

13.4.1.2 Declaring an fstreamWithout Specifying a File
You can declare an fstream without specifying a file and open the file later. The following
example creates the ofstream toFile for writing.

ofstream toFile;

toFile.open(argv[1], ios::out);

13.4.1.3 Opening and Closing Files
You can close the fstream and then open it with another file. For example, to process a list of
files provided on the command line:

ifstream infile;

for (char** f = &argv[1]; *f; ++f) {

infile.open(*f, ios::in);

...;

infile.close();

}

13.4.1.4 Opening a File Using a File Descriptor
If you know a file descriptor, such as the integer 1 for standard output, you can open it as
follows:

13.4 Creating iostreams

Chapter 13 • Using the Classic iostream Library 145

ofstream outfile;

outfile.attach(1);

When you open a file by providing its name to one of the fstream constructors or by using the
open function, the file is automatically closed when the fstream is destroyed by a delete or
when it goes out of scope. When you attach a file to an fstream, it is not automatically closed.

13.4.1.5 Repositioning Within a File
You can alter the reading and writing position in a file. Several tools are supplied for this
purpose.

■ streampos is a type that can record a position in an iostream.

■ tellg (tellp) is an istream (ostream) member function that reports the file position.
Because istream and ostream are the parent classes of fstream, tellg and tellp can also
be invoked as a member function of the fstream class.

■ seekg (seekp) is an istream (ostream) member function that finds a given position.
■ The seek_dir enum specifies relative positions for use with seek.

enum seek_dir {beg=0, cur=1, end=2};

For example, given an fstream aFile:

streampos original = aFile.tellp(); //save current position

aFile.seekp(0, ios::end); //reposition to end of file

aFile << x; //write a value to file

aFile.seekp(original); //return to original position

seekg (seekp) can take one or two parameters. When it has two parameters, the first is a
position relative to the position indicated by the seek_dir value given as the second
parameter. For example:

aFile.seekp(-10, ios::end);

moves to 10 bytes from the end while

aFile.seekp(10, ios::cur);

moves to 10 bytes forward from the current position.

Note – Arbitrary seeks on text streams are not portable, but you can always return to a
previously saved streampos value.

13.4 Creating iostreams

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012146

13.5 Assignment of iostreams
iostreams does not allow assignment of one stream to another.

The problem with copying a stream object is that two versions of the state information now
exist, such as a pointer to the current write position within an output file, which can be changed
independently. Problems could occur as a result.

13.6 Format Control
Format control is discussed in detail in the ios(3CC4) man page.

13.7 Manipulators
Manipulators are values that you can insert into or extract from iostreams to have special
effects.

Parameterized manipulators are manipulators that take one or more parameters.

Because manipulators are ordinary identifiers and therefore use up possible names, iostream
doesn’t define them for every possible function. A number of manipulators are discussed with
member functions in other parts of this chapter.

The 13 predefined manipulators are described in the following table. This table assumes the
following:

■ i has type long.
■ n has type int.
■ c has type char.
■ istr is an input stream.
■ ostr is an output stream.

TABLE 13–2 iostreamPredefined Manipulators

Predefined Manipulator Description

1 ostr << dec, istr >> dec Makes the integer conversion base 10.

2 ostr << endl Inserts a newline character (’\n’) and invokes
ostream::flush().

3 ostr << ends Inserts a null (0) character. Useful when dealing
with strstream.

4 ostr << flush Invokes ostream::flush().

13.7 Manipulators

Chapter 13 • Using the Classic iostream Library 147

TABLE 13–2 iostreamPredefined Manipulators (Continued)
Predefined Manipulator Description

5 ostr << hex, istr >> hex Makes the integer conversion base 16.

6 ostr << oct, istr >> oct Make the integer conversion base 8.

7 istr >> ws Extracts whitespace characters (skips
whitespace) until a non-whitespace character is
found (which is left in istr).

8 ostr << setbase(n), istr >>

setbase(n)
Sets the conversion base to n (0, 8, 10, 16 only).

9 ostr << setw(n), istr >>

setw(n)
Invokes ios::width(n). Sets the field width to
n.

10 ostr << resetiosflags(i), istr>>

resetiosflags(i)
Clears the flags bitvector according to the bits
set in i.

11 ostr << setiosflags(i), istr >>

setiosflags(i)

Sets the flags bitvector according to the bits set
in i.

12 ostr << setfill(c), istr >>

setfill(c)

Sets the fill character (for padding a field) to c.

13 ostr << setprecision(n), istr >>

setprecision(n)
Sets the floating-point precision to n digits.

To use predefined manipulators, you must include the file iomanip.h in your program.

You can define your own manipulators. The two basic types of manipulators are:

■ Plain manipulator – Takes an istream&, ostream&, or ios& argument, operates on the
stream, and then returns its argument.

■ Parameterized manipulator – Takes an istream&, ostream&, or ios& argument, one
additional argument (the parameter), operates on the stream, and then returns its stream
argument.

13.7.1 Using Plain Manipulators
A plain manipulator is a function that performs the following actions:

■ Takes a reference to a stream
■ Operates on the stream in some way
■ Returns its argument

13.7 Manipulators

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012148

The shift operators taking a pointer to such a function are predefined for iostreams so the
function can be put in a sequence of input or output operators. The shift operator calls the
function rather than trying to read or write a value. The following example shows a tab
manipulator that inserts a tab in an ostream is:

ostream& tab(ostream& os) {

return os <<’\t’;
}

...

cout << x << tab << y;

This example is an elaborate way to achieve the following code:

const char tab = ’\t’;
...

cout << x << tab << y;

The following code is another example, which cannot be accomplished with a simple constant.
Suppose you want to turn whitespace skipping on and off for an input stream. You can use
separate calls to ios::setf and ios::unsetf to turn the skipws flag on and off, or you could
define two manipulators.

#include <iostream.h>

#include <iomanip.h>

istream& skipon(istream &is) {

is.setf(ios::skipws, ios::skipws);

return is;

}

istream& skipoff(istream& is) {

is.unsetf(ios::skipws);

return is;

}

...

int main ()

{

int x,y;

cin >> skipon >> x >> skipoff >> y;

return 1;

}

13.7.2 Parameterized Manipulators
One of the parameterized manipulators that is included in iomanip.h is setfill. setfill sets
the character that is used to fill out field widths. This manipulator is implemented as shown in
the following example:

//file setfill.cc

#include<iostream.h>

#include<iomanip.h>

//the private manipulator

13.7 Manipulators

Chapter 13 • Using the Classic iostream Library 149

static ios& sfill(ios& i, int f) {

i.fill(f);

return i;

}

//the public applicator

smanip_int setfill(int f) {

return smanip_int(sfill, f);

}

A parameterized manipulator is implemented in two parts:

■ The manipulator. It takes an extra parameter. In the previous code example, it takes an extra
int parameter. You cannot place this manipulator function in a sequence of input or output
operations, because no shift operator is defined for it. Instead, you must use an auxiliary
function, the applicator.

■ The applicator. It calls the manipulator. The applicator is a global function, and you make a
prototype for it available in a header file. Usually the manipulator is a static function in the
file containing the source code for the applicator. The manipulator is called only by the
applicator. If you make it static, you keep its name out of the global address space.

Several classes are defined in the header file iomanip.h. Each class holds the address of a
manipulator function and the value of one parameter. The iomanip classes are described in the
manip(3CC4) man page. The previous example uses the smanip_int class, which works with an
ios. Because it works with an ios, it also works with an istream and an ostream. The previous
example also uses a second parameter of type int.

The applicator creates and returns a class object. In the previous code example the class object is
an smanip_int, and it contains the manipulator and the int argument to the applicator. The
iomanip.h header file defines the shift operators for this class. When the applicator function
setfill appears in a sequence of input or output operations, the applicator function is called,
and it returns a class. The shift operator acts on the class to call the manipulator function with
its parameter value, which is stored in the class.

In the following example, the manipulator print_hex performs the following actions:

■ Puts the output stream into the hex mode
■ Inserts a long value into the stream
■ Restores the conversion mode of the stream

The class omanip_long is used because this code example is for output only. It operates on a
long rather than an int:

#include <iostream.h>

#include <iomanip.h>

static ostream& xfield(ostream& os, long v) {

long save = os.setf(ios::hex, ios::basefield);

os << v;

os.setf(save, ios::basefield);

return os;

}

13.7 Manipulators

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012150

omanip_long print_hex(long v) {

return omanip_long(xfield, v);

}

13.8 strstream: iostreams for Arrays
See the strstream(3CC4) man page.

13.9 stdiobuf: iostreams for stdio Files
See the stdiobuf(3CC4) man page.

13.10 Working Withstreambuf Streams
iostreams are the formatting part of a two-part (input or output) system. The other part of the
system is made up of streambuf streams, which work with input or output of unformatted
streams of characters.

You usually use streambuf streams through iostreams, so you don’t have to be familiar with
them in detail. You can use streambuf streams directly if you choose to, for example, if you
need to improve efficiency or to get around the error handling or formatting built into
iostreams.

13.10.1 streambufPointer Types
A streambuf consists of a stream or sequence of characters and one or two pointers into that
sequence. Each pointer points between two characters. (Pointers cannot actually point between
characters, but thinking of them that way can be helpful.) There are two kinds of streambuf
pointers:

■ A put pointer, which points just before the position where the next character will be stored
■ A get pointer, which points just before the next character to be fetched

A streambuf can have one or both of these pointers.

The positions of the pointers and the contents of the sequences can be manipulated in various
ways. Whether or not both pointers move when manipulated depends on the kind of
streambuf used. Generally, with queue-like streambuf streams, the get and put pointers move
independently. With file-like streambuf streams the get and put pointers always move together.
A strstream is an example of a queue-like stream; an fstream is an example of a file-like
stream.

13.10 Working Withstreambuf Streams

Chapter 13 • Using the Classic iostream Library 151

13.10.2 Using streambufObjects
You never create an actual streambuf object, but only objects of classes derived from class
streambuf. Examples are filebuf and strstreambuf, which are described in the
filebuf(3CC4) and ssbuf(3) man pages. Advanced users may want to derive their own classes
from streambuf to provide an interface to a special device or to provide other than basic
buffering. The sbufpub(3CC4) and sbufprot man pages (3CC4) discuss how to do this.

Apart from creating your own special kind of streambuf, you might want to access the
streambuf associated with an iostream to access the public member functions, as described in
the man pages. In addition, each iostream has a defined inserter and extractor which takes a
streambuf pointer. When a streambuf is inserted or extracted, the entire stream is copied.

The following example shows another way to do the file copy discussed earlier, with the error
checking omitted for clarity:

ifstream fromFile("thisFile");
ofstream toFile ("thatFile");
toFile << fromFile.rdbuf();

The input and output files are opened as before. Every iostream class has a member function
rdbuf that returns a pointer to the streambuf object associated with it. In the case of an
fstream, the streambuf object is type filebuf. The entire file associated with fromFile is
copied (inserted into) the file associated with toFile. The last line could also be written as
follows:

fromFile >> toFile.rdbuf();

The source file is then extracted into the destination. The two methods are entirely equivalent.

13.11 iostreamMan Pages
A number of C++ man pages give details of the iostream library. The following table gives an
overview of what is in each man page.

To access a classic iostream library man page, type:

example% man -s 3CC4 name

13.11 iostreamMan Pages

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012152

TABLE 13–3 iostreamMan Pages Overview

Man Page Overview

filebuf Details the public interface for the class filebuf, which is
derived from streambuf and is specialized for use with files.
See the sbufpub(3CC4) and sbufprot(3CC4) man pages for
details of features inherited from class streambuf. Use the
filebuf class through class fstream.

fstream Details specialized member functions of classes ifstream,
ofstream, and fstream, which are specialized versions of
istream, ostream, and iostream for use with files.

ios Details parts of class ios, which functions as a base class for
iostreams. It contains state data common to all streams.

ios.intro Gives an introduction to and overview of iostreams.

istream Details the following:
■ Member functions for class istream, which supports

interpretation of characters fetched from a streambuf

■ Input formatting

■ Positioning functions described as part of class ostream.

■ Some related functions

■ Related manipulators

manip Describes the input and output manipulators defined in the
iostream library.

ostream Details the following:
■ Member functions for class ostream, which supports

interpretation of characters written to a streambuf

■ Output formatting

■ Positioning functions described as part of class ostream

■ Some related functions

■ Related manipulators

sbufprot Describes the interface needed by programmers who are
coding a class derived from class streambuf. Also refer to the
sbufpub(3CC4) man page because some public functions are
not discussed in the sbufprot(3CC4) man page.

13.11 iostreamMan Pages

Chapter 13 • Using the Classic iostream Library 153

TABLE 13–3 iostreamMan Pages Overview (Continued)
Man Page Overview

sbufpub Details the public interface of class streambuf, in particular,
the public member functions of streambuf. This man page
contains the information needed to manipulate a
streambuf-type object directly, or to find out about functions
that classes derived from streambuf inherit from it. If you
want to derive a class from streambuf, also see the
sbufprot(3CC4) man page.

ssbuf Details the specialized public interface of class strstreambuf,
which is derived from streambuf and specialized for dealing
with arrays of characters. See the sbufpub(3CC4) man page
for details of features inherited from class streambuf.

stdiobuf Contains a minimal description of class stdiobuf, which is
derived from streambuf and specialized for dealing with
stdio FILEs. See the sbufpub(3CC4) man page for details of
features inherited from class streambuf.

strstream Details the specialized member functions of strstreams,
which are implemented by a set of classes derived from the
iostream classes and specialized for dealing with arrays of
characters.

13.12 iostream Terminology
The iostream library descriptions often use terms similar to terms from general programming
but with specialized meanings. The following table defines these terms as they are used in
discussing the iostream library.

TABLE 13–4 iostreamTerminology

iostream Term Definition

Buffer A word with two meanings, one specific to the iostream package and
one more generally applied to input and output.

When referring specifically to the iostream library, a buffer is an object
of the type defined by the class streambuf.

A buffer, generally, is a block of memory used to make efficient transfer
of characters for input of output. With buffered I/O, the actual transfer
of characters is delayed until the buffer is full or forcibly flushed.

An unbuffered buffer refers to a streambuf where there is no buffer in
the general sense defined above. This chapter avoids use of the term
buffer to refer to streambufs. However, the man pages and other C++
documentation do use the term buffer to mean streambufs.

13.12 iostream Terminology

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012154

TABLE 13–4 iostreamTerminology (Continued)
iostream Term Definition

Extraction The process of taking input from an iostream.

Fstream An input or output stream specialized for use with files. Refers
specifically to a class derived from class iostream when printed in
monospace font.

Insertion The process of sending output into an iostream.

iostream Generally, an input or output stream.

iostream library Refers to a library implemented by the include files iostream.h,
fstream.h, strstream.h, iomanip.h, and stdiostream.h. Because
iostream is an object-oriented library, you should extend it.

Stream An iostream, fstream, strstream, or user-defined stream in general.

streambuf A buffer that contains a sequence of characters with a put or get
pointer, or both. When printed in monospace font, it means the
particular class. Otherwise, it refers generally to any object of class
streambuf or a class derived from streambuf. Any stream object
contains an object, or a pointer to an object, of a type derived from
streambuf.

strstream An iostream specialized for use with character arrays. It refers to the
specific class when printed in monospace font.

13.12 iostream Terminology

Chapter 13 • Using the Classic iostream Library 155

156

Building Libraries

This chapter explains how to build your own libraries.

14.1 Understanding Libraries
Libraries provide two benefits. First, they provide a way to share code among several
applications. If you have such code, you can create a library with it and link the library with any
application that needs it. Second, libraries provide a way to reduce the complexity of very large
applications. Such applications can build and maintain relatively independent portions as
libraries and so reduce the burden on programmers working on other portions.

Building a library simply means creating .o files (by compiling your code with the -c option)
and combining the .o files into a library using the CC command. You can build two kinds of
libraries: static (archive) libraries and dynamic (shared) libraries.

With static (archive) libraries, objects within the library are linked into the program’s
executable file at link time. Only those .o files from the library that are needed by the
application are linked into the executable. The name of a static (archive) library generally ends
with a .a suffix.

With dynamic (shared) libraries, objects within the library are not linked into the program’s
executable file. Instead, the linker notes in the executable that the program depends on the
library. When the program is executed, the system loads the dynamic libraries that the program
requires. If two programs that use the same dynamic library execute at the same time, the
operating system shares the library among the programs. The name of a dynamic (shared)
library ends with an .so suffix.

Linking dynamically with shared libraries has several advantages over linking statically with
archive libraries:

■ The size of the executable is smaller.

14C H A P T E R 1 4

157

■ Significant portions of code can be shared among programs at runtime, reducing the
amount of memory use.

■ The library can be replaced at runtime without relinking with the application. (This is the
primary mechanism that enables programs to take advantage of many improvements in the
Oracle Solaris operating system without requiring relinking and redistribution of
programs.)

■ The shared library can be loaded at runtime using the dlopen() function call.

However, dynamic libraries have some disadvantages:

■ Runtime linking has an execution-time cost.
■ Distributing a program that uses dynamic libraries might require simultaneous distribution

of the libraries it uses.
■ Moving a shared library to a different location can prevent the system from finding the

library and executing the program. (The environment variable LD_LIBRARY_PATH helps
overcome this problem.)

14.2 Building Static (Archive) Libraries
The mechanism for building static (archive) libraries is similar to that of building an executable.
A collection of object (.o) files can be combined into a single library using the -xar option of CC.

You should build static (archive) libraries using CC -xar instead of using the ar command
directly. The C++ language generally requires that the compiler maintain more information
than can be accommodated with traditional .o files, particularly template instances. The –xar
option ensures that all necessary information, including template instances, is included in the
library. You might not be able to accomplish this in a normal programming environment
because make might not be able to determine which template files are actually created and
referenced. Without CC -xar, referenced template instances might not be included in the
library, as required. For example:

% CC -c foo.cc # Compile main file, templates objects are created.

% CC -xar -o foo.a foo.o # Gather all objects into a library.

Th e–xar flag causes CC to create a static (archive) library. The –o directive is required to name
the newly created library. The compiler examines the object files on the command line,
cross-references the object files with those known to the template repository, and adds those
templates required by the user’s object files (along with the main object files themselves) to the
archive.

14.2 Building Static (Archive) Libraries

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012158

Note – Use the -xar flag for creating or updating an existing archive only. Do not use it to
maintain an archive. The -xar option is equivalent to ar -cr.

Put only one function in each .o file. If you are linking with an archive, an entire .o file from the
archive is linked into your application when a symbol is needed from that particular .o file.
With one function in each .o file, only those symbols needed by the application will be linked
from the archive.

14.3 Building Dynamic (Shared) Libraries
Dynamic (shared) libraries are built the same way as static (archive) libraries, except that you
use -G instead of -xar on the command line.

You should not use ld directly. As with static libraries, the CC command ensures that all the
necessary template instances from the template repository are included in the library if you are
using templates. All static constructors in a dynamic library that is linked to an application are
called before main() is executed and all static destructors are called after main() exits. If a shared
library is opened using dlopen(), all static constructors are executed at dlopen() and all static
destructors are executed at dlclose().

You should use CC -G to build a dynamic library. When you use ld (the link-editor) or cc (the
C compiler) to build a dynamic library, exceptions might not work and the global variables that
are defined in the library are not initialized.

To build a dynamic (shared) library, you must create relocatable object files by compiling each
object with the –Kpic or –KPIC option of CC. You can then build a dynamic library with these
relocatable object files. If you get any unexpected link failures, you might have forgotten to
compile some objects with –Kpic or –KPIC.

To build a C++ dynamic library named libfoo.so that contains objects from source files
lsrc1.cc and lsrc2.cc, type:

% CC -G -o libfoo.so -h libfoo.so -Kpic lsrc1.cc lsrc2.cc

The -G option specifies the construction of a dynamic library. The -o option specifies the file
name for the library. The -h option specifies an internal name for the shared library. The -Kpic
option specifies that the object files are to be position-independent.

The CC -G command does not pass any -l options to the linker, ld. To ensure proper
initialization order, a shared library must have an explicit dependency on each other shared
library it needs. To create the dependencies, use a -l option for each such library. Typical C++
shared libraries will use one of the following sets of options:

-lCstd -lCrun -lc

-library=stlport4 -lCrun -lc

14.3 Building Dynamic (Shared) Libraries

Chapter 14 • Building Libraries 159

To be sure you have listed all needed dependencies, build the library with the -zdefs option.
The linker will issue an error message for each missing symbol definition. To provide the
missing definitions, add a -l option for those libraries.

To find out if you have included unneeded dependencies, use the following commands

ldd -u -r mylib.so

ldd -U -r mylib.so

You can then rebuild mylib.so without the unneeded dependencies.

14.4 Building Shared Libraries That Contain Exceptions
Never use -Bsymbolic with programs containing C++ code. Use linker map files instead. With
-Bsymbolic, references in different modules can bind to different copies of what is supposed to
be one global object.

The exception mechanism relies on comparing addresses. If you have two copies of an object,
their addresses won’t compare equal, and the exception mechanism can fail because the
exception mechanism relies on comparing what are supposed to be unique addresses.

14.5 Building Libraries for Private Use
When an organization builds a library for internal use only, the library can be built with options
that are not advised for more general use. In particular, the library need not comply with the
system’s application binary interface (ABI). For example, the library can be compiled with the
-fast option to improve its performance on a known architecture. Likewise, it can be compiled
with the -xregs=float option to improve performance.

14.6 Building Libraries for Public Use
When an organization builds a library for use by other organizations, the management of the
libraries, platform generality, and other issues become significant. A simple test for whether a
library is public is to ask if the application programmer can recompile the library easily. Public
libraries should be built in conformance with the system’s application binary interface (ABI). In
general, this means that any processor-specific options should be avoided. (For example, do not
use -fast or -xtarget.)

The SPARC ABI reserves some registers exclusively for applications. For SPARC V7 and V8,
these registers are %g2, %g3, and %g4. For SPARC V9, these registers are %g2 and %g3. Because
most compilations are for applications, the C++ compiler, by default, uses these registers for
scratch registers, improving program performance. However, use of these registers in a public

14.4 Building Shared Libraries That Contain Exceptions

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012160

library is generally not compliant with the SPARC ABI. When building a library for public use,
compile all objects with the -xregs=no%appl option to ensure that the application registers are
not used.

14.7 Building a Library That Has a C API
If you want to build a library that is written in C++ but that can be used with a C program, you
must create a C API (application programming interface). To do this, make all the exported
functions extern "C". Note that this can be done only for global functions and not for member
functions.

If a C-interface library needs C++ runtime support and you are linking with cc, then you must
also link your application with libCrun (standard mode) when you use the C-interface library.
(If the C-interface library does not need C++ runtime support, then you do not have to link
with libCrun.) The steps for linking differ for archived and shared libraries.

When providing an archived C-interface library, you must provide instructions on how to use
the library.

■ If the C-interface library was built with CC in standard mode (the default), add -lCrun to the
cc command line when using the C-interface library.

■ If the C-interface library was built with CC in compatibility mode (-compat=4), add -lC to
the cc command line when using the C-interface library.

When providing a shared C-interface library you must create a dependency on libCrun at the
time that you build the library. When the shared library has the correct dependency, you do not
need to add -lCrun to the command when you use the library.

■ If you are building the C-interface library in the default standard mode, add -lCrun to the
CC command when you build the library.

If you want to remove any dependency on the C++ runtime libraries, you should enforce the
following coding rules in your library sources:

■ Do not use any form of new or delete unless you provide your own corresponding versions.
■ Do not use exceptions.
■ Do not use runtime type information (RTTI).

14.7 Building a Library That Has a C API

Chapter 14 • Building Libraries 161

14.8 Using dlopen to Access a C++ Library From a C Program
If you want to use dlopen() to open a C++ shared library from a C program, make sure that the
shared library has a dependency on the appropriate C++ runtime (libCrun.so.1 for
-compat=5).

To do this, add -lCrun for -compat=5 to the command line when building the shared library.
For example:

example% CC -G -compat=5... -lCrun

If the shared library uses exceptions and does not have a dependency on the C++ runtime
library, your C program might behave erratically.

14.8 Using dlopen to Access a C++ Library From a C Program

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012162

Appendixes

P A R T I V

163

164

C++ Compiler Options

This appendix details the command-line options for the C++ compiler. The features described
apply to all platforms except as noted; features that are unique to the Oracle Solaris OS on
SPARC-based systems are identified as SPARC, and the features that are unique to the Oracle
Solaris and Linux OS on x86-based systems are identified as x86. Features limited to the Oracle
Solaris OS only are marked Solaris; features limited only to Linux OS are marked Linux.

The typographical conventions that are listed in the Preface are used in this section of the
manual to describe individual options.

Parentheses, braces, brackets, pipe characters, and ellipses are metacharacters used in the
descriptions of the options and are not part of the options themselves.

A.1 How Option Information Is Organized
To help you find information, compiler option descriptions are separated into the following
subsections. If the option is one that is replaced by or identical to some other option, see the
description of the other option for full details.

TABLE A–1 Option Subsections

Subsection Contents

Option Definition A short definition immediately follows each option. (There is no
heading for this category.)

Values If the option has one or more values, this section defines each value.

AA P P E N D I X A

165

TABLE A–1 Option Subsections (Continued)
Subsection Contents

Defaults If the option has a primary or secondary default value, it is stated
here.

The primary default is the option value in effect if the option is not
specified. For example, if –compat is not specified, the default is
–compat=5.

The secondary default is the option in effect if the option is specified,
but no value is given. For example, if –compat is specified without a
value, the default is -compat=5.

Expansions If the option has a macro expansion, it is shown in this section.

Examples If an example is needed to illustrate the option, it is given here.

Interactions If the option interacts with other options, the relationship is
discussed here.

Warnings Cautions regarding use of the option are noted here, as are actions
that might cause unexpected behavior.

See also This section contains references to further information in other
options or documents.

“Replace with” “Same as” If an option has become obsolete and has been replaced by another
option, the replacement option is noted here. Options described this
way might not be supported in future releases.

If two options have the same general meaning and purpose, the
preferred option is referenced here. For example, “Same as -xO”
indicates that -xO is the preferred option.

A.2 Option Reference
The following section alphabetically lists all the C++ compiler options and indicates any
platform restrictions.

A.2.1 -#

Turns on verbose mode, showing how command options expand. Shows each component as it
is invoked.

A.2.2 -###

Shows each component as it would be invoked, but does not actually execute it. Also shows how
command options would expand.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012166

A.2.3 –Bbinding
Specifies whether a library binding for linking is symbolic, dynamic (shared), or static
(nonshared).

You can use the –B option several times on a command line. This option is passed to the linker,
ld.

Note – Many system libraries are only available as dynamic libraries in the Oracle Solaris 64-bit
compilation environment. Therefore, do not use -Bstatic as the last toggle on the command
line.

A.2.3.1 Values
binding must be one of the values listed in the following table:

Value Meaning

dynamic Directs the link editor to look for liblib.so (shared) files, and if
they are not found, to look for liblib.a (static, nonshared) files.
Use this option if you want shared library bindings for linking.

static Directs the link editor to look only for liblib.a (static,
nonshared) files. Use this option if you want nonshared library
bindings for linking.

symbolic Forces symbols to be resolved within a shared library if possible,
even when a symbol is already defined elsewhere.

See the ld(1) man page.

(No space is allowed between –B and the binding value.)

Defaults

If -B is not specified, –Bdynamic is assumed.

Interactions

To link the C++ default libraries statically, use the –staticlib option.

The -Bstatic and -Bdynamic options affect the linking of the libraries that are provided by
default. To ensure that the default libraries are linked dynamically, the last use of –B should be
–Bdynamic.

A.2 Option Reference

Appendix A • C++ Compiler Options 167

In a 64-bit environment, many system libraries are available only as shared dynamic libraries.
These include libm.so and libc.so (libm.a and libc.a are not provided). As a result,
-Bstatic and -dn may cause linking errors in 64-bit Oracle Solaris operating system
environments. Applications must link with the dynamic libraries in these cases.

Examples

The following compiler command links libfoo.a even if libfoo.so exists; all other libraries are
linked dynamically:

example% CC a.o –Bstatic –lfoo –Bdynamic

Warnings

Never use -Bsymbolic with programs containing C++ code, use linker map files instead.

With -Bsymbolic, references in different modules can bind to different copies of what is
supposed to be one global object.

The exception mechanism relies on comparing addresses. If you have two copies of something,
their addresses won’t compare equal, and the exception mechanism can fail because the
exception mechanism relies on comparing what are supposed to be unique addresses.

If you compile and link in separate steps and are using the -Bbinding option, you must include
the option in the link step.

See Also

–nolib, –staticlib, ld(1) man page, “11.5 Statically Linking Standard Libraries” on page 123,
Linker and Libraries Guide

A.2.4 –c

Compile only; produce object .o files, but suppress linking.

This option directs the CC driver to suppress linking with ld and produce a .o file for each
source file. If you specify only one source file on the command line, then you can explicitly
name the object file with the -o option.

A.2.4.1 Examples
If you enter CC -c x.cc, the x.o object file is generated.

If you enter CC -c x.cc -o y.o, the y.o object file is generated.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012168

Warnings

When the compiler produces object code for an input file (.c, .i), the compiler always
produces a .o file in the working directory. If you suppress the linking step, the .o files are not
removed.

See Also

–o filename, –xe

A.2.5 –cg{89|92}
(SPARC) Obsolete, do not use this option. Current Oracle Solaris operating system software no
longer supports SPARC V7 architecture. Compiling with this option generates code that runs
slower on current SPARC platforms. Use -xO instead and take advantage of compiler defaults
for -xarch, -xchip, and -xcache.

A.2.6 –compat={5|g}
Sets the major release compatibility mode of the compiler. This option controls the
__SUNPRO_CC_COMPAT preprocessor macro.

The C++ compiler has two principal modes. The default -compat=5 accepts constructs
according to the ANSI/ISO 1998 C++ standard as updated in 2003, and generates code
compatible with C++ 5.0 through 5.12 in -compat=5 mode. The -compat=g option adds source
and binary compatibility with the gcc/g++ compiler on Oracle Solaris x86 and Linux platforms.
These modes are incompatible with each other due to significant and incompatible changes in
name mangling, class layout, vtable layout, and other ABI details.

Compatibility Mode (-compat=4), which accepted the sematics and language defined by the 4.2
compiler in previous releases, is no longer available.

These modes are differentiated by the –compat option as shown in the following section.

A.2.6.1 Values
The -compat option can have the values shown in the following table.

Value Meaning

–compat=5 (Standard mode) Set language and binary compatibility to ANSI/ISO
standard mode. Sets the __SUNPRO_CC_COMPAT preprocessor macro to 5.

A.2 Option Reference

Appendix A • C++ Compiler Options 169

Value Meaning

-compat=g (x86 only) Enables recognition of g++ language extensions and causes the
compiler to generated code that is binary compatible with g++ on Solaris
and Linux platforms. Sets the __SUNPRO_CC_COMPAT preprocessor macro
to ’G’.

With -compat=g, binary compatibility extends only to shared (dynamic or .so) libraries, not to
individual .o files or archive (.a) libraries.

The following example shows linking a g++ shared library to a C++ main program:

% g++ -shared -o libfoo.so -fpic a.cc b.cc c.cc

% CC -compat=g main.cc -L. -lfoo

The following example shows linking a C++ shared library to a g++ main program:

% CC -compat=g -G -o libfoo.so -Kpic a.cc b.cc c.cc

% g++ main.cc -L. -lfoo

Defaults

If the –compat option is not specified, –compat=5 is assumed.

Interactions

See —features for additional information.

Warnings

When building a shared library, do not use -Bsymbolic.

A.2.7 +d

Does not expand C++ inline functions.

Under the C++ language rules, a C++ inline function is a function for which one of the
following statements is true:
■ The function is defined using the inline keyword,
■ The function is defined, not just declared, inside a class definition
■ The function is a compiler-generated class member function

Under the C++ language rules, the compiler can choose whether actually to inline a call to an
inline function. The C++ compiler inlines calls to an inline function unless one of the following
is true:

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012170

■ The function is too complex
■ The +d option is selected
■ The —g option is selected without a —xOn optimization level specified

A.2.7.1 Examples
By default, the compiler may inline the functions f() and memf2() in the following code
example. In addition, the class has a default compiler-generated constructor and destructor that
the compiler may inline. When you use +d, the compiler will not inline f()and C::mf2(), the
constructor, and the destructor.

inline int f() {return 0;} // may be inlined

class C {

int mf1(); // not inlined unless inline definition comes later

int mf2() {return 0;} // may be inlined

};

Interactions
This option is automatically turned on when you specify –g, the debugging option,, unless an
optimization level is also specified (—O or —xO).

The –g0 debugging option does not turn on +d.

The +d option has no effect on the automatic inlining that is performed when you use -xO4 or
-xO5.

See Also
–g0, –g

A.2.8 -Dname[=def]
Defines the macro symbol name to the preprocessor.

Using this option is equivalent to including a #define directive at the beginning of the source.
You can use multiple -D options.

See the CC(1) man page for a list of compiler predefined macros.

A.2.9 –d{y|n}
Allows or disallows dynamic libraries for the entire executable.

This option is passed to ld.

This option can appear only once on the command line.

A.2 Option Reference

Appendix A • C++ Compiler Options 171

A.2.9.1 Values

Value Meaning

-dy Specifies dynamic linking in the link editor.

–dn Specifies static linking in the link editor.

Defaults

If no -d option is specified, –dy is assumed.

Interactions

In a 64-bit environment, many system libraries are available only as shared dynamic libraries.
These include libm.so and libc.so (libm.a and libc.a are not provided). As a result,
-Bstatic and -dn may cause linking errors in 64-bit Oracle Solaris operating systems.
Applications must link with the dynamic libraries in these cases.

Warnings

This option causes fatal errors if you use it in combination with dynamic libraries. Most system
libraries are only available as dynamic libraries.

See Also

ld(1) man page, Linker and Libraries Guide

A.2.10 –dalign

(SPARC) Obsolete — Do not use. Use -xmemalign=8s. See “A.2.145 -xmemalign=ab” on
page 263 for more information.

This option is silently ignored on x86 platforms.

A.2.11 –dryrun

Shows the subcommands built by driver, but does not compile.

This option directs the CC driver to show, but not execute, the subcommands constructed by the
compilation driver.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012172

A.2.12 –E

Runs the preprocessor on source files; does not compile.

Directs the CC driver to run only the preprocessor on C++ source files, and to send the result to
stdout (standard output). No compilation is done; no .o files are generated.

This option causes preprocessor-type line number information to be included in the output.

To compile the output of the -E option when the source code involves templates, you might
need to use the -template=no%extdef option with the -E option. If application code uses the
definitions separate template source code model, the output of the -E option might still not
compile. Refer to the chapters on templates for more information.

A.2.12.1 Examples
This option is useful for determining the changes made by the preprocessor. For example, the
following program, foo.cc, generates the output shown in “A.2.12.1 Examples” on page 173

EXAMPLE A–1 Preprocessor Example Program foo.cc

#if __cplusplus < 199711L

int power(int, int);

#else

template <> int power(int, int);

#endif

int main () {

int x;

x=power(2, 10);

}

.

EXAMPLE A–2 Preprocessor Output of foo.ccUsing -EOption

example% CC -E foo.cc

#4 "foo.cc"
template < > int power (int, int);

int main () {

int x;

x = power (2, 10);

}

Warnings
The output of this option might not be usable as input to a C++ compilation if the code contains
templates under the definitions-separate model.

See Also
–P

A.2 Option Reference

Appendix A • C++ Compiler Options 173

A.2.13 -erroff[=t]
This command suppresses C++ compiler warning messages and has no effect on error
messages. This option applies to all warning messages regardless of whether they have been
designated by -errwarn to cause a non-zero exit status.

A.2.13.1 Values
t is a comma-separated list that consists of one or more of the following: tag, no%tag, %all,
%none. Order is important; for example, %all,no%tag suppresses all warning messages except
tag. The following table lists the -erroff values.

TABLE A–2 -erroffValues

Value Meaning

tag Suppresses the warning message specified by this tag. You can display the tag
for a message by using the -errtags=yes option.

no%tag Enables the warning message specified by this tag.

%all Suppresses all warning messages.

%none Enables all warning messages (default).

Defaults

The default is -erroff=%none. Specifying -erroff is equivalent to specifying -erroff=%all.

Examples

For example, -erroff=tag suppresses the warning message specified by this tag. On the other
hand, -erroff=%all,no%tag suppresses all warning messages except the messages identified by
tag.

You can display the tag for a warning message by using the -errtags=yes option.

Warnings

Only warning messages from the C++ compiler front-end that display a tag when the -errtags
option is used can be suppressed with the -erroff option.

See Also

-errtags, -errwarn

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012174

A.2.14 -errtags[=a]
Displays the message tag for each warning message of the C++ compiler front-end that can be
suppressed with the -erroff option or made a fatal warning with the -errwarn option.

A.2.14.1 Values and Defaults
a can be either yes or no. The default is -errtags=no. Specifying -errtags is equivalent to
specifying -errtags=yes.

Warnings

Messages from the C++ compiler driver and other components of the compilation system do
not have error tags. Therefore they cannot be suppressed with -erroff or made fatal with
-errwarn.

See Also

-erroff, -errwarn

A.2.15 -errwarn[=t]
Use -errwarn to cause the C++ compiler to exit with a failure status for the given warning
messages.

A.2.15.1 Values
t is a comma-separated list that consists of one or more of the following: tag, no%tag, %all,
%none. Order is important; for example %all,no%tag causes cc to exit with a fatal status if any
warning except tag is issued.

The following table details the -errwarn values.

TABLE A–3 -errwarnValues

Value Meaning

tag Cause CC to exit with a fatal status if the message specified by this tag is issued as a
warning message. Has no effect if tag is not issued.

no%tag Prevent CC from exiting with a fatal status if the message specified by tag is issued only
as a warning message. Has no effect if the message specified by tag is not issued. Use this
option to revert a warning message that was previously specified by this option with tag
or %all from causing cc to exit with a fatal status when issued as a warning message.

%all Cause CC to exit with a fatal status if any warning messages are issued. %all can be
followed by no%tag to exempt specific warning messages from this behavior.

A.2 Option Reference

Appendix A • C++ Compiler Options 175

TABLE A–3 -errwarnValues (Continued)
Value Meaning

%none Prevents any warning message from causing CC to exit with a fatal status should any
warning message be issued.

Defaults

The default is -errwarn=%none. Specifying -errwarn alone is equivalent to -errwarn=%all.

Warnings

Only warning messages from the C++ compiler front-end that display a tag when the -errtags
option is used can be specified with the -errwarn option to cause the compiler to exit with a
failure status.

The warning messages generated by the C++ compiler change from release to release as the
compiler error checking improves and features are added. Code that compiles using
-errwarn=%all without error may not compile without error in the next release of the
compiler.

See Also

-erroff, -errtags, -xwe

A.2.16 –fast

This option is a macro that can be effectively used as a starting point for tuning an executable
for maximum runtime performance. -fast is a macro that can change from one release of the
compiler to the next and expands to options that are target platform specific. Use the -dryrun
or -xdryrun option to examine the expansion of -fast, and incorporate the appropriate
options of -fast into the ongoing process of tuning the executable.

This option is a macro that selects a combination of compilation options for optimum
execution speed on the machine upon which the code is compiled.

A.2.16.1 Expansions
This option provides near maximum performance for many applications by expanding to the
following compilation options.

TABLE A–4 -fastExpansion

Option SPARC x86

–fns X X

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012176

TABLE A–4 -fastExpansion (Continued)
Option SPARC x86

–fsimple=2 X X

–nofstore - X

-xbuiltin=%all X X

–xlibmil X X

–xlibmopt X X

–xmemalign X -

–xO5 X X

—xregs=frameptr - X

–xtarget=native X X

Interactions
The -fast macro expands into compilation options that may affect other specified options. For
example, in the following command, the expansion of the -fast macro includes
-xtarget=native which reverts -xarch to one of the 32-bit architecture options.

Incorrect:

example% CC -xarch=sparcvis2 -fast test.cc

Correct:

example% CC -fast -xarch=sparcvis2 test.cc

See the description for each option to determine possible interactions.

The code generation option, the optimization level, the optimization of built-in functions, and
the use of inline template files can be overridden by subsequent options (see examples). The
optimization level that you specify overrides a previously set optimization level.

The –fast option includes –fns –ftrap=%none; that is, this option turns off all trapping.

On x86 the —fast option includes —xregs=frameptr. See the discussion of this option for
details, especially when compiling mixed C, Fortran, and C++ source codes.

Examples
The following compiler command results in an optimization level of –xO3.

example% CC –fast –xO3

The following compiler command results in an optimization level of –xO5.

A.2 Option Reference

Appendix A • C++ Compiler Options 177

example% CC -xO3 –fast

Warnings

If you compile and link in separate steps, the -fast option must appear in both the compile
command and the link command.

Object binaries compiled with the -fast option are not portable. For example, using the
following command on an UltraSPARC III system generates a binary that will not execute on an
UltraSPARC II system.

example% CC -fast test.cc

Do not use this option for programs that depend on IEEE standard floating-point arithmetic.
Different numerical results, premature program termination, or unexpected SIGFPE signals
can occur.

The expansion of -fast includes -D_MATHERR_ERRNO_DONTCARE.

With -fast, the compiler is free to replace calls to floating-point functions with equivalent
optimized code that does not set the errno variable. Further, -fast also defines the macro
__MATHERR_ERRNO_DONTCARE, which allows the compiler to ignore ensuring the validity of
errno and floating-point exceptions raised after a floating-point function call. As a result, user
code that relies on the value of errno or an appropriate floating-point exception raised after a
floating-point function call could produce inconsistent results.

One way around this problem is to avoid compiling such codes with -fast. However, if -fast
optimization is required and the code depends on the value of errno being set properly or a
floating-point exception being raised after floating-point library calls, you should compile with
the following options after -fast on the command line to inhibit the compiler from optimizing
out such library calls:

-xbuiltin=%none -U__MATHERR_ERRNO_DONTCARE -xnolibmopt -xnolibmil

To display the expansion of —fast on any platform, run the command CC —dryrun —fast as
shown in the following example.

>CC -dryrun -fast |& grep ###

command line files and options (expanded):

-dryrun -xO5 -xarch=sparcvis2 -xcache=64/32/4:1024/64/4 \

-xchip=ultra3i -xmemalign=8s -fsimple=2 -fns=yes -ftrap=%none \

-xlibmil -xlibmopt -xbuiltin=%all -D__MATHERR_ERRNO_DONTCARE

See Also

-fns, -fsimple, -ftrap=%none, -xlibmil, -nofstore, -xO5, -xlibmopt, -xtarget=native

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012178

A.2.17 –features=a[,a...]
Enables/disables various C++ language features named in a comma-separated list.

A.2.17.1 Values
Keyword a can have the values shown in the following table. The no% prefix disables the
associated option.

TABLE A–5 -featuresValues

Value Meaning

%all Deprecated — Do not use. Turns on almost all the -features options.
Results can be unpredictable.

[no%]altspell Recognize alternative token spellings (for example, “and” for “&&”). The
default is altspell.

[no%]anachronisms Allow anachronistic constructs. When disabled (that is,
-features=no%anachronisms), no anachronistic constructs are
allowed. The default is anachronisms.

[no%]bool Allow the bool type and literals. When enabled, the macro _BOOL=1.
When not enabled, the macro is not defined. The default is bool.

[no%]conststrings Put literal strings in read-only memory. The default is conststrings.

cplusplus_redef Allows the normally pre-defined macro __cplusplus to be redefined by
a -D option on the command line. Attempting to redefine __cplusplus
with a #define directive in source code is not allowed. Example:

CC —features=cplusplus_redef —D__cplusplus=1 ...

The g++ compiler typically predefines the __cplusplus macro to 1, and
some source code might depend on this non-standard value. (The
standard value is 199711L for compilers implementing the 1998 C++
standard or the 2003 update. Future standards will require a larger value
for the macro.)

Do not use this option unless you need to redefine __cplusplus to 1 to
compile code intended for g++.

[no%]except Allow C++ exceptions. When C++ exceptions are disabled (that is,
-features=no%except), a throw-specification on a function is accepted
but ignored; the compiler does not generate exception code. Note that
the keywords try, throw, and catch are always reserved. See “8.3
Disabling Exceptions” on page 100. The default is except.

explicit Recognize the keyword explicit. The option no%explicit is not
allowed.

[no%]export Recognize the keyword export. The default is export.

A.2 Option Reference

Appendix A • C++ Compiler Options 179

TABLE A–5 -featuresValues (Continued)
Value Meaning

[no%]extensions Allow nonstandard code that is commonly accepted by other C++
compilers. The default is no%extensions.

[no%]iddollar Allow a $ symbol as a noninitial identifier character. The default is
no%iddollar.

[no%]localfor Use standard-conforming local-scope rules for the for statement. The
default is localfor.

[no%]mutable Recognize the keyword mutable. The default is mutable.

namespace Recognize the keyword namespace. The option no%namespace is not
allowed.

[no%]nestedacess Allow nested classes to access private members of the enclosing class.
Default: -features=nestedaccess

rtti Allow runtime type identification (RTTI). The option no%rtti is not
allowed.

[no%]rvalueref Allow binding a non-const reference to an rvalue or temporary.
Default: -features=no%rvalueref

The C++ compiler, by default, enforces the rule that a non-const
reference cannot be bound to a temporary or rvalue. To override this
rule, use the option -features=rvalueref.

[no%]split_init Put initializers for nonlocal static objects into individual functions.
When you use -features=no%split_init, the compiler puts all the
initializers in one function. Using -features=no%split_init

minimizes code size at the possible expense of compile time. The default
is split_init.

[no%]transitions Allow ARM language constructs that are problematic in standard C++
and that may cause the program to behave differently than expected or
that may be rejected by future compilers. When you use
-features=no%transitions, the compiler treats these as errors. When
you use -features=transitions, the compiler issues warnings about
these constructs instead of error messages.

The following constructs are considered to be transition errors:
redefining a template after it was used, omitting the typename directive
when it is needed in a template definition, and implicitly declaring type
int. The set of transition errors may change in a future release. The
default is transitions.

[no%]strictdestrorder Follow the requirements specified by the C++ standard regarding the
order of the destruction of objects with static storage duration. The
default is strictdestrorder.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012180

TABLE A–5 -featuresValues (Continued)
Value Meaning

[no%]tmplrefstatic Allow function templates to refer to dependent static functions or static
function templates. The default is the standard conformant
no%tmplrefstatic.

[no%]tmplife Clean up the temporary objects that are created by an expression at the
end of the full expression, as defined in the ANSI/ISO C++ Standard.
(When -features=no%tmplife is in effect, most temporary objects are
cleaned up at the end of their block.) The default is tmplife.

%none Deprectated — Do not use. Turns off almost all the features. Results can
be unpredictable.

Interactions

This option accumulates instead of overrides.

Use of the following is not compatible with the standard libraries and headers:

■ no%bool

■ no%except

■ no%mutable

Warnings

Do not use -features=%all or -features=%none. These keywords are deprecated and might
be removed in a future release. Results can be unpredictable.

The behavior of a program might change when you use the -features=tmplife option.
Testing whether the program works both with and without the -features=tmplife option is
one way to test the program’s portability.

See Also

Table 3–17 and the C++ Migration Guide

A.2.18 -filt[=filter[,filter...]]
Controls the filtering that the compiler normally applies to linker and compiler error messages.

A.2.18.1 Values
filter must be one of the values listed in the following table. The %no prefix disables the
associated suboption.

A.2 Option Reference

Appendix A • C++ Compiler Options 181

TABLE A–6 -filtValues

Value Meaning

[no%]errors Show the C++ explanations of the linker error messages. The suppression of the
explanations is useful when the linker diagnostics are provided directly to
another tool.

[no%]names Demangle the C++ mangled linker names.

[no%]returns Demangle the return types of functions. Suppression of this type of demangling
helps you to identify function names more quickly, but note that in the case of
co-variant returns, some functions differ only in the return type.

[no%]stdlib Simplify names from the standard library in both the linker and compiler error
messages and provide an easier way to recognize the names of standard library
template types.

%all Equivalent to -filt=errors,names,returns,stdlib. This is the default
behavior.

%none Equivalent to -filt=no%errors,no%names,no%returns,no%stdlib.

Defaults

If you do not specify the -filt option or if you specify -filt without any values, then the
compiler assumes -filt=%all.

Examples

The following examples show the effects of compiling this code with the -filt option.

// filt_demo.cc

class type {

public:

virtual ~type(); // no definition provided

};

int main()

{

type t;

}

When you compile the code without the -filt option, the compiler assumes
-filt=errors,names,returns,stdlib and displays the standard output.

example% CC filt_demo.cc

Undefined first referenced

symbol in file

type::~type() filt_demo.o

type::__vtbl filt_demo.o

[Hint: try checking whether the first non-inlined, /

non-pure virtual function of class type is defined]

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012182

ld: fatal: Symbol referencing errors. No output written to a.out

The following command suppresses the demangling of the of the C++ mangled linker names
and suppresses the C++ explanations of linker errors.

example% CC -filt=no%names,no%errors filt_demo.cc

Undefined first referenced

symbol in file

__1cEtype2T6M_v_ filt_demo.o

__1cEtypeG__vtbl_ filt_demo.o

ld: fatal: Symbol referencing errors. No output written to a.out

Now consider this code:

#include <string>

#include <list>

int main()

{

std::list<int> l;

std::string s(l); // error here

}

Specifying -filt=no%stdlib results in the following output:

Error: Cannot use std::list<int, std::allocator<int>> to initialize

std::basic_string<char, std::char_traits<char>,

std::allocator<char>>.

Specifying -filt=stdlib results in the following output:

Error: Cannot use std::list<int> to initialize std::string .

Interactions

When you specify no%names, neither returns nor no%returns has an effect. That is, the
following options are equivalent:

■ -filt=no%names

■ -filt=no%names,no%returns

■ -filt=no%names,returns

A.2.19 –flags

Same as– xhelp=flags.

A.2 Option Reference

Appendix A • C++ Compiler Options 183

A.2.20 -fma[={none|fused}]
(SPARC) Enables automatic generation of floating-point, fused, multiply-add instructions.
-fma=none disables generation of these instructions. -fma=fused allows the compiler to attempt
to find opportunities to improve the performance of the code by using floating-point, fused,
multiply-add instructions.

The default is -fma=none.

The minimum requirements are -xarch=sparcfmaf and an optimization level of at least -xO2
for the compiler to generate fused multiply-add instructions. The compiler marks the binary
program if fused multiply-add instructions are generated in order to prevent the program from
executing on platforms that do not support them.

Fused multiply-add instructions eliminate the intermediate rounding step between the multiply
and the add. Consequently, programs may produce different results when compiled with
-fma=fused, although precision will tend to be increased rather than decreased.

A.2.21 –fnonstd

This is a macro that expands to —ftrap=common on x86, and —fns —ftrap=common on SPARC.

See –fns and –ftrap=common for more information.

A.2.22 –fns[={yes|no}]
■ SPARC: Enables/disables the SPARC nonstandard floating-point mode.

-fns=yes (or -fns) causes the nonstandard floating point mode to be enabled when a
program begins execution.
This option provides a way of toggling the use of nonstandard or standard floating-point
mode following some other macro option that includes –fns, such as –fast.
On some SPARC architectures, the nonstandard floating-point mode disables “gradual
underflow,” causing tiny results to be flushed to zero rather than to produce subnormal
numbers. It also causes subnormal operands to be silently replaced by zero.
On those SPARC architectures that do not support gradual underflow and subnormal
numbers in hardware, -fns=yes (or -fns) can significantly improve the performance of
some programs.

■ x86: Selects/deselects SSE flush-to-zero mode and, where available, denormals-are-zero
mode.
This option causes subnormal results to be flushed to zero. Where available, this option also
causes subnormal operands to be treated as zero.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012184

This option has no effect on traditional x86 floating-point operations that do not utilize the
SSE or SSE2 instruction set.

A.2.22.1 Values
The -fns option can have the values listed in the following table.

TABLE A–7 -fnsValues

Value Meaning

yes Selects nonstandard floating-point mode

no Selects standard floating-point mode

Defaults

If -fns is not specified, the nonstandard floating point mode is not enabled automatically.
Standard IEEE 754 floating-point computation takes place, that is, underflows are gradual.

If only –fns is specified, –fns=yes is assumed.

Examples

In the following example, -fast expands to several options, one of which is -fns=yes which
selects nonstandard floating-point mode. The subsequent -fns=no option overrides the initial
setting and selects floating-point mode.

example% CC foo.cc -fast -fns=no

Warnings

When nonstandard mode is enabled, floating-point arithmetic can produce results that do not
conform to the requirements of the IEEE 754 standard.

If you compile one routine with the -fns option you should compile all routines of the
program with the –fns option. Otherwise, you might get unexpected results.

This option is effective only when compiling the main program.

Use of the –fns=yes (or -fns) option might generate warning messages if your program
encounters a floating-point error normally managed by the IEEE floating-point trap handlers.

See Also

Numerical Computation Guide, ieee_sun(3M) man page

A.2 Option Reference

Appendix A • C++ Compiler Options 185

A.2.23 –fprecision=p
x86: Sets the non-default floating-point precision mode.

The –fprecision option sets the rounding precision mode bits in the floating-point control
word (FPCW). These bits control the precision to which the results of basic arithmetic
operations (add, subtract, multiply, divide, and square root) are rounded.

A.2.23.1 Values
p must be one of the values listed in the following table.

TABLE A–8 -fprecisionValues

Value Meaning

single Rounds to an IEEE single-precision value.

double Rounds to an IEEE double-precision value.

extended Rounds to the maximum precision available.

If p is single or double, this option causes the rounding precision mode to be set to single or
double precision, respectively, when a program begins execution. If p is extended or the
–fprecision option is not used, the rounding precision mode remains at the extended
precision.

The single precision rounding mode causes results to be rounded to 24 significant bits, and
double precision rounding mode causes results to be rounded to 53 significant bits. In the
default extended precision mode, results are rounded to 64 significant bits. This mode controls
only the precision to which results in registers are rounded, and it does not affect the range. All
results in register are rounded using the full range of the extended double format. Results that
are stored in memory are rounded to both the range and precision of the destination format,
however.

The nominal precision of the float type is single. The nominal precision of the long double
type is extended.

Defaults
When the –fprecision option is not specified, the rounding precision mode defaults to
extended.

Warnings
This option is effective only on x86 systems and only if used when compiling the main program,
but is ignored if compiling for 64–bit (-m64) or SSE2–enabled (-xarch=sse2) processors. It is
also ignored on SPARC systems.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012186

A.2.24 –fround=r
Sets the IEEE rounding mode in effect at startup.

This option sets the IEEE 754 rounding mode that can be used by the compiler in evaluating
constant expressions. The rounding mode is established at runtime during the program
initialization.

The meanings are the same as those for the ieee_flags subroutine, which can be used to
change the mode at runtime.

A.2.24.1 Values
r must be one of the values listed in the following table.

TABLE A–9 -froundValues

Value Meaning

nearest Rounds towards the nearest number and breaks ties to even numbers.

tozero Rounds to zero.

negative Rounds to negative infinity.

positive Rounds to positive infinity.

Defaults

When the –fround option is not specified, the rounding mode defaults to -fround=nearest.

Warnings

If you compile one routine with –fround=r, you must compile all routines of the program with
the same –fround=r option. Otherwise, you might get unexpected results.

This option is effective only if used when compiling the main program.

Note that compiling with —xvector or —xlibmopt require default rounding. Programs that link
with libraries compiled with either —xvector or —xlibmopt or both must ensure that default
rounding is in effect.

A.2.25 –fsimple[=n]
Selects floating-point optimization preferences.

This option enables the optimizer to make simplifying assumptions concerning floating-point
arithmetic.

A.2 Option Reference

Appendix A • C++ Compiler Options 187

A.2.25.1 Values
If n is present, it must be 0, 1, or 2.

TABLE A–10 -fsimpleValues

Value Meaning

0 Permit no simplifying assumptions. Preserve strict IEEE 754 conformance.

1 Allow conservative simplification. The resulting code does not strictly conform to
IEEE 754, but numeric results of most programs are unchanged.

With -fsimple=1, the optimizer can assume the following:
■ IEEE754 default rounding/trapping modes do not change after process

initialization.

■ Computation producing no visible result other than potential floating-point
exceptions can be deleted.

■ Computation with infinities or NaNs as operands needs to propagate NaNs to
their results; that is, x*0 can be replaced by 0.

■ Computations do not depend on sign of zero.
With -fsimple=1, the optimizer is not allowed to optimize completely without
regard to roundoff or exceptions. In particular, a floating-point computation
cannot be replaced by one that produces different results when rounding modes
are held constant at runtime.

2 Includes all the functionality of -fsimple=1 and also permits aggressive
floating-point optimization that can cause many programs to produce different
numeric results due to changes in rounding. For example, permit the optimizer to
replace all computations of x/y in a given loop with x*z, where x/y is guaranteed to
be evaluated at least once in the loop z=1/y, and the values of y and z are known to
have constant values during execution of the loop.

Defaults

If –fsimple is not designated, the compiler uses -fsimple=0.

If -fsimple is designated but no value is given for n, the compiler uses -fsimple=1.

Interactions

-fast implies– fsimple=2.

Warnings

This option can break IEEE 754 conformance.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012188

See Also

-fast

A.2.26 –fstore

(x86) Forces precision of floating–point expressions.

This option causes the compiler to convert the value of a floating-point expression or function
to the type on the left side of an assignment rather than leave the value in a register when the
following is true:

■ The expression or function is assigned to a variable.
■ The expression is cast to a shorter floating-point type.

To turn off this option, use the –nofstore option. Both —fstore and —nofstore are ignored
with a warning on SPARC platforms.

A.2.26.1 Warnings
Due to roundoffs and truncation, the results can be different from those that are generated from
the register values.

See Also

–nofstore

A.2.27 -ftrap=t[,t...]
Sets the IEEE trapping mode in effect at startup but does not install a SIGFPE handler. You can
use ieee_handler(3M) or fex_set_handling(3M) to simultaneously enable traps and install a
SIGFPE handler. If you specify more than one value, the list is processed sequentially from left
to right.

A.2.27.1 Values
t can be one of the values listed in the following table.

TABLE A–11 The -ftrapValues

Value Meaning

[no%]division Trap on division by zero.

[no%]inexact Trap on inexact result.

A.2 Option Reference

Appendix A • C++ Compiler Options 189

TABLE A–11 The -ftrapValues (Continued)
Value Meaning

[no%]invalid Trap on invalid operation.

[no%]overflow Trap on overflow.

[no%]underflow Trap on underflow.

%all Trap on all of the above.

%none Trap on none of the above.

common Trap on invalid, division by zero, and overflow.

Note that the [no%] form of the option is used only to modify the meaning of the %all and
common values, and must be used with one of these values, as shown in the example. The [no%]
form of the option by itself does not explicitly cause a particular trap to be disabled.

Defaults

If you do not specify –ftrap, the compiler assumes –ftrap=%none.

Examples

–ftrap=%all,no%inexact means to set all traps except inexact.

Warnings

If you compile one routine with –ftrap=t, you should compile all routines of the program with
the same -ftrap=t option. Otherwise, you might get unexpected results.

Use the -ftrap=inexact trap with caution. Use of– ftrap=inexact results in the trap being
issued whenever a floating-point value cannot be represented exactly. For example, the
following statement generates this condition:

x = 1.0 / 3.0;

This option is effective only if used when compiling the main program. Be cautious when using
this option. If you want to enable the IEEE traps, use –ftrap=common.

See Also

ieee_handler(3M) and fex_set_handling(3M) man pages.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012190

A.2.28 –G

Build a dynamic shared library instead of an executable file.

All source files specified in the command line are compiled with -xcode=pic13 by default.

When building a shared library from files that involve templates and were compiled with the
-instances=extern option, any template instances referenced by the .o files will be included
from the template cache automatically.

If you are creating a shared object by specifying -G along with other compiler options that must
be specified at both compile time and link time, make sure that those same options are also
specified at both compile time and link time when you link with the resulting shared object.

When you create a shared object, all the object files compiled for 64–bit SPARC architectures
must also be compiled with an explicit -xcode value as recommended in “A.2.113 –xcode=a” on
page 238.

A.2.28.1 Interactions
The following options are passed to the linker if –c (the compile-only option) is not specified:
■ –dy

■ –G

■ –R

Warnings

Do not use ld -G to build shared libraries; use CC -G. The CC driver automatically passes several
options to ld that are needed for C++.

When you use the -G option, the compiler does not pass any default -l options to ld. If you
want the shared library to have a dependency on another shared library, you must pass the
necessary -l option on the command line. For example, if you want the shared library to be
dependent upon libCrun, you must pass -lCrun on the command line.

See Also

-dy, -xcode=pic13, –ztext, ld(1) man page, “14.3 Building Dynamic (Shared) Libraries” on
page 159.

A.2.29 –g

Produces additional symbol table information for debugging with dbx(1) or the Debugger and
for analysis with the Performance Analyzer analyzer(1).

A.2 Option Reference

Appendix A • C++ Compiler Options 191

Instructs both the compiler and the linker to prepare the file or program for debugging and for
performance analysis.

The tasks include:

■ Producing detailed information, known as stabs, in the symbol table of the object files and
the executable

■ Producing helper functions that the debugger can call to implement some of its features
■ Disabling the inline generation of functions if no optimization level is specified; that is,

using this option implies the +d option if no optimization level is also specified. -g with any
-O or -xO level does not disable inlining.

■ Disabling certain levels of optimization

A.2.29.1 Interactions
If you use this option with –xOlevel (or its equivalent options, such as -O), you will get limited
debugging information. For more information, see “A.2.151 -xOlevel” on page 267.

If you use this option and the optimization level is -xO4 or higher, the compiler provides
best-effort symbolic information with full optimization. If you use —g without an optimization
level specified, inlining of function calls will be disabled. (Inlining is enabled when an
optimization level is specified with —g.)

When you specify this option, the +d option is specified automatically unless you also specify -O
or -xO.

To use the full capabilities of the Performance Analyzer, compile with the -g option. While
some performance analysis features do not require -g, you must compile with -g to view
annotated source, some function level information, and compiler commentary messages. See
the analyzer(1) man page and the Performance Analyzer manual for more information.

The commentary messages that are generated with -g describe the optimizations and
transformations that the compiler made while compiling your program. Use the er_src(1)
command to display the messages, which are interleaved with the source code.

Warnings

If you compile and link your program in separate steps, then including the -g option in one
step and excluding it from the other step will not affect the correctness of the program, but it
will affect the ability to debug the program. Any module that is not compiled with -g (or -g0),
but is linked with -g (or -g0) will not be prepared properly for debugging. Note that compiling
the module that contains the function main with the -g option (or the -g0 option) is usually
necessary for debugging.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012192

See Also

+d,– g0,– xs, analyzer(1) man page, er_src(1) man page, ld(1) man page, Debugging a
Program With dbx (for details about stabs), Performance Analyzer . manuals.

A.2.30 –g0

Compiles and links for debugging, but does not disable inlining.

This option is the same as –g, except that +d is disabled and dbx cannot use its step into feature
on inlined functions.

If you specify -g0 and the optimization level is -xO3 or lower, the compiler provides best-effort
symbolic information with almost full optimization. Tail-call optimization and back-end
inlining are disabled.

A.2.30.1 See also
+d, -g, Debugging a Program With dbx

A.2.31 -g3

Produce additional debugging information.

The —g3 option is the same as —g0 with additional debugging symbol table information to
enable dbx to display the expansion of macros in the source code. This additional symbol table
information can increase the size of the resulting .o and executable files compared to compiling
with —g0.

A.2.32 –H

Prints path names of included files.

On the standard error output (stderr), this option prints, one per line, the path name of each
#include file contained in the current compilation.

A.2.33 –h[]name
Assigns the name name to the generated dynamic shared library.

This is a linker option passed to ld. In general, the name after -h should be exactly the same as
the one after –o. A space between the –h and name is optional.

A.2 Option Reference

Appendix A • C++ Compiler Options 193

The compile-time loader assigns the specified name to the shared dynamic library you are
creating. It records the name in the library file as the intrinsic name of the library. If there is no
–hname option, then no intrinsic name is recorded in the library file.

Every executable file has a list of shared library files that are needed. When the runtime linker
links the library into an executable file, the linker copies the intrinsic name from the library into
that list of needed shared library files. If there is no intrinsic name of a shared library, then the
linker copies the path of the shared library file instead.

When a shared library is built without the-h option, the runtime loader looks only for the file
name of the library. You can replace the library with a different library with the same file name.
If the shared library has an intrinsic name, the loader checks the intrinsic name when loading
the file. If the intrinsic name does not match, the loader will not use the replacement file.

A.2.33.1 Examples
example% CC -G -o libx.so.1 -h libx.so.1 a.o b.o c.o

A.2.34 –help

Same as -xhelp=flags.

A.2.35 -Ipathname
Add pathname to the #include file search path.

This option adds pathname to the list of directories that are searched for #include files with
relative file names (those that do not begin with a slash).

The compiler searches for quote-included files (of the form #include "foo.h") in this order:

1. In the directory containing the source
2. In the directories named with -I options, if any
3. In the include directories for compiler-provided C++ header files, ANSI C header files, and

special-purpose files
4. In the /usr/include directory

The compiler searches for bracket-included files (of the form #include <foo.h>) in this order:

1. In the directories named with -I options, if any
2. In the include directories for compiler-provided C++ header files, ANSI C header files, and

special-purpose files
3. In the /usr/include directory

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012194

Note – If the spelling matches the name of a standard header file, also refer to “11.7.5
Standard Header Implementation” on page 126 .

A.2.35.1 Interactions
The -I- option allows you to override the default search rules.

If you specify -library=no%Cstd, then the compiler does not include in its search path the
compiler-provided header files that are associated with the C++ standard libraries. See “11.7
Replacing the C++ Standard Library” on page 125.

If –ptipath is not used, the compiler looks for template files in –Ipathname.

Use –Ipathname instead of –ptipath.

This option accumulates instead of overrides.

Warnings

Never specify the compiler installation area, /usr/include, /lib, or /usr/lib, as search
directories.

See Also

-I-

A.2.36 -I-

Change the include-file search rules.

For include files of the form #include "foo.h", search the directories in the following order:

1. The directories named with -I options (both before and after -I-)

2. The directories for compiler-provided C++ header files, ANSI C header files, and
special-purpose files

3. The /usr/include directory

For include files of the form #include <foo.h>, search the directories in the following order:

1. The directories named in the -I options that appear after -I-

2. The directories for compiler-provided C++ header files, ANSI C header files, and
special-purpose files

A.2 Option Reference

Appendix A • C++ Compiler Options 195

3. The /usr/include directory

Note – If the name of the include file matches the name of a standard header, also refer to “11.7.5
Standard Header Implementation” on page 126 .

A.2.36.1 Examples
The following example shows the results of using -I- when compiling prog.cc.

prog.cc

#include "a.h"
#include <b.h>

#include "c.h"
c.h

#ifndef _C_H_1

#define _C_H_1

int c1;

#endif

inc/a.h

#ifndef _A_H

#define _A_H

#include "c.h"
int a;

#endif

inc/b.h

#ifndef _B_H

#define _B_H

#include <c.h>

int b;

#endif

inc/c.h

#ifndef _C_H_2

#define _C_H_2

int c2;

#endif

The following command shows the default behavior of searching the current directory (the
directory of the including file) for include statements of the form #include "foo.h". When
processing the #include "c.h" statement in inc/a.h, the compiler includes the c.h header file
from the inc subdirectory. When processing the #include "c.h" statement in prog.cc, the
compiler includes the c.h file from the directory containing prog.cc. Note that the -H option
instructs the compiler to print the paths of the included files.

example% CC -c -Iinc -H prog.cc

inc/a.h

inc/c.h

inc/b.h

inc/c.h

c.h

The next command shows the effect of the -I- option. The compiler does not look in the
including directory first when it processes statements of the form #include "foo.h". Instead, it

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012196

searches the directories named by the -I options in the order that they appear in the command
line. When processing the #include "c.h" statement in inc/a.h, the compiler includes the
./c.h header file instead of the inc/c.h header file.

example% CC -c -I. -I- -Iinc -H prog.cc

inc/a.h

./c.h

inc/b.h

inc/c.h

./c.h

Interactions

When -I- appears in the command line, the compiler never searches the current directory
unless the directory is listed explicitly in a -I directive. This effect applies even for include
statements of the form #include "foo.h".

Warnings

Only the first -I- in a command line causes the described behavior.

Never specify the compiler installation area, /usr/include, /lib, or /usr/lib, as search
directories.

A.2.37 –i

Tells the linker, ld, to ignore any LD_LIBRARY_PATH and LD_LIBRARY_PATH_64 settings.

A.2.38 -includefilename
This option causes the compiler to treat filename as if it appears in the first line of a primary
source file as a #include preprocessor directive. Consider the source file t.c:

main()

{

...

}

If you compile t.c with the command cc -include t.h t.c, the compilation proceeds as if the
source file contains the following:

#include "t.h"
main()

{

...

}

A.2 Option Reference

Appendix A • C++ Compiler Options 197

The first directory the compiler searches for filename is the current working directory and not
the directory containing the main source file, as is the case when a file is explicitly included. For
example, the following directory structure contains two header files with the same name, but at
different locations:

foo/

t.c

t.h

bar/

u.c

t.h

If your working directory is foo/bar and you compile with the command cc ../t.c -include

t.h, the compiler includes t.h from foo/bar, not foo/ as would be the case with a #include
directive from within the source file t.c.

If the compiler cannot find the file specified with -include in the current working directory, it
searches the normal directory paths for the file. If you specify multiple -include options, the
files are included in the order they appear on the command line.

A.2.39 -inline

Same as -xinline.

A.2.40 –instances=a
Controls the placement and linkage of template instances.

A.2.40.1 Values
a must be one of the values listed in the following table.

TABLE A–12 -instancesValues

Value Meaning

extern Places all needed instances into the template repository within linker comdat
sections and gives them global linkage. (If an instance in the repository is out
of date, it is reinstantiated.)

Note: If you are compiling and linking in separate steps and you specify
-instance=extern for the compilation step, you must also specify it for the
link step.

explicit Places explicitly instantiated instances into the current object file and gives
them global linkage. Does not generate any other needed instances.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012198

TABLE A–12 -instancesValues (Continued)
Value Meaning

global Places all needed instances into the current object file and gives them global
linkage.

semiexplicit Places explicitly instantiated instances into the current object file and gives
them global linkage. Places all instances needed by the explicit instances into
the current object file and gives them global linkage. Does not generate any
other needed instances.

static Note: -instances=static is deprecated. You no longer need to use
-instances=static because -instances=global now gives you all the
advantages of static without the disadvantages. This option was provided in
earlier compilers to overcome problems that do not exist in this version of the
compiler.

Places all needed instances into the current object file and gives them static
linkage.

Defaults

If –instances is not specified, –instances=global is assumed.

See Also

“7.2.4 Template Instance Placement and Linkage” on page 92

A.2.41 –instlib=filename
Use this option to inhibit the generation of template instances that are duplicated in a library,
either shared or static, and the current object. In general, if your program shares large numbers
of instances with libraries, try -instlib=filename and see whether compilation time improves.

A.2.41.1 Values
Use the filename argument to specify a library that contains template instances that could be
generated by the current compilation. The filename argument must contain a forward slash ’/’
character. For paths relative to the current directory, use dot-slash ’./’.

Defaults

The -instlib=filename option has no default and is only used if you specify it. This option can
be specified multiple times and accumulates.

A.2 Option Reference

Appendix A • C++ Compiler Options 199

Example

Assume that the libfoo.a and libbar.so libraries instantiate many template instances that are
shared with your source file a.cc. Adding -instlib=filename and specifying the libraries helps
reduce compile time by avoiding the redundancy.

example% CC -c -instlib=./libfoo.a -instlib=./libbar.so a.cc

Interactions

When you compile with -g, if the library specified with -instlib=file is not compiled with -g,
those template instances will not be debuggable. The workaround is to avoid -instlib=file
when you use -g.

Warning

If you specify a library with -instlib, you must link with that library.

See Also

-template, -instances, -pti

A.2.42 –KPIC

SPARC: (Obsolete) Same as –xcode=pic32.

x86: Same as –Kpic.

Use this option to compile source files when building a shared library. Each reference to a global
datum is generated as a dereference of a pointer in the global offset table. Each function call is
generated in program counter (PC)-relative addressing mode through a procedure linkage
table.

A.2.43 –Kpic

SPARC: (Obsolete) Same as –xcode=pic13.

x86: Compiles with position-independent code.

Use this option to compile source files when building a shared library. Each reference to a global
datum is generated as a dereference of a pointer in the global offset table. Each function call is
generated in program counter (PC)-relative addressing mode through a procedure linkage
table.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012200

A.2.44 –keeptmp

Retains temporary files created during compilation.

Along with –verbose=diags, this option is useful for debugging.

A.2.44.1 See Also
–v, –verbose

A.2.45 –Lpath
Adds path to the list of directories to search for libraries.

This option is passed to ld. The directory that is named by path is searched before
compiler-provided directories.

A.2.45.1 Interactions
This option accumulates instead of overrides.

Warnings

Never specify the compiler installation area, /usr/include, /lib, or /usr/lib, as search
directories.

A.2.46 –llib
Adds library liblib.a or liblib.so to the linker’s list of search libraries.

This option is passed to ld. Libraries generally have names such as liblib.a or liblib.so,
where the lib and .a or .so parts are required. You should specify the lib part with this option.
You can put as many libraries as you want on a single command line. Libraries are searched in
the order specified with –Ldir.

Use this option after your object file name.

A.2.46.1 Interactions
This option accumulates instead of overrides.

Put -lx after the list of sources and objects to ensure that libraries are searched in the correct
order.

A.2 Option Reference

Appendix A • C++ Compiler Options 201

Warnings

To ensure proper library linking order, you must use -mt rather than -lthread to link with
libthread.

See Also

–Ldir and -mt

A.2.47 –libmieee

Same as –xlibmieee.

A.2.48 –libmil

Same as -xlibmil.

A.2.49 -library=l[,l...]
Incorporates specified CC-provided libraries into compilation and linking.

A.2.49.1 Values
Keyword l must be one of the values in the following table. The no% prefix disables the
associated option.

TABLE A–13 -libraryValues

Value Meaning

[no%]f77 Deprecated. Use -xlang=f77 instead.

[no%]f90 Deprecated. Use -xlang=f90 instead.

[no%]f95 Deprecated. Use -xlang=f95 instead.

[no%]rwtools7 Use classic-iostreams Tools.h++ version 7.

[no%]rwtools7_dbg Use classic-iostreams debug-enabledTools.h++ version 7.

[no%]rwtools7_std Use standard-iostreams Tools.h++ version 7.

[no%]rwtools7_std_dbg Use debug-enabled standard-iostreams Tools.h++ version 7.

[no%]interval Deprecated. Do not use. Use -xia.

[no%]iostream Use libiostream, the classic iostreams library.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012202

TABLE A–13 -libraryValues (Continued)
Value Meaning

[no%]Cstd Use libCstd, the C++ standard library. Include the
compiler-provided C++ standard library header files.

[no%]Crun Use libCrun, the C++ runtime library.

[no%]gc Use libgc garbage collection.

[no%]stlport4 Use STLport’s Standard Library implementation version 4.5.3
instead of the default libCstd. For more information about
using STLport’s implementation, see “12.2 STLport” on
page 131.

[no%]stlport4_dbg Use STLport’s debug-enabled library.

[no%]sunperf Use the Sun Performance Library.

[no%]stdcxx4 Use the Apache stdcxx version 4 C++ standard library in
Solaris instead of the default libCstd. This option also sets the
-mt option implicitly. The stdcxx library requires
multi-threading mode. This option must be used consistently
on every compilation and link command in the entire
application. Code compiled with -library=stdcxx4 cannot be
used in the same program as code compiled with the default
-library=Cstd or the optional -library=stlport4.

%none Use no C++ libraries, except for libCrun.

A.2.49.2 Defaults
■ Standard mode (the default mode)

■ The libCstd library is always included unless it is specifically excluded using
-library=%none or -library=no%Cstd, —library=stdcxx4 or -library=stlport4.

■ The libCrun library is always included unless it is specifically excluded using
-library=no%Crun.

The libm library is always included, even if you specify -library=%none.

A.2.49.3 Examples
To link in standard mode without any C++ libraries (except libCrun):

example% CC -library=%none

To include the classic-iostreams Rogue Wave tools.h++ library in standard mode:

example% CC –library=rwtools7,iostream

To include the standard-iostreams Rogue Wave tools.h++ library in standard mode:

A.2 Option Reference

Appendix A • C++ Compiler Options 203

example% CC -library=rwtools7_std

A.2.49.4 Interactions
If a library is specified with -library, the proper –I paths are set during compilation. The
proper –L, –Y P, –R paths and –l options are set during linking.

This option accumulates instead of overrides.

When you use the interval arithmetic libraries, you must include one of the following libraries:
libC, libCstd, or libiostream.

Use of the -library option ensures that the -l options for the specified libraries are handled in
the right order. For example, the -l options are passed to ld in the order -lrwtool
-liostream for both -library=rwtools7,iostream and -library=iostream,rwtools7.

The specified libraries are linked before the system support libraries are linked.

For —library=stdcxx4, the Apache stdcxx library must be installed in /usr/include and
/usr/lib on Oracle Solaris platforms.

You cannot use -library=sunperf and -xlic_lib=sunperf on the same command line.

You can use at most only one of -library=stlport4, -library=stdcxx4, or -library=Cstd
options on any command line.

Only one Rogue Wave tools library can be used at a time and you cannot use any Rogue Wave
tools library with -library=stlport4 or -library=stdcxx4.

When you include the classic-iostreams Rogue Wave tools library in standard mode (the
default mode), you must also include libiostream (see the C++ Migration Guide for additional
information). You can use the standard-iostreams Rogue Wave tools library in standard mode
only. The following command examples show both valid and invalid use of the Rogue Wave
tools.h++ library options.

% CC -library=rwtools7,iostream foo.cc <-- valid, classic iostreams
% CC -library=rwtools7 foo.cc <-- invalid

% CC -library=rwtools7_std foo.cc <-- valid, standard iostreams
% CC -library=rwtools7_std,iostream foo.cc <-- invalid

If you include both libCstd and libiostream, you must be careful to not use the old and new
forms of iostreams within a program to access the same file (for example, cout and std::cout).
Mixing standard iostreams and classic iostreams in the same program is likely to cause
problems if the same file is accessed from both classic and standard iostream code.

Standard-mode programs that do not link Crun or any of the Cstd or stlport4 libraries cannot
use all features of the C++ language.

If -xnolib is specified, -library is ignored.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012204

A.2.49.5 Warnings
If you compile and link in separate steps, the set of -library options that appear in the compile
command must appear in the link command.

The stlport4, Cstd, and iostream libraries provide their own implementation of I/O streams.
Specifying more than one of these with the -library option can result in undefined program
behavior. For more information about using STLport’s implementation, see “12.2 STLport” on
page 131.

The set of libraries is not stable and might change from release to release.

A.2.49.6 See Also
See “11.4.1.1 Note About Classic iostreams and Legacy RogueWave Tools” on page 122

–I, –l, –R, –staticlib, -xia, -xlang, –xnolib, “Caveats:” on page 128, “12.2.1
Redistribution and Supported STLport Libraries” on page 132, Tools.h++ User’s Guide.

For information about using the -library=no%cstd option to enable use of your own C++
standard library, see “11.7 Replacing the C++ Standard Library” on page 125.

A.2.50 -m32|-m64
Specifies the memory model for the compiled binary object.

Use -m32 to create 32-bit executables and shared libraries. Use -m64 to create 64-bit executables
and shared libraries.

The ILP32 memory model (32-bit int, long, pointer data types) is the default on all Oracle
Solaris platforms and on Linux platforms that are not 64-bit enabled. The LP64 memory model
(64-bit long, pointer data types) is the default on Linux platforms that are 64-bit enabled. -m64
is permitted only on platforms that are enabled for the LP64 model.

Object files or libraries compiled with -m32 cannot be linked with object files or libraries
compiled with-m64.

Modules that are compiled with -m32|-m64 must also be linked with -m32|-m64. For a complete
list of compiler options that must be specified at both compile time and link time, see “3.3.3
Compile-Time and Link-Time Options” on page 48.

Applications that use large amounts of static data on 64–bit platforms (-m64) may also require
-xmodel=medium. Be aware that some Linux platforms do not support the medium model.

Note that in previous compiler releases, the memory model, ILP32 or LP64, was implied by the
choice of the instruction set with -xarch. Starting with the Solaris Studio 12 compilers just
adding -m64 to the command line on most platforms is the correct way to create 64-bit objects.

A.2 Option Reference

Appendix A • C++ Compiler Options 205

On Oracle Solaris, -m32 is the default. On Linux systems supporting 64-bit programs, -m64
-xarch=sse2 is the default.

A.2.50.1 See Also
-xarch.

A.2.51 -mc

Removes duplicate strings from the ELF .comment section of the object file. When you use the
-mc option, the mcs —c command is invoked. See the mcs(1) man page for details.

A.2.52 –misalign

SPARC: Obsolete. This option should not be used. Use —xmemalign=2i instead..

A.2.53 -mr[,string]
Removes all strings from the .comment section of the object file and, if string is supplied, places
string in that section. If the string contains blanks, the string must be enclosed in quotation
marks. When you use this option, the command mcs -d [-a string] is invoked.

A.2.54 -mt[={yes|no}]
Use this option to compile and link multithreaded code using Oracle Solaris threads or POSIX
threads API. The -mt=yes option assures that libraries are linked in the appropriate order.

This option passes -D_REENTRANT to the preprocessor.

To use Oracle Solaris threads, include the thread.h header file and compile with the —mt=yes
option. To use POSIX threads on Oracle Solaris platforms, include the pthread.h header file
and compile with the —mt=yes —lpthread options.

On Linux platforms, only the POSIX threads API is available. (There is no libthread on Linux
platforms.) Consequently, —mt=yes on Linux platforms adds —lpthread instead of —lthread.
To use POSIX threads on Linux platforms, compile with —mt=yes.

Note that when compiling with —G, neither —lthread nor —lpthread are automatically included
by —mt=yes. You will need to explicitly list these libraries when building a shared library.

The —xopenmp option (for using the OpenMP shared-memory parallelization API) includes
—mt=yes automatically.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012206

If you compile with -mt=yes and link in a separate step, you must use the -mt=yes option in the
link step as well as the compile step. If you compile and link one translation unit with -mt, you
must compile and link all units of the program with -mt

-mt=yes is the default behavior of the compiler. If this behavior is not desired, compile with
—mt=no.

The option —mt is equivalent to —mt=yes.

A.2.54.1 See Also
–xnolib, and the Oracle Solaris Multithreaded Programming Guide and Linker and Libraries
Guide

A.2.55 –native

Same as –xtarget=native.

A.2.56 –noex

Same as –features=no%except.

A.2.57 –nofstore

x86: Cancel -fstore on command line.

Cancels forcing expressions to have the precision of the destination variable invoked by
-fstore. -nofstore is invoked by -fast. -fstore is the usual default.

A.2.57.1 See Also
–fstore

A.2.58 –nolib

Same as –xnolib.

A.2.59 –nolibmil

Same as –xnolibmil.

A.2 Option Reference

Appendix A • C++ Compiler Options 207

A.2.60 –norunpath

Does not build a runtime search path for shared libraries into the executable.

If an executable file uses shared libraries, then the compiler normally builds in a path that points
the runtime linker to those shared libraries. To do so, the compiler passes the –R option to ld.
The path depends on the directory where you have installed the compiler.

This option is recommended for building executables that will be shipped to customers who
might use a different path for the shared libraries that are referenced by the program. Refer to
“11.6 Using Shared Libraries” on page 124

A.2.60.1 Interactions
If you use any shared libraries under the compiler installed area and you also use –norunpath,
then you should either use the –R option at link time or set the environment variable
LD_LIBRARY_PATH at runtime to specify the location of the shared libraries. Doing so enables the
runtime linker to find the shared libraries.

A.2.61 –O

The -O macro expands to -xO3. (Some previous releases expanded —O to –xO2).

The change in default yields higher runtime performance. However, -xO3 may be inappropriate
for programs that rely on all variables being automatically considered volatile. Typical
programs that might have this assumption are device drivers and older multithreaded
applications that implement their own synchronization primitives. The workaround is to
compile with -xO2 instead of -O.

A.2.62 –Olevel
Same as –xOlevel.

A.2.63 –ofilename
Sets the name of the output file or the executable file to filename.

A.2.63.1 Interactions
When the compiler must store template instances, it stores them in the template repository in
the output file’s directory. For example, the following command writes the object file to
./sub/a.o and writes template instances into the repository contained within
./sub/SunWS_cache.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012208

example% CC -instances=extern -o sub/a.o a.cc

The compiler reads from the template repositories corresponding to the object files that it reads.
For example, the following command reads from ./sub1/SunWS_Cache and
./sub2/SunWS_cache, and, if necessary, writes to ./SunWS_cache.

example% CC -instances=extern sub1/a.o sub2/b.o

For more information, see “7.4 Template Repository” on page 96.

Warnings

The filename must have the appropriate suffix for the type of file to be produced by the
compilation. When used with -c, filename specifies the target .o object file; with -G it specifies
the target .so library file. This option and its argument are passed to ld.

filename cannot be the same file as the source file because the CC driver does not overwrite the
source file.

A.2.64 +p

Ignore nonstandard preprocessor asserts.

A.2.64.1 Defaults
If +p is not present, the compiler recognizes nonstandard preprocessor asserts.

Interactions

If +p is used, the following macros are not defined:

■ sun

■ unix

■ sparc

■ i386

A.2.65 –P

Only preprocesses source; does not compile. (Outputs a file with a .i suffix.)

This option does not include preprocessor-type line number information in the output.

A.2.65.1 See Also
–E

A.2 Option Reference

Appendix A • C++ Compiler Options 209

A.2.66 –p

Obsolete, see “A.2.159 –xpg” on page 277.

A.2.67 –pentium

x86: Replace with –xtarget=pentium.

A.2.68 –pg

Obsolete. Uae–xpg.

A.2.69 -PIC

SPARC: Same as –xcode=pic32.

x86: Same as –Kpic.

A.2.70 –pic

SPARC: Same as –xcode=pic13.

x86: Same as -Kpic.

A.2.71 –pta

Same as –template=wholeclass.

A.2.72 –ptipath
Specifies an additional search directory for template source.

This option is an alternative to the normal search path set by –Ipathname. If the -ptipath
option is used, the compiler looks for template definition files on this path and ignores the
–Ipathname option.

Using the –Ipathname option instead of –ptipath produces less confusion.

A.2.72.1 Interactions
This option accumulates instead of overrides.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012210

A.2.72.2 See Also
–Ipathname, and “7.5.2 Definitions Search Path” on page 98

A.2.73 –pto

Same as –instances=static.

A.2.74 –ptv

Same as –verbose=template.

A.2.75 –Qoption phase option[,option…]
Passes option to the compilation phase.

To pass multiple options, specify them in order as a comma-separated list. Options that are
passed to components with -Qoption might be reordered. Options that the driver recognizes
are kept in the correct order. Do not use -Qoption for options that the driver already
recognizes. For example, the C++ compiler recognizes the -z option for the linker (ld). If you
issue a command like the following example, the -z options are passed in order to the linker.

CC -G -zallextract mylib.a -zdefaultextract ... // correct

But if you specify the command like as in the following example, the -z options can be
reordered, giving incorrect results.

CC -G -Qoption ld -zallextract mylib.a -Qoption ld -zdefaultextract ... // error

A.2.75.1 Values
phase must have one of the values listed in the following table.

TABLE A–14 -QoptionValues

SPARC x86

ccfe ccfe

iropt iropt

cg ube

CClink CClink

ld ld

A.2 Option Reference

Appendix A • C++ Compiler Options 211

A.2.75.2 Examples
In the following command , when ld is invoked by the CC driver, –Qoption passes the –i and –m

options to ld.

example% CC -Qoption ld -i,-m test.c

A.2.75.3 Warnings
Be careful to avoid unintended effects. For example, the following sequence of options:

-Qoption ccfe -features=bool,iddollar

are interpreted as:

-Qoption ccfe -features=bool -Qoption ccfe iddollar

The correct usage is

-Qoption ccfe -features=bool,-features=iddollar

These features do not require —Qoption, and are used only as an example.

A.2.76 –qoption phase option
Same as –Qoption.

A.2.77 –qp

Same as –p.

A.2.78 –Qproduce sourcetype
Causes the CC driver to produce output of the type sourcetype.

Sourcetype suffixes are defined in the following table:

TABLE A–15 -QproduceValues

Suffix Meaning

.i Preprocessed C++ source from ccfe

.o Generated object code

.s Assembler source from cg

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012212

A.2.79 –qproduce sourcetype
Same as –Qproduce.

A.2.80 –Rpathname[:pathname…]
Builds dynamic library search paths into the executable file.

This option is passed to ld.

A.2.80.1 Defaults
If the -R option is not present, the library search path that is recorded in the output object and
passed to the runtime linker depends upon the target architecture instruction specified by the
-xarch option. When -xarch is not present, -xarch=generic is assumed.

Examine the output from —dryrun and the —R option passed to the linker, ld, to see the default
paths assumed by the compiler.

A.2.80.2 Interactions
This option accumulates instead of overrides.

If the LD_RUN_PATH environment variable is defined and the –R option is specified, then the path
from –R is scanned and the path from LD_RUN_PATH is ignored.

A.2.80.3 See Also
–norunpath, Linker and Libraries Guide

A.2.81 –S

Compiles and generates only assembly code.

This option causes the CC driver to compile the program and output an assembly source file,
without assembling the program. The assembly source file is named with a .s suffix.

A.2.82 –s

Strips the symbol table from the executable file.

This option removes all symbol information from output executable files. This option is passed
to ld.

A.2 Option Reference

Appendix A • C++ Compiler Options 213

A.2.83 -staticlib=l[,l…]
Indicates which C++ libraries are to be linked statically, as specified by the -library option
(including its defaults), by the -xlang option, and by the -xia option.

A.2.83.1 Values
l must be one of the values listed in the following table.

TABLE A–16 -staticlibValues

Value Meaning

[no%]library Link library statically. The valid values for library are all the valid
values for -library (except %all and %none), all the valid values for
-xlang, and interval (to be used in conjunction with -xia).

%all Statically link all the libraries specified in the -library option, all
the libraries specified in the -xlang option, and, if -xia is specified
in the command line, the interval libraries.

%none Link no libraries specified in the -library option and the -xlang
option statically. If -xia is specified in the command line, link no
interval libraries statically.

A.2.83.2 Defaults
If –staticlib is not specified, –staticlib=%none is assumed.

A.2.83.3 Examples
The following command links libCrun statically because Crun is a default value for –library:

example% CC –staticlib=Crun (correct)

However, the following command does not link libgc because libgc is not linked unless
explicitly specified with the -library option:

example% CC –staticlib=gc (incorrect)

To link libgc statically, use the following command:

example% CC -library=gc -staticlib=gc (correct)

With the following command, the librwtool library is linked dynamically. Because librwtool
is not a default library and is not selected using the -library option, -staticlib has no effect:

example% CC -lrwtool -library=iostream \

-staticlib=rwtools7 (incorrect)

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012214

The following command links the librwtool library statically:

example% CC -library=rwtools7,iostream -staticlib=rwtools7 (correct)

The following command will link the Sun Performance Libraries dynamically because
-library=sunperf must be used in conjunction with -staticlib=sunperf in order for the
-staticlib option to have an effect on the linking of these libraries:

example% CC -xlic_lib=sunperf -staticlib=sunperf (incorrect)

This command links the Sun Performance Libraries statically:

example% CC -library=sunperf -staticlib=sunperf (correct)

A.2.83.4 Interactions
This option accumulates instead of overrides.

The -staticlib option only works for the C++ libraries that are selected explicitly with the
-xia option, the -xlang option, and the -library option, in addition to the C++ libraries that
are selected implicitly by default. Cstd and Crun are selected by default.

A.2.83.5 Warnings
The set of allowable values for library is not stable and might change from release to release.

On Oracle Solaris platforms, system libraries are not available as static libraries.

A.2.83.6 See Also
-library, “11.5 Statically Linking Standard Libraries” on page 123

A.2.84 -sync_stdio=[yes|no]
Use this option when your runtime performance is degraded due to the synchronization
between C++ iostreams and C stdio. Synchronization is needed only when you use iostreams to
write to cout and stdio to write to stdout in the same program. The C++ standard requires
synchronization so the C++ compiler turns it on by default. However, application performance
is often much better without synchronization. If your program does not write to both cout and
stdout, you can use the option -sync_stdio=no to turn off synchronization.

A.2.84.1 Defaults
If you do not specify -sync_stdio, the compiler sets it to -sync_stdio=yes.

A.2 Option Reference

Appendix A • C++ Compiler Options 215

A.2.84.2 Examples
Consider the following example:

#include <stdio.h>

#include <iostream>

int main()

{

std::cout << "Hello ";
printf("beautiful ");
std::cout << "world!";
printf("\n");

}

With synchronization, the program prints on a line by itself

Hello beautiful world!

:

Without synchronization, the output gets scrambled.

A.2.84.3 Warnings
This option is only effective for linking of executables, not for libraries.

A.2.85 –temp=path
Defines the directory for temporary files.

This option sets the path name of the directory for storing the temporary files which are
generated during the compilation process. The compiler gives precedence to the value set by
-temp over the value of TMPDIR.

A.2.85.1 See Also
–keeptmp

A.2.86 –template=opt[,opt…]
Enables/disables various template options.

A.2.86.1 Values
opt must be one of the values listed in the following table.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012216

TABLE A–17 -templateValues

Value Meaning

[no%]extdef Search for template definitions in separate source files. With
no%extdef, the compiler predefines _TEMPLATE_NO_EXTDEF

[no%]geninlinefuncs Generate unreferenced inline member functions for
explicitly instantiated class templates.

[no%]wholeclass Instantiate a whole template class, rather than only those
functions that are used. You must reference at least one
member of the class. Otherwise, the compiler does not
instantiate any members for the class.

A.2.86.2 Defaults
If the -template option is not specified, -template=no%wholeclass,extdef is assumed.

A.2.86.3 Examples
Consider the following code:

example% cat Example.cc

template <class T> struct S {

void imf() {}

static void smf() {}

};

template class S <int>;

int main() {

}

example%

When you specify -template=geninlinefuncs, even though the two member functions of S
are not called in the program, they are generated in the object file.

example% CC -c -template=geninlinefuncs Example.cc

example% nm -C Example.o

Example.o:

[Index] Value Size Type Bind Other Shndx Name

[5] 0 0 NOTY GLOB 0 ABS __fsr_init_value

[1] 0 0 FILE LOCL 0 ABS b.c

[4] 16 32 FUNC GLOB 0 2 main

[3] 104 24 FUNC LOCL 0 2 void S<int>::imf()

[__1cBS4Ci_Dimf6M_v_]

[2] 64 20 FUNC LOCL 0 2 void S<int>::smf()

[__1cBS4Ci_Dsmf6F_v_]

A.2 Option Reference

Appendix A • C++ Compiler Options 217

A.2.86.4 See Also
“7.2.2 Whole-Class Instantiation” on page 92, “7.5 Template Definition Searching” on page 97

A.2.87 –time

Same as –xtime.

A.2.88 -traceback[={%none|common|signals_list}]
Issue a stack trace if a severe error occurs in execution.

The -traceback option causes the executable to issue a stack trace to stderr, dump core, and
exit if certain signals are generated by the program. If multiple threads generate a signal, a stack
trace will only be produced for the first one.

To use traceback, add the -traceback option to the compiler command line when linking. The
option is also accepted at compile-time but is ignored unless an executable binary is generated.
Do not use -traceback with -G to create a shared library.

TABLE A–18 -tracebackOptions

Option Meaning

common Specifies that a stack trace should be issued if any of a set of common signals occurs:
sigill, sigfpe, sigbus, sigsegv, or sigabrt.

signals_list Specifies a comma-separated list of names of signals that should generate a stack
trace, in lowercase. The following signals (those that cause the generation of a core
file) can be caught: sigquit, sigill, sigtrap, sigabrt, sigemt, sigfpe, sigbus,
sigsegv, sigsys, sigxcpu, sigxfsz.

Any of these signals can be preceded with no% to disable catching the signal.

For example: -traceback=sigsegv,sigfpe will produce a stack trace and core
dump if either sigsegv or sigfpe occurs.

%none or none disables traceback

If the option is not specified, the default is -traceback=%none

-traceback alone, without an = sign, implies -traceback=common

Note: If the core dump is not wanted, you may set the core dump size limit to zero using the
following command:

% limit coredumpsize 0

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012218

The -traceback option has no effect on runtime performance.

A.2.89 –Uname
Deletes initial definition of the preprocessor symbol name.

This option removes any initial definition of the macro symbol name created by -D on the
command line including those implicitly placed there by the CC driver. This option has no effect
on any other predefined macros, nor on macro definitions in source files.

To see the -D options that are placed on the command line by the CC driver, add the -dryrun
option to your command line.

A.2.89.1 Examples
The following command undefines the predefined symbol __sun. Preprocessor statements in
foo.cc such as #ifdef(__sun) will sense that the symbol is undefined.

example% CC -U__sun foo.cc

A.2.89.2 Interactions
You can specify multiple -U options on the command line.

All -U options are processed after any -D options that are present. That is, if the same name is
specified for both -D and -U on the command line, name is undefined, regardless of the order
the options appear.

A.2.89.3 See Also
-D

A.2.90 –unroll=n
Same as –xunroll=n.

A.2.91 –V

Same as –verbose=version.

A.2.92 –v

Same as –verbose=diags.

A.2 Option Reference

Appendix A • C++ Compiler Options 219

A.2.93 –verbose=v[,v…]
Controls compiler verbosity.

A.2.93.1 Values
v must be one of the values listed in the following table. The no% prefix disables the associated
option.

TABLE A–19 -verboseValues

Value Meaning

[no%]diags Print the command line for each compilation pass.

[no%]template Turn on the template instantiation verbose mode (sometimes
called the “verify” mode). The verbose mode displays each phase
of instantiation as it occurs during compilation.

[no%]version Direct the CC driver to print the names and version numbers of the
programs it invokes.

%all Invokes all of the other options.

%none -verbose=%none is the same as
-verbose=no%template,no%diags,no%version.

Defaults

If –verbose is not specified, –verbose=%none is assumed.

Interactions

This option accumulates instead of overrides.

A.2.94 -Wc,arg
Passes the argument arg to a specified component c.

Arguments must be separated from the preceding only by a comma. All -W arguments are
passed after the rest of the command-line arguments. To include a comma as part of an
argument, use the escape character \ (backslash) immediately before the comma. All -W
arguments are passed after the regular command-line arguments.

For example, -Wa,-o,objfile passes -o and objfile to the assembler in that order. Also,
-Wl,-I,name causes the linking phase to override the default name of the dynamic linker,
/usr/lib/ld.so.1.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012220

The order in which the arguments are passed to a tool with respect to the other specified
command line options might change an subsequent compiler releases.

The possible values for c are listed in the following table.

TABLE A–20 -WFlags

Flag Meaning

a Assembler: (fbe); (gas)

c C++ code generator: (cg) (SPARC) ;

d CC driver

l Link editor (ld)

m mcs

O (Capital o) Interprocedural optimizer

o (Lowercase o) Postoptimizer

p Preprocessor (cpp)

0 (Zero) Compiler (ccfe)

2 Optimizer: (iropt)

Note: You cannot use -Wd to pass CC options to the C++ compiler.

A.2.95 +w

Identifies code that might have unintended consequences. The +w option no longer generates a
warning if a function is too large to inline or if a declared program element is unused. These
warnings do not identify real problems in the source, and were thus inappropriate to some
development environments. Removing these warnings from +w enables more aggressive use of
+w in those environments. These warnings are still available with the +w2 option.

This option generates additional warnings about constructs that are questionable in the
following ways:

■ Nonportable
■ Likely to be mistakes
■ Inefficient

A.2.95.1 Defaults
If +w is not specified, the compiler warns about constructs that are almost certainly problems.

A.2 Option Reference

Appendix A • C++ Compiler Options 221

A.2.95.2 See Also
–w, +w2

A.2.96 +w2

Emits all the warnings emitted by +w plus warnings about technical violations that are probably
harmless but that might reduce the maximum portability of your program.

The +w2 option no longer warns about the use of implementation-dependent constructs in the
system header files. Because the system header files are the implementation, the warning was
inappropriate. Removing these warnings from +w2 enables more aggressive use of the option.

A.2.96.1 See Also
+w

A.2.97 –w

Suppresses most warning messages.

This option causes the compiler not to print warning messages. However, some warnings,
particularly warnings regarding serious anachronisms, cannot be suppressed.

A.2.97.1 See Also
+w

A.2.98 -Xlinker arg
Pass arg to linker ld(1). Equivalent to —z arg

A.2.99 –Xm

Same as –features=iddollar.

A.2.100 -xaddr32

(Solaris x86/x64 only) The -xaddr32=yes compilation flag restricts the resulting executable or
shared object to a 32-bit address space.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012222

An executable that is compiled in this manner results in the creation of a process that is
restricted to a 32-bit address space.

When -xaddr32=no is specified, a normal 64 bit binary is produced.

If the -xaddr32 option is not specified, -xaddr32=no is assumed.

If only -xaddr32 is specified -xaddr32=yes is assumed.

This option is only applicable to -m64 compilations and only on Oracle Solaris platforms
supporting SF1_SUNW_ADDR32 software capability. Because Linux kernels do not support
address space limitation, this option is not available on Linux.

When linking, if a single object file was compiled with -xaddr32=yes, the whole output file is
assumed to be compiled with -xaddr32=yes.

A shared object that is restricted to a 32-bit address space must be loaded by a process that
executes within a restricted 32-bit mode address space.

For more information, refer to the SF1_SUNW_ADDR32 software capabilities definition described
in the Linker and Libraries Guide.

A.2.101 -xalias_level[=n]
The C++ compiler can perform type-based alias-analysis and optimizations when you specify
the following commands:

-xalias_level[=n]

where n is any, simple, or compatible.

A.2.101.1 -xalias_level=any

At this level of analysis, the compiler assumes that any type may alias any other type. However,
despite this assumption, some optimization is possible.

A.2.101.2 -xalias_level=simple

The compiler assumes that simple types are not aliased. Storage objects must have a dynamic
type that is one of the following simple types:

char, signed char, unsigned char wchar_t, data pointer types
short int, unsigned short int, int unsigned int, function pointer types
long int, unsigned long int, long long int, unsigned long long int, data member
pointer types

A.2 Option Reference

Appendix A • C++ Compiler Options 223

float, double long double, enumeration types function member pointer types

The storage object should only be accessed through lvalues of the following types:
■ The dynamic type of the object
■ A constant or volatile qualified version of the dynamic type of the object, a type that is

the signed or unsigned type which corresponds to the dynamic type of the object
■ A type that is the signed or unsigned type which corresponds to the constant or volatile

qualified version of the dynamic type of the object
■ An aggregate or union type that includes one of the aforementioned types among its

members (including, recursively, a member of a subaggregate or contained union)
■ A char or unsigned char type.

A.2.101.3 -xalias_level=compatible

The compiler assumes that layout-incompatible types are not aliased. A storage object is only
accessed through lvalues of the following types:
■ The dynamic type of the object
■ A constant or volatile qualified version of the dynamic type of the object, a type that is

the signed or unsigned type which corresponds to the dynamic type of the object
■ A type that is the signed or unsigned type which corresponds to the constant or volatile

qualified version of the dynamic type of the object
■ An aggregate or union type that includes one of the aforementioned types among its

members (including, recursively, a member of a subaggregate or contained union)
■ A type that is (possibly constant or volatile qualified) base class type of the dynamic type

of the object
■ A char or unsigned char type.

The compiler assumes that the types of all references are layout-compatible with the dynamic
type of the corresponding storage object. Two types are layout-compatible under the following
conditions:
■ If two types are the same type
■ If two types differ only in constant or volatile qualification
■ If for each of the signed integer types a corresponding (but different) unsigned integer type

exists, these corresponding types are layout compatible.
■ Two enumeration types are layout-compatible if they have the same underlying type.
■ Two plain old data (POD) struct types are layout compatible if they have the same number

of members, and corresponding members (in order) have layout compatible types.
■ Two POD union types are layout compatible if they have the same number of members, and

corresponding members (in any order) have layout compatible types.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012224

References may be non-layout-compatible with the dynamic type of the storage object under
limited circumstances:

■ If a POD union contains two or more POD structs that share a common initial sequence,
and if the POD union object currently contains one of those POD structs, it is permitted to
inspect the common initial part of any of them. Two POD structs share a common initial
sequence if corresponding members have layout compatible types and, as applicable to bit
fields, the same widths, for a sequence of one or more initial members.

■ A pointer to a POD struct object, suitably converted using a reinterpret_cast, points to its
initial member, or if that member is a bit field, to the unit in which it resides.

A.2.101.4 Defaults
If you do not specify -xalias_level, the compiler sets the option to -xalias_level=any. If
you specify -xalias_level but do not provide a value, the compiler sets the option to
-xalias_level=compatible.

A.2.101.5 Interactions
The compiler does not perform type-based alias analysis at optimization level -xO2 and below.

A.2.101.6 Warning
If you are using reinterpret_cast or an equivalent old-style cast, the program may violate the
assumptions of the analysis. Also, union type punning, as shown in the following example,
violates the assumptions of the analysis.

union bitbucket{

int i;

float f;

};

int bitsof(float f){

bitbucket var;

var.f=3.6;

return var.i;

}

A.2.102 -xanalyze={code|no}
Produce a static analysis of the source code that can be viewed using the Oracle Solaris Studio
Code Analyzer.

When compiling with —xanalyze=code and linking in a separate step, include —xanalyze=code
also on the link step.

The default is —xanalyze=no. See the Oracle Solaris Studio Code Analyzer documentation for
more information.

A.2 Option Reference

Appendix A • C++ Compiler Options 225

A.2.103 -xannotate[=yes|no]
(Solaris only) Create binaries that can later be used by the optimization and observability tools
binopt(1), code-analyzer(1), discover(1), collect(1), and uncover(1).

The default is -xannotate=yes. Specifying -xannotate without a value is equivalent to
-xannotate=yes.

For optimal use of the optimization and observability tools, -xannotate=yes must be in effect
at both compile and link time. Compile and link with -xannotate=no to produce slightly
smaller binaries and libraries when optimization and observability tools will not be used.

This option is not available on Linux systems.

A.2.104 –xar

Creates archive libraries.

When building a C++ archive that uses templates, include in the archive those template
functions that are instantiated in the template repository. The template repository is used only
when at least one object file was compiled using the -instances=extern option. Compiling
with —xar automatically adds those templates to the archive as needed.

However, since the compiler default is not to use a template cache, the —xar option is often not
needed. You can use the plain ar(1) command to create archives (.a files) of C++ code unless
some code was compiled with —instances=extern. In that case, or if you are not sure, use CC
—xar instead of the ar command.

A.2.104.1 Values
Specify -xar to invokes ar -c -r and create an archive from scratch.

Examples

The following command line archives the template functions contained in the library and
object files.

example% CC -xar -o libmain.a a.o b.o c.o

Warnings

Do not add .o files from the template database on the command line.

Do not use the ar command directly for building archives. Use CC –xar to ensure that template
instantiations are automatically included in the archive.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012226

See Also

ar(1) man page

A.2.105 –xarch=isa
Specifies the target instruction set architecture (ISA).

This option limits the code generated by the compiler to the instructions of the specified
instruction set architecture. This option does not guarantee use of any target–specific
instructions. However, use of this option may affect the portability of a binary program.

Note – Use the -m64 or -m32 option to specify the intended memory model, LP64 (64-bits) or
ILP32 (32-bits) respectively. The -xarch option no longer indicates the memory model except
for compatibility with previous releases, as indicated below.

Code using _asm statements or inline templates (.il files) that use architecture-specific
instructions might require compiling with the appropriate —xarch value to avoid compilation
errors.

If you compile and link in separate steps, make sure you specify the same value for -xarch in
both steps. For complete list of all compiler options that must be specified at both compile time
and at link time, see “3.3.3 Compile-Time and Link-Time Options” on page 48.

A.2.105.1 -xarch Flags for SPARC and x86
The following table lists the -xarch keywords common to both SPARC and x86 platforms.

TABLE A–21 —xarch Flags for SPARC and x86

Flag Meaning

generic Uses the instruction set common to most processors. This is the default.

generic64 Compile for good performance on most 64-bit platforms.
This option is equivalent to -m64 -xarch=generic and is provided for compatibility with
earlier releases.

native Compile for good performance on this system. The compiler chooses the appropriate
setting for the current system processor it is running on.

native64 Compile for good performance on this system.
This option is equivalent to -m64 -xarch=native and is provided for compatibility with
earlier releases.

A.2 Option Reference

Appendix A • C++ Compiler Options 227

A.2.105.2 -xarch Flags for SPARC
The following table gives the details for each of the -xarch keywords on SPARC platforms.

TABLE A–22 -xarch Flags for SPARC Platforms

Flag Meaning

sparc Compile for the SPARC-V9 ISA but without the Visual Instruction Set (VIS) and
without other implementation-specific ISA extensions. This option enables the
compiler to generate code for good performance on the V9 ISA.

sparcvis Compile for SPARC-V9 plus the Visual Instruction Set (VIS) version 1.0, and with
UltraSPARC extensions. This option enables the compiler to generate code for
good performance on the UltraSPARC architecture.

sparcvis2 Enables the compiler to generate object code for the UltraSPARC architecture,
plus the Visual Instruction Set (VIS) version 2.0, and with UltraSPARC III
extensions.

sparcvis3 Compile for the SPARC VIS version 3 of the SPARC-V9 ISA. Enables the compiler
to use instructions from the SPARC-V9 instruction set plus the UltraSPARC
extensions including the Visual Instruction Set (VIS) version 1.0, the
UltraSPARC-III extensions, including the Visual Instruction Set (VIS) version 2.0,
the fused multiply-add instructions, and the Visual Instruction Set (VIS) version
3.0

sparcfmaf Enables the compiler to use instructions from the SPARC-V9 instruction set, plus
the UltraSPARC extensions, including the Visual Instruction Set (VIS) version
1.0, the UltraSPARC-III extensions, including the Visual Instruction Set (VIS)
version 2.0, and the SPARC64 VI extensions for floating-point multiply-add.

You must use -xarch=sparcfmaf in conjunction with fma=fused and some
optimization level to get the compiler to attempt to find opportunities to use the
multiply-add instructions automatically.

sparcima Compile for the SPARC IMA version of the SPARC-V9 ISA. Enables the compiler
to use instructions from the SPARC-V9 instruction set, plus the UltraSPARC
extensions, including the Visual Instruction Set (VIS) version 1.0, the
UltraSPARC-III extensions, including the Visual Instruction Set (VIS) version 2.0,
the SPARC64 VI extensions for floating-point multiply-add, and the SPARC64
VII extensions for integer multiply-add.

sparc4 Compile for the SPARC4 version of the SPARC-V9 ISA. Enables the compiler to
use instructions from the SPARC-V9 instruction set, plus the extensions, which
includes VIS 1.0, the UltraSPARC-III extensions, which includes VIS2.0, the fused
floating-point multiply-add instructions, VIS 3.0, and SPARC4 instructions.

v9 Equivalent to -m64 -xarch=sparc. Legacy makefiles and scripts that use
-xarch=v9 to obtain the 64-bit memory model need only use -m64.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012228

TABLE A–22 -xarch Flags for SPARC Platforms (Continued)
Flag Meaning

v9a Equivalent to -m64 -xarch=sparcvis and provided for compatibility with earlier
releases.

v9b Equivalent to -m64 -xarch=sparcvis2 and provided for compatibility with earlier
releases.

Also note the following:

■ Object binary files (.o) compiled with generic,sparc, sparcvis2, sparcvis3,

sparcfmaf, sparcima can be linked and can execute together, but can only run on a
processor supporting all the instruction sets linked.

■ For any particular choice, the generated executable might not run or run much more slowly
on legacy architectures. Also, because quad-precision (long double) floating-point
instructions are not implemented in any of these instruction set architectures, the compiler
does not use these instructions in the code it generates.

A.2.105.3 -xarch Flags for x86
The following table lists the -xarch flags on x86 platforms.

TABLE A–23 -xarch Flags on x86

Flag Meaning

amd64 Equivalent to -m64 -xarch=sse2 (Solaris only). Legacy makefiles and scripts
that use -xarch=amd64 to obtain the 64-bit memory model need only use -m64.

amd64a Equivalent to -m64 -xarch=sse2a (Solaris only).

pentium_pro Limits the instruction set to the 32–bit Pentium Pro architecture.

pentium_proa Adds the AMD extensions (3DNow!, 3DNow! extensions, and MMX
extensions) to the 32-bit Pentium Pro architecture.

sse Adds the SSE instruction set to the Pentium Pro architecture.

ssea Adds the AMD extensions (3DNow!, 3DNow! extensions, and MMX
extensions) to the 32-bit SSE architecture.

sse2 Adds the SSE2 instruction set to the Pentium Pro architecture.

sse2a Adds the AMD extensions (3DNow!, 3DNow! extensions, and MMX
extensions) to the 32-bit SSE2 architecture.

sse3 Adds the SSE3 instruction set to SSE2 instruction set.

sse3a Adds the AMD extended instructions including 3dnow to the SSE3 instruction
set.

A.2 Option Reference

Appendix A • C++ Compiler Options 229

TABLE A–23 -xarch Flags on x86 (Continued)
Flag Meaning

ssse3 Supplements the Pentium Pro, SSE, SSE2, and SSE3 instruction sets with the
SSSE3 instruction set.

sse4_1 Supplements the Pentium Pro, SSE, SSE2, SSE3, and SSSE3 instruction sets
with the SSE4.1 instruction set.

sse4_2 Supplements the Pentium Pro, SSE, SSE2, SSE3,SSSE3, and SSE4.1 instruction
sets with the SSE4.2 instruction set.

amdsse4a Uses the AMD SSE4a Instruction set.

aes Uses Intel Advanced Encryption Standard instruction set.

avx Uses Intel Advanced Vector Extensions instruction set.

If any part of a program is compiled or linked on an x86 platform with —m64, then all parts of the
program must be compiled with one of these options as well. For details on the various Intel
instruction set architectures (SSE, SSE2, SSE3, SSSE3, and so on) refer to the Intel-64 and IA-32
Intel Architecture Software Developer's Manual

See also “1.2 Special x86 Notes” on page 26 and “1.4 Binary Compatibility Verification” on
page 27.

A.2.105.4 Interactions
Although this option can be used alone, it is part of the expansion of the -xtarget option and
may be used to override the –xarch value that is set by a specific -xtarget option. For example,
-xtarget=ultra2 expands to -xarch=v8plusa -xchip=ultra2 -xcache=16/32/1:512/64/1.
In the following command -xarch=v8plusb overrides the -xarch=v8plusa that is set by the
expansion of -xtarget=ultra2.

example% CC -xtarget=ultra2 -xarch=v8plusb foo.cc

Use of –compat[=4] with -xarch=generic64, -xarch=native64, -xarch=v9, -xarch=v9a, or
-xarch=v9b is not supported.

A.2.105.5 Warnings
If you use this option with optimization, the appropriate choice can provide good performance
of the executable on the specified architecture. An inappropriate choice, however, might result
in serious degradation of performance or in a binary program that is not executable on the
intended target platform.

If you compile and link in separate steps, make sure you specify the same value for -xarch in
both steps.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012230

A.2.106 -xautopar

Enables automatic parallelization for multiple processors. Does dependence analysis (analyze
loops for inter-iteration data dependence) and loop restructuring. If optimization is not at -xO3
or higher, optimization is raised to -xO3 and a warning is issued.

Avoid -xautopar if you do your own thread management.

To achieve faster execution, this option requires a multi-processor system. On a
single-processor system, the resulting binary usually runs slower.

To run a parallelized program in a multithreaded environment, the environment variable
OMP_NUM_THREADS must be set to a value greater than 1 prior to execution. If not set, the default
is 2. To use more threads, set OMP_NUM_THREADS to a higher value. Set OMP_NUM_THREADS to 1 to
run with just one thread. In general, set OMP_NUM_THREADS to the available number of virtual pro
cessors on the running system, which can be determined by using the Oracle Solaris psrinfo(1)
command.

If you use -xautopar and compile and link in one step, then linking automatically includes the
microtasking library and the threads-safe C runtime library. If you use -xautopar and compile
and link in separate steps, then you must also link with -xautopar.

A.2.106.1 See Also
“A.2.152 -xopenmp[=i]” on page 270

A.2.107 -xbinopt={prepare|off}
(SPARC) This option is now obsolete and will be removed in a future release of the compiler.
See“A.2.103 -xannotate[=yes|no]” on page 226

Instructs the compiler to prepare the binary for later optimizations, transformations and
analysis. See the binopt(1) man page. This option may be used for building executables or
shared objects. If you compile in separate steps, -xbinopt must appear on both compile and
link steps:

example% cc -c -xO1 -xbinopt=prepare a.c b.c

example% cc -o myprog -xbinopt=prepare a.o

If some source code is not available for compilation, this option may still be used to compile the
remainder of the code. It should then be used in the link step that creates the final binary. In
such a situation, only the code compiled with this option can be optimized, transformed or
analyzed.

A.2.107.1 Defaults
The default is -xbinopt=off.

A.2 Option Reference

Appendix A • C++ Compiler Options 231

Interactions
This option must be used with optimization level -xO1 or higher to be effective. There is a
modest increase in size of the binary when built with this option.

Compiling with -xbinopt=prepare and -g increases the size of the executable by including
debugging information.

A.2.108 -xbuiltin[={%all|%default|%none}]
Enables or disables better optimization of standard library calls.

Use the -xbuiltin option to improve the optimization of code that calls standard library
functions. This option lets the compiler substitute intrinsic functions or inline system functions
where profitable for perfor mance. See the er_src(1) man page to learn how to read compiler
commentary output to determine which functions were substituted by the compiler.

With —xbuiltin=%all, substitutions can cause the setting of errno to become unreliable. If
your program depends on the value of errno, avoid this option.

—xbuiltin=%default only inlines functions that do not set errno. The value of errno is always
correct at any optimization level, and can be checked reliably. With —xbuiltin=%default at
—xO3 or lower, the compiler will determine which calls are profitable to inline, and not inline
others.

The-xbuiltin=%none option results in the default compiler behavior, and the compiler does
not do any special optimizations for built-in functions.

A.2.108.1 Defaults
If you do not specify —xbuiltin, the default is —xbuiltin=%default when compiling with an
optimization level —xO1 and higher, and —xbuiltin=%none at —xO0. If you specify —xbuiltin
without an argument, the default is —xbuiltin=%all and the compiler substitutes intrinsics or
inlines standard library functions much more aggressively.

Note that the —xbuiltin option only inlines global functions defined in system header files,
never static functions defined by the user. User code that attempts to interpose on global
functions may result in undefined behavior.

Interactions
The expansion of the macro -fast includes -xbuiltin=%all.

Examples
The following compiler command requests special handling of the standard library calls.

example% CC -xbuiltin -c foo.cc

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012232

The following compiler command requests that there be no special handling of the standard
library calls. Note that the expansion of the macro -fast includes -xbuiltin=%all.

example% CC -fast -xbuiltin=%none -c foo.cc

A.2.109 –xcache=c
Defines cache properties for use by the optimizer. This option does not guarantee that any
particular cache property is used.

Note – Although this option can be used alone, it is part of the expansion of the -xtarget
option. Its primary use is to override a value supplied by the -xtarget option.

The optional property [/ti] sets the number of threads that can share the cache.

A.2.109.1 Values
c must be one of the values listed in the following table.

TABLE A–24 -xcacheValues

Value Meaning

generic Directs the compiler to use cache properties for
good performance on most x86 and SPARC
processors, without major performance
degradation on any of them. (The default)

With each new release, these best timing properties
will be adjusted, if appropriate.

native Set the parameters for the best performance on the
host environment.

s1/l1/a1[/t1] Defines level 1 cache properties

s1/l1/a1[/t1]:s2/l2/a2[/t2] Defines level 1 and 2 cache properties

s1/l1/a1[/t1]:s2/l2/a2[/t2]:s3/l3/a3[/t3] Defines level 1, 2, and 3 cache properties

The definitions of the cache properties si/li/ai/ti are described in the following table:

Property Definition

si The size of the data cache at level i, in kilobytes

A.2 Option Reference

Appendix A • C++ Compiler Options 233

Property Definition

li The line size of the data cache at level i, in bytes

ai The associativity of the data cache at level i

ti The number of hardware threads sharing the cache at level i

For example, i=1 designates level 1 cache properties, s1/l1/a1.

Defaults

If -xcache is not specified, the default -xcache=generic is assumed. This value directs the
compiler to use cache properties for good performance on most SPARC processors without
major performance degradation on any of them.

If you do not specify a value for t, the default is 1.

Examples

–xcache=16/32/4:1024/32/1 specifies the following values:

Level 1 Cache 16 Kbytes, 32 bytes line size, four-way associativity

Level 2 Cache 1024 Kbytes, 32 bytes line size, direct mapping associativity

See Also

–xtarget=t

A.2.110 -xchar[=o]
The option is provided solely for the purpose of easing the migration of code from systems
where the char type is defined as unsigned. Unless you are migrating from such a system, do not
use this option. Only code that relies on the sign of a char type needs to be rewritten to explicitly
specify signed or unsigned.

A.2.110.1 Values
You can substitute one of the values in the following table for o.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012234

TABLE A–25 The -xcharValues

Value Meaning

signed Treat character constants and variables declared as char as signed. This
option affects the behavior of compiled code, but does not affect the
behavior of library routines.

s Equivalent to signed

unsigned Treat character constants and variables declared as char as unsigned. This
option affects the behavior of compiled code, but does not affect the
behavior of library routines.

u Equivalent to unsigned

Defaults

If you do not specify -xchar, the compiler assumes -xchar=s.

If you specify -xchar, but do not specify a value, the compiler assumes -xchar=s.

Interactions

The -xchar option changes the range of values for the type char only for code compiled with
-xchar. This option does not change the range of values for type char in any system routine or
header file. In particular, the values of CHAR_MAX and CHAR_MIN, as defined by limits.h, do not
change when this option is specified. Therefore, CHAR_MAX and CHAR_MIN no longer represent
the range of values encodable in a plain char.

Warnings

If you use -xchar=unsigned, be particularly careful when you compare a char against a
predefined system macro because the value in the macro may be signed. This situation is most
common for any routine that returns an error code which is accessed through a macro. Error
codes are typically negative values so when you compare a char against the value from such a
macro, the result is always false. A negative number can never be equal to any value of an
unsigned type.

Never use -xchar to compile routines for any interface exported through a library. The Oracle
Solaris ABI specifies type char as signed, and system libraries behave accordingly. The effect of
making char unsigned has not been extensively tested with system libraries. Instead of using
this option, modify your code so that it does not depend on whether type char is signed or
unsigned. The sign variety of type char varies among compilers and operating systems.

A.2 Option Reference

Appendix A • C++ Compiler Options 235

A.2.111 -xcheck[=i]
Compiling with -xcheck=stkovf adds a runtime check for stack overflow of the main thread in
a single-threaded program as well as slave-thread stacks in a multithreaded program. If a stack
overflow is detected, a SIGSEGV is generated. See the sigaltstack(2) man page for information
on how to handle a SIGSEGV caused by a stack overflow differently than other address-space
violations.

A.2.111.1 Values
i must be one of the values listed in the following table.

TABLE A–26 -xcheckValues

Value Meaning

%all Perform all checks.

%none Perform no checks.

stkovf Turns on stack-overflow checking.

no%stkovf Turns off stack-overflow checking.

init_local Initialize local variables. See the C User's Guide for details.

no%init_local Do not initialize local variables (default).

Defaults

If you do not specify -xcheck, the compiler defaults to -xcheck=%none.

If you specify -xcheck without any arguments, the compiler defaults to -xcheck=%none.

The -xcheck option does not accumulate on the command line. The compiler sets the flag in
accordance with the last occurrence of the command.

A.2.112 -xchip=c
Specifies target processor for use by the optimizer.

The –xchip option specifies timing properties by specifying the target processor. This option
affects the following properties:

■ The ordering of instructions—that is, scheduling
■ The way the compiler uses branches
■ The instructions to use in cases where semantically equivalent alternatives are available

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012236

Note – Although this option can be used alone, it is part of the expansion of the -xtarget
option. Its primary use is to override a value supplied by the -xtarget option.

A.2.112.1 Values
c must be one of the values listed in the following two tables.

TABLE A–27 -xchipValues for SPARC Processors

generic Good performance on most SPARC processors

native Good performance on the host SPARC system on which the compiler is running

sparc64vi SPARC64 VI processor

sparc64vii SPARC64 VII processor

sparc64viiplus SPARC64 VII+ processor

ultra UltraSPARC processor

ultra2 UltraSPARC II processor

ultra2e UltraSPARC IIe processor

ultra2i UltraSPARC IIi processor

ultra3 UltraSPARC III processor

ultra3cu UltraSPARC III Cu processor

ultra3i UltraSparc IIIi processors.

ultra4 UltraSPARC IV processors.

ultra4plus UltraSPARC IVplus processor.

ultraT1 UltraSPARC T1 processor.

ultraT2 UltraSPARC T2 processor.

ultraT2plus UltraSPARC T2+ processor.

T3 SPARC T3 processor.

T4 SPARC T4 processor.

TABLE A–28 -xchipValues for x86/x64 Processors

generic Good performance on most x86 processors

native Good performance on the host x86 system on which the compiler is running

A.2 Option Reference

Appendix A • C++ Compiler Options 237

TABLE A–28 -xchipValues for x86/x64 Processors (Continued)
core2 Intel Core2 processor

nehalem Intel Nehalem processor

opteron AMD Opteron processor

penryn Intel Penryn processor

pentium Intel Pentium processor

pentium_pro Intel Pentium Pro processor

pentium3 Intel Pentium 3 style processor

pentium4 Intel Pentium 4 style processor

amdfam10 AMD AMDFAM10 processor

sandybridge Intel Sandy Bridge processor

westmere Intel Westmere processor

Defaults

On most processors, generic is the default value that directs the compiler to use the best timing
properties for good performance without major performance degradation on any of the
processors.

A.2.113 –xcode=a
(SPARC only) Specifies the code address space.

Note – You should build shared objects by specifying -xcode=pic13 or -xcode=pic32. Shared
objects built without pic13 or pic32 will not work correctly, and might not build at all.

A.2.113.1 Values
a must be one of the values listed in the following table.

TABLE A–29 -xcodeValues

Value Meaning

abs32 Generates 32-bit absolute addresses, which are fast but have limited range.
Code + data + bss size is limited to 2**32 bytes.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012238

TABLE A–29 -xcodeValues (Continued)
Value Meaning

abs44 SPARC: Generates 44-bit absolute addresses, which have moderate speed
and moderate range. Code + data + bss size is limited to 2**44 bytes.
Available only on 64-bit architectures. Do not use this value with dynamic
(shared) libraries.

abs64 SPARC: Generates 64-bit absolute addresses, which are slow but have full
range. Available only on 64-bit architectures.

pic13 Generates position-independent code (small model), which is fast but has
limited range. Equivalent to -Kpic. Permits references to at most 2**11
unique external symbols on 32-bit architectures; 2**10 on 64-bit.

pic32 Generates position-independent code (large model), which might not be as
fast as pic13 , but has full range. Equivalent to -KPIC. Permits references to
at most 2**30 unique external symbols on 32-bit architectures; 2**29 on
64-bit.

To determine whether to use –xcode=pic13 or –xcode=pic32, check the size of the Global
Offset Table (GOT) by using elfdump -c and look for the section header sh_name: .got. The
sh_size value is the size of the GOT. If the GOT is less than 8,192 bytes, specify -xcode=pic13,
otherwise specify -xcode=pic32. See the elfdump(1) man page for more information.

In general, use the following guidelines to determine how you should use -xcode:

■ If you are building an executable you should not use -xcode=pic13 or -xcode=pic32.
■ If you are building an archive library only for linking into executables you should not use

-xcode=pic13 or -xcode=pic32.
■ If you are building a shared library, start with– xcode=pic13. Once the GOT size exceeds

8,192 bytes, use -xcode=pic32.
■ If you are building an archive library for linking into shared libraries you should only use

-xcode=pic32.

Defaults

The default is -xcode=abs32 for 32–bit architectures. The default for 64–bit architectures is
-xcode=abs44.

When building shared dynamic libraries, the default -xcode values of abs44 and abs32 will not
work with 64–bit architectures. Specify -xcode=pic13 or -xcode=pic32 instead. There are two
nominal performance costs with -xcode=pic13 and -xcode=pic32 on SPARC:

■ A routine compiled with either -xcode=pic13 or -xcode=pic32 executes a few extra
instructions upon entry to set a register to point at a table (_GLOBAL_OFFSET_TABLE_) used
for accessing a shared library’s global or static variables.

A.2 Option Reference

Appendix A • C++ Compiler Options 239

■ Each access to a global or static variable involves an extra indirect memory reference
through _GLOBAL_OFFSET_TABLE_. If the compile is done with -xcode=pic32, there are two
additional instructions per global and static memory reference.

When considering the above costs, remember that the use of -xcode=pic13 and -xcode=pic32

can significantly reduce system memory requirements due to the effect of library code sharing.
Every page of code in a shared library compiled -xcode=pic13 or– xcode=pic32 can be shared
by every process that uses the library. If a page of code in a shared library contains even a single
non-pic (that is, absolute) memory reference, the page becomes nonsharable, and a copy of the
page must be created each time a program using the library is executed.

The easiest way to tell whether a .o file has been compiled with -xcode=pic13 or
–xcode=pic32 is with the nm command:

% nm file.o | grep _GLOBAL_OFFSET_TABLE_ U _GLOBAL_OFFSET_TABLE_

A .o file containing position-independent code contains an unresolved external reference to
_GLOBAL_OFFSET_TABLE_, as indicated by the letter U.

To determine whether to use -xcode=pic13 or -xcode=pic32, use nm to identify the number of
distinct global and static variables used or defined in the library. If the size of
_GLOBAL_OFFSET_TABLE_ is under 8,192 bytes, you can use -Kpic. Otherwise, you must use
-xcode=pic32.

A.2.114 -xdebugformat=[stabs|dwarf]
The compiler has migrated the format of debugger information from the stabs (“symbol table”)
format to the dwarf format of the DWARF Debugging Information Format specification. The
default setting is -xdebugformat=dwarf.

If you maintain software which reads debugging information, you now have the option to
transition your tools from the stabs format to the dwarf format.

Use this option as a way of accessing the new format for the purpose of porting tools. You do
not need to use this option unless you maintain software which reads debugger information, or
unless a specific tool requires debugger information in either of these formats.

TABLE A–30 -xdebugformatFlags

Value Meaning

stabs -xdebugformat=stabs generates debugging information using the stabs
standard format.

dwarf -xdebugformat=dwarf generates debugging information using the dwarf
standard format.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012240

If you do not specify -xdebugformat, the compiler assumes -xdebugformat=dwarf. This option
requires an argument.

This option affects the format of the data that is recorded with the -g option. Some small
amount of debugging information is recorded even without -g, and the format of that
information is also controlled with this option. So, -xdebugformat has an effect even when -g is
not used.

The dbx and Performance Analyzer software understand both stabs and dwarf format so using
this option does not have any effect on the functionality of either tool.

Note – Stabs format cannot represent all debug data now used by dbx, and some code might not
generate debug data successfully using stabs.

See also the dumpstabs(1) and dwarfdump(1) man pages for more information.

A.2.115 -xdepend=[yes|no]
Analyzes loops for inter-iteration data dependencies and does loop restructuring, including
loop interchange, loop fusion, scalar replacement, and elimination of “dead array” assignments.

On SPARC processors, –xdepend defaults to –xdepend=on for all optimization levels –xO3 and
above. Otherwise –xdepend defaults to –xdepend=off. Specifying an explicit setting of
–xdepend overrides any default setting.

On x86 processors, –xdepend defaults to –xdepend=off. When —xdepend is specified and
optimization is not at –xO3 or higher, the compiler raises the optmization to –xO3 and issues a
warning.

Specifying –xdepend without an argument is equivalent to –xdepend=yes.

Dependency analysis is included in -xautopar. Dependency analysis is done at compile time.

Dependency analysis may help on single-processor systems. However, if you uese –xdepend on
single-processor systems, you should not also specify –xautopar because the –xdepend
optimization will be done for a multiprocessor system.

A.2.115.1 See Also
–xprefetch_auto_type

A.2 Option Reference

Appendix A • C++ Compiler Options 241

A.2.116 -xdumpmacros[=value[,value...]]
Use this option when you want to see how macros are behaving in your program. This option
provides information such as macro defines, undefines, and instances of usage. It prints output
to the standard error (stderr), based on the order in w hich macros are processed. The
-xdumpmacros option is in effect through the end of the file or until it is overridden by the
dumpmacros or end_dumpmacros pragma. See “B.2.5 #pragma dumpmacros” on page 308.

A.2.116.1 Values
The following table lists the valid arguments for value. The prefix no% disables the associated
value.

TABLE A–31 -xdumpmacrosValues

Value Meaning

[no%]defs Print all macro defines.

[no%]undefs Print all macro undefines.

[no%]use Print information about macros used.

[no%]loc Print location (path name and line number) also for defs, undefs, and use.

[no%]conds Print use information for macros used in conditional directives.

[no%]sys Print all macros defines, undefines, and use information for macros in system
header files.

%all Sets the option to -xdumpmacros=defs,undefs,use,loc,conds,sys. A good
way to use this argument is in conjunction with the [no%] form of the other
arguments. For example, -xdumpmacros=%all,no%sys would exclude system
header macros from the output but still provide information for all other
macros.

%none Do not print any macro information.

The option values accumulate, so specifying -xdumpmacros=sys -xdumpmacros=undefs has the
same effect as -xdumpmacros=undefs,sys.

Note – The sub-options loc, conds, and sys are qualifiers for defs, undefs and use options. By
themselves, loc, conds, and sys have no effect. For example, -xdumpmacros=loc,conds,sys
has no effect.

Defaults
Specifying -xdumpmacros without any arguments defaults to -xdumpmacros=defs,undefs,sys.
The default when not specifying -xdumpmacros is -xdumpmacros=%none.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012242

Examples

If you use the option -xdumpmacros=use,no%loc, the name of each macro that is used is printed
only once. However, if you want more detail, use the option -xdumpmacros=use,loc so the
location and macro name is printed every time a macro is used.

Consider the following file t.c:

example% cat t.c

#ifdef FOO

#undef FOO

#define COMPUTE(a, b) a+b

#else

#define COMPUTE(a,b) a-b

#endif

int n = COMPUTE(5,2);

int j = COMPUTE(7,1);

#if COMPUTE(8,3) + NN + MM

int k = 0;

#endif

The following examples show the output for file t.c based on the defs, undefs, sys, and loc

arguments.

example% CC -c -xdumpmacros -DFOO t.c

#define __SunOS_5_9 1

#define __SUNPRO_CC 0x590

#define unix 1

#define sun 1

#define sparc 1

#define __sparc 1

#define __unix 1

#define __sun 1

#define __BUILTIN_VA_ARG_INCR 1

#define __SVR4 1

#define __SUNPRO_CC_COMPAT 5

#define __SUN_PREFETCH 1

#define FOO 1

#undef FOO

#define COMPUTE(a, b) a + b

example% CC -c -xdumpmacros=defs,undefs,loc -DFOO -UBAR t.c

command line: #define __SunOS_5_9 1

command line: #define __SUNPRO_CC 0x590

command line: #define unix 1

command line: #define sun 1

command line: #define sparc 1

command line: #define __sparc 1

command line: #define __unix 1

command line: #define __sun 1

command line: #define __BUILTIN_VA_ARG_INCR 1

command line: #define __SVR4 1

command line: #define __SUNPRO_CC_COMPAT 5

command line: #define __SUN_PREFETCH 1

command line: #define FOO 1

command line: #undef BAR

A.2 Option Reference

Appendix A • C++ Compiler Options 243

t.c, line 2: #undef FOO

t.c, line 3: #define COMPUTE(a, b) a + b

The following examples show how the use, loc, and conds arguments report macro behavior in
file t.c:

example% CC -c -xdumpmacros=use t.c

used macro COMPUTE

example% CC -c -xdumpmacros=use,loc t.c

t.c, line 7: used macro COMPUTE

t.c, line 8: used macro COMPUTE

example% CC -c -xdumpmacros=use,conds t.c

used macro FOO

used macro COMPUTE

used macro NN

used macro MM

example% CC -c -xdumpmacros=use,conds,loc t.c

t.c, line 1: used macro FOO

t.c, line 7: used macro COMPUTE

t.c, line 8: used macro COMPUTE

t.c, line 9: used macro COMPUTE

t.c, line 9: used macro NN

t.c, line 9: used macro MM

Consider the file y.c:

example% cat y.c

#define X 1

#define Y X

#define Z Y

int a = Z;

The following example shows the output from -xdumpmacros=use,loc based on the macros in
y.c:

example% CC -c -xdumpmacros=use,loc y.c

y.c, line 4: used macro Z

y.c, line 4: used macro Y

y.c, line 4: used macro X

See Also

Pragma dumpmacros/end_dumpmacros overrides the scope of the -xdumpmacros command-line
option.

A.2.117 -xe

Checks only for syntax and semantic errors. When you specify -xe, the compiler does not
produce any object code. The output for -xe is directed to stderr.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012244

Use the -xe option if you do not need the object files produced by compilation. For example, if
you are trying to isolate the cause of an error message by deleting sections of code, you can
speed the edit and compile cycle by using -xe.

A.2.117.1 See Also
–c

A.2.118 -xF[=v[,v...]]
Enables optimal reordering of functions and variables by the linker.

This option instructs the compiler to place functions or data variables into separate section
fragments, which enables the linker to reorder these sections to optimize program performance
using directions in a mapfile specified by the linker’s -M option. Generally, this optimization is
only effective when page fault time constitutes a significant fraction of program run time.

Reording of variables can help solve the following problems which negatively impact runtime
performance:

■ Cache and page contention caused by unrelated variables that are near each other in
memory

■ Unnecessarily large work-set size as a result of related variables which are not near each
other in memory

■ Unnecessarily large work-set size as a result of unused copies of weak variables that decrease
the effective data density

Reordering variables and functions for optimal performance requires the following operations:

1. Compiling and linking with -xF.

2. Following the instructions in the Performance Analyzer manual regarding how to generate a
mapfile for functions or following the instructions in the Linker and Libraries Guide
regarding how to generate a mapfile for data.

3. Relinking with the new mapfile by using the linker’s -M option.

4. Re-executing under the Analyzer to verify improvement.

A.2.118.1 Values
v can be one or more of the values listed in the following table. The no% prefix disables the
associated value.

A.2 Option Reference

Appendix A • C++ Compiler Options 245

TABLE A–32 -xFValues

Value Meaning

[no%]func Fragment functions into separate sections.

[no%]gbldata Fragment global data (variables with external linkage) into separate sections.

[no%]lcldata Fragment local data (variables with internal linkage) into separate sections.

%all Fragment functions, global data, and local data.

%none Fragment nothing.

Defaults
If you do not specify -xF, the default is -xF=%none. If you specify -xF without any arguments,
the default is -xF=%none,func.

Interactions
Using -xF=lcldata inhibits some address calculation optimizations, so you should only use
this flag when it is experimentally justified.

See Also
The analyzer(1) and ld(1) man pages

A.2.119 -xhelp=flags

Displays a brief description of each compiler option.

A.2.120 -xhwcprof

(SPARC only) Enables compiler support for hardware counter-based profiling.

When -xhwcprof is enabled, the compiler generates information that helps tools associate
profiled load and store instructions with the data-types and structure members (in conjunction
with symbolic information produced with -g to which they refer. It associates profile data with
the data space of the target, rather than the instruction space. This option provides insight into
behavior that is not easily obtained from instruction profiling alone.

You can compile a specified set of object files with -xhwcprof. However, -xhwcprof is most
useful when applied to all object files in the application, providing complete coverage to identify
and correlate all memory references distributed in the application’s object files.

If you are compiling and linking in separate steps, use -xhwcprof at link time as well. Future
extensions to -xhwcprof may require its use at link time.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012246

An instance of -xhwcprof=enable or -xhwcprof=disable overrides all previous instances of
-xhwcprof in the same command line.

-xhwcprof is disabled by default. Specifying -xhwcprof without any arguments is the
equivalent to -xhwcprof=enable.

-xhwcprof requires that optimization is turned on and that the DWARF debug data format is
selected. Note that DWARF format (-xdebugformat=dwarf) is now the default.

The combination of -xhwcprof and -g increases compiler temporary file storage requirements
by more than the sum of the increases resulting from either -xhwcprof and -g alone.

The following command compiles example.cc and specifies support for hardware counter
profiling and symbolic analysis of data types and structure members using DWARF symbols:

example% CC -c -O -xhwcprof -g -xdebugformat=dwarf example.cc

For more information about hardware counter-based profiling, see the Performance Analyzer
manual.

A.2.121 -xia

Links the appropriate interval arithmetic libraries and sets a suitable floating-point
environment.

Note – The C++ interval arithmetic library is compatible with interval arithmetic as
implemented in the Fortran compiler.

On x86 platforms, this optioin requires support of SSE2 instruction set.

A.2.121.1 Expansions
The -xia option is a macro that expands to -fsimple=0 -ftrap=%none -fns=no

-library=interval. If you use intervals and override what is set by -xia by specifying a
different flag for -fsimple, -ftrap, -fns or -library, you may cause the compiler to exhibit
incorrect behavior.

A.2.121.2 Interactions
To use the interval arithmetic libraries, include <suninterval.h>.

When you use the interval arithmetic libraries, you must include one of the following libraries:
Cstd, or iostreams. See -library for information about including these libraries.

A.2 Option Reference

Appendix A • C++ Compiler Options 247

A.2.121.3 Warnings
If you use intervals and you specify different values for -fsimple, -ftrap, or -fns, then your
program may exhibit incorrect behavior.

C++ interval arithmetic is experimental and evolving. The specifics might change from release
to release.

A.2.121.4 See Also
-library

A.2.122 -xinline[=func-spec[,func-spec...]]
Specifies which user-written routines can be inlined by the optimizer at -xO3 levels or higher.

A.2.122.1 Values
func-spec must be one of the values listed in the following table.

TABLE A–33 -xinlineValues

Value Meaning

%auto Enable automatic inlining at optimization levels -xO4 or higher. This
argument tells the optimizer that it can inline functions of its choosing.
Note that without the %auto specification, automatic inlining is normally
turned off when explicit inlining is specified on the command line by
-xinline=[no%]func-name...

func_name Strongly request that the optimizer inline the function. If the function is
not declared as extern "C", the value of func_name must be mangled. You
can use the nm command on the executable file to find the mangled
function names. For functions declared as extern "C", the names are not
mangled by the compiler.

no%func_name When you prefix the name of a routine on the list with no%, the inlining of
that routine is inhibited. The rule about mangled names for func-name
applies to no%func-name as well.

Only routines in the file being compiled are considered for inlining unless you use
-xipo[=1|2]. The optimizer decides which of these routines are appropriate for inlining.

A.2.122.2 Defaults
If the -xinline option is not specified, the compiler assumes -xinline=%auto.

If -xinline= is specified with no arguments, no functions are inlined regardless of the
optimization level.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012248

A.2.122.3 Examples
To enable automatic inlining while disabling inlining of the function declared int foo(), use
the following command:

example% CC -xO5 -xinline=%auto,no%__1cDfoo6F_i_ -c a.cc

To strongly request the inlining of the function declared as int foo(), and to make all other
functions as the candidates for inlining, use the following command:

example% CC -xO5 -xinline=%auto,__1cDfoo6F_i_ -c a.cc

To strongly request the inlining of the function declared as int foo(), and to not allow inlining
of any other functions, use the following command:

example% CC -xO5 -xinline=__1cDfoo6F_i_ -c a.cc

A.2.122.4 Interactions
The -xinline option has no effect for optimization levels below -xO3. At -xO4 and higher, the
optimizer decides which functions should be inlined, and does so without the -xinline option
being specified. At -xO4 and higher, the compiler also attempts to determine which functions
will improve performance if they are inlined.

A routine is inlined if any of the following conditions apply.
■ Optimization is -xO3 or greater
■ Inlining is judged to be profitable and safe
■ The function is in the file being compiled, or the function is in a file that was compiled with

-xipo[=1|2]

A.2.122.5 Warnings
If you force the inlining of a function with -xinline, you might actually diminish
performance.

A.2.122.6 See Also
“A.2.130 -xldscope={v}” on page 256

A.2.123 -xinstrument=[no%]datarace
Specify this option to compile and instrument your program for analysis by the Thread
Analyzer. For more information on the Thread Analyzer, see the tha(1) man page for details.

You can then use the Performance Analyzer to run the instrumented program with collect -r

races to create a data-race-detection experiment. You can run the instrumented code
standalone but it runs more slowly.

A.2 Option Reference

Appendix A • C++ Compiler Options 249

You can specify -xinstrument=no%datarace to turn off preparation of source code for the
thread analyzer. This is the default.

You cannot specify -xinstrument without an argument.

If you compile and link in separate steps, you must specify -xinstrument=datarace in both the
compilation and linking steps.

This option defines the preprocessor token __THA_NOTIFY. You can specify #ifdef
__THA_NOTIFY to guard calls to libtha(3) routines.

This option also sets -g.

A.2.124 -xipo[={0|1|2}]
Performs interprocedural optimizations.

The -xipo option performs partial-program optimizations by invoking an interprocedural
analysis pass. It performs optimizations across all object files in the link step, and the
optimizations are not limited to just the source files on the compile command. However,
whole-program optimizations performed with -xipo do not include assembly (.s) source files.

The -xipo option is particularly useful when compiling and linking large multifile applications.
Object files compiled with this flag have analysis information compiled within them that
enables interprocedural analysis across source and precompiled program files. However,
analysis and optimization is limited to the object files compiled with -xipo, and does not
extend to object files or libraries.

A.2.124.1 Values
The -xipo option can have the values listed in the following table.

TABLE A–34 The -xipoValues

Value Meaning

0 Do not perform interprocedural optimizations

1 Perform interprocedural optimizations

2 Perform interprocedural aliasing analysis as well as optimizations of
memory allocation and layout to improve cache performance

A.2.124.2 Defaults
If -xipo is not specified, -xipo=0 is assumed.

If only -xipo is specified, -xipo=1 is assumed.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012250

A.2.124.3 Examples
The following example compiles and links in the same step.

example% CC -xipo -xO4 -o prog part1.cc part2.cc part3.cc

The optimizer performs crossfile inlining across all three source files in the final link step. The
compilation of the source files need not all take place in a single compilation and could be
accomplished over a number of separate compilations, each specifying the -xipo option.

The following example compiles and links in separate steps.

example% CC -xipo -xO4 -c part1.cc part2.cc

example% CC -xipo -xO4 -c part3.cc

example% CC -xipo -xO4 -o prog part1.o part2.o part3.o

The object files created in the compile steps have additional analysis information compiled
within them to permit crossfile optimizations to take place at the link step.

A.2.124.4 When Not To Use -xipo Interprocedural Analysis
The compiler tries to perform whole-program analysis and optimizations as it works with the
set of object files in the link step. The compiler makes the following two assumptions for any
function or subroutine foo() defined in this set of object files:

■ foo() is not called explicitly by another routine that is defined outside this set of object files
at runtime.

■ The calls to foo() from any routine in the set of object files are not interposed upon by a
different version of foo() defined outside this set of object files.

Do not compile with -xipo=2, if the first assumption is not true for the given application.

Do not compile with either -xipo=1 or -xipo=2, if the second assumption is not true.

As an example, consider interposing on the function malloc() with your own version and
compiling with -xipo=2. All the functions in any library that reference malloc() that are linked
with your code have to be compiled with -xipo=2 also and their object files need to participate
in the link step. Because this strategy might not be possible for system libraries, do not compile
your version of malloc() with -xipo=2.

As another example, suppose that you build a shared library with two external calls, foo() and
bar() inside two different source files. Furthermore, suppose that bar() calls foo(). If foo()
could be interposed at runtime, do not compile the source file for foo() or for bar() with
-xipo=1 or -xipo=2. Otherwise, foo() could be inlined into bar(), which could cause incorrect
results.

A.2.124.5 Interactions
The -xipo option requires at least optimization level -xO4.

A.2 Option Reference

Appendix A • C++ Compiler Options 251

A.2.124.6 Warnings
When compiling and linking are performed in separate steps, -xipo must be specified in both
steps to be effective.

Objects that are compiled without -xipo can be linked freely with objects that are compiled
with -xipo.

Libraries do not participate in crossfile interprocedural analysis, even when they are compiled
with -xipo, as shown in the following example.

example% CC -xipo -xO4 one.cc two.cc three.cc

example% CC -xar -o mylib.a one.o two.o three.o

...

example% CC -xipo -xO4 -o myprog main.cc four.cc mylib.a

In this example, interprocedural optimizations will be performed between one.cc, two.cc and
three.cc, and between main.cc and four.cc, but not between main.cc or four.cc and the
routines in mylib.a. (The first compilation may generate warnings about undefined symbols,
but the interprocedural optimizations will be performed because it is a compile and link step.)

The -xipo option generates significantly larger object files due to the additional information
needed to perform optimizations across files. However, this additional information does not
become part of the final executable binary file. Any increase in the size of the executable
program will be due to the additional optimizations performed.

A.2.124.7 See Also
-xjobs

A.2.125 -xipo_archive=[a]
The -xipo_archive option enables the compiler to optimize object files that are passed to the
linker with object files that were compiled with -xipo and that reside in the archive library (.a)
before producing an executable. Any object files contained in the library that were optimized
during the compilation are replaced with their optimized version.

The following table lists possible values for a.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012252

TABLE A–35 -xipo_archiveFlags

Value Meaning

writeback The compiler optimizes object files passed to the linker with object files
compiled with -xipo that reside in the archive library (.a) before producing
an executable. Any object files contained in the library that were optimized
during the compilation are replaced with an optimized version.

For parallel links that use a common set of archive libraries, each link should
create its own copy of archive libraries to be optimized before linking.

readonly The compiler optimizes object files passed to the linker with object files
compiled with -xipo that reside in the archive library (.a) before producing
an executable.

The option -xipo_archive=readonly enables cross-module inlining and
interprocedural data flow analysis of object files in an archive library specified
at link time. However, it does not enable cross-module optimization of the
archive library's code except for code that has been inserted into other
modules by cross-module inlining.

To apply cross-module optimization to code within an archive library,
-xipo_archive=writeback is required. Note that this setting modifies the
contents of the archive library from which the code was extracted.

none This is the default. There is no processing of archive files. The compiler does
not apply cross-module inlining or other cross-module optimizations to
object files compiled using -xipo and extracted from an archive library at link
time. To do that, both -xipo and either -xipo_archive=readonly or
-xipo_archive=writeback must be specified at link time.

If you do not specify a setting for -xipo_archive, the compiler sets it to -xipo_archive=none.

You cannot specify -xipo_archive without a flag.

A.2.126 -xivdep[=p]
Disable or set interpretation of #pragma ivdep pragmas (ignore vector dependencies).

The ivdep pragmas tell a compiler to ignore some or all loop-carried dependences on array
references that it finds in a loop for purposes of optimization. This enables a compiler to
perform various loop optimizations such as microvectorization, distribution, software
pipelining, and so on, which would not be otherwise possible. It is used in cases where the user
knows either that the dependences do not matter or that they never occur in practice.

The interpretation of #pragma ivdep directives depend upon the value of the —xivdep option.

The following list gives the values for p and their meaning.

loop ignore assumed loop-carried vector dependences

A.2 Option Reference

Appendix A • C++ Compiler Options 253

loop_any ignore all loop-carried vector dependences

back ignore assumed backward loop-carried vector dependences

back_any ignore all backward loop-carried vector dependences

none do not ignore any dependences (disables ivdep pragmas)

These interpretations are provided for compatibility with other vendor's interpretations of the
ivdep pragma.

A.2.127 -xjobs=n
Specify the -xjobs option to set how many processes the compiler creates to complete its work.
This option can reduce the build time on a multi-processor machine. Currently, -xjobs works
only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n
as the maximum number of code generator instances it can invoke to compile different files.

A.2.127.1 Values
You must always specify -xjobs with a value. Otherwise, an error diagnostic is issued and
compilation aborts.

Generally, a safe value for n is 1.5 multiplied by the number of available processors. Using a
value that is many times the number of available processors can degrade performance because
of context-switching overheads among spawned jobs. Also, using a very high number can
exhaust the limits of system resources such as swap space.

A.2.127.2 Defaults
Multiple instances of -xjobs on the command line override each other until the right-most
instance is reached.

A.2.127.3 Examples
The following example compiles more quickly on a system with two processors than the same
command without the -xjobs option.

example% CC -xipo -xO4 -xjobs=3 t1.cc t2.cc t3.cc

A.2.128 -xkeepframe[=[%all,%none,name,no%name]]
Prohibit stack related optimizations for the named functions (name).

%all Prohibit stack related optimizations for all the code.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012254

%none Allow stack related optimizations for all the code.

This option is accumulative and can appear multiple times on the command line. For example,
—xkeepframe=%all —xkeepframe=no%func1 indicates that the stack frame should be kept for
all functions except func1. Also, —xkeepframe overrides —xregs=frameptr. For example,
—xkeepframe=%all —xregs=frameptr indicates that the stack should be kept for all functions,
but the optimizations for —xregs=frameptr would be ignored.

If not specified on the command line, the compiler assumes -xkeepframe=%none as the default.
If specified but without a value, the compiler assumes -xkeepframe=%all

A.2.129 -xlang=language[,language]
Includes the appropriate runtime libraries and ensures the proper runtime environment for the
specified language.

A.2.129.1 Values
language must be either f77, f90, f95, or c99.

The f90 and f95 arguments are equivalent. The c99 argument invokes ISO 9899:1999 C
programming language behavior for objects that were compiled with cc -xc99=%all and are
being linked with CC.

A.2.129.2 Interactions
The -xlang=f90 and -xlang=f95 options imply -library=f90, and the -xlang=f77 option
implies -library=f77. However, the -library=f77 and -library=f90 options are not
sufficient for mixed-language linking because only the -xlang option ensures the proper
runtime environment.

To determine which driver to use for mixed-language linking, use the following language
hierarchy:

1. C++
2. Fortran 95 (or Fortran 90)
3. Fortran 77
4. C or C99

When linking Fortran 95, Fortran 77, and C++ object files together, use the driver of the highest
language. For example, use the following C++ compiler command to link C++ and Fortran 95
object files:

example% CC -xlang=f95...

A.2 Option Reference

Appendix A • C++ Compiler Options 255

To link Fortran 95 and Fortran 77 object files, use the Fortran 95 driver, as follows:

example% f95 -xlang=f77...

You cannot use the -xlang option and the -xlic_lib option in the same compiler command.
If you are using -xlang and you need to link in the Sun Performance Libraries, use
-library=sunperf instead.

A.2.129.3 Warnings
Do not use -xnolib with -xlang.

If you are mixing parallel Fortran objects with C++ objects, the link line must specify the -mt
flag.

A.2.129.4 See Also
-library, -staticlib

A.2.130 -xldscope={v}
Specify the -xldscope option to change the default linker scoping for the definition of extern
symbols. Changing the default can result in faster and safer shared libraries and executables
because the implementation are better hidden.

A.2.130.1 Values
The following table lists the possible values for v.

TABLE A–36 The -xldscopeValues

Value Meaning

global Global linker scoping is the least restrictive linker scoping. All references to
the symbol bind to the definition in the first dynamic load module that
defines the symbol. This linker scoping is the current linker scoping for
extern symbols.

symbolic Symbolic linker scoping is more restrictive than global linker scoping. All
references to the symbol from within the dynamic load module being linked
bind to the symbol defined within the module. Outside of the module, the
symbol appears as though it is global. This linker scoping corresponds to the
linker option -Bsymbolic. Although you cannot use -Bsymbolic with C++
libraries, you can use the -xldscope=symbolic without causing problems.
See the ld(1) man page for more information on the linker.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012256

TABLE A–36 The -xldscopeValues (Continued)
Value Meaning

hidden Hidden linker scoping is more restrictive than symbolic and global linker
scoping. All references within a dynamic load module bind to a definition
within that module. The symbol will not be visible outside of the module.

A.2.130.2 Defaults
If you do not specify -xldscope, the compiler assumes -xldscope=global. If you specify
-xldscope without any values, the compiler issues an error. Multiple instances of this option on
the command line override each other until the right-most instance is reached.

A.2.130.3 Warning
If you intend to allow a client to override a function in a library, you must be sure that the
function is not generated inline during the library build. The compiler inlines a function in the
following situations:

■ The function name is specified with -xinline.
■ If you compile at -xO4 or higher, in which case inlining is automatic.
■ If you use the inline specifier or cross-file optimization.

For example, suppose library ABC has a default allocator function that can be used by library
clients, and is also used internally in the library:

void* ABC_allocator(size_t size) { return malloc(size); }

If you build the library at -xO4 or higher, the compiler inlines calls to ABC_allocator that occur
in library components. If a library client wants to replace ABC_allocator with a customized
version, the replacement will not occur in library components that called ABC_allocator. The
final program will include different versions of the function.

Library functions declared with the __hidden or __symbolic specifiers can be generated inline
when building the library. These specifiers are not supposed to be overridden by clients. See “4.1
Linker Scoping” on page 61.

Library functions declared with the __global specifier, should not be declared inline, and
should be protected from inlining by use of the -xinline compiler option.

A.2.130.4 See Also
-xinline, -xO

A.2 Option Reference

Appendix A • C++ Compiler Options 257

A.2.131 -xlibmieee

Causes libm to return IEEE 754 values for math routines in exceptional cases.

The default behavior of libm is XPG-compliant.

A.2.131.1 See Also
Numerical Computation Guide

A.2.132 -xlibmil

Inlines selected libm math library routines for optimization.

Note – This option does not affect C++ inline functions.

This option selects inline templates for libm routines that produce the fastest executables for
the floating-point option and platform currently being used.

A.2.132.1 Interactions
This option is implied by the –fast option.

See Also
-fast, Numerical Computation Guide

A.2.133 –xlibmopt

Uses a library of optimized math routines. You must use default rounding mode by specifying
-fround=nearest when you use this option.

This option uses a math routine library optimized for performance and usually generates faster
code. The results might be slightly different from those produced by the normal math library; if
so, they usually differ in the last bit.

The order on the command line for this library option is not significant.

A.2.133.1 Interactions
This option is implied by the –fast option.

A.2.133.2 See Also
–fast, –xnolibmopt, -fround

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012258

A.2.134 –xlic_lib=sunperf

Deprecated, do not use. Specify -library=sunperf instead. See “A.2.49 -library=l[,l...]” on
page 202 for more information.

A.2.135 –xlicinfo

This option is silently ignored by the compiler.

A.2.136 -xlinkopt[=level]
(SPARC only) Instructs the compiler to perform link-time optimization on the resulting
executable or dynamic library over and above any optimizations in the object files. These
optimizations are performed at link time by analyzing the object binary code. The object files
are not rewritten but the resulting executable code may differ from the original object codes.

You must use -xlinkopt on at least some of the compilation commands for -xlinkopt to be
useful at link time. The optimizer can still perform some limited optimizations on object
binaries that are not compiled with -xlinkopt.

-xlinkopt optimizes code coming from static libraries that appear on the compiler command
line, but it skips and does not optimize code coming from shared (dynamic) libraries that
appear on the command line. You can also use -xlinkopt when you build shared libraries
(compiling with -G).

A.2.136.1 Values
level sets the level of optimizations performed, and must be 0, 1, or 2. The optimization levels
are listed in the following table.:

TABLE A–37 The -xlinkoptValues

Value Meaning

0 The link optimizer is disabled (the default).

1 Perform optimizations based on control flow analysis, including instruction
cache coloring and branch optimizations, at link time.

2 Perform additional data flow analysis, including dead-code elimination and
address computation simplification, at link time.

If you compile in separate steps, -xlinkopt must appear on both compile and link steps:

example% cc -c -xlinkopt a.c b.c

example% cc -o myprog -xlinkopt=2 a.o

A.2 Option Reference

Appendix A • C++ Compiler Options 259

Note that the level parameter is used only when the compiler is linking. In the example, the link
optimizer level is 2 even though the object binaries are compiled with an implied level of 1.

A.2.136.2 Defaults
Specifying -xlinkopt without a level parameter implies -xlinkopt=1.

A.2.136.3 Interactions
This option is most effective when you use it to compile the whole program, and with profile
feedback. Profiling reveals the most and least used parts of the code, and directs the optimizer to
focus its effort accordingly. This is particularly important with large applications where optimal
placement of code performed at link time can reduce instruction cache misses. This option is
typically used as follows:

example% cc -o progt -xO5 -xprofile=collect:prog file.c

example% progt

example% cc -o prog -xO5 -xprofile=use:prog -xlinkopt file.c

For details on using profile feedback, see “A.2.164 –xprofile=p” on page 284.

A.2.136.4 Warnings
Do not use the -zcombreloc linker option when you compile with -xlinkopt.

Note that compiling with this option increases link time slightly. Object file sizes also increase,
but the size of the executable remains the same. Compiling with -xlinkopt and -g increases the
size of the executable by including debugging information.

A.2.137 -xloopinfo

This option shows which loops are parallelized and is normally for use with the -xautopar
option.

A.2.138 –xM

Runs only the C++ preprocessor on the named C++ programs, requesting that the preprocessor
generate makefile dependencies and send the result to the standard output. See the make(1) man
page for details about make files and dependencies.

However, -xM only reports dependencies of the included headers and not the associated
template definition files. You can use the .KEEP_STATE feature in your makefile to generate all
the dependencies in the .make.state file which the make utility creates.

A.2.138.1 Examples
The following example:

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012260

#include <unistd.h>

void main(void)

{}

generates this output:

e.o: e.c

e.o: /usr/include/unistd.h

e.o: /usr/include/sys/types.h

e.o: /usr/include/sys/machtypes.h

e.o: /usr/include/sys/select.h

e.o: /usr/include/sys/time.h

e.o: /usr/include/sys/types.h

e.o: /usr/include/sys/time.h

e.o: /usr/include/sys/unistd.h

A.2.138.2 Interactions
If you specify -xM and -xMF, the compiler writes all makefile dependency information to the file
specified with -xMF. This file is overwritten each time the preprocessor writes to it.

A.2.138.3 See Also
The make(1S) man page for details about makefiles and dependencies.

A.2.139 -xM1

Generates makefile dependencies like –xM except that it does not report dependencies for the
/usr/include header files and it does not report dependencies for compiler-supplied header
files.

If you specify -xM1 and -xMF, the compiler writes all makefile dependency information to the
file specified with -xMF. This file is overwritten each time the preprocessor writes to it.

A.2.140 -xMD

Generates makefile dependencies like -xM but compilation continues. -xMD generates an output
file for the makefile-dependency information derived from the -o output filename, if specified,
or the input source filename, replacing (or adding) the filename suffix with .d . If you specify
-xMD and -xMF, the preprocessor writes all makefile-dependency information to the file
specified with -xMF. Compiling with -xMD -xMF or -xMD -o filename with more than one source
file is not allowed and generates an error. The dependency file is overwritten if it already exists.

A.2 Option Reference

Appendix A • C++ Compiler Options 261

A.2.141 -xMF

Use this option to specify a file for the makefile-dependency output. You cannot specify
individual filenames for multiple input files with -xMF on one command line. Compiling with
-xMD -xMF or -xMMD -xMF with more than one source file is not allowed and generates an error.
The dependency file is overwritten if it already exists.

A.2.142 -xMMD

Use this option to generate makefile dependencies excluding system header files. This option
provides the same functionality as -xM1, but compilation continues. -xMMD generates an output
file for the makefile-dependency information derived from the -o output filename, if specified,
or the input source filename, replacing (or adding) the filename suffix with .d . If you specify
-xMF, the compiler uses the filename you provide instead. Compiling with -xMMD -xMF or -xMMD
-o filename with more than one source file is not allowed and generates an error. The
dependency file is overwritten if it already exists.

A.2.143 –xMerge

(SPARC only) Merges the data segment with the text segment.

The data in the object file is read-only and is shared between processes unless you link with ld

-N.

The three options -xMerge -ztext -xprofile=collect should not be used together. While
-xMerge forces statically initialized data into read-only storage, -ztext prohibits
position-dependent symbol relocations in read-only storage, and -xprofile=collect

generates statically initialized, position-dependent symbol relocations in writable storage.

A.2.143.1 See Also
ld(1) man page

A.2.144 -xmaxopt[=v]
This option limits the level of pragma opt to the level specified. v is one of off, 1, 2, 3, 4, 5. The
default value is -xmaxopt=off which causes pragma opt to be ignored. The default when
specifying -xmaxopt without supplying an argument is -xmaxopt=5.

If you specify both -xO and -xmaxopt, the optimization level set with -xO must not exceed the
-xmaxopt value.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012262

A.2.145 -xmemalign=ab
(SPARC only) Use the -xmemalign option to control the assumptions the compiler makes about
the alignment of data. By controlling the code generated for potentially misaligned memory
accesses and by controlling program behavior in the event of a misaligned access, you can more
easily port your code to SPARC.

Specify the maximum assumed memory alignment and behavior of misaligned data accesses.
You must profide a value for both a (alignment) and b (behavior). a specifies the maximum
assumed memory alignment and b specifies the behavior for misaligned memory accesses.

For memory accesses where the alignment is determinable at compile time, the compiler
generates the appropriate load/store instruction sequence for that alignment of data.

For memory accesses where the alignment cannot be determined at compile time, the compiler
must assume an alignment to generate the needed load/store sequence.

If actual data alignment at runtime is less than the specified alignment, the misaligned access
attempt (a memory read or write) generates a trap. The two possible responses to the trap are:
■ The OS converts the trap to a SIGBUS signal. If the program does not catch the signal, the

program aborts. Even if the program catches the signal, the misaligned access attempt will
not have succeeded.

■ The OS handles the trap by interpreting the misaligned access and returning control to the
program as if the access had succeeded normally.

A.2.145.1 Values
The following lists the alignment and behavior values for -xmemalign

Values for a:

1 Assume at most 1–byte alignment.

2 Assume at most 2–byte alignment.

4 Assume at most 4–byte alignment.

8 Assume at most 8–byte alignment.

16 Assume at most 16–byte alignment.

Values for b:

i Interpret access and continue execution.

s Raise signal SIGBUS

f For 64–bit SPARC architectures: Raise signal SIGBUS for alignments less or equal to 4.
Otherwise interpret access and continue execution.

A.2 Option Reference

Appendix A • C++ Compiler Options 263

For all other architectures, the flag is equivalent to i.

You must specify -xmemalign whenever you want to link to an object file that was compiled
with the value of b set to either i or f. For a complete list of all compiler options that must be
specified at both compile time and at link time, see “3.3.3 Compile-Time and Link-Time
Options” on page 48.

A.2.145.2 Defaults
The following default values only apply when no -xmemalign option is present:

■ -xmemalign=8i for all 32–bit SPARC architectures (-m32)
■ -xmemalign=8s for all 64–bit SPARC architectures (-m64)

The following default value when the -xmemalign option is present but no value is given is:

■ -xmemalign=1i for all architectures.

A.2.145.3 Examples
The following shows how you can use -xmemalign to handle different alignment situations.

-xmemalign=1s All memory accesses are misaligned so trap handling is too slow.

-xmemalign=8i Occasional, intentional, misaligned accesses can occur in code that is
otherwise correct.

-xmemalign=8s No misaligned accesses occur in the program.

-xmemalign=2s You want to check for possible odd-byte accesses.

-xmemalign=2i You want to check for possible odd-byte access and you want the program
to work.

A.2.146 -xmodel=[a]
(x86 only) The -xmodel option enables the compiler to modify the form of 64-bit objects for the
Oracle Solaris x86 platforms and should be specified only for the compilation of such objects.

This option is valid only when -m64 is also specified on 64–bit enabled x64 processors.

The following table lists the possible values for a.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012264

TABLE A–38 The -xmodelFlags

Value Meaning

small This option generates code for the small model in which the virtual
address of code executed is known at link time and all symbols are known
to be located in the virtual addresses in the range from 0 to 2^31 - 2^24 - 1.

kernel Generates code for the kernel model in which all symbols are defined to be
in the range from 2^64 - 2^31 to 2^64 - 2^24.

medium Generates code for the medium model in which no assumptions are made
about the range of symbolic references to data sections. The size and
address of the text section have the same limits as the small code model.
Applications with large amounts of static data might require
-xmodel=medium when compiling with -m64.

This option is not cumulative so the compiler sets the model value according to the right-most
instance of -xmodel on the command-line.

If you do not specify -xmodel, the compiler assumes -xmodel=small. Specifying -xmodel
without an argument is an error.

You do not need to compile all translation units with this option. You can compile select files as
long as you ensure the object you are accessing is within reach.

Be aware that not all Linux system support the medium model.

A.2.147 –xnolib

Disables linking with default system libraries.

Normally (without this option), the C++ compiler links with several system support libraries to
support C++ programs. With this option, the -llib options to link the default system support
libraries are not passed to ld.

Normally, the compiler links with the system support libraries in the following order:
■ With default —compat=5, the libraries are:

-lCstd -lCrun -lm -lc

■ For —compat=g on Linux, the libraries are:

—lstdc++ —lCrunG3 —lm —lc

■ For —compat=g on Oracle x86, the libraries are:

—lstdc++ —lgcc_s —lCrunG3 —lm —lc

The order of the -l options is significant. The -lm option must appear before -lc.

A.2 Option Reference

Appendix A • C++ Compiler Options 265

Note – If the -mt compiler option is specified, the compiler normally links with -lthread just
before it links with -lm.

To determine which system support libraries will be linked by default, compile with the
-dryrun option. For example, the output from the following command:

example% CC foo.cc -m64 -dryrun

shows the following in the output:

-lCstd -lCrun -lm -lc

A.2.147.1 Examples
For minimal compilation to meet the C application binary interface (that is, a C++ program
with only C support required), use the following command:

example% CC -xnolib test.cc –lc

To link libm statically into a single-threaded application with the generic architecture
instruction set, use the following command:

example% CC -xnolib test.cc -lCstd -lCrun -Bstatic -lm -Bdynamic -lc

A.2.147.2 Interactions
If you specify– xnolib, you must manually link all required system support libraries in the
given order. You must link the system support libraries last.

If -xnolib is specified, -library is ignored.

A.2.147.3 Warnings
Many C++ language features require the use of libCrun (standard mode).

This set of system support libraries is not stable and might change from release to release.

A.2.147.4 See Also
–library, –staticlib, –l

A.2.148 –xnolibmil

Cancels –xlibmil on the command line.

Use this option with –fast to override linking with the optimized math library.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012266

A.2.149 –xnolibmopt

Does not use the math routine library.

A.2.149.1 Examples
Use this option after the –fast option on the command line, as in this example:

example% CC –fast –xnolibmopt

A.2.150 -xnorunpath

Same as “A.2.60 –norunpath” on page 208

A.2.151 -xOlevel
Specifies optimization level; note the uppercase letter O followed by the digit 1, 2, 3, 4, or 5. In
general, program execution speed depends on the level of optimization. The higher the level of
optimization, the better the runtime performance. However, higher optimization levels can
result in increased compilation time and larger executable files.

In a few cases, –xO2 might perform better than the others, and –xO3 might outperform –xO4.
Try compiling with each level to see if you have one of these rare cases.

If the optimizer runs out of memory, it tries to recover by retrying the current procedure at a
lower level of optimization. The optimizer resumes subsequent procedures at the original level
specified in the -xOlevel option.

The following sections describe how the five -xOlevel optimization levels operate on the SPARC
platform and the x86 platform.

A.2.151.1 Values
On the SPARC Platform:

■ –xO1 does only the minimum amount of optimization (peephole), which is post-pass,
assembly-level optimization. Do not use -xO1 unless using -xO2 or -xO3 results in
excessive compilation time, or you are running out of swap space.

■ –xO2 does basic local and global optimization, which includes:
■ Induction-variable elimination
■ Local and global common-subexpression elimination
■ Algebraic simplification
■ Copy propagation

A.2 Option Reference

Appendix A • C++ Compiler Options 267

■ Constant propagation
■ Loop-invariant optimization
■ Register allocation
■ Basic block merging
■ Tail recursion elimination
■ Dead-code elimination
■ Tail-call elimination
■ Complicated expression expansion

This level does not optimize references or definitions for external or indirect variables.

–xO3, in addition to optimizations performed at the –xO2 level, also optimizes references
and definitions for external variables. This level does not trace the effects of pointer
assignments. When compiling either device drivers that are not properly protected by
volatile or programs that modify external variables from within signal handlers, use -xO2.
In general, this level results in increased code size unless combined with the -xspace
option.

■ –xO4 does automatic inlining of functions contained in the same file in addition to
performing –xO3 optimizations. This automatic inlining usually improves execution speed
but sometimes makes it worse. In general, this level results in increased code size unless
combined with the -xspace option.

■ –xO5 generates the highest level of optimization. It is suitable only for the small fraction of a
program that uses the largest fraction of computer time. This level uses optimization
algorithms that take more compilation time or that do not have as high a certainty of
improving execution time. Optimization at this level is more likely to improve performance
if it is done with profile feedback. See “A.2.164 –xprofile=p” on page 284.

On the x86 Platform:
■ –xO1 does basic optimization. This includes algebraic simplification, register allocation,

basic block merging, dead code and store elimination, and peephole optimization.
■ –xO2 performs local common subexpression elimination, local copy and constant

propagation, and tail recursion elimination, as well as the optimization done by level 1.
■ –xO3 performs global common subexpression elimination, global copy and constant

propagation, loop strength reduction, induction variable elimination, and loop-variant
optimization, as well as the optimization done by level 2.

■ –xO4 does automatic inlining of functions contained in the same file as well as the
optimization done by level 3. This automatic inlining usually improves execution speed but
sometimes makes it worse. This level also frees the frame pointer registration (ebp) for
general purpose use. In general, this level results in increased code size.

■ –xO5 generates the highest level of optimization. It uses optimization algorithms that take
more compilation time or that do not have as high a certainty of improving execution time.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012268

A.2.151.2 Interactions
If you use -g or -g0 and the optimization level is -xO3 or lower, the compiler provides
best-effort symbolic information with almost full optimization.

If you use -g or -g0 and the optimization level is -xO4 or higher, the compiler provides
best-effort symbolic information with full optimization.

Debugging with -g does not suppress –xOlevel, but –xOlevel limits –g in certain ways. For
example, the –xOlevel options reduce the utility of debugging so that you cannot display
variables from dbx, but you can still use the dbx where command to get a symbolic traceback.
For more information, see Debugging a Program With dbx.

The -xipo option is effective only if it is used with -xO4 or -xO5.

The -xinline option has no effect for optimization levels below -xO3. At -xO4, the optimizer
decides which functions should be inlined, and does so regardless of whether you specify the
-xinline option. At -xO4, the compiler also attempts to determine which functions will
improve performance if they are inlined. If you force the inlining of a function with -xinline,
you might actually diminish performance.

A.2.151.3 Defaults
The default is no optimization. However, this is only possible if you do not specify an
optimization level. If you specify an optimization level, there is no option for turning
optimization off.

If you are trying to avoid setting an optimization level, be sure not to specify any option that
implies an optimization level. For example, -fast is a macro option that sets optimization at
-xO5. All other options that imply an optimization level issue a warning message that
optimization has been set. The only way to compile without any optimization is to delete all
options from the command line or make file that specify an optimization level.

A.2.151.4 Warnings
If you optimize at –xO3 or –xO4 with very large procedures (thousands of lines of code in a
single procedure), the optimizer might require an unreasonable amount of memory. In such
cases, machine performance can be degraded.

To prevent this degradation from taking place, use the limit command to limit the amount of
virtual memory available to a single process. See the csh(1) man page. For example, to limit
virtual memory to 4 gigabytes:

example% limit datasize 4G

This command causes the optimizer to try to recover if it reaches 4 gigabytes of data space.

The limit cannot be greater than the total available swap space of the machine, and should be
small enough to permit normal use of the machine while a large compilation is in progress.

A.2 Option Reference

Appendix A • C++ Compiler Options 269

The best setting for data size depends on the degree of optimization requested, the amount of
real memory, and virtual memory available.

To find the actual swap space, type swap– l

To find the actual real memory, type dmesg | grep mem

A.2.151.5 See Also
-xldscope –fast, –xprofile=p, csh(1) man page

A.2.152 -xopenmp[=i]
Use the -xopenmp option to enable explicit parallelization with OpenMP directives.

A.2.152.1 Values
The following table lists the values for i.

TABLE A–39 -xopenmpValues

Values Meaning

parallel Enables recognition of OpenMP pragmas. The minimum optimization
level under -xopenmp=parallel is -xO3. The compiler changes the
optimization from a lower level to -xO3 if necessary and issues a warning.

This flag also defines the preprocessor token _OPENMP.

noopt Enables recognition of OpenMP pragmas. The compiler does not raise the
optimization level if it is lower than -O3.

If you explicitly set the optimization lower than -O3, as in CC -O2

-xopenmp=noopt, the compiler issues an error. If you do not specify an
optimization level with -xopenmp=noopt, the OpenMP pragmas are
recognized and the program is parallelized accordingly but no optimization
is done.

This flag also defines the preprocessor token _OPENMP.

none This flag is the default and disables recognition of OpenMP pragmas. It
does not change the optimization level of the compilation, and does not
predefine any preprocessor tokens.

A.2.152.2 Defaults
If you do not specify -xopenmp, the compiler default is -xopenmp=none.

If you specify -xopenmp without an argument, the compiler default is -xopenmp=parallel.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012270

A.2.152.3 Interactions
If you are debugging an OpenMP program with dbx, compile with -g and -xopenmp=noopt so
you can breakpoint within parallel regions and display the contents of variables.

Use the OMP_NUM_THREADS environment variable to specify the number of threads to use when
running an OpenMP program. If OMP_NUM_THREADS is not set, the default number of threads
used is 2. To use more threads, set OMP_NUM_THREADS to a higher value. Set OMP_NUM_THREADS to
1 to run with just one thread. In general, set OMP_NUM_THREADS to the available number of virtual
processors on the running system, which can be determined by using the Oracle Solaris
psrinfo(1) command. See the Oracle Solaris Studio OpenMP API User's Guide for more
information.

To enable nested parallelism, you must set the OMP_NESTED environment variable to TRUE.
Nested parallelism is disabled by default. See the Oracle Solaris Studio OpenMP API User's
Guide for details.

A.2.152.4 Warnings
The default for -xopenmp might change in future releases. You can avoid warning messages by
explicitly specifying an appropriate optimization.

If you compile and link in separate steps, specify -xopenmp in both the compilation step and the
link step. This is important if you are building a shared object. The compiler which was used to
compile the executable must not be any older than the compiler that built the .so with
-xopenmp. This is especially important when you compile libraries that contain OpenMP
directives. See “3.3.3 Compile-Time and Link-Time Options” on page 48 for a complete list of
options that must be specified at both compile time and link time.

Make sure that the latest patch of the OpenMP runtime library, libmtsk.so, is installed on the
system for best performance.

A.2.152.5 See Also
For a complete summary of the OpenMP Fortran 95, C, and C++ application program interface
(API) for building multiprocessing applications, see the Oracle Solaris Studio OpenMP API
User’s Guide.

A.2.153 -xpagesize=n
Sets the preferred page size for the stack and the heap.

A.2.153.1 Values
The following values are valid for SPARC: 4k, 8K, 64K, 512K, 2M, 4M, 32M, 256M, 2G, 16G, or
default.

The following values are valid on x86/x64: 4K, 2M. 4M, 1G, or default.

A.2 Option Reference

Appendix A • C++ Compiler Options 271

You must specify a valid page size for the target platform. If you do not specify a valid page size,
the request is silently ignored at runtime.

Use the getpagesize(3C) command on the Oracle Solaris operating system to determine the
number of bytes in a page. The Solaris operating system offers no guarantee that the page size
request will be honored. You can use pmap(1) or meminfo(2) to determine the page size of the
target platform.

Note – Compiling with this option has the same effect as setting the LD_PRELOAD environment
variable to mpss.so.1 with the equivalent options, or running the Oracle Solaris command
ppgsz(1) with the equivalent options before running the program. See the Oracle Solaris man
pages for details.

A.2.153.2 Defaults
If you specify -xpagesize=default, the Oracle Solaris operating system sets the page size.

A.2.153.3 Expansions
This option is a macro for -xpagesize_heap and -xpagesize_stack. These two options accept
the same arguments as -xpagesize: 4k, 8K, 64K, 512K, 2M, 4M, 32M, 256M, 2G, 16G, or default.
You can set them both with the same value by specifying -xpagesize or you can specify them
individually with different values.

A.2.153.4 Warnings
The -xpagesize option has no effect unless you use it at compile time and at link time. See
“3.3.3 Compile-Time and Link-Time Options” on page 48 for a complete list of options that
must be specified at both compile time and link time.

A.2.154 -xpagesize_heap=n
Set the page size in memory for the heap.

A.2.154.1 Values
n can be 4k, 8K, 64K, 512K, 2M, 4M, 32M, 256M, 2G, 16G, or default. You must specify a valid page
size for the target platform. If you do not specify a valid page size, the request is silently ignored
at runtime.

Use the getpagesize(3C) command on the Oracle Solaris operating system to determine the
number of bytes in a page. The Solaris operating system offers no guarantee that the page size
request will be honored. You can use pmap(1) or meminfo(2) to determine the page size of the
target platform.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012272

Note – Compiling with this option has the same effect as setting the LD_PRELOAD environment
variable to mpss.so.1 with the equivalent options, or running the Oracle Solaris command
ppgsz(1) with the equivalent options before running the program. See the Oracle Solaris man
pages for details.

A.2.154.2 Defaults
If you specify -xpagesize_heap=default, the Oracle Solaris operating system sets the page
size.

A.2.154.3 Warnings
The -xpagesize_heap option has no effect unless you use it at compile time and at link time.

A.2.155 -xpagesize_stack=n
Set the page size in memory for the stack.

A.2.155.1 Values
n can be 4k, 8K, 64K, 512K, 2M, 4M, 32M, 256M, 2G, 16G, or default. You must specify a valid page
size for the target platform. If you do not specify a valid page size, the request is silently ignored
at runtime.

Use the getpagesize(3C) command on the Oracle Solaris operating system to determine the
number of bytes in a page. The Oracle Solaris operating system offers no guarantee that the page
size request will be honored. You can use pmap(1) or meminfo(2) to determine the page size of
the target platform.

Note – Compiling with this option has the same effect as setting the LD_PRELOAD environment
variable to mpss.so.1 with the equivalent options, or running the Oracle Solaris command
ppgsz(1) with the equivalent options before running the program. See the Oracle Solaris man
pages for details.

A.2.155.2 Defaults
If you specify -xpagesize_stack=default, the Oracle Solaris operating system sets the page
size.

A.2.155.3 Warnings
The -xpagesize_stack option has no effect unless you use it at compile time and at link time.

A.2 Option Reference

Appendix A • C++ Compiler Options 273

A.2.156 -xpch=v
This compiler option activates the precompiled-header feature. The precompiled-header
feature might reduce compile time for applications whose source files share a common set of
include files containing a large amount of source code. The compiler collects information about
a sequence of header files from one source file, and then uses that information when
recompiling that source file, and when compiling other source files that have the same sequence
of headers. The information that the compiler collects is stored in a precompiled-header file.
You can take advantage of this feature through the -xpch and -xpchstop options in
combination with the #pragma hdrstop directive.

A.2.156.1 Creating a Precompiled-Header File
When you specify -xpch=v, v can be collect:pch-filename or use:pch-filename. The first time
you use -xpch, you must specify the collect mode. The compilation command that specifies
-xpch=collect must only specify one source file. In the following example, the -xpch option
creates a precompiled-header file called myheader.Cpch based on the source file a.cc:

CC -xpch=collect:myheader a.cc

A valid precompiled-header filename always has the suffix .Cpch. When you specify
pch-filename, you can add the suffix or let the compiler add it for you. For example, if you
specify cc -xpch=collect:foo a.cc, the precompiled-header file is called foo.Cpch.

When you create a precompiled-header file, pick a source file that contains the common
sequence of include files across all the source files with which the precompiled-header file is to
be used. The common sequence of include files must be identical across these source files.
Remember, only one source filename value is legal in collect mode. For example, CC
-xpch=collect:foo bar.cc is valid, whereas CC -xpch=collect:foo bar.cc foobar.cc is
invalid because it specifies two source files.

Using a Precompiled-Header File
Specify -xpch=use:pch-filename to use a precompiled-header file. You can specify any number
of source files with the same sequence of include files as the source file that was used to create
the precompiled-header file. For example, your command in use mode could look like this: CC
-xpch=use:foo.Cpch foo.c bar.cc foobar.cc.

You should only use an existing precompiled-header file if the following situations are true. If
any are not true, you should recreate the precompiled-header file:
■ The compiler that you are using to access the precompiled-header file is the same as the

compiler that created the precompiled-header file. A precompiled-header file created by one
version of the compiler might not be usable by another version of the compiler, including
differences caused by installed patches.

■ Except for the -xpch option, the compiler options you specify with -xpch=use must match
the options that were specified when the precompiled-header file was created.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012274

■ The set of included headers you specify with -xpch=use is identical to the set of headers that
were specified when the precompile header was created.

■ The contents of the included headers that you specify with -xpch=use is identical to the
contents of the included headers that were specified when the precompiled header was
created.

■ The current directory (that is, the directory in which the compilation is occurring and
attempting to use a given precompiled-header file) is the same as the directory in which the
precompiled-header file was created.

■ The initial sequence of preprocessing directives, including #include directives, in the file
you specified with -xpch=collect are the same as the sequence of preprocessing directives
in the files you specify with -xpch=use.

In order to share a precompiled-header file across multiple source files, those source files must
share a common set of include files as their initial sequence of tokens. This initial sequence of
tokens is known as the viable prefix. The viable prefix must be interpreted consistently across all
the source files that use the same precompiled-header file.

The viable prefix of a source file can only be comprised of comments and any of the following
preprocessor directives:

#include

#if/ifdef/ifndef/else/elif/endif

#define/undef

#ident (if identical, passed through as is)

#pragma (if identical)

Any of these directives may reference macros. The #else, #elif, and #endif directives must
match within the viable prefix.

Within the viable prefix of each file that shares a precompiled-header file, each corresponding
#define and #undef directive must reference the same symbol. In the case of #define, each one
must reference the same value. Their order of appearance within each viable prefix must be the
same as well. Each corresponding pragma must also be the same and appear in the same order
across all the files sharing a precompiled header.

A header file that is incorporated into a precompiled-header file must not violate the following
constraints. The results of compiling a program that violates any of these constraints is
undefined.

■ The header file must not contain function and variable definitions.
■ The header file must not use __DATE__ and __TIME__. Use of these preprocessor macros can

generate unpredictable results.
■ The header file must not contain #pragma hdrstop.
■ The header file must not use __LINE__ and __FILE__ in the viable prefix. You can use

__LINE__ and __FILE__ in included headers.

A.2 Option Reference

Appendix A • C++ Compiler Options 275

How to Modify Makefiles

This section describes possible approaches to modifying your makefiles in order to incorporate
-xpch into your builds.

■ You can use the implicit make rules by using an auxiliary CCFLAGS variable and the
KEEP_STATE facility of both make and dmake. The precompiled header is produced as a
separate independent step.

.KEEP_STATE:

CCFLAGS_AUX = -O etc

CCFLAGS = -xpch=use:shared $(CCFLAGS_AUX)

shared.Cpch: foo.cc

$(CCC) -xpch=collect:shared $(CCFLAGS_AUX) foo.cc

a.out: foo.o ping.o pong.o

$(CCC) foo.o ping.o pong.o

You can also define your own compilation rule instead of trying to use an auxiliary CCFLAGS.

.KEEP_STATE:

.SUFFIXES: .o .cc

%.o:%.cc shared.Cpch

$(CCC) -xpch=use:shared $(CCFLAGS) -c $<

shared.Cpch: foo.cc

$(CCC) -xpch=collect:shared $(CCFLAGS) foo.cc -xe

a.out: foo.o ping.o pong.o

$(CCC) foo.o ping.o pong.o

■ You can produce the precompiled header as a side effect of regular compilation and without
using KEEP_STATE, but this approach requires explicit compilation commands.

shared.Cpch + foo.o: foo.cc bar.h

$(CCC) -xpch=collect:shared foo.cc $(CCFLAGS) -c

ping.o: ping.cc shared.Cpch bar.h

$(CCC) -xpch=use:shared ping.cc $(CCFLAGS) -c

pong.o: pong.cc shared.Cpch bar.h

$(CCC) -xpch=use:shared pong.cc $(CCFLAGS) -c

a.out: foo.o ping.o pong.o

$(CCC) foo.o ping.o pong.o

A.2.156.2 See Also
■ “A.2.157 -xpchstop=file” on page 276
■ “B.2.9 #pragma hdrstop” on page 310

A.2.157 -xpchstop=file
Use the -xpchstop=file option to specify the last include file to be considered in creating the
precompiled header file with the -xpch option. Using -xpchstop on the command line is
equivalent to placing a hdrstop pragma after the first include-directive that references file in
each of the source files that you specify with the cc command.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012276

In the following example, the -xpchstop option specifies that the viable prefix for the
precompiled header file ends with the include of projectheader.h. Therefore,
privateheader.h is not a part of the viable prefix.

example% cat a.cc

#include <stdio.h>

#include <strings.h>

#include "projectheader.h"
#include "privateheader.h"
.

.

.

example% CC -xpch=collect:foo.Cpch a.cc -xpchstop=projectheader.h -c

A.2.157.1 See Also
-xpch, pragma hdrstop

A.2.158 -xpec[={yes|no}]

(Solaris only) Generates a Portable Executable Code (PEC) binary. This option puts the
program intermediate representations in the object file and the binary. This binary may be used
later for tuning and troubleshooting.

A binary that is built with -xpecis usually five to ten times larger than if it is built without -xpec.

If you do not specify -xpec, the compiler sets it to -xpec=no. If you specify -xpec, but do not
supply a flag, the compiler sets it to -xpec=yes.

A.2.159 –xpg

Compiles for profiling with the gprof profiler.

The-xpg option compiles self-profiling code to collect data for profiling with gprof. This
option invokes a runtime recording mechanism that produces a gmon.out file when the
program normally terminates.

Note – -xprofile does not benefit if you specify -xpg. The two do not prepare or use data
provided by the other.

Profiles are generated by using prof(1) or gprof(1) on 64–bit Solaris platforms or just gprof on
32–bit Solaris platforms and include approximate user CPU times. These times are derived
from PC sample data for routines in the main executable and routines in shared libraries
specified as linker arguments when the executable is linked. Other shared libraries (libraries
opened after process startup using dlopen(3DL)) are not profiled.

A.2 Option Reference

Appendix A • C++ Compiler Options 277

On 32–bit Solaris systems, profiles generated using prof(1) are limited to routines in the
executable. 32–bit shared libraries can be profiled by linking the executable with -xpg and using
gprof(1).

On x86 systems, -xpg is incompatible with -xregs=frameptr, and these two options should not
be used together. Note also that -xregs=frameptr is included in -fast.

The Oracle Solaris 10 software does not include system libraries compiled with -p. As a result,
profiles collected on Solaris 10 platforms do not include call counts for system library routines.

A.2.159.1 Warnings
If you compile and link separately and you compile with –xpg, be sure to link with –xpg. See
“3.3.3 Compile-Time and Link-Time Options” on page 48 for a complete list of options that
must be specified at both compile time and link time.

Binaries compiled with -xpg for gprof profiling should not be used with binopt(1), as they are
incompatible and can result in internal errors.

A.2.159.2 See Also
–xprofile=p, the analyzer(1) man page, and the Performance Analyzer manual

A.2.160 -xport64[=(v)]
Use this option to help you debug code you are porting to a 64-bit environment. Specifically,
this option warns against problems such as truncation of types (including pointers), sign
extension, and changes to bit-packing that are common when code is ported from a 32-bit
architecture such as V8 to a 64-bit architecture such as V9.

This option has no effect unless you are also compiling in 64–bit mode, —m64.

A.2.160.1 Values
The following table lists the valid values for v.

TABLE A–40 -xport64Values

Values Meaning

no Generate no warnings related to the porting of code from a 32–bit
environment to a 64–bit environment.

implicit Generate warning only for implicit conversions. Do not generate warnings
when an explicit cast is present.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012278

TABLE A–40 -xport64Values (Continued)
Values Meaning

full Generate all warnings related to the porting of code from a 32–bit
environment to a 64–bit environment. This includes warnings for
truncation of 64-bit values, sign-extension to 64 bits under ISO
value-preserving rules, and changes to the packing of bitfields.

A.2.160.2 Defaults
If you do not specify -xport64, the default is -xport64=no. If you specify -xport64 but do not
specify a flag, the default is -xport64=full.

A.2.160.3 Examples
This section provides examples of code that can cause truncation of type, sign extension, and
changes to bit-packing.

Checking for the Truncation of 64-bit Values

When you port to a 64-bit architecture such as SPARC V9, your data may be truncated. The
truncation could happen implicitly, by assignment, at initialization, or by an explicit cast. The
difference of two pointers is the typedef ptrdiff_t, which is a 32-bit integer type in 32-bit
mode, and a 64-bit integer type in 64-bit mode. The truncation of a long to a smaller size
integral type generates a warning as in the following example.

example% cat test1.c

int x[10];

int diff = &x[10] - &x[5]; //warn

example% CC -c -m64 -Qoption ccfe -xport64=full test1.c

"test1.c", line 3: Warning: Conversion of 64-bit type value to "int" causes truncation.

1 Warning(s) detected.

example%

Use -xport64=implicit to disable truncation warnings in 64–bit compilation mode when an
explicit cast is the cause of data truncation.

example% CC -c -m64 -Qoption ccfe -xport64=implicit test1.c

"test1.c", line 3: Warning: Conversion of 64-bit type value to "int" causes truncation.

1 Warning(s) detected.

example%

Another common issue that arises from porting to a 64-bit architecture is the truncation of a
pointer. This is always an error in C++. An operation such as casting a pointer to an int which
causes such a truncation results in an error diagnostic in 64–bit SPARC architectures when you
specify -xport64.

A.2 Option Reference

Appendix A • C++ Compiler Options 279

example% cat test2.c

char* p;

int main() {

p =(char*) (((unsigned int)p) & 0xFF); // -m64 error

return 0;

}

example% CC -c -m64 -Qoption ccfe -xport64=full test2.c

"test2.c", line 3: Error: Cannot cast from char* to unsigned.

1 Error(s) detected.

example%

Checking for Sign Extension

You can also use the -xport64 option to check for situations in which the normal ISO C
value-preserving rules allow for the extension of the sign of a signed-integral value in an
expression of unsigned-integral type. Such sign extensions can cause subtle run-time bugs.

example% cat test3.c

int i= -1;

void promo(unsigned long l) {}

int main() {

unsigned long l;

l = i; // warn

promo(i); // warn

}

example% CC -c -m64 -Qoption ccfe -xport64=full test3.c

"test3.c", line 6: Warning: Sign extension from "int" to 64-bit integer.

"test3.c", line 7: Warning: Sign extension from "int" to 64-bit integer.

2 Warning(s) detected.

Checking for Changes to the Packing of Bitfields

Use -xport64 to generate warnings against long bitfields. In the presence of such bitfields,
packing of the bitfields might drastically change. Any program which relies on assumptions
regarding the way bitfields are packed needs to be reviewed before a successful port can take
place to a 64-bit architecture.

example% cat test4.c

#include <stdio.h>

union U {

struct S {

unsigned long b1:20;

unsigned long b2:20;

} s;

long buf[2];

} u;

int main() {

u.s.b1 = 0XFFFFF;

u.s.b2 = 0XFFFFF;

printf(" u.buf[0] = %lx u.buf[1] = %lx\n", u.buf[0], u.buf[1]);

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012280

return 0;

}

example%

Output on 64–bit SPARC systems (-m64):

example% u.buf[0] = ffffffffff000000 u.buf[1] = 0

A.2.160.4 Warnings
Note that warnings are generated only when you compile in 64-bit mode using -m64.

A.2.160.5 See Also
“A.2.50 -m32|-m64” on page 205

A.2.161 -xprefetch[=a[,a...]]
Enable prefetch instructions on those architectures that support prefetch.

Explicit prefetching should only be used under special circumstances that are supported by
measurements.

The following table lists the possible values of a .

TABLE A–41 -xprefetchValues

Value Meaning

auto Enable automatic generation of prefetch instructions

no%auto Disable automatic generation of prefetch instructions

explicit (SPARC) Enable explicit prefetch macros

no%explicit (SPARC) Disable explicit prefetch macros

latx:factor Adjust the compiler’s assumed prefetch-to-load and prefetch-to-store
latencies by the specified factor. You can combine this flag only with
-xprefetch=auto. The factor must be a positive floating-point or integer
number.

yes Obsolete, do not use. Use -xprefetch=auto,explicit instead.

no Obsolete, do not use. Use -xprefetch=no%auto,no%explicit instead.

With -xprefetch and -xprefetch=auto the compiler is free to insert prefetch instructions
into the code it generates. This may result in a performance improvement on architectures that
support prefetch.

A.2 Option Reference

Appendix A • C++ Compiler Options 281

If you are running computationally intensive codes on large multiprocessors, using
-xprefetch=latx:factor could improve performance. This option instructs the code generator
to adjust the default latency time between a prefetch and its associated load or store by the
specified factor.

The prefetch latency is the hardware delay between the execution of a prefetch instruction and
the time the data being prefetched is available in the cache. The compiler assumes a prefetch
latency value when determining how far apart to place a prefetch instruction and the load or
store instruction that uses the prefetched data.

Note – The assumed latency between a prefetch and a load may not be the same as the assumed
latency between a prefetch and a store.

The compiler tunes the prefetch mechanism for optimal performance across a wide range of
machines and applications. This tuning may not always be optimal. For memory-intensive
applications, especially applications intended to run on large multiprocessors, you may be able
to obtain better performance by increasing the prefetch latency values. To increase the values,
use a factor that is greater than 1 (one). A value between .5 and 2.0 will most likely provide the
maximum performance.

For applications with data sets that reside entirely within the external cache, you may be able to
obtain better performance by decreasing the prefetch latency values. To decrease the values, use
a factor that is less than 1 (one).

To use the -xprefetch=latx:factor option, start with a factor value near 1.0 and run
performance tests against the application. Then increase or decrease the factor, as appropriate,
and run the performance tests again. Continue adjusting the factor and running the
performance tests until you achieve optimum performance. When you increase or decrease the
factor in small steps, you will see no performance difference for a few steps, then a sudden
difference, then it will level off again.

A.2.161.1 Defaults
The default is -xprefetch=auto,explicit. This default adversely affects applications that have
essentially non-linear memory access patterns. Specify -xprefetch=no%auto,no%explicit to
override the default.

The default of auto is assumed unless explicitly overridden with an argument of no%auto or an
argument of no. For example, -xprefetch=explicit is the same as
-xprefetch=explicit,auto.

The default of explicit is assumed unless explicitly overridden with an argument of
no%explicit or an argument of no. For example, -xprefetch=auto is the same as
-xprefetch=auto,explicit.

If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012282

If automatic prefetching is enabled, but a latency factor is not specified, then
-xprefetch=latx:1.0 is assumed.

A.2.161.2 Interactions
This option accumulates instead of overrides.

The sun_prefetch.h header file provides the macros for specifying explicit prefetch
instructions. The prefetches will be approximately at the place in the executable that
corresponds to where the macros appear.

To use the explicit prefetch instructions, you must be on the correct architecture, include
sun_prefetch.h, and either exclude -xprefetch from the compiler command or use
-xprefetch, -xprefetch=auto,explicit or -xprefetch=explicit.

If you call the macros and include the sun_prefetch.h header file but specify
-xprefetch=no%explicit, the explicit prefetches will not appear in your executable.

The use of latx:factor is valid only when automatic prefetching is enabled. latx:factor is
ignored unless you use it in conjunction with -xprefetch=auto,latx:factor.

A.2.161.3 Warnings
Explicit prefetching should be used only under special circumstances that are supported by
measurements.

Because the compiler tunes the prefetch mechanism for optimal performance across a wide
range of machines and applications, you should use -xprefetch=latx:factor only when the
performance tests indicate there is a clear benefit. The assumed prefetch latencies might change
from release to release. Therefore, retesting the effect of the latency factor on performance
whenever switching to a different release is highly recommended.

A.2.162 -xprefetch_auto_type=a
Where a is [no%]indirect_array_access.

Use this option to determine whether the compiler generates indirect prefetches for the loops
indicated by the option -xprefetch_level in the same fashion the prefetches for direct
memory accesses are generated.

If you do not specify a setting for -xprefetch_auto_type, the compiler sets it to
-xprefetch_auto_type=no%indirect_array_access.

Options such as -xdepend, -xrestrict, and -xalias_level can affect the aggressiveness of
computing the indirect prefetch candidates and therefore the aggressiveness of the automatic
indirect prefetch insertion due to better memory alias disambiguation information.

A.2 Option Reference

Appendix A • C++ Compiler Options 283

A.2.163 -xprefetch_level[=i]
Use the -xprefetch_level=i option to control the aggressiveness of the automatic insertion of
prefetch instructions as determined with -xprefetch=auto. The compiler becomes more
aggressive, or, in other words, introduces more prefetches, with each higher level of
-xprefetch_level.

The appropriate value for -xprefetch_level depends on the number of cache misses your
application has. Higher -xprefetch_level values have the potential to improve the
performance of applications with a high number of cache misses.

A.2.163.1 Values
i must be one of 1, 2, or 3, as shown in the following table.

TABLE A–42 -xprefetch_levelValues

Value Meaning

1 Enables automatic generation of prefetch instructions.

2 Targets additional loops beyond those targeted at -xprefetch_level=1 for
prefetch insertion. Additional prefetches could be inserted beyond those at
-xprefetch_level=1.

3 Targets additional loops beyond those targeted at -xprefetch_level=2 for
prefetch insertion. Additional prefetches could be inserted beyond those at
-xprefetch_level=2.

A.2.163.2 Defaults
The default is -xprefetch_level=1 when you specify -xprefetch=auto.

A.2.163.3 Interactions
This option is effective only when it is compiled with -xprefetch=auto, with optimization level
3 or greater (-xO3), and on 64–bit SPARC platforms that support prefetch (-m64).

A.2.164 –xprofile=p
Collects data for a profile or uses a profile to optimize.

p must be collect[:profdir], use[:profdir], or tcov[:profdir].

This option causes execution frequency data to be collected and saved during execution, then
the data can be used in subsequent runs to improve performance. Profile collection is safe for
multithreaded applications. Profiling a program that does its own multitasking (-mt) produces

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012284

accurate results. This option is only valid when you specify -xO2 or greater level of
optimization. If compilation and linking are performed in separate steps, the same -xprofile
option must appear on the link step as well as the compile step.

collect[:profdir] Collects and saves execution frequency for later use by the optimizer
with -xprofile=use. The compiler generates code to measure statement
execution-frequency.

-xMerge, -ztext, and -xprofile=collect should not be used
together. While -xMerge forces statically initialized data into read-only
storage, -ztext prohibits position-dependent symbol relocations in
read-only storage, and -xprofile=collect generates statically
initialized, position-dependent symbol relocations in writable storage.

The profile directory name profdir, if specified, is the pathname of the
directory where profile data are to be stored when a program or shared
library containing the profiled object code is executed. If the profdir
pathname is not absolute, it is interpreted relative to the current working
directory when the program is compiled with the option
-xprofile=use:profdir.

If no profile directory name is specified with
—xprofile=collect:prof_dir or —xprofile=tcov:prof_dir, profile data
are stored at run time in a directory named program.profile where
program is the basename of the profiled process's main program. In this
case, the environment variables SUN_PROFDATA and SUN_PROFDATA_DIR

can be used to control where the profile data are stored at run time. If set,
the profile data are written to the directory given by
$SUN_PROFDATA_DIR/$SUN_PROFDATA. If a profile directory name is
specified at compi lation time, SUN_PROFDATA_DIR and SUN_PROFDATA

have no effect at run time. These environment variables similarly control
the path and names of the profile data files written by tcov, as described
in the tcov(1) man page.

If these environment variables are not set, the profile data is written to
the directory profdir.profile in the current directory, where profdir is
the name of the executable or the name specified in the
-xprofile=collect:profdir flag. -xprofile does not append .profile
to profdir if profdir already ends in .profile. If you run the program
several times, the execution frequency data accumulates in the
profdir.profile directory; that is output from prior executions is not
lost.

A.2 Option Reference

Appendix A • C++ Compiler Options 285

If you are compiling and linking in separate steps, make sure that any
object files compiled with -xprofile=collect are also linked with
-xprofile=collect.

The following example collects and uses profile data in the directory
myprof.profile located in the same directory where the program is
built:

demo: CC -xprofile=collect:myprof.profile -xO5 prog.cc -o prog

demo: ./prog

demo: CC -xprofile=use:myprof.profile -xO5 prog.cc -o prog

The following example collects profile data in the directory
/bench/myprof.profile and later uses the collected profile data in a
feedback compilation at optimization level -xO5:

demo: CC -xprofile=collect:/bench/myprof.profile

\ -xO5 prog.cc -o prog

...run prog from multiple locations..

demo: CC -xprofile=use:/bench/myprof.profile

\ -xO5 prog.cc -o prog

use[:profdir] Uses execution frequency data collected from code compiled with
—xprofile=collect[:profdir] or —xprofile=tcov[:profdir] to optimize
for the work performed when the profiled code was executed. profdir is
the pathname of a directory containing profile data collected by running
a program that was compiled with —xprofile=collect[:profdir] or
—xprofile=tcov[:profdir].

To generate data that can be used by both tcov and
—xprofile=use[:profdir], a profile directory must be specified at
compilation time, using the option —xprofile=tcov[:profdir]. The
same profile directory must be specified in both
—xprofile=tcov:profdir and —xprofile=use:profdir. To minimize
confusion, specify profdir as an absolute pathname.

The profdir pathname is optional. If profdir is not specified, the name of
the executable binary is used. a.out is used if -o is not specified. The
compiler looks for profdir.profile/feedback, or
a.out.profile/feedback when profdir is not specified. For example:

demo: CC -xprofile=collect -o myexe prog.cc

demo: CC -xprofile=use:myexe -xO5 -o myexe prog.cc

The program is optimized by using the execution frequency data
previously generated and saved in the feedback files written by a
previous execution of the program compiled with -xprofile=collect.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012286

Except for the -xprofile option, the source files and other compiler
options must be exactly the same as those used for the compilation that
created the compiled program that generated the feedback file. The same
version of the compiler must be used for both the collect build and the
use build as well.

If compiled with -xprofile=collect:profdir, the same profile directory
name profdir must be used in the optimizing compilation:
-xprofile=use:profdir.

See also -xprofile_ircache for speeding up compilation between
collect and use phases.

tcov[:profdir] Instrument object files for basic block coverage analysis using tcov(1).

If the optional profdir argument is specified, the compiler will create a
profile directory at the specified location The data stored in the profile
directory can be used either by tcov(1) or by the compiler with
-xprofile=use:profdir. If the optional profdir pathname is omitted, a
profile directory will be created when the profiled program is executed.
The data stored in the profile directory can only be used by tcov(1). The
location of the profile directory can be controlled using environment
variables SUN_PROFDATA and SUN_PROFDATA_DIR.

If the location specified by profdir is not an absolute pathname, it is
interpreted at compilation time relative to the current working directory
at the time of compilation. If profdir is specified for any object file, the
same location must be specified for all object files in the same program.
The directory whose location is specified by profdir must be accessible
from all machines where the profiled program is to be executed. The
profile directory should not be deleted until its contents are no longer
needed, because data stored there by the compiler cannot be restored
except by recompilation.

If object files for one or more programs are compiled with
-xprofile=tcov:/test/profdata, a directory named
/test/profdata.profile will be created by the compiler and used to
store data describing the profiled object files. The same directory will
also be used at execution time to store execution data associated with the
profiled object files.

If a program named myprog is compiled with -xprofile=tcov and
executed in the directory /home/joe, the directory
/home/joe/myprog.profile will be created at runtime and used to store
runtime profile data.

A.2 Option Reference

Appendix A • C++ Compiler Options 287

A.2.165 -xprofile_ircache[=path]
(SPARC only) Use -xprofile_ircache[=path] with -xprofile=collect|use to improve
compilation time during the use phase by reusing compilation data saved from the collect
phase.

With large programs, compilation time in the use phase can improve significantly because the
intermediate data is saved. Note that the saved data could increase disk space requirements
considerably.

When you use -xprofile_ircache[=path], path overrides the location where the cached files
are saved. By default, these files are saved in the same directory as the object file. Specifying a
path is useful when the collect and use phases happen in two different directories. The
following example shows a typical sequence of commands:

example% CC -xO5 -xprofile=collect -xprofile_ircache t1.cc t2.cc

example% a.out // run collects feedback data

example% CC -xO5 -xprofile=use -xprofile_ircache t1.cc t2.cc

A.2.166 -xprofile_pathmap

(SPARC only) Use the -xprofile_pathmap=collect-prefix:use-prefix option when you are also
specifying the -xprofile=use command. Use -xprofile_pathmap when both of the following
conditions are true and the compiler is unable to find profile data for an object file that is
compiled with -xprofile=use.

■ You are compiling the object file with -xprofile=use in a directory that is different from
the directory in which the object file was previously compiled with -xprofile=collect.

■ Your object files share a common basename in the profile but are distinguished from each
other by their location in different directories.

The collect-prefix is the prefix of the UNIX path name of a directory tree in which object files
were compiled using -xprofile=collect.

The use-prefix is the prefix of the UNIX path name of a directory tree in which object files are to
be compiled using -xprofile=use.

If you specify multiple instances of -xprofile_pathmap, the compiler processes them in the
order of their occurrence. Each use-prefix specified by an instance of -xprofile_pathmap is
compared with the object file path name until either a matching use-prefix is identified or the
last specified use-prefix is found not to match the object file path name.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012288

A.2.167 -xreduction

Analyzes loops for reduction in automatic parallelization. This option is valid only if -xautopar
is also specified. Otherwise the compiler issues a warning.

When reduction recognition is enabled, the compiler parallelizes reductions such as dot
products, and maximum and minimum finding. These reductions yield different roundoffs
from those obtained by unparallelized code.

A.2.168 –xregs=r[,r...]
Specifies the usage of registers for the generated code.

r is a comma-separated list that consists of one or more of the following suboptions: appl,
float,frameptr.

Prefixing a suboption with no% disables that suboption. For example: -xregs=appl,no%float

Note that —xregs suboptions are restricted to specific hardware platforms.

TABLE A–43 -xregs Suboptions

Value Meaning

appl (SPARC) Allow the compiler to generate code using the application registers as scratch
registers. The application registers are:

g2, g3, g4 (on 32–bit platforms)

g2, g3 (on 64–bit platforms)

All system software and libraries should be compiled using -xregs=no%appl. System
software (including shared libraries) must preserve these registers’ values for the
application. Their use is intended to be controlled by the compilation system and must be
consistent throughout the application.

In the SPARC ABI, these registers are described as application registers. Using these
registers can improve performance because fewer load and store instructions are needed.
However, such use can conflict with some old library programs written in assembly code.

float (SPARC) Allow the compiler to generate code by using the floating-point registers as
scratch registers for integer values. Use of floating-point values may use these registers
regardless of this option. If you want your code to be free of all references to floating-point
registers, use -xregs=no%float and also make sure your code does not in any way use
floating-point types.

A.2 Option Reference

Appendix A • C++ Compiler Options 289

TABLE A–43 -xregs Suboptions (Continued)
Value Meaning

frameptr (x86 only) Allow the compiler to use the frame-pointer register (%ebp on IA32, %rbp on
AMD64) as a general-purpose register.

The default is -xregs=no%frameptr

The C++ compiler ignores —xregs=frameptr unless exceptions are also disabled with
—features=no%except. Note that —xregs=frameptr is part of —fast but is ignored by the
C++ compiler unless —features=no%except is also specified.

With -xregs=framptr the compiler is free to use the frame-pointer register to improve
program performance. However, some features of the debugger and performance
measurement tools may be limited as a result. Stack tracing, debuggers, and performance
anayzers cannot report on functions compiled with —xregs=frameptr

Also, C++ calls to Posix pthread_cancel() will fail to find cleanup handers.

Mixed C, Fortran, and C++ code should not be compiled with —xregs=frameptr if a C++
function called directly or indirectly from a C or Fortran function can throw an exception.
If compiling such mixed source code with —fast, add —xregs=no%frameptr after the —fast
option on the command line.

With more available registers on 64–bit platforms, compiling with —xregs=frameptr has a
better chance of improving 32–bit code performance than 64–bit code.

The compiler ignores -xregs=frameptr and issues a warning if you also specify -xpg.
Also, -xkeepframe overrides -xregs=frameptr.

The SPARC default is -xregs=appl,float.

The x86 default is -xregs=no%frameptr.

On x86 systems, -xpg is incompatible with -xregs=frameptr, and these two options should not
be used together. Note also that -xregs=frameptr is included in -fast.

Code intended for shared libraries that will link with applications should be compiled with
-xregs=no%appl,float. At the very least, the shared library should explicitly document how it
uses the application registers so that applications linking with those libraries are aware of these
register assignments.

For example, an application using the registers in some global sense (such as using a register to
point to some critical data structure) would need to know exactly how a library with code
compiled without -xregs=no%appl is using the application registers in order to safely link with
that library.

A.2.169 -xrestrict[=f]
Treats pointer-valued function parameters as restricted pointers . f must be one of the values
listed in the following table:

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012290

TABLE A–44 -xrestrictValues

Value Meaning

%all All pointer parameters in the entire file are treated as restricted.

%none No pointer parameters in the file are treated as restricted.

%source Only functions defined within the main source file are restricted. Functions
defined within included files are not restricted.

fn[,fn...] A comma-separated list of one or more function names. If you specify a
function list, the compiler treats pointer parameters in the specified
functions as restricted; Refer to the following section, “A.2.169.1 Restricted
Pointers” on page 291, for more information.

This command-line option can be used on its own, but it is best used with optimization.

For example, the following command treats all pointer parameters in the file prog.c as
restricted pointers.

%CC -xO3 -xrestrict=%all prog.cc

The following command treats all pointer parameters in the function agc in the file prog.c as
restricted pointers:

%CC -xO3 -xrestrict=agc prog.cc

Note that C99 standard for the C programming language introduced the restrict keyword,
but the keyword is not part of the current C++ standard. Some compilers have a C++ language
extension for the C99 restrict keyword, sometimes spelled __restrict or __restrict__.
The Oracle Solaris Studio C++ compiler, however, does not currently have this extension. The
-xrestrict option is a partial substitute for the restrict keyword in source code. (With the
keyword, not all of the pointer arguments of a function need to be declared restrict.) The
keyword primarily affects optimization opportunities, and limits the arguments that can be
passed to a function. Removing all instances of restict or __restrict from source code does
not affect the observable behavior of a program.

The default is %none; specifying -xrestrict is equivalent to specifying -xrestrict=%source.

A.2.169.1 Restricted Pointers
In order for a compiler to effectively perform parallel execution of a loop, it needs to determine
if certain lvalues designate distinct regions of storage. Aliases are lvalues whose regions of
storage are not distinct. Determining if two pointers to objects are aliases is a difficult and time
consuming process because it could require analysis of the entire program. Consider the
function vsq() in the following exam ple:

A.2 Option Reference

Appendix A • C++ Compiler Options 291

extern "C"
void vsq(int n, double *a, double *b) {

int i;

for (i=0; i<n; i++) {

b[i] = a[i] * a[i];

}

}

The compiler can parallelize the execution of the different iterations of the loops if it knows that
pointers a and b access different objects. If there is an overlap in objects accessed through
pointers a and b then it would be unsafe for the compiler to execute the loops in parallel.

At compile time, the compiler does not know if the objects accessed by a and b overlap by
simply analyzing the function vsq(). The compiler may need to analyze the whole program to
get this information. You can specify that pointer-valued function parameters be treated as
restricted pointers by using the following command line option: -xrestrict[=func1,...,funcn]
If a function list is specified, pointer parameters in the specified functions are treated as
restricted. Otherwise, all pointer parameters in the entire source file are treated as restricted
(not recommended). For example, -xrestrict=vsq qualifies the pointers a and b given in the
example of the function vsq().

Declaring the pointer arguments as restricted states that the pointers designate distinct objects.
The compiler can assume that a and b point to distinct regions of storage. With this alias
information, the compiler is able to parallelize the loop.

Make sure you use -xrestrict correctly. If pointers qualified as restricted pointers point to
objects that are not distinct, the compiler can incorrectly parallelize loops resulting in
undefined behavior. For example, assume that pointers a and b of function vsq() point to
objects that overlap such that b[i] and a[i+1] are the same object. If a and b are not declared as
restricted pointers the loops will be executed serially. If a and b are incorrectly qualified as
restricted pointers, the compiler might parallelize the execution of the loops, which is not safe
because b[i+1] should only be computed after b[i] is computed

A.2.170 –xs

Allows debugging by dbx without object (.o) files.

This option causes all the debug information to be copied into the executable. This option has
little impact on dbx performance or the runtime performance of the program, but it does take
more disk space.

This option has an effect only with -xdebugformat=stabs, where the default is not to copy
debug data into the executable. With the default debug format -xdebugformat=dwarf, debug
data is always copied into the executable, and there is no option to prevent the copying.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012292

A.2.171 –xsafe=mem

(SPARC only) Allows the compiler to assume that no memory protection violations occur.

This option allows the compiler to use the non-faulting load instruction in the SPARC V9
architecture.

A.2.171.1 Interactions
This option takes effect only when used with optimization level -xO5 and one of the following
-xarch values: sparc, sparcvis, sparcvis2, or sparcvis3 for both -m32 and -m64.

A.2.171.2 Warnings
Because non-faulting loads do not cause a trap when a fault such as address misalignment or
segmentation violation occurs, you should use this option only for programs in which such
faults cannot occur. Because few programs incur memory-based traps, you can safely use this
option for most programs. Do not use this option for programs that explicitly depend on
memory-based traps to handle exceptional conditions.

A.2.172 –xspace

SPARC: Does not allow optimizations that increase code size.

A.2.173 –xtarget=t
Specifies the target platform for instruction set and optimization.

The performance of some programs can benefit by providing the compiler with an accurate
description of the target computer hardware. When program performance is critical, the proper
specification of the target hardware could be very important. This is especially true when
running on the newer SPARC processors. However, for most programs and older SPARC
processors, the performance gain is negligible and a generic specification is sufficient.

The value of t must be one of the following: native, generic, native64, generic64,
system-name.

Each specific value for -xtarget expands into a specific set of values for the -xarch, -xchip,
and -xcache options. Use the -xdryrun option to determine the expansion of
-xtarget=native on a running system.

For example, -xtarget=ultraT2 is equivalent to: -xarch=sparcvis2 -xchip=ultraT2

-xcache=8/16/4:4096/64/16.

A.2 Option Reference

Appendix A • C++ Compiler Options 293

Note – The expansion of -xtarget for a specific host platform might not expand to the same
-xarch, -xchip, or -xcache settings as -xtarget=native when compiling on that platform.

A.2.173.1 —xtarget Values By Platform
This section provides descriptions of the —xtarget values by platform. The following table lists
the —xtarget values for all platforms.

TABLE A–45 -xtargetValues for All Platforms

Value Meaning

native Equivalent to

—m32 —xarch=native —xchip=native —xcache=native

to give best performance on the host 32–bit system.

native64 Equivalent to

—m64 —xarch=native64 —xchip=native64 —xcache=native64

to give best performance on the host 64–bit system.

generic Equivalent to

—m32 —xarch=generic —xchip=generic —xcache=generic

to give best performance on most 32–bit systems.

generic64 Equivalent to

—m64 —xarch=generic64 —xchip=generic64 —xcache=generic64

to give best performance on most 64–bit systems.

system-name Gets the best performance for the specified platform.

Select a system name from the following lists for which represents the actual
system you are targeting.

-xtarget Values on SPARC Platforms

Compiling for 64-bit Solaris software on SPARC or UltraSPARC V9 is indicated by the -m64
option. If you specify -xtarget with a flag other than native64 or generic64, you must also
specify the -m64 option as follows: -xtarget=ultra... -m64. Otherwise, the compiler uses a
32-bit memory model.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012294

TABLE A–46 -xtargetExpansions on SPARC Architecture

-xtarget= -xarch -xchip -xcache

ultra sparcvis ultra 16/32/1:512/64/1

ultra1/140 sparcvis ultra 16/32/1:512/64/1

ultra1/170 sparcvis ultra 16/32/1:512/64/1

ultra1/200 sparcvis ultra 16/32/1:512/64/1

ultra2 sparcvis ultra2 16/32/1:512/64/1

ultra2/1170 sparcvis ultra 16/32/1:512/64/1

ultra2/1200 sparcvis ultra 16/32/1:1024/64/1

ultra2/1300 sparcvis ultra2 16/32/1:2048/64/1

ultra2/2170 sparcvis ultra 16/32/1:512/64/1

ultra2/2200 sparcvis ultra 16/32/1:1024/64/1

ultra2/2300 sparcvis ultra2 16/32/1:2048/64/1

ultra2e sparcvis ultra2e 16/32/1:256/64/4

ultra2i sparcvis ultra2i 16/32/1:512/64/1

ultra3 sparcvis2 ultra3 64/32/4:8192/512/1

ultra3cu sparcvis2 ultra3cu 64/32/4:8192/512/2

ultra3i sparcvis2 ultra3i 64/32/4:1024/64/4

ultra4 sparcvis2 ultra4 64/32/4:8192/128/2

ultra4plus sparcvis2 ultra4plus 64/32/4:2048/64/4:32768/64/4

ultraT1 sparcvis2 ultraT1 8/16/4/4:3072/64/12/32

ultraT2 sparc ultraT2 8/16/4:4096/64/16

ultraT2plus sparcvis2 ultraT2plus 8/16/4:4096/64/16

T3 sparcvis3 T3 8/16/4:6144/64/24

T4 sparc4 T4 16/32/4:128/32/8:4096/64/16

sparc64vi sparcfmaf sparc64vi 128/64/2:5120/64/10

sparc64vii sparcima sparc64vii 64/64/2:5120/256/10

sparc64viiplus sparcima sparc64viiplus 64/64/2:11264/256/11

A.2 Option Reference

Appendix A • C++ Compiler Options 295

-xtarget Values on x86 Platforms

Compiling for 64-bit Solaris software on 64-bit x86 platforms is indicated by the -m64 option. If
you specify -xtarget with a flag other than native64 or generic64, you must also specify the
-m64 option as follows: -xtarget=opteron ... -m64. Otherwise, the compiler uses a 32-bit
memory model.

TABLE A–47 -xtargetValues on x86 Platforms

-xtarget= -xarch -xchip -xcache

opteron sse2 opteron 64/64/2:1024/64/16

pentium 386 pentium generic

pentium_pro pentium_pro pentium_pro generic

pentium3 sse pentium3 16/32/4:256/32/4

pentium4 sse2 pentium4 8/64/4:256/128/8

nehalem sse4_2 nehalem 32/64/8:256/64/8:

8192/64/16

penryn sse4_1 penryn 2/64/8:4096/64/16

woodcrest ssse3 core2 32/64/8:4096/64/16

barcelona amdsse4a amdfam10 64/64/2:512/64/16

sandybridge avx sandybridge 32/64/8:256/64/8:

8192/64/16

westmere aes westmere 32/64/8:256/64/8:12288/64/16

A.2.173.2 Defaults
On both SPARC and x86 devices, if –xtarget is not specified, –xtarget=generic is assumed.

A.2.173.3 Expansions
The –xtarget option is a macro that permits a quick and easy specification of the -xarch,
–xchip, and –xcache combinations that occur on commercially purchased platforms. The only
meaning of –xtarget is in its expansion.

A.2.173.4 Examples
-xtarget=ultra means -xchip=ultra -xcache=16/32/1:512/64/1 -xarch=sparcvis.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012296

A.2.173.5 Interactions
Compilation for 64–bit SPARC V9 architecture indicated by the -m64 option. Setting
–xtarget=ultra or ultra2 is not necessary or sufficient. If -xtarget is specified, any change to
the —xarch, —xchip, or —xcache values must appear after the -xtarget. For example:

–xtarget=ultra3 -xarch=ultra

A.2.173.6 Warnings
When you compile and link in separate steps, you must use the same -xtarget settings in the
compile step and the link step.

A.2.174 -xthreadvar[=o]
Specify -xthreadvar to control the implementation of thread local variables. Use this option in
conjunction with the __thread declaration specifier to take advantage of the compiler’s
thread-local storage facility. After you declare the thread variables with the __thread specifier,
specify -xthreadvar to enable the use of thread-local storage with position dependent code
(non-PIC code) in dynamic (shared) libraries. For more information about how to use
__thread, see “4.2 Thread-Local Storage” on page 63.

A.2.174.1 Values
The following table lists the possible values of o.

TABLE A–48 -xthreadvarValues

Value Meaning

[no%]dynamic Compile variables for dynamic loading. Access to thread variables is
significantly faster when -xthreadvar=no%dynamic but you cannot use
the object file within a dynamic library. That is, you can only use the
object file in an executable file.

A.2.174.2 Defaults
If you do not specify -xthreadvar, the default used by the compiler depends upon whether
position-independent code is enabled. If position-independent code is enabled, the option is set
to -xthreadvar=dynamic. If position-independent code is disabled, the option is set to
-xthreadvar=no%dynamic.

If you specify -xthreadvar but do not specify any arguments, the option is set to
-xthreadvar=dynamic.

A.2.174.3 Interactions
The -mt option must be used when compiling and linking files that use __thread.

A.2 Option Reference

Appendix A • C++ Compiler Options 297

A.2.174.4 Warnings
If a dynamic library contains code that is not position-independent, you must specify
-xthreadvar.

The linker cannot support the thread-variable equivalent of non-PIC code in dynamic libraries.
Non-PIC thread variables are significantly faster, and hence should be the default for
executables.

A.2.174.5 See Also
-xcode, -KPIC, -Kpic

A.2.175 –xtime

Causes the CC driver to report execution time for the various compilation passes.

A.2.176 -xtrigraphs[={yes|no}]
Enables or disables recognition of trigraph sequences as defined by the ISO/ANSI C standard.

If your source code has a literal string containing question marks (?) that the compiler is
interpreting as a trigraph sequence, you can use the -xtrigraph=no suboption to turn off the
recognition of trigraph sequences.

A.2.176.1 Values
The following lists the possible values for -xtrigraphs.

TABLE A–49 -xtrigraphsValues

Value Meaning

yes Enables recognition of trigraph sequences throughout the compilation unit

no Disables recognition of trigraph sequences throughout the compilation unit

A.2.176.2 Defaults
When you do not include the -xtrigraphs option on the command line, the compiler assumes
-xtrigraphs=yes.

If only -xtrigraphs is specified, the compiler assumes -xtrigraphs=yes.

A.2.176.3 Examples
Consider the following example source file named trigraphs_demo.cc.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012298

#include <stdio.h>

int main ()

{

(void) printf("(\?\?) in a string appears as (??)\n");
return 0;

}

The following example shows the output when you compile this code with -xtrigraphs=yes.

example% CC -xtrigraphs=yes trigraphs_demo.cc

example% a.out

(??) in a string appears as (]

The following example shows the output when you compile this code with -xtrigraphs=no.

example% CC -xtrigraphs=no trigraphs_demo.cc

example% a.out

(??) in a string appears as (??)

A.2.176.4 See Also
For information about trigraphs, see the C User’s Guide chapter about transitioning to
ANSI/ISO C.

A.2.177 –xunroll=n
This option directs the compiler to optimize loops by unrolling them where possible.

A.2.177.1 Values
When n is 1, it is a suggestion to the compiler to not unroll loops.

When n is an integer greater than 1, -unroll=n causes the compiler to unroll loops n times.

A.2.178 -xustr={ascii_utf16_ushort|no}
Use this option if your code contains string or character literals that you want the compiler to
convert to UTF-16 strings in the object file. Without this option, the compiler neither produces
nor recognizes 16-bit character string literals. This option enables recognition of the
U"ASCII-string" string literals as an array of unsigned short int. Because such strings are not yet
part of any standard, this option enables recognition of non-standard C++.

Not all files have to be compiled with this option.

A.2 Option Reference

Appendix A • C++ Compiler Options 299

A.2.178.1 Values
Specify -xustr=ascii_utf16_ushort if you need to support an internationalized application
that uses ISO10646 UTF-16 string literals. You can turn off compiler recognition of
U"ASCII_string" string or character literals by specifying -xustr=no. The right-most instance
of this option on the command line overrides all previous instances.

You can specify -xustr=ascii_ustf16_ushort without also specifying a U"ASCII-string"
string literal. To do so is not an error.

A.2.178.2 Defaults
The default is -xustr=no. If you specify -xustr without an argument, the compiler won’t accept
it and instead issues a warning. The default could change if the C or C++ standards define a
meaning for the syntax.

A.2.178.3 Example
The following example shows a string literal in quotes that is prepended by U. It also shows a
command line that specifies -xustr

example% cat file.cc

const unsigned short *foo = U"foo";
const unsigned short bar[] = U"bar";
const unsigned short *fun() {return foo;}

example% CC -xustr=ascii_utf16_ushort file.cc -c

An 8-bit character literal can be prepended with U to form a 16-bit UTF-16 character of type
unsigned short. For example:

const unsigned short x = U’x’;

const unsigned short y = U’\x79’;

A.2.179 -xvector[=a]
Enables automatic generation of calls to the vector library functions or the generation of the
SIMD (Single Instruction Multiple Data) instructions on x86 processors that support SIMD.
You must use default rounding mode by specifying -fround=nearest when you use this
option.

The -xvector option requires optimization level -xO3 or greater. Compilation will not proceed
if the optimization level is unspecified or lower than -xO3, and a message is issued.

The possible values for a are listed in the following table. The no% prefix disables the associated
suboption.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012300

TABLE A–50 -xvector Suboptions

Value Meaning

[no%]lib (Solaris only) Enables the compiler to transform math library calls within
loops into single calls to the equivalent vector math routines when such
transformations are possible. This could result in a performance
improvement for loops with large loop counts. Use no%lib to disable this
option.

[no%]simd (x86 only) Directs the compiler to use the native x86 SSE SIMD
instructions to improve performance of certain loops. Streaming
extensions are used on x86 by default at optimization level 3 and above
where beneficial. Use no%simd to disable this option..

The compiler will use SIMD only if streaming extensions exist in the target
architecture; that is, if target ISA is at least SSE2. For example, you can
specify -xtarget=woodcrest, —xarch=generic64, -xarch=sse2,

-xarch=sse3, or -fast on a modern platform to use it. If the target ISA
has no streaming extensions, the suboption will have no effect.

%none Disable this option completely.

yes This option is deprecated; specify -xvector=lib instead.

no This option is deprecated; specify -xvector=%none instead.

A.2.179.1 Defaults
The default is -xvector=simd on x86 and -xvector=%none on SPARC platforms. If you specify
-xvector without a suboption, the compiler assumes -xvector=simd,lib on x86 Solaris,
-xvector=lib on SPARC Solaris, and -xvector=simd on Linux platforms.

A.2.179.2 Interactions
The compiler includes the libmvec libraries in the load step.

If you compile and link with separate commands, be sure to use -xvector in the linking CC

command as well.

A.2.180 -xvis[={yes|no}]
(SPARC only) Use the -xvis=[yes|no] command when you are using the assembly-language
templates defined in the VIS Software Developers Kit (VSDK), or when using assembler inline
code that uses VIS instructions and the vis.h header file.

The VIS instruction set is an extension to the SPARC v9 instruction set. Even though the
UltraSPARC processors are 64-bit, there are many cases, especially in multimedia applications,
when the data are limited to 8 or 16 bits in size. The VIS instructions can process four words of

A.2 Option Reference

Appendix A • C++ Compiler Options 301

16-bit data with one instruction so they greatly improve the performance of applications that
handle new media such as imaging, linear algebra, signal processing, audio, video and
networking.

A.2.180.1 Defaults
The default is -xvis=no. Specifying -xvis is equivalent to specifying -xvis=yes.

A.2.181 -xvpara

Issues warnings about potential parallel-programming related problems that miht cause
incorrect results when using OpenMP. Use with -xopenmp and OpenMP API directives.

The compiler issues warnings when it detects the following situations:

■ Loops are parallelized using MP directives with data dependencies between different loop
iterations

■ OpenMP data-sharing attributes-clauses are problematic. For example, declaring a variable
"shared" whose accesses in an OpenMP parallel region may cause a data race, or declaring a
variable "private" whose value in a parallel region is used after the parallel region.

No warnings appear if all parallelization directives are processed without problems.

Note – Solaris Studio compilers support OpenMP API parallelization. Consequently, the MP
pragmas directives are deprecated and are no longer supported. See the OpenMP API User’s
Guide for information on migrating to the OpenMP API.

A.2.182 –xwe

Converts all warnings to errors by returning nonzero exit status.

A.2.182.1 See Also
“A.2.15 -errwarn[=t]” on page 175

A.2.183 -Yc,path
Specifies a new path for the location of component c.

If the location of a component is specified, then the new path name for the component is
path/component-name. This option is passed to ld.

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012302

A.2.183.1 Values
The following table lists the possible values for c.

TABLE A–51 -YFlags

Value Meaning

P Changes the default directory for cpp.

0 Changes the default directory for ccfe.

a Changes the default directory for fbe.

2 Changes the default directory for iropt.

c (SPARC) Changes the default directory for cg.

O Changes the default directory for ipo.

k Changes the default directory for CClink.

l Changes the default directory for ld.

f Changes the default directory for c++filt.

m Changes the default directory for mcs.

u (x86) Changes the default directory for ube.

h (x86) Changes the default directory for ir2hf.

A Specifies a directory to search for all compiler components. If a
component is not found in path, the search reverts to the directory where
the compiler is installed.

P Adds path to the default library search path. This path will be searched
before the default library search paths.

S Changes the default directory for startup object files

A.2.183.2 Interactions
You can have multiple -Y options on a command line. If more than one -Y option is applied to
any one component, then the last occurrence holds.

A.2.183.3 See Also
Solaris Linker and Libraries Guide

A.2 Option Reference

Appendix A • C++ Compiler Options 303

A.2.184 -z[]arg
Link editor option. For more information, see the ld(1) man page and the Oracle Solaris Linker
and Libraries Guide.

See also “A.2.98 -Xlinker arg” on page 222

A.2 Option Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012304

Pragmas

This appendix describes the C++ compiler pragmas. A pragma is a compiler directive that
enables the programmer to provide additional information to the compiler. This information
can change compilation details that are not otherwise under your control. For example, the
pack pragma affects the layout of data within a structure. Compiler pragmas are also called
directives.

The preprocessor keyword pragma is part of the C++ standard, but the form, content, and
meaning of pragmas is different for every compiler. No pragmas are defined by the C++
standard.

Note – Code that depends on pragmas is not portable.

B.1 Pragma Forms
The various forms of a C++ compiler pragma are:

#pragma keyword
#pragma keyword (a [, a] ...) [, keyword (a [, a] ...)] ,...

#pragma sun keyword

The variable keyword identifies the specific directive; a indicates an argument.

B.1.1 Overloaded Functions as Pragma Arguments
Several pragmas listed in this appendix take function names as arguments. In the event that the
function is overloaded, the pragma uses the function declaration immediately preceding the
pragma as its argument. Consider the following example:

int bar(int);

int foo(int);

BA P P E N D I X B

305

int foo(double);

#pragma does_not_read_global_data(foo, bar)

In this example, foo means foo(double), the declaration of foo immediately preceding the
pragma, and bar means bar(int), the only declared bar. Now, consider this following example
in which foo is again overloaded:

int foo(int);

int foo(double);

int bar(int);

#pragma does_not_read_global_data(foo, bar)

In this example, bar means bar(int), the only declared bar.However, the pragma will not
know which version of foo to use. To correct this problem, you must place the pragma
immediately following the definition of foo that you want the pragma to use.

The following pragmas use the selection method described in this section:

■ does_not_read_global_data

■ does_not_return

■ does_not_write_global_data

■ no_side_effect

■ opt

■ rarely_called

■ returns_new_memory

B.2 Pragma Reference
This section describes the pragma keywords that are recognized by the C++ compiler.

B.2.1 #pragma align

#pragma align integer(variable[,variable...])

Use align to make the listed variables memory-aligned to integer bytes, overriding the default.
The following limitations apply:

■ integer must be a power of 2 between 1 and 128. Valid values are 1, 2, 4, 8, 16, 32, 64, and 128.
■ variable is a global or static variable. It cannot be a local variable or a class member variable.
■ If the specified alignment is smaller than the default, the default is used.
■ The pragma line must appear before the declaration of the variables that it mentions.

Otherwise, it is ignored.
■ Any variable mentioned on the pragma line but not declared in the code following the

pragma line is ignored. Variables in the following example are properly declared.

B.2 Pragma Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012306

#pragma align 64 (aninteger, astring, astruct)

int aninteger;

static char astring[256];

struct S {int a; char *b;} astruct;

When #pragma align is used inside a namespace, mangled names must be used. For example,
in the following code, the #pragma align statement will have no effect. To correct the problem,
replace a, b, and c in the #pragma align statement with their mangled names.

namespace foo {

#pragma align 8 (a, b, c)

static char a;

static char b;

static char c;

}

B.2.2 #pragma does_not_read_global_data

#pragma does_not_read_global_data(funcname[, funcname])

This pragma asserts that the specified routines do not read global data directly or indirectly,
enabling better optimization of code around calls to such routines. In particular, assignment
statements or stores could be moved around such calls.

This pragma is permitted only after the prototype for the specified functions are declared. If the
assertion about global access is not true, then the behavior of the program is undefined.

For a more detailed explanation of how the pragma treats overloaded function names as
arguments, see “B.1.1 Overloaded Functions as Pragma Arguments” on page 305.

B.2.3 #pragma does_not_return

#pragma does_not_return(funcname[, funcname])

This pragma is an assertion to the compiler that the calls to the specified routines will not
return, enabling the compiler to perform optimizations consistent with that assumption. For
example, register life-times terminate at the call sites which in turn enables more optimizations.

If the specified function does return, then the behavior of the program is undefined.

This pragma is permitted only after the prototype for the specified functions are declared, as the
following example shows:

extern void exit(int);

#pragma does_not_return(exit)

extern void __assert(int);

#pragma does_not_return(__assert)

B.2 Pragma Reference

Appendix B • Pragmas 307

For a more detailed explanation of how the pragma treats overloaded function names as
arguments, see “B.1.1 Overloaded Functions as Pragma Arguments” on page 305.

B.2.4 #pragma does_not_write_global_data

#pragma does_not_write_global_data(funcname[, funcname])

This pragma asserts that the specified list of routines do not write global data directly or
indirectly, enabling better optimization of code around calls to such routines. In particular,
assignment statements or stores could be moved around such calls.

This pragma is permitted only after the prototype for the specified functions are declared. If the
assertion about global access is not true, then the behavior of the program is undefined.

For a more detailed explanation of how the pragma treats overloaded function names as
arguments, see “B.1.1 Overloaded Functions as Pragma Arguments” on page 305.

B.2.5 #pragma dumpmacros

#pragma dumpmacros (value[,value...])

Use this pragma when you want to see how macros are behaving in your program. This pragma
provides information such as macro defines, undefines, and instances of usage. It prints output
to the standard error (stderr) based on the order macros are processed. The dumpmacros
pragma is in effect through the end of the file or until it reaches a #pragma end_dumpmacro. See
“B.2.6 #pragma end_dumpmacros” on page 309. The following table lists the possible values for
value:

Value Meaning

defs Print all macro defines

undefs Print all macro undefines

use Print information about the macros used

loc Print location (path name and line number) also for defs, undefs, and use

conds Print use information for macros used in conditional directives

sys Print all macros defines, undefines, and use information for macros in
system header files

B.2 Pragma Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012308

Note – The suboptions loc, conds, and sys are qualifiers for defs, undefs and use options. By
themselves, loc, conds, and sys have no effect. For example, #pragma
dumpmacros(loc,conds,sys) has no effect.

The dumpmacros pragma has the same effect as the command-line option, however, the pragma
overrides the command-line option. See “A.2.116 -xdumpmacros[=value[,value...]]” on
page 242.

The dumpmacros pragma does not nest so the following lines of code stop printing macro
information when the #pragma end_dumpmacros is processed:

#pragma dumpmacros(defs, undefs)

#pragma dumpmacros(defs, undefs)

...

#pragma end_dumpmacros

The effect of the dumpmacros pragma is cumulative. The following lines

#pragma dumpmacros(defs, undefs)

#pragma dumpmacros(loc)

have the same effect as:

#pragma dumpmacros(defs, undefs, loc)

If you use the option #pragma dumpmacros(use,no%loc), the name of each macro that is used is
printed only once. If you use the option #pragma dumpmacros(use,loc), the location and
macro name is printed every time a macro is used.

B.2.6 #pragma end_dumpmacros

#pragma end_dumpmacros

This pragma marks the end of a dumpmacros pragma and stops printing information about
macros. If you do not use an end_dumpmacros pragma after a dumpmacros pragma, the
dumpmacros pragma continues to generate output through the end of the file.

B.2.7 #pragma error_messages

#pragma error_messages (on|off|default, tag… tag)

The error message pragma provides control within the source program over the messages
issued by the compiler. The pragma has an effect on warning messages only. The -w
command-line option overrides this pragma by suppressing all warning messages.

B.2 Pragma Reference

Appendix B • Pragmas 309

■ #pragma error_messages (on, tag… tag)
The on option ends the scope of any preceding #pragma error_messages option, such as
the off option, and overrides the effect of the -erroff option.

■ #pragma error_messages (off, tag… tag)
The off option prevents the compiler program from issuing the given messages beginning
with the token specified in the pragma. The scope of the pragma for any specified error
message remains in effect until overridden by another #pragma error_messages, or the end
of compilation.

■ #pragma error_messages (default, tag… tag)
The default option ends the scope of any preceding #pragma error_messages directive for
the specified tags.

B.2.8 #pragma fini

#pragma fini (identifier[,identifier...])

Use fini to mark identifier as a finalization function. Such functions are expected to be of type
void, to accept no arguments, and to be called either when a program terminates under
program control or when the containing shared object is removed from memory. As with
initialization functions, finalization functions are executed in the order processed by the link
editor.

In a source file, the functions specified in #pragma fini are executed after the static destructors
in that file. You must declare the identifiers before using them in the pragma.

Such functions are called once for every time they appear in a #pragma fini directive.

B.2.9 #pragma hdrstop

Embed the hdrstop pragma in your source-file headers to identify the end of the viable source
prefix. For example, consider the following files:

example% cat a.cc

#include "a.h"
#include "b.h"
#include "c.h"
#include <stdio.h>

#include "d.h"
.

.

.

example% cat b.cc

#include "a.h"
#include "b.h"
#include "c.h"

B.2 Pragma Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012310

The viable source prefix ends at c.h so you would insert a #pragma hdrstop after c.h in each
file.

#pragma hdrstop must only appear at the end of the viable prefix of a source file that is specified
with the CC command. Do not specify #pragma hdrstop in any include file.

See “A.2.156 -xpch=v” on page 274 and “A.2.157 -xpchstop=file” on page 276.

B.2.10 #pragma ident

#pragma ident string

Use ident to place string in the .comment section of the executable.

B.2.11 #pragma init

#pragma init(identifier[,identifier...])

Use init to mark identifier as an initialization function. Such functions are expected to be of
type void, to accept no arguments, and to be called while constructing the memory image of the
program at the start of execution. Initializers in a shared object are executed during the
operation that brings the shared object into memory, either at program start up or during some
dynamic loading operation, such as dlopen(). The only ordering of calls to initialization
functions is the order in which they are processed by the link editors, both static and dynamic.

Within a source file, the functions specified in #pragma init are executed after the static
constructors in that file. You must declare the identifiers before using them in the pragma.

Such functions are called once for every time they appear in a #pragma init directive.

B.2.12 #pragma ivdep

The ivdep pragmas tell a compiler to ignore some or all loop-carried dependences on array
references that it finds in a loop for purposes of optimization. This enables a compiler to
perform various loop optimizations such as microvectorization, distribution, software
pipelining, and so on., which would not be otherwise possible. It is used in cases where the user
knows either that the dependences do not matter or that they never occur in practice.

The interpretation of #pragma ivdep directives depend upon the value of the —xivdep option.

B.2.13 #pragma must_have_frame

#pragma must_have_frame(funcname[,funcname])

B.2 Pragma Reference

Appendix B • Pragmas 311

This pragma requests that the specified list of functions always be compiled to have a complete
stack frame (as defined in the System V ABI). You must declare the prototype for a function
before listing that function with this pragma.

extern void foo(int);

extern void bar(int);

#pragma must_have_frame(foo, bar)

This pragma is permitted only after the prototype for the specified functions is declared. The
pragma must precede the end of the function.

void foo(int) {

.

#pragma must_have_frame(foo)

.

return;

}

See “B.1.1 Overloaded Functions as Pragma Arguments” on page 305

B.2.14 #pragma no_side_effect

#pragma no_side_effect(name[,name...])

Use no_side_effect to indicate that a function does not change any persistent state. The
pragma declares that the named functions have no side effects of any kind. That is, the functions
return result values that depend on the passed arguments only. In addition, the functions and
their called descendants behave as follows:

■ Do not access for reading or writing any part of the program state visible in the caller at the
point of the call.

■ Do not perform I/O.
■ Do not change any part of the program state not visible at the point of the call.

The compiler can use this information when doing optimizations.

If the function does have side effects, the results of executing a program which calls this function
are undefined.

The name argument specifies the name of a function within the current translation unit. The
pragma must be in the same scope as the function and must appear after the function
declaration. The pragma must be before the function definition.

For a more detailed explanation of how the pragma treats overloaded function names as
arguments, see “B.1.1 Overloaded Functions as Pragma Arguments” on page 305.

B.2 Pragma Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012312

B.2.15 #pragma opt

#pragma opt level (funcname[, funcname])

funcname specifies the name of a function defined within the current translation unit. The value
of level specifies the optimization level for the named function. You can assign optimization
levels 0, 1, 2, 3, 4, 5. You can turn off optimization by setting level to 0. The functions must be
declared with a prototype or empty parameter list prior to the pragma. The pragma must
proceed the definitions of the functions to be optimized.

The level of optimization for any function listed in the pragma is reduced to the value of
-xmaxopt. The pragma is ignored when -xmaxopt=off.

For a more detailed explanation of how the pragma treats overloaded function names as
arguments, see “B.1.1 Overloaded Functions as Pragma Arguments” on page 305.

B.2.16 #pragma pack(n)
#pragma pack([n])

Use pack to affect the packing of structure members.

If present, n must be 0 or a power of 2. A value of other than 0 instructs the compiler to use the
smaller of n-byte alignment and the platform’s natural alignment for the data type. For example,
the following directive causes the members of all structures defined after the directive (and
before subsequent pack directives) to be aligned no more strictly than on 2-byte boundaries,
even if the normal alignment would be on 4–byte or 8-byte boundaries.

#pragma pack(2)

When n is 0 or omitted, the member alignment reverts to the natural alignment values.

If the value of n is the same as or greater than the strictest alignment on the platform, the
directive has the effect of natural alignment. The following table shows the strictest alignment
for each platform.

TABLE B–1 Strictest Alignment by Platform

Platform Strictest Alignment

x86 4

SPARC generic 8

64–bit SPARC V9 (-m64) 16

B.2 Pragma Reference

Appendix B • Pragmas 313

A pack directive applies to all structure definitions which follow it until the next pack directive.
If the same structure is defined in different translation units with different packing, your
program might fail in unpredictable ways. In particular, you should not use a pack directive
prior to including a header defining the interface of a precompiled library. The recommended
usage is to place the pack directive in your program code, immediately before the structure to be
packed, and to place #pragma pack() immediately after the structure.

When using #pragma pack on a SPARC platform to pack denser than the type’s default
alignment, the -misalign option must be specified for both the compilation and the linking of
the application. The following table shows the storage sizes and default alignments of the
integral data types.

TABLE B–2 Storage Sizes and Default Alignments in Bytes

Type

32–bit SPARC

Size, Alignment

64–bit SPARC

Size, Alignment

x86

Size, Alignment

bool 1, 1 1, 1 1, 1

char 1, 1 1, 1 1, 1

short 2, 2 2, 2 2, 2

wchar_t 4, 4 4, 4 4, 4

int 4, 4 4, 4 4, 4

long 4, 4 8, 8 4, 4

float 4, 4 4, 4 4, 4

double 8, 8 8, 8 8, 4

long double 16, 8 16, 16 12, 4

Pointer to data 4, 4 8, 8 4, 4

Pointer to function 4, 4 8, 8 4, 4

Pointer to member data 4, 4 8, 8 4, 4

Pointer to member function 8, 4 16, 8 8, 4

B.2.17 #pragma rarely_called

#pragms rarely_called(funcname[, funcname])

This pragma provides a hint to the compiler that the specified functions are called infrequently,
enabling the compiler to perform profile-feedback style optimizations on the call-sites of such
routines without the overhead of a profile-collections phase. Since this pragma is a suggestion,
the compiler may not perform any optimizations based on this pragma.

B.2 Pragma Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012314

The #pragma rarely_called preprocessor directive is only permitted after the prototype for
the specified functions are declares. The following is an example of #pragma rarely_called:

extern void error (char *message);

#pragma rarely_called(error)

For a more detailed explanation of how the pragma treats overloaded function names as
arguments, see “B.1.1 Overloaded Functions as Pragma Arguments” on page 305.

B.2.18 #pragma returns_new_memory

#pragma returns_new_memory(name[,name...])

This pragma asserts that each named function returns the address of newly allocated memory
and that the pointer does not alias with any other pointer. This information allows the
optimizer to better track pointer values and to clarify memory location, resulting in improved
scheduling and pipelining.

If the assertion is false, the results of executing a program which calls this function are
undefined.

The name argument specifies the name of a function within the current translation unit. The
pragma must be in the same scope as the function and must appear after the function
declaration. The pragma must be before the function definition.

For a more detailed explanation of how the pragma treats overloaded function names as
arguments, see “B.1.1 Overloaded Functions as Pragma Arguments” on page 305.

B.2.19 #pragma unknown_control_flow

#pragma unknown_control_flow(name[,name...])

Use unknown_control_flow to specify a list of routines that violate the usual control flow
properties of procedure calls. For example, the statement following a call to setjmp() can be
reached from an arbitrary call to any other routine. The statement is reached by a call to
longjmp().

Because such routines render standard flowgraph analysis invalid, routines that call them
cannot be safely optimized; hence, they are compiled with the optimizer disabled.

If the function name is overloaded, the most recently declared function is chosen.

B.2.20 #pragma weak

#pragma weak name1 [= name2]

B.2 Pragma Reference

Appendix B • Pragmas 315

Use weak to define a weak global symbol. This pragma is used mainly in source files for building
libraries. The linker does not warn you if it cannot resolve a weak symbol.

The weak pragma can specify symbols in one of two forms:
■ String form. The string must be the mangled name for a C++ variable or function. The

behavior for an invalid mangled name reference is unpredictable. The compiler might not
produce an error for invalid mangled name references. Regardless of whether it produces an
error, the behavior of the compiler when invalid mangled names are used is unpredictable.

■ Identifier form. The identifier must be an unambiguous identifier for a C++ function that
was previously declared in the compilation unit. The identifier form cannot be used for
variables. The front end (ccfe) will produce an error message if it encounters an invalid
identifier reference.

B.2.20.1 #pragma weakname
In the form #pragma weak name, the directive makes name a weak symbol. The linker will not
indicate if it does not find a symbol definition for name. It also does not warn about multiple
weak definitions of the symbol. The linker simply takes the first one it encounters.

If another compilation unit has a strong definition for the function or variable, name will be
linked to that. If there is no strong definition for name, the linker symbol will have a value of 0.

The following directive defines ping to be a weak symbol. No error messages are generated if
the linker cannot find a definition for a symbol named ping.

#pragma weak ping

#pragma weak name1 = name2
In the form #pragma weak name1 = name2, the symbol name1 becomes a weak reference to
name2. If name1 is not defined elsewhere, name1 will have the value name2. If name1 is defined
elsewhere, the linker uses that definition and ignores the weak reference to name2. The
following directive instructs the linker to resolve any references to bar if it is defined anywhere
in the program, and to foo otherwise.

#pragma weak bar = foo

In the identifier form, name2 must be declared and defined within the current compilation unit.
For example:

extern void bar(int) {...}

extern void _bar(int);

#pragma weak _bar=bar

When you use the string form, the symbol does not need to be previously declared. If both _bar

and bar in the following example are extern "C", the functions do not need to be declared.
However, bar must be defined in the same object.

B.2 Pragma Reference

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012316

extern "C" void bar(int) {...}

#pragma weak "_bar" = "bar"

Overloading Functions

When you use the identifier form, exactly one function with the specified name must be in
scope at the pragma location. Attempting to use the identifier form of #pragma weak with an
overloaded function is an error. For example:

int bar(int);

float bar(float);

#pragma weak bar // error, ambiguous function name

To avoid the error, use the string form, as shown in the following example.

int bar(int);

float bar(float);

#pragma weak "__1cDbar6Fi_i_" // make float bar(int) weak

See the Oracle Solaris Linker and Libraries Guide for more information.

B.2 Pragma Reference

Appendix B • Pragmas 317

318

Glossary

ABI See Application Binary Interface.

abstract class A class that contains one or more abstract methods, and therefore can never be instantiated. Abstract
classes are defined so that other classes can extend them and make them concrete by implementing the
abstract methods.

abstract method A method that has no implementation.

ANSI C American National Standards Institute’s definition of the C programming language. It is the same as the
ISO definition. See ISO.

ANSI/ISO C++ The American National Standards Institute and the ISO standard for the C++ programming language. See
ISO.

application binary
interface

The binary system interface between compiled applications and the operating system on which they run.

array A data structure that stores a collection of values of a single data type consecutively in memory. Each value
is accessed by its position in the array.

binary
compatibility

The ability to link object files that are compiled by one release while using a compiler of a different release.

binding Associating a function call with a specific function definition. More generally, associating a name with a
particular entity.

cfront A C++ to C compiler program that translates C++ to C source code, which in turn can be compiled by a
standard C compiler.

class A user-defined data type consisting of named data elements (which may be of different types), and a set of
operations that can be performed with the data.

class template A template that describes a set of classes or related data types.

class variable A data item associated with a particular class as a whole, not with particular instances of the class. Class
variables are defined in class definitions. Also called static field. See also instance variable.

compiler option An instruction to the compiler that changes its behavior. For example, the -g option tells the compiler to
generate data for the debugger. Synonyms: flag, switch.

319

constructor A special class member function that is automatically called by the compiler whenever a class object is
created to ensure the initialization of that object’s instance variables. The constructor must always have the
same name as the class to which it belongs. See destructor.

data member An element of a class that is data, as opposed to a function or type definition.

data type The mechanism that enables the representation of, for example, characters, integers, or floating-point
numbers. The type determines the storage that is allocated to a variable and the operations that can be
performed on the variable.

destructor A special class member function that is automatically called by the compiler whenever a class object is
destroyed or the operator delete is applied to a class pointer. The destructor must always have the same
name as the class to which it belongs, preceded by a tilde (~). See constructor.

dynamic binding Connection of the function call to the function body at runtime. Occurs only with virtual functions. Also
called late binding, runtime binding.

dynamic cast A safe method of converting a pointer or reference from its declared type to any type that is consistent with
the dynamic type to which it refers.

dynamic type The actual type of an object that is accessed by a pointer or reference that might have a different declared
type.

early binding See static binding.

ELF file Executable and Linking Format file, which is produced by the compiler.

exception An error occurring in the normal flow of a program that prevents the program from continuing. Some
reasons for errors include memory exhaustion or division by zero.

exception handler Code specifically written to deal with errors that is invoked automatically when an exception occurs for
which the handler has been registered.

exception handling An error recovery process that is designed to intercept and prevent errors. During the execution of a
program, if a synchronous error is detected, control of the program returns to an exception handler that
was registered at an earlier point in the execution, and the code containing the error is bypassed.

flag See compiler option.

function
overloading

Giving the same name, but different argument types and numbers, to different functions. Also called
functional polymorphism.

function prototype A declaration that describes the function’s interface with the rest of the program.

function template A mechanism that enables you to write a single function that you can then use as a model, or pattern, for
writing related functions.

functional
polymorphism

See function overloading.

idempotent The property of a header file that including it many times in one translation unit has the same effect as
including it once.

constructor

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012320

incremental linker A linker that creates a new executable file by linking only the changed .o files to the previous executable.

base class See inheritance.

derived class See inheritance.

inheritance A feature of object-oriented programming that allows the programmer to derive new classes (derived
classes) from existing ones (base classes). There are three kinds of inheritance: public, protected, and
private.

inline function A function that replaces the function call with the actual function code.

instance variable Any item of data that is associated with a particular object. Each instance of a class has its own copy of the
instance variables defined in the class. Also called field. See also class variable.

instantiation The process by which a C++ compiler creates a usable function or object (instance) from a template.

ISO International Organization for Standardization.

K&R C The de facto C programming language standard that was developed by Brian Kernighan and Dennis
Ritchie before ANSI C.

keyword A word that has unique meaning in a programming language, and that can be used only in a specialized
context in that language.

late binding See dynamic binding.

linker The tool that connects object code and libraries to form a complete, executable program.

local variable A data item known within a block, but inaccessible to code outside the block. For example, any variable
defined within a method is a local variable and cannot be used outside the method.

locale A set of conventions that are unique to a geographical area or language, such as date, time, and monetary
format.

lvalue An expression that designates a location in memory at which a variable’s data value is stored. Also, the
instance of a variable that appears to the left of the assignment operator.

mangle See name mangling.

member function An element of a class that is a function as opposed to a data definition or type definition.

method In some object-oriented languages, another name for a member function.

multiple
inheritance

Inheritance of a derived class directly from more than one base class.

multithreading The software technology that enables the development of parallel applications, whether on single or
multi-processor systems.

name mangling In C++, many functions can share the same name, so name alone is not sufficient to distinguish different
functions. The compiler solves this problem by name mangling: creating a unique name for the function
that consists of some combination of the function name and its parameters. This strategy enables type-safe
linkage. Also called name decoration.

name mangling

321

namespace A mechanism that controls the scope of global names by allowing the global space to be divided into
uniquely named scopes.

operator
overloading

The ability to use the same operator notation to produce different outcomes. A special form of function
overloading.

optimization The process of improving the efficiency of the object code that is generated by the compiler.

option See compiler option.

overloading To give the same name to more than one function or operator.

polymorphism The ability of a pointer or reference to refer to objects whose dynamic type is different from the declared
pointer or reference type.

pragma A compiler preprocessor directive, or special comment, that instructs the compiler to take a specific
action.

runtime binding See dynamic binding.

runtime type
identification
(RTTI)

A mechanism that provides a standard method for a program to determine an object type during runtime.

rvalue The variable that is located to the right of an assignment operator. The rvalue can be read but not altered.

scope The range over which an action or definition applies.

stab A symbol table entry that is generated in the object code. The same format is used in both a.out files and
ELF files to contain debugging information.

stack A data storage method by which data can be added to or removed from only the top of the stack using a
last-in, first-out strategy.

static binding Connection of a function call to a function body at compile time. Also called early binding.

subroutine A function. In Fortran, a function that does not return a value.

switch See compiler option.

symbol A name or label that denotes some program entity.

symbol table A list of all identifiers that are present when a program is compiled, their locations in the program, and
their attributes. The compiler uses this table to interpret uses of identifiers.

template database A directory containing all configuration files that are needed to handle and instantiate the templates that
are required by a program.

template options
file

A user-provided file containing options for the compilation of templates, as well as source location and
other information. The template options file is deprecated and should not be used.

template
specialization

A specialized instance of a class template member function that overrides the default instantiation when
the default cannot handle a given type adequately.

namespace

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012322

trapping Interception of an action, such as program execution, in order to take other action. The interception
causes the temporary suspension of microprocessor operations and transfers program control to another
source.

type A description of the ways in which a symbol can be used. The basic types are integer and float. All other
types are constructed from these basic types by collecting them into arrays or structures, or by adding
modifiers such as pointer-to or constant attributes.

variable An item of data named by an identifier. Each variable has a type, such as int or void, and a scope. See also
class variable, instance variable, local variable.

VTABLE A table that is created by the compiler for each class that contains virtual functions.

VTABLE

323

324

Index

Numbers and Symbols
—###, compiler option, 166
\>\> extraction operator, iostream, 140
—#, compiler option, 166
$ identifier, allowing as noninitial, 180
! NOT operator, iostream, 139, 143

A
.a, file name suffix, 34, 157
aliases, simplifying commands with, 42
alignments

default, 314
strictest, 313–314

anachronisms, disallowing, 179
anonymous class instance, passing, 66–67
Apache C++ standard library, 203
applications, linking multithreaded, 109
applicator, parameterized manipulators, 150
assembler, compilation component, 38
assembly language templates, 301
assignment, iostream, 147
ATS: Automatic Tuning System, 277
__attribute__, 68
attributes, supported, 68

B
-Bbinding, compiler option, 102, 167
binary input, reading, 142

binary optimization, 231
bool type and literals, allowing, 179
buffer

defined, 154
flushing output, 139–140

C
.cc, file name suffixes, 33
.c++, file name suffixes, 33
C++ man pages, accessing, 119
C++ standard library

components, 129
man pages, 119
replacing, 125–128
RogueWave version, 129

.c, file name suffixes, 33

.C, file name suffixes, 33
C interface

creating libraries, 161
removing C++ runtime dependences, 161

C standard library header files, replacing, 128
-c, compiler option, 35, 168
C99 support, 255
cache

directory, template, 34
used by optimizer, 233

CCadmin command, 91
CCFLAGS, environment variable, 42
cerr standard stream, 135
char* extractor, 141

325

char, signedness of, 234
characters, reading single, 141–142
cin standard stream, 135
class declaration specifier, 62
class instance, anonymous, 66–67
class libraries, using, 121–123
class templates, 78–80

See also templates
declaration, 79
definition, 79
incomplete, 78
member, definition, 79–80
parameter, default, 83
static data members, 80
using, 80

classes
passing, 106

classic iostreams, 122
clog standard stream, 135
code generation, inliner and assembler, compilation

component, 38
code optimization, by using -fast, 176
code optimizer, compilation component, 37
command line

options, unrecognized, 36
recognized file suffixes, 33

-compat, compiler option, 169
compatibility mode

See also -compat, 169
Tools.h++, 119

compilation, memory requirements, 39–41
compiler

component invocation order, 37
diagnosing, 36–37
versions, incompatibility, 34

compiling and linking, 35
configuration macro, 118
constant strings in read-only memory, 179
constructors

iostream, 136
static, 159

copying
files, 152
stream objects, 147

cout, standard stream, 135
coverage analysis (tcov), 287
__cplusplus, predefined macro, 71
.cpp, file name suffixes, 33
.cxx, file name suffixes, 33

D
+d, compiler option, 170
.d file extension, 262
-D, compiler option, 46, 171
-d, compiler option, 171–172
-DDEBUG, 97
debugger data format, 240
debugging

options, 48–49
preparing programs for, 36, 192

dec, iostream manipulator, 147
declaration specifiers

__global, 62
__hidden, 62
__symbolic, 62
__thread, 63

default libraries, static linking, 123–124
default operators, using, 104–105
definition included model, 73
definition separate model, 73
definitions, searching template, 97
dependency, on C++ runtime libraries, removing, 161
destructors, static, 159
directives (pragmas), 306–317
dlclose(), function call, 159
dlopen(), function call, 158
documentation, accessing, 19
documentation index, 19
-dryrun, compiler option, 37, 172
dwarf debugger-data format, 240
dynamic (shared) libraries, 124, 159–160, 167, 193

E
-E compiler option, 173
elfdump, 239

Index

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012326

endl, iostream manipulator, 147
ends, iostream manipulator, 147
enum

forward declarations, 64
incomplete, using, 65
scope qualifier, using name as, 65

environment variables
CCFLAGS, 42
LD_LIBRARY_PATH, 158
SUNWS_CACHE_NAME, 96

errno

interaction with -fast, 178
preserving value of, 178

-erroff compiler option, 174
#error, 39
error

bits, 139
state, iostreams, 139

error function, 139
error handling, input, 143
error messages

compiler version incompatibility, 34
linker, 35, 37

-errtags compiler option, 175
-errwarn compiler option, 175
exceptions

and multithreading, 110
building shared libraries that have, 102
disabling, 100
disallowing, 179
functions, in overriding, 64
longjmp and, 101
predefined, 100–101
setjmp and, 101
shared libraries, 160
signal handlers and, 101
standard class, 101
standard header, 100
trapping, 189

explicit instances, 93
export keyword, recognizing, 179
extension features, 61–70

allowing nonstandard code, 180
defined, 27

external
instances, 92
linkage, 93

extraction
char*, 141
defined, 155
operators, 140
user-defined iostream, 140–141
whitespace, 142

F
-fast, compiler option, 176–178
-features, compiler option, 61, 100, 110, 179
file descriptors, using, 145–146
file names

suffixes, 33
.SUNWCCh file name suffix, 127
template definition files, 98

files
See also source files
C standard header files, 126
copying, 145, 152
executable program, 35
multiple source, using, 34
object, 35, 46, 159
opening and closing, 145
repositioning, 146
standard library, 126
using fstreams with, 144–146

-filt, compiler option, 181
finalization functions, 310
-flags, compiler option, 183
float inserter, iostream output, 137
floating point

invalid, 189
precision (Intel), 189

flush, iostream manipulator, 147
flush, iostream manipulator, 139
-fnonstd, compiler option, 184
-fns, compiler option, 184–185
format control, iostreams, 147
Fortran runtime libraries, linking, 255
-fprecision=p, compiler option, 186

Index

327

front end, compilation component, 37
-fround=r, compiler option, 187
-fsimple=n, compiler option, 187
fstream, defined, 136, 155
fstream.h

iostream header file, 137
using, 144

-ftrap, compiler option, 189
__func__, identifier, 67–68
function, declaration specifier, 61
__FUNCTION__, identifier, 67–68
function-level reordering, 245
function templates, 77–78

See also templates
declaration, 77
definition, 77–78
using, 78

functions
in dynamic (shared) libraries, 159
inlining by optimizer, 248
overriding, 64
static, as class friend, 67

functions, name in __func__, 67–68

G
-G

dynamic library command, 159
option description, 191

-g

compiling templates using, 97
option description, 191

-g3, compiler option, 193
garbage collection

libraries, 119, 123
get, char extractor, 141
get pointer, streambuf, 151
__global, 62
global

instances, 93
linkage, 93

-gO, compiler option, 193

H
-H, compiler option, 193
-h, compiler option, 193–194
header files

C standard, 126
creating, 71–72
idempotency, 72
Intel MMX intrinsics declarations, 69
iostream, 137, 148
language-adaptable, 71–72
standard library, 125, 130–131
sunmedia_intrin.h, 69

heap, setting page size for, 271
-help, compiler option, 194
hex, iostream manipulator, 148
__hidden, 62

I
.i, file name suffixes, 33
-I, compiler option, 98, 194–195, 195–197
-i, compiler option, 197
idempotency, 71
ifstream, defined, 136
.il, file name suffixes, 34
-include, compiler option, 197
include directories, template definition files, 98
include files, search order, 194, 195–197
incompatibility, compiler versions, 34
initialization function, 311
-inline, See -xinline, 198
inline expansion, assembly language templates, 38
inline functions

by optimizer, 248
C++, when to use, 104

I/O library, 135
input

binary, 142
error handling, 143
iostream, 140
peeking at, 142

input/output, complex, 135
insertion

defined, 155

Index

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012328

insertion (Continued)
operator, 137

insertion operator
iostream, 137–140

instance methods
explicit, 95
global, 95
semi-explicit, 96
static, 95
template, 92

instance states, consistent, 97
-instances=a, compiler option, 92, 198
instantiation

options, 92
template class static data members, 82
template classes, 81
template function members, 82
template functions, 81

-instlib, compiler option, 199
intermediate language translator, compilation

component, 38
internationalization, implementation, 29
interprocedural optimizations, 250
interval arithmetic libraries, linking, 247
intrinsics, Intel MMX, 69
iomanip.h, iostream header files, 137, 148
iostream

classic iostreams, 118, 121, 204
constructors, 136
copying, 147
creating, 144–146
defined, 155
error bits, 139
error handling, 143
flushing, 139–140
formats, 147
header files, 137
input, 140
library, 118, 121–122, 122
man pages, 135, 152–154
manipulators, 147–151
mixing old and new forms, 204
output errors, 139
output to, 137–140

iostream (Continued)
predefined, 135
standard iostreams, 118, 121, 204
standard mode, 135, 137, 204
stdio, 143, 151
stream assignment, 147
structure, 136
terminology, 154–155
using, 137–143

iostream.h, iostream header file, 137
iostreams, classic, 122
ISO C++ standard

conformance, 27–28
one-definition rule, 89, 97

ISO10646 UTF-16 string literal, 300
istream class, defined, 136
istrstream class, defined, 136

K
-keeptmp, compiler option, 201
-Kpic, compiler option, 159, 200
-KPIC, compiler option, 159, 200

L
-L, compiler option, 120, 201
-l, compiler option, 46, 117, 120, 201
languages

C99 support, 255
support for native, 29

LD_LIBRARY_PATH environment variable, 158
left-shift operator, iostream, 137
libc library, 117
libCrun library, 109, 110, 118, 119
libCstd library, See C++ standard library
libcsunimath, library, 118
libdemangle library, 118
libgc library, 118
libiostream, See iostream
libm

inline templates, 258
library, 117

Index

329

libm (Continued)
optimized version, 258

-libmieee, compiler option, 202
-libmil, compiler option, 202
libraries

building shared libraries, 239
C++ compiler, provided with, 117
C++ standard, 129
C interface, 117
class, using, 121
classic iostream, 135
configuration macro, 118
interval arithmetic, 247
linking options, 122–123
linking order, 46
linking with -mt, 117
naming a shared library, 193
optimized math, 258
replacing, C++ standard library, 125–128
shared, 124, 171
suffixes, 157
Sun Performance Library, linking, 259
understanding, 157–158
using, 117–128

libraries, building
dynamic (shared), 157
for private use, 160
for public use, 160–161
linking options, 191
shared with exceptions, 160
static (archive), 157–162
with C API, 161

-library, compiler option, 120, 122, 123, 202–205
librwtool, See Tools.h++, 119
libthread library, 117
limit, command, 41
link-time optimization, 259
linker scoping, 61
linking

consistent with compilation, 35–36
disabling system libraries, 265
dynamic (shared) libraries, 158, 167
iostream library, 122
libraries, 117, 119–120, 122–123

linking (Continued)
separate from compilation, 35
static (archive) libraries, 120, 123–124, 157, 167, 214
symbolic, 127
template instance methods, 92

literal strings in read-only memory, 179
local-scope rules, enabling and disabling, 180
loops, 241

reduction with -xreduction, 289
-xloopinfo, 260

-lthread compiler option
suppressed by -xnolib, 123
using -mt in place of, 109

M
makefile dependencies, 262
man pages

accessing, 28, 119
iostream, 135, 145, 147, 150

manipulators
iostreams, 147–151
plain, 148–149
predefined, 147–148

math library, optimized version, 258
mbarrier.h, 112–113
-mc, compiler option, 206
member variables, caching, 106–107
memory barrier intrinsics, 112–113
memory requirements, 39–41
-misalign, compiler option, 206
mixed-language linking, 255
-mr, compiler option, 206
-mt compiler option

linking libraries, 117
option description, 206–207

multimedia types, handling of, 301
multiple source files, using, 34
multithreaded

application, 109
compilation, 109
exception-handling, 110

multithreading, 206–207
mutable keyword, recognizing, 180

Index

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012330

N
-native, compiler option, 207
native-language support, application development, 29
nestedacess keyword, 180
-noex, compiler option, 110, 207
-nofstore, compiler option, 207
-nolib, compiler option, 121, 207
-nolibmil, compiler option, 207
nonincremental link editor, compilation

component, 38
nonstandard features, 61–70

allowing nonstandard code, 180
defined, 27

-norunpath, compiler option, 121, 208

O
.o files

option suffixes, 34
preserving, 35

-O, compiler option, 208
-Olevel, compiler option, 208
-o, compiler option, 208
object files

linking order, 46
relocatable, 159

objects
destruction order, 180
temporary, 103
temporary, lifetime of, 181
within library, when linked, 157

oct, iostream manipulator, 148
ofstream class, 144
operators

iostream, 137–140, 140–141
optimization

at link time, 259
levels, 267
math library, 258
target hardware, 293
with -fast, 176
with -xmaxopt, 262
with pragma opt, 313

optimizer out of memory, 41

options, command-line
See individual options under alphabetical listings
C++ compiler options reference, 166–304
summarized by function, 46–57
syntax, 45

ostream class, defined, 136
ostrstream class, defined, 136
output, 135

binary, 140
buffer flushing, 139–140
cout, 137
flushing, 139
handling errors, 139

P
+p, compiler option, 209
-P, compiler option, 209
page size, setting for stack or heap, 271
parallelization

turning on warning messages, 302
turning on with -xautopar for multiple

processors, 231
parallelization, with -xreduction, 289
parameterized manipulators, iostreams, 149–151
PEC: Portable Executable Code, 277
peeking at input, 142
-pentium, compiler option, 210
performance, optimizing with -fast, 176
-pg, compiler option, 210
-PIC, compiler option, 210
-pic, compiler option, 210
placement, template instances, 92
plain manipulators, iostreams, 148–149
POSIX threads, 206–207
#pragma align, 306
#pragma does_not_read_global_data, 307
#pragma does_not_return, 307
#pragma does_not_write_global_data, 308
#pragma dumpmacros, 308–309
#pragma end_dumpmacros, 309
#pragma error_messages, 309
#pragma fini, 310
#pragma ident, 311

Index

331

#pragma init, 311
#pragma must_have_frame, 312
#pragma no_side_effect, 312
#pragma opt, 313
#pragma pack, 313
#pragma rarely_called, 314
#pragma returns_new_memory, 315
#pragma unknown_control_flow, 315
#pragma weak, 316
#pragma keywords, 306–317
pragmas (directives), 306–317
precedence, avoiding problems of, 138
precompiled-header file, 274
predefined manipulators, iomanip.h, 148
prefetch instructions, enabling, 281
preprocessor, defining macro to, 171
preserving signedness of chars, 234
processor, specifying target, 293
profiling, -xprofile, 284
programs

basic building steps, 31–32
building multithreaded, 109–110

-pta, compiler option, 210
ptclean command, 91
pthread_cancel() function, 110
-pti, compiler option, 98, 210–211
-pto, compiler option, 211
-ptv, compiler option, 211
put pointer, streambuf, 151

Q
-Qoption, compiler option, 211
-qoption, compiler option, 212
-qp, compiler option, 212
-Qproduce, compiler option, 212
-qproduce, compiler option, 213

R
-R, compiler option, 121, 213
reinterpret_cast operator, 225
release information, 28

reorder functions, 245
repositioning within a file, fstream, 146
resetiosflags, iostream manipulator, 148
restricted pointers, 291
right-shift operator, iostream, 140
RogueWave

C++ standard library, 129
See also Tools.h++, 119

runtime error messages, 100
runtime libraries readme, 132
rvalueref keyword, 180
RWtools.h++, 122

S
.s, file name suffixes, 33
.S, file name suffixes, 33
-S, compiler option, 213
-s, compiler option, 213
sbufpub, man pages, 145
search path

definitions, 98
dynamic library, 121
include files, defined, 194
standard header implementation, 126

searching, template definition files, 97
semi-explicit instances, 93, 96
set_terminate() function, 110
set_unexpected() function, 110
setbase, iostream manipulator, 148
setfill, iostream manipulator, 148
setioflags, iostream manipulator, 148
setprecision, iostream manipulator, 148
setw, iostream manipulator, 148
shared libraries

accessing from a C program, 162
building, 159–160, 191
building, with exceptions, 102
containing exceptions, 160
disallowing linking of, 171
naming, 193

shell, limiting virtual memory in, 40
shift operators, iostreams, 149

Index

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012332

signal handlers
and exceptions, 99
and multithreading, 110

signedness of chars, 234
sizes, storage, 314
skip flag, iostream, 142
.so, file name suffix, 34, 157
.so.n, file name suffix, 34
Solaris operating environment libraries, 117
Solaris threads, 206–207
source files

linking order, 46
location conventions, 98

spellings, alternative, 179
stabs debugger-data format, 240
stack, setting page size for, 271
standard error, iostreams, 135
standard headers

implementing, 126–128
replacing, 127–128

standard input, iostreams, 135
standard iostream classes, 135
standard mode

iostream, 135, 137
See also -compat, 169
Tools.h++, 119

standard output, iostreams, 135
Standard Template Library (STL), 129
standards, conformance, 27–28
static

archive libraries, 157
functions, referencing, 89
instances (deprecated), 93
objects, initializers for nonlocal, 180
variables, referencing, 89

static linking
compiler provided libraries, 120, 214
default libraries, 123–124
library binding, 167
template instances, 94

-staticlib, compiler option, 120, 123, 214
__STDC__, predefined macro, 71
stdcxx4 keyword, 203

stdio

stdiobuf man pages, 151
with iostreams, 143

stdiostream.h, iostream header file, 137
STL (Standard Template Library), components, 129
STLport, 131
storage sizes, 314
stream, defined, 155
stream.h, iostream header file, 137
streambuf

defined, 151, 155
get pointer, 151
man pages, 152
put pointer, 151
queue-like versus file-like, 151
using, 152

streampos, 146
string literal of U"..." form, 300
strstream, defined, 136, 155
strstream.h, iostream header file, 137
struct, anonymous declarations, 65–66
structure declaration specifier, 62
subprograms, compilation options, 35
suffixes

command line file name, 33
files without, 126
library, 157
.SUNWCCh, 127

__SUNPRO_CC_COMPAT, predefined macro, 169
.SUNWCCh file name suffix, 127
SunWS_cache, 96
swap -s, command, 40
swap space, 40
symbol declaration specifier, 61
symbol tables, executable file, 213
__symbolic, 62
-sync_stdio, compiler option, 215
syntax

CC command line, 32
options, 45

T
tcov, -xprofile, 287

Index

333

-temp=dir, compiler option, 216
-template, compiler option, 92, 98, 216
template definition

included, 73
search path, 98
separate, 73
separate, file, 98
troubleshooting a search for definitions, 98

template instantiation, 81–82
explicit, 81–82
function, 81–82
implicit, 81
whole-class, 92

template pre-linker, compilation component, 38
template problems, 85–90

friend declarations of template functions, 86–88
local types as arguments, 85–86
non-local name resolution and instantiation, 85
static objects, referencing, 89
troubleshooting a search for definitions, 98
using qualified names in template definitions, 88

templates
cache directory, 34
commands, 91
compilation, 93
definitions-separate vs. definitions-included

organization, 97
inline, 258
instance methods, 92, 97
linking, 36
nested, 82
partial specialization, 84
repositories, 96
source files, 98
specialization, 83–84
Standard Template Library (STL), 129
static objects, referencing, 89
troubleshooting a search for definitions, 98
verbose compilation, 91

terminate() function, 110
__thread, 63
thread local storage of variables, 63
-time, compiler option, 218

Tools.h++

classic and standard iostreams, 119
compiler options, 122
debug library, 118
documentation, 119
standard and compatibility mode, 119

-traceback, compiler option, 218–219
traceback, 218–219
trapping mode, 189
trigraph sequences, recognizing, 298

U
-U, compiler option, 46, 219
ulimit, command, 40
unexpected() function, 110
union declaration specifier, 62
-unroll=n, compiler option, 219
user-defined types, iostream, 138

V
-V, compiler option, 219
-v, compiler option, 37, 219
__VA_ARGS__ identifier, 38–39
value classes, using, 105–106
values

float, 137
flush, 139
inserting on cout, 138
long, 150
manipulator, 137, 150

variable, thread-local storage specifier, 63
variable argument lists, 38–39
variable declaration specifier, 61
-verbose, compiler option, 91, 220
viable prefix, 275
virtual memory, limits, 40–41
VIS Software Developers Kit, 301

Index

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012334

W
+w, compiler option, 91, 221
-W command-line option, 220
+w2, compiler option, 222
-w, compiler option, 222
#warning, 39
warnings

anachronisms, 222
C header replacement, 128
inefficient code, 221
nonportable code, 221
problematic ARM language constructs, 180
suppressing, 222
technical violations reducing portability, 222
unrecognized arguments, 37

whitespace
extractors, 142
leading, 142
skipping, 142, 149

workstations, memory requirements, 41
ws, iostream manipulator, 142, 148

X
X inserter, iostream, 137
-xaddr32 compiler option, 222
-xalias_level, compiler option, 223
-xanalyze, compiler option, 225
-xannotate, compiler option, 226
-xar, compiler option, 93, 158, 226
-xarch=isa, compiler option, 227
-xautopar, compiler option, 231
-xbinopt, compiler option, 231
-xbinopt compiler option, 231
-xbuiltin, compiler option, 232
-xcache=c, compiler option, 233–234
-xcg, compiler option, 169
-xchar, compiler option, 234
-xcheck, compiler option, 236
-xchip=c, compiler option, 236
-xcode=a, compiler option, 238–240
-xdebugformat compiler option, 240
-xdepend, compiler option, 241
-xdumpmacros, compiler option, 242

-xe, compiler option, 244–245
-xF, compiler option, 245–246
-xhelp=flags, compiler option, 246
-xhreadvar, compiler option, 297
-xhwcprof compiler option, 246
-xia, compiler option, 247
-xinline, compiler option, 248
-xipo, compiler option, 250
-xipo_archive compiler option, 252
-xivdep, compiler option, 253
-xjobs, compiler option, 254
-xkeepframe, compiler option, 254–255
-xlang, compiler option, 255
-xldscope, compiler option, 61, 256
-xlibmieee, compiler option, 258
-xlibmil, compiler option, 258
-xlibmopt, compiler option, 258
-xlic_lib, compiler option, 259
-xlicinfo, compiler option, 259
-Xlinker, compiler option, 222
-xlinkopt, compiler option, 259
-xloopinfo, compiler option, 260
-Xm, compiler option, 222
-xM, compiler option, 260–261
-xM1, compiler option, 261
-xmaxopt, compiler option, 262
-xmaxopt compiler option, 262
-xMD, compiler option, 261
-xmemalign, compiler option, 263
-xMerge, compiler option, 262
-xMF, compiler option, 262
-xMMD, compiler option, 262
-xmodel, compiler option, 264
-xnolib, compiler option, 121, 123, 265
-xnolibmil, compiler option, 266
-xnolibmopt, compiler option, 267
-xOlevel, compiler option, 267–270
-xopenmp, compiler option, 270
-xpagesize, compiler option, 271
-xpagesize_heap, compiler option, 272
-xpagesize_stack, compiler option, 273
-xpec, compiler option, 277
-xpg, compiler option, 277–278
-xport64, compiler option, 278

Index

335

-xprefetch, compiler option, 281
-xprefetch_auto_type, compiler option, 283
-xprefetch_level, compiler option, 284
-xprofile_ircache, compiler option, 288
-xprofile_pathmap, compiler option, 288
-xreduction, compiler option, 289
-xregs, compiler option, 161, 289–290
-xregs compiler option, 289
-xrestrict, compiler option, 290
-xs, compiler option, 292
-xsafe=mem, compiler option, 293
-xspace, compiler option, 293
-xtarget=t, compiler option, 293–297
-xtime, compiler option, 298
-xtrigraphs, compiler option, 298
-xunroll=n, compiler option, 299
-xustr, compiler option, 299
-xvector, compiler option, 300–301
-xvis, compiler option, 301
-xvpara, compiler option, 302
-xwe, compiler option, 302

Z
-z arg, compiler option, 304

Index

Oracle Solaris Studio 12.3: C++ User's Guide • January, 2012336

	Oracle® Solaris Studio 12.3: C++ User's Guide
	Preface
	Supported Platforms
	Oracle Solaris Studio Documentation
	Resources for Developers
	Access to Oracle Support
	Typographic Conventions
	Shell Prompts in Command Examples

	C++ Compiler
	The C++ Compiler
	1.1 New Features and Functionality of the Oracle Solaris Studio 12.3 C++ 5.12 Compiler
	1.2 Special x86 Notes
	1.3 Compiling for 64–Bit Platforms
	1.4 Binary Compatibility Verification
	1.5 Standards Conformance
	1.6 Release Information
	1.7 Man Pages
	1.8 Native-Language Support

	Using the C++ Compiler
	2.1 Getting Started
	2.2 Invoking the Compiler
	2.2.1 Command Syntax
	2.2.2 File Name Conventions
	2.2.3 Using Multiple Source Files

	2.3 Compiling With Different Compiler Versions
	2.4 Compiling and Linking
	2.4.1 Compile-Link Sequence
	2.4.2 Separate Compiling and Linking
	2.4.3 Consistent Compiling and Linking
	2.4.4 Compiling for 64–Bit Memory Model
	2.4.5 Compiler Command-Line Diagnostics
	2.4.6 Understanding the Compiler Organization

	2.5 Preprocessing Directives and Names
	2.5.1 Pragmas
	2.5.2 Macros With a Variable Number of Arguments
	2.5.3 Predefined Names
	2.5.4 Warnings and Errors

	2.6 Memory Requirements
	2.6.1 Swap Space Size
	2.6.2 Increasing Swap Space
	2.6.3 Control of Virtual Memory
	2.6.4 Memory Requirements

	2.7 Using the strip Command with C++ Objects
	2.8 Simplifying Commands
	2.8.1 Using Aliases Within the C Shell
	2.8.2 Using CCFLAGS to Specify Compile Options
	2.8.3 Using make
	2.8.3.1 Using CCFLAGS Within make

	Using the C++ Compiler Options
	3.1 Syntax Overview
	3.2 General Guidelines
	3.3 Options Summarized by Function
	3.3.1 Code Generation Options
	3.3.2 Compile-Time Performance Options
	3.3.3 Compile-Time and Link-Time Options
	3.3.4 Debugging Options
	3.3.5 Floating-Point Options
	3.3.6 Language Options
	3.3.7 Library Options
	3.3.8 Obsolete Options
	3.3.9 Output Options
	3.3.10 Run-Time Performance Options
	3.3.11 Preprocessor Options
	3.3.12 Profiling Options
	3.3.13 Reference Options
	3.3.14 Source Options
	3.3.15 Template Options
	3.3.16 Thread Options

	3.4 User-Supplied Default Options File

	Writing C++ Programs
	Language Extensions
	4.1 Linker Scoping
	4.1.1 Compatibility with Microsoft Windows

	4.2 Thread-Local Storage
	4.3 Overriding With Less Restrictive Virtual Functions
	4.4 Making Forward Declarations of enum Types and Variables
	4.5 Using Incomplete enum Types
	4.6 Using an enum Name as a Scope Qualifier
	4.7 Using Anonymous struct Declarations
	4.8 Passing the Address of an Anonymous Class Instance
	4.9 Declaring a Static Namespace-Scope Function as a Class Friend
	4.10 Using the Predefined __func__ Symbol for Function Name
	4.11 Supported Attributes
	4.11.1 __packed__ Attribute Details

	4.12 Compiler Support for Intel MMX and Extended x86 Platform Intrinsics

	Program Organization
	5.1 Header Files
	5.1.1 Language-Adaptable Header Files
	5.1.2 Idempotent Header Files

	5.2 Template Definitions
	5.2.1 Template Definitions Included
	5.2.2 Template Definitions Separate

	Creating and Using Templates
	6.1 Function Templates
	6.1.1 Function Template Declaration
	6.1.2 Function Template Definition
	6.1.3 Function Template Use

	6.2 Class Templates
	6.2.1 Class Template Declaration
	6.2.2 Class Template Definition
	6.2.3 Class Template Member Definitions
	6.2.3.1 Function Member Definitions
	6.2.3.2 Static Data Member Definitions

	6.2.4 Class Template Use

	6.3 Template Instantiation
	6.3.1 Implicit Template Instantiation
	6.3.2 Explicit Template Instantiation
	6.3.2.1 Explicit Instantiation of Template Functions
	6.3.2.2 Explicit Instantiation of Template Classes
	6.3.2.3 Explicit Instantiation of Template Class Function Members
	6.3.2.4 Explicit Instantiation of Template Class Static Data Members

	6.4 Template Composition
	6.5 Default Template Parameters
	6.6 Template Specialization
	6.6.1 Template Specialization Declaration
	6.6.2 Template Specialization Definition
	6.6.3 Template Specialization Use and Instantiation
	6.6.4 Partial Specialization

	6.7 Template Problem Areas
	6.7.1 Nonlocal Name Resolution and Instantiation
	6.7.2 Local Types as Template Arguments
	6.7.3 Friend Declarations of Template Functions
	6.7.4 Using Qualified Names Within Template Definitions
	6.7.5 Nesting Template Names
	6.7.6 Referencing Static Variables and Static Functions
	6.7.7 Building Multiple Programs Using Templates in the Same Directory

	Compiling Templates
	7.1 Verbose Compilation
	7.2 Repository Administration
	7.2.1 Generated Instances
	7.2.2 Whole-Class Instantiation
	7.2.3 Compile-Time Instantiation
	7.2.4 Template Instance Placement and Linkage

	7.3 External Instances
	7.3.1 Possible Cache Conflicts
	7.3.2 Static Instances
	7.3.3 Global Instances
	7.3.4 Explicit Instances
	7.3.5 Semi-Explicit Instances

	7.4 Template Repository
	7.4.1 Repository Structure
	7.4.2 Writing to the Template Repository
	7.4.3 Reading From Multiple Template Repositories
	7.4.4 Sharing Template Repositories
	7.4.5 Template Instance Automatic Consistency With -instances=extern

	7.5 Template Definition Searching
	7.5.1 Source File Location Conventions
	7.5.2 Definitions Search Path
	7.5.3 Troubleshooting a Problematic Search

	Exception Handling
	8.1 Synchronous and Asynchronous Exceptions
	8.2 Specifying Runtime Errors
	8.3 Disabling Exceptions
	8.4 Using Runtime Functions and Predefined Exceptions
	8.5 Mixing Exceptions With Signals and Setjmp/Longjmp
	8.6 Building Shared Libraries That Have Exceptions

	Improving Program Performance
	9.1 Avoiding Temporary Objects
	9.2 Using Inline Functions
	9.3 Using Default Operators
	9.4 Using Value Classes
	9.4.1 Choosing to Pass Classes Directly
	9.4.2 Passing Classes Directly on Various Processors

	9.5 Cache Member Variables

	Building Multithreaded Programs
	10.1 Building Multithreaded Programs
	10.1.1 Indicating Multithreaded Compilation
	10.1.2 Using C++ Support Libraries With Threads and Signals

	10.2 Using Exceptions in a Multithreaded Program
	10.2.1 Thread Cancellation

	10.3 Sharing C++ Standard Library Objects Between Threads
	10.4 Memory Barrier Intrinsics

	Libraries
	Using Libraries
	11.1 C Libraries
	11.2 Libraries Provided With the C++ Compiler
	11.2.1 C++ Library Descriptions
	11.2.2 Accessing the C++ Library Man Pages
	11.2.3 Default C++ Libraries

	11.3 Related Library Options
	11.4 Using Class Libraries
	11.4.1 iostream Library
	11.4.1.1 Note About Classic iostreams and Legacy RogueWave Tools

	11.4.2 Linking C++ Libraries

	11.5 Statically Linking Standard Libraries
	11.6 Using Shared Libraries
	11.7 Replacing the C++ Standard Library
	11.7.1 What Can Be Replaced
	11.7.2 What Cannot Be Replaced
	11.7.3 Installing the Replacement Library
	11.7.4 Using the Replacement Library
	11.7.5 Standard Header Implementation
	11.7.5.1 Replacing Standard C++ Headers
	11.7.5.2 Replacing Standard C Headers
	Caveats:

	Using the C++ Standard Library
	12.1 C++ Standard Library Header Files
	12.2 STLport
	12.2.1 Redistribution and Supported STLport Libraries

	12.3 Apache stdcxx Standard Library

	Using the Classic iostream Library
	13.1 Predefined iostreams
	13.2 Basic Structure of iostream Interaction
	13.3 Using the Classic iostream Library
	13.3.1 Output Using iostream
	13.3.1.1 Defining Your Own Insertion Operator
	13.3.1.2 Handling Output Errors
	13.3.1.3 Flushing
	13.3.1.4 Binary Output

	13.3.2 Input Using iostream
	13.3.3 Defining Your Own Extraction Operators
	13.3.4 Using the char* Extractor
	13.3.5 Reading Any Single Character
	13.3.6 Binary Input
	13.3.7 Peeking at Input
	13.3.8 Extracting Whitespace
	13.3.9 Handling Input Errors
	13.3.10 Using iostreams With stdio

	13.4 Creating iostreams
	13.4.1 Dealing With Files Using Class fstream
	13.4.1.1 Open Mode
	13.4.1.2 Declaring an fstream Without Specifying a File
	13.4.1.3 Opening and Closing Files
	13.4.1.4 Opening a File Using a File Descriptor
	13.4.1.5 Repositioning Within a File

	13.5 Assignment of iostreams
	13.6 Format Control
	13.7 Manipulators
	13.7.1 Using Plain Manipulators
	13.7.2 Parameterized Manipulators

	13.8 strstream: iostreams for Arrays
	13.9 stdiobuf: iostreams for stdio Files
	13.10 Working Withstreambuf Streams
	13.10.1 streambuf Pointer Types
	13.10.2 Using streambuf Objects

	13.11 iostream Man Pages
	13.12 iostream Terminology

	Building Libraries
	14.1 Understanding Libraries
	14.2 Building Static (Archive) Libraries
	14.3 Building Dynamic (Shared) Libraries
	14.4 Building Shared Libraries That Contain Exceptions
	14.5 Building Libraries for Private Use
	14.6 Building Libraries for Public Use
	14.7 Building a Library That Has a C API
	14.8 Using dlopen to Access a C++ Library From a C Program

	Appendixes
	C++ Compiler Options
	A.1 How Option Information Is Organized
	A.2 Option Reference
	A.2.1 -#
	A.2.2 -###
	A.2.3 –Bbinding
	A.2.3.1 Values
	Defaults
	Interactions
	Examples
	Warnings
	See Also

	A.2.4 –c
	A.2.4.1 Examples
	Warnings
	See Also

	A.2.5 –cg{89|92}
	A.2.6 –compat={5|g}
	A.2.6.1 Values
	Defaults
	Interactions
	Warnings

	A.2.7 +d
	A.2.7.1 Examples
	Interactions
	See Also

	A.2.8 -Dname[=def]
	A.2.9 –d{y|n}
	A.2.9.1 Values
	Defaults
	Interactions
	Warnings
	See Also

	A.2.10 –dalign
	A.2.11 –dryrun
	A.2.12 –E
	A.2.12.1 Examples
	Warnings
	See Also

	A.2.13 -erroff[=t]
	A.2.13.1 Values
	Defaults
	Examples
	Warnings
	See Also

	A.2.14 -errtags[=a]
	A.2.14.1 Values and Defaults
	Warnings
	See Also

	A.2.15 -errwarn[=t]
	A.2.15.1 Values
	Defaults
	Warnings
	See Also

	A.2.16 –fast
	A.2.16.1 Expansions
	Interactions
	Examples
	Warnings
	See Also

	A.2.17 –features=a[,a...]
	A.2.17.1 Values
	Interactions
	Warnings
	See Also

	A.2.18 -filt[=filter[,filter...]]
	A.2.18.1 Values
	Defaults
	Examples
	Interactions

	A.2.19 –flags
	A.2.20 -fma[={none|fused}]
	A.2.21 –fnonstd
	A.2.22 –fns[={yes|no}]
	A.2.22.1 Values
	Defaults
	Examples
	Warnings
	See Also

	A.2.23 –fprecision=p
	A.2.23.1 Values
	Defaults
	Warnings

	A.2.24 –fround=r
	A.2.24.1 Values
	Defaults
	Warnings

	A.2.25 –fsimple[=n]
	A.2.25.1 Values
	Defaults
	Interactions
	Warnings
	See Also

	A.2.26 –fstore
	A.2.26.1 Warnings
	See Also

	A.2.27 -ftrap=t[,t...]
	A.2.27.1 Values
	Defaults
	Examples
	Warnings
	See Also

	A.2.28 –G
	A.2.28.1 Interactions
	Warnings
	See Also

	A.2.29 –g
	A.2.29.1 Interactions
	Warnings
	See Also

	A.2.30 –g0
	A.2.30.1 See also

	A.2.31 -g3
	A.2.32 –H
	A.2.33 –h[]name
	A.2.33.1 Examples

	A.2.34 –help
	A.2.35 -Ipathname
	A.2.35.1 Interactions
	Warnings
	See Also

	A.2.36 -I-
	A.2.36.1 Examples
	Interactions
	Warnings

	A.2.37 –i
	A.2.38 -include filename
	A.2.39 -inline
	A.2.40 –instances=a
	A.2.40.1 Values
	Defaults
	See Also

	A.2.41 –instlib=filename
	A.2.41.1 Values
	Defaults
	Example
	Interactions
	Warning
	See Also

	A.2.42 –KPIC
	A.2.43 –Kpic
	A.2.44 –keeptmp
	A.2.44.1 See Also

	A.2.45 –Lpath
	A.2.45.1 Interactions
	Warnings

	A.2.46 –llib
	A.2.46.1 Interactions
	Warnings
	See Also

	A.2.47 –libmieee
	A.2.48 –libmil
	A.2.49 -library=l[,l...]
	A.2.49.1 Values
	A.2.49.2 Defaults
	A.2.49.3 Examples
	A.2.49.4 Interactions
	A.2.49.5 Warnings
	A.2.49.6 See Also

	A.2.50 -m32|-m64
	A.2.50.1 See Also

	A.2.51 -mc
	A.2.52 –misalign
	A.2.53 -mr[,string]
	A.2.54 -mt[={yes|no}]
	A.2.54.1 See Also

	A.2.55 –native
	A.2.56 –noex
	A.2.57 –nofstore
	A.2.57.1 See Also

	A.2.58 –nolib
	A.2.59 –nolibmil
	A.2.60 –norunpath
	A.2.60.1 Interactions

	A.2.61 –O
	A.2.62 –Olevel
	A.2.63 –o filename
	A.2.63.1 Interactions
	Warnings

	A.2.64 +p
	A.2.64.1 Defaults
	Interactions

	A.2.65 –P
	A.2.65.1 See Also

	A.2.66 –p
	A.2.67 –pentium
	A.2.68 –pg
	A.2.69 -PIC
	A.2.70 –pic
	A.2.71 –pta
	A.2.72 –ptipath
	A.2.72.1 Interactions
	A.2.72.2 See Also

	A.2.73 –pto
	A.2.74 –ptv
	A.2.75 –Qoption phase option[,option?]
	A.2.75.1 Values
	A.2.75.2 Examples
	A.2.75.3 Warnings

	A.2.76 –qoption phase option
	A.2.77 –qp
	A.2.78 –Qproduce sourcetype
	A.2.79 –qproduce sourcetype
	A.2.80 –Rpathname[:pathname?]
	A.2.80.1 Defaults
	A.2.80.2 Interactions
	A.2.80.3 See Also

	A.2.81 –S
	A.2.82 –s
	A.2.83 -staticlib=l[,l?]
	A.2.83.1 Values
	A.2.83.2 Defaults
	A.2.83.3 Examples
	A.2.83.4 Interactions
	A.2.83.5 Warnings
	A.2.83.6 See Also

	A.2.84 -sync_stdio=[yes|no]
	A.2.84.1 Defaults
	A.2.84.2 Examples
	A.2.84.3 Warnings

	A.2.85 –temp=path
	A.2.85.1 See Also

	A.2.86 –template=opt[,opt?]
	A.2.86.1 Values
	A.2.86.2 Defaults
	A.2.86.3 Examples
	A.2.86.4 See Also

	A.2.87 –time
	A.2.88 -traceback[={%none|common|signals_list}]
	A.2.89 –Uname
	A.2.89.1 Examples
	A.2.89.2 Interactions
	A.2.89.3 See Also

	A.2.90 –unroll=n
	A.2.91 –V
	A.2.92 –v
	A.2.93 –verbose=v[,v?]
	A.2.93.1 Values
	Defaults
	Interactions

	A.2.94 -Wc,arg
	A.2.95 +w
	A.2.95.1 Defaults
	A.2.95.2 See Also

	A.2.96 +w2
	A.2.96.1 See Also

	A.2.97 –w
	A.2.97.1 See Also

	A.2.98 -Xlinker arg
	A.2.99 –Xm
	A.2.100 -xaddr32
	A.2.101 -xalias_level[=n]
	A.2.101.1 -xalias_level=any
	A.2.101.2 -xalias_level=simple
	A.2.101.3 -xalias_level=compatible
	A.2.101.4 Defaults
	A.2.101.5 Interactions
	A.2.101.6 Warning

	A.2.102 -xanalyze={code|no}
	A.2.103 -xannotate[=yes|no]
	A.2.104 –xar
	A.2.104.1 Values
	Examples
	Warnings
	See Also

	A.2.105 –xarch=isa
	A.2.105.1 -xarch Flags for SPARC and x86
	A.2.105.2 -xarch Flags for SPARC
	A.2.105.3 -xarch Flags for x86
	A.2.105.4 Interactions
	A.2.105.5 Warnings

	A.2.106 -xautopar
	A.2.106.1 See Also

	A.2.107 -xbinopt={prepare|off}
	A.2.107.1 Defaults
	Interactions

	A.2.108 -xbuiltin[={%all|%default|%none}]
	A.2.108.1 Defaults
	Interactions
	Examples

	A.2.109 –xcache=c
	A.2.109.1 Values
	Defaults
	Examples
	See Also

	A.2.110 -xchar[=o]
	A.2.110.1 Values
	Defaults
	Interactions
	Warnings

	A.2.111 -xcheck[=i]
	A.2.111.1 Values
	Defaults

	A.2.112 -xchip=c
	A.2.112.1 Values
	Defaults

	A.2.113 –xcode=a
	A.2.113.1 Values
	Defaults

	A.2.114 -xdebugformat=[stabs|dwarf]
	A.2.115 -xdepend=[yes|no]
	A.2.115.1 See Also

	A.2.116 -xdumpmacros[=value[,value...]]
	A.2.116.1 Values
	Defaults
	Examples
	See Also

	A.2.117 -xe
	A.2.117.1 See Also

	A.2.118 -xF[=v[,v...]]
	A.2.118.1 Values
	Defaults
	Interactions
	See Also

	A.2.119 -xhelp=flags
	A.2.120 -xhwcprof
	A.2.121 -xia
	A.2.121.1 Expansions
	A.2.121.2 Interactions
	A.2.121.3 Warnings
	A.2.121.4 See Also

	A.2.122 -xinline[=func-spec[,func-spec...]]
	A.2.122.1 Values
	A.2.122.2 Defaults
	A.2.122.3 Examples
	A.2.122.4 Interactions
	A.2.122.5 Warnings
	A.2.122.6 See Also

	A.2.123 -xinstrument=[no%]datarace
	A.2.124 -xipo[={0|1|2}]
	A.2.124.1 Values
	A.2.124.2 Defaults
	A.2.124.3 Examples
	A.2.124.4 When Not To Use -xipo Interprocedural Analysis
	A.2.124.5 Interactions
	A.2.124.6 Warnings
	A.2.124.7 See Also

	A.2.125 -xipo_archive=[a]
	A.2.126 -xivdep[=p]
	A.2.127 -xjobs=n
	A.2.127.1 Values
	A.2.127.2 Defaults
	A.2.127.3 Examples

	A.2.128 -xkeepframe[=[%all,%none,name,no%name]]
	A.2.129 -xlang=language[,language]
	A.2.129.1 Values
	A.2.129.2 Interactions
	A.2.129.3 Warnings
	A.2.129.4 See Also

	A.2.130 -xldscope={v}
	A.2.130.1 Values
	A.2.130.2 Defaults
	A.2.130.3 Warning
	A.2.130.4 See Also

	A.2.131 -xlibmieee
	A.2.131.1 See Also

	A.2.132 -xlibmil
	A.2.132.1 Interactions
	See Also

	A.2.133 –xlibmopt
	A.2.133.1 Interactions
	A.2.133.2 See Also

	A.2.134 –xlic_lib=sunperf
	A.2.135 –xlicinfo
	A.2.136 -xlinkopt[=level]
	A.2.136.1 Values
	A.2.136.2 Defaults
	A.2.136.3 Interactions
	A.2.136.4 Warnings

	A.2.137 -xloopinfo
	A.2.138 –xM
	A.2.138.1 Examples
	A.2.138.2 Interactions
	A.2.138.3 See Also

	A.2.139 -xM1
	A.2.140 -xMD
	A.2.141 -xMF
	A.2.142 -xMMD
	A.2.143 –xMerge
	A.2.143.1 See Also

	A.2.144 -xmaxopt[=v]
	A.2.145 -xmemalign=ab
	A.2.145.1 Values
	A.2.145.2 Defaults
	A.2.145.3 Examples

	A.2.146 -xmodel=[a]
	A.2.147 –xnolib
	A.2.147.1 Examples
	A.2.147.2 Interactions
	A.2.147.3 Warnings
	A.2.147.4 See Also

	A.2.148 –xnolibmil
	A.2.149 –xnolibmopt
	A.2.149.1 Examples

	A.2.150 -xnorunpath
	A.2.151 -xOlevel
	A.2.151.1 Values
	A.2.151.2 Interactions
	A.2.151.3 Defaults
	A.2.151.4 Warnings
	A.2.151.5 See Also

	A.2.152 -xopenmp[=i]
	A.2.152.1 Values
	A.2.152.2 Defaults
	A.2.152.3 Interactions
	A.2.152.4 Warnings
	A.2.152.5 See Also

	A.2.153 -xpagesize=n
	A.2.153.1 Values
	A.2.153.2 Defaults
	A.2.153.3 Expansions
	A.2.153.4 Warnings

	A.2.154 -xpagesize_heap=n
	A.2.154.1 Values
	A.2.154.2 Defaults
	A.2.154.3 Warnings

	A.2.155 -xpagesize_stack=n
	A.2.155.1 Values
	A.2.155.2 Defaults
	A.2.155.3 Warnings

	A.2.156 -xpch=v
	A.2.156.1 Creating a Precompiled-Header File
	Using a Precompiled-Header File
	How to Modify Makefiles

	A.2.156.2 See Also

	A.2.157 -xpchstop=file
	A.2.157.1 See Also

	A.2.158 -xpec[={yes|no}]
	A.2.159 –xpg
	A.2.159.1 Warnings
	A.2.159.2 See Also

	A.2.160 -xport64[=(v)]
	A.2.160.1 Values
	A.2.160.2 Defaults
	A.2.160.3 Examples
	Checking for the Truncation of 64-bit Values
	Checking for Sign Extension
	Checking for Changes to the Packing of Bitfields

	A.2.160.4 Warnings
	A.2.160.5 See Also

	A.2.161 -xprefetch[=a[,a...]]
	A.2.161.1 Defaults
	A.2.161.2 Interactions
	A.2.161.3 Warnings

	A.2.162 -xprefetch_auto_type=a
	A.2.163 -xprefetch_level[=i]
	A.2.163.1 Values
	A.2.163.2 Defaults
	A.2.163.3 Interactions

	A.2.164 –xprofile=p
	A.2.165 -xprofile_ircache[=path]
	A.2.166 -xprofile_pathmap
	A.2.167 -xreduction
	A.2.168 –xregs=r[,r...]
	A.2.169 -xrestrict[=f]
	A.2.169.1 Restricted Pointers

	A.2.170 –xs
	A.2.171 –xsafe=mem
	A.2.171.1 Interactions
	A.2.171.2 Warnings

	A.2.172 –xspace
	A.2.173 –xtarget=t
	A.2.173.1 —xtarget Values By Platform
	-xtarget Values on SPARC Platforms
	-xtarget Values on x86 Platforms

	A.2.173.2 Defaults
	A.2.173.3 Expansions
	A.2.173.4 Examples
	A.2.173.5 Interactions
	A.2.173.6 Warnings

	A.2.174 -xthreadvar[=o]
	A.2.174.1 Values
	A.2.174.2 Defaults
	A.2.174.3 Interactions
	A.2.174.4 Warnings
	A.2.174.5 See Also

	A.2.175 –xtime
	A.2.176 -xtrigraphs[={yes|no}]
	A.2.176.1 Values
	A.2.176.2 Defaults
	A.2.176.3 Examples
	A.2.176.4 See Also

	A.2.177 –xunroll=n
	A.2.177.1 Values

	A.2.178 -xustr={ascii_utf16_ushort|no}
	A.2.178.1 Values
	A.2.178.2 Defaults
	A.2.178.3 Example

	A.2.179 -xvector[=a]
	A.2.179.1 Defaults
	A.2.179.2 Interactions

	A.2.180 -xvis[={yes|no}]
	A.2.180.1 Defaults

	A.2.181 -xvpara
	A.2.182 –xwe
	A.2.182.1 See Also

	A.2.183 -Yc,path
	A.2.183.1 Values
	A.2.183.2 Interactions
	A.2.183.3 See Also

	A.2.184 -z[]arg

	Pragmas
	B.1 Pragma Forms
	B.1.1 Overloaded Functions as Pragma Arguments

	B.2 Pragma Reference
	B.2.1 #pragma align
	B.2.2 #pragma does_not_read_global_data
	B.2.3 #pragma does_not_return
	B.2.4 #pragma does_not_write_global_data
	B.2.5 #pragma dumpmacros
	B.2.6 #pragma end_dumpmacros
	B.2.7 #pragma error_messages
	B.2.8 #pragma fini
	B.2.9 #pragma hdrstop
	B.2.10 #pragma ident
	B.2.11 #pragma init
	B.2.12 #pragma ivdep
	B.2.13 #pragma must_have_frame
	B.2.14 #pragma no_side_effect
	B.2.15 #pragma opt
	B.2.16 #pragma pack(n)
	B.2.17 #pragma rarely_called
	B.2.18 #pragma returns_new_memory
	B.2.19 #pragma unknown_control_flow
	B.2.20 #pragma weak
	B.2.20.1 #pragma weak name
	#pragma weak name1 = name2
	Overloading Functions

	Glossary
	Index

