
 

Oracle® Fusion Middleware
Oracle TopLink Concepts   

11g Release 1 (11.1.1) 

E26045-01

November 2011

This document provides conceptual information about the 
components and technologies that comprise Oracle TopLink.



Oracle Fusion Middleware Oracle TopLink Concepts, 11g Release 1 (11.1.1) 

E26045-01

Copyright © 2002, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Thomas Pfaeffle

Contributing Author: Doug Clarke, Blaise Doughan, Peter Krogh, Gordon Yorke

This software and related documentation are provided under a license agreement containing restrictions on 
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your 
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, 
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse 
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is 
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If 
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it 
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data 
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" 
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As 
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and 
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of 
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software 
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management 
applications. It is not developed or intended for use in any inherently dangerous applications, including 
applications that may create a risk of personal injury. If you use this software or hardware in dangerous 
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other 
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages 
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of 
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks 
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, 
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced 
Micro Devices. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, 
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly 
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle 
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your 
access to or use of third-party content, products, or services.



iii

Contents

Preface .................................................................................................................................................................    v

Audience.......................................................................................................................................................     v
Documentation Accessibility .....................................................................................................................     v
Related Documents .....................................................................................................................................     v
Conventions .................................................................................................................................................    vi

1 General Concepts 

1.1 What is TopLink? ........................................................................................................................   1-1
1.1.1 What Is the Object-Persistence Impedance Mismatch?..................................................   1-2
1.1.2 The TopLink Solution..........................................................................................................   1-2
1.2 TopLink Key Features ................................................................................................................   1-3
1.3 TopLink Metadata.......................................................................................................................   1-3
1.4 TopLink Components.................................................................................................................   1-4
1.4.1 EclipseLink Core ..................................................................................................................   1-4
1.4.2 Object-Relational (JPA 2.0) .................................................................................................   1-5
1.4.3 Object-XML (JAXB)..............................................................................................................   1-5
1.4.3.1 TopLink SDO.................................................................................................................   1-6
1.4.4 Database Web Services (DBWS) ........................................................................................   1-6
1.4.5 TopLink Grid........................................................................................................................   1-7
1.5 TopLink Application Architectures .........................................................................................   1-7
1.5.1 Three-Tier Architectures.....................................................................................................   1-7
1.5.1.1 EJB Session Bean Facade..............................................................................................   1-7
1.5.2 Java SE or Thick Client .......................................................................................................   1-8
1.5.3 Web Services.........................................................................................................................   1-8
1.5.4 TopLink Database Web Services .......................................................................................   1-8
1.6 Mappings .....................................................................................................................................   1-8
1.6.1 Relational Mappings ...........................................................................................................   1-9
1.6.2 Object-Relational Data Type Mappings ...........................................................................   1-9
1.6.3 Object-XML Data Type Mappings ....................................................................................   1-9
1.7 TopLink/EclipseLink API .........................................................................................................   1-9

2 Building Blocks of a TopLink Project 

2.1 Building Blocks for Object-Relational Mapping.....................................................................   2-1
2.1.1 Object-Relational Entity Architecture...............................................................................   2-1
2.1.1.1 Entities............................................................................................................................   2-2



iv

2.1.1.2 Persistence and Persistence Units ..............................................................................   2-2
2.1.1.3 Entity Managers............................................................................................................   2-3
2.1.2 Adding Metadata Using Annotations ..............................................................................   2-3
2.1.3 Configuration Files ..............................................................................................................   2-3
2.1.3.1 About the Default Configuration Values ..................................................................   2-4
2.1.3.2 Configuring Persistence Units Using persistence.xml ............................................   2-4
2.1.3.3 Specifying TopLink Object-Relational Mappings Using eclipselink-orm.xml....   2-4
2.1.4 Data Sources .........................................................................................................................   2-4
2.1.5 TopLink Caches....................................................................................................................   2-5
2.1.5.1 Defining Cache Behavior.............................................................................................   2-6
2.1.5.2 Caching in Clustered Environments..........................................................................   2-6
2.1.6 Database Queries .................................................................................................................   2-6
2.1.6.1 JPQL................................................................................................................................   2-6
2.1.6.2 Criteria Queries.............................................................................................................   2-7
2.1.6.3 Query Hints ...................................................................................................................   2-7
2.1.6.4 Advanced TopLink Native Query Support ..............................................................   2-7
2.2 Building Blocks for Object-XML Mapping..............................................................................   2-8
2.2.1 Using TopLink Object-XML as the JAXB Provider.........................................................   2-9
2.2.2 Object-XML Architecture ...................................................................................................   2-9
2.2.2.1 JAXB Contexts and JAXB Context Factories.............................................................   2-9
2.2.3 Serving Metadata for Object-XML .................................................................................    2-10
2.2.4 XML Bindings....................................................................................................................    2-10
2.2.5 Specifying TopLink Object-XML Mappings Using eclipselink-oxm.xml ................    2-10
2.2.6 Querying Objects by XPath .............................................................................................    2-11

3 Development Tools for TopLink 

3.1 Oracle JDeveloper ......................................................................................................................   3-1
3.2 Oracle Enterprise Pack for Eclipse ...........................................................................................   3-1
3.3 Eclipse...........................................................................................................................................   3-2
3.4 NetBeans.......................................................................................................................................   3-3



v

Preface

Oracle TopLink links object-oriented programs with relational data structures. Using 
TopLink, you can build high-performance applications that store persistent 
object-oriented data in a relational database. TopLink successfully transforms 
object-oriented data into either relational data or XML documents. Using TopLink, you 
can integrate persistence and object-transformation into your application, while 
staying focused on your primary domain problem by taking advantage of an efficient, 
flexible, and field-proven solution.

Audience
This document is intended for application developers and administrators who want to 
know more about the concepts behind TopLink and its features. 

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle 
Accessibility Program website at 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For 
information, visit 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are 
hearing impaired.

Related Documents
For more information, see the following documents in the Oracle TopLink 
documentation set:

■ Solution Guide for Oracle TopLink

■ Oracle Fusion Middleware Java API Reference for EclipseLink

■ EclipseLink Documentation Center at 
http://wiki.eclipse.org/EclipseLink/UserGuide/

■ "Oracle TopLink" in Oracle Fusion Middleware Release Notes for Linux x86



vi

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated 
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for 
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code 
in examples, text that appears on the screen, or text that you enter.



1

General Concepts 1-1

1General Concepts

This chapter contains the following sections:

■ Section 1.1, "What is TopLink?"

■ Section 1.2, "TopLink Key Features"

■ Section 1.3, "TopLink Metadata"

■ Section 1.4, "TopLink Components"

■ Section 1.5, "TopLink Application Architectures"

■ Section 1.6, "Mappings"

■ Section 1.7, "TopLink/EclipseLink API"

1.1 What is TopLink?
Oracle TopLink links object-oriented programs with relational data structures. Using 
TopLink, you can build high-performance applications that store persistent 
object-oriented data in a relational database. TopLink successfully transforms 
object-oriented data into either relational data or XML documents. You can integrate 
persistence and object-transformation into your application, while staying focused on 
your primary domain problem by taking advantage of an efficient, flexible, and 
field-proven solution.

TopLink includes EclipseLink. EclipseLink includes the open source implementation 
of the JPA specification, plus extensions beyond what is defined in the Java Persistence 
API (JPA) and Java API for XML Binding (JAXB) specifications. These extensions 
include persistence unit properties, query hints, annotations, TopLink’s own XML 
metadata, and custom API. For a more detailed description of the contents of TopLink, 
see Section 1.4, "TopLink Components."

TopLink can be used with a wide range of Java Enterprise Edition (Java EE) and Java 
application architectures (see Section 1.5, "TopLink Application Architectures"). Use 
TopLink to design, implement, deploy, and optimize an advanced, object-persistence 
and object-transformation layer that supports a variety of data sources and formats, 
including the following:

■ Relational—for transactional persistence of Java objects to a relational database 
accessed using Java Database Connectivity (JDBC) drivers.

■ Object-Relational Data Type—for transactional persistence of Java objects to 
special purpose structured data source representations optimized for storage in 
object-relational data type databases such as Oracle Database.



What is TopLink?

1-2 Oracle Fusion Middleware Oracle TopLink Concepts

■ Object-XML—for nontransactional, nonpersistent (in-memory) conversion 
between Java objects and XML Schema Document (XSD)-based XML documents 
using JAXB.

TopLink supports Enterprise JavaBeans (EJB) 3.0 in Java EE and Java SE environments 
including integration with a variety of application servers, such as Oracle WebLogic 
Server, Glassfish Server, and IBM WebSphere application server.

The extensive suite of development tools that TopLink provides, including Oracle 
JDeveloper TopLink Editor, lets you quickly capture and define object-to-data source 
and object-to-data representation mappings in a flexible, efficient metadata format.

The TopLink runtime lets your application exploit this mapping metadata with a 
simple session facade that provides in-depth support for data access, queries, 
transactions (both with and without an external transaction controller), and caching.

For more information about TopLink, see Section 1.2, "TopLink Key Features."

1.1.1 What Is the Object-Persistence Impedance Mismatch?
Java-to-data source integration is a widely underestimated problem when creating 
enterprise Java applications. This complex problem involves more than simply reading 
from and writing to a data source. The data source elements include tables, rows, 
columns, and primary and foreign keys. The Java and Java EE programming 
languages include entity classes (regular Java classes or EJB entity beans), business 
rules, complex relationships, and inheritance. In a nonrelational data source, you must 
match your Java entities with XML elements and schemas.

Successful solution requires bridging these different technologies, and solving the 
object-persistence impedance mismatch—a challenging and resource-intensive 
problem. To solve this problem, you must resolve the following issues between Java 
EE and data source elements:

■ Fundamentally different technologies

■ Different skill sets

■ Different staff and ownership for each of the technologies

■ Different modeling and design principles

As an application developer, you need a product that lets you integrate Java 
applications with any data source, without compromising ideal application design or 
data integrity. In addition, as a Java developer, you need the ability to store (that is, 
persist) and retrieve business domain objects using a relational database or a 
nonrelational data source as a repository.

1.1.2 The TopLink Solution
TopLink addresses the disparity between Java objects and data sources. TopLink is a 
persistence framework that manages relational, object-relational data type, and XML 
mappings in a seamless manner. This lets you rapidly build applications that combine 
the best aspects of object technology and the specific data source. TopLink lets you do 
the following:

■ Persist Java objects to virtually any relational database supported by a 
JDBC-compliant relational database

■ Perform in-memory conversions between Java objects and XML Schema (XSD) 
based XML documents using JAXB



TopLink Metadata

General Concepts 1-3

■ Map any object model to any relational or nonrelational schema, using Oracle 
JDeveloper TopLink editor

■ Generate TopLink DBWS service descriptors and accompanying files, using 
JDeveloper DBWSBuilder

■ Use TopLink successfully, even if you are unfamiliar with SQL or JDBC, because 
TopLink offers a clear, object-oriented view of data sources

1.2 TopLink Key Features
TopLink provides an extensive set of features. You can use these features to rapidly 
build high-performance enterprise applications that are scalable and maintainable.

Some of the primary features of TopLink are the following:

■ Nonintrusive, flexible, metadata-based architecture 

■ Architectural flexibility: Plain Old Java Objects (POJO), as well as JPA, JAXB, 
Service Data Objects (SDO), and Web services provided by EclipseLink

■ Advanced mapping support and flexibility: relational, object-relational data type, 
and XML

■ Optimized for highly scalable performance and concurrency with extensive 
performance tuning options

■ Comprehensive object caching support including cluster integration for some 
application servers (such as, for example, Oracle Application Server)

■ Extensive query capability including: TopLink Expressions framework, Java 
Persistence Query Language (JPQL), Enterprise JavaBeans Query Language (EJB 
QL), and native SQL

■ Just-in-time reading

■ Object-level transaction support and integration with popular application servers 
and databases

■ Optimistic and pessimistic locking options and locking policies

■ Comprehensive visual design tools: Oracle JDeveloper TopLink Editor and Eclipse 
Dali

For additional information and downloads, see the TopLink home page:

http://www.oracle.com/technology/products/ias/toplink/index.html

1.3 TopLink Metadata
TopLink metadata is the bridge between the development of an application and its 
deployed run-time environment. You can capture the metadata using:

■ JPA annotations in Java files, and the JPA-defined properties in the 
persistence.xml, eclipselink-orm.xml, and orm.xml files. Metadata is 
also captured by TopLink JPA annotations and TopLink property extensions in the 
persistence.xml file. The eclipselink-orm.xml file can also be used to 
specify TopLink property extensions beyond the JPA specification. 

■ JAXB annotations in Java files and JAXB-defined properties in the 
eclipselink-oxm.xml file. The eclipselink-oxm.xml file can be used to 
define TopLink property extensions beyond the JAXB specification. 

■ Java and the EclipseLink API 



TopLink Components

1-4 Oracle Fusion Middleware Oracle TopLink Concepts

The metadata lets you pass configuration information into the run-time environment. 
The run-time environment uses the information in conjunction with the persistent 
classes, such as Java objects, JPA entities, and the code written with the TopLink API, 
to complete the application. See Section 2.1.2, "Adding Metadata Using Annotations" 
for more information.

Mappings can be stored external to the application. This can be as simple as making 
the eclipselink-orm.xml or eclipselink-oxm.xml file with the additional 
mapping information available on a Web server as a file. It can also be more complex 
involving a server process that stores the mapping information and allows the 
information to be updated dynamically. For more information, see 
"EclipseLink/Examples/JPA/MetadataSource" in the EclipseLink documentation.

http://wiki.eclipse.org/EclipseLink/Examples/JPA/MetadataSource

1.4 TopLink Components
Figure 1–1 illustrates the components contained by Oracle TopLink. The following 
sections describe the components.

Figure 1–1 TopLink Components

1.4.1 EclipseLink Core
The EclipseLink Core provides the EclipseLink run-time component. Access to the 
run-time component can be obtained directly through the EclipseLink API. The 
run-time environment is not a separate or external process—it is embedded within the 
application. Application calls invoke EclipseLink to provide persistence behavior. This 
function allows for transactional and thread-safe access to shared database connections 
and cached objects. For more information, see Section 1.7, "TopLink/EclipseLink API."



TopLink Components

General Concepts 1-5

1.4.2 Object-Relational (JPA 2.0)
JPA, part of the Java EE EJB 3.0 specification, greatly simplifies Java persistence. It 
provides an object-relational mapping approach that allows you to declaratively 
define how to map Java objects to relational database tables in a standard, portable 
way. JPA works both inside a Java EE application server and outside an EJB container 
in a Java Standard Edition (Java SE) application. The main features included in the 2.0 
JPA update are:

■ Expanded object/relational mapping functionality

■ support for collections of embedded objects

■ multiple levels of embedded objects

■ ordered lists

■ combinations of access types

■ A criteria query API

■ Standardization of query "hints"

■ Standardization of additional metadata to support DDL generation

■ Support for validation

1.4.3 Object-XML (JAXB)
Object-XML, also known as MOXy, is a TopLink component that enables you to bind 
Java classes to XML schemas. Object-XML implements JAXB which allows you to 
provide mapping information through annotations and provide support for storing 
the mappings in XML format. The many advanced mappings which are available 
enable you to handle complex XML structures without having to mirror the schema in 
your Java class model. 

The objects produced by the TopLink JAXB compiler are Java POJO models. They 
implement the necessary interfaces required by the JAXB specification. The JAXB 
runtime API can be used to marshal and unmarshal objects.

When using Object-XML as the JAXB provider, no metadata is required to convert 
your existing object model to XML. You can supply metadata (using annotations or 
XML) only when you need to fine-tune the XML representation of the model.

Using TopLink Object-XML, you can manipulate XML in the following ways:

■ Generate a Java Model from an XML schema

■ Specify the EclipseLink MOXy JAXB runtime

■ Use JAXB to manipulate XML

■ Generate an XML schema from a Java model 

For more information on Object-XML and these use cases, see "Getting Started with 
MOXy" in the EclipseLink documentation: 

http://www.eclipse.org/eclipselink/moxy.php

TopLink provides maximum flexibility with the ability to control how your object 
model is mapped to an XML schema. There are many advantages to having control 
over your own object model:

■ The domain classes can be designed specifically for your application using the 
appropriate patterns and practices.



TopLink Components

1-6 Oracle Fusion Middleware Oracle TopLink Concepts

■ XPath-based mapping. This prevents the need for having a 1-to-1 relationship 
between classes and XML schema types. For more information, see "Mapping 
Simple Values" in the EclipseLink documentation.

 http://wiki.eclipse.org/EclipseLink/UserGuide/MOXy/Simple_
Values/Single_Values/XMLDirectMapping 

■ Can instantiate objects in a way that is appropriate to your application (that is, 
using the default constructor). 

■ Can control your own class path dependencies. Most JAXB implementations put 
vendor specific code in the generated classes that add class path dependencies to 
your application.

One of TopLink's key advantages is that the mapping information can be stored 
externally and does not require any changes to the Java classes or XML schema. This 
means that you may map your domain objects to more than one schema or if your 
schema changes you can simply update the mapping metadata instead of modifying 
your domain classes. This is also useful when mapping third-party classes, as you 
might not have access to the source to add annotations. You can also use annotations 
to provide the metadata.

1.4.3.1 TopLink SDO
The Service Data Objects (SDO) component provides the reference implementation of 
Service Data Objects version 2.1.1. The TopLink SDO implementation incorporates the 
reference implementation and provides additional features primarily used for 
converting Java objects to XML, and for building and using data object models that 
can be incorporated into service architectures.

TopLink SDO provides you with the following capabilities:

■ use of the SDO APIs

■ convert an XML Schema to SDO metadata

■ customize your XSD for SDO usage 

■ use dynamic data objects

– use dynamic data objects

– use dynamic data objects to manipulate XML 

■ use of static data objects

– run the SDO compiler—generate type safe data objects

– use type safe data objects to manipulate XML 

For more information, see "Getting Started with EclipseLink SDO" in the EclipseLink 
documentation:

http://www.eclipse.org/eclipselink/moxy.php

1.4.4 Database Web Services (DBWS)
TopLink Database Web Services (DBWS) enables simple and efficient access to 
relational database artifacts by using a Web service. It provides Java EE-compliant 
client-neutral access to the database without having to write Java code. TopLink DBWS 
extends TopLink’s core capabilities while leveraging existing ORM and OXM 
components.



TopLink Application Architectures

General Concepts 1-7

TopLink DBWS has two parts: a design-time component (DBWSBuilder) and a runtime 
provider component that takes a service descriptor (along with related deployment 
artifacts) and realizes it as a JAX-WS 2.0 Web service. The runtime provider uses 
EclipseLink to bridge between the database and the XML SOAP Messages used by 
Web service clients. For information on DBWS architecture, see Section 1.5.4, "TopLink 
Database Web Services."

1.4.5 TopLink Grid
Oracle TopLink enables you to scale out JPA applications using Oracle Coherence, and 
to write to the grid, treating the grid as the data source. TopLink Grid provides 
applications with a number of options on how they can scale, ranging from using 
Coherence as a distributed shared (L2) cache up to directing JPQL queries to 
Coherence for parallel execution across the grid to reduce database load. With TopLink 
Grid, you do not have to rewrite your applications to scale out.

TopLink Grid integrates the TopLink JPA implementation (EclipseLink) with Oracle 
Coherence and provides these development approaches:

■ You can use the Coherence API with caches backed by TopLink Grid to access 
relational data with special cache loader and cache store interfaces which have 
been implemented for JPA. 

■ You can build applications using JPA and transparently use the power of the data 
grid for improved scalability and performance. In this JPA on the Grid approach, 
TopLink Grid provides a set of cache and query configuration options that allow 
you to control how TopLink JPA uses Coherence.

1.5 TopLink Application Architectures
You can use TopLink in a variety of application architectures, including three- and 
two-tier architectures, with or without Java EE, to access a variety of data types on 
both relational and nonrelational data sources.

1.5.1 Three-Tier Architectures
The three-tier (or Java EE Web) application is one of the most common TopLink 
architectures. This architecture is characterized by a server-hosted environment in 
which the business logic, persistent entities, and the Oracle TopLink Foundation 
Library all exist in a single Java Virtual Machine (JVM).

The most common example of this architecture is a simple three-tier application in 
which the client browser accesses the application through servlets, JavaServer Pages 
(JSP) and HTML. The presentation layer communicates with TopLink through other 
Java classes in the same JVM, to provide the necessary persistence logic. This 
architecture supports multiple servers in a clustered environment, but there is no 
separation across JVMs from the presentation layer and the code that invokes the 
persistence logic against the persistent entities using TopLink.

1.5.1.1 EJB Session Bean Facade
A popular variation on the three-tier application involves wrapping the business logic, 
including the TopLink access, in EJB session beans. This architecture provides a 

Note: TopLink Grid functionality is provided by the 
toplink-grid.jar file. This file is available only if you have also 
licensed Oracle Coherence.



Mappings

1-8 Oracle Fusion Middleware Oracle TopLink Concepts

scalable deployment and includes integration with transaction services from the host 
application server. 

Communication from the presentation layer occurs through calls to the EJB session 
beans. This architecture separates the application into different tiers for the 
deployment. The session bean architecture can persist either Java objects or EJB entity 
beans

1.5.2 Java SE or Thick Client 
A two-tier (or client/server) application is one in which the application accesses 
TopLink directly. Although less common than the other architectures discussed here, 
TopLink supports this architecture for smaller or embedded data processing 
applications.

1.5.3 Web Services
A Web services architecture is similar to the Web or session-bean architecture. 
However, in a Web services architecture you encapsulate business logic (the service) in 
a Web service instead of (or in addition to) using session beans. In a Web services 
architecture, clients communicate with your application using XML.

As in any architecture, you can use TopLink to persist objects to relational data 
sources. However, in a Web services architecture you can also use TopLink to map 
your object model to an XML schema for use with the Web service or as the Web 
service XML serializer. 

1.5.4 TopLink Database Web Services
TopLink database Web services architecture is similar to the Web services architecture. 
However, in a TopLink database Web services architecture, you use TopLink to 
automatically generate Web services that expose database operations such as queries, 
DML statements, stored procedures, and stored functions. Using TopLink database 
Web services, you can provide Java EE-compliant, client-neutral access to a relational 
database without having to write Java code.

As in any Web services architecture, clients communicate with your application using 
SOAP (XML) messages. However, in a TopLink database Web services architecture you 
need only specify an XSD for persistent classes. Clients need only invoke the 
operations the TopLink database Web service exposes to create, read, update, and 
delete these persistent objects. TopLink database Web services return objects or row set 
data, depending on the type of operation.

1.6 Mappings
Mapping refers to relating an object or XML schema to a corresponding relational 
database table. TopLink can transform data between an object representation (such as 
a Java class) and a representation specific to a data source (such as a database table). 
This transformation is called mapping and it is the core of an TopLink project.

A mapping corresponds to a single data member of a domain object. It associates the 
object data member with its data source representation and defines the means of 
performing the two-way conversion between object and data source. 

TopLink is a metadata-driven mapping engine with the mappings for different data 
sources provided through annotations, XML, or for advanced use cases, they can be 
written and augmented by using code.



TopLink/EclipseLink API

General Concepts 1-9

For more information, see Section 1.6.2, "Object-Relational Data Type Mappings" and 
Section 1.6.3, "Object-XML Data Type Mappings."

1.6.1 Relational Mappings
Relational mappings transform any object data member type to a corresponding 
relational database (SQL) data source representation in any supported relational 
database. Relational mappings allow you to map an object model into a relational data 
model. 

Relational mappings can also transform object data members that reference other 
domain objects that are stored in other tables in the database and are related through 
foreign keys.

1.6.2 Object-Relational Data Type Mappings
Object-relational data type mappings transform certain object data member types to 
structured data source representations optimized for storage in specialized 
object-relational databases such as Oracle Database. Object-relational data type 
mappings let you map an object model into an object-relational model. You can use 
only object-relational data type mappings with specialized object-relational databases 
optimized to support object-relational data type data source representations. 

For more information, see "Object-Relational Data Type Mappings" in the EclipseLink 
documentation: 

http://wiki.eclipse.org/Object-Relational_Data_Type_Mappings_
%28ELUG%29 

1.6.3 Object-XML Data Type Mappings
XML mappings transform object data members to the XML elements of an XML 
document whose structure is defined by an XML schema document (XSD). You can 
map the attributes of a Java object to a combination of XML simple and complex types 
using a wide variety of XML mapping types.

Classes are mapped to complex types, object relationships map to XML elements, and 
simple attributes map to text nodes and XML attributes. The real power is that when 
mapping an object attribute to an XML document, XPath statements are used to 
specify the location of the XML data.

TopLink stores XML mappings for each class in the class descriptor. TopLink uses the 
descriptor to instantiate objects mapped from an XML document and to store new or 
modified objects as an XML document.

TopLink provides XML mappings that are not defined in the JPA specification. Some 
of the Object-XML extensions are available through TopLink annotations, others 
require programmatic changes to the underlying metadata.

For more information on these mappings, see "Mapping Simple Values" in the 
EclipseLink documentation:

http://wiki.eclipse.org/EclipseLink/UserGuide/MOXy/Simple_
Values/Single_Values/XMLDirectMapping#Mapping_to_an_Attribute

1.7 TopLink/EclipseLink API
The EclipseLink API component of TopLink provides the reference implementation for 
JPA 2.0 (JSR-317). The org.eclipse.* classes encapsulate the EclipseLink API and 



TopLink/EclipseLink API

1-10 Oracle Fusion Middleware Oracle TopLink Concepts

provide extensions beyond the specification. These extensions include 
EclipseLink-specific properties and annotations. For more information on the API, 
properties and extensions, see the Oracle Fusion Middleware Java API Reference for 
EclipseLink. See also "Using EclipseLink JPA Extensions" in the EclipseLink 
documentation:

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29

The EclipseLink API component also includes the JPA interfaces in the 
javax.persistence package.

The older Native TopLink, "Classic" TopLink, and TopLink Essentials persistence 
products, which were represented by the oracle.toplink.* classes, have been 
removed from TopLink and replaced with the EclipseLink implementation. 

 



2

Building Blocks of a TopLink Project 2-1

2Building Blocks of a TopLink Project

This chapter describes the items that can be used in a TopLink project. 

This chapter contains the following sections:

■ Section 2.1, "Building Blocks for Object-Relational Mapping"

■ Section 2.2, "Building Blocks for Object-XML Mapping"

2.1 Building Blocks for Object-Relational Mapping
TopLink provides a complete, JPA 2.0-compliant JPA implementation. It provides 
complete compliance for all of the mandatory features, many of the optional features, 
and some additional features. The additional nonmandatory functionality includes 
object-level cache, distributed cache coordination, extensive performance tuning 
options, enhanced Oracle Database support, advanced mappings, optimistic and 
pessimistic locking options, extended annotations and query hints. 

For more information, see "The EclipseLink JPA User's Guide" in the EclipseLink 
documentation:

http://wiki.eclipse.org/EclipseLink/UserGuide/JPA

The following sections describes many of these features.

■ Section 2.1.1, "Object-Relational Entity Architecture"

■ Section 2.1.2, "Adding Metadata Using Annotations"

■ Section 2.1.3, "Configuration Files"

■ Section 2.1.4, "Data Sources"

■ Section 2.1.5, "TopLink Caches"

■ Section 2.1.6, "Database Queries"

2.1.1 Object-Relational Entity Architecture
The entity architecture is comprised of entities, persistence units, persistence contexts, 
entity manager factories, and entity managers. Figure 2–1 illustrates the relationships 
between these elements:

■ Persistence creates one or more EntityManagerFactory objects

■ Each EntityManagerFactory is configured by one persistence unit

■ EntityManagerFactory creates one or more EntityManager objects

■ One or more EntityManagers manage one PersistenceContext



Building Blocks for Object-Relational Mapping

2-2 Oracle Fusion Middleware Oracle TopLink Concepts

Figure 2–1 Relationships Between Entity Architecture Elements

2.1.1.1 Entities
An entity is any application-defined object with the following characteristics:

■ It can be made persistent.

■ It has a persistent identity (a key that uniquely identifies an entity instance and 
distinguishes it from other instances of the same entity type. An entity has a 
persistent identity when there is a representation of it in a data store).

■ It is transactional in a sense that a persistence view of an entity is transactional (an 
entity is created, updated and deleted within a transaction, and a transaction is 
required for the changes to be committed in the database). However, in-memory 
entities can be changed without the changes being persisted.

■ It is not a primitive, a primitive wrapper, or built-in object. An entity is a 
fine-grained object that has a set of aggregated state that is typically stored in a 
single place (such as a row in a table), and have relationships to other entities.

The entity also contains entity metadata which describes the entity. Entity metadata is 
not persisted to the database. It is used by the persistence layer to manage the entity 
from when it is loaded until it is invoked at runtime. Metadata can be expressed as 
annotations on the Java programming elements or in XML files (descriptors). 

Beginning with the current release, you can define and use extensible entities where 
mappings can be added on the fly. In this case, the entity stores extended attributes 
within a map instead of static attributes. The entity then defines how values from this 
map are mapped to the database using an eclipselink-orm.xml mapping file. In 
addition to being able to dynamically define mappings, TopLink also allows these 
extended mappings to be stored and managed externally. This external storage allows 
your extended mappings to be defined while the application is running. For more 
information, see "EclipseLink/Examples/JPA/Extensibility" in the EclipseLink 
documentation:

http://wiki.eclipse.org/EclipseLink/Examples/JPA/Extensibility

2.1.1.2 Persistence and Persistence Units
Persistence is a characteristic of an entity. This means that the entity can be represented 
in a data store, and it can be accessed at a later time. 

A persistence unit identifies a persistable unit and defines the properties associated 
with it. It also defines the objects that need to be persisted. The objects can be entity 
classes, embeddable classes, or mapped superclasses. The persistence unit provides 



Building Blocks for Object-Relational Mapping

Building Blocks of a TopLink Project 2-3

the configuration for the entity manager factory. Entity managers created by the entity 
manager factory will inherit the properties defined in the persistence unit. 

2.1.1.3 Entity Managers
An entity manager enables API calls to perform operations on an entity. Until an entity 
manager is used to create, read, or write an entity, the entity is just a nonpersistent Java 
object. When an entity manager obtains a reference to an entity, that entity becomes 
managed by the entity manager. The set of managed entity instances within an entity 
manager at any given time is called its persistence context; only one Java instance with 
the same persistent identity may exist in a persistence context at any time. 

You can configure an entity manager to read or write to a particular database, to 
persist or manage certain types of objects, and to be implemented by a specific 
persistence provider. The persistence provider supplies the implementation for JPA, 
including the EntityManager interface implementation, the Query implementation, 
and the SQL generation.

Entity managers are provided by an EntityManagerFactory. The configuration for 
an entity manager is bound to the EntityManagerFactory, but it is defined 
separately as a persistence unit. You name persistence units to allow differentiation 
between EntityManagerFactory objects. This way, your application obtains control 
over which configuration to use for operations on a specific entity. The configuration 
that describes the persistence unit is defined in a persistence.xml file. You name 
persistence units to be able to request a specific configuration to be bound to an 
EntityManagerFactory.

2.1.2 Adding Metadata Using Annotations
TopLink provides a set of proprietary annotations as an easy way to add metadata to 
the Java source code. The metadata is compiled into the corresponding Java class files 
for interpretation at run time by a JPA persistence provider to manage persistent 
behavior. You can apply annotations at the class, method, and field levels. 

TopLink annotations expose some features of TopLink that are currently not available 
through the use of JPA metadata.

■ basic properties—By default, TopLink persistence provider automatically 
configures a basic mapping for simple types. Use these annotations to fine-tune 
the immediate state of an entity in its fields or properties.

■ relationships—TopLink defaults some relationships, such as OneToOne and 
OneToMany. Other relationships must be mapped explicitly. Use the annotations 
to specify the type and characteristics of entity relationships and to fine-tune how 
your database implements these relationships.

■ embedded objects—An embedded object does not have its own persistent identity; 
it is dependent upon an entity for its identity. By default, TopLink persistence 
provider assumes that every entity is mapped to its own table. Use the following 
annotations to override this behavior for entities that are owned by other entities.

2.1.3 Configuration Files
The following sections describe some of the key configuration files in a TopLink Object 
Relational Mapping project. 



Building Blocks for Object-Relational Mapping

2-4 Oracle Fusion Middleware Oracle TopLink Concepts

2.1.3.1 About the Default Configuration Values
Oracle TopLink is compliant with the JPA 2.0 specification. The configuration files 
allow you to change the default values of properties that are defined in the 
specification. The defaults are extensive and specified in Chapter 10 "Metadata 
Annotations" in the JPA specification.

http://jcp.org/en/jsr/detail?id=317

The configuration is done by exception: if a value is not specified in one of the 
configuration files, then a default value is used. 

For the TopLink extensions beyond the JPA specification, the defaults are described in 
the Oracle Fusion Middleware Java API Reference for EclipseLink.

2.1.3.2 Configuring Persistence Units Using persistence.xml
Use the JPA persistence file, persistence.xml, to configure the persistence unit. A 
persistence unit defines the details that are required when you acquire an entity 
manager. You can specify any vendor-specific extensions in the file by using a 
<properties> element.

This file should appear in the META-INF/ directory of your persistence unit JAR file 
or in the classpath.

For more information, see "Configuring Persistence Units Using persistence.xml" in 
the EclipseLink documentation: 

http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_
Development/Configuration/JPA/persistence.xml

2.1.3.3 Specifying TopLink Object-Relational Mappings Using eclipselink-orm.xml
The standard JPA orm.xml file is used to apply metadata to the persistence unit. It 
provides support for all of the JPA 2.0 mappings. You can use this file in place of 
annotations, or to override JPA annotations in the source code. The EclipseLink 
eclipselink-orm.xml file supports the mappings defined by the orm.xml file, 
plus the full set of EclipseLink extensions beyond JPA 2.0.

For more information on the eclipselink-orm.xml file, see "Specifying 
EclipseLink Object-Relational Mappings Using eclipselink-orm.xml" in the EclipseLink 
documentation:

http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_
Development/Configuration/JPA/eclipselink-orm.xml

See also "EclipseLink/Examples/JPA/EclipseLink-ORM.XML" in the EclipseLink 
documentation:

http://wiki.eclipse.org/EclipseLink/Examples/JPA/EclipseLink-ORM
.XML

2.1.4 Data Sources
An important part of the definition of the persistence unit is the location where the 
provider will be able to find data to read and write. This is called the data source. In 

Note: Using this mapping file will enable many TopLink advanced 
features, but it may prevent the persistence unit from being portable 
to other JPA implementations.



Building Blocks for Object-Relational Mapping

Building Blocks of a TopLink Project 2-5

TopLink, the data source is often a database. The database location is specified in the 
form of a JDBC data source in the JNDI namespace of the server. 

Typically, applications that use TopLink are run in the context of a JTA transaction. 
Specify the name of the data source in the jta-data-source element in the 
persistence.xml file. If the application is not run in the context of a transaction, 
then it is considered to be resource-local. In this case, specify the name of the data 
source in the non-jta-data-source element. 

TopLink also allows you to specify a non-relational database data source, such as an 
XML schema.

Applications that use TopLink can be run in standalone, or Java SE, mode. In this 
mode, the application runs outside the server, with a non-JTA compliant data source, 
and in a non-Oracle stack. In this case, you must provide driver-specific information, 
such as the JDBC driver class, the URL that the client uses to connect to the database, 
and the user name and password needed to access the database. For more information 
and an example of running an application in stand-alone mode, see 
"EclipseLink/Examples/JPA/OutsideContainer" in the EclipseLink documentation:

http://wiki.eclipse.org/EclipseLink/Examples/JPA/OutsideContaine
r

See also "EclipseLink/Examples/JPA/Tomcat Web Tutorial" in the EclipseLink 
documentation:

http://wiki.eclipse.org/EclipseLink/Examples/JPA/Tomcat_Web_
Tutorial

2.1.5 TopLink Caches
By default TopLink uses a shared object cache, that caches a subset of all objects read 
and persisted for the persistence unit. The TopLink shared cache differs from the local 
EntityManager cache. The shared cache exists for the duration of the persistence 
unit (EntityManagerFactory, or server) and is shared by all EntityManagers 
and users of the persistence unit. The local EntityManager cache is not shared, and 
only exists for the duration of the EntityManager or transaction.

The benefit of the shared cache, is that once an object has been read, the database does 
not need to be accessed if the object is read again. Also, if the object is read by using a 
query, it will not need to be rebuilt, and its relationships will not need to be re-fetched.

The limitation of the shared cache, is that if the database is changed directly through 
JDBC, or by another application or server, the objects in the shared cache will be stale.

TopLink offers several mechanism to deal with stale data including:

■ Refreshing

■ Invalidation

■ Optimistic locking

■ Cache coordination 

The shared cache can also be disabled, or can be selectively enabled and disabled by 
using the @Cache or @Cacheable annotations.

TopLink also offers several different caching strategies, to configure how many objects 
are cached, and how much memory is used. 

If the application knows the cache is out of date, it can clear, refresh or invalidate it 
programmatically. Clearing the cache can cause object identity issues if any of the 



Building Blocks for Object-Relational Mapping

2-6 Oracle Fusion Middleware Oracle TopLink Concepts

cached object is in use, so invalidating is safer. If you know that none of the cached 
objects are in use, then you can just clear the cache. 

For more information, see  "EclipseLink/Examples/JPA/Caching" in the EclipseLink 
documentation.

http://wiki.eclipse.org/EclipseLink/Examples/JPA/Caching

2.1.5.1 Defining Cache Behavior
TopLink provides a @Cache annotation which allows you to define cache properties. 
The properties include cache type, size, and refresh rules, among others. See "Using 
the @Cache Annotation" in the EclipseLink documentation. 

http://wiki.eclipse.org/EclipseLink/Examples/JPA/Caching#Using_
the_.40Cache_Annotation

2.1.5.2 Caching in Clustered Environments
Caching in a clustered environment can have issues, as changes made on one server 
will not be reflected on objects cached in other servers. This is not a problem, for 
read-only objects, but it is for objects that are frequently updated.

TopLink offers several solutions to this problem.

■ The cache can be disabled for the classes that frequently change.

■ Cache coordination can be used to broadcast changes between the servers in the 
cluster to update of invalidate changed objects.

■ Cache invalidation based on time-to-live or time-of-day.

■ Optimistic locking will prevent updates to stale objects, and trigger the objects to 
be invalidated in the cache. 

2.1.6 Database Queries
The object-relational component of TopLink supports a variety of queries.

2.1.6.1 JPQL
JPQL is a query language that is similar to SQL, but differs because it presents queries 
from an object model perspective and includes path expressions that enable navigation 
over the relationships defined for entities and dependent objects. TopLink enables you 
to use JPQL with regular Java objects. In TopLink, JPQL enables you to declare queries, 
using the attributes of each abstract entity in the object model.

The disadvantage of JPQL is that dynamic queries require performing string 
concatenations to build queries dynamically from Web forms or dynamic content. 
JPQL is also not checked until runtime, making typos more common. These 
disadvantages are reduced by using the query criteria API, described in the next 
section.

See "JPQL" in the EclipseLink documentation.

http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_
Development/Querying/JPQL

See also "EclipseLink/Release/2.1.0/JPAQueryEnhancements" in the EclipseLink 
documentation.

http://wiki.eclipse.org/EclipseLink/Release/2.1.0/JPAQueryEnhanc
ements



Building Blocks for Object-Relational Mapping

Building Blocks of a TopLink Project 2-7

2.1.6.2 Criteria Queries
JPA 2.0 defines a query criteria API to simplify dynamic query creation. Criteria 
queries can use parameters, and query hints the same as named queries. The query 
criteria API allows you to write any JQPL query—all JPQL keywords are defined in 
this API. The criteria API uses a set of Java interfaces to allow queries to be 
dynamically constructed. It also provides compile time checking for correctness to 
reduce the number of runtime typos.

See "Criteria Query" in the EclipseLink documentation.

http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_
Development/Querying/Criteria 

2.1.6.3 Query Hints
A TopLink query hint allows a JPA Query to be customized or optimized beyond what 
is available in the JPA specification. Use TopLink JPA query hints to:

■ construct a JPA query

■ specify a JPA query using the @QueryHint annotation

See "Query Hints" in the EclipseLink documentation.

 http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_
Development/Query_Hints 

2.1.6.4 Advanced TopLink Native Query Support
TopLink provides an expression framework (also known as TopLink Native Query 
Support) with which you can express queries in a database-neutral fashion as an 
alternative to raw SQL when writing queries not supported by JPQL. TopLink 
expressions offer the following advantages over SQL when you access a database:

■ Expressions are easier to maintain because the database is abstracted.

■ Changes to descriptors or database tables do not affect the querying structures in 
the application.

■ Expressions enhance readability by standardizing the Query interface so that it 
looks similar to traditional Java calling conventions.

■ Expressions allow read queries to transparently query between two classes that 
share a relationship. If these classes are stored in multiple tables in the database, 
TopLink automatically generates the appropriate join statements to return 
information from both tables.

■ Expressions simplify complex operations.

TopLink automatically generates the appropriate SQL from the specified expression. 

The expression framework allows you to work with expressions, database queries, call 
objects, and native queries. For more information on the queries described in the 
following list, see "Native SQL Queries" in the EclipseLink documentation.

http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_
Development/Querying/Native

■ JPA Query Using an EclipseLink DatabaseQuery

A TopLink DatabaseQuery is a query object that provides a rich API for 
handling a variety of database query requirements, including reading and writing 
at the object level and at the data level. 



Building Blocks for Object-XML Mapping

2-8 Oracle Fusion Middleware Oracle TopLink Concepts

■ JPA Query Using a TopLink Call Object

Using the DatabaseQuery method setCall, you can define your own TopLink 
Call to accommodate a variety of data source options, such as SQL stored 
procedures and stored functions, EJB QL queries, and EIS interactions. 

■ Named Parameters in a Native Query

Using TopLink, you can specify a named parameter in a native query using the 
TopLink # convention 

■ JPQL Positional Parameters in a Native Query

Using TopLink, you can specify positional parameters in a native query using the 
Java Persistence query language (JPQL) positional parameter convention ?n to 
specify a parameter by number.

■ JDBC-Style Positional Parameters in a Native Query

Using TopLink, you can specify positional parameters in a native query using the 
JDBC-style positional parameter ? convention. 

2.2 Building Blocks for Object-XML Mapping
The TopLink Object-XML component enables you to efficiently bind Java classes to 
XML schemas. Object-XML implements JAXB, allowing you to provide your mapping 
information through annotations as well as providing support for storing the 
mappings in XML format.

JAXB (Java Architecture for XML Binding—JSR 222) is the standard for XML Binding 
in Java. JAXB covers 100% of XML Schema concepts. TopLink provides a JAXB 
implementation with many extensions.

When using TopLink Object-XML as the JAXB provider, no metadata is required to 
convert your existing object model to XML. You can supply metadata (using 
annotations or XML) if you want to fine-tune the XML representation.

TopLink Object-XML includes many advanced mappings that allow you to handle 
complex XML structures without having to mirror the schema in your Java class 
model. 

For more information, see "The EclipseLink MOXy (JAXB) User's Guide" in the 
EclipseLink documentation:

http://wiki.eclipse.org/EclipseLink/UserGuide/MOXy

The following sections describes many of these features.

■ Section 2.2.1, "Using TopLink Object-XML as the JAXB Provider"

■ Section 2.2.2, "Object-XML Architecture"

■ Section 2.2.3, "Serving Metadata for Object-XML"

■ Section 2.2.4, "XML Bindings"

■ Section 2.2.5, "Specifying TopLink Object-XML Mappings Using 
eclipselink-oxm.xml"

■ Section 2.2.6, "Querying Objects by XPath"



Building Blocks for Object-XML Mapping

Building Blocks of a TopLink Project 2-9

2.2.1 Using TopLink Object-XML as the JAXB Provider
To use TopLink Object-XML as your JAXB provider, you must identify the entry point 
to the TopLink JAXB runtime. This entry point is the JAXBContextFactory class.

Create a text file called jaxb.properties and enter the path to the 
JAXBContextFactory class as the value of the 
javax.xml.bind.context.factory context parameter, for example: 

javax.xml.bind.context.factory=org.eclipse.persistence.jaxb.JAXBContextFactory 

The jaxb.properties file must appear in the same package as the domain classes. 

2.2.2 Object-XML Architecture 
In the sample Object-XML architecture illustrated in Figure 2–2, the starting point is a 
XML schema. A binding compiler binds the source schema to a set of schema-derived 
program classes and interfaces. JAXB-annotated classes within the application are 
generated either by a schema compiler or the result of a developer adding JAXB 
annotations to existing Java classes. The application can either marshal data to an XML 
document or unmarshal the data to a tree of content objects. Each content object is an 
instance of either a schema derived or an existing program element mapped by the 
schema generator and corresponds to an instance in the XML.

Figure 2–2 A Sample Object-XML Architecture

2.2.2.1 JAXB Contexts and JAXB Context Factories
The JAXBContextFactory class is the entry point into the TopLink JAXB runtime. It 
provides the required factory methods and can create new instances of JAXBContext. 

The JAXBContextFactory has the ability to: 

■ Create a JAXBContext from an array of classes and a properties object

■ Create a JAXBContext from a context path and a classloader



Building Blocks for Object-XML Mapping

2-10 Oracle Fusion Middleware Oracle TopLink Concepts

The JAXBContext class provides the client's entry point to the JAXB API. The 
JAXBContext class is responsible for interpreting the metadata, generating schema 
files, and for creating instances of these JAXB objects: Marshaller, Unmarshaller, 
Binder, Introspector, and Validator. 

TopLink Object-XML offers several options when creating your JAXBContext. You 
have the option of bootstrapping from:

■ A list of one or more JAXB-annotated classes.

■ A list of one or more TopLink XML Bindings documents defining the mappings 
for your Java classes.

■ A combination of classes and XML Bindings.

■ A list of context paths.

■ A list of session names, referring to TopLink sessions defined in sessions.xml.

2.2.3 Serving Metadata for Object-XML
In addition to the input options described in Section 2.2.2.1, "JAXB Contexts and JAXB 
Context Factories," TopLink Object-XML provides the concept of a MetadataSource, 
which is responsible for serving TopLink metadata. This allows you to store mapping 
information outside of your application and have it retrieved when the application's 
JAXBContext is being created or refreshed. For information on implementing 
MetadataSource, see "MetadataSource" in the EclipseLink documentation:

http://wiki.eclipse.org/EclipseLink/UserGuide/MOXy/Runtime/Metad
ataSource

2.2.4 XML Bindings
TopLink allows you to use all of the standard JAXB annotations. In addition to the 
standard annotations, TopLink offers another way of expressing your metadata—the 
TopLink XML Bindings document. Not only can XML Bindings separate your 
mapping information from your actual Java class, it can also be used for more 
advanced metadata tasks such as:

■ Augmenting or overriding existing annotations with additional mapping 
information.

■ Specifying all mappings information externally, without using Java annotations.

■ Defining your mappings across multiple Bindings documents.

■ Specifying "virtual" mappings that do not correspond to concrete Java fields.

For more information, see "XML Bindings" in the EclipseLink documentation:

http://wiki.eclipse.org/EclipseLink/UserGuide/MOXy/Runtime/XML_
Bindings

2.2.5 Specifying TopLink Object-XML Mappings Using eclipselink-oxm.xml 
You can use Java annotations to specify JAXB features in your TopLink projects. In 
addition to Java annotations, TopLink provides an XML mapping configuration file 
called eclipselink-oxm.xml. This mapping file contains the standard JAXB 
mappings, plus configuration options for advanced mapping types. You can use the 
eclipselink-oxm.xml file in place of, or to override JAXB annotations in source 
code.



Building Blocks for Object-XML Mapping

Building Blocks of a TopLink Project 2-11

2.2.6 Querying Objects by XPath
In addition to using conventional Java access methods to get and set your object's 
values, TopLink Object-XML also allows you to access values using an XPath 
statement. There are special APIs on TopLink’s JAXBContext to allow you to get and 
set values by XPath. For more information, see "Querying Objects by XPath" in the 
EclipseLink documentation.

http://wiki.eclipse.org/EclipseLink/UserGuide/MOXy/Runtime/Query
ing_Objects_by_XPath 

Note: Using this mapping file will enable many TopLink advanced 
features but it may prevent the model from being portable to other 
JAXB implementations.



Building Blocks for Object-XML Mapping

2-12 Oracle Fusion Middleware Oracle TopLink Concepts



3

Development Tools for TopLink 3-1

3Development Tools for TopLink

This chapter describes the support for TopLink provided by various development 
tools.

This chapter contains the following sections:

■ Section 3.1, "Oracle JDeveloper"

■ Section 3.2, "Oracle Enterprise Pack for Eclipse"

■ Section 3.3, "Eclipse"

■ Section 3.4, "NetBeans"

3.1 Oracle JDeveloper 
Oracle JDeveloper is a Java EE development environment with end-to-end support to 
develop, debug, and deploy e-business applications and Web Services.

For JDeveloper information and downloads, see:

http://www.oracle.com/us/products/tools/019657.htm

JDeveloper includes a number of features to aid in the development of applications 
that use TopLink. These features include wizards to reverse engineer JPA entities from 
database tables and to generate EJB 3.0 Session Beans with EntityManager injection. 
It also includes methods for querying JPA entities, and test client generation.

The Oracle JDeveloper's TopLink editor allows you to quickly and easily configure and 
map your Java classes, EJB, and JPA entities to different data sources, including 
relational databases and XML schemas without using code. The TopLink editor 
supports multiple standards, including JPA and EJB 3.0.

The DBWSBuilder design-time utility allows you to generate a TopLink DBWS service 
descriptor and accompanying files. The utility automatically generates these files from 
database metadata to derive element-tag names and types. The utility also assembles 
the files into deployable archives. 

For more information on TopLink editor and DBWSBuilder, see JDeveloper on-line 
help.

3.2 Oracle Enterprise Pack for Eclipse
Oracle Enterprise Pack for Eclipse (OEPE) is a set of plug-ins designed to support Java 
EE development, where Eclipse is your preferred IDE. 

For OEPE information and downloads, see:



Eclipse

3-2 Oracle Fusion Middleware Oracle TopLink Concepts

 
http://www.oracle.com/technetwork/developer-tools/eclipse/overvi
ew/index.html

OEPE helps you complete the following tasks to create a persistence layer that uses 
TopLink JPA.

■ Configure the Persistence Provider for JPA Projects

OEPE provides an EclipseLink project facet that you can use in your Eclipse JPA 
project. Selecting the EclipseLink project facet makes the following changes to 
your project:

■ the project build path is automatically configured to include EclipseLink 
persistence provider JAR files shipped with Oracle WebLogic Server 11gR1. 
Note that, even though the library files are not shipped with earlier versions of 
Oracle WebLogic Server, you can download them using the facet configuration 
wizard.

■ the database connection properties specific to EclipseLink can be 
automatically configured in the persistence.xml file of your Eclipse JPA 
project.

■ Generate JPA Entities

OEPE allows you to generate JPA entities using the OEPE JPA Entity Generation 
Wizard. 

■ Annotate Java Classes

Using OEPE, you can annotate existing Java classes (POJOs) with JPA annotations 
based on a database schema. When you do, Eclipse will add JPA annotations to the 
appropriate accessors. 

■ Use a JPA Entity Diagram Editor 

OEPE provides graphical interfaces for viewing entity relationship within a JPA 
project. Using the Entity Diagram Editor, you can view and modify relationships 
between entities, get easy access to the entity source code, and create additional 
object-relational mappings. Note that the editor lets you edit properties of both 
entities and their fields. You can also edit the persistence.xml file that 
describes the persistence context.   

■ Use SQL Schema Viewer 

OEPE allows you to examine your database schema using SQL Schema Viewer 
that displays tables and relationships between them. The viewer displays tables as 
table nodes. Each node lists all the columns in a table and shows column data 
types. The node also provides primary and foreign key indicators in a form of 
icons. Foreign key relationships between tables are represented by links in a form 
of arrows. 

3.3 Eclipse
The Eclipse IDE provides a number of features and utilities to help you create, run, 
and maintain applications that use JPA. These capabilities are extended if you install 
OEPE. 

For Eclipse IDE information and downloads, see: 

http://www.oracle.com/technetwork/developer-tools/eclipse/overvi
ew/index.html



NetBeans

Development Tools for TopLink 3-3

The Dali Java Persistence Tools Project provides extensible frameworks and tools for 
the definition and editing of object-relational mappings for JPA entities. JPA mapping 
support focuses on minimizing the complexity of mapping by providing entity 
generation wizards, design-time validation, and a rich UI for entity and persistence 
unit configuration. 

For more Dali information and downloads, see:

http://www.eclipse.org/webtools/dali

Other tools and utilities from the Oracle, open source, and third party vendor 
communities are available from Eclipse Marketplace. 

http://marketplace.eclipse.org/ 

3.4 NetBeans
NetBeans IDE bundles GlassFish Server 3.1.1, which includes Oracle TopLink. The IDE 
provides full support for JPA-based code development. This support includes entity 
class wizards for constructing entities and editor hints to ensure that entities conform 
to the JPA specification. NetBeans also provides a persistence unit editor for 
constructing a persistence.xml file.

For NetBeans information and downloads, see:

http://netbeans.org/index.html



NetBeans

3-4 Oracle Fusion Middleware Oracle TopLink Concepts


	Contents
	1 General Concepts
	2 Building Blocks of a TopLink Project
	3 Development Tools for TopLink
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 General Concepts
	1.1 What is TopLink?
	1.1.1 What Is the Object-Persistence Impedance Mismatch?
	1.1.2 The TopLink Solution

	1.2 TopLink Key Features
	1.3 TopLink Metadata
	1.4 TopLink Components
	1.4.1 EclipseLink Core
	1.4.2 Object-Relational (JPA 2.0)
	1.4.3 Object-XML (JAXB)
	1.4.3.1 TopLink SDO

	1.4.4 Database Web Services (DBWS)
	1.4.5 TopLink Grid

	1.5 TopLink Application Architectures
	1.5.1 Three-Tier Architectures
	1.5.1.1 EJB Session Bean Facade

	1.5.2 Java SE or Thick Client
	1.5.3 Web Services
	1.5.4 TopLink Database Web Services

	1.6 Mappings
	1.6.1 Relational Mappings
	1.6.2 Object-Relational Data Type Mappings
	1.6.3 Object-XML Data Type Mappings

	1.7 TopLink/EclipseLink API

	2 Building Blocks of a TopLink Project
	2.1 Building Blocks for Object-Relational Mapping
	2.1.1 Object-Relational Entity Architecture
	2.1.1.1 Entities
	2.1.1.2 Persistence and Persistence Units
	2.1.1.3 Entity Managers

	2.1.2 Adding Metadata Using Annotations
	2.1.3 Configuration Files
	2.1.3.1 About the Default Configuration Values
	2.1.3.2 Configuring Persistence Units Using persistence.xml
	2.1.3.3 Specifying TopLink Object-Relational Mappings Using eclipselink-orm.xml

	2.1.4 Data Sources
	2.1.5 TopLink Caches
	2.1.5.1 Defining Cache Behavior
	2.1.5.2 Caching in Clustered Environments

	2.1.6 Database Queries
	2.1.6.1 JPQL
	2.1.6.2 Criteria Queries
	2.1.6.3 Query Hints
	2.1.6.4 Advanced TopLink Native Query Support


	2.2 Building Blocks for Object-XML Mapping
	2.2.1 Using TopLink Object-XML as the JAXB Provider
	2.2.2 Object-XML Architecture
	2.2.2.1 JAXB Contexts and JAXB Context Factories

	2.2.3 Serving Metadata for Object-XML
	2.2.4 XML Bindings
	2.2.5 Specifying TopLink Object-XML Mappings Using eclipselink-oxm.xml
	2.2.6 Querying Objects by XPath


	3 Development Tools for TopLink
	3.1 Oracle JDeveloper
	3.2 Oracle Enterprise Pack for Eclipse
	3.3 Eclipse
	3.4 NetBeans


