

Oracle® Fusion Middleware
Using ActiveCache

12c Release 1 (12.1.1)

E24442-02

March 2012

This document describes how to use ActiveCache as the
caching solution for WebLogic Server applications.

Oracle Fusion Middleware Using ActiveCache, 12c Release 1 (12.1.1)

E24442-02

Copyright © 2007, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... v

Documentation Accessibility ... v
Conventions ... v

1 Introduction and Roadmap

1.1 Document Scope and Audience.. 1-1
1.2 Guide to This Document.. 1-1
1.3 Related Documentation.. 1-1
1.4 New and Changed Features in This Release... 1-2

2 About ActiveCache

2.1 Adding Session State Persistence and Management ... 2-1
2.2 Accessing Java Persistence API (JPA) Entities in the Data Cache 2-1

3 Accessing Data Caches from Applications

3.1 Developing Applications to Use ActiveCache: Main Steps.. 3-1
3.2 Choose the ActiveCache Deployment Topology ... 3-2
3.3 Create and Configure a Data Cache... 3-3
3.4 Access the Data Cache from your Application... 3-3
3.5 Locate the Cache Configuration File ... 3-4
3.6 Access the Cache Configuration on Server Startup ... 3-5
3.7 Package Applications and Configure Coherence Cluster Scope ... 3-6
3.7.1 Configuring Application Server-Scoped Coherence Clusters....................................... 3-6
3.7.2 Configuring EAR-Scoped Coherence Clusters.. 3-6
3.7.3 Configuring WAR-Scoped Coherence Clusters .. 3-8
3.8 Create and Configure Coherence Clusters... 3-10
3.9 Start a Cache Server ... 3-13
3.9.1 Starting Cache Servers Using Node Manager .. 3-13
3.9.1.1 Starting Cache Servers from the Administration Console 3-14
3.9.1.2 Starting Cache Servers with WLST ... 3-14
3.9.2 Starting Cache Servers Using a Startup Script ... 3-15
3.9.3 Restarting Cache Servers Using Node Manager .. 3-16
3.10 Start WebLogic Server... 3-16
3.11 Monitor Coherence Cluster Properties ... 3-17

iv

4 Accessing and Retrieving Relational Data

4.1 Specifying the Eclipse Persistence Provider ... 4-1
4.2 Adding TopLink Grid Functionality to a Coherence Cluster... 4-1
4.2.1 Adding TopLink Grid to Application Server-Scoped Coherence Clusters................. 4-2
4.2.2 Adding TopLink Grid to EAR-Scoped Coherence Clusters.. 4-2
4.2.3 Adding TopLink Grid to WAR-Scoped Coherence Clusters .. 4-3

v

Preface

This preface describes the document accessibility features and conventions used in this
guide—Using ActiveCache.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

vi

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

The following sections describe the contents and organization of this guide—Using
ActiveCache:

■ Section 1.1, "Document Scope and Audience"

■ Section 1.2, "Guide to This Document"

■ Section 1.3, "Related Documentation"

■ Section 1.4, "New and Changed Features in This Release"

1.1 Document Scope and Audience
This document is a resource for:

■ Application developers who want to develop and configure applications using
ActiveCache features, such as the ability to use a simplified approach for accessing
Coherence data caches from WebLogic Server applications.

■ Administrators who want to use WebLogic management tools, such as the
Administration Console, Node Manager, and WebLogic Scripting Tool (WLST), to
create, configure, control, and monitor Coherence cache servers and Coherence
clusters.

1.2 Guide to This Document
■ This chapter, Chapter 1, "Introduction and Roadmap," describes the organization

of this document.

■ Chapter 2, "About ActiveCache," provides an overview of ActiveCache features.

■ Chapter 3, "Accessing Data Caches from Applications," explains how to use
ActiveCache with applications running on WebLogic Server.

■ Chapter 4, "Accessing and Retrieving Relational Data," describes how to use
ActiveCache with TopLink Grid’s relational-to-object mapping capabilities to
cache relational data.

1.3 Related Documentation
For additional information, see the following Coherence and WebLogic Server
documents:

Coherence
■ Oracle Coherence Getting Started Guide

New and Changed Features in This Release

1-2 Using ActiveCache

■ Oracle Coherence Developer's Guide

■ Oracle Coherence Client Guide

■ Oracle Coherence Tutorial for Oracle Coherence

■ Oracle Coherence User's Guide for Oracle Coherence*Web

■ Oracle Coherence Integration Guide

■ Oracle Coherence Management Guide

■ Oracle Coherence Administrator's Guide

■ Oracle Coherence Security Guide

WebLogic Server
■ Developing Applications for Oracle WebLogic Server

■ Using Clusters for Oracle WebLogic Server

■ Oracle WebLogic Server Administration Console Help

1.4 New and Changed Features in This Release
For a comprehensive listing of other new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

2

About ActiveCache 2-1

2About ActiveCache

This chapter describes the collection of WebLogic Server features referred to as
ActiveCache. ActiveCache allows deployed applications to easily use Coherence data
caches and seamlessly incorporate Coherence*Web for session management and
TopLink Grid as an object-to-relational persistence framework.

ActiveCache is employed by applications running on WebLogic Server and provides
replicated and distributed caching services that make an application's data available to
all servers in a Coherence data cluster. ActiveCache provides direct access by
applications to data caches, either through resource injection or component-based
JNDI lookup, and lets you display, monitor, create, and configure Coherence clusters
using the WebLogic Server Administration Console and WLST. New features in this
release let you control (start, stop, and restart), configure, and monitor standalone
Coherence cache servers using the WebLogic Server Administration Server, via the
Administration Console or WLST, along with the java-based Node Manager.

Using ActiveCache with WebLogic Server instances enables you to create a data tier
dedicated to caching application data and storing replicated session state. This is
separate from the application tier—the WebLogic Server instances dedicated to
running applications. ActiveCache technology allows the application tier to efficiently
communicate with the data tier and cache data in it. For more information, see
Section 3.2, "Choose the ActiveCache Deployment Topology."

2.1 Adding Session State Persistence and Management
Using Coherence*Web with ActiveCache enables you to provide Coherence-based
HTTP session state persistence to applications running on WebLogic Server.
Coherence*Web enables HTTP session sharing and management across different Web
applications, domains, and heterogeneous application servers. Session data can be
stored in data caches outside of the application server, thus freeing application server
heap space and enabling server restarts without losing session data.

For information on using Coherence*Web with WebLogic Server applications, see
User's Guide for Oracle Coherence*Web.

2.2 Accessing Java Persistence API (JPA) Entities in the Data Cache
TopLink Grid’s relational-to-object mapping capabilities allow ActiveCache to cache
relational data. You can store copies of database queries and result sets in Coherence
data caches. With this feature, database access occurs only when no cached copy of the
required data exists, or when the application performs a create, update, or delete
operation that must be persisted to the database. This added optimization provides
improved scalability and performance to the system.

Accessing Java Persistence API (JPA) Entities in the Data Cache

2-2 Using ActiveCache

TopLink Grid allows JPA Entity caching. This lets you support very large, shared grid
caches that span cluster nodes. Calls for JPA Entities cached in ActiveCache result in a
get operation on the associated data cache. If the data cache does not contain the
object, then the database is queried.

TopLink Grid enables you to direct queries to ActiveCache. If the desired query result
is not found in the cache, it can be read from the database and then placed in the
cache, making it available for subsequent queries. The ability of ActiveCache to
manage very large numbers of objects increases the likelihood of a result being found
in the cache, as read operations in one cluster member become immediately available
to others.

Writing JPA Entities to the database is also made possible by TopLink Grid.
Applications can directly write JPA Entities to the database, then put them into the
data cache (so that it reflects the database state), or put JPA Entities into the data cache,
and then have the data cache write them to the database.

For more information, see Section 4, "Accessing and Retrieving Relational Data."

3

Accessing Data Caches from Applications 3-1

3Accessing Data Caches from Applications

This chapter describes how applications can easily access Coherence data caches using
ActiveCache. ActiveCache provides a @Resource annotation that allows a Coherence
NamedCache cache object to be identified and dynamically injected into a servlet or
EJB. As an alternative to resource injection, applications using ActiveCache can use a
component-based JNDI tree to look up the NamedCache.

This chapter includes the following sections:

■ Section 3.1, "Developing Applications to Use ActiveCache: Main Steps"

■ Section 3.2, "Choose the ActiveCache Deployment Topology"

■ Section 3.3, "Create and Configure a Data Cache"

■ Section 3.4, "Access the Data Cache from your Application"

■ Section 3.5, "Locate the Cache Configuration File"

■ Section 3.6, "Access the Cache Configuration on Server Startup"

■ Section 3.7, "Package Applications and Configure Coherence Cluster Scope"

■ Section 3.8, "Create and Configure Coherence Clusters"

■ Section 3.9, "Start a Cache Server"

■ Section 3.10, "Start WebLogic Server"

■ Section 3.11, "Monitor Coherence Cluster Properties"

3.1 Developing Applications to Use ActiveCache: Main Steps
The following steps summarize the procedure for using ActiveCache with applications
running on WebLogic Server.

1. Choose the cluster topology on which your applications will run. See Section 3.2,
"Choose the ActiveCache Deployment Topology."

2. Specify the configuration for the Coherence caches that your applications will use.
See Section 3.3, "Create and Configure a Data Cache."

3. Add code in your Web application to access the Coherence caches. You can use
either JNDI lookup or resource injection to access a Coherence NamedCache cache
object. See Section 3.4, "Access the Data Cache from your Application."

4. Store the cache configuration file with the application. Where you store the file
depends on how you want the caches to be visible to the deployed applications.
See Section 3.5, "Locate the Cache Configuration File."

Choose the ActiveCache Deployment Topology

3-2 Using ActiveCache

5. Determine how the server will access the cache configuration file when it starts.
See Section 3.6, "Access the Cache Configuration on Server Startup."

6. Coherence clusters are classloader-scoped. Where you deploy coherence.jar in
the classloader hierarchy determines how cluster membership is handled. See
Section 3.7, "Package Applications and Configure Coherence Cluster Scope."

7. Adjust preconfigured cluster values for your deployed applications, if necessary.
You can use WLST or the WebLogic Server Administration Console to configure
some cluster-related values. See Section 3.8, "Create and Configure Coherence
Clusters."

8. Start the standalone Coherence cache servers. See Section 3.9, "Start a Cache
Server."

9. Use one of the several methods to start WebLogic Server. See Section 3.10, "Start
WebLogic Server."

10. Monitor the run-time status of Coherence clusters from the WebLogic Server
Administration Console. See Section 3.11, "Monitor Coherence Cluster Properties."

3.2 Choose the ActiveCache Deployment Topology
Clusters are used to harness multiple computers to store and manage data, resources,
and services, usually for reliability and scalability purposes. Coherence clusters store
and manage an application's objects and data. All of the data that is inserted into
Coherence data caches is accessible by all the servers in the application’s Coherence
cluster that share the same cache configuration.

ActiveCache can be employed for several different combinations of application and
data tiers, or cluster topologies. Different cluster topologies can be formed by mixing
WebLogic Server instances and standalone Coherence cache servers, here defined as
Coherence data servers running on JVM instances dedicated to maintaining data.

■ In the In-Process topology, all WebLogic Server instances (employing ActiveCache)
in the cluster are storage-enabled. In this case, storage-enabled means that these
servers will provide cache storage and back-up storage; you do not have to create
a separate data tier. The applications and the data caches are collocated; each
server instance can serve requests and cache data.

This topology is supported mainly for development and testing. By storing the
session data in-process with the application server, this topology is very easy to
get up and running quickly for development and testing. This topology is not
recommended for production use.

■ In the Out-of-Process topology, you use standalone Coherence cache servers to host
the data. Configure the WebLogic Server instances to be storage-disabled; they are
used to serve requests. This topology creates a true, separate data tier, and further
reduces overhead for the WebLogic Server instances that are processing requests.

■ The WebLogic Out-Of-Process topology is a slight variation on the Out-of-Process
topology. In this topology, storage-enabled WebLogic Server instances replace the
standalone Coherence cache servers. You have a mixture of storage-enabled and
storage-disabled WebLogic Server instances. In this topology requests and data
are also segregated to their own servers; thus, latency for processing requests is
reduced.

Access the Data Cache from your Application

Accessing Data Caches from Applications 3-3

3.3 Create and Configure a Data Cache
ActiveCache can be configured to use any of the cache types supported by Oracle
Coherence. For an in-depth discussion on Coherence caches and their configuration,
see "Introduction to Caches" in the Oracle Coherence Developer's Guide.

3.4 Access the Data Cache from your Application
Applications that run on WebLogic Server 10.3.3 or later, can use ActiveCache to
access a data cache. The data cache is represented by the Coherence NamedCache
cache object. This object is designed to hold resources that are shared among members
of a Coherence cluster. These resources are managed in memory, and are typically
composed of data that is also stored persistently in a database, or data that has been
assembled or calculated. Thus, these resources are referred to as cached.

Your application can obtain a NamedCache either by resource injection or by lookup
in a component-scoped JNDI resource tree. The lookup technique can be used in EJBs,
servlets, or JSPs. The resource injection technique can be used only by servlets or EJBs.

To Obtain the NamedCache by Resource Injection
A @Resource annotation can be used in a servlet or an EJB to dynamically inject the
NamedCache. This annotation cannot be used in a JSP. The name of the cache used in
the annotation must be defined in the Coherence cache configuration file,
coherence-cache-config.xml.

Example 3–1 illustrates a resource injection of the NamedCache myCache.

Example 3–1 Obtaining a NamedCache by Resource Injection

...
@Resource(mappedName="myCache")
com.tangosol.net.NamedCache nc;
...

To Obtain the NamedCache by JNDI Lookup
A component-scoped JNDI tree can be used in EJBs, servlets, or JSPs to reference the
NamedCache.

To use a component-scoped JNDI lookup, define a resource-ref of type
com.tangosol.net.NamedCache in either the web.xml or ejb-jar.xml file.
Example 3–2 illustrates a <resource-ref> stanza that identifies myCache as the
NamedCache.

Note: For more information on the In-Process and Out-of-Process
deployment topologies, see "Deployment Topologies" in User's Guide
for Oracle Coherence*Web.

Note: It is not recommended that you store remote EJB references in
Coherence named caches, nor should you store them in
Coherence*Web-backed HTTP sessions.

Locate the Cache Configuration File

3-4 Using ActiveCache

Example 3–2 Defining a NamedCache as resource-ref for JNDI Lookup

...
<resource-ref>
 <res-ref-name>coherence/myCache</res-ref-name>
 <res-type>com.tangosol.net.NamedCache</res-type>
 <mapped-name>MyCache</mapped-name>
</resource-ref>
...

3.5 Locate the Cache Configuration File
The location where you store the cache configuration file determines the cache scope;
that is, the visibility of the caches to deployed applications. The cache scope defines a
Coherence node. A Coherence node can be a single server process (WebLogic Server
instance (running Coherence) or standalone Coherence cache server), WebLogic Server
application (EAR), or application module (Web application). There can be many data
caches within a single Coherence node.

There are three options for cache visibility:

■ Application server-scoped—all deployed applications in a container become part
of one Coherence node. Caches will be visible globally to all applications deployed
on the server.

■ EAR-scoped—all deployed applications within each EAR become part of one
Coherence node. Caches will be visible to all modules in the EAR. For example,
this could be a recommended deployment if all of the modules must share the
same cache.

■ WAR-scoped—each deployed Web application becomes its own Coherence node.
Caches will be visible to the individual modules only. For example, this could be a
recommended deployment for a standalone WAR deployment or standalone EJB
deployment.

Note: The <res-auth> and <res-sharing-scope> elements do
not appear in the example. The <res-auth> element is ignored
because currently no resource sign-on is performed to access data
caches. The <res-sharing-scope> element is ignored because data
caches are sharable by default and this behavior cannot be overridden.

Note: The cache configuration must be consistent for both WebLogic
Server instances and standalone Coherence cache servers.

Access the Cache Configuration on Server Startup

Accessing Data Caches from Applications 3-5

3.6 Access the Cache Configuration on Server Startup
The server must be able to access the cache configuration file on startup. There are two
ways to do this:

■ Place the cache configuration file in the server classpath, or

■ Declare the cache configuration file location in the server startup command with
the tangosol.coherence.cacheconfig system property. For more
information on this property, see Oracle Coherence Developer's Guide.

Example 3–3 illustrates the tangosol.coherence.cacheconfig system
property in a sample cache server startup command.

Example 3–3 Declaring the Cache Configuration File in a Server Startup Command

java -server -Xms512m -Xmx512m
-cp <Coherence installation dir>/lib/coherence.jar
-Dtangosol.coherence.management.remote=true
-Dtangosol.coherence.cacheconfig=WEB-INF/classes/coherence-cache-config.xml
-Dtangosol.coherence.session.localstorage=true com.tangosol.net.DefaultCacheServer

Table 3–1 Cache Configuration File Location Based on Cache Scoping

For this cache scoping... Store the cache configuration file in... Comments

Application server-scope ■ the server classpath For more information, see "Access the
Cache Configuration on Server
Startup".

Application-scoped cache for
an EAR file

■ a JAR file in the EAR library directory

■ the APP-INF/classes directory of
the EAR

Caches defined in
coherence-cache-config.xml
and placed at the EAR level can be
seen and shared by all modules in the
EAR.

Caches defined at the EAR level will
be visible to the individual
applications within the EAR only, but
they must have unique service names
across all the EARs in the application.
Also, if you define caches both at the
EAR level and at the module level,
then the cache, scheme, and service
names must be unique across the
EAR-level cache configuration and the
module cache configuration.

Web-component-scoped
cache in an EAR, or a
standalone WAR
deployment

■ a JAR file in the WEB-INF/lib
directory of a WAR file

■ the WEB-INF/classes directory of a
WAR file

Caches defined at module level will be
visible to the individual modules only,
but they must have unique service
names across all the modules in the
application. Also, if you define caches
both at the EAR level and at the
module level, then the cache, scheme,
and service names must be unique
across the EAR-level cache
configuration and the module cache
configuration.

Standalone EJB deployment ■ an EJB-JAR file An EJB module in an EAR cannot
have module-scoped caches—they can
only be application-scoped.

Package Applications and Configure Coherence Cluster Scope

3-6 Using ActiveCache

If you are working with two (or more) applications, it is possible that they could have
two (or more) different cache configurations. In this case, the cache configuration on
the Coherence cache server must contain the union of these configurations. This allows
the applications to be supported in the same cache cluster. Note that this is valid only
for standalone cache servers.

3.7 Package Applications and Configure Coherence Cluster Scope
Coherence clusters are a group of Coherence nodes that share a group address which
allows them to communicate. Coherence clusters are classloader-scoped according to
where you place the coherence.jar file in the classloader hierarchy. Coherence
clusters can be:

■ application server-scoped—the entire JVM acts as a single Coherence cluster.

■ EAR-scoped—each application can be a Coherence cluster.

■ WAR-scoped—each Web module within an application can be a Coherence cluster.

The packing and configuration options for these three scoping scenarios are described
in the following sections:

■ Section 3.7.1, "Configuring Application Server-Scoped Coherence Clusters"

■ Section 3.7.2, "Configuring EAR-Scoped Coherence Clusters"

■ Section 3.7.3, "Configuring WAR-Scoped Coherence Clusters"

3.7.1 Configuring Application Server-Scoped Coherence Clusters
With this configuration, all deployed applications on WebLogic Server instances that
are directly accessing Coherence caches become part of one Coherence cluster. Caches
will be visible to all applications deployed on the server. This configuration produces
the smallest number of Coherence nodes in the cluster (one for each WebLogic Server
instance).

Since the Coherence library is deployed in the server's classpath, only one copy of the
Coherence classes will be loaded into the JVM, thus minimizing resource utilization.
However, since all applications are using the same Coherence cluster configuration, all
applications will be affected if one application misbehaves.

To Use Coherence Data Caches with Application Server-Scoped Coherence
Clusters
1. Edit your WebLogic Server system classpath to include coherence.jar and WL_

HOME/common/deployable-libraries/active-cache.jar in the system
classpath. The active-cache.jar should be referenced only from the
deployable-libraries folder in the system classpath and should not be
copied to any other location.

2. (Optional) If you want to configure Coherence cluster properties, create a
CoherenceClusterSystemResourceMBean and reference it in the
ServerMBean. You can use the WebLogic Server Administration Console or
WLST to create and reference the MBean. See
createServerScopedCoherenceSystemResource in Example 3–9.

3.7.2 Configuring EAR-Scoped Coherence Clusters
With this configuration, all deployed applications within each EAR become part of one
Coherence cluster. Caches will be visible to all modules in the EAR. For example, this

Package Applications and Configure Coherence Cluster Scope

Accessing Data Caches from Applications 3-7

could be a recommended deployment if all the modules must share the same
Coherence node. It can also be a recommended configuration if you plan on deploying
only one EAR to an application server.

This configuration produces the next smallest number of Coherence nodes in the
cluster (one for each deployed EAR). Since the Coherence library is deployed in the
application's classpath, only one copy of the Coherence classes is loaded for each EAR.

Since all Web applications in the EAR share the same cluster configuration, all Web
applications in the EAR will be affected if one of them misbehaves. EAR-scoped
Coherence clusters reduce the deployment effort as no changes to the application
server classpath are required.

To Use Coherence Caches with EAR-Scoped Coherence Clusters
1. Use either of the following methods to deploy the coherence.jar and

active-cache.jar files as shared libraries to all of the target servers where the
application will be deployed.

■ Use the WebLogic Server Administration Console to deploy coherence.jar
and active-cache.jar as shared libraries. See "Install a Java EE library" in
the Oracle WebLogic Server Administration Console Help.

As an alternative to the Administration Console, you can deploy the JAR files
on the command line. The following are sample deployment commands:

java weblogic.Deployer -username <> -password <> -adminurl <> -deploy
coherence.jar -name coherence -library -targets <>

java weblogic.Deployer -username <> -password <> -adminurl <> -deploy
active-cache.jar -name active-cache -nostage -library -targets <>

■ Copy coherence.jar and active-cache.jar to the EAR APP-INF/lib
folder of the application. However, the preferred way is to deploy them as
shared libraries.

2. Refer to the coherence.jar and active-cache.jar files as libraries.
Example 3–4 illustrates a sample weblogic-application.xml configuration
file.

Example 3–4 coherence and active-cache JARs Referenced in the
weblogic-application.xml File

<weblogic-application>
...
 <library-ref>
 <library-name>coherence</library-name>
 </library-ref>
 ...
 <library-ref>
 <library-name>active-cache</library-name>
 </library-ref>
...
</weblogic-application>

3. (Optional) If you want to configure Coherence cluster properties, create a
CoherenceClusterSystemResourceMBean and reference it as a
coherence-cluster-ref element in weblogic-application.xml file. This
element allows the applications to enroll in the Coherence cluster as specified by
the CoherenceClusterSystemResourceMBean attributes.

Package Applications and Configure Coherence Cluster Scope

3-8 Using ActiveCache

Example 3–5 illustrates a sample configuration. The myCoherenceCluster
MBean in the example is of type CoherenceClusterSystemResourceMBean.

Example 3–5 coherence-cluster-ref Element for EAR-Scoped Clusters

<weblogic-application>
...
 <coherence-cluster-ref>
 <coherence-cluster-name>
 myCoherenceCluster
 </coherence-cluster-name>
 </coherence-cluster-ref>
...
</weblogic-application>

To Define a Filtering Classloader for Application-Scoped Coherence Clusters
If coherence.jar is placed in the application server classpath, you can still
configure an EAR-scoped cluster by defining a filtering classloader. This is described
in the following steps:

1. Place coherence.jar in the application classpath.

2. Configure a filtering classloader in the EAR file.

The filtering classloader is defined in the <prefer-application-packages>
stanza of the weblogic-application.xml file. Example 3–6 illustrates a
sample filtering classloader configuration. The package-name elements indicate
the package names of the classes in the coherence.jar and
active-cache.jar.

Example 3–6 Configuring a Filtering Classloader

<weblogic-application>
...
 <prefer-application-packages>
 <package-name>com.tangosol.*</package-name>
 <package-name>weblogic.coherence.service.*</package-name>
 <package-name>com.oracle.coherence.common.*</package-name>
 </prefer-application-packages>
...
</weblogic-application>

3.7.3 Configuring WAR-Scoped Coherence Clusters
With this configuration, or if you want only one application to use Coherence caches,
each deployed Web application becomes its own Coherence cluster. Caches will be
visible to the individual modules only. For example, this could be a recommended
deployment for a standalone WAR deployment or standalone EJB deployment.

If you are deploying multiple WAR files, note that this configuration produces the
largest number of Coherence nodes in the cluster—one for each deployed WAR file
that uses coherence.jar. It also results in the largest resource utilization of the three
configurations—one copy of the Coherence classes are loaded for each deployed
WAR. On the other hand, since each deployed Web application is its own cluster, Web
applications are completely isolated from other potentially misbehaving Web
applications.

Package Applications and Configure Coherence Cluster Scope

Accessing Data Caches from Applications 3-9

To Use Coherence Caches with WAR-Scoped Coherence Clusters
1. Use the WebLogic Server Administration Console to deploy coherence.jar and

active-cache.jar as shared libraries to all of the target servers where the
application will be deployed. See "Install a Java EE library" in the Oracle WebLogic
Server Administration Console Help.

As an alternative to the Administration Console, you can also deploy the JAR files
on the command line. The following are sample deployment commands:

java weblogic.Deployer -username <> -password <> -adminurl <> -deploy
coherence.jar -name coherence -library -targets <>

java weblogic.Deployer -username <> -password <> -adminurl <> -deploy
active-cache.jar -name active-cache -nostage -library -targets <>

2. Import coherence.jar and active-cache.jar as optional packages in the
manifest.mf file of each module that will be using Coherence.

As an alternative to using the manifest file, copy coherence.jar and
active-cache.jar to each WAR file's WEB-INF/lib directory.

Example 3–7 illustrates the contents of a sample manifest.mf file.

Example 3–7 Referencing coherence and active-cache JAR Files in the manifest.mf File

Manifest-Version: 1.0
Extension-List: coherence active-cache
coherence-Extension-Name: coherence
active-cache-Extension-Name: active-cache

3. (Optional) If you want to configure Coherence cluster properties, create a
CoherenceClusterSystemResourceMBean and reference it as a
coherence-cluster-ref element in weblogic.xml or
weblogic-ejb-jar.xml file.

Example 3–8 illustrates a sample configuration for WAR-scoped clusters in the
weblogic.xml file. The myCoherenceCluster MBean is of type
CoherenceClusterSystemResourceMBean.

Example 3–8 coherence-cluster-ref Element for WAR-Scoped Clusters

<weblogic-web-app>
...
 <coherence-cluster-ref>
 <coherence-cluster-name>
 myCoherenceCluster
 </coherence-cluster-name>
 </coherence-cluster-ref>
...
</weblogic-web-app>

Note: A Web module within an EAR can have a module-scoped
Coherence node but an EJB module within an EAR can only have an
application-scoped Coherence node.

Create and Configure Coherence Clusters

3-10 Using ActiveCache

3.8 Create and Configure Coherence Clusters
Using WLST or the Administration Console, you can create and configure a Coherence
cluster, and select WebLogic Server instances or clusters on which the cluster
configuration will be accessible.

The createCoherenceClusterMBean.py WLST script shown in Example 3–9
configures three Coherence clusters, including a server-scoped configuration that gets
deployed to the Administration Server (myserver).

Use the following sample command to invoke WLST and run the script:

java -Dadmin.username=weblogic -Dadmin.password=welcome1 -Dadmin.host=localhost
-Dadmin.port=7001 -Dtangosol-override="c:/temp/tangosol-coherence-override.xml"
weblogic.WLST c:/temp/createCoherenceClusterMBean.py

Example 3–9 createCoherenceClusterMBean.py

from java.util import *
from javax.management import *
from java.lang import *
import javax.management.Attribute

"""
This script configures three Coherence Cluster System Resource MBeans and deploys
them to the admin server
"""

def createCoherenceSystemResource(wlsTargetNames, coherenceClusterSourceName):

 name = coherenceClusterSourceName
 # start creation
 print 'Creating CoherenceClusterSystemResource with name '+ name
 cohSR = create(name,"CoherenceClusterSystemResource")
 cohBean = cohSR.getCoherenceClusterResource()
 cohCluster = cohBean.getCoherenceClusterParams()
 cohCluster.setUnicastListenAddress("localhost")
 cohCluster.setUnicastListenPort(7001)
 cohCluster.setUnicastPortAutoAdjust(true)
 # you can set up the multicast port or define WKAs
 cohCluster.setMulticastListenAddress("231.1.1.1")
 cohCluster.setMulticastListenPort(8001)
 cohCluster.setTimeToLive(5)

 for wlsTargetName in wlsTargetNames:
 cd("Servers/"+wlsTargetName)
 target = cmo
 cohSR.addTarget(target)
 cd("../..")

def createServerScopedCoherenceSystemResource(wlsTargetNames,
coherenceClusterSourceName):

 name = coherenceClusterSourceName
 # start creation
 print 'Creating CoherenceClusterSystemResource with name '+ name
 cohSR = create(name,"CoherenceClusterSystemResource")
 cohBean = cohSR.getCoherenceClusterResource()
 cohCluster = cohBean.getCoherenceClusterParams()
 cohCluster.setUnicastListenAddress("localhost")

Create and Configure Coherence Clusters

Accessing Data Caches from Applications 3-11

 cohCluster.setUnicastListenPort(7002)
 cohCluster.setUnicastPortAutoAdjust(true)
 # you can set up the multicast port or define WKAs
 cohWKAs = cohCluster.getCoherenceClusterWellKnownAddresses()
 cohWKA = cohWKAs.createCoherenceClusterWellKnownAddress("wka1")
 cohWKA.setName("wka1")
 cohWKA.setListenAddress("localhost")
 cohWKA.setListenPort(9001)

 for wlsTargetName in wlsTargetNames:
 cd("Servers/"+wlsTargetName)
 target = cmo
 cohSR.addTarget(target)
 print cmo
 serverBean = cmo
 serverBean.setCoherenceClusterSystemResource(cohSR)
 cd("../..")

def createCustomCoherenceSystemResource(wlsTargetNames,
coherenceClusterSourceName, tangosolOverrideFile):

 name = coherenceClusterSourceName
 # start creation
 cohSR = getMBean("/CoherenceClusterSystemResources/"+name)
 if cohSR == None:
 print 'Creating CoherenceClusterSystemResource with name '+ name
 cohSR = create(name,"CoherenceClusterSystemResource")
 cohSR.importCustomClusterConfigurationFile(tangosolOverrideFile)

 for wlsTargetName in wlsTargetNames:
 cd("Servers/"+wlsTargetName)
 target = cmo
 cohSR.addTarget(target)
 cd("../..")

props = System.getProperties()
ADMIN_NAME = props.getProperty("admin.username")
ADMIN_PASSWORD = props.getProperty("admin.password")
ADMIN_HOST = props.getProperty("admin.host")
ADMIN_PORT = props.getProperty("admin.port")
ADMIN_URL = "t3://"+ADMIN_HOST+":"+ADMIN_PORT

TANGOSOL_OVERRIDE = props.getProperty("tangosol-override")

TARGETS = ['myserver']

print "Starting the script ..."
try :
 connect(ADMIN_NAME, ADMIN_PASSWORD, ADMIN_URL)
 edit()
 startEdit()
 createCoherenceSystemResource(TARGETS, 'cohSystemResource')
 createServerScopedCoherenceSystemResource(TARGETS,
'serverScopedCohSystemResource')
 createCustomCoherenceSystemResource(TARGETS,
'customCohSystemResource',TANGOSOL_OVERRIDE)
 save()
 activate(block="true")
 disconnect()
 print 'Done configuring the Coherence Cluster System Resources'

Create and Configure Coherence Clusters

3-12 Using ActiveCache

except:
 dumpStack()
 undo('true','y')

For Administration Console procedures, see "Create Coherence clusters" and
"Configure Coherence clusters" in the Oracle WebLogic Server Administration Console
Help.

Cluster-related values are stored in a descriptor file in the WebLogic Server
configuration repository:

DOMAIN_
HOME/config/coherence/CoherenceClusterSystemResourceName/Coheren
ceClusterSystemResourceName-####-coherence.xml, where DOMAIN_HOME
is the location in which you installed your WebLogic Server domain, such as
d:/oracle/MW_HOME/user_projects/domains/domain_name.

For example, C:\Oracle\Middleware\user_projects\domains\base_
domain\config\coherence\cohSystemResource\cohSystemResource-0759
-coherence.xml.

Alternatively, you can configure properties that are not specified for the cluster by
configuring them in a custom configuration file, for example,
tangosol-coherence-override.xml, shown in Example 3–10.

Example 3–10 tangosol-coherence-override.xml

<?xml version='1.0'?>
<!--
This operational configuration override file is for use with Coherence in
a development mode.
-->
<coherence xml-override="/tangosol-coherence-override.xml">
 <cluster-config>
 <multicast-listener>
 <time-to-live system-property="tangosol.coherence.ttl">4</time-to-live>
 <join-timeout-milliseconds>3000</join-timeout-milliseconds>
 </multicast-listener>

 <packet-publisher>
 <packet-delivery>
 <timeout-milliseconds>30000</timeout-milliseconds>
 </packet-delivery>
 </packet-publisher>
 </cluster-config>

 <logging-config>
 <severity-level
system-property="tangosol.coherence.log.level">5</severity-level>
 <character-limit
system-property="tangosol.coherence.log.limit">0</character-limit>
 </logging-config>
</coherence>

Use WLST to import the custom cluster configuration file (also shown in Example 3–9,
see createCustomCoherenceSystemResource) or the WebLogic Server
Administration Console. See "Import a custom cluster configuration" in the Oracle
WebLogic Server Administration Console Help.

Start a Cache Server

Accessing Data Caches from Applications 3-13

3.9 Start a Cache Server
Standalone Coherence cache servers are dedicated JVMs responsible for storing and
managing all cached data. The senior node (which is the first node) in a Coherence
data cluster can take several seconds to start; the start up time required by subsequent
nodes is minimal. Thus, to optimize performance, you should always start a
Coherence cache server before starting WebLogic Server instances. This will ensure
that there is minimal (measured in milliseconds) startup time for applications using
ActiveCache. Any additional Web applications that use ActiveCache are guaranteed
not to be the senior data member, so they will have minimal impact on WebLogic
Server startup.

3.9.1 Starting Cache Servers Using Node Manager
As of WebLogic Server 10.3.4, you can use the WebLogic Server Administration
Server, via the Administration Console or WLST, and java-based Node Manager to
manage and monitor the life cycle of standalone Coherence cache servers.

Node Manager is a WebLogic Server utility that lets you start, stop, and automatically
restart servers remotely. Node Manager must run on each computer that hosts the
Coherence server instances that you want to control with Node Manager.

Prerequisite steps for using Node Manager to start cache servers are:

1. Configure Node Manager to start servers.

See "General Node Manager Configuration" in the Node Manager Administrator's
Guide for Oracle WebLogic Server.

2. Start Node Manager.

You can start Node Manager manually at a command prompt or with a script. See
"Starting Node Manager" in the Node Manager Administrator's Guide for Oracle
WebLogic Server.

Note: If you specify cluster-related properties by importing a custom
configuration file, the properties specified in the file must not be the
same properties that were specified using WLST or the WebLogic
Server Administration Console.

Note: Whether you start the cache servers first or the WebLogic
Server instances first, depends on the cluster topology you are
employing.

■ If you are using In-Process topology (all storage-enabled
WebLogic Server instances employing ActiveCache), then it does
not matter which WebLogic Server instances you start first.

■ If you are using Out-of-Process topology (storage-disabled
WebLogic server instances and standalone cache servers), then
start the cache servers first, followed by the WebLogic Server
instances.

■ If you are using WebLogic Out-of-Process topology, your
topology is a mix of storage-enabled and storage-disabled
WebLogic Server instances. Start the storage-enabled instances
first, followed by the storage-disabled instances.

Start a Cache Server

3-14 Using ActiveCache

To use WLST to start Node Manager:

c:\>java weblogic.WLST
wls:/offline> startNodeManager()

For more information about using WLST with Node Manager, see "Node Manager
Commands" in WebLogic Scripting Tool Command Reference.

On Windows, you can use a shortcut on the Start menu to start Node Manager
(WebLogic Server > Tools > Node Manager).

3.9.1.1 Starting Cache Servers from the Administration Console
To use the Administration Console to start a Coherence cache server, see "Start
Coherence servers from the Administration Console" in the Oracle WebLogic Server
Administration Console Help.

3.9.1.2 Starting Cache Servers with WLST
The startCoh.py WLST script shown in Example 3–11 starts a standalone Coherence
server, COH_server1.

Use the following sample command to invoke WLST and run the script:

java weblogic.WLST d:/temp/startCoh.py

Example 3–11 startCoh.py

props = System.getProperties()

ADMIN_NAME = props.getProperty("admin.username")
if ADMIN_NAME == None: ADMIN_NAME = 'weblogic'

ADMIN_PASSWORD = props.getProperty("admin.password")
if ADMIN_PASSWORD == None : ADMIN_PASSWORD = 'welcome1'

ADMIN_HOST = props.getProperty("admin.host")
if ADMIN_HOST == None : ADMIN_HOST = 'localhost'

ADMIN_PORT = props.getProperty("admin.port")
if ADMIN_PORT == None : ADMIN_PORT = '7001'

ADMIN_URL = "t3://" + ADMIN_HOST + ":" + ADMIN_PORT

COH_SERVER = props.getProperty("server")
if COH_SERVER == None : COH_SERVER = 'COH_server1'

connect(ADMIN_NAME, ADMIN_PASSWORD, ADMIN_URL)

domainRuntime()

Note: If you need to add user classes to the classpath, in addition
you will need to add the following: FEATURES_
HOME/weblogic.server.modules.coherence.server_
10.3.4.0.jar:COHERENCE_HOME/lib/coherence.jar, where
FEATURES_HOME is the features directory, typically MW_
HOME\modules\features, and COHERENCE_HOME is the Coherence
directory, typically MW_HOME\coherence_3.6, on the Node
Manager machine. If you do not specify a classpath, the preceding
classpath will be used by default.

Start a Cache Server

Accessing Data Caches from Applications 3-15

lifecycle = getMBean('/CoherenceServerLifeCycleRuntimes/' + COH_SERVER)
seconds = 5

print("starting: " + COH_SERVER);
print("before state:" + lifecycle.getState())
lifecycle.start()
print("after state:" + lifecycle.getState())
java.lang.Thread.sleep(seconds * 1000)
print("after state:" + lifecycle.getState())

disconnect()

You can use the stopCoh.py WLST script, shown in Example 3–12, to shut down the
same Coherence cache server.

Example 3–12 stopCoh.py

props = System.getProperties()

ADMIN_NAME = props.getProperty("admin.username")
if ADMIN_NAME == None: ADMIN_NAME = 'weblogic'

ADMIN_PASSWORD = props.getProperty("admin.password")
if ADMIN_PASSWORD == None : ADMIN_PASSWORD = 'welcome1'

ADMIN_HOST = props.getProperty("admin.host")
if ADMIN_HOST == None : ADMIN_HOST = 'localhost'

ADMIN_PORT = props.getProperty("admin.port")
if ADMIN_PORT == None : ADMIN_PORT = '7001'

ADMIN_URL = "t3://" + ADMIN_HOST + ":" + ADMIN_PORT

COH_SERVER = props.getProperty("server")
if COH_SERVER == None : COH_SERVER = 'COH_server1'

connect(ADMIN_NAME, ADMIN_PASSWORD, ADMIN_URL)

domainRuntime()

lifecycle = getMBean('/CoherenceServerLifeCycleRuntimes/' + COH_SERVER)
seconds = 5

print("forceShutdown: " + COH_SERVER);
lifecycle.forceShutdown()
print("after state:" + lifecycle.getState())

disconnect()

3.9.2 Starting Cache Servers Using a Startup Script
Alternatively, to start Coherence cache servers without using the WebLogic Server
Administration Server, use the following steps:

1. Create a script for starting a Coherence cache server. The following is a very
simple example of a script that starts a storage-enabled cache server to use with
ActiveCache. This example assumes that you are using a Sun JVM. See "JVM
Tuning" in the Oracle Coherence Administrator's Guide for more information.

Start WebLogic Server

3-16 Using ActiveCache

java -server -Xms512m -Xmx512m
-cp <Coherence installation dir>/lib/coherence.jar
-Dtangosol.coherence.management.remote=true
-Dtangosol.coherence.cacheconfig=WEB-INF/classes/cache_configuration_file
-Dtangosol.coherence.session.localstorage=true
com.tangosol.net.DefaultCacheServer

In this example, cache_configuration_file refers to the cache configuration
in the coherence-cache-config.xml file. The cache configuration defined for
the cache server must be the same as the configuration defined for the application
servers which run on the same Coherence cluster.

2. Start one or more Coherence cache servers using the script described in the
previous step.

3.9.3 Restarting Cache Servers Using Node Manager
Coherence cache servers write life cycle information (status) to DOMAIN_
HOME/servers_coherence/COHserver_
name/data/nodemanager/COHserver_name.state. Node Manager monitors
this file and other files in that directory to detect whether the cache server is running
or not, and depending on its status (a clean shutdown generates a different final state
than a crash or a startup failure), whether to re-start it.

In addition, if you restart the Node Manager, it also takes into consideration the value
of the CrashRecoveryEnabled property, which you can specify in the
weblogic.nodemanager.NodeManager startup command or define in the
nodemanager.properties file, located under WL_HOME/common/nodemanager,
where WL_HOME is the location in which you installed WebLogic Server. For more
information, see "Node Manager and System Crash Recovery" and "Reviewing
nodemanager.properties" in the Node Manager Administrator's Guide for Oracle WebLogic
Server.

Coherence cache server log files and cache server-specific Node Manager information
files are located under DOMAIN_HOME/servers_coherence/COHserver_name/,
where DOMAIN_HOME is the location in which you installed your WebLogic Server
domain, such as d:/oracle/MW_HOME/user_projects/domains/domain_name,
and COHserver_name is the name of the Coherence cache server.

3.10 Start WebLogic Server
WebLogic Server provides several ways to start and stop server instances. The method
that you choose depends on whether you prefer using the Administration Console or a
command-line interface, and on whether you are using Node Manager to manage the
server's life cycle. For detailed information, see "Starting and Stopping Servers" in

Note: If the Node Manager is not running (if it goes down or is not
yet started), cache servers will report their state as unknown. In
addition, cache servers will report their state as unknown if the Node
Manager has never been used to start the server, for example, upon
initial creation. This is because cache server life cycle status is only
determined by the Node Manager retrieving the information from the
DOMAIN_HOME/servers_coherence/COHserver_
name/data/nodemanager/COHserver_name.state file.

Monitor Coherence Cluster Properties

Accessing Data Caches from Applications 3-17

Managing Server Startup and Shutdown for Oracle WebLogic Server. For a quick reference,
see "Starting and Stopping Servers: Quick Reference".

By default, a WebLogic Server instance employing ActiveCache starts in
storage-disabled mode. To start the WebLogic Server instance in storage-enabled
mode, include the command-line property
-Dtangosol.coherence.session.localstorage=true in the server startup
command.

For more information, see "Using the weblogic.Server Command Line to Start a Server
Instance" in the Command Reference for Oracle WebLogic Server.

3.11 Monitor Coherence Cluster Properties
The WebLogic Server Administration Console displays run-time monitoring
information for Coherence clusters associated with a particular application or module,
such as cluster size, members, and version. For more information, see "Monitor
Coherence clusters" in the Oracle WebLogic Server Administration Console Help.

Monitor Coherence Cluster Properties

3-18 Using ActiveCache

4

Accessing and Retrieving Relational Data 4-1

4Accessing and Retrieving Relational Data

TopLink Grid marries the standardization and simplicity of application development
using the Java Persistence API (JPA) with the scalability and distributed processing
power of Oracle’s Coherence Data Grid. Developers can use their investment in JPA
and take advantage of the scalability of Coherence. Standard JPA applications interact
directly with their primary data store, typically a relational database, but with
ActiveCache, TopLink Grid developers can choose to store some or all of their domain
model in the Coherence data grid.

For detailed information about configuring TopLink Grid for a Coherence
environment, see Integration Guide for Oracle TopLink with Coherence Grid.

4.1 Specifying the Eclipse Persistence Provider
The persistence.xml file is the JPA persistence descriptor file. This is where you
configure the persistence unit, the persistence provider, and any vendor-specific
extensions that this reference describes.

In the file, the provider element specifies the name of the vendor's persistence
provider class. When working with Oracle TopLink, enter
org.eclipse.persistence.jpa.PersistenceProvider as the value for this
element.

Example 4–1 Sample persistence.xml File

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="JPA" transaction-type="RESOURCE_LOCAL">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <class>com.oracle.handson.Employees</class>
 ...

4.2 Adding TopLink Grid Functionality to a Coherence Cluster
As described in Section 3.7, "Package Applications and Configure Coherence Cluster
Scope," Coherence clusters are classloader-scoped according to where you place the
coherence.jar file in the classloader hierarchy. The Coherence cluster can be either
application server-, EAR-, or WAR-scoped. To make TopLink Grid functionality
available to applications running in the cluster, the TopLink Grid JAR file must also be
added to the classpath.

Adding TopLink Grid Functionality to a Coherence Cluster

4-2 Using ActiveCache

TopLink Grid JAR file, toplink-grid-1.0.jar, contains the classes that allow
TopLink to interact with Oracle Coherence. You can find the file in the
common\deployable-libraries folder of your WebLogic Server distribution.

The following sections describe how to add the JAR for application server-, EAR- and
WAR-scoped cluster environments.

4.2.1 Adding TopLink Grid to Application Server-Scoped Coherence Clusters
If you are using TopLink Grid to store JPA Entities in Coherence caches, follow these
steps:

1. Follow the instructions in Section 3.7.1, "Configuring Application Server-Scoped
Coherence Clusters" to include coherence.jar and active-cache.jar in the
system classpath.

2. Edit your WebLogic Server system classpath to include toplink-grid-1.0.jar
in the system classpath.

4.2.2 Adding TopLink Grid to EAR-Scoped Coherence Clusters
If you are using TopLink Grid to store JPA Entities in Coherence caches, follow these
steps:

1. Follow the instructions in Section 3.7.2, "Configuring EAR-Scoped Coherence
Clusters" to deploy the coherence.jar and active-cache.jar files as shared
libraries.

2. Use either of the following methods to deploy toplink-grid-1.0.jar as a
shared library.

■ Use the WebLogic Server Administration Console or the command line to
deploy toplink-grid-1.0.jar as a shared library.

java weblogic.Deployer -username <> -password <> -adminurl <> -deploy
toplink-grid-1.0.jar -name toplink-grid -library -targets <>

If you deploy toplink-grid-1.0.jar as a shared library, refer to it in the
weblogic-application.xml file as a library-ref. Example 4–2
illustrates the toplink-grid-1.0.jar referenced in the
weblogic-application.xml file.

Example 4–2 Reference to TopLink Grid JAR File in the weblogic-application.xml File

<weblogic-application>
...
 <library-ref>
 <library-name>coherence</library-name>
 </library-ref>
 ...
 <library-ref>
 <library-name>active-cache</library-name>
 </library-ref>
 <library-ref>
 <library-name>toplink-grid</library-name>
 </library-ref>
...
</weblogic-application>

■ Copy toplink-grid-1.0.jar to the application EAR’s APP-INF/lib
folder. However, the preferred way is to deploy it as a shared library.

Adding TopLink Grid Functionality to a Coherence Cluster

Accessing and Retrieving Relational Data 4-3

4.2.3 Adding TopLink Grid to WAR-Scoped Coherence Clusters
If you are using TopLink Grid to store JPA Entities in Coherence caches, follow these
steps:

1. Follow the instructions in Section 3.7.3, "Configuring WAR-Scoped Coherence
Clusters" to deploy the coherence.jar and active-cache.jar files.

2. Use the WebLogic Server Administration Console or the command line to deploy
toplink-grid-1.0.jar. The following is a sample command line:

java weblogic.Deployer -username <> -password <> -adminurl <> -deploy
toplink-grid-1.0.jar -name toplink-grid -library -targets <>

3. Import toplink-grid-1.0.jar as an optional package in the manifest.mf
file of each module that will be using Coherence. As an alternative, you can copy it
to each of the application WAR’s WEB-INF/lib directories.

 Example 4–3 illustrates a sample manifest file.

Example 4–3 Manifest File with coherence, active-cache, and toplink-grid

Manifest-Version: 1.0
Extension-List: coherence active-cache toplink-grid
coherence-Extension-Name: coherence
active-cache-Extension-Name: active-cache
toplink-grid-Extension-Name: toplink-grid

Adding TopLink Grid Functionality to a Coherence Cluster

4-4 Using ActiveCache

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Documentation
	1.4 New and Changed Features in This Release

	2 About ActiveCache
	2.1 Adding Session State Persistence and Management
	2.2 Accessing Java Persistence API (JPA) Entities in the Data Cache

	3 Accessing Data Caches from Applications
	3.1 Developing Applications to Use ActiveCache: Main Steps
	3.2 Choose the ActiveCache Deployment Topology
	3.3 Create and Configure a Data Cache
	3.4 Access the Data Cache from your Application
	3.5 Locate the Cache Configuration File
	3.6 Access the Cache Configuration on Server Startup
	3.7 Package Applications and Configure Coherence Cluster Scope
	3.7.1 Configuring Application Server-Scoped Coherence Clusters
	3.7.2 Configuring EAR-Scoped Coherence Clusters
	3.7.3 Configuring WAR-Scoped Coherence Clusters

	3.8 Create and Configure Coherence Clusters
	3.9 Start a Cache Server
	3.9.1 Starting Cache Servers Using Node Manager
	3.9.1.1 Starting Cache Servers from the Administration Console
	3.9.1.2 Starting Cache Servers with WLST

	3.9.2 Starting Cache Servers Using a Startup Script
	3.9.3 Restarting Cache Servers Using Node Manager

	3.10 Start WebLogic Server
	3.11 Monitor Coherence Cluster Properties

	4 Accessing and Retrieving Relational Data
	4.1 Specifying the Eclipse Persistence Provider
	4.2 Adding TopLink Grid Functionality to a Coherence Cluster
	4.2.1 Adding TopLink Grid to Application Server-Scoped Coherence Clusters
	4.2.2 Adding TopLink Grid to EAR-Scoped Coherence Clusters
	4.2.3 Adding TopLink Grid to WAR-Scoped Coherence Clusters

